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Abstract 

Research into chronic hepatitis C virus (HCV) infection (CHC) is needed because 

only ~50% of patients with CHC are cured with existing treatments. HCV interacts 

with metabolism of cholesterol and very low density lipoproteins (VLDL) for 

replication, assembly, secretion and entry. Patients with CHC exhibit a dyslipidemia 

characterised by low LDL cholesterol (LDL-C) and insulin resistance. This 

translational study characterised the dyslipidemia apparent in CHC in retrospective 

and prospective HCV cohorts. Distinct metabolic phenotypes were defined between 

HCV genotypes 1 and 3. LDL-C was markedly reduced in HCV-G3, which exerted a 

greater effect than apoE genotype on LDL-C levels. Prospective analysis of non-

cholesterol sterol intermediates established that disordered cholesterol synthesis in 

HCV was mediated predominantly via the lathosterol pathway. In HCV-G3, levels of 

Proprotein Convertase Subtilisin Kexin type 9 (PCSK9) were low compared to 

healthy controls, suggesting increased LDL clearance. Low LDL-C and high 

triglyceride/HDL ratio were found to be predictive of poor response to anti-viral 

therapy. Collaboration in a genome wide association study revealed that SNPs in 

IL28B rather than in lipid regulating genes are the major host genetic determinants of 

treatment response. Analysis of HCV lipoviral particles (LVP) by iodixanol density 

gradient ultracentrifugation revealed correlations between insulin resistance and 

triglycerides (TG) with LVP in HCV-G1. Determination of apoB in VLDL1, VLDL2, 

IDL and LDL fractions confirmed fasting TG are predominately in the VLDL1 

fraction, implying that HCV-G1 preferentially associates with the VLDL1 pathway. 

Interferon γ inducible protein 10 (IP10), a marker of hepatic interferon stimulated 

gene expression correlated with LDL-C and HCV LVP ratio in HCV-G1, explaining 

the association between low LDL-C and poor treatment response. A randomised pilot 

trial in 60 CHC non-responders indicated that 12 weeks of treatment with Fluvastatin 

can lower total viral load in HCV-G1 & G4 and that low dose n3 PUFA‟s improved 

IP10 levels. 
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1 Chapter 1. Introduction 

1.1 HCV Epidemiology, natural history and lifecycle 

1.1.1 Epidemiology 

Hepatitis C Virus was first discovered in the search for the infectious aetiological 

agent of non-A non-B Hepatitis (NANBH) in 1989. This landmark discovery was 

made by cloning the genome from a cDNA library of NANBH cases without prior 

characterisation of the NANBH agent (Choo, Kuo et al. 1989). The ~10,000 

nucleotide positive strand RNA clone that was isolated was termed hepatitis C virus 

(HCV).  The recombinant peptide was then used to capture circulating viral anti-

bodies from NANBH sera, confirming that antibodies to HCV were present in cases 

of NANBH throughout the world (Kuo, Choo et al. 1989). Subsequently HCV 

infection has been found in over 170 million people worldwide (Heintges and Wands 

1997), 2% of the worlds population (Shepard, Finelli et al. 2005). In the United 

Kingdom at least 185,000 people are affected (Health_Protection_Agency 2009). 

HCV is a blood borne virus and therefore transmission occurs parenterally. Globally, 

unsafe injection practices are the most common source of infection. In the UK, 

injecting drug use accounts for the majority of new infections and there are also a 

significant number of patients who received contaminated blood transfusions prior to 

screening of blood products in 1991 that contribute to the HCV epidemic 

(Health_Protection_Agency 2009). At present there is no effective vaccine to protect 

from HCV.  

1.1.2 Natural History and factors involved in liver disease progression 

The natural history of HCV is variable between individuals. Following exposure to 

HCV, 20-30% spontaneously clear the infection (Thomas, Astemborski et al. 2000), 

but 70 - 80% will develop chronic infection. Of those with chronic infection, 20-30% 

will progress to liver cirrhosis within 20 years and 1-3% of these may develop liver 

failure or liver cancer (Seeff 1997). Progression to cirrhosis is also variable between 

individuals. Factors known to be associated with more rapid progression include older 

age at time of exposure, male sex, immune suppression, co-infection with hepatitis B 

and / or HIV, high alcohol intake and diabetes. Additionally it is now recognised that 
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chronic HCV infection is associated with a variety of non-liver related conditions 

including cryoglobulinaemia, B cell lymphoma, anxiety and depression, insulin 

resistance and diabetes (Medina, Garcia-Buey et al. 2004). 

1.1.3 HCV lifecycle 

HCV is a single strand RNA virus and member of the Flavividae family of viruses, 

for which humans are the only natural host. It is of the genus Hepacivirus. The only 

other Hepacivirus is GBV-B. There are six HCV genotypes and several subtypes that 

vary by as much as 35% in sequence. The HCV genotypes also vary in the global 

distribution, with genotype 1a and 1b the most prevalent in the USA, genotypes 1b 

and 2 in Japan, genotype 3 in injecting drug users in Europe, genotype 4 in north 

Africa, and genotypes 5 & 6 in South Africa and Hong Kong (Zein 2000). A study 

looking at the relative evolutionary ages of the various HCV genotypes produced a 

cladogram indicating that the youngest HCV genotype is G1 followed by 4, 5, 3, 6 

and 2. This corresponds to the likelihood of response to interferon based anti-viral 

therapy and suggests a possible mechanism of immune selection driving evolution and 

divergence of the HCV genotypes (Pang, Planet et al. 2009).  

The major breakthrough that permitted further investigation of the intracellular HCV 

lifecycle was the discovery of a HCV genotype 2a strain cloned from an individual 

with fulminant hepatitis (JFH1) that was able to replicate efficiently in cell culture and 

was infectious in Chimpanzees (Wakita, Pietschmann et al. 2005). This has been 

termed HCVcc. Following cell entry, the genome of the virus particle is uncoated and 

its 9.6 kb single strand of RNA is directly translated to a single polyprotein precursor 

~3000 amino acids long (Moradpour, Penin et al. 2007). The HCV polyprotein is then 

cleaved by viral and host proteases into structural and non structural proteins. The 

structural proteins are the envelope glycoproteins E1 and E2 and the capsid or core 

protein. These form the structural components of new virions. The core protein has 

other functional properties in replication, for example the C terminal domain binds to 

and localises the core to lipid droplets. The envelope glycoproteins, E1 and E2 

assemble as a heterodimer to form the main protein components of the viral envelope. 

The non structural proteins (p7, NS2, NS3, NS4A, NS4B, NS5A and NS5B) are not 

incorporated into the virion but are involved in viral replication. A negative strand of 

RNA is made first to act as a template for new progeny positive strand virions. The 
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ER membrane is the site of HCV replication where all the non-structural proteins are 

tethered to the ER membrane to form a replication complex which is the factory for 

new virions (Moradpour, Penin et al. 2007). HCV replicates using an RNA dependent 

RNA polymerase which has no proof editing mechanism. Therefore a high rate of 

spontaneous mutations can arise, resulting in ever changing progeny quasispecies. 

This is clinically very important because it means that there is a very high potential 

for anti-viral resistance mutations to develop against drugs used to inhibit viral 

replication (STAT-C‟s) without complete termination of replication or continued 

sensitivity to interferon-α (Pawlotsky, Chevaliez et al. 2007). 

1.2 Anti-viral therapy and factors important in determining outcome  

1.2.1 Anti-viral therapy 

Standard therapy for chronic HCV infection is a combination of pegylated interferon-

α (PegIFN-α) and ribavirin. Long term prognosis is improved in those that achieve a 

sustained virological response (SVR), defined as undetectable HCV RNA by PCR 

more than 6 months after completion of anti-viral therapy (Manns, McHutchison et al. 

2001; Davis and Lindsay 2005). Unfortunately this therapy is associated with 

numerous and sometimes significant side effects such as flu-like symptoms, 

depression, nausea, and cytopaenias. Duration of treatment differs depending on viral 

genotype. In the UK, HCV genotypes 1 (HCV G1) and genotype 3 (HCV G3) are the 

most common, accounting for >90% of patients presenting to the clinic. The most 

important viral factor for determining treatment outcome is HCV genotype, whereby 

genotypes 1 & 4 are associated with poor response. Individuals with HCV G3 

infection achieve SVR‟s of 70-80% with 24 weeks of therapy whereas those with 

HCV G1 require at least 48 weeks of therapy with only approximately 50% achieving 

SVR. Currently there are no licensed treatment options for individuals who do not 

achieve an SVR. Host factors that adversely influence response to therapy include 

male gender, African ethnicity, older age, insulin resistance, obesity (Gao, Hong et al. 

2004; Conjeevaram, Fried et al. 2006; Walsh, Jonsson et al. 2006) and advanced 

fibrosis (Everson, Hoefs et al. 2006). Interestingly total HCV RNA viral load 

correlates very poorly with host factors known to adversely affect outcome, and in a 

study of 2,472 HCV genotype 1 patients, HCV RNA correlated only weakly with age, 

male sex and BMI >27. In a multiple regression model these factors accounted for 
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less than 4.6% of the HCV RNA differences between individuals (Ticehurst, Hamzeh 

et al. 2007). There is currently no way to predict accurately in advance of anti-viral 

therapy those who will not respond. Instead the most reliable predictor of outcome is a 

quantitative PCR for HCV RNA after 12 weeks of treatment. Those that achieve non-

detectable HCV RNA at 12 weeks are considered complete early virological 

responders (EVR). This is associated with SVR rates in excess of 80%. The other 

extreme is those who have less than 2-log reduction in total HCV RNA, who are 

considered null responders and for these individuals continuation of therapy is 

considered futile. Those in the middle that achieve at least a 2-log drop in HCV RNA 

but are still detectable are considered partial EVR‟s. A significant proportion of these 

individuals can still relapse and so recent emphasis has been on optimising and 

individualising treatment for example by weight based dosing and extending duration 

of therapy (Ghany, Strader et al. 2009).  

Interferon therapy activates the innate immune system. During therapy with pegIFNα 

a number of phases of decline in HCV RNA have been described. The first phase 

decline occurs in the first 48 hours due to inhibiting production and release of new 

virions and has been reported to correlate with viral genotype (2&3 greater decline 

than 1), and is inversely related to fibrosis, steatosis, GGT and HOMA IR levels 

(Durante-Mangoni, Zampino et al. 2009). This is followed by the second phase 

decline lasting up to 28 days which is slower and predicted by viral load, ALT and the 

rate of the first phase decline (Durante-Mangoni, Zampino et al. 2009).   

In recent years a number of new potent anti-HCV drugs that target viral replication 

have been developed. Collectively these new drugs have been termed „Direct acting 

anti-virals (DAAV)‟ or „specifically targeted anti-viral therapy for HCV (STAT-C‟s)‟. 

These agents are either small molecules that target and inhibit the HCV NS3-NS4A 

protease (e.g. telepravir and bocepravir) or nucleoside or non-nucleoside analogues 

that target the NS5B RNA dependent RNA polymerase and are currently in phase 

II/III clinical trials (Asselah, Benhamou et al. 2009). Whilst these new drugs are 

promising they are by no means likely to be a panacea for all HCV patients. This is 

because they still need to be used in combination with PegIFN-α and ribavirin (i.e. 

triple therapy) with all the associated side effects. Moreover the development of anti-

viral resistance remains a concern. In the published trials to date, viral resistance to 

VX950 (telepravir) was common but these resistant quasispecies fortunately remained 
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sensitive to PegIFN-α. These trials were done in treatment naïve and previous relapse 

patients, so the great concern is that protease inhibitors when given to interferon-α 

null responders may pose a high risk for long term anti-viral resistance (Pawlotsky, 

Chevaliez et al. 2007). Therefore targeting host factors may be an important 

therapeutic strategy particularly for the interferon null responders.  

1.2.2 The innate immune response to HCV 

HCV is remarkable in its ability to establish chronic infection in at least 70% of those 

exposed. It is likely that virally mediated modulation of innate antiviral mechanisms 

permits HCV chronicity. Innate anti-viral defences include direct intracellular 

mechanisms and innate immune cells such as NK, monocyte macrophages and NKT 

cells. Interferons are part of the innate anti-viral immune response. Interferon-α is a 

type 1 interferon and is used as the mainstay of treatment for HCV; however there are 

also endogenously produced β, γ and λ interferons. Interferons (IFN) produced in 

response to viral infections modulate the expression of hundreds of genes known as 

IFN stimulated genes (ISGs). ISGs code for proteins which confer an antiviral state 

within the cell. IFNs act by a specific receptor mediated pathway to ultimately 

promote ISG transcription. Following binding to the specific IFN cell surface 

receptor, the signalling cascade of the JAK STAT pathway is activated. Tyrosine 

kinase phosphorylation of Jak1 and Tyk2 activates STAT1 and STAT2, which then 

translocate to the nucleus and bind to specific promoter regions in the DNA of ISGs. 

As well as being antiviral, ISGs are also involved in lipid metabolism and other 

cellular processes (de Veer, Holko et al. 2001). Evidence suggests that HCV is able to 

interfere with the IFN / ISG system. Patients with elevated pre-treatment ISG‟s in 

liver biopsy specimens are more likely to be non-responders to IFNα therapy, 

suggesting a refractory state in the IFN signalling pathway in non-responders. 

Conversely those with low ISG levels pre IFNα therapy were more likely to be 

responders (Chen, Borozan et al. 2005; Sarasin-Filipowicz, Oakeley et al. 2008). 

Interferon-γ inducible protein 10kDa (IP10, also known as CXCL10) is a CXC 

chemokine that targets T-lymphocytes, NK cells, and monocytes but not neutrophils. 

IP10 is a serum marker of hepatic ISG activation. High baseline serum IP10 levels 

have been reported in non-responders to anti-viral therapy and low IP10 levels are 

predictive of sustained response (Diago, Castellano et al. 2006). In one report, a 
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baseline pre treatment IP10 level of >600 pg/ml was predictive of non-response with a 

79% negative predictive value (Lagging, Romero et al. 2006). IP10 levels are also 

higher in those with more advanced fibrosis (Romero, Lagging et al. 2006). A recent 

study has indicated that IP10 levels are predictive of the first phase decline of HCV 

RNA during PegIFNα therapy and ribavirin rather than the second phase decline 

(Askarieh, Alsio et al. 2010). The clinical significance of ISGs has also been 

highlighted by a study measuring IP10, MIG and MCP1 as a serum markers of ISG 

activation, and identified that addition of ribavirin promotes IFN signalling (Feld, 

Lutchman et al. 2010). 

1.2.3 Targeting HCV interactions with the host 

The limitations of existing anti-viral therapy with PegIFN-α and ribavirin and 

potential limitations of the new STAT-C‟s in terms of side effects and low barrier to 

anti-viral resistance, makes targeting host factors an important therapeutic strategy. A 

key interaction of HCV with the host is in lipid pathways. Understanding these 

essential interactions in the viral lifecycle highlights potential targets that are 

amenable to therapeutic modulation.  

1.2.4 Clinical correlates of HCV lipid interactions 

Chronic HCV has been reported to influence serum lipid profiles. A community-based 

study of 11,239 individuals reported that lower serum cholesterol is associated with 

chronic HCV infection (Dai, Chuang et al. 2008).  This may be particularly 

pronounced in HCV genotype 3 infection (Serfaty, T et al. 2001; Siagris, Christofidou 

et al. 2006). Higher baseline LDL cholesterol levels may be associated with SVR, in 

both HCV mono-infected and HCV/HIV co-infected patients (Gopal, Johnson et al. 

2006; del Valle, Mira et al. 2008; Economou, Milionis et al. 2008). Conversely low 

cholesterol is a significant predictor of reduced likelihood of HCV genotype 1 patients 

achieving a SVR (Backus, Boothroyd et al. 2007).  

In cohort studies of spontaneously resolved HCV (i.e. Anti-HCV antibody positive, 

RNA PCR negative), high serum triglycerides are associated with spontaneous viral 

clearance (Marzouk, Sass et al. 2007). Additionally there may be an association 

between the Apo E3 allele (encoding wild-type isoform with normal LDLr binding) 

and viral persistence (Price, Bassendine et al. 2006).  Although this epidemiological 
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evidence supports a key role for lipids in determining clinical outcomes of patients 

with HCV infection, the mechanisms are not yet understood. 

 

1.3 Rationale for investigating HCV interactions with lipid metabolism 

HCV is variable in its ability to cause progressive liver disease and in the response to 

anti-viral therapy. Both viral factors such as HCV genotype and host factors are 

important in determining these important clinical outcomes. The next section 

discusses the large body of evidence that is now indicating that HCV directly interacts 

with host lipid metabolism as part of its life-cycle. The rationale for investigating lipid 

metabolism in HCV patients is therefore to further understand how these interactions 

are appreciably different between HCV genotypes 1 and 3 given their different 

sensitivity to anti-viral treatment; to investigate whether HCV-lipid interactions are 

important predictors of response to anti-viral therapy and to evaluate whether 

adjunctive therapies could be targeted to impact HCV-lipid interactions that would 

potentially improve existing therapy.  

1.4 HCV interacts with VLDL metabolism 

Overwhelming in-vitro data now indicates that HCV utilises interactions with lipids at 

multiple stages of the virus lifecycle; in viral replication, assembly, in the circulation 

and for viral entry. An association of HCV with serum lipoproteins was first described 

by Thomssen et al in 1993, who observed that HCV RNA was heterogeneous in 

density. Thomssen used sucrose density gradients to fractionate patient sera and found 

in some individuals that HCV was restricted to low densities between 1.03 and 1.08 

g/ml, whereas in other individuals HCV was found distributed over the whole density 

gradient with additional peaks at higher densities. This observation was followed up 

using immuno-precipitation with anti-beta lipoprotein antibodies which found that 

HCV RNA could be completely co-precipitated in 8/20 and partially co-precipitated 

in 9/20 patients (Thomssen, Bonk et al. 1992), suggesting an association with 

apolipoprotein B. Subsequently the heterogeneity of density was identified to be due 

at least in part to variable association with immunoglobulins (Thomssen, Bonk et al. 

1993). The low density lipoprotein associated HCV particles have been termed 

„Lipoviral particles, (LVP)‟. That the heterogeneity in density of HCV may be 
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clinically important was recognised from a comparative study of acute and chronic 

infection in immunodeficient and immunocompetent patients. In this study, low 

density HCV was identified more often in acute infection, and high density HCV in 

chronic infection. In cases of acute infection acquired from the same batch of HCV 

G1a infected human immunoglobulin, markedly different clinical courses were noted. 

One individual with persistent low density HCV rapidly progressed to decompensated 

liver disease, whereas others with persistence of high density HCV had clearance with 

α-interferon or only mild disease (Watson, Bevitt et al. 1996).  

It is therefore apparent that HCV interactions with lipids are not only critical in the 

viral lifecycle but also likely to be clinically important. These complex interactions 

have been further characterised in the HCV cell culture system and will be discussed 

further in detail in later sections. In order to understand these interactions with the 

host, an appreciation of lipoprotein metabolism is essential, which is reviewed in this 

next section. 

1.4.1 Apolipoprotein B (apoB) 

The liver synthesises and exports cholesterol and triglycerides as an energy supply to 

peripheral tissues through secretion of very-low-density lipoproteins (VLDL) 

(Olofsson, Asp et al. 1999; Davis and Hui 2001). Each VLDL particle consists of a 

neutral core of lipids (triglycerides (TG) and cholesterol esters) surrounded by a 

single non-transferable molecule of apolipoprotein B100 (apoB). On the surface of the 

VLDL are transferable lipoproteins including apolipoprotein E (apoE) and apoC‟s and 

phospholipids. Apolipoprotein B100 is the structural protein of VLDL synthesised in 

the liver and is the full length (100%) 4536 amino acid polypeptide. ApoB48 is the 

truncated form of apoB (48%) and is the structural protein of chylomicrons, 

synthesised by the small intestine. In the intestine, RNA editing converts the Gln
2153 

 

to a stop codon, producing a truncated form of only 48% of the protein from the N 

terminus (apoB48). In humans this occurs only in the intestine and not the liver. In 

some rodents the liver produces both apoB100 and apoB48.  

ApoB100 is a ligand for the LDL receptor (LDLr). The receptor binding domain is in 

the C terminal and therefore apoB48 cannot bind to LDLr.  Chylomicrons therefore 

depend on apoE to bind the LDLr and LRP1 for clearance. ApoB100 has 5 domains 

(BetaAlpha1, Beta1, Alpha2, Beta2 and Alpha3). The globular BetaAlpha1 domain 
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extends away from the particle surface. There are no membrane spanning domains but 

there are hydrophobic beta sheet regions and hydrophilic regions. It is therefore 

amphipathic and able to form emulsions with neutral lipids in the particle core. This 

facilitates the transport of hydrophobic lipids in the aqueous environment of the 

serum. 

