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Abstract 

The preparation and characterisation of conductive nanowires and nanoropes on DNA 

templates is the focus of this work. This work is motivated by the search for alternative 

bottom-up approaches to nanoscale electronics.  

The structures and composition of prepared nanowires were determined by Fourier 

transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-Vis) absorption 

spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron (XPS) spectroscopy. 

The morphology and physical properties were examined by atomic force microscopy 

(AFM), electrostatic force microscopy (EFM), conductive atomic force microscopy 

(C-AFM) and two-terminal current-voltage (I-V) measurements using microelectrodes 

fabricated by photolithography techniques.  

Polypyrrole (PPy) nanoropes were formed by chemical polymerization of pyrrole on a 

DNA template. The diameter of these „nanoropes‟ was between 5–30 nm. At room 

temperature, the conductivity of a PPy-DNA nanorope is confirmed by C-AFM, while 

the temperature dependence of the conductivity was observed to follow a simple 

Arrhenius behaviour with a characteristic temperature of T0 = 4000K. 

Silver (Ag) nanoparticle chains were grown along λ-DNA templates using Tollens‟ 

reagent under mild conditions (50 ºC, 10 min). UV–Vis spectroscopy of these 

nanowires exhibited an absorption band at 400-440 nm due to the Ag plasmon. The 

DNA-templated Ag wires were found to be coated with an oxidized shell. Unlike 

DNA-templated polypyrrole, these nanowires were often rough. Using metal-binding 

functionality (alkynyl) introduced into DNA-templated polymer nanowires by 

chemical modification of the monomer, the morphology of the wire was improved on 

this hybrid template.  

Finally, DNA was used as a template for the growth of cuprous oxide (Cu2O) 

nanowires using Benedict‟s reagent and ascorbic acid as reducing agent at room 

temperature. AFM showed that these nanowires are uniform and continuous (diameters 

of 5-30 nm and lengths of 5-16 μm). C-AFM revealed that the average resistance of 

Cu2O–DNA nanowires was in the range from 0.13-0.18 MΩ depending on deflection 

setpoints, which suggests the material is doped. In summary, a range of inorganic and 

organic materials can be templated on DNA in the form of nanowires and various 

methods for measuring the conductivity of these nanowires have been established. 
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1. Chapter 1: Conductive Nanowires; an Introduction 

1.1 Background and motivation 

There are different techniques that can be used to fabricate nanostructures. Electron 

beam lithography is one of these techniques and can be used to produce nanostructures 

with a reasonable level of control [1]. However, sub-100-nanometer writing and 

printing requires the use of x-rays, electron beams, or focused ion beams [1-3]. Higher 

energy electrons produce more secondary electrons, which travel through the solid and 

expose a larger volume of photoresist (PR). This ultimately puts a limit on the smallest 

achievable feature [2, 3]. Features less than 10 nm are theoretically possible, but rarely 

demonstrated [4]. For example, Intel Corporation developed extreme-ultraviolet 

lithography with 13.5 nm wavelength for making future microprocessors. Recently, in 

a method developed by Linjie et al, employing spatial phase-shaping of the 

deactivation laser beam, a feature down to a 40-nm minimum size was demonstrated 

[5]. This method is expected to permit printing of circuits and wires with figure sizes 

less than 30 nm, which is beyond the capability of optical lithography.  

As mentioned above, the generation of secondary electrons during electron 

bombardment and the high cost of the process still make it difficult to achieve sub-10-

nm patterns. To overcome these limitations, it is necessary to construct or modify a 

new generation of technologies, develop new infrastructure and alternative methods. 

One of these methods is using conductive nanowires templated by DNA as a 

promising way towards future nanoelectronic devices, which is one of the main 

objectives of this work.  

The aim of this work is to contribute to the development of interconnects that can be 

used to fabricate future nanodevices. It is expected that investigating new interconnect 

materials and methods will help to maintain the motivation for alternative future 

bottom-up approaches. Further, new methods and techniques for conductive nanowire 

fabrications may lead to a better understanding of their properties.  

The importance of this work is that it may lead to improve fabrication of nanowires 

with potential for use as interconnects in current microdevices. Moreover, non-
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lithography-based approaches to form nanostructures may reduce the cost of 

employing nanostructures and increase their adoption in a range of technologies, 

including electronics and sensing. 

Natta discovered the effect of doping with bromine or iodine on increasing the 

conductivity of organic polymers in 1958. This was followed by the work of 

Shirakawa, Macdiarmid and Heeger, who obtained highly conductive polyacetylene 

thin films in 1977 and stimulated huge interest in such conducting polymers [6]. Many 

researchers are now investigating conducting polymers owing to their promising 

technological applications in, e.g., sensing, batteries and plastic electronics. Extensive 

research has focused on polypyrrole in particular, because of its low cost, mechanical 

flexibility, electrical conductivity, chemical and thermal stability[7]. 

Conducting nanowires (1 nm=10
−9

 metres) are made of materials, which are 

electrically conductive. These nanowires have attracted much interest because of their 

potential in fabricating future nanodevices. The ability to make a structure made of a 

conducting polymer by oxidation (p-doping) or reduction (n-doping) has opened the 

way to the fabrication of many devices such as organic light-emitting diodes [8], field-

effect transistors [9, 10] and memory devices [11-13].  

1.2 DNA templated nanowire fabrication 

DNA, from a biological point of view, will not be considered in this work. Instead it 

has been utilized as a template to guide the formation of very well defined conductive 

nanowires with diameters in the range of nanometres. Also, the electrical properties of 

these nanowires templated by DNA, and the possibility of using them to make simple 

devices will be considered. The three dimensional (3D) helix structure of DNA [14] 

will be our template for guiding the assembly of a nanoscopic building blocks to 

fabricate conductive nanowires. The DNA molecule has a diameter of approximately 2 

nm[15]. It contains two antiparallel polynucleotide strands surrounding each other in a 

helical structure sharing the same axis [16]. The two helices are formed by phosphate 

deoxyribose backbones linked by hydrogen bonding base pairs (A-T & G-C). A single 

strand of DNA is shown in Figure  1.1.  

The commercial λ-DNA (lambda bacteriophage), used in this work, is about 16 µm 



 

 3 

3 

long and contains precisely 48502 base pairs. Since this DNA has a well-defined 

length, it is an ideal self-assembly template for polymers and inorganic materials that 

do not naturally form long wire-like structures. Moreover, the negatively-charged 

phosphate groups allow DNA to interact with positively charged species in a 

controllable manner and therefore can act as a template for a wide range of organic and 

inorganic materials prepared from cationic precursors. 

DNA templated nanowires are expected to be used in many applications in the future, 

such as biosensors. Yet, these nanowires must first overcome most of the current 

difficulties and problems of interconnects fabricated by the conventional lithography 

technique, such as electromigration [17]. Moreover, nanowires templated by DNA 

must be easy to align on the substrate surfaces and have the possibility of being 

integrated in microdevices chips [16].  

 

Figure  1.1: Structure of a single strand of DNA showing a chain of four nucleotides [16] 

Most of the measurements carried out on DNA revealed that its conductivity is very 

low [18], and the carrier transport through it follows different behaviours. The reported 

DNA resistance had different values depending on different factors, such as the 
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techniques used, equipment employed and experimental conditions. For example, it is 

reported that a single dry DNA strand behaves as an insulator and its resistance ranges 

from 10 MΩ to 2 GΩ depending on the quinine-cytosine content in the sequence[19]. 

While the resistance of a thin film of DNA base sequence (poly(dG)·poly(dC)) under 

atmospheric conditions was measured and found to be 1.7× 10
10

 Ω, whereas under 

vacuum conditions, it is estimated to be 3.9× 10
12

 Ω [20]. Due to its high resistance, 

DNA prevented its direct use in electronic devices. Because of that, there were many 

attempts to use DNA as a building block, instead of direct use in fabricating 

nanodevices by means of what is now called DNA-templated self-assembly [16].  

1.3  Polypyrrole-DNA nanowires  

Due to its stability and good conductivity under typical atmospheric conditions, 

Polypyrrole (PPy)[7] has been used in this work to fabricate conductive nanowires 

templated by DNA. PPy can be made by the chemical or electrochemical oxidation of 

the pyrrole (Py) monomer [21] to form a chain of Py called PPy, see Figure  1.2 (a) and 

(b) respectively.  

 

Figure  1.2: a) Structure of Py, an aromatic five membered ring and b) Structure of PPy 

 

Pyrrole can be oxidised to make positive sites (p-doping or holes) that can interact 

with negative charges of the DNA backbone.  

Conducting PPy can be either reduced when doped with electron donors or oxidized 

when doped with electron acceptors, which causes a significant rise in its electrical 

conductivity. PPy was discovered to be a conductive material when doped with iodine. 

As a result, the PPy chains gain positive charges [21]. Since then, researches continued 

probing its conductivity using different reducing agents. In this work, the focus has 



 

 5 

5 

been on using iron trichloride (FeCl3) as an oxidising agent for the PPy as described in 

reference [22]. This procedure naturally produces cationic PPy (p-doped material). 

1.4  DNA templated metal nanoparticles 

Metal nanoparticles can also be used to form conductive nanowires templated by 

DNA. Different transition metals can bind to the nitrogen atoms on DNA bases and to 

phosphate groups [23]. For example, silver [18, 24], palladium [25], platinum [26], 

gold [21, 22] or copper [27] nanowires have been successfully used to increase DNA 

conductivity, which involves the reduction of metal ions bound to DNA. Among 

metals, silver has attracted a special attention due to its high electrical conductivity, 

which makes it an excellent candidate for incorporation in micro-electronics. 

Owing to the multiple binding sites for metal ions (negatively charged phosphate 

groups and aromatic bases), DNA has been used also as a template for conducting 

polymers, as well as for nanoparticles [16]. It has been used as a template for both 

conductive and semiconductive nanomaterials, including wires and particle arrays 

[28]. Braun et al used DNA as a template for Ag nanoparticles as the first attempt to 

increase DNA conductivity by templating [18]. He stretched these nanowires across 

two Au electrodes and measured their resistance. His achievement was also among the 

earliest to fabricate a nanostructure beyond the limitations of photolithography. More 

details of Braun‟s method will be discussed in chapter 4. Dittmer and Simmel have 

successfully grown copper sulfide (CuS) as a p-type semiconductor on DNA both on a 

surface and in solution [29]. Several other groups studied the formation of a range of 

semiconductor nanostructures using DNA as a template [30-32]. The production of 

nanoscale interconnects using conducting and semiconducting nanowires as building 

blocks is the basis of what is often called the „bottom-up‟ approach to electronic 

devices.  

In this work, DNA is used as a template for Ag metal and semiconducting Cu2O beside 

PPy and investigated the possibility of integrating these nanowires into a two terminal 

electrical device. The preparation and characterisation of these nanowires will be 

discussed in detail in next chapters. 
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1.5 The photolithography technique and its limitations  

The photolithography technique can be used to pattern microstructured materials. This 

technique is exploited here to make the microelectrodes as interconnects between the 

synthesised nanowires and the external electrical test system for electrical 

characterization. The basic idea of photolithography techniques for microfabrication 

and some of its limitations will be discussed in this chapter; more details of the 

photolithography technique used can be found in chapter 2.  

In this technique, a series of processes are established in order to transfer patterns onto 

a substrate using a mask and UV radiation to selectively expose a photoresist (PR) 

layer in certain areas. The process starts by growing a silicon oxide (SiO2) layer on a 

Si substrate by wet or dry oxidation before patterning the structure.  

 

Figure  1.3: Basic schematic diagram of photolithography process 

In the photolithography technique, PR is applied by spin-coating upon the surface of 

the SiO2/Si substrate, followed by exposure to UV light through a suitable 

chrome/quartz/glass mask. The mask has opaque areas which prevent certain defined 

areas of the PR from being exposed to the light, and transparent areas to deliberately 

expose other areas of the PR to light as shown in Figure  1.3. Positive PR becomes 

more soluble after exposure to light, leaving unexposed areas as patterns on the SiO2 

surface, whilst negative PR hardens, and so non-hardened regions can be removed 

chemically. The PR in this case is used as a mask to transfer patterns onto the SiO2.  

In order to transfer the pattern onto the SiO2, wet (chemical) or dry (plasma) etching 

can be used to etch those parts of the SiO2 uncovered by the PR, and then a lift-off 

process can be used to remove the unwanted PR and mask metals (Cr and Au in this 

case) deposited on the substrate, leaving the desired thin metal patterns deposited on 
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the surface. Reactive Ion Etching (RIE) was used to etch the SiO2 and Electron Beam 

Deposition (E-Beam) is used to deposit metals onto the substrate surface. 

1.5.1   Reactive ion etching (RIE) 

RIE is a dry etching technique utilized to pattern microstructures and nanostructures 

and is an important step in the conventional top-down approach. It is used to remove 

unwanted regions of material from the SiO2 surface when bombarded by reactive 

plasma generated at low pressure in a high intensity electromagnetic field. This 

environment generates an ionized reactive gas that can be accelerated towards the 

surface to produce etching.  

As depicted in Figure  1.4, two parallel plates are used to create an electric field that 

accelerates ions in the gas towards the bottom plate, where the sample is located, and 

physically knocks atoms out of the surface. In Figure  1.4, (1) and (4) denote electrodes 

used to produce the electric field (3), while (2) represents accelerating ions 

bombarding exposed regions on the surface of the sample (5). Unlike wet etching, 

which has limitations of its own, dry etching makes an anisotropic etch, where the 

etching is unidirectional reducing the undercutting seen during an isotropic etch. 

 

Figure  1.4: Schematic diagram of reactive ion etching (RIE) basic setup. F
- 
represents accelerated 

fluorine ions 
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1.6 Thesis overview 

The structure of this work is as follows; Chapter  1, an introduction, presents the 

background of the thesis and the motivation for the work. It also gives a brief 

description of the following; DNA templated conductive nanowires and nanoparticles, 

and the microfabrication and its limitations. Chapter 1 also discusses related work in 

the field of nanowires fabrications. Chapter 2 reviews techniques used for fabrication 

and characterizations of nanowires and details of micro-fabrication methods used to 

fabricate microelectrodes, which enables the study of the nanowire‟s electrical 

properties before employing them in more complex circuits. These characterizations 

are essential to fully explore the nanowire properties. It also reviews the nanowire 

alignment technique used on Si substrates prior nanowire characterisations. Chapter 3 

covers self-assembly of DNA-templated PPy nanowires, and presents the experimental 

methods used in preparing these samples. Atomic force microscopy (AFM) 

characterization of fabricated PPy-DNA nanowires and nanoropes, and its structures 

and mechanism of the self-assembly are also discussed in this chapter. The observation 

of the conductivity of PPy–DNA nanoropes using conductive atomic force microscopy 

(C-AFM) as a direct two-terminal method is also investigated. I–V measurements done 

on a single PPy-DNA nanowire and the temperature dependence of electrical 

conductivity of PPy-DNA nanoropes are also examined in this chapter. The chapter 

discusses Fourier transform infrared (FTIR) spectroscopy investigations as a function 

of temperature for PPy-DNA nanowires; these measurements reveal the extent to 

which temperature produces chemical changes in the nanowires. The diameter 

uniformity analysis of PPy-DNA nanowires connecting 2 Au electrodes and the 

method used to align PPy–DNA nanowires and nanoropes are described. Finally, the 

chapter presents the temperature-dependent and thermal stability of PPy-DNA 

nanowires. Chapter 4 discusses synthesis and characterization of Ag nanoparticles 

templated by DNA. In this chapter, Ag-DNA nanowire preparation is presented along 

with ultraviolet-visible absorption spectroscopy (UV-Vis), X-ray diffraction (XRD) 

and X-ray photoelectron spectroscopy (XPS). The morphology and physical properties 

examined by (AFM), electrostatic force microscopy (EFM) and C-AFM is also 

presented. In addition, two terminal measurements, temperature-dependent 

measurements, with FTIR spectroscopy investigations included during the fabrication 
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process are presented in this chapter.   Chapter 5 is on templating Ag nanoparticles on 

DNA polymer hybrid nanowires and control of the metal growth morphology using 

functional monomers. It shows how metal-binding functionalities (alkynyl) can be 

introduced onto DNA-templated polymer nanowires by chemical modification of the 

2-(thiophen-2-yl)-1H-pyrrole (TP) monomer, and may be used to improve the 

morphology of Ag deposited on this hybrid template. AFM, EFM and C-AFM results 

for morphological and electrical investigations of these nanowires are also presented in 

this chapter. Chapter 6 covers synthesis and characterization of conductive DNA-

templated Cu2O nanowires. Chemical synthesis, FTIR, UV-Vis absorption 

spectroscopy, XRD, XPS, AFM and C-AFM characterizations are presented in 

analysing and characterizing these nanowires. Chapter 7 presents the conclusions, and 

summarises the findings of this work and the importance of the results achieved and 

suggests future work. Finally a list of published and pending articles related the subject 

and a list of references are provided. 
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2. Chapter 2: Techniques used for Fabrication and 

Characterization 

2.1 Electrodes fabrication 

In this work, microelectrodes were fabricated using gold (Au) (with dimensions shown 

in Figure 2.1) to facilitate electrical testing of the nanowires. These electrodes are used 

as an interface between the nanowire and the electrical probe. A summary of the 

fabrication process can be seen below, while the details of the fabrication process can 

be found in session  2.5.  

First, a thin SiO2 layer is grown on Si(100) substrate using the dry oxidation process. 

Trenches are etched by SF6 ions in the SiO2 using reactive ion etching (RIE) and filled 

with Au to ensure that the height of the step at the Au/SiO2 edge is minimal; this 

facilitates AFM imaging and also maintains electrical isolation of the electrodes from 

each other.  

 

            Figure  2.1: Not to scale schematic diagram of the Au electrodes arrangement 

 

Some of the electrodes were fabricated using direct photolithography technique and 

the others were fabricated using the image reversal positive photoresist (PR) method 

discussed in the next sections.  

2.2 Direct photolithography 

 

The main aim of photolithography is to transfer desired patterns printed in the mask to 

the substrate covered by photoresist (PR). Subsequent steps of etching and depositions 

are used to transfer these patterns to the SiO2 thin layer. These steps are schematically 

represented in Figure  2.2 and in Figure  2.3, and are described in the following steps: 
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the substrate surface is cleaned and prepared; then a layer of PR is spun onto the 

surface, soft baked, and then exposed by UV. Unwanted PR is dissolved with 

developer, leaving a pattern of the resist on the surface.  

 

 

Figure  2.2: Schematic diagram of the main processes in photolithography 

Above the PR pattenrs a thin layer of metal can be deposited followed by lift-off 

process using acetone leaving metal patterns on the surface. On other hand, Al can be 

used as a second mask before etching SiO2 using RIE as shown in Figure  2.3. 
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Figure  2.3: Process steps of the Al lift-off and plasma etching 

 

2.3 Image reversal positive photoresist method 

To provide undercut profile for lift-off and prevent continuous deposition of metal 

films over the features, image reversal positive photoresist is used instead of direct 

photolithography. When this method is used (Figure  2.4), the PR is applied to the 

surface of the substrate using a spin coater at an appropriate speed; then the substrate is 

soft-baked. Using a mask aligner, PR is then exposed to UV through a mask with 

patterns of the electrodes, after that it is baked again (120 °C) and flood exposed 

without a mask. In this case, previously unexposed PR is removed with the developer. 

Afterwards, an e-beam coater is used to deposit a thin layer of Al mask all over the 

sample. Using acetone, the PR and Al layer above it is removed (lift-off), leaving the 

Al with patterns masking the SiO2 layer. The patterns are then transferred from the Al 

mask to the SiO2 surface by RIE (dry etching). This will allow an adhesion layer, 

chromium (Cr), and Au to be deposited on the desired areas. Then the Au thin film 

layer is deposited all over the sample surface, including regions (trenches) that are 

uncovered by Al. Finally, the Al is removed with etchant with thin metals above it. 

After removing Al, Au electrodes remain embedded in the SiO2.  
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Figure  2.4: Not to scale schematic diagram of the image reversal positive photoresist process 

2.4 Substrate cleaning 

2.4.1. Preliminary cleaning 

Silicon (100) of 100 mm diameter and 525±50 μm thickness and 1-10 Ω cm resistance 

was used. Substrates were cleaned after cutting into 1x1cm
2
 chips using standard 

cleaning as follows: chips were boiled (~80°C) in trichloroethelene (TCE), (~80°C) 
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acetone, (~80°C) propan-2-ol (IPA) for 7 minutes in each step. 

2.4.2.  RCA Cleaning 

After standard cleaning, it was found that RCA cleaning is the most suitable method to 

treat Si substrates before inserting them into the furnace. RCA cleaning can be 

summarized as follows:  

RCA1: Chips were placed in a quartz vat with a mixture of ammonia solution 

(NH4OH-20 mL) and hydrogen peroxide (H2O2-15 mL) at 70°C under ultrasonic 

agitation for 2 minutes. The chips were then cleaned with DI water.  

RCA2: Chips were transferred carefully into a mixture of 15 mL hydrochloric acid 

(HCl), 30 % hydrogen peroxide (H2O2), and 15 ml ultrapure DI water (H2O) under 

ultrasonic agitation at 70°C.  

2.4.3.  HF cleaning 

Chips were inserted into a 40 mL HF(aq) (48%) mixed with 2L of DI water for about 

10 seconds. Sample surfaces exhibited hydrophobicity immediately when removed 

from the solution. Hydrofluoric acid cleaning should be carried out using a 

polypropylene vessel. 

2.4.4.  Dry oxidisation 

After chips were dried with nitrogen, they were inserted into a furnace at 1100°C with 

oxygen flow of 80 mL/min using a quartz boat to obtain a layer of oxide of about 250 

nm thick. Details of oxidation process can be found in the following section. 

2.4.5.  SiO2 Oxidation Growth Rate 

Silicon dioxide (SiO2) is a good insulator used between the Au electrodes. Before the 

process of electrode fabrication starts, the growth rate of SiO2 on the Si surface has to 

first be calibrated to determine the thickness of SiO2 needed. Thermal oxidation of Si 

is achieved by heating the substrate in a furnace. Pure oxygen is allowed to flow 

through the furnace where oxidation takes place. Molecules diffuse easily through the 
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growing SiO2 layer at these high temperatures. Oxygen arriving at the Si surface can 

then combine with silicon to form silicon dioxide. At low SiO2 thicknesses, i.e. below 

0.1 μm, the reaction Si +O2 → SiO2 follows a linear growth law. However, when the 

SiO2 layer thickness increases, diffusion through the SiO2 layer is the dominant growth 

rate controlling factor. Si chips were inserted into the furnace after it was brought to 

desired temperature. At certain time intervals, chips were taken out of the furnace. The 

SiO2 thickness of each chip was measured several times at different locations on the 

surface using a Filmetrics F40 thin-film-analyzer. SiO2 thicknesses were plotted 

against oxidation time, as shown in Figure  2.5 . As expected, the plotted data was 

found to have a square root dependence on time, characteristic of diffusion controlled 

oxidation kinetics. 

 

Figure  2.5: Dry oxidation calibration curve. The symbol sizes represent the error range. 

Oxygen flow rate 80 mL/min. Furnace temperature 1150 °C. Substrate used Si(100) n-

type (phosphorus) with resistivity = 1-10 Ω cm 
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2.5 Direct Photolithography technique 

The following steps describe the fabrication process of the Au electrodes using the 

direct photolithography technique. 

2.5.1.  Oxidation 

A silicon dioxide layer (about 220 nm) is grown on a 1 mm-thick Si(100) wafer using 

the dry oxidation method described above. The furnace temperature was set to 1100 °C 

for 6 hours. Since silicon dioxide is a very good insulator, a few micrometers are 

enough to isolate the Au electrodes from each other electrically.  

2.5.2.  Cleaning and spin coating 

If SiO2 samples were taken directly from furnace to spin coater, they would not need 

to be cleaned. Otherwise, samples must be cleaned using the following procedure: O
+
 

ion sputtering, and then cleaning with acetone and IPA in an ultrasound bath for 10 

minutes, then a nitrogen blowgun is used in order to remove any contamination. Then 

pre-bake the sample for 1 minute, spin coat the PR (3000-5000) rpm for 30 seconds, 

followed by soft baking at 90°C for 3 minutes. 

2.5.3.  Mask aligning 

A designed mask (few millimeters thick plate with chrome opaque pattern) provided 

by School of EECE, University of Newcastle, was used. It is usually cleaned by 

applying acetone and IPA then dried immediately before use. The SLEE Co. Mask 

Aligner shown in Figure  2.6 and UV exposure are used to print features on the mask 

onto the PR layer.  

2.5.4.  Developing  

Using mask aligner, positive AZ 5214E PR is used where the region that is exposed to 

the UV radiation is weakened, and can be easily removed with the developer AZ-326 

MIF from A2 Electronic Material (Germany). The transferred patterns are frequently 
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observed using the microscope. The developing process stops when the sample is 

rinsed in DI water. Nitrogen blowgun and/or dry spinning are used to remove water 

before chemical etching. The best results are achieved when UV exposure time is 35-

45s and developing time is 50-60s. The developing time changes according to the 

freshness of the developer itself.  

2.5.5.  Metal mask deposition 

A thin layer of Al (100 nm) is deposited as a second mask all over the sample surface 

including the PR patterns using an E-beam coater system shown in Figure  2.8. The 

deposition rate of the Al was 0.14 nm/s at 1.7x10
-5

 mbar pressure with 4.9 kV high 

voltage and 293 mA current. The deposited rate of Al must be as low as possible to 

prevent Al from accumulating in clusters formed on the SiO2 surface. 

