Design Components

Thesis by
Alexei [liasov

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

Newcastle University
Newcastle upon Tyne, UK

July 2008

ii

Acknowledgements

First of all, I would like to thank my supervisor, Prof. Alexander Romanovsky,
for many insightful conversations and a friendly support during the work on the
thesis. This thesis would have never been finished without his help and guidance.

I would like to thank my colleagues from the Abo Akademi, Linas Laibinis and
Elena Troubitsyna, from whom I have learnt everything that I know about the B
Method. I am particularly grateful to Linas Laibinis for the fruitful collaboration
which led to the development of the ideas presented in the thesis.

I am grateful to many people who have helped during the work on the thesis:
Maciej Koutny and Cristina Gacek, for spending their time to help me to plan the
thesis; Michael Butler, for his criticism of the pattern tool; Jason Steggles, for the
idea of pattern correctness verification; Cliff Jones, for reading the early draft of the
thesis.

iii

Abstract

Although it is generally recognised that formal modelling is crucial for ensuring
the correctness of software systems, some obstacles to its wider adoption in soft-
ware engineering persist. One of these is that its productivity is low; another that
for modelling techniques and tools to be used efficiently, a broad range of specific
skills is required. With the gap between computer performance and engineers’
productivity growing, there is a need to raise the level of abstraction at which de-
velopment is carried out and off-load much of the routine work done manually to-
day to computers. Formal modelling has all the characteristics required to replace
programming and offer higher productivity. Nonetheless, as a branch of software
engineering it has yet to be generally accepted. While there is substantial research
accumulated in systems analysis and verification, not much has been done to foster
higher productivity and efficiency of modelling activity.

This study puts forward an approach that allows the modeller to encapsulate
design ideas and experience in a reusable package. This package, called a design
component, can be used in different ways. While a design component is generally in-
tended for constructing a new design using an existing one, we base our approach
on a refinement technique. The design encapsulated in the design component is
injected into a formal development by formally refining an abstract model. This
process is completely automated: the design component is integrated by a tool,
with the corresponding correctness proofs also handled automatically.

To help us construct design components we consider a number of techniques
of transforming models and describing reusable designs. We then introduce the
concept of model transformation to encapsulate syntactic rewrite rules used to pro-
duce new models. To capture high-level design we introduce the pattern language
allowing us to build abstraction and refinement patterns from model transforma-
tions. Patterns automate the formal development process and reduce the number
of proofs. To help the modeller plan and execute refinement steps, we introduce
the concept of the modelling pattern. A modelling pattern combines refinement (or
abstraction) patterns with modelling guidelines to form a complete design compo-

nent.

iv

Our approach is both formal and pragmatic. A design component is presented
in a consistently formal fashion, which allows it to be analysed and verified. At the
same time, it is executable: it can be interpreted and manipulated using software
tools.

The thesis is divided into three major parts. The first one discusses model trans-
formations, i.e. simple rules relating formal models. The second part introduces
the concept of the pattern as a complex model transformation rule producing an ab-
straction or a refinement of the input model. The final part develops an approach to
guiding the modeller through a development using high-level tactics called mod-
elling patterns. The thesis is concluded with an evaluation chapter illustrating the
introduced concepts from the practical viewpoint.

Contents

Acknowledgements
Abstract

1 Introduction

1.1 FormalModelling
1.1.1 Classes of Formal Methods
1.1.2 Practical Formal Methods
1.2 RelatedWorks e
121 DesignPatterns
1.2.2 RefinementCalculus
123 UML-B e e
124 BtoBOGenerator
1.2.5 Pattern Formalisationand Reuse
12.6 Verifying Compiler
1.3 Motivationand Goals e
1.3.1 Guidance during Development
1.3.2 Design and Modelling Reuse
1.3.3 EvolutionSupport
1.3.4 Quality-by-Construction
14 Proposal Overview
141 Software Component.
142 DesignComponent
1.5 Problem Statement,
1.6 ThesisOverview e