1.4.2 VLDL synthesis 

VLDL are synthesised by hepatocytes in a two stage process (see figure 1). Newly 

synthesised apoB are essentially pre-VLDL particles and contain small amounts of 

lipid (1). The apoB translocates across the membrane of the rough endoplasmic 

reticulum (ER) to reach the ER lumen (2). The rate determining step of apoB 

secretion is exit from the rough ER. Translocation across the ER membrane results in 

a steady state supply of membrane associated apoB. The first lipidation stage occurs 

in the lumen of the ER where microsomal triglyceride transfer protein (MTP) loads 

triglycerides onto the nascent apoB molecule (2). MTP associates with the N terminus 

of ApoB as a „lipid pocket‟. Unlipidated apoB100 is ubiquitinated and targeted to the 

proteasome for degradation (3&4). It is the extent of lipid transfer to these pre-VLDL 

particles that determines the size of the secreted VLDL particle. The second step fuses 

the partially lipidated VLDL with a triglyceride rich lipid droplet, again facilitated by 

MTP (6&7). Lipid droplets are intracellular storage compartments of triglycerides and 

cholesterol esters, surrounded by a phospholipid monolayer. Lipid droplets form as 

lenses in the ER before budding off as discrete organelles. The mature VLDL is then 

transported via the golgi for secretion by ER transport vesicles (8). VLDL are secreted 

by exocytosis. Up to 10
18 

VLDL are secreted per day. 
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Figure 1 Assembly of VLDL 

 

Adapted from Martin S & Parton RG. Nature Reviews; Molecular Cell Biology 

2006,7:373 

 

Since apoB is constitutively expressed and its degradation is regulated, the number of 

VLDL particles that are secreted is dependent on the amount of apoB degradation. 

ApoB is degraded by two mechanisms. The first is endoplasmic reticulum associated 

degradation (ERAD) which occurs when TG availability is low and the apoB is 

ubiquitinated and targeted to the proteasome. The second is post-ER, pre-secretory 

proteolysis of apoB (PERPP). This occurs even when TG availability is normal and is 

stimulated by omega3 polyunsaturated fatty acids (n-3 PUFA‟s) such as 

eicosapentanoic acid and docosahexanoic acid. N-3 PUFA induction of PERPP occurs 

in the Golgi which then directs the apoB to autophagosomes. The PERPP pathway is 

also sensitive to insulin, whereby acute increases in insulin decrease hepatic VLDL 

and apoB secretion. In vivo, hepatic insulin resistance is associated with decreased 

apoB degradation by the PERPP pathway, hence VLDL overproduction (Ginsberg 

and Fisher 2009). 
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1.4.3 Metabolism of VLDL in plasma 

There are two metabolically distinct classes of VLDL, VLDL1 and VLDL2, defined 

by their flotation rates in salt gradients. VLDL1 are large and TG rich (Sf60-400) and 

VLDL2 are smaller and cholesterol rich (Sf 20-60). VLDL1 and VDLD2 are 

regulated independently (Packard and Shepherd 1997). Plasma TG variation is mainly 

accounted for by VLDL1 (Tan, Foster et al. 1995). VLDL2 is the important 

determinant of low-density lipoprotein (LDL) concentration (Packard, Demant et al. 

2000), and quantitiatively most of the serum apoB and cholesterol is in the LDL pool. 

Secreted VLDL2 in the serum are the precursors of LDL. The conversion of VLDL to 

LDL is a dynamic process  facilitated by lipoprotein Lipase (LPL) which resides on 

the luminal surface of the vascular endothelium and hydrolyses the triglyceride core 

of triglyceride rich lipoprotein (TRL‟s i.e. VLDL and chylomicrons) (Adiels, 

Olofsson et al. 2006). This produces free fatty acids (FFA) which are delivered to 

muscle and adipose tissue. LPL then dissociates from the endothelium onto the TRL 

and mediates subsequent targeting to the liver, acting as a bridge between lipoproteins 

and heparin-sulphate proteoglycans (HSPG) (Williams, Fless et al. 1992). VLDL1 are 

catabolised predominantly by LPL and then are rapidly cleared as remnant particles 

via apoE binding to LDLr. VLDL2 are catabolised by both LPL and hepatic lipase 

(HL) (Packard and Shepherd 1997). The TG depleted VLDL remnant becomes an 

intermediate density lipoprotein (IDL). The IDL can be cleared by the liver or become 

LDL. Interferon-α, used in the treatment of HCV, decreases LPL, HL and CETP 

activities, leading to elevated VLDL triglycerides and low HDL cholesterol 

(Shinohara, Yamashita et al. 1997). 

1.4.4 HCV assembly utilises the VLDL secretion pathway  

There is now substantive evidence indicating that HCV co-assembles with VLDL. 

Suppression of apoB100 and apoE inhibit both VLDL and HCVcc production 

(Huang, Sun et al. 2007; Gastaminza, Cheng et al. 2008). Moreover further inhibition 

of HCV was observed by inhibiting MTP, the key enzyme involved in VLDL 

assembly (Huang, Sun et al. 2007; Gastaminza, Cheng et al. 2008). In the HCV 

subgenomic replicon system, NS5A interacts with apoB and reduces MTP 

transcription and activity (Domitrovich, Felmlee et al. 2005). Interestingly Naringerin 
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which also inhibits VLDL secretion, reduced HCV secretion from infected cells by 

80% (Nahmias, Goldwasser et al. 2008). 

HCV and VLDL secretion are co-inhibited when expression of long chain acyl coA 

synthetase 3 (ACSL3) is inhibited by interference RNA (RNAi) (Yao and Ye 2008). 

ACSL3 is another enzyme crucial for VLDL assembly which conjugates fatty acids to 

co-enzyme A to allow them to be incorporated into TG, cholesterol ester, and 

phospholipids e.g. phosphatidylcholine (PC) and phosphatidylethanolamine (PE).  

The HCV core protein recruits HCV non-structural proteins and replication 

complexes to lipid droplet associated membranes for virus assembly (Miyanari, 

Atsuzawa et al. 2007).  The hydrophobic domain D2 of HCV core protein permits the 

interaction and co-localisation with lipid droplets (Hope and McLauchlan 2000; 

Shavinskaya, Boulant et al. 2007). At this site, apoE appears to interact with NS5A. 

Silencing of apoE reduced production of infectious virus particles but did not affect 

viral entry or replication (Benga, Krieger et al. 2010). The lipid droplets redistribute 

around the perinuclear region (Boulant, Douglas et al. 2008). This re-distribution of 

the lipid droplets to the sites of HCV replication may permit an association between 

new virus particles and VLDL, at the second stage of VLDL assembly (Boulant, 

Montserret et al. 2006). Importantly in all these studies although HCV secretion was 

co-inhibited with VLDL secretion, viral replication was unaffected. Even when 

VLDL is inhibited there remains continued production of high density HCV, 

suggesting that the association with VLDL occurs at a maturation step for secretion 

(Gastaminza, Cheng et al. 2008).  

The HCV envelope glycoproteins may be able to associate with apoB directly. A 

study using stable expression of HCV E1 and E2 in caco-2 cells, an intestinal cell line, 

was dependent on production of apoB. HCV envelope glycoproteins were only 

detectable in the apoB containing density fractions and were reduced by addition of an 

MTP inhibitor. The authors believe this data support an intrinsic capacity to the HCV 

envelope glycoproteins to utilise apoB synthesis for production and proposed a 

controversial model of „empty LVP‟ which are HCV envelopes bound to apoB in the 

absence of nucleocapsids and RNA (Icard, Diaz et al. 2009). 
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1.4.5 HCV in serum can associate with host lipoproteins. 

As outlined above, the heterogeneity of density of HCV in vivo first described by 

Thomssen et al in 1993 is accounted for by variable association of HCV with 

lipoproteins and antibodies (Thomssen, Bonk et al. 1992, Thomssen, 1993 #81; 

Thomssen, Bonk et al. 1993). The association with antibody has been used as the 

basis of a method of purifying lipoviral particles by Andre et al (Andre, Komurian-

Pradel et al. 2002). This method prepared low density fractions of HCV plasma 

(VLDL, IDL and LDL) by sequential ultracentrifugation. Three fractions (densities 

<1.0063, 1.006 - 1.025 and 1.025 - 1.055 g/ml, adjusted with NaBr) were defined and 

these fractions were mixed with protein A magnetic beads. Protein A non-specifically 

binds IgG and IgM. After being passed down a magnetic column the Protein A 

immunoprecipitated particles were defined as HCV LVP. The methodology to 

fractionate HCV according to density was further refined by Nielsen et al by 

demonstration that the use of iodixanol, which is isosmotic and isotonic with blood 

was superior to sucrose or sodium bromide gradients in preserving the integrity of the 

lipoviral particles (Nielsen, Bassendine et al. 2006). Serum was fractionated from a 

patient without antibodies using iodixanol density gradients and Nielsen et al 

demonstrated that 91.8% of the HCV RNA could be immuno-precipitated with anti-

apoE and 95% of HCV RNA with anti-apoB. The association of HCV with apoB was 

very strong and was not dissociated even after detergent treatment, whereas apoE was 

removed by detergent treatment. Further characterisation of this serum using 

immunopreciptitaion by Nielsen et al suggests that apoC1 is another important 

component of HCV LVP. Further in vitro studies have demonstrated that cell culture 

derived HCV (HCVcc) could be efficiently immuno-precipitated by anti-apoC1 and 

these antibodies also neutralized over 75% of infectious HCVcc particles (Meunier, 

Russell et al. 2008). 

Since characterisation of HCV lipoviral particles with immuno-precipitation has 

indicated that in addition to ApoB, exchangeable lipoproteins including apoE and 

apoC1 are present on the LVP, the functional properties of these exchangeable 

lipoproteins are discussed next. 
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1.4.6 Apolipoprotein E (apoE) 

Apolipoprotein E (apoE) is an exchangeable lipoprotein. During lipoplysis of TRLs 

(Chylomicrons and VLDL) by LPL to become remnant particles, the LPL remains 

associated with the remnant particle, which also become enriched with apoE derived 

from HDL. TRL remnants are then trapped in the space of Disse by interacting with 

heparin sulphate proteoglycans (HSPG) and are then internalised into hepatocytes. 

ApoE and LPL bind to the LDL receptor related protein 1 (LRP1) and the LDLr. Both 

these receptors are involved in the clearance of TRL remnants, however LRP1 is more 

important in the clearance of chylomicron remnants (Veniant, Zlot et al. 1998). 

Following internalisation of CM remnants, the apoE re-associates with HDL and is 

recycled back out of the hepatocyte (Heeren, Beisiegel et al. 2006). In order for apoE 

to recycle back onto HDL, HDL has to dock onto the hepatocyte. This is done via 

Scavenger Receptor class B1 (SRB1) and is discussed in more detail in 1.5.4. 

A meta-analysis confirmed that polymorphisms in the APOE gene have a major 

influence on serum cholesterol levels (Bennet, Di Angelantonio et al. 2007). 7% of 

the variation of total cholesterol in healthy Caucasian individuals is related to three 

different isoforms of the apoE protein (Davington, Gregg et al. 1988). The wild type 

protein is ε3 (apoE3 Cys112 and Arg158), and the two variants are ε2 (ApoE2 Cys112 

and Cys 158) and ε4 (apoE4 Arg112 and Arg158) (Mahley and Rall 2000). The ε2 

isoform has low affinity for LDLr and is associated with lower cholesterol and apoB 

(Utermann 1987). However in those with apoE2 there is defective hepatic clearance of 

remnant particles via LDLr and LRP1, leading to elevated remnant levels in plasma. 

ApoE4 has high affinity for LDLr and LRP1. In those with apoE4 there is enhanced 

uptake of apoE4 TRL remnants but defective recycling of TRL derived apoE4 back to 

HDL. This leads to accumulation of hepatic intracellular cholesterol and subsequent 

down regulation of LDLr. This down regulation of LDLr causes elevated LDL 

cholesterol levels, low HDLE levels and decreased CR clearance resulting in post 

prandial hypertriglyceridaemia in those with apoE4. Therefore ApoE4 correlates with 

high LDL cholesterol, elevated TG and low HDL and has been associated with 

atherosclerosis (Davington, Gregg et al. 1988) and Alzheimer‟s disease (Roses 1996).  
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1.4.7 ApoC’s 

The apoC‟s (C1, CII and CIII) are exchangeable lipoproteins that play differing roles 

in the modulation of lipoproteins in the circulation, including lipolysis, remnant 

uptake via apoE and interactions with HDL via CETP and LCAT. The genes for 

apoE, apoC1 and apoCII form a gene cluster on chromosome 19 (Jong, Hofker et al. 

1999). The genes for apoA1, CIII and AIV are clustered together on chromosome 11 

(Groenendijk, Cantor et al. 2001). 

ApoC1 inhibits the uptake of TRL‟s, particularly by LRP1. ApoC1 may prolong the 

circulatory time of lipoproteins to facilitate conversion of VLDL to LDL. ApoC1 is 

also a potent activator of LCAT but inhibits CETP.   

Apolipoprotein CII is a 79 amino acid exchangeable lipoprotein which activates LPL. 

Lack of apoCII leads to severe hyper-triglyceridaemia. The site for activation of LPL 

resides in the C-terminal one-third of the apoCII molecule. ApoC1 and apoCII both 

inhibit apoE mediated binding or TRL‟s to LDLr and LRP1.  

ApoCIII is synthesised by the liver and small intestine and is also an exchangeable 

lipoprotein on TRL‟s and HDL. ApoCIII is a non-competitive inhibitor of LPL. Over-

expression of CIII leads to hyper-triglyceridaemia. There is a functional relationship 

between apoCIII and apoE on TRL‟s. Particles with high apoCIII have reduced apoE 

hence decreased clearance of TRL‟s. CII and CIII inhibit LCAT by displacing LCAT 

activators on HDL and ApoCIII also activates CETP. 

1.4.8 Low density HCV particles are more infectious. 

A hypothesis for the functional significance of HCV associating with host lipoproteins 

is that it enhances infectivity by facilitating binding and entry to hepatocytes via 

lipoprotein receptors. However a major difficulty for understanding the 

pathophysiology of HCV is the lack of an assay to study infectivity of patient derived 

virus. Development of the HCV cell culture (HCVcc) system was a major 

breakthrough allowing characterisation of steps of viral replication and permitting 

screening of potential anti-viral agents in vitro. JFH1 is a genotype 2a infectious clone 

that replicates in cell culture (Wakita, Pietschmann et al. 2005). However the cell line 

used in this model, Huh 7.5 cells, are derived from human hepatocellular carcinoma 

and although able to assemble and secrete apoB containing particles, they are known 
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to not make fully triglyceride loaded VLDL1 sized particles (Podevin, Carpentier et 

al. 2010). Additionally the JFH1 strain of the HCV is adapted for the cell culture 

system. Nevertheless in the HCVcc system lipoproteins are still required for HCVcc 

infectivity, and 70% of HCVcc infection can be blocked by anti-apoB antibodies 

(Andreo, Maillard et al. 2007). Notwithstanding the limitations of the available model 

systems, there is evidence that apoB associated and low density HCV LVP are more 

infectious. The majority of HCVcc particles have a high density (d)  ~ 1.15 g/ml, 

whereas the peak of infectivity is at lower density ~ 1.12 g/ml (Miyanari, Atsuzawa et 

al. 2007). Although low density HCVcc has greater infectivity than high density 

HCVcc, it is noteworthy that both these densities are higher than some low density 

HCV particles found in vivo. HCVcc is able to establish long term infection in 

Chimpanzees and mice containing human liver grafts. When virus was recovered 

from these animals it showed improved infectivity for cell culture. These animal 

derived HCV particles of improved infectivity showed a lower buoyant density than 

HCVcc suggesting that the properties which make the particles of lower density also 

increase infectivity (Lindenbach, Meuleman et al. 2006). Chang et al analysed 

particles from HCVcc and found the peak of infectivity at d<1.12 g/ml and that higher 

density fractions were not infectious. Additionally apoB and apoE were detected on 

the infectious virions by immune precipitation. ApoE correlated particularly well with 

infectivity. Monoclonal antibodies specific to apoE efficiently neutralised infectivity 

in a dose dependent manner, and small interfering RNA (siRNA) to apoE reduced 

both intracellular and secreted HCV. This suggests that not only is apoE important for 

infectivity of secreted virus particles, but also that apoE is important in intra-cellular 

virus assembly (Chang, Jiang et al. 2007) 

Another study indicated that low density HCVcc (d 1.02-1.12g/ml) had not only 

higher infectivity but also higher membrane fusogenicity indicating that lipids 

associated with HCV also promote membrane fusion (Haid, Pietschmann et al. 2009). 

Compelling infectivity data in vivo comes from a case report of sexually transmitted 

acute resolving HCV infection that was acquired from an individual with chronic 

infection. Analysis of NS3 sequences in the chronically infected individual and the 

acutely infected patient identified quasispecies of transmitted viral particles in the 

acute patient that were very similar to quasispecies from the low density fraction 
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(<1.055 g/ml) of the contaminating patient. This suggests that only HCV from the low 

density fraction was transmitted (Diaz, Cubero et al. 2008).  
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1.5 HCV utilises lipoprotein receptors for attachment and entry 

The mechanism by which natural HCV binds to and infects hepatocytes is not fully 

understood. HCV is thought to enter hepatocytes by clathrin-dependent endocytosis 

followed by fusion of the viral and host cell membranes in the low pH endosomal 

compartment. Additionally cell-cell transmission has been proposed (Timpe, 

Stamataki et al. 2008) but the relative importance of this mechanism in vivo is 

unknown. Several candidate receptors have been identified including tetraspanin 

CD81, scavenger receptor class B1 (SRB1),  and the adhesion molecules DC-SIGN 

and L-SIGN and the tight junction components claudins 1, 6 and 9 which may permit 

cell-cell transmission (Evans, von Hahn et al. 2007; Zheng, Yuan et al. 2007). 

Additionally the low density lipoprotein receptor (LDLr) has long been considered 

important for attachment and entry of HCV in vivo (Agnello, Abel et al. 1999; 

Dubuisson, Helle et al. 2008). Given the close interaction of HCV and lipoproteins, 

the lipoprotein receptors LDLr and SRB1 will be discussed in detail here. 

1.5.1 LDL receptor (LDLr) – physiology and regulation 

The Low Density Lipoprotein Receptor (LDLr) is central to maintaining serum 

cholesterol levels. Expression of LDLr is tightly regulated and coupled to cellular 

cholesterol levels through the action of sterol regulatory element binding protein 

(SREBP) transcription factors. When cellular cholesterol levels fall, SREBP‟s mature 

and are activated to increase LDLr transcription. This is discussed in more detail later 

in section 1.6.  

LDLr is a seven region trans-membrane glycoprotein, the primary ligand for which is 

LDL. LDL contains a single apoB and accounts for 65-70% of plasma cholesterol. 

LDLr also binds apoE containing lipoproteins such as VLDL and chylomicron 

remnants. Expression of LDLr on hepatocytes is inversely related to serum cholesterol 

levels (Brown and Goldstein 1986) because of clearance of LDL via LDLr. 

LDLr removes LDL particles from the circulation by endocytosis of the LDL/LDLR 

complex within clathrin coated pits. Internalisation into hepatocytes is controlled by 

LDL adapter protein 1; the carboxy terminal region interacting with clathrin, the 

amino terminal region interacts with the LDLr. The extracellular region of the LDLr 

has a ligand binding domain, an EGF precursor homology domain and an O-linked 
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sugar rich domain. After LDL binds to the ligand binding domain of the LDLr, the 

LDLr-ligand complex is internalised to the endosome. Acid pH in the endosome 

unfolds the LDLr and displaces the LDL particle. The LDL moves to the lysosome 

where cholesterol esters are hydrolysed to form FFA and free cholesterol and 

apoB100 is degraded to amino acids. Each LDLr is then recycled back to the cell 

surface completing about 150 cycles before it is eventually degraded. Increased 

recycling of the LDLr therefore causes a fall in serum LDL cholesterol levels. LDLr 

may also act intra-cellularly in the regulation of apoB secretion. After exit from the 

ER, the VLDL particle is susceptible to bind LDLr via apoB or apoE to inhibit 

secretion of small, unlipidated VLDL particles (Blasiole, Oler et al. 2008). In this 

manner LDLr may play a quality control function, diverting nascent VLDL from the 

late secretory pathway to the endocytic pathway.  

It was the work of Brown and Goldstein investigating the cause of Familial 

Hypercholesterolaemia (FH) that led to the discovery of the LDLr (Goldstein and 

Brown 2009). Understanding of the LDLr pathway has led to the concept of receptor 

mediated endocytosis, selective sorting of proteins within the plasma membrane and 

the concept of feedback regulation of receptors. To date over 1100 separate mutations 

in LDLr have been identified in patients with the FH phenotype (Goldstein and Brown 

2009). FH is therefore due to any number of possible mutations in the LDLr gene. 

Additionally Autosomal Dominant Hypercholesterolaemia (ADH) can be caused by 

defects in other genes in the LDL pathway. A genetic defect in apoB100, the 

structural protein of LDL and ligand of the LDLr also causes the ADH phenotype. 

Five mutations in the LDLr binding domain of apoB100 have been reported (Boren, 

Ekstrom et al. 2001). The third gene defect to cause ADH is in a protein responsible 

for recycling of LDLr called Proprotein Convertase Subtilisin Kexin Type 9 (PCSK9) 

(Abifadel, Varret et al. 2003). The function of PCSK9 is discussed in the next section 

1.5.2. 

1.5.2 PCSK9 is important in the regulation of LDLr 

Proprotein convertase subtilisin kexin-9 (PCSK9) is key regulator of LDLr expression 

in hepatocytes (Lopez 2008; Horton, Cohen et al. 2009). Secreted PCSK9 in the blood 

competes with LDL particles for binding to the LDLr. Usually following LDL binding 

to LDLr, the complex is internalised by receptor mediated endocytosis and the 
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majority of LDLr is recycled back to the cell surface as described previously 1.5.1. 

