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Abstract 

We consider multi-class, single server queueing systems and we seek to devise policies for 

server allocation which minimise some long-term cost function. In most of the work to 

date on the optimal dynamic control of such systems, holding cost rates are assumed to 

be linear in the number of customers present. Such assumptions have been argued to be 

unrealistic and thus inappropriate: see Van Meighem (1995). 

With pure priority policies, which often emerge from analyses based on linear holding 

cost assumptions, there is often the problem that service offered to lower priority traffic is 

unacceptably poor. Seeking to address such problems, we first investigate the performance 

of policies based on linear switching curves in an M/M/1 model with two customer types, 

imposing various constraints on the second moments of queue lengths. We then develop an 

index heuristic for a multi-class M/M/1 model with increasing convex holding cost rates. 

Following work by Whittle (1988), we develop the required indices and in a numerical 

study of two and three class systems, demonstrate the strong performance of these index 

policies. Performance of policies throughout the thesis, as measured by lowest costs 

achievable under a given policy class, (i. e. best linear switching, best threshold, or index 

policy) is compared with a lower bound on the minimum cost achievable under any policy. 

This lower bound is obtained by adopting the achievable region approach, see Bertsimas, 

Paschalidis & Tsitsiklis (1994) and Bertsimas & Nino-Mora (1996) in which we construct 

a set of constraints satisfied by the first and second moments of the queue lengths. These 

constraints define a relaxation of the set of achievable region performance vectors of the 

system. Optimisation over this relaxed region yields the lower bound. Numerical results 

indicate the strong performance of the index policy. 
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Chapter 1 

Introduction 

The problems of scheduling are familiar to most of us in our everyday lives. A busy NHS 

hospital, for example, must work within the constraints of a limited budget to balance 

the varying demands made on its services by patients with differing needs of treatment. 

The decisions made by a hospital trust at a particular time affect the choices open to it 

in the future and their aim is usually to maximise some targets of patient throughput or 

satisfaction or to minimise some aspect such as patient waiting times. So it is in the world 

of telecommunications and computing. The degree to which available service/processor 

time outstrips the demand for service means that the various types of jobs arriving for 

service are often forced to wait in the system until they can be processed by the server. 

Such a situation means it is necessary to develop policies or rules as to when a job 

arriving for service is served. One such policy would be simply first come, first served 

but consideration, for example, of the queue in an accident and emergency department 

would clearly indicate that it is not always desirable or possible to allocate service on 

such a simple basis. Obviously, there are patients arriving who have differing needs, and 

differing priorities need to be devised for them as the cost of delaying a patient with a 

cut finger is not as great as the cost of delaying a patient with a heart attack. 

Queueing theory can assist us in addressing the real world problems of server allocation 

to jobs/customers of differing priorities. Such problems can sometimes be modelled by 
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I 

the use of Markov decision processes in the framework of stochastic optimisation. We 

seek to devise policies for server allocation which will minimise some long-term holding 

cost rate. 

Ideally, service policies should be both simple to devise and implement. Such are 

the complexities of server allocation problems, however, that this has rarely been possi- 

ble. The so-called curse of dimensionality constantly imposes limits on the computational 

viability of problems and related solution methods. Early work by Gittins (1979) demon- 

strated that for certain simple stochastic resource allocation problems, an index, vi (xi) 

could be calculated for each job type. This index was simply a function of a job's type, 

i and its state, xi and thus problems of dimensionality were reduced. The optimal policy 

under given conditions was for the server to operate on the job type with the highest 

index: hence the term index policy. Clearly the development of index based policies was 

highly desirable. The work presented herein represents a small part of ongoing research to 

extend to more complex models, the systematic design of heuristic service policies whose 

performance is close to optimal. 

1.1 Markov Decision Processes 

A Markov process is a model of a system which passes through a succession of states, each 

determined by a succession of transition probability distributions which in turn depend 

upon the current state of the system. We add to this, firstly, a set-of decisions at each 

stage, and on which the probability distribution governing the next stage of the system 

depends, and, secondly, a set of possible rewards at each stage, depending on the decision 

and the subsequent transition made. Thus, we define a discrete time Markov Decision 

Process (MDP) as follows: A dynamic system which has decision epochs at equidistant 

points of time say, t=0,1, ... 

"A state space, I 

" For each state iEI, a set of possible actions, A (i) 
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"A real valued reward (or cost) system, R (i, a), depending on which action, a, is 

taken in state i. 

We also assume the Markov property, i. e. the effects of making a decision in a given state 

depend only on that state and not on any past states. 

MDPs serve as useful models for a wide variety of systems where sequential decisions 

are to be made. Blackwell (1965) considered discounted MDPs, first those with a discrete 

time process and then extended his work to include those processes where the intervals 

between successive decision times are random variables. The latter are called semi-Markov 

decision processes. Our work concerns mainly average cost problems but we also consider 

a problem with an infinite time horizon MDP in which future rewards (or costs) are 

discounted, so as to ensure that the total reward obtained or cost incurred is finite. 

Our aim is to find policies which either maximise this reward function or minimise some 

holding-cost function. 

Some of the earliest work on such problems was in the context of queueing systems. 

Among the more prominent of the early contributors were Cobham and Harrison, both of 

whom considered queues with non-pre-emptive priorities. Cobham (1954) argued that as 

the load on a system increases, then the need to prioritise the jobs in some way increases 

and he recommended that as jobs of the highest priority would delay those of lower 

priorities, the frequency of jobs being assigned as high-priority should be kept as low 

as possible and that the servicing times of those high-priority jobs should be as short as 

possible. Harrison (1975) showed for his model that a policy whereby the jobs are serviced 

according to a strict priority rule is optimal. 

1.1.1 The Multi-armed bandit problem 

Multi-armed bandit problems are a type of MDP which involve the dynamic allocation of 

some limited resource to a fixed collection of competing projects. The aim is to maximise 

the total expected rewards or minimise the total expected costs of delay. A simple example 

of such a problem would be one involving m drilling machines which can be used to 
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prospect for oil at n different locations and m<n. It is important to note that at those 

locations where no drilling takes place at a given moment in time, it is assumed that the 

states of those locations remain unchanged. 

1.1.2 The Gittins Index 

Gittins & Jones (1974) produced the first solution of one of the multi-armed bandit 

problems. Proof of optimality uses an interchange argument and the result takes the 

form of an index, the Gittins index, a function of the project type and state. The optimal 

policy is simply, at each decision epoch, to serve that customer type with the largest index 

value. When the system modelled is that of a single server queue with K customer types 

and costs are linear in each class queue length, and the goal is to minimise the long run 

holding cost rate, then the optimal policy under given conditions is to schedule jobs in 

decreasing order of ckµk, where Ck is the cost incurred per unit of time until the job is 

completed and µk is the rate at which customers of type k are served. (See, for example 

Coffman & Mitrani (1980). ) Such a policy has clear advantages in that calculation of the 

indices is extremely simple and does not involve the K-dimensional calculations of classical 

dynamic programming. The implementation of the policy is also quite straightforward. 

Clearly there was a great incentive for work to be carried out in generalising the types 

of bandit problems for which optimal index solutions could be found. 

1.2 More complex bandit problems 

In 1980, Whittle offered a proof of the Gittins index result via a dynamic programming 

approach; see Whittle (1980). He also extended his results to include what Gittins (1979) 

refers to as bandit superprocesses. Such a process has an extra decision variable, ui added 

so that at a decision time, we must decide not only the project i which is operated on but 

also which procedure, u= is adopted. 

At the same time as Whittle produced this work, Nash (1980), considered a problem 
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where the reward gained for operating project i depended not simply on the state of project 

i but on the states of all of the other projects in a multiplicatively separable fashion. He 

derived an index for such a problem and proved the optimality of the corresponding index 

policy. Whittle (1981) considered arm acquiring bandits, one of a general class of problems 

now known as branching bandits. See Glazebrook (1976), Weiss (1988), Klimov (1974) 

and Tcha & Pliska (1977). Whittle's problem can be thought of as a multi-armed bandit 

which develops more arms, or projects, as time passes. Such problems are particularly 

useful to us here in the modelling of multi-class queueing systems but their use extends 

also to systems in the fields of medicine, agriculture and technology, where, over time, 

there are greater choices to be made because of technical advances. Again, Whittle found 

an optimal Gittins index solution to the problem. 

Obviously, the Gittins index approach was offering optimal solutions to a range of 

bandit problems. The work in extending the problems to which index solutions provided 

such solutions continued throughout the 1980s. Most contributions analyse the models 

via a dynamic programming approach: see Glazebrook (1982), Glazebrook (1991) and 

Varaiya, Walrand & Buyukkoc (1985). 

1.2.1 The Whittle Index 

In ground-breaking work, it was Whittle (1988) who first suggested that index solutions 

could be developed for restless bandit problems. In the multi-armed bandits of Gittins 

(1979), the bandits are assumed to be static during their passive phases. Hence, if we 

have n bandits or projects from which we must choose one to be active, the states of the 

n-1 on which no action is taken remain unchanged. Whittle describes a population of 

n projects, or restless bandits, which continue to evolve, each according to its own set 

of rules, whether they are functioning (active) or not (passive) but according to distinct 

transition laws for active/passive. The problem, like that of our earlier drilling problem, 

is to choose which of the projects should be active at any given time so as to maximise the 

expected reward rate earned given that at each decision epoch we are allowed to operate 
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only m, where m<n. He relaxed the problem to one which requires m projects to be 

active on average. He then solved this relaxed version using Lagrangian methods. He 

argued that the Lagrange multiplier associated with the constraint on total processing, 

takes the form of an index, vi (xi), which simplifies to that of the Gittins index when 

the bandits are assumed static when passive. He asserted that for in and n large and in 

constant ratio, the policy whereby at any given point, the m active bandits are those with 

the largest current index is asymptotically optimal. It is important to note, however, that 

in general Whittle's proposed indices do not necessarily exist for every MDP. A given 

MDP must be shown to have the property of indexability and even when such indices do 

exist, they are not in general optimal. 

This approach of Whittle's was heuristic and was essentially based on simplifications 

of the problem in the undiscounted case. Early work by Cox & Smith (1961) suggested 

the optimality of service policies where the server chooses from the waiting customers 

according to a fixed ordering of the classes and the costs to be optimised are linear. We- 

ber & Weiss (1990) and Weber & Weiss (1991) showed, mathematically, that Whittle's 

conjecture of asymptotic optimality as m and n approach infinity is true if the differ- 

ential equation representing the fluid approximation to the index policy has a globally 

stable equilibrium point. They show that, although this is not always so, exceptions are 

extremely rare. 

The practical applications of such models are many. Bertsimas & Nino-Mora (2000) 

mention the following examples: clinical trials, aircraft surveillance, worker scheduling (see 

Whittle (1988)), police control of drug markets and control of a make-to-stock production 

facility. For the latter see also Veatch & Wein (1996). Thus, there is great motivation to 

extend the research to seek index solutions for such problems. 

Many approaches will be, like that of Whittle's, heuristic in nature. The quality of 

such policies has usually been measured by a comparison of their empirical performance 

with that of a minimum cost to the problem provided by means of standard dynamic 

programming techniques, where this was possible. When this was not possible, usually 
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because of dimensionality problems, assessment was made simply by a comparison of the 

performances of a variety of heuristic policies, usually in a simulation study, and, as such, 

offered little insight concerning their degree of suboptimality. A relatively new approach, 

that of the achievable region helps us to address such difficulties among others. 

1.3 Dynamic Programming 

The techniques known collectively as Dynamic Programming (DP) were devised for opti- 

misation problems involving sequential decisions. Thus, they have always been considered 

the natural framework for the optimal solution of MDPs. Our concept of a solution to 

an MDP is a policy, i. e. a set of rules determining which action should be taken at each 

decision epoch, for each possible state. 

It was Bellman (1957) who first propounded the ideas of DP and stated his principle 

of optimality concerning the optimal policy, that whatever the initial state and initial 

decision of a sequential decision process, the remaining decisions must also form an optimal 

policy. This is true for many models when future states are independent of all past states 

and depend only on the current state, so that the path taken to arrive at the present state 

is irrelevant for decision-making. We suppose that in our MDP defined in Section 1.1, we 

choose action a in state i, then the following occur: 

" We incur an immediate cost, c2 (a) or reward, r= (a) 

" The system will move to state j at the next decision epoch with probability pij (a), 

where 
>1 pzj (a) = 1, iEI. 

Assume that our goal is to optimise the discounted costs/rewards to infinity. By applying 

the principle of optimality to such an MDP, we obtain a set of recursive equations for func- 

tions defined on state space I, the solution of which will give us the optimal cost/reward. 

Rarely, such equations can be solved analytically and an optimal policy deduced from 

them. When this is not possible, we can seek to solve the equations numerically, by iter- 

ative approaches, although the application of such methods is frequently limited by the 
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problem of dimensionality. An n class queueing problem usually has an n dimensional 

state space, and thus our ability to compute solutions is curtailed by the exponentially 

increasing size of the problem. For all practical purposes, we are severely restricted in DP 

to the optimal solution of such problems with relatively small n. 

1.4 The achievable region approach. 

Until fairly recently, the standard technique of approach to stochastic scheduling problems 

was dynamic programming. Although it is true to say that many such problems can be 

set within such a framework, as we have already mentioned above, its effectiveness is 

rapidly curtailed by the size of the resulting calculations. This is especially found to be a 

problem, as one might expect, in more complex stochastic optimisation problems. 

An alternative approach has been that of the achievable region. This approach has 

its roots in mathematical programming. The basic aim of the achievable region approach 

is to provide a general framework for the solution of stochastic scheduling problems. In 

general terms, it operates as follows: 

" Define some suitable performance measure and characterise the performance space 

(the set of all possible performances of the system under all possible policies) using 

a set of physical laws, usually conservation laws, which describe the system. 

" Solve a mathematical programming problem over the performance space. 

For those problems involving the optimal scheduling of multiclass queueing systems, each 

scheduling policy usually has associated with it a performance vector, whose ith com- 

ponent is the performance measure associated with customers of type i. The achievable 

region X of a problem is the set of performance vectors, e. g. mean queue lengths, of 

all of the admissible policies and the solution to the associated scheduling problem may 

sometimes be found by solving a mathematical program with X as the feasible set. Thus, 

given a vector of performance measures x, the expected number of jobs of each type in 
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a multi-class queueing system, and a cost function c (x), we would seek Z* the minimum 

cost achievable under any admissible policy or Z, a lower bound on it. The minimum 

achievable cost is 

Z* =min c (x) 

subject to 

xEX 

where X is the exact performance region. Ideally this region would be characterised 

explicitly by means of algebraic constraints. In those cases where it is not possible to 

characterise the exact performance region, constraints may be generated to obtain a re- 

laxation of the achievable region, i. e. a set which contains it. See, for example (Bertsimas 

& Nino-Mora 2000). Let PDX be a relaxation of the performance region, then we can 

obtain a lower bound on Z* by the solution of: 

Z= min c (x) 

subject to 

xEP. 

The solution to even this relaxed program can lead to good, i. e. close to, optimal policies. 

In this it is clear that the generation of constraints (i. e. relations satisfied by all x) is of 

paramount importance as is the design of good policies from the solutions. 

The characterisation of the achievable region of a stochastic scheduling problem was 

first achieved by Coffman & Mitrani (1980) and Gelenbe & Mitrani (1980). Their work 

concerned optimal control problems for multi-class M/M/1 and M/G/1 queues. They 

showed that by identifying every scheduling policy with a performance vector consisting 

of mean response times for each customer class, the set of achievable performances (i. e. 

those performance vectors which are the result of adopting some admissible scheduling 

policy) can be characterised as a region bounded by a set of linear constraints. The latter 

arise from the physical laws which describe the system's behaviour subject to different 

scheduling policies. The problem of optimising a linear function of customer class waiting 
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times over admissible policies is reduced to a linear programming problem which is able 

to be solved by standard methods. We shall consider optimisation problems involving 

the minimisation of customer queue length but the same approach applies. Coffman & 

Mitrani (1980) and Gelenbe & Mitrani (1980) showed the achievable region of a multi- 

class M/M/1 queue under non-idling service policies to be a polyhedron and, significantly, 

showed that the optimality of priority-index policies derives directly from this polyhedral 

structure. 

The work was extended with the aim of developing a general framework for the anal- 

ysis of many stochastic scheduling problems. See, for example Federgruen & Groenevelt 

(1988) and Shanthikumar & Yao (1992). The latter pair introduced the concept of strong 

conservation laws and proved results concerning the form of the achievable region, once 

such laws are shown to hold. 

1.4.1 Strong conservation laws. 

Shanthikumar & Yao (1992) defined so-called strong conservation laws for systems and 

showed that, if these held, then the achievable region, X, was of a particular form, a 

polymatroid, the vertices of which are the performance vectors of the absolute priority 

rules. In this subsection, we outline their work. Let E= 11,... 
'n} 

be a set of n 

different job types in a general queueing system. We assume scheduling strategies are non- 

idling and non-anticipative. Thus the server is always active when there are customers 

to be served and scheduling decisions are based only on the past history and current 

state of the system. We denote U as the class of admissible service policies and xj as a 

performance measure of type j jobs under an admissible policy u. Let x" = MU )SEE be 

the corresponding performance vector. For any permutation ir = 71 i ßr2, ..., 7rE of the n 

elements of set E, we denote x7 the performance vector for the scheduling policy which 

prioritises the job types according to the permutation. Thus, irl is given the highest 

priority, then 72 and so on down to irn being given lowest priority. We shall use the 

notation x (S) := EIES x (Al for any SCE. 
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Definition 1.1 (Strong conservation laws) If 3 b: 2E -> RI, a set function which 

satisfies the following conditions for all uEU; 

Ex, ' = b(E) 
jEE 

(1.1) 

I: xj'> b (S) 
, all SCE (1.2) 

jES 

and such that, for all scheduling policies -7r = {7rl, 7F27 ..., VE}, 
r 

1: x. rj =b ({Iii, 2,... '7frl)>> 
for r=1,2,... 'ri' 

(1.3) 

j=1 

then performance vector x= (X1, x2) ..., XE) satisfies strong conservation laws. 

If the strong conservation laws hold, then it follows from (1.1) and (1.2) that any perfor- 

mance vector x will belong to the polyhedron, P, where 

. 
(1.4) P=xE I[8+ :E xj >b (S) 

, all SC E; E xj =b(E) 
jES jEE 

Shanthikumar & Yao (1992) showed that if a system satisfies strong conservation laws 

(Definition (1.1)) then the base function b must satisfy the properties listed in Definition 

(1.2) and the polyhedron P must be a polymatroid. 

Definition 1.2 (Normalised, non-decreasing and supermodular) Let b: 2E --* R+ 

be a set function which is 

" normalised: b (0) =0 

" non-decreasing: b (S) <b (T), for all SCTCE and 

" supermodular: b (S) +b (T) <b (S U T) +b (S fl T) for all S, TCE 

Theorem 1.1 (Shanthikumar and Yao (1992)) Assume the performance vectorx sat- 

isfies strong conservation laws (1.1), (1.2) and (1.3) then 

" The performance space is the polyhedron, P, described by (1.4). 
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"P is the base of a polymatroid. 

9 The performance vectors of the absolute priority rules form the vertices of P. 

This result enabled a wide range of queueing scheduling problems to be solved by simple 

priority rules. These included problems previously considered by Coffman & Mitrani 

(1980) and Federgruen & Groenevelt (1988). As an example of how the method works, 

we use an M/M/1 queueing system with two job types discussed by Gelenbe & Mitrani 

(1980). Define V,, (t) as the total amount of work in the system at time t under an 

admissible scheduling strategy u. It is assumed that the speed of the server is 1. Figure 

1.1 illustrates a typical realisation of Vu (t). Whenever a customer arrives, V, (t) jumps 

V (t) 

t 

Figure 1.1: Total work in the system under scheduling strategy u. 

vertically upwards by an amount equal to the time needed to service the incoming job: 

whenever a job is being served, it decreases linearly with slope -1. While the server is 

idle, V,, (t) remains constant but jumps vertically downwards (by the amount of service 

time remaining) whenever a job leaves the system before it has completed its service. It is 

clear that the only influence which service strategy u can have on Vu (t) is by ruling that 
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the server should be idle when there are jobs in the system and by expelling jobs from 

the system before their service time is complete. (It is assumed that jobs do not leave the 

system of their own volition. ) Under a strategy where the server is not allowed to idle and 

jobs not allowed to leave the system before service completion V,, (t) is independent of u. 

Such strategies are termed work-conserving. Assume that Vu (t), as a stochastic process, 

has a steady state distribution and denote the limiting average by Vu: 

Vu = tim F [Vu, 
lt)J (1.5) 

As V, (t), and hence E [V,, (t)], is independent of u for every t, it is, therefore, possible to 

state 

VI. =v (1.6) 
where V is a constant, determined only by the parameters of the arrival and required 

service times processes. It is also assumed that all scheduling decisions are based on 

past and present knowledge of the system (i. e. not on any knowledge of exact remaining 

service times). Let xi = E,, (Ni) /p, be the steady-state expected work in the system due 

to type i jobs and 1:? 
1 Eu (Ni) /µ; the total steady-state expected amount of work. In 

the 2 job-type system, therefore, we can conclude that 

E. (Ni) 
=V= 

Piµi 1 Patz 1 
(1.7) 

i_i /1= 1- Pi - P2 

and it is also shown that 

EE,, (Ni) 
1_Epi EPi whereA={1}, {2}, (1.8) 

iEA 
ý2 

iEA iEA 

for any admissible, work conserving, non-anticipative service policy where p1, i=1,2 is 

the offered load for a type i job. The lower bounds for A= 111, {2} are obtained by 

policies which give pre-emptive priority to the appropriate class. This is an example of a 

system satisfying strong conservation laws. Bertsimas et al. (1994) sought to extend the 

range of problems by consideration of both open and closed multiclass queueing networks. 

Many of the problems they considered were such that it was not possible to characterise 
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the associated achievable region exactly. Their interests led them to consider performance 

vectors which captured not only mean queue lengths, but also higher moments and higher 

order interactions between the customer classes. This will be of importance in the work 

of the thesis at various points. They used a potential function technique to account for 

higher order interactions among customer classes, or job types, and went on to obtain 

non-linear characterizations of relaxations of the achievable space using ideas from semi- 

definite programming. Ansell, Glazebrook, Mitrani & Nino-Mora (1999) adopted such an 

approach in their evaluation of performance policies for a two class queueing system. We 

have used such techniques throughout our work to evaluate the performances of a number 

of heuristic policies. 

1.4.2 Generalised conservation laws. 

The work of Shanthikumar and Yao was generalised by Bertsimas & Nino-Mora (1996). 

The latter pair showed that if the performance measures in stochastic and dynamic 

scheduling problems conform to certain generalised conservation laws, then the perfor- 

mance space is an extended polymatroid. Optimisation of a linear objective, over such a 

region, can be achieved by an adaptive greedy algorithm and yields an optimal solution 

with an indexability property. Generalised conservation laws extended the strong con- 

servation laws of Definition (1.1) in that they introduce the concept of weighting to the 

performance vector. Again, we consider a stochastic service system where E= {1, 
... , n} 

be a set of n different job types . 
We assume scheduling strategies are non-idling and 

non-anticipative. Let xj' be a performance measure of type j jobs under an admissible 

policy u. We denote x' the performance vector for the strict priority rule which priori- 

tises the job types according to the permutation 7r of the n elements of set E. Thus, 

ir1 is given the highest priority, ... , 7rn the lowest priority. We shall use the notation 

x (S) :_ >jES x (j), for any SCE. 

Definition 1.3 (Generalised conservation laws) Performance vector x" is said to 

satisfy generalised conservation laws if 3a set function b: 2E -* R+, and a matrix 
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A= (AS'jEE, 
scE that satisfies Ajs > 0, for SE such that: 

(a) 

b (S) _ Aý xý , 
for all 7r : {-7rl, 

... , lrlscl} = S° and SCE. (1.9) 
jES 

(b) 

For every admissible policy uEU; 

EAjExj' =b(E) 
jEE 

and 

(1.10) 

E Ajsxj >b (S) 
, all SCE (1.11) 

jES 

As previously mentioned, the extension from strong conservation laws is by the addition 

of the weights Aq. Thus, when Aq = 1, for all jESa performance vector will satisfy 

strong conservation laws. Consider the following polyhedron: 

P (A, b) =xE (R')" : AS xj >b (S) for SCE and E AExj =b (S) 
. 

(1.12) 
jES jEE 

The performance space is (the base of) an extended polymatroid. 

Theorem 1.2 (Performance region characterisation) Assume the performance vec- 

tor x satisfies generalised conservation laws (1.10) and (1.11) then 

" The performance space is the (base of) an extended polymatroid, P (A, b), described 

by (1.12). 

" The performance vectors of the absolute priority rules form the vertices of P (A, b), 

and x" =v (ir) 

Given an optimal scheduling problem, 

Z' = inf Z cjx� 
UEU jEE 

we can compute Z* from the following linear programme 

Z* = min E c3x . 
(1.13) 

XEB(A, b) 
SEE 
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Bertsimas & Nino-Mora (1996) use the following adaptive greedy algorithm, given in 

Table (1.1) as a solution method for the linear programming problem (1.13). The optimal 

Table 1.1: The adaptive greedy algorithm. 

INPUT: (c, A) 

OUTPUT: (it, y, ry), where 

-7r = (ir1 
i ..., 7rE) is a ranking permutation of E 

y= (ys)scE is the optimal dual solution, and 

7= (yl, 
, yE) are optimal allocation indices 

STEP k=E 

Set S1=E 

Set ysl = min 
{: jES, j 

Pick 7rl E argmin 
{: jE Si l 

Set 'y = ys' 

STEP k. For k=E -1, ..., 1 

Set Sk = Sk_1\ {lrk+1} 

Set 

Pick 

ysk =min 
cj1 Aj'Y 

:jE Sk 
Ask i 

J 
k-1 Si -Si 

-7rk E argmin 
Cj - ýi-1 A;. y: 

jE Sk 
Ajk 

Set y7, 
k = 'yak + 9sk 

STEP 0 

For SCE: 

Set yS = 0, if Sý {S1, 
..., SE} 

ordering vector it corresponds to a Gittins index policy. Bertsimas & Nino-Mora (1996) 

show that the vector ry of the optimal priority indices is independent of how any ties are 

broken in the running of the algorithm. They further showed that v (7r) and y are an 
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optimal primal-dual pair for the linear programme. Thus (1.13) is optimally solved by 

the performance measures achieved by adopting a service policy corresponding to ir and 

scheduling problems which have linear objectives and satisfy generalised conservation laws 

are optimally solved by Gittins index policies. More recent work in this area has considered 

so-called partial conservation laws which extend the work to consider the indexability of 

more difficult problems such as restless bandits as outlined in Section 1.2.1. Nino-Mora 

(2001b) shows that if a set of partial conservation laws are satisfied, then the achievable 

region method may be used to optimally solve a stochastic scheduling problem, for a 

suitable range of linear performance objectives. The solution takes the form of a priority- 

index policy. He also investigates, using the same approach, the property of indexability 

of restless bandits as defined by Whittle (1988). 

1.5 Non-linear holding costs 

The commonly made assumption of linear holding costs has been called into question by 

Van Meighem (1995) and others. He argued that, in reality, non-linearity may arise from 

physical phenomena, such as the processing cost of perishable goods or from customer 

expectations. The latter arises in situations where the marginal cost to a firm of delaying 

a customer is greater if he is delayed beyond his expected delay time rather than within 

it. 

Ansell, Glazebrook & Mitrani (2001) took a similar view. With pure priority policies in 

which total pre-emptive priority is given to one customer type, there is often the problem 

that the service offered to the lower priority traffic is unacceptably poor. Simulations 

have shown that service to the latter group tends to be poor on average and extremely 

variable. 

