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Abstract

Several bioinformatic methods have been developed to aid the identification of novel

nuclear-mitochondrial genes involved in disease. Previous research has aimed to increase

the sensitivity and specificity of these predictions through a combination of available

techniques. This investigation shows the optimum sensitivity and specificity can be

achieved by carefully selecting seven specific classifiers in combination. The results also

show that increasing the number of classifiers even further can paradoxically decrease

the sensitivity and specificity of a prediction. Additionally, text mining applications

are playing a huge role in disease candidate gene identification providing resources for

interpreting the vast quantities of biomedical literature currently available. A work-

flow resource was developed identifying a number of genes potentially associated with

Lebers Hereditary Optic Neuropathy (LHON). This included specific orthologues in

mouse displaying a potential association to LHON not annotated as such in humans.

Mitochondrial DNA (mtDNA) fragments have been transferred to the human nu-

clear genome over evolutionary time. These insertions were compared to an existing

database of 263 mtDNA deletions to highlight any associated mechanisms governing

DNA loss from mitochondria. Flanking regions were also screened within the nuclear

genome that surrounded these insertions for transposable elements, GC content and

mitochondrial genes. No obvious association was found relating NUMTs to mtDNA

deletions. NUMTs do not appear to be distributed throughout the genome via trans-

position and integrate predominantly in areas of low %GC with low gene content. These

areas also lacked evidence of an elevated number of surrounding nuclear-mitochondrial

genes but a further genome-wide study is required.
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Introduction
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1.1 Biological background

1.1.1 Mitochondrial evolution

Mitochondria are present in most eukaryotic cells and are commonly thought to have

originated as free-living prokaryotes. This is believed to have been the result of a sin-

gle bacterial endosymbiosis around 2 billion years ago (Gabaldón and Huynen, 2004).

Traditionally mitochondria are considered as small separate organelles within the eu-

karyotic cell but, more accurately described as complex branching networks (Schapira,

2006). Specialised cells involved in high energy dependence such as neurones, cardiac

and skeletal muscle cells contain higher levels of mitochondria.

The main role of mitochondria involves ATP production and energy metabolism.

Due to the acquisition of ATP/ADP translocase mitochondria have the ability to ex-

change ATP with the cells cytoplasm (Gabaldón and Huynen, 2004). In addition to

energy metabolism mitochondria are involved in various cellular processes and defects

have been associated with apoptosis, ageing and a broad range of human diseases in-

cluding Alzheimers, Parkinsons and diabetes mellitus (Cotter et al., 2004). Human

mitochondrial DNA is also responsible for protein synthesis but is totally dependent on

the nuclear genome to provide enzymes governing replication, repair, transcription and

translation (Schapira, 2006).

1.1.2 The mitochondrial genome

The mitochondrial genome is self replicating and contains double-stranded, circular

DNA which in humans is 16,569bps long (Cotter et al., 2004). The majority of proteins

involved in mitochondrial function are nuclear encoded, synthesised in the cytosol and

then targeted to mitochondria (Elstner et al., 2009). It is estimated that more than

1000 mitochondrial proteins are derived from nuclear genes. Human mitochondrial

DNA (mtDNA) is only responsible for encoding 37 genes overall. These include a 12S

and 16S rRNA, 22 tRNAs required for protein synthesis and 13 essential genes for

oxidative phosphorylation (OXPHOS) polypeptides (Chinnery, 2003; Brandon et al.,

2005). Figure 1.1 displays the mitochondrial genome and Figure 1.2 illustrates the

intercommunication between the nucleus and mitochondria.

Oxidative phosphorylation is responsible for most of the cellular energy and gener-

ates most of the endogenous reactive oxygen species (ROS). This process also regulates

apoptosis through the mitochondrial permeability transition pore (mtPTP) (Brandon

et al., 2005). Complexes of the OXPHOS system are composed of subunits encoded by

both nuclear DNA (nDNA) and mitochondrial DNA. The nuclear-encoded system is re-

sponsible for mitochondrial transport and maintenance. The most common respiratory

2



Figure 1.1: The mitochondrial genome.
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Figure 1.2: Thirteen essential polypeptide respiratory chain complex subunits are syn-
thesised in the mitochondrial matrix from mtDNA. More than 1000 different mitochon-
drial proteins are synthesised in the cytosol from nuclear DNA taken from Chinnery
(2003).
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chain defects arise from problems in complex 1 (Petruzzella and Papa, 2002).

1.1.3 Mitochondrial function & disease

Recent epidemiological studies have provided evidence that disorders of the mitochon-

drial respiratory chain affect at least 1 in 5000 of the population (Schaefer et al., 2004).

These figures make these disorders some of the most common genetic diseases (Chinnery,

2003). Currently, there is no effective treatment for these diseases making prevention

a priority. Nuclear-mitochondrial disorders are still misunderstood due to the com-

plexities of nuclear-mitochondrial genetic mechanisms. Nuclear-mitochondrial disease

genes have been difficult to identify due to a number of problems. In childhood-onset

autosomal recessive disease the severe clinical phenotype is rapidly progressive leading

to infantile death greatly reducing the size of affected families (Chinnery, 2003).

The potential for conventional gene mapping is limited due to clinical heterogene-

ity and phenocopies. These factors make it difficult in determining sporadic cases to

having the same genetic disorder. Other approaches, including cell complementation

techniques and micro-chromosomal transfer are very effective but technically demand-

ing and laborious. Following the mapping of the human genome the list of potential

candidates is huge with no apparent indication of which genes are most suitable for

further research (DiMauro and Schon, 2001).

Mitochondrial disorders are likely to arise in mutations within genes of unknown

function. Disorders could also arise due to mutations in genes with well established

function but not thought to affect mitochondria (DiMauro and Schon, 2001). Current

lab-based techniques have been used to identify mitochondrial proteins in a number of

different organisms. These procedures have contributed a great deal to mitochondrial

research. However, each technique is labour intensive and time consuming. This is a

major set back due to the rapid developments and exponentially increasing genomic

data in the available databases.

Complementary bioinformatics techniques are required for sequence annotation to

augment our understanding of mitochondrial disease, protein localisation and protein

structure and function. A variety of resources are available that search for mitochon-

drial targeting signals in sequence data. Comparing the results obtained from these

software packages will provide an accurate method for ranking these proteins regarding

mitochondrial-relatedness.
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1.1.4 Nuclear-mitochondrial diseases

The mitochondrial respiratory chain is the only metabolic pathway in the cell that is

under the dual control of the mitochondrial genome and the nuclear genome (DiMauro

and Schon, 2001). Mitochondrial DNA mutations are associated with impairment of

protein synthesis. However nDNA mitochondrial disorders are much more abundant

due to nDNA being responsible for several processes (Dimauro and Davidzon, 2005).

These processes are (i) synthesis of assembly proteins; (ii) intergenomic signaling; (iii)

mitochondrial import of nDNA-encoded proteins; (iv) synthesis of inner mitochondrial

membrane phospholipids; (v) mitochondrial motility, fission and fusion.

1.1.5 Nuclear DNA mutations causing disease

Mitochondria have lost most of their autonomy through evolution and are now largely

nuclear encoded. Nuclear DNA is responsible for numerous factors that are critical for

mitochondrial transcription, translation and replication (van den Heuvel and Smeitink,

2001). Table 1.1 displays a variety of nDNA defects caused by mutations arising in

genes associated with the complexes of the OXPHOS system. Nuclear DNA is essential

for the correct assembly of respiratory chain complexes and is associated with a number

of disorders including Leigh syndrome (Tiranti et al., 1995). Various factors encoded by

nDNA are essential for mtDNA integrity and replication. Mitochondrial diseases can

arise due to defects in protein transport of nDNA-encoded proteins from the cytoplasm

into mitochondria (Zeviani et al., 2003). However the defects in protein transport is

an area that is not well understood. Figure 1.3 displays a diagram of the OXPHOS

pathway taken from the KEGG database, which illustrates the respiratory chain is em-

bedded in the lipid bilayer of the inner mitochondrial membrane. Mitochondria are

motile within the cell and can divide by fission or fuse with other mitochondria. Dis-

eases such as autosomal dominant optic neuropathy can arise due to defects that affect

these essential processes (Yu-Wai-Man et al., 2009). Mutations in mtDNA associated

with the OXPHOS system are only encountered in approximately 5% of patients with

mitochondrial disease (van den Heuvel and Smeitink, 2001). The majority are caused

by nDNA defects within the respiratory chain. Complex II subunits are exclusively

encoded by nDNA. Subunits I, III and V are encoded by either mtDNA or nDNA. The

70 nuclear gene products associated with the OXPHOS system together with mtDNA

products combine to form the five complexes.
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Structural components of RC complexes

Protein Function Phenotype

NDUFS4 Complex I Atypical Leigh s.

NDUFS8 Complex I Leigh s.

NDUFVI Complex I Leukodystrophy, myoclonus, Leigh s.

NDUFS1 Complex I Leigh s.

NDUFS7 Complex I Leigh s.

Flavoprotein Complex II Leigh s.

SDHD, SDHC Complex II Hereditary paraganglioma

Synthesis of CoQ10 Complex I, II, III Ataxia, myopathy, seizures

Factors controlling OXPHOS or mtDNA metabolism

Protein Function Phenotype

SURF1 COX assembler Leigh s.

SCO1 COX assembler, copper metabolism Infantile encephalopathy

SCO2 COX assembler, copper metabolism Infantile cardiomyopathy

COX10 COX assembler heme A synthesis Infantile encephalopathy

BCS1 Complex III assembly Infantile encephalopathy, tubulopathy,

hepatopathy

ANT1 Nucleotide pool adPEO, chr 4q

Twinkle Helicase/primase nucleotide pool? adPEO, chr 10q

Thymidine phosphorylase Nucleoside pool MNGIE

Mitochondrial proteins indirectly related to OXPHOS

Protein Function Phenotype

Tim 8/9 Transporter of carrier proteins X-linked deafness-dystonia s. (Mohr-Tranebjaerg s.)

ABC7 Iron exporter X-linked ataxia/sideroblastic anaemia s.

Frataxin Iron storage protein Friedreichs ataxia

Paraplegin Metalloprotease, involved in protein turnover Hereditary spastic paraplegia

OPA1 Dynamin-related protein, possibly involved in Autosomal dominant optic atrophy

mitochondrial division and biogenesis

Table 1.1: Nuclear mitochondrial proteins causing disease taken from Zeviani (2001)
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Figure 1.3: The OXPHOS system consists of electron acceptors, coenzyme Q, cy-
tochrome C and five multisubunit protein complexes (I-V). Around 70 nuclear gene
products are associated with the OXPHOS system (Petruzzella and Papa, 2002).
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Most of these nuclear-encoded genes have been characterised in humans and appear to

display random distribution over the chromosomes with no evidence of clustering (van

den Heuvel and Smeitink, 2001).

1.2 Technical background

1.2.1 E-science and bioinformatics

Bioinformatics has revolutionised modern biology increasing the rate of biological anal-

ysis considerably resulting in large quantities of genomic and proteomic data being

produced. A multitude of services are available on the web for bioinformatics anal-

ysis such as tools to predict sequence similarity (BLAST), protein structure/function

(InterProScan) and multiple sequence alignments (ClustalW). A lab-based biologist

can now fully appreciate the wealth of information bioinformatics can generate pro-

viding more time for actual scientific investigation and planning (Wolstencroft et al.,

2007). e-Science developments have greatly facilitated bioinformatics analysis consider-

ably generating vast amounts of data. This provides bioinformaticians with more time

to effectively analyse the data being produced from large in silico experiments (Wroe

et al., 2004). Even the simplest workflows can produce vast quantities of information

that must be analysed effectively. It is at this point a considerable amount of time

must be spent on effectively analysing the relevant data and allowing scientists to di-

rect their efforts into their main areas of interest. Using workflows to generate data is

very effective. The main problems lie with the reliability of distributed open software

and the varying data formats that exist (Goble and Stevens, 2008).

1.2.2 Web services

Web services allow programmatic access to tools available on the web. These have

become crucial applications in bioinformatics research enabling scientists to build anal-

ysis protocols consisting of distributed resources (Pettifer et al., 2009). These resources

consist of many diverse biological analysis programs and biological databases avail-

able through web interfaces. A modern definition of the term web service refers to any

method of programmatic access over the underlying technologies of the web (Stockinger

et al., 2008). Various web service technologies have recently been introduced including

Web 2.0, Service Oriented Architectures (SOA), SOAP (Simple Object Access Pro-

tocol) and REST (Representational State Transfer) (McWilliam et al., 2009; Pettifer

et al., 2009). A number or projects are dedicated to the documentation and manage-

ment of available bioinformatics web services that are currently available such as the
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EMBRACE Registry and BioCatalogue that are now merged (Belhajjame et al., 2008).

The BioCatalogue web service registry can be seen in Figure 1.4. Common bioinfor-

matics web services consist of BLAST based at the NCBI and InterProScan at the

EBI.

Apache Axis and Tomcat

Apache Axis is an implementation of SOAP (Simple Object Access Protocol). SOAP

is an XML-based information exchange protocol consisting of three parts: An enve-

lope defining a framework for describing the contents of a message and its processing

procedure; a set of encoding rules for expressing instances of application-defined data

types and a convention for representing remote procedure calls and responses (APACHE

AXIS). Axis also includes a simple standalone server; a server that plugs into servlet

engines such as Tomcat; support for the Web Service Description Language (WSDL)

tool that generates Java classes from WSDL documents; sample programs and a tool

that monitors TCP/IP packets (APACHE AXIS). Apache Tomcat is a standalone web

server for web service development. Tomcat provides HTTP functionality needed for

web services and redirects requests for the running of web services to the axis installa-

tion.

1.2.3 The myGrid Project

The large increase in scientific data requires distributed global collaborations enabled

by the internet. Large scale computing resources are required for the integration of this

data held across multiple sites around the world (Stevens et al., 2003). The myGrid

consortium was founded in 2001 based on a collaboration comprising five Universi-

ties (Manchester, Southampton, Newcastle, Nottingham and Sheffield), the European

Molecular Biology Laboratory and European Bioinformatics Institute (EMBL-EBI) and

various industrial partners consisting of GlaxoSmithKline, Merck KGaA, AstraZeneca,

Sun Microsystems, IBM, GeneticXchange, Epistemics and Cerebra. This consortium

is currently funded by the EPSRC and comprises the Universities of Manchester and

Southampton. The myGrid team consists of bioinformaticians, computer scientists and

software engineers. A large proportion of the bioinformaticians have a life science back-

ground as myGrid focuses on biological research as a use case. However, much of the

middleware developed is generically applicable across the scientific domains including

astronomy (AstroGrid, HELIO), chemistry (CDK, CICC) and medical imaging (MI-

ASGrid). myGrid aims to develop generic middleware to allow biologists to perform in

silico experiments including the investigation of several diseases.
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Figure 1.4: BioCatalogue registry for the discovery, registry, annotation and monitoring
of life science web services.
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At Newcastle University researchers have used myGrid technology to study the ge-

netic mechanisms of Grave’s Disease (Li et al., 2003). The University of Manchester

have focused on Williams-Beuren Syndrome (WBS) (Stevens et al., 2004) and Liver-

pool University performed candidate gene analysis for trypanosomiasis in cattle (Fisher

et al., 2009). Numerous projects are currently implementing myGrid methods including

ONDEX, a project that aims to solve technical and semantic heterogeneities between

diverse biological datasets for integration and visualisation purposes (Köhler et al.,

2006). Others examples include Obesity e-Lab which aims to develop an e-science

toolkit to investigate obesity, REFINE which aims to produce text mining procedures

applied to systems biology, and e-LICO that aims to provide a virtual laboratory for

data mining. Until recently, in silico experiments were time-consuming processes that

commonly suffered from incompatibility problems. Results and methods were often

poorly documented causing a lack of reproducibility. The myGrid project consists

of a toolkit comprised of core components allowing the formation, execution, man-

agement and sharing of discovery experiments. These experiments are developed by

bioinformaticians using the Taverna Workbench which enables the user to create and

run workflows using the Freefluo enactor engine (Oinn et al., 2004b). Workflows are

the main mechanism for conducting the experiments. These can incorporate many

services, Java applications and database software. myGrid has developed open source

high-level service based middleware consisting of technologies from the semantic web

(Wolstencroft et al., 2007). A collection of tools have been developed by myGrid most

notably Taverna which allows users to develop workflows to conduct large scale in silico

experiments and myExperiment - a social networking utility for sharing, reusing and

augmenting workflows.

1.2.4 The Taverna workbench

Taverna 1.7 includes a workbench application that can be used to create workflows

written in a language called Scufl. Scufl is an abbreviation of Simple conceptual unified

flow language and each step in the workflow executes a specific function (Oinn et al.,

2004b). Workflows allow bioinformaticians to conduct large in silico experiments draw-

ing upon a variety of local and distributed web resources. These allow the storing and

tracking of provenance data and can be repeatedly executed or manipulated. Taverna

allows a range of abstraction levels allowing users to interact with individual services

in detail Hull et al. (2006). Using the Scufl workflow language allows workflows to be

assembled and refined for a particular experiment, enacted using the relevant services

and recorded for provenance alongside the experimental data. Many of the available

resources are from a number of databanks based at the EBI, EMBOSS, NCBI and

12



DDBJ. The EBI has developed SoapLab, which is a set of web services providing access

to many applications on remote computers (Senger et al., 2003). SoapLab has several

advantages its uniform method for describing analyses and their input/output data by

an XML-based metadescription.

XML (eXtensible Markup Language) is derived from SGML (Standard Generalised

Markup Language). XML overcomes most of the limitations experienced with HTML

(HyperText Markup Language). Data in bioinformatics is complex to model due to

the multitude of data formats and their numerous relationships (Szomszor et al., 2005).

New data types emerge at a constant rate including genome sequences, microarrays,

protein-protein interaction maps and proteomics data (Achard et al., 2001). Inferring

data creates new data that also needs to be integrated and raw data must be stored.

Bioinformatics databases such as the NCBI and EMBL are updated frequently with a

constant flow of data exchange. Therefore a language must express power and scalability

at run time and be flexible (Achard et al., 2001). XML is highly flexible and internet-

oriented with the ability to successfully combine data. This is highly useful for database

interconnection. However, not all biological databases provide an XML view of their

data. Concerns have arisen about the technological scalability of XML and if this is

sufficient for molecular biology (Achard et al., 2001). Overall it appears XML has

many advantages compared to disadvantages. It is essential to store data outputs from

a workflow into a database and the same outputs are required as inputs for further

analysis programs in the workflow.

The Taverna workbench provides an interface for creating and enacting scientific

analysis workflows. For biological purposes, a workflow can be exemplified by an in

silico experiment designed to perform sequential tasks involving data retrieval, analy-

sis, integration and storage. Taverna allows researchers to access numerous distributed

services and database repositories enabling the construction of large analysis pipelines.

Currently, there are in excess of 3500 services available through the Taverna workbench

with a rapid increase in computational applications dedicated to DNA, RNA and pro-

tein analysis (Hull et al., 2006; McWilliam et al., 2009). In bioinformatics, resources can

consist of information repositories such as EMBL and SwissProt or computational anal-

ysis tools including BLAST and ClustalW. An in silico experiment frequently involves

a combination of these resources linked in a specific order, thus forming a workflow

process (Oinn et al., 2004b).
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A typical bioinformatics experiment could consist of the following protocol:

1. Retrieve a DNA sequence in FASTA format from an online repository

such as EMBL.

2. Perform a gene identification analysis on the DNA sequence using the

gene prediction software GENSCAN.

3. Any resulting amino acid sequence can be compared to a database

of existing proteins using BLASTP to investigate potential homology

revealing possible roles of protein function.

4. Perform a multiple sequence alignment on specific sequences of interest

against the query sequence using ClustalW.

5. Produce a graphical display of a phylogenetic tree visualising the evo-

lutionary relationships between the sequences using Phylip.

6. Store relevant results into a relational database using JDBC (Java

Database Connectivity) and SQL (Standard Query Language).

Performing the aforementioned procedure manually would take a bioinformatician a

long time, especially for multiple sequence queries. This approach would also be difficult

regarding repeatability and prone to human error. This would typically involve manu-

ally transferring results between services by noting values produced and re-keying them

into a new interface by cutting and pasting. Although problematic and error prone, this

method facilitated scientific investigation through experimentation and underpins web

service and grid technologies (Wroe et al., 2004). New types of services arise rapidly in

the bioinformatics community. Oinn et al. (2004b) developed the Taverna project as an

open source software tool enabling scientists to orchestrate bioinformatics web services

and existing bioinformatics applications into workflows for the life sciences community.

The Taverna interface (Figure 1.5) consists of several frames representing specific

functionality. The Available Processors window lists all the services that can be incor-

porated into a workflow. These are distributed resources residing at various research

institutes including the EBI, NCBI, KEGG and DDBJ and numerous local processors

involving string manipulation and conditional statements. Various scripting shells are

available including facilities for writing beanshells and R scripts to include into an

analysis pipeline.
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Figure 1.5: The Taverna Workbench interface enabling the development of workflow
experiments.
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In addition, external services can be introduced into Taverna by scavenging APIs,

WSDL documents or workflow XML files enabling the import of predefined workflows.

Oinn et al. (2004a) discuss the architecture of Taverna in detail and document the func-

tionality of the workflow software. The Advanced Model Explorer window provides the

user with the ability to physically construct the workflow by connecting the relevant

input and output ports for each processor. For example, one processor make retrieve a

nucleotide sequence from a database and pass this result to a processor designed to con-

vert this into an amino acid sequence (Figure 1.6). Tracking provenance data is essential

when conducting in-silico experiments as this identifies the data origin by recording the

metadata and intermediate results associated with the workflow (Oinn et al., 2004b).

This allows scientists to track down any anomalies in their results and find information

on how the data was processed. Due to the vast quantities of web-based tools and

databases, workflows are highly useful resources.

1.2.5 MyExperiment - Sharing workflows

Another aspect of the myGrid consortium is myExperiment which is a virtual research

environment allowing users to publish and share scientific workflows developed within

the Taverna Workbench. The myExperiment repository is also available as a in-built

service within the most recent versions of Taverna 2. The myExperiment environment

now has over 3000 users and over 1000 workflows aiming to reduce reinvention, propa-

gate best practice and allow scientists to concentrate on important research (De Roure

et al., 2009; De Roure and Goble, 2009). De Roure et al. (2009) claims the myExper-

iment draws parallels with other familiar social networking websites publicly available

allowing users an immediately understandable interface for ease of workflow sharing

and reuse. Figure 1.7 displays the user interface enabling the deposition of personally

developed workflows and ability to provide workflow descriptions and user instructions.
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Figure 1.6: A basic Taverna workflow that converts a DNA sequence into protein.
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Figure 1.7: The myExperiment social networking platform. Users can search pre-
existing workflows and upload workflows to share with the myExperiment community.
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1.3 Aims and Objectives

The aims and objectives of this thesis are:

• To systematically analyse all combinations of suitable mitochondrial prediction

methods to highlight the most complementary techniques. Machine learning will

applied in the form of a trained support vector machine (SVM) on a dataset of

identified mitochondrial and non-mitochondrial proteins. An automated workflow

using the Taverna workbench 1.7 will be used to implement repetitive testing to

assess the sensitivities and specificities of all the combinations within the inves-

tigation. Previous research has failed to provide evidence of rigorous multiple

testing and the standard deviations produced when this is applied. The aim of

this investigation is to perform large scale multiple testing of all combinations of

appropriate datasets and the standard deviations produced between each test.

• Identify candidate genes involved in LHON by interrogating mitochondrial pre-

diction databases MitoCarta and MitoSVM. In addition, a text mining algorithm

will be developed to screen gene ontology records and OMIM documents for spe-

cific keywords related to LHON. Orthologues of closely related species will also

be text mined for novel candidates using innovative techniques not previously

utilised for this disease.

• Compare a large existing database of known mitochondrial DNA (mtDNA) dele-

tions to mtDNA fragments that reside in the nuclear genome. This will potentially

reveal any correlation regarding the mechanisms governing mtDNA deletions and

NUMTs within the nuclear genome. Flanking regions will be analysed for trans-

posable elements, nuclear mitochondrial genes and GC content. This aims to

reveal novel information about the mechanisms governing mtDNA integration

and the evolutionary processes involved.
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Abstract

Background

Disorders of the mitochondrial respiratory chain affect approximately 1 in 5000 of the

population making these disorders some of the most common genetic diseases. The

mechanism of nuclear-mitochondrial interactions is still misunderstood. The imple-

mentation of bioinformatics techniques is essential to further our understanding of mi-

tochondrial disease. Recent advances in e-science technology have provided mechanisms

for collating and interrogating large volumes of distributed data across the World Wide

Web. More specifically, workflow technology has experienced a huge increase in sup-

port and allowed developers to construct sophisticated in silico analysis pipelines for

scientific research. Machine learning applications have provided a powerful mechanism

for analysing heterogeneous biological data. The development of a workflow comprising

these methods for candidate gene analysis has proved to perform well in comparison

to classical techniques. Previous research has suggested using an integrated genomics

approach for the identification of mitochondrial proteins. However, these applications

of machine learning methods did not put an emphasis on evaluating the validity of their

predictions and in particular, did not assess the variance (or standard deviation) of pre-

diction performance as data sets and model parameters change. From this analysis of

all combinations of mitochondrial classifiers from the integrated approach a reduction

appears to augment sensitivity and specificity. This suggests certain classifiers are more

influential than others.