However, secreted PCSK9 can competitively bind to LDLr instead of LDL. The 

protease of PCSK9 interacts with the LDLr at a highly conserved leucine residue (leu 

318)  located between two cysteines (Cys 317 and 319) in the EFG precursor 

homology domain or the LDLr. Once bound, the PCSK9/LDLr complex enters the 

endosomal pathway where the LDLr is targeted to the lysosome for degradation.  

Catalytic activity is essential for activation and secretion of PCSK9 but not required 

for LDLr degradation. PCSK9 therefore influences the number of LDLr molecules 

expressed at the cell surface. At least 15 functional mutations in the PCSK9 gene have 

been identified. Some of these are gain of function mutations which result in more 

LDLr degradation, and others are loss of function mutations associated with increased 

LDLr recycling. Over-expression of PCSK9 in mice results in 9 fold increase in 

serum LDL cholesterol. This is only partially explained by reduced LDLr expression 

since mice lacking LDLr only have a 2 fold increase in LDL cholesterol. Instead it 

appears that PCSK9 also directly decreases apoB100 secretion (Lopez 2008) in this 

system. 

Not only is PCSK9 important for the regulation of LDLr expression, but also its 

serum levels in men have been shown to inversely correlate with apoB fractional 

catabolic rate (i.e. clearance of LDL) because of its direct role in regulating 

expression of LDLr (Chan, Lambert et al. 2009). Therefore serum PCSK9 levels are 

an inverse marker of LDL clearance, and correlates positively with LDL cholesterol 

levels (Dubuc, Tremblay et al. 2009). 

1.5.3 LDLr and HCV 

There is evidence that the LDLr is important for attachment and entry of HCV in vivo. 

A study using primary human hepatocytes isolated from liver lobectomy specimens 

from 22 HCV negative patients, modulated expression of LDLr with a statin 

(squalestatin) which up-regulates LDLr, or 25-hydroxycholesterol which down 

regulates LDLr. These primary hepatocytes were shown to behave in a 

physiologically relevant manner and were then infected by HCV positive serum. By 

modulating LDLr, parallel changes in HCV infection were demonstrated. 

Furthermore, a soluble LDLr peptide encompassing the entire LDL binding domain 

markedly inhibited HCV infection whereas shorter peptides did not. Additionally anti-
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LDLr monoclonal and polyclonal antibodies markedly inhibited HCV infection 

(Molina, Castet et al. 2007) . 

Another study found an association between LDLr expression on monocytes in HCV 

infected patients and HCV viral load. Cell surface LDLr expression was found to be 

significantly associated with both LDL cholesterol and HCV viral load (Petit, Minello 

et al. 2007). 

LDLr may be less important for cell culture adapted HCV however. For example 

there was no inhibition of HCVpp infection of Huh-7 cells by LDL or anti-LDLr 

antibodies and no inhibition of HCV-LP entry into MOLT4 cells by anti-LDLr 

antibodies (Triyatni, Saunier et al. 2002). 

Interestingly interferon, which induces several intracellular anti-viral proteins, can 

also induce extracellular secretion of soluble LDLr as an anti-viral response (Fischer, 

Tal et al. 1993).  Since LDLr is a candidate receptor for HCV, it is interesting to 

speculate that patients with defective or reduced expression of LDLr such as those 

with FH and high LDL cholesterol levels may be resistant to HCV infection. The only 

report of a combined HCV / FH heterozygote case indicates a reduction in LDL 

cholesterol levels from 7.2 mmol/l pre HCV infection to 1.6 mmol/l following 

infection by HCV genotype 3, highlighting the considerable cholesterol lowering 

ability of the virus (Bima, Hooper et al. 2009) 

Recently PCSK9 has been shown to have an antiviral effect in HCVcc by down-

regulating both CD81 and LDLr (Labonte, Begley et al. 2009).  

1.5.4 Reverse cholesterol transport. 

Scavenger receptor B1 (SRB1) has also been proposed as a receptor for HCV. SRB1 

is important in the process of reverse cholesterol transport, i.e. transporting excess 

cholesterol from peripheral tissues back to the liver. High density Lipoprotein (HDL) 

is the mediator of reverse cholesterol transport. ApoA1 is the major protein of HDL, 

synthesised by the liver and small intestine. In the serum secreted ApoA1 interacts 

with phospholipids to form nascent discoidal HDL particles. Reverse cholesterol 

transport by HDL utilises two different pathways. The first is hepatic uptake of 

cholesterol ester (CE) from HDL which is mediated by SRB1 on the surface of the 

hepatocyte without internalisation of the apoA1 (Acton, Rigotti et al. 1996). The 
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second pathway is transfer of CE from HDL to apoB containing lipoproteins in the 

serum mediated by the actions of Cholesterol Ester Transfer Protein (CETP), and 

subsequent transport of cholesterol back to the liver in LDL (Tall 1993). 

In the first pathway of reverse cholesterol transport, Scavenger receptor B1 has a 

number of functions. Firstly in peripheral tissues there is cholesterol efflux from 

macrophages and fibroblasts in the sub endothelial space to the nascent HDL. 

Cholesterol efflux to HDL is facilitated by SRB1, ATP binding cassette transporter 

A1 (ABCA1) and cavelolins which transport cholesterol from ER membranes to the 

plasma membrane. The free cholesterol is then esterified by lecithin-cholesterol 

acyltransferase (LCAT). ApoA1 is an essential co-factor for LCAT. SRB1 mediates a 

bidirectional process whereby cholesterol esters are exchanged for excess free 

cholesterol which is removed from the cell. This transfer of cholesterol to / from the 

HDL is initially with the plasma membrane and the uptake of cholesterol ester is 

enhanced by apoE (Bultel-Brienne, Lestavel et al. 2002). Secondly, SRB1 directly 

binds to lipoproteins apoA1, AII and CIII.  Thirdly SRB1 mediates uptake of 

cholesterol ester from HDL in the liver where it is highly expressed in regions of the 

hepatocyte plasma membrane called lipid rafts. 

In the second process of reverse cholesterol transport, CETP mediates transfer of 

cholesterol ester from HDL to apoB containing lipoproteins, in exchange for equal 

molar amounts of TG from the apoB lipoproteins. The cholesterol esters are therefore 

transferred from HDL to LDL. By the action of CETP, HDL can become TG enriched 

and is then processed by hepatic lipase to smaller, denser particles. TG enriched HDL 

are rapidly cleared by the liver. The actions of CETP accounts for the reciprocal 

relationship between high plasma TG‟s and low HDL, for example as seen in the 

metabolic syndrome. CETP inhibitors have therefore been developed as agents to 

raise HDL, and lower LDL cholesterol, as potential therapy for atherosclerosis 

(Chapman, Le Goff et al.). 

1.5.5 SRB1 and HCV 

SRB1 has been proposed as a co-receptor for HCV entry. Uptake of HCV pseudo 

particles (HCVpp), is mediated by the hypervariable region 1 of the HCV envelope 

glycoprotein E2 interacting with SRB1 (Bartosch, Vitelli et al. 2003).  SRB1 appears 

to function cooperatively with CD81 in HCVcc to mediate HCV entry (Kapadia, 
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Barth et al. 2007). HCVcc and HCVpp infectivity had been observed to be enhanced 

in the presence of HDL (Bartosch, Verney et al. 2005). HDL is a reservoir of apoC1 

in serum, and it was shown that apoC1 mediated the effects of HDL enhancing 

infectivity by interacting with the hypervariable region 1 of the HCV E2 glycoprotein 

and promoting membrane fusion (Dreux M 2007). 

Another study using CHO cells, a hepatoma cell line that does not express the putative 

HCV receptor CD81, examined binding and uptake of natural HCV from patient sera. 

This study showed that natural HCV was interacting with SRB1 but that this 

interaction was not directly with the HCV E2 glycoprotein but was mediated 

indirectly through an interaction with VLDL which could be inhibited by anti-apoB 

antibodies and competition from VLDL (Maillard, Huby et al. 2006). The same group 

also examined the role of lipoprotein lipase (LPL) in the CHO cell system, and found 

that the amount of bovine LPL added to the system increased the amount of HCV 

RNA bound to the cells in a dose dependent manner and binding was inhibited by an 

anti-LPL monoclonal antibody. This interaction with LPL was dependent on the 

presence of HSPG on the cell surface and the catalytic activity of LPL. However 

catalytically active LPL inhibited HCVcc binding to Huh 7.5 cells (Andreo, Maillard 

et al. 2007).  

Serum Amyloid A (SAA) is an acute phase protein secreted by the liver and is 

primarily associated with HDL3 (d 1.12g/ml) (Cabana, Feng et al. 2004). SAA is 

another ligand for SRB1 thereby inhibiting the interaction of HDL and SRB1. SAA 

was able to block HCV entry (Lavie, Voisset et al. 2006) but not attachment of 

HCVcc to Huh 7.5 cells (Cai, Cai et al. 2007). SAA is able to dissociate apoE from 

HDL in CSF and this effect was more evident in apoE4 than apoE3 or apoE2 carriers 

(Miida, Yamada et al. 2006). Interferon-α inhibits SRB1 expression through the 

STAT1/STAT2 interferon signalling pathway in HepG2 cells (Murao, Imachi et al. 

2008). These contrasting data on the role played by SRB1 in natural HCV and HCVcc 

may indicate that different entry mechanisms are utilised in vivo and in vitro and that 

varying interactions with lipoproteins may modulate these routes of entry. 
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1.6 HCV replication and cholesterol pathways  

In order to understand the interactions of HCV and cholesterol metabolism, some 

appreciation of the regulation of cholesterol and lipid homeostasis is required. 

Intracellular cholesterol levels are tightly regulated to maintain cellular homeostasis. 

Cholesterol is utilised in membranes, and is the precursor of steroid hormones, 

vitamin D and bile acids. Intermediates in the cholesterol biosynthetic pathway are 

also important for protein prenylation, a post translational modification that targets 

proteins to cell membranes. Cholesterol and triglycerides are both formed from two-

carbon Acetyl CoA building blocks. Cholesterol is formed from the Mevalonate 

pathway. TG are formed from the malonyl-CoA pathway. The rate limiting step in the 

endogenous cholesterol biosynthetic pathway is the activity of HMG CoA reductase 

and the production of mevalonate. HMG CoA reductase is the enzyme which 

catalyses the rate limiting step of cholesterol production from acetyl CoA to a 

complex 27-carbon 4-ring structure of cholesterol in a series of 26 enzymatic 

reactions (figure 2). HMG CoA reductase is the target of statins, drugs used to lower 

serum cholesterol in the prevention of cardiovascular disease.  
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Figure 2 Schematic of the endogenous cholesterol biosynthetic pathway  

(Based on Kegg pathway http://www.kegg.com/kegg-bin/show_pathway?rn00900) 

. 

1.6.1 SREBP2 – when intracellular cholesterol is too low 

The sterol regulatory element binding proteins (SREBP) act as cholesterol sensors 

which can switch on or off genes involved in cholesterol metabolism. SREBP‟s are 

bound to the ER membrane and when activated travel to the nucleus to act as 

transcription factors. There are three known members of the SREBP family, SREBP-

1a, SREBP-1c and SREBP-2. SREBP-2 has 50% homology with SREBP-1. SREBP-

1a activates all SREBP target genes. SREBP-1c activates target genes involved in 

fatty acid metabolism and SREBP-2 activates genes in cholesterol metabolism 

(Horton, Goldstein et al. 2002).  
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When intracellular cholesterol is normal, SREBP-2 is inactive and retained in the 

endoplasmic reticulum (ER) bound to two ER retention proteins, Insig-1 and Insig-2, 

and a SREBP cleavage activating protein (SCAP). Statins lower intracellular 

cholesterol by inhibiting HMG CoA reductase, and when intracellular cholesterol 

levels fall this is sensed by SREBP-2 which is activated by a series of steps. Firstly 

the SREBP-2/SCAP complex dissociates from Insig and moves to the golgi. In the 

golgi the SCAP is cleaved to activate SREBP-2 which then localises to the nucleus to 

up-regulate transcription of genes in cholesterol biosynthesis (DeBose-Boyd 2008). 

Because HMG CoA reductase is enzymatically inhibited by statins, intracellular 

cholesterol production does not increase, but SREBP-2 activation causes increased 

transcription and translation of LDLr causing increased uptake of exogenous 

cholesterol from LDL. SREBP-2 not only regulates endogenous cholesterol 

production but also up-regulates LDLr and PCSK9. SREBP-2 activation therefore 

responds to intracellular cholesterol depletion by increasing both endogenous 

cholesterol production and import of exogenous cholesterol via LDLr. This serves to 

lower the serum LDL cholesterol pool by increasing clearance of circulating LDL 

particles in an attempt to maintain intracellular cholesterol homeostasis. 

1.6.2 Liver X Receptor (LXR) – when intracellular cholesterol is too high 

The liver X receptors, LXRα (NR1H3) and LXRβ (NR1H2) are sterol dependent 

nuclear receptors that respond to cholesterol excess. LXR acts as a cholesterol sensor 

and is highly expressed in hepatocytes and activated by oxysterols (derivatives of 

cholesterol). LXR induces expression of genes involved in cholesterol efflux and 

removal of excess cholesterol in bile acids. LXR target genes include ABCA1 and 

ABCG1 to promote cholesterol efflux from the cell (Zelcer and Tontonoz 2006). LXR 

can also suppress LDL uptake by promoting ubiquitination of the LDLr cytoplasmic 

domain by an E3 ubiquitin ligase called Idol (inducible degrader of the LDLr) (Zelcer, 

Hong et al. 2009).  In addition LXR can induce SREBP-1c to generate fatty acids 

needed for esterification of cholesterol to buffer the excess free cholesterol 

concentration. LXR binds to LXR element sequences of the SREBP-1c promoter 

which activates SREBP-1c transcription. 
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1.6.3 Lathosterol and endogenous cholesterol production 

 

Cholesterol contained in LDL particles comes from either LDL precursors (i.e.VLDL) 

that have been secreted by the liver or acquired from HDL in exchange for 

triglycerides, mediated by CETP. Ultimately the cholesterol has either been 

endogenously synthesised de novo by the mevalonate pathway in the liver and 

packaged into secreted VLDL, or absorbed exogenously from diet in chylomicrons by 

the small intestine, and subsequently delivered to the liver in remnant particles. Total 

body cholesterol therefore represents a balance between endogenous cholesterol 

synthesis and dietary cholesterol absorption (Matthan and Lichtenstein 2004). Non-

cholesterol sterols are also transported in LDL, and although present in small 

quantities, their measurement in serum gives an indication of the relative 

contributions of endogenous cholesterol synthesis and dietary absorption to the serum 

LDL cholesterol pool. Serum levels of non-cholesterol sterols are remarkably stable 

over time, one study reporting variation over a 48 week period of < 4% (Berge, von 

Bergmann et al. 2002). Lathosterol and desmosterol are precursors in the endogenous 

cholesterol biosynthetic pathway (figure 2). Absolute serum lathosterol or 

desmosterol levels and levels relative to total serum cholesterol (e.g. lathosterol : total 

cholesterol ratio) reflect endogenous cholesterol biosynthesis (van Himbergen, 

Matthan et al. 2009).  

1.6.4 Cholesterol absorption, biliary excretion & the enterohepatic circulation 

Sitosterol is an exogenous plant sterol which is not synthesised endogenously, but 

derived exclusively from diet by intestinal absorption (Miettinen, Tilvis et al. 1990). 

Serum sitosterol levels reflect dietary cholesterol absorption by the small intestine 

mediated by Neiman Pick C1-like 1 protein expression (Huff, Pollex et al. 2006). 

About one third of the cholesterol absorbed from the small intestine comes from diet. 

The remaining two thirds of cholesterol absorbed from the small intestine derives 

from endogenous synthesis by the liver and secreted in bile. Cholestanol is an 

endogenously produced sterol secreted into the bile. Its levels therefore reflect both 

cholesterol production and absorption – i.e. the entero-hepatic circulation. 

The liver eliminates excess cholesterol as bile acids. Primary bile acids are cholate 

(CA) and chenodeoxycholate (CDCA) and are synthesised from cholesterol, 
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conjugated with taurine or glycine to increase their water solubility. Bacteria in the 

gut act on the primary bile acids to make secondary bile acids, lithocholate (LCA) and 

deoxycholate (DCA). These are reabsorbed in the ilium and transported back to the 

liver. Bile acids regulate gene expression in the liver through nuclear receptors FXR 

and PXR. FXR increases PPARα gene expression and inhibits SREBP-1c. (Watanabe, 

Houten et al. 2004). FXR target genes can therefore decrease plasma TG 

concentrations, control liver growth and regeneration and inhibit IFN sensitivity by 

inhibiting the activation of STAT1. In one study, bile acids enhanced HCV replication 

and antagonising FXR reduced HCV replication (Scholtes, Diaz et al. 2008). 

1.6.5 Statins can inhibit HCV replication 

The interactions and requirements of HCV for cholesterol are complex. Up regulation 

of cholesterol metabolism may be required to permit alterations in membranes 

required for replication and cell entry. Cholesterol enriched micro domains in the ER 

membranes called lipid rafts are required for viral replication (Dubuisson, Penin et al. 

2002). Moreover, in the plasma membrane, components of the HCV receptor complex 

CD81 and SRB1 localise to cholesterol enriched micro domains called caveoli, where 

many cellular proteins including viral receptors are aggregated. Depletion of 

membrane cholesterol disrupts this localisation and inhibits CD81 mediated entry 

(Kapadia, Barth et al. 2007). 

HCV core protein induces the formation and redistribution of lipid droplets (Boulant, 

Douglas et al. 2008). This interface between ER membranes and lipid droplets 

facilitates replication and particle assembly (Miyanari, Atsuzawa et al. 2007). 

Replication of HCVcc requires geranylgeranylation of a host protein, FBL2 to permit 

interaction with the viral non-structural protein, NS5A (Wang, Gale et al. 2005). 

Geranylgeranyl diphosphate (GGPP) is a host lipid required for protein prenylation, a 

post translational modification that targets proteins to cell membranes. GGPP is 

produced from an intermediate in the cholesterol biosynthetic pathway, downstream 

of mevalonate but upstream of squalene (figure 1). HMG CoA reductase inhibitors 

(statins), have been shown to have an anti-viral effect on HCV in vitro. Lovastatin 

suppresses HCV RNA levels in genomic and subgenomic HCV replicons by 22-fold 

(Ye, Wang et al. 2003), but this inhibitory effect is overcome by the addition of 
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geranylgeranyl (Kapadia and Chisari 2005) indicating that an adequate supply of 

geranylgeranyl is essential for HCV replication (Kapadia and Chisari 2005).  

1.7 HCV is associated with steatosis 

Steatosis is the accumulation of hepatocyte lipid droplets and is a common 

histological feature in chronic hepatitis C. Multiple host and viral factors promote 

steatosis in HCV and the relative importance of each is not well understood. In 

genotypes 1 and 4 infection, steatosis is related primarily to host factors such as 

obesity, waist circumference and diabetes (Negro and Sanyal 2009), whereas HCV G3 

appears to have specific virally mediated steatogenic properties. These differences are 

clinically important because „metabolic‟ steatosis correlates with poor response to peg 

IFNα in HCV genotype 1 but not with „viral‟ steatosis in HCV G3 (Romero-Gomez, 

Viloria et al. 2005). There is evidence of steatosis in up to 70% of those with HCV 

genotype 3 infection (Hui, Kench et al. 2002; Negro 2004). This appears to be directly 

related to HCV G3 virus protein expression, resolving with successful eradication of 

HCV following anti-viral therapy (Mirandola, Realdon et al. 2006).  In order to 

understand the mechanisms of steatosis, some appreciation of the regulation of fatty 

acid metabolism is essential which is reviewed here. 

1.7.1 Regulation of fatty acids – SREBP-1c 

The main form of body energy storage is in the form of lipids in adipose tissue. These 

lipids derive from both diet (exogenous) and de novo synthesis from non lipid 

substrates including glucose and free fatty acids. Lipogenesis takes place in the liver. 

De novo lipogensis only contributes a relatively small fraction (2-5%) of triglyceride 

to VLDL normally. This is increased to 20-30% in individuals with diets high in sugar 

and alcohol, and in NAFLD and infections. 

Sterol regulatory element binding protein 1c (SREBP-1c) is the transcription factor 

that induces expression of genes involved in lipogenesis (endogenous synthesis of 

lipids). Like SREBP-2, SREBP-1c is synthesised as a precursor that resides in an 

inactive form in ER membranes before undergoing post-translational modification to 

become active. Proteolytic maturation and activation of SREBP-1c is stimulated by 

insulin, accounting for the lipogenic effects of chronic hyper-insulinaelmia, such as 

occurs in insulin resistant states for example the metabolic syndrome. Insulin induces 
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the transcription of SREBP-1c in liver, adipose tissue and muscle leading to an 

increase in expression of ER membrane bound and precursor forms of SREBP-1c. 

Gene transcription targets of SREBP-1c include glucokinase which is activated by 

insulin and inhibited by glucagon. Glucokinase phosphorylates glucose to Glucose-6-

phosphate which is the first step of glycogen synthesis and glycolysis. Lipogenic 

genes such as L-PK, fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC) are 

also activated by SREBP-1c and lead to a marked increase in hepatic triglyceride 

content. There is diurnal variation in expression of the lipogenic genes which are 

controlled in part by plasma insulin concentration and food intake. 