In their work on threshold switching policies, Ansell et al. (2001) addressed this prob- 

lem by imposing a constraint on the second moment of the queue length of the lower 

priority traffic in a standard stochastic optimisation problem. They then examined the 
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relative performances of both randomised and threshold service policies using an M/M/1 

model with two customer types. 

In this thesis, we also consider the above problem and assess the performances of a 

number of policies based on a linear switching curve. We then extend this to a problem 

with a non-linear objective function, formulated as a restless bandit, and go on to find a 

Whittle index solution to the problem which we believe to be near optimal under certain 

conditions. More detail of this is given in the following section on thesis structure. 

1.6 Thesis Outline 

In this section we give an outline of the structure of the remaining chapters of the thesis. 

Throughout the thesis, we are concerned only with multi-class M/M/1 queueing systems. 

In such systems, it is generally known that, when seeking to optimise a linear cost function 

in the expected number of customers in each queue, strict priority policies are optimal. 

Such policies however, can have the disadvantage of large variation in queue lengths of 

lower priority customers. We seek to address such problems. 

In Chapter 2, we are concerned only with two-class M/M/1 systems in which a lin- 

ear holding cost objective has constraint(s) imposed on the second moments of queue 

length(s). We consider a class of service policy based on linear switching curves. Under 

such policies, the server continues to serve type 1 customers until the queue length of the 

type 2 customers reaches the line n2 = and +, 6 and is then switched to serving type 2. 

This develops the work of Ansell et al. (1999) on the class of threshold policies, a sub- 

group of policies based on a linear switching curve (i. e. those where a= 0). Analytical 

techniques (the power series algorithm, conformal mapping and the epsilon algorithm) are 

outlined and then used to evaluate performance measures for policies based on switching 

curves and threshold policies. This enables us to search for the lowest costs achievable 

by the policy types. These costs are compared with a lower bound cost using the achiev- 

able region approach. We outline the methods used to characterise a set of achievable 
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performance vectors for a relaxation of a performance region and go on to find such a 

set for our two customer system. This bounding set is then used in the formulation of a 

semidefinite program and solved using the SDPA (semidefinite programming algorithm) 

package developed by Fujisawa and Kojima. See Kojima (1994). 

Despite the strong performance of the (optimal) policies based on linear switching 

curves, they are expensive in the amount of computational time employed in searching 

through a and ,Q space to find the optimum. 

Part of Chapter 3 and 4 has been published: see Ansell, Glazebrook, Nino-Mora & 

O'Keeffe (2003). In Chapter 3, we consider a multi-class M/M/1 system and associated 

optimisation problems. The system cost rate is additive across the customer classes and 

increasing convex in the numbers present within each class. A discounted version of the 

problem is formulated as a restless bandit problem. Such problems were introduced by 

Whittle (1988). He proposed an index-based heuristic for those problems meeting the 

requirement of indexability. Following Whittle, we develop an index for our multi-class 

queueing system. We show, by simple arguments, the form of the index for the discounted 

costs version of our queueing model and, by taking an appropriate limit, we then infer 

the appropriate index for the undiscounted problem of primary interest. In Chapter 4, 

we carry out a numerical investigation into the performance of index policies in cases 

involving quadratic costs for two and three customer systems. The analytical methods 

used are as in Chapter 2, but we also use the methods of dynamic programming via the 

value iteration algorithm (see Tijms (1994)) in order to calculate C°PT, the minimum 

cost achievable by any admissible policy. We compare (i) the minimum cost achievable 

by any threshold policy with (ii) that achieved by any linear switching policy with (iii) 

that achieved by the Whittle index policy. These costs are in turn compared with (iv) 

COPT and (v) a semidefinite lower bound again calculated, as in Chapter 2, by utilising 

the achievable region approach. 
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Chapter 2 

Application of policies based on 

linear switching curves to problems 

with non-linear constraints 

2.1 Introduction 

In queueing theory, much of the work on optimal service control in multi-class systems 

has aimed to determine policies which will minimise some measure of a system's overall 

cost rate. It has frequently been assumed that such cost rates are linear in the numbers 

of customers of each type present in the system. Thus, given an M/M/1 system with k 

customer classes and linear cost functions Ck, the marginal costs, Ck are constants. It is 

probably fair to say, however, that often the prime motivation for making such assump- 

tions lay in their rendering possible the analysis of otherwise intractable problems, rather 

than their representing a close approximation of reality. In his work on the generalised 

cp-rule, Van Meighem (1995) argues that it is the non-linear holding cost function which 

is to be found in many real-life systems and that the linear assumption is often simplistic. 

Non-linearity may be due to various causes. In the case of a factory producing goods, 

it may be due to the nature of the goods themselves. For example, the marginal cost 
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of delaying the freezing of fresh vegetables will clearly increase at an increasing rate as 

time passes and the product begins to deteriorate. Another factor which may account 

for non-linearity in the holding costs is customer expectation. A certain level of delay, to 

varying degrees, is expected by all customers but once that expected level is surpassed, 

then there is the possibility, for example, that customers will in the long term withdraw 

their custom. 

In multi-class queueing systems, such problems can be a feature of simple pre-emptive 

priority policies, where classes are given pre-emptive priority over other classes. Customers 

of lower priority classes are often compelled to suffer excessively long queues which are 

subject to extremely variable service. Ansell et al. (1999) seek to mitigate such problems 

by consideration of a stochastic optimisation model in the form of a two customer M/M/1 

system which has constraints imposed on the second moments of the two queue lengths. 

Of the two families of parameterised heuristic policies which they analyse, the performance 

of the threshold policies was the more promising. 

Ansell et al. (1999) investigated the performance of threshold policies and our work 

generalises theirs to include the whole family of policies determined by linear switching 

curves. It must be said that such an extension does involve the additional complexity 

of a second policy parameter. Our motivation also stems from Van Meighem (1995) in 

which he introduces a generalised cp-rule which, with non-decreasing convex delay costs, 

he shows is asymptotically optimal if the system operates in heavy traffic. Our work is 

in terms of holding costs, which depend on queue lengths rather than delay but, from 

Van Meighem (1995), we inferred that policies based on linear switching curves might 

work well for those systems where convex holding costs are quadratic functions of queue 

length. Such policies are explained in Section 2.4. The threshold policies considered by 

Ansell et al. (1999) are a special case of those policies based on a linear switching curve. 

In this chapter, motivated by these considerations, we extend the work of Ansell et al. 

(1999) by considering the performance of policies based on linear switching curves in 

several numerical examples, all of which concern a two customer type M/M/1 system as 
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described in Section 2.3. 

Our chief aims in this were as follows: 

" To assess the performance of policies based on a linear switching curve in various 

holding cost minimisation problems, by measuring how closely the cost of operating 

such policies approaches a theoretical lower bound on the problem; 

9 To identify the type(s) of problem, if any, for which such policies are nearly optimal; 

" To identify the type of problem in which the policies based on a linear switching 

curve significantly outperform threshold policies. 

We would expect the two parameter policies to outperform the threshold policies, but 

clearly any reduction in costs offered by the former would have to be sufficiently large to 

account for the extra computing time that finding such a policy would take. Clearly, the 

time taken to find the lowest cost offered by a threshold policy, involving as it does a simple 

evaluation of the expected cost at each threshold value, is far shorter than any search over 

the parameters of intercept and slope which the general class of linear switching policies 

requires. The structure of the rest of this chapter is given below. 

In Section 2.2, we explain generally, the methods we use in our analysis of multiclass 

queueing systems. These are the power series algorithm and the epsilon algorithm. In 

Section 2.4 we describe scheduling policies based on linear switching curves and go on to 

develop a set of balance equations to which we apply the methods of Section 2.2. This 

enables us to analyse a two customer type M/M/1 system as outlined in Section 2.3. 

As our performance measures include both first and second moments of queue-length, 

we cannot characterise the exact achievable region. We therefore in Section 2.6 outline the 

methods of Bertsimas et al. (1994) in formulating a set of constraints to define a relaxation 

of the exact region and in Section 2.7 we formulate a bounding set for such a relaxation for 

the two customer system described in Section 2.3 and over which optimisation methods 

of semidefinite programming described in Section 2.8 can be undertaken to calculate the 
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lower bound on achievable cost. The problems we consider involve the minimisation of a 

linear objective which we constrain with various forms of second moment constraints. 

2.2 Analytical methods 

The analysis of the stochastic processes underlying queueing systems is often restricted to 

that of the simplest processes. The problem of dimensionality means that it is often not 

practical to solve a set of balance equations for any but the simplest of systems. Thus, 

the use of efficient numerical methods in order to compute performance measures, such as 

expected queue lengths, is essential. We use a method first introduced by Hooghiemstra, 

Keane & van de Ree (1988) called the Power Series Algorithm (PSA) in which the balance 

equations are replaced by a set of equations which are recursively solvable. As we shall 

see, this involves the addition of one dimension to the state space. In the next section, we 

give an account of the general power-series algorithm based on the work of Blanc (1993). 

2.2.1 The Power Series Algorithm 

The PSA is a numerical method developed to compute performance measures of multi- 

queue type systems. It consists of power-series expansions of the state probabilities in 

terms of the load of a system. These expansions are used to recursively solve the global 

balance equations satisfied by these probabilities. Its precise application to the particular 

systems studied in this thesis are given as they arise in the text. 

Consider that type of multi-class queueing system for which the stochastic queue length 

processes are multi-dimensional birth-death processes. We use the following notation: let 

R be the number of queues in the system and p be the traffic intensity or load on the 

system. It is the latter which is used as a variable in the power-series expansion. 

Let paj (n) and d3 (n) be the respective arrival and departure rates to queue j when the 

system is in state n, where j=1,2,..., R. We use, nj for the number of customers/jobs in 

queue j and n= (ni, n2, ... nR). We denote by p (n) the steady state probability that 
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the process, IN (t) 
,t> 0}, is in state nE NR, where N (t) represents the state of the 

system at time t. 

We leave state n if: 

" an arrival occurs at one of the queues or 

"a service completion occurs at one of the queues. 

Similarly, a state n is entered if: 

" an arrival occurs at queue j when the system is in state n- ee, for nj >1 

" or a service completion occurs at queue j when the system is in state n+ ej, for 

nj > 1. 

We define ej to be the unit vector, consisting of a component of one in the jth position, 

and all other components are zero (j = 1, ..., R). Hence, the global balance equations for 

flows into and out of state n are as follows: 

RR {Pai 
(n) +E dj (n) }(n) = 

j=l j=1 

RR 

pEaj(n-ej)S{nj > 1}p(n-ej)+Edj(n+ej)p(n+ej) (2.1) 
j=1 j=1 

where 5 (I) equals 1 if I holds and is 0 otherwise. We assume that the state probabilities 

sum to 1: 
00 00 

nl=0 nR=0 

(2.2) 

The state probabilities can be expanded as a power series in terms of p, the load of the 

system: 

00 

p (n) = pink > Pkb (k; n) 
k-o 

(2.3) 

and substituting (2.3) into the global balance equations (2.1) results in the following 
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recursive set of equations: 

b (0; 0) = 1; 
RR 

> dj (n) b (0, n) =Z aj (n - ej) ö {nj > 1} b (0, n- ej) , 
Ind >1 (2.4) 

where 

R 

Ini=En= and b(0; n)=umop_ ip(n). 

i=1 

The following relations must also be satisfied: 

b(k; O)=- E b(k-lnl; n); k=1,2,... (2.5) 
1<Inl<k 

and fork=1,2,..., nENR, n#0, 

RR 
Edd(n)b(k; n) _ Eaj(n-ej)ö{nj> 1}b(k; n-ej) 

. i=1 j=1 
R 

-Eaj(n)b(k-1; n) 

. i=1 
R 

+Edj(n+ej)b(k-1; n+ej). (2.6) 
j=I 

The coefficients, b (k; n), can be computed recursively from (2.4) - (2.6) if the stationary 

probabilities are rewritten in the form of (2.3). The power series obtained from these 

recursions does not always converge for all values of p for which the system is in steady 

state, i. e. p<1. Blanc (1993) offers two methods of overcoming such problems by 

increasing the radius of convergence of the power series. They are briefly outlined in the 

following subsections. 

2.2.2 Enlarging the radius of convergence 

We can overcome problems of convergence by introducing a bilinear mapping of the in- 

terval [0,1] on to itself. This has the effect of enlarging the radius of convergence of the 

power series. The conformal mapping used is as follows; 
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9-r. (P) 
(1+G)p 

p=r. 1(0)= 0 
- 1+Gp ' 1+G-GB 

(2.7) 

Choice of a suitable parameter, G, will allow the algorithm to converge for large values 

of p, see Blanc (1993) for details. An alternative computation scheme is then obtained by 

using the following power-series expansions in terms of 0 instead of (2.3): 

00 
p (n) = Bl nl E Okbc (k; n), nE NR 

k=0 

(2.8) 

By replacing p by 
l+c Go in the balance equations (2.1) and then substituting the expan- 

sions from (2.8) into these equations we produce the following set of recursive relations. 

ba (0; 0) = 1, (2.9) 
RR 

(1+G)rdj(n)ba(0; n) = Eaj(n-ej)a{nj> 1}bc(0; n-ej), 

nj > 1, for k=0, nE NR; 

be(k; o) =- 
i bG (k - Inl; n), 

1<Inl<k 

for k=1,2,..., n=0; 

and 

R 

(1+G)Ed1(n)be(k; n) _ 
? -i 

R 
Eaj (n-ej)S{nj > 1} -GS{k> 2}bc(k-2; n+ej)} 
j=l 

R 

+E{Gd, (n)-a, (n)}bc(k-1; n)bG(k; n-ej) 
3=1 

R 

+Ldj(n+ei){(1+G)bG(k-1; n+e1) 
j=l 

fornEN`R, n=0. 
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The choice of value for G depends on the radius of convergence of the given power 

series. A further method of improving convergence involves the use of the epsilon algo- 

rithm. 

2.2.3 The epsilon algorithm 

The epsilon algorithm accelerates the convergence of slowly convergent sequences, or 

can be used to calculate a value for divergent sequences. It does this by transforming an 

initial polynomial into quotients of two polynomials and consists of the following recursive 

scheme: 

11 
EKm) = Eým21) 

ýEK i 1ý 
- c_i] mi -/c, /c = 1,2, 

... 
(2.13) 

where the initial conditions are 

E2-, K -1 = O, r. =0,1, ..., e(M) = O, Epm) _Z CkOk, m=0,1, .... 
(2.14) 

k=0 

and where ck, k=0,1,2, ... are the coefficients of a series. In our case, these coefficients 

are b (k; n) and bG (k; n). It is only the even sequences which converge more rapidly 

than the initial sequence, the odd sequences being simply intermediate calculations. One 

problem which may arise in implementing the epsilon algorithm is that of computer storage 

capacity. It is often this rather than processing time which can limit the application of 

the PSA. Finding power-series expansions up to the Mth power of p (or 0 as in (2.7)) 

requires the computation of 

BR (M) 
M+R+1 

= 
R+1 

coefficients, b (k; n); specifically, those with k+ Ini < M. Thus, in order to make efficient 

use of memory space, we map the multi-dimensional lattice points (k; n), with k+Inj < M, 

on to the integer set 10,..., BR (M) - 1} using the one-to-one mapping given below: 

C (k; n) =k+ 
Inj +R+ Inj+k 

1: 
(R+j 

-1 +ER-j+ 
ER j ni 

. 
(2.15) 

R+1 j=Inl+1 i j=2 R-j+1 
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This mapping has the necessary property that points (k - 1; n), (k; n- ej), (k - 1; n+ e3) 

and (k - 2; n+ ej), j=1, ..., 
R, all map onto a value lower than that mapped onto by 

the point (k; n) for k=0,1,..., nE NR. Use of the algorithm enlarges the number of 

terms of the power-series expansions that can be computed with a given storage capacity. 

This is at the cost of the increased computation time which is needed to determine the 

location of the coefficients in the array in which they are stored. 

2.3 Admissible Service Policies 

Our aim is to carry out a performance analysis on two scheduling policies, one based on 

a threshold, the other based on a linear switching curve. A scheduling policy may be 

defined as a rule governing the allocation of the server(s) to customers in its queues. The 

scheduling policies which we consider are of a type defined as admissible in that they 

satisfy certain inherent restrictions. 

A scheduling policy is deemed to be admissible if it is: 

" Non-anticipative: there is no knowledge of the future of any aspect of the system so 

that decisions taken concerning server allocation can only be based on the history 

of the system to date; 

" Work conserving: the server works whenever there are customers to be served and 

customers only leave the system when their processing has been completed 

Let U denote the set of admissible service policies. Each service policy, uEU has 

associated with it a system performance vector, x,,, = {xu,, xu, ..., xü } where xü is the 

expectation of some particular measure, such as queue length or waiting time, of the class 

k jobs. 

We define the performance space, X= {xu :uE U}, as the set of all system perfor- 

mances which can be achieved by the set of admissible policies. To this we add a cost rate 

vector, c= (cl, c2i ..., cK)T . 
Thus when we wish to optimise some aspect of the system's 
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performance, we can express the problem as follows: 

C0)t = inf (cTxu) = inf (cTx) 
UEU xEX 

We seek to identify scheduling policies which correspond, subject to some form of con- 

straints on the second moments of queue length, to the optimal solution of the above 

problems. 

Throughout this chapter, we consider an M/M/1 queueing system with two customer 

types: type 1 and type 2. Arrivals occur in two independent Poisson streams with rates 

(A1, A2) for types 1 and 2 respectively. Service times are modelled via two exponential 

distributions with rates (Al, µ2) again for types 1 and 2 respectively. 

We assume that service policies must be non-anticipative, non-idling and pre-emptive. 

"Pre-emptive" means that if the server is busy serving a job of class k when a job of 

higher priority arrives, service can be switched instantaneously to the new arrival without 

any extra costs being incurred. This set up is summarised below in Figure 2.1. 

Arrivals: 
2 independent 
Poisson streams 

(Ai, pi) 
ow- 

(A2) µ2) 

Service: 
2 independent Exponential 
Distributions 

Server 

Figure 2.1: An M/M/1 system with two customer types. 

We shall be concerned only with steady state performance criteria and therefore re- 

quire the standard condition that pl + p2 =-+µ<1. We measure performance 

by [E. (N1), Eu(N2), E,, (N1), E.. (N22)] where E. (Nk), and Eu (N? ), k=1,2 are the 
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expected queue lengths and second moments of queue lengths for type 1 and type 2 cus- 

tomers respectively, with expectation taken with respect to the stationary distribution 

under the chosen policy u. 

From work done by Coffman & Mitrani (1980), the set of pairs [Eu (Ni), Ev (N2)] 

satisfy the following conditions for all policies u as illustrated in Figure 2.2 : 

i µl Eu(N1)+-. E,, (N2)_(, -+e2 /(1-Pi-Pa) 
112 

ii E,, (Ni)? Pi/(l-Pi) 

iii Eu(N2) > p2/(1-P2) 

and the set of achievable [Eu (Ni), E. (N2)] is the line segment determined by: 

Pi P2 Xl X2 1 P2 l 
H= 

[(x15x2); 
xiý , x2? --+ --( - f-- Pi-P2)I (1 - Pi) (1 - P2)1 Pl P2 P1 P2 J 

These are the Strong Conservation Laws for an M/M/l system as described in Chapter 

1.4.1 but these involve no second moments of queue lengths. 

E(N) ) 

P 
1-p2 

Figure 2.2: Achievable performance region, H 
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P1,2 and P2,1 correspond to the expected queue length pairs under the total priority 

policies for which pre-emptive priority is given to type 1 and type 2 customers respectively. 

However, the problems we consider include consideration of E.,, (Nl) and Eu (Ni) and the 

exact achievable region is not available. More precisely, we seek to minimise 

ciEu (Ni) + c2Eu (N2) 

for some cost c1, c2 for those u meeting some given linear constraints on Eu (N2) and 

Eu (N2 ). We, therefore, in Section 2.6 construct bounding sets for such a relaxation of 

the achievable region developed from work by Bertsimas & Nino-Mora (1996). 

2.4 Policies based on linear switching curves 

Policies based on linear switching curves are characterised by two parameters, a and , ß, 

each ranging from -oo to oo, which represent the slope and intercept respectively, of a 

line drawn on the positive quadrant. Priority is given to type 1 until the queue length of 

type 2 reaches the switching curve, the line n2 = and +, 3. If there are no type 1 jobs, 

service is given to type 2 and vice versa. This is shown in Figure 2.3. The threshold 

policies are those where a=0. Service effort is assigned as follows: 

If Nl (t) >0 and N2 (t) >0 and N2 (t) < aNl (t) +/3 then a type 1 customer is served. 

If Nl (t) >0 and N2 (t) >0 and N2 (t) > aNl (t) +, ß then a type 2 customer is served. 

If N2 (t) =0 and Nl (t) >0 then a type 1 customer is served. 

If Nl (t) =0 and N2 (t) >0 then a type 2 customer is served. 

2.5 Performance analysis of policies based on linear 

switching curves using the power-series algorithm 

We are again considering the classical single server queueing system with two customer 

types. Service allocation is pre-emptive. The performance measures which we seek to 
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N2 (t) 

Serve type 2 jobs 

Serve type 

Nl (t) 

Figure 2.3: A Linear Switching Curve. 

N2 (t) = aNl (t) +, 3 

compute are the first and second moments of queue lengths under the linear switching 

curve policies in Section 2.4. For this we shall use the PSA as described in Section 2.2.1 

for the case R=2, where R is the number of customer types, in order to compute, 

Eu (N1), EE (N, 2), E,,, (N2) and E. (N2) where u is a linear switching curve policy. The 

approach to the calculation of the first and second moments of the queue lengths of the 

system is described below. For the policies of interest, we need to determine the joint 

steady-state probability distribution 

P [Ni (t) = i, N2 (t) = j] (2.16) Pi, j = too 
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and the above probabilities must satisfy the following set of balance equations: 

{/X1 +a2+µ1b(i>0,0<j<ai+ß)+µ26(i>0, j>0, j>ai+, ß) 

+µ1S (i > 0, j= 0) + 125 (i = 0, j> 0) 
}Pi)'iPi-i, 

ý + 2Pi, j-1 + µi5 (i + 1> 0,0 <j<a (i + 1) + ß) pz+1, j 

+µi6(i+1>0, j=0)P: +1, j+µa6(i= 0, j+1>0)Pi, j+i 

+µ24(i> O) j+1>O, j+1> ai+ß)pz, j+l 

where p_1, ß = pi, _1 =0 and 8 (B) =1 if B is true, 0 otherwise. 

(2.17) 

In our model, we have a two dimensional state space to describe the joint queue lengths 

for our two queue system. The parameter, p= PI + P2 the load of the system is used as 

a variable in the power series expansion. We first rewrite the balance equations in the 

simpler form; 

{ Al + az + µiLl + µ2L2 + µ1L3 + µ2L4lpi, j _ l 
Alps-i,,, + )'2Pi, j-1 + p1 (L5 + L6) pi+i, j + P2 (L7 + L8) Pi, j+i (2.18) 

where Ll =5 (i > 0,0 <j< ai +, Q); 

L2=ö(i> 0, j>0, j>ai+, ß); 

L3=6(i>0, j=0) 

L4=6(i=0, j>0); 

L5=a(i+1 > 0,0<j: 5 a(i+1)+, 0); 

L6=5(i+1>0, j=0); 

L7=b(i>0, j+1>0, j+1>ai+, ß); 

L8=8(i=0, j+1>0). 
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The conformal mapping for the balance equations is as follows: 

l 
(Al + aa) 

B 
1+G- G8 + µ1L1 + F12L2 + µ1L3 + µ2L41 Pij _ 

Aipz-i, j + A2Pi, i-1 
B }1+G- 

G8 
+µi (L5 + L6) Pi+i, j + P2 (L7 + Ls) pz, j+i 

Using the conformed mapping approach, we now replace the pij so that we achieve the 

power series form. We use 

and we infer that 

00 

pi 
,. 
7 = ei+j E eh Ph, i, j 

h=0 

re °° 5 (Al + A2) 
1+G- GB 

+ p1L1 + µ2L2 + /µ1L3 + µ2L4 9E Bhph, 
i, j 

l h=0 

h j1 he 
00 

: -- 
{A1i-'+i 

BEB Ph, i-ý, j + A2B EB ph, i, j-1 
ý1+G-GO 

h-0 h=0 
00 

+/L1 (L5 + L6) Oi+l+j E BhPh, 
i+l, j 

h=0 
00 

+µ2 (L7 + L8) ei+j+l E 0hPh, i, j+l. (2.19) 
h=0 

Now, we multiply through by (1 +G- GO) to obtain 

+A2) Bi+j+l + µl L1 + L3) + µ2 (L2 + L4) (1 +G- GO) 9i+j 6h h: 
(Al 

00 

h=o 
00 00 

, 
\le +j Z ohPh, 

i-1, j +'X 20i+j 
Z ohph, 

i, j-1 
h=0 h=0 

co 
+µi (L5 + L6) Oi+i+. i (1+G-GO) I: oh Ph, i+l, j 

h=0 
00 

+122 (L7 + L8) 0'+i+i (1 +G- GO) E ohph, j, j+1. 
h=0 
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Taking out a factor of Bi+j gives 

(A1 + A2) 0+ {µl (L1 + L3) + M2 (L2 + L4) } (1 +G- GO) jZ ohph, ti, 7 
J h-0 

00 00 
ill E ehPh, i-l, j + A2 E ehph, i, j-1 

h=0 h=0 

00 
+µi (L5 +L6)0(1 +G- GO) E Ohph, Z+l, j 

h=0 
00 

+112 (L7 + L8) 0 (1 +G- GO) Ohph, 1, j+1" 
h=0 

Rearranging, this gives: 

{ (Al+A2)0+pi(Li+L3)(1+G)-µ1(L1+L3)GO 
l 

00 
+112 (L2 + L4) (1+ G) - ß. c2 (L2 + L4) GO }E Ohph, z, j _ JJJ 

h-0 
00 00 

Tý OhPh, i-l, j + A2 E ehPh, i, j-1 

h=0 h=0 
00 Co 

+µ1(L5 + L6) 0 (1 + G) E ohPh, i+i, j - ui (L5 + L6) G02 Z ohPh, i+l, j 
h=0 h=0 
00 00 

+/22 (L7 + L8) 0 (1 + G) E ohph, 
=, 7+1 - µ2 (L7 + L8) G02 Z ohph, i, j+l" 

h=0 h=0 

Equate those terms with equal powers of 0 to obtain: 

(Ai + A2)Ph-i,:, j + µi (Li + L3) (1 + G) ph, i, 1 - /11 (Li + L3) GPh_1, tij 

+/22 (L2 + L4) (1 + G) Ph, i, j - P2 (L2 + L4) GPh-i, Y, j _ 
A1Ph, i-1, j + /\2Ph, i, j-1 

+µl (L5 + Ls) (1 + G) ph-l,: +l, j - pi (L5 + L6) GPh-2, i+1, j 

+µa (L7 + L8) (1 + G) Ph-l, =, j+1 - P2 (L7 + Ls) Gph. 
-2, i, ß+l" 
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Thus we have 

Ph, i, j =1 A1Ph, i-1, j + A2Ph, i, j-1 - 
(Al + A2) Ph-1, i, j 

+p, (L5 + L6) (1 + G) ph-l, i+i, j - µi (L5 + L6) Gph-2, i+i,. i 

+P2 (L7 + L8) (1 + G) Ph-i, i, j+l - P2 (L7 + L8) GPh_2, i, ß+l 

+pi (Li + L3) GPh-i, i, j + µ2 (L2 + L4) GPh-i, i, j 

{ [µl (Li + L3) + µ2 (L2 + L4)] (1 + G) }-1. 

We then use the epsilon algorithm to improve convergence. As we have stated earlier, our 

aim is to compare the performances of the various heuristic policies and also to assess their 

performance against the optimum achievable cost. It is not possible to characterise the 

exact achievable region for the first and second moments of queue length. We therefore 

must formulate a set of constraints which will yield a relaxation of this region. 