Results

An optimum combination of prediction methods was found consisting of 7 specific clas-

sifiers achieving the highest mean sensitivity without compromising specificity. Incorpo-

rating additional classifiers reduced the mean sensitivity highlighting the inadequacies

of previous research. This was also subject to rigorous multiple testing using machine

learning to reveal the standard deviations for each combination. Mitodomain was found

to be the strongest classifier in contrast to ancestry which was found to be the weak-

est. The study emphasises the importance of carefully selecting prediction methods to

achieve the most accurate prediction results for mitochondrial genes.

Conclusion

The combination achieving the highest mean sensitivity was used to construct a model

that was implemented in a genome-wide prediction for human mitochondrial genes.

This allows clinicians to focus on high scoring candidates within their region of interest.

This may lead to the discovery of novel mitochondrial genes involved in disease.
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2.1 Introduction

Mitochondrial dysfunction is a major cause of human genetic disease, affecting at least

1 in 5000 of the population (Schaefer et al., 2004). There is also emerging evidence that

a genetic predisposition of a more subtle nature contributes to the risk of developing a

number of complex human traits, particularly neurodegenerative diseases such as late-

onset Parkinsons disease (Chinnery, 2003). Experimental approaches to these biological

problems are currently restricted by rudimentary methods for analysing and interpreting

existing and newly acquired data sets. The challenge of this project is to harness

currently available bioinformatic and computational tools to develop new analytical

approaches in a number of related areas. Although the last decade has seen major

advances in molecular diagnosis of families with mitochondrial disorders, this is not

possible in a large proportion of cases where the inheritance pattern implicates a nuclear

genetic cause (Parfait et al., 1997). Mitochondria are thought to contain in excess

of 1000 proteins, but an accurate mitochondrial proteome has not been determined

experimentally (Chinnery, 2003). A number of bioinformatic tools have been developed

to help predict whether a protein localises to mitochondria, but the sensitivity and

specificity of different combinations of these prediction tools has not been investigated

(Calvo et al., 2006; Shen and Burger, 2007; Pagliarini et al., 2008). Determining the

best combination of existing tools, and constructing a continually developed database

of likely mitochondrial proteins with the genetic location of their corresponding genes,

would provide an invaluable tool for identifying novel nuclear-mitochondrial disease

genes.
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2.1.1 Machine learning

2.1.2 Machine learning applications in bioinformatics

Machine learning is an extremely powerful method for the analysis of large complex

datasets. This is especially useful when applied to molecular biological data. The Hu-

man Genome Project has resulted in an unprecedented amount of biological information

that is impossible to analyse manually (Venter et al., 2001). This information is hugely

varied ranging from protein and DNA sequences to biomedical literature. The method

of machine learning provides a mechanism for training an algorithm to recognise spe-

cific biologically meaningful patterns within the data. This trained system can then be

tested for predictive accuracy when analysing unseen data.

Numerous examples exist regarding machine learning applications in bioinformatics.

Figure 2.1 displays the six main biological domains where these techniques are being

applied consisting of genomics, proteomics, microarray data, systems biology, evolution

and text mining (Larrañaga et al., 2006). The learning term refers to the invocation

of an algorithm or computer program resulting in a predictive model by incorporating

training data or past experience. Specific problems in bioinformatics require different

techniques in machine learning for analysis. A variety of machine learning methods

are available, popular in the field of bioinformatics research including Hidden Markov

Models, decision trees and support vector machines (Ling et al., 2005).

2.1.3 Support vector machines

Support vector machines (SVMs) are a group of supervised machine learning methods

used for classification and regression developed by Vladimir Vapnik (1999). An SVM

aims to construct a separating hyperplane within high dimensional data. SVMs are also

known as maximum margin classifiers as they attempt to maximise the distance be-

tween two labelled groups (Figure 2.2). The margin is defined by any positive distance

from the decision hyperplane (Larrañaga et al., 2006). Support vectors are the training

samples that define the optimal separating hyperplane. The use of SVMs are particu-

larly widespread and recent applications include isolated handwritten digit recognition,

object recognition, speaker identification, charmed quark detection, face detection in

images and text categorisation (Burges, 1998).
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Figure 2.1: Classification of areas machine learning has been applied in bioinformatics
from Larrañaga et al. (2006)
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Figure 2.2: Support vector machines construct a separating hyperplane between two
distinct groups of data in a high dimensional feature space. The margins are set by
support vectors comprising the largest distance from the separating hyperplane in order
to maximise their separation.
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Many biological problems involve high dimensional, noisy data and SVMs have proven

to perform well in comparison to other statistical or machine learning methods (Noble,

2006). In addition, kernel-based methods including SVMs have the ability to handle

non-vector inputs including variable length sequences or graphs. SVMs offer several

advantages as opposed to previous methods such as hierarchical clustering and self-

organising maps (Brown et al., 2000). Brown et al. (2000) found that SVMs employ

distance functions in extremely high dimensional feature space allowing these to implic-

itly measure correlations within gene expression data. These characteristics of SVMs

make them highly suited for classification of heterogeneous biological data. More specif-

ically examples of very recent applications of SVMs in bioinformatics include biological

sequence classification (Sonnenburg et al., 2008), active compound detection for drug

discovery (Cao et al., 2008), identification of gene-disease associations (Ozgür et al.,

2008), protein fold and superfamily recognition (Melvin et al., 2007), disease-related

nsSNP detection (Capriotti et al., 2006) and protein-protein binding site prediction

(Bradford and Westhead, 2005).

2.1.4 Sublocalisation prediction software

Various software programs have been developed to predict sublocalisation of proteins

within the cell based on novel algorithms analysing amino acid sequences (Claros and

Vincens, 1996; Emanuelsson et al., 2000). Most proteins in the eukaryotic cell are

encoded in the nucleus and synthesised in the cytosol requiring additional sorting re-

garding their organelle destination (Kurland and Andersson, 2000). A protein import

mechanism is required to enable sublocalisation of proteins within the range of subcel-

lular compartments. If the destination is the mitochondrion, chloroplast or secretory

pathway, sorting usually relies on the presence of an N-terminal targeting presequence

recognised by the translocation machinery (Emanuelsson et al., 2000). N-terminal se-

quence prediction programs have been developed using a variety of different methods.

MitoprotII developed by Claros and Vincens (1996) is an algorithm that facilitates the

detection of the transit peptide localisation. The software derives empirical rules from

sequences that contain descriptions determining that their mitochondrial precursor pro-

teins are encoded in the nucleus and product resides in the mitochondria. MitoprotII

consists of four main steps including an initial screening procedure that aims to elim-

inate proteins that present physical constraints on protein import regardless of the

existence of a targeting presequence (Claros and Vincens, 1996). The developers in-

corporated a mechanism to detect these physical constraints based on hydrophobicity

scales with limiting functions that if exceeded present physical barriers for protein im-

port. The second step of the algorithm aims to detect the presence of an N-terminal
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targeting sequence with specific characteristics including being enriched in positively

charged residues and having a minimum amino acid sequence length of 12. Thirdly,

parameters are used to assess the amphiphilicity of the targeting sequences followed by

the final classification step involving the determination of cleavage site presence, total

net charge for the complete sequence and amino acid composition (Claros and Vincens,

1996).

TargetP is another N-terminal sequence prediction tool based on neural networks

which aims to assign proteins to one of four localisation compartments (mitochondrion,

chloroplast, ER/golgi/secreted and other) developed by Emanuelsson et al. (2000).

This software is based on two layers of neural networks with the first layer containing

a specific network regarding the type of presequence (chloroplast targeting peptides,

mitochondrial targeting peptides and signal peptides abbreviated to cTP, mTP and SP,

respectively). The second is an integrated network responsible for producing the actual

prediction. The non-plant version of TargetP aims to distinguish only between mTPs,

SPs and other. The first layer of the network is implemented using a logarithmic error

function and sparsely encoded sliding windows for input data encoding (Emanuelsson

et al., 2000). This input sequence window consists of 20 nodes representing the relevant

amino acid residues and if a particular amino acid is present the relevant node is set to

1 as opposed to the default 0. The network is then trained to recognise if the residue is

part of a targeting sequence (Emanuelsson et al., 2000). Implementation of the second

integrating network based on a quadratic error function considers the outputs from the

first network corresponding to the 100 N-terminal positions of the query sequence. The

top layer generates scores per targeting peptide with the highest score determining the

localisation prediction.

However, methods involved in determining sorting signals in amino acid sequences

rely heavily on the quality of the gene 5’-region or N-terminal target sequence. (Nakai

and Horton, 1999) claim that subcellular localisation prediction methods which depend

on sorting signals will be inaccurate in the absence of these signals or if only partially

present and these signals are not general enough to include each organelle’s resident

proteins. A program known as SubLoc provides a unique method based on machine

learning to assess amino acid composition that can be used as a complementary tech-

nique alongside sorting signal detection algorithms. SubLoc developed by Hua and Sun

(2001) implements a support vector machine to perform supervised pattern recognition

of high dimensional data. The algorithm consists of an input vector of 20 with each

input representing an amino acid. These input vectors can then be mapped into a high

dimensional space separated by an optimal separating hyperplane (see section 2.2.2).
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For eukaryotic sequences the classification consists of four categories (mitochondrial,

cytoplasmic, extracellular and nuclear). The classification system results in a predic-

tion based on the highest scoring compartment from the SVM output (Hua and Sun,

2001).

Mitopred has been employed for the detection of nuclear-encoded mitochondrial pro-

teins, incorporating Pfam domain occurrence and amino acid compositional differences

between mitochondrial and non-mitochondrial proteins. Mitopred was developed by

Guda et al. (2004) to rectify the limitations presented by previous prediction methods

based on a single criterion. Mitochondrial protein import consists of myriad complex

mechanisms based on several features (Schatz, 1996). The software involves a unique

method that analyses the amino acid sequence for the presence of Pfam domains. Each

domain is classified into one of three groups (Mito only - exclusive mitochondrial do-

mains; Non-mito only - exclusive non-mitochondrial domains and Shared - domains

found in both of the groups).

2.1.5 Mitochondrial databases

A number of mitochondrial databases are available dedicated to the storage of mito-

chondrial protein data. The Human Mitochondrial Database (HMPDb) is a repos-

itory of mitochondrial and nuclear-mitochondrial proteins that combines distributed

information from external resources including SwissProt, Protein Data Bank (PDB),

Online Mendelian Inheritance in Man (OMIM) and mitochondrial specific databases

such as the Human Mitochondrial Genome Database (mtDB) and MITOMAP. The

HMPDb currently has 1465 proteins recorded that consist of experimentally deter-

mined proteins and computationally predicted mitochondrial proteins. MitoProteome

is an object-relational mitochondrial protein sequence database and annotation system,

again consisting of careful curation of existing databases (Cotter et al., 2004). Initially

it contained 847 human mitochondrial protein sequences but was extensively revised in

2009. MitoProteome currently contains 780 mitochondrial proteins (both mitochondrial

encoded and nuclear encoded) 175 of these proteins were determined experimentally by

mass spectrometry (LC/MS/MS). The MitoP2 database focuses on the nuclear-encoded

proteome of mitochondria and aims to provide a comprehensive list of mitochondrial

proteins in humans (Elstner et al., 2009). MitoP2 also interrogates other species for

orthology including Saccharomyces cerevisiae, Mus musculus, Arabidopsis thaliana and

Neurospora crassa. Elstner et al. (2009) have employed an SVM to assess the likelihood

a protein is mitochondrial or not.
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2.1.6 Integrative methods for sublocalisation prediction

Due to the abundance of sublocalisation prediction tools available employing a range

of unique methods for analysing amino acid sequences, an emphasis has been made to

integrate these methods in order to augment the overall accuracy. Certain techniques

are perceived to be complementary in determining the location of nuclear-encoded pro-

teins. Shen and Burger (2007) aimed to integrate several tools in two ways including a

decision tree algorithm and majority-win voting attempting to harness the strengths of

each prediction method. Results from majority-win voting proved to be less successful

than the decision tree algorithm. The mitochondrial prediction tools investigated were

TargetP, SubLoc, SherLoc (Shatkay et al., 2007), pTARGET (Guda, 2006), Predotar

(Small et al., 2004), Protein Prowler (Bodén and Hawkins, 2005), PASUB (Lu et al.,

2004), Mitoprot and CELLO (Yu et al., 2006).

A decision tree was constructed that integrated four mitochondrial target peptide

(MTP) based tools (TargetP, Mitoprot, Predotar and Protein Prowler) referred to as

MTP-DT. This was further combined with the five remaining tools in a stacked decision

tree referred to as STACK-DT. As the localisation tools were less efficient at predicting

membrane proteins as opposed to matrix proteins a further integration was developed

incorporating four additional transmembrane prediction methods named Phobius (Käll

et al., 2004), TMHMM (Krogh et al., 2001), HMMTOP (Tusnády and Simon, 2001) and

SOSUI (Hirokawa et al., 1998). The most successful decision tree was an incorporation

of all these tools known as STACK-mem-DT expressing the highest true positive rate

(TPR) against false positive rate (FPR). Figure 2.3 compares the outcome of all these

integrated methods. The protein sequences used for training were downloaded from

SwissProt and selected based on specific criteria. All proteins were nuclear-encoded,

experimentally verified regarding subcellular location and did not contain ambiguous

annotation such as probable or possible (Shen and Burger, 2007).

A systematic identification of mitochondrial genes was performed by Calvo et al.

(2006) in an attempt to expand the catalogue estimated to be in excess of 1500 genes.

This investigation aimed to combine established methods for protein sequence anal-

ysis with the addition of recent progress applied to the ancestry and transcriptional

regulation of the organelle.
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Figure 2.3: Prediction performance of individual and integrated tools on human mi-
tochondrial proteins taken from Shen and Burger (2007). Filled symbols: individual
localisation tools; Dots: voting groups (tools integrated by majority-win voting); Open
symbols: decision trees. The top left hand corner of the plot displays the most success-
ful results, representing high true positive rate and lowest false positive rate (FPR). a.
Full scale result. b. Magnified region with FPR 0 0.25 and TPR 0.3 0.95
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Eight genome-scale datasets were incorporated into the systematic analysis using a

naive Bayes classifier consisting of the following:

1. Targeting signal based on TargetP prediction of N-terminal target peptide.

2. Protein domain score reflecting presence of mitochondrial protein domains based

on SwissProt annotation.

3. cis-motif score measuring evidence for conserved transcriptional regulatory ele-

ments previously discovered to be upstream of mitochondrial genes.

4. Yeast homology score derived from the detection of Saccharomyces cerevisiae

orthologues based on experimental evidence annotated in SGD (Saccharomyces

Genome Database).

5. Ancestry score based on sequence similarity to Rickettsia prowazekii proteins.

6. Coexpression score measuring transcriptional coexpression with known mitochon-

drial genes using genome-scale atlases of RNA tissues across diverse tissues based

on a neighbourhood metric.

7. MS/MS score reflecting the number of tissues a protein was detected from previous

proteomics research.

8. Induction score measuring the upregulation of mRNA transcripts in a cellular

model of mitochondrial biogenesis.

These methods were assessed using datasets consisting of 654 mitochondrial proteins

derived from MitoP2 and 2847 non-mitochondrial proteins with GO annotations speci-

fying organelles apart from the mitochondrion derived from Ensembl. The performance

of Maestro compared to the individual methods is displayed in Figure 2.4. Maestro was

trained on gold standard positive and negative datasets and was implemented in a

genome-wide scan of the entire 33,860 Ensembl human proteins using a scoring thresh-

old of 5.65 corresponding to a false discovery rate of 10%. Maestro achieved a sensitivity

of 71% and a specificity of 99.4% revealing 368 previously unassociated genes believed

to be involved in mitochondrial function. These novel predictions expressed consider-

able overlap with Mitopred, the best existing computational prediction algorithm, but

with greater sensitivity and specificity on the training data (Calvo et al., 2006).
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Figure 2.4: Sensitivity and specificity of genome-scale prediction methods taken from
Calvo et al. (2006). Maestro displays a range of thresholds with the selected threshold
being marked by an asterisk resulting in a sensitivity of 71% and specificity of 99.4%.
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A follow up analysis was implemented by Pagliarini et al. (2008) to generate a mito-

chondrial protein compendium involving an in depth analysis combining results from

protein mass spectrometry (MS), microscopy and machine learning. MS proteomics

was performed on highly purified and crude mitochondrial preparations in order to dis-

cover genuine mitochondrial proteins and distinguish them from contaminants based on

enrichment. These experiments consisted of a discovery phase involving the isolation of

highly purified mitochondria from 14 different tissues and a subtractive phase based on

the observation that mitochondrial proteins should become enriched during the purifi-

cation process with contaminants being depleted (Pagliarini et al., 2008). Training sets

were compiled consisting of 591 known mitochondrial genes and 2519 non-mitochondrial

genes excluding proteins characterised previously by proteomic studies. This enabled

the genes to be assessed for mitochondrial association derived from log likelihood ratios.

The improved MS data was integrated again using a Bayesian framework with six other

genome-scale datasets applied by Calvo et al. (2006) with the exclusion of cis-motifs.

Using the Maestro program a new threshold was set to 4.56 corresponding to a 10%

false discovery rate achieving a sensitivity of 84%. The resulting protein compendium

named MitoCarta consists of 1013 genes for human and 1098 for mouse displaying

protein expression across 14 different tissue types. These techniques are illustrated in

Figure 2.5.

2.1.7 Sensitivity and Specificity

Sensitivity and specificity test the accuracy of a prediction by comparing this to known

data. Sensitivity is a measure of the number of correctly identified positive results

(true positives) from a test. Specificity is the measure of correctly identified negative

results (true negatives) from a prediction. The following equations are used to calculate

sensitivity and specificity:

Sensitivity =
TP

(TP + FN)
(2.1)

Specificity =
TN

(TN + FP )
(2.2)
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Figure 2.5: MitoCarta protein compendium taken from Pagliarini et al. (2008) illustrat-
ing the combination of several approaches including: 1) An integrated analysis of seven
genome-scale datasets including MS data (grey circle), 2) large scale GFP tagging and
microscopy (green circle), and 3) prior biological knowledge from literature (red circle).
MitoCarta consists of a union of all these genes.
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2.1.8 Proposed Approach

The aim of this study is systematically assess all combinations of suitable mitochondrial

prediction methods in an attempt to qualify the most complementary techniques. This

would also reveal prediction methods that were negatively affecting overall prediction

accuracy. Machine learning was applied implementing a trained SVM on a dataset of

known mitochondrial and non-mitochondrial proteins. Sensitivity and specificity were

recorded for every combination, and each combination was interrogated 100 times each

consisting of a randomised training and testing dataset. This would allow an assessment

to be made regarding the standard deviations for each combination when analysed with

random unseen testing data and varying candidates in the training data. Different

combinations subjected to repeated testing should reveal important information relating

to confidence intervals. It is expected that merely increasing the number of independent

datasets will negatively affect sensitivity and specificity whereby an optimum set of

classifiers will be revealed. Datasets will be interrogated and organised for SVM training

and testing using a workflow constructed in the Taverna Workbench. All data will be

automatically stored into a relational database for further assessment.
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2.2 Methods

2.2.1 Protein sequence retrieval

A reference collection of proteins were downloaded from SwissProt using SRS (Sequence

Retrieval System) using specific filters (Figure 2.6). Mitochondrial proteins were re-

trieved specifying ’Homo sapiens NOT hypothetical NOT uncharacterised AND mito-

chondrial AND Protein Existence: 1: Evidence at protein level’. For non-mitochondrial

proteins the following filter was applied ’Homo sapiens NOT mitochondrial NOT hy-

pothetical NOT uncharacterised AND Protein Existence: 1: Evidence at protein level’.

These queries enable the retrieval of experimentally determined proteins by specifying

the correct level of protein existence. SwissProt records each contain a PE (Protein

Existence) line with the following format:

PE Level: Evidence;

The PE line has the following levels:

1: Evidence at protein level

2: Evidence at transcript level

3: Inferred from homology

4: Predicted

5: Uncertain

The queries specified that each protein required ”1: Evidence at protein level” as this

indicates clear experimental evidence for the existence of a protein. This may have been

quantified in various ways including clear identification by mass spectrometry (MSI),

X-ray or NMR structure or detection by antibodies. In addition, the queries were also

specified to remove any hypothetical or uncharacterised proteins. Only proteins with

clear annotation and sublocalisation were required in order to perform accurate testing

of predictive software. The sublocalisation was determined by the SUBCELLULAR

LOCATION paragraph from the CC line in the SwissProt record. This allowed deter-

mination of the specific subcellular compartment the particular protein was associated

with. This also provided details about the experimental procedures used in determining

the presence of the protein. For each protein the amino acid sequence, SwissProt acces-

sion number, Ensembl gene id, gene name, description and chromosomal coordinates

were extracted.
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Figure 2.6: Sequence Retrieval System (SRS) based at the European Bioinformatics
Institute. This allows the user to administer specific queries to retrieve sequence infor-
mation.
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The entire protein dataset was analysed with a workflow designed to run each protein

sequence through sublocalisation software including MitoprotII, TargetP and SubLoc

and stored into a relational database (Figure 2.7). These specific prediction tools were

chosen due to the range of methods employed including target sequence prediction,

neural networks, amino acid composition and Pfam domain assessment. All the results

were stored into a relational database along with all the relevant information from the

data retrieval procedure. The entire protein dataset consisted of 467 mitochondrial and

6352 non-mitochondrial proteins.

2.2.2 Data integration

Supplementary information was downloaded from the results section of the genome-wide

analysis performed by Calvo et al. (2006) (Table 2.1). A local relational database was

constructed using SQL designed to store all the results from this genome-wide analysis.

This data representing 33,860 human proteins was extracted and stored by exporting

the data from an excel spreadsheet into the database and named calvo genome. This

database contained all the relevant information including Ensembl gene ids, protein ids,

gene names, descriptions and results from all the independent analyses. The Ensembl

protein id was used as the foreign database key to allow the database to be joined with

other databases containing a matching Ensembl protein id column for further analysis.

The calvo genome database consisted of the architecture displayed in Table 2.2. The

results from the MitoFlow workflow displayed in Figure 2.7 were automatically stored

into a database using Java Database Connectivity (JDBC). Finally, a database that

consisted of all the calvo genome data and MitoFlow data was combined into a single

database named reference proteins. This database consisted of columns and associated

datatypes displayed in Table 2.3. This reference database could then be implemented

in the training and testing of the SVM.
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Figure 2.7: MitoFlow. A workflow to analyse the human proteome with sublocalisation
software Mitoprot, SubLoc and TargetP. A list of protein sequences are submitted in
FASTA format and then split into separate jobs for iterative analysis. Each sequence
is sent to the relevant prediction programs and the results are extracted, alongside
Ensembl gene information and stored into a relational database.
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Eleven genome-scale data sets used to predict mitochondrial localization
Method Genome-scale dataset
1. Protein domain Pfam domain found only in eukaryotic

mitochondrial proteins (SwissProt)
2. Cis motif Erra motif in human/mouse promoters
3. Yeast homology S. cerevisiae mitochondrial orthologue
4. MS/MS Mouse mitochondria (brain, heart, liver, kidney)
5. Induction Difference in gene expression during mitochondrial

biogenesis induced by PGC-1a
6. Mitopred Pfam domains
7. Targeting signal TargetP on human/mouse orthologues
8. Ancestry R. prowazekii orthologue
9. Coexpression Coexpression with known mitochondrial genes

in human/mouse tissue atlases
10. Targeting signal Mitoprotii
11. Amino acid composition SubLoc

Table 2.1: Genome-scale datasets implemented in the analysis performed by Calvo et al.
(2006). Additional datasets Mitoprot and SubLoc were added to the investigation.

2.2.3 Support vector machine training and optimisation

The parameters for the SVM learning algorithm were optimised to yield the highest

accuracy of prediction with the lowest number of support vectors (<10% of the overall

dataset). An accuracy of 95.76% was achieved using specific parameters available as

part of the svmlight software. From an overall dataset of 6819 candidates (467 mitochon-

drial and 6352 non-mitochondrial), 730 were extracted from the database at random

to form the test set (100 mitochondrial and 630 non-mitochondrial), leaving the 6089

candidates for training. The SVM was trained and tested 100 times for each one of

the 2047 possible combinations of the eleven prediction parameters. Each run used a

different randomly selected training and test set, allowing calculation of the mean and

standard deviation of sensitivity and specificity values.
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column datatype
id integer
ensgene id character varying(100)
ensprotein id character varying(100)
gene name character varying(200)
description text
mitodomain integer
erra motif integer
yeast homologue integer
targetp double precision
induction double precision
rp homologue integer
coexpression double precision
msms tissues integer
mitopred double precision

Table 2.2: Architecture of the calvo genome database storing all the information from a
genome-wide analysis of 33,860 human proteins performed by Calvo et al. (2006). The
Ensembl protein id was used as the foreign key to enable joining other tables containing
the same protein id. The id column formed the primary key to ensure each row was
unique.

column datatype
id integer
acc no character varying(10)
job id character varying(100)
ensgene id character varying(100)
evidence text
sublocalisation text
mitodomain character varying(10)
erra motif character varying(10)
yeast homologue character varying(10)
msms tissues character varying(10)
induction character varying(10)
mitopred character varying(10)
targetp character varying(10)
rp homologue character varying(30)
coexpression character varying(10)
mitoprotii character varying(10)
subloc character varying(50)

Table 2.3: Architecture of the reference genome database combining all the information
from the calvo genome database of 33,860 human proteins and the MitoFlow database
of MitoProt and SubLoc results. The Ensembl protein id was used as the foreign key
to enable joining other tables containing the same protein id. The id column formed
the primary key to ensure each row was unique.
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2.2.4 Combination analysis workflow

A program was developed to extract a random 730 protein candidates from the inte-

grated reference dataset (100 mitochondrial and 630 non-mitochondrial). The program

was designed to create 100 examples and stored as a file to be incorporated in the

combination analysis pipeline. Each example was structured so the first 100 proteins

were mitochondrial followed by the remaining 630 non-mitochondrial proteins.