Increased activity of SREBP-1c has been described in several models of insulin 

resistance. SREBP-1c levels are increased in fatty livers from obese, insulin resistant 

hyperinsulinaemic ob/ob mice.  Alcohol promotes SREBP-1c expression and causes 

ER stress. ER stress can further induce the cleavage and hence activation of SREBP-

1c. Ultimately SREBP-1c results in increased synthesis of fatty acids and their 

incorporation into triglycerides and phospholipids, resulting in lipid accumulation in 

the liver and steatosis. 

1.7.2 PPAR’s 

Peroxisome-proliferator-activated receptor alpha (PPARα) is a transcription factor of 

the nuclear hormone receptor family. PPARα is a sensor for free fatty acids (FFA) and 

up-regulates genes involved in the β oxidation and transport of fatty acids (Staels, 

Dallongeville et al. 1998). PPARα regulates oxidation of fatty acids in mitochondria 

and peroxisomes. It is expressed in liver, heart, skeletal muscle and brown adipose 

tissue. It also mediates the effects of leptin in adipose tissue. When fatty acid 

concentrations increase, PPARα activation increases FFA uptake and oxidation. 

PPARγ is expressed predominantly in adipose tissue and when activated increases 

insulin sensitivity and enhances lipid storage in adipose tissue. Glitazones are PPARγ 

agonists. Therefore activation of PPARα and PPARγ lowers lipid levels. PPARα is 

also activated by poly-unsaturated fatty acids (PUFA) and fibrates. Fish oil contains 

omega3 PUFA‟s (n3 PUFA), docosahexanoic acid (DHA) and eicosapentanoic acid 

(EPA) which bind to and activate PPARα.  

PPAR‟s have an N-terminal DNA binding domain and a C-terminal ligand binding 

domain. Ligand binding causes a conformational change allowing recruitment of a co-
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activator called retinoid X Receptor (RXR) and the PPAR/RXR complex can bind to 

target genes. Levels of PPARα are lower in HCV patients with steatosis than those 

without steatosis (Dharancy, Malapel et al. 2005), and are lower in liver biopsies from 

patients with HCV genotype 3 than genotype 1. A PPARα antagonist dispersed HCV 

replication complexes away from the membranous web environment (Lyn, Kennedy 

et al. 2009). A hypothesis that is explored in results chapter 5 is therefore that n3 

PUFA may improve HCV related steatosis. 

1.7.3 Mechanisms of steatosis in HCV 

There are at least four potential mechanisms implicated for virally mediated steatosis 

in HCV G3.  Firstly HCV induces de novo lipogenesis by up-regulating SREBP-1c 

and fatty acid synthase (Waris, Felmlee et al. 2007). Expression of HCV G3 core up-

regulated the FAS promoter in an SREBP-1c dependent manner, and had a stronger 

effect on FAS activation than HCV G1b core. A single amino acid residue 

(phenylalanine
164

) in the D2 region of HCV core which binds core to lipid droplets 

was critical for the steatogenic effect in HCV G3 (Hourioux, Patient et al. 2007; 

Jackel-Cram, Babiuk et al. 2007). Secondly HCV is associated with reduced 

mitochondrial oxidation of fatty acids. This is thought to be mediated by PPARα 

which induces oxidative enzymes and FA import into mitochondria by carnitine 

palmitoyl acyl-CoA transferase 1 (CPT1A). There is evidence that PPARα is inhibited 

by HCV (Dharancy, Malapel et al. 2005). Thirdly HCV core protein can reduce 

triglyceride export by impairing VLDL secretion via inhibition of MTP to induce 

steatosis (Perlemuter, Sabile et al. 2002). In liver biopsy specimens, MTP mRNA 

levels were significantly lower in HCV G3 than HCV G1 (Mirandola, Realdon et al. 

2006). Fourthly there may be increased reactive oxygen species and increased lipid 

peroxidation. This has been demonstrated when HCV core protein is expressed in 

Huh7 cells (Okuda, Li et al. 2002).   
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1.8 HCV is associated with Insulin Resistance 

Chronic hepatitis C infection is associated with insulin resistance. An understanding 

of insulin action and the methods used to evaluate insulin sensitivity are important to 

evaluate insulin resistance in HCV. 

Insulin is secreted by the pancreatic β-cells in response to an increase in plasma 

glucose. Insulin promotes peripheral glucose uptake in muscle and fat and suppresses 

hepatic glucose production. Insulin sensitivity is the relative capacity of insulin to 

promote a decrease in blood glucose.  Insulin resistance is defined as decreased 

sensitivity or responsiveness to the metabolic actions of insulin. Insulin resistance can 

occur in any target tissue and is influenced by genetic and environmental factors e.g. 

obesity and exercise. Measuring insulin sensitivity in the clinical situation is a subject 

of debate in the diabetes literature. The „Gold Standard‟ method is the euglycaemic 

hyperinsulinaemic clamp. In this method, after an overnight fast, a continuous insulin 

infusion is set up to establish a new steady state insulin level above the fasting level. 

This increases glucose disposal in skeletal muscle and fully suppresses hepatic 

glucose production. A simultaneous 20% dextrose infusion is given to maintain 

glucose concentrations in the normal range, thereby establishing a new steady state 

plasma insulin, glucose and glucose infusion rate. Under these conditions the glucose 

infusion rate is equal to the glucose disposal rate in peripheral tissues because hepatic 

glucose production is completely suppressed. Additionally radio labelled glucose 

tracers can be used under clamp conditions to estimate hepatic glucose production. 

Under these conditions it is possible to measure hepatic vs. peripheral (predominantly 

skeletal muscle) insulin sensitivity. However the euglycaemic hyperinsulinaemic 

clamp is a time consuming, labour intensive method with technical difficulties and is 

inappropriate for large scale applications. Therefore surrogate measures of insulin 

sensitivity are used that measure fasting insulin and glucose levels. Elevations in 

fasting insulin correspond to increased insulin resistance. The Homeostasis Model 

Assessment of Insulin Resistance (HOMA IR) is a simple surrogate index of insulin 

resistance, calculated as follows: HOMA IR = fasting insulin (μU/ml) x fasting 

glucose (mmol/l)/22.5. The denominator of 22.5 is a normalising factor based on a 

“normal” healthy fasting plasma insulin level of 5μU/ml and glucose of 4.5 mmol/l. 

Therefore a normal HOMA IR = 1. HOMA IR correlates reasonably well to the 
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glucose clamp method, but is unreliable in patients with impaired β-cell function. The 

Quantitative insulin sensitivity check index (QUICKI) is also derived from the fasting 

glucose and insulin measurements as follows: QUICKI = 1/ (log fasting insulin μU/ml 

+ log fasting glucose mg/dl). QUICKI may be more appropriate when populations 

include diabetics where fasting glucose is inappropriately high and insulin 

inappropriately low, and in this situation has a better correlation with glucose clamp 

estimates than HOMA IR (Muniyappa, Lee et al. 2008). As insulin resistance 

increase, so QUICKI scores tend to decrease. 

1.8.1 Insulin receptor and signaling pathway 

The insulin receptor (IR) has two extracellular α-subunits and 2 transmembrane β-

subunits that have intracellular tyrosine kinase activity. Insulin binds to the 

extracellular domain of the insulin receptor. The insulin receptor has substrate 

tyrosine kinase activity which initiates phosphorylation reactions. This triggers a 

second messenger cascade which diverges and involves multiple other pathways. 

Insulin reduces the concentration of insulin receptors by increasing internalisation and 

degradation. Seven tyrosine residues in the cytoplasmic β-subunit domain are the sites 

of auto-phosphorylation. Substrates of the insulin receptor are IRS1 and IRS2 and Shc 

and APS. Phosphatidyinositol-3-kinase binds to IRS1. This promotes translocation of 

Glut 4 vesicles to the plasma membrane and increases the rate of glucose uptake. Cell 

growth and protein synthesis are associated with Ras/MAPK pathways which are 

activated by Shc phosphorylation. In the state of insulin resistance, the ability of 

insulin to initiate these phosphorylation cascades is reduced. IRS1 mediated signalling 

is dependent on auto-phosphorylation but IRS2 signalling is not. In type 2 diabetes, 

insulin receptor auto-phosphorylation is reduced in muscle following insulin infusion. 

This is also observed in obese patients and correlates with percent body fat. Diets high 

in fat and fructose reduce insulin receptor auto-phosphorylation and physical activity 

improves insulin sensitivity.  

Glucagon is secreted by the pancreatic α-cells in the fasting state and opposes the 

actions of insulin, stimulating hydrolysis of adipose tissue triglyceride and releasing 

free fatty acids (FFA) and glycerol into the blood. FFA undergo beta oxidation in 

hepatocyte mitochondria and are converted to ketones in the fasting state. The ketones 
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are used as a source of energy for skeletal muscle, sparing glucose for use by the 

brain.  

1.8.2 Hepatitis C and Insulin Resistance 

Insulin resistance is common in patients with CHC and adversely affects fibrosis 

progression (Hui, Sud et al. 2003) and response to anti-viral therapy (Poustchi, Negro 

et al. 2008). In a detailed study of non-obese males with CHC using the euglycaemic 

hyperinsulinaemic clamp method, insulin resistance was found principally in 

peripheral tissues rather than due to impaired hepatic insulin action. FFA could be 

suppressed by low dose insulin, suggesting that the peripheral insulin resistance is in 

skeletal muscle rather than adipose tissue (Milner, Van Der Poorten et al. 2009). This 

study also found that CHC patients had higher levels of Lipocalin-2 and glucagon. 

Lipocalin 2 is an adipocytokine that antagonises the pro-inflammatory effects of 

TNFα on inflammation and up-regulates PPARγ in adipocytes (Zhang, Wu et al. 

2008). Insulin resistance in HCV has been correlated with viral load (Moucari, 

Asselah et al. 2008). Moreover insulin sensitivity as measured by HOMA IR 

improves following clearance of HCV with anti-viral therapy (Kawaguchi, Ide et al. 

2007). This suggests that HCV is either having a primary effect on insulin signalling, 

or a secondary effect through virally induced adipocytokines such as TNFα.  

A primary effect by which HCV may be promoting insulin resistance may be 

mediated by viral proteins enhancing expression of Suppressors of Cytokine 

Signalling (SOCS). SOCS are a family of 8 proteins that regulate the cellular response 

to cytokines in a negative feedback manner. SOCS expression is induced by cytokines 

such as TNFα. SOCS inhibit the Janus Kinase-signal transducer and activator of 

transcription (JAK-STAT) pathway. SOCS were originally shown to attenuate the 

ability of JAKS to phosphorylate downstream STATS. SOCS proteins bind 

phosphorylated tyrosine residues in cytokine receptors and then inhibit or cause 

degradation of the receptor. SOCS-1, SOCS-3 and SOCS-6 can bind to the insulin 

receptor. The SH2 domain of SOCS binds to the insulin receptor, resulting in 

decreased insulin stimulated auto-phosphorylation of IRS-1 and IRS-2. Additionally 

the „SOCS box‟ binds to IRS1 and IRS2 directly thereby targeting IRS1 and IRS2 for 

ubiquitination and proteasomal degradation. SOCS3 also inhibits leptin receptor 

signalling by inhibiting leptin receptor tyrosine phosphorylation of JAK2 and 
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consequently inhibits the STAT3 signal. Over-expression of SOCS1 and SOCS 3 

causes insulin resistance and increased SREBP-1c in a mouse model of metabolic 

syndrome and steatosis (Ueki, Kondo et al. 2004). HCV core enhances SOCS3 

expression leading to ubiquitination and degradation of IRS1 and IRS2 in hepatoma 

cell lines (Howard and Flier 2006), and may contribute to primary hepatic insulin 

resistance and steatosis. 

A secondary effect of CHC on insulin resistance may be mediated through 

adipocytokines in a similar way to obesity related insulin resistance.  Adipocytokines 

including adiponectin, leptin and resistin are produced by adipocytes. Adiponectin 

functions as an insulin sensitiser, increasing free fatty acid oxidation and glucose 

uptake. It has anti-inflammatory properties induces IL10 and inhibits IL6 and TNFα. 

Low levels of adiponectin are seen in type 2 diabetes and obesity. Leptin influences 

neuroendocrine function by acting on the hypothalamus. In obesity, leptin levels are 

high indicating leptin resistance. Resistin antagonises the effects of insulin in 

adipocytes and induces SOCS3 to inhibit the insulin receptor. 

Low levels of adiponectin are associated with hepatic steatosis  in non-alcoholic fatty 

liver disease and insulin resistance (Whitehead, Richards et al. 2006). However in 

HCV patients with insulin resistance, leptin and adiponectin levels are similar to those 

of age and BMI matched controls (Cua, Hui et al. 2007). Although TNFα is elevated 

in CHC, TNFα levels did not correlate with insulin action  in the euglycaemic clamp 

study (Milner, Van Der Poorten et al. 2009). Furthermore there is no increased insulin 

resistance in hepatitis B where TNFα is also elevated, indicating that a secondary 

effect of HCV on insulin resistance mediated via adipocytokines is less important than 

a primary effect. 

Insulin resistance is a key feature of the metabolic syndrome which is associated with 

high triglyceride levels. Insulin resistance is important in determining plasma TG 

levels in the metabolic syndrome. In normal states insulin up-regulates lipoprotein 

lipase activity in adipose tissue, inhibits release of FFA from adipose tissue and 

directly suppresses hepatic VLDL production. However in insulin resistance, the 

normal suppressive effect of insulin on VLDL is reversed. VLDL are metabolically 

heterogeneous. In a study of normo-glycaemic insulin resistant middle-aged men and 

women, HOMA IR correlated strongly with VLDL1 production rate and VLDL1 

apoB pool size, but not with VLDL2 (Gill, Brown et al. 2004).  LPL activity generally 
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decreases with insulin resistance, so the TG component of large VLDL1 are 

hydrolysed more slowly. In contrast hepatic lipae (HL) increases in insulin resistance 

leading to increased catabolism of VLDL2 to IDL and LDL. In the normal state 

insulin can down-regulate MTP gene expression, which reduces transfer of cytosolic 

TG to pre VLDL, resulting in more apoB degradation. In the insulin resistant state, the 

inhibitory effect of insulin on MTP is impaired, so more TG are loaded and larger 

VLDL1 are produced. 

 

In summary, this thesis is translational research that stems from work funded by an 

MRC experimental medicine grant. The translational research cycle begins with the 

clinical problem. For patients with chronic HCV in 2010 there are still many 

challenges, particularly for those who have not responded to PegIFα and ribavirin or 

are intolerant of its side effects. Further understanding of the mechanisms of non-

response is therefore essential to improve treatment options for these individuals. The 

intimate interaction of HCV with host lipid metabolism in the viral lifecycle makes 

this an important area of research. In particular the close relationship between HCV 

and VLDL in assembly of infectious viral particles and the requirement of cholesterol 

pathways for HCV replication suggests that further understanding of these processes 

may be clinically important. It is apparent that HCV is promoting a dyslipaemia in 

chronic infection characterised by low lipids, steatosis and insulin resistance. How 

these metabolic disturbances relate to the viral lifecycle and likelihood of responding 

to anti-viral therapy is not known. The observational studies presented here aimed to 

shed new light on the interaction between HCV and lipids. Further understanding of 

these interactions begins to indicate potential mechanisms that need to be elucidated 

to develop new therapeutic strategies. The pilot intervention trial using lipid 

modulating therapy tests some of these concepts to complete a translation research 

cycle. 
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1.9 Aims of the study 

The aims of this study were: 

1. To characterise in detail abnormal lipid profiles and metabolic parameters in 

patients with chronic hepatitis C.  

 

2. To determine the relative importance of the influence of viral factors such as HCV 

genotype and viral load on lipid profiles verses other host factors known to 

influence lipid profiles such as apoE genotype. 

  

3. To evaluate differences in lipid and metabolic parameters before and after viral 

eradication in sustained virological responders compared to viral persistence in 

non-responders to anti-viral therapy.  

These first 3 aims are addressed in chapter 3. 

 

4. To understand further the lipid abnormalities present in HCV in terms of 

cholesterol production, absorption and clearance. This is addressed in detail in 

chapter 4. 

 

5. To assess the influence of lipid profiles as determinants of anti-viral treatment 

outcome and possible mechanisms for the association. This is considered in chapter 

5. 

 

6. To understand how altered lipids and metabolism influence the formation of HCV 

lipoviral particles (LVP). This is addressed in Chapter 6 with the development of a 

novel LVP assay, which permitted futher evaluation of the metabolic determinants 

of LVP. The clinical utility of the LVP assay was evaluated prospectively in 

patients treated with anti-viral therapy. 

  

7. To test whether lipid modulating therapy can alter the lipid abnormalities in HCV 

that impact on HCV LVP. This is addressed in the clinical trial in chapter 7. 
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2 Chapter 2. Materials and Methods 

 

2.1 Retrospective HCV cohort  

2.1.1 Data collection and establishing a DNA database 

The retrospective HCV cohort was collected by identifying patients with known anti-

viral treatment outcomes from a search of C-Base, a clinical database which is used 

routinely for audit, existing treatment lists provided by the viral hepatitis nurses at 

Freeman Hospital, and a previous dataset collected by Dr Ashley Price for a previous 

study in which ApoE genotyping had been performed using a standard PCR-RFLP 

method (Price, Bassendine et al. 2006). The combined data sets were entered into a 

new Microsoft® Access database and duplications identified and removed. Clinical 

phenotype data was collected including age, sex, HCV genotype, viral load, treatment 

outcome and whether or not they had previously provided a DNA sample. Participants 

had previously provided written consent for collection and analysis of DNA. 

Additionally non-fasting lipid profiles that had been taken pre and at least 6 months 

post anti-viral treatment were recorded where available. Complete data was available 

in 129 CHC patients who had undergone antiviral treatment, 72 of whom achieved an 

SVR and 57 were non-responders. Additionally there were 121 patients identified 

from the clinical treatment outcomes records in whom paired pre and post treatment 

lipid profiles were available, but in whom DNA was not available. This combined 

retrospective data was analysed for the study of lipid profiles in chapter 3 and 

treatment outcomes study in results chapter 5. 

2.1.2 Non fasting lipid profiles 

In the retrospective HCV cohort, total cholesterol, HDL cholesterol, non-HDL 

cholesterol and triglycerides had been measured by standard automated enzymatic 

methods (Olympus Diagnostics UK Ltd). Non-fasting serum lipid profiles (total 

cholesterol, triglycerides, HDL) were measured pre- and 24 weeks post treatment, and 

where possible paired data was collected thereby allowing each patient to act as their 

own control. Since these were non fasting samples, LDL-cholesterol, estimated by the 

Friedwald calculation (Bairaktari, Seferiadis et al. 2005) was not assessed. Therefore 
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apolipoprotein B associated cholesterol was calculated on each patient by subtracting 

HDL-cholesterol from total cholesterol level (non-HDL cholesterol). Paired pre- and 

post- treatment cholesterol levels were available in 100 patients achieving an SVR (90 

HCV genotypes 1 and 3) and 66 non-responders (63 HCV genotypes 1 and 3). The 

remaining patients had incomplete or unpaired data. 

2.2 Prospective HCV cohort 

The prospective study consisted of three separate but related sub-studies, each with its 

own ethics approval and registration with UKCRN. These sub-studies were titled as 

follows: 

1. Analysis of HCV host lipid interactions in chronic infection; UKCRN 6313; ethics 

approval from Northumberland REC 07/H0902/45.  

2. A randomised controlled, factorial pilot study investigating Omacor and / or 

Fluvastatin in patients who have not responded to standard anti-viral therapy. 

UKCRN 4622; ethics approval from Fife and Forth Valley REC 07/S0501/21.  

3. Application of a novel method to determine hepatitis C virus and very low density 

lipoprotein (VLDL) kinetics UKCRN 6863 (Intralipid Kinetics study); ethics approval 

from Newcastle 2 REC 09/H0907/17.  

Another part of the HCV host lipid interactions study was a post prandial study in 10 

CHC patients. The laboratory work for the post prandial and Intralipid kinetics studies 

was performed by Dr Dan Felmlee and thus is not further included in this thesis. I 

(DS) recruited and performed the clinical part of the post prandial and Intralipid 

studies and helped with experimental design and data analysis, hence I have included 

the post prandial study in the appendix of publications arising from this thesis. 

 

2.2.1 Prospective study recruitment 

The prospective HCV cohort was recruited from the viral hepatitis clinic at the 

Freeman Hospital, Newcastle upon Tyne, UK. The Newcastle upon Tyne Hospitals 

NHS Foundation trust acted as sponsor. Participants in the prospective study were 

invited to attend for fasting blood samples and clinical assessment during routine 

clinic review. Each participant was given the patient information leaflet (PIL) for the 
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relevant sub-study. After participants had read the PIL written informed consent was 

provided.  

2.2.2 Inclusion and exclusion criteria 

Prospective study participants that had provided consent were unselected apart from 

the following conditions: age ≥ 18, positive HCV RNA by PCR for >6 months 

(including treatment naïve patients and previous non responders to combination 

interferon-α and ribavirin antiviral therapy), no lipid modulating agent for 3 months 

prior to the study. Patients with hepatitis B virus (HBV), hepatitis delta virus (HDV) 

or human immunodeficiency virus (HIV) co-infection, alcohol dependency or 

concurrent lipid lowering therapy were excluded from the study. Other study specific 

inclusion and exclusion criteria for the clinical trial are indicated in the relevant 

chapters. 

2.2.3 Healthy volunteers 

Two non-HCV comparator groups were used in this study. Comparator group A was a 

group of healthy volunteers aged 18-55 that were recruited to a dietary intervention 

study by the University of Surrey in response to adverisements in local Newspapers. 