 

Figure  2.6: SLEE Co. Mask Aligner used in the cleanroom 

2.5.6.  Lift-off process 

Using acetone, the PR and Al layer (120nm) above it are removed, leaving the Al 

masking the SiO2 layer and allowing SiO2 to be etched to the desired thickness, and 

Au deposited on the etched areas. The lift-off time was 2 hours in acetone. 

2.5.7.  SiO2 plasma etching using RIE 

In this step, patterns are transferred from Al mask to the SiO2 surface. The areas on 

SiO2, which are not covered by Al that mask the PR are etched using RIE described in 

chapter 1, section  1.5.1, producing trenches of about 90 nm.  
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Figure  2.7: Plasma-Therm 790 series RIE machine used in the cleanroom, EECE School, 

University of Newcastle. Inset: Basic schematic diagram of the RIE machine.  

2.5.8.  Depositing Au 

BOC-Edwards auto e-beam evaporator (Figure  2.8) is used to deposit Au, and the Cr 

layer on the chip surface, including the trenches made. Samples were then cleaned 

using a special cleaning recipe, as discussed before, including diluted HF.  

 

Figure  2.8: BOC-Edwards auto e-beam evaporator used to deposit metal thin films, in the 

cleanroom, EECE School, University of Newcastle 
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2.5.9.  Etching the Aluminium 

The Al is etched using suitable chemical etchant called Al etchant (Mixture of H2O, 

CH3COOH, HNO3 AND H3PO4) with etching rate of 30 nm/min at 30°C. An Au 

electrode is left embedded in the SiO2 as a unique chip to facilitate nanowire 

alignment, AFM imaging and two terminal measurements. After cleaning the sample, 

Tencor (P-1) Profilometer was used to check the Au thickness. If Au is lower than 

SiO2, it is favourable to etch SiO2 again using RIE.  

2.5.10.  UV exposure 

A spin coater was used at a speed of 3500 rpm for 45 seconds to make a thin layer 

(3.15 μm) of the photoresist. This was soft-baked at (90 ºC) for 3 minutes before UV 

exposure (6.0 mW/cm
2
 at 405 nm). As mentioned above, the mask is cleaned and a 

drop of toluene is added on the PR before using the Mask Aligner with UV exposure 

system. The best result is achieved when exposure time is about 35 seconds and 

developing time between 50-60 seconds. Positive PR regions that are exposed to the 

UV radiation are weakened and removed with the developer. For a better result, 

samples are observed frequently using the microscope (Leitz Wetzlar , Optical 

Microscope in polarised light). The developing process stops when the sample is 

rinsed in DI water. Nitrogen blowgun and/ dry spinning is used to remove water before 

etching. The structure result is shown in Figure  2.9.  

 

Figure  2.9: Optical image of PR patterns 
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Figure  2.10: A thin layer of Al is deposited all over the sample surface including the PR 

patterns using E-beam coater 

Using acetone, PR and the Al layer above it are removed leaving the Al masking the 

SiO2. This will allow Au to be deposited on the desired areas that are etched using the 

RIE system. The patterns are then transferred from Al mask to the SiO2 surface, where 

the areas on SiO2, not covered by Al, are etched. The thickness of the etched SiO2 

must be in the range of 90 to 150 nm using RIE (Reactive Ion Etching Machine, 

Plasma-Therm 790 Series) at 150W power, and etching rate, 50 nm/min. 

 

Figure  2.11: Aluminium mask after lift-off 

Before depositing Au, a thin layer of Cr (about 10 nm) is deposited using the e-beam 

evaporator to enhance the adhesion of the Au on the SiO2. Then a 90 to 150 nm Au 

thin film is deposited all over the sample surface, including regions that are covered by 

Al. The Al is then removed as in Figure  2.11 with the Au above it, using the chemical 

etchant of Al. The etching rate was 30 nm/min at 30 ºC. After removing the Al, the Au 

electrode is expected to remain embedded in the SiO2.  
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2.5.11.  Metal deposition and Al lift-off  

Samples were placed in the e-beam evaporator and chamber pressure reduced to about 

5x10
-6

 mbar. An adhesion layer of 10 nm Cr is deposited before the Au is also 

deposited. The Au layer thickness was in the range 90–100 nm with deposition rate of 

0.25 nm/s, current 72 mA and 1x10
-4

 mbar pressure. 

After the evaporator, vented samples were recovered and placed in Al etchant solution 

at 30°C for the lift-off process to take place. The Al and unwanted Cr/Au above it are 

removed (30nm/min). Chips are thoroughly rinsed with IPA and checked with an 

optical microscope to ensure that all unwanted metals on the chip were etched. 

Figure  2.12 shows an optical image of Au electrodes embedded into the SiO2 chips 

after lifting the Al mask; a cross-section schematic diagram of the electrodes in the 

inset. 

 

Figure  2.12: Au electrodes embedded into SiO2 after etching Al. Scale bar 4µm. Inset: a 

cross-section schematic diagram of the electrodes, scale bar 1.5µm  

After cleaning the sample, a Tencor P-1 Profilometer was used to check the level of 

the Au electrodes with respect to the SiO2 surface, to see if there was a substantial step 

at the Au/SiO2 boundary that would interfere with AFM imaging. If the SiO2 was 

found to be above the level of the SiO2 and Au, it was etched again using RIE. 
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2.6 Materials 

All general chemical reagents were from Sigma–Aldrich and were of Analar grade or 

equivalent. Lambda DNA was from New England Biolabs, cat no. N30011S (New 

England Biolabs (UK) Ltd. Hitchin, Herts. SG4 0TY United Kingdom). Pyrrole (Py) 

was also obtained from Sigma–Aldrich and distilled under N2. All the solutions were 

prepared in Ultrapure water; nominal resistivity 18.2 MΩ cm. The chemical reactions 

were performed in the Chemical Nanoscience Laboratory, School of Chemistry at 

Newcastle University. 

2.7  Alignment of Nanowires  

The molecular combing method is used in this work to align nanowires by moving a 

small drop of solution containing nanowires upon the substrate surface. This method 

was first developed by Bensimon et al (1995) [15, 33]. Molecular combing relies on 

attachment of one end of the DNA molecule to be aligned to a solid surface and 

extending the other end by the receding air-water interface on the surface. It utilises 

the fluid and surface tension forces of the solution drop to elongate the nanowires in 

the direction of the flow. Yokota et al [34] adapted Braun‟s [18] method to stretch 

DNA molecules by combing, but including spin coating as well. This technique was 

utilised and found more reliable, quick and practical technique to align nanowires on 

SiO2/Si substrates. In this work, Bensimon‟s and Braun‟s methods were adapted, 

where the drop after spinning is removed by a pipette and/or wicking with filter paper 

in one direction. This results in aligning individual nanowires upon surfaces or 

positioning them across Au electrodes for imaging and electrical characterization. 

2.8 Nanowires characterisation 

The chemical composition of nanowires in a solution was characterized by means of 

Fourier transform infrared (FTIR) spectroscopy, UV-Vis absorption spectroscopy, X-

ray diffraction (XRD) techniques and X-ray photoelectron (XPS) spectroscopy. The 

morphology and electrical properties of nanowires are studied using different 

techniques. The morphology of the nanowires was investigated by AFM; while their 

electrical properties were investigated using EFM, C-AFM and the two-terminal 
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technique using a probe station and the gold microelectrodes described before. AFM, 

EFM and C-AFM can also image and measure the dimensions of DNA templates, as 

well as the templated nanomaterials. The details and underlying concepts of these 

techniques will be presented in the following sections.  

2.8.1 Infrared spectroscopy (IR) 

IR spectroscopy is a useful method for determining aspects of the structure of 

unknown molecules from their infrared spectrum by identifying the frequency of the 

normal vibrational modes of the molecule. Many of these normal modes are well 

localised to particular chemical functional groups and can be used to determine 

particular chemical bonds or functional groups as, e.g., a C-H stretch, the presence of 

which indicates the presence of carbon-hydrogen bonds. These frequencies are 

quantised and are slightly different for each molecule; the IR spectrum consists of 

absorption bands at the relevant frequencies or wavenumbers. The basic principle of 

operation of IR spectroscopy, in general, is described as follows; A range of 

frequencies (infrared radiation) are emitted from the source, as depicted in Figure  2.13, 

and passed through a sample, then the energy of photons with certain frequencies 

absorbed is measured.  

 

Figure  2.13: Block diagram of FTIR spectrometer 

Unlike traditional dispersive instruments- that use a monochromator to focus the IR 

beam on a grating or prism to be dispersed into a spectrum corresponds to its 

component wavenumbers- FTIR collects all wavelengths simultaneously resulting in 

an improvement of its sensitivity. It utilizes a beam splitter to divide the beam that 
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passes through, and sends one beam to a fixed mirror then back to the beam splitter. 

The other beam goes to a moving mirror (typically a few millimetres). The path length 

of the second beam is now variable against that reflected from the stationary-mirror 

beam due to the motion of the mirror. The two beams combine again at the beam 

splitter with difference path lengths producing a unique constructive and destructive 

interference signal (an interferogram). The interferogram produced contains 

information from every wavelength reflected from or transmitted through the sample 

in a time-domain form. The fast Fourier transformation mathematical method is then 

used to extract the intensity of light at each individual frequency using computer 

software. Different bonds in different materials will absorb different frequencies of the 

incident beam obtaining spectra with intensity against wavenumbers [35]. In this work, 

a Biorad FTS-40 and Varian 7000 FTIR spectrometer are used to obtain spectra of the 

samples in the range from 600 to 4000 cm
-1

 with 4 cm
-1

 resolution. Despite the 

importance of the FTIR technique in this kind of work, it has some limitations, such as 

difficulty in analysing spectra obtained with complex mixtures and assigning their 

peaks.  

2.8.2 Ultraviolet-Visible (UV-Vis) absorption spectroscopy 

UV-Vis spectroscopy is an absorption spectroscopy technique, in which the transitions 

are due to excitation of electrons. The technique deals with transitions of molecules or 

materials from the ground state to an excited state, which can be used to detect very 

low concentrations of components. UV-Vis spectroscopy utilizes a light source, 

monochromator (dispersion element), and a detector allied to a personal computer. 

Usually, a hydrogen or deuterium lamp is used as a source for the UV light, while a 

tungsten halogen source is used for visible light. At room temperature, all the electrons 

in the molecules settle in the ground state. These molecules can be excited to a higher 

energy state when they absorb the energy of incident photons coming from a source. 

The source should emit a continuous range of wavelengths in both the UV and visible 

region. In this work, a spectrophotometer (Thermo Spectronic GENESYS 6) with 

wavelength range from 250 to 900 nm was used. The double monochromator has more 

advantages than a single beam in the easy control afforded by using microprocessors. 

In addition, it has better spectral resolution and higher quality by limiting unwanted 
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light. As shown in Figure  2.14, two identical beams are allowed to pass to the detector. 

One of them passes through the sample, while the other passes through a reference 

solution. The beams have intensities of (I) and (I0) for sample and reference 

respectively. The detector records the ratio of the beam intensities of that passed 

through the sample to that of reference solution. This ratio is then sent by the 

spectrometer to the computer to determine the absorbance (log10 I0/I) corresponding to 

the amount of UV absorbed. 

 

Figure  2.14: Schematic diagram of UV beam path in double beam spectroscopy 

The absorbance as a function of wavelength in nm is recorded. Each peak appearing in 

the recorded spectrum corresponds to the absorption of energy at this wavelength by 

the molecule in the solution. Positions of wavelengths in the spectrum in which 

maxima occur correspond to different molecules. Depending on the structure of the 

molecule, the wavelength position and degree of absorption obtained in the spectrum 

are considered characteristic of this molecule. In particular, DNA has a strong 

absorption band centred at about 260 nm. 
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2.8.3 X-ray diffraction (XRD) 

XRD is a useful technique for the structural characterization of nanomaterials. It can 

be used to determine the precise position of atoms in crystal lattices or ions within a 

molecule due to the extra energy that can be absorbed by core electrons. XRD can also 

be used to estimate the particle sizes using the Scherrer formula as in equation 2.1 

[36]. The X-ray wavelength (λ) is comparable to the inter-atomic distance, and 

diffraction of X-rays from a crystal occurs at characteristic angles depending on the 

lattice plane separation according to the well-known Bragg equation (2.2). The width 

of the diffracted peaks is related to crystallite size by the Scherrer equation: 

)(cos 

K
D                                        ( 2.1) 

Where K is the Scherrer constant, θ is the Bragg angle, β is the line broadening at half 

maximum intensity in radians and D represents the size of the nanoparticle. 

In this work, the PANalytical X‟Pert pro multipurpose diffractometer (MPD) fitted 

with an X‟Celerator and a secondary graphite monochromatized Cu Kβ radiation (λ = 

0.15418 nm) is used. X‟Celerator is a movable ultra-fast X-ray detector that uses real 

time multiple strip (RTM) technology that works by an array of a hundred of detectors 

simultaneously collecting X-rays diffracted from a sample over a range of 2  angels. 

The Bragg relationship holds and can be written as [37]: 

 sin 2dn                ( 2.2) 
 

Where   is the wavelength of the X-ray, d is the distance between adjacent lattice 

planes (Figure 2.5), n is the order of reflection and   is the angle between the 

incoming X-rays and the normal to the reflecting lattice plane. When X-rays are 

scattered by the lattice plane, these interfere constructively according to Bragg‟s Law, 

enabling calculation of d and obtaining diffractograms as a function of 2 , while 

rotating the sample. In Figure  2.15, beam 2 travels sin 2d further than beam 1. If this 

difference is an integer number of  , then constructive interference occurs. In the XRD 

system used, the secondary monochromator eliminates florescent scattering from the 

specimen and results in better peak to background ratio from sample that contains 

transition metals and rare earth elements. Diffraction lines occur as a result of the 
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existence of a certain crystal planes at the correct angles with the incident X-rays 

creating constructive interference over a range of angels ( 2 = 25-80°) with 0.0334°  

and 150 seconds steps. In case of powder and polycrystalline samples, the 

configuration of the system is set so that the sample is immobile in the horizontal point 

while the X-ray tube and the detector both travel simultaneously over the angular 

range  . In the polycrystalline sample with all possible h,k,l planes, only crystallites 

having reflecting planes (h,k,l) parallel to the specimen surface will contribute to the 

reflected intensities. If the sample is in a powder form, every possible reflection from a 

certain set of h, k, l planes will have an equivalent number of crystallites contributing 

to it. Therefore, the incident X-ray beam should be rotated through all angles in order 

to produce all possible reflections. 

 

Figure  2.15: Basic feature of X-ray used. Reflection of X-ray from the 1
st
 and 2

nd
 rows of atoms in a 

solid lattice. The bold line is the path length difference (2dsinθ) [38] 

2.8.4 X-ray photoelectron (XPS) spectroscopy 

XPS is also a useful technique to chemically analyse very thin layers (~10 nm) of 

surfaces. The photoelectric effect is the basis of this technique. When a photon of 

energy hE   greater than the work function   (the minimum energy required to 

remove an electron from highest occupied energy level) is incident on a solid, it 

induces electron emission. In XPS, X-rays can cause photoemission from core (inner 

quantum shell) or valence levels of a solid surface. In this work, monochromic Al Kα 

X-ray source is used as the excitation source with photon energy 1486.7eV. Since the 

core electrons inside the atom are relatively insensitive to their surroundings, but 

strongly influenced by the Coulomb interaction with the nucleus, their binding energy 
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BE  is used as a signature of its atomic number. The kinetic energy of emitted 

photoelectrons is described by the equation [39]: 

  BKin EhE                 ( 2.3) 

The binding energy of the electron in the solid is related to the Fermi level (the highest 

occupied energy level in the system). Knowing the incident frequency and the work 

function  , elements can be identified by calculating the binding energy from 

equation 2.3. The output bands (Figure  2.16b) are displayed as number of electrons 

detected versus binding energy. The number of electrons can be measured by an 

electrostatic energy analyser comprising two isolated hemispheres with a potential 

difference between them as shown in Figure  2.16 (a).  

(a)

(b)

(a)

(b)

 

Figure  2.16: a) Schematic diagram of electrostatic energy analyser  in the XPS ,b) spectrum obtained 

from gold sample [39] 

For example, the energy spectrum (Figure  2.16b) of gold sample obtained from the 

ejected electrons with background and resonance peaks suggest information about the 

sample surface. Peaks in the spectrum correspond to electrons ejected due to the 

photoelectric effect. The lowest binding energy peaks correspond to emission from the 

valence band followed by a series of peaks of increasing binding energy. The spectrum 

also shows a 284 eV binding energy peak suggesting the presence of carbon in the 

sample surface. 
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2.9 Characterization with Scanning Probe Microscope (SPM) 

2.9.1 Atomic force microscopy (AFM) 

In this work, AFM imaging of the nanowires was performed in air using a Dimension 

Nanoscope V system (Veeco Inc., Metrology group) with 200-250 (μm) long probes at 

60-100 (kHz) resonant frequency, a 1-5 (N m
-1

) spring constant and NanoProbe tips 

(Veeco Inc.). Vibrational noise was reduced with an isolation system (Manfrotto). All 

of the AFM height images of nanowires were recorded in Tapping mode
TM

 on bare Si 

or Si/SiO2 surfaces at room temperature, unless otherwise indicated.  

AFM is a form of SPM invented by Binnig, Gerber and Quate in 1986. It has 

resolution near the atomic scale. Although not capable of the resolution of Scanning 

Tunneling Microscope (STM), it has become an indispensable tool in science because 

it is equally applicable to conducting and non-conducting samples. A schematic 

diagram of AFM is shown in Figure  2.17(a). It shows that the cantilever oscillates 

freely at its resonant frequency when it is away from the surface. The piezo crystal 

attached to the cantilever is used to excite the tip vertically causing the cantilever itself 

to oscillate. As it oscillates, the photodiode array receives the laser beam that reflected 

back from the surface causing an electronic signal. The reflected laser beam reveals 

information (topographical information) about the sample surface under investigation. 

The resonant frequency of the cantilever is given by the equation[40]: 

mass effective

constantspring
0 f              ( 2.4) 

A high resonance frequency can be obtained by reducing the cantilever mass. A high 

resonance frequency makes the scan time shorter. While fabricating a highly flexible 

cantilever with low spring constant for soft samples is needed to protect from damage 

during scanning. 
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Figure  2.17: (a) AFM schematic representation, (b) tapping cantilever on sample. Reference; di 

Dimension Instruction manual, Veeco Instruments Inc. 2004 manual 

Tapping mode is usually used to image soft samples, such as colloidal particles on a 

surface, due to reduced frictional and shear forces. Electrical measurements can be made 

in the AFM system using conductive tips, by directly contacting the sample or by sensing 

the electrical forces; an EFM phase image can be used to produce images of features in 

the nanometre size with clearer fine features, alongside electrical information on the 

sample.  

2.9.2 Conductive AFM characterization (C-AFM) 

C-AFM techniques can provide direct electrical characterization, as well as the surface 

topography, of individual nanowires through the use of a metal coated tip to contact the 

nanowire. The main technical difficulty lies in making a second connection between the 

nanowire and the external circuit. In C-AFM experiments, single nanowires were selected 

at the edge of a dense mass of nanowires on a hydrophilic SiO2/Si substrate [41]. The 

dense mass of nanowires served as one contact (Figure  2.18), and was itself connected to 

the metallic chuck using In/Ga eutectic. Alternatively, a single nanowire can be attached 

to a Au electrode and then eutectic can provide the connection to the Au instead of the 

dense nanowires as shown in Figure  2.18 (b). The other electrical contact was the tip of a 

metal coated cantilever; although the tip was located about 1 mm from the In/Ga contact. 
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The C-AFM images were recorded with different biases applied between the cantilever 

and the metallic chuck. Zero current was observed when the tip was above bare Si/SiO2. 

However, currents were observed when the tip was in contact with the nanowire. After 

collecting an image, the closed loop positioning system of the Nanoscope V is used to 

touch the nanowire at defined points and an I-V curve was recorded over a range of bias 

voltages. The slope of this I-V curve at zero bias was used to estimate the conductance of 

the nanowire. The data is interpreted in terms of a simple series circuit comprising three 

resistances; Rtip , Rext and Rwire. Where Rtip is the tip/nanowire contact resistance, Rext is 

the resistance between the nanowire and the external circuit and Rwire is the resistance of 

the portion of the nanowire between the tip and the main drop deposit. The measured 

circuit resistance is clearly the sum of these, and it is assumed that all the distance 

dependence lies in Rwire. 

 

 

 

Figure  2.18: (a) Schematic representation of C-AFM measurements, (b) Optical image of nanowire 

attached to Au electrode, inset; AFM image of the nanowire aligned on the SiO2, scale bar 1 μm 

As an example of using C-AFM to study electrical properties of nanowires, a single 

conductive nanowire was prepared and aligned on a SiO2/Si substrate then connected to 

the metallic chuck using the eutectic. The other electrical contact was made with the tip of 

a metal coated cantilever. The C-AFM image was recorded at a bias range (0-10 V) 

applied between the cantilever and the metallic chuck. The imaged area was about 1mm 

away from the In/Ga. All the measurements were performed by bringing the tip to a spot 

on the nanowire, and at the maximum tip indentation. I-V curves were acquired in air and 

at room temperature. In order to study the change of resistance with length, I-V curves 

were recorded at different fixed spots along the nanowire with a bias between -7 to 7V, 
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and prior to the acquisition of I-V data, the loading force applied to the contact was 

selected. Figure  2.19 shows the resistance change of a single nanowire with distance (the 

inset of Figure  2.19). In the plot, the circuit resistance increases in a roughly linear 

manner with d, because the current must flow through a longer portion of the nanowire, 

and Rwire(d) is the largest resistance in the circuit. However, to make a quantitative 

analysis, it is necessary to evaluate also Rtip and Rext . Figure  2.19 also shows the effect of 

increasing the tip/nanowire contact force by increasing the setpoint voltage from 0V to 

1.0V. A clear decrease in the intercept on the resistance axis is observed at higher forces, 

which is expected if Rtip rather than Rext is the dominant contribution to this intercept. 

There is also a small apparent change in the slope of the least square regression lines, 

which is not expected on the basis of a simple series resistance model of the experiment. 

However, this effect is probably not statistically significant given the scatter. The slope of 

the best fit lines gives the nanowire resistance per unit length = 1.0 ± 0.2 x 10
11

 Ω cm
- 1

. 

Using the diameter of the nanowire observed in the contact mode image (Figure  2.19 

inset), an estimated conductivity of 2.5±0.5 S cm
-1

 for the nanowire was obtained. The 

error in measuring resistance of the nanowire could be as a result of the roughness of the 

surface morphology, so it is not appropriate to assume that the contact resistance of the C-

AFM is constant at each point along the nanowire. 

 

Figure  2.19: PolyIndole-DNA nanowire resistance as a function of tip-contact relative 

distance for different applied forces. The best fitting lines for the data appear unparallel 

because of the scatter. The inset shows a C-AFM image of the nanowire, scale bar 1 m[41]  
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2.9.3 Electrostatic force microscopy (EFM) characterization 

The EFM technique is useful in investigating conductivity of nanostructure materials and 

determining surface charges distribution. For example, it has been used to detect charges 

in silicon nanocrystals in SiO2 dielectric films [42] and semiconductor nanocrystals [43]. 

Furthermore, it has been used to probe the electrical conductivity of carbon nanotubes and 

DNA [44, 45], charge distribution or dopant concentration in the nanometre scale [47, 

48]. In addition, the EFM technique has been used to measure the permittivity of 

insulating materials, such as polymer fibers [46].  

EFM phase imaging maps the force gradient above the sample with the application of a 

DC potential bias between the sample and the tip and observing the phase angle between 

the driving force applied to the cantilever and the tip response. This has also been called 

scanned conductance microscopy, because conductive objects on a dielectric film modify 

the capacitance between the tip and the substrate in a manner distinct from that due to 

polarisable insulators [51]. 

In EFM measurements, a DC tip-sample bias is applied with the tip at a fixed height 

above the nanowire, which is aligned on a dielectric film (SiO2 in our work) as shown in 

the schematic diagram (Figure  2.20). Measurements are taken in two passes as depicted in 

Figure  2.21. During the first pass, the tip performs a main scan in Tapping Mode™ to 

image the surface topography. The tip is then raised to a specified scan height (>50nm), 

and a second interleave scan is performed, while maintaining a constant separation 

between the tip and local surface topography. 

In general, EFM maps the attractive and repulsive forces between the tip and the sample 

as shown in Figure  2.22. The long-range electric forces shift the resonance frequency of 

the oscillating cantilever. This shift is detected, and produces the phase image.  
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Figure  2.20: Schematic diagram of EFM Lift Mode™ measurement. Nanowire with 

radius r and length l is aligned on an insulator thin layer of SiO2 with a thickness t, and 

scan height h 

 

Figure  2.21: Schematic diagram of the EFM two-pass scan 

 

 

Figure  2.22: Schematic diagram of the attractive and repulsive forces in the EFM experiment  
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The tip-sample interaction changes the AFM cantilever resonance frequency. The 

resonant frequency is sensitive to any force gradient. Attractive forces make the 

cantilever softer reducing its resonant frequency, while repulsive forces make it stiffer 

increasing its resonant frequency.  

One of the advantages of using tapping mode is that it does not disturb or damage the 

sample under investigation. In EFM experiments, a DC bias is applied between the 

conductive tip of the cantilever and the sample, with the tip lifted at a fixed height 

above the nanowire. The phase shift of the cantilever resonant frequency with respect 

to the driving frequency depends on the DC voltage, and the capacitance between the 

tip and the underlying substrate. As the tip passes over the nanowire, the phase shifts 

with respect to the background value over the dielectric/substrate, which forms the 

phase image are recorded. The phase of the tip motion with respect to the driving force 

depends on the DC voltage and the capacitance between the tip and the underlying 

substrate.  