2.6 Bounding sets 

The goal of the analysis is to develop sets of equations/inequalities which are satisfied 

by the first and second moments of queue length under all policies. These can then be 

used to develop a relaxation of the required achievable region. We use the non-parametric 

bounding method put forward by Bertsimas et al. (1994). They consider a network 

consisting of T stations, populated by R classes of job. The class of a job completely 

summarizes all of its characteristics, including the node (server) at which it is awaiting 

service. Jobs awaiting service at different nodes are by definition of different classes and it 

follows thereby that a job changes class whenever it moves from one node to another in the 

network. We use a (r) to represent the node at which class r customers are served and C1 

is the set of all classes, r, such that a (r) = i. When a class r job completes service at node 

i, it becomes a job of class s with probability prs and so moves to server o (s) or it can exit 

the network with probability pro =1- ER 
1 prs. Policies considered are non-anticipative, 

pre-emptive but not necessarily work-conserving. The number of class r customers in the 
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system at time t is denoted by n,. (t) and n (t) = (ni (t) 
, n2 (t) , ..., nR (t)) represents the 

state of the system at time t. Under a Markovian policy, such a queueing network will 

evolve as a continuous-time Markov chain. We assume that n (t) has a unique steady-state 

distribution with mean vector n= {nl, n2, ..., nR}. We also assume that E [nr (t)] < oo, 

i. e. the expectation of the second moments are finite when taken with respect to the 

steady-state distribution. The goal is to determine the region of achievable performance, 

i. e. the set of all mean vectors n= (n1, n2, ..., nR) obtained under different policies and in 

our work we also wish to include second moment vectors. The exact characterisation of 

the achievable region is not possible in general (see Bertsimas et al. (1994)) and so they 

devised methods which approximate the region by a larger set. It is by then minimising 

over this relaxation of the performance space that a lower bound may be found on the 

cost of an optimal policy. This is the approach we use. We define a potential function of 

the form: 

R (t) _f (r) nr (t) . 
(2.20) 

r=1 

The following notation is used: Tk is the sequence of transition times in a uniformised 

Markov chain such that E, A, + Er µr = 1. BT (t) denotes the event that server o (r) is 

busy with a class r customer at time t. Similarly, B,. (t) denotes the event that o (r) is 

not busy with a class r customer at time t. Boj (t) denotes the event that node i is idle 

at time t. The arrival process for class r customers has rate Aar and the service time of 

class r jobs is assumed to have an exponential distribution with rate µr. We define 

I,, ý =E [S (Br {-rk}) n,., (-rk)], (2.21) 

Ntrý =E [E (Boi {Tk}) nr' (Tk)], (2.22) 
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where S (. ) is the indicator function and the expectations are taken with respect to the 

invariant distribution. We obtain a recursion as follows: 
RR 

E [R2 (Tk+1) In 
(Tk)] =E Aor (R (-rk) +f (r) )2 +E /-ars 

(Br 
{-rk}) 

R2 
(Tk) 

r=1 r=1 
R 

+E µr5 (Br Irk}) Prr' (R (Tk) 
-f 

(r) +f (r) )2 +Pro (R (-rk) 
-f 

(r)) 2 

r=1 r'=1 

(2.23) 

RR 

E [R (7-k)] =E nr (Tk) f (r) =f (r) nr (2.24) 
r=1 r=1 

. 
E[b 

(Br 1-rk})] - 

A, 

From (2.20)-(2.25), we can see that 

(2.25) 

R 

E [S (Br {Tk}) R (Try)] _Ef (r') Irre. (2.26) 
r'=i 

Now substitute (2.20)-(2.25) into (2.23), take expectations and equate those terms in 

If (r)}2 and If (r) f (r')} we have the following: 

Theorem 2.1 The following equalities hold true for every scheduling policy which satisfies 

the above assumptions: 
R 

2ýrlrr -2E Pr'Pr'rlr'r - 2Ap». fr = )/0r + Ar (1 
- Prr) +E Ar'Pr'r, 1<r<R 

r'=1 r'54r 

RR 

/rIrr' + ttr'Ir'r -> l-iwPwrlwr' -E I- wPwr'Iwr - Aornr' - )Or'nr = 
w=1 w=1 

-ArPrr' - Ar'pr'r for all r, r' such that r> r'. 

Z Irr' + Nir' = 7tr,, Irre > 0, Ni. 
r' > 0, fi > 0. 

rEC; 

2.6.1 Higher order interactions 

The methodology can be extended to take account of higher moments and higher order 

interactions, as opposed to the pairwise interactions expressed in (2.21) and (2.22) and 
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derived so far. In the case of pairwise interactions, recursions were developed from a 

recursion for E [R2 (Tk., ) In (-rk)]. Now, for higher order interactions, they are obtained, 

in a similar fashion from a recursion for E [R3 (rk+1) 1n (Yk)]. 

It is necessary to introduce some new variables, namely,: 

MSc =E [ns (-rk) nt (Tk)] 
, 

(2.27) 

Hrst =E [8 (BT {-rk}) ns (-rk) nt (, rk)]. (2.28) 

We obtain the recursion: 
RR 

E [R3 
(Tk+l) 

In (-rk)] =E A0 (R (Tk) +f (r))3 + pr 
EJ (Br 

1Tk}) 
R3 (Tk) 

r=1 r=1 
RR 

+E Arb (Br 
{Tk}) 1 Prr' (R (Tk) +ff (r) )3 + pro (R (-rk) 

- .f 
(r) )3 

. I r=1 r -1 

Expectations can now be taken with respect to the system in steady state. We have that 

RRR 

0=3 Aorf (r) E [R2 (Tk)] +3E Aorf 2 (r) E [R (-rk)) +E Aorf 3 (r) 
r=1 r=1 r-1 

R 

+3 Pr 

[Prr1 
(f (r') 

-f (r)) E [S (Br {Tk}) R2 (Tk 

r=1 r'=1 
R 

+3 E 
fir 

[Prr1 
(f2 (r') - 2f (r)1(r) +f2 (r)) E [S (Br {Tk}) R (-rk)] 

r=1 r'=1 
R 

+E Pr 
[Prr1 

(f 3 
(rý) - 3f2 (r') f 

(r) + 3f (r') f2 
(r) -f3 (r)) 

E [b 
(Br 

{-rk})] 

r=1 r'=1 
R 

+3 pr. f (r) ProE [S (Br {7'k}) R2 (Tk)] 

r=1 
RR 

+3 > Pr. f 2 (r) ProE [5 (Br {rk}) R (Tk)) - Prf3 (r) ProE [s (Br 17-k})]. (2.29) 
r=1 r=1 

It is trivial to show that the following identities are satisfied 
R2RRR 

E[R2 (Tk)] =EE nr (rk) f (r) = E. f 2 (r) Mrr + 2E Ef (r)f (s) Mrs, (2.30) 
r=1 r=1 r=is=r+1 

R2RRR 

EI (Br {Tk}) >f (s) ns (Tk) _ D2 (s) Hrss + 2E Ef (s)f (t) Hrst, (2.31) 
s=1 8=1 r=lt=s+1 
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Substituting (2.24), (2.25), (2.30) and (2.31) into (2.29), we obtain: 

RRRR 

0= 3 1: darf (r) Eft (s) Mss +2f (s) f (t) Mt 
r=1 s=1 8=1t=s+1 

RRR 

+3 'orf 2 (r) f (s) ns + Aorf 3 (r) 
r=1 s=1 r=1 

RRR 

+3 Y µr EPrs (. f 2 (s) - 2f (s) f (r) + 
.f2 

(r')ý E 
.f 

(t) Irt 
r=1 s=1 t=1 

RRRRR 

+311r 

[»rs(f(8)_f(T))] 

XE 
.f2 

(t) Hrtt +2L.: 
L: 

r=1 s=1 t=1 t=1 w=s+1 
RR 

+E Ar E 
Prs 

(f 3 
(s) - 3f2 (s) 

f (r) + 3f 
(s) 

f2 (r) 
-f3 

(r)) 

r=1 

18=1 

RRRR 

-3 µr f (r) Pro Hrss f2 (s) +2Ef (s) f (t) Hrst 

r=1 

18=1 

s=1t=s+1 
RRR 

+3 
E 

µrf 
2 (r) Pro 

Ef (S) Irs 
-E 

Arf 3 (r) Pr0- 

r=1 s=1 r=1 

(2.32) 

The r. h. s. of (2.29) is identically equal to 0 for all of the f -parameters. Therefore, we 

equate coefficients of powers of f to zero to obtain sets of equations. First, we equate the 

R coefficients of the terms f3 (i) to obtain 

RR 
0= 3AoiMii + 3Aoini + Aoi + 3/-ii Episjis + 3/µiPiolii +3E pspsiIsi 

soi s#i 
RR 

+3 /-ir'Pr'iHr'ii - 3/tiPiioHiii - 3µi EPir'Hr'ii 

rl $i r'¢i 
R 

+3µipiiHiii - 31tiPiiHiii - Ai + ArIPr'i R. 

r'=1 

Noting that by normalisation 
R 

Fei 
E 

PisIis =1 

s=1 

and 
R 

{ýi 1: Pi. Hsi = 1, 
8_1 

f ýt) f (w) Hrtw 

(2.33) 

(2.34) 

(2.35) 
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we can rewrite (2.33) as: 

RR 
0= -Ai + Aspsi + 31-ii (1 

- pii) Iii +3E l-ispsiI i- 3/-iiHiii 

s=1 s54i 
R 

+3 µspsiHsii + . 
A0i + 3. oini + 3) 0iMii i=1, ... ' R. (2.36) 

s=1 

We now equate the R (R - 1) coefficients off 2 (i) f (j), for ij and by using the identities 

R 
EPis1is (2.37) 
s=1 

and R 
EPisHiis 

= 1, (2.38) 

s=1 

we produce the following set of constraints: 

0= 3A0jMii + 3Aojnj + 6AoiMij + 3Aipij - 3. 'jpji + 3µi (1 - Vii) Iij 
RR 

-6piPijlii - 6ttjpjilji +3 µwPwilwj +3 µtptjHtii 
wi L=i 

R 

-3pjHjii - 6µiHiij +6E µwpwiHwij, all i, j s. t. i j. (2.39) 
w=1 

The final set of constraints (2.40) are derived from equating the ER=1 (w - 1) (w - 2) /2 

coefficients of terms with f (i) f (j) f (k) 
,ij, jk and i k, namely 

0= )Ok-Nlij + )oiMjk + )OjNfik - µi (1 
- Pii) Hijk pjj) Hjik - Pk (1 

- Pkk) Hkij 

RRR 

+E µlpliHijk + µlpIjHlik +E µtPlkHlij - /liPijlik + µiPijHiik 
1 i, j, k l#i, j, k Z i, j, k 

-/2iPiklij + /LiPikHiij -/ jPjkjjk + µjPjiHjjk - µjPjklji + µjj7jkHjji 

-µkPkiIkj + µkPkiHkkj - PkPkjlki + I-ikpkjHkki all i, j, k s. t. i j, i#k and j0k. 

(2.40) 

The following constraints also apply: 

EIli<ni, R, m=1,..., T, (2.41) 
IECm 

47 



E Hick <_ Mik, 
. 
7, k=1, ..., R, m=1, ..., T, (2.42) 

IECm 

n2, I=i 7 Mik, H2jk ? 0. (2.43) 

Thus, a new set of linear constraints has been developed. These constraints involve 

{ni, III, Mik, HH; k} and will allow us to develop a relaxation of the achievable region to 

consider problems involving second moment constraints. P2 is the set of equations given 

in Theorem 2.1 and P3 is the set defined by (2.40)-(2.43). It would be possible to apply 

the non-parametric method to E [Ra (Tk+l)] for i>4. In such a way it is possible to 

model interactions among i classes in the system. Such increases in accuracy, however, 

come with the 'cost' of reduced tractability. If the relaxation obtained by considering 

a recursion for the expectation of the ith power of the potential function is denoted by 

Pi, then the ith order approximation of the achievable performance region is said to be 

n1_2 P. By solving the related problem over a third order relaxation of the achievable 

region, n2 Pl derived by the potential function method, we can find a lower bound on 

the optimal cost for the original scheduling problem. 

2.7 A relaxation of the achievable region in a two 

customer class system 

We now seek to assess the performance of various policies/systems as described in Section 

(2.3) for our cost minimisation problem with constrained second moments. This system 

trivially belongs to the class of systems discussed in Section 2.6. It is the case where 

T=1, R=2, Pro = 1. We shall calculate, via a semidefinite programming algorithm, 

a lower bound on the achievable cost. We begin by characterising properties of the first 

and second moments of the queue lengths for each customer type. This will yield a 

relaxation of the achievable region of the problem. By optimising over this region, we can 

use mathematical programming methods to calculate a lower bound on the optimal cost 

of the problem. We can then use this lower bound to estimate the closeness to optimality 
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of the heuristics under consideration. We use the potential function 

R (t) =f (1) Nl (t) +f (2) N2 (t) 
, 

(2.44) 

where Nl (t) and N2 (t) are the queue lengths of the two customer types at time t. The 

first recurrence relationship utilised is 

az 
E [R2 (Tk+l) IN (-rk)] =E Ar 

(R 
(Tk) +f (r))2 +E {-ira (Br 

ITk}) 
[(R (-rk) 

-f 
(r))2] 

r=1 r=1 
z 

+E µrs (Br 
1-rk}) R2 (Tk) 

r=1 

2 
EAr (R2(Tk)+2f (r)R(Tk)+f2(r)) 

r=1 
2 

+ {-frs (Br {Tk}) 
[R2 (-rk) 

- 2f (r) R (Tk) +f2 (r)] 

r=1 
2 

+ its 
(r 

{Tk 
}) R2 (-rk) 

r=1 

Taking expectations on both sides gives us: 

E [E [R2 (Tk+1) IN (-rk )] ]= 
2 

E Ar 
{E 

[R2 (Tk)] + 2f (r) E [R (Tk)] +E [f 2 
r_1 

2 

+1: tz, E [8 (Br {Tk}) R2 (Tk)] - 2f (r) E [5 (Br {Tk}) 
R (-rk)] 

r=1 
2 

+E [S (Br {Try}) f2 (r)] 
1+E 

µrE [S (Br {Tk}) R2 (Tk)] 
r=1 

Now, we use the identity 

EE [R2 (Trk+i) IN (-rk)] 
I_E 

[R2 (Tk+l)] 
=E 

[R2 (Tk)] 
. 

Therefore, considering the R2 (. ) terms in particular, we can write 
22 

E [R2 (Tk)J 
_ 

ATE [R2 (rk+ E 
ItrE 

[S (Br {Tk}) R2 (Tk)] 

r=1 r=1 
2 

+E prE [5 
\- r 

{Tk}) R2 (Tk)] 

r=1 

(2.45) 
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22 
ArE [R2 (Tk)] +E µrE [R2 (Tk 

r=1 r=1 
2 

[Ar + µr] E [R2 (Tk)J 
r=1 

and further, because under uniformisation we have that >r=1 [A, + µ, ] = 1, (2.45) may 

be rewritten as 
2 

E [R2 (Tk)] =E [R2 (Tk )] +E Ar 
{ 

2. f (r) E [R (-rk)] +E [f 2 
`r)] 

} 

r-1 
22 

-2 µrf (r) E IS (Br ITk}) 
R (-rk)] + µrý'' [b (Br {Tk}) f2 (r)] 

r=1 r=1 

Therefore, we can equate all of the remaining terms of the equation to zero as follows: 
2 

0= EA, 2f (r)E[R(Tk)] +E[f2(r)] 
} 

r-1 

221: 
pf (r) E [6 (Br {Tk}) R (, rk)] + µE [6 (Br {Tk}) f2 (r)] 

r=1 r-1 

Now 

E [5 (Br 17-k})] =E (Server is busy with a type r customer) _ 
Ar (2.46) 

We now have 
22 

0=2 Ar. f (r) E [R (Tk)] + 1: \rE [f 2 (r)] 
r=1 r=1 

22 

-2 yrf (r) E [S (Br {Tk}) R (Tk)] + AE [f2 ýr)} 

r-1 r=1 

and, dividing through by 2 
22 

0= Ar. f (r) E [R (-rk)] -E µr. f (r) E [S (Br {Tk}) R (, rk)] 
r=1 r=1 

2 

+EArE [f2 (r)] 
. 

r-1 

Rearranging, we get 

0= A1f(1)E[R(Tk)]+)2f (2)E[R(Tk)] 

-µ1f 
(1) E [8 

(B1 Irk} 
R (-rk))] 

- P2f (2) E [5 (B2 {Tk} R (Tk))] 

+Alf 2 (1) + )2f2 (2) 
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Substituting for R (t) as in (2.44), we obtain 

0= Auf (1) E [f (1) Ni (-rk) + 
.f 

(2) N2 (Tip)] + X2f (2) E [f (1) Ni (-rk) + 
.f 

(2) N2 (-rk)] 

-plf 
(1) E [5 

(B1 
{Tk}) If (1) N1 (, rk) +f (2) N2 (Tk) 

J 

- t2f (2) E [5 (B2 {Tk}) If (1) N1 (Tk) +f (2) N2 (Tk) }} 

+, \if2(1)+A2f2(2) 

We rewrite this using the notation in (2.47) and (2.48) 

0= Alf 2 (1) ni - µ1f 2 (1) Iii + )cif 2 (1) + )aft (2) n2 - /12f 2 (2) 122 + Alf 2 (2) 

+ýlf (1) f (2) n2 + Alf (1) f (2) ni - µif (1) f (2)'12 - µaf (1) f (2) Ili 

where 

rtr =E [Nr (Tk)] (2.47) 

Ir, 3 =E [8 (BT {Tk}) N3 (-rk)]. (2.48) 

Finally, equating the coefficients of f2 (1), f (1) f (2) etc. gives us the following sets of 

equations: 

Ain, - Bill, + Al =0 (2.49) 

t 2nz - µ212a + A2 =0 (2.50) 

)1n2 + A2ni - µ1l12 - /22121 = 0. (2.51) 

For the higher order interactions as described in Section 2.6.1, we use the following recur- 

sion, again using the potential function from (2.44): 
2 

E [R3 (Tk+1) IN (Tk)]= E1 Ar (R (Tk)+ f (r) )3 + /-ars (Br Irk I) [(R (Tk) 
-f 

(r) )3] 

r_1 
l 

i"%trö($r{Tk})R3(Tk) 
I 

a 

=z 
{Ar 

(R3(Tk)+3f (r) R2(Tk)+3f2(r)R(Tk)+f3(r)) 

r_1 

+/1rs(Br{Tk}) [R3(Tk)-3f (r) R2(Tk)+3f2(r)R(Tk)-f3(r)ý 

+ pJ (Br {Tk}) R3 (Tk) 
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Taking expectations on both sides, gives us 
2 

E [E [R3 
(Tk+l) 

IN(-rk)]] =EEl Ar (R3 (rk) +' 3f (r) R2 (Tk) + 3f 2 (r) R (rk) + f3 (r)) 

l 
r=l 

+µrs (Br 
{-rk}) [R3 

(Tk) - 3f (r) R2 (Tk) + 3f 2 (r) R (rk) 
-f3 

(r)] 

+%lrs (-Br {rk}) R3 
(Tk) 1. 

(2.52) 

Now, we use the identity 

EýE [R3 (Tip+, ) IN (-rk)] 
}=E [R3 (Tip+l)] =E [R3 (Yk)] 

. 

Therefore, considering the R3 (. ) terms in particular, we can write 
2 

E [R3 (Tk)] °E5 AE [R3 (Yk)J + itrE [b (Br {rk}) R3 (rk)] + µrE 
[5 (Br {Tk}) R3 (rký] 

T r-1 
l 

2 

_ {rE [R3 (Tk)] + PrE [R3 (Tk)] 
} 

r-1 
2 

= [Ar + pr] E [R3 (Tk)] 
r=1 

and, as Er 1 [Ar + µr] = 1, (2.52) may be rewritten as follows: 
2 

E [R3 (Tk)] =E [R3 (Tk)] +EE {Ar (31 (r) R2 (Tk) + 3f2 (r) R (rk) +f3 (r)) 
r=1 

+Pr8 (Br 
{rk}) (-3f 

(r) 
R2 (Tk) + 3f 2 

(r) 
R (-rk) 

-f3 (r)) J 

Therefore, we infer that 
2( 

0= ES , 
(3f (r) R2 (Tk) + 3f2 (r) R (rk) + f3 (r)) 

r_1 
l 

+µr5 (Br 
irk}) (-3f (r) R2 

(Tk) + 3f 2 (r) R 
(Tk) -f3 `r)) 

I 

Utilising (2.46), we obtain that 
222E 

/LE [8 (Br Irk})] f3 (r) = Pr r 
.f3 

(r) = 
T. Ar, f 3 (r) 

r=1 r=1 
µr 

r=1 

Hence, we can rewrite (2.53) as 
2r 

0= Ej3Arf (r)R2(Tk)+3Arf2(r)R(Tk)+Arf3(r) 
r=1 111 

-31rb 
(Br 

1Tk}) 
f (r) R2 (Tk) + 3µrö (Br 

ITkI) 
f2 (r) R (-rk) 

- 
Arf 3 (r) 

I 

(2.53) 
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2( 

_E E{ 3A, f (r) R2 (Tk) + 3A f2 (r) R (Tk) - 3/ßr8 (Br {7'k}) f (r) R2 (Tk) 
r-1 l 

+3Prö (Br {rk}) f2 (r) R (rk) 
I- 

Expanding the above and removing a factor of three, we have 

2 

0= Eýýrf (r) {f 2 (1) Ni (, rk) + f2 (2) N2 (, rk) + 2f (1) f (2) N, (, rk) N2 (-rk) } 
r_1 
+Arf 2 (r) {f 

(1) 
Nl (rk) +f (2) N2 (, rk) } 

-µ, f (r)5(Br{7k}) {f2 (1) Ni (7-k)+f2(2)N2 (Tk)+2f (1) f (2) N1(Tk)N2(Tk)} 

+ILrf 2 
(T) 

S (Br {Tk}) If (1) Ni 
(Tk) +f (2) N2 (-rk) }1 

which, on further expansion, gives 

0= E{ al. f (1) {f2 (1) Ni (Tk) + f2 (2) Nz (-rk) + 2f (1) f (2) Ni (rk) N2 (rk) } 

+A2f (2) {. f 2 (1) Ni (Tk) +f2 (2) N2 (-rk) + 2f (1) f (2) Ni (, rk) N2 (rk) } 

+Alf 2 (1) (f (1) N1(rk) +f (2) N2 (Tk)) + A2 f2 (2) (f (1) Ni (Tk) +f (2) N2 (, rk)) 

-µ1f (1) 5 (B1 irk}) If 2 (1) Nj (Tk) +f2 (2) N2 
(Tk) + 2f (1) f (2) N1 (-rk) N2 (Tk) } 

-112f (2) 6 (B2 {rk}) {f2 (1) Ni (Tk) + f2 (2) N2 (, rk) + 2f (1) f (2) Ni (, rk) N2 (rk) } 

+Fpif 2 (1) J (B1 {rk}) (f (1) Ni (rk) + 1(2) N2 (rk)) 

+µ2. f 2 (2) b (B2 {Tk}) (f (1) Ni (-rk) +f (2) N2 (Tk)) 
}" (2.54) 

We now use the following notation in (2.54), namely 

nr =E [NN (-rk)] 

Mrs =E [Nr (-rk) Ns (Tk)] 

Irs =E [S (Br {Tk}) Ns (-rk)] 

Hrsw =E (b (Br {Tk}) Ns (Tk) Nw (Tk)] where r, s, w=1,2 
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We infer that 

0=f3 (1) (, X1Mll + Ecilii + Aini - µ1Hlli) + f3 (2) (. X2M22 +112122 +, X2n2 - µ2H222) 

+f2 (1) f (2) (2A1M12 - 2µ1H112 - M2H211 + 111112 + A1n2 + A2Mii) 

+12 (2) f (1) (2)2M21 - 2112H221 - M1H122 + µ212i + X2n1 + A1M22) 

Finally, equating the coefficients of f (1), f (2), f2 (1) and f2 (2) we have the following 

set of constraints 

)1M11 + pill, + )1n1 - Ec1H111 =0 (2.55) 

)2M22 + /12122 + A2n2 - µ211222 =0 (2.56) 

2A1M12 - 2µ1H112 - µ2H211 + /11112 + Ajn2 + A2M11 =0 (2.57) 

2A2M21 - 2µ2H221 - µ1H122 + µ2I21 + A2n1 + A1M22 = 0. (2.58) 

The sets of equations (2.49)-(2.51) and (2.55)-(2.58) are used to define the relaxation of 

the achievable region. 

2.7.1 Optimisation over the achievable region. 

As we shall see, the sets derived using the potential function method approximate the 

achievable performance space (achievable region) tightly. Therefore, we are now able to 

solve not the optimisation problem over the exact achievable space but the corresponding 

problem over a (third order) relaxation of the exact space, given by n2 P1. The optimal 

scheduling policy over the latter will give a lower bound on the optimal cost for the 

problem. 

We now consider problems concerning a two customer single server network as pre- 

sented in Section 2.3. We utilise the sets of equations derived by the potential function 

method (with T=1, R=2, PrO = 1) in Section 2.7 to identify a relaxation of the per- 

formance space. We consider a number of problems in this section all of which seek to 

minimise a cost function, 

cinl + c2n2, 

54 



subject to In,, Mtn, Ijj, H1jk E P} 

where P is the relaxation of the state space. We also impose one or more of the alternative 

sets of constraint given in (2.59)-(2.61). 

M22 < B2 (2.59) 

M11: 5 Bi (2.60) 

c1Mli + c2M22 <B (2.61) 

where B1, B2 and B are all values by which we wish to constrain the second moments 

of the queue lengths. We note here that it is not possible to constrain variances directly 

as their calculation involves the squares of the first moments. Following Ansell et al. 

(2001) we therefore adopt the approach of constraining second moments. P2 is defined by 

(2.62)-(2.68) and these follow directly from (2.49)-(2.51). 

F1ilii - Ain, = al (2.62) 

P2122 - A2n2 = A2 (2.63) 

µ212i + /µ1112 - A2n1 - X1n2 =0 (2.64) 

2 
Iis = ni (2.65) 

3=i 
2 

Ire = n2 (2.66) 
r=l 

I4.3>0, r=1,2 s=1,2 (2.67) 

nr > 0, r=1,2. (2.68) 
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P3 is defined by (2.69)-(2.76) and these follow directly from (2.55)-(2.58): 

Ain1 + A1Mii + µilii - jciHiii =0 (2.69) 

A2n2 + A2M22 + µ212a - µ2H222 =0 (2.70) 

AIM22 + A2n1 + 2) 2M12 + µ212i - µ1H122 - 292H22i =0 (2.71) 

) 2M11 + A1n2 + 21\1M12 + µ11i2 - u2H211 - 2µ1H112 =0 (2.72) 

2 

EHr12-M12=0 (2.73) 

r=1 
2 

EHr11-M11=0 (2.74) 
r=1 

2 
E Hr22 - M22 =0 (2.75) 
r=1 

nr, Mrs, Irs, Hrst > 0. (2.76) 

The relaxation of the third order achievable performance space is thus characterised 

by the intersection of the two sets, P2 and P3 and to obtain a lower bound on each of the 

scheduling problems considered , we solve the following linear programming problem; 

minimise c1n1 + c2n2i (2.77) 

subject to {n;, Mtn, I=i, Hiik} E P2 n P3 (2.78) 

and additional constraint(s) on the second moments as described in (2.59) - (2.61). 