These subjects had no medical conditions known to affect lipid profiles, and refrained 

from eating cholesterol lowering functional foods such as those containing plant 

sterols 2 weeks prior to lipid measurements. Additionally this group excluded those 

that had been on a weight reduction diet or lost >3 kg in weight in the preceding 2 

months. All the participants gave written informed consent and the study was 

approved by the University of Surrey‟s ethics committee. The lipid and sterol profiles 

data on these 45 healthy volunteers was provided by Dr Nicola Harman from the 

University of Surrey as a comparator for sterol profiles in the HCV cohort. The data 

on this comparator Group A has been published previously (Harman, Leeds et al. 

2008).  

Comparator group B data was provided by Dr G Dubuc and Prof J Davignon, 

University of Montreal, Quebec, Canada and included fasting lipid profiles, age, sex 

and BMI and PCSK9 measurements. These healthy volunteers were over 18 years of 

age and were not taking any medication for hyperlipidemia, hypertension, or diabetes.  

Samples were taken from 254 healthy volunteers (117 males and 137 females) and all 
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subjects gave informed written consent. The Institut de recherches cliniques de 

Montréal (IRCM) ethics committee approved this protocol. The data on this cohort 

has been published previously (Dubuc, Tremblay et al. 2009). 

 

These data sets were used as the comparator groups for lipid profiles of the HCV 

patients and are detailed in the relevant chapters. 

2.2.4 Prospective HCV cohort study groups 

The prospective HCV cohort was sub-divided into study groups for the purposes of 

sample identification and data collection. Participants in the clinical trial were initially 

allocated a screening code, either NS 1-32 for those from the Newcastle cohort or LS 

1-32 for those from the St Mary‟s Hospital, London cohort. Subsequently those 

screened for the trial were allocated a trial code from groups A to F, based on 

randomisation group. Those that were screen fails were allocated to Group G. 

Additionally patients that attended prospectively for fasting blood tests and clinical 

assessment but not in the clinical trial were allocated to group H. Those taking part in 

the 6 hour post-prandial study were allocated to Group I, and those in the Intralipid 

study to group IL.  

2.2.5 ‘Symphony’ database 

Data from the prospective HCV cohort was captured on a web based clinical trials 

software package called „Symphony‟ (http://newcastlectu.powertrial.com).  

Participants were anonymous in the database but identified by trial codes depending 

on groups. The software was designed for purpose and captured data in several 

domains. These included inclusion and exclusion criteria, demographic information 

(age, sex, ethnicity), clinical assessment (BP, waist hip circumference), NMR 

lipidomics dietary questionnaire, viral and fibrosis assessment (HCV genotype, viral 

load, previous liver biopsy), Fibroscan and MRI, oral glucose tolerance test, 

haematology (full blood count), biochemistry (U&E, LFT, CK, fasting lipid profile, 

glucose and insulin), virology, genetic tests (apoE genotype and storage of DNA), 

additional lipid tests (sterols, apoA1, B, E) additional metabolic tests (PCSK9), 

lipoprotein profiling tests and post prandial study. All databases had Caldicott 

approval from Newcastle upon Tyne Hospitals NHS Foundation Trust. 

http://newcastlectu.powertrial.com/
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2.2.6 Clinical assessment 

Participants in the prospective study had a full clinical assessment when they attended 

the Clinical Research Facility (CRF) for fasting blood tests. The following data was 

collected: sex, age, weight (kilograms), height (meters), waist and hip circumference 

(centimetres) and blood pressure.  Body mass index (BMI) was calculated as weight 

divided by the square of the height (kg/m
2
). 

2.3 Laboratory Methods 

2.3.1  Fasting lipid profiles and metabolic analysis 

In the prospective study, participants attended the Clinical Research Facility following 

a 12 hour fast. Serum samples were taken for total cholesterol, LDL cholesterol, non-

HDL cholesterol, triglycerides and glucose which were measured by standard 

automated enzymatic methods as above (Olympus Diagnostics UK Ltd). Additional 

biochemical analysis included liver function tests (alanine and aspartate transaminase 

and gamma glutamyl transferase), and renal function (urea, electrolytes and 

creatinine). Apolipoprotein A1 and B were measured by automated rate nephelometric 

methods (BNII, Dade Behring Ltd).  Plasma glucose was measured from fluoride 

oxalate tubes using an automated glucose oxidase method (Olympus Diagnostics UK 

Ltd). Insulin was measured by ELISA (Linco Research Inc). Insulin resistance was be 

estimated from measured fasting glucose and insulin by calculation of the HOMA IR 

score (glucose x insulin / 22.5) (Matthews, Hosker et al. 1985). All of the above tests 

were performed by the Clinical Biochemistry department, Royal Victoria Infirmary. 

2.3.2  Sterol Analysis 

All participants in the prospective HCV cohort had a fasting sterol profile. 

Lathosterol, desmosterol, cholestanol and sitosterol were measured by gas 

chromatography mass spectrometry (GCMS) as described previously (Kelley 1995) 

with some modifications and were performed by Dr Kim Bartlett, Dept of Clinical 

Biochemistry, Royal Victoria Infirmary. In brief, the analysis was carried out as 

follows.  50µL of serum was mixed with 50µL 1mmol/L 5β-cholestan-3α-ol 

(Epicoprostanol (EPIC)) in ethanol and the mixture then saponified in 1ml 4% (w/v) 

KOH in ethanol, vortexed for 30 seconds and incubated for 60 mins at 64°C.  After 
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saponification the samples were mixed with 1ml H2O and vortexed for 30 seconds. 

The samples were then extracted in Hexane by adding 3.5ml of Hexane, vortexing the 

mixture vigorously for 2 mins then left to stand at room temperature for 5 mins. The 

upper phase was transferred to a 10ml „Chromacol‟ screw cap tube. The hexane 

extraction was repeated twice, the extracts combined and the solvent evaporated under 

nitrogen to dryness at 40°C.  20μl anhydrous pyridine was added to the dried extract 

and mixed by vortexing.  The samples were protected from light and left at room 

temperature overnight.  Formation of the trimethylsilyl ether derivatives was achieved 

by addition of 80μl of BSTFA+1%TMCS, vortexing and heating at 64°C for 60min.  

Samples were cooled to room temperature and 40μl transferred to a GC autosampler 

vial prior to analysis by gas chromatography mass spectrometry (GCMS). 

GCMS analysis was achieved using an Agilent MSD 5975 mass spectrometer fitted 

with an Agilent 6890 GC and autosampler.  Samples (1µl) were introduced by means 

of splitless injection onto a J&W® DB5, 30m (0.25μm x 0.32mm id) column and 

subjected to temperature programming (150ºC isothermal for 2min, 15 ºC.min-1 to 

260 ºC,  8 ºC.min-1 to 290 ºC, 290ºC isothermal for 15min).  The carrier gas was 

helium (0.9 mL.min-1).  Sterols were detected by selected ion monitoring [cholesterol 

(m/z 368), cholestanol (m/z 445), epicoprostanol (m/z 355), desmosterol (m/z 372), 

lathosterol (m/z 458), sitosterol (m/z 396), campesterol (m/z 382), squalene (m/z 

341)] and quantitated by reference to the internal standard and calibration curves, 

constructed by analysis of standard mixtures of sterols.  

2.3.3  DNA extraction and quantitation. 

DNA was extracted from whole blood using the QIAamp blood midi kit (spin 

protocol) according to the manufacturer‟s instructions. Briefly 200μl of QIAGEN 

protease was added to a 15ml centrifuge tube with 1-2 mls of whole blood or cell 

pellets and mixed briefly. The volume was made up to 2ml by addition of sterile PBS. 

Lysis buffer AL (2.4 mls) was added and mixed thoroughly by inverting the tube 15 

times, followed by vigorous shaking for at least 1 minute. The sample was incubated 

at 70 °C for 10 minutes. 2 mls of ethanol (96-100%) was added to the sample and 

mixed by inverting 10 times followed by additional vigorous shaking. Half of the 

solution was transferred onto the QIAamp midi column placed in the 15mls centrifuge 

tube and spun at 3000 rpm for 3 mins. The midi column was removed and the filtrate 
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discarded. This was repeated with the remainder of the solution transferred onto the 

column and centrifuged again at 300 rpm for 3 mins. Two washing steps were 

performed by adding 2 mls of buffer AW1 to the QIAamp midi column and 

centrifuged at 5000 rpm for 15mins, followed by 2mls buffer AW2 and centrifuged at 

5000 rpm for 15 mins. The washed QIAamp midi column was then transferred to a 

clean 15 mls centrifuge tube for elution. Elution was performed by adding 300μl of 

buffer AE to the membrane of the midi column, incubated at room temperature for 5 

mins and centrifuged at 5000 rpm for 2 minutes. A second elution with another 300 μl 

of AE onto the membrane was repeated for maximum yield. The eluate was 

transferred to a clean sterile labelled eppendorf and stored at -20 °C until used. 

Extracted DNA was quantitiated using a NanoDrop 2000 spectrophotometer (Thermo 

Scientific) and DNA concentrations (ng/μl) recorded on the DNA database. 

2.3.4  ApoE genotyping 

In the prospective HCV cohort ApoE genotype was determined in using an automated 

dual fluorescent melting curve technique on genomic DNA isolated from EDTA 

whole blood using a commercial kit method (Nucleon DNA Extraction Kit, 

Amersham Life Sciences). ApoE genotyping was performed by the Clinical 

Biochemistry department, Royal Victoria Infirmary. 

2.3.5  Venous plasma preparation for HCV LVP analysis.  

A variable proportion of HCV RNA in the plasma of immunocompetent patients is 

precipitated on freezing (Nielsen, Bassendine et al. 2006). This is likely to be due to 

association of HCV with cryoglobulins (Agnello 1997). To minimise this, in the 

prospective HCV cohort blood samples were collected into EDTA vacutainer tubes 

(BD Biosciences) maintained at 37 °C and processed immediately for LVP 

assessment. The plasma was separated by centrifugation at 3000 rpm for 10 minutes 

at 37°C in a Rotanta 460R Hettich centrifuge (DJB Labcare, Buckinghamshire, UK). 

Complete protease inhibitor cocktail (Roche) was added to the plasma to prevent 

protein degradation. The plasma sample was flash frozen in liquid nitrogen for storage 

at -75 °C until used. 
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2.3.6  Iodixanol density gradient ultracentrifugation.  

0.5mL of plasma was added to 9.5 mL 12.5% iodixanol solution (2.1ml iodixanol 

(60%) (Optiprep, Axis-Shield), 200 L 100mM EDTA, pH 8.0, 200 L 0.5M Tris-

HCL pH 8.0, 7.45 ml 0.25M sucrose, 25 L 2M MgSO4, 25 L 2M MgCl2) in 

polycarbonate 16 x 76 mm centrifuge tubes (Beckman) and inverted several times to 

mix thoroughly before centrifuging at 50,000 RPM for 24 hours at 4°C in a type Ti50 

rotor and a L8-7M ultracentrifuge (Beckman). Gradients were harvested according to 

whether they were from the LVP assay development cohort or the validation cohort. 

For the LVP assay development cohort (N=7 healthy volunteers and 9 CHC patients), 

the gradients were harvested from the top manually by collecting 20 x 500μL 

fractions. Each fraction was then used for measurement of apoB by western blot to 

determine the distribution of apoB in the density gradient. The detailed results are 

discussed in chapter 4. The data from the development cohort defined the distribution 

of apoB in the iodixanol gradients residing at a density <1.07 g/ml. Therefore for the 

validation cohort, the gradient was harvested into 2 fractions for HCV RNA 

quantitiation: a top 3.5mL low density fraction (LDF) and a bottom 6.5mL high 

density fraction (HDF) with a cutoff at d1.07 g/ml. The density between the fractions 

was determined using a refractometer (Atago) [the aliquot taken for density 

measurements was returned to the HDF]. The iodixanol density gradients were 

performed by Dr Simon Bridge.   

2.3.7  SDS-PAGE and apoB western blotting.  

Iodixanol fraction samples were prepared by boiling in Laemmli buffer (4% sodium 

dodecyl sulphate [SDS], 20% glyercol, 10% 2-mercaptoethanol, 0.004% bromophenol 

blue, 0.125M Tris HCl) for 10 minutes. Proteins were separated by 3-18% SDS-

polyacrylamide gel electrophoresis (PAGE) on a Bio-Rad Protean II system and 

transferred to a Hybond polyvinylidene difluoride membrane (Amersham 

Biosciences, UK) and detected using the enhanced chemiluminescence (ECL) 

detection kit (Amersham Biosciences, UK) and polyclonal anti-apoB antibody 

(DAKO, UK). The apoB western blots were performed by Dr Daniel Felmlee. 
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2.3.8 HCV RNA extraction.  

HCV RNA was extracted from whole and fractionated plasma by QIAamp MinElute 

Virus Spin Kit according to the manufacturer‟s protocol (QIAGEN, UK).  HCV RNA 

was extracted from 200 L of EDTA plasma or iodixanol LDF/HDF and was eluted 

into 100 L of buffer AVE. 

2.3.9 HCV RNA quantitation by real-time RT-PCR 

Extracted HCV RNA was quantitated by two-step real-time RT-PCR  for HCV RNA 

as described previously (Nielsen, Bassendine et al. 2004) using primers NCR-3 (5‟-

ACCACAAGGCCTTTCGCGACCCAAC-3‟) and NCR-5 (5‟-

CCCCCCCTCCCGGGAGAGCCAT-3‟) plus a fluorescent probe SN1 (5‟-FAM-

ATTCCGGTGTACTCACCGGTTCCGCAGA-TAMRA-3‟).  Primers NCR-3 and -5 

anneal between nucleotides 120 and 290 of the highly conserved internal ribosome 

entry site of the HCV genome.  Reverse transcription was performed using the NCR-3 

primer and AMV reverse transcriptase (Promega).  The HCV positive-strand assay 

was calibrated against the WHO 3
rd

 international standard for HCV RNA (National 

Institute of Biological Standards and Controls).  Real-time PCR was conducted using 

an ABI Prism 7000 with Taqman Universal PCR Master Mix (Applied Biosystems). 

Determinations of duplicate tests were averaged. The qRT PCRs were performed by 

Dr Simon Bridge. 

2.3.10 IP10 ELISA 

Serum IP10 levels were measured using a commercially available ELISA kit (R&D 

Systems) according to the manufacturer‟s instructions. High levels of IP10 are found 

in saliva, so particular care was made to avoid saliva contamination. Briefly the 

protocol was as follows: The IP10 standard was reconstituted in 1ml of distilled water 

to make a stock solution of 5000 pg/ml. 100μl of stock IP10 standard were pipetted 

into 900μl of calibrator dilutent RD6Q to make a 500 pg/ml  concentration which 

served as the high standard. 500μl of calibrator dilutent RD6Q was pipetted into each 

of another 6 eppendorfs to prepare the 250, 125, 62.5, 31.2, 15.6 and 7.8 pg/ml 

standards. The dilution series was made by pipetting 500μl of the high standard into 

the next tube, ensuring that each tube was mixed thoroughly before the next transfer. 

The microplate strips were pre-coated with an IP10 specific monoclonal antibody. 
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75μl of assay dilutent RD1-56 were added to each well using a multichannel pipette. 

Then 75μl of standard and serum samples were added to each well according to the 

pre-determined plate plan in duplicates. The plate was sealed with the adhesive strip 

provided and incubated at room temperature for 2 hours. Each well was aspirated and 

washed for a total of 4 washes using 400μl of wash buffer from a squirt bottle. After 

the last wash the plate was inverted and blotted against clean paper toweling. 200μl of 

IP10 conjugate were added to each well and incubated for a further 2 hours. The plate 

was washed a further four times. 200μl of substrate solution was added to each well 

and incubated for 30 minutes at room temperature. The plate was covered and 

protected from light. 50μl of stop solution was added to each well causing a colour 

change from blue to yellow. The optical density (OD) of each well was measured 

immediately using a BIO RAD 680 microplate reader set to 450nm with wavelength 

correction set to 570nm. Standard curves were plotted on a Microsoft® excel 

spreadsheet and OD readings corrected for background. The average OD for each 

sample was calculated from the duplicates and adjusted for background. A co-

efficient of variation (CV) value was also calculated for each duplicate pair of 

readings from the standard deviation / mean. IP10 levels were calculated from the 

average OD value using the regression equation of the standard curve, adjusted for 

background. Samples that had OD values outside the linear range of the standard 

curve were repeated after 1:1 dilution in calibrator dilutent RD6Q. The dilution factor 

was multiplied into calculation of the final concentration. The average intra-assay co-

efficient of variation (CV) was 3.7% and inter-assay CV was 6.1%.  

2.3.11 PCSK9 ELISA 

Fasting PCSK9 levels were measured using a sandwich ELISA in both HCV patients 

and controls. The PCSK9 ELISA was developed and validated in a group of  254 

healthy individuals using methods described previously (Dubuc, Tremblay et al. 

2009). This data was used as the control group for this study. Briefly Nunc Maxisorp 

(NUNC Denmark) ELISA plates were coated with 0.55μg/well of immuno-purified 

anti-PCSK9 antibody (110μl of 5.0μg/ml stock antibody) in 1X carbonate coating 

buffer (prepared from 10X stock containing 9.539g sodium carbonate and 17.64g of 

sodium bicarbonate in 600μl of distilled H20, pH 9.5). The coated plates were sealed 

and incubated at 37° for 3 hours then overnight at 4°C. The plate was washed six 
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times with washing buffer (PBST: 10mM sodium phosphate, 0.15M NaCl (PBS), pH 

7.4 containing 0.5ml/L of Tween 20) and then incubated at room temperature for 1 

hour with 200 μl of blocking buffer (PBS, 0.1% casein, 0.01% merthiolate). A 

standard curve was prepared using serial dilutions of recombinant PCSK9 in dilution 

buffer (PBS, 1.8M urea, 0.5 ml/L Tween 20 and 0.001% merthiolate). Plasma samples 

and controls (CTL-L 116.3 ng/ml and CRTL-H 154.3 ng/ml) were diluted 1 in 20 in 

dilution buffer without BSA. The samples, controls and standard curve were 

incubated for 30 mins in a water bath at 46°C prior to application in duplicates to the 

ELISA plates according to the pre-determined plate plan. The plates were incubated 

overnight at 37°C. The plates were washed six times followed by addition of 100 μl 

per well of hPCSK9 HRP conjugated antibody, diluted 1 in 750 in blocking buffer 

(PBS, 0.1% casein, 0.01% merthiolate) and incubated for 3 hours at 37°C. After four 

further washes in PBST, 100μl per well of substrate (TMB) were added for 15 

minutes. The reaction was stopped by addition of 100μl of 0.25 M HCl and chemi-

luminescence read at OD450 nm on a BIO RAD 680 microplate reader.  

Standard curves were plotted on an excel spreadsheet and OD readings corrected for 

background. The average OD for each sample was calculated from the duplicates and 

adjusted for background. A co-efficient of variation (CV) value was also calculated 

for each duplicate set of readings from the standard deviation / mean. PCSK9 levels 

were calculated from average OD value using the regression equation of the standard 

curve adjusted for background. 

The intra-assay coefficient of variation for the PCSK9 ELISA was 3.6%.The inter-

assay CV was 9.3%. 
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2.3.12 Isolation of VLDL1, VLDL2, IDL & LDL from plasma by swing-out 

ultracentrifugation 

VLDL1 (Sf 60-400), VLDL2 (Sf 20-60), IDL (Sf 12-20) and LDL (Sf 0-12) were 

isolated from plasma by cumulative density gradient ultracentrifugation. Stock 

solutions at density 1.006 g/ml and 1.182 g/ml were prepared as follows:  

Solution A, d=1.006 g/ml solution - 22.8g NaCl and 0.2g Na2 EDTA were dissolved 

in 1 litre of water, 2ml 1N NaOH were added and made up to 2L with H20. The final 

NaCl concentration was 0.195M.  Solution B, d=1.182 g/ml solution - 249.8g NaBr 

were dissolved in 1litre of d 1.006 g/ml solution, NaCl concentration 0.195M, NaBr 

concentration 2.44M 
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These two density solutions (A and B) were mixed to give the following density 

gradient solutions. 

Solution 

number 

Density (g/ml) Solution B 

ml (d 1.006 

g/ml) 

Solution A 

ml (d 1.182 

g/ml)  

wt (g) of 100mls 

(1)  1.0988 50 55.78 109.88 

(2) 1.0860 50 41.66 108.60 

(3) 1.0790 75 53.16 107.90 

(4) 1.0722 75 46.50 107.22 

(5) 1.0641 75 36.93 106.41 

(6) 1.0588 100 42.92 105.88 

 

 

The density of the solutions was checked by measuring the weight in g of 100mls.  

Fasting EDTA plasma samples that had been stored at -80 °C were used and initially 

adjusted to d 1.118 g/ml by adding 0.342g NaCl to 1 ml plasma and 1 ml of d1.006 

g/ml solution. The sample was mixed gently but well ensuring that the NaCl had 

dissolved. 

The discontinuous gradient prepared in Beckman Ultra clear tubes 14x95mm and was 

layered as follows:0.5 ml 1.182 at the bottom, over layered with the 2 ml adjusted 

plasma sample (d 1.118 g/ml), 1 ml d1.0988, 1ml d 1.0860, 2mls d1.0790, 2 mls d 

1.0722, 2mls d 1.0641 and 2 mls d 1.0588. 

