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Abstract

We consider multi-class, single server queueing systems and we seek to devise policies for
server allocation which minimise some long-term cost function. In most of the work to
date on the optimal dynamic control of such systems, holding cost rates are assumed to
be linear in the number of customers present. Such assumptions have been argued to be
unrealistic and thus inappropriate: see Van Meighem (1995).

With pure priority policies, which often emerge from analyses based on linear holding
cost assumptions, there is often the problem that service offered to lower priority traffic is
unacceptably poor. Seeking to address such problems, we first investigate the performance
of policies based on linear switching curves in an M/M/1 model with two customer types,
imposing various constraints on the second moments of queue lengths. We then develop an
index heuristic for a multi-class M/M/1 model with increasing convex holding cost rates.
Following work by Whittle (1988), we develop the required indices and in a numerical
study of two and three class systems, demonstrate the strong performance of these index
policies. Performance of policies throughout the thesis, as measured by lowest costs
achievable under a given policy class, (i.e. best linear switching, best threshold, or index
policy) is compared with a lower bound on the minimum cost achievable under any policy.
This lower bound is obtained by adopting the achievable region approach, see Bertsimas,
Paschalidis & Tsitsiklis (1994) and Bertsimas & Nifio-Mora (1996) in which we construct
a set of constraints satisfied by the first and second moments of the queue lengths. These
constraints define a relaxation of the set of achievable region performance vectors of the
system. Optimisation over this relaxed region yields the lower bound. Numerical results

indicate the strong performance of the index policy.
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Chapter 1

Introduction

The problems of scheduling are familiar to most of us in our everyday lives. A busy NHS
hospital, for example, must work within the constraints of a limited budget to balance
the varying demands made on its services by patients with differing needs of treatment.
The decisions made by a hospital trust at a particular time affect the choices open to it
in the future and their aim is usually to maximise some targets of patient throughput or
satisfaction or to minimise some aspect such as patient waiting times. So it is in the world
of telecommunications and computing. The degree to which available service/processor
time outstrips the demand for service means that the various types of jobs arriving for
service are often forced to wait in the system until they can be processed by the server.
Such a situation means it is necessary to develop policies or rules as to when a job
arriving for service is served. One such policy would be simply first come, first served
but consideration, for example, of the queue in an accident and emergency department
would clearly indicate that it 1s not always desirable or possible to allocate service on
such a simple basis. Obviously, there are patients arriving who have differing needs, and
differing priorities need to be devised for them as the cost of delaying a patient with a
cut finger is not as great as the cost of delaying a patient with a heart attack.

Queueing theory can assist us in addressing the real world problems of server allocation

to jobs/customers of differing priorities. Such problems can sometimes be modelled by



the use of Markov decision processes in the framework of stochastic optimisation. We
seek to devise policies for server allocation which will minimise some long-term holding
cost rate.

Ideally, service policies should be both simple to devise and implement. Such are
the complexities of server allocation problems, however, that this has rarely been possi-
ble. The so-called curse of dimensionality constantly imposes limits on the computational
viability of problems and related solution methods. Early work by Gittins (1979) demon-
strated that for certain simple stochastic resource allocation problems, an index, v; (z;)
could be calculated for each job type. This index was simply a function of a job’s type,
¢ and its state, x; and thus problems of dimensionality were reduced. The optimal policy
under given conditions was for the server to operate on the job type with the highest
index: hence the term indez policy. Clearly the development of index based policies was
highly desirable. The work presented herein represents a small part of ongoing research to
extend to more complex models, the systematic design of heuristic service policies whose

performance is close to optimal.

1.1 Markov Decision Processes

A Markov process is a model of a system which passes through a succession of states, each
determined by a succession of transition probability distributions which in turn depend
upon the current state of the system. We add to this, firstly, a set.of decisions at each
stage, and on which the probability distribution governing the next stage of the system
depends, and, secondly, a set of possible rewards at each stage, depending on the decision
and the subsequent transition made. Thus, we define a discrete time Markov Decision
Process (MDP) as follows: A dynamic system which has decision epochs at equidistant

points of time say, t =0, 1, ...
e A state space, [

e For each state ¢ € I, a set of possible actions, A (z)
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e A real valued reward (or cost) system, R(i,a), depending on which action, a, is

taken in state 2.

We also assume the Markov property, i.e. the effects of making a decision in a given state
depend only on that state and not on any past states.

MDPs serve as useful models for a wide variety of systems where sequential decisions
are to be made. Blackwell (1965) considered discounted MDPs, first those with a discrete
time process and then extended his work to include those processes where the intervals
between successive decision times are random variables. The latter are called semi-Markov
decision processes. Our work concerns mainly average cost problems but we also consider
a problem with an infinite time horizon MDP in which future rewards (or costs) are
discounted, so as to ensure that the total reward obtained or cost incurred is finite.
Our aim is to find policies which either maximise this reward function or minimise some
holding-cost function.

Some of the earliest work on such problems was in the context of queueing systems.
Among the more prominent of the early contributors were Cobham and Harrison, both ot
whom considered queues with non-pre-emptive priorities. Cobham (1954) argued that as
the load on a system increases, then the need to prioritise the jobs in some way increases
and he recommended that as jobs of the highest priority would delay those of lower
priorities, the frequency of jobs being assigned as high-priority should be kept as low
as possible and that the servicing times of those high-priority jobs should be as short as
possible. Harrison (1975) showed for his model that a policy whereby the jobs are serviced

according to a strict priority rule is optimal.

1.1.1 The Multi-armed bandit problem

Multi-armed bandit problems are a type of MDP which involve the dynamic allocation of
some limited resource to a fixed collection of competing projects. The aim is to maximise
the total expected rewards or minimise the total expected costs of delay. A simple example

of such a problem would be one involving m drilling machines which can be used to
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prospect for oil at n different locations and m < n. It is important to note that at those
locations where no drilling takes place at a given moment in time, it is assumed that the

states of those locations remain unchanged.

1.1.2 The Gittins Index

Gittins & Jones (1974) produced the first solution of one of the multi-armed bandit
problems. Proof of optimality uses an interchange argument and the result takes the
form of an index, the Gittins index, a function of the project type and state. The optimal
policy is simply, at each decision epoch, to serve that customer type with the largest index
value. When the system modelled is that of a single server queue with K customer types
and costs are linear in each class queue length, and the goal is to minimise the long run
holding cost rate, then the optimal policy under given conditions is to schedule jobs in
decreasing order of cppix, where ¢ is the cost incurred per unit of time until the job is
completed and p is the rate at which customers of type k are served. (See, for example
Coffman & Mitrani (1980).) Such a policy has clear advantages in that calculation of the
indices is extremely simple and does not involve the K-dimensional calculations of classical
dynamic programming. The implementation of the policy is also quite straightforward.
Clearly there was a great incentive for work to be carried out in generalising the types

of bandit problems for which optimal index solutions could be found.

1.2 More complex bandit problems

In 1980, Whittle offered a proof of the Gittins index result via a dynamic programming
approach; see Whittle (1980). He also extended his results to include what Gittins (1979)
refers to as bandit superprocesses. Such a process has an extra decision variable, u; added
so that at a decision time, we must decide not only the project ¢ which is operated on but
also which procedure, u; is adopted.

At the same time as Whittle produced this work, Nash (1980), considered a problem

10



where the reward gained for operating project ¢ depended not simply on the state of project
2 but on the states of all of the other projects in a multiplicatively separable fashion. He
derived an index for such a problem and proved the optimality of the corresponding index
policy. Whittle (1981) considered arm acquiring bandits, one of a general class of problems
now known as branching bandits. See Glazebrook (1976), Weiss (1988), Klimov (1974)
and Tcha & Pliska (1977). Whittle’s problem can be thought of as a multi-armed bandit
which develops more arms, or projects, as time passes. Such problems are particularly
useful to us here in the modelling of multi-class queueing systems but their use extends
also to systems in the fields of medicine, agriculture and technology, where, over time,
there are greater choices to be made because of technical advances. Again, Whittle found
an optimal Gittins index solution to the problem.

Obviously, the Gittins index approach was offering optimal solutions to a range of
bandit problems. The work in extending the problems to which index solutions provided
such solutions continued throughout the 1980s. Most contributions analyse the models

via a dynamic programming approach: see Glazebrook (1982), Glazebrook (1991) and
Varaiya, Walrand & Buyukkoc (1985).

1.2.1 The Whittle Index

In ground-breaking work, it was Whittle (1988) who first suggested that index solutions
could be developed for restless bandit problems. In the multi-armed bandits of Gittins
(1979), the bandits are assumed to be static during their passive phases. Hence, if we
have n bandits or projects from which we must choose one to be active, the states of the
n — 1 on which no action is taken remain unchanged. Whittle describes a population of
n projects, or restless bandits, which continue to evolve, each according to its own set
of rules, whether they are functioning (active) or not (passive) but according to distinct
transition laws for active/passive. The problem, like that of our earlier drilling problem,
is to choose which of the projects should be active at any given time so as to maximise the

expected reward rate earned given that at each decision epoch we are allowed to operate
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only m, where m < n. He relaxed the problem to one which requires m projects to be
active on average. He then solved this relaxed version using Lagrangian methods. He
argued that the Lagrange multiplier associated with the constraint on total processing,
takes the form of an index, v; (z;), which simplifies to that of the Gittins index when
the bandits are assumed static when passive. He asserted that for m and n large and in
constant ratio, the policy whereby at any given point, the m active bandits are those with
the largest current index is asymptotically optimal. It is important to note, however, that
in general Whittle’s proposed indices do not necessarily exist for every MDP. A given
MDP must be shown to have the property of indexability and even when such indices do
exist, they are not in general optimal.

This approach of Whittle’s was heuristic and was essentially based on simplifications
of the problem in the undiscounted case. Early work by Cox & Smith (1961) suggested
the optimality of service policies where the server chooses from the waiting customers
according to a fixed ordering of the classes and the costs to be optimised are linear. We-
ber & Weiss (1990) and Weber & Weiss (1991) showed, mathematically, that Whittle’s
conjecture of asymptotic optimality as m and n approach infinity is true if the differ-
ential equation representing the fluid approximation to the index policy has a globally
stable equilibrium point. They show that, although this is not always so, exceptions are
extremely rare.

The practical applications of such models are many. Bertsimas & Nifio-Mora (2000)
mention the following examples: clinical trials, aircraft surveillance, worker scheduling (see
Whittle (1988)), police control of drug markets and control of a make-to-stock production
facility. For the latter see also Veatch & Wein (1996). Thus, there is great motivation to
extend the research to seek index solutions for such problems.

Many approaches will be, like that of Whittle’s, heuristic in nature. The quality of
such policies has usually been measured by a comparison of their empirical performance
with that of a minimum cost to the problem provided by means of standard dynamic

programming techniques, where this was possible. When this was not possible, usually
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because of dimensionality problems, assessment was made simply by a comparison of the
performances of a variety of heuristic policies, usually in a simulation study, and, as such,
oftered little insight concerning their degree of suboptimality. A relatively new approach,

that of the achievable region helps us to address such difficulties among others.

1.3 Dynamic Programming

The techniques known collectively as Dynamic Programming (DP) were devised for opti-
misation problems involving sequential decisions. Thus, they have always been considered
the natural framework for the optimal solution of MDPs. Our concept of a solution to
an MDP is a policy, i.e. a set of rules determining which action should be taken at each
decision epoch, for each possible state.

It was Bellman (1957) who first propounded the ideas of DP and stated his principle
of optimality concerning the optimal policy, that whatever the initial state and initial
decision of a sequential decision process, the remaining decisions must also form an optimal
policy. This is true for many models when future states are independent of all past states
and depend only on the current state, so that the path taken to arrive at the present state
is irrelevant for decision-making. We suppose that in our MDP defined in Section 1.1, we

choose action a in state 2, then the following occur:

e We incur an immediate cost, c; (a) or reward, r; (a)

e The system will move to state j at the next decision epoch with probability p;; (a),

where ) .., pij(a) =1,i € L.

Assume that our goal is to optimise the discounted costs/rewards to infinity. By applying
the principle of optimality to such an MDP, we obtain a set of recursive equations for func-
tions defined on state space I, the solution of which will give us the optimal cost/reward.
Rarely, such equations can be solved analytically and an optimal policy deduced from
them. When this is not possible, we can seek to solve the equations numerically, by iter-

ative approaches, although the application of such methods is frequently limited by the
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problem of dimensionality. An n class queueing problem usually has an n dimensional
state space, and thus our ability to compute solutions is curtailed by the exponentially
increasing size of the problem. For all practical purposes, we are severely restricted in DP

to the optimal solution of such problems with relatively small n.

1.4 The achievable region approach.

Until fairly recently, the standard technique of approach to stochastic scheduling problems
was dynamic programming. Although it is true to say that many such problems can be
set within such a framework, as we have already mentioned above, its effectiveness is
rapidly curtailed by the size of the resulting calculations. This is especially found to be a
problem, as one might expect, in more complex stochastic optimisation problems.

An alternative approach has been that of the achievable region. This approach has
its roots in mathematical programming. The basic aim of the achievable region approach
is to provide a general framework for the solution of stochastic scheduling problems. In

general terms, it operates as follows:

o Define some suitable performance measure and characterise the performance space
(the set of all possible performances of the system under all possible policies) using

a set of physical laws, usually conservation laws, which describe the system.
e Solve a mathematical programming problem over the performance space.

For those problems involving the optimal scheduling of multiclass queueing systems, each
scheduling policy usually has associated with it a performance vector, whose ith com-
ponent is the performance measure associated with customers of type ¢. The achievable
region X of a problem is the set of performance vectors, e.e. mean queue lengths, of
all of the admissible policies and the solution to the associated scheduling problem may
sometimes be found by solving a mathematical program with X as the feasible set. Thus,

given a vector of performance measures x, the expected number of jobs of each type in
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a multi-class queueing system, and a cost function c (x), we would seek Z* the minimum

cost achievable under any admissible policy or Z, a lower bound on it. The minimum

achievable cost is

Z* =min c(x)
subject to

rc X

where A" is the exact performance region. Ideally this region would be characterised
explicitly by means of algebraic constraints. In those cases where it is not possible to
characterise the exact performance region, constraints may be generated to obtain a re-
laxation of the achievable region, i.e. a set which contains it. See, for example (Bertsimas

& Nino-Mora 2000). Let P 2 X be a relaxation of the performance region, then we can

obtain a lower bound on Z* by the solution of:

Z = min c(x)
subject to

xr e P.

The solution to even this relaxed program can lead to good, i.e. close to, optimal policies.
In this it is clear that the generation of constraints (i.e. relations satisfied by all x) is of

paramount importance as is the design of good policies from the solutions.

The characterisation of the achievable region of a stochastic scheduling problem was
first achieved by Coffman & Mitrani (1980) and Gelenbe & Mitrani (1980). Their work
concerned optimal control problems for multi-class M/M/1 and M/G/1 queues. They
showed that by identifying every scheduling policy with a performance vector consisting
of mean response times for each customer class, the set of achievable performances (i.e.
those performance vectors which are the result of adopting some admissible scheduling
policy) can be characterised as a region bounded by a set of linear constraints. The latter
arise from the physical laws which describe the system’s behaviour subject to different

scheduling policies. The problem of optimising a linear function of customer class waiting
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times over admissible policies is reduced to a linear programming problem which is able

to be solved by standard methods. We shall consider optimisation problems involving
the minimisation of customer queue length but the same approach applies. Coffman &
Mitrani (1980) and Gelenbe & Mitrani (1980) showed the achievable region of a multi-
class M/M/1 queue under non-idling service policies to be a polyhedron and, significantly,
showed that the optimality of priority-index policies derives directly from this polyhedral
structure.

The work was extended with the aim of developing a general framework for the anal-
ysis of many stochastic scheduling problems. See, for example Federgruen & Groenevelt
(1988) and Shanthikumar & Yao (1992). The latter pair introduced the concept of strong
conservation laws and proved results concerning the form of the achievable region, once

such laws are shown to hold.

1.4.1 Strong conservation laws.

Shanthikumar & Yao (1992) defined so-called strong conservation laws for systems and
showed that, if these held, then the achievable region, X, was of a particular form, a
polymatroid, the vertices of which are the performance vectors of the absolute priority
rules. In this subsection, we outline their work. Let £ = {1,...,n} be a set of n
different job types in a general queueing system. We assume scheduling strategies are non-
idling and non-anticipative. Thus the server is always active when there are customers

to be served and scheduling decisions are based only on the past history and current
state of the system. We denote U as the class of admissible service policies and z7 as a
performance measure of type j jobs under an admissible policy u. Let x* = (:z:;“)J E be
the corresponding performance vector. For any permutation # = my, 79,...,7g of the n
elements of set £, we denote X" the performance vector for the scheduling policy which
prioritises the job types according to the permutation. Thus, 7; is given the highest
priority, then m, and so on down to 7, being given lowest priority. We shall use the

notation z (S) := Ejes:z: (7), for any S C E.
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Definition 1.1 (Strong conservation laws) If 3 b: 2 — R*, a set function which

satisfies the following conditions for allu € U;

> ¥ =b(E) (1.1)

jEE

Y ¥ >b(S), all SCE (1.2)

JES

and such that, for all scheduling policies m = {m, 72, ..., TE},
T
Z:z:,JFTJF =b({m, ™2y ..., }),, for r=1,2,..,FE (1.3)
j=1

then performance vector X = (x1, X9, ..., Tg) satisfies strong conservation laws.

If the strong conservation laws hold, then it follows from (1.1) and (1.2) that any perfor-

mance vector x will belong to the polyhedron, P, where

P={x€Rf:ijZb(S), all SCE;Za:j=b(E)}. (1.4)

JES j€EE
Shanthikumar & Yao (1992) showed that if a system satisfies strong conservation laws

(Definition (1.1)) then the base function b must satisfy the properties listed in Definition

(1.2) and the polyhedron P must be a polymatroid.

Definition 1.2 (Normalised, non-decreasing and supermodular) Letb: 2% — R”

be a set function which 1s
e normalised: b (D) =0
e non-decreasing: b(S) < b(T), forall SCT C FE and

e supermodular: b(S) +b(T) <b(SUT)+b(SNT) forall S, T CE

Theorem 1.1 (Shanthikumar and Yao (1992)) Assume the performance vector X sat-

isfies strong conservation laws (1.1), (1.2) and (1.8) then

e The performance space is the polyhedron, P, described by (1.4).

17



e P 15 the base of a polymatroid.

e The performance vectors of the absolute priority rules form the vertices of P.

This result enabled a wide range of queueing scheduling problems to be solved by simple
priority rules. These included problems previously considered by Coffman & Mitrani
(1980) and Federgruen & Groenevelt (1988). As an example of how the method works,
we use an M/M/1 queueing system with two job types discussed by Gelenbe & Mitrani
(1980). Define V,, (t) as the total amount of work in the system at time ¢ under an
admissible scheduling strategy u. It is assumed that the speed of the server is 1. Figure

1.1 illustrates a typical realisation of V,, (). Whenever a customer arrives, V,, () jumps

Vu (t)

Figure 1.1: Total work in the system under scheduling strategy u.

vertically upwards by an amount equal to the time needed to service the incoming job:
whenever a job is being served, it decreases linearly with slope -1. While the server is
idle, V, (t) remains constant but jumps vertically downwards (by the amount of service
time remaining) whenever a job leaves the system before it has completed its service. It is

clear that the only influence which service strategy u can have on V,, (t) is by ruling that
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the server should be idle when there are jobs in the system and by expelling jobs from
the system before their service time is complete. (It is assumed that jobs do not leave the
system of their own volition.) Under a strategy where the server is not allowed to idle and
jobs not allowed to leave the system before service completion V,, (¢) is independent of u.
Such strategies are termed work-conserving. Assume that V, (t), as a stochastic process,

has a steady state distribution and denote the limiting average by V,,:
Vu = lim E [V, (t)]. (1.5)
t—00

As V,, (t), and hence F [V, (t)], is independent of u for every ¢, it is, therefore, possible to

state

V,=V (1.6)

where V' is a constant, determined only by the parameters of the arrival and required
service times processes. It is also assumed that all scheduling decisions are based on
past and present knowledge of the system (i.e. not on any knowledge of exact remaining
service times). Let zi' = E, (IV;) /pi be the steady-state expected work in the system due
to type ¢ jobs and 3 i, E, (N;) /u; the total steady-state expected amount of work. In

the 2 job-type system, therefore, we can conclude that

Z Eu (Ni) — V — p1ﬂ1_1 + P2l—52-1 (1-7)
= Hi 1 —p1— po

and it is also shown that

) Bu M) 2 [1 - ZPJ £t where A = {1}, {2}, (1.8)
icA

iea M icA a0

for any admissible, work conserving, non-anticipative service policy where p;, i = 1,2 is
the offered load for a type ¢ job. The lower bounds for A = {1}, {2} are obtained by
policies which give pre-emptive priority to the appropriate class. This is an example of a
system satisfying strong conservation laws. Bertsimas et al. (1994) sought to extend the

range of problems by consideration of both open and closed multiclass queueing networks.

Many of the problems they considered were such that it was not possible to characterise
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the associated achievable region exactly. Their interests led them to consider performance
vectors which captured not only mean queue lengths, but also higher moments and higher
order interactions between the customer classes. This will be of importance in the work
of the thesis at various points. They used a potential function technique to account for
higher order interactions among customer classes, or job types, and went on to obtain
non-linear characterizations of relaxations of the achievable space using ideas from semi-
definite programming. Ansell, Glazebrook, Mitrani & Nifio-Mora (1999) adopted such an
approach in their evaluation of performance policies for a two class queueing system. We
have used such techniques throughout our work to evaluate the performances of a number

of heuristic policies.

1.4.2 Generalised conservation laws.

The work of Shanthikumar and Yao was generalised by Bertsimas & Ninio-Mora (1996).
The latter pair showed that if the performance measures in stochastic and dynamic
scheduling problems conform to certain generalised conservation laws, then the perfor-
mance space is an extended polymatroid. Optimisation of a linear objective, over such a
region, can be achieved by an adaptive greedy algorithm and yields an optimal solution
with an indezxability property. Generalised conservation laws extended the strong con-
servation laws of Definition (1.1) in that they introduce the concept of weighting to the
performance vector. Again, we consider a stochastic service system where E = {1,...,n}
be a set of n different job types . We assume scheduling strategies are non-idling and
non-anticipative. Let z7 be a performance measure of type j jobs under an admissible
policy u. We denote x™ the performance vector for the strict priority rule which priori-
tises the job types according to the permutation 7 of the n elements of set E. Thus,

m is given the highest priority, ..., m, the lowest priority. We shall use the notation

z(S):=) jesz(4), forany SC E.

Definition 1.3 (Generalised conservation laws) Performance vector x* is said to

satisfy generalised conservation laws if 3 a set function b: 28 — R*, and a matriz
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A= (A‘f)j g scp that satisfies A7 > 0, for S C E such that:
(a)
= ZAf:c;’, forallmw: {m,...,Mseq} =S and S C E. (1.9)
j€S
(b)

For every admissible policyu € U ;

ZAE:B“ =b(F (1.10)

JELE

and

Y Azt >b(S), all SCE (1.11)
j€S
As previously mentioned, the extension from strong conservation laws is by the addition

of the weights A7. Thus, when Af =1, for all j € S a performance vector will satisfy

strong conservation laws. Consider the following polyhedron:

P(A,b) = {x c (R*)": ) Ajz; >b(S) for SCE and Y AFz; =b(S) } (1.12)

J€ES jelb

The performance space is (the base of) an extended polymatroid.

Theorem 1.2 (Performance region characterisation) Assume the performance vec-

tor x satisfies generalised conservation laws (1.10) and(1.11) then

e The performance space is the (base of ) an extended polymatroid, P (A,b), described
by (1.12).

o The performance vectors of the absolute priority rules form the vertices of P (A,b),

and ™ = v (7)

Given an optimal scheduling problem,

= int E CiT
uel J J’

jek

we can compute Z* from the following linear programme

Z" = min ch:::‘f'. (1.13)



Bertsimas & Nino-Mora (1996) use the following adaptive greedy algorithm, given in

Table (1.1) as a solution method for the linear programming problem (1.13). The optimal

Table 1.1: The adaptive greedy algorithm.

INPUT: (c, A)
| OUTPUT: (m,¥,~), where

7w = (m,...,Tg) is a ranking permutation of E
¥ = (¥°) o is the optimal dual solution, and
~ = (v, ..., Ye) are optimal allocation indices |

STEP k=FE

STEP k. Fork=FE—-1,...,1
Set Sk = Sk—1\ {7k+1} l

Set, 1 o
_ . C; _Zi-_: A'igsi
ySk =m2n{_"____ﬁc_l___ J = Sk}
j
Pick o |
C: — : A,i_Si
T € argman {-J——-—E‘Z;:————’-—y—- ] € Sk}
J
Set TYr = Vg + gsk
| STEP 0
| For SC E:

Set gS =0,if S ¢ {Sl, ey SE}

ordering vector 7r corresponds to a Gittins index policy. Bertsimas & Nifio-Mora (1996)
show that the vector =y of the optimal priority indices is independent of how any ties are

broken in the running of the algorithm. They further showed that v (7) and ¥ are an
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optimal primal-dual pair for the linear programme. Thus (1.13) is optimally solved by
the performance measures achieved by adopting a service policy corresponding to r and

scheduling problems which have linear objectives and satisty generalised conservation laws

are optimally solved by Gittins index policies. More recent work in this area has considered
so-called partial conservation laws which extend the work to consider the indexability of
more difficult problems such as restless bandits as outlined in Section 1.2.1. Nino-Mora
(2001d) shows that if a set of partial conservation laws are satisfied, then the achievable
region method may be used to optimally solve a stochastic scheduling problem, for a
suitable range of linear performance objectives. The solution takes the form of a priority-

index policy. He also investigates, using the same approach, the property of indexability

of restless bandits as defined by Whittle (1988).