2 Background
21 Event-BMethod
21.1 Consistency Checking
2.1.2 Event-BRefinement

ii

iii

10
10
10
11
11
11
11
12
13
14

Vi

2.2 Goal-Oriented Requirements Engineering 21
Model Transformation 24
3.1 Introduction 24
3.2 Model Transformation 25
3.3 Inverse Transformation 27
3.3.1 Composing Model Transformations 28
34 Model Annotations e 29
3.5 Event-B Model Transformations 32
3.5.1 Useful Definitions 35
352 Event-BModelFacets 37
3.5.3 Transformation Definitions 38
354 Example oo 40
36 Summary 41
Refinement Patterns 43
41 Introduction 43
42 Motivation e e 44
4.3 A Definition of Refinement Patterns 45
4.4 Language of RefinementPatterns 46
441 ApplyingPatterns L. 51
442 PatternCorrectness. 52
45 PatternInverseForm 58
4.6 ConstructingaPattern 60
4.7 Event-B RefinementPatterns 61
48 MessagingPattern 0L 63
481 Correctness i v i e e e 64
49 RecoveryBlock Pattern 67
49.1 Recovery Block Pattern Correctness 72
410 UsingPatterns 76
411 PatternClasses i i e e 77
411.1 SuperpositionPattern 77
4112 Mapping Pattern oL 78
411.3 (De-)Integration Pattern 78
4.11.4 Presentation Pattern 78
412 Summary 78

5 Modelling with Patterns

5.1
52

53

54

6 Evaluation

6.1
6.2

6.3

6.4
6.5
6.6

vii

Introduction e
Modelling Patterns
52.1 Developing Modelling Patterns
Code GenerationCase Study
531 Event-Basic
5.3.2 Constructing Model Implementation
53.3 Modelling Pattern
5.3.4 RefinementPatterns
53,5 Automated Code Generator
53.6 Sample Development
Summary
Introduction
N-version Programming
6.2.1 NVP Pattern Correctness
Parity and Hamming Patterns
6.3.1 AbstractModel
6.3.2 Parity CheckPattern
6.3.3 Hamming Coding Pattern
Characteristic Function Pattern
Design Component and Software Components
ToolSupport
6.6.1 The Tool Architecture
6.6.2 Supported Pattern Language

7 Conclusions

71 SummingUp

72 Taxonomy

7.3 Related Works

74 Limitations

75 Future Work
Bibliography

A Event-B Model Transformations

A.1 Model Transformation Scopes

A2

Variable Transformations

80
80
81
86
89
90
90
92
102
105
107
112

114
114
114
118
119
119
120
124
127
133
135
136
137

141
141
146
148
149
151

153

A.3 Parameter Transformations 165
A4 Event Transformations 166
A5 Invariant Transformations 168
A.6 Action Transformations 168
Recovery Block Pattern Source Code 170
Pattern-generated Event-B Examples 175
C.1 AbstractModell 175
C2 RecoveryBlock o 176
C.3 N-version Programming 178
C4 AbstractModel2 180
C5 ParityCheckBit 181

C6 HammingCode 183

List of Figures

1.1
1.2

2.1

3.1
3.2

4.1
4.2
43
44

51

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2
7.3
74
7.5
7.6
7.7
7.8

Software component L L oL 12
Designcomponent 13

An overview of the mathematical notation specific to the Event-B

method. 20
Major model transformation concepts 27
Event-B Model syntacticelements. 34
Refinementchain.. 44
The messaging refinement pattern specification. 64
Instantiation example for the messaging refinement pattern. 67
Recovery Block pattern. 69
Modelling patterns lattice. 87
N-version Programming Pattern. 115
Communication loop with error detection. 120
Communication loop with error correction. 124
The Event-B refinement patterns tool architecture. 136
Pattern instantiation in the finertool. 137
Toolscreenshots. 138
Designcomponent. 141
Design component structure. L 142
Creation of a design component. 143
Desing component application. 144
Design component repository L 144
Formal development based on design components 145
Design componentreuse 145

Complex design component 146

Chapter 1

Introduction

1.1 Formal Modelling

Finding solutions to complex problems requires careful analysis and validation.
Thus, an engineer constructing a bridge uses a mathematical model to predict pos-
sible stresses on different bridge parts and to select suitable materials and support-
ing structures. Not until such analysis has been carefully carried out and thor-
oughly validated may any construction works start. When constructing a new
ship, engineers start with a detailed mathematical model that accurately predicts
essential characteristics of the new ship, such as water resistance during movement,
maximum load, turn radius and operating costs.

Program construction has so far stood apart. It is not uncommon to build a
complex software system by starting directly with some form of implementation
and then trying to shape it into a working product through extensive testing. The
reason this has worked for many software projects is that the cost of testing and
changes can be relatively low for software. There are, nevertheless, several prob-
lems with this: exhaustive testing is impossible for most programs; for mission-
critical systems the cost of a mistake can be very high; software typically operates
in a complex environment which is not always possible to reproduce accurately
during testing; in the absence of any analysis or design stage it is impossible to
predict how long it may take to construct a satisfactory implementation.