2.10 EFM Theory 

In literature the cantilever considered as a harmonic oscillator, driven with frequency 

ω (damping coefficient γ) and resonant frequency mk0  , then the phase shift φ 

between the driving force and the cantilever resonance frequency ω0 is given by [46]: 

22
0

tan






                     ( 2.5) 

From equation (2.5), the phase shift is negative when ( 0  ). Whereas, it is positive 

when (  > 0 ), as can be seen in Figure  2.23.  
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Figure  2.23: Resonance curve. The resonance frequency shifted Δ  from  0 to 

 = 0+Δ , and phase shift Δφ occurs at the frequency  0 [47] 

 

At resonance, the phase shift  = – π/2. But, under usual EFM conventions, the bare 

substrate exhibits zero phase shift. This is because 2/  is subtracted from all 

measured phase shifts: 

2/)2/(                    ( 2.6) 

The energy stored in a spring is given by:  

2
spring 21E hk                      ( 2.7) 

The energy stored in capacitance is given by: 

221E VC                                      ( 2.8) 

So, the total energy, as a function of h: 

 

22

tot )(2121E VhChk                         ( 2.9) 

 

kkVhCk
h




 2''

2

tot

2

)(21
E

           ( 2.10) 

Where )(hC  is the tip-substrate capacitance, k is the spring constant of the cantilever, 

and V is the bias voltage applied between the tip and the substrate. Therefore, 

2'' )(
2

1
VhC is equivalent to a change in kk ; . For small forces, )(F' h << k, the 

frequency shift ∆ω and the phase shift  are proportional to the force gradient 
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)(F' h [54, 55]: 

2''
0

'
0 )(k)4()(Fk)2( VhCh              ( 2.11) 

2''' )(k)2Q()(Fk)Q( VhCh                ( 2.12) 

Where )('' hC is the second derivative of the tip-sample capacitance, and Q is the 

quality factor. When the tip is above the substrate, and C1 is the tip-sample capacitance 

2'
1 )(21)F( tipVhCh  , hence a negative phase shift results as shown in Equation 2.12.  

2
10 )(

2
tan tip

" VhC
k

Q
                        ( 2.13) 

Staii et al suggested a model for the wire/substrate capacitance[46]. They considered 

the tip and sample as a sphere and dielectric plane capacitor. When the tip is at a 

distance h above bare SiO2, the second derivative of the capacitance can be written as:  

3

0
2

1
)(

2
)(

oxox

tip"

th

R
hC






                        ( 2.14) 

Where ox is the SiO2 dielectric constant, tox is the oxide thickness and tipR is the tip 

radius. But, when the tip is above the nanowires aligned on the oxide surface, another 

capacitance C2 (h) should be added with electrostatic force F2 (h) and phase shift Φ : 

3

0

2

2
)/(

2
)(

nwoxox

tip"

Dth

R
hC






           ( 2.15) 

Where nw is the dielectric constant of the nanowires, and D its diameter. 

So, the shift when the electrostatic forces are small can be written as: 

2
210 ))()((

2
)tan( tip

""
VhChC

k

Q
           ( 2.16) 

Equations (2.15) and (2.16) show that the insulating materials always exhibit a positive 

phase shift with respect to the bare SiO2 insulators. For conductive, as opposed to 

merely polarisable materials, the charge can move along the nanowire and the relevant 

length is the nanowire length, not the tip radius. This increases the effect of the 

nanowire capacitance in equation 2.15 and can result in a negative phase shift. Further, 

it predicts a parabolic dependence of the phase shift as a function of the applied bias. 
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Figure  2.24 and Figure  2.25 illustrate this dependency when applying negative and 

positive voltages between the tip and the nanowire aligned on SiO2.  

 

 

 

 

 

Figure  2.24: (a) EFM phase image of Cu2O-DNA nanowire when a bias of 0, -6 and +6 V 

was applied between the cantilever‟s tip and the substrate. Scale bar 1μm and scale height 

3°. (b) Cross section profile of blue, red, and green lines corresponds to 0, -6 and +6 V 

respectively 

As shown in Figure  2.24 and Figure  2.25, when the sum of the two forces is larger 

than each individual one, the phase shift shows a darker area when the cantilever is on 

each side of the nanowire. Therefore, the EFM phase image of the nanowire exhibits a 

double negative phase shift corresponding to the dark line on each side (Figure  2.25b).  

 

 

 

 

Figure  2.25: (a) EFM phase image of Ag-DNA nanowire when a bias of +6, -6 and 0 V 

was applied between the cantilever tip and the substrate. Scale bar 1μm and scale height 

3°. (b) Cross section profile of (a) red, blue and green corresponds to +6 V, -6 V and 0 V 

respectively 
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2.11 The conductivity of nanowires and hopping theory 

The conductivity   of wires with diameter larger than 10 nm can be calculated from 

the resistance R  of a material of given cross sectional area A , and length l  using 

equation:  

RA

l
                       ( 2.17) 

Siemens per centimetre (S cm
-1

) is the unit of the conductivity, which is the reciprocal 

of resistivity. The conductivity of any material changes with temperature and 

depending on the direction of this change it is possible to identify the nature of this 

material (metal, semiconductor etc). The conductivity of an intrinsic semiconductor 

increases with increasing temperature, because more valence electrons are exited into 

the conduction band, whereas it decreases in the case of metals (because of electron-

phonon scattering).  In polymers the situation is different and will be explained in the 

next paragraphs.  

Impurities are exploited to improve the electrical conductivity of semiconductors, as 

these introduce quantum states in the semiconductor‟s band gap. Donor dopants (extra 

electrons) with states below the conduction band can be easily ionised into the 

conduction band (n-type material). While acceptor dopants (holes) have energy states 

close to the valence band. When these holes are occupied by electrons from another 

atom in the system, it leaves a mobile hole in the valence band (p-type material).  

In crystalline semiconductors, the lattice is more rigid than in conductive polymers 

(1D). This means that the wavefunction of the electron (or hole) in a crystalline 

semiconductor is well described by a Bloch function (plane wave times a function 

periodic in the lattice). In contrast, because the "lattice" in a polymer chain distorts 

easily (elastic energy required is much less than in a crystal), the lattice will distort, if 

it can lower the energy of the charge carrier (holes in our case). The wavefunction in a 

crystalline semiconductor is delocalized )(xue ikx , where )(xu has the periodicity of 

the lattice with momentum kp  . However in a polymer the wavefunction typically 

is more “atomic or molecular” in nature, e.g., 0/ ar
e


   and is localized. There is 

usually no equivalent of the crystal momentum, k.  
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By distorting the bond lengths in the polymer chain, the hole can be localised at the 

cost of an increase in elastic energy and also an increase in kinetic energy (via the 

uncertainty principle). However, as well as the increase in those contributions to the 

energy, there is a decrease in localisation because of the greatly increased Coulomb 

interaction between the hole and the "dopant" anion. In conductive polymers this 

decrease is very strong and is generally thought to lead to a localisation of the hole 

(electron) wavefunctions on a length scale equal to few monomer sub units [48].  

This difference in the electronic structure between "normal" crystalline 

semiconductors and conjugated polymers means that the mechanism of charge 

transport is completely different. For example, electrons in Si accelerate in an electric 

field and scatter by interaction with lattice vibrations (the quanta of which are called 

phonons). Whereas, holes or electrons in conjugated polymers make hops between 

sites, which are localised. The rate of these hops depends on the electric field, the 

temperature and to the product of concentrations of neighbouring empty and filled 

sites [49]. 

Moreover, in conductive polymer doping is not the same as the doping in 

semiconductors. In the latter, for example doping Si with phosphorus atoms, the Si 

acquire extra electrons weakly bonded to the nucleus. While in conducting polymer, 

for example PPy, it can be doped by removing an electron to make positive charges 

(called radical cations in the chemistry literature and polarons in the physics literature) 

the PPy must be neutral over all, so counter anions are present. These charges are 

strongly localized within a region of size 3-4 rings of Py, because of strong 

electrostatic interaction. They are therefore present at a high concentration when 

compared to the dopants in crystalline semiconductors. In a semiconductor such as Si 

the typical dopant density of phosphorus is about 1 dopant/100,000 atoms for material 

of moderate resistivity.  

When applying electric field, in case of polymer samples, two possibilities are 

expected; first, mobile ions for example chloride ions (Cl
-
), tend to move to the 

positive electrode. On the other hand, positive ions, such as Na
+
, will move to the other 

side (negative electrode). If there are only Cl
-
 ions as in this case and when apply a 

bias, Cl
 - 

ions move toward the positive electrode creating a deficit of Cl
-
 in one 
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electrode and excess Cl
-
 on the other electrode as depicted in the schematic diagram 

(Figure  2.26 b). When a bias is applied, chloride ions move creating a space charge 

layers on both sides, that means, nearly all the potential appears in the very thin layer 

in the left hand side of Figure  2.26 (c). In between it is neutral, where most of the 

potential is dropped. In this case, the result is an I-V curve as shown in Figure  2.26 (d) 

and by increasing the potential to higher values there are no changes in the current, 

which tends to saturate. By increasing the potential, the result is to end up with two 

space charge layers and electroneturality in the middle with chloride ions equal to 

positive charges at which the electric field equals zero and most of the resistance is in 

this region. In case of fixed anions (Figure  2.26 e), the space charge layers can be 

reduced to be very thin by controlling the bias. So, if the bias is increased, the electric 

field becomes bigger. In this case, the result is an I-V curve as the one shown in 

Figure  2.26 (f), exhibiting linear response near zero bias and rising approximately 

exponentially at larger potential differences.  Larger potential differences cause 

migration of anions to diminish the voltage gradient in the polymer, with formation of 

space charge layers and electrolysis at the electrode/polymer interface as shown in 

Figure  2.26 (c). In the case when PPy wrapped on the DNA and the charges are the 

phosphate groups, which are the counter anions, where it cannot move, I-V behaviour 

as in Figure  2.26 (f) is observed. Equation (2.18) describes accurately this behaviour 

[49];  

I = Io(exp (-α nFV/RT ) – exp ((l - α) nFV/RT ))        ( 2.18) 

Where V and Io and α are the potential difference, exchange current and the barrier 

symmetry factor respectively. This equation describes the linear and the exponential I-

V responses at small and large potential differences.  

Here, DNA is used as a template for different types of nanomaterials to make 

conductive nanowires. As discussed in the previous sections, these nanowires can also 

be doped as in the bulk form to alter conductivity or compose its type. The 

conductivity of nanowires can be investigated also by other means such as the C-AFM 

method, the EFM technique and the two-terminal technique. Yet, the two-terminal 

technique can be used successfully to determine the type of these different nanowires 

during the temperature dependence of the conductivity experiment. 
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Figure  2.26: Schematic diagram of polymer nanowire between two electrodes and the 

mechanism of anions migration. (c) and (e) mobile and fixed anions cases with its 

expected I-V curves 

2.12 Temperature dependence of conductivity of nanowires 

Metals, semiconductors and conducting polymer are different in the way they conduct. 

The dominant contribution to the changing of conductivity with temperature in 

semiconductors is the changing of number of carriers. Therefore, conducting polymers 

can not be treated as if they are n or p-type semiconductors. For example, in Si, the 

electrons can be represented as plane waves and they are moving through the lattice 

until they scattered by phonon.  
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As discussed before, in semiconductors, electrons can be described in terms of very 

well delocalized Bloch function. Whereas, charge carriers in conducting polymer are 

well localized to particular sites with wavefunctions are more localized and the 

electronic structure is “molecular-like” and best described by molecular orbital. 

Though, localized charge carriers can move through the polymer by hopping from one 

localized site to the next [48, 50, 51].  

In this work, I looked at several nanowire types and interpret their I-V characteristics 

in terms of temperature. I-V measurements were carried out on a single nanowire 

aligned between Au electrodes and the contact to the electrode pads was made using 

tungsten probes.  
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3. Chapter 3: Self-assembly of DNA-Templated PPy Nanowires: 

Spontaneous Formation of Nanoropes 

3.1    Introduction 

As discussed in chapter 1, it is difficult and expensive to achieve nanometre scale 

dimensions using conventional photolithography. For this reason, significant efforts 

have been focussed on developing new ways to fabricate at nanostructure dimensions. 

The bottom-up approach, where nanostructures are assembled from molecules, has 

become an alternative to top–down approaches. 

Using DNA as a template for conductive materials is one of the approaches presented 

as an attractive method for the development of one-dimensional (1D) structures. 

Metals such as Au, [52] , Pt [26, 53, 54] and Pd [25] or semiconductors [30-32], and 

conducting polymers [22] have all been deposited on DNA to prepare conductive 

nanowires. The advantages of using DNA as a template can be summarized as follows:  

First, it is a chemically robust material, which can be obtained in high purity.  

Second, single molecules of DNA many micrometres long are available.  

Third, DNA composition and structure are well defined which is important because 

templating reactions rely on the non-covalent interaction of the reagents with the 

template.  

DNA possesses two classes of binding site, anionic phosphate groups and aromatic 

bases, which have been important for templating reactions. In the case of conductive 

polymers, the growing cationic polymer chains associate with the anionic phosphate 

backbone. 

This chapter shows that over longer periods of time, a further self-assembly process 

occurs in which conductive PPy-DNA nanowires form rope-like structures 

(nanoropes). The conductivity of the nanowires formed by templating PPy on λ-DNA 

molecules were studied by means of C-AFM and two-terminal I–V measurements on a 

single nanorope.  

A molecular combing method was used to align PPy–DNA nanoropes and make a 

simple two-terminal electrical device for I-V characterization.  It was possible to 
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image their conducting behaviour by EFM and C-AFM techniques. The atomic force 

microscopic presented evidence that the „nanorope‟ assembly process consists of 

individual PPy-DNA nanowires twisting around each other.  

3.2  PPy–DNA nanowires preparation 

A one-pot reaction was performed to synthesise PPy–DNA nanowires as in 

reference[22]. λ-DNA solution (20 μL; 500 ng μL
-1

 in 10 mM Tris-HCl pH 8 + 1 mM 

EDTA) is diluted in Nanopure water containing MgCl2 (5 μL; 0.5 mM). The solution 

was mixed with freshly distilled Py (5 μL; 3mM), then mixed thoroughly. FeCl3 (5 μL; 

1 mM), an oxidant, was added and the solution was mixed and incubated at RT. 

3.3  PPy–DNA nanowires alignment 

To assist with alignment of nanowires and ropes across Au microelectrodes or upon 

substrate surface, the substrate or the chip was first treated with chlorotrimethylsilane 

(Me3SiCl) vapour for 20 min. A methyl-terminated monolayer is formed on the oxide 

surface due to the reaction between hydroxyl-terminated SiO2 and Me3SiCl. This 

increases the water contact angle and reduces the surface wettability; the hydrophobic 

surface inhibits the adsorption of the PPy–DNA nanowires and enables one to study 

individual ropes rather than dense networks that adsorb on hydrophilic surfaces. 

Following silanization, a drop of PPy–DNA solution (3 μL) was deposited on the chip 

and after 10 s the drop was dragged using a pipette to align the nanowires across the 

surface.  

3.4  Two-terminal current–voltage measurements  

Au microelectrodes were manufactured using standard photolithographic techniques 

described in chapter 2. The nanowire was aligned between Au microelectrodes for 

electrical characterization. Each microelectrode (16 μm long, 2.5 μm width) was 

connected to a larger Au pad (0.5 mm x 1 mm), which served as probe contacts for    

I–V characterization. The procedure of embedding the Au into the oxide dielectric 

allowed to use thick, highly continuous, Au films, whilst retaining only a small step 

height at the Au/oxide boundary. This greatly facilitates the alignment and AFM 

imaging of the nanowires between electrode pairs. 
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A Cascade Microtech Summit 11000 series probe station with Hewlett Packard 

semiconductor device analyzer (HP/Agilent B1500A) controlled by Agilent 

EasyEXPERT software were used for the I–V measurements. Nanowires were placed 

inside the chamber of the probe station, which was sited on a vibration isolation table 

under N2 gas in order to avoid parasitic currents arising from humid air.  

3.5  Electrical measurements using scanning conductance microscopy 

Nanowires were prepared by allowing a solution of PPy–DNA nanoropes (2 mL) to 

dry on a 1 cm
2
 SiO2/Si chip at room temperature for half an hour. The oxide thickness 

used was 220 nm as determined by the spectrometric thin film analyser (Filmetrics 

F40). Electrical contact was made by applying a drop of In/Ga eutectic to one corner 

of the chip and to the chuck. C-AFM and EFM electrical characterization was 

performed in air on a Dimension Nanoscope V system and on vibrational noise 

reduction.  

For C-AFM and EFM measurements, MESP probes were used (n-doped Si cantilevers, 

with a metallic Co/Cr coating, Veeco Inc.). These probes are 200–250 μm long, with 

resonant frequency around 70 kHz, quality factor (Q) about 250, and a spring constant 

between 1 and 5 N m
-1

. In our EFM experiments, an independently controlled bias was 

used to create an electrostatic field between the tip and the sample (the tip was 

grounded, while the bias was applied at the sample).  

 The images reported in section  3.6.2 shows the phase of the tip oscillation at a set lift 

height (50–70 nm typical) above the surface. In this mode, EFM has also been known 

as scanning conductance microscopy (SCM), because the phase is related to the force 

gradient and is sensitive to the conductance of nanowires, as well as their 

polarisability. 

For C-AFM measurements, the bias (±10 V) was also applied between the tip and the 

sample grounded as shown in inset of Figure  3.1. The C-AFM imaging was performed 

in contact mode, with an applied bias of 9 V. The imaged area was about 1 mm away 

from the In/Ga contact. 
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Figure  3.1: Optical image of AFM cantilever and nanowires. Inset; Schematic illustration of the 

experimental C-AFM set-up used 

3.6    Results and discussion 

3.6.1 Nanowires fabrication 

The classical method of Py oxidation in the presence of FeCl3 has been used for the 

formation of PPy–DNA nanowires[7]. Self-assembled PPy–DNA nanowires are 

formed when DNA is added to the polymerization solution as illustrated in Figure  3.2, 

because cationic PPy is strongly attracted to the anionic phosphate backbone of DNA. 

Any excess charge is compensated by cations or anions from the solution [22]. 

PPy–DNA solution was allowed to stand at room temperature and aliquots were 

removed, deposited on Si/SiO2 and imaged after standing for different reaction times. 

The PPy–DNA strands were characterised by  two-terminal I–V measurements and 

confirmed that the different monomer/oxidant ratio produces nanowires of similar 

conductance to those reported previously [22]. The electrostatic interaction between 

positive charges of PPy and negative charges of DNA induces the preferential growth 

of polymer along the DNA chains. With a reaction time of around 3 hours, thin 

nanowires can be visualised by AFM (apparent diameters between 1 and 3 nm). These 

nanowires consist of many PPy chains wrapped around a λ-DNA molecule referred to 

as „strands‟ or nanowires. A longer incubation time (1–6 days) generates assemblies of 

nanowire strands, which are referred to as nanoropes (diameters between 5 and 30 

nm); Illustration of the assembly of conductive polymer/λ-DNA ropes. The first step is 
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the templated growth of PPy on λ-DNA (1–3 h); the second step is the slower 

assembly by twisting or braiding of the PPy–DNA strands into ropes (1–6 days). 

AFM images provide a convenient method to observe the polymerization because the 

apparent height of bare DNA molecules is around 0.5 nm, whereas the templated 

polymer nanowires are substantially thicker (>2 nm). Despite the fact that apparent 

heights of DNA molecules revealed by AFM are well known to be less than the true 

height, the technique nevertheless can detect the thickening of the strands as the 

polymerization process proceeds. 

 

Figure  3.2: Illustration of the assembly of conductive polymer/λ-DNA ropes. The first 

step is the templated growth of PPy on λ-DNA (1–3 h); the second step is the slower 

assembly by twisting of the PPy–DNA strands into ropes (1–6 days) 
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Figure  3.3: AFM images of PPy–DNA nanowires and nanoropes on a SiO2/ Si surface. 

All images were taken in tapping mode and the data scale corresponds to a height range 

of 8 nm. a) Nanowires observed 3 h after preparation. The scale bar is 0.5 μm; b) and c) 

two representative images of „nanorope‟ samples observed after standing for 24 h. The 

scale bar is 2 μm [55] 

AFM images shown in Figure 3.3 (a) reveal a mixture of bare DNA molecules (height 

0.5nm) and PPy–DNA nanowires (height 2nm) prepared at short reaction times (3h). 

The individual nanowire strands have uniform polymer coverage and there are few 

polymer deposits, which are not templated on the DNA; these observations support the 

idea that PPy chains formed during chemical oxidation are strongly bound to DNA 

molecules. 

The thickness of the nanowires increased with time. The thin nanowires observed in 

Figure  3.3(a) undergo an agglomeration or assembly process, which is clearly evident 

in Figure  3.3(b) and (c) after a reaction time of 24h. This process cannot be simply a 

continual, slow polymerization of Py, because the oxidant, FeCl3, supply is limited, 

and because the AFM images show that the thicker nanowires are entangled bundles as 

can be seen in Figure  3.3 (b) and (c). The bundles often show only a small variation in 

diameter along their length, but near their ends, they have a tendency to unravel and 

the individual PPy–DNA strands can be directly observed. These strands are too thick 
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to be single DNA molecules. Because of the resemblance of their ends to the frayed 

end of a rope, these structures are commonly referred to as nanoropes. In this work, it 

is proposed that the driving force for this process is similar to the condensation of 

DNA by multivalent cations [56] and cationic polymers [57, 58], although the 

structures formed by PPy–DNA appear to be rather different owing to the stiffness of 

PPy. Some similar bundles have been reported in the Zn
2+

/ DNA system known as M-

DNA [59]. 

The agglomeration process is gradual and continues for days, generating even thicker 

ropes. The bundle presented here is anchored in a very dense PPy–DNA network, 

resembling a net at the bottom of Figure  3.4. The end anchored to the net is thicker 

(12nm) than the opposite end (7.5nm), where the individual nanowires comprising the 

rope can be clearly seen; Figure  3.4, especially, has the appearance of a frayed shoe 

lace. 

A 3:1 mole ratio of Py/oxidant was used with the expectation that the polymerization 

reaction will stop when the ferric ion in solution is depleted. However, the nanowires 

formed at short times can assemble non-covalently because of the compensation of the 

charge on the phosphate backbone of DNA [60]. A close examination of the end of the 

bundle presented in Figure  3.4 shows that individual nanowires have a thickness 

similar to that obtained for the nanowires formed after a short reaction time (1–2 nm). 

Data for the evolution of the nanowires and ropes are summarised in Table 3.1. 

 The mean thickness (AFM height) includes a small fraction of bare DNA strands 

(apparent thickness 0.3–0.5 nm), some individual nanowires (1–3nm) and, at longer 

times, some nanoropes (up to 18 nm after 2 days and 70 nm after 1 month). The 

presence of nanoropes in this data shows-up most clearly in the range of thicknesses 

measured (min–max) rather than the mean thickness, because the sample always 

includes some individual nanowires and a few bare DNA molecules.  
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Figure  3.4. AFM images of PPy–DNA nanoropes (7.2 nm diameter) on a SiO2/Si 

surface. This sample was left to assemble for 48 h before deposition on the surface for 

imaging. The „frayed ends‟ in these examples confirm the rope-like nature of these 

structures. All images were taken in tapping mode. a) Scale bar 1 μm. b) Scale bar 500 

nm. Data scale 8 nm in both cases [55] 

Table  3.1: Mean thickness and range of thickness of nanowire and nanorope samples as 

a function of reaction time. The thickness measurements were estimated as the height 

observed in AFM image. 

Time (h) Mean thickness± 

standard deviation (nm) 

Thickness (AFM height) 

range (nm) 

3 0.93 ± 0.43 0.3–2.3 

24 2.5 ± 1.9 0.3–6.9 

48 3.0 ± 3.8 0.3–17.7 

144 5.5 ± 6.7 0.3–30.0 

672 9.7 ± 14 0.9–70.0 

The assembly process appears very slow compared to, e.g. DNA condensation by 

multivalent ions, because only the presence of significant numbers of nanoropes after 

24h is detected. The solutions were allowed to stand for periods of up to 1 month and 

observed that the nanoropes are still increasing in diameter during this time, as shown 

in Table 3.1. This data also strongly suggest that the reaction does not reach 

equilibrium after the longest times studied in this work, and the assembly of these 

structures are effectively irreversible at room temperature on normal experimental 

timescales.  

AFM image of a PPy–DNA nanorope is shown in Figure  3.5(a), observed after 6 days 

from preparation, while Figure  3.5(b) shows nanowires 1 month after preparation. The 



 

 52 

scale bars are 500 nm and the grayscale corresponds to a height of 12 nm in both 

cases. When the solution of nanoropes is allowed to stand for very long periods, up to 

1 month, their width can increase up to 150–200 nm (Figure  3.5(b)) and in very few 

cases structures with apparent heights of 70 nm were observed. It should also be noted 

that the structures formed after 1 month are much less regular and less smooth than 

those present after a few days; the example in Figure  3.5(b) shows a thick main trunk 

with many thinner branches.  

Additional AFM investigations of the structure of the nanoropes were possible by 

imaging the defects rather than the smooth sections, i.e. the frayed ends and similar 

structures sometimes observed in the middle of a nanorope.  