Workflow user query

The workflow was designed to receive a list of all the 2047 combinations (Figure 2.8).

Each combination consisted of datasets represented by a string of comma separated

keywords such as mitodomain, yeast homologue, targetp, subloc. The second input

required was an identical list but referring to the required database table names re-

flecting each combination such as do ye tp sb. This ensured that the results for each

combination could be stored into a unique relational table required for further analysis

later in the automated pipeline. In order for the workflow to analyse each combination

correctly the workflow must consist of a nested architecture in Taverna. This means

the nested section of the workflow needs to have completed for each combination before

the next one is analysed. Therefore an example input list for the workflow is as follows:

Input 1) Example list of five unique combinations:

• mitodomain, erramotif, yeasthomologue

• mitodomain, erramotif, msmstissues

• mitodomain, erramotif, induction

• mitodomain, erramotif, mitopred

• mitodomain, erramotif, moothtargetp

Input 2) Example list of five unique relational table names corresponding to the above

list of combinations:

• xdo er ye

• xdo er ms

• xdo er in

• xdo er mp

• xdo er tp
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Figure 2.8: Combination analysis workflow. This is a nested within a nested workflow
allowing each combination of classifiers to be individually analysed 100 times.
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Combination generation

Every combination of the datasets was investigated in order to measure sensitivity and

specificity for each. This could potentially highlight which datasets could contribute

to an increase in the sensitivity of predictions as opposed to datasets that were disad-

vantageous when involved in an integrated genomic approach. The complete list of the

2047 unique combinations was generated using the following equation:

n!

r!(n− r)!
(2.3)

This formula was applied to calculate the total number of combinations 11 different

datasets would produce where n is the total number of datasets and r is the number se-

lected for a specific combination. The total number of combinations amounted to 2047

as this is different to a permutation. Within a combination the order the classifiers ap-

pear is not important as long as they are present. Order is important for a permutation

resulting in for example Mitodomain, TargetP and induction being classed as different

when compared to TargetP, induction and Mitodomain. With this important difference

taken into account the calculation for the 11 classifiers was based on combinations and

not permutations. The same equation was applied for the corresponding relational ta-

ble names in order to store the results generated by each combination in the structure

mentioned above. These lists were stored as text files in preparation for input into the

first section of the combination analysis workflow. The lists are sent to the first nested

workflow which is illustrated by the pale blue box in Figure 2.8. The input lists are

split into separate queries by carriage returns using local processors (purple) available in

Taverna. The nested workflow is then able to process each individual query separately.

In order for each separate combination input to be correctly correlated with its unique

relational table name the implicit iteration functionality of Taverna is utilised. This is

to ensure that the first input of the combinations list is sent to the workflow coupled

with the first input of the relational tables list and the second with the second and

so on. Taverna enables this allowing developers to manipulate the iteration strategy

of a workflow. The options consist of cross product and dot product whereby cross

product reflects an all against all strategy which is unsuitable for this workflow. The

dot product option ensures first against first, second against second which is illustrated

in Figure 2.9. The nested architecture means that each individual combination is fully

analysed and results stored before the next combination proceeds into the workflow.
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Figure 2.9: Configuration of the iteration strategy in the Taverna workbench. The
selection of dot product ensures the correlation of the two inputs from their relative
positions in the input lists.
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Process 1: nested workflow 1

The first nested workflow (pale blue) takes a query and its related table name as input

such as:

• Combination: mitodomain, targetp, induction

• TableName: do, tp, in

Using the table name this is instantly used to create a unique relational table in prepa-

ration for storage of the resulting data towards the final part of the workflow. This

consists of a Java program implementing JDBC with the following embedded SQL:

s.executeUpdate("CREATE TABLE " + table + "

(id serial, sensitivity double precision,

specificity double precision)");

This is implemented by the createTable program (green processor) creating a rela-

tional database table named, in this example, do tp in. This table name is also directed

as input into other programs within this section namely storeSVMData and SVMStats-

Query. The combination is also directed as input, in this example, mitodomain, targetp,

induction to a data storage program storeSVMCalculations. These processors will be

explained in more detail towards the end of this section as these require the completion

of the second nested workflow (beige).

Process 2: Random testset generator

A Java program was developed to extract 730 random proteins (100 mitochondrial and

630 non-mitochondrial) from the reference database created previously. This required

the name of the reference database as input into the program to allow successful exe-

cution. The program relied on Java Database Connectivity (JDBC) which contained

embedded SQL statements to allow communication with the database to allow data

retrieval and storage. The following SQL code was implemented in the program:

ResultSet rs1 = s.executeQuery("(SELECT * FROM " + table + " " +

"WHERE job_id = ’mito’ ORDER BY RANDOM() LIMIT 100) UNION ALL

(SELECT * FROM " + table + " " + "WHERE job_id = ’nonmito’

ORDER BY RANDOM() LIMIT 630)");
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The first part of the statement extracts all the necessary data from the reference

database (using the database name received from the program input) where the id

is mitochondrial. This is retrieved at random with a limit set to 100. This returns 100

random mitochondrial protein candidates from the reference database. This is attached

by the UNION ALL statement to the results from the final part of the SQL statement.

This part retrieves all the necessary data from the reference database where the id is

non-mitochondrial and extracts this at random with a limit of 630. This returns 630

random non-mitochondrial candidates appended to the 100 mitochondrial candidates

resulting in a random testset of 730 proteins. This program contains a looping construct

to allow the procedure to be automatically executed 100 times. The result is written to

a text file containing 100 different examples of the random testsets. This text file forms

an essential part of the combination analysis workflow. A local processor (purple) in

Taverna allows developers to read from and write to text files. The processor Read-

RandomFile retrieves the randomly generated test sets produced by the aforementioned

Java program and using another local processor splits these into separate entries each

consisting of 730 protein examples. Again this requires an iteration strategy to be im-

plemented to allow each individual combination to be analysed 100 times. This involves

using a strategy known as a cross product. This is an all against all strategy resulting in

the one single combination being fed into the second nested workflow (beige processor)

alongside each of the 100 random testsets. Therefore this allows each combination to

be analysed with all the 100 randomly generated testsets. The second nested workflow

needs to have completed a full analysis of one testset before the next one proceeds.

Process 3: Nested workflow 2

The second nested workflow is the large beige processor that is contained within the

larger blue processor in Figure 2.8. This receives two inputs consisting of a single com-

bination such as mitodomain, targetp, induction and one random testset file containing

all data for 730 random proteins. Each input is then written to a file and saved to allow

the following program SVM Prep to execute successfully as this program requires this

data to function. The program SVM Prep is conditionally linked to the file writing

processors (purple) meaning these processors need to have completed before SVM Prep

is invoked. This can be seen in Figure 2.10 displaying the physical linking of the proces-

sors in the workflow diagram and below how this is configured in the Advanced Model

Explorer window in the Taverna workbench.
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Figure 2.10: Control link nodes in Taverna allow the user to ensure certain processors
have fully completed before the next one proceeds.

48



Process 4: SVM Training and test file preparation

The next stage of the workflow is a Java program named SVM Prep. This is accessed

via a Taverna local processor that allows the user to execute a command line application

from inside the workflow. In this instance the processor requires the following command

line argument as a permanent input:

java SVM_Prep

The processor sends this to the command line and returns the program output.

SVM Prep requires two input files in order to function which are specified by filepaths

within the program. These are the files constructed from the previous step in which

one file contains the individual combination and the second file contains data from the

random 730 proteins. The random dataset contains all the information regarding the

11 classifiers for each of the 730 proteins forming the testset. The architecture of this

data is illustrated below:

SVM testset example

6807 1 1:1 2:0 3:1 4:0 5:2.9 6:100 7:0 8:-130 9:5.5 10:0 11:0

6624 1 1:1 2:0 3:1 4:4 5:4.21 6:100 7:2 8:-130 9:33.5 10:0.9531 11:0

6749 1 1:-2 2:0 3:0 4:4 5:2.74 6:0 7:0 8:-130 9:27.5 10:0.6221 11:0

6687 1 1:0 2:0 3:0 4:1 5:1.4 6:100 7:2 8:-130 9:9.5 10:0.9448 11:1

6804 1 1:1 2:0 3:0 4:0 5:1.6 6:73.6 7:2 8:-020 9:7.0 10:0.9342 11:1

4601 -1 1:-1 2:0 3:0 4:0 5:0 6:0 7:1 8:0 9:0.5 10:0.1483 11:0

684 -1 1:-1 2:0 3:0 4:0 5:0 6:0 7:0 8:0 9:0.5 10:0.1873 11:0

1400 -1 1:-2 2:0 3:0 4:0 5:0 6:0 7:0 8:0 9:0.5 10:0.0679 11:0

783 -1 1:-1 2:0 3:0 4:0 5:0 6:0 7:0 8:-03 9:4.0 10:0.0007 11:0

2876 -1 1:-2 2:0 3:0 4:0 5:0 6:0 7:0 8:0 9:0.5 10:0.0502 11:0

This represents five mitochondrial candidates (1) and five non-mitochondrial

candidates(-1) merely for visualisation purposes. The first number is the unique primary

key id from the database record, the second is the job id denoting whether the candidate

is experimentally determined to be mitochondrial (1) or non-mitochondrial (-1). The

proceeding 11 numbers followed by semi-colons are the values generated from each

classifier (mitodomain, cis motifs, yeast homologues, etc). SVM Prep contains all the

classifier names in its memory so when it reads the combination file it maps this to the

random testset and retrieves only those columns of data.
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The combination mitodomain, targetp, induction would return the following:

Combination specific SVM testset example

6807 1 1:1 5:2.9 7:0

6624 1 1:1 5:4.21 7:2

6749 1 1:-2 5:2.74 7:0

6687 1 1:0 5:1.4 7:2

6804 1 1:1 5:1.6 7:2

4601 -1 1:-1 5:0 7:1

684 -1 1:-1 5:0 7:0

1400 -1 1:-2 5:0 7:0

783 -1 1:-1 5:0 7:0

2876 -1 1:-2 5:0 7:0

This is due to the fact that mitodomain is the first column in the reference database,

induction is the fifth and targetp is the seventh. This now represents 730 protein

candidates with information only from these specific classifiers. This forms the SVM

testing data, but an SVM training set was required which did not contain the proteins

contained within the testset. Following the completion of SVM Prep the output was

sent to parseRes ids (green processor) which extracted all the unique primary key ids

from the above testset in preparation for the program createView. This returned a

comma separated string of unique ids (e.g ’6807’, ’6624’, ’6749’, ’6687’...) that could

be incorporated directly into an SQL statement contained within the createView Java

program. As each testset contains 730 randomly extracted proteins this needs to be

trained against the remaining 6089 proteins from the reference database with these

specific testset candidates removed. The program createView achieves this by again,

using the JDBC and SQL methods mentioned previously to extract the relevant training

candidates from the reference database. This was implemented using the following SQL

code:

Step 1:

s.executeUpdate("DROP VIEW correlated_set");

Step 2:

s.executeUpdate("DROP VIEW random_selection");
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Step 3:

s.executeUpdate("CREATE VIEW random_selection

AS SELECT * FROM protein_reference_set

WHERE uid in (" + res_ids + ") ORDER BY job_id desc");

Step 4:

s.executeUpdate("CREATE VIEW correlated_set

AS SELECT * FROM protein_reference_set

EXCEPT (SELECT * FROM random_selection)

UNION ALL SELECT * from random_selection");

Step 5:

ResultSet rs = s.executeQuery("SELECT * FROM correlated_set");

This program created SQL views which represent reduced portions of a complete

database as they were only required temporarily and creating new relational tables

was deemed unnecessary. Step 1 and 2 of the SQL statements remove the previous

views produced from previous jobs acting as a cleaning procedure. Step 3 creates a

view named random selection containing the random 730 protein candidates using the

unique primary ids extracted prior to this process by the parseRes ids program. Step 4

creates a another view named correlated set that extracts all proteins from the reference

database with the exception of the random candidates contained in the random selection

view created in step 3. The final part of step 4 appends the random candidates to the

end of the correlated view. The resulting view contains the full complement of 6819

proteins whereby the first 6089 are training candidates and the final 730 are for testing.

Step 5 retrieves all the entries within the correlated view that are organised by training

set followed by the testset.

The output of createView now contains all 6819 reference proteins containing only

information for the specific combination in question and ordered by training set (6089)

followed by testset (730). This output is then written to a file using a local processor

(purple) in preparation for the next program.
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The file is now in the appropriate format for svmlight analysis shown below:

Combination specific created view example

1 1:1 5:2.9 7:0

1 1:1 5:4.21 7:2

1 1:-2 5:2.74 7:0

1 1:0 5:1.4 7:2

1 1:1 5:1.6 7:2

-1 1:-1 5:0 7:1

-1 1:-1 5:0 7:0

-1 1:-2 5:0 7:0

-1 1:-1 5:0 7:0

-1 1:-2 5:0 7:0

Following this procedure two Java programs were developed to extract the testset

and training set from the created view file. These programs parsed the output of the

created view. The training candidates were positioned at the top of the created view

file and could be filtered out using the specific line numbers (1-6089). The random

testset was appended to the bottom of the file and therefore could be filtered using line

numbers (6090-6819). Theses outputs were then written to two separate files named

testset.txt and trainingset.txt that could be used by svmlight. Once these datasets have

been filtered they are stored as text files in preparation for the svmlight software analysis.

The first step of the svmlight procedure is the invocation of the program svmlearn which

performs the SVM training. This is conditionally linked to the file writing processors

as this step can only proceed once the training and testing files are available.

Process 5: SVM learning and classification

The software package svmlight v6.02 was implemented to perform the training and clas-

sification machine learning procedure using the relevant prepared files. The svmlight

package consists of two scripts, svmlearn and svmclassify responsible for training the al-

gorithm against the training dataset provided producing a model file and classifying

the proteins based on predicting which candidates belong to the positive(1) or nega-

tive (-1) class, respectively. Both scripts are accessed through local Taverna processors

that communicate with the command line. Each script is invoked via a Java wrap-

per that executes the specific algorithm. svmlearn was invoked using a sophisticated

Java program enabling piping information to and from the command line that was

not achievable through the local Taverna processor. The local processor invoked the
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Java wrapper on the command line as opposed to directly invoking the command line

svmlearn executable. The specific commands within the wrapper enabled the configura-

tion of the svmlearn parameters selected through the optimisation procedure performed

at the outset. These parameters were implemented within the Java code as follows:

svmlearn parameter configuration

Trade-off between training error and margin

command.add("-c");

command.add("25");

Using a biased hyperplane

command.add("-b");

command.add("0");

Using RBF (Radial basis function)

command.add("-t");

command.add("2");

Setting gamma

command.add("-g");

command.add("0.1");

Epsilon allowing error for termination criterion

command.add("-e");

command.add("0.001");

Next command line argument: svm directory

command.add(dbFile.getPath());

The model file

command.add(modelFile.getPath());

Finally the sequence file

command.add(seqFile.getPath());

Give the command line argument to the builder

builder.command(command);
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This list of commands is sent from the Java wrapper to the command line specifying

all the arguments required followed by the location of the training file and where the

model file should be written (see Figure 2.11 for an illustration of this procedure). The

command line receives the following arguments:

./svm_learn -c 25 -b 0 -t 2 -g 0.1 -e 0.001

svmlight/trainingset.txt svmlight/model.txt

Once this process is complete a model file is produced that can be tested against

with the relevant random testset in order to make predictions that can be assessed for

sensitivity and specificity regarding proteins being mitochondrial or not. The model

file is required by the algorithm svmclassify to perform the predictions and is therefore

conditionally linked to the svmlearn processor. The svmclassify script is then invoked

using a modified version of the Java wrapper that was used to execute svmlearn. Unlike

the svmlearn program, svmclassify did not require any arguments apart from the file

locations for the testing data, the model file produced previously and the location of

where the predictions should be written. Following production of the prediction file this

could be used to calculate sensitivity and specificity of the specific combination under

investigation. This program pipes the following command to the command line:

./svm_classify svmlight/testset.txt

svmlight/model.txt svmlight/predictions.txt

Process 6: Sensitivity and specificity calculations

Two Java programs were developed that calculated sensitivity and specificity. Again,

these were invoked on the command line via Taverna’s local processors (purple) and

results returned to the workflow output. These programs were conditionally linked to

the svmclassify processor as they required the completion of the prediction file in order

to perform the calculations. Due to the organisation of the testset file (first 100 mito-

chondrial and last 630 non-mitochondrial) calculating the sensitivities and specificities

could be based on line numbers within the prediction file. The SensitivityCalcula-

tion program determined sensitivity by calculating the percentage of positive scoring

candidates in the first 100 examples. Therefore the SpecificityCalculation program de-

termined specificity by calculating the percentage of negative scoring candidates in the

last 630 examples.

Due to the nested architecture of the workflow, 100 sensitivity and specificity results

are produced per combination (refer to Process 3). This generates 100 sensitivity and

54



Figure 2.11: The architecture of the svmlight pipeline. A training set is used by the
program svmlearn to construct a model file. A testing set is then queried against the
model file classifying the candidates into a positive or negative class using the program
svmclassify. The final output is a prediction file of values used to determine whether the
candidates are classified as mitochondrial or non-mitochondrial.
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specificity values for each specific combination as an output from the beige processor.

These values can then be stored into the unique tables specified at the start of the

workflow created simultaneously with each combination run (refer to Process 1). Each

unique combination has a unique relational table containing 100 sensitivity and speci-

ficity values. The relational tables are created by the createTable processor which uses

the specific combination as the table name. Prior to this the beanshell processor Table-

Name merely adjusts the input for the datasets into syntax accepted by PostgreSQL.

For example the input do, tp, in is converted to do tp in using underscores instead of

comma separated values as this is not acceptable format for PostgreSQL.

Once these values have been stored the following processor SVMStatsQuery per-

forms mean and standard deviation calculations for the sensitivity and specificity of

each particular combination. These results are then extracted by the four parsing pro-

cessors parseMeanSens, parseSDSens, parseMeanSpec and parseSDSpec and passed to

the final processor storeSVMCalculations.

On completion of the entire workflow a database is produced containing the means

and standard deviations for sensitivity and specificity for all 2047 combinations.
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2.2.5 False Discovery Rate Calculations

The false discovery rate (FDR) is the proportion of all the false predictions generated

during the analysis. This is represented by the following equation whereby FP = false

positives and TP = true positives:

FDR =
FP

(FP + TP )
(2.4)

A difference in the proportion of mitochondrial and non-mitochondrial proteins in

the training set when compared to the actual proportion in the human genome can

bias the FDR. This can be accounted for by scaling the FDR based on the estimated

number of mitochondrial proteins encoded by the nuclear genome (1,500 of 21,000

genes). Using this approach, the corrected FDR can be calculated as below whereby

TN = true negatives and FN = false negatives.

cFDR =
(1− specificity)

(1− specificity + sensitivity)
x

1500

21000
(2.5)

Specificity =
TN

(TN + FP )
(2.6)

Sensitivity =
TP

(TP + FN)
(2.7)

2.2.6 Genome wide analysis using MitoSVM

Following the determination of the best combination achieving the highest sensitivity

without compromising specificity, the resulting SVM model file was used to classify all

human proteins contained within the Ensembl Human database. An SVM testfile was

created containing values for the best combination of classifiers for all 63,271 human

transcripts contained within the Ensembl database. These could then be ordered by

chromosomal location and descending SVM score to highlight the strongest candidates

for further investigation based on genomic region of interest.
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2.3 Results

2.3.1 Performance of the combination workflow

Each individual workflow run completed in 5 seconds. As each combination was anal-

ysed 100 times this resulted in each job requiring approximately 8 minutes for comple-

tion. Analysing the entire set of 2047 combinations required 273 hours (approximately

11.5 days) of automated processing time. The workflow automates a large analysis

protocol that would require several months to complete using a manual approach. This

effectively eradicates human error and is simple regarding method repeatability. All the

resulting data is automatically stored and organised into a relational database providing

an appropriate architecture for analysis.

2.3.2 Sensitivity for all combinations

A barcode plot was produced displaying all the sensitivity results for the 11 different

combinations from the genome-scale datasets generated by (Calvo et al., 2006) in de-

scending order of score (Figure 2.12). This is a visual display illustrating the strongest

classifiers in contrast to the weakest. The top of the plot contains the datasets that

were most consistent in achieving a high sensitivity and lack the presence of the weakest

predictors. Towards the bottom of the plot the weakest predictors are most abundant

with the absence of the strongest classifiers. Coloured arrows indicate the location

of the prediction methods in isolation highlighted by a colour coded key allowing for

the evaluation of the importance of using combinations of datasets as opposed to one

method alone. Figure 2.12 also highlights the top 100 combinations to the left of the

image providing a magnified view displaying which classifiers are involved in the highest

sensitivities.
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Boxplots were produced displaying the mean sensitivities and specificities along

with the range for differing numbers of classifiers (Figures 2.13 and 2.14). The range

for sensitivity decrease as more classifiers were involved reaching an optimum number

of classifiers. This pattern was also expected to be reflected regarding the mean values.

For specificity the values for the range and mean values were not expected to fluctuate

and remain fairly consistent regardless of the number of classifiers involved in the predic-

tion. The probability of an independent dataset contributing to a sensitivity prediction

was calculated using the results from the entire combination analysis. Figure 2.15 dis-

plays a heat coloured contour plot of results ordered along the x axis starting with the

dataset expressing the highest probability of generating high sensitivity values. Pre-

dictors contributing to high percentages of high sensitivity values are displayed by red

colour. Low percentage contribution is displayed in yellow allowing for a clear contrast

between the performance of the 11 prediction methods. The same data is displayed

in Figure 2.16 in the form of a line graph with each individual line representing an

independent dataset. Strong predictors migrate to the top right of the graph reflecting

high percentage contribution. Low percentage contribution to high sensitivity values

is reflected by lines migrating downwards to the bottom right of the graph. The same

analysis was performed for specificity and can be seen in Figures 2.17 and 2.18. Values

for specificity displayed negligible differences between the 11 prediction methods. This

resulted in a clustering of values around 99%.

2.3.3 Sensitivity and specificity of all combinations

A scatterplot was produced displaying the sensitivities and specificities of all 2047

combination results. This was expected to display a clustering of results in the top

right hand corner of the graph pertaining to 7 an 8 classifiers, corresponding to the

best prediction for mitochondrial localisation. This would clarify that this number of

datasets were required to achieve optimal sensitivity without reducing the specificity

(Figure 2.19).

2.3.4 Standard deviations of sensitivity and specificity

Figure 2.20 displays the standard deviations for all 2047 combinations. Each combi-

nation was tested with random testsets 100 times generating standard deviations for

each individual combination. An expected trend would be a stable value for standard

deviation for both sensitivity and specificity. It was hypothesised that as the mean sen-

sitivity increased the standard deviation decreased and stabilised around a reasonable

threshold. Figure 2.21 displays the standard deviation values against the sensitivity of
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Figure 2.13: Boxplots illustrating the statistics of the sensitivity values for all 2047
combinations of the 11 different prediction tools. The first boxplot on the far left
represents all the sensitivity values when one classifier is involved in the prediction.
Each boxplot moving to the right displays the statistics when an additional classifier is
added with the far right boxplot displaying the result when all 11 classifiers are involved
in the prediction. Horizontal bar = mean, box = standard deviation and whiskers =
range.
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Figure 2.14: Boxplots illustrating the statistics of the specificity values for all 2047
combinations of the 11 different prediction tools. The first boxplot on the far left
represents all the specificity values when one classifier is involved in the prediction.
Each boxplot moving to the right displays the statistics when an additional classifier is
added with the far right boxplot displaying the result when all 11 classifiers are involved
in the prediction. Horizontal bar = mean, box = standard deviation and whiskers =
range.
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Figure 2.15: A heat coloured contour plot representing the percentage contribution of
each prediction tool to a given level of mean sensitivity. Red reflects 100% contribution
to that specific level of sensitivity and yellow reflects 0%. The colour is a gradient
represented by the key on the far right of the diagram. The classifiers range in predictive
strength from left to right.
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Figure 2.16: A line plot representing the percentage contribution of each prediction
tool to a given level of mean sensitivity. Strong classifiers are reflected by lines that
move from bottom left to top right as this displays low contribution to low sensitivities
and high contribution to high sensitivities. An opposite trend is displayed for weak
classifiers.
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Figure 2.17: A heat coloured contour plot representing the percentage contribution of
each prediction tool to a given level of mean specificity. Red reflects 100% contribution
to that specific level of specificity and yellow reflects 0%. The colour is a gradient
represented by the key on the far right of the diagram. The classifiers range in predictive
strength from left to right.
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Figure 2.18: A line plot representing the percentage contribution of each prediction
tool to a given level of mean specificity. Strong classifiers are reflected by lines that
move from bottom left to top right as this displays low contribution to low specificities
and high contribution to high specificities. An opposite trend is displayed for weak
classifiers.
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Figure 2.19: A scatterplot displaying sensitivity against specificity for all 2047 combi-
nations comparing the differences when changing the number of classifiers involved in a
prediction. The colour key refers to the number of prediction methods involved in that
particular combination. Combinations clustering in the top right hand corner of the
plot represent the highest sensitivities without compromising specificity. Each colour
represents a different number of classifiers.
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Figure 2.20: Standard deviations for sensitivity and specificity for all 2047 combina-
tions comparing the differences when changing the number of classifiers involved in a
prediction. The colour key reflects the number of prediction methods involved in that
particular combination. The left plot displays all the standard deviations for the sensi-
tivity results and the right plot displays all the standard deviations for the specificity
results.
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Figure 2.21: A scatterplot of standard deviations against sensitivity for all combinations
involving 7 classifiers. This is to illustrate the trend of standard deviations as sensitivity
increases.
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all combinations that involved 7 classifiers. This would represent a higher mean having

a lower standard deviation pertaining to a more reliable prediction accuracy.