In the context of software engineering, a formal specification is a mathematical
description of the system to be constructed. Specification expresses system proper-
ties in such a way that it is possible to deduce useful facts about the behaviour of
system parts and the system as whole. An important property of a formal speci-
fication is that, unlike natural language or semi-formal notations, it is precise and
has a formally defined, objective and unique interpretation.

Unlike a program, which provides a concrete implementation of a system, a

2

specification is an abstract design and as such is not executable. This helps to de-
couple implementation concerns from design decisions. For example, a specifica-
tion of array sorting is concerned with the properties of a sorted array, while the
corresponding implementation deals with the characteristics of the algorithm that

constructs a sorted array. Formal modelling presents a number of advantages:

e unambiguous interpretation and documentation;

e an abstract model is much cheaper to construct than a complete implementa-
tion, yet the former alone can reveal design flaws and requirements inconsis-

tencies;

e correct-by-construction, formal modelling guarantees that the system be-
haves correctly provided none of the modelling assumptions is violated dur-

ing system operation;
e formal verification makes much of the normally required testing redundant.

The benefits of formal modelling come at a cost. It is easier to understand
and construct descriptions in a natural language, and many software engineers
are not comfortable with the mathematical notation essential to formal modelling.
A widespread application of formal methods would therefore require considerable
investments into education and training.

The modelling stage delays the moment when there is an executable software
version available. There are two reasons for this. Firstly, modelling is not concerned
with implementation details and thus executable software appears only as the very
last stage of a development. The other reason is the arguably low productivity of
formal modelling. The delay, however, is often more than compensated for by a
better software quality and correspondingly less time and effort needed for testing.

1.1.1 Classes of Formal Methods

Formal methods rely on differing modelling concepts and principles and thus offer
different viewpoints of a system. A formal method is constructed according to a
certain paradigm that tries to emphasise particular systems aspects while attempt-
ing to hide or play down others. There are several major kinds of formal methods.

A transition-based model describes a system by listing possible transitions. A
transition execution is triggered by an event associated with the transition. In most

cases, a transition is a state-mapping function which computes a new system state

3

from the given current state. This modelling style is a natural choice for develop-
ing reactive systems. In transition model, there is no need to explicitly formulate
preconditions on events. A transition precondition is dissolved in the conditions
leading to the occurrence of an event which triggers the transition. Event post-
conditions are not normally used either which means a specification can be con-
structed entirely from event-guarded state-mappings. The more notable examples
of transition-based modelling methods are Statecharts [1], a formalism which ex-
tends finite state diagrams, and PROMELA [2], a specification language for valida-

tion of communication protocols.

A history-based model describes all possible execution histories of a system.
Such description characterises the system behaviour over a period of time. One
important application of this model class is the reasoning about properties of real-
time systems, such as absence of race-conditions, deadlock-freeness and liveness.
Such properties are normally expressing using temporal logic expressions [3]. Such
expressions impose conditions on the past, present and future system behaviour.
Likewise, a model of a system specified by formulating all the necessary condi-
tions restricting the model (for example, a system of temporal logic equations) or
by explicitly listing all the system histories (e.g., a trace model constructed by an-
imating a CSP [4] process). Pnueli [5] introduced linear temporal logic to reason
about properties of concurrent systems. Extensions followed to account for non-
linear [6] and continuous [7] time. Lamport [8] developed a modelling method
based on a combining a discrete state system and temporal logic.

A process-based model formulates a simple abstract process which is amenable
to interpretation and analysis that help to understand the properties of the system
under analysis. To verify a system, a modeller can construct an interpretation ma-
chine looking for violations of specific properties. Usually this done with a tool
called model-checker. Petri-nets [9] and process algebras, such as the CSP [4], CSS
[10] and 7-calculus [11], are examples of formalisms based on this approach.

A state-based specification describes the state of a system at any given mo-
ment. Usually, a state-based model describes a system evolution by means of state-
mapping functions. Such functions are defined as relations expressed on the new
and old system states but can also have preconditions which describe the states
in which applying the function is allowed, and post-conditions which characterise
states achievable on applying it [12]. In addition, system states can be constrained
with invariants, i.e. properties that must be maintained throughout the system

4

lifetime. State-based specifications may contain redundant elements to allow for
interesting consistency verification conditions. Popular state-based formalisms in-
clude the Z specification language [13], the Action Systems [14, 15], the B-Method
[16] and the Vienna Development Method [17]. The B-Method has recently evolved
into a new version called Event-B [18-20].