1.5 Non-linear holding costs

The commonly made assumption of linear holding costs has been called into question by
Van Meighem (1995) and others. He argued that, in reality, non-linearity may arise from
physical phenomena, such as the processing cost of perishable goods or from customer
expectations. The latter arises in situations where the marginal cost to a firm of delaying
a customer is greater if he is delayed beyond his expected delay time rather than within
it.

Ansell, Glazebrook & Mitrani (2001) took a similar view. With pure priority policies in
which total pre-emptive priority is given to one customer type, there is often the problem
that the service offered to the lower priority traffic is unacceptably poor. Simulations
have shown that service to the latter group tends to be poor on average and extremely
variable.

In their work on threshold switching policies, Ansell et al. (2001) addressed this prob-
lem by imposing a constraint on the second moment of the queue length of the lower

priority traffic in a standard stochastic optimisation problem. They then examined the
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relative performances of both randomised and threshold service policies using an M/M/1
model with two customer types.

In this thesis, we also consider the above problem and assess the performances of a
number of policies based on a linear switching curve. We then extend this to a problem
with a non-linear objective function, formulated as a restless bandit, and go on to find a
Whittle index solution to the problem which we believe to be near optimal under certain

conditions. More detail of this is given in the following section on thesis structure.

1.6 Thesis Outline

In this section we give an outline of the structure of the remaining chapters of the thesis.
Throughout the thesis, we are concerned only with multi-class M/M/1 queueing systems.
In such systems, it is generally known that, when seeking to optimise a linear cost function
in the expected number of customers in each queue, strict priority policies are optimal.
Such policies however, can have the disadvantage of large variation in queue lengths of
lower priority customers. We seek to address such problems.

In Chapter 2, we are concerned only with two-class M/M/1 systems in which a lin-
ear holding cost objective has constraint(s) imposed on the second moments of queue
length(s). We consider a class of service policy based on linear switching curves. Under
such policies, the server continues to serve type 1 customers until the queue length of the

type 2 customers reaches the line ny = an; + 8 and is then switched to serving type 2.

This develops the work of Ansell et al. (1999) on the class of threshold policies, a sub-
group of policies based on a linear switching curve (i.e. those where a = 0). Analytical
techniques (the power series algorithm, conformal mapping and the epsilon algorithm) are
outlined and then used to evaluate performance measures for policies based on switching
curves and threshold policies. This enables us to search for the lowest costs achievable
by the policy types. These costs are compared with a lower bound cost using the achiev-

able region approach. We outline the methods used to characterise a set of achievable
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performance vectors for a relaxation of a performance region and go on to find such a
set for our two customer system. This bounding set is then used in the formulation of a
semidefinite program and solved using the SDPA (semidefinite programming algorithm)
package developed by Fujisawa and Kojima. See Kojima (1994).

Despite the strong performance of the (optimal) policies based on linear switching
curves, they are expensive in the amount of computational time employed in searching

through a and G space to find the optimum.

Part of Chapter 3 and 4 has been published: see Ansell, Glazebrook, Nifio-Mora &
O’Keefte (2003). In Chapter 3, we consider a multi-class M/M/1 system and associated
optimisation problems. The system cost rate is additive across the customer classes and
increasing convex in the numbers present within each class. A discounted version of the
problem is formulated as a restless bandit problem. Such problems were introduced by
Whittle (1988). He proposed an index-based heuristic for those problems meeting the
requirement of indexability. Following Whittle, we develop an index for our multi-class
queueing system. We show, by simple arguments, the form of the index for the discounted
costs version of our queueing model and, by taking an appropriate limit, we then infer
the appropriate index for the undiscounted problem of primary interest. In Chapter 4,
we carry out a numerical investigation into the performance of index policies in cases
involving quadratic costs for two and three customer systems. The analytical methods
used are as in Chapter 2, but we also use the methods of dynamic programming via the
value iteration algorithm (see Tijms (1994)) in order to calculate COFT, the minimum
cost achievable by any admissible policy. We compare (i) the minimum cost achievable
by any threshold policy with (ii) that achieved by any linear switching policy with (iii)
that achieved by the Whittle index policy. These costs are in turn compared with (iv)

COPT and (v) a semidefinite lower bound again calculated, as in Chapter 2, by utilising

the achievable region approach.
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Chapter 2

Application of policies based on
linear switching curves to problems

with non-linear constraints

2.1 Introduction

In queueing theory, much of the work on optimal service control in multi-class systems
has aimed to determine policies which will minimise some measure of a system’s overall
cost rate. It has frequently been assumed that such cost rates are linear in the numbers
of customers of each type present in the system. Thus, given an M/M/1 system with &
customer classes and linear cost functions C}, the marginal costs, C, are constants. It is
probably fair to say, however, that often the prime motivation for making such assump-
tions lay in their rendering possible the analysis of otherwise intractable problems, rather
than their representing a close approximation of reality. In his work on the generalised
cu-rule, Van Meighem (1995) argues that it is the non-linear holding cost function which
is to be found in many real-life systems and that the linear assumption is often simplistic.
Non-linearity may be due to various causes. In the case of a factory producing goods,

it may be due to the nature of the goods themselves. For example, the marginal cost
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of delaying the freezing of fresh vegetables will clearly increase at an increasing rate as
time passes and the product begins to deteriorate. Another factor which may account

for non-linearity in the holding costs is customer expectation. A certain level of delay, to
varying degrees, is expected by all customers but once that expected level is surpassed,
then there is the possibility, for example, that customers will in the long term withdraw
their custom.

In multi-class queueing systems, such problems can be a feature of simple pre-emptive
priority policies, where classes are given pre-emptive priority over other classes. Customers
of lower priority classes are often compelled to suffer excessively long queues which are
subject to extremely variable service. Ansell et al. (1999) seek to mitigate such problems
by consideration of a stochastic optimisation model in the form of a two customer M/M/1
system which has constraints imposed on the second moments of the two queue lengths.
Of the two families of parameterised heuristic policies which they analyse, the performance
of the threshold policies was the more promising.

Ansell et al. (1999) investigated the performance of threshold policies and our work
generalises theirs to include the whole family of policies determined by linear switching
curves. It must be said that such an extension does involve the additional complexity
of a second policy parameter. Our motivation also stems from Van Meighem (1995) in
which he introduces a generalised cu-rule which, with non-decreasing convex delay costs,
he shows is asymptotically optimal if the system operates in heavy traffic. Our work 1s
in terms of holding costs, which depend on queue lengths rather than delay but, from
Van Meighem (1995), we inferred that policies based on linear switching curves might
work well for those systems where convex holding costs are quadratic functions of queue
length. Such policies are explained in Section 2.4. The threshold policies considered by
Ansell et al. (1999) are a special case of those policies based on a linear switching curve.
In this chapter, motivated by these considerations, we extend the work of Ansell et al.
(1999) by considering the performance of policies based on linear switching curves in

several numerical examples, all of which concern a two customer type M/M/1 system as
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described in Section 2.3.

Qur chief aims in this were as follows:

e To assess the performance of policies based on a linear switching curve in various
holding cost minimisation problems, by measuring how closely the cost of operating

such policies approaches a theoretical lower bound on the problem;
e To identify the type(s) of problem, if any, for which such policies are nearly optimal;

e To identify the type of problem in which the policies based on a linear switching

curve significantly outperform threshold policies.

We would expect the two parameter policies to outperform the threshold policies, but
clearly any reduction in costs offered by the former would have to be sufficiently large to
account for the extra computing time that finding such a policy would take. Clearly, the
time taken to find the lowest cost offered by a threshold policy, involving as it does a simple
evaluation of the expected cost at each threshold value, is far shorter than any search over
the parameters of intercept and slope which the general class of linear switching policies
requires. The structure of the rest of this chapter is given below.

In Section 2.2, we explain generally, the methods we use in our analysis of multiclass
queueing systems. These are the power series algorithm and the epsilon algorithm. In
Section 2.4 we describe scheduling policies based on linear switching curves and go on to
develop a set of balance equations to which we apply the methods of Section 2.2. This
enables us to analyse a two customer type M/M/1 system as outlined in Section 2.3.

As our performance measures include both first and second moments of queue-length,
we cannot characterise the exact achievable region. We therefore in Section 2.6 outline the
methods of Bertsimas et al. (1994) in formulating a set of constraints to define a relaxation
of the exact region and in Section 2.7 we formulate a bounding set for such a relaxation for
the two customer system described in Section 2.3 and over which optimisation methods

of semidefinite programming described in Section 2.8 can be undertaken to calculate the
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lower bound on achievable cost. The problems we consider involve the minimisation of a

linear objective which we constrain with various forms of second moment constraints.

2.2 Analytical methods

The analysis of the stochastic processes underlying queueing systems is often restricted to
that of the simplest processes. The problem of dimensionality means that it is often not
practical to solve a set of balance equations for any but the simplest of systems. Thus,
the use of efficient numerical methods in order to compute performance measures, such as
expected queue lengths, is essential. We use a method first introduced by Hooghiemstra,

Keane & van de Ree (1988) called the Power Series Algorithm (PSA) in which the balance

equations are replaced by a set of equations which are recursively solvable. As we shall

see, this involves the addition of one dimension to the state space. In the next section, we

give an account of the general power-series algorithm based on the work of Blanc (1993).

2.2.1 The Power Series Algorithm

The PSA is a numerical method developed to compute performance measures of multi-
queue type systems. It consists of power-series expansions of the state probabilities in
terms of the load of a system. These expansions are used to recursively solve the global
balance equations satisfied by these probabilities. Its precise application to the particular
systems studied in this thesis are given as they arise in the text.

Consider that type of multi-class queueing system for which the stochastic queue length
processes are multi-dimensional birth-death processes. We use the following notation: let
R be the number of queues in the system and p be the traffic intensity or load on the
system. It is the latter which is used as a variable in the power-series expansion.

Let pa; (n) and d; (n) be the respective arrival and departure rates to queue j when the
system is in state n, where j = 1,2, ..., R. We use, n; for the number of customers/jobs in

queue j and n = (ny,ne, ... ng). We denote by p(n) the steady state probability that
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the process, {IN (¢),t > 0}, is in state n € N¥, where N () represents the state of the
system at time {.

We leave state n if:
e an arrival occurs at one of the queues or
e a service completion occurs at one of the queues.
Similarly, a state n is entered if:
e an arrival occurs at queue 7 when the system is in state n — ej, for n; > 1

e or a service completion occurs at queue j when the system is in state n + e;, for

‘TI-JZ].

We define e; to be the unit vector, consisting of a component of one in the jth position,

and all other components are zero ( 1=1,..., R). Hence, the global balance equations for

flows into and out of state n are as follows:

{piaj (n)+id,- (n) }P(n) =

j=1 j=
i R

pZaj n—e¢;)d{n; > 1}p(n—e;)+ Zdj (n+e;)p(n+e;) (2.1)
J=1 j=1

where § (I) equals 1 if I holds and is 0 otherwise. We assume that the state probabilities

sum to 1:

Z...Zp(n)——-l. (2.2)

n1=0 nr=0

The state probabilities can be expanded as a power series in terms of p, the load of the

system.:
p(n) = p™ > " p*b(k;n) (2.3)
k=0

and substituting (2.3) into the global balance equations (2.1) results in the following
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recursive set of equations:
b(0;0) = 1;

R R
> dimb(O,n)=> a;(n—e)i{n; 21}6(0,n~e;),In| 21 (24)
where

R
n| = n; and b(0:n) = lim p~™ .
n] ;1 (0;n) im p™"p (n)

The following relations must also be satisfied:
b(k;0)=— > b(k—|n;n); k=1,2,.. (2.5)
1<|n{<k

and for k=1,2,.... n€ NE n #£0,

R

D dimb(kin) = > a;(n—e;)é{n; 21}b(kin—e,)

j=1

—Zaj (n) b(k — 1;n)

J_

+zdj(n+ej)b(k—1;n+ej). (26)

The coefficients, b(k;n), can be computed recursively from (2.4) - (2.6) if the stationary
probabilities are rewritten in the form of (2.3). The power series obtained from these
recursions does not always converge for all values of p for which the system is in steady
state, i.e. p < 1. Blanc (1993) offers two methods of overcoming such problems by

increasing the radius of convergence of the power series. They are briefly outlined in the

following subsections.

2.2.2 Enlarging the radius of convergence

We can overcome problems of convergence by introducing a bilinear mapping of the in-
terval [0,1] on to itself. This has the effect of enlarging the radius of convergence of the

power series. The conformal mapping used is as follows;
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0

H = S S A =TIz (0) = ——8M8M
FG(P) ) P PG (9) 1+G—G9

(2.7)

Choice of a suitable parameter, GG, will allow the algorithm to converge for large values
of p, see Blanc (1993) for details. An alternative computation scheme is then obtained by

using the following power-series expansions in terms of 8 instead of (2.3):

p(n)=0"" 6*b (k;n), ne NF (2.8)
k=0

By replacing p by 17 Ge_ =g in the balance equations (2.1) and then substituting the expan-

sions from (2.8) into these equations we produce the following set of recursive relations.

R R
(1+G)) _dj(n)bs (0;n) = > a;j(n—e;)d{n; >1}bs(0;n—e;),
1=1 1=1
In| > 1, for £k =0, n € N®; (2.10)
ba (k;0) = — Z ba (k — |n|; n),
1<|n|<k
fork=1,2,.., n=0; (2.11)

and

(1+G) ) dj(n)be(k;n) =

{Z%‘ (n—e;)d{n; > 1}} —Go{k > 2} b (k —2;n + €;) }

J=1

R
+Y_ {Gd; (n) — a; ()} b (k — 1;m) b (s — @)

R
+) din+e;){(1+G)bg(k—1;n+e;)
j=1

for n € N®,n # 0. (2.12)

32



The choice of value for G depends on the radius of convergence of the given power

series. A further method of improving convergence involves the use of the epsilon algo-

rithm.

2.2.3 The epsilon algorithm

The epsilon algorithm accelerates the convergence of slowly convergent sequences, or
can be used to calculate a value for divergent sequences. It does this by transforming an
initial polynomial into quotients of two polynomials and consists of the following recursive

scheme:
-1
™) = f:?_;l) + [ (m+1) (T)l] , m>—k, k=12, ... (2.13)
where the initial conditions are

&5 1=0, k=0,1,..; €™=0, = chek m=0,1,. (2.14)

and where ¢, £k =0,1,2,... are the coeflicients of a series. In our case, these coefficients
are b(k;n) and bg (k;n). It is only the even sequences which converge more rapidly
than the initial sequence, the odd sequences being simply intermediate calculations. One
problem which may arise in implementing the epsilon algorithm is that of computer storage
capacity. It is often this rather than processing time which can limit the application of
the PSA. Finding power-series expansions up to the Mth power of p (or € as in (2.7))

requires the computation of

M+ R+1
R+1

Br(M) =

coefficients, b (k; n); specifically, those with £+ |n| < M. Thus, in order to make efficient
use of memory space, we map the multi-dimensional lattice points (k; n), with k+|n| < M,

on to the integer set {0, ..., Br (M) — 1} using the one-to-one mapping given below:

k+ |n|+ R otk [ R+j—1 R [ R—j+5 . n
C(k;n) = ! + Z +Z I+ 2img .(2.15)

R+1 j=|n|+1 7 j=2 R—j+1

33



This mapping has the necessary property that points (k — 1;n), (k;n —e;), (k — 1;n + e;)
and (k—2;n+e;), j=1,..., R, all map onto a value lower than that mapped onto by
the point (k;n) for £ =0,1,..., n € N, Use of the algorithm enlarges the number of
terms of the power-series expansions that can be computed with a given storage capacity.
This is at the cost of the increased computation time which is needed to determine the

location of the coefficients in the array in which they are stored.

2.3 Admissible Service Policies

Our aim is to carry out a performance analysis on two scheduling policies, one based on
a threshold, the other based on a linear switching curve. A scheduling policy may be
defined as a rule governing the allocation of the server(s) to customers in its queues. The

scheduling policies which we consider are of a type defined as admissible in that they

satisfy certain inherent restrictions.

A scheduling policy is deemed to be admissible if it is:

e Non-anticipative: there is no knowledge of the future of any aspect of the system so

that decisions taken concerning server allocation can only be based on the history

of the system to date;

e Work conserving: the server works whenever there are customers to be served and

customers only leave the system when their processing has been completed

Let U denote the set of admissible service policies. Each service policy, u € U has
associated with it a system performance vector, x, = {z},z2,...,zX} where z£ is the
expectation of some particular measure, such as queue length or waiting time, of the class
k jobs.

We define the performance space, X = {z, : u € U}, as the set of all system perfor-
mances which can be achieved by the set of admissible policies. To this we add a cost rate

T . _
vector, ¢ = (¢, ¢, ...,Ck) - Thus when we wish to optimise some aspect of the system’s
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performance, we can express the problem as follows:

o7 = laf (%) = ()

We seek to identify scheduling policies which correspond, subject to some form of con-
straints on the second moments of queue length, to the optimal solution of the above
problems.

Throughout this chapter, we consider an M/M/1 queueing system with two customer
types: type 1 and type 2. Arrivals occur in two independent Poisson streams with rates
(A1, A2) for types 1 and 2 respectively. Service times are modelled via two exponential
distributions with rates (u;, t2) again for types 1 and 2 respectively.

We assume that service policies must be non-anticipative, non-idling and pre-emptive.
“Pre-emptive” means that if the server is busy serving a job of class k& when a job of
higher priority arrives, service can be switched instantaneously to the new arrival without

any extra costs being incurred. This set up is summarised below in Figure 2.1.

Arrivals: Service:
2 independent 2 independent Exponential
Poisson streams Distributions
()\1, ﬂl)
_——p-

\

—

(/\2, 1£2)

Figure 2.1: An M/M/1 system with two customer types.

We shall be concerned only with steady state performance criteria and therefore re-
quire the standard condition that p; + po = f—jl» +- %3 < 1. We measure performance

by [E.(N1), Eu(N2), Eu (NT), By (N3)] where E, (Ny), and E, (N2?), k = 1,2 are the
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expected queue lengths and second moments of queue lengths for type 1 and type 2 cus-
tomers respectively, with expectation taken with respect to the stationary distribution

under the chosen policy .

From work done by Coffman & Mitrani (1980), the set of pairs [E, (Ny), E. (N2)]

satisfy the following conditions for all policies u as illustrated in Figure 2.2 :

L LE, (VM) + LB (M) = (24 2) /(1= p1~ po)

i By, (Ny) 2 p1/(1—p1)
iii Ey (N2) = p2/ (1 — p2)

and the set of achievable [E, (N1), E, (/V,)] is the line segment determined by:

P1 P2 1 | X2 p1 . P2
H=[$1:$2 T1 2 y T2 2 ,——+—=(—-—+—) 1 —p1— ]
( ) (1-— Pl) (1 — p2) M2 Hi 2 /( P Pz)

These are the Strong Conservation Laws for an M/M/1 system as described in Chapter

1.4.1 but these involve no second moments of queue lengths.

2 E(N)
Figure 2.2: Achievable performance region, H
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P 2 and P, correspond to the expected queue length pairs under the total priority
policies for which pre-emptive priority is given to type 1 and type 2 customers respectively.
However, the problems we consider include consideration of F, (N{) and E, (IN3) and the

exact achievable region is not available. More precisely, we seek to minimise
ClEu (Nl) + CgEu (N2)

for some cost ¢;, ¢, for those u meeting some given linear constraints on E, (N?) and
E, (N%). We, therefore, in Section 2.6 construct bounding sets for such a relaxation of

the achievable region developed from work by Bertsimas & Nino-Mora (1996).

2.4 Policies based on linear switching curves

Policies based on linear switching curves are characterised by two parameters, o and G,
each ranging from —oo to oo, which represent the slope and intercept respectively, of a
line drawn on the positive quadrant. Priority is given to type 1 until the queue length of
type 2 reaches the switching curve, the line ny, = an; 4+ 8. If there are no type 1 jobs,
service is given to type 2 and vice versa. This is shown in Figure 2.3. The threshold
policies are those where a = 0. Service effort is assigned as follows:

If Ny (t) > 0and N2 (t) > 0 and N, (t) < alN; (t)+ 0 then a type 1 customer is served.

If N; (t) > 0 and Nz (t) > 0 and N, (t) > aV; (t) + 8 then a type 2 customer is served.

If No(t) =0 and N; (t) > 0 then a type 1 customer is served.

If N;(t) =0 and N (t) > 0 then a type 2 customer is served.

2.5 Performance analysis of policies based on linear
switching curves using the power-series algorithm

We are again considering the classical single server queueing system with two customer

types. Service allocation is pre-emptive. The performance measures which we seek to
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Serve type 2 jobs N (t)=aNi(t)+6

N2 (t)

Serve type 1 jobs

N1 (t)

Figure 2.3: A Linear Switching Curve.

compute are the first and second moments of queue lengths under the linear switching
curve policies in Section 2.4. For this we shall use the PSA as described in Section 2.2.1
for the case R = 2, where R is the number of customer types, in order to compute,
E, (N,),E, (N}),E, (N2) and E, (N3) where u is a linear switching curve policy. The
approach to the calculation of the first and second moments of the queue lengths of the

system is described below. For the policies of interest, we need to determine the joint

steady-state probability distribution

Pij = tliﬂoloP [N1 (t) = i, Ny (t) = j] (2.16)
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and the above probabilities must satisfy the following set of balance equations:

{,\1+)\2+u15(i>0,0<jSai+ﬁ)+u25(z’>0,j>0,j>az’+,@)

+p10 (2> 0,7 =0) 4+ p26 (i = 0,5 > 0) }Pﬁ,j =
AMPi-1+ Aapij1+Hpbé (E+1>0,0< i <a(i+1)+ B)pis1
+10(i+1> 0,7 =0)piy1,; + 26 (6 =0,7+ 1> 0) p; j41
Fpab (> 0,5 4+1> 0,5+ 1> i+ ) pisss
where p_1; =p; -1 = 0 and 4 (B) = 1 if B is true, 0 otherwise.

(2.17)

In our model, we have a two dimensional state space to describe the joint queue lengths
for our two queue system. The parameter, p = p; + py the load of the system is used as

a variable in the power series expansion. We first rewrite the balance equations in the

simpler form;

MPi-1,; + A2pij—1 + 1 (Ls + Lg) piv1j + po (Ly + Ls) pi j+1 (2.18)

where L; =6 (i > 0,0 < j < ai + f);
Ly=6(>0,57>0,7>ai+p);
Ly;y=6(i>0,j=0);
Li=6(i=0,7>0);
Ls=6(+1>0,0<j<a(+1)+p);
Lg=6(i+1>0,7=0);
L;=6(>0,j4+1>0,7+1>ai+f);
Lg=d6(i=0,7+1>0).
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The conformal mapping for the balance equations is as follows:

v
{ (A1 + A2) 120 —co Tl tpele+ puLs + paLy }pi,j =

v,
A ‘i— . i . S ——

+p1 (Ls + Lg) piv1,; + p2 (L7 + Lg) pi j+1

Using the conformed mapping approach, we now replace the p; ; so that we achieve the

power series form. We use
o0
__ pi+j h
pij =0 0"ppy;
h=0
and we infer that

0 e
{ (A1 + A2) irc—co p1Ly + poLo + py Ly + MzLa}gwJ D 0"pnsz
h=0

e = 0
= (M0 Zghph,f-—l,j + X070 N 0 py --1}_—_
(S > pnisr e

h=0

O
+p1 (Ls + Lg) 6*'+ Z 0" Dh i1,
h=0

+p2 (L7 + Lg) 6°17%1 >~ 60"py ;41 (2.19)
h=0
Now, we multiply through by (1 + G — G6) to obtain
{ (/\1 + /\2) ACARE {ﬂ'l (Ll T L3) T U2 (L2 + L4) } (1 + G — GQ) 9£+j} Z ahph,i,j =
h=0
A19£+j z thh,i—l,j + A29i+j Z 9hPh,i,j—1
h=0 h=0
+N1 (LS + Lﬁ) 9i+1+j (]. + G - GQ) Z thh,i_,_l,j

h=0

+uz (L7 + Lg) 677 (1 + G — GO) Z 0" Dhij+1
h=0
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Taking out a factor of §**? gives

{ (A1 + A2) 0 + {p1 (L1 + Ls) + pa (Lo + Lg) } (14 G — GO) } ZQhPh,i,j
h=0
= A1 Z thh,i—l,j + A2 Z 9hph,z',j—1
h=0 h=0

+u (Ls + Lg) 0 (1 + G — GO) 9hph,z'+1,j

e T

+ Lo (L7 + Lg) v, (1 + G — Gg) thh,i,jﬂ.

oy
i
-

Rearranging, this gives:
{ (M +X2)0+p (L1 + L3)(1+G) — g (L, + L) GO

b (Lo + L) (14 G) = pa (T + L) GO | S 0"y =
h=0

OQ > &
A1 Z 9hph,i-1,j + A2 hE:O ehph,i,j—-l
h=0 =

+p1 (Ls + Le) 0 (1+ G) ) 0"pnirj — i1 (Ls + L) GO* Y 0" pivas
h=0 h=0

+po (L7 + Lg) 0 (1 + G) Z 0" ph,ij+1 — p2 (L7 + Lg) G6? Z 0" Dh i j+1
h=0 h=0

Equate those terms with equal powers of @ to obtain:

(A1 + A2) Pr-1,i + 11 (L1 +L3) (1 + G)prsj — w1 (L1 + L3) Gor—1,i
+po (Lo + L) (1 + G) prij — 2 (Lz + L) Gpp-14j =

A1DPhi-1,; + A2Dh i j-1

+ L1 (Ls + Ls) (1 + G) Ph-1i+1,7 — H1 (L5 +- Ls) Gph—2,i+1,j

+pa (L7 + Lg) (1 + G) pr—1,ij+1 — 2 (Lr + Lg) GPr-2,i j+1-
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Thus we have

Phij = {/\lph,i—l,j + AoPhij—1 — (A1 + A2) Pa—1,ij
+p1 (Ls + Le) (1 + G) prh—1i+1,5 — £1 (Ls + Le) GDr—2,i+41,5
o (L7 + Lg) (1 + G) pr-14j+1 — p2 (L7 + Lg) Gpr-2.j+1
+py (Ly + L3) Gpr—145 + 2 (Lo + Ly) Gph—l,i,j}

{ (1 (L1 + L3) + p2 (L2 + Lg)] (1 + G) }—1.