2.3.5 False discovery rate

The false discovery rate (FDR) and corrected false discovery rate (cFDR) is an impor-

tant assessment of all the false predictions generated during the investigation. These

rates are expected to decrease as the number of parameters approaches the optimum

number. Figure 2.22 displays the results of these rates in relation to one another. Box-

plots displaying these values are displayed in Figures 2.23 and 2.24 with the addition

of the means and ranges of values generated.

2.3.6 Genome wide analysis using MitoSVM

An SVM model file was produced based on the best combination of classifiers and

implemented using the SVM to classify all proteins in the human genome contained

in the Ensembl database. Table 2.4 displays the top 20 highest scoring mitochondrial

candidates in the human genome based on the SVM model that achieved the highest

sensitivity and specificity.
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Figure 2.22: A plot displaying the false discovery rates (FDR) and corrected false dis-
covery rates (cFDR) when increasing the number of parameters involved in a prediction.
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Figure 2.23: Boxplots illustrating the statistics of the FDR values for all 2047 combina-
tions of the 11 different prediction tools. The first boxplot on the far left represents all
the FDR values when one classifier is involved in the prediction. Each boxplot moving
to the right displays the statistics when an additional classifier is added with the far
right boxplot displaying the result when all 11 classifiers are involved in the prediction.
Horizontal bar = mean, box = standard deviation and whiskers = range.
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Figure 2.24: Boxplots illustrating the statistics of the cFDR values for all 2047 combi-
nations of the 11 different prediction tools. The first boxplot on the far left represents
all the cFDR values when one classifier is involved in the prediction. Each boxplot
moving to the right displays the statistics when an additional classifier is added with
the far right boxplot displaying the result when all 11 classifiers are involved in the
prediction. Horizontal bar = mean, box = standard deviation and whiskers = range.
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Ensembl Gene Ensembl Protein Gene Chromo Start bp End bp SVM Score

ENSG00000166998 ENSP00000300283 CKMT1A 15 41772376 41778712 2.701

ENSG00000168775 ENSP00000338496 CKMT1B 15 41672544 41678896 2.701

ENSG00000010256 ENSP00000203407 UQCRC1 3 48611436 48622102 2.320

ENSG00000182199 ENSP00000333667 SHMT2 12 55909786 55914981 2.306

ENSG00000110717 ENSP00000315774 NDUFS8 11 67554670 67560686 2.298

ENSG00000131730 ENSP00000254035 CKMT2 5 80564895 80597970 2.271

ENSG00000138095 ENSP00000260665 LRPPRC 2 43968391 44076648 2.270

ENSG00000136521 ENSP00000353026 NDUFB5 3 180805269 180824981 2.109

ENSG00000183044 ENSP00000268251 ABAT 16 8675928 8785933 2.027

ENSG00000167969 ENSP00000301729 DCI 16 2229901 2241604 1.992

ENSG00000126432 ENSP00000265462 PRDX5 11 63828023 63845858 1.964

ENSG00000156709 ENSP00000316320 AIFM1 X 129091018 129127489 1.942

ENSG00000136521 ENSP00000259037 NDUFB5 3 180805269 180824981 1.896

ENSG00000137513 ENSP00000281038 NARS2 11 77824895 77963474 1.860

ENSG00000157326 ENSP00000311993 DHRS4 14 23492805 23508326 1.858

ENSG00000146701 ENSP00000327070 MDH2 7 75515329 75533864 1.858

ENSG00000165672 ENSP00000349432 PRDX3 10 120917205 120928335 1.845

ENSG00000114686 ENSP00000264995 MRPL3 3 132663736 132704519 1.826

ENSG00000184117 ENSP00000216121 NIPSNAP1 22 28280800 28307244 1.795

ENSG00000181378 ENSP00000295729 CCDC108 2 219575820 219614489 1.772

Table 2.4: Top 20 highest scoring mitochondrial candidates in the human genome
generated using the strongest combination of classifiers following the systematic analysis
MitoSVM. The results are displayed in order of descending SVM score.
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2.4 Discussion

2.4.1 Biological discussion

Increasing the number of independent datasets to accurately determine the mitochon-

drial proteome does not contribute to an increase in mean sensitivity. Specific classifiers

have been shown to make a positive contribution to a high value for mean sensitiv-

ity whereas others are unable to achieve high scores. A support vector machine was

trained with an established set of experimentally determined proteins extracted from

the SwissProt database. This reference set consisted of 6819 proteins consisting of 467

mitochondrial and 6352 non-mitochondrial candidates. These were then analysed im-

plementing their values from the 11 independent datasets testing every combination of

these classifiers(n=2047) and repeated 100 times. Approximately 90% of the reference

dataset was used as training data and the remaining 10% as testing data.

Mitodomain is present in all of the top 100 combinations reflecting the importance of

this dataset in contributing to the highest sensitivities. The presence of mitochondrial

domains appears to be a highly successful method for mitochondrial protein determina-

tion. However, ancestry is absent in all but one of the top 100 combinations contributing

to lower sensitivity values. TargetP was also present in a high percentage of the top 100

combinations revealing the importance of implementing neural networks for N-terminal

target sequence prediction.

Using a small number of prediction tools (<4) resulted in considerable variation for

both mean sensitivity and specificity expressing a large range of mean values. Increasing

the number of prediction tools reduced the range considerably and increased the mean

sensitivity without compromising specificity. However, using more than 8 prediction

tools resulted in a decrease in mean sensitivity thus reflecting the optimal number

of prediction tools being exceeded for accurate mitochondrial protein determination.

The mean specificity of the SVM tests was high (>98%) regardless of the number of

prediction tools implemented. Similar results were obtained for the false discovery rate

(FDR) and corrected false discovery rate (cFDR) which incorporates prior probabilities

in the calculations.

Another method for comparing the classifiers regarding sensitivity and specificity

was to determine the probability of any one classifier being involved in a prediction with

a specific value for sensitivity and specificity. Each classifier had an equal likelihood

of contributing to a high specificity. However, only specific prediction tools had a high

probability of generating high sensitivity scores. Mitodomain, TargetP and SubLoc are

more abundant when the sensitivity is >57% than the other classifiers and consistently

associated with high sensitivity predictions. In contrast, ancestry involving the presence
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of R. prowazekii orthologues expressed a low probability of <20% when contributing to

a sensitivity of >60% and had an 80% probability of generating a sensitivity value of

<40%. In addition, these results are confirmed when the whole result set was ranked

in order of descending sensitivity. The poor performance of R. prowazekii homology

is probably due to several factors limiting the ability for a successful mitochondrial

prediction, including the limited number of orthologous proteins discovered between H.

sapiens and R. prowazekii and the poor overall homology between the two distantly

related species which shared a common ancestor over 2.5 billions years ago (Kurland

and Andersson, 2000).

The highest sensitivities were achieved when specific bioinformatic methods were

involved in unison which included Mitodomain, TargetP and SubLoc reflecting the

complementary nature of these approaches based on the presence of protein domains

only present in mitochondrial proteins; the implementation of neural networks for N-

terminal target sequence prediction; and amino acid composition. In order to achieve

optimal sensitivity the addition of four other classifiers was required. These were Mito-

prot for target sequence prediction; mouse mitochondria detected in brain, heart, liver

and kidney; cis-regulatory motifs present in human/mouse orthologues; and Mitopred

(a method combining the occurrence patterns of Pfam domains, amino acid composi-

tion, and pI value differences between mitochondrial and non-mitochondrial locations).

The optimum number of classifiers was determined for both mean sensitivity and

specificity for all 2047 combinations. This displays a clustering in the top right hand

corner of the plot reflecting 7 and 8 classifiers achieving the highest sensitivity and

specificity values. This corroborates with the earlier results displayed in the boxplots

displaying the range of mean values for sensitivity and specificity. Incorporating extra

classifiers above this threshold compromised both sensitivity and specificity confirming

earlier hypotheses.

Omitting the following classifiers was necessary for optimal sensitivity: S. cerevisiae

homology, gene expression difference during mitochondrial biogenesis induced by PGC-

1a, coexpression with known mitochondrial genes in human/mouse tissue atlases, and

R. prowazekii homology. The best 7 prediction methods achieved a mean sensitivity

of 64.14% with an SD of 5.22 and was significantly greater than the values generated

when implementing all 11 classifiers (52.51, SD=5.80).

The same pattern was observed following the addition of further experimentally de-

rived predictions of mitochondrial localisation. Recent research conducted by (Pagliarini

et al., 2008) involved the addition of a log-likelihood prediction of mitochondrial local-
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isation involving subtractive MS/MS following mitochondrial enrichment. Adding this

to the 11 initial prediction methods produced a combined mean sensitivity result of

50.89 (SD=4.54) and specificity of 98.89 (SD=0.44). The addition of the subtractive

MS/MS enrichment dataset did not produce significantly different results. However,

removing the four prediction methods shown previously to compromise sensitivity led

to an improved prediction (mean sensitivity = 69.87, SD = 4.40, specificity = 99.23,

SD = 0.34). This result was not a significant improvement when compared to the result

for the best 7 predictors without the subtractive MS/MS enrichment. However, this

does demonstrate the importance of selecting the optimum combination of prediction

methods based on systematic analysis.

2.4.2 Technical discussion

Each time the machine learning algorithm was executed for any combination, consid-

erable variability was apparent regarding sensitivity. This feature appears to be absent

from previous research. As the number of prediction tools increased a general trend

emerged resulting in a decreased standard deviation. However, the standard deviation

did not decrease with increasing mean sensitivity as the majority of mean sensitivity

predictions resulted in an SD of 5%. Therefore, the 95% confidence intervals for mean

sensitivity of any combination was +/-10% of the mean value highlighting the inadequa-

cies of even the most optimal bioinformatic approaches for mitochondrial localisation

prediction.

The approach used for this investigation differs from previous research involving

mitochondrial protein determination in several ways. Firstly, a support vector ma-

chine was used for multidimensional classification and explicitly optimised to reduce

the number of support vectors to 10%. If the number is greater than 10% of the num-

ber of proteins in the reference dataset, then the performance of the SVM will result

in overfitting the data leading to an artificial elevation in performance. This would

mean the chances for novel predictions are dramatically reduced. Secondly, the results

are harnessed from a rigorous statistical comparison of each prediction tool. Consider-

able variation between each run regarding a specific combination reveals the possibility

that previously reported integrated approaches claiming to achieve high sensitivity and

specificity values may be erroneous. Specific combinations may perform poorly over

repeated runs with independently sampled datasets. Thirdly, the entire analysis was

designed utilising current workflow technology. This has several advantages as the de-

sign of the workflow is modular and specific elements can be easily added, substituted or

removed allowing the pipeline to remain contemporary. As tools are enhanced and new
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experimental datasets are produced these can be incorporated into the workflow. As the

procedure is fully automated this is time-efficient and repeatable regarding the method-

ology. This e-science based approach means the list of mitochondrial proteins will be

constantly revised and updated, including revisions to the human genome sequence.

In addition, this will allow the incorporation of genomic variation in the predictions

with the increasing depth of next generation sequencing. Using the most complemen-

tary bioinformatic methods will accelerate the reliable identification of human disease

candidate genes responsible for novel mitochondrial disorders, providing a molecular

diagnosis for families, and reveal novel disease mechanisms.

An important limitation is apparent when collating training data for machine learn-

ing classification. The lack of verified negative data regarding non-mitochondrial pro-

teins is an issue. The non-mitochondrial examples were experimentally verified to lo-

calise to a specific subcellular compartment but there is an absence of information

pertaining to their absolute disassociation from mitochondria. It is evident that vari-

ous proteins can co-localise to more than one compartment within the cell. SwissProt

lacks this information as the documentation for each protein reflects positive informa-

tion garnered through directed investigation. It is crucial for any training algorithm to

contain experimentally validated true negatives as well as true positives.

However, mitochondrial genes are believed to comprise only 4% of the human

genome. As the training set was acquired randomly the non-mitochondrial dataset

will be fairly enriched with the desired negative examples with only a small background

of false negatives. To achieve the most robust ’gold standard’ training dataset, nega-

tive data must be verified and the evidence has to reflect no biological association with

mitochondria to achieve high confidence regarding the true negative examples.

Another issue is that of data circularity with regards to the mitodomain dataset.

Mitodomain consists of protein domains annotated as mitochondrial within the Pfam

database. Pfam entries are derived from an underlying sequence database known as

Pfamseq which is built from the most recent release of UniProt and SwissProt. This

may be the reason for mitodomain being the strongest classifier as the SVM training

dataset was extracted from SwissProt. A common problem found in training ma-

chine learning algorithms in bioinformatics is the issue of training datasets consisting

of bioinformatically-predicted entries. This was avoided by specific filters during extrac-

tion from SwissProt which specified direct experimental evidence of protein localisation.
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Abstract

Background

Text mining applications are playing a huge role in the bioinformatics field providing

resources for interpreting the vast quantities of biomedical literature currently avail-

able. The construction of a workflow designed to mine keywords and phrases from

gene ontology records has produced interesting disease candidates potentially involved

in Lebers hereditary optic neuropathy (LHON).

Results

Strong candidates have been identified that may be involved in the pathology of LHON.

MitoCarta and MitoSVM have been interrogated for genes that score high regarding

the prediction scores and also reside in the specific linkage region on the X chromosome.

Additionally, text mining has revealed candidates that may have an indirect association

to mitochondria possessing phenotypic associations closely resembling LHON disease

characteristics. Orthologues were also investigated in mouse, rat and chimpanzee for

eye-related genes that were not documented as such in humans potentially revealing

novel LHON disease genes.

Conclusion

Several interesting candidates were generated following text mining analysis of genes

potentially associated with LHON. These lists contained unique genes and mouse ortho-

logues phenotypically related to eye disorders. These genes can be further investigated

to highlight any relationship with LHON.
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3.1 Introduction

3.1.1 Leber hereditary optic neuropathy

Leber hereditary optic neuropathy (LHON, MIM: 535000) is a mitochondrial genetic

disease first recognised as a familial optic neuropathy in 1871 by the German oph-

thalmologist, Theodor Leber. LHON is a common cause of inherited blindness most

prevalent in young adult males affecting at least 1 in 30,000 individuals in the UK

(Yu-Wai-Man et al., 2009). LHON is primarily characterised by bilateral subacute loss

of central vision resulting from a focal degeneration of the retinal ganglion cell layer.

This occurs within the papillomacular bundle responsible for sending information to the

optic nerve (Man et al., 2002; Yu-Wai-Man et al., 2009). It is a maternally inherited

disease that is usually painless but visual loss is typically rapid progressing from one

eye to both from a few weeks to months later (Levin, 2007). Over 95% of cases arise

from one of three pathogenic mtDNA point mutations: m.3460G>A, m.11778G>A

and m.14484T>C (Kirkman et al., 2009b). LHON affected patients have been assessed

for quality of life using a VF-14 questionnaire that measures an individuals ability to

perform 14 vision-dependent activities. The results of this study indicated that the

visual impairment in LHON had a severe impact on the quality of life of these patients

in comparison to other inherited and acquired ophthalmic disorders (Kirkman et al.,

2009a). The mean VF-14 score in LHON sufferers is the worst yet determined at a level

of 25.1 (SD=20.8; range=0-95) which is significantly lower than the mean VF-14 score

for unaffected LHON carriers of 97.3 (SD=7.1; range=25-100) (Kirkman et al., 2009a).

Previous research has suggested potential nuclear genetic involvement in the aeti-

ology of LHON and determined an X-chromosomal locus harbouring a susceptibility

allele (Hudson et al., 2005; Shankar et al., 2008). Evidence has indicated that nuclear

modifying genes and environmental factors may be required in addition to mtDNA mu-

tations to cause optic neuropathy (Shankar et al., 2008). LHON-associated mutations

are maternally transmitted to all offspring but most do not develop the disease, even

in homoplasmic individuals. LHON exhibits a male gender bias and variably reduced

penetrance (Howell, 1998; Puomila et al., 2007).

3.1.2 GoPubMed

Generating new research ideas requires a detailed knowledge and awareness of the sub-

ject area. Thankfully, due to the availability of text mining services, literature can be in-

telligently mined for relevant articles. GoPubMed allows you to mine PubMed abstracts

using specific search terms. Four options are available including an ontology-based liter-

ature search that annotates the PubMed abstracts with your keywords and then groups
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the articles into a hierarchy based on the gene ontologies (Doms and Schroeder, 2005).

An advanced semantic search allows you to search using actual GO terms such as ”pro-

tein biosynthesis” or ”apoptosis”. The HotTopic feature is a really useful system for

retrieving statistical data based on the biomedical literature. This feature performs

a bibliometric analysis graphically displaying the growth of literature chronologically.

Key authors and journals are highlighted along with geographic information based on

the publications.

3.1.3 Gene Ontology

The Gene Ontology Consortium aims to provide a comprehensive vocabulary to unite

all genes across different database repositories when involved in the same molecular

functions and biological processes. This provides a framework that can allow software

to automatically clarify distributed information regarding a gene. Gene ontologies con-

sist of 3 species-independent categories: 1) Cellular component describing the organelle

or subcellular structure the gene is associated with (e.g. mitochondria, endoplasmic

reticulum), 2) Biological process indicating the specific phases a gene is involved in

(e.g calcium ion transport) and 3) Molecular function that describes the activities the

occurs at the molecular level (e.g protein binding) (Ashburner et al., 2000). Gene and

protein functions are recognised as being evolutionary conserved in most living cells,

allowing biologists to assign functional roles to uncharacterised genes using knowledge

from sequence homology to genes in related organisms. The Gene Ontology Consortium

is currently comprised of several organism databases including the Mouse Genome In-

formatics (MGI) database, Saccharomyces Genome Database (SGD) and several repos-

itories regularly annotated by the European Bioinformatics Institute (EBI) including

chicken, cow and human (Ashburner et al., 2000).

3.1.4 Homology

Homology describes a gene or protein that is derived from a common ancestor and

conserved over evolutionary time. This term consists of distinct types including orthol-

ogy and paralogy. An orthologue is evolutionary conserved and related via speciation

retaining the same biological function (vertical descent) (Koonin, 2005). Orthologues

provide crucial information that can be extrapolated among many different species and

provide important information when performing sequence similarity studies using soft-

ware such as BLAST (Altschul et al., 1990). These homologous sequences can reveal

important information about uncharacterised genes and proteins established in other

organisms. A paralogue is a gene that shares a common ancestral form but has under-

gone various changes resulting in a change of function. Paralogues belong to the same
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organism and usually arise following a gene duplication event (Koonin, 2005).

3.1.5 Online Mendelian Inheritance in Man

Online Mendelian Inheritance in Man (OMIM, http://www.ncbi.nlm.nih.gov/omim/)

is a clinical database containing detailed information regarding Mendelian disorders in

over 12,000 human genes. The database focuses on genotype and phenotype correlations

and the disease manifestations garnered through genetic and clinical evidence.

3.1.6 Proposed Approach

In order to investigate candidate genes potentially involved in LHON the MitoSVM

and MitoCarta databases will be queried. These can then be ordered by the relevant

scores pertaining to mitochondrial relatedness. In addition. a text mining workflow will

be developed in Taverna 1.7 to mine UniProt and Gene Ontology records for disease-

related terms and phrases for all genes on the X chromosome. The workflow will also

cross-reference every candidate and mine literature associated with mouse, rat and

chimpanzee orthologues within these regions. This may potentially reveal unique or-

thologue candidates expressing eye-related disease phenotypes that are not documented

in the human homologue.
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3.2 Methods

3.2.1 Application of MitoSVM and MitoCarta to LHON

candidate gene analysis

MitoSVM

Following the systematic evaluation of mitochondrial protein prediction methods to

define the best combination of independent datasets for mitochondrial gene prediction,

a model file was produced using machine learning reflecting the highest mean sensitivity

and mean specificity. The best combination resulting in the highest mean sensitivity

with no significant loss in mean specificity was achieved using seven specific classifiers

(see Chapter 2 section 2.4). Following the genome wide analysis performed for all

proteins contained in the Ensembl human genome database, these results were stored

into a local relational database. By specifying the chromosomal coordinates defined

through the linkage analysis on the X chromosome an ordered list was extracted in

descending order of SVM score. These results were exported into a spreadsheet for

further investigation revealing predicted LHON candidates generated using the most

sensitive combination of prediction methods.

MitoCarta

The Human MitoCarta database was downloaded and stored locally from the research

department’s webpage (http://www.broadinstitute.org/pubs/MitoCarta/) selecting the

HumanMitoCartaAll.sql for the relational database schema and HumanMitoCartaAll.txt

for the data. The relevant data was then exported into a spreadsheet using the chro-

mosomal coordinates as before to highlight potential candidates involved in LHON and

ordered by descending Maestro score. These candidates could then be cross referenced

with the MitoSVM predicted genes to further the investigation to define a holistic

candidate gene list.

3.2.2 Text mining of Gene Ontologies and OMIM

Gene ontologies have specific information regarding the cellular compartment, molec-

ular function and biological processes a gene is involved in. These ontologies harness

valuable information collated through laboratory investigation. Associations can be

found within these ontologies pertaining to specific disease processes. A recent ex-

tension to the PubMed medical bibliographic database is GoPubMed. Specific gene

ontologies were required for a text mining workflow to generate candidates involved in

eye-related diseases and biological processes. A list of these ontologies was confirmed
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using an extension to PubMed that performed a bibliographic analysis of the litera-

ture and categorises the results by gene ontologies, known as GoPubMed. The terms

”LHON”, ”eye” and ”blindness” were applied in GoPubMed to reveal the most com-

mon ontologies associated with these searches. GoPubMed produced the following most

common gene ontologies from searching these key terms:

optic nerve development

optic nerve formation

optic nerve maturation

optic nerve morphogenesis

visual perception

retinal ganglion cell axon guidance

These specific terms could then be applied within the text mining workflow to highlight

other genes and orthologues that contain these ontologies. Other keywords and terms

were required to extend the vocabulary of the text mining analysis and were collated

using common eye-related terms alongside advice from clinical experts. The following

list of keywords and terms was determined:

vision

visual loss

optic atrophy

optic neuropathy

optic nerve

eye

blindness

ganglion

retina

retinal

retinal ganglion

retinopathy

Text mining could then be applied using the vocabulary determined above for all OMIM

and UniProt records associated with genes within the candidate region of interest. A

text mining program was then developed that aimed to scan through gene ontology

and UniProt records searching for these disease-related terms. A workflow was devel-

oped requiring UniProt accession numbers as input that extracted all the relevant gene

ontology records from the UniProt database and passed each one to the text mining

program. The results were then analysed for hits >= 1. This method can also be
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applied to OMIM records to highlight any previous evidence of disease relatedness.

3.2.3 Text mining workflow

A large text mining application was developed in the form of a multiple nested workflow

that incorporated several Biomart queries and text mining Java web services (Figure

3.1). The primary focus of this pipeline was to perform text mining of specific keywords,

terms and gene ontologies from OMIM and UniProt records. Mining these records would

reveal potential candidates that expressed an eye-disease related phenotype or biolog-

ical process. In addition, text mining was applied to UniProt records for any mouse

(Mus musculus), rat (Rattus norvegicus) and chimpanzee (Pan troglodytes) orthologues

generated from the human candidates. The workflow was developed in Taverna 1.7 and

designed to accept chromosomal coordinates, keywords and terms, and specific gene

ontologies to search for against every candidate within the specific chromosomal region.