1.1.2 Practical Formal Methods

For a long time, the focus of formal modelling research was in tackling interesting
scientific problems such as constructing novel methods and analysis techniques,
while the engineering part received little attention. Formal modelling tool devel-
opers were mainly academics not particularly interested in applying their tools to
industrial-scale examples. As a result, many such tools suffer from usability and
scalability problems, although scalability limitations may be inherent to some ap-
proaches. The situation is changing, and the importance of tool support is now
universally recognided, with several industrial-strengths tools available and com-
mercially supported [21-25].

Natural languages are very expressive and flexible due to their inherent am-
biguity. Such ambiguity, however, may be dangerous when describing a system
design and this is why engineers, including software developers, should use re-
stricted, precise and formal languages. Formality makes it possible to conduct ob-
jective, impartial design analysis. Texts in formal languages may be harder to write
but, unlike natural language texts, they are easier to analyse and manipulate using
automated tools.

There are a number of diverse tools and techniques available to assist an engi-
neer constructing a formal model.

A model can be animated to allow a modeller to interactively discover the struc-
ture and the underlying algorithms of the model [26]. Animation demonstrates
that the formal model matches its informal description and adequately describes
the modelled system [27, 28].

A model checker tool can automatically analyse the properties of a formal
model. Such tool explores the states or histories of the model, looking for violations
of model properties or undesirable situations. Model checking is completely auto-
mated and as such requires little effort from a modeller. Input can be just a model
itself, and a problem can be reported in the form of a counter-example [29-31]. The
availability of powerful model-checking tools has greatly contributed towards the
popularity of related formal methods.

An abstract model can be used to generate test cases to confirm the correctness

5

of an implementation derived from the model. This make the testing process more
rigorous and possibly cheaper as well [32, 33].

The power of mathematical abstraction makes formal methods applicable to a
wide range of problems. Often the interesting properties of a system, even a com-
plex one, can be captured with a succinct abstract model. However, it is not the ab-
straction of a system that is the final product of a development, but an executable
set of instructions, such as a program in a programming language. To retain all
the benefits of formal modelling, this must be constructed directly from a model
by formally transforming an abstraction into an executable program. The ability
to construct a more detailed system model from an abstract model preserving the
properties embodied in the abstract model is the cornerstone of formal modelling
[16, 34]. A modeller can be offered a toolkit that helping to construct model re-
finement. For example, refinement calculus defines a set of small-step refinement
laws [35]. Specware framework uses category theory to realise powerful model

composition strategies and construct refinements from small simple models [36].

1.2 Related Works

1.2.1 Design Patterns

Design patterns enable developers to capture and reuse successful solutions appli-
cable in a range of contexts. The idea of reusable design patterns was originally in-
troduced by an architect Christopher Alexander [37] in mid-seventies. The concept
has proved exceptionally successful and over the years it was picked up in other
disciplines, including software development. In 1987 Cunningham and Beck [38]
proposed an adaptation of the Alexander’s pattern language for object-oriented
programming. In 1994 Erich Gamma et al. [39] publish a famous collection of de-
sign patterns for object-oriented software development. Shortly afterwards the use
of these patterns becomes as a fairly standard practice in software development.

Software design patterns, as they are presented by [39], are generic and abstract
solutions described in a structured but informal way. Patterns help to communi-
cate important ideas accumulated during the many years of software engineering
practice. New patterns can be created along the lines of the existing patterns and
complex designs can be communicated by describing them in the terms of widely-
known design patterns.

1.2.2 Refinement Calculus

The refinement calculus is a formal framework for constructing executable pro-
grams from abstract, possibly non-executable specifications [35, 40, 41]. It is aimed
at state-based, imperative style of describing program functionality. The founda-
tional theory is the Dijkstra’s weakest precondition semantics [12]. Specifications
in refinement calculus are given in the form of predicates linking the previous and
the next program states. Such predicate is usually called before-after predicate. A
deterministic before-after predicate is a program statement. Before-after predicates
come together with preconditions, characterising the valid initial states; and post-
conditions, describing the desired after-states. The weakest precondition charac-
terises the most general (i.e., weakest) initial state from which application of a given
before-after predicates results in states satisfying a given post-condition. Formally,
the weakest precondition can be defined as a function wp on two arguments - a
before-after predicate S and post-condition P: wp(S, P). According to Dijkstra, the
semantics of a statement described by a before-after predicate S is given by value
of wp(S, P).