We then use the epsilon algorithm to improve convergence. As we have stated earlier, our
aim is to compare the performances of the various heuristic policies and also to assess their
performance against the optimum achievable cost. It is not possible to characterise the
exact achievable region for the first and second moments of queue length. We therefore

must formulate a set of constraints which will yield a relaxation of this region.

2.6 Bounding sets

The goal of the analysis is to develop sets of equations/inequalities which are satisfied
by the first and second moments of queue length under all policies. These can then be
used to develop a relaxation of the required achievable region. We use the non-parametric
bounding method put forward by Bertsimas et al. (1994). They consider a network
consisting of T stations, populated by R classes of job. The class of a job completely
summarizes all of its characteristics, including the node (server) at which it is awaiting
service. Jobs awaiting service at different nodes are by definition of different classes and it
follows thereby that a job changes class whenever it moves from one node to another in the
network. We use o (r) to represent the node at which class r customers are served and Cj
is the set of all classes, 7, such that ¢ (r) = 2. When a class r job completes service at node
i, it becomes a job of class s with probability p,s and so moves to server o (s) or it can exit
the network with probability p,, =1 — Ef=1 prs- Policies considered are non-anticipative,

pre-emptive but not necessarily work-conserving. The number of class r customers in the
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system at time ¢ is denoted by n, (t) and n(t) = (n; (t),n2(t),...,ng (t)) represents the
state of the system at time . Under a Markovian policy, such a queueing network will
evolve as a continuous-time Markov chain. We assume that n (¢) has a unique steady-state
distribution with mean vector n = {ni,ns,...,nr}. We also assume that F [n? (t)] < oo,
i.e. the expectation of the second moments are finite when taken with respect to the
steady-state distribution. The goal is to determine the region of achievable performance,
i.e. the set of all mean vectors n = (ny, ny, ..., ng) obtained under different policies and in
our work we also wish to include second moment vectors. The exact characterisation of
the achievable region is not possible in general (see Bertsimas et al. (1994)) and so they
devised methods which approximate the region by a larger set. It is by then minimising
over this relaxation of the performance space that a lower bound may be found on the
cost of an optimal policy. This is the approach we use. We define a potential function of

the form:

R
R(t)y=) f(r)n.(t). (2.20)

The following notation is used: 7 is the sequence of transition times in a uniformised
Markov chain such that ) A, + > g, = 1. B, () denotes the event that server o (r) is
busy with a class r customer at time ¢. Similarly, B, (t) denotes the event that o (r) is
not busy with a class r customer at time t. By, (t) denotes the event that node ¢ is idle
at time t. The arrival process for class r customers has rate \¢. and the service time of

class r jobs is assumed to have an exponential distribution with rate u,. We define
Ir = E[0 (B, {7}) ny (7], (2.21)

Ny = E (6 (Boi {7&}) n ()], (2.22)
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where 6 (.) is the indicator function and the expectations are taken with respect to the

invariant distribution. We obtain a recursion as follows:

E [R2 (Tk+1) [0 ( Tk) Z Mor (R(7) + f (r))* + Zﬂr (Br {7}) R* (1)

+Zm (B, {n}) [pr (R(1) = £ (r) + £ (")) + oo (R(m) = f (1))

- (2.23)
B[R () = an 1) f (r ] z;f 2.2
E[5 (B, {n})] = 2— _ (2.25)
From (2.20)-(2.25), we can see that
E[8 (B {m}) R ()] = Zf (2.26)

Now substitute (2.20)-(2.25) into (2.23), take expectations and equate those terms in
{f ()} and {f (r) f (')} we have the following:

Theorem 2.1 The following equalities hold true for every scheduling policy which satisfies

the above assumptions:

2]-51-]1-1- -2 Z ﬂr’pr’rlr’r "" zf\Ornr — /\{}r + /\r (1 - pw) + Z )\,.rp,-r,., 1 S r< R

r’=1 r/ £y

}L,-Irrf + My Ir’r T Z ﬂ'wpwr-[wr’ _ Z HowDwr! Iwr T /\Ornr’ = /\Or’ n, =
w=1 w=1

—ArDrrt — APy for all v, v' such that v > 7.

Z Irr’ + Nir’ = Ty, I,.,.: _>__ O’ Mr’ > O, n; Z ().

2.6.1 Higher order interactions

The methodology can be extended to take account of higher moments and higher order

interactions, as opposed to the pairwise interactions expressed in (2.21) and (2.22) and
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derived so far. In the case of pairwise interactions, recursions were developed from a
recursion for E [R? (Tx41) In (7:)]. Now, for higher order interactions, they are obtained,
in a similar fashion from a recursion for F [R® (7441) |n (72)].

[t is necessary to introduce some new variables, namely.,:

Mg = E [ng (1) ne (72)] (2.27)
H.o = E|0(Br{7}) ns (1) e (11.)]. (2.28)
We obtain the recursion:
E [R? (k1) 1 (7%)] Z Nor (R (7k) + £ (1))* + pir Z 6 (Br {i}) R’ (7)

+Zur5(B {Tk}){pr (16) + £ (r") = £ ())” + pro (R(Tk)-f(?‘))S}-

Expectations can now be taken with respect to the system in steady state. We have that

0 = 3) Jorf(r) E[R* ()] +32Awf2 (r) E R ()] +Z/\0rf3 (r)
- 1r'=1112 r=1
+3Zu,~ [prf (f () = f(r))

R R
331 [z pree (2 (7)) = 2f () £ () + £2(r)

E [5 (B,- {Tk}) R2 (’Tk)]

E[5(Br{n}) R(m)]

+ Z Hr [Z prr f3 (T’) — 3f2 (?"’) f (T') + 3f (7") f2 (T‘) f3 (7‘)) E [5 (Br {’Tk})]

r!—

+3 Zuff (r) ProE [6 (B, {7}) R? ()]

+3 Zﬂrfz r) proE [0 (Br {7i}) R (14)] — Z pef2(r) proE [8 (B, {1 })]. (2.29)
It is trivial to show that the following identities are satisfied
R ° R R R
[R2 ('r,c =F Z n. (1) f () ] = Zf2 (r) M, + 22 Zf (r)f (s) Mys, (2 30)
=1 r=1 r=ls=r+1
E {5 (B {me})|D_ f () ms (Tk)] } Zf2 (5) Hygs + 22 Z F()f () Hrgty  (2.31)
s=1 r=1t=s+1
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Substituting (2.24), (2.25), (2.30) and (2.31) into (2.29), we obtain:

= 32/\0rf [Zfz S)Mss+22 Z f(s)f (t)Mst]

s=1 t=s+1

+3Z)\0rf2 (T)Zf 3)”3+2)‘0Tf3 ()

s=1

R
+3Zlh- [me (f2(s)=2f(s)f(r)+ f (r))} [Z f (1) Irt]
+3 Z fhr [Z prs (f(s) = f (r))} X [Z PO Hu+2Y Y F()F(w) H,,ml

t=1 t=1 w=s+1

+ZA [Zp,-, (f* () = 3f*(s) f (r) +3f (s) 2 (r) — £ (1))

r=1

R R R R
=3 pef (r)pro [Z Heosf2(s)+2) Y F(s) f(t) Hrst]

r—=1 s=1 s=1 t=s+1
R R R
+3 Z Hrf2 (7) Pro [z I (s) Irs] - Z /\rfs (7) Pro. (2.32)
r=1 s=1 r=1

The r.h.s. of (2.29) is identically equal to 0 for all of the f-parameters. Therefore, we
equate coefficients of powers of f to zero to obtain sets of equations. First, we equate the

R coefficients of the terms f°(2) to obtain

R R
0 = 3XoiMii+3hoini + Xoi + 3t D piskis + Bptipiolii + 3  psPsils
s#i 871

R
+3 Z PortPrei Hpriy — 3pipio Higi — 314 Z Dirt Hpri
r!#1 r'#e

+3u:pii Hiii — 3pipii Hiiis — A + Z Apt Dt i=1,...,R. (2.33)

r'=1

Noting that by normalisation

R
Hi zpislis =1 (2'34)
s=1
and
R
Hi ZpisHsii — 11 (235)
s=1
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we can rewrite (2.33) as:

R R
0 = =X+ APsi+3u (1=pa) Lii+3 ) prapoilss — 3piHiy
s=1 S#1
R
+3 Z }.LspsiHsﬁ + Aoi + 3/\01#711; + SAOiMﬁ = 1, ‘oo R. (236)
s=1

We now equate the R (R — 1) coeflicients of f* () f (), for z # j and by using the identities

R
Zpisfis =1 (2.37)
s=1
and
R
Y pisHiis = 1, (2.38)
s=1

we produce the following set of constraints:

0 = 3AogiMii + 3Aoin; + 6A0i M5 + 3Aipi; — 3Aipjs + 3ui (1 — pis) I

R R
—6u:pijlii — 6pp5:l5: + 3 Z PwDrwi L + 3 Z papri Hii

R
—3p;Hjis — 6piHii; + 6 Y puPuwiHusy,  all 4,5 st i#j.  (2.39)
w=1

The final set of constraints (2.40) are derived from equating the 3_'r_, (w — 1) (w — 2) /2

W —

coefficients of terms with f (2) f (7) f (k),% # j,7 # k and ¢ # k, namely

0 = AokMij + Aos Mk + AojMir — pi (1 — pu) Hijie — p5 (1 — pj;) Hysr — px (1 = Prk) Huij

R R R
+ Z pupr Hijr + Z P Huik + Z P Hiij — pipijLip + pipij Hiix
I#£1,3,k 1#4,5,k I#4,5,k
—pipirLij + pipic iy — BiPikdin + 1Py — pipiedys + pipinHsji
— pkPrilk; + pePriHers — BkDrjlei + pePeiHere all 3,5,k sit. i 7, 1 # k and 7 # k.

(2.40)

The following constraints also apply:

Z Ili ._<... ng, 1= 1: ceey Rs m = 13 cvey T: (241)
1€Cm



z Hljk < Mjka j, k= ]., vouy R,m — 1, ...,T, (242)
1€Cm

iy Lij, M, Hij > 0. (2.43)

Thus, a new set of linear constraints has been developed. These constraints involve
{ni, Lij, M, H;;1} and will allow us to develop a relaxation of the achievable region to
consider problems involving second moment constraints. P, is the set of equations given
in Theorem 2.1 and FP; is the set defined by (2.40)-(2.43). It would be possible to apply
the non-parametric method to E[R'(741)] for ¢ > 4. In such a way it is possible to
model interactions among 7 classes in the system. Such increases in accuracy, however,
come with the ’cost’ of reduced tractability. If the relaxation obtained by considering
a recursion for the expectation of the 7th power of the potential function is denoted by
F;, then the ith order approximation of the achievable performance region is said to be
ﬂf=2 F,. By solving the related problem over a third order relaxation of the achievable
region, ﬂ?=2 P, derived by the potential function method, we can find a lower bound on

the optimal cost for the original scheduling problem.

2.7 A relaxation of the achievable region in a two
customer class system

We now seek to assess the performance of various policies/systems as described in Section
(2.3) for our cost minimisation problem with constrained second moments. This system
trivially belongs to the class of systems discussed in Section 2.6. It is the case where
T =1, R =2, po=1. We shall calculate, via a semidefinite programming algorithm,
a lower bound on the achievable cost. We begin by characterising properties of the first
and second moments of the queue lengths for each customer type. This will yield a
relaxation of the achievable region of the problem. By optimising over this region, we can
use mathematical programming methods to calculate a lower bound on the optimal cost

of the problem. We can then use this lower bound to estimate the closeness to optimality
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of the heuristics under consideration. We use the potential function

R(t) = fQ)N(8)+F(2) N2 (1), (2.44)

where N (t) and N, (t) are the queue lengths of the two customer types at time t. The

first recurrence relationship utilised is

E [R? (1) N (72)] Z/\ (R () + f (r))? +Z,u.r B {m}) [(R () = f ()]

+ Z 1.6 (B, {’Tk}) R* (73.)

r=1]

= DM (B () +2f (r) R(n) + f* ()
+ > w8 (B {m}) [R? () — 2f (r) R (m) + 2 (r)]

+ w6 (Br {m}) R? (7).

r=1

Taking expectations on both sides gives us:
) [E [R2 (Tk.|.1) |N(Tk)]] =

Z)\r{E [R? ()] + 2f (r) E[R ()] + E [ f* (r)]}
+Zm—{ E (6 (Br {m}) R*(m)] — 2f (r) E[6 (B, {m:}) R (7%)]

+E [5 (B {Tk}) f2 T) } + Zﬂr B {Tk} R2 (Tk)] (245)
Now, we use the identity

E{E [R? (Ts1) IN (72)] } = E [R?(r1)] = E [R2(n)] -

Therefore, considering the R?(.) terms in particular, we can write



=Y ME[R*(n)] + ) u-E[R(n)]

— Z [Ar + pr] E | R? (71)]

and further, because under uniformisation we have that ZLI [Ar + i) = 1, (2.45) may

be rewritten as

E[R*(n)] = E[R*(m)] + Z/\r{zf (") E[R ()] + E [f* (r)] }

r=1

—ZZurf ) E[6(B: {n}) R (m ]+Zu,.E 6 (B, {n:}) £ ()]

Therefore, we can equate all of the remaining terms of the equation to zero as follows:

0= Sn{2f BRI+ B[ ()] |

-2 e f (Y E[S (B A} R(m)] + Y 1 E [8 (B {m}) £2(r)] -
Now i
E [6 (B; {7x})] = E (Server is busy with a type r customer) = ﬁ (2.46)

iy
We now have

2 2
0= 23 MO ERM)+ SB[ ()

=23 " e f (VE (Br {n)) R + 3 A E [£2 ()]

and, dividing through by 2

0= S AFEEREN = pef (1) E6 (B, {n}) R(mo)

+ ZQ:A,-E [f* ()] -
Rearranging, we get -
0 = Mf(Q)E[R(m)]+Xf (2) E[R(7)]
—p f (1) B0 (Bi{me} R (7))] — paf (2) E[6 (B2 {7} R ()]
+Auf? (1) + 2 f* (2) .-
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Substituting for R (¢) as in (2.44), we obtain

0 = Mf)E[f (1) Ny (1) + f(2) Na()] + Aof (2) E[f (1) Ny (7x) + £ (2) Na (7))

—pf (1) E [§(Bi{me}) {f (1) N1 (1) + £ (2) N2 () }]
—p2f (2) E [6 (B2 {m}) {f (1) N1 (7%) + £ (2) N2 (7) }]
+A1f2 (1) + A2f% (2).

We rewrite this using the notation in (2.47) and (2.48)

0 = MfE(D)n—paf? (1) I+ Mf? (1) + Aaf? (2) g — paf? (2) Iz + Xaf* (2)
+Mf (1) f(2)n2+A2f (1) f (2) na — pa f (D) £(2) Liz — p2f (1) £(2) I
where
= E[N, ()] (2.47)

I,s = E[0 (B, {m}) N (1)]. (2.48)

Finally, equating the coefficients of f%(1), f (1) f(2) etc. gives us the following sets of

equations:
Any — padnn + A =0 (2.49)
Aong — piolag + Ao =0 - (2.50)
ANy + Aang — pidip — el = 0. (2.51)

For the higher order interactions as described in Section 2.6.1, we use the following recur-

sion, again using the potential function from (2.44):
2

E [R3 (Tk+1) [N (Tk)] =Z {A" (R(7x) + f (7'))3 + pr0 (B {7:}) [(R (7x) — f (T))3]

18 (B ) B2 (1) |
"Z{ (R® (1) + 31 (r) R* (1)) + 3f% (r) R (m) + f2 (7))

+ 18 (B {me}) [R® (m) — 3f (r) R? (m) + 3% (r) R (me) — £° ()]
+ [y 0 (B_r {Tk}) R’ (Tk) }
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Taking expectations on both sides, gives us

B [E [ (re21) IN ()] ZE{ (R () + 3f (r) B2 (r) + 32 (r) R (m) + 1 (r))
11s8 (B, {re}) [B® (72) — 35 (r) B2 (me) + 32 (r) R(m) — £* (1)
a8 (B, {n}) B () | (2.52)

Now, we use the identity

E{E [R3 (Tk+1) |N(Tk)] } =F [R3 (Tk+1)] =F [R3 (Tk)] .

Therefore, considering the R? (.) terms in particular, we can write
2

E [R’(m)] = z {,\,.E (R® ()] + e E |6 (Br {ne}) R® ()] + - E [6 (Br {7}) R® (7x)] }

r=1

1

{A,.E R ()] + - E R ()] }

[Ar + 1| E [R3 (Tk)]

{
Y

r

and, as > -, [Ar + #r] = 1, (2.52) may be rewritten as follows:

E[R(n)] = E[R*(m)] +ZE{>~ (3 (r) R () + 372 (r) R (m)) + £ (1))
+11r6 ( By {frk}) ( f(r)R* () +3f2(r)R(m) — 2 (1)) }-

Therefore, we infer that
2

0= Y E{A,. (3f (r) B* () + 3f% (r) R (i) + £3(r))

+ur6 (Br {1}) (=3f (v) R* (1) + 3f2 (r) R (73) — f° (r)) } (2.53)

Utilising (2.46), we obtain that
2

S BEB (B AAnhl f2(r) =) p -—f3 (r) = ZArﬁ

r=1 r=1

Hence, we can rewrite (2.53) as

0= 3 B{ONS (1) R () 4 B2 () Rm) + Mo f 1)

r=1

~3u,8 (By {Te}) f (r) R* (i) + 31,8 (B, {1 }) 2 (v) R (73) = A\ f2 (7) }
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2

= Z E{SArf (T‘) R? (Tk) -+ 3/\,-f2 (T‘) R (Tk) — 3.0 (Br {Tk}) f (T) R’ (Tk)

r=1

13,8 (B, {me}) £2(r) R () }

Expanding the above and removing a factor of three, we have

0= B O P OM @)+ @M )2 0 Q)M () N )
:;,.P (r) {f Q) N1 (%) + f(2) N2 (1) }
e f (7)8 (B Amh) {2 () N2 () + £ (2) N2 () + 27 (1) £ (2) N () Na () }
e ()5 (B () { Q) N (00 + £ ) Na ) } |

which, on further expansion, gives

0 = E{uf ) {F QN0+ QN () +2f () () Vs (3) Vs ()
+Xof (2) {F* (1) NY (1) + 2 (2) N3 (i) + 2 (1) £ (2) Ny (7%) Na (1) }
+A1% (1) (f (1) N1 (1) + £(2) N2 (r)) + A2 f2 (2) (f (1) Ny (73) + £ (2) N2 (7%))
—p1f (1) 6 (B {me}) {f* (1) N{ (7)) + £2(2) N2 (i) +2f (1) £ (2) N1 (7i) N2 (72) }
—paf (2) 6 (B2 {m}) { f* 1)N12 (Te) + £2(2) N3 () + 2 (1) £ (2) Ny (7)) N2 (7)
+p1 f2 (1) 8 (B {me}) (f (1) N1 () + £ (2) N2 (7))
Fuaf? (208 (Ba (1)) (F (1) N () + £ 2) Na ) | (2.54)

We now use the following notation in (2.54), namely

= E|N; (1)}
M,s = E [N (1) Ns (7k)]
Is = E6 (B, {7}) Ns (72)]

Hrsw =k [5 (Br {Tk}) Ns (Tk) Nw (Tk)] where r,S,w = 1, 2
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We infer that

0= f°(1) (MMu + palny + Mng — pHin) + £2(2) (AeMaa + pialag + Agng — pip Hago)
+£2(1) f (2) @Mz — 2mHus — poHon + pndiz + Aing + A Mn)

+£%(2) £ (1) (2X2Ma1 — 2usHogy — paHiga + polzy + Aany + M M) .

Finally, equating the coeflicients of f (1), f(2), f4(1) and f?(2) we have the following

set of constraints

MMy + pidy + Ang — pHypg =0 (2.55)
Ao Moo + piolsg + Aong — o Hooo = 0 (2.56)
2A1 My — 2 Hyg — poHoyy + pilio + Mg + XM =0 (2.57)
2Ao Moy — 2p9 Hogy — piHyge + poloy + Aony + A\ Mo = 0. (2.58)

The sets of equations (2.49)-(2.51) and (2.55)-(2.58) are used to define the relaxation of

the achievable region.

2.7.1 Optimisation over the achievable region.

As we shall see, the sets derived using the potential function method approximate the
achievable performance space (achievable region) tightly. Therefore, we are now able to
solve not the optimisation problem over the exact achievable space but the corresponding
problem over a (third order) relaxation of the exact space, given by ﬂ?=2 P,. The optimal
scheduling policy over the latter will give a lower bound on the optimal cost for the
problem.

We now consider problems concerning a two customer single server network as pre-
sented in Section 2.3. We utilise the sets of equations derived by the potential function
method (with T =1, R = 2, p;o = 1) in Section 2.7 to identify a relaxation of the per-
formance space. We consider a number of problems in this section all of which seek to
minimise a cost function,

C1Ny + CoTlg,
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subject to {n;, My;, I;, Hijx € P}

where P is the relaxation of the state space. We also impose one or more of the alternative

sets of constraint given in (2.59)-(2.61).

M2 < B (2.59)
My < B, (2.60)
Clﬁfll + CgMgz < B (261)

where B;, B, and B are all values by which we wish to constrain the second moments
of the queue lengths. We note here that it is not possible to constrain variances directly
as their calculation involves the squares of the first moments. Following Ansell et al.

(2001) we therefore adopt the approach of constraining second moments. P, is defined by

(2.62)-(2.68) and these follow directly from (2.49)-(2.51).

pil;n — Ang = A (2.62)
polao — Agng = Ao (2*63)
polay + pylio — Aany — Ainy =0 (2-64)

Z Ils = N (265)

s=1
2
> Iy =n, (2.66)
r=]
I[,s>0, r=12s=12 (2.67)
n. >0, r=1,2. (2.68)
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P; is defined by (2.69)-(2.76) and these follow directly from (2.55)-(2.58):

Mg+ My + il — piHyy =0 (2.69)
Aoy + Ao Mo + prolas — piaHoge = 0 (2.70)
A1 Mag + Aony + 2A0 Mo + palsy — p1Higo — 2p0Hyoy = 0 (2.71)
AoMyy + Ang + 2A Mg + pdig — poHoyy — 201 Hyyp =0 (2.72)
2
Z Hpya — My =0 (2.73)
r:l
Z Hpy — My =0 (2.74)
r:l
> Hyzp — My =0 (2.75)
r=1
Npy Mypg, Ing, Hpgt 2 0. (2.76)

The relaxation of the third order achievable performance space is thus characterised
by the intersection of the two sets, P and P; and to obtain a lower bound on each of the

scheduling problems considered , we solve the following linear programming problem:;

minimise ¢;n; + cono, (2.77)

subject to {'n,-, Mij, Iij, Hijk} c b n P (278)

and additional constraint(s) on the second moments as described in (2.59) - (2.61).