Orthology mining would potentially reveal genes expressing an eye-related phenotype

or biological process in the mouse, rat or chimpanzee not yet discovered in the human

orthologue.
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Workflow user query

The workflow required 3 inputs that consisted of 1) chromosomal coordinates, 2) specific

gene ontologies and keywords and 3) keywords alone for OMIM record mining. An

example query can be seen below:

Chromosomal coordinates: X 48000000 52000000

Keywords:

blindness

optic atrophy

Gene ontologies:

optic nerve development

visual perception

blindness

optic atrophy

Initially all the search terms were sent to the four nested workflows OMIMMiner, Hu-

manGO Miner, MouseGO Miner, RatGO Miner and ChimpGO Miner for use later in

the workflow process. The chromosomal coordinates were then separated into separate

inputs by the beanshell SeparateCoordinates in preparation for the following Biomart

queries using the script below:

//Separation of chromosomal coordinates

StringBuffer result1 = new StringBuffer();

StringBuffer result2 = new StringBuffer();

StringBuffer result3 = new StringBuffer();

String[] elements = coordinates.split("\\s+");

String chromo = result1.append(elements[0] + "\n").toString().trim();

String start = result2.append(elements[1] + "\n").toString().trim();

String end = result3.append(elements[2] + "\n").toString().trim();

This processor consumes the chromosomal coordinates and splits them into separate

entities by converting them into an array using whitespace as the delimiter. This

produces 3 separate outputs that can be sent to the Biomart processors in the following

procedure.
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Process 1: Retrieve human accession numbers

A biomart was designed to consume the chromosomal coordinates and retrieve the

corresponding OMIM ids and UniProt accession numbers from the Ensembl 56 Genes

(Sanger UK) database specifying the Homo sapiens genes ensembl (GRCh37) subset.

Filters were selected within the REGION section specifying chromosome and base po-

sitions. The following attributes were selected within the features section under the

EXTERNAL heading:

Biomart EXTERNAL attributes configuration

MIM Gene Accession

UniProt/SwissProt Accession

This returned all the OMIM ids and UniProt accession numbers for all of the genes

within the specified chromosomal region. These two lists were then sent to local pro-

cessors (purple) to remove any duplicate entries generated from the Biomart query.

Following the removal of any duplicate entities the list of unique OMIM ids were sent to

OMIM Miner and the unique UniProt accession numbers were sent to HumanGO Miner

for analysis further within the workflow explained in further detail in Processes 3 an 4

respectively.

Process 2: Retrieve orthologues

Text mining of UniProt records containing gene descriptions and gene ontologies was

required for any existing orthologues relating to human genes found within the spec-

ified chromosomal region. Therefore a specific biomart was constructed to extract

the relevant orthologue Ensembl gene ids. A biomart was configured using the same

database implemented in Process 1 but configured to return orthologue information.

The exact same filters were applied regarding chromosomal coordinates, but within the

attributes the Homologues section was selected. Within this section under the CHIMP

ORTHOLOGUES, MOUSE ORTHOLOGUES and RAT ORTHOLOGUES headings,

the relevant Ensembl gene ids were selected:

Biomart CHIMP ORTHOLOGUES attributes configuration

Chimp Ensembl Gene ID

Biomart MOUSE ORTHOLOGUES attributes configuration

Mouse Ensembl Gene ID
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Biomart RAT ORTHOLOGUES attributes configuration

Rat Ensembl Gene ID

All orthologous Ensembl gene ids for chimpanzee, rat and mouse were retrieved as

two separate lists and sent to local processors (purple) as in Process 1 to remove any du-

plicate entities. The unique mouse Ensembl gene ids were then sent to MouseGO Miner,

rat Ensembl gene ids to RatGO Miner and chimp gene ids sent to ChimpGO Miner.

This is further described in the Nested workflow 3 section.

Nested workflow 1: OMIM Miner

A nested workflow was created to retrieve OMIM records for text mining analysis. This

consumed a list of OMIM ids and a list of the gene ontologies and keywords required

for text mining (Figure 3.2). The keywords were split into separate queries by the local

processor Split queries and sent to the Java text mining web service mineRecord to

be implemented further down the workflow. The OMIM ids were sent individually to

another Java web service FetchOMIM that retrieved the relevant OMIM records from

the OMIM database. Each OMIM record was written to a file by the local processor

WriteOMIMFile and stored in preparation for the next procedure. The text mining

program mineRecord was conditionally linked to the WriteOMIMFile processor as this

required the existence of the OMIM record before execution.

Text mining web service: mineRecord

The mineRecord program then accessed the file and and analysed the OMIM records for

all the gene ontologies and keywords returning the each term followed by the number

of times the word was found. The Java program used the following regular expression

to mine for keywords and phrases within a text document:

\\Specific keyword or phrase to mine against OMIM and GO records

final Pattern pattern = Pattern.compile

("\\b+" + query + "+\\b", Pattern.CASE_INSENSITIVE);

Contained within the line of code is the word query which was the program input

pertaining to the specific keyword or phrase entering the program. This was flanked

by boundary classifiers ("\\b+") whereby the specific keyword or phrase would only

produce a hit if it was present as an entire word and not just part of a longer string.
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Workflow Outputs

Workflow Inputs

string

Split_queries

split

query

mineRecord

mineRecordReturn

stringlist

Merge_hits

concatenated

occurrences

filecontents

WriteOMIMFile

 

id

FetchOMIM

Result

omimid

query omim

Figure 3.2: A nested workflow that consumes OMIM ids, gene ontologies and keywords.
Each OMIM record is retrieved and analysed for hits relating to the lists of ontologies
and keywords aiming to reveal potential candidates.
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For example this meant the keyword vision would not produce a spurious result from

the word visionary. Another important aspect was the final part of the expression that

makes the match case insensitive. This allows any keyword or phrase to produce a hit

if capitalised either in full or just the first letter due to the word being at the start of

a sentence. An example of the output can be seen below:

Example output from the mineRecord program

eye: 8

optic atrophy: 3

optic neuropathy: 1

Following this the text mining results for the specific OMIM id being investigated are

merged from a line separated list into a single line separated by a semi colon by the

processor Merge hits . This converts the above output into the following result:

Example output after merging

eye: 8 : optic atrophy: 3 : optic neuropathy: 1

Each OMIM id is also outputted alongside its relevant hit count result from the text

mining program.

Nested workflow 2: Human Gene Ontology Miner

This nested workflow consumes the list of gene ontologies and keywords alongside a list

of UniProt Accession numbers (Figure 3.3). The ontologies are split into separate entries

by the local processor Split ontologies and sent to the mineRecord program. In addition,

the UniProt accession numbers are sent to a Java web service called getUNIPROTentry

which returns the file from the UniProt database. The UniProt file is then written

to the local machine by the processor WriteGOFile in preparation for the mineRecord

program. The UniProt accession number is sent to a second service consisting of a

human biomart query Retrieve UniprotGene that consumes the accession number and

returns the related Ensembl Gene ID and associated gene name. These outputs are then

concatenated into single semi colon separated line by the beanshell Join gene name

and merged by the Merge genename processor. As before, the text mining service

is implemented and the UniProt file is searched for all keyword and gene ontology

occurrences generating a hit count for each term. This workflow generates 3 outputs

comprised of 1) the UniProt accession number, 2) the hit counts from the text mining

program and 3) the related gene information.
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Workflow Outputs

Workflow Inputs

stringlist

Merge_genename

concatenated

genename

stringlist

Merge_hits

concatenated

humangos

hsapiens_gene_ensembl
uniprot_swissprot_accession_filter

Retrieve_UniprotGene

hsapiens_gene_ensembl
ensembl_gene_id

hsapiens_gene_ensembl
external_gene_id

ensgene gene

Join_gene_name

output

filecontents

WriteGOFile

 

go

mineRecord

mineRecordReturn

string

Split_ontologies

split

accession

getUNIPROTEntry

Result

uniprotid

ontologies uniprot

Figure 3.3: A nested workflow that consumes UniProt accession numbers, gene ontolo-
gies and keywords. Each UniProt record is retrieved and analysed for hits relating to
the lists of ontologies and keywords aiming to reveal potential candidates.

93



Nested workflow 3: Mouse, Rat and Chimpanzee Gene Ontology Miner

Following removal of any duplicate Ensembl gene ids the nested workflows

MouseGO Miner, RatGO Miner and ChimpGO Miner were constructed to consume

these orthologous gene ids for analysis alongside the keywords and ontologies (Figure

3.4). As before the gene ontology terms were separated into a list of queries by the

processor Split ontologies and sent to the mineRecord web service. The ensembl gene ids

were queried with species-specific biomart queries using the Ensembl 56 Genes (Sanger

UK) database specifying the species subset Mus musculus genes (NCBIM37), Rattus

norvegicus genes (RGSC3.4) and Pan troglodytes genes (CHIMP2.1). This consumed

the Ensembl gene id and returned the related UniProt accession number. Using the

accession number the getUNIPROTentry web service was queried that returned the

specific UniProt file relating to the species orthologue. This was written and stored by

the processor WriteGOFile in preparation for the mineRecord service. Another species

biomart query Retrieve human ids was configured for returning the gene name and

human ensembl gene id to allow cross referencing when analysing the final candidate list.

A beanshell was constructed (Join human ids) to concatenate the gene information.

The final results were all merged from both the text mining application and biomart

query by the merge processors. The workflow produced 3 outputs which were 1) the

orthologous ensembl gene ids, 2) the text mined hit counts from the species-specific

UniProt records, and 3) the related human gene information for cross-referencing.

Final process: Merging data for analysis

All the resulting data produced from each nested workflow is concatenated by spe-

cific beanshell processors such as Join mouseGOs and Join OMIM to combine all the

relevant data into lines and merged into a single document to allow further analysis

for disease candidates potentially involved in LHON. The results were exported into

spreadsheets and categorised by scores relating to the number of keywords present in

the relevant gene related UniProt and OMIM files.
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Workflow Outputs

Workflow Inputs

mmusculus_gene_ensembl
ensembl_gene_id_filter

Retrieve_mouse_uniprot

mmusculus_gene_ensembl
uniprot_swissprot_accession

accession

getUNIPROTEntry

Result

mmusculus_gene_ensembl
ensembl_gene_id_filter

Retrieve_human_ids

mmusculus_gene_ensembl
ensembl_gene_id

mmusculus_gene_ensembl
external_gene_id

mmusculus_gene_ensembl
human_ensembl_gene

mouseid gene humanid

Join_human_ids

output

stringlist

Merge_hits

concatenated

orthologues

stringlist

Merge_human_ids

concatenated

human

filecontents

WriteGOFile

 

go

mineGO

mineRecordReturn

string

Split_ontologies

split

orthologueids

ontology orthologue_ids

Figure 3.4: A nested workflow that consumes orthologous Ensembl gene ids, gene on-
tologies and keywords. Each UniProt record is retrieved and analysed for hits relating
to the lists of ontologies and keywords aiming to reveal potential candidates.
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3.3 Results

3.3.1 Application of MitoSVM and MitoCarta to LHON can-

didate gene analysis

In order to define a candidate list of mitochondrial related proteins for the chromoso-

mal region implicated from the LHON linkage analysis, MitoSVM and MitoCarta were

queried. The MitoSVM database containing results of a genome-wide analysis using a

combination of classifiers achieving the highest sensitivity was queried. MitoSVM con-

tained 13 candidates on the X chromosome with 7 being contained within the linkage

region (Table 3.1). In addition, querying the locally stored MitoCarta database revealed

25 candidates on the X chromosome achieving a Maestro score >5. This revealed 11

candidates within the linkage peaks (Table 3.2). Each method revealed several candi-

dates present above both thresholds for MitoSVM and MitoCarta with the exception

of specific genes only being found using one method (Table 3.3).

3.3.2 Text mining of Gene Ontologies and OMIM

OMIM candidates

The entire human X chromosome was queried and whereby every gene’s OMIM record

was automatically text mined using a workflow. A hit count for each gene was generated

based on the number of keyword or phrase matches. The resulting list of hits was

analysed in a spreadsheet and given a category score. This reflected the number of

separate keywords found as opposed to how many times each word occurred. If a

word occurred just once this would reveal a positive association regardless of how many

times it appeared in the document. The number of keywords and phrases mined for in

OMIM Miner was 12 and this represented the maximum category score whereby a hit is

achieved for every keyword or phrase. A total of 78 genes had at least one association.

Table 3.4 shows the top scoring candidates from the OMIM analysis achieving a category

score of 3 or above.
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Ensembl Ensembl Gene Chromo Start End SVM

GeneId ProteinId Name Bp Bp Score

ENSG00000156709 ENSP00000316320 AIFM1 X 129091018 129127489 1.941537500000

ENSG00000036473 ENSP00000039007 OTC X 38096680 38165650 1.417221700000

ENSG00000102078 ENSP00000354455 SLC25A14 X 129301699 129335014 1.307115200000

ENSG00000072506 ENSP00000168216 HSD17B10 X 53474931 53478048 1.235455300000

ENSG00000158578 ENSP00000337131 ALAS2 X 55052213 55074136 1.186321000000

ENSG00000077713 ENSP00000338628 SLC25A43 X 118397679 118472459 0.936613280000

ENSG00000182890 ENSP00000327589 GLUD2 X 120009143 120011475 0.906491310000

ENSG00000123130 ENSP00000336580 ACOT9 X 23631698 23694513 0.815902850000

ENSG00000004961 ENSP00000326579 HCCS X 11039342 11051122 0.710626070000

ENSG00000131269 ENSP00000253577 ABCB7 X 74189834 74292857 0.638949810000

ENSG00000165349 ENSP00000298085 SLC7A3 X 70062163 70067700 0.187230920000

ENSG00000101986 ENSP00000218104 ABCD1 X 152643517 152663410 0.145616960000

ENSG00000178605 ENSP00000316598 GTPBP6 X 160025 170886 0.022343984000

Table 3.1: All mitochondrial candidates found on the X chromosome scoring 0 or above
for the SVM score contained within the genome-wide MitoSVM database.
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Entrez Gene Chromo Start End Maestro

id Name Bp Bp score

5160 PDHA1 X 19271971 19287885 41

3421 IDH3G X 152704414 152713160 30

1349 COX7B X 77041616 77047536 25

9131 AIFM1 X 129091017 129127488 22

54539 NDUFB11 X 46886562 46889380 21

1678 TIMM8A X 100487305 100490342 19

79979 CXorf34 X 100151186 100193725 18

3028 HSD17B10 X 53474930 53478047 17

292 SLC25A5 X 118486436 118489306 15

5009 OTC X 38096301 38165552 15

5165 PDK3 X 24393474 24462462 15

3052 HCCS X 11039372 11051121 14

4694 NDUFA1 X 118889761 118894645 14

2710 GK X 30581460 30658645 13

293 SLC25A6 X—Y 1465044 1470993 12

139322 FAM121A X 84145560 84229429 12

10245 TIMM17B X 48635675 48640369 10

11238 CA5B X 15666345 15712578 9

212 ALAS2 X 55052212 55074135 9

9016 SLC25A14 X 129301727 129335015 8

644310 LOC644310 X 51683387 51683578 8

215 ABCD1 X 152643529 152663374 7

23597 ACOT9 X 23631697 23671327 7

56474 CTPS2 X 16516042 16640979 7

203427 SLC25A43 X 118417050 118472461 6

Table 3.2: All mitochondrial candidates found on the X chromosome scoring >5 for the
Maestro score contained within the MitoCarta database.
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MitoSVM MitoCarta

GLUD2 SLC25A6

ABCB7 CA5B

SLC7A3 CTPS2

GTPBP6 PDHA1

PDK3

GK

NDUFB11

TIMM17B

LOC644310

COX7B

FAM121A

CXorf34

TIMM8A

SLC25A5

NDUFA1

IDH3G

Table 3.3: MitoSVM and MitoCarta found specific genes that were unique to these
applications.
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Human gene ontology candidates

In addition to the OMIM records all gene ontologies were queried through the text

mining of UniProt files automatically downloaded from the UniProt database. The same

procedure was applied as before for the analysis with category scores being applied. The

12 keywords were sent to the Human GOMiner in addition to 6 specific gene ontology

terms reflecting a maximum category score of 18. A total of 73 candidates revealed at

least one association. 14 candidates scored 3 or above and are shown in Table 3.5.

Mouse, Rat and Chimpanzee orthologues

Specific sections of the text mining workflow aimed to reveal potential candidates within

closely related species that have not been determined in humans. The mouse, rat and

chimpanzee genomes were selected for analysis applying species specific biomart queries

to return the orthologues Ensembl gene ids and UniProt accession numbers. These

results were exported into spreadsheets for further analysis and ordered by category

scores. As in the human gene ontology analysis a maximum category score was 18.

The chimpanzee analysis returned no candidates relating to any of the gene ontologies

or keywords. However, the mouse orthologue analysis returned 111 candidates with at

least one association and 15 candidates scored 2 or above (Table 3.6). The rat analysis

returned 4 candidates with 2 having one keyword hit and 2 candidates scoring 4 (Table

3.7.
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3.4 Discussion

3.4.1 Biological discussion

Several studies have determined an X-chromosomal haplotype associated with LHON

but as yet no nuclear modifier has been determined. Bioinformatics analysis has been

applied to refine candidate gene lists and prioritise these based on their mitochon-

drial involvement. Integrated techniques consisting of various mitochondrial prediction

methods including MitoSVM and MitoCarta have been utilised in this search and sev-

eral genes have yet to be discarded. However, no causative nuclear gene has been

identified thus far. Various reasons may exist that account for the lack of evidence

for an X-chromosomal LHON candidate disease gene. In addition, text mining OMIM

and UniProt records for specific keywords and phrases expressing LHON related phe-

notypes broadens the search for LHON disease genes. This same procedure was applied

to UniProt records for any orthologues in mouse, rat and chimpanzee in order to reveal

any novel candidates associated with LHON related phenotypes not documented in

human.

Mitochondrial gene candidates

Querying the MitoSVM database of mitochondrial predicted genes, a total of 13 scored

above the threshold. Nine of these candidates were also found in the MitoCarta database

scoring >5 using the Maestro score. Therefore, 4 genes were unique to the MitoSVM

database. MitoCarta generated a total of 25 genes above the Maestro threshold whereby

16 of these were unique to MitoCarta. The strongest candidates are the 9 genes occuring

in both databases.

Text mined candidates

Text mining for medical records and gene ontology information comprises a unique

method for determining genes potentially associated with LHON. This method is not

primarily focused on mitochondrial-related candidates but potential indirect associa-

tions sharing phenotypes for eye-related diseases. Using highly relevant and specific

keywords and ontologies as a vocabulary for mining through gene-centred and disease-

centred literature provides a powerful mechanism for discovering phenotypically related

genes manifesting retinal neuropathies. Automated text mining procedures can rapidly

assess vast amounts of distributed literature highly relevant to the investigation.
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Following the text mining of OMIM records, 16 genes achieved a category score of >=3.

GLUD2 was associated with 3 categories consisting of blindness, retina and retinal and

present in the MitoSVM database achieving an SVM score of 0.9. TIMM8A also had a

category score of 3 consisting of vision, visual loss and blindness achieving a Maestro

score of 19. These are very strong LHON disease candidates as they are predicted to

be mitochondrial and associated with eye-related dysfunction. All candidates mined

against UniProt were not present in either MitoSVM or MitoCarta.

Unique orthologues

Following the mining of orthologues within the mouse, rat and chimpanzee several genes

achieved high category scores whereby most had also been determined in the human

through gene ontologies or OMIM records. Interestingly, certain genes expressing eye-

related phenotypes proved to have no association currently identified in human. The

following mouse orthologues had category scores of 2 or more but no associations in

the corresponding human homologue: Nlgn2, Pnck and Tfdp1. These genes stand out

as novel candidates for investigating LHON as no correlation has been identified in

humans.

The mouse gene Nlgn2 produces the protein neuroligin-3, a neuronal cell surface pro-

tein that binds to beta-neuraxins to form intercellular junctions. The human orthologue

has been associated with causing X-linked autism (AUTSX1) and X-linked Asperger

syndrome (ASPGX1) resulting from a defect of synaptogenesis. However, no eye-related

phenotype is reported in the human orthologue. The mouse orthologue is expressed in

the retinal astrocytes during the developmental stage and is associated with visual

learning (Gilbert et al., 2001). Pnck produces Calcium/calmodulin-dependent protein

kinase type 1B which plays a role in a calcium-triggered signalling cascade. During

development in the mouse, Pnck is expressed in the brain, spinal cord and retina (Ueda

et al., 1999). No evidence of expression in the retina in the human orthologue has been

reported. Tfdp1 codes for Transcription factor Dp-1 which stimulates E2F-dependent

transcription. The E2F-1/DP complex is believed to mediate cell proliferation and

apoptosis. In the mouse orthologue Tfdp1 is expressed in the developing retina, specif-

ically in the retinoblast and ganglion cell layers (Dagnino et al., 1997). Again, no such

association has been found in the human orthologue. These three mouse orthologues

should be classed as high priority for sequencing as they are unique candidates that

have shown a phenotypic relation to an eye disorder or function in the mouse model.

No unique orthologues were found in the chimpanzee or rat.
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3.4.2 Technical discussion

Workflows can easily be modified to incorporate more species of interest and incorporate

a larger vocabulary for text mining. These attributes can be tailored to any disease of

interest and shared via workflow sharing schemas such as myExperiment. This provides

a powerful mechanism for intelligently mining large amounts of biological literature that

would be extremely labour intensive if performed manually. The sharing and reuse of

workflows allows for the possibility to enhance and increase the quality of these methods.

These techniques have rarely been applied to the candidate gene analysis of LHON and

this technology is important to further our understanding of this elusive disease.
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Chapter 4

Identification of Nuclear

mitochondrial DNA sequences
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Abstract

Background

Fragments of mitochondrial DNA have been transferred to the nucleus over evolution-

ary time. The majority of the sequences (NUMTs) reside in the nuclear genome as

pseudogenes. However, previous research has revealed how NUMTs are transposed into

the nuclear genome but have failed to highlight the mechanisms governing mtDNA loss

from the mitochondria. This study aims to reveal information regarding this by per-

forming flanking sequence analysis of the surrounding regions of these insertions and

comparing these fragments to a database of 263 known mtDNA deletions.

Results

Mitochondrial DNA deletions do not appear to integrate into the nuclear genome.

NUMTs appear to originate from all areas of the mitochondrial genome displaying

no increase area of active loss. In contrast, mtDNA deletions are predominantly found

originating in the major arc of the mitochondrial genome. There is little evidence to

support the transposition of NUMTs throughout the genome following analysis of the

flanking regions of the integration sites. NUMTs appear to reflect independent inser-

tions over evolutionary time. Additionally, these fragments integate into areas of low

GC content being more abundant in the intergenic, non-coding areas of the nuclear

genome. Flanking regions also revealed a lack of nuclear-mitochondrial genes providing

evidence to suggest NUMT integration sites are not enriched areas of mitochondrial

activity.

Conclusion

NUMT integration appears to be randomly distributed throughout the genome and

predominantly in areas that do not affect gene function. The mechanism for gene loss

from the mitochondrial genome is still misunderstood but does not appear to be related

to mtDNA deletions. Developments in sequencing technology may reveal more specific

information especially on an individual level as to the mechanisms of NUMT formation

and integration.
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4.1 Introduction

4.1.1 Nuclear mitochondrial DNA insertions

Fragments of mitochondrial DNA (mtDNA) have been frequently transferred to the nu-

cleus over evolutionary time resulting in nuclear-mitochondrial DNA sequences (NUMTs)

(Richly and Leister, 2004). NUMTs reside in the nuclear genome as pseudogenes be-

cause despite their significant sequence homology they are not transcribed or translated

into functional proteins (Woischnik and Moraes, 2002). NUMTs have been detected in

excess of 100 eukaryotic genomes to date (Lopez et al., 1994; Ricchetti et al., 1999;

Bensasson et al., 2001; Pereira and Baker, 2004). The integration of mtDNA into the

nuclear genome is therefore a common phenomenon amongst many species reflecting

high abundance in some and complete absence in others. For example, the honeybee

(Apis mellifera) has evidence for in excess of 1500 NUMTs which is believed to be the

highest in any animal studied (Pamilo et al., 2007). In the yellow fever mosquito (Aedes

aegypti), 233 NUMTs have been detected that consist of >110Kb representing a density

of 0.080bp NUMTs/Kb. This number is second to the honeybee consisting of >1.0bp

NUMTs/Kb (Black Iv and Bernhardt, 2009). However, various species that have been

investigated for NUMTs have displayed no evidence of mtDNA integration. These ex-

amples include the African malarial mosquito (Anopheles gambiae) and the pufferfish

(Takifugu rubripes) (Richly and Leister, 2004; Venkatesh et al., 2006). Hazkani-Covo

et al. (2010) provide a large comprehensive list of determined NUMTs across 85 dif-

ferent species. Previous research suggested the T. rubripes nuclear genome contained

mitochondrial pseudogenes but closer inspection through a follow-up investigation re-

vealed these to be shotgun sequences from mitochondria that had been misassembled

with the nuclear sequences (Antunes and Ramos, 2005; Venkatesh et al., 2006). This

highlighted the importance of genome coverage as the follow-up research used version

4.0 of the pufferfish genome assembly for their investigation. In whole genome shotgun

sequencing, the efficiency and contiguity of the generated assemblies depend greatly on

fold coverage of the specific genome. If the contigs are longer this results in a higher rep-

resentation of the genome (Weber and Myers, 1997). Richly and Leister (2004); Pereira

and Baker (2004) report no obvious correlation between the abundance of NUMTs and

the size of nuclear genomes or mitochondrial genomes, or gene density within the nu-

clear genome. However, more recent research has found evidence of a strong correlation

between NUMT content and genome size suggesting that larger genomes experience

higher frequencies of double-strand breaks (DSBs) (Hazkani-Covo et al., 2010). This

correlation is displayed in Figure 4.1.
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Figure 4.1: NUMT content correlating to genome size taken from Hazkani-Covo et al.
(2010). A log-log scale graph displaying the dependency between NUMT content in
genomes and genome size.
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4.1.2 Mechanisms of mtDNA integration

Various mechanisms for the formation of mtDNA sequences and their subsequent in-

sertion into the nuclear genome have been investigated (Ricchetti et al., 2004; Lieber

et al., 2004; Blanchard and Schmidt, 1996; Honma et al., 2007). Previous research

suggested the transfer of genes from organelle to nucleus involved reverse transcription

of an edited RNA intermediate (Nugent and Palmer, 1991). More recent evidence has

shown the migrating factor to be predominantly DNA-mediated as analysis of human

NUMTs have produced no evidence of splicing or polyadenylation of organellar nucleic

acids prior to insertion (Woischnik and Moraes, 2002). DNA is believed to escape from

mitochondria due to membrane disruption during autophagy, mitochondrial fusion or

fission, and cell stress making the mtDNA available for nuclear import (Thorsness and

Weber, 1996; Campbell and Thorsness, 1998). Patterns of terminal microidentities have

been found in flanking regions adjacent to NUMT integration sites alluding to a mech-

anism of non-homologous end-joining (NHEJ) repair of DSBs believed to be a common

mechanism in all eukaryotes (Ricchetti et al., 2004). Figure 4.2 illustrates a model of

nuclear insertion of organelle DNA.
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Figure 4.2: Generation of nuclear insertions from organelle DNA taken from Kleine
et al. (2009). Double-stranded breaks (DSBs) are induced by exogenous and endogenous
sources as listed. This model would imply that these mechanisms are stress-related and
an increase in DSBs would result in an elevated rate of nuclear uptake of foreign DNA.
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4.1.3 Mitochondrial DNA deletion formation

The most common causal variants of mitochondrial disease are mtDNA deletions and

point mutations (Shoffner et al., 1989; Wallace et al., 1988). Mitochondrial DNA dele-

tions are molecules that have lost a large section of the mitochondrial genome and

manifest in several scenarios. 1) Single mtDNA deletions are detected in all cells within

an affected tissue, 2) In a large group of affected individuals there are multiple mtDNA

deletions in affected tissues namely muscle and the central nervous system involving

defective nuclear genes, 3) Several reports have found mtDNA deletions accumulate

with age in postmitotic tissues and neurodegenerative disorders (Bua et al., 2006). The

ratio of wild-type to mutated mtDNA govern the onset of disease requiring >60% of

cells containing a deletion before causing a biochemical defect (Sciacco et al., 1994).