2.8 Semidefinite programming 

Ansell et al. (1999) found that additional constraints to strengthen the above lower bound 

were necessary. It was felt that these should take the form of equations/inequalities 

linking the first and second moments which would help to further refine the relaxation of 

the achievable region. We outline the technique below. For details see Vandenberghe & 

Boyd (1996). Suppose we wish to minimise a linear function of variable x where xE R' 

is subject to a matrix inequality. The problem data are the vector cE R' and the m+1 
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symmetric matrices FO, F1,..., Fm, E RnXn. We assume a problem of the form 

minimise cTx, 

subject to F (x) 0 

where F (x) - Fo + Ei-1 xiF2 and F (x) 0 denotes the requirement that F (x) be 

positive semidefinite. The latter implies that zT F (x) z>0, all zE R'n. The above 

is the standard form of a semidefinite program, which is a form of convex optimisation 

problem. One special case of such problems, and of interest to us here, is the standard 

linear programming problem: 

minimise cT x, 

subject to Ax +b>0 

where A= [al, a2i ... , am] E ]f8"""`, cE Rm is a vector and bE TR' also a vector. 

We denote diag (v) as the diagonal matrix having the components of v on the diagonal. 

We can state that a vector v>0 if and only if the matrix diag (v) is positive semidefinite. 

We can now rewrite the standard linear program above as the following semidefinite 

programming problem: 

minimise cTx, 

subject to F (x) 0 
M 

where F (x) - Fo +Ex; F=, and Fo = diag (b) and Ft = diag (ai), i=1,2, ... , M. 

We note that diag (a) and diag (b) are of the form diag (v) above. We can strengthen 

the formulation of constraints obtained in the preceding sections by the addition of a set 

of positive semidefinite constraints. These were suggested by Bertsimas & Nino-Mora 

(1996) and are outlined below. These additional constraints are based on the idea that 

the performance measures in our problem are all moments of random variables. Bertsimas 

& Nino-Mora (1996) show that, if a given vector z and a symmetric real matrix Z satisfy 

the necessary and sufficient condition that Z- ziz be positive semidefinite, then for some 
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random vector 0, z=E [V] and Z=E [ýO "]. This is where Z- zfz is the covariance 

matrix of ? P. 

In the case of the single server system, additional positive semidefinite constraints are 

as follows: 

1 nl n2 

D1= ni Mu M12 0 (2.79) 

n2 M12 M22 

f1 
111 '12 

D2 =I H111 H112 0 (2.80) 

112 H112 H122 

1 121 122 

D3= '21 H211 H212 h 0. (2.81) 

122 H212 H222 

It only remains for us to reconfigure the set P2 n P3 along with the imposed second mo- 

ment constraints and the additional semidefinite constraints of (2.79)-(2.81) into the form 

needed for a standard semidefinite program. The non-parametric bounding method pro- 

duced constraints of the form Alx - bl =0 while the standard semidefinite programming 

set up requires them to be in the form Alx - bi > 0. Thus, in order to achieve this, we 

re-express the constraints as follows: 

Aix > bl 

-Alx > -bi 
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where 

-A1 0 0 0 0 µl 0 0 0 0 0 0 0 0 0 

0 -A2 0 0 0 0 0 0 µ2 0 0 0 0 0 0 

-A2 -a1 0 0 0 0 µ1 92 0 0 0 0 0 0 0 

Äl 0 Al 0 0 p 0 0 0 -141 0 0 0 0 0 

0 A2 0 0 A2 0 0 0 p2 0 0 0 0 0 -µ2 

0 Al A2 2A1 0 0 pi 0 0 0 -2µl 0 -112 0 0 
_ Al 

A2 0 0 2A2 Al 0 0 µ2 0 0 0 -µl 0 -2µ2 0 

-1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 

0 -1 0 0 0 0 1 0 1 0 0 0 0 0 0 

0 0 0 -1 0 0 0 0 0 0 1 0 0 1 0 

0 0 -1 0 0 0 0 0 0 1 0 0 1 0 0 

0 0 0 0 -1 0 0 0 0 0 0 1 0 0 1 

are the constraints obtained from the non-parametric bounding method. In addition, 

xT = (ni, na, N1ii, Mit, AI22,1ii7 1121 Ili) 122, Hiii, H112, H1227 Hail, H2127 H222) 

and 

biT = (1\1, a2)0,0,0,0,0,0,0,0,0,0) 
. 

(2.82) 

The form which must be used for the constraints on the second moments is -A2x > -b2, 

where for each of the constraints in (2.59) - (2.61), the required forms are given below. 

For Mll < B1, M22 < B2, 

10 01000000000000 
A2 = 

000010000000000 

b2T = (B1, B2) . 
(2.83) 

For M22 < B2, 

A2={ 00001000000000 0} 

b2T = (B2) 
. 

(2.84) 

For c1M11 + c2M22 <_ B, 

A2={ 00 Cl 0 C2 000000000 0} 

b2T = (B). (2.85) 
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We now add one further set of constraints which are included purely to ensure that 

all of the fifteen resultant variables are positive. This takes the form E>0, where E 

represents a 15 by 15 identity matrix. 

We can now write all of the linear constraints in the required form: Ax -b>0 where 

-Al 

A 
Al 

= 
-A2 
E 

bT = (-b1T, b1T, -b2T, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) (2.86) 

and are now able to formulate the problem, given the particular form of A2 with which 

we are concerned, as the following semidefinite program 

minimise 

clnl + c2n2 

subject to 

diag (Ax - b) 000 

0 D1 00 

00 D2 0 

000 D3 

where, given a vector vE Rn, diag (v) is the diagonal matrix with the components of v 

on the diagonal. 

The semidefinite program constraints for the above problem can be written in the form 

15 

x1FZ-Fo>-O 
i=1 

(2.87) 

and then be solved. To this end, we utilised a software package developed by Fujisawa 

and Kojima called the SDPA (Semidefinite Programming Algorithm). We note that when 
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the constraints on the second moments are incorporated into the objective function in a 

Lagrangian fashion, the semidefinite program form becomes 

minimise 

clnl + c2n2 + c3n2 + c4n2 

subject to 

diag (Ax - b) 000 

0 D1 00 
0 

00 D2 0 

000 D3 

where D1, D2 and D3 are as defined in (2.79)-(2.81) and 

-A1 
A= Al 

E 

bT= (-b1T, biT, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0). (2.88) 

2.9 Problems involving constraints on the second mo- 

ments of queue lengths 

Regarding a simple two-class M/M/1 system, Ansell et al. (1999) argued that, although 

a strict priority policy will result in the optimal solution of a cost minimisation problem, 

such policies have the undesirable property of excessive queue lengths for the lower priority 

customers. Their service tends not only to be poor on average, but also to be extremely 

variable. It was to address such problems that they considered problems in which second 

moments of queue lengths were constrained and analysed two families of parameterised 

heuristic service policies: randomised policies and threshold policies. They concluded that 

threshold policies outperformed randomised policies over all problems of interest. Our 
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aim is to find out the type of problem, involving some kind of constraint on the second 

moment of queue length, where policies based on a linear switching curve significantly 

outperform threshold policies. Further, it is desirable that we find policies that perform 

well in relation to (a lower bound on) the optimal cost on such problems. 

We begin by considering one of the cost minimisation problems first posed by Ansell 

et al. (1999). It concerns an M/M/1 queueing system and the problem is to minimise 

linear holding costs, subject to a constraint on the second moment of the lower priority 

customer. 

2.9.1 Computations 

A FORTRAN program was written in which the power-series algorithm and the epsilon 

algorithm were used to produce a set of solvable recursive equations from a set of balance 

equations. Using the program, it was possible to compute the first and second moments 

of the expected queue lengths of the two customer types for any linear switching curve 

policy. We were able to enter our chosen values for the arrival rates, service rates and also 

the policy parameters a and /3. For the calculation of the costs for the threshold policies, 

a=0 and 0 ranges from 1- oo over a discrete lattice. 

In our numerical study, we considered a range of problems, all for two customer M/M/1 

systems as described in Section 2.3. We considered linear cost functions of the form 

C= c1E (N1) + c2E (N2) where E (Ni) and E (N2) are the expected queue-lengths of 

type 1 and type 2 customers and ca E Z+ their respective cost rates. These cost functions 

are subject to second moment constraint/s as given in (2.59)-(2.61). 

Our aim was to find the best performance (in terms of cost) achievable by a threshold 

policy and by a policy based on a linear switching curve. The methods we employed to 

achieve this involved the computation of an expected cost for a set of linear switching 

curves over a range of a's and ß's. By then searching over this (a, ß) grid we find the 

lowest cost (from those computed) meeting the required second moment constraints of the 

given problem. As outlined in Section 2.4, policies based on a linear switching policy are 
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characterised by two parameters a and ,ß representing respectively the slope and intercept 

of the curve. Threshold policies are a subset in which a=0 and /ß is a positive integer 

and are thus characterised by a single parameter which we denote here by T. 

Consider a two customer type M/M/1 queueing system with type 1 and type 2 cus- 

tomers. Arrival rates are given by Ai = (1,5) and service rates µi = (3,12), i=1,2. Table 

2.1 shows under Týjöl, the expected costs, c1E (N1) + c2E (N2) where c= (10,1), and 
z 

when the policy with threshold T is applied. Similarly, Trio 1' shows c1E (Nl)+c2E (N2 ) 

where c= (10,1), and when the policy with threshold T is applied. (This will be referred 

to in Section 2.11. ) T ranges from 1 to 30. The second moments of queue lengths for each 

customer type under each policy with threshold T are also given in the columns headed 

E (N12) and E (N22). If we wish to find the lowest cost (Z'(iö j) under a threshold policy 

such that E (N2) < 40 then we can see from the table that Tiöij = 11.358 and that this 

is achieved under the policy where T= 14 (from the T values included). 

Searching for the best policy based on a linear switching curve over a range of a's and 

ß's, is clearly computationally expensive. It involves carrying out a series of searches in 

which we slowly narrow the ranges of a's and ß's to concentrate on those regions where 

costs achieved by a policy are lowest. Initially, we might search over a large space e. g. 

ß= positive integers 0 to 30 and a=0.5 to 5.0 in steps of 0.5. This would then be 

progressively narrowed by searching a smaller area (where the costs are lowest) i. e. P over 

fewer integers and a over smaller ranges and with smaller steps, say 0.1, then 0.01. 

As threshold policies are characterised by the single parameter, T, the search for the 

lowest threshold cost is clearly much simpler and hence requires far less processing time. 

Let T* denote the value of parameter T in the threshold policy which achieves the lowest 

cost. Thus in the example above we have T* = 14. We found by experiment that, in a 

given problem, it was best to first find the lowest cost under a threshold policy so that 

we had a value for T*. We could then use T* to help us define the initial range of 0 

over which we compute costs for our set of linear switching curves (this would usually be 

T* -4<8< T* + 4). This helped us reduce the subsequent computation time. Note that 
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Table 2.1: Costs under threshold policies for a two customer type M/M/1 system where 

Al =1, A2=5, pi = 3, P2=12. 

T E (Ni) E (Ni) 7'(io, i T(iö, i) T E (Ni) E (Ni) T(io, ' T(iöi) 

1 6.627 1.735 68.003 16.428 16 2.071 43.937 64.649 11.086 

2 6.026 2.986 63.249 15.656 17 1.962 46.408 66.025 10.971 

3 5.489 4.983 59.871 14.979 18 1.864 48.764 67.382 10.868 

4 5.010 7.501 57.599 14.391 19 1.776 50.952 68.709 10.778 

5 4.584 10.368 56.204 13.881 20 1.697 53.029 69.998 10.697 

6 4.204 13.459 55.502 13.437 21 1.626 54.980 71.242 10.625 

7 3.867 16.679 55.345 13.048 22 1.563 56.809 72.437 10.560 

8 3.566 19.958 55.615 12.707 23 1.506 58.522 73.580 10.502 

9 3.297 23.241 56.215 12.408 24 1.455 60.122 74.670 10.451 

10 3.058 26.487 56.974 12.143 25 1.409 61.616 75.706 10.405 

11 2.844 29.665 58.108 11.910 26 1.368 63.009 76.687 10.363 

12 2.653 32.753 59.286 11.703 27 1.331 64.303 77.615 10.326 

13 2.482 35.734 60.560 11.520 28 1.298 65.512 78.489 10.292 

14 2.330 38.597 61.897 11.358 29 1.268 66.632 79.310 10.263 

15 2.193 41.332 63.266 11.214 30 1.241 67.672 80.082 10.236 

index policies of Chapter 3 have the advantage that the time taken to run the programme 

to calculate the expected costs is greatly reduced as it involves no search procedure. 
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2.10 Initial Results 

2.10.1 Single constraint on the second moment of the length of 

the lower priority queue 

In our initial work, we calculate costs for integer intercepts only, in the linear switching 

policies, the motivation being to quickly identify whether the switching curve policy offers 

a significant improvement and to enable us to compare simply its performance in a number 

of problems where the same objective function had a variety of second moment constraints. 

We seek to 

minimise C= c1E (Nl) + c2E (N2) 

subject to E (N2) < v2 where v2 = 74.641. 

The figure of 74.641 was simply chosen to correspond with results from Ansell et al. 

(1999). The results for each of the policies are given below. Costbiotl) is the lowest cost 

found for a given policy class (or in the case of semidefinite lower bound, SDLB, the lower 

bound cost based on our relaxation of the performance space) when cl = 10 and c2 = 1. 

Policy Costýiotl) Parameter value 

Threshold 10.086 T= 40 

L. S. Curve 10.084 a=0.4 ,ß= 38 

SDLB 10.000 

The policy based on a linear switching curve gave a result 0.84% above the SDLB. The 

threshold policy gave a result 0.86% above the SDLB and 0.02% greater than that of 

the switching curve policy. Even when we reduced the constraint to v2 < 32, little 

improvement was achieved on the best performance by a threshold policy from within the 

linear switching class. 
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2.10.2 Constraints on both second moments. 

We decided to investigate the performances of the two classes of policy in a problem 

where there were constraints on the second moments of both customer types. The problem 

considered was 

minimise C= c1E (Ni) + c2E (N2) 

such that 

E(N2) <V2 

E(N? ) <vl 

where v2 = 32 and vl =5. 

The results for this were broadly similar to those for the above problem with the 

single constraint. This was felt to be because the relatively large differences in arrival 

rates (Type 2 customers arrive at a rate five times that of type 1) and cost rates ( cl = 10 

and c2 = 1) of the two customer types meant that the additional constraint, E (Nl) < 5, 

hardly impacted the results. Hence, the problem effectively had a single second moment 

constraint. 

Policy Cost(iotl) Parameter value 

Threshold 11.910 T= 11 

Linear switching curve 11.761 a=0.42 ,ß= 10 

This gave a best threshold cost 1.27 % greater than the best switching curve cost. 

Our aim, therefore, became to find a way to constrain the problem in such a way that 

both second moments bite. 

2.11 Constraining the problem by a linear sum of the 

second moments. 

We decided to impose the constraint: 10E (Nl) +E (Ni) < 55.345 as this reflected the 

priority shown to the type 1 customer in terms of cost. The value of 55.345 was chosen 
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as it was the minimum value of 10E (Nl) +E (Ni) to be offered by any of the threshold 

policies in Table (2.1) (i. e. the lowest value in column Trio 1° 
). The results obtained from 

optimising within the various policy classes now became 

Policy Cost(iotl) Parameter value 

Threshold 13.048 T=7 

Linear switching curve 11.841 a=2.3 /3 =5 

SDLB 10.799 

The policy based on a linear switching curve gave a result 9.649% above the SDLB. The 

threshold policy gave a result 20.826% above the SDLB and an increase of 10.193% over 

the switching curve based cost. Clearly, this is more substantial improvement and merited 

further investigation. 

2.11.1 Problems with varying p 

Constraining the problem by a linear sum of the second moments of the two customer 

types was the problem formulation for which the linear switching classes outperformed 

the threshold policies to the largest degree in approaching the SDLB. We therefore used 

this form of constraint in all of the remaining problems investigated numerically in this 

chapter. We continued our investigation of the performance of policies based on linear 

switching curves by considering the effect of varying the parameter p, the traffic intensity. 

The problems considered were of the form 

minimise C= 10E (N1) +E (N2) 

such that 10E (Ni) +E (NZ) T*E(N` 
) 

- (10,1) 

*E N? 

where T(loý) ̀  is the minimum value of 10E (Nl) +E (Ni) achieved under any threshold 

policy. The arrival rates and service rates are as indicated in Table 2.2. We use the nota- 

tion CT for the cost under the threshold policy with the lowest value of 10E (Nl)+E (N22); 

CSW is the lowest cost found under our search strategy for a linear switching policy and 
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CSD is the semidefinite lower bound on the optimum cost. %T>SD is the percentage in- 

crease on the semidefinite lower bound accrued by adopting the best threshold policy, and 

%sw>sD is the percentage increase on the semidefinite lower bound accrued by adopting 

the policy based on the best switching curve found. 

Table 2.2: Results for systems with varying values of p 

. Al )2 P1 112 /J CT CSW CSD %T>SW %T>SD %SW>SD 

1 5 4.0 12 0.667 6.922 6.361 5.830 8.819 18.731 9.108 

1 5 3.0 12 0.750 13.049 11.840 10.799 10.211 20.835 9.640 

1 4 2.5 10 0.800 18.032 16.700 15.194 7.976 18.678 9.912 

1 5 2.5 12 0.817 21.964 20.264 19.284 8.389 13.897 5.082 

1 5 2.5 10 0.900 38.412 33.396 31.533 15.020 21.815 5.908 

1 5 2.0 12 0.917 61.463 58.307 57.393 5.413 7.091 1.593 

We observe that the linear switching class offers considerable improvement in performance 

on threshold based policies. At the highest value of p, 0.917, the percentage difference 

between the semidefinite cost and the cost resulting from the adoption of a switching 

curve based policy was only 1.59%. We note that as p increases, so the computational 

time increased, as convergence took longer. 
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2.11.2 Problems where µl = µ2 =1 

Having allowed p to vary, we continued our investigations as described below but with p 

fixed at 0.75. This is a level at which the system could be said to be in moderately heavy 

traffic but which was not so computationally expensive as to severely restrict the number 

of problems we could analyse. We first consider a set of problems where both customer 

types are served at the same rate. In each problem, service rates, (Al, µ2) for the two 

customer types are (1,1) and Al is randomly generated from a U(0.1 
, 0.65) distribution 

while A2 is chosen so that Al + A2 = 0.75. The results from these problems are shown 

in Table 2.3. It is clear that the costs offered by the threshold policies are virtually 

indistinguishable from the semidefinite lower bound costs and such policies are thus very 

close to optimal for these problems. 

Table 2.3: Results for systems with µl =1 and µ2 =1 

Al A2 CT Cs) Al A2 
T 

CT cSD 

0.312 0.438 7.081 7.081 0.472 0.278 11.059 11.059 

0.163 0.587 4.751 4.748 0.471 0.279 11.023 11.023 

0.450 0.300 10.362 10.361 0.178 0.572 4.957 4.953 

0.398 0.352 8.949 8.949 0.264 0.486 6.230 6.229 

0.165 0.585 4.782 4.778 0.499 0.251 11.965 11.965 

0.575 0.175 15.182 15.182 0.580 0.170 15.417 15.417 

0.604 0.146 16.754 16.754 0.135 0.615 4.418 4.409 

0.432 0.318 9.846 9.846 0.454 0.296 10.473 10.473 

0.124 0.626 4.280 4.269 0.365 0.385 8.169 8.169 

0.600 0.150 16.494 16.494 0.271 0.479 6.355 6.354 
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2.11.3 Problems where µl = 3, /-12 = 12 

We decided to return to the service rates, pi =3 and µ2 = 12, of our original example 

to complete our investigations. Again p is fixed at 0.75. al is randomly generated on the 

interval (0,2) and A2 =9- 4A1. The results are in Table 2.4 and Table 2.5. 

Table 2.4: Results for systems with p=3 and µ2 = 12 

Al A2 CT CSW CSD %T>SW %T>SD %SW>SD 

0.228 8.089 6.348 6.222 5.840 2.041 8.716 6.541 

0.231 8.076 6.395 6.160 5.860 3.815 9.130 5.119 

0.285 7.861 7.116 6.466 6.350 10.053 12.063 1.827 

0.323 7.708 7.615 6.782 6.640 12.283 14.684 2.139 

0.412 7.352 8.314 7.470 7.309 11.299 13.750 2.203 

0.534 6.865 9.297 8.330 8.117 11.609 14.537 2.624 

0.558 6.766 9.573 8.558 8.226 11.860 16.375 4.036 

0.597 6.614 9.995 8.922 8.506 12.026 17.505 4.891 

0.624 6.506 10.293 9.007 8.657 14.278 18.898 4.043 

0.671 6.316 10.380 9.343 8.912 11.099 16.472 4.836 

0.693 6.228 10.613 9.503 9.045 11.681 17.336 5.064 

0.771 5.917 11.442 10.200 9.496 12.176 20.493 7.414 

0.775 5.902 11.483 10.116 9.532 13.513 20.468 6.127 

0.825 5.702 11.601 10.491 9.821 10.580 18.124 6.822 

0.963 5.148 12.664 11.609 10.577 9.088 19.731 9.757 

1.083 4.666 13.917 12.575 11.247 10.672 23.740 11.808 

1.182 4.274 14.592 13.331 11.934 9.459 22.272 11.706 

1.207 4.170 14.864 13.563 12.022 9.592 23.640 12.818 

1.240 4.042 15.203 13.837 12.296 9.872 23.642 12.533 

1.243 4.029 15.239 13.870 12.295 9.870 23.945 12.810 
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Table 2.5: Results for systems with µl =3 and µ2 = 12 continued 

Al A2 CT CSW CSD %T>SW %T>SD %SW>SD 

1.248 4.007 14.977 13.872 12.294 7.966 21.824 12.836 

1.272 3.910 15.234 14.108 12.498 7.981 21.892 12.882 

1.286 3.856 15.379 14.292 12.645 7.606 21.621 13.025 

1.350 3.599 16.068 14.788 13.306 8.656 20.758 11.138 

1.354 3.583 16.112 14.852 13.348 8.484 20.707 11.268 

1.393 3.427 16.254 15.202 13.770 6.920 18.039 10.399 

1.412 3.352 16.458 15.359 13.983 7.155 17.700 9.841 

1.451 3.196 16.890 15.810 14.421 6.831 17.121 9.632 

1.726 2.096 19.534 18.772 18.033 4.059 8.324 4.098 

1.728 2.089 19.556 18.796 18.070 4.043 8.224 4.018 

1.730 2.078 19.593 18.834 18.086 4.030 8.332 4.136 

1.736 2.055 19.667 18.894 18.181 4.091 8.173 3.922 

1.745 2.022 19.779 19.029 18.330 3.941 7.905 3.813 

1.818 1.729 20.645 20.024 19.504 3.101 5.850 2.666 

1.834 1.662 20.885 20.267 19.766 3.049 5.661 2.535 

1.838 1.648 20.938 20.309 19.842 3.097 5.524 2.354 

%T>SW represents percentage increase on the cost incurred by following the best 

threshold policy instead of the policy based on the best switching curve found. Values 

range from 2.041 to 14.278 with median 8.872. 

%T>SD ranges from 5.524 to 23.945 with median 17.420 

%SW>SD ranges from 1.827 to 13.025 with median 5.623. It is clear that the threshold 

policies are considerably outperformed in every case and that the switching curve based 

policies are able to approach the semidefinite cost more closely. 
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2.12 Conclusion 

In our numerical investigations into problems with quadratic cost constraints, we have 

made progress in assessing both the relative performances of threshold policies and those 

based on linear switching curves and their absolute performance as measured against a 

theoretical lower bound. Given a two class M/M/1 system with moderately heavy traffic 

those policies based on a linear switching curve did perform well. Threshold policies were 

shown to be close to optimal in those cases where the service rates of the two customer 

classes were equal. 

The techniques employed, however, were computationally expensive in that we were 

obliged to search exhaustively for a switching curve which offered the best performance. 

Motivated by these considerations, in the following chapters, we derive index based policies 

for n customer classes which, we shall show by numerical investigations, perform well for 

two and three customer type M/M/1 systems. In the two customer system with quadratic 

costs as part of the objective function, the index policy will take the form of a linear 

switching curve. We are able to use the index to simply calculate the best (close to best) 

performing switching curve, thus removing the need for general searches to be undertaken. 
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Chapter 3 

Whittle index Policies 

3.1 Introduction 

In Chapter 2 we showed that policies based on a linear switching curve were able to 

outperform threshold policies and were close to optimal for problems where the cost 

function was a linear combination of the expected queue lengths and constrained by a 

linear combination of second moments of queue lengths. There were, however, limitations 

in this: it was necessary to run a search for the values of the two policy parameters a and 

,ß to minimise the given cost function. Even with the simple single server two customer 

type system of Chapter 2, this is time consuming. If we wish to extend our model to n 

customer types then the amount of processor time would quickly become prohibitive. In 

this chapter, and the one which follows, we consider the problem of how best to allocate a 

single server in an M/M/1 system among the queues of K waiting customer classes in order 

to minimise costs when the system cost rate is increasing convex in the number present 

within each class. Thus we assume that the marginal increase in the system cost rate which 

results from one extra customer increases with the number already present. Essentially, 

the model is kept as simple as possible. We assume that Markovian dynamics operate 

within the system, with new customers arriving in independent Poisson streams. All 

service rates are assumed to be exponentially distributed and independently, identically 
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distributed within each customer class. 

As the cost function of the system we consider is non-linear, our problem cannot be 

analysed using the classical theory of Gittins indices. It does however, bear close compar- 

ison to a variant of the multi-armed bandit problem, namely the restless bandit problem. 

The distinguishing feature of the restless bandit problem is that projects competing for 

the attention of the server may change state even when no processing time is allotted to 

them. 

Whittle (1988) introduced this class of problem and proposed an index-based approach 

for their solution in which the index for each project /customer type depends on its current 

state. He also considered index policies where service is allocated to the project with the 

largest index value. However, for restless bandit problems in general, Whittle's indices do 

not necessarily exist, nor are index policies necessarily optimal. Thus it is first necessary 

to address the issue of the indexability of the system in any analysis of a restless bandit 

problem. Current knowledge of when such indices do exist is incomplete. Nino-Mora 

(2001b) has advanced the work by expounding a set of conditions sufficient for project 

indexability. Further, Weber & Weiss (1990) and Weber & Weiss (1991) have shown that, 

given certain conditions, index policies offer a form of asymptotic optimality. 

In this chapter, we prove the indexability of an important class of discounted costs 

queueing control problems, demonstrate by means of simple arguments, indices in closed 

form and then go on to develop indices for the average cost version of the problem. 

3.2 The Model 

We consider a system with K customer classes, labelled {1, 
..., 

K}. Customers arrive for 

service in independent Poisson streams where Ak signifies the rate for class k. Each class k 

customer has a processing requirement or service time which is exponentially distributed 

with rate µk, where 1<k<K. On service completion, a customer leaves the system. 

All inter-arrival times and service times are assumed to be independent. 
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At each decision epoch, the system controller must decide which of the waiting cus- 

tomers should be served next in order to minimise some measure of expected holding 

cost. Decisions epochs occur on the arrival of any new customer and whenever a ser- 

vice completion results in a non-empty system. Thus, for example, if a class k customer 

enters service at time t then the next decision epoch will occur at time t+X, where 

X- exp 
(µk 

+>1 A3) 
" 

We also make the standard assumption p= ýK µ<1 to 

ensure finite queue lengths. 

The state of the system at time t is represented by the vector of queue lengths, 

N(t)={Nl(t), N2(t),..., NK(t)}, tEIii. (3.1) 

If we denote by ak the action of allocating service to a class k customer, then, at each 

decision epoch, the controller selects an action ak from the set of K, for which Nk (t) > 1. 

We use the following notation; A= >K 
1 

(ilk + µk). We also use standard uniformisation 

in which successive decision epochs occur at the event times of a Poisson process with rate 

A and where events corresponding to service being offered are virtual state transitions. 