In the refinement calculus, the weakest precondition semantics is extended with
the notion of refinement relation between statements (or before-after predicates).
The refinement between two statements S and S’ is denoted as S T S’ and is de-
fined as follows:

Vp.wp(S,p) = wp(S’,p)

that is, whenever S establishes a postcondition, so does its refinement coun-
terpart S’. The refinement relation is transitive, antisymmetric and reflexive. The
transitivity property makes it possible to organise program construction as a se-
quence of refinement steps. Thus, to construct a final implementation Sj, for an

abstraction .S, one constructs a sequence 51, So, . .., Si_1, such that

SCSCSC...CS-1CS

The refinement calculus also defines a set of refinement laws. These are fine-
grained refinement steps calculating a refined model version from an abstraction.
They are applied in two different ways: to construct a new refinement, applying
one law after another; and to verify a refinement instance by demonstrating a chain

of refinement laws transforming an abstraction into its refinement.

1.2.3 UML-B

The UML-B approach, proposed by Butler and Snook [42], unites informal, intu-
ition guided modelling of UML with the rigorous modelling approach of the B
method (and Event-B for the later versions). Visual UML editor is used as a fa-
cade hiding complexities of B models and providing a modelling environment that
many software engineers are comfortable with. A tool, called U2B [43], automat-
ically converts a UML model, manipulated by a modeller, into a corresponding
B model, which can be analysed with a theorem prover. UML classes are repre-
sented as mappings from object instances into individual class properties. Thus, a
class with five member variables is modelled using five different functions. Object
creation is modelled by adding new mappings to all these functions. A language
derived from the B mathematical notation is used to express constrains and actions
in UML diagrams.

UML-B is a perfect starting point for translating existing semi-formal designs
into formal mathematical models (see, for example [44]). The tool opens the way
to reuse of the results of the research on application of design patterns in UML
modelling process [45, 46].

The approach has its limitations. The resulting B model is often far from being
simple and legible and any attempt at interactive proofs requires careful examina-
tion of the generated model. Thus, to do any real modelling a user has to be fairly
confident in both UML and Event-B. UML model is always translated into a sin-
gle Event-B model. While the human eye is very at good dealing with complex
structures arranged visually, the textual representation of the same information is
much more difficult to comprehend. Since much of the UML underlining ideas
come from object-oriented software design, certain concepts are not easily mapped
into B. For example, although method is translated as a B event, there is no way
to “call” such method from another method in a B specification. Such limitations
are inevitable for a combination of two distinct formalism. In the case of UML-B,
the Event-B part clearly takes the precedence and the UML concepts are adapted to
suit the B modelling style.

1.2.4 B to BO Generator

Siemens/MATRA, working on specifications of a fully automated train system,
have developed a tool for automatically refining B specifications [47]. The tool
tries to mechanically produce an implementable model in BO language (a variant
of implementable B) by applying rewrite rules. A large library of such rules were
created specifically to handle the specifications of train systems. To make this tool

8

efficient, the use of the B Method is restricted in such a way that the accumulated
rule set covers is complete. In other words, for any non-deterministic rule of a
model there is a suitable refinement rule. The transformation tool is essentially a
code generator with the ability for users to intervene when the tool finds several
possible transformations. The bulk of the rewrite rules are concerned with elimi-
nation of non-deterministic actions and provision of suitable implementations for
abstract data types. The tool was successfully applied in large specification projects
(apparently train systems) but is proprietary and is used privately by the company.

1.2.5 Pattern Formalisation and Reuse

There are a number of works investigating the possibility of reuse of design (e.g. in
the form of design pattern) in formal developments.

Blazy et al. [48] proposed a mechanism to integrate design patterns into B-
Method developments. They also outline guidelines for specifying such design pat-
tern using the B-Method. The pattern instantiation mechanism relies on the model
structuring capabilities of the B-Method: inclusion and extensions of machines. A
design in this approach is a single B machine. To use it in a development, a mod-
eller has a choice of three different instantiation mechanisms. First mechanism is
based on the B EXTENDS statement. One or more B machines can be extended by
another machine and the operations of the extended become accessible to the par-
ent machine. The idea is that extension of commonly used design solution would
help to construct new refinement steps. The second mechanism relies on yet an-
other B structuring statement: | NCLUDES. Included machines export their variable
and invariants but their operations are not visible in further refinement steps. This
way, an included pattern is hidden from external observer. In both extension and
inclusion instantiation mechanisms, different design patterns are completely dis-
joint and normally a further effort is needed to integrate them into a development,
e.g., by adding new invariants, variables and events. The last instantiation mech-
anism is simply the conjoining of a pattern with a parent machine. This results in
larger models but there are less obstacles in integrating different patterns.