 

 

 

 

Figure  3.5. a) Tapping mode AFM image of a PPy–DNA nanorope, observed 6 days after 

preparation; the substrate is a SiO2/Si surface; b) 1 month after preparation. The scale 

bars are 500 nm and the grayscale corresponds to a height of 12 nm in both cases[55] 

In order to template conductive polymers on DNA by chemical oxidation of the 

monomer, it is necessary for the monomer and DNA to be soluble in a common 

solvent and that the monomer can be oxidised at sufficiently low potentials to 

minimise side reactions. These nanoropes all show regions where their morphology is 

rather smooth and their diameter is relatively constant. Other regions, analogous to 

those seen in Figure  3.4 with frayed ends, are also observed. 

Examination of the frayed ends in AFM images, where individual polymer/DNA 

strands are visible, suggests that the assembly process involves the braiding of 

individual strands, where the term strand denotes the 1–3 nm thick nanowires and not 

necessarily single molecules. There is some regularity in the process, which can also 

be detected in the line section taken along an apparently smooth portion of a rope away 
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from the frayed end. It is proposed that the regular undulations seen in these line 

sections are the result of an assembly process in which several strands are simply 

twisted together to form a simple rope structure. The regular undulations are therefore 

a reflection of the regularity of the twisting. On their own, the line sections cannot 

establish that the ropes are formed solely by twisting strands together without some 

more complex braiding. However, this hypothesis also provides a natural explanation 

for the „unravelling‟ that can be observed in the middle of some nanoropes.  

The AFM images are generally not able to resolve the question of whether the braiding 

of the strands in any particular example is trivial or not, because not all the crossings 

can be observed. However, Figure  3.6 shows one example of a PPy–DNA sample 

where the braiding is certainly more complex than a simple twisting of the strands 

about each other. In summary, the assembly process proceeds by the braiding of 

polymer/DNA strands to form ropes; both trivial and non-trivial braiding is observed. 

  

Figure  3.6. a) AFM image of two interconnected PPy–DNA nanowires and its 

profile cross-section (b) [55] 

 

In order to align single molecules, nanowires or nanoropes between microfabricated 

Au electrodes, it is clearly desirable to have a low density of nanowires/nanoropes on 

the surface. Nanowires and nanoropes of PPy–DNA combed by dragging a droplet of 

solution across the surface: the fluid flow causes alignment in the direction of 

movement as long as the adhesion to the surface is low. The optimum contact angle of 

the surface to produce single nanowires/nanoropes spanning contact electrodes was 

found before in the range of 65–70° [55]. I have measured the contact angle of 

different substrate surfaces used and the data obtained confirm previously reported 

values, and fall in the same range with ± 5° error. In general, a silanization time of 20 
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minutes is employed in order to fabricate devices consisting of a single nanorope 

stretched between two Au microelectrodes. The procedure is also facilitated by embed-

ding the Au into the SiO2 layer so that there is a minimal height difference between the 

Au and the oxide.  

3.6.2 Electrostatic force microscopy measurements  

Since C-AFM uses contact mode and is best applied to dense networks of nanoropes 

(see below), EFM was also used to provide independent observations of the 

conduction of single nanoropes. 

In the qualitative analysis, the electrostatic force is negligible compared to the short 

range forces in the first pass, but that the electrostatic force dominates in the second 

pass [61]. As shown by previous workers [46], negative phase shifts (with respect to 

the background) are only observed when imaging 1D structures that are conductive. As 

discussed before in chapter 2, section  2.10, equation (2.12) represents the phase shift, 

which proportional to the second derivative of the tip/surface capacitance with respect 

to the lift height. The capacitance is the series combination of the tip/nanorope and 

nanorope/surface capacitors. From equations (2.13), (2.14) and (2.15), the phase shift 

for an insulating object estimated using a model geometry in which the nanorope is 

represented by the area of a thin dielectric strip directly under the tip, itself modelled 

as a disc of radius R,  
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where Q is the quality factor, k the cantilever spring constant, tox the oxide thickness 

and D is the diameter of the nanorope. The first term is the background contribution 

due to the tip/oxide/Si capacitance and the second term is due to the tip/ nanorope/Si 

capacitance. Whilst equation 3.1 is based on an approximate geometry, it clearly 

shows that the phase shift is positive for any finite value of the dielectric constant of 

the nanorope. A negative phase shift cannot occur solely as a result of the nanorope 

polarisability. However, when the nanorope is conductive, the charge stored on the 

PPy-DNA nanorope/Si capacitor can be spread along the whole length of the 

nanorope, L. In effect, the second term in Equation (3.1) becomes much larger, because 
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the capacitance is determined by   instead of Rtip. Equation (3.1) also exhibits a 

parabolic dependence of the tangent of the phase shift on the applied DC voltage. This 

contrasts with the linear dependence of the phase shift on potential that arises from the 

electrostatic force caused by trapped charges. 

In this work, a method in a qualitative fashion to demonstrate the conductive nature of 

fabricated nanoropes was used. EFM provides a complementary way to image 

conductance in a convenient contactless imaging experiment where the artefacts 

produced by the movement of the nanoropes/wires by the tip in the contact mode C-

AFM do not occur. 

In EFM imaging (Figure  3.7), the tip was lifted a height of 70 nm and a DC bias was 

applied to the sample with the tip grounded. At 500 mV bias, no EFM phase image 

appeared, indicating a very weak electric field gradient. On gradually increasing the 

bias to 3500 mV, an EFM image of the PPy–DNA was recorded (Figure  3.7b); the 

image is somewhat diffuse compared to the tapping mode (height) image, as expected 

and shown in Figure  3.8. The images also became diffuse, and weaker, as the lift 

height increased. Beyond a lift height of about 120 nm, the phase shift became too 

small to measure. At a higher bias (5500 mV), the image contrast increased and the 

variation of phase along the PPy– DNA due to changes in dimension and conductance 

is clear (Figure  3.7c). These images also demonstrate that the other features (non-

templated PPy) in Figure  3.7 (a) do not contribute to the conduction between the 

electrodes. The positive contrast (light area) in Figure  3.7 (a) suggests that some 

insulating material or static charges are present, probably a result of the combing 

process. Figure  3.9 presents phase shift versus bias for two similar nanoropes. The 

variation of phase shift with voltage is clearly parabolic, though there is a slight 

asymmetry in the curves, which may be a result of a minor contribution from trapped 

charges.  
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Figure  3.7. EFM phase images of a nanorope at different tip/sample biases. The images 

show the phase angle of the tip oscillation at the following tip/sample potentials: -3 V(a); 

-4 V (b); -5 V (c). The lift height was 70 nm, the scale bars are 400 nm and the grayscale 

corresponds to a phase angle of 3° [55] 

 

 

Figure  3.8. Tapping mode
TM

 AFM image of PPy-DNA nanorope and nanowires aligned 

on a Si/SiO2 substrate. The scale bar is 400 nm and the grayscale corresponds to a height 

of 10 nm [55] 

Figure  3.8 shows a tapping mode image of a nanorope, and illustrates that these can be 

rather smooth in appearance, i.e., there is no evidence of this particular rope 

unravelling. The mean diameter, estimated from the AFM height, is 8.1 nm in the 

image shown. The variation in the cross-section of the rope over the length shown is 

also small: the relative standard deviation of the diameter over the length shown is 

about 10%. Quantitative data for the EFM phase angle is given in Figure  3.9.  
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Figure  3.9. EFM data as a function of tip/sample bias for two nanoropes of AFM height 

6.8 and 8 nm. The lift height was 60 nm. Tangent of phase angle versus tip/sample bias, 

E above and E
2
 below. The solid lines are the fits to the parabolic dependence on 

tip/sample bias expected when the origin of the phase shift is purely due to the 

conductive nature of a 1D object being imaged [55] 

EFM images of 1D objects can be influenced by electrostatic forces from trapped 

charge, Van der Waal's forces or capacitive effects characteristic of extended 

conducting objects. These can be distinguished by their characteristic dependence of 

the EFM phase angle on the applied tip/sample bias. The dispersion interactions or 

other non-electrostatic forces show no potential dependence, whereas the trapped 

charge effect gives rise to a linear dependence of tangent of phase angle on bias 

voltage and the conductance effect to a parabolic dependence. It is clear from the 

symmetric, parabolic curves of Figure  3.9 that the conductance effect dominates in the 

images. This allowed using EFM-phase imaging to map the current path along these 

nanoropes. Together, Figure  3.9 and Figure  3.11 confirm that the conduction pathway, 

which produces the I–V characteristics in Figure  3.11 (a) lies through the nanoropes. 

3.6.3 Conductance of non-uniform PPy–DNA nanowires  

Topographical characteristics of the nanorope and the electrodes that are slightly 

recessed into the oxide of PPy–DNA nanorope (10-15
 
nm diameters) are shown in 

Figure  3.10. It shows that the end of the rope adheres to the Au electrodes (the dark 

areas to the left and right of the image). This nanorope does not have a uniform 

diameter along its length, being thicker in the middle; because there is some non-

templated PPy present, it also illustrates the utility of EFM in observing the conduction 

path between the electrodes. Figure  3.10 (b) and (c) are the EFM phase images 

acquired simultaneously with the conductive objects (nanoropes and Au electrodes), 
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which produce a negative phase shift compared to the background over the SiO2. EFM 

result confirmed the direct I–V measurements done on this nanorope. I–V curves of 

the nanorope before and after cutting using the AFM tip are shown in Figure  3.11(a). 

The original background current of the two microelectrodes, measured immediately 

after chip fabrication is also presented. I–V curves are noticeably nonlinear; such 

curves are found in systems where the system shows a significant gap in the energy 

spectrum, or the electric field is large on a molecular scale. However, the asymmetry 

of the curves, in a Au-wire-Au system suggests instead that the resistance of the 

polymer/Au contact is important, and that the two interfaces are not equivalent in any 

particular device.  

The nanoropes proved to be rather robust and resistant to damage by the AFM tip, 

except under very high loads in contact mode AFM. Nevertheless, at sufficiently high 

normal forces (~0.13 mN) it was possible to cut the nanoropes. After cutting the 

nanorope, the conductance dropped. Figure  3.10(a) shows that it is certainly carrying 

the current. However, some residual conduction is still present, which is probably due 

to debris from the cutting procedure Figure  3.10(b). For this reason, conductive AFM 

and EFM phase imaging was used to confirm that the conduction observed in 

Figure  3.10 is via the PPy–DNA and not via leakage paths across the surface due to 

humidity, ionic impurities or through defects in the oxide. It is also worth noting that 

heat treatment of such devices to drive off water did not remove the conductivity, as 

would occur if ionic impurities and humidity were important in the conduction 

mechanism. 

   

Figure  3.10. AFM and EFM images of PPy–DNA nanorope on a SiO2/Si surface with 

two Au microelectrodes for I–V characterization. a) Tapping mode AFM, scale bar 1 μm 

and height 25 nm. b) EFM phase image of the nanorope in a) at a bias of 3.5 V, lift height 

70 nm, scale bar 1 μm and the grayscale corresponds to a phase angle of 3°. c) EFM 

phase image of the nanorope in a) at a bias of 5.5 V, lift height 70 nm, scale bar 1 μm and 

the grayscale corresponds to a phase angle of 3°[55] 
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Figure  3.11. a) I–V characteristics of the nanorope crossing the two Au microelectrodes. 

b) AFM image of the nanorope after cutting., with scale bar 1μm and grayscale 20 

nm[55] 

In the conductive AFM experiment, it was observed that networks of nanoropes could 

be imaged reliably, whereas single ropes were not. That is because sinlge nanowire is 

not strongly adhered to the substrate surface and can be easily affected by the 

movement of the cantilever‟s tip, while in case of networks, there is a stronger 

interfacial adhesion between the nanoropes and the substrate surface. In this 

experiment, therefore, multiple nanoropes are deposited on a hydrophobic, oxidised 

silicon chip to form a rather dense network. C-AFM provides a direct means to 

establish that the nanoropes are conductive. However, because C-AFM measurements 

employ contact mode to maximise the time spent by the tip in electrical contact with 

the nanoropes, there is a greater tendency for the tip to disturb the nanoropes and the 

images show evidence of some artefacts due to movement of the nanoropes during 

imaging. A single contact to this network is made by applying a drop of In/Ga eutectic 

to one corner of the chip; the imaged area is about 1 mm from this contact.  

Figure  3.12 shows typical data for PPy–DNA nanoropes on non-silanised Si/SiO2 

surfaces; the usual contact mode height image (Figure  3.12a) shows the presence of 

about 7–8 nanoropes μm
-2

. The deflection error, which is the difference between the 

measured deflection and the setpoint, was also recorded and provides a slightly clearer 

image (Figure  3.12 b), because it is less affected by slow events related to the move-

ment of the nanowires. The current image, which was acquired simultaneously with 

the tip held at a potential of 9 V with respect to the In/Ga contact, shows clearly that 

high currents are associated with the image features in Figure  3.12(a) and (b) due to 

nanoropes and, importantly, the current over the bare portions of the oxide is below the 
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detection limit of the current amplifier (~10 pA). The nanoropes are lying on a 200 

nm-thick SiO2 film on a 1 x 1 cm Si chip. There is a remote In/Ga eutectic contact at 

one corner of the chip and the current flows through the network of nanoropes to this 

remote contact. No measurable current was observed in the regions where no ropes are 

present (dark regions, Figure  3.12c), which demonstrates that there is no current 

leakage through the oxide and the current path is via the nanoropes. These images 

demonstrate that the current path from the tip to the In/Ga contact is through the 

nanoropes lying on the surface and that charge does not leak across the oxide and 

reach the contact by transport through the Si substrate. In Figure  3.12 (b) deflection 

error image, it can be observed that the structure looks sharper and brighter and clearly 

represents pieces of a nanowires-like structure. Nanowires in the tapping image shown 

in Figure  3.12 (a) are not very clear, that‟s because nanowires are not strongly adhered 

to the substrate surface and disturbed by the movement of the cantileaver‟s tip. On 

other hand, the current image seen in Figure  3.12 (c) acquired at the same time as the 

previous two images show current flowing between the tip and the contact. It can be 

observed that when the tip is contacting areas with very few nanowires there is no 

current (shown as dark areas), whereas areas showing particular nanowires, which are 

visible in tapping and deflection errors images, show white features, that represent 

actual nanowire currying a current.   

 

Figure  3.12. C-AFM measurements of PPy–DNA nanoropes and nanowires aligned on a 220 nm 

SiO2/Si substrate. a) Contact mode image the grayscale corresponds to a height of 13 nm; b) 

Deflection error image (the grayscale corresponds to a height of 10 nm) and c) C-AFM current 

image (the grayscale corresponds to a current of 100 nA). The area imaged was 7 μm
2
. The 

grayscale is white = +100 nA and black corresponds to 0 nA. Scale bars 2 μm. 
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Figure  3.13. Typical single point I-V curves reordered during the c-AFM experiment of a 

nanorope with about 20 nm diameter and about 1 μm relative length  

Single points I–V curves are given in Figure  3.13. The tip is held stationary at a pre-

defined point on the image corresponding to a conductive object and the tip/sample 

voltage is applied. The smooth curves are weighted least-squares fits to equation 3.2 

over a range of +/- 0.1 V. These fits were used solely to extract the resistance at zero 

bias. This function found consistence with data and mach equation (2.17) discussed in 

chapter 2, section 2.9. This equation can be reduced to the form y=-ax+c as follows;  

 xI )--(1x
0 e-eI                    ( 3.2)      

Where /RTFVx  . For VTVIx 00 GRFI     1,  , where RTFG 00 I is the zero 

bias conductance. This is the linear region around zero bias, which represents the case 

of fixed anions. This provides evidence that the shape of the curve shown in 

Figure  3.13 very much like the curve in chapter 2, Figure  2.26 (f) and fit equation 

(3.2). 

3.6.4 Temperature dependence of conductivity of PPy-DNA Nanoropes 

Due to their potential applications in nanometre-scale electronics, conductive polymers 

have received considerable attention in recent years. Among these polymers, great 

interest has been devoted to polypyrrole (PPy) to determine its electrical properties. 

PPy has been prepared as thin-films [62-64], nanotubes [9, 65], nanowires [66] and as 

a bulk solid [67]. However, PPy conductivity has been reported to vary according to its 

structure and the preparation technique employed. For example, the conductivity of 

doped PPy as a 600 nm thick film prepared by the in situ vapour-phase polymerization 
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method was found to be about 6 × 10
2
 S cm

-1
 depending on deposition time [63]. The 

resistivity of PPy nanotubes (120 nm diameter) was found by Park, J.G and et al to be 

in the range of 1 Ω cm measured by scanning probe microscopy [65]. Bocharova et al 

measured the conductivity of a single PPy nanowire (50-60 nm in diameter) grown 

onto a device comprising Au microelectrodes (1 μm apart), and found it to be about 1-

3 S cm
-1

 [66].  

As a consequence of the variability of conductivities for different PPy samples and 

preparation procedures, the conduction mechanism, as deduced from temperature-

dependent conduction data, has been reported to follow different models. For example, 

Barde and co-workers suggested that temperature-dependent of conductivity of PPy 

thin films chemically synthesized using FeCl3 as an oxidant obey the Vogler-Tamman-

Fulcher (VTF) model (
))(/(21 0TTkB

eTA


 ) with crossover to the Arrhenius model 

between 308 to 383 K, where T is the absolute temperature; A, B and T0 are the fitting 

constants, while „k‟ is Boltzmann constant. Here A is the pre-exponential factor related 

to the number of charge carriers and B is the pseudo activation energy related to 

activation energy of the ion transport [68]. Other workers found that the temperature 

dependence of the conductivity shows also a clear crossover from one model to 

another. For example, the transition to Arrhenius behaviour above a critical 

temperature was observed in polypyrrole thin films by Bof and Heinzel [69]. Gence, et 

al studied the effect of temperature on single PPy nanowire of different diameters 

spanning two gold electrodes in the range between 4 and 300K; over this range of 

temperatures, it was found that its behaviour follows the 3D-Mott variable-range-

hopping model for samples above 40 nm in diameters and nonmetallic behaviour for 

all investigated samples  [70]. Shen, et al investigated the electrical conductivity of a 

single PPy nanowire (38.4 S cm
-1

) prepared electrochemically upon an alumina 

template and measured using the four-terminal technique in the range between 77-300 

K [71]. In their work, the resistance of the PPy nanowire was found to increase with 

decreasing temperature, following Mott variable-range-hopping model. Moreover, 

temperature dependence studies on thin film of PPy fibers by Spatz, et al suggested 

that the resistivity crossover from 2D to 3D Mott variable range hopping model over 

range of temperatures depends on the thickness of the film [72]. On other hand, a study 

by Sandra C. et al, showed that the Arrhenius conduction can be used successfully to 

describe the charge transport in long conducting PPy nanowires [73].   
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In this work, PPy-DNA nanowire aligned across Au electrodes was placed in a CMS 

cascade Microtech summit 11000 series probe station with DCM positioner to study its 

conductance as a function of temperature. A high performance DC probe holder with 

probe tips of 9 μm radius was used to connect the nanowire through the pad electrodes 

to the external microcircuits.  A Leica S8 stereo zoom microscope was used to observe 

the probe tips and pad electrode, to ensure that the tips or the Au pads were not 

damaged by applying excessive force. Temperature variation was achieved using a 

thermal chuck system (Model ETC-200 L, ESPEC, Japan) equipped with refrigerator 

unit. The current-voltage sweep measurements were carried out on PPy-DNA 

nanoropes using a Hewlett Packard semiconductor device analyzer (HP/Agilent 

B1500A) controlled by Aligent EasyEXPERT software. The sample was placed on a 

vibration isolation table inside a chamber under nitrogen gas.  

The current and voltage-drop across the nanowire was measured over a temperature 

range from 213 to 345 K. All measurements were taken in the dark. The conductivity 

of single PPy-DNA nanowire at room temperature is calculated using the relationship, 

equation 2.16, chapter 2. Where l  is the length of the PPy-DNA nanowire in µm, A  

its average cross-sectional area and R its resistance in Ohm (Ω). The length, diameter 

and cross-sectional area are estimated from AFM images of the nanowire. The 

resistance is calculated from the ohmic part at the origin of the I-V curve and the 

conductance, the reciprocal value of the resistance, in Siemens (S) is obtained 

accordingly. The decrease in the nanowire‟s dimensions increases its resistivity. This 

increase is related to the grain boundary and surface scattering. That is because more 

reflections at the surface by the electrons occur as the nanowire‟s diameter reduced. 

The uncertainty in the dimensions of the PPy-DNA nanowire expected to influence the 

value of its resistivity. For that reason, investigations of the PPy-DNA nanowire‟s 

uniformity were carried out and found to be very high (smooth nanowire). The result 

of the PPy-DNA nanowire‟s uniformity investigations can be found in section  3.6.6.  

This section presents work done to study the effect of temperature on electrical 

conductivity of PPy-DNA nanowires and nanoropes. The conductivity of PPy 

nanowire templated by DNA chemically prepared using FeCl3 as an oxidant at room-

temperature was determined to be in the range of 4 S cm
-1

, which is markedly higher 

than the previously reported value of rod-shaped PPy templated by alumina templates 

(3 m S cm
-1

). This conductivity is of the same order as the conductivity of bulk PPy 
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powder (1.7 S cm
-1

) prepared chemically by FeCl3. In these experiments the focus was 

on investigating the conductivity of DNA-templated polypyrrole nanowires as a 

function of temperature to explore the basic conduction mechanism and demonstrate 

the thermal stability of the polymer nanowires. The temperature-dependent 

measurements were performed on a single PPy-DNA nanowire aligned between two 

micro-fabricated Au electrodes (8.5 μm separation) embedded in SiO2. The unique 

structure of the fabricated electrodes allowed to align easily varieties of polymer 

nanowires, study their morphology by AFM and record their I-V curves. PPy-DNA 

nanowires were examined also by FTIR spectroscopy as a function of temperature.   

For temperature dependent experiment, PPy-DNA nanowires were synthesized, as 

described in section 3.2 of this chapter in a one-pot reaction to avoid a long process, 

where cationic (positive charges) of polypyrrole (PPy) interact electrostatically with 

the anionic (negative charges) of DNA provoking the privileged growth of polymer 

along DNA chains. Before aligning the nanowires, the SiO2 surfaces of the chips were 

treated by exposure to Me3SiCl vapour for 25 minutes, in this case, forming a methyl-

terminated monolayer on the substrate, and producing a hydrophobic surface. Then a 

drop of 3.5 µL of the solution was dispensed in the middle of the chip, and spun (300 

rpm for 2 minutes) before applying molecular combing. 

3.6.5 Alignment of PPy-DNA nanowires for temperature dependent  

measurements 

To facilitate alignment of nanowire across electrode for I-V measurements, face-to-

face four microelectrodes were fabricated (about 16 µm tip length and 2.5 µm width 

connected to 10 х 20 µm Au pads with a larger pads of about 0.5 mm х 1 mm) for 

electrical measurements. The separation between any two facing electrodes measured 

by AFM is about 8.5 µm. This arrangement allowed a single PPy-DNA nanowire to be 

connected easily to one of the face-to-face pair electrode tips and aligned across the 

gap between them. The large pads were used to connect the nanowire to the probe 

station for the I-V measurements. Details of the microfabrication process used were 

presented before in chapter 2. 

Molecular combing discussed in section  2.7 has been adapted here to align the 

nanowires across the Au microelectrodes [15]. It is found that spinning a drop of the 

solution containing nanowires prior to applying the combing technique facilitated the 
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alignment of the nanowires upon the substrate surfaces. The optimum speed of 

rotation, in order to obtain individual nanowire alignment, was between 100 and 300 

rpm. Figure  3.14(a) shows an AFM image of individual and well defined nanowires 

stretched upon Si substrate surface with spinning speed of 250 rpm, followed by 

combing. The diameters of aligned nanowires, shown in Figure  3.14, range from about 

3 to 13 nm. Figure  3.14 (b) shows a single nanowire aligned across two electrodes 

after being spun at 250 rpm. It appears uniform and homogenous. Examples of 

nanowires spun at higher speed (>500 rpm) before combing are shown in 

Figure  3.15(a) and (b). Typically, 3.5 µL drop of solution of PPy-DNA nanowires was 

dispensed on the area containing the microelectrodes and spun for 30 seconds before 

removing the remaining solution using a micropipette and filter paper. 

The Au electrodes and the surrounding oxide were treated with chlorotrimethylsilane 

(Me3SiCl) for 25 minutes producing an appropriate hydrophobic surface prior to 

stretching and aligning the DNA-PPy nanowires. A very thin self-assembled 

monolayer of silane is formed on the surface when it reacts with the hydroxyl-

terminated SiO2. 

 

Figure  3.14: a) Example of PPy-DNA nanowires, with diameter ranges from 3-13 nm, 

aligned on SiO2. Scale bar 2 (μm) and height scale 25 nm. b) AFM tapping Mode
TM

 

image of single PPy-DNA nanowire aligned across two Au electrodes. Scale bar 1.5 μm 

and height scale 30 nm. Length of the nanowire l =8.5 µm and average diameter 

D=23.9nm[55]. Spinning speed 250 rpm 
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Figure  3.15: a) AFM tapping Mode
TM

 image of single PPy-DNA nanowire aligned across 

two Au electrodes with spinning speed of 500 rpm. Length of the nanowire about 12 µm 

and variable diameter ranges from nm. b) AFM tapping Mode
TM

 image of single PPy-

DNA nanowire aligned across two Au electrodes. Scale bar 2 μm and height scale 15 nm. 

Length of the nanowire about 11 µm and variable diameter ranges from 9-20nm.  
 