The tubes were gently dropped into the buckets and caps screwed using „spinkote‟ to 

ensure a good seal. The buckets were placed on an SW40 Swing out rotor (6 bucket). 

Centrifugation was carried out at 23°C for the times given in the table below.  
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Fraction (Sf) Speed 

(rpm) 

Time h:m ώ2t sample vol 

removed 

VLDL1 (60-400) 39K 1:38 9.81x10
10

 1.0ml 

VLDL2 (20-60) 18.5K 15:41 2.12x10
11

 0.5ml 

IDL (12-20) 39K 2:35 4.65 x10
11

 0.5ml 

LDL (0-12) 30K 21:10 7.52x10
11

 1.0ml 

 

Rotors were decelerated without the brake. Fractions were removed carefully from the 

top of the tube, and temporarily stored at -20 degrees C for subsequent apoB 

quantitation. 

2.3.13 ApoB ELISA 

ApoB was quantitiated from the VLDL1, VLDL2, IDL and LDL fractions by a 

sandwich ELISA. The ELISA protocol was developed and optimised initially by 

preparing a chequerboard to determine optimal dilutions of coating and capture 

antibodies. Nunc Maxisorp 96 well plates were used. The capture antibody was 

polyclonal Rabbit anti-human ApoB antibody (Dako, Denmark, Q0497), diluted in 1X 

carbonate coating buffer (prepared from 10X stock containing 9.539g sodium 

carbonate and 17.64g of sodium bicarbonate in 600μl of distilled H20, pH 9.5), in the 

following dilutions: 1 in 100, 1 in 500, 1 in 1000, 1 in 2000, 1 in 4000, 1 in 6000, 1 in 

8000 and 1 in 10,000.  50μl per well was used and the plate was covered and left for 1 

hour at 4° C. Blocking of non-specific binding was achieved by adding 200μl of 

blocking buffer (3% bovine serum albumin in PBS Tween20), covered and left for a 

further 1 hour at room temperature. After washing twice in PBST, 50μl per well of 

HRP conjugated polyclonal Goat anti-human apoB100 detector antibody (Academy 

Bio-medical Co. Inc, Houston, Texas) was added in the following dilutions: 1 in 500, 

1 in 1000, 1 in 2000, 1 in 4000, 1 in 6000, 1 in 8000 and 1 in 10,000.  

In the preliminary apoB ELISA development stage, an apolipoprotein calibrator (APO 

CAL, Catalogue LP 3023 RANDOX) was used in a 1 in 500 dilution in blocking 

buffer BSA, 50μl per well. In the second step, three standard curves were prepared 

using 1 in 1000, 1 in 2000 and 1 in 4000 coating antibody concentrations with 1 in 
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2000 detector antibody concentrations and a 5 fold dilution series of APO CAL  to 

determine the point of plateau indicating saturation of the standard curve. (Figure 3) 

Figure 3 ApoB ELISA development – saturation of standard curve  

 

 

A coating antibody dilution of 1 in 4000 was found to be optimal with 1 in 2000 

dilution of detector antibody. These coating and detector antibody dilutions were used 

in all subsequent experiments. The plateau of the standard curve was reached and the 

linear range was found at APO CAL concentrations <0.0088mg/dl (1 in 3125 

dilution) figure 4.  
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Figure 4 ApoB ELISA development linear range of standard curve 

 

For subsequent apoB quantitations, a standard curve was prepared from a dilution 

series of APO CAL starting from a 1 in 5000 dilution as the high end standard, as 

shown in table 2-1.  
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Table 2-1 Dilution series for ApoB ELISA standard curve 

APO CAL Standard 

dilution 

Apo B concentration 

mg/dl 

Volume (of previous 

dilution)  + volume 

BB/BSA (μl) 

neat 220  

1 in 10 22 10 + 90 

1 in 100 2.2 10 +90 

1 in 1000 0.22 50 + 450 

Dilutions used for standard curve 

1 in 5,(000) 0.044 100 + 400 

1 in 20,(000) 0.011 100 (of 1:5) +300 

1 in 25,(000) 0.088 100 (of 1:5) + 400 

1 in 30,(000) 0.00733 100 (of 1:5) + 500 

1 in 50,(000) 0.0044 200 (of 1:25) + 200 

1 in 100,(000) 0.0022 100 (of1:50) + 100 

1 in 125,(000) 0.00176 100 (of 1:25) + 400 

1 in 250,(000) 0.00088 200 (of 1:125) + 200 

1 in 625,(000) 0.000352 100 (of 1:125) + 400 

 

For each plate two additional control sera were used (Wako control serum 1 (normal, 

WAKO code no. 410-00102) containing 76.6 mg/dl of apoB (range 61.3 – 91.9) and 

control serum II (abnormal, WAKO code no. 416-00202), containing 119 mg /dl apoB 

(range 95.2 – 143). Further experiments indicated the optimal dilution of sera and 

lipoprotein fractions which is shown in the table 2-2 before being loaded onto the 

plate.  
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Table 2-2 Dilutions of lipoprotein fractions and sera for apoB ELISA 

quantitation 

Fraction Dilution required 

Whole serum / Control sera 1 and II 1 in 8000 

VLDL 1 1 in 200 

VLDL 2 1 in 750 

IDL 1 in 8000 

LDL 1 in 8000 

 

50μl per well of appropriately diluted standards, samples and controls were loaded on 

to the coated ELISA plate according to pre determined plate plans in triplicates. The 

plate was incubated at 37°C for 2 hours then washed four times in PBST (PBST: 

10mM sodium phosphate, 0.15M NaCl (PBS), pH 7.4 containing 0.5ml/L of Tween 

20) . Detection was performed by measurement of chemi-luminescence following 

addition of TMB solution 100μl per well. The reaction was allowed for 15 minutes 

then terminated by addition of 100μl of 250 mM HCl. Optical density (OD) at 450nm 

was detected on a BIO-RAD 680 microplate reader. Standard curves were plotted on 

an excel spreadsheet and OD readings corrected for background. The average OD for 

each sample was calculated from the triplicates and adjusted for background. A co-

efficient of variation (CV) value was also calculated for each triplicate set of readings 

from the standard deviation / mean. ApoB were calculated from average OD value 

using the regression equation of the standard curve adjusted for background. The 

intra-assay co-efficient of variation (CV) for the apoB ELISA on VLDL1, VLDL2, 

IDL and LDL fractions was 4.9%. 
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3 Chapter 3. The influence of chronic HCV infection on lipid 

profiles 

3.1 Demographics 

The aim of this study was to determine the influence of HCV on lipid profiles. Two 

HCV populations were characterised; a retrospective cohort with non-fasting lipid 

profiles (table 3-1), and a prospective cohort with fasting lipid profiles (table 3-2). 

The analysis of anti-viral treatment outcomes from the retrospective cohort compared 

Sustained Virological Responders (SVR) (i.e. those that were HCV RNA not detected 

at least six months after completion of therapy) to non-responders (NR). The non 

responders group included those that had either a complete or partial early virological 

response but subsequently relapsed and those that did not achieve a 2 log reduction in 

HCV RNA at 12 weeks (null responders). 

Table 3-1 Baseline characteristics: Retrospective HCV cohort 

 

 

 

 

 

 

 

 

 

 

 

 

 

HCV  

genotype 

1 2 3 4 5 6 Unidentified 

N= 109 12 113 5 4 1 7 

Age (yrs) 45.9 ± 11.5 47.3 ± 10.0 43.3 ± 10.0 51 ±15.4 46.5 ± 21.5 62 44.7 

Male (%) /  

Female (%) 

72 (56%) 

37 (44%) 

6 (50%)  

6 (50%) 

72 (64%) 

40 (36%) 

4 (80%) 

1 (20%) 

2 (50%) 

2 (50%) 

0 

1 

5 (71%) 

2 (29%) 

SVR (%) 56 (51%) 10 (83%) 87 (77%) 2 (40%) 3 (75%) 1  6 

NR (%) 53 (49%) 2 (17%) 26 (23%) 3 (60%) 1 (25%) 0 1 
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Table 3-2 Baseline characteristics of prospective (fasting) HCV and non-HCV 

comparator groups  

(mean ± standard deviation) 

3.2 Comparator group demographics and lipid profiles 

Two separate non-HCV groups were used in these studies as comparators of lipid 

profiles to chronic HCV with kind permission of the study investigators. Recruitment 

of these comparator groups is described in 2.2.3. The baseline characteristics of the 

two comparator study cohorts (group A and group B) are shown in table 3-2. The first 

comparator group (Group A) data was provided by collaborators at the University of 

Surrey. In addition to fasting lipid profiles, group A comparators had measurement of 

non-cholesterol sterols (Sterol controls) performed by Clinical Biochemistry, Royal 

Victoria Infirmary, Newcastle upon Tyne. These otherwise healthy individuals were 

taking part in a dietary intervention study, hence had a higher mean BMI than the 

HCV patients, but were well matched for age. All the lipid profiles were taken at 

baseline prior to any intervention. However since comparator group A was a relatively 

small number (N=45, males =13) and these individuals were relatively overweight 

and hyperlipidaemic compared to the HCV patients, a second non-HCV comparator 

group was also evaluated.  

The second non-HCV comparator group (Group B) consisted of a large group of 254 

healthy volunteers with normal BMI, which was provided by University of Montreal. 

In this group fasting lipid profiles had been performed along with measurement of 

PCSK9. There were no significant differences between the HCV patients and group B 

 Comparator 

Group A  

Comparator 

Group B 

HCV G1 HCV G3 

N= 45 254 61 28 

Age (years) 44 ± 9.3 41.8 ± 12.5 47.6 ± 10.4 45.3 ± 10.5 

BMI (kg/m
2
) 29.0 ± 3.9 24.5 ± 4.4 25.3 ± 4.1 25.8 ± 3.2 

Waist Circum. 

cm 

94.7±10.2 Not available 89.4 ± 11.7 91.4 ± 9.3 

Male (%) /  

Female (%) 

13 (29%)   

32 (71%) 

117 (46%)  

137 (54%) 

43 (70%)  

18 (30%) 

22 (81%)  

5 (29%) 
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comparators in mean age and body mass index, but there were more males in both the 

retrospective (non-fasting) and prospective (fasting) HCV cohorts than comparator 

groups A and B. However in comparator group B it is important to note that there was 

no significant difference between total cholesterol level in males and females 

(p=0.549), but males had significantly higher non-HDL and LDL cholesterol levels 

than females (p=0.002), and females had significantly higher HDL cholesterol and 

TG/HDL cholesterol ratios than males (p=0.0001). Triglycerides were not 

significantly different between male and female group B comparators (p=0.1902). 

Therefore sex matched sub-group analyses were performed when comparing lipid 

parameters from group B comparators to the HCV groups which were predominantly 

male. 

3.3 Comparison of HCV lipid profiles vs. non-HCV healthy subjects 

Lipid profile summary statistics for the retrospective (non-fasting) HCV cohort and 

prospective (fasting) HCV cohort and both healthy comparator groups A and B are 

shown in tables 3-3 to 3-6 respectively. Total, LDL and non-HDL cholesterol 

conformed to a normal distribution and are summarised as mean ± standard deviation. 

For these normal variables, parametric 2-sample t tests were used to determine 

differences between groups. Triglycerides, HDL cholesterol and TG/HDL ratio were 

not normally distributed; therefore summary statistics of median and interquartile 

range are quoted. Non-parametric Mann-Whitney or Kruskall Wallace tests were used 

to determine differences in these variables between groups.  

Patients in the retrospective HCV cohort had non-fasting lipid profiles performed as 

part of their routine clinic assessment. Therefore the numbers vary according to the 

available data which is shown in table 3-3. All HCV patients were viraemic at the 

time of lipid profiling and not concurrently receiving anti-viral therapy. Only lipid 

profiles from patients with HCV genotypes 1 and 3 were assessed owing to the small 

numbers of the other HCV genotypes. 
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Table 3-3 Non-fasting lipid profiles in HCV G1 & G3: Retrospective cohort 

 N HCV G1 

 

N HCV G3 P value 

Total 

cholesterol# 

93 4.70 ± 0.93 

 

97 4.134 ± 0.903 <0.001 

Non HDL 

cholesterol# 

72 3.43 ± 0.93 78 2.71 ± 0.79 <0.001 

Triglycerides* 56 1.67 ± 1.02 

1.25 (1.10-1.95) 

63 1.53 ± 1.01 

1.20 (0.80-1.98) 

0.204 

HDL* 61 1.32 ± 0.41 

1.30 (1.03-1.50) 

68 1.30 ± 0.43 

1.20 (1.00-1.60) 

0.033 

TG/HDL ratio* 47 1.40 ± 1.17 

1.00 (0.55-1.89) 

57 1.39 ± 1.09 

1.00 (0.74-1.55) 

0.964 

Note variation in sample size depending on available data. 

 

 

Table 3-4 Fasting lipid profiles in HCV G1 & G3: Prospective cohort  

 HCV G1 N=61 

 

HCV G3 N=28 P value 

Total 

cholesterol# 

4.56 ± 0.95  3.80 ± 0.92  0.001 

Non HDL 

cholesterol# 

3.30 ± 0.92 2.53 ± 0.80 <0.001 

LDL cholesterol# 2.70 ± 0.83  2.11 ± 0.64 

 

0.002 

Triglycerides* 1.31 ± 0.72 

1.20 (0.85-1.50) 

1.04 ± 0.80 

0.70 (0.60-1.13)  

0.004 

HDL cholesterol* 1.27 ± 0.35 

1.20 (1.1-1.5) 

1.26 ± 0.45 

1.20 (0.9-1.65) 

0.722 

TG/HDL ratio* 1.17 ± 0.87 

0.91 (0.60-1.33) 

1.02 ± 1.06 

0.54 (0.44-1.29) 

0.052 

Units are mmol / l; # normally distributed data summarised by mean ± standard 

deviation, parametric 2-sample t-test; * non-normally distributed data summarised by 

median (Q1-Q3), non-parametric Kruskall-Wallace test 
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Table 3-5 Comparator group A fasting lipid profiles 

 All N=45 Female N= 32 

 

Male N= 13 P value 

Total 

cholesterol# 

5.34 ± 1.06 5.29 ± 1.13 5.46 ± 0.89 0.634 

Non HDL 

cholesterol# 

4.20 ± 0.91 4.08 ± 0.93 4.50 ± 0.82 0.162 

LDL 

cholesterol# 

3.07 ± 0.71 3.03 ± 0.76 3.16 ± 0.58 0.590 

Triglycerides* 

 

1.19 (0.93-1.58) 1.14 (0.91-1.45) 1.29 (0.94-2.04) 0.341 

HDL 

cholesterol* 

1.10 (0.85-1.29) 1.16 (0.98-1.35) 0.93 (0.81-0.93) 0.010 

TG/HDL 

ratio* 

1.08 (0.76-1.52) 0.99 (0.74-1.33) 1.35 (1.05-2.33) 0.040 

 

Table 3-6Comparator group B fasting lipid profiles  

 All N=254 

 

Female N= 137 Male N= 117 P value 

Total 

cholesterol# 

4.86 ± 0.89 4.83 ± 0.91 4.89 ± 0.63 0.549 

Non HDL 

cholesterol# 

3.36 ± 0.92 3.20 ± 0.92 3.56 ± 0.89 0.002 

LDL 

cholesterol# 

2.83 ± 0.80 2.69 ± 0.78 3.00 ± 0.80 0.002 

Triglycerides* 

 

1.03 (0.75-1.38) 0.94 (0.71-1.40) 1.08 (0.82-1.38) 0.1902 

HDL 

cholesterol* 

1.47 (1.24-1.74) 1.59 (1.37-1.88) 1.27 (1.07-1.54) <0.0001 

TG/HDL 

ratio* 

0.69 (0.47-1.02) 0.61 (0.41-0.91) 0.84 (0.57-1.21) 0.0001 

Units are mmol / l; # normally distributed data summarised by mean ± standard 

deviation, parametric 2-sample t-test; * non-normally distributed data summarised by 

median (Q1-Q3), non-parametric Kruskall-Wallace test 
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3.3.1  Cholesterol - total, HDL and non-HDL-C 

In the prospective HCV cohort, total cholesterol was significantly lower in HCV 

patients than non-HCV control groups A and B in both HCV genotype 1 (p=0.007) 

and genotype 3 (p<0.001) Figure 5A. This remained significant when only male group 

B comparatorswere compared to males with HCV G1 (p=0.004) and HCV G3 

(p<0.001). The difference in total cholesterol between HCV G1 and healthy male 

group B comparators was accounted for primarily by lower non-HDL cholesterol 

(figure 5B, p=0.010) rather then HDL cholesterol (figure 5C, p=0.2022). In contrast, 

the significantly lower total cholesterol in HCV G3 compared to male group B 

comparators was contributed by reductions in both HDL cholesterol (p=0.0125) and 

non-HDL cholesterol (p<0.001). The data from the retrospective (non-fasting) HCV 

cohort indicate that total cholesterol and non-HDL cholesterol were significantly 

lower in HCV G3 than HCV G1 (p<0.001). This was confirmed in the fasting 

prospective HCV cohort where total and non-HDL-C was significantly lower in HCV 

G3 than HCV G1 (p<0.001) (Table 3-4 and figure 5B) Although the HDL-C was 

significantly lower in HCV G3 than HCV G1 in the retrospective HCV cohort 

(p=0.033), this was not confirmed in the HCV prospective cohort (p=0.722) (figure 

5C). 
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Figure 5 Cholesterol levels in HCV G1 & G3 (fasting prospective) and non-HCV 

comparators 
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(A) Total cholesterol (TC) was significantly lower in HCV G1 (p=0.007) and HCV G3 (p<0.001) than 

non-HCVcomparators. The difference was largely in non-HDL-C (non-HDL-C = TC – HDL-C) (B) 

which was significantly lower in HCV G3 than HCV G1 (p<0.001). HDL cholesterol (C) was not 

significantly different between groups. Boxes represent median value and interquartile range (Q1 – 

Q3). Lower whisker = Q1 - 1.5 (Q3-Q1) and the upper whisker = Q3 + 1.5 (Q3-Q1); * = outlying data 

points. 
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3.3.2 Assessment of LDL cholesterol and non HDL cholesterol 

 

LDL cholesterol is usually estimated by the Friedwald calculation (LDL C = Total 

cholesterol – HDL cholesterol - (triglycerides/2.2)). Non HDL cholesterol is 

calculated simply (non-HDL C = total cholesterol – HDL cholesterol).  LDL 

cholesterol levels calculated by the Friedwald equation in HCV patients and controls 

show the same differences as non HDL C and are shown in figure 6. Given that 

triglycerides are significantly lower in those with HCV G3 infection than in HCV G1 

and controls (figure 8A), the predictive value of LDLC estimated by Friedwald 

equation vs. non-HDL cholesterol as an indirect measure of apoB was tested in the 

fasting prospective group serum. The correlations are shown in figure 7A and Figure 

7B. In HCV G1 there was a stronger correlation between non HDL C and apoB (r = 

0.947) than Friedwald calculated LDL cholesterol vs. apoB (r = 0.860). This was also 

apparent in HCV G3 where there was weaker correlation between the Friedwald LDL 

cholesterol vs. apoB (r= 0.723) compared to non-HDL cholesterol vs. apoB, (r = 

0.789). 
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Figure 6 LDL cholesterol in HC1 G1 & G3 (fasting prospective) and non-HCV 

comparators 
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LDL cholesterol calculated by the Friedwald equation was significantly lower in HCV 

G3 than in HCV G1 (p<0.001) and healthy comparator groups A and B (p<0.001). 

The median value and interquartile range (Q1 – Q3) shown. Lower whisker = Q1 - 

1.5 (Q3-Q1) and the upper whisker = Q3 + 1.5 (Q3-Q1); * = outlying data points. 
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Figure 7 LDL Cholesterol and non-HDL cholesterol correlation with apoB 
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Fasting LDL cholesterol calculated by the Friedwald equation (A) correlates less 

strongly with serum apoB than non-HDL cholesterol (B) in HCV G1 and HCV G3  
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3.3.3 Triglycerides 

In the combined retrospective (non-fasting) & prospective (fasting) HCV cohorts, 

triglycerides were significantly higher in HCV G1 patients than comparators 

(p=0.0003), but not between HCV G3 and comparators (p=0.7626). However, since 

triglycerides are increased in the post prandial state, when only fasting data were 

considered, the difference between HCV G1 and male comparators was no longer 

significant (p=0.3140). In contrast fasting triglycerides in HCV G3 were significantly 

lower than in both male group A and group B controls (p=0.008) (figure 8A)  

3.3.4 Triglyceride / HDL ratio 

In group B comparators the TG/HDL ratio was significantly higher in males than 

females (p=0.0001) because males had lower HDL levels (p<0.0001) despite 

equivalent triglycerides (p=0.1902). In the combined retrospective (non-fasting) & 

prospective (fasting) HCV cohorts, patients with HCV G1 had significantly higher 

TG/HDL ratios than overall group B comparators (p<0.001). Also in the combined 

data set there was no significant difference in TG/HDL ratio between HCV G1 and 

HCV G3 (p=0.2278).  