The majority of mtDNA deletions are located within the major arc and are flanked

by two direct homologous repeat sequences (Bua et al., 2006; Samuels et al., 2004).

Replication is thought to be the most common cause of mtDNA deletion formation but

the exact nature is still largely misunderstood. Krishnan et al. (2008) propose that

mtDNA deletions are initiated by single-stranded regions of mtDNA generated through

exonuclease activity at DSBs (Figure 4.3).

4.1.4 Pseudomitochondrial genome and human genetic disease

The accidental amplification of NUMTs can pose serious problems when investigating

mitochondrial diseases. Mitochondrial genome disease-associated biomarkers must be

rigorously authenticated to eradicate any contamination with paralogous nuclear pseu-

dogenes (Parr et al., 2006; Yao et al., 2008). An example of this involved a 5842bp

NUMT on chromosome 1 originally classified as a novel mitochondrial mutation asso-

ciated with low sperm motility and cystic fibrosis (Thangaraj et al., 2003; Yao et al.,

2008). This was recorded in the HapMap database as a mitochondrial variation rather

than a nuclear DNA variation (Biswas et al., 2007). NUMTs have caused problems

in evolutionary analysis resulting in gross misidentifications. Zischler et al. (1995) re-

ported the discovery of 80 million year old DNA from dinosaur bones that on further

inspection was a mitochondrial pseudogene from contaminant human nuclear DNA.

NUMTs have been implicated in several diseases in very rare cases involving the in-

tegration of mtDNA into genes. A disruption in the gene responsible for the production

of plasma factor VII was caused by a 251bp NUMT insertion leading to severe factor

VII deficiency (Borensztajn et al., 2002). A de novo mutation was also responsible for

a rare sporadic form of Pallister-Hall syndrome caused by a 72bp NUMT insertion into

exon 14 of the GL13 gene (Turner et al., 2003). This created a premature stop codon
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Figure 4.3: Proposed formation of a mtDNA deletion through a slipped strand model of
replication taken from Krishnan et al. (2008). (a) mtDNA molecule and the presence of
two direct repeats labeled 5’ and 3’. (b) mtDNA replication begins in the D loop from
OH, displacing the light strand from the heavy strand. (c) The single-stranded 3’ repeat
of the light strand misanneals with the newly exposed single-stranded 5’ heavy-strand
repeat, a downstream loop of the light strand is generated. This loop is prone to strand
breaks. (d) The damaged loop is degraded until reaching the double-strand regions.
Ligation of the free ends of the heavy strand occurs. (e) Replication is resumed. (f) A
wild type and a deleted mtDNA molecule are produced.
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resulting in a truncated protein product. Turner et al. (2003) state that the incident

occurred in the Chernobyl region with high radioactive contamination but attribute

this occurrence to coincidence. Other examples include a 93bp fragment inserted into

the gene MCOLN1 eliminating correct gene splicing leading to a case of mucolipidosis

IV (Goldin et al., 2004) and a 36bp insertion in exon 9 of the USH1C gene associated

with Usher Syndrome IC via trans-replication slippage (Chen et al., 2005).

4.1.5 Sequence analysis of flanking regions

In addition to determining the location of NUMTs within the nuclear genome previous

research has investigated the immediate flanking regions surrounding the NUMTs for

evidence of transposable elements. Mishmar et al. (2004) analysed the flanking regions

of 247 human NUMTs and found 59% were within 150bp of repetitive elements and

the association was highly non-random (p>0.0001). The flanking sequences (500bp)

of each NUMT were screened with RepeatMasker and aimed to identify transposons

defined by DNA or RNA mediated mechanisms and not including simple repeats or free

satellite elements (Mishmar et al., 2004). Specific NUMTs were classed as adjacent to a

repeated sequence when the element was present <150bp away. This research suggests

the vicinity of transposable elements influences the ongoing integration of NUMTs and

their duplication within the nuclear genome and could be facilitated by open chromatin

formation, regions that are prone to chromosomal breakage. This highlights a possible

correlation of foreign mtDNA integration with chromosomal structure (Mart́ınez-López

et al., 2001). Mishmar et al. (2004) also investigated the GC content of 100kb flanking

regions surrounding each NUMT finding an association with low-to-moderate GC con-

tent isochores (L1-H1) and almost completely absent from high GC content isochores

(H2,H3). NUMTs appear to commonly integrate into AT-rich isochores. However, in

contrast to these findings Gherman et al. (2007) found an initial deficit of repeats within

the flanking sequences of NUMTs. This investigation compared 1kb (500bp either side

of the mtDNA insert) of flanking sequence surrounding 266 NUMTs, determined earlier

in the study, with the entire human genome returning to expected genome-wide levels

around 500-600bp away from the insert (Figure 4.4). This research concluded that the

human genome had acquired a minimum of several hundred NUMTs arising from a

common ancestor as independent insertions in a process that is still active and can

affect gene function (Gherman et al., 2007; Turner et al., 2003).

116



Figure 4.4: Repeat composition of flanking regions taken from Gherman et al. (2007).
Plot comparing average repeat position of 266 independent NUMTs with 50,000 random
sequence fragments of equivalent length. The x axis displays the distance from the
integration site. The legend displays the different repeat elements with the average
content of the human genome shown in parentheses.
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Recent research has confirmed these findings claiming human-specific NUMTs appear

to have integrated into regions displaying a significant deficit of transposable elements,

an opposite result to chimpanzees (Jensen-Seaman et al., 2009). Jensen-Seaman et al.

(2009) compared the flanking regions of 37 human-specific NUMTs to 10,000 randomly

generated flanks in 100bp windows (Figure 4.5).

4.1.6 The mitochondrial Cambridge reference sequence

The mitochondrial genome sequence was revised and fully corrected by Andrews et al.

(1999) and can be downloaded from MITOMAP (http://www.mitomap.org) and Gen-

Bank (Accession number NC 012920, GI:251831106). The Cambridge reference se-

quence (rCRS) has 18 corrections or confirmations from the original sequence deter-

mined by (Anderson et al., 1981). Eleven nucleotides were corrected due to instances

of sequencing errors and contamination of human placental DNA with bovine or HeLa

samples. However, GenBank contains a mitochondrial genome sequence (NC 001807)

from an African (Yoruba) individual that contains over 40 variant nucleotides from the

rCRS. Use of this variant sequence will produce spurious results and is occasionally

used in error instead of the rCRS.

4.1.7 BioMart

As the deluge of biological data generated from high-throughput experiments reaches

an unprecedented level, the requirement for integrated querying systems involving dis-

tributed data sources is crucial. BioMart is an integrated query data management

system developed by the EBI and Ontario Institute for Cancer Research (OICR) to

allow biologists to perform data mining procedures. Various databases can be interro-

gated via the BioMart web interface and a full list is displayed in Table 4.1. Numerous

bioinformatics experiments can be conducted through implementation of BioMart in-

cluding SNP (Single Nucleotide Polymorphism) selection for candidate gene analysis,

microarray annotation, cross-species analysis and disease association studies (Smedley

et al., 2009).
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Figure 4.5: Repetitive element content taken from Jensen-Seaman et al. (2009). a)
Transposable element (TE) content in 100bp windows flanking human-specific NUMTs.
The major classes of TEs are displayed in a stacked bargraph. The dashed line repre-
sents the average (33.8%) of the total TE content found in 10,000 randomly generated
datasets. b) TE distribution of all 10,000 randomly generated data sets with the first
flanking windows highlighted. * = Average distribution.
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Name of BioMart Description of contents

Ensembl Genes Automated annotation of over 40 eukaryotic genomes

Ensembl Homology Ensembl Compara orthologues and paralogues

Ensembl Variation Ensembl Variation data from dbSNP and other sources

Ensembl Genomic Features Ensembl Markers, clones and contigs data

Vega Manually curated human, mouse and zebrafish genes

HTGT High throughput gene targeting/trapping to produce

mouse knock-outs

Gramene Comparative Grass Genomics

Reactome Curated database of biological pathways

Wormbase C. elegans and C. briggsae genome database

Dictybase Dictyostelium discoideum genome database

RGD Rat model organism database

PRIDE Proteomic data repository

EURATMart Rat tissue expression compendium

MSD Protein structures

UniProt Protein sequence and function repository

Pancreatic Expression Database Pancreatic cancer expression database

PepSeeker Peptide mass spectrometer data for proteomics

ArrayExpress Microarray data repository

GermOnLine Cross species knowledgebase of genes relevant for

sexual reproduction

DroSpeGe Annotation of 12 Drosophila genomes

HapMap Catalogue of common human variations in a range of

populations

VectorBase Invertebrate vectors of human pathogens

Paramecium DB Paramecium tetraurelia model organism database

Eurexpress Mouse in situ expression data

Europhenome Mouse phenotype data from high throughput

standardized screens

Table 4.1: List of available BioMart databases taken from Smedley et al. (2009)
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Major Class Superfamilies

DNA transposons Mariner, hAT, MuDR, EnSpm, piggyback, P, Merlin,

Harbinger, Transib, Novosib, Mirage, Helitron,

Polinton, Rehavkus

LTR retrotransposons Gypsy, Copia, DIRS, BEL

Endogenous retroviruses ERV1, ERV2, ERV3

Non-LTR retrotransposons LINE1 (L1), RTE-1, CRE, CR1 (LINE3), I, Jockey,

NeSL, R2, R4, Rex1, RandI, Penelope

Caulimoviridae

Simple repeat Satellites (SAT, MSAT)

Table 4.2: Repbase schema for transposable element classification taken from Kohany
et al. (2006). Over 40 superfamilies are contained within the database and consists of a
relational database schema that allows for simple addition using the Repbase submitter.

4.1.8 Censor - Repetitive element detection

Censor, developed by Kohany et al. (2006) is a computational tool that screens for

repetitive elements by comparing to a database of known repeats. Censor implements

WU-BLAST as the alignment algorithm chosen for speed and sensitivity. The program

analyses DNA/RNA or protein sequences in a range of formats including FASTA, Gen-

Bank and GCG. Sequences are compared against the RepBase database of annotated

repetitive elements developed by Jurka et al. (2005). The Repbase schema is displayed

in Table 4.2. The relative abundance of each transposable element in the human genome

is can be seen in Table 4.3.

4.1.9 EMBOSS command line applications

EMBOSS (The European Molecular Biology Open Software Suite) is an open source

UNIX-based software library for molecular biology consisting of a variety of analysis

tools. The multitude of software can accept varying data formats for performing many

bioinformatics tasks including sequence analysis, protein motif detection, CpG island

analysis and rapid database searching (Rice et al., 2000). The EMBOSS package is

available within the Taverna Workbench for constructing analysis pipelines and also

as a standalone package for local installation to allow rapid execution of the available

analysis programs (Hull et al., 2006).
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Major Class Relative abundance in human genome (%)

DNA Transposons 3% (Pace and Feschotte, 2007)

ERVs 5-8% (Belshaw et al., 2004)

LINES 18% (Gherman et al., 2007)

LTR Retrotransposons 8% (McCarthy and McDonald, 2004)

Mariner <1% (Pace and Feschotte, 2007)

SINES 13% (Gherman et al., 2007)

Table 4.3: Relative abundance of transposable elements in the human genome.

4.1.10 R script execution in Taverna

Taverna provides the functionality to produce scripts in Java allowing scientists familiar

with this language the ability to generate useful code within their workflows. However,

many scientists prefer other languages such as the statistical programming language R

for which Taverna previously supplied limited support (Wassink et al., 2009). Following

the development of an R plugin known as RShell for Taverna, R scripts can now be

incorporated into workflows. RShell consists of a client-server structure requiring a local

or remote installation of the R-interpreter alongside the installation of the Rserve library

(Urbanek, 2003). The Rserve library converts the R-interpreter into a server enabling

the communication of other applications through a socket connection. Ultimately, this

architecture allows the execution of R scripts through the RShell processor and is fully

compatible with the most recent version of R (Wassink et al., 2009). Li et al. (2008)

provide an example for using RShell in Taverna involving the statistical identification of

differentially expressed genes extracted from microarray data followed by the annotation

of their relationships to cellular processes. The design of RShell is displayed in Figure

4.6.
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4.1.11 Proposed Approach

NUMTs have been determined in a wide range of organisms and various bioinformat-

ics methods have been employed to detect these mitochondrial fragments within the

nuclear genome. However, previous studies have explained how a gene is transposed

into the nucleus, but fail to explain the mechanism controlling gene loss from mtDNA.

An alternative hypothesis is that mtDNA deletions form fragments of double or single

stranded mtDNA which are subsequently incorporated into the nuclear genome. It is

possible to test this hypothesis by comparing a large existing database of known mtDNA

deletions to the size and sequence of thousands of mtDNA fragments present within

the cell nucleus. A close correlation would imply a related mechanism, which could be

tested experimentally. The size and number of NUMTs varies greatly among species,

being highly abundant in plant genomes and completely absent in others. Examples of

species displaying no evidence for NUMTs include fish belonging to the order Tetraodon

and the African malarial mosquito (Anopheles gambiae). The aim of this study is to

quantify the number of human NUMTs and conduct various analyses implementing

bioinformatics workflows. Following the determination of the nuclear location of the

mitochondrial insertions, flanking regions surrounding these areas will be analysed for

repetitive sequences, GC content and gene content. The analysis of these regions may

reveal any areas of the genome that contain higher percentages of mitochondrial DNA.

In addition, the origin of the fragments from the mitochondrial genome will be inves-

tigated and compared to an existing collection of 263 mitochondrial DNA deletions.

This part of the investigation aims to reveal any related mechanisms between mtDNA

deletion formation and NUMT formation.
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4.2 Methods

4.2.1 Identification of Human NUMTs

In order to assess where fragments of the mitochondrial genome had been incorporated

into the nuclear genome over evolutionary time, sequence analysis was required. To

achieve this the mitochondrial genome was downloaded from MITOMAP (see section

4.1.6) as this contained the Cambridge Reference Sequence (rCRS). The rCRS was

compared to the RefSeq genomic database using NCBI’s BLASTN (nucleotide BLAST

found at http://blast.ncbi.nlm.nih.gov/Blast.cgi). The RefSeq genomic database was

selected as this returned real genomic positions from the nuclear genome as opposed to

contig positions. Specific filters were applied to generate relevant results for the analysis.

This involved using the Entrez query facility that allowed specific information from the

RefSeq genomic database to be returned. This was an investigation to assess the number

of human NUMTs and therefore required filters to remove unwanted BLASTN results.

As a query using the human mitochondrial genome would produce vast numbers of hits

to not only other mitochondrial genomes belonging to related species but their nuclear

genomes also, the following filters were required to extract the unique human nuclear

genome hits:

Entrez query: ”Homo sapiens [organism] NOT alternate assembly NOT mito-

chondrial”.

In order to reduce duplicate hits which would result in an overestimation of unique

NUMTs, the filter was designed to remove any hits that were labelled alternate assembly

as only reference assembly was of interest. As hits to the human nuclear genome were the

only hits of interest, the final part of the filter removed any hits to the mitochondrial

genome. Without this in place the majority of top scoring hits were mitochondrial

related including hits to the recently sequenced Neanderthal mitochondrial genome

(Accession number NC 011137, GI:196123578) and were of no relevance to this analysis.

In addition, using the BLASTN parameters, the e-value was set to e< 10−4 as this

removed less significant hits and could be compared to previous research that used

the same threshold and was believed to reflect a threshold of biological significance.

The configured BLASTN page is illustrated in Figure 4.7. These results were then

downloaded in the form of a BLAST hit table suitable for further analysis.
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Figure 4.7: Configuration of the BLASTN parameters based at the NCBI
(http://blast.ncbi.nlm.nih.gov/Blast.cgi) specifying specific filters in order to produce
relevant hits.
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4.2.2 BLASTN analysis

Following the BLASTN analysis the results were downloaded in the form of a BLAST

hit table that contained all the data from the comparison of the human mitochondrial

genome to the human nuclear genome. This contained columnised data that is repre-

sented in the truncated BLAST hit table displayed in Figure 4.8. This data was then

imported into an excel spreadsheet and organised in preparation for further analysis.

The first step involved determining which chromosome the the individual hits belonged

to. Part of the subject id contained this information in the accession number. The

numbers preceded by ’NC ’ and a string of zeroes contained the chromosome num-

ber at the end. For example ’NC 000005’ reflected chromosome 5 and ’NC 000022’

reflected chromosome 22. Chromosomes X and Y were represented numerically by ac-

cession numbers ’NC 000023’ and ’NC 000024’, respectively. These were filtered out

leaving only the chromosome numbers for this column. Following the determination of

the chromosomes the hits were organised by chromosome and then by their position in

relation to the mitochondrial genome in ascending order (referring to the columns q.

start and q. end) as these reflect the genomic positions of the mitochondrial fragments.

Finally, they were organised by bit score which represents the overall score of the in-

dividual hit that takes into account the e-value, mismatches in the sequence and the

length of the sequence match. Unique NUMTs were determined that appeared to have

high scoring hits to the nuclear genome. Any overlapping fragments were considered to

be the same NUMT if they resided at the same nuclear genomic positions. If fragments

appeared at the same location in duplicate, their individual length was considered and

bit score whereby the highest scoring hit or longest regarding nucleotide bases would be

considered as the unique NUMT. Once the unique NUMTs were determined the next

step was to investigate the number of NUMTs per chromosome. This was achieved

simply by summing the number of unique NUMTs in the spreadsheet per individual

chromosome.
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NUMT q.start q.end
1 1 458
2 11 241
3 11 241
4 11 76
5 115 426
6 128 455
7 335 457
8 341 2697
9 346 459
10 383 708

Table 4.4: First 10 examples for the identified NUMTs and their relevant mitochondrial
positional coordinates that comprise the user query for the NUMT plotting workflow
of the fragments in relation to the mitochondrial genome.

4.2.3 Distribution of NUMT origin across the mitochondrial

genome

Using the results from the BLASTN analysis an important assessment was the deter-

mination of the where the NUMTs had originated from in relation to the mitochondrial

genome. This would reveal any distribution pattern and could be compared to mtDNA

deletion distribution in order to highlight any correlation. An automated workflow was

created using Taverna1.7 that required the positions of each fragment and plotted these

against the mitochondrial genome. The workflow incorporated an R script using the

Rserve facility in Taverna to automatically produce the image once the workflow had

completed. The workflow architecture is illustrated in Figure 4.9.

Workflow user query

From the spreadsheet containing the NUMT BLASTN results the 620 NUMTs were

organised into a separate list ordered by ascending mitochondrial base start position

and then numbered 1 to 620. This list could then be used as the query for the NUMT

plotting workflow as seen in the example displayed in Table 4.4. The workflow then

splits the positions of each identified NUMT into a list of separate objects for iteration

using the local processor Split positions. Following this the NUMT number and related

positions are separated out into individual inputs by the beanshell Separate positions

in preparation for the next process.

129



Workflow Inputs

string

Split_positions

split

position

Separate_positions

numt start end

filecontents

WriteCSVFile

 

 

Matplot_Rscript

 

stringlist

Merge_CSV

concatenated

numt start end

produceCSVFile

produceRFileReturn

positions

Figure 4.9: Workflow that produces a visual plot of the physical positions of NUMTs
across the mitochondrial genome.
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,,,,1,1,1,1,1,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,(..n=16569)

,,,,,,,,,2,2,2,2,2,2,2,2,2,2,2,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,(..n=16569)

,,,,,,,,,,,,,3,3,3,3,3,3,3,3,3,3,3,3,,,,,,,,,,,,,,,,,,,,,,,,,(..n=16569)

,,,,,,,,,,,,,,,,,,,,,,,4,4,4,4,4,4,4,4,4,4,4,4,,,,,,,,,,,,,,,(..n=16569)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5,5,5,5,5,5,5,5,5,5,5,(..n=16569)

6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,(..n=16569)

Figure 4.10: File architecture required by the Matplot package in R for plotting the
positions of the mitochondrial fragments across the mitochondrial genome.

Process 1: File preparation for Matplot

Using the positions for each NUMT, the next processor produceCSVFile is a Java

program developed to produce a line of empty comma separated values in concordance

with the size of the human mitochondrial genome. Where the NUMT is present along

this line a relevant value is indicated reflecting the NUMT’s previously assigned number.

An example output of this program can be seen in Figure 4.10. The entire list is then

merged into a single document by Merge CSV and written to a file specified by the

processor WriteCSVFile in preparation for analysis via an R script.

Process 2: Matplot invocation using RShell

RShell is utilised to execute an R script within the Taverna workflow to produce the

desired plot. This is conditionally linked to the WriteCSVFile processor as this needs to

have completed and prepared the file before the R script is invoked. The script initially

reads in the created CSV file and then transposes the file into columns relevant for

the R package Matplot. Following this the output for the resulting image is specified.

Matplot is then executed producing a linear display of all the fragments in relation to

their physical position on the mitochondrial genome. The workflow plots the NUMTs

linearly in relation to their position in the mitochondrial genome. These are converted

to polar plots to represent the circular structure of the mitochondrial genome.
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Matplot R script

dloopdist <- read.csv(file="/home/kieren/R/NUMTs/dloopdist.csv",

header=TRUE)

tdloopdist <- t(dloopdist)

png(filename="/home/kieren/R/NUMTs/dloopdist.png",

height=800, width=1000)

par(font.lab=2, font.axis=2, font.main=2, cex=1.0)

matplot(tdloopdist, yaxt="n", ylab="NUMTs", xlab="bp position",

pch=22, type="l", lwd=2, lty=1, col="black")

dev.off();

4.2.4 Gene mining of flanking regions surrounding NUMTs

Following the identification of the NUMT insertion sites another area of investigation

was sequence analysis of the flanking regions in the nuclear genome surrounding the

NUMTs to analyse gene content. This aimed to reveal if there was a high abundance

of mitochondrial-related genes in close proximity and reveal potential evolutionary con-

servative mechanisms for mitochondrial DNA integration. To analyse these regions a

workflow was constructed to analyse the flanking sequences surrounding the NUMT

integration sites and the gene content (Figure 4.11). Biomart was implemented using

the Homo sapiens genes GRCh37 database to extract relevant gene information.

Workflow user query

Nuclear genomic positions of the NUMTs were extracted from the BLASTN analysis

spreadsheet and could be inserted into the gene content analysis workflow as a list

of chromosomal coordinates (see Table 4.5). The individual coordinates pertaining to

each unique NUMT insertion site was split into separate queries using a local Taverna

processor named Split positions. Each individual set of coordinates are then passed to

a nested workflow to allow each one to be analysed one at a time.