Chan et al. [49] discuss a similar approach but with a emphasise on object-
orientation. The work discusses how to model object-oriented development con-
cepts using the B method and, consequently, how to reuse object-oriented design
patterns in B. The work present and interesting and practical method for mod-
elling design patterns. The results of such modelling, however, cannot be easily
integrated into a development process.

The RAISE Specification Language [50] was used to formalise UML pattern di-

9

agrams using a flavour of VDM [17] specification language. A pattern in RSL is
a combination of descriptions in a natural language, formally presented pattern
structure and a collaboration protocol constraining different parties referenced in
the pattern. A pattern is instantiated by first conjoining it with a parent model and
then integrating it by renaming its parts.

The LePUS formal framework [51, 52] was developed to formalise the Gang
of Four design patterns. Patterns are formalised by expressing their properties as
predicates on methods, class properties, class instances and classes. Predicate con-
junction is used to construct complex patterns from a collection of simple proper-
ties. To our knowledge, the framework has not been used in modelling and soft-
ware development. This is mainly due to the difficulty of instantiating patterns
specified in LePUS.

In [53] Eden et al. describe the design of a tool transforming programming
language texts by automatically applying transformations loosely based on design
patterns. To use the tool, a programmer first implements a pattern in a special
language understood by the tool. Then the tool can use the pattern definition to
rewrite a part of a program. Since the tool works at the semantic level of a program,
the transformations are done at the level of a programming language structuring
units which precludes formulation of high-level, abstract patterns. In addition, not
much can be done to ensure correctness of the resulting model or a pattern.

Dwyer at al. [54] proposed to use specification patterns to describe require-
ments and constraints for models and programs analysed using automated model
checkers. Such specification patterns are presented in a way not dissimilar to de-
sign patterns [39] and are, essentially, expression templates. An informal pattern
description helps a modeller to pick a correct pattern.

The reusability aspect of patterns implies the ability to share and exchange pat-
terns. One possible approach is to describe patterns using some common language
that can be connected to a common ontology [55]. Such patterns can be automati-
cally retrieved and matched by tools and an on-line pattern libary can be set-up to

foster pattern dissemination [56].

1.2.6 Verifying Compiler

The verifying compiler challenge is a part of the Dependable Systems Evolution
Grand Challenge [57]. Such compiler is expected to be able to automatically anal-
yse an input program and prove its correctness. It is understood that such tool
will work on a complete program implementations decorated with assertions stat-
ing the facts about the intended functionality of the program code. The compiler

10

will try to demonstrate that the assertions are always satisfied and thus the code
is indeed safe and correct. This challenge exemplifies the approach when a poste-
riori analysis is used to demonstrate a system correctness. In this work we follow
a different path and rely on a step-wise development procedure that guarantees

correctness by construction.

1.3 Motivation and Goals

1.3.1 Guidance during Development

Formal development is essentially a human activity and is known to be time con-
suming and laborious. To tackle this, a modelling environment must assist a mod-
eller with a constant get feedback on the current development state with an advice
on how to proceed next.

There is an extensive body of research on domain-specific software engineer-
ing methods. Integration of such methods into the formal development process is
essential for constructing large-scale systems.

The larger a system is, the more important it is for us to be able to measure the
development progress. Such measure would show how far the development has
advanced and what is still left to do.

1.3.2 Design and Modelling Reuse

Formal modelling can only be cost-effective if there is a way to reuse modelling re-
sults. A company may be much more willing to invest into a large-scale modelling
phase if the solutions discovered at the formal modelling stage can contribute to
later related projects.

Just like a large program cannot be created without relying on third-party soft-
ware, large-scale modelling has to rely on third-party designs. To make this pos-
sible, there should be a way to decouple low-level design activity from high-level
modelling decisions. Ideally, a company developing a large-scale model of a sys-
tem should be able to sub-contract or buy the required design parts. Currently, a
formal model of a software system is treated as a form of source code and thus has
a rather short lifespan. A good design, however, is perhaps more valuable than its
concrete implementation. Design reuse could make it commercially viable to create

high-quality reusable design products.

11

1.3.3 Evolution Support

It is hard to obtain a complete and consistent requirements document for a realistic
system prior to the design stage. Thus, it is important to be able to adapt formal
development to requirements evolution. With their simple semantics and better
decoupling of concerns, formal models are bound to be easier to refactor than pro-
gramming language texts.