Thus, for example, if the system is in state N (t) =n where nk > 0, and action ak is 

taken at time t, then the next decision epoch occurs at time t+X where X- exp (A). 

The system state after any state transition is described below: 

n+ 1V with probability A3/A, 1 <j<K, 

N {(t + X)} =n- 1k with probability µk/A, 

n with probability Ej#k µk/A. 

Between t and t+X, the system incurs discounted costs at rate 
K 

Cl(n1) (3.2) 
t=i 

where the functions C1, satisfy the conditions set out below. We aim to minimise a 

measure of expected holding cost. We note that the a is necessary for the discounted 

costs version of the problem to guarantee that Lemma 3.1 holds. We assume that the 

class l holding cost rate function, Ct :N --+ R' and Cl (0) =0 is 

75 



9 increasing, 

" convex, 

9 bounded above by a polynomial of finite order (guaranteeing that all required ex- 

pectations exist). 

We also assume that server control is 

" non-anticipative, 

" non-idling, 

" pre-emptive. 

We assume there are no cost penalties when the server switches between customers and 

switches of service are considered instantaneous. The class of admissible controls is de- 

noted by U. 

We consider a stochastic optimisation problem with discounted costs described in (3.3) 

rK 
C (n, a) inf Eu Jo Ck{Nk (t) Jae-«tdt IN (0) =n. (3.3) 

-i 
C (n, a) is the minimum system cost incurred when the system is operated from time 0 

with initial state n. Nk (t) is the number of k class customers present in the system at 

time t. Eu denotes an expectation taken over all realisations of the system under policy 

u and a>0 is a discount rate. 

The related stochastic optimisation problem of primary interest is to determine the 

minimum cost and to identify a policy by which this cost is achieved. This can be formally 

described as 
K 

C° '= inf fu E Ck (Nk) (3.4) 
uEU k=1 

where Nk denotes the number of class k customers in the system and E. is an expectation 

with respect to the system in steady state under policy U. 

Lemma 3.1 follows from standard results of dynamic programming and shows how 

(3.3) and (3.4) are related. 
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Lemma 3.1 For all initial states n, 

lim C (n, a) = COPT. 
a-*o 

In light of Lemma 3.1, we develop policies which perform well for the average cost problem 

in (3.4) as limits, when a --+ 0, of policies which perform well for the discounted costs 

problems of (3.3). It is the latter which will be our starting point. 

The classical approach to finding uOPT, a policy which minimises the costs in (3.3), 

would utilise the techniques of stochastic dynamic programming. The employment of 

such techniques in this case is unlikely to yield insights into the reasons why and how 

such a policy actually does yield the minimum cost and consequently would be unlikely 

to be of assistance in extending future work to the solution of more general problems. 

Even for the problem considered here, there is also the curse of dimensionality, which is 

an issue for large K. We therefore seek heuristic policies which perform well in that they 

are simply structured and close to cost minimising. 

Following the ground-breaking work by Whittle (1988) on the restless bandit problem, 

we concentrate our efforts on index policies. We want to identify class-specific index 

functions, Wk, a :7G+ -+ 1I 
,1<k<K, such that the policy which, at each decision 

epoch, chooses to allocate the server to the non-empty queue with the greatest index 

value, Wk,,, {Nk (t)} is close to optimal. 

3.3 Indexability and Whittle indices 

In this section, we aim to identify class-specific index functions as described in the previous 

section above. We require that each index is a function only of the stochastic dynamics 

and cost structure of the class concerned and the Whittle index is as such. Bertsimas & 

Nino-Mora (1996) refer to this as decomposability. It is precisely because of this property 

of decomposability that we are able to continue our quest to identify a Whittle index for 

our discounted cost problem by restricting our attention to a single customer class. We 

therefore proceed to drop the class identifier, k, and now simply denote the class index 
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by Wa (n) when there are n customers, (of the single class with which we are concerned) 

present in the system. We develop Wq (n) as a subsidy for passivity of a customer class 

when n customers of that class are present in the system. An alternative approach, 

yielding exactly the same result, would be to regard Wa (n) as a charge for activity when 

n customers of that class are present in the system. 

We consider a Markov Decision Problem with a single customer class and state space 

N. At each decision epoch (the arrival of a new customer or a service completion) a 

choice is made as to whether the server is to be switched on or not. Thus in each state 

there are two possible actions for the server: {active, passive}. Clearly in state 0, only 

the passive action is possible. When the server is active, a customer is served and has 

a processing requirement which is exponentially distributed with rate A. Assuming the 

system is in state n and active, then it either enters state (n + 1, n- 1) with rates A and 

p respectively. When the system is in passive mode, it is frozen until a new customer 

arrives and hence enters state n+1 from n at rate A. 

Costs are assumed to be incurred at a discounted rate of aC (n) under the active action 

and aC (n) - TV under the passive action. W is a subsidy for passivity. The optimisation 

problem with which we are concerned involves finding a policy for switching the server on 

and off so that we minimise the total holding costs and passive subsidies incurred over an 

infinite time horizon. This MDP is a restless bandit. 

C (n, a, W) denotes this minimised cost when the initial state of the system is nEN. 

We write 

fC 
(n, a, TV) = mn E[aC IN (t)} - WI (t)] e-°`tdt IN (0) =n} (3.5) 

UE 

ýo 

where N (t) is the number of customers in the system at time t, I (t) is an indicator which 

is 1 when the server is off/passive at time t and 0 otherwise and U is the class of stationary 

policies for the problem. 

By standard theory, the function C (., a, W) satisfies the optimality equations: 

C(n, a, W)=min{Cl (n, a, W), C2 (n, a, W) }, nEZ+ (3.6) 
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where 

(a+A+p)Cl(n, a, W)=aC (n)+jC(n-1, a, W)+AC(n+1, a, W) (3.7) 

and 

(a+A+µ)C2(n, a, W) =aC(n) -W +, C(n, a, W)+AC(n+1, a, W). (3.8) 

Also, C (0, a, IV) = C2 (0, a, W) so we can write 

(a+A)C(0, a, W) = AC (1, a, W). 

Equations (3.7) and (3.8) are respectively the results of choosing the active or passive 

action in the initial state n. If Cl (n, a, W) < C2 (n, a, W) then the active action is 

optimal and if C2 (n, a, Tip) < Cl (n, a, W) then the passive action is optimal. It is 

important to note that when Cl (n, a, W) = C2 (n, a, W) then both the active and passive 

actions are optimal. 

We use the term ll (W) to denote the set of states in which it is optimal to choose 

the passive action when the reward for passivity is W or, more formally 

rla (W) = {O} U {n E Z+; C2 (n, a, W) S Cl (n, a, W) }, WE 1R+. 

The following defines the notion of indexability for an individual class as developed by 

Whittle (1988) 

Definition 3.1 The class is indexable if IIa : 11 -º 2N is increasing, i. e. 

W1 >W2»Ha (Wi)? na(W2)" 

Once the notion of indexability is established, there follows thereby the notion of a state 

n index as the minimum subsidy for passivity for which the passive action is optimal in 

state n. 

Definition 3.2 When the class is indexable, the Whittle index for state n is given by: 

Wa (n) = inf {W; nE II,,, (W)}, nE 7L+, (3.9) 
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where 

Wa (0) = 0. (3.10) 

Lemma 3.2 follows trivially from the above: 

Lemma 3.2 For all states n of an indexable class 

1V > W,, (n) = the passive action is optimal; (3.11) 

W< Wa (n) the active action is optimal. (3.12) 

This is illustrated in Fig. 3.1. 

ACTIVE 

W= Wa (n: 

PASSIVE 

Figure 3.1: Optimal actions for states when W= Wa (n) 

We now consider the single class problem in initial state n. We suppose for now that the 

class is indeed indexable and that the Whittle index W, :N -+ Z is increasing. The 

subsidy for passivity is taken to be W= Wa (n) where Wa (n) is the assumed value of 

the index. Thus, for the optimal policy, the following will hold if Wa is assumed to be 

increasing in n as seems reasonable. 

(i) The active option will be optimal for states In + 1, n+2, ... 
} 
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(ii) The passive option will be optimal for states {0, 
..., n- 11 

(iii) Both the active and passive actions will be optimal for state n. 

In (iii) we can choose the active or passive action for the server (as both actions are 

optimal in state n). We now consider each of these possible actions in turn and, by use 

of an heuristic argument, we develop the form of the index. 

3.3.1 Active action in n 

First we consider the restless bandit determined by the choice of the active option in n, 

i. e. under the stationary policy which chooses, 

(i) active for states In, n+1, ... 
1 

(ii) passive for states {0, 
..., n- 1}. 

The system evolution starting from initial state n can be described as follows. We begin 

at time 0 in state n and so the server is active. The active action continues until the 

system enters the state n-1 for the first time, at time T. The length of time that the 

initial active period actually lasts, T, is a random variable and is stochastically identical 

to the busy period of an M/M/1 queue starting with one customer, arrival rate A and 

service rate µ. 

ACTIVE IN np n+l 

State n 
with t=0 

1st event: either a service completion 
or an arrival. 

n-1 

Figure 3.2: The length of the first active service period. 
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We think of the busy period as beginning at the time t=0 with the start of service of 

customer n. The first event will either be a departure, in which case the busy period ends 

as there are now n-1 customers in the system or an arrival. (See Fig 3.2. ) If it is an 

arrival, then we have in effect two busy periods to complete; n+1 to n and n to n-1. 

Hence, conditioning on the nature of this first event, we obtain; 

or 

E e-a7 
A+ µ (p) 

+ 
A+ µA)E, 

e-az 2= (a+A+p 
A+µ 

(a+A+) (A 
(3.13) 

A{E (e-aT) }2 - (a +A+ µ) E (e -"T) +µ=0. (3.14) 

At time T, the system enters the state n-1, therefore the passive action is optimal and 

will remain so until the system returns to state n. The length of this passive period is 

also a random variable, which is exponentially distributed with rate A. Note that when 

the system has returned to state n then the above cycle repeats itself ad infinitum. This 

is illustrated below in Fig 3.3 below. 

System active in state n. 
exp( 7L ) 

n 
Passive 

n-1 
1st busy period T "TýL --------ý 2nd busy period 

T is a random variable 
stochastically identical to an MIM/1 queue with a single 
customer and arrival rate ? and service rate it. 

Figure 3.3: The active action in n 

Under this policy the total expected discounted costs incurred over an infinite time horizon 

will be: 

10(n, 
a) +E (e-aT) {aC (n - 1) - Wa (n) } (a + (1 - AE (e-aT) (a + A)-i) -1 

JJ 
(3.15) 
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where the expected cost for the initial busy period is 

( rT l 
C (n, a) =E{ J C{N (t) }ae-atdt IN (0) = n, active } (3.16) 

lo JJJ 

a+ 

(+p 
A+µ{a+. +µC(n+l, a)+a+A+µE(e-aT) C(n, a) 

(3.17) 

and E (e-°`T) {aC (n - 1)-We (n) } (a + A)-' is the expected cost for first the passive pe- 

riod which follows. We can therefore use C (n, a)+E (e-aT) {aC (n - 1)-17V,, (n) } (a + A)-1 

as the first term in the infinite geometric series illustrated in Figure 3.3 and in which 

)E (e-aT) (a + A)-' is the ratio of the series. 

We note, that rearranging (3.17) gives; 

C(n, a){a+A+µ- AE (e-aT) } =aC(n)+AC(n+l, a) (3.18) 

which is used in later proofs. 

3.3.2 Passive action in n 

Now we consider the policy whereby we choose the passive action in n i. e. 

(i) active for states In + 1, n+2, ... 
} 

(ii) passive for states {0, 
..., n} 

In Figure 3.4 the system is initially in state n and the passive action is in operation. 

The active action will only begin after some period of time with distribution exp (A) after 

which, the arrival of a customer results in the system entering the state n+1. The system 

then switches to the active action and this continues until the queue returns for the first 

time to state n. The length of this active period is stochastically identical to the random 

variable T above in Subsection 3.3.1 (i. e. the busy period for active in n) 

As with the active in n process, once the system returns to n, the process is repeated 

ad infinitum. Under this policy, the total expected discounted cost to infinity is 

{aC (n) - iV« (n) + AC (n + 1, a) } (a + A)-' { (1 
- AE (e -"T) (a + A)-1) }-1. (3.19) 
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Server passive in state n 

No. of 
Customers 
in System 

n+l l 
n 

Passive 1st ActivefPeriod Passive 2nd Active Period 
I 

exp(X) M/M/1 queue exp(a, ) M/M/1 queue 

Time 

Figure 3.4: The passive action in n 

------º 

As with (3.15), equation (3.19) may be similarly seen as the sum to infinity of a geometric 

series. Here the first term is {aC (n) - Wa (n) + AO (n + 1, a) } (a + A)-' and the ratio 
AE (e-aT) (a +A)-l- 

3.4 The Index 

Both (3.15) and (3.19) are expressions for the optimal cost of the restless bandit, i. e. the 

same. Thus, it is possible to equate them in order to obtain an expression for the assumed 

index, Wa (n). This yields from (3.15) and (3.19) that 

Wa (n) =E (e-°`T) 
{aÖ(na) {1-E (eT) }1- aC (n - 1) { 1- E (eT) }1 

nE Z+. (3.20) 

The r. h. s. of (3.20) can be thought of as the discounted rate at which the holding cost 

rate is reduced by serving the class in state n. In Lemma 3.3, we prove that our proposed 

index Wa (n) is increasing. Here we take Wq (0) =0 

Lemma 3.3 Wa (n) is increasing in n. 

Proof 
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From (3.16), we can deduce that; 

1= 
E[J'" 

( n, a) E (e -ýT) }_ 
C{N (t) }ae-atdt IN (0) = n] 

C{1- 
E [1T 

ae-Iltdt] 
00 

= 
>C(n+m)xm (3.21) 
m=0 

where the set {xm; m> 0} form a probability mass function on N. Given an M/M/1 

queue, where the arrival and service rates are A and Ec respectively, having a single cus- 

tomer present at time 0 and T the duration of the first busy period, then 

E [fc"Jm (s) ae-ands] 
xm 

E [fo 
ae-«tdt] 

where 

Im 
1, if m customers are present at time s, (s) _ 
0, otherwise, sER, mEN 

From (3.21) we can write: 

00 
{C(n+1, a)-C(n, a)}{1-E(e-"T) }-1= 1: {C(n+1+m)-C(n+m)}xm 

m=0 

>C(n-i-1)-C(n)>C(n)-C(n-1), 

nE Z+ (3.22) 

as C is increasing convex. It, therefore follows from (3.20) and (3.22) that 

6Va(n+1)>1V1(n), nEZ , 

as required. The same method also gives us the result 

tiVa(1)>0=tiV, (0) 

and this completes the proof. 

Lemma 3.4 If 1V« (m) <_ TV < TV,, (m + 1) then the policy for the restless bandit in 

which the server is passive in states {0,1, 
..., m} and active otherwise is optimal, mEN. 
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Proof Fix WE [Wa (m) 
, 
Wa (m + 1)) and let C (., a, W) represent the value function 

for the policy defined in the Lemma. 

We prove the Lemma by showing that C (., a, W) satisfies the optimality equations 

(3.6) - (3.8). It follows from these that we need to show that: 

µ{C (n, a, W)-C(n-1) a, W) }>W, n>m+1 (3.23) 

and 
C (n, a, W)-O(n-1, a, W) <W, n<m (3.24) 

In order to prove (3.23) and (3.24), we consider four separate cases, the first of which is 

given below. 

CASE 1: µ{C (m + 1, a, W) -C (m, a, W) }>W 

We are seeking to show that 
111 

µJC(m+1, a, W) - C(m, a, W) >W 

and therefore, we write 
{O(m+ 

1aW) - 
0(ma, W) <} 

and seek a contradiction. Note that, from (3.15) 

C(m+1, a, W) 

= 
fO(m+l, 

a)+E(e -aT) {aC (m) - tiVI (a +A)-1 
l (1- AE (e-«T) (a + 

as the server is active in state m+1 and from (3.19) 

C(m, a, W) _ 

{caC (m) - IV + AC (m + 1, a) } (a + A)-' { (1 - AE (e-°`T) (a + A)-') }-1(3.25) 

as the server is passive in state m. 

Thus, we assume that 

µ{C (m +1, a)+E(e-aT) Jac (M) - W) (a +, \)-I 

-{aC (m) -W+ aC (m + 1, a) } (a + A)-1 }A-1 < W, (3.26) 
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where 

A= 
11-AE(e 

-aT) (a + A)-' }= (a +A- AE (e -«T)) (a + A)-' (3.27) 

and 

p=E (e-aT) (a +A- AE (e-aT)) (1 -E (e-aT)) -1 from (3.14). (3.28) 

Now 

IM-1 =E (e-aT) (a + A) (1 -E (e-aT)) -1 

and, therefore (3.26) becomes 

E (e-"T) 

1-E (eT) 
{Ö(m+1, 

a)(+)+E(e_T){aC(m)_W} 

-{aC (m) -W+ AO (m + 1, a) }}<W. 

Rearranging, we obtain 

JaE (e-aT) C (m + 1, a) - aE (e-aT) C (m) (1 -E (e-aT)) 
-E (e-aT))-i l 

< tiv (1- 2E (e-aT) +E (e-aT) 2) (1 -E (e-aT)) -1 = (1 -E (e-aT)) W. 

Simplifying this gives 

{aE 
(e-aT) C (m + 1, a) (1 

-E (e-aT)) -1 aE (e_aT) C (m) } (1 -E (e-aT))-1 < W. 

But we have that 

{aE (e-aT) 0 (m + 1, a) (1- E (e-aT))-1 aE (e_aT) C (m) } (1- E (e-aT)) 

W,, 

and hence deduce that 

tiV, (m+1)<W. 

This is a contradiction of our initial assumption that Wa (m) <W< Wa (m + 1) and 

Lemma 3.1. Hence 

µ{C(m+1, a, W)-C(m, a, W) 
I 

>W 
l 
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as required. 

CASE 2: 

µ{C (n, a, W)-O(n-1, a, W) } >W, n> m+1 

We prove this by an induction. The initial case holds as this was proved in Case 1 above. 

We assume that the inequality holds for every value of m+1<n<k and deduce it for 

n=k+1. Under the given policy, the server will be active for k and k+1. Thus, we 

write: 

C(k+1, a, W)=C(k+l, a)+E(e-"T)O(k, a, W) 

and 
O(k, a, TV) =C (k, a) +E (e-aT) O(k 

- 1, a, W). 

We thus seek to prove that 

µ{C(k+1, a)-C(k, a)+E(e-QT) 
(C (k, a, W) -0 (k - 1, a, W)) } >W. (3.29) 

Now, by induction 

It follows that 

µC(k, a, TV)-0(k-1, a, W) 
} 

>W. 
l 

pE (e -"T) ( {C (k, a, W) -C (k - 1, a, W) >E e-"T) W. (3.30) 
l} 

Subtracting (3.30) from (3.29) implies that if we can show that 

µ{C(k+1, a)-C(k, a) 
I> 

(1-E(e-aT))W (3.31) 

then Case 2 will be proved. 

Substituting from (3.18), the 1. h. s. of (3.31) becomes; 

µ aC(k+l)+AC(k+2, a)-aC(k)-)C(k+l, a) (a+A+p-AE(e-«T))-1, 

which, when substituting for p from (3.28) is 
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E (e-aT) {aC(k+ 
1) + AC (k + 2, a) - aC (k) - AC (k + 1, a) } 

I. 
Again from (3.18), we now substitute for AC (k + 2, a) so we now have to show that 

E (e -QT) 
{c(k 

+ 1) +C (k + 1, a) {a+A+µ - AE (e -"T) } 

-aC (k + 1) - aC (k) - aC (k + 1, a) }> (1-E (e-aT)) W. 

Finally, substituting for µ again in the l. h. s. gives us 

E (e-aT) 
ýaO 

(k + 1, a) (1 -E (e-aT))-1 - aC (k) }= (1 -E (e-aT)) `ya (k + 1). 
JJJ 

Now, by Lemma 3.3 and by the initial hypothesis of Lemma 3.4 we have that 

17Va(k+1)>W,, (m+1)>W, 

and this proves that (3.31) holds and therefore Case 2 is proven as required. 

CASE3: µ C(m, a, W)-C(m-1, a, W) } <W 
J 

Now, as the action is passive for n<m, we know that 

C(m-1, a, W)= {aC(m-1)-W}(a+a)-1+ )C (m, a, W)ja +a}-1 

Therefore, (3.32) can be written as 

or 

µ (1-A(a+A)-')6 (m, a, W)- {aC(m - 1)-W} (a+A)-' } <W, 
JJ 

µ{a(a+A)-'O (m, a, W)-{aC(m-1)-W} (a +A)-' } <W. 

(3.32) 

The action is passive in m so that substituting for C (m, a, W) from (3.25) gives us; 

µ [a (a +, \)-' {aC (m) -W+ AO (m + 1, a) } (a +, \)-i] A-' 

-{aC (m - 1) - TV} (a + A)-' }<W 
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where A and µ are as in (3.27) and (3.28). Therefore, we have 

{aE (e-QT) {C (m) + (m + 1, a) } 

--aE (e-QT) (a +A- AE (e-aT)) C (m - 1) 

+AE (e-aT) W (1 -E (e-aT)) 1 (1 -E (e-aT)) -1(a+. \)-'< W 

and by substituting for aC (m) + )C (m + 1, a) from (3.18), we have 

{aE(e_QT) {C (m, a) (a +A+- AE (e-T)) } 

-aE (e-aT) (a +A- AE (e-aT)) C (m -1) 

+AE (e -QT) IV (1 -E (e-«T)) } (1- E (e-«T))-1(a + a)-ice W. 

Rearranging and removing a factor of (a +A- AE (e-aT)) (a + A)-' gives us 

aE (e-«T) C (m, a) (1- E (e-°T))-2 - aE (e-«T) C (m - 1) (1 -E (e-aT))-1 <W 

or 

W, (rn) < W, 

which holds by our fixing of the initial value of m. Hence Case 3 holds as required. 

CASE 4: µ (n, a, TV) -C (n - 1, a, TV) 
I<W, 

n<m 
{W 

e seek to prove this by induction. The initial case, n=m, holds from our proof of 

Case 3 above and we assume the inequality holds for k+1<n<m and we deduce it for 

n=k. 

Now, we know that for n<k, the passive action is selected. Thus 

0(k, a, tiV)=(aC(k)-W)(a+A)-l+A(a+A)-'O (k+1, a, W) 

and 

0(k-1, a, LV)=(aC(k-1)-tiV)(a+A)-'+A (a+A)-'0 (k, a, W) 

Hence, we seek to show 

(aC(k)-aC(k-1))(a+a)-l+A(a+a)-1 (C (k +1, a, W)-O(k, a, W)) 
I 

< W. (3.33) 
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We know from the induction that 

µ{ 
(O(k+ I, a, W)-C(k, a, W)) 

I 
<W 

and so we can write 

A(a+A)-' 
{ (a (k +1, a, W)-O(k, a, W)) 

J<A(a+A)-'W. 
(3.34) 

Therefore, subtracting (3.34) from (3.33) it is sufficient to show that 

µý (aC (k) - aC (k - 1)) (a + A)-i < (1 -A (a + A)-') W. 

or 
{c(k)_c(k_1)}ýw. 

Utilising (3.22) and (3.31) we can state; 

µ{C (k) -C (k - 1)) < jc{C (k, a) -C (k - 1, a) } {1 -E (e-aT) }-1 (3.35) 

= Wa (k). (3.36) 

Thus, by Lemma 3.3, we can write 

ti,,, (k) < Wa (m) < W. (3.37) 

The induction is proven and Case 4 holds. We have thus established (3.23) and (3.24) 

and hence proved Lemma 3.4. We now go on to prove our first theorem. 

Theorem 3.1 (Indexability and the Whittle index for discounted costs) . 
The restless bandit is indexable with Whittle index Wa (n) = W,,, (n), nEN. 

Proof By Lemma 3.4, we can write: 

IIa (TV) = {0,1, 
..., n}, Wa (n) <W< Wq (n + 1), nEN. (3.38) 

We have shown indexability by Lemma 3.4 and, from (3.38) and Definition 3.2, we have 

shown TV,, (n) to be the Whittle index in state n. 
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As indicated in Lemma 3.1, we can now go on to seek a Whittle index, W: N --> R+ for 

the average cost problem by finding the limit 

W (n) = lim Wa (n) 
aýo 

= 1im Wa (n), nEN. (3.39) 

by Theorem 3.1. From (3.20) and (3.39), we obtain the following result. 

Theorem 3.2 (The Whittle index for average costs. ) The Whittle index for the av- 

erage cost problem is given by W (0) =0 and 

W (n) = [C (n) {E (T)}-' -C (n - 1)] {E (T)}-' 
,nE 7G+, (3.40) 

= 
'I(µ-'\) [E{C(n- 1+N)} -C(n- 1)], nE Z+ (3.41) 

where in (3.40), we have 

TJ Vo 
C (n) =E C{N (t) }dt IN (0) = n, nE Z+, (3.42) 

and N, in (3.41), is a random variable with probability mass function 

P(N=n)=p"(1-p), nEN, (3.43) 

where p=a ý µ 

Proof Utilising (3.20) and (3.16) we can write; 

(r 
{J C{N (t) }ae-«tdt IN (0) =n {1- E (e-aT) }-z 

ai 
mWa (n) = 

aimo 

1E (e-cT) aE 
T 

l 

-aC (n - 1) {1 -E (e-"T) }-11 nE Z+. (3.44) 

a2E (e-°T) E [i'' C{N (t) }e-atdt 1N (0) = n] aE (e-aT) C (n - 1) 
= liö 

1-Ee-«T 2 1-Ee-aT)) 

} 

Utilising the fact that 

E(e-QT) =E(1-aT)+O(a2) 
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we have 

a2E (e_ T) E [J' C{N (t) }e-atidt 1N (0) = n] aE (e-aT) C (n - 1) 
= li m 

a2 (E (T))2 aE (T) 

Letting a --> 0 we obtain that, 

E[fT C{N (t) }dt IN (0) = n, (C (n - 1) 
IV (n) = (E(T))2 E(T) 

as required. Thus, we have derived (3.40). For (3.41), we note from standard renewal 

theory arguments, that the average cost incurred by adopting the passive action in states 

{0,1, 
..., n- 1} and the active action otherwise, when C (n) is the cost rate in state 

nEN is given by 

{C(n)+C(n-1), \-1}JE (T)+ý-1}-1 =E{C(n-1+N)} (3.45) 

where N is a random variable with the steady state distribution for the number of cus- 

tomers present in an M/M/1 system with arrival rate A and service rate A, as in (3.43). 

(3.41) follows from (3.40) and (3.45) and the substitution of E (T) A)-'. W (0) =0 

is immediate from (3.39) 

3.5 PCL-Indexability 

We note here that Nino-Mora (2001b) offers an alternative demonstration of Whittle- 

indexability for restless bandits and index derivation. He uses the notion of partial con- 

servation laws to determine indexability (hence the term; PCL-indexability). The notion 

of PCL has been developed from the generalised conservation laws described in Chapter 

2. Here, we offer a summary of the main ideas propounded. 

Assume we wish to schedule a stochastic system serving a countably infinite number 

of customer classes indexed by the natural numbers, N. Let U denote the collection of 

admissible scheduling policies. We wish, say, to minimise some linear objective 

u /ý "sxi 

iEN 
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where c2 >0 is a cost rate for customer class i and xä is some performance measure 

for class i under scheduling policy u. Nino-Mora (2001b) shows that, when a number 

of partial work conservation laws are satisfied by the system, the minimisation problem 

is solved by an index policy for some choices of the cost rate vector c. To determine 

whether or not a particular choice is admissible, an adaptive greedy algorithm is applied. 

A system satisfying PCL and with a cost rate vector in the admissible class is defined as 

PCL-indexable. 