2.8 Semidefinite programming

Ansell et al. (1999) found that additional constraints to strengthen the above lower bound
were necessary. It was felt that these should take the form of equations/inequalities
linking the first and second moments which would help to further refine the relaxation ot
the achievable region. We outline the technique below. For details see Vandenberghe &
Boyd (1996). Suppose we wish to minimise a linear function of variable z where z € R™

is subject to a matrix inequality. The problem data are the vector ¢ € R™ and the m + 1
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symmetric matrices Fgy, Fi, ..., I, € R"™", We assume a problem of the form

minimise c’x,

subject to F'(z) = 0

where F(z) = Fo + )_._,z;F; and F (z) > 0 denotes the requirement that F (z) be
positive semidefinite. The latter implies that z' F(z)z > 0, all z € R®. The above

is the standard form of a semidefinite program, which is a form of convex optimisation

problem. One special case of such problems, and of interest to us here, is the standard

linear programming problem:

minimise c¢’x,

subject to Ax+b >0

where A = [a;,az,...,an] € R™™, c € R™ is a vector and b € R also a vector.
We denote diag (v) as the diagonal matrix having the components of v on the diagonal.

We can state that a vector v > 0 if and only if the matrix diag (v) is positive semidefinite.
We can now rewrite the standard linear program above as the following semidefinite

programming problem:

minimise ch,

subject to F' (z) = 0

where F(SC) — Fo -+ Z.’Biﬂ, and Fo = diag (b) and ﬂ = diag (ai) ,z' = ],, 2, Uz
=1

We note that diag(a) and diag (b) are of the form diag (v) above. We can strengthen
the formulation of constraints obtained in the preceding sections by the addition of a set
of positive semidefinite constraints. These were suggested by Bertsimas & Nifio-Mora
(1996) and are outlined below. These additional constraints are based on the idea that
the performance measures in our problem are all moments of random variables. Bertsimas
& Nifio-Mora (1996) show that, if a given vector z and a symmetric real matrix Z satisfy

the necessary and sufficient condition that Z —z/z be positive semidefinite, then for some

of



random vector 9, z = E[¢Y| and Z = E [¢¢)'|. This is where Z — z/z is the covariance

matrix of .

In the case of the single server system, additional positive semidefinite constraints are

as follows:

Di= ¢ ny My Mp =0 (2.79)
ng Mz Mo
1 In I

D= § In Hin Hyy ¢ =0 (2.80)

D3 = Iy Hyy Hyg ¢ =0 (2.81)
Iaa Haia Hogo

It only remains for us to reconfigure the set P () P; along with the imposed second mo-
ment constraints and the additional semidefinite constraints of (2.79)-(2.81) into the form
needed for a standard semidefinite program. The non-parametric bounding method pro-
duced constraints of the form A;x —b; = 0 while the standard semidefinite programming
set up requires them to be in the form A;x — b; > 0. Thus, in order to achieve this, we

re-express the constraints as follows:

A1x > b,

—Alx > —b]_
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where

-2 O 0o O0 ©0 x4 O ©0 © 0 0 0 0 0 0

0 -x3 O © ©0 0 © O uz O 0 0 0 0 0

~A3 =21 O O 0 0 p3 p2 O 0 0 0 0 0 0

A1 0 A O 0 p3 0 0 0 —pg 0 0 0 0 0

0 Az 0 O A2 O O O pug O 0 0 0 0 — 3

o 0 Aq Xz 2\; ©0 0 u3 O O 0 —2u; O —pg 0 0
Ar— Az 0 0 2X3 X O O puz O 0 0 —~4y O =2u2 O )

-1 0 o o o0 1 o0 1 o 0 0 0 0 0 0

0 -1 0 ©0 o0 o0 1 o0 1 0 0 0 0 0 0

0 o o -1 0 0 o0 ©0 0 © 1 0 0 1 0

0 o -1 0 0 ©0 o0 o0 o 1 0 0 1 0 0

0 0 o o -1 0 0 0 0 o 0 1 0 0 1

are the constraints obtained from the non-parametric bounding method. In addition,
xT = (ny,n9, My1, Maa, Moo, 1y, 1o, Iny, Ine, Hyy1, Hyyo, Hioe, Hoty, Hatg, Haoo)
and
b;" = (A\1,22,0,0,0,0,0,0,0,0,0,0). (2.82)

The form which must be used for the constraints on the second moments is —A,x > —ba,

where for each of the constraints in (2.59) - (2.61),the required forms are given below.

For My, < By, Mj; < By,

001000O0O0O0OO0CO0OOO0OODPO
0 00010000O0O0COOTCOCDO

A2=

by = (By, By). (2.83)
For Mj; < B,

A2={OOOO 10000000000}

by" = (B). (2.84)
For 61M11 + 021u22 S B,

A2={0001 0 cc 00 0 0 O 00000}

b,T = (B). (2.85)
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We now add one further set of constraints which are included purely to ensure that
all of the fifteen resultant variables are positive. This takes the form E > 0, where £
represents a 15 by 15 identity matrix.

We can now write all of the linear constraints in the required form: Ax—b > 0 where

— A,
A=l M
—A,
E
b” = (-b:",b,",-b3",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) (2.86)

and are now able to formulate the problem, given the particular form of A, with which

we are concerned, as the following semidefinite program

minimise
CiM1 + CaNg

subject to

diag(Ax—-b) 0 0 O

0 Dy, 0 O

~ 0
0 0 Dy O
0 0 0 Dj

where, given a vector v € R", diag (v) is the diagonal matrix with the components of v
on the diagonal.

The semidefinite program constraints for the above problem can be written in the form
15

) TiFi=F =0 (2.87)
i=1

and then be solved. To this end, we utilised a software package developed by Fujisawa

and Kojima called the SDPA (Semidefinite Programming Algorithm). We note that when
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the constraints on the second moments are incorporated into the objective function in a

Lagrangian fashion, the semidefinite program form becomes

minimise
2 2
CiM1 + CaTig + C3Ny + C4N5

subject to

diag(Ax—b) 0 0 O

0 D, 0 O
>~ 0
0 0 D, O
0 0 0 Dj
where D;, D, and Dj; are as defined in (2.79)-(2.81) and
—A,
A=< A,
E
b" = (-b,",b,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0). (2.88)

2.9 Problems involving constraints on the second mo-

ments of queue lengths

Regarding a simple two-class M/M/1 system, Ansell et al. (1999) argued that, although
a strict priority policy will result in the optimal solution of a cost minimisation problem,
such policies have the undesirable property of excessive queue lengths for the lower priority
customers. Their service tends not only to be poor on average, but also to be extremely
variable. It was to address such problems that they considered problems in which second
moments of queue lengths were constrained and analysed two families of parameterised
heuristic service policies: randomised policies and threshold policies. They concluded that

threshold policies outperformed randomised policies over all problems of interest. Our
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aim is to find out the type of problem, involving some kind of constraint on the second
moment of queue length, where policies based on a linear switching curve significantly
outperform threshold policies. Further, it is desirable that we find policies that perform
well in relation to (a lower bound on) the optimal cost on such problems.

We begin by considering one of the cost minimisation problems first posed by Ansell
et al. (1999). It concerns an M/M/1 queueing system and the problem is to minimise
linear holding costs, subject to a constraint on the second moment of the lower priority

customer.

2.9.1 Computations

A FORTRAN program was written in which the power-series algorithm and the epsilon
algorithm were used to produce a set of solvable recursive equations from a set of balance
equations. Using the program, it was possible to compute the first and second moments

of the expected queue lengths of the two customer types for any linear switching curve
policy. We were able to enter our chosen values for the arrival rates, service rates and also
the policy parameters a and 3. For the calculation of the costs for the threshold policies,
a = 0 and (3 ranges from 1 — oo over a discrete lattice.

In our numerical study, we considered a range of problems, all for two customer M/M/1
systems as described in Section 2.3. We considered linear cost functions of the form
C = c1E(Ny) + coE (Na) where E(N;) and E (N,) are the expected queue-lengths of
type 1 and type 2 customers and ¢; € ZT their respective cost rates. These cost functions
are subject to second moment constraint/s as given in (2.59)-(2.61).

Our aim was to find the best performance (in terms of cost) achievable by a threshold
policy and by a policy based on a linear switching curve. The methods we employed to
achieve this involved the computation of an expected cost for a set of linear switching
curves over a range of a’s and (’s. By then searching over this (a, 8) grid we find the
lowest cost (from those computed) meeting the required second moment constraints of the

given problem. As outlined in Section 2.4, policies based on a linear switching policy are
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characterised by two parameters a and ( representing respectively the slope and intercept
of the curve. Threshold policies are a subset in which a = 0 and 0 is a positive integer
and are thus characterised by a single parameter which we denote here by T'.

Consider a two customer type M/M/1 queueing system with type 1 and type 2 cus-
tomers. Arrival rates are given by A; = (1, 5) and service rates p; = (3,12), 7 = 1, 2. Table
2.1 shows under T3}, the expected costs, ¢ E (N;) + c2E (N,) where ¢ = (10,1), and
when the policy with threshold 7" is applied. Similarly, Tﬁ%‘?) shows ¢; E (N?)+ ¢, E (N3)
where ¢ = (10, 1), and when the policy with threshold T is applied. (This will be referred

to in Section 2.11.) T ranges from 1 to 30. The second moments of queue lengths for each

customer type under each policy with threshold T are also given in the columns headed

E (N}) and E (N3). If we wish to find the lowest cost ( T¢{%35) under a threshold policy

such that F (/N3) < 40 then we can see from the table that T(*fg:ﬁ = 11.358 and that this
is achieved under the policy where T' = 14 (from the T values included).

Searching for the best policy based on a linear switching curve over a range of a’s and
B’s, is clearly computationally expensive. It involves carrying out a series of searches in
which we slowly narrow the ranges of a’s and 8’s to concentrate on those regions where
costs achieved by a policy are lowest. Initially, we might search over a large space e.g.
B = positive integers 0 to 30 and a = 0.5 to 5.0 in steps of 0.5. This would then be
progressively narrowed by searching a smaller area (where the costs are lowest) i.e. 3 over
fewer integers and a over smaller ranges and with smaller steps, say 0.1, then 0.01.

As threshold policies are characterised by the single parameter, T, the search for the
lowest threshold cost is clearly much simpler and hence requires far less processing time.
Let T* denote the value of parameter T in the threshold policy which achieves the lowest
cost. Thus in the example above we have T* = 14. We found by experiment that, in a
given problem, it was best to first find the lowest cost under a threshold policy so that
we had a value for 7. We could then use T™ to help us define the initial range of

over which we compute costs for our set of linear switching curves (this would usually be

T*—4 < 3 < T*+4). This helped us reduce the subsequent computation time. Note that
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Table 2.1: Costs under threshold policies for a two customer type M/M/1 system where

/\1-—— 1,A2=5,ﬂ1=3, p2=12.

1 | 6.627
2 | 6.026
'3 | 5.489
| 4 | 5.010
o | 4.084
6 | 4.204
7 | 3.867
| 8 E 3.06006
l 9 | 3.297
10 | 3.058
11 | 2.844
12 | 2.693
| 13 | 2.482
. 14 | 2.330
15 | 2.193

index policies of Chapter 3 have the advantage that the time taken to run the programme

1.739
2.986
4.983
7.501
10.363
13.459
| 16.679
1 19.958

23.241

| 26.487
29.665
32.753

35.734

38.597
41.332

EN"'
E

68.003
63.249
09.871
07.599

cost
(10 1)

16.428

15.656 |
14.979 |

14.391

56.204 | 13.881

50.002

55.345
00.015
56.215

00.974
08.108

09.286
060.560

61.897

63.266

13.437
13.048
12.707
12.408

12.143
11.910
11.703

11.020

11.358
11.214

|
17

18
| 19
20
21
22
23
24
25
26
27
28
29
| 30

1.962
1.864
1.776
1.697
1.626
1.563
1.506
1.455
1.409

1.368
1.331

1.298
1.268
1.241

43.937
46.408
48.764
00.952
53.029
04.980
060.809
08.022
60.122
61.616
63.009
64.303
60.512
06.632
67.672

64.649
66.025
67.382
68.709
69.998
71.242
72.437
73.580

| 74.670

75.706
76.687
77.615
73.489

79.310 |

80.082

| 10.560

10.451 |

E N2
I

11.086
10.971 I
10.868

10.778

' 10.697

10.625

10.502

to calculate the expected costs is greatly reduced as it involves no search procedure.
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2.10 Initial Results

2.10.1 Single constraint on the second moment of the length of

the lower priority queue

In our initial work, we calculate costs for integer intercepts only, in the linear switching
policies, the motivation being to quickly identify whether the switching curve policy offers
a significant improvement and to enable us to compare simply its performance in a number

of problems where the same objective function had a variety of second moment constraints.

We seek to

minimise C = ¢, E (Ny) + co E (N,)

subject to £ (N22) < vy where vy = 74.641.

The figure of 74.641 was simply chosen to correspond with results from Ansell et al.
(1999). The results for each of the policies are given below. Costz(’fgtl) is the lowest cost
found for a given policy class (or in the case of semidefinite lower bound, SDLB, the lower

bound cost based on our relaxation of the performance space) when ¢; = 10 and ¢; = 1.

Policy Cost ;s | Parameter value

Threshold 10.086 T = 40

L. S. Curve | 10.084 a=040 =38
SDLB 10.000

The policy based on a linear switching curve gave a result 0.84% above the SDLB. The
threshold policy gave a result 0.86% above the SDLB and 0.02% greater than that of

the switching curve policy. Even when we reduced the constraint to ve < 32, little

improvement was achieved on the best performance by a threshold policy from within the

linear switching class.
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2.10.2 Constraints on both second moments.

We decided to investigate the performances of the two classes of policy in a problem

where there were constraints on the second moments of both customer types. The problem

considered was
minimise C = ¢; F (Ny) + ¢ E (Ns)
such that

where v, =32 and v; =95 .

The results for this were broadly similar to those for the above problem with the
single constraint. This was felt to be because the relatively large differences in arrival
rates (Type 2 customers arrive at a rate five times that of type 1) and cost rates ( ¢; = 10
and ¢y = 1) of the two customer types meant that the additional constraint, E (N?) < 5,

hardly impacted the results. Hence, the problem effectively had a single second moment

Threshold 11.910 T'=11

This gave a best threshold cost 1.27 % greater than the best switching curve cost.

constraint.

Our aim, therefore, became to find a way to constrain the problem in such a way that

both second moments bite.

2.11 Constraining the problem by a linear sum of the

second moments.

We decided to impose the constraint: 10E (N7) + E (N3) < 55.345 as this reflected the

priority shown to the type 1 customer in terms of cost. The value of 55.345 was chosen
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as it was the minimum value of 10E (N%) + E (N2) to be offered by any of the threshold

2
policies in Table (2.1) (i.e. the lowest value in column Tﬂ% )) The results obtained from

optimising within the various policy classes now became

Covtity

|
Threshold 13.048 T=7T

Linear switching curve | 11.841 a=230=35

The policy based on a linear switching curve gave a result 9.649% above the SDLB. The

threshold policy gave a result 20.8267% above the SDLB and an increase of 10.193% over
the switching curve based cost. Clearly, this is more substantial improvement and merited

further investigation.

2.11.1 Problems with varying p

Constraining the problem by a linear sum of the second moments of the two customer
types was the problem formulation for which the linear switching classes outperformed
the threshold policies to the largest degree in approaching the SDLB. We therefore used
this form of constraint in all of the remaining problems investigated numerically in this
chapter. We continued our investigation of the performance of policies based on linear

switching curves by considering the effect of varying the parameter p, the traffic intensity.

The problems considered were of the form

minimise C = 10E (N;) + E (N,)
such that 10E (N}) + E (N3) < T*E(Nf)

(10,1)

where T(‘;ﬁ(lj)vf) is the minimum value of 10E (N{) + E (N2) achieved under any threshold

policy. The arrival rates and service rates are as indicated in Table 2.2. We use the nota-
tion CT for the cost under the threshold policy with the lowest value of 10E (N2)+E (N3);

CSW is the lowest cost found under our search strategy for a linear switching policy and
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T>5D is the percentage in-

CSP is the semidefinite lower bound on the optimum cost. %
crease on the semidefinite lower bound accrued by adopting the best threshold policy, and
%°">5D is the percentage increase on the semidefinite lower bound accrued by adopting

the policy based on the best switching curve found.

Table 2.2: Results for systems with varying values of p

VIR VRN _ CT CSW  OSD | qT>SW o T>SD OrSW>SD
T 5 4.0 0.922 6.361 5.830 | 8.819 18.731 9.108
1 5 3.0 13.049 11.840 10.799 | 10.211 20.835 9.640
1 4 20 18.032 16.700 15.194 | 7.976 18.678 9.912
1 5 25 21.964 20.264 19.284 | 8.389  13.897 5.082
1 5 20 38.412 33.396 31.533 | 15.020 21.815 5.908
1 o5 20 01.463 58.307 57.393 | 5.413 7.091 1.593

We observe that the linear switching class offers considerable improvement in performance
on threshold based policies. At the highest value of p, 0.917, the percentage difference
between the semidefinite cost and the cost resulting from the adoption of a switching

curve based policy was only 1.59%. We note that as p increases, so the computational

time increased, as convergence took longer.
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2.11.2 Problems where u; = uy =1

Having allowed p to vary, we continued our investigations as described below but with p
fixed at 0.75. This is a level at which the system could be said to be in moderately heavy
traffic but which was not so computationally expensive as to severely restrict the number
of problems we could analyse. We first consider a set of problems where both customer
types are served at the same rate. In each problem, service rates, (ui, uo) for the two
customer types are (1,1) and A; is randomly generated from a U(0.1 , 0.65) distribution
while Ag is chosen so that A; + A2 = 0.75. The results from these problems are shown
in Table 2.3. It is clear that the costs offered by the threshold policies are virtually

indistinguishable from the semidefinite lower bound costs and such policies are thus very

close to optimal for these problems.

Table 2.3: Results for systems with ¢; =1 and py =1

A1 A ct ¢C’P | )\ A2 ct 5P
0.312 0.438 | 7.081 7.081 | 0.472 0.278 | 11.059 11.059
0.163 0.587 | 4.751 4.748 | 0471 0.279 | 11.023 11.023
0.450 0.300 | 10.362 10.361 | 0.178 0572 | 4.957 4.953

10.398 0.352 | 8.940 8.949 | 0.264 0.486 | 6.230 6.229
0.165 0.585| 4.782 4.778 | 0.499 0.251 | 11.965 11.965
0575 0.175|15.182 15.182 | 0.580 0.170 | 15.417 15.417
0.604 0.146 | 16.754 16.754 | 0.135 0.615 | 4.418  4.409
0.432 0.318 | 9.846 9.846 | 0.454 0.296 | 10473 10.473
0.124 0.626 | 4.280 4.269 | 0.365 0.385 | 8.160 8.169
0.600 0.150 | 16.494 16.494 | 0.271 0479 | 6.355 6.354
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2.11.3 Problems where y; = 3, yus = 12

We decided to return to the service rates, u; = 3 and u; = 12, of our original example

to complete our investigations. Again p is fixed at 0.75. \; is randomly generated on the

interval (0,2) and A; = 9 — 4);. The results are in Table 2.4 and Table 2.5.

Table 2.4: Results for systems with p; = 3 and py = 12

70

/\1 /\2 CT CSW CSD %T)SW %T)SD %SW>SD
0.228 8.080 | 6.348 6.222 5.840 | 2.041 8716  6.541
0.231 8.076 | 6.395 6.160 5.860 | 3.815 9.130  5.119
0.285 7.861 | 7.116 6.466 6.350 | 10.053 12.063  1.827
0.323 7.708 | 7.615 6.782 6.640 | 12.283 14.684  2.139
0.412 7.352| 8.314 7.470 7.309 | 11.299 13.750  2.203
0.534 6.865 | 9.297 8.330 8.117 | 11.609 14.537  2.624
0.558 6.766 | 9.573 8.558 8.226 | 11.860 16.375  4.036
0.597 6.614 | 9.995 8.922 8.506 | 12.026 17.505  4.891
0.624 6.506 | 10.293 9.007 8.657 | 14.278 18.808  4.043
0.671 6.316 | 10.380 9.343 8.912 | 11.099 16472  4.836
0.693 6.228 | 10.613 9.503 9.045 | 11.681 17.336  5.064
0.771 5.017 | 11.442 10.200 9.496 | 12.176 20.493 7.414

| 0.775 5.902 | 11.483 10.116 9.532 | 13.513 20468  6.127
0.825 5.702 | 11.601 10.491 9.821 | 10.580 18.124  6.822
0.063 5.148 | 12.664 11.609 10.577 | 9.088 19.731  9.757
1.083 4.666 | 13.917 12.575 11.247 | 10.672 23.740 11.808
1182 4.274 | 14.592 13.331 11.934 | 9.459 922.272  11.706
1207 4.170 | 14.864 13.563 12.022 | 9.592 23.640 12.818
1.240 4.042 | 15.203 13.837 12.296 | 9.872 923.642 12.533
1.243 4.029 | 15.239 13.870 12.295| 9.870 23.945 12.810




Table 2.5: Results for systems with x; = 3 and py = 12 continued

/\1 )\2 CT CSW CSD %T>SW %T>SD %SW)SD
1.248 4.007 | 14.977 13.872 12.204| 7.966 21.824 12.836
1.272 3.910 | 15.234 14.108 12.498 | 7.981 21.802  12.882
1.286 3.856 | 15.379 14.292 12.645| 7.606 21.621  13.025
1.350 3.599 | 16.068 14.788 13.306 | 8.656 20.758  11.138
1.354 3.583 | 16.112 14.852 13.348 | 8.484 20.707  11.268
1.393 3.427 | 16.254 15.202 13.770 | 6.920 18.039  10.399
1.412 3.352 | 16.458 15.359 13.983 | 7.155 17.700  9.841
1.451 3.196 | 16.890 15.810 14.421| 6.831 17.121  9.632
1.726 2.096 l 190.534 18.772 18.033 | 4.059  8.324  4.098
1.728 2.089 | 19.556 18.796 18.070I 4.043 8224  4.018
1.730 2.078 | 19.593 18.834 18.086 | 4.030 8.332  4.136
1.736 2.055 | 19.667 18.894 18.181 | 4.091 8.173  3.922
1745 2.022 | 19.779 19.029 18.330 | 3.941  7.905  3.813
1.818 1.729 | 20.645 20.024 19.504 | 3.101 5850  2.666
1.834 1.662 | 20.885 20.267 19.766 | 3049 5661 2535
1.838 1.648 | 20.938 20.309 19.842 | 3.097 5524  2.354

%T>SW represents percentage increase on the cost incurred by following the best

threshold policy instead of the policy based on the best switching curve found. Values
range from 2.041 to 14.278 with median 8.872.

%T>5SD ranges from 5.524 to 23.945 with median 17.420
%SW>SD ranges from 1.827 to 13.025 with median 5.623. It is clear that the threshold

policies are considerably outperformed in every case and that the switching curve based

policies are able to approach the semidefinite cost more closely.
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2.12 Conclusion

In our numerical investigations into problems with quadratic cost constraints, we have
made progress in assessing both the relative performances of threshold policies and those
based on linear switching curves and their absolute performance as measured against a
theoretical lower bound. Given a two class M/M/1 system with moderately heavy traffic
those policies based on a linear switching curve did perform well. Threshold policies were
shown to be close to optimal in those cases where the service rates of the two customer
classes were equal.

The techniques employed, however, were computationally expensive in that we were
obliged to search exhaustively for a switching curve which offered the best performance.
Motivated by these considerations, in the following chapters, we derive index based policies
for n customer classes which, we shall show by numerical investigations, perform well for
two and three customer type M/M/1 systems. In the two customer system with quadratic
costs as part of the objective function, the index policy will take the form of a linear
switching curve. We are able to use the index to simply calculate the best (close to best)

performing switching curve, thus removing the need for general searches to be undertaken.
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Chapter 3

Whittle index Policies

3.1 Introduction

In Chapter 2 we showed that policies based on a linear switching curve were able to
outperform threshold policies and were close to optimal for problems where the cost
function was a linear combination of the expected queue lengths and constrained by a
linear combination of second moments of queue lengths. There were, however, limitations
in this: it was necessary to run a search for the values of the two policy parameters o and
3 to minimise the given cost function. Even with the simple single server two customer
type system of Chapter 2, this is time consuming. If we wish to extend our model to n
customer types then the amount of processor time would quickly become prohibitive. In
this chapter, and the one which follows, we consider the problem of how best to allocate a
single server in an M/M/1 system among the queues of K waiting customer classes in order
to minimise costs when the system cost rate is increasing convex in the number present
within each class. Thus we assume that the marginal increase in the system cost rate which
results from one extra customer increases with the number already present. Essentially,
the model is kept as simple as possible. We assume that Markovian dynamics operate
within the system, with new customers arriving in independent Poisson streams. All

service rates are assumed to be exponentially distributed and independently, identically
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distributed within each customer class.

As the cost function of the system we consider is non-linear, our problem cannot be

analysed using the classical theory of Gittins indices. It does however, bear close compar-

ison to a variant of the multi-armed bandit problem, namely the restless bandit problem.
The distinguishing feature of the restless bandit problem is that projects competing for
the attention of the server may change state even when no processing time is allotted to
them.