1.3.4 Quality-by-Construction

Formal modelling makes it easier to build high-quality products but it does not
automatically rule out poor designs. Specification is just a formal translation of an
informal system description. The quality of such translation greatly depends on the
background and experience of a modeller: no two models constructed according
to the very same requirements document would be quite the same. We believe
that the ability to extract, package and offer for reuse high-quality formal design
procedures will contribute towards the costs and quality of formal developments.
This principle is long known in programming - software code libraries are created

and maintained by domain experts to be used by mainstream programmers.

1.4 Proposal Overview

In this section we briefly outlay the general rationale behind the thesis. We use the
well-known concept of software component to give the intuition on the essence of

our proposal: the design component concept.

1.4.1 Software Component

The early history of the computer science is a story of rapid evolution from the pro-
gramming in low-level machine code to the application of high-level, domain spe-
cific programming languages. One of the more important events that shaped the
modern software industry was the invention of a software component [58]. A soft-
ware component can be summarised as a system part providing some predefined
services to other components. To implement its services, a component may rely on
services provided by other components. An essential property of a component is
the hiding of implementation details. An architecture of a component-based sys-
tem can be understood as an interconnection of a variety of software components.

Unlike a program, a software component is created with reusability in mind.

Well-defined interface describes the functionality offered by a component. Inter-

12

data Software data
—_—>
Component

Figure 1.1: A software component is a black box accepting some input and produc-
ing some output. Component input and output may be routed to the inputs and
outputs of other components.

face of a component is typically general enough to allow developers to use the
component in different contexts and different system types. Software component
is a black-box - it accepts some input and produces some output without expos-
ing details of internal computations (Figure 1.1). Normally, a programmer cannot
look inside and change the component logic. This done not only to conceal imple-
mentation details but also to ensure that an overall system can be understood as
a composition of components with known properties. The quality of components
constituting a system may serve as an indication of the overall system quality.

The same component interface can be implemented by different components in
different ways. Implementation diversity is important for a number of reasons: a
component implementation may evolve without violating interface to other com-
ponents, an abstract interface may permit a large number of different implementa-
tions; each adapted to particular conditions and requirements; the ability to replace
a component for a different component with the same interface facilitates healthy

competition in the software market.

1.4.2 Design Component

Mathematical modelling has the powerful tool of abstraction: it is always possible
to find a level of abstraction at which a system description is simple enough to be
amenable to formal analysis and yet comprehensive enough to states interesting
facts about the system. To construct the whole system and to ensure that result
is error-free, an abstraction is gradually developed up to the stage when a model
becomes a program and can be unambiguously interpreted by a computer. Such
detalisation is a difficult and laborious process. It achieves everything a program-
ming would achieve but in the process a developer also constructs the proofs of
the design correctness and presents many intermediate steps that can be used for
mathematical analysis of the system properties and validation of the system design.

In this work we investigate a mechanism which introduces structuring and
reuse into formal developments. By analogy with the concept of software com-
ponent, we call this structuring unit a design component. The ultimate ambition of

13

the design component mechanism is to bring the advantages of componentrised

development into formal modelling.

design Design design
— >
Component

Figure 1.2: A design component accepts a design and produces a new design. Input
and output may be routed to other design components.

A design component accepts some design (which may be called a specification
or a model) and produces a new design (Figure 1.2). Like a software component, a
design component is reusable for a class of problem domains. Design components
can be composed together - an output of a component can be routed to the input
of another component. Design component is also a black box - a modeller can
only investigate a component interface but the examination of component internal

workings is not needed to apply the component.

1.5 Problem Statement

The process of construction of large-scale formal models has not been widely re-
searched so far. Formal modelling experts are more interested in identifying and
solving fundamental problems in the area of modelling and analysis of information
systems. Industrial uses perceive formal modelling as too difficult and expensive
and prefer to rely on semi-formal techniques, such as UML [59], or completely au-
tomated tools [60], that can be used by untrained programmers.

We would like to be able to present a modeller with a collection of mod-
elling strategies - problem-specific guidelines on model construction - and auto-
mated model transformations. We understand a modelling strategy as an active
model assistant guiding a modeller through a development. Unlike a paper-based
method, such modelling strategy would be interpretable by a machine and a mod-
eller would be presented the results of the strategy interpretation in the context of
a current development. We believe that many existing domain-specific software
engineering methods can be converted into modelling strategies.

To make the modelling process easier, we should be able to automate parts of it.
Formal models of large system are bound to reuse many well-known design ideas,
such design and architectural patterns (e.g., Triple-Modular Redundancy), and in-
formation processing solutions (e.g., a sorting algorithm, a communication buffer
model). Despite being well-known, with the current state-of-the-art, they still have

to be redesigned every time a new. This is a waste of time and an indication of a

14

poor organisation of the modelling process. Once a design is constructed it should
be reusable in different developments.