Process 1: Nested workflow

The nested workflow (light blue processor) allows each set of coordinates to be analysed

in full before the next set is consumed. A beanshell script SeparateCoordinates splits

the coordinates into three separate outputs for chromosome, start bp and end bp. The

chromosome number is passed straight to the Biomart query filter.
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Nested_Workflow

Workflow Outputs

Workflow Inputs

Workflow Outputs

Workflow Inputs

stringlist

MergeGenes

concatenated

NUMTGenes

string

Split_positions

split

base_positions

stringlist

MergeGenes

concatenated

NUMTGenes

string

SplitFlanks

split

flanks

SeparateFlanks

start end

hsapiens_gene_ensembl
chromosome_name_filter

hsapiens_gene_ensembl
end_filter

hsapiens_gene_ensembl
start_filter

hsapiens_gene_ensembl

hsapiens_gene_ensembl

coordinates

SeparateCoordinates

chromo start end

start end

CreateFlankCoordinates

flanks

base_positions

Figure 4.11: Workflow that requires the NUMT positions as input and alters the query
to locate flanking regions surrounding the NUMTs using Biomart. These regions are
then searched for gene content.
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Chromosome s. start s. end
1 554324 560167
1 5537393 5537524
1 5832905 5833115
1 8892389 8892554
1 9557274 9557474
1 11407906 11408416
2 9804293 9804445
2 15578742 15578857
2 22393428 22393625
2 33846042 33846097
2 40865601 40865761
2 49310271 49310542
3 12181341 12181477
3 25483999 25484037
3 28351381 28351435
X 3987625 3987886
X 5096878 5098813
X 9733688 9733853
X 15655775 15655965
X 23984302 23984498
Y 4272822 4272892
Y 8291603 8293329

Table 4.5: An example list of nuclear chromosomal coordinates required for the gene
mining workflow of NUMT flanking sequences.
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Process 2: Extend flanking regions

The start and end base positions are sent to another beanshell script CreateFlankCo-

ordinates to extend the base positions to incorporate the specified flanking regions

surrounding the integration site within the nuclear genome. The script to perform the

extension is shown below:

CreateFlankCoordinates example

input start: 5000000

input end: 5005000

i = Integer.parseInt(start);

j = Integer.parseInt(end);

#Adding 1MB flanks

flanks = (i - 1000000) + " " + i + "\n" + j + " " + (j + 1000000);

output list: 4900000 5000000

5005000 5105000

Following this process the separate flanks are split into a pair of queries by the

SplitFlanks local processor representing the newly generated coordinates of each flank.

These flanks are separated into start bp and end bp queries in preparation for the

Biomart processor by the beanshell SeparateFlanks. Each individual NUMT query

from the start of the workflow now becomes two separate queries covering both flanks

either side. These can then be sent in succession to the Human Biomart processor.

Process 3: Biomart gene retrieval

Taverna provides the functionality to query the Biomart database from within a work-

flow. This allows queries to be sent to a species-specific processor and queried using

filters such as chromosomal coordinates, gene names, gene ids and genetic markers.

A Biomart processor was selected from the Ensembl 56 Genes (Sanger UK) database

specifying the Homo sapiens genes ensembl (GRCh37) subset for incorporation into the

workflow. The Human Biomart was configured to return all genes using the chromoso-

mal coordinates of the specified flanking regions (Figure 4.12).
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Figure 4.12: Biomart filter and attribute configuration for gene mining queries.
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Using the filter page the inputs were configured within the Biomart by selecting the

REGION section and specifying filters for chromosome and base pair positions. In the

attributes, the outputs were configured within the Features section under the GENE

and EXTERNAL headings. Specific attributes were then selected that consisted of the

following:

Biomart GENE attributes configuration

Ensembl Gene ID

Ensembl Protein ID

Associated Gene Name

Chromosome Name

Gene Start (bp)

Gene End (bp)

Biomart EXTERNAL attributes configuration

Entrez Gene ID

These attributes were considered to be important when analysing the genes that

were retrieved. The Gene IDs were important for cross-referencing within the local

databases. MitoCarta referenced genes using the Entrez ID therefore, this was re-

quested as an external ID to allow querying the genes within the MitoCarta database

of predicted mitochondrial genes. Other attributes consisted of gene name, description

and the gene’s specific chromosomal coordinates. In order to correlate the chromosomal

coordinates entering the Biomart query processor an iteration strategy was configured

consisting of a cross product with dot product nodes. This is due to the chromosome

name coming from the SeparateCoordinates beanshell and requires being compared to

each set of flanking coordinates. These coordinates are produced by the SeparateFlanks

beanshell and need to be correlated as pairs using the dot product within the iteration

strategy. This is achieved by configuring the iteration strategy to ensure the chromo-

some is compared to every flanking coordinates pair whilst maintaining the pairs are

correlated with each other separately. This strategy is illustrated in Figure 4.13. Fi-

nally, the output consists of 2 lists of genes representing each flank for every NUMT

queried resulting in 1240 potential lists. The entire workflow result is then merged into

a single document by the MergeGenes processor to allow for further analysis.

The workflow requires the positions of the insertion sites and was run five times to

assess flanking regions consisting of 50Kb, 100Kb, 150Kb, 200Kb and 250Kb flanks to

either side altering the base positions within the query with the NUMT excised.
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Figure 4.13: Iteration strategy configuration where the user can specify either cross
product or dot product nodes.
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Each gene is then assessed for mitochondrial involvement using previous established

prediction techniques. Using the most successful combination of prediction methods

(MitoSVM) from the previous chapter, each flanking region can be analysed for mito-

chondrial genes. This can be cross-referenced with MitoCarta (Pagliarini et al., 2008)

to reveal other potential mitochondrial genes.

4.2.5 Transposon and GC content analysis of flanking sequences

In addition to gene content analysis the flanking regions were investigated regarding

transposable elements and GC content. However, this required extracting raw DNA

sequence using the relevant insertion site coordinates from the human genome.

Reference DNA sequence extraction

Reference DNA sequences could not be retrieved using Biomart as this returned spe-

cific gene, protein or transcript-centric content and not raw unannotated DNA ref-

erence sequence. Querying specific coordinates required explicit filters in Biomart to

return annotated information. Therefore Biomart could not been utilised in this pro-

cedure. To achieve the extraction of raw human DNA sequence, firstly each human

chromosome was downloaded in FASTA format from the NCBI and stored in flat files.

These could then be queried using the specific base pair coordinates using the EMBOSS

(http://emboss.sourceforge.net/) command line tool extractseq. Extractseq enables the

extraction of specific regions from a given sequence consisting of either an EMBL id or

a specific filepath to the query sequence. Querying stored sequence files on the local

machine allows for a much more rapid execution for sequence extraction. This is essen-

tial as the sequences reflect the entire human genome represented across 24 separate

files. A simple implementation of extractseq can be seen below:

extractseq /home/kieren/NUMTs/HumanGenome/ch22.fasta -reg "10-20"

This query would return base pair positions 10-20 from human chromosome 22.

However, due to each chromosome having multiple NUMTs this resulted in the need for

batched queries to be implemented when querying the individual chromosome FASTA

files. Extractseq was able to take batched queries and return a multiple FASTA file

containing all the individual genomic regions.
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An example of a batched query was executed as follows:

extractseq /home/kieren/NUMTs/HumanGenome/ch22.fasta

-reg "34899432-34900668, 34905058-34905543, 34611665-34611711,

4537-4766, 31620869-31621209, 15737114-15737254, 40490907-40490975,

48866720-48866949, 22679236-22679718, 45244827-45244894"

-separate

-outseq /home/kieren/NUMTs/HumanGenome/regions/ch22regions.fasta

The arguments required included the path to the relevant human chromosome

FASTA file, in this case chromosome 22. The -reg command specified all the regions of

interest separated by a comma. The -separate command simply separates the resulting

FASTA sequences into a multiple FASTA file and labels each by the specific query using

the chromosomal coordinates.

4.2.6 DNA extraction workflow for human genome

The development of a fully automated procedure to extract all the regions of raw

DNA sequence comprising the insertion site flanks was required. This procedure was

automated in a workflow that extracted all the regions from the entire human genome

as batched queries in iteration (Figure 4.14). This was achieved by extracting the

chromosomal coordinates for all of the NUMTs from the BLASTN analysis data.

Workflow user query

The DNA extraction workflow required two separate input lists consisting of all the

human chromosomes in ascending order and all the specific regions in the same order

whereby each newline referred to a separate chromosome. An example is shown below:

Input lists: Chromosome

1

2

3

NUMT base pair positions

10-20, 40-80, 400-670

35-55, 900-1200, 3000-3440

4550-6000, 8900-10000, 12000-12500
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Nested_Workflow

Workflow Outputs

Workflow Inputs

Workflow Outputs

Workflow Inputs

string

Split_chromosomes

split

Chromosome

string

Split_positions

split

NUMT positions

string

Split_positions_csv

split

positions

SeparateStartFromEnd

start end

string

Split_flanks

split

stringlist

merge_flanks

concatenated

stringlist

merge_allflanks

concatenated

chromosome flank

extractseqCmdList

cmdArgsList

args

extractseq

result

result

start end

ExtendFlanks

flanks

result

NUMT positionsChromosome

Figure 4.14: Workflow that requires the chromosome numbers and associated NUMT
positional coordinates as input and extracts raw DNA sequences from the human
genome in preparation for computational sequence analysis.
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This enabled the workflow to assess each chromosome and its specific regions of insertion

in isolation. This required a nested workflow to allow this to function correctly. Both

lists were split into separate individual queries by carriage returns using local processors

(purple) and sent to the next stage of the workflow.

Process 1: Nested workflow

A nested workflow (light blue processor) was constructed to consume each separate

query from both lists with an iteration strategy in place. As implemented in previous

workflows the strategy used here was dot product. This ensured chromosome 1 was

correlated with the regions belonging to chromosome 1 and chromosome 2 correlated

with regions belonging to chromosome 2 and so on, eventually extracting sequences

from all chromosomes in relation to their insertion site regions.

Process 2: Flanking region extension

The first stage of the nested workflow is to alter the base pair coordinates in order to

extend the flanking regions of interest in preparation for transposon and GC content

analysis. The specific regions are separated into a list of queries by the processor

Split positions csv using commas as the separator. This allows the next processor

to deal with each individual region one at a time. This output enters the beanshell

processor (beige) named SeparateStartFromEnd which generates two outputs start and

end. An example of these procedures can be seen below:

Split positions csv

input: 250-350, 400-580, 600-750

output list: 250-350

400-580

600-750

#SeparateStartFromEnd

first input: 250-350

output start: 250

output end: 350
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The separation of the start and end positions allows the next processor to extend

these depending on the size of the required flanking regions. This processor is another

beanshell script named ExtendFlanks that consumes the two inputs start and end and

extends these regions. This script along with its inputs and outputs can be seen in

Figure 4.15. The generated output are the flanking regions surrounding a specific inte-

gration site incorporating the extended positions specified in the script, not including

the actual NUMT itself. This could be modified for each separate run as the flanking

regions were increased regarding flank size in preparation for sequence analysis. The

following script was developed to extend the flanks displaying an example for extending

the flanks by 100bp:

ExtendFlanks example

input start: 250

input end: 350

i = Integer.parseInt(start);

j = Integer.parseInt(end);

flanks = i - 100 + "-" + i + "," + j + "-" + (j + 100);

output: 150-250, 350-450

Following the generation of the two new flanking region coordinates these are merged

into a single string of text by the local processor merge allflanks. This output can then

be sent to the next processor in the workflow extractseqCmdList which constructs the

specific query required by the extractseq command line program in the format explained

in section 4.2.5.
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Figure 4.15: Beanshell script that requires the base pair start and end positions as
input and extends these to incorporate specific flanking regions
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Process 3: Extractseq batched query preparation

The next processor extractseqCmdList constructs the actual list of commands to be sent

to the command line to execute the extractseq program. This list of commands can be

seen below illustrating the construction of the arguments required for the extractseq

command line application:

extractseqCmdList arguments

List cmdArgsList = new ArrayList();

cmdArgsList.add("/home/kieren/NUMTs/HumanGenome/ch"

+ chromosome + ".fasta");

cmdArgsList.add("-reg");\\

cmdArgsList.add("\"" + flank + "\"");

cmdArgsList.add("-separate");

cmdArgsList.add("-outseq");

cmdArgsList.add("/home/kieren/NUMTs/HumanGenome/regions/Final/

Flanking100KB/small/ch" + chromosome + "flank.fasta");

This processor requires two inputs flank and chromosome whereby flank consists of

the extended regions referring to the NUMT insertion sites produced by the Extend-

Flanks processor and the second input being the specific chromosome they belong to.

The first argument specifies the filepath to the particular stored chromosome file that

the sequences will be extracted from. Following this the -reg command consumes the

output from ExtendFlanks processor referring to the flanking regions. All the flanking

sequences are separated into separate FASTA sequences by the -separate command.

Finally, the -outseq command specifies the filepath for where the multiple FASTA is

to be stored. This requires the name of the chromosome implemented earlier in the

process to specify the output filename. Therefore, the output generated represents the

format illustrated earlier (section 4.2.5) as a batched query.

Process 4: Extractseq command line execution

The final part of the workflow is the execution of extractseq on the command line (purple

processor). This requires two inputs, the first being a permanent command extractseq

which is required by the command line to execute the application and the second

being the previously constructed list of arguments. The results for each chromosome is

automatically written to flat files contained in the relevant directory using the filepath

specified in the arguments. Finally, the overall outcome is 24 flat files representing each

chromosome. Each chromosome contains a list of FASTA DNA sequences that have the
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necessary flanking regions surrounding each specific NUMT. An example output can

be seen below for a user query consisting of chromosome 1 specifying positions 250-350,

400-580, 600-750:

Chromosome 1 flanks example

>NC_000001_150_250 Homo sapiens chromosome 1,

reference assembly, complete sequence

CTAACCCTAACCCTAACCCTAACCCT

AACCTAACCCTAACCCTAACCCTAAC

CCTAACCCTAACCCTAACCCTAACCC

TAACCCCTAACCCTAACCCTAAA

>NC_000001_350_450 Homo sapiens chromosome 1,

reference assembly, complete sequence

CCTACCCTAACCCTAACCCTAACCCT

AACCCTAACCCTAACCCCTAACCCCT

AACCCTAACCCTAACCCTAACCCTAA

CCCTAACCCTAACCCCTAACCCT

>NC_000001_300_400 Homo sapiens chromosome 1,

reference assembly, complete sequence

CCCCAACCCCAACCCCAACCCCAACC

CTAACCCCTAACCCTAACCCTAACCC

TACCCTAACCCTAACCCTAACCCTAA

CCCTAACCCTAACCCCTAACCCC

>NC_000001_580_680 Homo sapiens chromosome 1,

reference assembly, complete sequence

GGTGCTCTCCGGGTCTGTGCTGAGGA

GAACGCAACTCCGCCGGCGCAGGCGC

AGAGAGGCGCGCCGCGCCGGCGCAGG

CGCAGACACATGCTAGCGCGTCG

>NC_000001_500_600 Homo sapiens chromosome 1,

reference assembly, complete sequence

GTCTGACCTGAGGAGAACTGTGCTCC

GCCTTCAGAGTACCACCGAAATCTGT

GCAGAGGACAACGCAGCTCCGCCCTC

GCGGTGCTCTCCGGGTCTGTGCT
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Each individual NUMT and its flanking regions are generated into a FASTA format-

ted sequence. Each sequence FASTA header includes the NCBI chromosome accession

number (e.g. NC 000001) followed by the extended start and end base positions. Fi-

nally the text refers to the specific assembly the sequence has been extracted from.

Following completion of the sequence extraction workflow the resulting FASTA files

were concatenated into one large file containing all the 1240 (620 NUMTs x 2) NUMT

flanks. These sequences were the uploaded and analysed with the program Censor

based at the EBI, in order to detect repeat sequences and transposons. GC content

analysis was performed using the EMBOSS program geecee.

4.2.7 Transposon analysis using Censor

Transposon detection was performed using the EBI web service Censor which screens

query sequences against a reference collection of repeats and censors (masks) portions

that are homologous. The service produces an overall summary of all repeats found

within the query sequences and generates a summary table reporting the number of

fragments and their total combined length in bases. Several parameters are available

in Censor including MODE and MASK PSEUDOGENES however, all parameters were

left as default settings. All flanking sequences were contained in a concatenated file

generated following completion of the DNA extraction workflow and contained all 1240

flanks. This file was uploaded and analysed with the Censor web service (Figure 4.16).

4.2.8 GC content analysis using geecee

Fractional GC content for all the flanking sequences was calculated using the EMBOSS

command line application geecee. This program calculates the G+C bases contained

within the input nucleotide sequence and produces a fractional output between 0.0 to

1.0 for the entire length of the sequence. Using the command line geecee required

the name of the input file containing all the flanking sequences of 100Kb flanks and

generated an output file listing all the flanks with their associated GC fraction. This

was stored in a spreadsheet to allow further analysis to determine isochore groups, mean

GC content of the flanks and the standard deviation.
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Figure 4.16: EBI Censor web service which screens query sequences against a reference
database of repeat elements.
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4.3 Results

4.3.1 Identification of NUMTs across the human nuclear

genome

Following the BLASTN analysis of the human mitochondrial genome sequence against

the human nuclear genome a total of 620 NUMTs were identified. The distribution of

NUMTs across the human genome is illustrated in Figure 4.17. Chromosome 2 harbours

the most NUMTs containing 62 fragments whereas chromosome 1 contains 36. The

lowest number of NUMTs recorded were on chromosomes 14 and 18 both containing

6 NUMTs each. An overall trend of largest to smallest chromosome correlates with

NUMT abundance.

4.3.2 Distribution of NUMT origin across the mitochondrial

genome

Following the execution of a workflow in Taverna to analyse where the NUMTs had

originated from in relation to their position in the mitochondrial genome a graphical

plot was generated. This produced a physical plot of all the fragments reflecting their

size alongside their relative position in the mitochondrial genome. These positions

were determined using the results from the BLASTN analysis as these contained the

mitochondrial base positions. Figure 4.18 is a linear plot whereby the x axis reflects the

mitochondrial genome base positions (1-16569) and the y axis represents the stacking

of each individual NUMT fragment. This also displays a linear mitochondrial genome

with the 13 protein coding genes, the 2 rRNAs (12s rRNA and 16s rRNA) and the

d-loop. A polarised plot was also constructed to display the NUMT fragments across a

circular represented mitochondrial genome highlighting the minor arc (blue) and major

arc (red) (Figure 4.19).
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Figure 4.17: Distribution of NUMTs detected per chromosome throughout the human
genome.
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Figure 4.18: A linear plot displaying the size and location of each individual NUMT’s
origin across the mitochondrial genome. The mitochondrial genome is graphically rep-
resented in relation to the fragments with the 13 protein coding genes, 2 rRNAs (12s
RNA and 16s rRNA) and the d-loop region labelled. Coloured bars represent the minor
arc (blue) and the major arc (red).
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Figure 4.19: A polarised plot displaying the size and location of each individual NUMT’s
origin across a circular mitochondrial genome. Coloured sections represent the minor
arc (blue) and the major arc (red).
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4.3.3 Distribution of mtDNA deletions across the mitochon-

drial genome

In order to assess any potential relation to mtDNA deletion formation and NUMT

formation a database of 263 previously identified mtDNA deletions was analysed. Using

the same method for investigating the origination of NUMTs in relation to their known

positions in the mitochondrial genome, the positions of the known 263 mtDNA deletions

was physically plotted to visualise them against the mitochondrial genome. The linear

plot can be seen in Figure 4.20 and the polarised plot in Figure 4.21. Both polar plots

for the NUMTs and mtDNA deletions for comparative purposes are combined in Figure

4.22 to illustrate the differences of their locations and size.

4.3.4 NUMTs & mtDNA deletions per base position across

the mitochondrial genome

Further to the analysis generating the physical plotting of the NUMT fragments across

the mitochondrial genome another plot was generated to display the abundance of

NUMTs arising per base position. This is displayed in Figure 4.23. The location of

each of the 13 mitochondrial protein coding genes is highlighted in order to assess genes

that may have a higher incidence of NUMT formation.

In addition to the plotting of NUMT abundance per base position in the mito-

chondrial genome a plot was generated for the same data regarding the abundance of

mtDNA deletions per base position. This would potentially highlight any significant

similarities or differences regarding areas of the mitochondrial genome more active for

either phenomenon. This plot is displayed in Figure 4.24.
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Figure 4.20: A linear plot displaying the size and location of each of the 263 individual
mtDNA deletion origin across the mitochondrial genome. The mitochondrial genome is
graphically represented in relation to the fragments with the 13 protein coding genes,
2 rRNAs (12s RNA and 16s rRNA) and the d-loop region labelled. Coloured bars
represent the minor arc (blue) and the major arc (red).
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Figure 4.21: A polarised plot displaying the size and location of each individual mtDNA
deletion origin across a circular mitochondrial genome. Coloured sections represent the
minor arc (blue) and the major arc (red).
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Figure 4.22: A combined polarised plot displaying the size and location of each in-
dividual NUMT and mtDNA deletion origin across a circular mitochondrial genome.
Coloured sections represent the minor arc (blue) and the major arc (red).
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Figure 4.23: Abundance of NUMTs per base position across the mitochondrial genome
displaying the location of each of the 13 protein coding genes. Coloured bars represent
the minor arc (blue) and major arc (red).
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Figure 4.24: Abundance of mtDNA deletions per base position across the mitochondrial
genome highlighting the positions of each protein coding gene. Coloured bars represent
the minor arc (blue) and major arc (red).

158



4.3.5 Gene content of flanking regions

The flanking sequence positions surrounding the NUMT insertion sites were analysed

for mitochondrial gene content to potentially highlight evidence of mitochondrial gene

clustering around these specific areas of the nuclear genome. Following the data extrac-

tion using BioMart within Taverna an assessment of the increasing flanking regions was

implemented consisting of the windows 50MB, 100MB, 150MB, 200MB and 250MB.

BioMart retrieved all the important gene information including chromosomal coordi-

nates, gene name and descriptions. Each flanking window was then analysed for genes

annotated as mitochondrial. All the retrieved genes contained their Ensembl Gene Id,

Ensembl Protein Id and Entrez Id if available. Figure 4.25 displays the percentage of

genes annotated as mitochondrial reflecting the difference between Ensembl and Entrez

regarding the number of genes they contain. This displays the percentage of mito-

chondrial genes present within each 50MB window moving outwards from the NUMT

insertion sites that are annotated in the public databases as being mitochondrial. The

expected percentage of mitochondrial genes genome wide can be approximated by cal-

culating 100/25000 x 1000. This takes into account the estimates for the number of

mitochondrial genes and genes within the nuclear genome. Therefore, the percentage

of mitochondrial genes is approximately 4%. Using these values as a control, mito-

chondrial prediction methods MitoCarta and MitoSVM can be inferred to highlight the

percentage of predicted mitochondrial genes present among the flanking regions. Figure

4.26 displays the percentage of predicted genes implementing MitoCarta for assessing

the regions for mitochondrial genes overlayed with the previous figure reflecting the

annotated mitochondrial genes. In addition, the same was applied using MitoSVM and

is displayed in Figure 4.27.

4.3.6 Transposon analysis of flanking regions

Sequence analysis was performed on the resulting FASTA file generated from the DNA

extraction workflow for each size group (100bp, 200bp,...1000bp). These files were

analysed with the repeat sequence analysis web service EBI Censor. For each group

a summary table was produced listing the different classes of repeat sequences found

(e.g DNA transposons, LINES and SINES) along with the number of fragments and

their overall length in bases. Each group had the percentage abundance calculated for

each class of repeat. Figure 4.28 illustrates the percentage abundance for each type of

transposable element in ascending order of group base size.
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Figure 4.25: Percentage of genes detected within the specific flanking regions (50MB
windows) annotated as mitochondrial by the Ensembl and Entrez databases.
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Figure 4.26: Percentage of mitochondrial genes predicted by Mitocarta within the spe-
cific flanking regions (50MB windows). The genes annotated as mitochondrial by the
Ensembl and Entrez databases are displayed for comparison.
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Figure 4.27: Percentage of mitochondrial genes predicted by MitoSVM within the spe-
cific flanking regions (50MB windows). The genes annotated as mitochondrial by the
Ensembl and Entrez databases are displayed for comparison.
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Isochore GC Content
L1 < 37%
L2 37-41%
H1 41-46%
H2 46-52%
H3 > 52%

Table 4.6: Percentage GC content for each of the isochore families relating to the human
genome

4.3.7 GC content of flanking regions

The GC content was analysed using the EMBOSS program geecee for 100Kb flanking

regions for each NUMT insertion site. These were analysed in the form of a multiple

FASTA file generating an output file listing each unique flank and the GC content for

all 1240 (620 NUMTs x 2) flanking sequences. A spreadsheet was created and the

results were ordered by descending GC percentage content. Following this the list was

grouped into the five isochore families L1, L2, H1, H2 and H3. Table 4.6 displays each

isochore family and its associated percentage GC content in the human genome. Using

these values the percentage abundance of each isochore family regarding all flanking

sequences could be determined and is displayed in Figure 4.29. The most abundant

isochores were L2 (n=444, 35.81%) and H1 (n=375, 30.24%) followed by L1 (n=222,

17.9%) whereby the least abundant were H2 (n=175, 14.11%) and H3 (n=24, 1.94%).
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Figure 4.29: Percentage abundance of the five different isochore families (H1, H2, H3,
L1 and L2) for all the flanking sequences surrounding the 620 detected NUMTs.
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4.4 Discussion

4.4.1 Biological discussion

Numerous studies involving the detection of mtDNA insertions into the nuclear genome

have been investigated. Various bioinformatic methods have been employed resulting

in slight differences regarding the number of NUMTs for a particular genome and the

computational methods implemented. This is especially relevant to studies involving

human NUMT sequences as a significant range in results across the separate studies has

been evident. This is clearly due to differences in methodology and sequence analysis

in the identification of NUMT fragments. The protocol for determining NUMTs in

this analysis ensured that any duplicate NUMTs were highlighted and only treated

as separate insertions if their distance from each other in the nuclear genome was

significant (i.e greater than 16,569bps, the length of the mitochondrial genome). Any

overlapping fragments in the nuclear positions were treated as the same NUMT.