 

  

Figure  3.16: a) Probe station used in the electrical measurements and b) Au electrodes inside the 

probe station, scale bar 0.25 mm. Inset, PPy-DNA nanowire aligned across Au electrodes and 

inserted inside the chamber, scale bar 1 μm 

3.6.6 Diameter uniformity of PPy-DNA nanowire 

The nanowire diameter uniformity of a single PPy-DNA nanowire, shown in 

Figure  3.14 (b), spanning Au microelectrodes can be estimated from the formula [74]: 

Du= | ΔD/l |     ( 3.3) 

Where Du  is the diameter uniformity of the nanowire, D  is the maximum diameter 

deviation from the diameter at the center of the nanowire ( Dc ) and l is the length of 

the nanowire.  
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With l =7.8 μm, nmDc 5.23  and  nm 3.4423.5-24.8D calculated between the 

two ends of the PPy-DNA nanowire as in Table 3.1. Du , found very small 

( 4104.4  nm ), which indicates that the PPy-DNA nanowire has a high uniformity. 

Table  3.2: The maximum diameter difference between the two ends of one PPy-DNA 

nanowire shown in Figure  3.14b 

Nanowire‟s Diameter at 

different locations, D (nm) 
Nanowire‟s Length, L 

(μm) 
Deviations from the 

central diameter (nm) 
21.75, 20.06, 21.75, 
21.23, 21.24, 21.13, 
20.81, 20.81, 22.81,  

22.52, 22.95, 24.8, 

7.8  1.75, 3.44, 1.75, 

2.27, 2.26, 2.37, 

2.69, 2.69, 0.69, 

0.98, 0.55, 1.30, 
 

3.6.7 FTIR spectroscopy 

FTIR spectroscopy was performed on the PPy-DNA nanowires in the range 600-4000 

(cm
-1

) with spectral resolution of 4 cm
-1

 using a Biorad FTS-40 Spectrometer equipped 

with a liquid-nitrogen-cooled MCT detector. A drop of the solution of about 3 μL was 

dispensed on Si(100) substrate and left to dry before spectroscopic analysis. FTIR 

spectra of PPy-DNA nanowires were performed at various temperatures by placing the 

substrate with the nanowires on its surface into the oven at a given temperature for 10 

minutes before the spectra were recorded. The FTIR spectra were recorded at several 

temperatures between 296 and 493 K. A clean Si chip was used as FTIR background 

reference. 

Oxidation of pyrrole in DNA-containing solutions yielded a material that contained 

both the cationic PPy and the anionic DNA polymers[22]. Interaction of the two 

polymer chains in the self-assembled nanowires were investigated. The FTIR spectra 

obtained indicated that the PPy-DNA sample was an intimate interaction of DNA with 

PPy in the hybrid polymer. FTIR spectroscopy was also exploited to determine the 

temperature stability of the nanowires and to assess whether the temperature-

dependent conductance was due to chemical changes. This step is important to find out 

the maximum temperature that nanowires can handle before they decompose or 

physical change occurs. 

Figure  3.17 shows the FTIR spectra of PPy-DNA nanowires measured from RT up to 

430K. The FTIR spectra began to exhibit chemical changes (e.g. decrease in water 

bound absorbance at about 3300 cm
-1

) as the temperature continued increasing up to 
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380K because of the evaporation of water. This suggests that the polymer nanowires 

remain unchanged in the range between 296 and 380K, but start to exhibit chemical 

change at temperatures higher than 380K due to the loss of water. FTIR spectra 

obtained indicate the significant chemical changes up to 380K due to the fact that PPy-

DNA nanowires are dehydrated, which is consistent with the temperature-dependence 

of conductivity measurements of PPy-DNA nanowires that will be discussed in the 

next section. 

A full FTIR analysis of the PPy-DNA samples was done in a previous work [22] at 

Chemical Nanolaboratory, Chemistry School, University of Newcastle. In that 

analysis, the FTIR spectra obtained for the isolated materials used in the reaction 

provided evidence of the formation of a supramolecular hybrid polymer containing 

DNA and polypyrrole.  
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Figure  3.17: FTIR spectra of a drop of solution containing PPy-DNA nanowires recorded at different 

temperatures from 296 to 430 K. The FTIR spectra exhibit distinct chemical changes (decrease in 

water bound absorbance at about 3300 cm
-1

) up to 380 K due to evaporation of water, which 

indicates removal of moisture [55] 
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3.6.8 I-V curves varying with temperature of PPy-DNA nanowire 

The temperature dependence of I-V curves of a single PPy-DNA nanowire shown in 

Figure  3.14(b) have been investigated by placing the chip containing the nanowire in 

the probe station, where the temperature was controlled and monitored. A series of 

applied voltages (V) current (I) passing through the nanowire were recorded. The 

temperature was then raised and allowed to stabilise before the same measurements 

were recorded again. This process was repeated over a range of temperatures, up to 

400 K. I-V curves depicted in Figure  3.18 show that the current passing through the 

nanowires increases with increasing temperature. The I-V data of the PPy-DNA 

nanowire shown was recorded in the range between -1.3V and 1.2V, and over a range 

of temperatures using a thermal chuck system (Model ETC-200 L, ESPEC, Japan). 

 

Figure  3.18: Temperature dependence of I-V curves of a single PPy-DNA nanowire aligned across 

two Au electrodes 

As discussed before, various models have been employed to describe the temperature 

dependence of I-V curves of conducting PPy. Most conducting polymers show an 

increase in conductivity with temperature. However, the precise nature of the 

temperature dependence might be affected by many factors, such as the polymer 

structure, degree of crystallinity [75] and dimensionality [72]. The various models of 
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conduction mechanisms of polymers obtained as a result of the different synthetic 

routes used that led to different structures of polymer samples. It is worth mentioning 

here that the water content in polymer nanowires can also play an important role in 

determining the conduction process. 

 

 

Figure  3.19: Conductance (G) of a single PPy-DNA nanowire varying with temperature. In area (1), 

theory and experiment agree, as the FTIR result predicts. In area (2), the FTIR result shows water 

loss, which led to lower nanowire conductance.  

I-V curves done on PPy-DNA nanowires show some non-linearity close to the origin. 

A small tunnelling barrier at the Au electrode and PPy-DNA contacts could be the 

cause for this behavior. Yet, from the slope of the curves at 0V, the conductance for all 

the curves was obtained.  

In general, the temperature dependence of the conductivity of conjugated polymers has 

typically been fitted to expressions of the form  

)(
0

0exp
TT

GG



      ( 3.4) 

where 0T  is the characteristic temperature and 
0G  is a constant that measures the 

disorder in the nanowire structure, and 

 11  n                 ( 3.5) 
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The parameter β depends on the underlying theoretical model and the dimensionality 

(n=0,1,2,3) of the system. For example, thick films of conducting PPy, prepared 

chemically, exhibit temperature dependence described by 3D variable range hopping, 

where β=1/4, while thin films follow the Efros-Shklovskii model with β=1/2 as in [76] 

and [77] respectively. A simple calculation extending the original variable range 

hopping model to 1D and 2D structures predicts β=1/2 for nanowires. However in 1D 

systems, the electron cannot avoid a large barrier and the conductance may be 

dominated by such 'breaks': Arrhenius behaviour (β =1) is then expected [78].  

Figure  3.19 shows the conductance of a single PPy-DNA nanowire varying with 

temperature. The model in equation (3.4) fits the data accurately to 380K with fitted 

parameters G0 = 0.3 S, T0 = 4000 K and β=1, which suggests that nearest neighbour 

hopping is the dominant mechanism for electron transport along the prepared PPy-

DNA nanowires leading to the exponential behaviour of the conductance. Hopping of 

carriers is responsible for the exponential increase behaviour of the conductance with 

increasing temperature. At temperature less than 380K, the conductance follows the 

model in equation 3.4, but at higher temperature (above 380K), the curve starts to 

deviate from this model owing to chemical changes as shown by the loss of water 

bands in the FTIR spectra (Figure  3.17).  

Although good temperature-dependent conductance measurements were obtained, and 

the same general features observed between samples, there are substantial sample-to-

sample variations in the conductivity. Using the C-AFM technique and the topography 

of one of the PPy-DNA nanowires shown in Figure  3.12 (length of 1 µm and a 

diameter of 20 nm) gives an approximate room-temperature conductivity of          

2x10
-3

 Scm
-1

. However, using the two-terminal technique, the room temperature 

conductivity for the PPy-DNA nanowire (L=8.5 µm and average diameter D=23.9 nm) 

was calculated as 57.4 Scm
-1

 from the slope of the I-V curve at 0 V. This illustrates the 

difficulty in obtaining clear-cut values of conductivity because of sample-to-sample 

variations, and possibly, variations in contact resistance.  

Figure  3.19 shows also that PPy-DNA nanowires exhibit a significant increase in 

electrical conductance with increasing temperature. In the region less than 380 K (area 

1), the data agrees with the theory, which in turn agrees with the FTIR result, (FTIR 

result shows water loss above 380 K). Whereas in area 2, above 380 K, the 

conductance measured experimentally is less than that measured theoretically, which 
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might be due to water loss at higher temperatures. Moreover, Figure  3.20 shows the 

corresponding Arrhenius plot for conductance of single nanowire shown in Figure  3.14 

(b).  This figure is a plot of log G versus T
-1

 on which the curve is linear over range of 

temperatures. It shows a straight line, describing the conductance of the form shown in 

equation 3.4, with β=1 characteristic of 1-dimensional object such as a nanowire. This 

behaviour can be understood on the basis of a simple nearest-neighbour hopping 

model for the reasons mentioned above is quite expected. 
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Figure  3.20: Arrhenius plot for the zero-bias conductance of single PPy-DNA nanowire 

 

3.6.9 Stability of PPy-DNA nanowires with temperature  

To study their stability with temperature, the PPy-DNA nanowires were heated then 

cooled down using a probe station with about 1K per minute heating/cooling rate. 

During the heating and cooling of the nanowire, I-V curves were recorded. All I-V 

curves exhibit an increase in conductance with increasing temperature. The 

conductance measured from the ohmic part of each I-V curve is plotted against 

temperature as shown in Figure  3.21. The blue curve in the figure represents the 

heating up process, while the red curve represents the cooling down process. The 

cooling curve exhibits very small hysteresis.  
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Figure  3.21: Temperature dependence of conductance of the PPy-DNA nanowire 

recorded for one heating and cooling cycle between RT and 380 K with heating/cooling 

rate of about 1K/minute 

 

3.7   Conclusions 

PPy nanowires formed by polymerization of Py on a DNA template self-assemble into 

rope-like structures. PPy-DNA nanowires were chemically synthesized using FeCl3 as 

an oxidant at room temperature. These „nanoropes‟ may be quite smooth (diameters 5–

30 nm) or may show frayed ends where individual strands are visible.  

The PPy-DNA nanowires were examined by FTIR spectroscopy as a function of 

temperature. FTIR spectra of the polymer nanowires obtained indicate significant 

chemical changes up to 380 K, due to evaporation of water. A design of 

microfabricated Au electrodes embedded in SiO2 was used to facilitate the two 

terminal I-V measurements. Electrical conduction was studied at room temperature, as 

well as a function of temperature. At room temperature, the conductivity of PPy-DNA 

nanowire of 8.5 µm length and 23.9 nm diameter obtained from the two terminal I-V 

measurements is 57.4 S cm
-1

, compared to 2x10
-3

 S cm
-1

 obtained for 1 µm length and 

20 nm diameter nanowire using conductive AFM technique. This difference in 

conductivity obtained by the two methods may be due to the high contact resistance 

between the cantilever‟s tip and the nanowire and sample-to-sample variations. 
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Temperature-dependence measurements showed a simple Arrhenius behaviour 

characteristic. It showed that the conductivity of PPy-DNA nanowires increased 

exponentially with increasing temperature. At temperatures above 380 K, the curve 

started to deviate from the exponential behaviour which was consistent with the FTIR 

results. Temperature-dependence measurement results suggested a nearest-neighbour 

hopping conduction mechanism, and the data indicates that the polymer is thermally 

stable. Studying the PPy-DNA nanowire properties by this method may open the way 

to align and characterize similar nanowires that can be used in many nanotechnology 

applications. This characterization will also help to study and further understand the 

mechanism of charge transport through PPy-DNA systems.  

Finally, further investigation on PPy-DNA nanowires could be suggested, such as the 

effect of contact resistance on its conductivity using the four probe technique. 
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4. Chapter 4: Synthesis and Characterization of Ag-DNA 

Nanowires 

4.1 Introduction 

Nanoscale metals have been an area of interest due to their unique physical properties 

at the nanosize scale, such as quantized conductance [79, 80] and, occasionally, 

semiconductor behaviour [81]. Due to their low resistivity, silver nanostructures are an 

area of active research because of possible applications in electronics. There are many 

attempts to use metal nanoparticles in general [82] and Ag nanoparticles in particular 

to synthesize nanowires using DNA as a template [18, 83]. For example, Shiqiang, et 

al prepared silver metal nanowires by assembling Ag
+
 ions onto DNA templates, and 

reducing the metal ions using an electrochemical method [84]; Berti, et al reported the 

photo-reduction of DNA-templated silver ions by exposure to UV light resulting in the 

formation of metallic silver clusters along the DNA molecules [85]; Park, et al 

reported on the electrical conductivity of silver nanowires templated on DNA 

molecules via two-step chemical deposition of silver upon glutaraldehyde-modified 

DNA [86]. These attempts were motivated by the desire to decrease the resistance of 

DNA, which is considered to be in the range of a few GΩ for length of 6.72 nm and 2 

nm of diameter [19]. As mentioned before, Braun, et al (1998) were the first to 

demonstrate the possibility to enhance the DNA conductivity using Ag nanoparticles. 

They synthesised silver nanowires on a DNA template by means of the chemical 

reduction of silver ions using hydroquinone as a reducing agent [18]. In that work, Ag-

DNA nanowires typically up to 15 μm in length and 60-100 nm in diameter showed 

partly ohmic behaviour in their current–voltage curves with resistances of several MΩ.  

In this chapter, the chemical synthesis and characterization of silver (Ag) nanoparticles 

templated on DNA is presented. The synthesis of silver nanoparticles through the 

Tollens process was previously demonstrated by Yin, et al [87]. However, the time 

delay in the Tollens process before the reaction occurs is essential in their case to 

achieve good control over the particle size distribution. In this work, a short time, one-

step synthesis process using Tollens‟ reagent via a chemical route is developed, details 

of which are included in the next section. The formation of the silver/silver oxide 
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structure on the DNA template is investigated by means of UV-Vis absorption spectra, 

FTIR spectroscopy and atomic force microscopy (AFM). The electrical properties of 

Ag-DNA nanowires were studied using electric force microscopy (EFM) combined 

with conductive atomic force microscopy (C-AFM) and two terminal electrical 

measurements.  

Note: In this chapter, for convenience Ag-DNA is referred to the 1D nanostructures 

formed by the action of Tollens‟ reagent on DNA, even though the chemical 

characterization of the structures shows the presence of silver oxides as well as 

metallic Ag. 

4.2 Experimental work 

4.2.1 Nanowires preparations 

Tollens‟ reagent contains the diamminesilver(I) ion [Ag(NH3)2]
+
. This is made from 

silver(I) nitrate solution by adding a drop of sodium hydroxide solution to give a 

precipitate of silver(I) oxide, then adding the minimum dilute ammonia solution 

required to re-dissolve the precipitate. Freshly prepared Tollens‟ reagent was used 

within one hour. 

Ag-DNA nanowires were prepared by mixing 20 μL λ-DNA (500 µg/mL) stock 

solution with 20 μL Tollens‟ reagent and heated at 50 ºC for about 10 minutes.        

Ag-DNA nanowires were aligned using the molecular combing technique [15], after a 

reaction time of 3 days. Typically, 5 μL were dispensed on the substrate and dragged 

along several times before being removed with a micropipette. AFM images were 

recorded after the surface was dried at room temperature in a laminar flow hood for 30 

minutes. 

Bulk samples of Ag-DNA were prepared as follows, 0.5 mL of DNA (sodium salt) 

solution (162.5 µg/mL;10 mM Tris-HCl pH 8 + 1 mM EDTA) was mixed with 0.5 mL 

freshly prepared Tollens‟ reagent and heated at 50ºC for 10 minutes. After complete 

addition of Tollens‟ reagent, the solution gradually turned purple in colour. The 

mixture was allowed to continue reacting at room temperature for 24 hours; a black 

precipitate of Ag-DNA was formed, and washed with ethanol several times, then dried 
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at room temperature. For XRD and XPS investigations, a large amount (approximately 

100 mg) of the Ag-DNA powder was prepared and collected using the same method.  

I should mention here that all the chemical synthesis and reactions were done in the 

Chemical Nanoscience Laboratory, School of Chemistry, University of Newcastle. 

The λ-DNA stock solution was also purchased from New England Biolabs UK, and all 

general reagents, which were of AnalaR grade, were purchased from Sigma-Aldrich.  

4.2.2  Infrared spectroscopy 

The FTIR spectrum (range 600-4000 cm
-1

 with 4 cm
-1

 spectral resolution) of about 10 

μL of dry Ag-DNA solution that deposited on a clean Si(100) substrate was obtained 

using a Varian 7000 FTIR spectrometer in normal transmission alignment. The 

spectrum obtained was compared with that of bare DNA solution, with the same 

amount deposited on a clean Si(100) substrate. 

4.2.3  X-ray diffractometer (XRD)  

 

The XRD analysis was recorded from a powder sample using the (XPERT-PRO) XRD 

system described in chapter 2, section 2.6.3 with graphite monochromatized CuKa 

radiation (λ = 0.15418 nm). A scanning rate of 0.04°/s was applied to record the 

pattern in the 2θ range from 25 to 70°.  

4.2.4  X-ray photoelectron spectroscopy (XPS) 

The XPS analysis was performed using an AXIS Ultra X-ray photoelectron 

spectrometer, with AlKα X-rays as the excitation sources (1486.7eV) operated at 150 

W (15 kV, 10 mA). The photoelectrons induced by the X-ray were filtered by a 

hemispherical analyzer, and recorded by multi-channel detectors at 5x10
-9

 Torr 

chamber pressure. For the survey scan, pass energy was 160 eV and step size 1 eV, 

while 10 eV pass energy and 0.1 eV step size were set for the high resolution scan. 

XPS data was collected for Ag-DNA samples prepared as a powder. The powder 

samples were prepared then placed on a Si(100) substrate (1cm
2
 ) and pressed on the 

surface by another clean Si substrate before being inserted into the XPS chamber. The 

binding energies obtained in the XPS analysis were corrected for surface charging 

effects (0.3eV) by the hydrocarbon C1s (284.6 eV) peak, which was used as a 
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reference. The spectrum was fitted with two Doniach Sunjic doublet functions and 

with one singlet for the silver plasmon after subtraction of a Shirley-type background.  

 

4.2.5 Scanning conductance microscopy characterizations of Ag-DNA 

nanowires  

 

AFM imaging of the nanowires was performed in air using a Dimension Nanoscope V 

system (described in section 2.4.1) with a vibration noise reduction isolation system. 

Before aligning nanowires, surfaces were cleaned by a series of organic solvents 

(trichloroethylene, acetone, isopropanol (IPA) and DI water) at about 80°C then blown 

dry with nitrogen. The substrate was then exposed to Me3SiCl for about 10 min. Then 

2μL of Ag-DNA nanowires solution were dispensed onto the hydrophobic substrate 

surface, and spun (300rpm) before combing. The chip was left to dry for about one 

hour. The oxide thickness of the substrate used was 220 nm prepared by dry oxidation 

and thicknesses determined by a spectrometric thin film analyzer (Filmetrics F40). 

In the EFM measurements, an electrostatic field was created between the tip and the 

sample by applying an independently controlled bias. The bias was applied to the 

sample while the tip was grounded. The phase shift between the driving frequency and 

the cantilever resonance frequency is related to the force gradient and is sensitive to 

polarisability, and to the conductance of nanowires. The first scan is used to acquire 

the tapping image and in the second scan, the tip is lifted to a height larger than 50 nm 

above the surface to obtain the EFM phase image.  

In the C-AFM measurements, a constant bias was applied between the tip and the 

sample, while the tip was grounded. The electrical contact between the nanowires and 

the metallic chuck was made by applying a drop of In/Ga eutectic between the network 

of nanowires and the chuck. The imaging obtained is called conductive AFM imaging, 

because it is performed in a contact mode, with an applied bias. The imaged area was 

typically 1 mm away from the In/Ga contact. For all C-AFM and EFM measurements, 

MESP probes (n-doped Si cantilevers, with a Co/Cr coating, Veeco Inc.) were used. 

The probe length was in the range 200-250 μm, with resonant frequency about 79 kHz, 

quality factor (Q) between 200 and 260, and a spring constant between 1-5 N m
-1

. 
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4.3 Results and discussion 

4.4.1 Chemical synthesis of Ag-DNA nanowires 

In this study, DNA was used as a template to assemble Ag nanowires. The method 

reported in this chapter is simple and reproducible as described in section 4.2.1. Ag 

nanowires were formed by reduction of Tollens‟ reagent in the presence of λ-DNA at 

room temperature. It is expected that the cationic Ag
+
 ions will bind electrostatically to 

the anionic phosphate backbone of the DNA molecules.  

4.4.2 UV-Vis characterization 

The interaction between λ-DNA and Tollens‟ reagent over time was monitored by UV-

Vis absorption spectroscopy. The spectrum of bare λ-DNA, recorded at room 

temperature, exhibits the characteristic absorption band of DNA at 260 nm 

(Figure  4.1) This spectrum also shows the UV–Vis absorption band of the Ag-DNA 

solution (440 nm). The solution was allowed to stand for different periods of time at 

room temperature, and the UV-Vis spectra measured. A shift of the DNA absorption 

peak (260 nm) towards longer wavelengths was observed.  

 

Figure  4.1: UV-Vis absorption spectra of Ag-DNA solution for a range of different 

incubation time 

 



 

 80 

Figure  4.2 shows a close zoom of the UV-Vis spectra shown in Figure  4.1 in the range 

from 350-600 nm. It shows that after 3 days, a new band starts to emerge at about 440 

nm, which can be attributed to the Ag plasmon and indicates the formation of metallic 

Ag nanoclusters [88].  

 

Figure  4.2: UV-Vis absorption spectra of Tollens reagent when mixed with λ-DNA for 

varying time periods in the range between 400 and 600 nm. The peak formed at 440 nm 

could be due to formation and agglomeration of Ag nanocrystals 
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Figure  4.3: UV-Vis absorption spectrum of Ag-DNA powder dissolved in conc. NH4OH 

It should be pointed out here that the peak reported in the literature at 420 nm was 

attributed to surface plasmon excitation between the metal and dielectric material as in 
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references [89] and [90]. Zhang, et al also attributed the peak at 420 nm to the 

appearance of spherical Ag nanoparticles [91]. In this work (Figure  4.2), the intensities 

increase and the peak formed at 440 nm is red shifted. This may be due to the 

dissolution of smaller Ag clusters. On the other hand, a smaller amount of Ag-DNA 

powder dissolved in conc. NH4OH confirms the presence of the peak at 420 nm, as 

shown in Figure  4.3. 

4.4.3 FTIR spectroscopy of silver nanoparticles  with DNA  

In general, the metal ions interact directly or indirectly with sites characterized by high 

electron density or negatively charged residues of DNA. Such sites on DNA could be 

the negatively charged phosphates of the backbone of both strands and the electron 

donor atoms (N and O) of the bases. The predominant mode of metal binding takes 

place at the N7 and O6 of guanine and N7 and N1 of adenine bases, as well as the N3 

of the pyrimidines [23]. For example, Arakawa et al [83] used FTIR spectroscopy to 

examine the interaction of Ag(I) with calf-thymus DNA. They found that Ag
+
 binds to 

DNA at the N7 of guanine, when present at low cation concentration, whereas at 

higher metal ion concentrations, Ag-adenine interaction is via the N7 site. 

In this work, the FTIR spectral changes of prominent Ag-DNA vibrations were 

monitored and compared with those of bare λ-DNA (Figure  4.4). The solid line in the 

spectrum demonstrates the characteristic in-plane vibrations of bare DNA; 977 cm
-1

 

(C-O deoxyribose, C-C), 1067 cm
-1

 (P-O or C-O backbone stretch), 1132 cm
-1

 (PO
2-

 

symmetric stretch), 1227 cm
-1

 (PO
2-

 asymmetric stretch), 1337 cm
-1

 (C-N stretch 

thymine, adenine), 1412 cm
-1

 (C-H, N-H deformation, C-N stretch), 1473 cm
-1

 (C8-N 

coupled with a ring vibration of guanine), 1530 cm
-1

 (in-plane vibrations of cytosine 

and guanine), 1597 cm
-1

 (purine stretch, N7), 1707 cm
-1

 (guanine and thymine)[92]. 

The dotted line shows the FTIR spectra after DNA was mixed with Tollens‟ reagent. It 

showed major spectral changes of the DNA in-plane vibrations. The guanine band at 

1711 cm
-1

 for example is shifted to higher frequency (1667 cm
-1

) upon silver oxide 

interaction. Purine stretch band intensity at 1600 cm
-1

 decreased and shifted slightly to 

1598 cm
-1

. The in-plane vibrations of cytosine and guanine at 1530 cm
-1

 have 

completely disappeared, but the band at 1476 cm
-1

 (C-H, N-H deformation) showed an 

increase in its intensity and shifted to higher wavelength (1403 cm
-1

). The C-N stretch 
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of thymine and adenine (1337 cm
-1

) intensities also increased and shifted to higher 

frequency (1360 cm
-1

). 