In a further publication, Nino-Mora (2001 a), uses the above ideas to develop sufficient 

conditions for the Whittle-indexability of countable state restless bandits in terms of model 

parameters. He then goes on to show that the restless bandit model associated with a 

multi-class M/M/1 system satisfies these conditions and is therefore PCL-indexable. 

Using the PCL approach, he is able to develop a closed form expression for the dis- 

counted index by using a modified version of the adaptive greedy algorithm. He goes on 

to obtain an average cost index by seeking a limit as a tends to infinity. The analysis is 

complex but PCL-indexability has the advantage of offering an alternative approach to 

analysis when simple direct arguments, as used in our work, may not be possible. 
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Chapter 4 

An Evaluation of a Whittle index 

policy in two simple cases with 

average costs. 

In the previous chapter, we followed the prescription of Whittle (1988) for the development 

of an index appropriate to our multi-class queueing system. Much of the chapter was 

devoted to the demonstration that the system was indeed indexable. We then, by means 

of a simple argument, devised the form of the index for the discounted costs version of 

the problem and then devised the index for the undiscounted problem by taking the limit 

as a-*0. 

In this chapter, we assess the performance of the K-class average cost Whittle index 

policy, derived for the stochastic problem of the previous chapter, for both a two class 

system and a three class queueing system. The results of numerical investigations into the 

performance of the index policy in some simple cases involving two and three customer, 

classes and with quadratic costs are presented. In the two customer class cases, the index 

policies clearly outperform the threshold policies proposed by Ansell et al. (1999). 

We first consider the form that the index takes when the cost function is quadratic in 

n. 
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4.1 The form of the index for a quadratic cost func- 

tion 

We consider a cost function of the form 

C(n) = bn+cn2. (4.1) 

In Chapter 3, we had the following equation for the Whittle index for the average cost 

problem: W (0) =0 and 

IV (n) 
(ýA A) [E {C (n -1+ N)} -C (n - 1)] ,nEZ. 

For the cost function in (4.1), this may be written in the following form 

{b(n+m)xm+c(n+m)2xm_b(n_ 
W(n)= 1)-c(n-m-0 

m-0 
JJJ 

Further, we know that, in our case x�z = (1 - p) pm-i and, therefore we can rewrite the 

r. h. s. of the above as 
00 00 [b(ným_1)(1_P)Pm_1+c(n+m_1)2(1_P)Pm_1] 

m_1 M=l 

-b(n - 1) - c(n - 1)2 }(Ec-A). 

Thus 

{b(n_ 00 
W(n) _ 1) +bm(1-p)pm1+c(n2-2n+1) 

m=1 
00 co 

-I-1: 2c(n-1)m(1-p)pm_1+Ecm2(1-P)Pm-1 

M=l m=1 

-b(n-1)-c(n2-2n+1) 
} 

(p - 

00 00 {bm(1_P)Pm_1+2c(n_1)m(1_p)pm_1 

M=l m=1 
00 

+Ecm2(1-P)Pm-11(µ-A). 
M=l 

J 
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Now multiplying through by p, we can rewrite the above as 

00 oc {bm(1_p)pm+2c(n_1)m(1_p)pm 

m-0 m=0 
00 

cm2(1-p)pm1 
('1)() 

m=0 J 

{{b+2c(n_1)}mp(m)+cm2p(m)} 
_ 

() (µ-A) 
m=0 m=0 

{{b+2c(n_1)}() 

µA+c µ-s) 

()(ii_A) 
( 

which gives the final form of the index as 

W (n) = {b+2c(n- 1) }p+c(µ+A)) 
(µ - A) 

c (3a µ) µ 
= bµ ++ 2cµn, nEZ, k=1,2,.., K. (4.2) 

µ-A 

We note that this index becomes b1 when c=0 and thus is optimal when the costs 

are linear. Note also that from calculations similar to the above we can infer that if the 

cost rate C (n) is a polynomial in n of order p, then the index derived, W (n), will be a 

polynomial of order p-1. In the quadratic case, the index is linear in the queue length. 

Thus, the Whittle index policy is one which allocates service to whichever class, of 

those in the system, has the highest Whittle index, as given by 

WWk (nk) = bkpk + 
Ck (34 

- 11k) /2k 
+ 2Ckµknk, nk E Z', k=1,2,.., K. (4.3) 

ßk-, Äk 

We first assess the performance of the Whittle index policy for a two class system with 

quadratic costs; Ck (n) = bkn + ckn2 where k=1,2. 

Thus, from (3.4) we are seeking an admissible control to minimise average costs, given 

by 

COPT = minUEuEU b1N1 + b2N2 + ciN? + c2N2 . 
(4.4) 

k=l 
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In order to assess the performance of the Whittle index policy, we will consider a range 

of policies for this problem, namely the threshold policies and linear switching policies. 

We compare these with one another and against exact values of, and lower bounds on, 

the minimised achievable cost, COPT 

4.2 Whittle index policy for a two customer class 

problem 

In a two customer class problem, a Whittle index policy will select a customer for service 

between the two customer classes, when both have jobs present in the system, on the 

basis of the class indices of (4.3) where k=1,2. 

The index policy dictates that at each decision epoch whichever class is non empty 

and has the larger value of 

cl (3) -fei) pi W1(nl) = blp i++ 2clµin1 (4.5) 
(pi - . Ai) 

and 
W2 (n2) = b2µ2 + cz (3A2 - p2) p2 + 2c2µ2n2 (4.6) 

(p2 
- A2) 

is chosen for service. If W1 {N1 (t)} > W2 {N2 (t)}, then a class 1 customer is served at 

time t, assuming Nl (t) > 0. Otherwise a class 2 customer is served, assuming N2 (t) > 0. 

Such a policy clearly belongs to the class based on linear switching curves. We assess the 

performance of the Whittle index policy for a two class M/M/1 system with quadratic 

costs: Ck (n) = bkn+ckn2, k=1,2 where we seek an admissible control policy to minimise 

Cu. As usual, we write C°"" = infuEV C`, where 

C"=Eu{b1N1+b2N2+C1Ni +c2N2}. (4.7) 

We compare the performance of Whittle index policies in a number of different systems 

by considering their associated costs against the minimised achievable cost, COPT and a 

semidefinite lower bound for it. 
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4.2.1 A specific linear switching curve 

In the two customer case, we are able to use the index to derive a policy based on a 

specific linear switching curve. We are then able to compute the cost under such a policy. 

It is straightforward to show that under the index policy in (4.5) and (4.6), priority 

is given to type 1 customers until queue length of type 2 reaches the line n2 = and + , 
ß, 

where 

a 
Cl P1 
02112 
(ß1-ß2) 

2c2µ2 

with 

, Ok = (bkµk - 2ckµk) + 
Ck/lk (Ak + Pk) 

k=1,2. (4.8) (µk-Ak) 

Thus it was possible to use the methods of Chapter 2 to perform a numerical study to 

investigate the performance of index policies. As in Chapter 2 we calculate best costs 

achievable under threshold and linear switching policies (found by searching a and Q 

space) and calculate a semidefinite lower bound. 

We also calculate a value for COPT using the value-iteration algorithm (see Tijms 

(1994)). In general the calculation of COPT quickly becomes unviable as the dimensional- 

ity of the problems increases. We use it here because the two customer problems concerned 

are simple enough to allow us to do so. 

4.3 Calculation of COPT via the value-iteration algo- 

rithm 

The minimum cost, C°", incurred when an optimal policy is operated on the two class, 

and later three class problems, was computed for the numerical study by the dynamic 

programming method of value-iteration. See Tijms (1994). The value-iteration algorithm 

calculates recursively a series of value functions which approximate the minimal average 
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cost per unit of time. The value functions give us lower and upper bounds on the minimal 

average cost rate and, in our particular Markov decision problem, they approximate this 

rate to a chosen degree of accuracy. The algorithm is given in Table 4.1. The notation is 

that of Tijms (1994). 

The value-iteration algorithm computes the value functions V,, (i) for n=1,2,... 

recursively from 

Vn (i) = minaEA(i) cs (a) +E Pig (a) Vn-i (i) iEI. 
jEI 

VO (i), iEI is arbitrarily chosen and V,, ß 
(i) is the minimal total expected costs when there 

are n time periods remaining. The current state is i, I is the state space, ci (a) is the 

cost of taking action a, from set of possible actions, A (i) in state i and a terminal cost 

of Vo (j) is incurred when the system ends in state j. For the two customer problem, this 

Table 4.1: The value-iteration algorithm. 

Step 0. Arbitrarily choose Vo (i) such that 0< VO (i) < minq, ci (a) for all iEI. Let 

n. =1 

Step 1. Calculate the value function V,, (i), iEI, from 

V,, (i) = minaEA(i) c, (a) + EPij (a) V 1(j) (4.9) 
jEl 

and find R (n) as a stationary policy whose actions minimise the r. h. s. of (4.9) for 

all iEI. 

Step 2. Calculate the bounds 

mit = minjEI {Vn W- Vn-i (j)} and Mn = maxjEJ {Vn (j) - Vn-1(7)} 

The algorithm stops with R (n) as a stationary policy when 0< Mn - Mn < Emn, 

where e is the required degree of accuracy. Otherwise go to step 3. 

Step 3. n :=n+1 and go to step 1. 
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is equivalent to the following recursion (where we retain our notation rather than that of 
Tijms): 

f bin, + b2n2 + cln2 + c2n2 Ct+i (ni, n2) = uun 1 Al + A2 + Al 

+AiCt 
(ni + 1, n2) + A2Ct (ni, n2 + 1) + µ1Ct (n1 - 1, n2) 

Al +A2+Ill 
bin, + b2n2 + cln2 + c2n2 

Al+A2+/22 

+AlCt 
(n, + 1, na) + A2Ct (ni, n2 + 1) + 112Ct (ni, n2 - 1) 

Al +A2+µ2 

} 

a (ni, na) E (z+) 

Ct+i (ni, 0) _ 
bin, + clni + A1Ct (ni + 1,0) + A2Ct (n1,1) +'i1Ct (n1 - 1,0) 

(. Ai+A2+ill) 

nl EZ 

b2n2+c2n2+)lCt(1, n2)+X2Ct(0, n2+1)+12Ct(0, n2-1) Ct+1 (0, n2) - (A1 + A2 + M2) 7 

n2 E Z+ 

Ce+i (ý, ý) _ 
A1Ct (1,0) + A2Ct (0,1) 

(A1 + a2) ,tE ICY. 

Our calculations were computed over a state space large enough to give a result with 

the required degree of accuracy, e=0.000000001. The exact size of a state space used 

in a given calculation tended to be a trade-off between computation time and achieving 

the required degree of accuracy. It is likely that this method would not be a realistic 

possibility for larger problems. With this in mind, we also produced lower bounds for 

C°' based on the achievable region approach, a more computationally efficient method, 

as described and utilised in Chapter 2. 

4.4 Two class problem; results 

The numerical results presented in Tables 4.2 and 4.3 are for problems with A, = 1, 

A2=5, Al =3andµ2=12. 
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CT represents the costs associated with the best threshold policy. Csw represents 

the costs associated with best linear switching policy found by a search strategy. CIND 

represents the costs associated with the index policy. COPT is the best achievable cost, 

calculated via dynamic programming. CSD is a cost from deriving a semidefinite lower 

bound on CO'. We shall describe in due course how to obtain CSD 

By definition we have 

CT SCSW 1COPT >CSD 

cIND > CSW > cOPT ] cSD 

In Table 4.2, the cost coefficients are ; bl = 5, b2 =1, while, in Table 4.3, bl = 4, b2 =2 

and cl and c2 are as indicated in both tables. 

It is clear that the performance of the Whittle index policy is, in every case, close to 

optimal. The search strategy has sometimes resulted in a marginally lower cost (closer 

to C°') being found but the Whittle index policy has the advantage of being easy to 

calculate and avoids lengthy and computationally expensive search procedures. We also 

note, as an aside to the main thrust of our work, that CSD provides a bound on COPT 

sufficiently tight to support the use of the achievable region approach in larger problems 

where the computation of COPT is not viable. 
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Table 4.2: Two customer type problems. 

Cl C2 CT CSW LIND COPT CSD 

0.1 0.1 9.344 9.334 9.335 9.334 9.305 

0.1 0.2 9.581 9.575 9.575 9.575 9.566 

0.1 0.5 10.101 10.101 10.101 10.101 10.095 

0.1 1.0 10.969 10.969 10.969 10.969 10.964 

0.1 2.0 12.703 12.703 12.703 12.703 12.700 

0.2 0.1 9.926 9.882 9.885 9.882 9.858 

0.2 0.2 10.244 10.199 10.199 10.199 10.184 

0.2 0.5 10.764 10.763 10.763 10.763 10.740 

0.2 1.0 11.631 11.631 11.631 11.631 11.619 

0.2 2.0 13.366 13.366 13.366 13.366 13.358 

0.5 0.1 11.476 11.275 11.276 11.273 11.242 

0.5 0.2 12.053 11.906 11.917 11.906 11.866 

0.5 0.5 12.752 12.700 12.701 12.699 12.604 

0.5 1.0 13.620 13.615 13.615 13.615 13.544 

0.5 2.0 15.354 15.354 15.354 15.354 15.316 

1.0 0.1 13.513 13.016 13.026 13.014 12.898 

1.0 0.2 14.742 14.304 14.307 14.303 14.205 

1.0 0.5 15.962 15.713 15.725 15.707 15.494 

1.0 1.0 16.933 16.848 16.848 16.848 16.638 

1.0 2.0 18.668 18.660 18.660 18.660 18.517 

2.0 0.1 16.473 15.404 15.427 15.390 15.089 

2.0 0.2 19.074 17.990 17.990 17.982 17.778 

2.0 0.5 21.799 20.992 21.096 20.992 20.660 

2.0 1.0 23.482 22.917 22.917 22.917 22.418 

2.0 2.0 25.294 25.146 25.146 25.146 24.703 
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Table 4.3: Two customer type problems contd. 

Cl C2 CT CSW CIND COPT CSD 

0.1 0.1 8.550 8.549 8.550 8.550 8.520 

0.1 0.2 8.724 8.723 8.724 8.724 8.709 

0.1 0.5 9.244 9.244 9.244 9.244 9.238 

0.1 1.0 10.112 10.111 10.112 10.112 10.109 

0.1 2.0 11.846 11.846 11.846 11.846 11.845 

0.2 0.1 9.213 9.209 9.213 9.213 9.100 

0.2 0.2 9.387 9.385 9.386 9.386 9.327 

0.2 0.5 9.907 9.906 9.907 9.907 9.883 

0.2 1.0 10.774 10.772 10.774 10.774 10.762 

0.2 2.0 12.509 12.508 12.509 12.509 12.503 

0.5 0.1 11.201 11.131 11.133 11.131 10.688 

0.5 0.2 11.375 11.346 11.346 11.345 11.020 

0.5 0.5 11.895 11.889 11.890 11.890 11.747 

0.5 1.0 12.762 12.756 12.762 12.762 12.687 

0.5 2.0 14.497 14.491 14.497 14.497 14.459 

1.0 0.1 14.515 13.813 13.813 13.809 12.945 

1.0 0.2 14.688 14.321 14.329 14.319 13.662 

1.0 0.5 15.208 15.100 15.100 15.100 14.637 

1.0 1.0 16.076 16.052 16.052 16.051 15.780 

1.0 2.0 17.810 17.796 17.808 17.808 17.660 

2.0 0.1 19.314 17.525 17.525 17.512 16.619 

2.0 0.2 20.592 19.042 19.042 19.025 18.175 

2.0 0.5 21.776 20.896 20.896 20.896 19.974 

2.0 1.0 22.703 22.351 22.351 22.351 21.560 

2.0 2.0 24.437 24.359 24.359 24.356 23.846 
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4.5 Whittle index policy for the three class problem 

We now extend our work to assess the performance of the Whittle index policy in the 

more complicated three class system with quadratic costs. We now have 

Ck (n) = bkn + Ckn2 where k=1,2,3. 

Thus, we are seeking an admissible control to minimise average costs 

COPT =minUEUEU{b1N1+b2N2+b3N3+c1N1 +c2N2 +c3N3}. 

In order to assess the performance of the Whittle index policy, we again consider a range 

of policies for this problem. These include the threshold policies and linear switching 

policies as defined in Chapter 2. We compare these with one another and against exact 

values of and lower bounds on the minimised achievable cost, COPT. 

It follows from (4.3) that a Whittle index policy will select a customer for service from 

the three customer classes, when all have jobs present in the system, on the basis of the 

class indices 

tick (nk) = bkflk + 
Ck (3)k 

- Pk) Pk 
+ 2Ck/lknk, nk E Z+, k=1,2,3. 

Ilk-Ak 

If nl, n2i n3 >0 then the Whittle index policy dictates that the customer class with the 

highest value of Wk (nk) will be given priority. Clearly, if at time t one of the customer 

classes has no customers present in the system, then service is allocated to whichever of 

the remaining two classes with jobs in the system has the larger index value. Finally, if, 

at time t, there is only one non-zero customer class present in the system, then the server 

is allocated to that class. In order to calculate the expected cost incurred under the index 

policy, we need to obtain the steady state distribution of the system under the policy. We 

will apply the methods of Chapter 2 to carry out the three-class analysis. 

The joint steady state distribution for the system under the index policy 

Pi, j, k = tliim 
P {N1 (t) = i, N2 (t) _ j, N3 (t) = k} 

105 



satisfies the set of balance equations given below. 

t 
A1+a2+As+µ1L1+/µ2L2+µ3L3+p1L4+µ2L5+P3Ls 

+µ1L7 + µ2L8 + µ3L9 + µiLio + µ2L11 + µ3L121 Pi, j, k 
A1Pi-1, j, k + A2Pi, j-1, k + A3Pi, j, k-1 

+µ1L13pi+1, j, k + J12L14pi, j+1, k + /23L15pi, j, k+1 

+µ1L16Pi+l, j, k + /-L2L17pi, j+l, k + µ3L18Pi, j, k+1 

+p1L19Pi+l, j, k + µ2L2OPi, j+1, k + /L3L21Pi, j, k+1 

+ii1L22pi+1, j, k + /12L23pi, j+l, k + µ3L24Pi, j, k+1 

where 

Ll =a (i>0, j>O, k=0, ali + ß1? a2j -I-1ß2) 

L2 =b (i>O, j>O, k=0, a23 -I-1ß2>ali + 01) 

L3 =8 (i>0, j=0, k>O, a3k + iß3>ali +, ßl) 

L4 =6 (i>O, j=0, k>O, ali +, ßi>_a3k +, ßs) 

L5 =b (i=0) j>O, k>O, c12j + 132>_a3k + ßs) 

Lg =6 (i=0, j>O, k>O, a3k + ß3>a2j + ßa) 

L7 =5 (i>0, j=0, k=0) 

Ls =b (i=0, j>O, k=0) 

L9 =5 (i=0, j=0, k>0) 

Llo =b (i>0, j>O, k>O, ali + ßi? azj +, 32, cxii +, ßl>a3k + /33) 

Lll =8 (i>0, j>O, k>O, a23 +, ß2>ali + Ql, a2j + iß2>a3k +, ßs) 

L12 =5 (i>0, j>O, k>O, a3k + ßs>ali +131, a3k + ß3>a2j + /32) 

L13 =b (i + 1>O, j>O, k=0, ali +1+, ßl>_a2j +, ß2) 

L14 =b (i>0, j+ 1>0, k=0, a2j +1+ A2>ali + ßi) 

L15 =S(i>0, j=0, k+1>0, a3k+1+ß3>ali+, ßl) 

Lls =b (i + 1>0, j=0, k>0, ali +1 -I-, ß1>a3k +j63) 
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L17 =6 (i=0, j+ 1>0, k>0, a2j +1+ ßa>_a3k +, 33) 

L18 =6 (i=0, j>0, k+1>0, a3k+1+ßs>a2j +ß2) 

L19 =S (i + 1>0, j=0, k=0) 

L20 =S (i=0, j+ 1>0, k=0) 

L21 =S (i=0, j=0, k+ 1>0) 

L22 =S (i + 1>0, j>0, k>0, aii +1+ ßl202j + 02, ali +1+ ß1>_a3k +, 63) 

L23=S(i>0, j+1>0, k>0, a2j+1+ß2>a1i+)31, a2]+1+ß2>_a3k+ 03) 

L24 =6 (i>0, j>0, k+ 1>0, a3k +1+ ß3>ali + ßl, a3k +1+ 03>a2j +, 82) 

and 

P-1, j, k = Pi, -1, k = Pi, i, -1 = 0. (4.10) 

From (4.2) 

and 
/3==bip + 

ai = 2cipi 

i=1,2,3. 
ci(A-µi)Iti 

(pi - Ai) 

We use b as an indicator function where 8 (B) =1 if B is true and 0 otherwise. Also, we 

employ the convention whereby if two classes have the same index, the policy chooses the 

one with lower numerical identifier. 

In the numerical study of the three class problem, we obtain solutions of these balance 

equations by again applying the power series algorithm and epsilon algorithm as we did 

in Chapter 2. First, we introduce a conformal mapping for the balance equations so that 

we write l+c 
Bce for the ai as follows 

( 
{ (Al + A2 + A3) 

0 
1+G- GB + u1L1 + [12L2 + µ3L3 + µ1L4 + µ2L5 + A3L6 

+µ1L7 + 112L8 + IL3L9 + piLlo + /12L11 + µ3L12 
}Pi, 

j, k = 

0 
(AiPi-1, j, k + )2Pi, j-1, k + A3Pi, j, k-1) 1+G, - GO 

+ l. L1L13Pi+1, j, k + /L2L14Pi, j+1, k 

+p3L15Pi, j, k+1 + µ1L16pi+l, j, k + /-12L17pi, j+1, k + µ3L1sPi, j, k+1 + [L1L19pi+1, j, k 

+µ2L2opi, j+l, k + µ3L21pi, j, k+1 + /-i1L22Pi+l, j, k + /µ2L23Pi, j+l, k + /13L24pi, j, k+1" 
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We now replace p1, j, k by Bt+j+k Eh 
o 

ehPh ijk to obtain 

S (i11+i12+A3) 
1+G-GB+µ1 

L1' i-P2L2+P3L3+µ1L4+µ2L5 

+P3L6 + µ1L7 + 92L8 + µ3L9 + p1L10 + P2L11 + µ3L12 

00 00 
JJJ 

00 
Xoi+j+k 

Z 0hph>i, j, k - 

{A1oi_1+i+k 
ZO hPh, 

i-1, j, k + i129i+j-l+k ohA, i, j-1, k 
h=0 h=O h=0 

+ý3ei+j+k-1 
00 

h^0 Ze 
Ph, i, j, k-11 

1 +G- CO h=0 

+µ1L1301+1+j+k 
Z 

00 
Bhph, i+l, j, k + 112L14oi+j+1+k 

00 
Z ohph, i, j+1, k 

h=0 h=0 

+µ3Li5ei+j+k+1 
00 

Z ehPh, i, j, k+l + ii1Llgez+l+j+k 
00 

[ý ehýh, i+l, j, k 
h=0 h=O 

+p2L17Bi+j+l+k 
00 

ehph, i, j+l, k + p3L18ei+j+k+1 
00 

ehph, i, j, k+l 
h=0 h=0 

+p1L19Bi+l+j+k 
00 

ehph, i+lj, k + /t2L20Oi+j+l+k 
00 

E BhPh, i, j+l, k 

h=0 h=0 

+µ3L21Bt+j+k+1 
00 

BhAj, 
j, k+1 + p1L22ei+l+j+k 

00 
E 0 Ph i+l, j, k 

h=0 h=0 

+µ2L23e +7+1+k 
00 

ehPh, i, j+l, k + /. i3L24ei+j+k+1 
00 

ehph, i, j, k+1. 
h=0 h=0 
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Multiplying by (1 +C- GO) gives us 

00 
(A1 +'2 +A3) 0i+j+k+1 Z eh7h, i j, k+l / 

h=0 

00 
+µl{Ll + L4 + L7 + Lio}Bt+j+/c (1 +G- G9) I Ohph, =, j, k 

h=0 
00 

+/121L2 + L5 + L8 + Lll } Oi+'+k (1 +G- GB) E Ohph, i,;, k 
h=0 
00 

+µ3 {L3 + L6 + Ls + Lia}Bi+'+k (1 +G- GO) E Ohph, i, j, k _ 
h=0 

00 00 00 
A, oi+j+k E ehph, i-l, j, k + A2 oi+j+k E ohph, i, j-1, k +) 0i+j+k E ohPh, 

i, j, k-1 
h=0 h=0 h=0 

00 
+pl {L13 + L16 + L1g + L22}Bi+l+j+k (1 +G- GO) E Bh5h, i+1, j, k 

h=0 

00 

+µ2{L14 + L17 + L20 + L23}9i+j+1+k (1 +G- GO) E 9hPh, 
ij+l, k 

h=0 
00 

+µ3{L15 + L18 + L21 + L24}9i+; +k+1 (1 +G- GO) E Ohph, i, j, k+1" 
h=0 

Taking out a factor of 0i+j+k gives 

00 00 
(Al + )2 + A3) OE Oh1h, i, j, k+1 + 111 {L, + L4 + L7 + L10 } (1 +G- GO) > OhPh, i, j, k 

h=0 h=0 
00 

+112{L2+L5+L8+L11}(1+G-GO)E9hph, z, j, k 
h=0 
00 

+µ3{L3 + L6 + L9 + L12} (1 +G- GO) ohPh, =, j, k 
h=0 

00 00 00 
! \1 

E ohrlh, i-1, j, k +>2Z ohoh, i, j-1, k + i\3 Z ohJ7h, i, j, k-1 
h=0 h=0 h=0 

00 
+µl{L13 + L16 + L19 + L22}0 (1 +G- CO) Z 0hPh, i+1, j, k 

h=0 

+µ2{L14 + L17 + L20 + L23}9 (1 +G- CO) Z oh3h, i, j+1, k 

00 

h=0 

+µ3{L15 + L18 + L21 + L24}B (1+ G- GB) Z ohph, i, j, k+l, 

h=0 

109 



and on expansion, we have 

00 co 
(A1 + A2 + A3) 0E ehfh, i, j, k+1 + p1 {Ll + L4 + L7 + L10} (1 + G) E Bhph, i, j, k 

h=0 h=0 

00 
+µa {L2 + L5 + L8 + Lil } (1 + G) E 9hfih, i, j, k 

h=0 
00 

+µ3{L3 + L6 + L9 + Lia} (1 + G) E BhPh, z,;, k 
h=0 

00 00 

-µl{ Ll + L4 + L7 + L10 } G9 Z ohPh, i, j, k - µ2 {L2 + L5 + L8 + Lii } G8 Z ohph, i, 7, k 
h=0 h=0 
00 

_3{L3 + L6 + Lg + L12 } GB Z ohPh, 
i,;, k = 

h=0 
00 00 00 

Al Z ehPh, i-1,. 9, k + A2 Z ohJh, i,. 7-1, k + A3 E ohph, i,. 9, k-1 
h=0 h=0 h=0 

00 
+µ1{L13 + L16 + L19 + L22} (1 + G) 9Z BhPh, i+l, j, k 

h=0 
00 

+1i2{L14 + L17 + L20 + L23} (1 + G) 0Z ohph, i, j+l, k 
h=0 
0" 

+t13 {L, 
5 + L18 + L21 + L24} (1 + G) 0Z ohph, i, j, k+1 

h=0 

00 

-µl 
{L13 + L16 + Lis + L22} G82 1: OhJh, i+l, j, k 

h=0 
00 

-µa 
{ L14 + L17 + L20 + L23 } G92 E Bhph, i, j+l, k 

h=0 

-µs 
{ Lis + L18 + L21 + L24 } GB2 E ohPh,:,. i, k+l 

h=0 
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We equate coefficients to obtain 

(Al + A2 + A3) iah-1, ij, k+1 + (1 + G) { µ1(L1 + L4 + L7 + Llo) 

+µ2 (L2 + L5 + L8 + L11) + Fc3 (L3 + L6 + L9 + L12) lfh, i, j, k 

-G{µ1(Li+L4+L7+L1o) +µ2(L2+L5+L8+L11) 

+µ3 (L3 + L6 + L9 + L12) 
lfih-l, 

ij, k = 

A1ph, i-1, j, k + A2Ph, i, j-l, k + A3ph, i, j, k-1 

+ (1 + G) j pi (L13 + L16 + L19 + L22)ph-1, i+1, j, k + µ2 (L14 + L17 + L20 + L23)Ph-1, i, j+l, k 

+µ3(L15 + L18 + L21 + L24)Ph-1, i, j, k+1} - G{µi (L13 + L16 + L19 + L22)Ph-2, i+1, j, k 

+µ2 (L14 + L17 + L20 + L23)Ph-2, i, j+1, k + µ3 (L15 + L18 + L21 + L24)Ph-2, i, j, k+1I . 