Whittle (1988) introduced this class of problem and proposed an index-based approach
for their solution in which the index for each project /customer type depends on its current
state. He also considered index policies where service is allocated to the project with the
largest index value. However, for restless bandit problems in general, Whittle’s indices do
not necessarily exist, nor are index policies necessarily optimal. Thus it is first necessary
to address the issue of the indezability of the system in any analysis of a restless bandit
problem. Current knowledge of when such indices do exist is incomplete. Nifio-Mora
(2001b) has advanced the work by expounding a set of conditions sufficient for project
indexability. Further, Weber & Weiss (1990) and Weber & Weiss (1991) have shown that,
given certain conditions, index policies offer a form of asymptotic optimality.

In this chapter, we prove the indexability of an important class of discounted costs
queueing control problems, demonstrate by means of simple arguments, indices in closed

form and then go on to develop indices for the average cost version of the problem.

3.2 The Model

We consider a system with K customer classes, labelled {1, ..., K}. Customers arrive for
service in independent Poisson streams where \; signifies the rate for class k. Each class k
customer has a processing requirement or service time which is exponentially distributed
with rate ug, where 1 < k£ < K. On service completion, a customer leaves the system.

All inter-arrival times and service times are assumed to be independent.
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At each decision epoch, the system controller must decide which of the waiting cus-
tomers should be served next in order to minimise some measure of expected holding
cost. Decisions epochs occur on the arrival of any new customer and whenever a ser-
vice completion results in a non-empty system. Thus, for example, if a class k customer

enters service at time ¢ then the next decision epoch will occur at time ¢ + X, where

X ~ exp (pk + ZJI;I /\j). We also make the standard assumption p = Zle ﬁi <1 to

ensure finite queue lengths.

The state of the system at time ¢ is represented by the vector of queue lengths,
N(t)={N:(t),N2(t),..., Nk ()}, t € N. (3.1)

If we denote by ax the action of allocating service to a class k customer, then, at each
decision epoch, the controller selects an action a;, from the set of K, for which N; (t) > 1.
We use the following notation; A = Zf=1 (Ak + ur). We also use standard uniformisation
in which successive decision epochs occur at the event times of a Poisson process with rate
A and where events corresponding to service being offered are virtual state transitions.
Thus, for example, if the system is in state N (¢) = n where n;, > 0, and action a; is
taken at time ¢, then the next decision epoch occurs at time ¢ + X where X ~ exp (A).

The system state after any state transition is described below:

n+17 with probability Ni/M1<L< i< K,
N{(t+X)"} =4 n—1* with probability mi /A,
n with probability }7. ., ux/A.

Between t and t + X, the system incurs discounted costs at rate

K
a ) Ci(m) (3.2)
(=1

where the functions Cj, satisfy the conditions set out below. We aim to minimise a
measure of expected holding cost. We note that the « is necessary for the discounted
costs version of the problem to guarantee that Lemma 3.1 holds. We assume that the

class [ holding cost rate function, C; : N — R* and C;(0) = 0 is
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® Increasing,
® Convex,

e bounded above by a polynomial of finite order (guaranteeing that all required ex-

pectations exist).
We also assume that server control is

¢ non-anticipative,
e non-idling,

e pre-emptive.

We assume there are no cost penalties when the server switches between customers and
switches of service are considered instantaneous. The class of admissible controls is de-

noted by U.

We consider a stochastic optimisation problem with discounted costs described in (3.3)

C (n,a) = inf F,

ucl

o K
/ ch{Nk (t) }ae™@dt | N(0) =n]| . (3.3)
0 k=1

C (n, o) is the minimum system cost incurred when the system is operated from time O

with initial state n. N (t) is the number of & class customers present in the system at
time ¢t. F, denotes an expectation taken over all realisations of the system under policy
u and a > 0 is a discount rate.

The related stochastic optimisation problem of primary interest is to determine the

minimum cost and to identify a policy by which this cost is achieved. This can be formally

described as
) K
COPT = Inf Eu {Z Ck (Nk)} (34)

where N, denotes the number of class k customers in the system and E,, is an expectation
with respect to the system in steady state under policy wu.

Lemma 3.1 follows from standard results of dynamic programming and shows how

(3.3) and (3.4) are related.

76



Lemma 3.1 For all initial states n,

lim C (n,a) = C°*7.

a—0

In light of Lemma. 3.1, we develop policies which perform well for the average cost problem
in (3.4) as limits, when a — 0, of policies which perform well for the discounted costs
problems of (3.3). It is the latter which will be our starting point.

PT ' a policy which minimises the costs in (3.3),

The classical approach to finding u®
would utilise the techniques of stochastic dynamic programming. The employment of
such techniques in this case is unlikely to yield insights into the reasons why and how
such a policy actually does yield the minimum cost and consequently would be unlikely
to be of assistance in extending future work to the solution of more general problems.
Even for the problem considered here, there is also the curse of dimensionality, which is
an issue for large K. We therefore seek heuristic policies which perform well in that they
are simply structured and close to cost minimising.

Following the ground-breaking work by Whittle (1988) on the restless bandit problem,
we concentrate our efforts on indexr policies. We want to identify class-specific index
functions, Wiqo : Z* — R,1 < k < K, such that the policy which, at each decision

epoch, chooses to allocate the server to the non-empty queue with the greatest index

value, Wi o {IVx (t)} is close to optimal.

3.3 Indexability and Whittle indices

In this section, we aim to identify class-specific index functions as described in the previous
section above. We require that each index is a function only of the stochastic dynamics
and cost structure of the class concerned and the Whittle index is as such. Bertsimas &
Nifio-Mora (1996) refer to this as decomposability. It is precisely because of this property
of decomposability that we are able to continue our quest to identify a Whittle index for
our discounted cost problem by restricting our attention to a single customer class. We

therefore proceed to drop the class identifier, k£, and now simply denote the class index
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by W, (n) when there are n customers, (of the single class with which we are concerned)
present in the system. We develop W, (n) as a subsidy for passivity of a customer class
when n customers of that class are present in the system. An alternative approach,
vielding exactly the same result, would be to regard W, (n) as a charge for activity when
n customers of that class are present in the system.

We consider a Markov Decision Problem with a single customer class and state space
N. At each decision epoch (the arrival of a new customer or a service completion) a
choice is made as to whether the server is to be switched on or not. Thus in each state
there are two possible actions for the server: {active, passive}. Clearly in state 0, only
the passive action is possible. When the server is active, a customer is served and has
a processing requirement which is exponentially distributed with rate pu. Assuming the
system is in state n and active, then it either enters state (n + 1,n — 1) with rates A and
1 respectively. When the system is in passive mode, it is frozen until a new customer
arrives and hence enters state n + 1 from n at rate .

Costs are assumed to be incurred at a discounted rate of aC (n) under the active action
and aC (n) — W under the passive action. W is a subsidy for passivity. The optimisation
problem with which we are concerned involves finding a policy for switching the server on
and off so that we minimise the total holding costs and passive subsidies incurred over an

infinite time horizon. This MDP is a restless bandit.
C (n,a, W) denotes this minimised cost when the initial state of the system is n € N.

We write

uclU

C (n,a, W) = min Eu{ /000 [aC{N (t)} - WI(t)]e *dt | N (0) = n} (3.5)

where N (t) is the number of customers in the system at time ¢, I (t) is an indicator which

is 1 when the server is off /passive at time ¢ and 0 otherwise and U is the class of stationary

policies for the problem.

By standard theory, the function C (., a, W) satisfies the optimality equations:

C (n, , I’V) — miIl{Cl (na Q, I’V) , Ca (n, Q, W) }, nezt (36)
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where
(a+A+p)Ci(nya,W)=aC(n)+pC(n—-1,a,W)+AC(n+1,a,W) (3.7)
and
(@+ A+ p)Cr(n,a, W)=aC(n) =W +uC(n,a, W)+ XC (n+1,a,W).  (3.8)
Also, C (0,0, W) = C; (0, a, W) so we can write
(a+A)C(0,a, W)=XC(1,a,W).

Equations (3.7) and (3.8) are respectively the results of choosing the active or passive
action in the initial state n. If Cy(n,a,W) < Cy(n,a, W) then the active action is
optimal and if Cz(n,a, W) < Ci(n,a, W) then the passive action is optimal. It is
important to note that when C} (n, o, W) = C; (n, a, W) then both the active and passive
actions are optimal.

We use the term II, (W) to denote the set of states in which it is optimal to choose

the passive action when the reward for passivity is W or, more formally
I, (W) = {0} J{n € Z2*;C2 (n,0, W) < Cy (n,0, W)}, W eR*

The following defines the notion of indexability for an individual class as developed by

Whittle (1988)

Definition 3.1 The class is inderable if II, : R — 2V is increasing, i.e.
Wi > We = I, (Wy) 2 I, (Ws).

Once the notion of indexability is established, there follows thereby the notion of a state

n indez as the minimum subsidy for passivity for which the passive action is optimal in

state n.
Definition 3.2 When the class is indexable, the Whittle index for state n is given by:

Wy (n) =inf {W;n € I, (W)},n € Z*, (3.9)
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where

ch (0) — 0. (3.10)
Lemma 3.2 follows trivially from the above:

Lemma 3.2 For all states n of an indezable class

W > W, (n) = the passive action is optimal, (3.11)

W < W, (n) = the active action is optimal. (3.12)

This is illustrated in Fig. 3.1.

ACTIVE ‘ I

W =W, (n) F

PASSIVE

Figure 3.1: Optimal actions for states when W = W, (n)

We now consider the single class problem in initial state n. We suppose for now that the

class is indeed indexable and that the Whittle index W, : N — Z* is increasing. The

subsidy for passivity is taken to be W = W, (n) where W, (n) is the assumed value of
the index. Thus, for the optimal policy, the following will hold if W, is assumed to be

increasing in n as seems reasonable.

(i) The active option will be optimal for states {n +1,n+4+2, }
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(ii) The passive option will be optimal for states {0, veey T — 1}
(ili) Both the active and passive actions will be optimal for state n.

In (iii) we can choose the active or passive action for the server (as both actions are
optimal in state n). We now consider each of these possible actions in turn and, by use

of an heuristic argument, we develop the form of the index.

3.3.1 Active action In n

First we consider the restless bandit determined by the choice of the active option in n,

i.e. under the stationary policy which chooses,

(i) active for states {n,n+1,...}
(ii) passive for states {0,...,n —1}.

The system evolution starting from initial state n can be described as follows. We begin
at time 0 in state n and so the server is active. The active action continues until the
system enters the state n — 1 for the first time, at time 7". The length of time that the
initial active period actually lasts, T', is a random variable and is stochastically identical
to the busy period of an M/M/1 queue starting with one customer, arrival rate A and
service rate p.

ACTIVE INn

O n+l
St-ate n o Ist event:either a service completion
with t=0 or an arrival.
n-1

Figure 3.2: The length of the first active service period.
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We think of the busy period as beginning at the time ¢ = 0 with the start of service of
customer n. The first event will either be a departure, in which case the busy period ends
as there are now n — 1 customers in the system or an arrival.(See Fig 3.2.) If it is an
arrival, then we have in effect two busy periods to complete; n+1 to n and n to n — 1.

Hence, conditioning on the nature of this first event, we obtain:
_ A+ v ) ( A+ i ) A o\ 2
E al — — —— _l.. —————— ——— E of ; 313
(™) (a+)\+u) (A+p a+A+p) \A+p () (3.13)

ME(@E )Y —(@+A+p)E(e°T) + p=0. (3.14)

Oor

At time T', the system enters the state n — 1, therefore the passive action is optimal and
will remain so until the system returns to state n. The length of this passive period is
also a random variable, which is exponentially distributed with rate A\. Note that when

the system has returned to state n then the above cycle repeats itself ad infinitum. This

is illustrated below in Fig 3.3 below.

System active in state n.

exp( A)
|

n

Passive
n'—l —-————— T ————pr b - - - -

1st busy period T 2nd busy period

T is a random variable

stochastically identical to an M/M/1 queue with a single
customer and arrival rate A and service rate L.

Figure 3.3: The active action in n

Under this policy the total expected discounted costs incurred over an infinite time horizon

will be:

-1

{Cma)+ BT {aClh=1=Walm} @+ N7 | (1 =28 () (a+ 1)
(3.15)
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where the expected cost for the initial busy period is

T
C (n,a) =E{/ C{N (t) }ae™**dt | N (0) = n, active} (3.16)
0
- aC(n) A A+p = A+ p T A
—a+x+p+,\+p{a+,\+ﬂ0(n+1*“)+mE(e )C(”’“)}

(3.17)

and E (e""T) {aC (n - 1)—Wq (n) } (a+ A) ! is the expected cost for first the passive pe-
riod which follows. We can therefore use C (n, a)+E (e"“T) {aC’ (n — 1)=W, (n) } (a + A)-l
as the first term in the infinite geometric series illustrated in Figure 3.3 and in which

AE (e7°T) (o + \)~! is the ratio of the series.

We note, that rearranging (3.17) gives;
C (n,a) {a +A+pu—A\E (e"“T) } =aC (n)+ XC(n+1,a) (3.18)

which is used in later proofs.

3.3.2 Passive action In n

Now we consider the policy whereby we choose the passive action in 7 i.e.

(i) active for states {n + 1,n + 2, }

(ii) passive for states {0, ...,n}

In Figure 3.4 the system is initially in state n and the passive action is in operation.
The active action will only begin after some period of time with distribution exp () after
which, the arrival of a customer results in the system entering the state n+1. The system
then switches to the active action and this continues until the queue returns for the first
time to state n. The length of this active period is stochastically identical to the random
variable T above in Subsection 3.3.1 (i.e. the busy period for active in n)

As with the active in n process, once the system returns to n, the process is repeated

ad infinitum. Under this policy, the total expected discounted cost to infinity 1s

{aC(n) —Wa() +AC(n+1,0) } @+ X)) { (1= AE (°T) (a+ )" } . (3.19)
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Server passive in state n

No. of

Customers
In System

n+1

nee——J e——] . bl meeme-- -
Passive 1st Active Period Passive 2nd Activr Period

| | |

exp(A) M/M/1 queue exp(A) M/M/1 queue

Time

Figure 3.4: The passive action in n

As with (3.15), equation (3.19) may be similarly seen as the sum to infinity of a geometric
series. Here the first term is {aC (n) — Wo (n) + A\C (n+ 1,a) } (@ + A)™" and the ratio
AE (e7T) (@ + )7

3.4 The Index

Both (3.15) and (3.19) are expressions for the optimal cost of the restless bandit, i.e. the
same. Thus, it is possible to equate them in order to obtain an expression for the assumed

index, W, (n). This yields from (3.15) and (3.19) that

Wa(n) = E (e_aT) {aé (n, @) {1 ) (6_QT) }_1 ~aC(n—1) }{1 - F (e-'aT) }-1
n € Z".(3.20)

The r.h.s. of (3.20) can be thought of as the discounted rate at which the holding cost
rate is reduced by serving the class in state n. In Lemma 3.3, we prove that our proposed

index W, (n) is increasing. Here we take W, (0) = 0
Lemma 3.3 W, (n) is increasing in n.

Proof
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From (3.16), we can deduce that;
E |y C{N (t) }ae~*tdt | N (0) = n]
B[y aemtdt]
=) C(n+m)zn, (3.21)

m=0

C(n,a){1-E (e ") }'1 —

where the set {xm;m > 0} form a probability mass function on N. Given an M/M/1
queue, where the arrival and service rates are A and p respectively, having a single cus-

tomer present at time 0 and T the duration of the first busy period, then

E [ Iy I (s) ae““sds]
E [ fOT ae““dt]

where

I (s) 1, 1if m customers are present at time s,
) =
0, otherwise, s€ Rt, mé&N

From (3.21) we can write:

{C(n+1,a)-C(n, a) H{1 - E (e™°7T) }— Z{C(n-i—l—l—m) C(n+m) }zn,

m=0

>C(n+1)=C(n)>Cn)—C(n—1),

neZ" (3.22)

as C is increasing convex. It, therefore follows from (3.20) and (3.22) that
Wa(n+1)>Wy(n),neZ*,

as required. The same method also gives us the result

ﬁ/a (1) >0 =W, (0)

and this completes the proof.

Lemma 3.4 If Wa(m) € W < Wy (m+1) then the policy for the restless bandit in

which the server s passive in states {0, 1,..., m} and active otherwise is optimal, m € N.
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Proof Fix W € [ﬁ’a (m),Wa(m +1)) and let C (.,a, W) represent the value function
for the policy defined in the Lemma.

We prove the Lemma by showing that C (.,, W) satisfies the optimality equations
(3.6) - (3.8). It follows from these that we need to show that:

p{é(n,a,W)—C'(n-—l,a,W)}2VV.,.an+1 (3.23)

and

u{é(n,a,W)—C‘(n—l,a,W)}§W,n5m (3.24)

In order to prove (3.23) and (3.24), we consider four separate cases, the first of which is

given below.
CASE 1: u{é‘(m+1,a,W) —C‘(m,a,W)} > W

We are seeking to show that

u{é’(m+ 1,a,W) — é’(m,a,W) } > W
and therefore, we write

u{é(m+ L,a, W) — C‘(m,a,W) } < W
and seek a contradiction. Note that, from (3.15)

C(m+1,a,W)
-~ {em 1.0+ B faCtm - W@ ) | =3B () @r N7

1

as the server is active in state m + 1 and from (3.19)

C(m,a,W) =
{aC(m) =W +AC(m+1L,a) }a+ X)) { (1= XE (e7°T) (a+ A) ") } 7 (3.25)

as the server is passive 1n state m.

Thus, we assume that
”{é (m+1,0) + E(e7) {aC (m) = W} (a + A)™
{(eCm W+t L} ey A< W (220
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where

A

{ 1-AE (e7°T) (@ + )™ } = (a+ A= AE (e7°T)) (@ + A)™! (3.27)
and

p=E(T) (a+2-AE(e°T)) 1 - E(e°T))™" from (3.14). (3.28)
Now
pA = E () (a+)) (1- B (7))~

and, therefore (3.26) becomes

E (e—aT)
1 - E(e—eT)

—{aC(m)—W+AC‘(m+1,a)}} < W.

{C‘ (m+1,a)(a+ )+ E(e*") {aC (m) - W}

Rearranging, we obtain

{aE (e=°T) C (m +1,0) — aE (e=°T) C (m) (1 ~ E (¢=°T)) } (1 - E (e=oT))™

< W(1-2B(eT) + E (7)) (1 - E (7)) = (1= E (7)) W
Simplifying this gives
{aE (e7T) C(m+1,0) (1= E (7)) "= aE (¢7°T) C (m) } (1-E (7)) < W.
But we have that

{aE (eT) C(m+1,0) (1= E (e7°7))" = aE (™T) C (m) } (1-E(e™°7))~

=W, (m+1),

and hence deduce that

IVa (m+ 1) < W.

This is a contradiction of our initial assumption that W, (m) < W < W,(m+1) and

Lemma 3.1. Hence

p{é(m+1,a,W)—-é(m,a,W)} > W
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as required.

CASE 2:
p{é‘(n,a,lV)-—é(n—l,a,W)} >W, n>m+1

We prove this by an induction. The initial case holds as this was proved in Case 1 above.
We assume that the inequality holds for every value of m +1 < n < k and deduce it for

n = k + 1. Under the given policy, the server will be active for £ and £ + 1. Thus, we

write:

Ck+1,a,W)=C(k+1,0)+ E (e°T) C (k,a, W)

and

C(k,a,W)=C(k,a)+ E (e°T)C (k- 1,0, W).

We thus seek to prove that
p{é (k+1,a) — C(k,a)+ E (e-aT) (C‘ (k,a, W) — C (k -1, aq, W)) } >W. (3.29)

Now, by induction

u{(:’(k,a,I’V) ~C (k- l,a,W)} > W.
It follows that
MACEsd {C‘ (k,a, W)= C (k- 1,a, W) } > E (e”*") W. (3.30)
Subtracting (3.30) from (3.29) implies that if we can show that
p{C'(k +1,0) - C(k a) } > (1— E (7)) W (3.31)

then Case 2 will be proved.
Substituting from (3.18), the Lh.s. of (3.31) becomes;

{0 (k+ D420 (k+2:0)=aC () =AC (k +1,0) (ot At = AB (7))
which, when substituting for u from (3.28) is
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E (e=°T) {aC’(k-l— 1)+ AC (k+2,a) —aC (k) — AC (k+ 1, @) }

Again from (3.18), we now substitute for AC (k + 2, @) so we now have to show that

E (e™*") {aC(k+ N+Ck+1L0){a+A+p—AE(e™™")}
—aC(k+1)—aC (k)= XC(k+1,a) } > (1-E(e™")) W
Finally, substituting for x4 again in the Lh.s. gives us
B (-°7) {aC‘ (k+1,0) (1 - E (7)) ™" = aC (k) } (1= E (7)) Wa (k+1).
Now, by Lemma 3.3 and by the initial hypothesis of Lemma 3.4 we have that
Walk+1)>Wo(m+1)>W,

and this proves that (3.31) holds and therefore Case 2 is proven as required.

CASE 3: u{é(m,a, W) — C'(m -1,a, W) } <W (3.32)

Now, as the action is passive for n < m, we know that
¢ (m—1,0,W) = {aC (m~1) =W} (a+ 1) + 1C (m, &, W) {a+ 2}
Therefore, (3.32) can be written as

p{ (1—-/\(a+/\)"l)é(m,a,W)-— {aC(m_ 1)-—W} (a+)\)'1} <W

or
p{a(a+A)_lé(m,a,lV)— {aC('m-—-l)—W} (a+)\)_1} < W.

The action is passive in m so that substituting for C (m, a, W) from (3.25) gives us;
}L{ [C‘t (a + A)"l {aC (m) — W+ /\C_' (m + ]_’ Of) } (a + A)—-l] A._.l

—{aC(m—1)-W} (a+)\)"1} <W
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where A and p are as in (3.27) and (3.28). Therefore, we have
{aE (e7°T) {aC (m) + A\C (m +1,0) }
"B (eT) (a+ A= AE (£77)) C (m - 1)
FAE (e°T) W (1~ E (¢°T)) } (1-E (7)) (a+A) < W

and by substituting for aC (m) + AC (m + 1, a) from (3.18), we have

{aE (e°T) {C (m, @) (@ + A+ u— AE (7)) }

—aE (e°T) (a+ A= AE (7)) C (m —1)

FAE (e°T) W (1 - E (7)) } (1 - E (7)) (a+A)'< W.
Rearranging and removing a factor of (a + X — AE (e7°T)) (a + A)™" gives us

aB () O (m,a) (1= E (7)) ~aB (e7) C(m—1) (1 - B () " < W

or

Wa (m) < W,

which holds by our fixing of the initial value of m. Hence Case 3 holds as required.
CASE 4: p{é(n,a,IV)—é(n—l,a,IV)}SVV, n<m
We seek to prove this by induction. The initial case, n = m, holds from our proof of

Case 3 above and we assume the inequality holds for k +1 < n < m and we deduce it for

n = k.

Now, we know that for n < k, the passive action is selected. Thus
C(k,a,W)=(aC (k) = W) (a+A) " +A(a+A)"'C(k+1,a,W)
and
C(k-1,0,W)=(@C(k=1)=W)(a+ )" +A(a+ ) C (k,a,W).
Hence, we seek to show

{00 (1) - aC (k=) @+ N 43 @+ N7 (Ch+1,0,W) - C s W) |
<W. (3.33)
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We know from the induction that
p{ (C‘(k+ 1,a,W) — C‘(k,a,W)) } <W
and so we can write
Ao+ p{ (C‘ (k+1,0,W) - C (k, 0, W)) } < Ao+ W (3.34)
Therefore, subtracting (3.34) from (3.33) it is sufficient to show that
p,{ (aC (k) —aC(k—1)) (a+ )" } <(1-Xla+ /\)_1) W.

) fow-cw-n)sw

Utilising (3.22) and (3.31) we can state;

p{C(k)-C(k-1)} < p{C(ka)-C(k—-1,a)}{1 - E(eT)}" (3.35)
= Wy (k). (3.36)

Thus, by Lemma 3.3, we can write

Wa (k) < W, (m) < W, (3.37)

The induction is proven and Case 4 holds. We have thus established (3.23) and (3.24)

and hence proved Lemma 3.4. We now go on to prove our first theorem.

Theorem 3.1 (Indexability and the Whittle index for discounted costs) .
The restless bandit is indezable with Whittle index W, (n) = W, (n),n € N.

Proof By Lemma 3.4 , we can write:

o,(W)= {O, 1, ...,n}, Wa(n) W< W, (n+1),n €N. (3.38)

We have shown indexability by Lemma 3.4 and, from (3.38) and Definition 3.2, we have
shown W, (n) to be the Whittle index in state n.
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As indicated in Lemma 3.1, we can now go on to seek a Whittle index, W : N — R¥ for

the average cost problem by finding the limit
W(n) = liII(l) Weq (n)

= lim W, (n), n€N. (3.39)

a—0

by Theorem 3.1. From (3.20) and (3.39), we obtain the following result.

Theorem 3.2 (The Whittle index for average costs.) The Whittle index for the av-

erage cost problem is given by W (0) = 0 and

Wn)=[Cm){EM} ' -Ch-1D{EMT}", nelt, (3.40)
=H—£%:L)[E{C(n—1+N)}—C(n——1)], n €zt (3.41)

where in (3.40), we have
. T
C(n)=FE [/ C{N (t) }dt | N(0) = 'n] ,nEZT, (3.42)
0
and N, in (3.41), is a random variable with probability mass function

P(N=n)=p"(1-p), neN, (3.43)

where p = 3.