When the analysis was restricted to fasting samples in comparison to male group B 

comparators, the TG/HDL ratio was not significantly higher in HCV G1 than male 

group B comparators (p=0.2356) Although there was a trend to towards higher 

TG/HDL ratio in HCV G1 than HCV G3, this did not achieve statistical significance 

(p=0.0528). Likewise the fasting TG/HDL ratio in HCV G3 was not significantly 

different to male comparators (p=0.1709) (figure 8B). Therefore TG/HDL ratios are 

likely to be near normal in HCV. 
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Figure 8 Fasting triglycerides (TG) and triglyceride / HDL cholesterol ratio in 

HCV G1 & G3 and non-HCV comparators 

Group B comparatorsGroup A comparatorsHCV G3HCV G1

5

4

3

2

1

0

T
A

G
 (

m
m

o
l/

L
)

(A) Triglycerides

 

Group B comparatorsGroup A comparatorsHCV G3HCV G1

5

4

3

2

1

0

T
G

/
H

D
L

(B) Triglyceride / HDL cholesterol ratio

 

(A) Fasting triglyceride (TG) levels are significantly lower in HCV G3 than HCV G1 

(p=0.004) and non-HCV comparators (p=0.008). However the TG/HDL ratios were 

not significantly different (B) (p=0.052), because HDL-C is the same. The median 

value and interquartile range (Q1 – Q3) is shown. Lower whisker = Q1 - 1.5 (Q3-Q1) 

and the upper whisker = Q3 + 1.5 (Q3-Q1); * = outlying data points. 
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3.3.5 ApoB and ApoA1 

 

The observation that HCV genotype 3 patients had significantly lower LDL 

cholesterol, non-HDL cholesterol and triglyceride levels than both HCV genotype 1 

and healthy comparators (p<0.001) suggests that the levels of apoB containing 

lipoproteins (VLDL, IDL and LDL) are diminished in HCV G3. This was confirmed 

by measurement of serum apoB levels which were significantly lower in HCV G3 

than HCV G1 (p<0.001) (table 3-7). ApoB was also measured in comparator group 

A(0.92 ± 0.22 g/l) which was significantly higher than in HCV G3 (p<0.001). 

However apoB in HCV G1 in the fasting prospective cohort was not significantly 

lower than group A comparators (p=0.349) (Figure 9). 

HDL cholesterol was not significantly different between HCV G1 and G3 (p=0.845). 

This was supported further by ApoA1 levels which were not significantly different 

between HCV genotypes 1 & 3 (p=0.565) Table 3-7.  

Table 3-7 ApoB and ApoA1  (fasting prospective cohort) 

 HCV G1 N=61 HCV G3 N=27 P value 

 

ApoB mean ± SD 

 

0.88 ± 0.25 0.66 ± 0.21 <0.001# 

ApoA1 mean ± SD 

Median (Q1-Q3) 

1.45 ± 0.30 

1.40 (1.3-1.6) 

1.38 ± 0.34 

1.30 (1.0-1.6) 

0.565* 

 

 

#2-sample t-test; * Mann Whitney U-test 
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Figure 9 ApoB in HCV G1 & HCV G3 and non-HCV comparators 
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ApoB levels are significantly lower in HCV G3 then HCV G1 (p<0.001) and non-

HCV comparators (p<0.001). There was no significant difference in apoB between 

HCV G1 and non-HCV controls (p=0.349). 

 

3.4 Relationship between lipid profiles and HCV total viral load 

Total HCV viral load and fasting lipid profiles were assessed at the same visit in all 

patients in the prospective cohort. In addition, paired viral load and lipid profiles were 

available in some of the retrospective cohort. The summary statistics of HCV total 

viral load for the combined cohorts for HCV G1 and HCV G3 is shown in the Table 

3-8. The relationship between lipid profiles and viral load in the prospective fasting 

HCV cohort is covered in further detail in results chapter 4 on page 159. 

Table 3-8 Total Viral Load summary statistics, combined cohorts 

Total viral load 

Log10IU/ml 

HCV G1 (N=112) HCV G3 (N=66) 

 Mean (± SD) 5.81 ± 0.94 5.53 ± 0.60 

Median (Q1-Q3) 5.86 (5.40 – 6.55) 5.66 (5.25 – 5.85) 

 

Since log10 total HCV RNA viral load was not normally distributed, Spearman‟s 

Rank correlation analysis was used to test for associations between viral load and lipid 

parameters. In HCV G3 infection there was a significant inverse correlation between 
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total cholesterol and viral load (r = -0.324, p = 0.010). This significant negative 

correlation was most apparent in the HDL cholesterol fraction (figure 10, r = -0.520, p 

< 0.001) rather than non-HDL cholesterol (figure 11, r = -0.195, p = 0.159). Non-

HDL cholesterol showed a significant negative correlation with viral load in fasting 

patients ( r= -0.541, p = 0.011) and in the fasting group the HDL correlation was less 

strong (r = -0.291, p = 0.201) in HCV G3. 

In HCV G1 infection there was no significant correlation between total HCV RNA 

viral load and total cholesterol (r = 0.031, p = 0.755). Likewise, there was no 

significant correlation of total viral load with HDL cholesterol (r = 0.034, p = 0.744) 

nor with non-HDL cholesterol (r = 0.041, p = 0.693) in HCV G1 patients. 

The triglycerides did not correlate with total HCV RNA viral load in either HCV G1 

(r = -0.005, p = 0.964) or HCV G3 (r = 0.097, p = 0.476). Total viral load showed no 

significant variability with host ApoE genotype 
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Figure 10 HCV G3 negative correlation between viral load and HDL cholesterol 

(combined cohort) 
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Figure 11 HCV G3 negative correlation between viral load and non-HDL 

cholesterol (fasting prospective cohort) 
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HDL cholesterol (figure 10) and non-HDL cholesterol (figure 11) both correlate 

inversely with viraemia in HCV G3. 
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3.5 The relative importance of host ApoE genotypes and HCV genotype on 

lipid profiles 

The lipid profiles data presented thus far indicated that in patients with chronic HCV 

infection, non-HDL cholesterol levels were low. In those with HCV G3 in particular, 

chronic HCV infection was having a stronger effect on lowering cholesterol contained 

within the apoB lipoproteins (VLDL, IDL and LDL) than in HDL. It is well 

recognised that host ApoE genotype is an important determinant of LDL cholesterol, 

normally accounting for 7% of the variability of LDL cholesterol (Davington, Gregg 

et al. 1988). The expected pattern of serum cholesterol level is non HCV populations 

is E3/E4 > E3/E3 > E2/E3. The relative importance of host ApoE genotype on lipid 

profiles compared to HCV genotype was therefore investigated further. 

3.5.1 Frequency of ApoE genotypes 

The frequency distribution of ApoE genotypes in those with HCV G1 and G3 is 

shown in table 3-9. This combines ApoE genotypes from both the retrospective (non-

fasting) and prospective (fasting) HCV cohorts. It is apparent that homozygote 

ApoE2/E2 and E4/E4 were very rare in the chronic HCV group, identified in only 1 

each out of 227 patients genotyped The overall allele frequencies in the combined 

cohorts was ε2 0.068, ε3 0.782, ε4 0.015. This was not significantly different from the 

reported apoE allele frequencies from a meta-analysis of over 1000 individuals 

without coronary disease of ε2 0.07, ε3 0.82 and ε4 0.11 (Bennet, Di Angelantonio et 

al. 2007). 
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Table 3-9 Combined ApoE genotypes in retrospective and prospective cohorts 

 HCV G1 

 

HCV G3 Total (%) 

E2/E2 

 

1 0 1      (0.4) 

E2/E3 

 

16 9 25    (11) 

E2/E4 

 

3 1 4      (1.8) 

E3/E3 

 

77 57 134  (59) 

E3/E4 

 

38 24 62    (27.4) 

E4/E4 

 

1 0 1      (0.4) 

Total (prospective / 

retrospective) 

136 91 227 

 

Lipid profiles were analysed in those with the most common ApoE genotypes i.e. 

E3/E3, E2/E3 and E3/E4. To increase statistical power, the lipid profiles for total 

cholesterol, non-HDL cholesterol and HDL cholesterol were combined from the 

retrospective (non-fasting) and prospective (fasting) cohorts. 
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3.5.2  Total Cholesterol, ApoE genotype and HCV genotype 

Figure 12A indicates that the lower total cholesterol in HCV G3 compared to HCV 

G1 was more apparent in those with apoE3/E3 and E3/E4, than those with apoE2/E3, 

where cholesterol levels were similarly low. In those with apoE3/E4 total cholesterol 

was significantly lower than expected in those with HCV G3 (p<0.001). 

3.5.3  Non-HDL Cholesterol, ApoE genotype and HCV genotype 

Figure 12B and figure 12C indicate that the difference in total cholesterol between 

HCV genotypes 1 & 3 was primarily in the non-HDL (i.e. apoB associated) fraction 

rather than in HDL. Non-HDL cholesterol in HCV G3 was significantly lower than 

expected for those with apoE3/E3 and apoE3/E4, but not significantly different in 

those with ApoE2/E3. 

3.5.4  HDL-Cholesterol, ApoE genotype and HCV genotype 

As expected, ApoE genotype did not appear to influence HDL cholesterol levels in 

either HCV G1 or HCV G3 (figure 12C). 
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Figure 12 ApoE genotype and Cholesterol (combined HCV cohorts) 

 

 

 
Total cholesterol (A) and non-HDL cholesterol (B) levels are significantly lower in 

HCV G3 than HCV G1 in those with apoE3/E3 and E3/E4 but not in apoE2/E3. HDL 

cholesterol is not affected by apoE genotype (C). Columns represent mean ± standard 

error. Numbers of each group are shown. 2-sample t-test was used to compare 

groups. 
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3.5.5  HCV G3 influences cholesterol levels more than apoE genotype 

The expected pattern of serum cholesterol level is E3/E4 > E3/E3 > E2/E3. However, 

cholesterol levels were significantly lower in HCV G3 patients with apoE3/E3 and 

E3/E4 compared to HCV genotype 1 (* p =0.008; ** p = 0.035).  

This suggests that HCV is exerting greater influence on cholesterol levels than apoE 

genotype in HCV genotype 3 infection (figure 13). 

 

Figure 13 Effect of host apoE genotype on pre-treatment cholesterol in patients 

with chronic HCV infection.  

 

The normal variation in cholesterol levels with apoE genotype is respected in HCV 

G1 but overridden in HCV G3, where those with apoE3/E3 and E3/E4 have lower 

cholesterol levels than expected. 
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3.5.6  Triglycerides, ApoE genotype and HCV genotype 

Overall HCV G3 patients had lower triglycerides than HCV G1. This was more 

significant in the fasting prospective cohort (Figure 14B p=0.004) than the combined 

cohort (figure 14A p=0.008). However there were not significant differences between 

HCV genotypes 1 & 3 when analysed according to apoE genotype. Instead the effects 

of apoE genotype on triglycerides were more in keeping with the expected effects, 

whereby those with apoE2/E3 had lower fasting triglycerides than those with E3/E3 

and E3/E4 (figure 14A and 14B). This same pattern of apoE genotypes was observed 

with the TG/HDL ratio in the combined (figure 14C) and fasting only (figure 14D) 

cohorts. This would be expected given that the TG varied according to apoE genotype 

but the HDL did not.  
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Figure 14 ApoE genotype and Triglycerides (combined and fasting HCV cohorts) 

 

 

 

Triglycerides (TG) levels are significantly lower in HCV G3 than HCV G1 in both the 

combined retrospective + prospective cohorts (A), and the fasting only HCV cohort 

(B). However TG levels did not vary significantly with apoE genotype. TG/HDL 

cholesterol levels showed a similar pattern in the combined (C) and fasting only (D) 

HCV cohorts. 
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3.6 The effect of antiviral treatment on lipid profiles in HCV 

The majority of the patients in the retrospective cohort had undergone anti-viral 

therapy with combination pegylated interferon-α and ribavirin and long term 

treatment outcomes were identified retrospectively. Where available, paired non-

fasting lipid profiles pre and post treatment in SVR‟s (Table 3-10) and non responders 

table 3-11 were recorded. The sample sizes shown in Table 3-10 and table 3-11 vary 

according to the availability of paired pre and post treatment data.  

 

Total cholesterol, non-HDL cholesterol, triglycerides and TG / HDL-C ratio all 

increased significantly in individuals infected with HCV G3 who achieved an SVR. 

By contrast in those with HCV G1 infection who achieved SVR, the post treatment 

lipid profiles were not significantly different from pre treatment. HDL cholesterol 

level remained unchanged pre and post treatment in SVR‟s for both HCV genotypes 1 

& 3. 

In non-responders to therapy, there was no significant change in total cholesterol, 

non-HDL cholesterol, triglycerides, HDL or TG / HDL-C ratio pre- and post- 

treatment in either HCV genotype 1 or 3. These data strongly support the concept that 

it is chronic HCV infection per se that causes lower apoB associated cholesterol in 

HCV G3 infection because the lipid profiles normalise with successful eradication of 

the virus but persist in non-responders. 
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Table 3-10 Paired pre and post treatment lipid profiles SVR’s  
HCV Genotype 1 N Pre Treatment Post Treatment p-value 

Total Cholesterol 35 4.70 ± 1.06 4.73 ± 0.98 0.907 

Non HDL Cholesterol 24 3.63 ± 1.06 3.65 ± 0.98 0.933 

Log10 Triglycerides 29 0.16 ± 0.19 0.18 ± 0.22 0.771 

Log10 HDL  29 0.10 ± 0.11 0.09 ± 0.10 0.782 

TG/HDL ratio 19 1.31 ± 0.70 1.40 ± 0.99 0.725# 

 

HCV Genotype 3 N Pre Treatment Post Treatment p-value 

Total Cholesterol 55 4.20 ± 0.85 5.09 ± 0.86 <0.001 

Non HDL Cholesterol 42 2.80 ± 0.77 3.6 ± 0.75 <0.001 

Log10 Triglycerides 44 0.06 ± 0.23 0.19 ± 0.23 0.010 

Log10 HDL 43 0.11 ± 0.14 0.13 ± 0.14 0.538 

TG/HDL ratio 18 1.24 ± 0.87 1.60 ± 1.20 0.028# 

 

 

Table 3-11 Paired pre and post treatment lipid profiles non-responders 

HCV Genotype 1 N Pre Treatment Post Treatment p-value 

Total Cholesterol 42 4.66 ± 0.82 4.63 ± 1.04 0.871 

Non HDL Cholesterol 33 3.31 ± 0.80 3.19 ± 0.93 0.562 

Log10 Triglycerides 42 0.17 ± 0.23 0.20 ± 0.24 0.630 

Log10 HDL  38 0.09 ± 0.16 0.09 ± 0.15 0.986 

TG/HDL ratio 26 1.35 ± 1.10 1.39 ± 1.19 0.890# 

 

HCV Genotype 3 N Pre Treatment Post Treatment p-value 

Total Cholesterol 21 4.00 ± 1.20 3.63 ± 0.89 0.269 

Non HDL Cholesterol 16 2.52 ± 0.99 2.31 ± 0.66 0.481 

Log10 Triglycerides 22 0.18 ± 0.26 0.20 ± 0.26 0.769 

Log10 HDL 19 0.06 ± 0.14 0.01 ± 0.19 0.274 

TG/HDL ratio 17 1.88 ± 1.48 2.36 ± 1.74 0.082# 

Data are in mmol / l and expressed as mean ± standard deviation. Paired t-test was 

used to compare pre and post treatment results. Abbreviations: SVR sustained 

virological response; HDL high density lipoprotein; Non-HDL calculated from total 

cholesterol – HDL # paired t test performed on log10 TG/HDL ratio  
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3.7 Discussion 

 

This study has analysed the effect of HCV infection and apoE genotypes on serum 

lipid profiles and shown that HCV genotype 3 exerts a greater influence over baseline 

LDL / non-HDL cholesterol levels than host apoE genotype. The data confirms that 

HCV genotype 3 lowers serum cholesterol more than HCV genotype 1 which 

supports previously published data (Serfaty, T et al. 2001; Siagris, Christofidou et al. 

2006; Dai, Chuang et al. 2008). Two lines of evidence support the concept that 

hypocholesterolaemia in HCV G3 is a directly virally mediated effect. Firstly, there is 

a negative correlation between HCV viral load and total cholesterol, in both the HDL 

and non-HDL cholesterol fractions in HCV G3, supporting a direct association 

between viraemia and lipid profiles. Secondly is the observation from the paired 

pre/post treatment data that the lipid profiles increase after successful eradication of 

the virus in those that achieve a sustained virological response (SVR) particularly in 

HCV G3 infection. This rebound increase in LDL cholesterol with HCV clearance 

post SVR may be clinically important in terms of atherosclerosis risk. A significant 

proportion of hypo-cholesterolaemic HCV patients when successfully treated 

experienced rebound increases in LDL cholesterol to levels warranting initiation of 

lipid lowering level to reduce risk of cardiovascular disease (Corey, Kane et al. 2009). 

Despite an apparently favourable lipid profile, a growing body of evidence suggests 

that chronic HCV infection may be associated with increased atherosclerosis risk. An 

important contributory factor that may increase atheroma risk may be the very high 

prevalence of smoking amongst the HCV population that have a history of injecting 

drug use (Basseri, Yamini et al. 2010). One study reported that HCV seropositivity 

was associated with more severe coronary atherosclerosis (Alyan, Kacmaz et al. 

2008). Another study has reported more severe carotid intima-media thickness 

measurements (Mostafa, Mohamed et al. 2010). As part of assessment of 

cardiovascular risk, most clinical biochemistry laboratories estimate LDL cholesterol 

by the Friedewald equation (Bairaktari, Seferiadis et al. 2005). The calculation is LDL 

C = total cholesterol – HDL cholesterol – (Triglycerides / 2.2) (Friedewald, Levy et 

al. 1972). The Friedwald approximation assumes that total cholesterol is normally 

distributed across the VLDL, LDL and HDL fractions. Friedwald is known to be 

invalid when triglycerides are >4.5 mmol/l when it underestimates LDL-C.  Because 



 82 

the majority of triglycerides in fasting sera are in VLDL, Friedwald assumes normal 

VLDL secretion. However the assumptions behind the Friedwald calculation may not 

be valid in chronic hepatitis C because evidence suggests that HCV affects VLDL 

production by inhibition of microsomal triglyceride transfer protein (MTP) 

(Mirandola, Realdon et al. 2006). This study found stronger correlation coefficients 

for non-HDL cholesterol and apoB than Friedwald calculated LDL cholesterol and 

apoB, particularly in HCV G3 infection. Therefore using non-HDL cholesterol (total 

cholesterol – HDL cholesterol) may be more valid than LDL cholesterol in HCV 

infection because it includes all apoB associated cholesterol including VLDL, IDL 

and LDL. This may be clinically important because it indicates that in HCV infection 

in general, and HCV G3 in particular, LDL cholesterol as estimated by Friedwald, 

underestimates the apoB level. Therefore some HCV patients with high apoB/ LDL 

levels that may warrant lipid lowering therapy but may not be identified by 

conventional estimates of LDL cholesterol. 

The new data from this study is the assessment of the relative importance of HCV 

genotype on lipid levels compared to host apoE genotype. A meta-analysis in non-

HCV infected individuals confirmed that polymorphisms in the apoE  gene have a 

major influence on serum cholesterol levels (Bennet, Di Angelantonio et al. 2007). 

7% of the variation of total cholesterol in healthy Caucasian individuals is related to 

three different isoforms of the apoE protein (Davington, Gregg et al. 1988). The wild 

type protein is ε3, and the two variants are ε2 and ε4 (Mahley and Rall 2000). The ε2 

isoform binds poorly to LDLr and is associated with defective clearance of 

triglyceride rich lipoprotein (TRL) remnant particles. In apoE2 there is compensatory 

up-regulation of LDLr, causing lower LDL cholesterol and apoB (Utermann 1987). 

Those with apoE4 are thought to have high affinity uptake of remnant TRLs via apoE 

but defective recycling of apoE back to HDL. This leads to accumulation of 

intracellular cholesterol causing downregulation of LDLr and hence increased serum 

LDL-C levels. Therefore by affecting LDL clearance, those with the E2 allele have 

lower LDL cholesterol and those with E4 allele tend to have higher LDL cholesterol 

levels than the majority with the wild-type E3 allele (Bennet, Di Angelantonio et al. 

2007). This pattern was observed in those HCV patients infected by HCV genotype 1 

but not in those infected by HCV genotype 3 where the observed cholesterol levels in 

those with apoE3/E3 genotype and apoE3/E4 genotype were lower than expected. 
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These observations demonstrate that HCV genotype 3 overides the influence of host 

apoE genotype on serum total and non-HDL cholesterol levels. 

ApoE itself is important for production of infectious HCV particles. ApoE appears to 

be important in HCV assembly and associates with infectious viral particles in vivo. 

The importance of apoE in HCV assembly has been shown in HCV cell culture 

(HCVcc) where the viral non-structural protein NS5A recruits apoE after replication 

but before secretion (Jiang and Luo 2009). When apoE is silenced, infectious particle 

production is inhibited without affecting viral replication or entry (Chang, Jiang et al. 

2007; Benga, Krieger et al. 2010). Further evidence suggests that apoE itself is a 

constituent of secreted infectious HCV „lipoviral particles (LVP)‟. Antibodies to apoE 

and apoB were able to immunoprecipitate >90% of HCV RNA from a 

immunodeficient HCV patient without natural antibodies in whom the majority of 

HCV RNA was detected in a low density fraction (Nielsen, Bassendine et al. 2006). 