The disappearance of the phosphate band at 1132 cm
-1

 indicates that the Ag
+
 binds to 

phosphate groups, and is confirmed by the appearance of a new absorption peak at 838 

cm
-1

. Moreover, the backbone stretch band (P-O, C-O) at 1067 cm
-1

 decreased in 

intensity and shifted to lower frequency (1051 cm
-1

). In summary, it is noticeable that 

the vibrational frequencies of DNA are markedly altered in the presence of Tollens‟ 

reagent in the solution containing DNA. This change confirms the intimate interaction 

between the silver nanoparticles and the DNA. 

 

Figure  4.4: Comparison of FTIR spectra of bare λ-DNA before mixing with Tollens‟ 

reagent (solid line) and after (dotted line) 

4.4.4 X-ray diffraction (XRD) investigations 

The X-ray diffraction pattern of Ag-DNA powder sample is shown in Figure  4.5. The 

predominant peak at  36.322  corresponds to the (111) plane of the cubic Ag2O 

phase [93] and can be seen along with other relatively weaker peaks at  54.942 . 

The XRD also shows diffraction peaks at 27.94°, 46.33°, 39.00° and 42.00° 

corresponding to Ag3O4, and broad peaks at 38.30°(111), 44.68°(200), 64.74°(220), 

67.65° and 77.40° (311) corresponding to Ag metal [94]. The unassigned peaks are 

very likely to be components of the buffer or salts originating from the Tollen‟s 

reagent solution. 
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Figure  4.5: XRD spectrum of powder sample of Ag-DNA nanowires 

 

The estimated Ag nanoparticle size calculated from the Scherrer formula [36]  confirm 

the presence of nanocrystals with an average diameter of 24 nm.  

4.4.5 X-ray photoelectron spectroscopy (XPS) measurements 

All XPS experiments were performed with an Axis Ultra electron spectrometer 

(Kratos) using a monochromated Al–Kα source operated at a power of 225 W with an 

X-ray source of hν=1486 eV.  A low energy electron gun was used to compensate for 

the build up of sample surface charging. Axis Ultra XPS software was used to process 

the data, while analysis of the spectra was carried out using WinSpec software. 

Binding energies were referenced to the C1s line set at 284.6 eV. The XPS survey 

spectrum (Figure ‎4.6) obtained with 160 eV pass energy included peaks arising from 

Ag3p levels, O1s and small peaks, including N, Na and P. The latter indicates the 

presence of the DNA. 
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Figure ‎4.6: XPS survey spectrum obtained from the Ag-DNA nanowire powder sample 

The O1s region of the spectrum shown in Figure  4.7 reveals the presence of two 

components in the band spectrum as indicated by the noticeable shoulder on the O1s 

peak. After fitting, peaks at 529.38 eV, 531.03 eV and 534.11 eV are seen under the 

main envelope. These observed peaks are attributed to the presence of oxygen in the 

Ag nanoparticles, which is in reasonable agreement with the literature [95, 96].  

  

Figure  4.7: XPS spectra of O1s of Ag-DNA powder sample 
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The hollow circles in the spectrum represent the experimental data, which is 

superimposed with a solid line representing the fit. Peak (529.38 eV) suggests that the 

sample contains Ag coated with Ag2O. As XPS is sensitive to the sample surface, it 

shows more Ag2O on the surface than Ag and can be represented schematically as 

shown in the schematic diagram in Figure  4.8. This result is consistent with the XRD 

data, which show a mixture of Ag2O and Ag. Fit components (excluding the Shirley 

background) are also shown inside the experimental spectrum. 

 

Figure  4.8: Schematic diagram of DNA templated Ag nanoparticels covered by Ag2O shell 

The high resolution XPS of Ag 3d peaks obtained from the Ag-DNA powder sample is 

shown in Figure  4.9. The binding energy (BE) of the Ag3d5/2 peak obtained from the 

powder sample is 367.4 eV, and its full width at half maxima (FWHM) is 1.2 eV and 

has an intensity of 8.2. The presence of large Ag
 
nanoclusters could be responsible for 

the relatively high FWHM of the Ag3d5/2 peak. These analyses show reasonable 

agreement with data reported by [97-99]. One can assign the peak at 367.4 ± 0.1 eV to 

Ag, and the small doublet peak at 368.2 ±0.1 eV to Ag2O (this is within the 

experimental errors of the results).  
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Figure  4.9: High resolution XPS spectrum of the Ag3d region of the Ag-DNA powder 

sample. Peaks are fitted with two Doniach Sunjic doublets with broadening and one 

singlet for silver plasmon after subtraction of a Shirley-type background. The solid 

circles represent the experimental data superimposed with a solid red line correspond to 

the fit. Fit components are also revealed within the experimental spectrum. 
 

Figure  4.9 also shows an Ag peak at 368.2 eV, which has FWHM of 0.43 eV and 

intensity of 0.64. This apparently indicates that the presence of Ag2O in the powder 

sample is high compared to the Ag. It also shows a single peak at 371 eV, which 

originates from excitation of the silver surface plasmon at 3.6 eV; this peak is therefore 

shifted by 3.6 eV from the main Ag 3d5/2 peak at 367.4 eV with reasonable agreement 

with Altieri et al. [100]. Finally, it should be noted that the XRD data is representative 

of the composition of the crystalline material throughout the sample, but the XPS data 

is more sensitive to the surface of the nanowires. Taking the XRD and XPS results 

together, these experiments show that the Ag-DNA nanowires are best represented as a 

metallic Ag core coated with an oxide, mainly Ag2O.   

4.4.6 Atomic force microscopy (AFM) studies 

AFM investigations show a distinctive morphology associated with the Ag-DNA 

nanowires. It also shows that silver nanoparticles assemble themselves along the DNA 

molecules, resulting in nanowires of different diameters (25-90 nm) and varying 

lengths of up to about 150 μm (Figure  4.10). A mixture of the molecular combing 
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technique and spin coating is highly effective in aligning Ag-DNA nanowires upon the 

surface of the substrates.  

Spin coating (300 rpm) a drop of solution containing nanowires before molecular 

combing proves effective in stretching nanowires across the substrate surface. This is 

an important preliminary step, allowing the nanowires to be easily stretched out and 

positioned upon a substrate. This step is important for aligning nanowires across two 

Au electrodes easily for electrical characterizations. Figure  4.10 also shows AFM 

images of DNA strands covered densely with silver oxide nanoparticles, and few of 

which remain in the background. Nanowires obtained with different height can be 

attributed to the presence of bundles of DNA and/or formation of larger nanoparticles. 

Ag nanocrystals are shown and noticeable well attached along a long DNA stretch 

(Figure  4.11). Part of the nanowire exhibits a beads-on-a-string appearance, while the 

rest of the nanowire forms a continuous nanowire (Figure  4.10). A higher resolution 

AFM scan size image (Figure  4.12) of these nanowires shows that they are often very 

rough and granular in appearance. Interestingly, this extremely long Ag-DNA 

nanowire is much longer than the 16 microns of our -DNA. It is therefore clear that 

the Ag-DNA nanowires can contain more than one DNA molecule and that the Ag 

also can join together multiple DNA molecules to create a much longer nanowire than 

the underlying template. 

Improving the morphology of Ag deposited on the DNA templates will be discussed 

in the next chapter. It is expected that the initial stage of the interaction process is the 

attachment of small Ag nanoparticles to DNA (Figure  4.13), followed by continuous 

growth along DNA. 
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(a) 

 

  

(b) 

 

(c) 

 

 

 

 

(d) 

Figure  4.10: (a) AFM image of DNA-templated Ag nanowire;(a) scale bar 1μm and 

height scale is 150 nm; (b) 2μm scale bar and height scale 100 nm.(c) scale bar 2μm and 

height scale 160 nm. Cross section profile of (d) showing variation in the thickness of the 

nanowire 
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Figure  4.11: AFM Tapping Mode 
TM

 height image of 50 μm long Ag-DNA nanowire. 

Scale bar indicates 2μm and the height scale is 45 nm 

 

Figure  4.12: AFM Tapping Mode
TM

 image of section of DNA-templated nanowire shown 

in Figure  4.11. The scale bar is 500nm and height scale 58 nm 
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Figure  4.13: A small scale AFM Tapping Mode
TM

 image of the DNA-templated Ag 

nanowire shown in Figure  4.11. Scale bar is 250 nm and scale height 58 nm. It highlights 

that nanoparticles imbedded in the DNA are not just attached on the surface 

 

4.4.7 Two terminal I-V measurements 

 

Two Au microelectrodes were manufactured using the photolithography technique 

(described in detail in chapter 2). Before aligning the nanowire, silicon chips 

containing the electrodes were treated with chlorotrimethylsilane (Me3SiCl) vapour for 

about 15 minutes to reduce the surface wettability. Then, a 3 µL drop of Ag-DNA 

solution was deposited on the chip and spun (300 rpm). After that the drop was drawn 

off the surface using a pipette and filter paper leaving a single nanowire (Figure  4.14) 

connected across the two electrodes. Using probe station, I-V curves of a single 

nanowire can be measured easily as shown in Figure  4.15. 

4.4.8 The temperature dependent measurements 

The temperature dependence of I-V curves of a single Ag-DNA nanowire have been 

investigated using Cascade Microtech Summit 11000 series probe station with Hewlett 

Packard semiconductor device analyzer (HP/Agilent B1500A) controlled by Agilent 
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EasyEXPERT software. By placing the chip containing the nanowire on the hot plate, 

the temperature was monitored and controlled. A series of voltages were applied 

between the testing electrodes and the current measured. The temperature was then 

raised and allowed to stabilise before the same measurements were recorded again. 

This process was repeated over a range of temperatures from 320 to 400K.  

The conductance started to stabilize above 310 K even though samples were kept in 

the dark and isolated from external electrical noise during the measurements.  

The temperature dependence curves (Figure  4.16) obtained shows that the conductance 

increases as temperature increases. This behaviour can be expressed by Arrhenius. 

 

 

Figure  4.14: AFM Tapping Mode
TM

 image of single Ag-DNA nanowire connected to Au 

electrodes (nanowire length l ≈8.5 µm, average radius ≈ 8 nm). Scale bar 2 µm. and 

height scale 30 nm[101] 

 



 

 92 

 

Figure  4.15: Temperature dependence of I-V curves of single Ag-DNA nanowire aligned 

between two Au electrodes 
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Figure  4.16: Conductance of a single Ag-DNA nanowire varying with temperature 
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Figure  4.17: Temperature dependence of conductance of single Ag-DNA nanowire 

 

Figure  4.17 shows the plot of Gln against 1T . From this figure, it is possible to obtain 

the activation energy BkE 3450 in unit of
Bk , which, interpreted as a band gap 

(ΔE=2Eg), gives a value of eV 0.3 g E . This data shows that the band gap energy is 

small compared to the reported band gap for Ag2O thin film (1µm) 1.46 eV [102] and 

1.2 eV [103]. If the value of E were related to the band gap of Ag2O, as the material 

heated more charge carriers are expected by thermal excitation. If this were true, 

E should be close to these numbers. Therefore, it is not reasonable to think that the 

model describing intrinsic semiconductor and thermal excitation of electrons from the 

valence semiconductor band. Instead, this suggests that the nanowire should not be 

regarded as a simple semiconductor, but that a hopping mechanism is responsible for 

the conductance between localized states or between small adjacent Ag nanoparticles 

imbedded into the oxide and attached to DNA. This result is supported by the UV-Vis, 

FTIR, XRD and XPS results, which indicate that nanowires comprise metallic Ag 

coated with silver oxide and attached to the DNA surface.  
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4.4.9 Electrostatic force microscopy (EFM) investigation  

EFM is a convenient method to study the conductivity of Ag-DNA nanowires. It gives 

a contactless method of probing the conductance of nanowires. Its simplicity arises 

from the acquisition of both topographical and electrical properties of the sample in a 

single experiment. An easy distinction can be made between bare DNA (apparent 

height 0.5 nm, positive phase-shift in the EFM image) and that of a DNA with a metal 

coating deposited upon it (diameter is higher than 1 nm, negative phase-shift in the 

EFM image).  

Previous studies [46] showed that conducting single-wall carbon nanotubes have a 

negative phase-shift, with respect to the background. In contrast, insulating materials 

like poly(ethylene oxide) nanofibers show a positive phase shift which increases with 

fiber diameter. Where the phase shift (  ) for an insulating object also estimated 

using a model geometry in which the Ag-DNA nanowire is represented by the area of 

a thin dielectric strip directly under the tip, itself modelled as a disc of radius, Rtip as in 

chapter 3. The first term in the equation is the background contribution due to the 

tip/oxide/Si capacitance and the second term is due to the tip/Ag-DNA nanowire/Si 

capacitance. Whilst the phase shift equation (3.1) is based on an approximate 

geometry, it clearly shows that the phase shift,  , is positive for any finite value of 

the dielectric constant of the nanowire, εnw. However, when the nanowire is 

conductive, the charge stored on the Ag-DNA nanowire/Si capacitor can be spread 

along the whole length of the nanowire. In effect, the second term in the equation 

becomes much larger. A parabolic dependence of the phase shift on potential is 

expected for the conductance effect in EFM and this can be distinguished from the 

linear variation that arises from the electrostatic force caused by trapped charges [55, 

59]. Quantitative calculations of the phase shift as a function of nanotube diameter are 

described in references [46] and adapted in this work in a qualitative fashion to 

demonstrate the conductive nature of our Ag-DNA nanowires.  
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(a) 

 

(b) 
 

 (c) 
 

(d) 
 

 

(e) 

 

(f) 

 

Figure  4.18: AFM Tapping Mode
TM

 images of Ag-DNA nanowires aligned on 

Si/SiO2(220 nm) substrate (a,c,e) (scale bar 500nm and height scan 7nm) and its 

corresponding EFM phase images (b,d,f) (scale bar 500nm and phase scale 3˚). The EFM 

phase cross sections at the right hand side show that the denser the nanoparticles, the 

greater the phase shift 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure  4.19: Tapping Mode
TM

 AFM images of Ag-DNA nanowire aligned on a Si/SiO2 

(220 nm ) surface (a,b,c); Corresponding EFM phase (c,d) shift images(VEFM= -7V, lift 

height 50 nm and data scale height correspond to 3°). Scale bar 1µm and height scale 

correspond to a) 35 nm, b) 280 nm [101] 

The EFM images (applied bias V=-7V, lift height 50 nm) of more condensed 

nanoparticles attached to DNA are shown in Figure  4.18 and Figure  4.19. These 

figures show that the Ag-DNA nanowires exhibit dark lines compared to the white 

background of the insulator SiO2 surface. Although the surface is covered with many 

Ag particles that are not templated, the continuous conduction pathway along the 

DNA-templated strand is clearly visible as the dark lines in Figure  4.19 c & d. This is 

a very useful aspect of EFM; it allows to image conduction pathways and demonstrate 

the electrical contact between the grains in the Ag-DNA nanowires.  Part of the 

nanowire shown in Figure  4.19 (a) appears not completely covered by Ag 

nanoparticles (indicated by arrow), even though its EFM image (c) exhibits a negative 

(dark) contrast in  this region. This suggests that the nanoparticles are nevertheless 
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connected by Ag deposits along the DNA structure in this region. In contrast, non-

templated nanoparticles and bare DNA (arrow in b) exhibit a positive (white) contrast 

in the EFM image (Figure  4.19 (d)).  

A typical phase shift along a line section crossing the nanowire is shown in 

Figure  4.20. It depicts a parabolic variation of phase-shift (at its maximum point on the 

cross-section) with voltage, but with a slightly asymmetric shape, which may be 

attributed to trapped charges in nanocrystals. It can be seen that the nanowire of larger 

diameter (D=45 nm) exhibits a larger phase-shift than the nanowire of smaller 

diameter (D=12 nm). This reflects the change in capacitance of the 

tip/nanowire/substrate system as the wire diameter increases. 
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Figure  4.20: Phase shift versus tip sample bias of nanowires with different diameters 45, 

28, and 12 nm. 

 

4.4.10 Conductive AFM (C-AFM) investigations 

C-AFM has been used to electrically characterize the Ag-DNA nanowires. This 

technique is quite powerful as it can simultaneously map the topography and the 

current distribution of the nanowire, in the range of hundreds of femtoamps to nearly 

microamps [104-106]. C-AFM images are generally acquired in contact mode, with 

metal-coated cantilevers. In the C-AFM experiment, the Ag-DNA nanowires were 

deposited and aligned on the Si/SiO2 substrate, which was connected to the metallic 
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chuck. The metallic tip of the cantilever was used to act as the other electrical contact. 

The C-AFM images were recorded at a bias of 0.5 V, applied between the cantilever 

and the substrate. Figure  4.21(a) shows a contact mode AFM image (height) of a thick 

Ag-DNA nanowire with a diameter of about 50 nm. The deflection error image of the 

nanowire (Figure  4.21 (b)), which is the difference between the measured deflection 

and the setpoint presents a more obvious image of the nanowire. The current map 

image Figure  4.21 (c) shows areas of high conductivity and low conductivity regions. 

Evidence of conductivity is only observed on regions of the substrate where the 

nanowires are located.  

 

 

(a) 

 

(b) 

 

(c) 

Figure  4.21: C-AFM of Ag-DNA nanowires aligned on a Si/SiO2 (220nm ) substrate (a) 

Contact mode image, the data scale corresponds to a height of 60 nm; (b) Deflection error 

image (the data scale corresponds to a height of 20 nm) and (c) C-AFM current image 

(the data scale corresponds to a current of 100 nA). The tip-sample bias was 0.5V; the 

images (a)-(c) were acquired simultaneously. Scale bar 1 μm (a-c) 

 

 

The closed loop system of the Dimension V instrument makes it possible to reproduce 

the positioning of the cantilever at a point of interest on the Ag-DNA nanowire and 

record I-V curves. The tip was therefore positioned in the middle of the nanowires, and 

I-V curves are recorded for two deflection setpoints.  
 

The bias was swept from -10 to +10V, while the deflection setpoint was gradually 

increased from 0.5 to 1V. The measured current was then plotted against the drive 

voltage, as can be seen in (Figure  4.22). 
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Figure  4.22: C-AFM I-V curves of an Ag-DNA nanowire for different deflection setpoints. Each 

curve was recorded at the same X-Y position on the sample 

The curves exhibit a simple ohmic behaviour. Not surprisingly, as the deflection force 

increased, the current also increases– this suggests a contribution from the tip/wire 

contact to the overall resistance.  Changes in the I-V characteristics with applied force 

are a signature of significant contact resistance, which varies as a function of load. At a 

setpoint of 1.0V, the total resistance is lower than that corresponding to 0.5V 

deflection setpoint, which indicates the  contact resistance, can be reduced by applying 

a deflection contact force on the nanowire by the tip, as might be expected for an 

oxide-coated structure.  

4.4 Conclusions 

In this chapter, the synthesis of Ag nanowires has been reported, through the chemical 

reduction of Ag
+
 using Tollens‟ reagent, on a DNA template. UV-Vis absorbance 

spectroscopy confirms the interaction between the λ-DNA and Tollens‟ reagent. FTIR 

results have shown that the vibrational frequencies of purine and pyrimidine are 

markedly altered upon reaction with Tollens‟ reagent, confirming the interaction 

between the Ag and DNA bases. XRD and XPS studies confirm the presence of Ag in 

the Tollens treated DNA samples. The conductivity of uniform Ag-DNA nanowires 

and nanoropes was investigated and confirmed by EFM and C-AFM techniques.  

Moreover, two-terminal I-V measurements upon single Ag-DNA nanowires have been 

also demonstrated, and were produced over ranges of temperatures. This data shows 
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that the conductance of Ag-DNA nanowires increases as the temperature increases. 

From the ohmic part of the I-V curve, the conductance was calculated and the 

temperature dependence of the conductance followed an Arrhenius‟ behaviour. 

Interpreting the activation energy as a bandgap is untenable because the value 

extracted from the data is about 0.6 eV, which is much less than the bulk gap of Ag2O 

and incompatible with metallic Ag, even nanoscale Ag. On other hand, if the nanowire 

were a true metal, it would show an increase in resistance with increasing temperature. 

Therefore, the data cannot be adequately explained in terms of metallic conduction. 

The data are described much better by the use of a hopping model in which the 

activation energy represents the energy barrier between nearest-neighbour sites 

between which the electron hops.  
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5.  Chapter 5: Templating Ag on DNA polymer hybrid 

nanowires: control of the metal growth morphology 

using functional monomers 

5.1 Introduction 

Conducting polymers are candidates for use as nanomaterials in electronic applications 

[107]. Nanowires based on materials such as polypyrrole (PPy) [22], poly(methyl 

pyrrole), polyaniline [108] and polythiophene [109, 110] have many advantages 

compared to carbon nanotubes and silicon nanowires because of their tuneable 

conductivity, flexibility, chemical diversity and ease of processing [111]. An important 

advantage of conducting polymers is that they can be synthesized in a controlled 

manner using a variety of protocols, such as chemical synthesis and templated 

electrochemical synthesis. Further, polymer nanowires are of interest because of the 

possibility to chemically functionalise the wire using simple methods of organic 

synthesis to derivatise the monomer, or to incorporate novel properties through the 

choice of the basic monomer unit. As mentioned in chapter 3, PPy has already been 

shown to have the electrical properties necessary for use as a molecular conductive 

nanowire. Also, polythiophene has been used with PPy and is considered ideal for use 

in synthesis of molecular nanowires. Combining these molecular nanowires and using 

DNA as a template for them produces easily synthesized nanowires, which exhibit 

electrical conductivity. DNA has been used as a template on to which metals and 

conducting polymers can be deposited in the form of nanowires [112, 113]. The 

advantages of this technique are the simplicity of the chemical procedures and the 

robust nature of DNA, which is also available in precisely defined lengths. However, 

DNA-templated metal nanowires are often very rough, even irregular in appearance as 

shown before in chapter  4, whereas DNA-templated polymers are smooth, but less 

conductive [114]. 

In this chapter, the templating of Ag on DNA/polymer nanowires to form hybrid 

nanowires was investigated. It has been shown that a metal-binding functionality 

(alkynyl) can be introduced into DNA-templated polymer nanowires by chemical 

modification of the 2-(thiophen-2-yl)-1H-pyrrole (TP) monomer, and used to improve 

the morphology of Ag deposited on this hybrid template.  
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5.2 Materials and methods 

λ-DNA (500 ng μL
-1

) was purchased from New England Biolabs (cat no. N3001 1S, 

Hitchin, Herts. SG4 0TY United Kingdom). Silver nitrate and all chemicals used in 

this experiment of AnalaR grade or equivalent were purchased from Sigma–Aldrich 

and used without any further purification process. All the solutions were prepared in 

water from a Barnstead nanopure purification train with nominal resistivity 18.2 MΩ 

cm. 

5.3 Methods 

It should be noted that chemical synthesis of the alkylation of 2-(thiophen-2-yl)-1H-Py 

(TP) samples was performed by Dr. Miguel A. Galindo and Jennifer Hannant as in 

reference [115] in the Chemical Nanoscience Laboratory, School of Chemistry, 

University of Newcastle, but all the templating reactions and characterization 

(spectroscopic, AFM imaging and electrical measurements) were conducted by the 

author. 

5.3.1 General procedure of alkylation of 2-(thiophen-2-yl)-1H-pyrrole 

Poly-TP (PTP) was prepared by the following method: The solvent 

dimethylformamide (DMF) (anhydrous) (50 ml) was added to TP (1.0 g, 6.8 mmol) 

via cannula under nitrogen. Sodium hydride (60 % dispersion in mineral oil) (0.32g, 

13.4 mmol) was then added under nitrogen and was left to stir for 30 min at room 

temperature. 5-chloro-1-pentyne (1.4 ml, 13.4 mmol) was added and the mixture was 

allowed to stir for 5 hr. Reaction completion was monitored by thin layer 

chromatography (TLC). Upon completion, the mixture was then filtered through a 

celite pad to remove any unreacted sodium hydride. Water was added and the resulting 

mixture was extracted with CH2Cl2 and then dried over magnesium sulphate. DMF 

was removed in vacuum and the mixture was dried.  

5.3.2 Templated electroless deposition of silver 

λ-DNA solution (20 μL), or an equivalent amount of polymer-templated DNA, was 

mixed with 20 μL Tollens‟ reagent and heated at 50°C for 10 min. Tollens‟ reagent 

was prepared from a mixture of 200 μL aqueous AgNO3 (0.5% wt/vol) and 5 μL 
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NaOH (5% wt/vol) and the precipitate was dissolved in 600 μL NH4OH (conc. 

NH4OH diluted 2% in H2O).  

5.3.3 Polymer (TP or alkynyl-TP) templating on DNA 

Pentynyl-TP was chemically polymerised by FeCl3 forming poly(ATP) which reacts in 

basic medium with Tollens‟ reagent producing poly(Ag-ATP). 5-chloropent-1-yne was 

then added so that an SN2 displacement generates the ATP. Sodium hydride was added 

to facilitate the removal of the proton on the pyrrole, this was observed as 

effervescence which is due to hydrogen evolution. The sodium cation stabilises the 

nitrogen anion. In basic medium, ATP reacts with Tollens‟ reagent forming poly(Ag-

ATP). Terminal alkyne hydrogens in poly(ATP) are slightly acidic and in basic 

medium can be easily deprotonated to form terminal alkyne anions, which tends to 

form silver-alkyne complexes  by interaction with silver cations (Scheme 5.1).  