Proof Utilising (3.20) and (3.16) we can write;

a—0 a—0

lim W, (n) = lim [E (e""‘T) aE{ /: C{N(t) }ae"mdt | N (0) = n}{l —F (e““T) }_2

~aC(n-1){1-E () }"'| nez* (3.44)

| a’E (e"“T) E [fOT C{N (t) }e~2tdt | N (0) = n] oE (e—aT) C(n—1)
- }ul-rftl){ (1 - E (e-oT))*? - (1-E(e0T)) }

Utilising the fact that

E(e*)=E(1-aT)+0 (a?)
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we have

., o’E (e°T) E [fOT C{N (t) }e=otdt | N (0) = 'n]  aE(eT) C(n—1)
T am0 o2 (E (T))? aE (T)

Letting a — 0 we obtain that,

E [fOTC{N(t) }dt | N (0) = n] (C(n-1)

W (n) — N7 2
(E(T))* E(T)
as required. Thus, we have derived (3.40). For (3.41), we note from standard renewal

theory arguments, that the average cost incurred by adopting the passive action in states
{0,1,...,n— 1} and the active action otherwise, when C (n) is the cost rate in state

n € N is given by
{CM)+Cn-DAI{ET)+1} ' =E{C(n-1+ N)) (3.45)

where N is a random variable with the steady state distribution for the number of cus-
tomers present in an M/M/1 system with arrival rate A and service rate u, as in (3.43).
(3.41) follows from (3.40) and (3.45) and the substitution of E (T') = (1 — )\)'1. W (0)=0

is immediate from (3.39)

3.5 PCL-Indexability

We note here that Nino-Mora (2001b) offers an alternative demonstration of Whittle-
indexability for restless bandits and index derivation. He uses the notion of partial con-
servation laws to determine indexability (hence the term; PCL-indexability). The notion
of PCL has been developed from the generalised conservation laws described in Chapter
2. Here, we offer a summary of the main ideas propounded.

Assume we wish to schedule a stochastic system serving a countably infinite number

of customer classes indexed by the natural numbers, N. Let U denote the collection of

admissible scheduling policies. We wish, say, to minimise some linear objective

> et

tEN

93



where ¢; > 0 is a cost rate for customer class ¢ and z} is some performance measure
for class ¢ under scheduling policy u. Nifo-Mora (2001b) shows that, when a number
of partial work conservation laws are satisfied by the system, the minimisation problem
is solved by an index policy for some choices of the cost rate vector ¢. To determine
whether or not a particular choice is admissible, an adaptive greedy algorithm is applied.
A system satisfying PCL and with a cost rate vector in the admissible class is defined as
PCL-indexable.

In a further publication, Nifio-Mora (2001a), uses the above ideas to develop sufficient
conditions for the Whittle-indexability of countable state restless bandits in terms of model
parameters. He then goes on to show that the restless bandit model associated with a
multi-class M/M/1 system satisfies these conditions and is therefore PCL-indexable.

Using the PCL approach, he is able to develop a closed form expression for the dis-
counted index by using a modified version of the adaptive greedy algorithm. He goes on
to obtain an average cost index by seeking a limit as a tends to infinity. The analysis is
complex but PCL-indexability has the advantage of offering an alternative approach to

analysis when simple direct arguments, as used in our work, may not be possible.
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Chapter 4

An Evaluation of a Whittle index
policy in two simple cases with

average CosSts.

In the previous chapter, we followed the prescription of Whittle (1988) for the development
of an index appropriate to our multi-class queueing system. Much of the chapter was
devoted to the demonstration that the system was indeed indexable. We then, by means
of a simple argument, devised the form of the index for the discounted costs version of
the problem and then devised the index for the undiscounted problem by taking the limit
as a — 0.

In this chapter, we assess the performance of the K-class average cost Whittle index
policy, derived for the stochastic problem of the previous chapter, for both a two class
system and a three class queueing system. The results of numerical investigations into the
performance of the index policy in some simple cases involving two and three customer
classes and with quadratic costs are presented. In the two customer class cases, the index
policies clearly outperform the threshold policies proposed by Ansell et al. (1999).

We first consider the form that the index takes when the cost function is quadratic in
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4.1 The form of the index for a quadratic cost func-
tion
We consider a cost function of the form
C (n) = bn + cn®. (4.1)

In Chapter 3, we had the following equation for the Whittle index for the average cost

problem: W (0) = 0 and
IV(n)=¢”/\_—-—)-‘-)-[E{C(n—1+N)}—C(n-—1)]: ne€zr.

For the cost function in (4.1), this may be written in the following form

W(n) = {Zb(n+m)xm+Zc(n-l—m)2:z:m-b(n—1)--c(n—1)2}(p—/\).

m=0_ m=0
Further, we know that, in our case z,, = (1 — p) p™~! and, therefore we can rewrite the

r.h.s. of the above as

{ [Zb(nm_l)(l"p)pm"h“ic(”m— 1)2(1—p)Pm_1]

m=1

—b(n—l)—-c(n——l)2}(u—/\).
Thus
W(n) = {b(n—1)+§16m(1—p)p “ltce(n?-2n+1)
+w:ii12¢(n-l)m(l--p)p"“”“"1+ilcmz(l---,o),o'"""1

_b(n—l)-—c(n2—-2n+1)}(u—-/\)

= {me(l-—p)p 'l-l—Zj2c(n----1)m(1—p)p""""1
+ ) em?(1—p)p "'1}(u-—-)\).
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Now multiplying through by ﬁ, we can rewrite the above as

{me(l p)p™ +Z2c(n—1)m(1—-— p)p"

+Zm2(l—p)p"‘} (-f\-‘-) (k=X
= {{b+2c(n—1)}f;mp(mh—cim?p(m)} (%) (k=)

which gives the final form of the index as

_ _ (B +A)p
Wn)={b+2c(n—-1)}u+c (=)

£+ ocun, neZ*, k=1,2,.. K. (4.2)

We note that this index becomes by when ¢ = 0 and thus is optimal when the costs
are linear. Note also that from calculations similar to the above we can infer that if the
cost rate C (n) is a polynomial in n of order p, then the index derived, W (n), will be a
polynomial of order p — 1. In the quadratic case, the index is linear in the queue length.

Thus, the Whittle index policy is one which allocates service to whichever class, of

those in the system, has the highest Whittle index, as given by

Ck (3Ak — i) p

+ 2CL Nk, Ny € Z+, k=1,2,.., K. (43)
Ui — Ak

Wi (nx) = beptre +

We first assess the performance of the Whittle index policy for a two class system with
quadratic costs; Ck (n) = bin + cxn? where k=1, 2.

Thus, from (3.4) we are seeking an admissible control to minimise average costs, given

by

K
GOPT - minu€UEu {Z blNl + 62N2 + C].N]? + 62N22} . (4.4)
k=1
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In order to assess the performance of the Whittle index policy, we will consider a range
of policies for this problem, namely the threshold policies and linear switching policies.

We compare these with one another and against exact values of, and lower bounds on,

the minimised achievable cost, COFT,

4.2 Whittle index policy for a two customer class

problem

In a two customer class problem, a Whittle index policy will select a customer for service

between the two customer classes, when both have jobs present in the system, on the

basis of the class indices of (4.3) where k£ =1, 2.

The index policy dictates that at each decision epoch whichever class is non empty

and has the larger value of

c1 (31 — )

W (nl) = by + (ﬂl — /\1) + 2¢; 111, (45)
and
Co (3Ag —
Wa (n2) = bauz + = ((#;__ ;;2)) a + 2¢op10m2 (4.6)

i< chosen for service. If Wi {N; ()} > Wy {N2(t)}, then a class 1 customer is served at
time t, assuming NV; (t) > 0. Otherwise a class 2 customer is served, assuming N, (t) > 0.
Such a policy clearly belongs to the class based on linear switching curves. We assess the
performance of the Whittle index policy for a two class M/M/1 system with quadratic

costs: Ci (n) = bin+cxn®, k = 1,2 where we seek an admissible control policy to minimise

C*. As usual, we write C9°" = inf,cy C*, where
O = Eu {b]N1 + b2N2 + Cle -+ C2N§} . (47)

We compare the performance of Whittle index policies in a number of different systems

by considering their associated costs against the minimised achievable cost, C°T and a

semidefinite lower bound for it.
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4.2.1 A specific linear switching curve

In the two customer case, we are able to use the index to derive a policy based on a
specific linear switching curve. We are then able to compute the cost under such a policy.
It is straightforward to show that under the index policy in (4.5) and (4.6), priority

is given to type 1 customers until queue length of type 2 reaches the line ny, = an, + 83,

where
oo O
Coflo
- (B = Ba)
f= 22
Coll2
with
C AL +
ﬁk = (bkﬂ'k — 2Ckﬂk) + M k= 1’ 2 (48)

(te = Ax)

Thus it was possible to use the methods of Chapter 2 to perform a numerical study to
investigate the performance of index policies. As in Chapter 2 we calculate best costs
achievable under threshold and linear switching policies (found by searching a and S
space) and calculate a semidefinite lower bound.

We also calculate a value for C9*7 using the value-iteration algorithm (see Tijms
(1994)). In general the calculation of CFT quickly becomes unviable as the dimensional-
ity of the problems increases. We use it here because the two customer problems concerned

are simple enough to allow us to do so.

4.3 Calculation of C°FT via the value-iteration algo-

rithm

The minimum cost, C°F7, incurred when an optimal policy is operated on the two class,
and later three class problems, was computed for the numerical study by the dynamic
programming method of value-iteration. See Tijms (1994). The value-iteration algorithm

calculates recursively a series of value functions which approximate the minimal average
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cost per unit of time. The value functions give us lower and upper bounds on the minimal
average cost rate and, in our particular Markov decision problem, they approximate this

rate to a chosen degree of accuracy. The algorithm is given in Table 4.1. The notation is

that of Tijms (1994).

The value-iteration algorithm computes the value functions V, (i) for n = 1,2,...
recursively from
Va (1) = mingeag) {Ci (@) + ) pij (@) Vaoy (J)} , L€ 1.
jel
Vo (2), ¢ € I is arbitrarily chosen and V/, (2) is the minimal total expected costs when there
are n time periods remaining. The current state is ¢, I is the state space, c¢; (a) is the

cost of taking action a, from set of possible actions, A (i) in state 7 and a terminal cost

of V, (4) is incurred when the system ends in state j. For the two customer problem, this

Table 4.1: The value-iteration algorithm.

Step 0. Arbitrarily choose V; () such that 0 < V; (i) < min,c; (a) for all i € I. Let

n:=1

Step 1. Calculate the value function V,, (i), ¢ € I, from

Va (7') — minaeA(i) {Cz (a) -+ Zpij (CL) Vi1 (])} (49)

jer
and find R (n) as a stationary policy whose actions minimise the r.h.s. of (4.9) for

all 1 € 1.
Step 2. Calculate the bounds

my = minjer {Va (7) = Va-1(4)} and M, = mazjer {V;, (5) = Va-1(4)}

The algorithm stops with R(n) as a stationary policy when 0 < M,, — m, < em,,
where € is the required degree of accuracy. Otherwise go to step 3.

Step 3. n:=n-+ 1 and go to step 1.
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is equivalent to the following recursion (where we retain our notation rather than that of

Tijms):

. blnl -+ bgng -}- C]'n% - Czng
Ciy1(ny,n2) = mng ———— — =

A1+ Az + g
+/\10t (ny + 1, n2) + A Ch (n1,na +1) + 1, C, (n1 — 1, ny) ‘
/\1 -+ /\2 + M1 ,
biny + bang + ¢ynf + con?
/\1 -+ )\2 + Lo
MGt (1 + 1,n2) + AoCy (ng, ne + 1) + poCi (g, ng — 1) }

A1 + A2 + fho

_|_

(nl,nz) = (Z+)2

b1n1 -+ clnf + )\16} (n1 -+ 1, 0) + /\zct (nl, 1) + ﬂ'lct (n1 — 1, 0)

0 —

Ct+1 (nla ) ()\1+A2+ﬂ’1) |
n1€Z+

Cont (O,m) = Zratcanat MC(l,m) + 0,Ce (0ma +1) + paCi (O,m2 — 1)

t+1 \U, 112 (A1 + A2+ 12) |
n2€Z+

MG (1,0) + X\C (0,1
Cor(0,0) = NGLO+XGOL o

Our calculations were computed over a state space large enough to give a result with
the required degree of accuracy, € = 0.000000001. The exact size of a state space used
in a given calculation tended to be a trade-off between computation time and achieving

the required degree of accuracy. It is likely that this method would not be a realistic

possibility for larger problems. With this in mind, we also produced lower bounds for

COFT based on the achievable region approach, a more computationally efficient method,

as described and utilised in Chapter 2.

4.4 Two class problem; results

The numerical results presented in Tables 4.2 and 4.3 are for problems with Ay = 1,

A2 =5, py = 3 and pp = 12.
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C” represents the costs associated with the best threshold policy. C°" represents
the costs associated with best linear switching policy found by a search strategy. C/VP
represents the costs associated with the index policy. CF7T is the best achievable cost,

calculated via dynamic programming. C°? is a cost from deriving a semidefinite lower

bound on C°FT. We shall describe in due course how to obtain C°P

By definition we have

CT > CSW > COPT > CSD
CIND > CSW > COPT > CSD

In Table 4.2, the cost coeflicients are ; by = 5, by = 1, while, in Table 4.3, b; =4, by = 2
and ¢; and ¢, are as indicated in both tables.

It is clear that the performance of the Whittle index policy is, in every case, close to
optimal. The search strategy has sometimes resulted in a marginally lower cost (closer
to COFT) being found but the Whittle index policy has the advantage of being easy to
calculate and avoids lengthy and computationally expensive search procedures. We also

note, as an aside to the main thrust of our work, that C°P provides a bound on C9**

sufficiently tight to support the use of the achievable region approach in larger problems

COPT

where the computation of is not viable.
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0.1
0.1
0.1
0.1
0.1
0.2

0.2 |

0.2
0.2
0.2
0.5
0.0
0.5

0.9

0.0

Table 4.2: Two customer type problems.

0.1
0.2

0.5

1.0
2.0 |

0.1
0.2
0.0
1.0
2.0
0.1
0.2
0.5
1.0
2.0

c

9.344
0.581
10.101
10.969
12.703

11.476
12.053
12.752
13.620
15.304

CS 114

9.334
9.575

10.101
10.969
12.703

11.275
11.906
12.700
13.615
15.354
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CIND

9.330
9.575
10.101
10.969

12.703

11.276
11.917
12.701
13.615
10.354

COPT CSD

9.334
9.575
10.101
10.969
12.703

11.273
11.906
12.699
13.615
10.394

9.305
9.566
10.095
10.964

12.700

11.242
11.866
12.604
13.544
15.316




Table 4.3: Two customer type problems contd.

0.1

0.2
0.2
0.2
0.2

C2

0.2

0.5
1.0

0.2
0.5
1.0
2.0

[

CT

8.000
8.724
9.244

10.112

11.846

0.387
9.907
10.774
12.509

19.314
20.592
21.776
22.703
24.437

CSW

8.049
8.723
9.244
10.111

11.846

0.385
9.906
10.772
12.508

17.9295
19.042
20.896
22.301
24.359
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CIND

8.500
8.724
9.244
10.112

11.846

9.386
9.907
10.774
12.509

17.525
19.042
20.896

22.351
24.359

COPT

CSD

8.000
8.724
9.244
10.112

11.846

0.386
9.907
10.774
12.509

17.512
19.025
20.896
22.351
24.356

8.020
8.709
9.238
10.109

11.845

0.327
9.883
10.762
12.503

16.619
18.175
19.974

21.560
23.846




4.5 Whittle index policy for the three class problem

We now extend our work to assess the performance of the Whittle index policy in the

more complicated three class system with quadratic costs. We now have
Ci (n) = bgn + cxn® where k= 1,2, 3.
Thus, we are seeking an admissible control to minimise average costs
COPT = minyeyEy {b1N1 + b2 Ny + byN3 + ¢1 Nf + caNZ + ;N3 } .

In order to assess the performance of the Whittle index policy, we again consider a range
of policies for this problem. These include the threshold policies and linear switching

policies as defined in Chapter 2. We compare these with one another and against exact

values of and lower bounds on the minimised achievable cost, COFT,

It follows from (4.3) that a Whittle index policy will select a customer for service from

the three customer classes, when all have jobs present in the system, on the basis of the

class 1indices
+ 2 ppmy, Ny €ZT, k=1,2,3.

If ny, ny, n3 > 0 then the Whittle index policy dictates that the customer class with the
highest value of Wi (nx) will be given priority. Clearly, if at time ¢t one of the customer
classes has no customers present in the system, then service is allocated to whichever of
the remaining two classes with jobs in the system has the larger index value. Finally, if,
at time t, there is only one non-zero customer class present in the system, then the server
is allocated to that class. In order to calculate the expected cost incurred under the index
policy, we need to obtain the steady state distribution of the system under the policy. We
will apply the methods of Chapter 2 to carry out the three-class analysis.

The joint steady state distribution for the system under the index policy

pijk = lim P{N () =1, N, (t) = j, N; (t) = k}
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satisfies the set of balance equations given below.

{/\1 + /\2 + ’\3 + ulLl + N2L2 + N3L3 + ﬂ1L4 +- N2L5 -4~ /.L3L5

+uy Ly + poLg + paLle + p1Lno + p2lny + M3L12}Pz',j,k
= MPi-1,5k + A2Dij-1,k + A3Di j k-1
+ﬂ1L13pi+1,j,k + N2L14pi,j+1,k -+ N3L15pi,j,k+1
+p1 LieDi1,5 k + BoLlnrDij+1,k + 13L18Di 5 k+1
+p1 LaoPitr, ik + ptaLloopij+i ke + p3lo1Dijk+1

+p1 Loopiv1 ik + BaLlaspij+1.x + p3Ll24Pijk+1

where
L, = 6(i>0,7>0,k=0, ayi + B1>azj + B2)
L, = 6 (i>0,7>0, k=0, azj + fa>a1i + ()
Ly = & (60, j=0, k>0, ask + B3>a1i + )
Ly = 6 (i>0,7=0,k>0, ayi + b1 2>aszk + (3)
Ls = 6 (i=0,>0,k>0, azj + B2>ask + [33)
Ls = 6 (i=0, >0, k>0, azk + B3>asj + B2)
L, = 6 (1>0, j=0, k=0)
Ls = 6 (=0, j>0, k=0)
Lo = 6 (i=0, =0, k>0)
Lip = 6 (i>0,5>0,k>0, a1t + f1209] + P2, ayt + Py >azk + Fs)
Ly = 6(i>0,7>0,k>0, agg + 2>t + [r, azj + Ba>ask + fs)
L1 = 6 (1>0,7>0, k>0, azk + fz>a1i + by, ask + B3>az) + ()
L3 = 6 (i +1>0,5>0,k=0, 01 + 1 + B1 =025 + ;)
Lia = 6 (60,7 + 1>0,k=0,a0j + 1 + fy>01i + )
Lis = 6(i>0,7=0,k +1>0,03k + 1 + B3>i + ()
Lie = 8 (i +1>0,5=0,k>0,a1i + 1 + By >ask + fs)
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L7 = 6 (i=0,j + 1>0,k>0, apf + 1 + B> a3k + G3)

Lis = 6 (=0, j>0, k + 1>0, ask + 1 + B3>03j + f2)

Lig = 6 (i + 1>0, =0, k=0)

Loo = 6 (=0, 5 + 1>0,k=0)

Ly, = 6 (=0, j=0, k + 1>0)

Loy = 8 (i +1>0,5>0,k>0,1i + 1 + B1>02) + B2, ani + 1 + 1 =>0azk + Bs)
Loz = 6 (i>0,7 + 1>0,k>0, 2] + 1 + Ba>oni + Br, a2 + 1 + f2>a3k + F3)
Loy = §(i>0,5>0,k +1>0,03k + 1 4+ Bs>oni + b1, ask + 1+ Bs>a) + B2)

and
P-1jk = Pi-1,k = Pij—1 = 0. (4.10)
From (4.2)
Q; = 2C;[L;
and

c; (3Ai — i) s
(s — N)

We use d as an indicator function where 6 (B) = 1 if B is true and 0 otherwise. Also, we

G; = bju; + i=1,23.

employ the convention whereby if two classes have the same index, the policy chooses the
one with lower numerical identifier.

In the numerical study of the three class problem, we obtain solutions of these balance
equations by again applying the power series algorithm and epsilon algorithm as we did
in Chapter 2. First, we introduce a conformal mapping for the balance equations so that

: 20 |
we write 17565 for the A; as follows

7
{ (A1 + A2 + A3) 1+G—Go + p1Ly + poly + psLs + py Ly + poLs + pale

+uy Ly + pals + psLle + p Lo + poLiny + paLlinz }pi,j,k =

0
(MPi-1k T A2Pij-1k A3Pi jk-1) 1+C—Go + p1Ly3piva ik + p2laaPij+1,k

+p3 L1sDijk+1 T+ p1Liepiv1,jk + H2L1rpijere + u3Llagpi i k+1 + p1Lli9Pit1,5,k

+ 2 LooPi j+1,k + paLlo1pijk+1 + U1L22Pi+1,j,k + N2L23Pi,j+1,k + paLaaDi j k+1-
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We now replace p; ;. by grtitk Zf’ =0 thh,, .k to obtain

0

m + ﬂlLl + oLy + H3L3 + ﬂch‘l + H2L5

{ (A1 + A2 + A3)

+usLe + p1Lr + polg + pslig + pyLyg + poLqy + ﬂale}

00 00
w gititk Z thjh,i,j,k — {/\193—1+j+k Z ahﬁh,z—-l ik + Ao Hiti=1+k Z Bhph Gl

00
o 7,
A 9:+J+k—l eha o
TAs ; Phisk=1 (T G~ GO

+MIL1391+1+J+I¢ Z ehph Lk + 11oL14 giti+l+k Z thh Y

+puz L0 HHEH z 0" P s s ks1 + p1L160 IR Z 0" P isr1,5k
0

+“2L 1791+J+1+k Z ahﬁh,wﬂ kT N3L1891+J+ * Z 9hph 4,5,k+1
h-.O
g1y Lyg@ H1HIHE Z 0" Priv1k + proLogh tIH1HE Z 0" Bp i j+1.k

+u3L219‘+J thtl Z QhPh igk+1+ 1 Lop@ H IR Z 6" Dh,i+1:k

+H2L239‘+J+1+k Z thh ij+1k + H3L2493+3+k+1 Z ahph ijk+1°
h=0
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Multiplying by (1 + G — G0) gives us

(A1 + Az + Ag) G FEH Z 0" Bh i g k41

+u{Ly+ Ly + L7 + L1 }6"H** (1 + G — Gb) i 0" Ph .5k

+ua{ L2 + Ls + Lg + Ly }6°77 (14 G - G6) i 0" ik

+p3{L3 + Lg + Lo + L12}9£+j+k (1+G - Gb) i Qhﬁh,i,j,k =

h=0

)W arAs: i O Ph i1k + X0 TIHE Z 0" Prij1k + A HITE Z 0" Pr s i k-1
+p1{L13 + L1 + L1g + L22}9H—1+J+k (1+G - G0) Z 6" pn d+1,5.k
+pg{L1a + Lyz + Ly + Lzs}aﬂ'ﬁhjrc (1+G - G9) Z 0" b i,J+1k
+p3{L15 + Lig + Loy + L24}91+J+k+1 (1+G - Gb) Z 0" P ; g k+1e

h=0

Taking out a factor of **7+* gives

(A1 + A2 + As)eze"ph,,_, w1+ i{Li+Lg+ Ly + Lo} 1+ G = GO) D 0Ppriju
h=0 h=0
+u2{L2 + Ls + Lg + Lll} (1+G —G6) Z 0" P, .5,k
h-—O

+p3{Ls+ L+ Lo+ L2} (1 + G — G@)Zehp,,w__

00

AlZQhPha-lgk'l'/\zZQh Dh,i,j- 1k+)\3z9hphzgk 1

h=0

+p1{L1s + Lig + Lig + L2 }6 (1 + G — G6) Z 0" Phit1.ik
h...o

+u2{L14+L17+L20+L23}9 1+G - Gg)zghpht_y-l-lk

-I-p,3{L15 + LIS + L21 -+ L24}9 (1 + G — GG Z 9hph13 k419
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and on expansion, we have
(A1 + Ag + As3) QZQhﬁhukH + m{Ly+ Ly + L7+ Lyp } (1 + G) z9hphzgk
+ug{Ls+ Ls + Lg + Ln}(1+G) Z 60" D
h=0
+us{Ls+ Le + Lo + L12} (1 + G) i 0" Ph,i .k
—p{Ly+ Ly + L7 + LIO}GazahPhtgk — po{La+ L5 + Lg + Lu}GQZ@hPhuk
h=0

—p3{Ls + Le + Lo + le}GQZthh”k —
AlZQhﬁh: 1,5,k +)\229hﬁhu 1,k +)\329hphzgk-1
+ﬂ1{L13 + L1g + L1g + L22} 14+G)o Z 6" pn i+1,4,k
+pa{Lia + L1z + Lo + Ly} (1+G)6 Z 0" Phij+1.k
+p3{Lis + Lis+ Loy + Loy} (1 + G) 6 Z 0" Ph,i g k+1
—p1{L13 + L1 + Lyo + Ly} G6? Z 0" Ph iv1.4k

"ﬂz{Lm + L7 + Lgo + L23}G92 Z 0" Phi,j+1.k

—p3{L1s + Lis + L2y + Ly } G6? Z 0" i, j e+1-
h=0

110



We equate coefficients to obtain
(A1 + A2 + A3) Pr-1,ijk+1 + (1 +G) {Nl (L1 + L4 + L7 + Lyo)
+pz(La + Ls + Ls + L11) + p3 (L3 + Le + Lg + Ly>) }ﬁh,i,j,k
—G{ul(lq + Ly + L7 + LIO) + ﬂ2(L2 + Ls + Lg + Ln)

U3 (Ls + L¢ + Lo + Lu) }ﬁh—l,i,j,k =
AMPhi-1.ik + A2Dhij—-1,k + A3Dhij k-1

+(1+ G) {m (L13 + L1 + Lig + Laa) Pr-1,i+1,5,k + L2(L1a + L1z + Loo + Los) Pr-1,i,j+1,k

+u3(Lis + L1s + Ly + Lu)f’h-—l,i,j,kﬂ} -G {M (L3 + Lig + L1g + Log) Pr—2,i+1,5k

+pt2(L1a + L1z + Loo + L) Pa-2s i1k + p3(Las + Lis + Loy + L24)ﬁh-2,i,j,k+1}-
Finally, making pp ;i the subject of the equation gives us

Prijk = AMPhi-1j5k + A2Dhij~1,k + A3Dhij k-1

— (A1 + A2+ A3)ﬁh-——1,i,j,k+1 + G{m (L1 + Ly + L7 + Lm)
+ U2 (L2 + Lg+ Lg + Ln) + L3 (L3 + Leg + Lg + L12) }ﬁh—l,i,j,k

+(1+G) {Hl (L1s + Lie + L1g + Loo) Pr—1i+1,5k
+u2(L1s + L1z + Loo + Lo3) Pr-14j+14

+p3(Lis + Lis + Loy + L24)ﬁh—1,i,j,k+1}

-G {m (L13 + Lis + L1g + Lo2)Pr—2i41,5.
+p2(L1a + L1z + Lao + Los)Pr-2,i j+1

(
+p3(L1s + Lng + Loy + L24)f5h-2,i,j,k+1}
{ (1+G) {ﬂl(fq + Ly + L7 + Llo) + Nz(Lz + Ls + Lg + Lll)

-1
+p3(Ls + Le + Lo + le)}} .