The necessity to conduct a substantial number of interactive proofs is one of the
major impediments to the.wide adoption proof-based verification methods. The
possibility of combining proof reuse with design reuse would make formal mod-
elling more attractive and accessible to non-experts.

We believe the problems we consider are highly relevant to the formal meth-
ods and software engineering communities. The Roadmap for Enhanced Languages
and Methods to Aid Verification [61] lists refinement patterns as one of the long-term
research goals. Another long-term goal is Evolution + Refinement, which argues for
the need to support development restructuring. We demonstrate in the thesis that
these two goals are closely related and can be addressed with a common solution.

1.6 Thesis Overview

In the thesis we introduce several design reuse mechanisms, ranging from simple
model rewrite rules to high-level modelling tactics. These are used to build com-
plex design reuse units which are amenable to mathematical analysis and auto-
matic interpretation and application. Such units are used to assemble design com-
ponents - the ultimate goal of our research - that assist a modeller in construction
of formal developments.

The first of the design reuse mechanisms, called model transformation, de-
scribes simple model rewrite rules. The principal application of model transfor-
mations is the construction of a library of basic transformations that can be used
to change formal models. In addition, we are able to define model transformations
that abstract from the peculiarities of a given formalism and address a whole family
of related formalisms. Chapter 3 is devoted to the discussion of model transforma-
tions. It introduces model transformations for the Event-B method (we overview
the Event-B method in the next chapter).

We continue with the discussion of abstraction and refinement patterns. We
introduce the pattern language to describe complex model transformations. The
language is independent of any formalism; the language constructs compose
formalism-specific model transformations to describe how one model is trans-
formed into another model. An abstraction pattern always constructs an abstrac-
tion of a given concrete model whereas a refinement pattern always delivers a re-
finement of a given abstract model. We use a proof theory to generate proof obliga-
tions that would statically demonstrate that an abstraction pattern indeed succeeds
in construction of a model abstraction and application of a refinement pattern al-

15

ways yields a correct model refinement. The pattern language and the related top-
ics are discussed in Chapter 4. We illustrate the use of the patterns mechanism with
the Recovery Block refinement pattern, based on the Recovery Block mechanism
[62].

We believe that it is not enough to provide mechanised refinement steps. A
modeller should be given an advice when to apply a specific refinement pattern
and how to instantiate it. More importantly, at any given point during a develop-
ment process, a modeller should be able to get an advice from a tool on how to
proceed next with the development. We introduce the concept of a modelling pat-
tern - a high-level modelling strategy describing a succession of steps leading to
the satisfaction of development goal. Some such steps are handled by refinement
or abstraction patterns while others simply restrict the way a manual refinement
step is conducted. Modelling patterns are discussed in Chapter 5. We use a code
generation case study to illustrate the modelling pattern development process.

The evaluation chapter6 discusses several examples of refinement patterns and
our tool prototype for the RODIN Event-B Platform [63].

Finally, in Chapter 7, we give a high-level overview of our approach and com-
pare it to some related works.

16

Chapter 2

Background

2.1 Event-B Method

This section presents an overview of the Event-B method [20]: the syntax and the
structure of an Event-B machine, well-formedness conditions and refinement proof
obligations.

An Event-B development is a collection of models. Each such model is rep-
resented using programming language-like notation called Abstract Machine. An
abstract machine has some local state, characterised by its variables and a number
of state updating operations. In Event-B such operations are called events. Unlike
programming language procedures or classical B [16] operations, Event-B events
cannot be invoked explicitly by some other part of a model. An event may be exe-
cuted only when its guard (a form of a precondition) is enabled.

An Event-B development is a chain of Event-B models. The first model in a
development is called an abstract machine. An abstract machine defines some local
variables and provides events for the state evolution. An abstract machine has the

following general form:

SYSTEM SendRecv
SEES context
VARIABLES v
INVARIANT [
INITIALISATION R;
EVENTS

€1 =

€n =

Note the distinguished event which provides initial states for model variables.

17

A machine declaration starts with clause define a machine name. Carrier sets and
constants are defined in separate modules, called contexts. Contexts can be made
visible to a machine but are otherwise independent (the same context can be seen
by unrelated models). Model variables is simply a list of variable names. Typing
predicates for variables are incorporated into a model invariant. An invariant may
also define additional constraints on the reachable model states. The initialisation
event contains action initialising model variables.

Model events are atomic. Once a model event starts execution no other event
may start. An event with a guard G and a collection of actions R h