5.3.4  Probe microscopy 

Prepared nanowires were deposited by drop coating on Si chips with a 210 nm-thick 

grown oxide layer formed by dry oxidation as described in chapter  2. Before the 

deposition, the surface of the substrate was silanised in Me3SiCl vapour for 10 

minutes. Nanowires were aligned by spinning and molecular combing method.  

AFM imaging. Tapping mode AFM images were acquired in air using a Dimension 

Nanoscope V system with NanoProbe tip. AFM images are taken in tapping mode 

using cantilever of 200-250 μm long, 252 kHz resonant frequency and 1-5 N m
-1

 

spring constant. 

C-AFM measurements. C-AFM measurements were performed using the same 

system described in chapter 2, except for using MESP Veeco probes n-doped Si 

cantilevers, covered by Co/Cr layers with resonant frequency of about 74 kHz, spring 

constant k = 2.8 N/m and quality factor Q, between 240 and 260. The tip was 

grounded and ± 7V bias was applied to the chuck holding the chip with nanowires 

connected to the chuck by means of Ga/In eutectic.  

EFM measurements. EFM measurements were carried out using the same system 

described above, but with a suitable bias applied to create an electrostatic field 

between the tip and the nanowire. For EFM phase imaging, the lift height was 60 nm, 

the tip resonant frequency was about 74 kHz, spring constant = 2.8 N m
-1

 and the 
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quality factor = 260. The tip was grounded and a DC bias was applied to the Si chip 

(Si(100), p
++

, doping). 

5.4 Results and discussion 

By comparison of the three types of Ag nanostructure formed on DNA templates, this 

experiment has shown that the morphology of the Ag deposit can be controlled by the 

incorporation of Ag-binding groups in the template (Scheme 5.1). FTIR spectra of 

poly(alkynyl-TP) films prepared by FeCl3 oxidation [109] show a complex fingerprint 

region typical of conjugated polymers and the two major bands expected for the 

alkynyl group: a carbon-carbon triple bond stretch at 2120 cm
-1

 and a C–H stretch due 

to the sp hybridised C–H bonds at 3302 cm
-1

. The TP units in the polymer probably do 

not couple strictly head-to-tail, but with a random orientation. However, this does not 

affect the measurements and the TP monomer is convenient for incorporation of 

alkynyl functionality by N-alkylation. 

 

Scheme  5.1: DNA-templated poly(alkynyl-TP) nanowires and deposition of Ag 

nanocrystals [116] 

 

5.5 AFM characterization 

For simplicity, it is helpful to use the notation that Poly(alkynyl-TP)/DNA denotes 

polymer templated on DNA and Ag/DNA or Ag/poly(alkynyl-TP)/DNA denote the 

structures formed after electroless deposition of Ag on the bare DNA and the hybrid 

polymer/DNA templates. Figure  5.1 shows AFM images (height and phase) of these 

nanostructures. Samples were prepared by the reaction of Tollens‟ reagent with λ-

DNA under ambient light conditions and with mild heating (50°C, 10 min). The 

growth of Ag nanocrystals along the DNA molecule is clearly observed and C-AFM 

measurements demonstrate that the nanocrystals are in electrical contact [116]. This 

beads-on-a-string morphology is quite typical of DNA-templated metals. It has been 

previously shown in this thesis that conductive polymers produce much more regular 
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and smooth nanowires when templated on DNA by oxidative chemical polymerisation 

of the monomer in a solution of λ-DNA. Figure  5.1(b) and (c) are typical AFM images 

for Ag/poly(alkynyl-TP)/DNA and Ag/poly(TP)/DNA; these nanowires are quite thick 

(~20 nm) and rather smooth. 

The wires lie straight in these images because they have been „„combed” across the 

surface by the flow in a dragged water droplet. Figure  5.1 (b–d) show another 

phenomenon which has been noted previously: the compensation of the charge on the 

double helix by the polymer causes nanowires to wrap around each other to form a 

nanorope. It is also possible that the Ag nanowire in Figure  5.1 comprises more than 

one DNA molecule. 

The conductive polymer-based nanowires are smooth and regular in structure, but their 

conductance is much less than for true metals. Nevertheless, chemical functionality 

can easily be incorporated into the polymer nanowire using a functional monomer. It 

was decided to modify the TP monomer by attaching a propyl chain with a pendant 

alkyne group to the N-atom of the Py unit (Scheme  5.1). DNA-templated 

polymerisation of this monomer produces nanowires and nanoropes indistinguishable 

(by AFM) from those formed by the unmodified TP. However, when the TP nanowires 

are treated with Tollens‟ reagent, the growth of Ag deposits on the nanowires is 

strongly influenced by alkynyl group (Figure  5.1). On TP/DNA, the Ag forms a 

relatively small number of nanocrystals and, compared to those on the alkynyl 

polymer, they are quite large. This is probably due to the absence of a strong Ag
+
 

binding site on poly(TP), which results in sporadic nucleation of only a few Ag 

clusters. On poly(alkynyl-TP), the nucleation of Ag is facile because of the well-

known interaction of alkynes and Ag(I): initially Ag
+
 forms a sigma bond to the sp 

carbon after loss of the alkynyl proton, but polymerisation of such complexes via pi-

interactions also occurs [117]. On the poly(alkynyl-TP)/DNA nanowire, many small 

nanocrystals are formed, and they are so close together and uniformly distributed over 

the template that they are only distinguished in the phase image (Figure  5.1 (d)).  
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Figure  5.1: Tapping mode AFM images of nanowires on SiO2/Si. (a) Ag/DNA, height; 

(b) Ag/poly(alkynyl-TP)/DNA, height; (c) Ag/poly(TP)/DNA, height; (d) 

Ag/poly(alkynyl-TP)/DNA, phase; (e) Ag/poly(TP)/DNA, larger scale 7μm
2
, height image; 

and (f) Ag/poly(TP)/DNA, phase (g) and (h) show expanded views of (a) and (d), respectively. 

All scale bars are 1 μm [116] 

 

5.6 Electrical measurements 

In order to determine which of the nanostructures are conductive, two-point I–V 

measurements in C-AFM and a variant of EFM were used.  
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 Figure  5.2: A C-AFM current image of an Ag/poly(alkynylTP)/DNA nanowire. The tip/ 

sample bias potential was 10 V, the scale bar is 1 µm and the grayscale corresponds to 

100 nA [116] 

Figure  5.2 shows a current image of an Ag/poly(alkynylTP)/DNA nanowire on an Si 

chip acquired by C-AFM. One contact to the nanowire is a drop of In/Ga eutectic 

placed on the chip and the other is the metallised AFM tip. When the tip contacts the 

oxide, no current is observed (black background in (Figure  5.2). However, when the 

tip touches the nanowires, a current flows (ca. 10
-7

 A @10 V in Figure  5.2). The 

current pathway to the remote In/Ga contact exceeds the scan range, and therefore C-

AFM is unsuited to a precise determination of conductivity, but it does convincingly 

demonstrate the nanowire is conductive. As was previously noted, nanowires are 

easily disturbed during contact mode imaging, and therefore the current image does 

not have the resolution of the tapping mode images of Figure  5.1. 

Figure  5.3 shows scanned conductance (phase) images of several nanowires. Ag/DNA 

nanowires give large, bright spots corresponding to Ag clusters (Figure  5.3a), which 

are presumably not in good electrical contact with the rest of the wire (dark shadow). 

Of the other structures, only the Ag/poly(alkynyl-TP)/DNA nanowire shows similarly 

large negative phase shifts (Figure  5.3 e). Those wires are also much more uniform 

than the pure Ag/DNA wire (Figure  5.3 c), and this confirms that most of the Ag 

clusters of Figure  5.3 (e) are in good electrical contact.  
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The expected parabolic dependence of phase shift on bias for voltages between -7 and 

+7 V was observed; this confirms the phase is due to the “scanned conductance 

effect” rather than trapped charge, which produces phase shifts that depend 

linearly on bias voltage. In the absence of deposited Ag, the polymers show smaller 

phase shifts, and the negative–positive–negative phase profile previously observed for 

conductive polymer fibers was observed in this experiment [118]. Figure  5.4 shows 

the variation of phase shift (over the middle of the wire) with the tip/substrate bias.  

 

 Figure  5.3: EFM phase images of various nanostructures; (a) poly(TP)/DNA; (b) 

poly(alkynyl-TP)/DNA; (c) Ag/DNA; (d) Ag/ poly(TP)/DNA and (e) Ag/poly(alkynyl-

TP)/DNA. The lift height was 60 nm and the grayscale corresponds to 3°. The scan sizes 

(μm) are (a) 6.3, (b) 4.1, (c) 3.3, (d) 5.4 and (e) 4.0 [116] 
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Figure  5.4: EFM phase shift against applied tip/substrate voltage for: poly(alkynyl-

TP)/DNA (black); Ag/poly(alkynyl-TP)/DNA (red) and Ag/DNA (blue) [116]  

 

5.7 Conclusions 

It has been shown that alkynyl functional groups can be incorporated in conductive 

polymer nanowires in a convenient manner by chemical modification of the monomer. 

Alkynyl groups are known to bind Ag
+
 and were chosen to encourage nucleation and 

growth of Ag on the polymer/DNA template; this was demonstrated using tapping 

mode AFM to image the morphology of the nanowires and conductive AFM and EFM 

phase imaging to demonstrate their electrical conductivity.  The main advantage of 

using this method is in producing smoother nanowires than normal method of 

templating Ag directly on DNA. The DNA-templated Ag has a structure that typically 

consists of small particles of Ag spaced along the template; if the particles are close 

together, they may be in good electrical contact. The Ag template on the alkynyl 

polymer template is much smoother, although high resolution phase images do show a 

nanoparticulate structure. Nevertheless, EFM and C-AFM data show that there is good 

electrical contact between these particles. The Ag/polymer/DNA nanowires show 

higher conductance than the polymer /DNA nanowires, which are too resistive for 

many applications, e.g., interconnects. Further investigation of these metal/polymer 

hybrids could produce better nanowires with both reasonable conductivity and the 

smooth morphology of the polymer nanowires.  
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6. Chapter 6: Synthesis and characterization of conductive 

DNA-templated Cu2O nanowires 

6.1  Introduction 

Among several methods that have been developed to metalize DNA templates with 

different metals, cuprous oxide (Cu2O) has recently received increasing attention as a 

semiconductor material. Cu2O is considered a p-type semiconductor with promising 

applications in many areas such as fabrication of low-cost solar cells [119] and gas 

sensing [120]. Different Cu2O nanostructures have been synthesized by many groups; 

for example, Zhang et al prepared Cu2O nanocrystals via a chemical route. In that 

work, NaBH4 was used as the reducing agent while DMF was used as a solvent. 

NaBH4 working as a strong reducing agent, reacts with a trace amount of H2O in DMF 

and then reduces Cu(CH3COO)2 to Cu2O nanocrystals[120]. Wang et al [121] 

synthesized crystalline Cu2O nanowires by a chemical method in the presence of a 

suitable surfactant, polyethelene glycol, at room temperature and Gou et al reported 

another structure, nanocubes of Cu2O, which can be synthesised by solution-phase 

methods [122]. Cu2O nanowires have also been reported using an electrochemical 

method with an alumina membrane as a template [123] and Orel et al [124] 

demonstrated that Cu2O nanowires can be chemically prepared using diethylene glycol 

as the reducing agent.  

Different preparations give Cu2O films with different resistivity. For example, the 

electrical resistivity at RT of the Cu2O film prepared by pulsed magnetron sputtering 

of powder targets, measured using a four-point probe technique was reported to be 

412 Ω cm [125], while the resistivity of the electroless-chemical deposited Cu2O films 

was of the order of 10
4
–10

5
 Ω cm [126] which is very high compared to the 10

2
–10

3
 Ω 

cm for the bulk Cu2O [127]. Cu2O nanoparticles have been synthesized by several 

groups. However, to my knowledge, Wang et al is the only published report of 

assembled Cu2O nanoparticles on DNA to form necklace-like 1D nanostructures. 

Though, the electrical properties of such nanostructures were not reported [128].  

In this chapter, a new method to synthesise Cu2O nanowires using the DNA templating 

strategy is described and electrically characterised. Formation of Cu2O upon DNA was 
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achieved through chemical reduction using an alkaline solution of a cupric citrate 

complex (Benedict's reagent) and ascorbic acid as the reducing agent in solution at 

room temperature. The structural properties and chemical composition of nanowires 

were characterized by means of FTIR spectroscopy, UV-Vis absorption spectroscopy, 

XRD and XPS. The morphology and electrical properties of the resulting nanowires 

were investigated by AFM, EFM and C-AFM.  

6.2 Experimental work 

6.2.1 Preparation of Benedict's reagent 

Benedict's reagent was prepared by dissolving 0.173 g of tri-sodium citrate and 0.10 g 

of anhydrous sodium carbonate in 8 mL nanopure water (solution A). Then 0.173 g of 

cupric sulphate (pentahydrate) was dissolved in 20 mL nanopure water (solution B). 

Immediately before use, Benedict‟s reagent was prepared by mixing 0.2 mL solution A 

with 0.8 mL solution B. 

6.2.2 Preparation and alignment of Cu2O-DNA nanowires 

Cu2O-DNA nanowires were prepared by mixing 20 μL λ-DNA (500 ng µL
-1

) solution 

with 20 μL of freshly prepared Benedict‟s solution. Then 0.2 M ascorbic acid (aqueous 

solution) was added in drops to the solution (approx 10 μL); afterwards the mixture 

was allowed to react at room temperature for 1 hour prior to analysis. Cu2O-DNA 

nanowires were aligned by the molecular combing technique[33]. In order to facilitate 

the alignment of nanowires on Si/SiO2 substrates; the hydrophobicity of the SiO2 

surface was increased by treating the Si/SiO2 substrates with chlorotrimethylsilane 

(Me3SiCl) vapour for about 10 minutes. Typically, 2-3 μL Cu2O-DNA solution were 

dropped on the substrate surface and combed across the surface before removal of the 

excess solution with a micropipette and/or filter paper. 
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6.3  Techniques used for characterisations 

6.3.1 Fourier transform infrared spectroscopy 

FTIR spectra (in the range 500-1800 cm
-1

) were recorded in absorbance mode with a 

Bio-Rad Excalibur FTS-40 spectrometer (Varian Inc., Palo Alto, CA) equipped with a 

liquid nitrogen-cooled deuterated triglycine sulphate (DTGS) detector, and were 

collected at 128 scans with 4 cm
-1

 resolution. The DNA used was prepared through 

drop casting of solutions of the DNA upon chemically oxidized Si (100) p-type 

substrates. Cu2O-DNA solutions (8 μL) were deposited on a clean Si substrate. Both 

solutions were allowed to dry for 1 hour prior to analysis.  

6.3.2 UV-Vis absorption spectroscopy 

The UV-Vis absorbance spectra were recorded on a Thermo Spectronic GENESYS 6 

spectrophotometer (wavelength range from 250 to 900 nm). Approximately 0.5 mL of 

calf-thymus DNA (CT-DNA) solution (162.5 µg/mL; 10 mM Tris-HCl pH 8.0 

mMEDTA) was mixed with 0.5 mL freshly prepared Benedict‟s solution. Then 

ascorbic acid (0.2 M) was added dropwise to the solution (approx 0.250 mL). After the 

addition of the ascorbic acid was completed, the Cu
2+

 blue colour gradually turned red 

(after 10 min). The UV–Vis. spectra of the resulting Cu2O-DNA could not be taken 

due to formation of the red precipitate. Therefore, the mixture was allowed to continue 

reacting at room temperature for 24 hours. After the Cu
2+

 was reduced, the red 

precipitate (Cu2O-DNA) was filtered, washed with ethanol and dried. The Cu2O-DNA 

powder was then dissolved in DMF for the optical absorption measurements. 

6.3.3 X-ray diffraction (XRD) 

The XRD analysis was recorded from a powder sample using the XRD system 

(XPERT-PRO) with graphite monochromatized CuKβ radiation (λ = 0.15418 nm). The 

scanning rate of 0.03°/s was applied to record the pattern in the 2θ range of 30° to 70°. 

For XRD measurements about 1 mL CT-DNA solution (162.5 µg/mL; 10 mM Tris-

HCl pH 8 +1 mM EDTA) were mixed with 1 mL freshly prepared Benedict‟s solution. 

Then ascorbic acid (0.2 M) was added dropwise to the solution (approx 0.5 mL). A red 

Cu2O-DNA precipitate was formed. A large amount (approx 100 mg) of the Cu2O-
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DNA powder was prepared and collected using the same procedures described before 

for XRD analysis.  

6.3.4 X-ray photoelectron spectroscopy (XPS) 

An Axis-Ultra photoelectron spectrometer equipped with a monochromic Al-Kα X-ray 

as the excitation source (1486.7eV) with an operating power of 150 W (15 kV, 10 mA) 

was used to collect photoemission spectra of Cu2O-DNA sample. The photoelectrons 

induced by the X-ray excitation were filtered by the hemispherical analyzer, and 

recorded by multi-channel detectors at a chamber pressure of 3.2 x 10
-9

 Torr. For the 

survey scan, the pass energy was 20 eV and the step size was 0.3 eV. The binding 

energies obtained in the XPS analysis were corrected for surface charging effect (0.5 

eV), using C1s (284.6 eV) as a reference. Peaks of the sample were fitted with Doniach 

Sunjic doublet functions after subtraction of a linear background using the WinSpec 

programme developed by LISE laboratory, Belgium. The Cu2O-DNA sample was 

prepared by depositing 3 µL of solution on a clean Si (100) substrate and then left to 

dry in air at room temperature in a laminar flow hood to reduce contamination (Envair 

Limited; 0.6 m/s air flow and 60 rpm fan speed) before being inserted into the XPS 

chamber.  

6.3.5 AFM and EFM investigations 

Tapping Mode AFM imaging of surface topography was performed in air on a 

Dimension Nanoscope V using TESP probes (n-doped Si cantilever), with a resonant 

frequency of 234-287 kHz. The surfaces of substrates used were cleaned using the 

method described in chapter 2. 

EFM measurements were also carried out in air on a Dimension Nanoscope V system 

using MESP probes (n-doped Si cantilevers, with a metallic Co/Cr coating), with a 

resonant frequency of ca. 70 kHz and a quality factor of 200-260. For both AFM 

systems, vibrational noise was reduced with an isolation table/acoustic enclosure. 

In EFM experiments, an electrostatic field is created between the tip and sample by 

applying an independently controlled bias to the sample, while the tip was grounded. 

The phase shift is related to the force gradient and is sensitive to the conductance of 

Cu2O-DNA nanowires under examination. The EFM phase images show the phase of 
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the tip oscillation at a set lift height above the sample surface. Samples used in EFM 

studies were aligned upon Si(100) substrates with a thermally grown oxide layer, ~210 

nm thick on top. Processing of data acquired from AFM and EFM experiments was 

carried out using Nanoscope version 7.00b19 (Veeco Inc., Digital Instruments). 

As discussed before in chapter 2, if a nonconductive, but polarizable nanowire is 

modelled as a thin dielectric strip lying directly under the tip (modelled as a disk of 

defined radius, Rtip), the phase shift can be estimated by equation (2.15). Where Q is 

the quality factor, k is the cantilever spring constant, t is the oxide thickness, and d  the 

nanowire diameter. Inspection of equation (2.13) shows that the polarizability of an 

insulating 1D structure alone can only provide a positive phase shift. However, for 

conducting nanowires, which allow the charge stored on the Cu2O-DNA nanowire/Si 

capacitor to be spread along the length of the wire (L), the second term in equation 

(2.15), becomes significantly larger (as the length of the capacitor nanowire/substrate 

is now determined by L rather than by Rtip), resulting in a negative phase shift. 

For C-AFM measurements, a constant bias was also applied between the tip and the 

Cu2O-DNA nanowires (the tip was grounded). Electrical contact was made by 

applying a drop of In/Ga eutectic to one corner of the chip and to the metallic chuck. 

The closed loop system of the Dimension V instrument makes possible to reproducibly 

position the cantilever at a point of interest on the nanowire and record the I-V curve. 

6.4 Results and discussion 

6.4.1 Chemical synthesis of Cu2O in DNA-containing solutions 

In this study, λ-DNA was also used as a template to direct Cu2O nanowire assembly. 

The method reported here is simple and reproducible; the reaction conditions are mild 

and the reactants need no heating in the experiment. Cu2O nanowires were formed 

upon λ-DNA template by chemical reduction of an alkaline cupric citrate complex 

solution (Benedict‟s reagent) using ascorbic acid as the reducing agent, in air and at 

room temperature. Cu
2+

 ions are attached electrostatically to DNA, then reduced to 

Cu2O with ascorbic acid.  

DNA possesses two possible binding sites; anionic phosphate groups and aromatic 

bases, which play an important rule in the DNA templating method (non-covalent 
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interaction) [22]. Here, the Cu
2+

 cations attach electrostatically to the anionic DNA 

backbone with the intimate interactions between Cu2O and DNA in the resulting 

nanowires, confirmed by means of FTIR, UV-Vis, XRD, XPS and AFM. Variations of 

the synthesis process, described here, may also be valuable for the synthesis of other 

nanomaterial oxides with significantly higher efficiency. 

6.4.2 Fourier transform infrared spectroscopy investigation 

FTIR spectra were used to characterize the interaction of Benedict‟s reagent and λ-

DNA. The infrared spectral features related to this discussion are presented in 

Figure  6.1. The free λ-DNA spectrum (dotted line) shows the characteristic in-plane 

vibrations of bare DNA; 1118 cm
-1

 (PO2
-
 symmetric stretch), 1232 cm

-1
 (PO2

-
 

asymmetric stretch), 1408 cm
-1

 (C-N stretch thymine, adenine), 1490 cm
-1

 (C8-N 

coupled with a ring vibration of guanine), 1556 cm
-1

 (in-plane vibrations of cytosine 

and guanine) and 1658 cm
-1

 (purine stretch, N7)[92]. Cu2O-DNA spectrum (solid line) 

shows distinct changes in several λ-DNA vibrational bands; a split band arising from 

PO
2-

 symmetric stretches (1128 cm
-1

) and P-O or C-O stretches (1080 cm
-1

) of the 

phosphate backbone. A shoulder band is also observed around 1157 cm
-1

 assigned to 

the asymmetric (O-C-C) dehydroascorbic acid. Moreover, the asymmetric PO2
-
 

vibration (1232 cm
-1

) is also observed to be shifted to higher vibrational frequency 

(1246 cm
-1

). This observation indicates the direct interaction between Cu species and 

DNA phosphate backbone.  

Furthermore, the strong interaction between Cu2O and DNA molecules derive from the 

fact that the DNA backbone is negatively charged, while as-formed Cu2O is positively 

charged due to a small stoichiometric excess of Cu
2+

. Therefore, the particles can be 

effectively adsorbed onto the DNA molecules via strong electrostatic interactions 

[128]. The presence of Cu2O, is confirmed by the characteristic phonon band around 

618 cm
-1

 [129] which was observed in the FTIR spectrum. Since Cu2O-DNA 

nanowires were prepared from an aqueous DNA solution and Cu
2+ 

citrate complex 

with ascorbic acid; the two strong bands at 1595 and 1398 cm
-1

 can be assigned to 

asymmetric and symmetric stretching of C=O of the carboxylate group [130] of citrate 

anion respectively.  

In summary, the FTIR results indicate that the vibrational frequencies of λ-DNA are 

markedly altered upon interaction with the Cu
2+

, which is evidence of close association 
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of the inorganic material and the DNA. The observation of the characteristic sharp 

feature at 618 cm
-1

 also demonstrates that the cupric ion is reduced to cuprous oxide 

rather than to metallic copper. 

 

Figure  6.1. FTIR spectrum of Cu2O nanoparticles upon DNA templates prepared using 

Benedict‟s reagent and ascorbic acid (solid line); the Cu2O nanostructures exhibit a 

distinct band around 618 cm
−1

. The FTIR spectrum of bare λ-DNA (dotted line) 

 
 

6.4.3 UV-Vis absorption spectroscopy  

It has previously been reported that the optical absorption of Cu2O nanoparticles can 

be affected by its morphology and crystallinity [130, 132]. In this study, the UV-Vis 

absorption results of bare CT-DNA solution, Benedict‟s reagent and Cu2O-DNA 

powder in DMF were recorded at room temperature (Figure  6.2). The electronic UV-

Vis spectrum of the bare CT-DNA solution (dotted line) exhibits the distinct 

characteristic absorption band of DNA at 260 nm; this peak has shifted toward longer 

wavelengths (280 nm) indicating that DNA has a strong interaction with Cu species. 