The solution of these recursions enables the computation of the Di jk-
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4.6 Approximation of the Achievable Region in a three

class system.

We once again, as in Chapter 2, use the potential function method to formulate a set of
constraints which will yield a relaxation of the achievable region. Under uniformisation, we
have that Z?=1 [Ar + pr] = 1 and 7y is the sequence of transition times in the uniformised
Markov chain. As in Chapter 2, B, (t) denotes the event that the server is busy with a
class r customer at time ¢, where r = 1,2, 3. Similarly, B, (¢) denotes the event that the
server is not busy with a class r customer at time ¢.

We are characterising the set of possible first and second moments of the three queue
lengths i.e. {E(Nl) , E(N2),E(N;3),E(N{),E(N2%),E (N3, } This is the achievable
region. We are concerned with the random behaviour of the potential function R (t) under

a general control policy for the three class system. Their derivation is given below and

the potential function is given in (4.11), namely:
R() = FQ)M () +f(2)Na(t)+(3) Na(2) (4.11)
We first use the recursion

E [R? (Tk+1) IN ()] = Z A (R(m) + £ (r))* + Z pr6 (Br {1e}) [(R (1) — f (m))?]

T Zﬂré (Er {Tk}) R? (Tk)

3

=Y A (R () +2f (r) R () + f2(r))

+ Y 18 (Be {mi}) [R? (1) — 2f (r) R(m) + f2 ()]

+ ) 18 (Br {m}) R? (1),
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and taking expectations gives us

3

E [E [R2 (Tk+1) IN (Tk)]] = ZA,{E [R2 (Tk)] +2f(r)E[R ()] + E [f2 (r)] }

r=1

+ 3w B85 (30 B ()] ~ 21 () E15 5, () R(r)

r=1

+E [8(Br {r}) f*(r)] }_I_ Z“r (9 (Br {7}) R* ()] -

Now, we use the identity (because the system is in steady state)

E{ E [R? (k4+1) IN (71)] } = E [R*(m41)] = E [R*(1)] . (4.12)

Therefore, we can write

E |R? (Tk) z/\ E [R? (1) +Zﬂr 6 (By {m}) R’ (Tk)]

r=1

3
+ 3B 15 B, () B ) +Z)\r{2f BRI +E[70)] |
—ZZurf(T)E[5(B {7k}) R (7% ]+Zﬂr 6 (Br{m}) f* (r)]
5N E (R ] £ (R (0] 3024 ) BRG]

_22 uf (r)E[5(B, {Tk})R(Tk)]+Zu E [6 (B, {n}) f2(r)]

r=1] r=1

S e B[R () +ZA {2f(r)E[R(Tk)]+E[f"’(r]}

r=1]

_gz uf (r)E[6 (B, {Tk})R(rk)]+Zur 5 (Br {me}) f2(r)]

Now because of uniformisation, we can rearrange to obtain

— Z,\r{Qf (r) E[R(m)] + E [ f* ()] } — QZ“f‘f (r) E[5 (B, {m}) R ()]

r=1 r=1]

+3_ wE[5(BAn}) £2(r)].

r=1
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Now we have that

E [6 (B; {7x})] = P (Server is busy with a type r customer) = --35 (4.13)

Thus, we have

0 =2 Z: Arf (T‘) E [R (Tk)] + z I [f2 (T)]
=23 A f (VE[5 (B (n}) R(m)] + ) ME [£2(r)
=) M) ER@)] = ) Mprf (r) E[5 (B {7:}) R ()]

3
+ Z,\,.E [f2 (r)] :
r=1
On expansion we have

Mf (1) E[R(m)]+ A2f (2) E[R ()] + X3 f 3) E[R()] — paf (1) E[6 (By {7})]
—paf (2) E[0 (B2 {m})] — 1af B) E[6 (Bs {m})] + Mf2 (1) + Aaf2(2) + A3f2(3) =0

and substituting from (4.11), we have

Mf Q) Ef (1) Ny (7) + F(2) N2 (1) + £ (3) N3 (73)]

+X2f (2) E'[f (1) N1 (7)) + £ (2) N2 (1%) + £ (3) N3 (1:)]

+X3f (3) E'[f (1) Ny (7x) + f (2) Na(73) + £ (3) N3 ()]

—mf () E[§Bi{n}) {f 1) Ny (m) + £ (2) Nz (1) + f (3) N3 () }]
—paf (2) E [6 (B2 {ne}) {f (1) N1 () + £ (2) Na () + f (3) N3 (7) }]
—psf (3) E [6 (Bs {n}) {f (1) N1 (7} + £ (2) N (1) + £ 3) Ns (1)) }]
+Af2 (1) + A% (2) + A3 f? (3) = 0.
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Rearranging, we obtain

A fE (D) E[Ny (7)) + A f (1) £(2) E[N2 ()] + A f (1) £ (3) E (N3 ()]
+X2f (1) £ (2) E [Ny ()] + A2f* (2) E [N2 (0)] + A2 f (2) f (3) E [N3 ()]
+A3f (1) f (3) E [N1 ()] + Asf (2) f (3) E[Na (k)] + Asf* (3) E [Ns (7x)]
—mf2 (1) E[8 (Bi{mc}) Ni{ne}] — paf (1) £ (2) E[6 (B1 {m}) N2 {7::}]

i f (1) fFB)E[6(Bi{me}) N3 {mc}| — pnaf (1) £ (2) E[6 (B2 {7x}) N1 {m}]
—piaf? (2) E[6 (B2 {7x}) Na2 {7i}] — p2f (2) f (3) E [6 (B2 {7x}) N3 {7x}]
—psf (1) f (3) E{0 (Bs {m}) NMi{m}] — paf (2) f (3) E[6 (Bs {mx}) N2 {71 }]
—p3f? (3) E0 (Bs {m}) Na{me}] + Af” (1) + A2 f? (2) + Asf? (3) = 0.

Taking expectations of the system in steady state and using the substitutions

n, =E[N, (1)] (4.14)

I,s =FE 6 (B, {1x}) Ns (7)) wherer,s5,=1,2,3 (4.15)
gives us the following sets of equations

Mf2(1)ny— g f? (1) In 4 M2 (1) + Ao f? (2) nz — paf? (2) oo + A2 f? (2)
+af? (3)na — paf? (3) Iss + As f2 (3)

+A1f (1) £ (2)n2 + A2f (1) f(2) na — pa (1) £(2) Iz — paf (1) £ (2) Ing
+21f (1) fB)ns+Asf (1) F(3)ny — paf (1) £(3) iz — paf (1) £ (3) I
+X2f (2) f(B)n3+ A3f (2) f(B)na — paf (2) £ (3) Ins — psf (2) f (3) Isy = 0.
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Equating the coefficients of f2(1), f (1) f (2) etc. we have

Ay — il + A1 =0
Aang — tolag + Ao =0
Asng — p3lss + A3 =0
A1z + Agny — piydig — ol =0

Ang + Agny — pidy3 — psls =0

A3 + Agng — palss — pslsy = 0.

(4.16)
(4.17)
(4.18)
(4.19)
(4.20)

(4.21)

The three customer cubic recursion will now be developed. We first note that, from (4.11)

R*(t) = fP()N{(8)+f°(2) N3 (t) + 2 (3) N3 (t) +2f (1) £ (2) Ny (t) Na (t)

+2f (1) f (3) N1 (t) N3 (¢) +2f (2) f (3) N2 (t) N3 ().

We use the recursion
3

B[R () IV ()] = 3 { e (R(m) + £ (00)° + e (B, ) (R () = £ (1)

r=1

+ 41,6 (By {7}) R® (7) }

r=]

_ Z { (R® (1) + 3 (r) B2 () + 3 (r) R (m) + f* (r))

+ 1,0 (B {7:}) [R3 (1) — 3f (r) R? (k) +3f2 (r) R(m) — f3 (7’)]

+ 16 (B, {e}) B () }

Taking expectations on both sides, as in the case of the quadratic, gives us

B [E [R® (rea) IV ()] -2 E{ (B (74) + 81 () R? () + 3f7 (r) R () + £*(r))

+u,..5 (B {n}) [R® () = 3f (r) R () + 32 (r) R () — f2 ()]

1,8 (B () B () |

Now, we use the identity

B{ B[R () IV ()] } = B[R ()] =
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and write

3

B (R ()] = 3 { W (R (] + 1 E 6 (B () B ()] + 1 (6 (B () B ()] }

r=1

+ZE{ (3f (r) R* (m) + 3f* (r) R () + £° (7))

s (B, e} (=3F (r) B2 () + 3/2 () R (me) — £* () }

— \:: {A,.E [R*(7i)] + 1B [R® ()] }

r=1

+ZE{A, (35 (r) R* (1) + 32 (r) R () + £° (r))

r=1

18 (B {r}) (=31 (1) R () + 3£ () R(m) — 1) |,

This may be rewritten

E[R*(m)] = Z[,\ + ) E [R® (7%)] +ZE{ (3f (r) R* (1) + 3f2(r) R () + f3 (7))

r=1

16 (B {me}) (=3F (r) B (&) +3f% (r) R (m) — f° (r))}
and, as 37, [Ar + ) = 1
B[R ()] = E [R* ()] +ZE{ (3f (r) B? (m) + 32 (r) R () + £ (1)
+14:8 (Br {}) (=3f (r) R* () + 32 (r) R(m) — 3 () }

Therefore, we can equate the remaining terms of the equation to zero to obtain

s B{ ) (31 (1) R () + 37 () R (m) + £ ()

r=1

+4:8 (B {}) (=3 (r) B (m) + 3 (r) R () — £° (r)) }
Now, from (4.13), we have

Zu E(§(B- {me}] £ (r) = Zur fi(r ZA f2(r),

r=1
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and thus
0= Z: E{&\,-f (r) R* (1) + 3\ £ (r) R (i) + M f? (r) = 3,8 (B, {7x}) f () R? ()
+ 38 (B () L2V R() = A1) |
= il E{?»\ff (r) R? () + 32 f2 (r) R (1)) — 3148 (B, {mc}) £ (r) R? ()

+ 316 (B, {ne}) f2(r) R (n) }

Now, expanding the above and removing a factor of three, we have, for R (t) given in
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equation (4.11) that

0

BN/ () (2 (O N () + 17 2) NF () + 2(3) M ()
+2f (1) £(2) N1 (7i) N2 (1) + 2f (1) f (3) Ny (7i) N (73)

+2f(2) f (3) N2 (7i) N3 (71.) )

+Aaf (2) (f* (1) NY (o) + £2(2) N3 (1) + £2 (3) N3 (1)
+2f (1) £(2) Ny (7)) No (i) +2f (1) £ (3) Ny (7x) N3 (13)

+2f(2) f (3) N2 (&) N3 (7))

+Xsf (3) (F* (1) VY (i) + £2(2) N3 (i) + % (3) N (m)
+2f (1) f (2) N1 (7i) N2 (7)) + 2f (1) f (3) Ny (7i) N3 (7

+2f(2) £(3) N2 (1) N3 (7))

+Af? (1) (f (1) N (1) + £ (2) Na (i) + £ (3) Na (7))

+22f*(2) (f (1) N1 (7) + £ (2) N2 (&) + f (3) N5 (71,))

+X3f* (3) (f (1) N1 (1) + £ (2) Ny (1) + £ (3) Na (7))

—f (1) 6 (Br{m}) (f* (1) N7 () + £2(2) N3 () + £2(3) NZ (7.
+2f (1) £(2) N1 () N2 (7)) + 2f (1) £ (3) Ny (71) N3 (1)

+2f(2) £ (3) N2 (1) N3 (7))

—p2f (2)6 (B2 {me}) (f* (1) NY (i) + £2 (2) N3 (i) + £2(3) N2 (7y.)
+2f (1) £(2) Ny (7i) N2 (7ic) + 2 (1) £ (3) Ny (71) N3 (7%)

+2f(2) £ (3) N2 (7&) N3 (i) )

—psf (3)6 (Bs {me}) (f* (1) N () + 2 (2) N3 (1) + £2(3) N2 (%)
+2f (1) £ (2) Ny (7)) No (7)) + 2 (1) £ (3) Ny (7%) N3 (1)

+2£(2) £ (3) N2 (7ic) N3 (7)) )

+u f* (1) 8 (B {me}) (f (1) N1 (7i) + £ (2) Na (1) + £ (3) N3 (7))
+u2f%(2) 6 (B2 {7}) (f (1) M1 (1) + £ (2) Na (1) + £ (3) N3 (7))
s B)8 (B () ()M () +£ () Na ) + £ 3) N ) .
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Now using the notation

ny =E [Ny ()] (4.22)
M,s =E [Ny (&) Ny (7)] (4.23)
I;s =E [0 (Br {7&}) Ns (7x)] (4.24)
H, e =E[6 (Br {1}) Ns (1) Ny (71)] where r,s,w=1,2,3 (4.25)

and simplifying gives

0= f>(1) (MM + pdn +ny — pHin) + 2(2) (AaMag + paloy + Agng — pia Hopo)

+/° (3) (AsM33 + p3lzs + Aznz — p3 Hass)

+£%(1) £ (2) (@M M2 — 2p1Hyw2 — poHoyy + pyIip + Mng + A2 M)

+£2(1) £ (3) (2\ M3 — 2uy Hyy3 — p3Hzyy + pyli3 + A\ng + A3Myy)

+£%(2) f (1) (2A2M21 — 2p2Hon — paHyzs + polny + Aoy + A My,)

+12(2) £ (3) (2A2Ma3 — 2ua Hagz — p3Hagg + palas + Aong + A3Mos)

+£2(3) £ (1) (2AsMa1 — 2p3Haz1 — pa Hyzs + palsy + Agny + A Mas)

+£2(3) £ (2) (2AsMs2 — 2p3Hsz2 — poHoss + pislsy + Aang + Ao Mas)

+£ (1) £(2) f(3) (2A1M23 + 2A2My3 + 2A3 My — 240y Hyo3 — 20 Hopz — 2u3 Hapo)

Finally, equating the coeflicients of f (1) f(2) f (3), f2(3) f(2) etc., we develop the fol-

lowing set of identities

MMy + pdy + Any — pHyyy =0 (4.26)
AaMa2 + palar + Aong — paHoge =0 (4.27)
AsM33 + p3lsz + Asng — pzHizs =0 (4.28)
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2A1Myp — 2 Hig — poHon + pylha + Aing + AaMyy = 0 (4.29)

2A1My3 — 2p s — p3Han + palis + Aing + A3My; = 0 (4.30)
2A2Mzy — 2p2Haoy — pryHigo + pialog + Agny + Ay Moy =0 (4.31)
2A2 Moz — 2pa Haoz — pu3Hszgp + piolasz + Agng + A3Myy = (4.32)
2A3M3y — 2pu3H3zy — py Hyss + palz; + Asny + Ay Mz3 =0 (4.33)
2A3M33 — 23 H3zzp — poHazs + palzy + Asng + Ao Mazz = 0 (4.34)

2M Moz + 229 M3 + 2A3Mh2 — 2p Hygz — 209 Hyyz — 2p3H315 = 0 (4.35)

All the required moments of Ny, Nz and Nj satisfy the sets of equations (4.16)-(4.21)
and (4.26)-(4.35) just derived. Hence, the region defined by these equations relaxes the

achievable performance region for the three customer system.

4.7 The semidefinite constraints on the three class

problem.

We seek to solve the optimisation problem
min (c1ny + canz + c3n3 + c4Myy + cs Mo + s Ms;)

where the minimisation is over the set of achievable first and second moments. The sets
derived using the potential function method relax the achievable performance region for
the three customer system. Therefore we are now able to solve not the optimisation
problem over the exact achievable space (which we do not have) but the related problem
over a relaxation of the exact space, given by ﬂ?___z P;. The minimised cost over the latter

will give a lower bound on the optimal cost for the problem. P, is defined by the set of

equations (4.16) - (4.21) along with

3
> hs=mn,, (4.36)
s=1
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3

E :I2T ~ Na,
r=1

3

E I3; = ngs,
t=1

I.,>0, r=12,3s=1,2,3,

n. >0, r=1,2,3.

P; is given by (4.26)-(4.35) along with

3
E "Hyy — My =0,
r=1

3
> Hypp— My =0,
r=1

3
Z Hys3 — Ms3 = 0,
r=1

3
> Hpa— My =0,
r=1

3
Z Hyo3 — Ma3 = 0,
r=1

3
Z Hyp3 — M3 = 0,
r=1

Ny, M‘rsa Irs: Hrst ..>_.. 0.

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

As in Chapter 2, we use the semidefinite programming methods of Vandenberghe & Boyd

(1996). To obtain a lower bound on the cost achievable under any policy for our three

class system, we wish to solve the following linear programming problem

minimise ¢’ x,

subject to Ax+b >0

where A = [a1,02,...,am] € R™™, ¢ € R™ is a vector and b € R" also a vector.

We denote diag (v) as the diagonal matrix having the components of v on the diagonal.

We can state that a vector v 2 0 if and only if the matrix diag (v) is positive semidefinite.
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We now rewrite the linear program above as the following semidefinite programming

problem:

minimise ¢’ x,

subject to F'(z) = 0
36
where F'(z) = Fy + ZSC:*F}, and Fp = diag (b) and F; =diag(a;),i=1,2,..., 36.
t=1

We note that diag(a) and diag (b) are of the form diag (v) above.
The additional semidefinite constraints, suggested by Bertsimas & Nifio-Mora (1996),

D,, D>, D3 and D, are as follows

A
||
y
-

(4.48)

>0 (4.49)

(4.50)

.

G

|

=~ .
sk
-
AN
p— N
b
RS
o (W%
Cw

| Y
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It only remains for us to reformulate the set P> [} P3 along with the additional semidefinite
constraints of (4.48)-(4.51) into the semidefinite program. The non-parametric bounding
method produced constraints of the form A;x — b; = 0 while the standard form requires

them to be in the form A;x — by 2 0. Thus, in order to achieve this required form, we

write the constraints as follows:

Alx > b1

—-A1x> -b

where A; = (A4, Aii, Aiii, Aip) 1s a 25 by 36 matrix made up as indicated by the following:

A; = Ay =
-2, O ©o o o 0 ©O0 o0 © 0 0 0 0 0 0 0 0 0
0 -2 © ©0 © o0 o0 o0 O 0 0 0 0 0 0 0 0 0
0 0O -3 0 ©0 o0 o o0 O 0 0 0 0 0 0 0 0 0
“XAp =2y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 -M3 -2 O ©0 ©0 O ©0 O 0 0 0 0 0 0 0 0 0
—A3 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Al 0 0 At 0 0 0 0 0 -1 0 0 0 0 o 0 0 0
0 A3 0 0 0 0 Ag 0 0 0 0 0 0 o 0 0 0 0
0 0 A3 0 0 0 0 0 g 0 0 0 0 0 0 0 0 0
0 A 0 Az 2\ 0o 0, 0 0 O -2 0 0 0 0 - ji2 0 0
0 0 Al A3 0 221 0 0 0 0 0 -2 0 0 0 0 0 0
A2 0 0 0 221 0 Al 0 0 0 0 0 -1 0 0 0 -2117 0
X3 0 0 0 23 0 0 A1 0 0 0 0 0 - 41 0 0 0
0 0 A2 0 o A3 23 0 0 0 0 0 0 0 0 0 0
0 A3 0 0 0 0 0 223 A2 0 0 0 0 0 0 0 0 0
0 o 0 o 223 273 0 2A1 0 0 0 0 0 -2 0 0 0 -243
-1 0 0 0o O o o o0 0 0 0 0 0 0 0 0 0 0
0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 -1 0 0 0 0 0 1 0 0 0 o 0 1 0 0
o 0 o o -1 ©o o o 0 0 1 0 0 0 0 0 1 0
o 0 0 0 0 -1 0 0 o 0 0 1 0 0 0 0 0 1
0 0 o ©0 ©0o ©0 -1 0 © 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0
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>
!
>
:
i

41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 u2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 us3 0 0 0 0 0 0 0 0 0
O u3 O puz O o o0 o0 0 0 0 0 0 0 0 0 0
O 0 0 O 0 §42 O B3 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 w3y O 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 }42 0 0 0 0 - g 0 0 0 0 0 0 0 0
©o o 0 0 O0 ©0 0 0 pu3 0 0 0 0 0 0 0 0  —us
0O um 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 m 0 0 0 0 0 0 0 0 0 - i3 0 0 0 0 0
0 0 0 u2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
o o 0 0 ©o O u3 O O 0 0 0 0 0 —2u3 O 0 0
0 0 0 0 0 3 0 0 0 0 — 219 0 0 0 0 - 0 0
0 0 0 0 0 0 0 }’a 0 0 0 ~ 1 0 0 0 0 -21q 0
0 0 0 0 0 0 0 0 0 0 0 0 0 -213 0 0 0 0
1 0 O 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
o 1 ©6 o0 1 o o 1 o 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 O 0 0
0 0 0 0 0 0 o 0 0 O 0 O 1 0 0 0 0 0
0 0 0 0 0 0 o 0 0 0 0 0 0 1 0o 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
o 0o o 0 o0 e ¢ o o 0 1 0 0 0 0 0 1 0
O 0 0 0 0 0 0 0 0 0 0 1 0 O 0 0 0 |

In addition

XT =(nlv na, N3, A’flla M].Z) M13: M22: M231 M333 Ill& 1121 1131 I211
Io, Ios, I3y, Ina, In3, Hiyy Hi12, H113, Hi22, Hio3, Hi33, Hopy,

Hyyo, Hots, Hooa, Hooz, Hoss, Ha11, Haro, Ha1s, Hago, Haos, Hass).