Finally, making ph, i, j, k the subject of the equation gives us 

Ph, i, j, k - A1Ph, i-1, j, k + A2Ph, i, j-1, k + A3Ph, i, j, k-1 

- 
(A1 + A2 + A3) Ph-1, i, j, k+1 + GS P1(Li + L4 + L7 + L10) 

+112 (L2 + L5 + L8 + L11) + p3 (L3 + L6 + Lg + L12) 
lPh-l, 

i, j, k 

+ (1 + G) 
1S 

ill (L13 + L16 + L1s + L22)1h-1, i+1, j, k 

+112 (L14 + L17 + L20 + L23)ph-1, i, j+1, k 

+µ3 (L15 + L18 + L21 + L24)Ph-1, 
i, j, k+1 I 

-GS /. i1 (L13 + L16 + L1s + L22)Ph-2, 
i+1, j, k 

+1121(L14 + L17 + L20 + L23)j3h-2, 
i, j+1, k 

+113 (L15 + L18 + L21 + L24)Ph-2, 
i, j, k+1 

(1+G) 
ll 
Sµ1(L1+L4+L7+Llo)+µ2(L2+L5+L8+L11) 

+µ3(L3+L6+L9+L12) 

The solution of these recursions enables the computation of the pi, j, k. 
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4.6 Approximation of the Achievable Region in a three 

class system. 

We once again, as in Chapter 2, use the potential function method to formulate a set of 

constraints which will yield a relaxation of the achievable region. Under uniformisation, we 

have that Er 1 
[A,. + p,. ] =1 and -rk is the sequence of transition times in the uniformised 

Markov chain. As in Chapter 2, B,. (t) denotes the event that the server is busy with a 

class r customer at time t, where r=1,2,3. Similarly, B,. (t) denotes the event that the 

server is not busy with a class r customer at time t. 

We are characterising the set of possible first and second moments of the three queue 

lengths i. e. {E (N1) 
,E 

(N2), E (N3), E (N12), E (Ni) 
,E 

(N32), I. This is the achievable 

region. We are concerned with the random behaviour of the potential function R (t) under 

a general control policy for the three class system. Their derivation is given below and 

the potential function is given in (4.11), namely: 

R (t) =f (1) Nl (t) +f (2) N2 (t) +f (3) N3 (t) (4.11) 

We first use the recursion 
33 

E [R2 (7-k+1) IN (Tk)] =E Ar (R (-rk) +f (r) )2 +E PPr8 (Br 
1Tk}) 

[(R (Tk) 
-f 

(r) )2] 

r=1 r=1 
3 

-}- 
E 

Ilrl5 \"r 1-rk}) 
R2 (Tk) 

r=1 
3 

EAr (R2 `Tk)+2f `r) 
R(Tk) +. f2lr)) 

r=1 
3 

+E erb (Br 
LTk}) 

[R2 (Tk) 
-2f 

(r) R (Tk) + f2 (r)] 

r=1 
3 

+> prb (r {Tk}) R2 (Tk) 
, 

r=1 
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and taking expectations gives us 
3 

E [E [R2 (Tk+l) IN (Tk)] ]= EA, { 
E [R2 (rk)] + 2f (r) E [R (rk)] +E [f2 (r)] 

r_ _} 1 
3( 

+E µr jE {b (Br {Tk}) R2 (Tk)] - 2f (r) E [6 (Br {rk}) R (-rk)] 
r=1 l 

3 

+E [6 (Br {Tk}) f2 (r)], 
}+E 

PrE [8 (Br {rk}) R2 (-rk)] 
. 

r=1 

Now, we use the identity (because the system is in steady state) 

E{E [R2 (Tk+1) IN (-rk)] 
}=E [R2 (Tk+1)] =E [R2 (Tk)] 

. 
(4.12) 

Therefore, we can write 
33 

E [R2 (Tk)] 
_ 

ArE [R2 (Tk)] +pE [S (Br {Tk}) R2 (Tk)] 
r=1 r=1 

33 

+> /1rE [b (Br {Tk}) R2 (Tk)] +E Ar 
1 2. f (r) E [R 

(Tk)] +E[. f 2 
(r)] 

r_1 r_1 
33 

-2 Pr, f (r) E [b (Br {Tk}) R (, rk)] + /1rE [5 (Br {Tk}) f2 (r)] 

r=1 r=1 
333( 

_> ArE [R2 (Tk)] ++ prE [R2 (Tk)] ++ \r { 2f (r) E [R (Tk)] +E [f 2 
(r)] l r_1 r-1 r. l 

33 

-2 Pr. f (r) E [5 (Br {Tk}) R (, rk)] +: #rE [S (Br {Tk}) f2 (r)] 

r=1 r=1 
33 

> [Ar + jir] E [R2 (Tk)] +E Ar 
{2. 

f (r) E' [R (7-k)] +E [f2 (r)] 

r- -1 r-1 

1 

33 

-2 µr. f (r) E [5 (Br {Tk}) 
R (Tk)] +E PrE [5 (Br 

1Tk}) 
f2 (r)] 

r=1 r=1 

Now because of uniformisation, we can rearrange to obtain 

33 

0=E ! fir 2f (r) E [R (Tk)] +E [f2 (r)] 
}-2E 

ti f (r) I'' [5 (Br {, rk}) R (, rk)] 
r=l 

f 
r=I 

3 

-ý µrE 
[b (Br 

ITk}) 
f2 (r)] 

. 

r=1 
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Now we have that 

E [b (Br. {'rk})] =P (Server is busy with a type r customer) 
Ar 

µr 

Thus, we have 

33 

0 =2, E A,. f (r) E [R (Tk)] +E ArE [f 2 (r)] 
r-1 r-1 

33 

-2 Arµrf (r) E [b (Br {Tk}) R (Tk)] + )rE [f2 ýr)] 

33 

_Af (r) E [R (Tk)] - Ar 
rf (r) E [5 (Br {rk}) R (Tk)] 

T=1 T=1 

3 

+, E i\rE [f2 (r)] 
. 

r=1 

On expansion we have 

(4.13) 

Alf (1) E [R (-rk)] + Ad (2) E [R (-rk)] + AJ (3) E [R (-rk)] - µif (1) E [6 (Bi {Tip})) 

-/12f (2) E [5 (B2 {Tk})] - 1-13f (3) E [5 (B3 Irk I)] +A, f2 (1) + )'2f2 (2) +) f2 (3) =0 

and substituting from (4.11), we have 

Alf (1) E [f (1) N, (-rk) +f (2) N2 (, rk) + 
.f 

(3) N3 (, rk)] 

+A2f (2) E [f (1) Ni (Tk) +f (2) N2 (-rk) +f (3) N3 (, rk)] 

+)3f (3) E [f (1) Ni (-rk) +f (2) N2 (-rk) +f (3) 
N3 (-rk)] 

-µif (1) E [a (Bi {Tk}) If (1) N, (-rk) +f (2) N2 (rk) +f (3) N3 (rk) }J 

-µ2f (2) 
E [5 

(B2 
{Tk}) {f (1) Ni (-rk) +f (2) 

N2 (7k) +f (3) N3 (Tk) }J 

-µ3f (3) E [S (B3 {rk}) If (1) Nl (Tk) +f (2) N2 (Tip) +f (3) N3 (rk) }] 

+)1f2(1)+)2f2(2)+A3f2(3) = 0. 
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Rearranging, we obtain 

Alf2 (1) E [Ni (Tk)] + Alf (1) f (2) E [N2 (-rk)] + Alf (1) f (3) E [N3 (Tk)] 

+A2f (1) f (2) E [Ni (, rk)] +A2 f2 (2) E [N2 (-rk)] + )'2f (2)1(3) E [N3 (Tk)] 

+A3f (1) f (3) E [Ni (, rk)] + A3f (2)1(3) E [N2 (-rk)] +. 3f2 (3) E [N3 (-rk)] 

-%llf2(1)E[8(B1{7-k}) 
N1{Tk}] 

-µ1f (1) f (2)E[8(B1{Tk}) N2{Tk}] 

-µ1f (1) f (3) E [6 (B1 {Tk}) N3 {Tk}] - µ2f (I) f (2) E [6 (B2 {7k}) NI {Tk}] 

-µ2f2(2)E[6(B2{Tk})N2{Tk}]-µ2f (2) f (3)E[6(B2{Tk})N3{Tk}] 

-/'3f 
(1) f 

(3) 
E [6 (B3 {Tk}) N1 {Tk}] 

- /13f (2) f (3) E [S (B3 {Tk}) 
N2 {Tk}] 

-A3f 
2 

(3) 
E 

[8 (B3 
{rk}) N3 {Tk}] +) f2 (1) + A2 f2 (2) + A3 f2 (3) = 0. 

Taking expectations of the system in steady state and using the substitutions 

nr =E [Nr (-rk)] (4.14) 

I,. 9 =E [5 (B,. {Tk}) Ns (, rk)] where r, s, = 1,2,3 (4.15) 

gives us the following sets of equations 

Alf 2 (1) ni -i if 
2 (1) Iii +)f2 (1) + A2f2 (2) n2 - µ2f 2 2)'22 + . t2 f2 (2) 

+A3f2 (3) n3 - /13f 
2 (3) 133 + A3 f2 (3) 

-i-A1f (1) f (2) n2 + A2f (1) f (2) ni - pif (1) f (2)'12 - l-12f (1) f (2) 121 

-F Alf (1) f (3) n3 + A3f (1) f (3) ni - iif (1) f (3)'13 - µ3f (1) f (3)'31 

+A2f (2) f (3) n3 + A3f (2) f (3) n2 - P2f (2) f (3) 123 - µ3f (2) f (3) 132 = 0. 
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Equating the coefficients of f2 (1), f (1) f (2) etc. we have 

Ain, - /11111 + Al =0 (4.16) 

A2n2 - µ212z + A2 =0 (4.17) 

A3n3 
- %23133 + A3 =0 (4.18) 

Dina + A2ni - cilia - /-alai =0 (4.19) 

)1n3 + A3n1 - P1113 - [13131 =0 (4.20) 

A2n3 + Asn2 - P2123 - P3132 = 0. (4.21) 

The three customer cubic recursion will now be developed. We first note that, from (4.11) 

R2 (t) = f2(1)N2(t)+f2 l (2) N2 (t) +f2 (3) N3 (t) + 2f (1) f (2) Nl (t) N2 (t) 

+2f (1) f (3) Ni (t) N3 (t) + 2f (2) f (3) N2 (t) N3 (t) 

We use the recursion 
3 

E [R3 (Tk+I) IN (Tk)] =11 Ar (R 
(Tk) +f (r))3 + Arb (Br 

{Tkl) 
[(R 

(Tk) -f 
(r) )3J 

r_1 
l 

ý'1Lr8(-Br{TkI)R3(Tk) 
I 

3 {Ar 

-ý 
(R3(Tk)+3f (r) R2(rk)+3f2(r)R(Tk)+f3(r)) 

+ 11r8 (Br {rk}) 
[R3 

(Tk) - 3f (r) R2 (Tk) + 3f2 (r) R (Tk) 
-f3 

(r)] 

+Prb (-Br 
{Tk)) 

R3 (Tk) ). 

Taking expectations on both sides, as in the case of the quadratic, gives us 

E [E [R3 (Tk+1) IN (rk)} ES ihr (R3 (rk) + 3f (r) R2 (Tk) 3f2 (r) R (Tk) +f3 (ry )l 

r=1 
l 

+ltrs (Br 
{Tk}) [R3 

(Tk) - 3f (r) R2 (-rk) + 3f2 (r) R 
(Tk) - 

f3 (r)] 

+/1rb (r {rk}) R3 (Tk) 

I. 
Now, we use the identity 

E} E [R(Tk+1) IN (Tk)] }=E [R3 (Tk+1)] 
=E [R3 (Tk)] 
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and write 
3 

E [R3 (Tk)] _ 
{AE [R3 (, rk)] + prE [b (Br {Tk}) R3 (-rk)] + /1rE [b (r Irk}) 

R3 (Tk)} 
} 

r_1 
3 

+E E{ Ar (3f (r) R2 (-rk) + 3f 2 (r) R (, rk) +f3 (r)) 

r_i 
+µrb (Br 

{Tk}) 
(-3f (r) R2 (Tk) + 3f 2 (r) R (Tk) 

-f3 
(r)) 

} 

ýA, 

-E 
[R3 

`Tk)] + µrE [R3 
`Tk/] 

} 

r_1 
3 

EfA, (3f (r) R2(Tk)+3f2(r)R(Tk)+f3(r)) 
r-1 

+ Pra (Br 
{rk}) 

(-3f (r) R2 (Tk) + 3f 2 (r) R 
(Tk) -f3 

(r)) I- 

This may be rewritten 
33 

E [R3 (Tk)] =E 
[A, + Pr] E [R 3 (Tk)] +> Et Ar (3f (r) R2 (Tip) + 3f2 (r) R (Tk) + f3 (r)) 

r=1 r-1 

+pra (Br 
LTk}) 

(-3f (r) R2 (Tk) + 3f 2 (r) R (Tk) 
-f3 

(r)) 

I 
and, as Em= l 

[Ar + Pr] =1 
3 

E [R3 (Tk)} =E 
[R3 

(Tk)] +E E{A* (3f (r) R2 (Tk) +3f2 (r) R (-rk) +f3 (r)) 

T-1 

+jira (Br {Tk}) 
(-31 (r) R2 (Tk) +3f2 (r) R (7-k) 

- .f3 (r)) T 
Therefore, we can equate the remaining terms of the equation to zero to obtain 

3 

o=E E{Ar (3f (r) R2 (Tk) + 3f2 (r) R (Tk) + f3 (r)) 

r-i 

+/T5 (Br {rk}) (-3f (r) R2 (, rk) + 3f2 (r) R (Tip) - f3 (r)) 

Now, from (4.13), we have 

ýlýrE[6(Br{Tk})] f3(r) _EµrArf3(r) _ . Xrf3(r), 
r=1 r=1 

µr 
r=1 
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and thus 

3 

0= E{3Arf (r) R2 (Tk) + 3arf2 (r) R (-rk) + Arf3 (r) - 31trö (Br {Tk}) f (r) R2 (Tk) 
r-1 

+ 3Prb (Br 
{Tk}) f2 (r) R (Tk) - Xrf3 (r) 

} 

3( 

E{ 3Arf (r) R2 (Tk) + 3Arf2 (r) R (-rk) - 3ILrb (Br {Tk}) f (r) R2 (Tk) 

r-i l 

+ 3µrä (Br 
{Tk}) 

f2 (r) R (Tk) 

I 
Now, expanding the above and removing a factor of three, we have, for R (t) given in 
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equation (4.11) that 

0= ES Alf (1) (f2(1) Ni (Tk) + 
.f2 

(2) N2 (Tk) + 
.f2 

(3) N3 (Tk) 

+2lf (1) f 
(2)N1(Tk)N2(Tk)+2f 

(1) f 
(3)Nl(Tk)N3(Tk) 

+2f (2) f (3) N2 (Tk) N3 (Tk) 

+)2f (2) (12(1)Nl (rk) i-f2(2)N2 (Tk)+f2(3)Ns (7-k) 

+2. f (1) 
.f 

(2) N1 (Tk) N2 (-rk) + 2f (1) f (3) N1(Tk) N3 (Tk) 

+2f (2) f (3) N2 (Tk) N3 (Tk) 

+A3f (3) (f2 (1) N1 (Tk) + f2 (2) N2 (Tk) + 
.f2 

(3) N3 (, rk) 

+2f (1) f (2) N1 (Tk) N2 (-rk) + 2f (1) f (3) Ni (-rk) N3 (Tk) 

+2f (2) f (3) N2 (Tk) N3 (Tk) ) 

+\1f2 (1) 
(f (1) N1 

(Tk) +f (2) N2 
(Tk) +f (3) N3 (Tk)) 

+A2f 2 (2) (f (1) N1 (Tk) +f (2) N2 (Tk) + 
.f 

(3) N3 (Tk)) 

+it3f 2 (3) (f (1) N, (Tk) +f (2) N2 (Tk) +f (3) 
N3 (, rk)) 

-pif (1) 5 (B1 {Tk}) (f2 (1) Ni (Tk) +f2 (2) N2 (, rk) +f2 (3) N3 (Tk) 

+2f (1) f (2) N1 (Tk) N2 
(Tk) + 2f (1) f (3) N1 (rk) N3 (Tk) 

+2f (2) f (3) N2 (Tk) N3 
(Tk) 

) 

-/12f (2) 5 (B2 {Tk}) (f2 (1) N1 (Tk) + f2 (2) N2 (-rk) + f2 (3) N3 (Tk) 

+2f (1) 
f 

(2)N1(Tk)N2(Tk)+2f (1)f(3)N1(Tk)N3(Tk) 

+2f (2) f (3) N2 (Tk) N3 (7, 
k)) 

-µ3f 
(3)b(B3{Tk}) (f2(1)Nl (Tk)+, f2(2)N2 

(7-k)+f2 (3) 
N3 

(Tk) 

+2f (1) f (2) Ni (Tk) N2 (Tk) + 2f (1) f (3) N1 (Tk) N3 (Tk) 

+2f (2) f (3) N2 (Tk) N3 
(Tk) 

) 

+µ1f2 (1) S (B1 {Tk}) (f (1) N1 (Tk) +f (2) N2 (-rk) +f (3) N3 (TO) 

+µ2f2(2)8 (B2{Tk})(f 
(1)Nl(Tk)+f(2)N2(Tk)+f (3)N3(Tk)) 

+µ3f 2 (3) 6 (B3 {Tk}) (f (1) Ni (Tk) +f (2) N2 (-rk) +f (3) 
N3 

(Tk)) (. 

119 



Now using the notation 

nr =E [Nr (Tk)] (4.22) 

Afrs =E [Nr (rk) N, (-rk)] (4.23) 

Ir, =E [5 (Br {Tk}) N, (, rk)] (4.24) 

HTBwU =E [5 (Br {Tk}) N, (, rk) N,, (Tk)] 
where r, s, w=1,2,3 (4.25) 

and simplifying gives 

0=f3 (1) (aiýfii + µilii + ainý - pill) + f3 (2) (A2M22 + /12122 + A2n2 - µ2H222) 

+f3 (3) (6\3M133 + F13133 + A3n3 - 113H333) 

+f2 (1) f (2) (2A1M12 - 2µ1H112 - µ2H211 + µ1I12 + A1n2 + A2M11) 

+f2 (1) 1 (3) (2A1M13 
- 2{-p1H113 - FP3H311 + µ1I13 +) 1n3 + A3M11) 

+f2 (2) f (1) (2X2M21 - 2fp2H221 - µ1H122 + µ2I21 + A2n1 + A1M22) 

+f 2 (2) f (3) (2)12M23 - 2112H223 - p3H322 + P2123 + ii2n3 + A0122) 

+f2 (3) f (1) (2A3Mi31 
- 2P3H331 - ILlH133 + /23131 + A3n1 + A1M33) 

+f2 2 (3) f (2) (2 \3M132 - 2p3H332 - p2H233 + 23132 + )t3n2 +A 2M33) 

+f (1) f (2) f (3) (2\1M23 + 2A2M13 + 2)3M12 - 2µ1H123 - 2µ2H213 - 2µ3H312) 

Finally, equating the coefficients of f (1) f (2) f (3), f2 (3) f (2) etc., we develop the fol- 

lowing set of identities 

A1A111 + µiIll + )1n1 - µ1Hli1 =0 (4.26) 

A2M 22 + µ2122 + )2n2 - µ2H222 =0 (4.27) 

)3 133 + µ3133 + A3n3 - µ3H333 =0 (4.28) 
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21\1M12 - 2µ1H112 - P2H211 + µ1I12 + A1n2 + \2M11 =0 (4.29) 

2)1 113 - 2p1H113 - µ3H311 + IL1113 + A1n3 +) 3M11 =0 (4.30) 

2A2M21 - 2µ2H221 - p1H122 + µ2I21 + A2n1 + A1M22 =0 (4.31) 

2A2M"123 - 2µ2H223 - µ3H322 + IL2I23 + A2n3 + A3M22 =0 (4.32) 

2A3M131 - 2113H331 - µ1H133 + /13131 + A3n1 + )1M33 =0 (4.33) 

2A3M'132 - 2/13x332 - µ2H233 + /13132 + A3n2 + A2M33 =0 (4.34) 

2A1M23 + 2) 2M13 + 2x311112 - 2µ1H123 - 2µ2H213 - 2µ3H312 =0 (4.35) 

All the required moments of N1, N2 and N3 satisfy the sets of equations (4.16)-(4.21) 

and (4.26)-(4.35) just derived. Hence, the region defined by these equations relaxes the 

achievable performance region for the three customer system. 

4.7 The semidefinite constraints on the three class 

problem. 

We seek to solve the optimisation problem 

min (cln1 + c2n2 + c3n3 + c4M11 + c5M22 + c6M33) 

where the minimisation is over the set of achievable first and second moments. The sets 

derived using the potential function method relax the achievable performance region for 

the three customer system. Therefore we are now able to solve not the optimisation 

problem over the exact achievable space (which we do not have) but the related problem 

over a relaxation of the exact space, given by nl 2 Pl. The minimised cost over the latter 

will give a lower bound on the optimal cost for the problem. P2 is defined by the set of 

equations (4.16) - (4.21) along with 
3 

E'is = nl, (4.36) 
8=1 
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3 

II2, = n2, (4.37) 
r-1 

3 
E 13t = n3i (4.38) 

c-i 
I, s>0, r=1,2,3 s=1,2,3, (4.39) 

n,. > 0, r=1,2,3. (4.40) 

P3 is given by (4.26)-(4.35) along with 

Z Hr11 - Mil = 0, (4.41) 
r=1 

3 

Z Hr22 - M22 = 0, (4.42) 
r=1 

3 

Hr33 - M33 = 0, (4.43) 
r=1 

3 
Z Hr12 - M12 = 0, (4.44) 
r=1 

Z Hr23 - M23 = 0, (4.45) 
r=1 

Z Hr13 - M13 = 0, (4.46) 
r=1 

nr, Mrs, Irs, Hrst > 0. (4.47) 

As in Chapter 2, we use the semidefinite programming methods of Vandenberghe & Boyd 

(1996). To obtain a lower bound on the cost achievable under any policy for our three 

class system, we wish to solve the following linear programming problem 

minimise cTx, 

subject to Ax +b>0 

where A= [al, a2, .... am] E Rnxm, cE Rm is a vector and bE R" also a vector. 

We denote diag (v) as the diagonal matrix having the components of v on the diagonal. 

We can state that a vector v>0 if and only if the matrix diag (v) is positive semidefinite. 
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We now rewrite the linear program above as the following semidefinite programming 

problem: 

minimise cTx, 

subject to F (x) }- 0 
36 

where F (x) -Fo+ xiFi, and Fo= diag (b) and Fi= diag (ai) 
,i=1,2, ... , 36. 

We note that diag (a) and diag (b) are of the form diag (v) above. 