NUMT abundance across the human genome appears to be linear with chromosome

size with minor exceptions, most significantly chromosome 2 having a considerably

higher number of fragments than chromosome 1. This is based on evidence suggesting

intronic and intergenic regions being larger in chromosome 2 (Sakharkar et al., 2004).

Chromosome 1 is only 6MB larger than chromosome 2 but has nearly 1000 additional

genes. Chromosome 2 harbours larger intronic and intergenic space than chromosome 1

which could explain the higher frequency of NUMT integration in chromosome 2 when

compared to chromosome 1. NUMTs appear to commonly integrate into intergenic

regions which may reflect the possibility of a deleterious effect when integration occurs

within intragenic regions of the genome (Woischnik and Moraes, 2002).

NUMT distribution

NUMT distribution is spread across the mitochondrial genome with no apparent pref-

erence for either the minor or major arc. This is a stark contrast to the distribution

of the 263 mtDNA deletions that predominantly cluster within the major arc. Specific

mitochondrial genes appear that have the highest NUMT formation are ND4, ND5,

COI and COIII. Also the chicken genome appears to have preference for genes between

ND4, CytB and the D loop (Pereira and Baker, 2004). Metabolism appears to have

a positive correlation with small genomes exemplified by avian NUMT studies (Tier-

sch and Wachtel, 1991; Gregory, 2002) as birds with strong flight attributes tend to

have smaller more streamlined genomes (Pereira and Baker, 2004). Pereira and Baker

(2004) claims that plant and rice genomes are smaller than those of humans and other
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mammals yet contain a higher level of NUMTs as they harbour the ability for bidirec-

tional transfer of DNA between the nucleus, mitochondria and chloroplasts. However,

the size of the mitochondrial genomes of (A. thaliana and O. sativa) are much larger

representing sizes 30x and 22x bigger than the human mitochondrial genome, respec-

tively (Richly and Leister, 2004). The human mitochondria alongside other similar

sized genomes are evidence of a streamlining over evolutionary time where the majority

of genes are encoded by the nucleus. In plants and rice the mitochondria are much

larger and evidently more prone to bidirectional transfer of DNA reflecting an active

symbiotic exchange of material (Kleine et al., 2009). The mtDNA deletions are high

for all genes apart from ND1 and ND2 that reside in the minor arc. The major arc

contains two direct 13bp repeats that are believed to be associated with the majority

of mtDNA deletions and are located at nucleotide positions 8470 and 13,447 (Samuels

et al., 2004).

Flanking region analysis

NUMTs were investigated for positional preference regarding areas of the nuclear genome

for insertion. Flanking regions adjacent to the NUMT insertion sites were interro-

gated for annotated and predicted mitochondrial genes using the Ensembl and En-

trez databases. Predicted mitochondrial genes were assessed using MitoCarta and Mi-

toSVM. The flanking regions were separated into 50MB windows moving further away

from the site of integration. When considering the Ensembl database there is a peak of

5.71% of mitochondrial genes at 100MB flanking the NUMTs significantly higher than

the predicted genome-wide average. This considered both annotated mitochondrial

genes in Ensembl and Entrez and predicted mitochondrial genes implementing Mito-

Carta and MitoSVM. However, this only serves as a small sample of the genome and

would need a more holistic view to infer any strong correlation. A number of nuclear

mitochondrial genes may have originated as mtDNA insertions as evidence suggests

recent NUMT insertions modify exon-intron patterns in human genes (Noutsos et al.,

2007; Ricchetti et al., 2004).

The dispersal of NUMTs post-insertion via a mode of transposition can not be

assumed. It was therefore necessary to analyse the flanking regions for transposable

elements to determine if this mechanism was apparent. NUMT flanking regions were

assessed for repeat content including DNA transposons, ERVs, LINEs, LTR retrotrans-

posons, mariners and SINES. These were evaluated against the repeat abundance across

the entire human genome. The percentage of the different types of transposable ele-

ment were quantified and compared against the average genome-wide level to highlight

any elevation in concordance with the NUMT integration regions. No significant eleva-
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tion of repeat content was found in any class of repeat with the exception of SINES. In

flanking regions of 200bp and 300bp there was a higher incidence of SINES compared to

the genome wide average. A deficit of LINES was evident up to 800bp from the NUMT

insertion site. This suggests the majority of NUMTs are independent events and not

duplicates via transposition but through chromosomal rearrangements. Evidence ap-

pears to corroborate findings by Gherman et al. (2007) and Jensen-Seaman et al. (2009)

which both claimed a deficit of repeats in 500bp flanking sequences of NUMTs. Jensen-

Seaman et al. (2009) did not use the Cambridge reference sequence for the BLASTN

analysis therefore these results are potentially inaccurate. In contrast to these findings,

Mishmar et al. (2004) found 59% of NUMTs were within 150bp of repetitive elements

suggesting the vicinity of transposable elements influences the ongoing integration of

mtDNA sequences and their duplication within the nuclear genome.

Following GC content analysis of the flanking sequences, isochores were determined

for 100Kb flanking regions of the mtDNA insertion sites. This revealed that the gene-

enriched isochore H3 has a very low percentage of NUMTs (1.94%) whereas H2 and L1

are significantly higher (14.11% and 17.9%, respectively). High abundance of NUMTs

are found in L2 and H1 expressing much higher percentages of 35.81% and 30.24%,

respectively. Areas of high GC content (H2 & H3) are gene enriched therefore sug-

gesting NUMTs only successfully integrate into low GC areas where gene content is

low. However, there appears to be a higher density of NUMTs in H1 as opposed to

L1 suggesting an optimum GC percentage for NUMT integration. This may be due to

selective constraints preventing foreign mitochondrial DNA disrupting functional genes

(Woischnik and Moraes, 2002). Rare occurrences of NUMTs causing disease have been

reported but most genic insertions are within introns (Lascaro et al., 2008).

The majority of research investigating human NUMTs used the mitochondrial Cam-

bridge reference sequence for their analyses. However, certain examples used the African

Yoruba sequence that contains over 40 variant nucleotides which leads to inaccuracies.

Jensen-Seaman et al. (2009) used this sequence in their BLASTN analysis generating

precarious results. Results obtained from Jensen-Seaman et al. (2009) further con-

firmed findings by Gherman et al. (2007) providing supporting evidence for the lack of

transposable elements flanking the NUMT insertion sites.

The honeybee and yellow fever mosquito contain the highest NUMT density per bp

with the honeybee having the highest abundance. The Apis mellifera genome is high in

AT content as opposed to gene-rich GC areas reflecting a potential correlation between

low GC and mtDNA insertions. The yellow fever mosquito has high density in direct
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contrast to the malarial mosquito as this has no evidence of NUMTs. The pufferfish

has a relatively small and compact genome potentially with less intronic DNA which

may be the reason for the lack of mtDNA insertions.

The migration of NUMTs may have peaked during a geological period that applied

stressful conditions. Kleine et al. (2009) suggests the formation of DSBs is stress re-

lated and may result in an increase of mtDNA uptake. This may correlate with an

evolutionary time period reflecting high NUMT occurrence in humans.

4.4.2 Technical discussion

Use of workflow technology and automation for performing large iterative sequence

analysis is rapid, efficient and removes human error. R scripts can be invoked automat-

ically to produce figures generated from large amounts of data. This is a unique and

efficient method that can be repeated for any NUMT analysis allowing for extrapola-

tion to any genome of interest. As genome sequencing increases due to high-throughput

technology the application of rapid analysis pipelines to perform comparative assess-

ments regarding NUMTs is needed. Workflows enable the automated extraction of

sequences from the human genome and can exact further procedures assessing their

flanking regions for transposable elements, GC content and mitochondrial-related gene

abundance. BioMart can be interrogated as a service within Taverna thus enabling

the rapid extraction of distributed biological data allowing in silico analysis to be per-

formed.
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Chapter 5

General Discussion
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5.1 General Discussion

5.1.1 Systematic evaluation of mitochondrial protein predic-

tion methods

Systematically identifying mitochondrial proteins has proved to be an arduous task.

The wealth of bioinformatics approaches have been interrogated to maximise the effi-

ciency in determining the mitochondrial proteome. Previous research has implied that

increasing the number of independent datasets for a combined prediction increases sensi-

tivity and specificity. However, this investigation provides strong evidence to rebuke this

idea. Mitodomain proved to be the strongest prediction method among the 11 meth-

ods investigated whereas ancestry was shown to be the weakest. Specific combinations

performed better than others containing more datasets increasing sensitivity without

compromising specificity. However, an optimum was reached at 7 classifiers achieving

the highest average sensitivity. The average sensitivity decreased when more classi-

fiers were added. Particular bioinformatic methods were more successful than others,

specifically ones based on neural networks, amino acid composition and pre-sequence

determination. This research has revealed the importance of rigorously testing bioin-

formatic prediction methods and their performance in unison with other techniques.

Implementing a support vector machine allowed each combination of datasets to be

rigorously tested 100 times, each time using a different test not present in the training

data. The standard deviation was consistently around 5% reflecting the variation a

specific combination produced when subjected to multiple testing. Previous research

conducted by Shen and Burger (2007); Pagliarini et al. (2008) performed 10-fold cross

validation on their datasets (using 90% for training and reserving 10% for testing).

However, Shen and Burger (2007) only performed the cross-validation procedure 10

times and Pagliarini et al. (2008) appeared to only perform this once. The MitoSVM

workflow enabled the automation of large scale analysis in repetition strengthening the

outcome of the sensitivities and specificities produced allowing for accurate standard

deviation determination. Previous studies have failed to provide any evidence for the

standard deviations produced when performing multiple testing of mitochondrial pro-

tein prediction methods. The variability reflected in the multiple testing shown by

the standard deviation clearly shows the wide range of sensitivity and specificity val-

ues that are produced. Determining the most complementary combination of classifiers

allows for the most accurate assessment of what proteins are contained within the mito-

chondrial proteome. This provides an invaluable process for biologists aiming to locate

mitochondrial disease genes.
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5.1.2 Identification of nuclear-mitochondrial genes involved in

LHON

Following the completion of the MitoSVM database, this was applied alongside Mito-

Carta to produce a list of candidates genes involved in LHON. These databases were

interrogated by ordering them by the chromosomal coordinates using the regions iden-

tified following linkage analysis. These both produced results containing several of the

same genes with a number of differences. In addition, candidate gene analysis was ap-

plied to the entire X chromosome whereby all OMIM and gene ontology records were

text mined for phenotypic correlations potentially related to LHON. This produced sev-

eral candidates scoring several hits to specific keywords and phrases. 9 gene candidates

were revealed that occurred in both MitoCarta and MitoSVM proving to be strong

candidates for further investigation. Text mining was also applied to orthologues of

mouse, rat and chimpanzee in an attempt to reveal novel disease candidates not anno-

tated as such in humans. The mouse revealed a number of unique candidates but none

were found in the rat or chimpanzee. Mouse orthologues Nlgn2, Pnck and Tfdp1 were

revealed to have associations with eye-related phenotypes and crucially, the correspond-

ing human genes had no evidence of any eye-related association. These candidates are

therefore unique and require further investigation for investigations in LHON. Using a

workflow to automate the text mining program against all X chromosome OMIM and

UniProt records proved to be a very powerful method for mining literature. A manual

approach would have been an unfeasible alternative. These candidates can been investi-

gated further through sequencing techniques to assess their potential involvement with

LHON. These methods provide new techniques in determining mitochondrial disease

related genes that can be prioritised into an ordered list. This will allow biologists to fo-

cus on genes of interest based on various data pertaining to their predicted involvement

in a specific disease.

5.1.3 Identification of Nuclear mitochondrial DNA sequences

NUMTs appear to commonly integrate into intergenic areas of low GC content and only

very rarely disrupt genes. This was apparent from the low percentage of NUMTs in high

GC% isochores that are gene rich areas of the genome. There was a high abundance of

NUMTs in the low GC% isochores that are known to be gene poor regions. Little evi-

dence was present to suggest transposable elements are responsible for the distribution

of NUMT fragments within the human genome, with a small exception of SINES. How-

ever, further analysis would be required to confirm this. NUMT abundance varies wildly

across species and even across closely related species exemplified by the African malar-
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ial mosquito (Anopheles gambiae) and yellow fever mosquito (Aedes aegypti) ranging

from none to hundreds, respectively. The mechanism of non-homologous end-joining of

double-strand breaks is strongly supported by numerous research. This study aimed to

compare mtDNA deletions and their point of origin within the mitochondrial genome

to the formation of mitochondrial fragments that are subsequently incorporated into

the nuclear genome. This potentially alludes to the same mechanism. Krishnan et al.

(2008) claim that the majority of mtDNA deletions are caused by mitochondrial DNA

repair of double-strand breaks in the mitochondrial genome, resulting in a wild type mi-

tochondrial genome alongside a deleted genome. Mitochondrial fragments are believed

to perform repair of double-strand breaks in the nuclear genome by a similar process of

non-homologous end-joining. Areas of the nuclear genome prone to more double-strand

breaks are likely to harbour NUMTs. Although the mechanisms are similar, mtDNA

deletions occur frequently in individual and across different tissues within the same

individual. However, the majority of human NUMTs occurred 55mya and likely reflect

a major environmental change (Gherman et al., 2007). In addition to searching for

transposable elements the flanking regions surrounding the NUMTs were searched for

a higher incidence of mitochondrial genes when compare to the genome-wide level. The

evidence showed a slight increase regarding the abundance of mitochondrial genes when

considering Ensembl genes in comparison to the overall expected abundance across the

whole nuclear genome. However, this would require further analysis to confirm as sig-

nificant. Utilising RShell within the Taverna workbench to incorporate R scripts in

the analysis workflows enabled the automatic organisation, transposition and graphi-

cal display of mtDNA fragments. These were generated in relation to their point of

origin in the mitochondrial genome in an efficient and timely experimental protocol.

These images allowed for a very unique view of the distribution of both NUMTs and

mtDNA deletions that would otherwise not have been possible implementing manual

methods. These findings suggest NUMTs contribute to mostly to nuclear intergenic

DNA and has considerable variation across species. They do not appear to reside in

the neighbourhood of nuclear mitochondrial genes but more evidence is needed on a

genome-wide scale. NUMT determination does not appear to be a reliable technique

for finding novel nuclear mitochondrial genes.
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5.2 Conclusions

MitoSVM provides a database of predicted mitochondrial proteins that has been

rigorously and systematically determined by interrogating all combinations of specific

datasets and validated using a high number of tests in comparison to previous meth-

ods. Standard deviations highlighted the variation between each result pertaining to

a specific combination when tested multiple times. This analysis provides evidence

to support the strength of prediction methods and the weaknesses harboured by oth-

ers. This provides bioinformaticians with the insight to ensure the careful selection of

computational methods when performing mitochondrial protein predictions.

The text mining procedure generated very interesting candidates that were not

present in the mitochondrial prediction lists. Specific orthologues in the mouse proved

to be strong candidates. These genes can been investigated further for their potential

implications in LHON and the text mining workflow can be modified further to include a

more extensive vocabulary. This technique is important for highlighting genes that may

not be directly predicted as mitochondrial but indirectly associated through interaction

networks.

Analysis of NUMTs can be greatly facilitated by the developments in whole genome

sequencing with the rapid advancement of next generation sequencing technology. This

can be applied to a much richer diversity of sequenced genomes with significantly higher

depth of coverage. Following the completion of the Neanderthal nuclear genome, NUMT

analysis can be applied potentially revealing any unique environmental stresses experi-

enced by this group of ancient humans.

Various techniques have been applied to determine the mitochondrial proteome.

Once this proteome is more defined, mitochondrial genetics can focus on specific dis-

eases that are currently misunderstood. This will allow clinicians and mitochondrial

geneticists to improve the lives of patients suffering from these rare diseases.
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Cooper. Meta-analysis of gross insertions causing human genetic disease: novel mu-

tational mechanisms and the role of replication slippage. Hum Mutat, 25(2):207–21,

February 2005. ISSN 1098-1004.

Patrick F Chinnery. Searching for nuclear-mitochondrial genes. Trends Genet, 19(2):

60–2, February 2003. ISSN 0168-9525.

M G Claros and P Vincens. Computational method to predict mitochondrially imported

proteins and their targeting sequences. Eur J Biochem, 241(3):779–86, November

1996. ISSN 0014-2956.

Dawn Cotter, Purnima Guda, Eoin Fahy, and Shankar Subramaniam. Mitoproteome:

mitochondrial protein sequence database and annotation system. Nucleic Acids Res,

32(Database issue):D463–7, January 2004. ISSN 1362-4962.

177



L Dagnino, C J Fry, S M Bartley, P Farnham, B L Gallie, and R A Phillips. Expres-

sion patterns of the e2f family of transcription factors during mouse nervous system

development. Mech Dev, 66(1-2):13–25, August 1997. ISSN 0925-4773.

David De Roure and Carole Goble. Lessons from myexperiment: Research objects for

data intensive research. In eScience Workshop 2009, Pittsburgh, US, October 2009.

URL http://eprints.ecs.soton.ac.uk/17744/.

David De Roure, Carole Goble, Sergejs Aleksejevs, Sean Bechhofer, Jiten Bhagat, Don

Cruickshank, Danius Michaelides, and David Newman. The myexperiment open

repository for scientific workflows. In Open Repositories 2009, Atlanta, Georgia,

USA, May 2009. URL http://eprints.ecs.soton.ac.uk/17131/.

S DiMauro and E A Schon. Mitochondrial dna mutations in human disease. Am J Med

Genet, 106(1):18–26, 2001. ISSN 0148-7299.

Salvatore Dimauro and Guido Davidzon. Mitochondrial dna and disease. Ann Med, 37

(3):222–32, 2005. ISSN 0785-3890.

Andreas Doms and Michael Schroeder. Gopubmed: exploring pubmed with the gene

ontology. Nucleic Acids Res, 33(Web Server issue):W783–6, July 2005. ISSN 1362-

4962.

M Elstner, C Andreoli, T Klopstock, T Meitinger, and H Prokisch. The mitochondrial

proteome database: Mitop2. Methods Enzymol, 457:3–20, 2009. ISSN 1557-7988.

O Emanuelsson, H Nielsen, S Brunak, and G von Heijne. Predicting subcellular local-

ization of proteins based on their n-terminal amino acid sequence. J Mol Biol, 300

(4):1005–16, July 2000. ISSN 0022-2836.

Paul Fisher, Harry Noyes, Stephen Kemp, Robert Stevens, and Andrew Brass. A

systematic strategy for the discovery of candidate genes responsible for phenotypic

variation. Methods Mol Biol, 573:329–45, 2009. ISSN 1940-6029.

Toni Gabaldón and Martijn A Huynen. Shaping the mitochondrial proteome. Biochim

Biophys Acta, 1659(2-3):212–20, December 2004. ISSN 0006-3002.

Adrian Gherman, Peter E Chen, Tanya M Teslovich, Pawel Stankiewicz, Marjorie With-

ers, Carl S Kashuk, Aravinda Chakravarti, James R Lupski, David J Cutler, and

Nicholas Katsanis. Population bottlenecks as a potential major shaping force of

human genome architecture. PLoS Genet, 3(7):e119, July 2007. ISSN 1553-7404.

178



M Gilbert, J Smith, A J Roskams, and V J Auld. Neuroligin 3 is a vertebrate gliotactin

expressed in the olfactory ensheathing glia, a growth-promoting class of macroglia.

Glia, 34(3):151–64, May 2001. ISSN 0894-1491.

Carole Goble and Robert Stevens. State of the nation in data integration for bioinfor-

matics. J Biomed Inform, 41(5):687–93, October 2008. ISSN 1532-0480.

Ehud Goldin, Stefanie Stahl, Adele M Cooney, Christine R Kaneski, Surya Gupta,

Roscoe O Brady, James R Ellis, and Raphael Schiffmann. Transfer of a mitochondrial

dna fragment to mcoln1 causes an inherited case of mucolipidosis iv. Hum Mutat, 24

(6):460–5, December 2004. ISSN 1098-1004.

T Ryan Gregory. A bird’s-eye view of the c-value enigma: genome size, cell size, and

metabolic rate in the class aves. Evolution, 56(1):121–30, January 2002. ISSN 0014-

3820.

Chittibabu Guda. ptarget: a web server for predicting protein subcellular localization.

Nucleic Acids Res, 34(Web Server issue):W210–3, July 2006. ISSN 1362-4962.

Chittibabu Guda, Eoin Fahy, and Shankar Subramaniam. Mitopred: a genome-scale

method for prediction of nucleus-encoded mitochondrial proteins. Bioinformatics, 20

(11):1785–94, July 2004. ISSN 1367-4803.

Einat Hazkani-Covo, Raymond M Zeller, and William Martin. Molecular poltergeists:

mitochondrial dna copies (numts) in sequenced nuclear genomes. PLoS Genet, 6(2):

e1000834, 2010. ISSN 1553-7404.

T Hirokawa, S Boon-Chieng, and S Mitaku. Sosui: classification and secondary struc-

ture prediction system for membrane proteins. Bioinformatics, 14(4):378–9, 1998.

ISSN 1367-4803.

Masamitsu Honma, Mayumi Sakuraba, Tomoko Koizumi, Yoshio Takashima, Hiroko

Sakamoto, and Makoto Hayashi. Non-homologous end-joining for repairing i-scei-

induced dna double strand breaks in human cells. DNA Repair (Amst), 6(6):781–8,

June 2007. ISSN 1568-7864.

N Howell. Leber hereditary optic neuropathy: respiratory chain dysfunction and degen-

eration of the optic nerve. Vision Res, 38(10):1495–504, May 1998. ISSN 0042-6989.

S Hua and Z Sun. Support vector machine approach for protein subcellular localization

prediction. Bioinformatics, 17(8):721–8, August 2001. ISSN 1367-4803.

179



Gavin Hudson, Sharon Keers, Patrick Yu Wai Man, Philip Griffiths, Kirsi Huoponen,

Marja-Liisa Savontaus, Eeva Nikoskelainen, Massimo Zeviani, Franco Carrara, Rita

Horvath, Veronika Karcagi, Liesbeth Spruijt, I F M de Coo, Hubert J M Smeets,

and Patrick F Chinnery. Identification of an x-chromosomal locus and haplotype

modulating the phenotype of a mitochondrial dna disorder. Am J Hum Genet, 77

(6):1086–91, December 2005. ISSN 0002-9297.

Duncan Hull, Katy Wolstencroft, Robert Stevens, Carole Goble, Mathew R Pocock,

Peter Li, and Tom Oinn. Taverna: a tool for building and running workflows of

services. Nucleic Acids Res, 34(Web Server issue):W729–32, July 2006. ISSN 1362-

4962.

M I Jensen-Seaman, J H Wildschutte, I D Soto-Calderón, and N M Anthony. A com-

parative approach shows differences in patterns of numt insertion during hominoid

evolution. J Mol Evol, 68(6):688–99, June 2009. ISSN 1432-1432.

J Jurka, V V Kapitonov, A Pavlicek, P Klonowski, O Kohany, and J Walichiewicz.

Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome

Res, 110(1-4):462–7, 2005. ISSN 1424-859X.

Lukas Käll, Anders Krogh, and Erik L L Sonnhammer. A combined transmembrane

topology and signal peptide prediction method. J Mol Biol, 338(5):1027–36, May

2004. ISSN 0022-2836.

Matthew Anthony Kirkman, Alex Korsten, Miriam Leonhardt, Konstantin Dimitriadis,

Ireneaus F De Coo, Thomas Klopstock, Philip G Griffiths, Gavin Hudson, Patrick F

Chinnery, and Patrick Yu-Wai-Man. Quality of life in patients with leber hereditary

optic neuropathy. Invest Ophthalmol Vis Sci, 50(7):3112–5, July 2009a. ISSN 1552-

5783.

Matthew Anthony Kirkman, Patrick Yu-Wai-Man, Alex Korsten, Miriam Leonhardt,

Konstantin Dimitriadis, Ireneaus F De Coo, Thomas Klopstock, and Patrick Francis

Chinnery. Gene-environment interactions in leber hereditary optic neuropathy. Brain,

132(Pt 9):2317–26, September 2009b. ISSN 1460-2156.

Tatjana Kleine, Uwe G Maier, and Dario Leister. Dna transfer from organelles to the

nucleus: the idiosyncratic genetics of endosymbiosis. Annu Rev Plant Biol, 60:115–38,

2009. ISSN 1545-2123.

Oleksiy Kohany, Andrew J Gentles, Lukasz Hankus, and Jerzy Jurka. Annotation,

submission and screening of repetitive elements in repbase: Repbasesubmitter and

censor. BMC Bioinformatics, 7:474, 2006. ISSN 1471-2105.

180
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Appendix

The Appendix containing all the analysis spreadsheets, data collection, Java and R

code are all available on the accompanying CD.
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