E again takes the form E > 0, where E' now represents a 36 by 36 identity matrix and

bT= (—bflr.,. bT, 0, 0, 0, 0, 0, 0, 0, O, Og 01 01 01 01 Oa 01 0: 0: 01 Oa 0: Oa 01 0: 01 01 0: 03 01 01 01 0: 01 Oa 0: O$ 0)
(4.52)

where
bT = (M, A 23,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

We can now write all of the linear constraints in the required form: Ax — b > 0 where
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and b is the transpose of (4.52). We are now able to formulate the problem as a semidef-

Inite program

minimise C11 + Cong + c3n3 + C4M11 + CsM22 + CeM33

diag(Ax—-b) 0 0 0 O
0 D, 0 0 O
subject to 0 0 D, 0 O =~ 0
0 0 0 D3 O
0 0 0 0 D,

The semidefinite program constraints for the above problem can be written in the form
3
Z Tl — Fyp =0

and then be solved. Again, we used the software developed by Kojima (1994)

4.8 Calculation of CY*T for the three class problem

As in the two customer case, we calculate C9*T using the method of dynamic program-

ming as described in Tijms (1994). The recursion used in the three class problem is given

below.

biny + bang + bsng + c1nf + cond + c3n

C‘t+l (‘n1, n2’n3) = min { A1+ Ao + A3 + 75

MOy (n1+ 1, no, n3) + A2C; (nl, na+ 1 ns) + A3Cy (nla Mg, N3+ 1) + 11C (ny— 1, ng, n3)
T AL+ A2+ A3+ 1y
biny + bang + b3ng + Cln + Cz‘nz + Csng
A1+ A2+ Az + 1o
A\ C; (ny+ 1, g, n3) + A2Cy (n1, not+ 1,m3) + A3Ci (1, ng, ng+ 1) + paCi (ny, np— 1, n3)

N AL+ A2+ A3 + Ho

by7y + bong + bans +cing + con2 + c3n3
A+ A2+ Az + 43

Alc’t (nl"l' 1, no, n3) + /\2Ct (nls na+ 1: n3) + /\3Ct (7?.1, N9, N34~ 1) -+ /—L3Ct (nl, Ny, N3— 1)}

+ )\1 +- Az ~+ /\3 + U3
(nla na, n3) S (Z+)3
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2 2
/\lct (nl —+ ]. o, 0) -+ /\gct (nl, No -+ 1 O) -+ /\30,1 (nl, No, 1) -+ mC’t (n1 — 1 y T, 0)
t A1+ A2+ A3+ 1
biny + bong + cln + 62n2
A+ Ao+ Az + U
,\ICt (n1 + 1 9, 0) —+ Azct (nla ng -+ 1 0) + /\3Ct (nla na, 1) +- /-"2Ct (nla na — 1 0)
G L) £ 06000t LY N ) + e~ L))

(nl,nz) = (Z+)2

blnl + b3n3 + Clnf -+ c3n§

Ct+l (nlv 01 n3) = 1 { Al - /\2 -+ )\3 + U
MOy (n1 + 1,0, n3) + A2C% (n1, 1 ns) + A3C% ('”»11 0,n3 + 1) + 1110y (nl - 1,0, n3)
AL+ A2+ Az + 1

_|_

y. 2
biny + byng + cyny + c3ng3

A+ A2+ Azt
/\]_Ct (n1 + 1, 0, 'n3) + /\2ct (nla 1, n3) + /\3Ct (nla Oa n3 + 1) + H’3Ct (nla 0: ng — 1)
/\1 —+ )\2 + /\3 + [

(711, n3) = (Z+) ?

..I_

. [ bang + bsnz + cang + c3n3
Ct+1 (0 n2:n3) mln{ Al + /\2 + A3 + s
)\16} (1 na, n3) + )\gC't (0 o -+ 1 n3) -+ )\36} (0 o, N3 <+ 1) -+ ﬂ2Ct (O Mo — 1 n3)
i AL+ A2+ Az + po

2 2
bong + b3ng + Canj + C3ng

A + A2+ A3 + U3
/\10: (]-1 na, n3) + ’\2Ct (0: ng + 11 n3) + A3C7t (O: N2, N3 + 1) + ﬂr3Ct (0, Ny, N3 — 1)
T A+ A2+ A3+ 3

(ng,n3) = (Z+)2

(A1 + A2 + A3 + p1) Ceta (1, 0,0) biny + cing + MC; (1 + 1,0,0) + AC; (11, 1,0)

+/\3Ct (nl, 0, 1) + cht (n1 — 1, 0,0), n € Z*

I

(/\1 -+ Az + A3 + ﬂ'2) Ct+l (01 na, 0) b2n2 + C2‘n§ + Alct (1, No, 0) ~+ Azct (0, o + 1, 0)

+)\30t (01 na, 1) T “2Ct (Oa My — 1: 0) , N2 € Z+

(A1 + A2 + A3 + p3) Cea (0,0, ng) = byng+ C3n§ + M (1,0, n3) + A2Cy (0, 1, n3)
+A3C: (0,0,n3 + 1) + 3G (0,0,n3—-1), ny e Z*
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(A1 + A2 + A3) Ce41 (0,0,0) = A1 G (1,0,0) + X2C; (0,1,0) + A3C; (0,0, 1)

teEN
Our calculations were computed over a state space large enough to give a result with
e = 0.000000001, the required degree of accuracy as given in the value-iteration algorithm
in Table 4.1. It is likely that this method would not be a realistic possibility for larger
problems and indeed the calculations of results for the three class problems did take
considerably longer to compute than those for two. Therefore, in our further investigations
of section 4.9.1, we decided to measure index policy performance against the lower bound
cost only. This was because it was felt that this will have to be the method in future work
dealing with larger problem instances and that, as will be seen, in all of the problems
where C9FT was calculated, the index policy cost was close to it and usually within 10%
of the lower bound. In the results of section 4.9.1, the index policy costs were also usually

within 10% of the lower bound and this was interpreted as a good performance.

4.9 Numerical examples of three class type problems

Tables (4.4)-(4.7) show the costs achieved by the Whittle index policy on three class
M/M/1 systems with arrival rates and service rates as indicated. The service rates were
randomly generated on the interval (0.1,20.0) and the arrival rates were calculated by
scaling three further numbers randomly generated on the same interval so that p was

fixed at 0.75. In Tables 4.4-4.7, the cost coeflicients are taken tobe b; =5,by =1, b3 =1,
¢; =1, cg = 2 and c3 = 0.2. We define CIND as the cost incurred following the Whittle

index policy; COFT as the minimum achievable cost, calculated by means of dynamic
programming and C°P as the semidefinite lower bound on the minimum achievable cost.
Further, we define %°F7 as the percentage increase in C'VP over C9FT; and %P as the

- . ~IND SD
percentage increase in CIND over C°°.

Results show that the Whittle index policies perform close to optimally in all cases.

OPT

In Tables 4.4 - 4.7 the values of %“"* range from 0.000 to 0.712. The great majority
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of values are close to zero and this is indicated from the median, 0.000, and the lower
and upper quartiles, 0.000 and 0.019 respectively. The values of %°” range from 0.060 to

11.541. Again, the values are skewed and this is indicated from the median, 2.789, and

the lower and upper quartiles, 1.124 and 5.935.
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Table 4.4: Results for Whittle index policies in three customer type problems.

A1

A2

A3

2.384 4.166 0.726
6.592 3.657 1.485

3.338
2.878
1.825
2.492
0.106
0.663
1.066
0.290
0.999
0.618
0.871
2.774
0.434
2.070
0.316
0.708
0.799
4.612
1.104
1.738
1.318

0.251

2.203

H1

H2

H3

13.535 12.761 2.934
17.459 { 16.531 16.011 15.614

11.713 11.708 11.198

14.538

17.290

12.896 0.903

0.998 1.107 12.433

1.113
3.473
0.060
1.186
1.405
0.086
1.526
0.987

3.194
2.828
0.091
4.041
0.250
0.304
3.331

0.880

0.877 0.880

2.685
1.983

1.673
0.840

0.597 1.999

0.538
0.236

1.024
2.929
0.506
1.976
0.314

0.348
0.495
1.076
5.920
2.333
1.026
0.410

1.680 1.964 0.136

17.273
17.318
6.981
17.301
1.848
0.427
16.595
10.804
2.253
13.033
10.756
4.090
15.298
1.317

0.410
13.964
18.388
16.455
15.802
13.922
3.000
3.566
2.798
19.911
16.360
0.037
4.456
13.816
1.260

17.347 2.024

15.320
12.723
14.813
18.652
2.654

16.762
12.245
11.160
0.478

18.027

9.681
3.313
2.007
0.777
0.124
6.347
3.468
7.080
12.731
2.080
2.707
4.484
2.067
18.181
0.504
19.622
5.376
19.878
3.751
2.201
17.565
16.861

7.827

6.990
6.451
6.464
7.035
6.619
20.542
31.430
16.816
8.330
10.677
6.653
6.271
20.848
0.647
24.240
17.756
10.478
6.078
0.868
36.076
28.730
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7.824

6.900
6.400
6.463
7.035
6.619
20.542
31.412
16.773
8.330
10.677
6.653
0.271
20.791
0.647
24.225
17.739
10.478
6.078
0.868
36.072
28.728

7.481

6.647
6.337
6.248
7.034
0.017
20.235
31.208
16.256
8.049
10.179
6.411
6.160
19.138
6.643
22.338
17.143
9.003
6.007
0.129
35.913
28.9549

0.038
0.121
0.043
0.000
0.016
0.015
0.000
0.000
0.000
0.057
0.256
0.000
0.000
0.000
0.000
0.274
0.000
0.062
0.096
0.000
0.000
0.000
0.011

0.007

4.625
0.873
4.599
4.558
1.799
3.457
0.014
1.565
1.517
0.711
3.445
3.003
4.892
3.775
1.719
8.935
0.060
8.015
3.076
10.260
1.091
2.426
0.454

0.634



Table 4.5: Results for Whittle index policies in three customer type problems contd.

A1

A2

A3

k1

Ha

H3

0.705 1.013 1.701 6.475 4.984 3.886

0.022
0.264
2.822
0.262
3.400
1.419
2.956
0.053
1.240
0.543
1.303
1.754
1.101
0.373
0.287
0.367
0.630
0.650
1.334
0.202
0.409
0.528

1.398
0.095
0.646
0.180
6.236
9.038
0.760
0.193
5.292
7.706
5.456
0.098
0.890
4.160
0.231
0.431
0.872
0.868
0.483
1.078
2.873
0.129

0.744
0.133
2.732
0.339
0.931
2.908

3.391
0.100

4.835
3.179
0.263
1.770
0.719

1.874 3.772
0.526 5.9895
15.550 19.838
4932 16.794
14.757 14.740
4.976 15.920
8.672 16.209
10.350 0.264
15.583 15.504
10.765 15.827
10.174 9.046
4.132 1.919
14.128 5.803

2.657 12.324 12.322

0.570
0.551
0.043
0.589
3.875
0.853
1.100
0.733

0.443 5.686
0.579 19.190
1.115 o5.013
17.084 8.731
0.907 13.983
3.113 14.410
2.594 5.604
3.425 15.403

7.370
0.574
0.097
0.494
10.023
19.591
9.362
7.135
14.689
14.951
13.979
6.452
1.386
6.953
9.204
0.941
6.313
0.962
17.301
1.397
13.833
1.247
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CIND

1.2238
16.827
12.899
6.584
6.745
14.907
14.570
9.636
43.010
8.831
11.479
20.754
11.764
0.881
7.180
29.468
28.092
26.030
6.110
11.700
6.397
17.110
6.749

COPT

7.228
16.827
12.895
6.084
6.745
14.907
14.565
9.0636
42.987
8.831
11.479
20.072
11.762
5.881
7.180
29.464
28.935
26.023
6.110
11.700
6.396
17.109
6.749

CS'D
6.871
16.392
12.981
6.497
6.738
14.618
14.291
9.030
42.773
8.371
11.144
25.374
10.653
2.815
7.016
29.326
28.301
25.840
6.091
11.021
6.315
16.720
6.694

%OPT %S D

0.000 5.196
0.000 2.654

0.000
0.000
0.000
0.000
0.034
0.000
0.054
0.000
0.000
0.712
0.017
0.000
0.000
0.014
0.130
0.027
0.000
0.000
0.016
0.006
0.000

2.496
1.339
0.104
1.977
1.952
6.652
0.504
0.495
3.006
1.498
10.429
1.135
2.338
0.484
1.028
0.735
0.312
6.161
1.298
2.333
0.822



Table 4.6: Results for Whittle index policies in three customer type problems contd.

A1

1.179
1.919
0.698

A2

A3

K1 H2

M3

0.510 0.961 11.484 19.520 1.547

2.074 0.858 15.488 4.771

0.321

0.791

0.557 0.308 0.049

7.230
0.179
1.350
2.293
7.359
3.193
0.172
9.041
2.074
0.692
2.038
1.356
5.483
3.323
5.036

1.628

0.264

0.340 0.122

2.131
1.621
0.130
2.680
0.222
2.459
2.200
0.584
1.602
3.650
3.353
1.158
1.651

4.567
7.215
1.434
3.320
0.018
0.052
0.836
0.838
1.212
5.530
1.529
3.515
4.910

2.991 2.227 0.186

8.460 0.134
0.510 0.165
0.363 0.503

4.517
0.381
0.620

15.016 0.518

4.486
9.323

0.770 13.037 13.893

14.401 6.954
6.364 13.312
12.891 14.646
12.270 11.718
11.831 13.319
17.326 10.497
1.088 0.337
19.880 8.412
11.635 18.351
18.501 3.217
10.866 18.290
19.815 12.224
15.982 14.244

15.484 18.183
14.142 15.107
0.013 5.591
19.117 2.611
1.182 2.770
6.044 7.422

19.689
0.175
9.137

16.987
12.138

10.733
2.973
17.474
1.849
18.820
2.007
14.440
8.916
7.451
17.252
10.969
17.623
1.466
0.997
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CIND

6.423
11.233
32.018
34.211
19.899
6.721
6.968
9.222
18.090
8.008
36.486
21.090
0.997
15.054
6.216
8.723
10.730
6.900
10.725
23.072
9.980
11.889
0.311

COPT

6.423
11.232
32.584
34.206
19.874
6.721
6.968
0.221
18.090
8.007
36.471
21.090
0.997
15.054
0.216
8.723
10.730
6.900
10.725
23.069
9.979
11.888
0.311

CSD
0.398
10.632
32.198
34.128
17.840
6.716
6.642
8.470
17.837
7.958
35.047
18.992
0.873
14.667
6.094
8.220
9.880
6.704
9.819
21.289
9.690
11.195
0.275

%OPT %SD

0.000 0.391
0.009 5.653

0.104
0.015
0.126
0.000
0.000
0.011
0.000
0.012
0.041
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.013
0.010
0.008
0.000

1.304
0.243
11.541
0.074
4.908
8.801
1.418
7.040
2.642
11.047
2.111
2.639
2.002
6.119
8.603
2.924
0.227
8.375
2.993
6.199
0.974



Table 4.7: Results for Whittle index policies in three customer type problems contd.

A1 A A3

K

H2

H3

4911 4.057 2.366 17.953 14.721 11.775

0.267 2.670 3.304
1.735 6.786 0.217
0.512 0.625
3.062 2.263
3.190 3.992
0.042 3.021
3.233 1.273
0.496 0.541
1.044 2.856

0.295
0.143
3.186
3.012
3.314
0.211
2.142
0.487 0.793 0.286
5.496 2.124 2.636
1.602 3.721 4.742
4.458 3.608 4.204
4.200 0.730 4.044
0.561
1.829

1.772
6.291 0.290 1.569

0.287 1.155 0.946
2.438 0.044 0.839

1.786 1.139
2.005 2.721

11.783
17.754
9.712

14.419

10.130
16.024

12.038
0.450

10.511
1.031

13.988
18.832
19.096
13.327

0.383 1.557 3.794

3.417
10.362
12.548
0.598
7.749

10.167
10.883
0.849
13.252
16.228
14.231
14.808
9.915
2.903
3.044
15.184
14.738
17.165
6.313
14.285
19.168
6.813
10.422
11.122
6.893

7.109
7.965
6.078
4.445
16.709
0.403

4.950
2.346

14.734
16.743
12.140
11.497
13.724
12.670
2.707
9.369
0.957
7.107
7.173

2.001
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CIND

10.172
7.035
26.900
30.014
6.113
11.975
6.709
8.132
19.601
16.212
23.240
10.732
7.396
8.438
9.459
7.159
19.783
10.204
11.157
22.006
7.031

COPT

10.171
7.030
206.850
30.410
6.113
11.975
6.709

8.132
19.555

16.197
23.234
10.731
7.396
8.437
9.459
7.159
19.780
10.197
11.157
22.004
7.031

CSD
9.388
6.831
26.620
29.430
6.000
11.030
6.699
7.746
19.454
14.963
22.969
9.928
7.044
7.852
8.814
6.943
18.794
0.338
10.932
21.818
6.990

%OPT %S D

0.010
0.000
0.190
0.342
0.000
0.000
0.000
0.000
0.235
0.093
0.026
0.009
0.000
0.012
0.000
0.000
0.015
0.069
0.000
0.009
0.000

8.301
2.986
1.074
3.683
1.041
8.968
0.896
4.983
0.756
8.347
1.180
8.098
4.997
7.463
7.318
3.111
0.202
9.274
2.038
0.862
0.587



4.9.1 Further investigations

Seeking to investigate further the performance of the Whittle index policies, with a number
of different values of cost coefficients, we decided to select a small number of the above
systems and to allow the cost coeflicients to vary. Initially, we selected the 4 systems
shown below as they appear in Tables 4.4 - 4.7 and as they seemed to us to be fairly
representative of the range of index policy performances(from those calculated) i.e. the

index costs in the four selected systems range from 0.014% to 11.047% above the relevant

SDLB costs. The results are shown in Tables (4.9) - (4.12).

Table 4.8: Systems selected for further investigation.

CI ND COPT CSD %OPT %S D

1.240 5.292 4.835 15.583 15.504 14.689 | 8.831 8.831 8.371

0.106 0.065 0.091 6.981 16.455 0.124 [ 7.035 7.035 7.034

0.041 2.459 0.052 19.880 8.412 17.474 | 21.090 21.090 18.992

0.881 5.881 5.815

1.101 0.890 0.719 14.128 5.803 1.386

In these further investigations, the values of the b;, ¢ = 1, 2,3 are kept constant while we

allow the second moment coeflicients to vary.
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Table 4.9: Results for system with Ay = 1.24, A, = 5.292, A3 = 4.835, p; = 15.883, sy =
15.504 and u3; = 14.689

bh & b3 o C2 cg CINP 5P RSP
5 1 1 000 000 0.00 3294 3.294 0.000
5 1 1 001 0.02 0002 3353 3.345 0.239
5 1 1 010 020 0.02 3879 3.802 2.025
5 1 1 020 040 0.04 4462 4310 3.527
5 1 1 030 060 006 ©5.035 4817 4.526
5 1 1 040 080 0.08 5.998 5.325 5.127
5 1 1 100 200 020 8.831 8371 5.495
5 1 1 500 1000 1.00 29.119 27.317 6.597
5 1 1 10.00 20.00 2.00 54.079 50.850 6.350

In Table 4.9 the results obtained were comparable to those of Tables (4.4) - (4.7) and
we felt that the semidefinite lower bound cost was sufficiently tight to assess performance.
The %5P tended to increase as the values of the ¢;, ¢ = 1, 2,3 increased. The largest value
of %SP occurred when ¢; = 10.00, ¢z = 20.00 and ¢; = 2.00 but this only represented an

increase of 6.35 %. Thus the bounds appear to be tight and the index policies perform

well.
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Table 4.10: Results for system with A; = 0.106, Ay = 0.065, A3 = 0.091, p; = 6.981, u,; =

16.455 and u; = 0.124

by b2 b3 C2 cz CINP P RPP
5 1 1 0.00 0.00 0.000 3.006 3.006 0.000
5 1 1 001 002 0.002 3.046 3.046 0.000
5 1 1 0.10 0.20 0.020 3.409 3.409 0.000
5 1 1 020 040 0.040 3.812 3.811 0.026
5 1 1 030 060 0.060 4.215 4.214 0.024
5 1 1 040 0.80 0.080 4.617 4.617 0.000
5 1 1 100 200 0200 7035 7034 0.014
5 1 1 5.00 10.00 1.000 23.152 23.150 0.009
5 1 1 10.00 20.00 2.000 43.298 43.295 0.007

Table (4.10), shows the results for a set of problems where arrival and service rates
are as indicated but the cost coefficients are the same as those of the results in Table

(4.9). Here the values %°? range from 0 to 0.026 and it is clear that the index policies

are performing at close to optimal for all values of ¢, ¢; and ¢3 investigated.
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Table 4.11: Results for system with A; = 9.041, A

19.880, pg = 8.412 and pu3 = 17.474

by

0
3
S
0
9
S
0
5
o

by b3
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

C Co
0.00 0.00
001 0.02
0.10 0.20
0.20 0.40
030 0.60
040 0.80
1.00 2.00
5.00 10.00
10.00 20.00

C3
0.000
0.002
0.020
0.040
0.060
0.080
0.200
1.000
2.000

CIND

5.767
0.929
7.373
8.960

10.540
12.089
21.090
77.802

L =
L

2459, )\3 — 0052, 1431

'SP
2.767
0.900
7.102
8.432
0.752

11.072
18.992
71.790
148.139 137.790 7.511

07, SD
0.000
0.491
0.382
6.262
8.080
9.185

11.047

8.374

Table (4.11), shows the results for a set of problems where arrival and service rates

are as indicated but again the cost coefficients are the same as those of the results in

Table (4.9). Here the values %>" range from 0 to 11.047. Once again, these results are

comparable to those of Tables (4.4) - (4.7) and we infer from this that the index policy

is performing well. We continued our investigations by further analysis on the system

with \; = 0.106, Ay = 0.065, A3 = 0.091, p; = 6.981, uo = 16.455 and u; = 0.124 as

the index based cost was extremely close to the SDLB cost for all coefficient values. We

now used further variations on the cost coefhicients. Results are also given for the system

where A\ = 1.101, A\ = 0.890, A3 = 0.719, uy = 14.128, ps = 5.803 and p3 = 1.386 using

these new coefficients as this was the next best performing system of those in Table 4.8,

1.e. %SD = 1.135.
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Table 4.12: Results for system with A, = 0.106, A2 = 0.065, A3 = 0.091, y; = 6.981, u, =

16.455 and u3 = 0.124

b, b b3 Co C3 CIND  (OSD  orSD
5 2 1 000 000 0.000 3.010 3.010 0.000
5 2 1 001 002 0.050 4.011 4.010 0.025
5 2 1 002 0.04 0.100 5.013 5.011 0.040
5 2 1 005 002 0010 3.211 3.211 0.000
5 2 1 005 0.10 0.250 8.017 8.012 0.062
5 2 1 010 0.10 0.100 5.014 5.014 0.000
5 2 1 010 020 0.000 13.025 13.015 0.077
5 2 1 020 020 0200 7.019 7.018 0.014
5 2 1 020 040 1.000 23.040 23.020 0.087
5 2 1 025 0.10 0.050 4.016 4.015 0.025
5 2 1 030 030 0300 9.024 9.022 0.022
5 2 1 040 040 0.400 11.028 11.026 0.018
5 2 1 050 020 0.100 5.021 5.021 0.000
5 2 1 050 050 0500 13.033 13.030 0.023
5 2 1 100 040 0.200 7.033 7.032 0.014
5 2 1 100 100 1.000 23.056 23.051 0.022
5 2 1 500 200 1.000 23.124 23.122 0.009

Table (4.12), shows the results for a set of problems where arrival and service rates
and cost coefficients are as indicated. Here the values %" range from 0 to 0.087. These

values are comparable to those of Tables (4.4) - (4.7) and it is clear that the index policies

are again performing well.
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Table 4.13: Results for system with A; = 1.101, A; = 0.890, A3 = 0.719, p; =
14.128, po = 5.803 and uz = 1.386

5 3.030 3.030 0.000
O 1 001 0.02 0.050 3.630 3.576 1.510
o 2 1 002 0.04 0100 4.230 4.123 2.595
I o 2 1 005 0.02 0.010 3.159 3.156 0.095
o 2 1 005 010 0250 6.030 5.763 4.633
o 2 1 010 0.10 0.100 4.256 4.202 1.285
o 2 1 010 0.20 0.500 9.002 8.496 5.956
o 2 1 020 020 0.200 5.482 5.3714 2.010
o 2 1 020 0.40 1.000 14.780 13.962 5.859 |
o 2 1 025 010 0.050 3.677 3.663 0.382
o 2 1 030 030 0300 6.707 6.546 2.460
| o 2 1 040 040 0.400 7.930 7.718 2.747
1o 2 1 050 020 0.100 4.325 4.297 0.652
o 2 1 050 0.50 0.500 9.150 8.890 2.925
o 2 1 100 0.40 0.200 5.620 5.565 0.988
o 2 1 100 1.00 1.000 15.213 14.751 3.132
o 2 1 500 200 1.000 15957 15.705 1.605

Table (4.13), shows the results for a set of problems where arrival and service rates
and cost coefficients are as in Table (4.12). Here the values %°” range from 0.000 to
5.956. These values are again comparable to those of Tables (4.4) to (4.7) and it is clear

that the index policies are performing at close to optimal.

139



4.10 Conclusions and future work.

The Whittle index policies derived in Chapter 3 perform at close to optimal levels for all
of the problems considered. The problems all concerned single server M/M/1 queueing
systems. The use of the achievable region as an effective means of assessing performance
via the development of a lower bound on achievable cost would seem to be justified. This
is likely to be of increasing importance in future work on larger, more complex problems

CYFT is no longer possible. Such problems could perhaps

where the computation of
involve cost rates C (n) of order p where p is greater than 2 and where we know that
the Whittle index to be a polynomial of degree p — 1. We could also study performance
in problems where there is a larger number of customer types. Extension of the work to

more complex systems such as M/G/1 and multi-server systems are also future objectives.
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