The additional semidefinite constraints, suggested by Bertsimas & Nino-Mora (1996), 

D1, D2, D3 and D4, are as follows 

D1 

D2 

D3 

D4 

1 ni n2 n3 

ni M11 M12 M13 

0 

n2 M12 M22 M23 

n3 M13 M23 M33 

1 I11 112 113 

Ill H111 H112 H113 
r0 

112 H112 H122 H123 

113 H113 H123 H133 

01 
1 121 122 123 

121 H211 H212 H213 

122 H212 H222 H223 

123 H213 H223 H233 

1 131 132 133 

131 H311 H312 H313 
0 

132 H312 H322 H323 

133 H313 H323 H333 

(4.48) 

(4.49) 

(4.50) 

(4.51) 
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It only remains for us to reformulate the set P2 n P3 along with the additional semidefinite 

constraints of (4.48)-(4.51) into the semidefinite program. The non-parametric bounding 

method produced constraints of the form Alx - bl =0 while the standard form requires 

them to be in the form Alx - bi > 0. Thus, in order to achieve this required form, we 

write the constraints as follows: 

Aix > bi 

-Aix > -bi 

where Al = (Ai, A22, Ai;;, A;,, ) is a 25 by 36 matrix made up as indicated by the following: 

A; = 

-Al 0 0 0 0 0 0 0 0 

0 -A2 0 0 0 0 0 0 0 

0 0 -A3 0 0 0 0 0 0 

-A2 -Al 0 0 0 0 0 0 0 

0 -A3 -A2 0 0 0 0 0 0 

-A3 0 -Al 0 0 0 0 0 0 

Al 0 0 Al 0 0 0 0 0 

0 A3 0 0 0 0 A2 0 0 

0 0 A3 0 0 0 0 0 AS 

0 Al 0 A2 2A1 0 0 0 0 

0 0 Al A3 0 2A1 0 0 0 

A2 0 0 0 2A2 0 Al 0 0 

A3 0 0 0 0 2A3 0 0 X1 

0 0 A2 0 0 0 As 2A2 0 

0 A3 0 0 0 0 0 2A3 A2 

0 0 0 0 2A3 2A2 0 2A1 0 

-1 0 0 0 0 0 0 0 0 

0 -1 0 0 0 0 0 0 0 

0 0 -1 0 0 0 0 0 0 

0 0 0 -1 0 0 0 0 0 

0 0 0 0 -1 0 0 0 0 

0 0 0 0 0 -1 0 0 0 

0 0 0 0 0 0 -1 0 0 

0 0 0 0 0 0 0 -1 0 

0 0 0 0 0 0 0 0 -1 

A, ii = 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

-µ1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 -2µi 0 0 0 0 -µ2 0 0 

0 0 -21AI 0 0 0 0 0 0 

0 0 0 -Nl 0 0 0 -2p2 0 

0 0 0 0 0 -µl 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 -21A1 0 0 0 -2M2 
O 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 1 0 0 

0 1 0 0 0 0 0 1 0 

0 0 1 0 0 0 0 0 1 

0 0 0 1 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 

0 0 0 0 0 1 0 0 0 
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Aii = Aiv 

Jul 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 µ2 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 p3 0 0 0 0 0 0 0 0 0 

0 µl 0 µ2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 12 0 N3 0 0 0 0 0 0 0 0 0 0 

0 0 pl 0 0 0 µ3 0 0 0 0 0 0 0 0 0 0 0 

µ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 M2 0 0 0 0 -1U2 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 43 0 0 0 0 0 0 0 0 -N3 

0 µl 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 111 0 0 0 0 0 0 0 0 0 -µ3 0 0 0 0 0 

0 0 0 P2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 p3 0 0 0 0 0 0 0 -2µ3 0 0 0 

0 0 0 0 0 µ2 0 0 0 0 -2p2 0 0 0 0 -µ3 0 0 

0 0 0 0 0 0 0 µ3 0 0 0 -92 0 0 0 0 -2µ3 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 -293 0 0 0 0 

1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 

In addition 

xT =(nl, n2, n3, Al11, M12, M13, m22, M237 M331 'ii, '12)'13, '211 

122,1231 131) 132,133, H111, H112M H1131 H122e H1239 H1339 H2111 

H212 
, 

H213 
, 

H222 
7 

H223) H233 
, 

H311 
) 

H312 
i 

H313 
, 

H322 
, 

H323 
, 

H333) 

E again takes the form E>0, where E now represents a 36 by 36 identity matrix and 

bT (-bi, bi, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 

(4.52) 

where 

b. (A1, /\2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 0,0,0,0,0,0,0) 
1 

We can now write all of the linear constraints in the required form: Ax -b>0 where 

-A1 
A= Al 

E 
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and b is the transpose of (4.52). We are now able to formulate the problem as a semidef- 

finite program 

minimise C1n1 + C2n2 + c3n3 + C4M11 + C5M22 + C6M33 

diag (Ax - b) 0 0 0 0 

0 D1 0 0 0 

subject to 0 0 D2 0 0}0 

0 0 0 D3 0 

0 0 0 0 D4 

The semidefinite program constraints for the above problem can be written in the form 
36 

Ex=Fi 
- FO>- 0 

i=l 

and then be solved. Again, we used the software developed by Kojima (1994) 

4.8 Calculation of COPT for the three class problem 

As in the two customer case, we calculate COPT using the method of dynamic program- 

ming as described in Tijms (1994). The recursion used in the three class problem is given 

below. 

bin1 + b2n2 + b3n3 + clni + c2n2 + c3n2 Ct+l (nl, n2, n3) = min Äl + A2 + A3 + µl 
23 

+AlCt 
(ni+ 1, n2, n3) +) 2Ct (n1, n2+ 1, n3) + )3Ct (n1, n2, n3+ 1) + µ1Ct (n1- 1, n2, n3) 

Al +A2+A3+µ1 

b1n1 + b2n2 + b3n3 + clni + c2n2 + c3n2 23 
A1+ A2+A3+M2 

AlCt (n1+ 1, n2, n3) + i12Ct (ni, n2+ 1, n3) + A3C (n1, n2, n3+ 1) + p2Ct (n1, n2- 1, n3) 
ill+A2+A3+1t2 

bin1 + b2n2 + b3n3 + c1n2 + C2n2 + c3n2 

A1+ \2+A3+ii3 

+i11Ct 
(ni+ 1, n2, n3) + A2Ct (ni, n2+ 1, n3) + AA (n1, n2, n3+ 1) + p3Ct (n1, n2, n3- 

Al + A2 + A3+M3 
J 

(n1, n2, n3) E (Z+)3 
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(bin1 + b2n2 + clnl + c2n2 
Ct+l (nl, n2,0) = min { l Al+A2+A3+111 

+AlCt 
(n1 + 1, n2,0) + )2Ct (n1, n2 + 1,0) + A3C (n1, n2,1) + PiCit (n1 

- 1, n2,0) 

Al+A2+A3+ill 

bin1 + b2n2 + clni + c2n2 

Al +/\2+. A3+µ2 

+)1Ct 
(ni + 1, n2,0) + A2Ct (n1, n2 + 1,0) + A3Ct (ni, n2,1) + µ2Ct (n1, n2 - 1,0) 

Al +i12+i13+µ2 

2 (nl, n2) E (z+) 

fbin1 + b3n3 + clni + c3n2 3 Ct+l(nl, 0, n3) = minS )1+A2+A3+11 

+AiCt 
(nl + 1,0, n3) + a2Ct (nl, 1, n3) + AA (nl, 0, n3 + 1) + ulCt (nl - 1,0, n3) 

Al+A2+A3+til 

bin1 + b3n3 + clni + c3n2 

A1+)2 +A3+/11 

+A1Ct (n1 + 1,0, n3) + )12Ct (n1,1, n3) + A3Ct (ni, 0, n3 + 1) + u3Ct (n1,0, n3 - 1) 

IX1+i12+A3+/2i 
2 (nl, n3) E (z+) 

jb2n2 + b3n3 + C2n2 + 03n2 
Ct+l (D, n2, n3) = min S Al + A2 + A3 +23 µ2 

+AiCt 
(1, n2, n3) +) 2Ct (0, n2 + 1, n3) + A3Ct (0, n2, n3 + 1) + Fc2Ct (0, n2 - 1, n3) 

Al +A2+i\3+µ2 

b2n2 + b3n3 + 02122 + C3n 

; \1+A2+i13+1Z3 

+i11Ct 
(1, n2, n3) + A2Cit (0, n2 + 1, n3) + AA (0, n2, n3 + 1) + P3Ct (0, n2, n3 - 1) } 

Al+A2+A3 +/ L3 
2 (n2, n3) E (Z+ý 

(A1 +A2 + A3 + µi) Ct+i (ni, 0,0) = binl + cln2 + A1Ct (ni + 1,0,0) + A2C'c (ni, 1,0) 

+A3Ct (ni, 0,1) + µ1Ct (ni - 1,0,0) , n1 E Z+ 

(/1... ý )'2 + A3 + µ2) Ct+l (0, n2,0) = b2n2 + c2n2 + Ä1Ct (1, n2,0) + a2Ct (0, n2 + 1,0) 

+A3Ct (0, n2,1) + µ2Ct (0, n2 - 1,0), n2 E Z+ 

(A1 +A2+A3'+'P3)Ct+l(0,0, n3) = b2n3+c3n2+AiCt(1,0, 
n3)+A2CC(O, 1, n3) 

+A3Ct (0, O, n3 + 1) +µ3Ct (O, O, n3 -1), n3 EZ 
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(A1 + A2 + A3) CL+1(07 U, 0) _ AlCt (1,0,0) + A2Ct (0,19 0) + A3Ct (09 Us 1) 

tEN 

Our calculations were computed over a state space large enough to give a result with 

e=0.000000001, the required degree of accuracy as given in the value-iteration algorithm 

in Table 4.1. It is likely that this method would not be a realistic possibility for larger 

problems and indeed the calculations of results for the three class problems did take 

considerably longer to compute than those for two. Therefore, in our further investigations 

of section 4.9.1, we decided to measure index policy performance against the lower bound 

cost only. This was because it was felt that this will have to be the method in future work 

dealing with larger problem instances and that, as will be seen, in all of the problems 

where C°'' was calculated, the index policy cost was close to it and usually within 10% 

of the lower bound. In the results of section 4.9.1, the index policy costs were also usually 

within 10% of the lower bound and this was interpreted as a good performance. 

4.9 Numerical examples of three class type problems 

Tables (4.4)-(4.7) show the costs achieved by the Whittle index policy on three class 

M/M/1 systems with arrival rates and service rates as indicated. The service rates were 

randomly generated on the interval (0.1,20.0) and the arrival rates were calculated by 

scaling three further numbers randomly generated on the same interval so that p was 

fixed at 0.75. In Tables 4.4-4.7, the cost coefficients are taken to be bl = 5, b2 = 1, b3 = 1, 

cl = 1, c2 =2 and c3 = 0.2. We define CIND as the cost incurred following the Whittle 

index policy; C°' as the minimum achievable cost, calculated by means of dynamic 

programming and CSD as the semidefinite lower bound on the minimum achievable cost. 

Further, we define %°PT as the percentage increase in CIND over C°''; and %SD as the 

percentage increase in CI ND over CSD 

Results show that the Whittle index policies perform close to optimally in all cases. 

In Tables 4.4 - 4.7 the values of %OPT range from 0.000 to 0.712. The great majority 
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of values are close to zero and this is indicated from the median, 0.000, and the lower 

and upper quartiles, 0.000 and 0.019 respectively. The values of %SD range from 0.060 to 

11.541. Again, the values are skewed and this is indicated from the median, 2.789, and 

the lower and upper quartiles, 1.124 and 5.935. 
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Table 4.4: Results for Whittle index policies in three customer type problems. 

Al . A2 A3 Al /12 x. 13 CIND COPT CSD %OPT %SD 

2.384 4.166 0.726 13.535 12.761 2.934 7.827 7.824 7.481 0.038 4.625 

6.592 3.657 1.485 14.538 17.290 17.459 16.531 16.511 15.614 0.121 5.873 

3.338 0.251 2.203 12.896 0.953 9.681 11.713 11.708 11.198 0.043 4.599 

2.878 0.998 1.107 12.433 5.410 3.313 6.950 6.950 6.647 0.000 4.558 

1.825 1.113 3.194 17.273 13.964 5.657 6.451 6.450 6.337 0.016 1.799 

2.492 3.473 2.828 17.318 18.388 6.777 6.464 6.463 6.248 0.015 3.457 

0.106 0.065 0.091 6.981 16.455 0.124 7.035 7.035 7.034 0.000 0.014 

0.663 1.186 4.041 17.301 15.802 6.347 6.619 6.619 6.517 0.000 1.565 

1.066 1.405 0.250 1.848 13.922 3.468 20.542 20.542 20.235 0.000 1.517 

0.290 0.086 0.304 0.427 3.000 7.080 31.430 31.412 31.208 0.057 0.711 

0.999 1.526 3.331 16.555 3.566 12.731 16.816 16.773 16.256 0.256 3.445 

0.618 0.987 0.880 10.804 2.798 2.586 8.335 8.335 8.049 0.000 3.553 

0.871 0.877 0.880 2.253 19.911 2.757 10.677 10.677 10.179 0.000 4.892 

2.774 2.685 1.673 13.033 16.360 4.484 6.653 6.653 6.411 0.000 3.775 

0.434 1.983 0.840 10.756 6.537 2.067 6.271 6.271 6.165 0.000 1.719 

2.070 0.597 1.999 4.090 4.456 18.181 20.848 20.791 19.138 0.274 8.935 

0.316 0.538 0.348 15.298 13.816 0.504 6.647 6.647 6.643 0.000 0.060 

0.708 0.236 0.495 1.317 1.260 19.622 24.240 24.225 22.338 0.062 8.515 

0.759 1.024 1.076 17.347 2.024 5.376 17.756 17.739 17.143 0.096 3.576 

4.612 2.529 5.926 15.325 16.762 19.878 10.478 10.478 9.503 0.000 10.260 

1.104 0.506 2.333 12.723 12.245 3.751 6.578 6.578 6.507 0.000 1.091 

1.738 1.976 1.026 14.813 11.160 2.251 5.868 5.868 5.729 0.000 2.426 

1.318 0.314 0.410 18.652 0.478 17.565 36.076 36.072 35.913 0.011 0.454 

1.680 1.964 0.136 2.654 18.027 16.861 28.730 28.728 28.549 0.007 0.634 
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Table 4.5: Results for Whittle index policies in three customer type problems contd. 

Al . \2 A3 P11 112 113 (SIND COPT CSD %OPT %SD 

0.705 1.013 1.701 6.475 4.984 3.886 7.228 7.228 6.871 0.000 5.196 

0.522 1.398 0.744 1.874 3.772 7.375 16.827 16.827 16.392 0.000 2.654 

0.264 0.095 0.133 0.526 5.985 0.574 12.895 12.895 12.581 0.000 2.496 

2.822 0.646 2.732 15.550 19.838 5.097 6.584 6.584 6.497 0.000 1.339 

0.262 0.180 0.339 4.932 16.794 0.494 6.745 6.745 6.738 0.000 0.104 

3.455 6.236 0.931 14.757 14.740 10.023 14.907 14.907 14.618 0.000 1.977 

1.419 5.038 2.908 4.976 15.925 19.591 14.570 14.565 14.291 0.034 1.952 

2.956 0.760 3.391 8.672 16.209 9.362 9.636 9.636 9.035 0.000 6.652 

0.053 0.193 0.100 10.350 0.264 7.135 43.010 42.987 42.773 0.054 0.554 

1.240 5.292 4.835 15.583 15.504 14.689 8.831 8.831 8.371 0.000 5.495 

0.543 7.706 3.179 10.765 15.827 14.951 11.479 11.479 11.144 0.000 3.006 

1.303 5.456 0.263 10.174 9.046 13.979 25.754 25.572 25.374 0.712 1.498 

1.754 0.098 1.770 4.132 1.919 6.452 11.764 11.762 10.653 0.017 10.429 

1.101 0.890 0.719 14.128 5.803 1.386 5.881 5.881 5.815 0.000 1.135 

0.373 4.160 2.657 12.324 12.322 6.953 7.180 7.180 7.016 0.000 2.338 

0.287 0.231 0.570 0.443 5.686 9.204 29.468 29.464 29.326 0.014 0.484 

0.367 0.431 0.551 0.579 19.190 5.941 28.592 28.555 28.301 0.130 1.028 

0.635 0.872 0.043 1.115 5.013 6.313 26.030 26.023 25.840 0.027 0.735 

0.650 0.868 0.589 17.084 8.731 0.962 6.110 6.110 6.091 0.000 0.312 

1.334 5.483 3.875 9.907 13.983 17.361 11.700 11.700 11.021 0.000 6.161 

0.202 1.078 0.853 3.113 14.410 1.397 6.397 6.396 6.315 0.016 1.298 

0.409 2.873 1.100 2.594 5.604 13.833 17.110 17.109 16.720 0.006 2.333 

0.528 0.129 0.733 3.425 15.403 1.247 6.749 6.749 6.694 0.000 0.822 
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Table 4.6: Results for Whittle index policies in three customer type problems contd. 

Al A2 A3 111 µ2 /23 CND COPT CSD %OPT %SD 

1.179 0.510 0.961 11.484 19.520 1.547 6.423 6.423 6.398 0.000 0.391 

1.919 2.074 0.858 15.488 4.771 4.486 11.233 11.232 10.632 0.009 5.653 

0.698 0.321 0.791 15.016 0.518 9.323 32.618 32.584 32.198 0.104 1.304 

0.557 0.308 0.049 0.770 13.037 13.893 34.211 34.206 34.128 0.015 0.243 

7.235 1.628 0.264 14.401 6.954 19.689 19.899 19.874 17.840 0.126 11.541 

0.179 0.340 0.122 6.364 13.312 0.175 6.721 6.721 6.716 0.000 0.074 

1.350 2.131 4.567 12.891 14.646 9.137 6.968 6.968 6.642 0.000 4.908 

2.293 1.621 7.215 12.270 11.718 16.987 9.222 9.221 8.476 0.011 8.801 

7.359 0.130 1.434 11.831 13.319 12.138 18.090 18.090 17.837 0.000 1.418 

3.193 2.685 3.326 17.326 10.497 10.733 8.558 8.557 7.958 0.012 7.540 

0.172 0.222 0.018 1.988 0.337 2.973 36.486 36.471 35.547 0.041 2.642 

9.041 2.459 0.052 19.880 8.412 17.474 21.090 21.090 18.992 0.000 11.047 

2.074 2.200 0.836 11.635 18.351 1.849 5.997 5.997 5.873 0.000 2.111 

9.692 0.584 0.838 18.501 3.217 18.820 15.054 15.054 14.667 0.000 2.639 

2.038 1.652 1.212 10.866 18.290 2.567 6.216 6.216 6.094 0.000 2.002 

1.356 3.650 5.530 19.815 12.224 14.440 8.723 8.723 8.220 0.000 6.119 

5.483 3.353 1.529 15.982 14.244 8.916 10.730 10.730 9.880 0.000 8.603 

3.323 1.158 3.515 15.484 18.183 7.451 6.900 6.900 6.704 0.000 2.924 

5.036 1.651 4.910 14.142 15.107 17.252 10.725 10.725 9.819 0.000 9.227 

2.991 2.227 0.186 9.013 5.551 10.969 23.072 23.069 21.289 0.013 8.375 

8.460 0.134 4.517 19.117 2.611 17.623 9.980 9.979 9.690 0.010 2.993 

0.510 0.165 0.381 1.182 2.770 1.466 11.889 11.888 11.195 0.008 6.199 

0.363 0.503 0.620 6.044 7.422 0.997 6.311 6.311 6.275 0.000 0.574 
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Table 4.7: Results for Whittle index policies in three customer type problems contd. 

Al )2 A3 Al P2 93 (SIND COPT CSD %OPT %SD 

4.911 4.057 2.366 17.953 14.721 11.775 10.172 10.171 9.388 0.010 8.351 

0.267 2.670 3.304 11.783 10.167 7.109 7.035 7.035 6.831 0.000 2.986 

1.735 6.786 0.217 17.754 10.883 7.565 26.906 26.855 26.620 0.190 1.074 

0.295 0.512 0.625 5.712 0.849 6.578 30.514 30.410 29.430 0.342 3.683 

0.143 3.062 2.263 14.419 13.252 4.445 6.113 6.113 6.050 0.000 1.041 

3.186 3.190 3.992 10.130 16.228 16.709 11.975 11.975 11.030 0.000 8.568 

3.012 0.042 3.021 16.024 14.231 5.403 6.759 6.759 6.699 0.000 0.896 

3.314 3.233 1.273 12.038 14.858 4.950 8.132 8.132 7.746 0.000 4.983 

0.211 0.496 0.541 0.450 9.915 2.346 19.601 19.555 19.454 0.235 0.756 

2.142 1.044 2.856 10.511 2.963 14.734 16.212 16.197 14.963 0.093 8.347 

0.487 0.793 0.286 1.031 3.044 16.743 23.240 23.234 22.969 0.026 1.180 

5.496 2.124 2.636 13.988 15.184 12.140 10.732 10.731 9.928 0.009 8.098 

1.602 3.721 4.742 18.832 14.738 11.497 7.396 7.396 7.044 0.000 4.997 

4.458 3.608 4.204 19.096 17.165 13.724 8.438 8.437 7.852 0.012 7.463 

4.200 0.730 4.044 13.327 6.313 12.670 9.459 9.459 8.814 0.000 7.318 

0.561 0.383 1.557 3.794 14.285 2.707 7.159 7.159 6.943 0.000 3.111 

1.829 1.786 1.139 3.417 19.168 9.369 19.783 19.780 18.794 0.015 5.262 

1.772 2.005 2.721 10.362 6.813 9.557 10.204 10.197 9.338 0.069 9.274 

6.291 0.290 1.569 12.548 10.422 7.107 11.157 11.157 10.932 0.000 2.058 

0.287 1.155 0.946 0.558 11.122 7.173 22.006 22.004 21.818 0.009 0.862 

2.438 0.044 0.859 7.749 6.893 2.001 7.031 7.031 6.990 0.000 0.587 
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4.9.1 Further investigations 

Seeking to investigate further the performance of the Whittle index policies, with a number 

of different values of cost coefficients, we decided to select a small number of the above 

systems and to allow the cost coefficients to vary. Initially, we selected the 4 systems 

shown below as they appear in Tables 4.4 - 4.7 and as they seemed to us to be fairly 

representative of the range of index policy performances(from those calculated) i. e. the 

index costs in the four selected systems range from 0.014% to 11.047% above the relevant 

SDLB costs. The results are shown in Tables (4.9) - (4.12). 

Table 4.8: Systems selected for further investigation. 

Al A2 )3 Al 112 µ3 (; IND COPT CSD %OPT %SD 

1.240 5.292 4.835 15.583 15.504 14.689 8.831 8.831 8.371 0.000 5.495 

0.106 0.065 0.091 6.981 16.455 0.124 7.035 7.035 7.034 0.000 0.014 

9.041 2.459 0.052 19.880 8.412 17.474 21.090 21.090 18.992 0.000 11.047 

1.101 0.890 0.719 14.128 5.803 1.386 5.881 5.881 5.815 0.000 1.135 

In these further investigations, the values of the b=, i=1,2,3 are kept constant while we 

allow the second moment coefficients to Crary. 
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Table 4.9: Results for system with Al = 1.24, A2 = 5.292, A3 = 4.835, p= 15.583, µ2 = 

15.504 and µ3 = 14.689 

b1 b2 b3 Cl C2 C3 C'IND CSD %SD 

5 1 1 0.00 0.00 0.00 3.294 3.294 0.000 

5 1 1 0.01 0.02 0.002 3.353 3.345 0.239 

5 1 1 0.10 0.20 0.02 3.879 3.802 2.025 

5 1 1 0.20 0.40 0.04 4.462 4.310 3.527 

5 1 1 0.30 0.60 0.06 5.035 4.817 4.526 

5 1 1 0.40 0.80 0.08 5.598 5.325 5.127 

5 1 1 1.00 2.00 0.20 8.831 8.371 5.495 

5 1 1 5.00 10.00 1.00 29.119 27.317 6.597 

5 1 1 10.00 20.00 2.00 54.079 50.850 6.350 

In Table 4.9 the results obtained were comparable to those of Tables (4.4) - (4.7) and 

we felt that the semidefinite lower bound cost was sufficiently tight to assess performance. 

The %SD tended to increase as the values of the ci, i=1,2,3 increased. The largest value 

of %SD occurred when cl = 10.00, c2 = 20.00 and cl = 2.00 but this only represented an 

increase of 6.35 %. Thus the bounds appear to be tight and the index policies perform 

well. 
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Table 4.10: Results for system with al = 0.106, '\2 = 0.065, A3 = 0.091, it, = 6.981, P2 = 

16.455 and µ3 = 0.124 

b1 b2 b3 Cl C2 C3 CND CSD %SD 

5 1 1 0.00 0.00 0.000 3.006 3.006 0.000 

5 1 1 0.01 0.02 0.002 3.046 3.046 0.000 

5 1 1 0.10 0.20 0.020 3.409 3.409 0.000 

5 1 1 0.20 0.40 0.040 3.812 3.811 0.026 

5 1 1 0.30 0.60 0.060 4.215 4.214 0.024 

5 1 1 0.40 0.80 0.080 4.617 4.617 0.000 

5 1 1 1.00 2.00 0.200 7.035 7.034 0.014 

5 1 1 5.00 10.00 1.000 23.152 23.150 0.009 

5 1 1 10.00 20.00 2.000 43.298 43.295 0.007 

Table (4.10), shows the results for a set of problems where arrival and service rates 

are as indicated but the cost coefficients are the same as those of the results in Table 

(4.9). Here the values %SD range from 0 to 0.026 and it is clear that the index policies 

are performing at close to optimal for all values of cl, c2 and c3 investigated. 
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Table 4.11: Results for system with al = 9.041, A2 = 2.459, A3 = 0.052, µl 

19.880, µ2 = 8.412 and µ3 = 17.474 

bi U2 b3 Cl C2 C3 GºIND G. SD OýýSD 

5 1 1 0.00 0.00 0.000 5.767 5.767 0.000 

5 1 1 0.01 0.02 0.002 5.929 5.900 0.491 

5 1 1 0.10 0.20 0.020 7.373 7.102 0.382 

5 1 1 0.20 0.40 0.040 8.960 8.432 6.262 

5 1 1 0.30 0.60 0.060 10.540 9.752 8.080 

5 1 1 0.40 0.80 0.080 12.089 11.072 9.185 

5 1 1 1.00 2.00 0.200 21.090 18.992 11.047 

5 1 1 5.00 10.00 1.000 77.802 71.790 8.374 

5 1 1 10.00 20.00 2.000 148.139 137.790 7.511 

Table (4.11), shows the results for a set of problems where arrival and service rates 

are as indicated but again the cost coefficients are the same as those of the results in 

Table (4.9). Here the values %SD range from 0 to 11.047. Once again, these results are 

comparable to those of Tables (4.4) - (4.7) and we infer from this that the index policy 

is performing well. We continued our investigations by further analysis on the system 

with Al = 0.106, A2 = 0.065, A3 = 0.091, µl = 6.981, µ2 = 16.455 and p3 = 0.124 as 

the index based cost was extremely close to the SDLB cost for all coefficient values. We 

now used further variations on the cost coefficients. Results are also given for the system 

where Al = 1.101, A2 = 0.890, A3 = 0.719, pi = 14.128, µ2 = 5.803 and µ3 = 1.386 using 

these new coefficients as this was the next best performing system of those in Table 4.8, 

i. e. %SD = 1.135. 
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Table 4.12: Results for system with al = 0.106, )2 = 0.065, A3 = 0.091, µl = 6.981, µ2 = 
16.455 and µ3 = 0.124 

bi b2 b3 Cl C2 C3 CIND CSD %SD 

5 2 1 0.00 0.00 0.000 3.010 3.010 0.000 

5 2 1 0.01 0.02 0.050 4.011 4.010 0.025 

5 2 1 0.02 0.04 0.100 5.013 5.011 0.040 

5 2 1 0.05 0.02 0.010 3.211 3.211 0.000 

5 2 1 0.05 0.10 0.250 8.017 8.012 0.062 

5 2 1 0.10 0.10 0.100 5.014 5.014 0.000 

5 2 1 0.10 0.20 0.500 13.025 13.015 0.077 

5 2 1 0.20 0.20 0.200 7.019 7.018 0.014 

5 2 1 0.20 0.40 1.000 23.040 23.020 0.087 

5 2 1 0.25 0.10 0.050 4.016 4.015 0.025 

5 2 1 0.30 0.30 0.300 9.024 9.022 0.022 

5 2 1 0.40 0.40 0.400 11.028 11.026 0.018 

5 2 1 0.50 0.20 0.100 5.021 5.021 0.000 

5 2 1 0.50 0.50 0.500 13.033 13.030 0.023 

5 2 1 1.00 0.40 0.200 7.033 7.032 0.014 

5 2 1 1.00 1.00 1.000 23.056 23.051 0.022 

5 2 1 5.00 2.00 1.000 23.124 23.122 0.009 

Table (4.12), shows the results for a set of problems where arrival and service rates 

and cost coefficients are as indicated. Here the values %SD range from 0 to 0.087. These 

values are comparable to those of Tables (4.4) - (4.7) and it is clear that the index policies 

are again performing well. 
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Table 4.13: Results for system with A, = 1.101, )2 = 0.890, A3 = 0.719, µl = 

14.128, P2 = 5.803 and µ3 = 1.386 

bi b2 b3 Cl C2 C3 c LI 
OOSD 

5 2 1 0.00 0.00 0.000 3.030 3.030 0.000 

5 2 1 0.01 0.02 0.050 3.630 3.576 1.510 

5 2 1 0.02 0.04 0.100 4.230 4.123 2.595 

5 2 1 0.05 0.02 0.010 3.159 3.156 0.095 

5 2 1 0.05 0.10 0.250 6.030 5.763 4.633 

5 2 1 0.10 0.10 0.100 4.256 4.202 1.285 

5 2 1 0.10 0.20 0.500 9.002 8.496 5.956 

5 2 1 0.20 0.20 0.200 5.482 5.374 2.010 

5 2 1 0.20 0.40 1.000 14.780 13.962 5.859 

5 2 1 0.25 0.10 0.050 3.677 3.663 0.382 

5 2 1 0.30 0.30 0.300 6.707 6.546 2.460 

5 2 1 0.40 0.40 0.400 7.930 7.718 2.747 

5 2 1 0.50 0.20 0.100 4.325 4.297 0.652 

5 2 1 0.50 0.50 0.500 9.150 8.890 2.925 

5 2 1 1.00 0.40 0.200 5.620 5.565 0.988 

5 2 1 1.00 1.00 1.000 15.213 14.751 3.132 

5 2 1 5.00 2.00 1.000 15.957 15.705 1.605 

Table (4.13), shows the results for a set of problems where arrival and service rates 

and cost coefficients are as in Table (4.12). Here the values %SD range from 0.000 to 

5.956. These values are again comparable to those of Tables (4.4) to (4.7) and it is clear 

that the index policies are performing at close to optimal. 
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4.10 Conclusions and future work. 

The Whittle index policies derived in Chapter 3 perform at close to optimal levels for all 

of the problems considered. The problems all concerned single server M/M/1 queueing 

systems. The use of the achievable region as an effective means of assessing performance 

via the development of a lower bound on achievable cost would seem to be justified. This 

is likely to be of increasing importance in future work on larger, more complex problems 

where the computation of C°" is no longer possible. Such problems could perhaps 

involve cost rates C (n) of order p where p is greater than 2 and where we know that 

the Whittle index to be a polynomial of degree p-1. We could also study performance 

in problems where there is a larger number of customer types. Extension of the work to 

more complex systems such as M/G/1 and multi-server systems are also future objectives. 
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