The UV-Vis spectrum of Benedict solution shown in Figure  6.2 (dashed line) suggests 

that the Cu
2+ 

citrate complex shows a weak broad absorption in the 600–800 nm range, 

which vanished upon the addition of the ascorbic acid, indicating the reduction of 

Cu
2+

. Moreover, Cu2O-DNA spectrum (solid line) displays an absorption peak located 

at 400 nm, which can be attributed to Cu2O nanocrystals. This absorption also showed 

an obvious blue shift compared to the absorption at 570 nm of bulk Cu2O [131]. 
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Figure  6.2: UV-Vis absorption spectra of Cu2O powder prepared in solutions containing CT-DNA, 

Benedict‟s solution and ascorbic acid at room temperature. The UV-Vis spectrum of bare CT-DNA 

solution (dotted) exhibiting an absorption band at 260 nm; the UV-Vis spectrum of Benedict‟s solution 

(dashed line) showing broad absorption in the range 600–800 nm, which vanished with the addition of 

the ascorbic acid, and the UV-Vis spectrum of Cu2O-DNA powder in DMF (solid) displaying an 

absorption peak located at about 400 nm, which can be attributed to the presence of Cu2O nanocrystals 

6.4.4 X-ray diffraction (XRD) 

X-ray diffraction (XRD) spectroscopy has been used to characterize the Cu species in 

the Cu2O-DNA. Figure  6.3 shows the XRD patterns of the Cu2O from the Cu2O-DNA 

powder. The XRD spectrum contains four clear peaks; all of which can be indexed to 

Cu2O nanostructures and there are no features due to metallic Cu in the sample. The 

diffraction peaks at 2θ values 36.1°, 42.3°, 51.1° and 61.3° correspond to the crystal 

planes of (111), (200), (211) and (220) respectively of crystalline Cu2O according to 

the International Centre of Diffraction Data (ICDD). The peak positions are in good 

agreement with those reported for nano-sized Cu2O [132, 133]. The average size of the 

nanocrystals was estimated using the Scherrer formula [36] from the full width at half 

maxima (FWHM) of the diffraction peaks 36.1°, 42.3°and 46.7°, as can be seen in 

(Table 6.1) in nm. It may be noted that there is reasonable agreement between Scherrer 

sizes and the nanocrystals sizes estimated by AFM. 
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Figure  6.3. XRD pattern of Cu2O powder prepared in solutions containing CT-DNA, 

Benedict‟s solution and ascorbic acid showing the peaks arising from the Cu2O (111), 

(200), (211) and (220) reflections[134]. Other peaks arise from unknown contaminants. 

Unknown peaks could be due to salt contaminations 

 

The diffraction peak at 2θ=38.9° arises from the Cu Kβ (radiation source) not the 

sample itself because none of the well-known Bragg peaks of metallic Cu are present, 

e.g. at 43 degrees. Also, Si substrate diffraction peaks were observed at 2θ=46.8° to 

48.1° and at 56.3°, while a few unassigned peaks emerged, likely due to buffer salts. It 

should be noted that XRD was carried out on a sample prepared from CT-DNA, which 

is available in larger quantities than the λ-DNA used for AFM. The particle diameter 

of Cu2O on these two forms of DNA was found to be slightly different; however it is 

not possible to obtain XRD patterns from the small quantities of material prepared 

from λ -DNA. Nevertheless, correlation of the FTIR and UV-Vis spectral results with 

those derived from the XRD analysis confirms the sample composition as Cu2O/DNA.  

 

Table 6.1: Average Cu2O nanoparticles size estimated by AFM and Scherrer 

equation 

 
Angle (deg) 

Average nanoparticles 
diameter estimated from 

AFM (nm) 

Nanoparticles diameter 
calculated from Scherrer 

equation (nm) 

36.1 
42.3 
46.7 

14.1±0.4 13.1±1.3 
12.0±1.2 
10.3±1.8 
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6.4.5 X-ray photoelectron spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS), which is very sensitive to the oxidation state 

of copper (e.g., Cu
2+

, Cu
+
 and Cu

0
), has been used to study the composition of the 

Cu2O-DNA surface sample. Synthesis methods, surface state, size and other factors 

affect the physical properties of Cu2O nanoparticles, which are not defined obviously 

as in the case of bulk materials [135]. Fitting the XPS Cu2p spectrum reveals that two 

peaks located at 932.54 and 953.66 eV respectively can be assigned to the binding 

energy of Cu2p3/2 and Cu2p1/2 (Figure  6.4) , which is in a good agreement with data 

previously reported for Cu2O nanowires [136]. The binding energies are calculated 

with reference to C1s binding energy 284.6 eV to compensate the charging effect. The 

spectrum between 920 and 965 eV indicates a doublet with a peak separation of 21.1 

eV owing to the presence of the Cu
+
 state. Further observation of the O1s region of the 

spectrum shows a binding energy of 530.1 eV, which corresponds to O
2−

 in Cu2O, 

consistent with the value reported in the literature [121]. 

 

 Figure  6.4: XPS spectrum of Cu2O-DNA nanowires sample. Cu2p3/2 and Cu2p1/2 appear at 

932.54 and 953.66 eV respectively, which can be attributed to the Cu2O nanostructures.  

 

On the other hand, only a weak satellite feature around 942-944 eV on the higher 

binding energy side of the Cu2p main peak was observed , which could be due to traces 

of CuO on the surface of the nanocrystals. It should be noted that the divalent copper 

compounds show characteristic shake-up satellite peaks on the higher binding energy 

side of the spectrum [137]. In summary, the XPS results together with XRD suggest 
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the formation of Cu2O core structure with perhaps a thin CuO shell upon DNA 

templates.  

6.4.6 Cu2O-DNA nanowires assembly: AFM characterization 

Tapping mode AFM was used to record the morphology of the Cu2O-DNA nanowires. 

As discussed before, this mode of AFM uses a probe, which taps the sample surface 

softly, with the tip oscillating close by its resonant frequency. The cantilever's 

oscillation amplitude and phase (with respect to the driving force) changes with 

nanowire surface topography and the image is achieved by monitoring these changes. 

Imaging of Cu2O-DNA nanowires in the tapping mode is unlikely to cause damage, 

because the lateral forces in this mode are reduced in comparison to C-AFM mode. 

Different AFM images of the nanowires were recorded over different incubation times 

and different scan sizes. Figure 6.5 (b) shows AFM tapping images of nanowires 

aligned on Si substrate after two hours of preparation. It depicts many individual DNA 

molecules with individual Cu2O nanoparticles in the background that do not nucleate 

on the DNA template. The AFM image shown in Figure 6.5(a) indicates that a short 

incubation time (less than 60 minutes) led to Cu2O nanoparticles not being fully 

templated on the DNA molecules, and did not form a complete Cu2O-DNA nanowire. 

It was noticed that, if the incubation time is shorter than one hour, most of the Cu2O 

nanoparticles in the solution did not have the chance to interact completely with the 

DNA to form a complete Cu2O-DNA nanowire; instead, a beads-on-string appearance 

is observed. Figure 6.5 (b) shows the AFM image of Cu2O nanoparticles assembled 

along λ-DNA strands to form continuous nanowires aligned on substrate after 2 hours 

of incubation. Lengths of aligned nanowires ranged from about 2 μm to 16 μm. The 

AFM image shows that the diameter of bare λ-DNA aligned on the substrate surface, 

which was about 1 nm is consistent with previous measurements of double-stranded 

DNA recorded by AFM [34]. The height observed for individual untemplated Cu2O 

nanoparticles ranged from 2.7 to 4.5 nm with standard deviation σ = 0.54, and average 

= 3.5 nm, while heights of Cu2O nanoparticles assembled onto DNA chains were in 

the range, 15–24 nm with standard deviation σ =2.4, and 20 nm average. The grains 

seen about 2.8 nm in height possibly enclose more than one nanoparticle of Cu2O. 

Figure 6.5 (b) shows that Cu2O nanoparticles are assembled and embedded onto the 

DNA chains, but there are few nanoparticles surrounding the nanowire.  
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Figure  6.5 AFM images of Cu2O-DNA nanowires aligned on substrate at different 

incubation times; a) < 60 min., height scale 25 nm. b) 2 h, height scale 25 nm, c) after 45 

days, height scale 30 nm; d) after 53 days, height scale 30 nm; (e) after 210 days, height 

scale 30 nm. Scale bar 1 μm in all AFM images 

It was noticed that within 45 to 53 days DNA strands can undergo a transformation 

from bead-on-string appearance (Figure 6.5 c and d) to continuous nanowires (Figure 

6.5 e) with an aggregation of Cu2O nanoparticles that is most evident as a 

morphological change in the strand structure.  
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The interaction between Cu2O nanoparticles and negatively charged DNA molecules 

at that part of the DNA may be weak preventing the Cu2O from being adsorbed onto it. 

In addition, a substrate surface highly treated with Me3SiCl prevents the positively 

charged Cu2O nanoparticles from adsorbing to the surface. Moreover, the 

nanoparticles may not be able to fully assemble onto the DNA templates in a short 

incubation time. In short, The Cu2O nanoparticles incubated in the solution containing 

DNA for different periods of time, in many cases, produce nanoparticles aggregation 

upon the DNA strands. Whereas, incubation for longer time produce nanoparticles 

adsorbed onto the DNA molecules exhibiting a beads-on-a-chain morphology as seen 

by AFM. After very long incubation time, the beads-on-chain morphology starts to 

disappear and smoother nanowires are observed on the substrate surface. 
 

6.4.7 Electrical characterisation of Cu2O-DNA nanowires by scanned 

conductance microscopy (SCM)  

As described before, EFM is a form of scanning probe microscopy in which a 

conductive probe is electrically biased with respect to the sample. This mode is used to 

measure the electric field gradient distribution above the Cu2O-DNA nanowire‟s 

surface while DC bias is applied between the substrate holding nanowires and the tip, 

and the measurement is performed via lift mode and two-pass technique. As mentioned 

in chapter 2, section 2.8, previous results have indicated that conducting 1D structures, 

like single-wall carbon nanotubes have a negative phase shift, with respect to the 

background (SiO2). In contrast, insulating materials show a positive phase shift. 

Therefore, the electrical conductivity of the Cu2O-DNA nanowire was tested by EFM 

as an effective tool to trace its conductivity. A negative-positive-negative phase 

variation was observed as the tip crossed the Cu2O-DNA nanowires; this behaviour 

has been reported before in chapter 3 for conductive polymer nanowires. It is 

consistent with the absence of significant metallic copper in our Cu2O-DNA 

nanowires, which would be expected to give a simple negative phase shift. Upon 

varying the applied bias and measuring the phase shift at the most negative point, the 

expected parabolic dependence of phase shift on bias for voltages between -6V and 

+6V was observed (Figure 6.6 a). The corresponding EFM image is presented in 

Figure 6.6 (b) (applied bias V= 6V, lift height 50 nm). In all EFM phase images, 

Cu2O-DNA nanowires appear as dark lines with a brighter central portion. 
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Figure  6.6: a) EFM phase shift as a function of bias voltage of Cu2O-DNA nanowire. Lift 

height 50 nm, b) corresponding EFM images (applied bias V= 6V, lift height 50 nm, data 

scale 10°), scale bar 200 nm where the nanowire (>2 h incubation time) appears as a dark 

line 

6.4.8 Conductive AFM and direct current–voltage characterization 

Conductive AFM (C-AFM) techniques hold great promise in nanotechnology 

applications for providing direct electrical characterization, in addition to surface 

topography. C-AFM images are generally acquired in contact mode, with 

metal(Co/Cr)-coated cantilevers. In these C-AFM experiments, networks of Cu2O-

DNA nanowires were deposited upon a thick SiO2 insulating layer (220 nm) grown on 

Si substrate, with a eutectic (Ga/In) paste contact connecting the wires to the metallic 

chuck (Figure 6.7). The metal coated tip was then used to act as the second electrical 

contact. The imaged area was about 1 mm away from the eutectic contact. When 

scanning individual nanowire in contact mode, the tip disturbs and moves the 

nanowire during scanning. For this reason, a network of nanowires was used, instead 

of a single one, to eliminate this effect.  

 

Figure  6.7: Schematic representation of C-AFM arrangement setup[106] 

 

I-V curves obtained from AFM in a conductive mode are shown in Figure 6.8. These 

curves were repeated for different DC sample biases to ensure that these curves are 
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producible at room temperature. A symmetric linear behaviour was observed. The 

electrical resistance of prepared nanowires varied in the range from 0.13 to 0.18 MΩ 

under different deflection setpoints and at room temperature. The electrical resistance 

decreased slightly with increasing the vertical contact force (deflection setpoints) due 

to decreasing the contact resistance between the nanowire and the cantilevers‟ tip. 

However this effect is quite small and indicates that tip/sample contact resistance is not 

so significant for the Cu2O/DNA nanowires. A breakdown voltage is observed at about 

-10 V and turn-on voltage at about 10 V for the reverse and forward bias consequently.  
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Figure  6.8: C-AFM I-V curves of Cu2O-DNA with an applied DC sample bias of 5V; the 

electrical resistivity of the prepared nanowires ranged from 0.13 to 0.180 MΩ under 

different deflection setpoints (1.5, 1.0, 0.5, and 0.0 V) at room temperature 

6.5 Conclusions 

In conclusion, it has been shown that DNA molecules can be used as templates for the 

growth of Cu2O nanoparticles to form conductive nanowires. Cu2O nanowires were 

synthesized on DNA templates using Benedict‟s reagent and ascorbic acid via a one-

step in-situ chemical reduction process. The templating interaction (non-covalent) has 

been afforded by cationic Cu2O nanoparticles, which attached electrostatically to the 

anionic DNA backbone via a self-assembly process. The X-ray photoelectron 

spectroscopy and X-ray diffraction measurements on the synthesised nanowires mainly 

showed Cu2O with a small amount of CuO also present. The morphology of the 

nanostructured Cu2O material has also been observed by AFM, showing the nanowire 

becomes continuous at longer incubation times. Electrical characterisation of the 
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structures has been investigated by C-AFM exhibiting the electrical resistance in the 

range from 0.13 to 0.180 MΩ under different deflection setpoints. Prior to use of these 

nanowires in DNA-based nanoelectronic devices, the author recommends further 

investigations of their conductivity, especially the variation with temperature using the 

two-terminal method to investigate the nature of the conduction mechanism.  
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7.       Chapter 7: Overall Conclusion and Future Work 

7.1 Achievements 

In this thesis, different conductive nanowires templated by DNA were fabricated and 

their physical characteristics investigated using different methods. This work is 

necessary to provide the basis for simple nanowire devices, as a forerunner of more 

complicated use of nanowires in IC circuits. Test systems were also constructed by the 

fabrication of Au electrodes using conventional photolithography that act as an 

interface between the nanoworld (nanowires) and the microworld (microelectrodes). 

This step in this work was vital to investigate the nanowire conductivity by providing a 

route to performing detailed electrical measurements of the nanowires. The study was 

also conducted with the aim of developing increased understanding of the mechanism 

of charge transport in nanowires. Moreover, this work will help in developing new 

methods and techniques for conductive nanowire fabrication. These protocols are used 

to provide greater understanding of the fabricated nanowire characteristics. Fabricated 

nanowires, in this work, may fulfil the demands for interconnects that can be used in 

current microdevices chips, as well as future nanodevices. In addition, it may help in 

finding new ways to reduce the cost and ease the difficulties now facing the 

semiconductor industry in the methods being used to fabricate nanostructures. 

In chapter 3, it is shown that PPy can be templated on λ-DNA molecules to form 

conductive nanowires; this is demonstrated by two-terminal current–voltage measure-

ments, EFM (as an indirect measurement method) and C-AFM measurements on 

individual nanowires. Over longer periods of time, a self-assembly process occurs in 

which conductive polymer/DNA nanowires form rope-like structures (nanoropes). 

AFM studies show that the assembly process consists of individual wires twisting 

around each other. In this chapter, it is shown that the conductivity of PPy-DNA 

nanowires increases exponentially as the temperature increases from room temperature 

to 380K. Such behaviour can be interpreted in terms of a simple nearest-neighbour 

hopping model. At temperatures above 380 K the curve starts to deviate from the 

exponential (Arrhenius) behaviour. In addition, nanowire conductivity was measured 

over one cycle of heating up and cooling down, and showed relatively good stability 

with changing temperature. 
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In chapter 4, the formation of Ag nanostructures on the DNA template using Tollens‟ 

reagent was investigated by means of UV-Vis absorption spectroscopy and FTIR 

spectroscopy. Furthermore AFM, XRD and XPS showed that these structures are best 

viewed as metallic Ag coated with Ag2O. The AFM studies revealed that the DNA-

templated Ag nanowires formed were very rough. The electrical measurements 

obtained from Ag-DNA nanowires using EFM and C-AFM showed that these 

nanowires are conductive. The two-terminal technique used to investigate the 

conductivity of these nanowires bridging two Au electrodes and the temperature 

dependent measurements showed that these nanowires do not act as metallic 

conductors, rather they behave like hopping conductors in the manner their 

conductance increases with temperature; this is consistent with the picture derived 

from the XRD and XPS data. 

Chapter 5 showed that the metal-binding functionality (alkynyl group) can be 

introduced into DNA-templated polymer nanowires by chemical modification of the 

TP, and can be used to improve the morphology of Ag nanoparticles deposited on this 

hybrid template. 

Chapter 6 discussed the investigation of electrically conductive Cu2O nanowires 

templated by DNA using an alkaline copper citrate complex solution (Benedict's 

reagent) and ascorbic acid as reducing agent in air and at room temperature. The 

advantage of this method lies in its simplicity and mild reaction conditions, as well as 

short synthesis time. AFM imaging showed that the Cu2O-DNA nanowires are 

smoother than Ag-DNA nanowires. Formation of Cu2O-DNA nanowires were 

characterized by FTIR spectroscopy, UV-Vis, AFM, XRD and XPS, while 

conductivity was investigated by C-AFM. Aside from the preparation and 

characterisation of new nanomaterials, distinctive contributions were made to the 

methods for measuring electrical properties of nanowires. A simple technique 

employing C-AFM was developed to assess the contribution of contact resistance to 

the measured resistance. In this method, the closed-loop positioning system of the 

AFM was employed to place the tip at particular points along a nanowire and to record 

I-V curves at these points. The zero-bias conductance at these points depends on the 

tip/wire contact resistance as well as the length of the nanowire between the tip and a 

remote second contact. By varying the position of the tip, the length of the nanowire 

through which the current passes is varied, but the contact resistance does not vary 
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systematically. A plot of measured resistance against distance shows a linear 

behaviour with an intercept at zero relative distance that is an estimate of the contact 

resistance.  Using this technique, it was established that the lower conductances 

measured for polymer/DNA nanowires than metal-templated or other inorganic 

materials (Cu2O) on DNA are due to the resistance of the polymer wires rather than 

any difficulty in making contact to them. 

Two-terminal I-V measurements upon single nanowires have been also demonstrated 

using a  combination of spin coating and molecular combing to align the nanowires, 

which facilitated the I-V measurements over a range of temperatures. These 

measurements showed that the conductance of all prepared nanowires increases as the 

temperature increases. From the ohmic part of the I-V curve, the conductance was 

calculated and the temperature dependence of the conductance followed an Arrhenius‟ 

behaviour. The simplest interpretation consistent with the experimental data is a 

nearest neighbour hopping model.  

 

Figure  7.1: EFM phase shift comparison between MWCNT and nanowire samples 

fabricated.   

EFM (also known as scanned conductance microscopy) was developed to provide a 

rapid and convenient non-contact method for determination of conductance and 

conducting pathways. At present, it is not possible to use this technique to extract 

quantitative values of conductance, but it was found to be a very powerful technique to 

detect conducting objects prior to more difficult experiments being carried out that 
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require contacts to be prepared. It was also shown that, the effect is in principle 

sensitive to the material; this is a novel finding because existing theory deals only with 

the perfect insulator and perfect conductor limits. 

A comparison of conductivities between different samples fabricated in this work and 

multiwall carbon nanotube (MWCNT) using EFM can be shown in Figure  7.1. Cu2O-

DNA nanowires show higher phase shift than PPy-DNA, Ag-DNA nanowires and 

MWCNT nanowires. All compared nanowires have approximately the same length (~1 

μm) and diameter (20-24 nm).  These differences in nanowires of the same dimensions 

show that the EFM method is sensitive to conductance; an observation that cannot be 

accommodated in the existing theory; further work is however needed to develop the 

technique to make this experiment quantitative. 

Finally, it is worth considering the performance of polymer/DNA nanowires compared 

to traditional materials. Silicon nanowires can exhibit lower resistivity (measured 

values span the range 2.6 x10
2
 Ω cm to 2.3x10

-2
 Ω cm, depending on doping level 

[138]) than most polymer nanowires. However, conducting polymer-DNA nanowires 

and to some extent Ag or Cu2O nanowires templated on DNA also have several 

advantages compared to silicon nanowires. First, they have attractive mechanical 

properties and processing advantages of polymers while exhibiting useful electrical 

properties. Second, by controlling the oxidation level of theses nanowires their 

conductivity can be controlled from the insulating to the semiconducting. Third, they 

are low-cost, elastic and stable in air. Fourth, they can be synthesized easily by 

chemical methods at room temperature. Fifth, polymerization can be carried out from 

aqueous environment in ambient environment, producing one-step synthesis of 

nanowires templated by DNA. Sixth, the advantage of using DNA as a template is that 

it is a chemically robust material, which can be obtained in high purity. Seventh, single 

molecules of DNA of many micrometres long are available and DNA composition and 

structure are well defined. Finally, polymers are easier to chemically change in order 

to introduce functionality for the preparation of, for example, sensing elements. This 

can be done very easily by altering the chemical nature of the monomer through 

organic synthesis and was demonstrated here by using monomers bearing metal-

complexing groups (alkynyl) to aid in the formation of metal/polymer hybrid 

nanowires.  
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7.2 Further work 

In the conclusion of this research, areas for further investigation on the fabricated 

nanowires have been identified. These include using more techniques, such as 

scanning tunnelling microscopy (STM), magnetic field microscopy (MFM), tunnelling 

atomic force microscope (TUNA) and torsion resonance tunneling atomic force 

microscopy (TR-TUNA) to increase the data available. MFM can be used to study the 

ferroelectric and magnetic response of the synthesised nanowires, and the possibility 

of using it as a storage element for memory devices. On the other hand, TR-TUNA can 

be utilised to examine the conductivity of nanowires in a further investigation of 

current transport in nanowires with low conductivity, where non-destructive current 

mapping technique of the nanowires is possible because the torsional resonance mode 

has characteristics similar to tapping mode and will disturb the sample less than 

conventional contact C-AFM. Such a study will provide further support for the C-

AFM measurements already done on these nanowires, and a further shed light on the 

effect of contact resistance on the conductivity of PPy and metal-DNA nanowires. A 

suggested area of future work involves using the two-terminal technique and applying 

a high current density continually through nanowire for a given time, and monitoring 

changes in the nanowire. Moreover, the four-point probe method would be a useful 

tool to further examine the electrical properties of these nanowires, and is expected to 

provide valuable information about carrier transport in these nanowires.  

In addition, it has been shown that conducting materials exhibit an EFM negative 

phase shift, while insulating materials exhibit a positive phase shift. Semiconductor 

materials, for example polyaniline/poly(ethylene oxide) fibres with nanometre size 

showed a negative-positive-negative phase shift as the tip scanned across. Using 

simple geometric models discussed in chapter 2, the phase shift was calculated for 

conductive )0( R and insulating )( R  nanowires. However it is not yet 

possible to use EFM to measure the value of the resistance of an individual nanowire. 

It would be interesting to extend the current theoretical models to show how the EFM 

experiment responds to arbitrary, finite values of R. This will be useful in 

demonstrating the utility of the EFM technique for tracing conductive pathways in 

nanoscale systems. Such a study is expected to show the effect of nanowire resistance 
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on the EFM phase images, and suggest ways that may allow quantitative extraction of 

conductance data from the EFM images.   

Finally, the electrical conductivity of Cu2O-DNA nanowires at various temperatures is 

now under further investigation. Also, the author suggests further studies on the 

possibility of using these nanowires as sensors and additional study of 

Ag/polymer/DNA nanowires conductivity using the two-terminal method.  
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8. Appendix A: Published and Pending work 

 

Articles published prior to the submission time can be found at the end of this thesis 

and the manuscript of the pending articles shown in the list giving below have been 

prepared and will be published soon.  

 

i.  List of published articles 

a. Al-Said, S. A., Pruneanu, S., Nicholas G. W., Houlton, A. and Horrocks , B. R., 

Templating Ag on DNA/polymer hybrid nanowires: Control of the metal growth 

morphology using functional monomers. Electrochemistry Communications, 2009. 

11(3): p. 550-553. 

b. Pruneanu, L., O. Al-Said, S. A., G. Borodi, A. Houlton, and B. Horrocks, 

Template and template-free preparation of one-dimensional metallic nanostructures. 

Journal of Materials Science, 2010. 45(12): p. 3151-3159.  

c. Pruneanu, S., Al-Said S. A., et al., Self-Assembly of DNA-Templated Polypyrrole 

Nanowires: Spontaneous Formation of Conductive Nanoropes. Advanced Functional 

Materials, 2008. 18(16): p. 2444-2454. 

d. Reda, H., Mariam A., Al-Said, S. A., Nicholas G. Wright, Andrew Houlton and 

Benjamin R. Horrocks, Synthesis and Characterization of Self-Assembled Polyindole 

Nanowires on DNA Template, ACS NANO, 2010, (DOI: 10.1021/nn9014533). 

e. Hannant, J., Hedley, J. H., Pate, J., Walli, A., Al-Said S. A., et al., Modification of 

DNA-templated conductive polymer nanowires via click chemistry. Chemical 

Communications. 46(32): p. 5870-5872. (Contributed the electreical characterizations 

part of the article) 

ii. List of pending articles 

a. Al-Said, S. A., Reda, H. ,Nicholas G. W., Houlton, A. and Horrocks , B. R., 

Synthesis and Characterization of Ag-DNA Nanowires, ... 
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b. Al-Said, S. A., Reda, H., Nicholas G. W., Houlton, A. and Horrocks, B. R., 

Electrical Conductivity of PPy-DNA Nanoropes. Journal of Applied Physics, ... 

c. Al-Said, S. A., Reda, H. ,Nicholas G. W., Houlton, A. and Horrocks , B. R., 

Synthesis and characterization of conductive DNA-templated Cu2O/DNA nanowires, . 

d. Reda, H., Mariam A., Al-Said, S. A. ,Nicholas G. Wright, Andrew Houlton and 

Benjamin R. Horrocks, Synthesis and Characterization of Self-Assembled palladium 

Nanowires on DNA Template,… 
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