Characterisation of HCV particles produced from cell culture (HCVcc) has also 

shown that some particles contain apoE, and that larger (>65nm) particles have higher 

infectivity (Gastaminza, Dryden et al. 2010). ApoE on secreted HCV particles may be 

important in cell entry via LDL receptor (Owen, Huang et al. 2009). Varitions in apoE 

genotype may therefore be important in the natural history of HCV in vivo. A 

previous study suggested that those with apoE3 were more likely to have chronic 

infection than those with apoE2 which was more associated with spontaneous 

resolution (Price, Bassendine et al. 2006). However this observation has not been 

reproduced in genome wide association studies of spontaneous resolution vs chronic 

infection (Thomas, Thio et al. 2009; Rauch, Kutalik et al. 2010). Another study 

suggested that apoE4 was associated with less fibrosis progression (Wozniak, Itzhaki 

et al. 2002), but more frequent neuropsychiatric symptoms on anti-viral therapy 

(Gochee, Powell et al. 2004), but again these findings have not been further validated. 

It seems paradoxical that HCV genotype 3 lowers non-HDL cholesterol levels but 

responds better to anti-viral therapy than HCV genotype 1. Current evidence has only 

considered the effect of HCV genotype 3 on serum cholesterol in terms of VLDL 

production. This effect is probably exerted intracellularly, at the stage of virus 

maturation and secretion from the hepatocyte. HCV genotype 3 inhibits MTP 

transcription and activity (Mirandola, Realdon et al. 2006), reducing VLDL secretion 

and promoting liver steatosis. In vitro studies indicate that HCV secretion is 
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dependent on VLDL assembly (Huang, Sun et al. 2007) and silencing apoB 

messenger RNA in infected liver cells causes a 70% reduction in the secretion of both 

ApoB-100 and HCV (Nahmias, Goldwasser et al. 2008). The effect of HCV G3 on 

LDL clearance however is not known. However the observation that HCV G3 

overrides the effect of apoE genotype on cholesterol levels may indicate abnormally 

upregulated LDLr mediated clearance of LDL, especially in those with the apoE3/E3 

and E3/E4 genotypes. The next chapter explores further the differences in cholesterol 

metabolism between HCV genotypes 1 and 3 and healthy individuals in terms of 

markers of cholesterol synthesis and clearance. 
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4 Chapter 4. Is low apoB associated cholesterol in HCV G3 due to 

reduced synthesis or increased clearance? 

4.1 Introduction 

Hypocholesterolaemia is apparent in chronic HCV infection, particularly in HCV G3, 

however it is unknown whether this is due to reduced synthesis of apoB containing 

lipoproteins (VLDL, IDL and LDL) by the liver or increased clearance of LDL / 

cholesterol from the circulation, or a combination of both. To address this question, 

cholesterol metabolism was investigated further in CHC infection by measuring 

indirect serum markers of endogenous cholesterol synthesis, dietary absorption, 

entero-hepatic circulation, and LDL clearance.  

Measurement of non-cholesterol sterols have been validated as markers of cholesterol 

metabolism. This is described in detail in the introduction (1.6.3 and 1.6.4). In brief, 

lathosterol and desmosterol levels are markers of endogenous de novo cholesterol 

biosynthesis. They are both pre-cholesterol intermediates in the late cholesterol 

biosynthetic pathway (Figure 15). 
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Figure 15 Late stages of endogenous cholesterol synthesis –sterol intermediates 

The measured sterols (desmosterol & lathosterol) are shown in red. 

 

Sitosterol is a plant sterol derived exclusively from diet. Sitosterol levels therefore 

reflect dietary cholesterol absorption through the small intestine. Cholestanol is 

endogenously synthesised from cholesterol but secreted into bile and therefore is also 

an absorption marker.  

Proprotein Convertase Subtilisin Kexin 9 (PCSK9) is critical for regulating recycling 

of LDLr and serum PCSK9 levels have been shown to correlate with apoB fractional 

catabolic rate (Chan, Lambert et al. 2009). PCSK9 levels were therefore measured as 

an indirect determinant of LDL clearance. 
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4.2 Patients and Methods 

4.2.1  Study population.  

Blood samples were collected from the prospective HCV cohort following an 

overnight fast. All participants gave written informed consent and the study was 

approved by the Northumberland Research Ethics committee (REC number   

07/H0902/45) and sponsored by Newcastle upon Tyne Hospitals NHS Foundation 

Trust.  Participants were age ≥ 18, HCV RNA positive for >6 months, and not on a 

lipid modulating agent for 3 months prior to the study. Patients with hepatitis B, 

hepatitis delta, or HIV co-infection, or alcohol dependency were excluded.   

 

Fasting sterol profiles had been performed by the Dept of Clinical Biochemistry, 

Royal Victoria Infirmary, Newcastle upon Tyne on comparator group A, comprising 

45 non-HCV patients as part of a dietary intervention study. This data was kindly 

shared with agreement of the investigators to act as the comparator for analysis of the 

HCV group sterol profiles. PCSK9 had been measured in a separate group of 254 non-

HCV subjects (comparator group B) and data on this group was kindly provided by 

collaborators from the University of Montreal who also provided the PCSK9 

antibodies and standards for measurement of PCSK9 by ELISA methods in the HCV 

group.  The recruitment of these two comparator groups is described in section 2.2.3. 

The demographics (table 3-2) and lipid profiles of the two comparator groups (group 

A for sterol profiles, table 3-5 and group B for PCSK9, table 3-6) are summarised in 

the previous chapter. 

Fasting sterol profiles were measured by gas chromatography mass spectrometry (GC 

MS) using the methods described in 2.3.2. PCSK9 was measured on fasting plasma 

samples using a sandwich ELISA described in 2.3.11. 

4.2.2  Statistical analysis.  

PCSK9 and all the sterol profiles were non-normally distributed. Therefore the data 

are summarised by median and interquartile ranges. Mann Whitney test was used to 

compare sterol profiles between groups. Spearman‟s rank r correlation coefficient was 
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used to determine relationships between continuous variables and p<0.05 was taken to 

indicate statistical significance. All statistical analysis was carried using Minitab 

version 15.   

4.3 Fasting Sterol Profiles in HCV G1 and HCV G3 

4.3.1 Assumptions 

Interpretation of data in this study makes a number of assumptions. Firstly it assumes 

that absolute serum sterol levels reflect the size of the serum pool. The total serum 

cholesterol pool size is influenced by both inputs and outputs. Inputs are either from 

endogenous cholesterol synthesis (lathosterol and desmosterol) or dietary absorption 

(cholestanol and sitosterol). Outputs from the serum cholesterol pool represent 

clearance of LDL. In order to control for the influence of clearance, sterols were also 

considered as a proportion (ratio) of total cholesterol. The second assumption 

therefore is that the sterol/total cholesterol ratio indicates the relative contribution of 

the sterol source to total body cholesterol. Lathosterol/total cholesterol ratio and 

desmosterol/total cholesterol ratio therefore represent endogenous cholesterol 

synthesis. Sitosterol/total cholesterol ratio and cholestanol/total cholesterol ratio 

represent cholesterol absorption. The third assumption is that differences in relative 

serum sterol levels represent changes in flux through the particular pathways.  

Summary statistics (median and interquartile ranges) for the overall sterol profiles in 

HCV G1 and HCV G3 are compared in table 4-1. 
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Table 4-1 Fasting absolute sterol profiles (prospective HCV cohort)  

 HCV G1 N=61 HCV G3 N=28 p value 

 

Lathosterol  

 

2.60 (1.96 – 3.77) 2.04 (1.60 – 3.31) 0.0985 

Desmosterol  

 

1.19 (0.92 – 1.63) 1.26 (0.84 – 1.90) 0.9156 

Cholestanol  

 

5.55 (3.57 – 6.61) 4.48 (3.09 – 5.84) 0.0263 

Sitosterol  

 

4.49 (3.56 – 6.07) 5.74 (3.69 – 6.75) 0.5074 

Levels are μmol / l; Median (Q1-Q3), Mann Whitney test 

 

The relative contributions of each sterol to the total cholesterol pool in HCV G1 and 

G3 is summarised in table 4-2. 

Table 4-2 Relative contribution of sterols to total cholesterol pool (Sterols/total 

cholesterol ratios)  

( 10
2
 mmol/mol 

cholesterol) 

HCV G1 N=61 HCV G3 N=28 p value 

Lathosterol / TC ratio 61.3 (45.5 – 76.4) 63.6 (40.6 - 85.4) 0.7740 

Desmosterol / TC ratio 25.8 (20.7 - 35.1) 30.7 (26.3 - 52.5) 0.0907 

Cholestanol / TC ratio 116.8 (97.0 - 146.4) 126.5 (87.4 - 143.0) 0.9037 

Sitosterol / TC ratio 103.3 (82.1 - 142.2) 140.0 (96.3 - 222.2) 0.0191 

Levels are 10
2
mmol / mol cholesterol; median (Q1-Q3), Mann Whitney test 
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4.3.2  Comparison of relative sterol profiles in HCV to non-HCV subjects 

The  lipid and sterol profiles in HCV G1 vs the non-HCVcomparator group A is 

shown in table 4-3. The corresponding  data for HCV G3 vs the non-HCV 

comparators is shown in table 4-4. 

Table 4-3 HCV G1 relative sterol profile vs non-HCV comparator group A 

Sterol profile 

(10
2
 mmol/mol 

cholesterol) 

Non-HCV 

Comparators N=45 

HCV G1 N=61 p value 

Lathosterol  

 

116.2 (79.1–146.8) 61.3 (45.5 – 76.4) <0.001 

Desmosterol 

 

35.5 (28.2-48.3) 25.8 (20.7 - 35.1) <0.001 

Cholestanol 

 

102.1 (87.8-125.2) 116.8 (97.0 - 146.4) 0.082 

Sitosterol 

 

103.1 (89.6-146.0) 103.3 (82.1 - 142.2) 0.504 

 

 

 

Table 4-4 HCV G3 relative sterol profile vs non-HCV comparator group A 

Sterol profile 

(10
2
 mmol/mol 

cholesterol) 

Non HCV 

comparators  N=45 

HCV G3 N=28 p value 

Lathosterol  

 

116.2 (79.1 – 146.8) 63.6 (40.6 - 85.4) <0.001 

Desmosterol 

 

35.5 (28.2 - 48.3) 30.7 (26.3 - 52.5) 0.303 

Cholestanol 

 

102.1 (87.8 - 125.2) 126.5 (87.4 - 143.0) 0.232 

Sitosterol 

 

103.1 (89.6 - 146.0) 140.0 (96.3 - 222.2) 0.044 

 

Levels of non-cholesterol sterols have been also shown to be affected by apoE 

genotype. In a previous study of healthy males, sterol synthesis markers were 

significantly higher in ApoE2 than E3 & E4, whereas absorption markers were higher 

in E3 & E4 than E2 (Nissinen, Gylling et al. 2008).  Therefore in this study each 

sterol marker was sub-analysed according to ApoE genotype. 



 91 

4.3.3 Endogenous Cholesterol synthesis - Lathosterol 

Both HCV G1 and HCV G3 had significantly lower absolute (figure 16A) and relative 

lathosterol (figure 16B) levels compared to non-HCV comparators. Relative 

lathosterol levels were not affected significantly by apoE genotype in non HCV 

comparators  or HCV patients (figure 17A). Overall there was a tendency for those 

with HCV G3 to have lower absolute lathosterol levels than HCV G1 but this was not 

statistically significant (p=0.0985). However it is noteworthy that in those with 

apoE3/E4, the absolute serum lathosterol levels were significantly lower in HCV G3 

than HCV G1 (p=0.0192) (figure 17B). Although absolute lathosterol levels were 

significantly lower in those with HCV G3 than HCV G1 with apoE3/E4 (figure 17B), 

the relative lathosterol levels were the same (p=0.7740) (figure 17C). This suggests 

that those with HCV G3 and apoE3/E4 have similar contributions of lathosterol to 

cholesterol synthesis but lower absolute lathosterol levels, likely related to abnormally 

up regulated clearance of LDL. 
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Figure 16 Absolute (A) and relative (B) lathosterol levels in HCV G1 & G3 and 

non-HCV comparators 
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Absolute lathosterol (μmol/l) (A) and relative lathosterol to total cholesterol ratio 

(10^2 mmol/mol cholesterol) (B) are significantly lower in both HCV G1 and G3 than 

non-HCV comparators (p<0.001). There is a trend for absolute lathosterol to be 

lower in HCV G3 than HCV G1 (p=0.0985). The relative lathosterol levels between 

HCV G1 and G3 are not significantly different (p=0.7740). 

 

 

A 

B 
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Figure 17 Sub-analysis of lathosterol levels according to apoE genotype 
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ApoE genotype did not significantly affect relative lathosterol levels in HCV G1, G3 

or non HCV controls (A). Absolute lathosterol levels were significantly lower in HCV 
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4.3.4 Endogenous Cholesterol synthesis - Desmosterol 

Desmosterol is another marker of endogenous cholesterol synthesis. Overall absolute 

desmosterol levels were lower in both HCV G1 & HCV G3 than non-HCV 

comparators (figure 18A). Relative desmosterol levels (desmosterol / total 

cholesterol) tended to be higher in HCV G3 than HCV G1 (p=0.0907) and closer to 

the normal values of the comparator group (figure 18B). Relative desmosterol levels 

showed more variation between apoE genotypes than relative lathosterol levels in 

HCV G3 patients Figure 19A. When sub-analysed according to apoE genotype, the 

absolute desmosterol level in those with apoE3/E3 was significantly higher in HCV 

G3 than HCV G1 (p=0.0432) (figure 19B). The relative desmosterol levels was 

significantly higher in HCV G3 than HCV G1 in those with apoE3/E3 (p=0.0013) but 

not E3/E4 (figure 19C). 
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Figure 18 Absolute and relative desmosterol levels in HCV G1 & G3 and 

controls 
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Absolute desmosterol levels (μmol/l) (A) were significantly lower in both HCV G1 and 

HCV G3 than non HCV comparators (p<0.001). The relative desmosterol to total 

cholesterol ratio (10^2 mmol/mol cholesterol) (B) tended to be higher in HCV G3 

than HCV G1, being maintained at close to normal levels.  

 

 

 

A 
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Figure 19 Sub-analysis of desmosterol levels according to apoE genotype 
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ApoE genotype was associated with more variation in relative desmosterol levels 

(10^2 mmol/mol cholesterol) in HCV patients than in non-HCV controls (A). Both 

absolute desmosterol (B) and relative desmosterol (C) were significantly lower in 

HCV G1 patients with apoE3/E3 than HCV G3 patients respectively. Those with HCV 

G3 and apoE3/E3 or E3/E4 had close to normal relative desmosterol levels. 
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In summary the observed relative desmosterol levels were unexpectedly discordant 

with the relative lathosterol levels in those with HCV G3 infection, given that they are 

both markers of endogenous cholesterol synthesis. 

To further evaluate discordance in lathosterol and desmosterol as markers of 

endogenous cholesterol synthesis, the total amount of endogenous sterols (i.e. 

lathosterol + desmosterol) and the relative proportions (%) of lathosterol & 

desmosterol between HCV G1 and G3 were assessed according to apoE genotype 

(Figure 20). Overall there was no significant difference in total endogenous sterol 

levels (latho + desmo) between HCV G1 and G3. However, in those with apoE3/E3 

the relative contribution of desmosterol was significantly higher in HCV G3 than 

HCV G1 (39.5 % vs 60.5%, p=0.0389). In those with apoE3/E4 the discordant 

endogenous sterol profiles in HCV G3 were even more marked. The discordance in 

endogenous sterols was largely a consequence of low lathosterol levels with relative 

sparing of desmosterol in HCV G3. Therefore the significant reductions in the total 

endogenous sterols could be attributed predominantly to reductions in lathosterol in 

HCV G3 (68.3% lathosterol in HCV G1 vs 39.6% in HCV G3). As a consequence, 

although the total endogenously derived sterol pool was reduced in HCV G3, the 

relative contribution of desmosterol was greatly increased, especially in those with 

apoE3/E4 (31.7% in HCV G1 vs 60.4% in HCV G3, p=0.0062). This is summarised 

by Figure 20 which indicates how the relative contribution of desmosterol is increased 

particularly in HCV G3. 
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Figure 20 Combined endogenous sterol synthesis levels (lathosterol + 

desmosterol), and relative contributions (%) in HCV G1 & HCV G3 by apoE 

genotype. 

 

Lathosterol and desmosterol are both endogenous cholesterol synthesis precursors. 

The combined lathosterol + desmosterol level indicates total endogenous cholesterol 

synthesis. The p value between the columns is the comparison of differences in total 

levels of synthesis markers between HCV G1 and HCV G3. The p value in the legend 

is comparison of the relative % contribution of each sterol. Overall lathosterol 

contributes twice as much as desmosterol with no significant differences between 

HCV G1 and G3 (A). However in individuals with apoE3/E3, lathosterol is lower in 

HCV G3 than HCV G1, with an increase in desmosterol, changing the relative 

contributions of each sterol significantly (p=0.0389) (B). In those with apoE3/E4 and 

HCV G3, lathosterol is reduced further, with preservation of desmosterol levels but 

large relative (%) increase (p=0.0062) (C). 
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Figure 21 Discordance between desmosterol and lathosterol levels in HCV 

compared to controls 
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In non HCV healthy comparators there is concordant correlation between lathosterol 

and desmosterol (r=0.427, p=0.004). In HCV G1 lathosterol and desmosterol 

remained concordantly correlated (r=0.414, p=0.004) but with a reduced slope i.e for 

a given lathosterol level, desmosterol is higher than would be expected.. In HCV G3 

there is no significant relationship between lathosterol and desmosterol (r=0.080, 

p=0.690) indicating discordance between the lathosterol and desmosterol pathways. 

 

Furthermore when desmosterol levels were correlated with lathosterol levels, there 

was a significant correlation between desmosterol and lathosterol in non HCV 

controls (r = 0.427, p = 0.004). This would be expected given that they are both 

synthesis intermediates. In HCV G1 this correlation remained significant (r = 0.414, p 

= 0.001) but the slope was reduced indicating less flux via lathosterol. In HCV G3 the 

relationship between desmosterol and lathosterol was disrupted such that the two no 

longer correlated (r = 0.080, p=0.690) Figure 21.  

In summary, the data suggest that HCV reduces endogenous cholesterol synthesis 

predominantly via the lathosterol pathway and that in HCV G3 there is selective 

preservation of the desmosterol pathway, especially in those with apoE3/E4. 
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4.3.5 Dietary Cholesterol absorption (sitosterol) 

Absolute sitosterol levels, a marker of dietary cholesterol absorption, were not 

significantly different between the HCV genotypes (p=0.5074) (figure 22A). However 

the relative sitosterol level, (i.e. sitosterol / total cholesterol ratio) was significantly 

higher in HCV G3 compared to HCV G1 (p=0.0191) and to non HCV 

comparators.(p=0.044) (figure 22B).  

There was no significant variance in sitosterol according to apoE genotype but the 

higher relative sitosterol level apparent in HCV G3 was only significant in those with 

apoE3/E3 (p=0.0317). 
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Figure 22 Absolute (A) and relative (B) sitosterol levels in HCV G1 & G3 and 

non-HCV healthy comparators 
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There were no significant differences in absolute sitosterol levels between HCV G1, 

G3 and non-HCV healthy comparators. However relative sitosterol levels were 

significantly higher in HCV G3 compared to HCV G1 (p=0.0191), and also higher 

than non-HCV comparators (p=0.044). 

 

 

 

 

 

 

A 

B 



 102 

4.3.6  Cholestanol 

Absolute cholestanol levels were significantly lower in HCV G3 than HCV G1 

(p=0.0263) and HCV G3 vs non-HCV comparators (p=0.007) (figure 23A), but the 

difference was restricted only to those with apoE3/E4 genotype in HCV G3 

(p=0.0192). Absolute cholestanol was also significantly lower in HCV G1 than non 

HCV comparators (p=0.042) (figure 23A). However the relative cholestanol levels 

were not significantly different between HCV G1 and non HCV comparators 

(p=0.494) and HCV G3 and non HCV comparators (p=0.220) (figure 23B). Likewise 

relative cholestanol was not significantly different between HCV G1 and HCV G3 

overall (p=0.9037) or when subdivided by apoE genotypes. Since cholestanol is both 

a cholesterol synthesis and absorption marker and there were low absolute cholestanol 

levels in HCV G3 with apoE3/E4 but not significantly different relative cholestanol 

levels, this supports the concept of increased LDL clearance in those with HCV G3 

and apoE/E4, rather than defective synthesis per se. 
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Figure 23 Absolute (A) and relative (B) cholestanol levels in HCV G1 & G3 and 

non HCV healthy comparators 
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Absolute cholestanol levels were significantly lower in HCV G3 than HCV G1 

(p=0.0263) and non HCV comparators (p=0.007) (A). However relative cholestanol 

(B) was not significantly different between HCV G3 and G1 (p=0.494) or HCV G3 

and non HCV comparators (p=0.220).  

A 

B 
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4.3.7 Relationship between endogenous cholesterol synthesis and dietary 

cholesterol absorption. 

In controls there was a close inverse relationship between endogenous cholesterol 

synthesis and dietary absorption (r = -0.537, p<0.001). In the HCV cohort this 

correlation was weakened overall (r= -0.296, p=0.005) but remained significant in 

those with HCV G3 (r = -0.422, p=0.032) but not in HCV G1 (r = -0.017, p = 0.926) 

(Figure 24). This indicates that although endogenous cholesterol synthesis is low in 

HCV G1, there is not the expected compensatory increase in cholesterol absorption.  

Figure 24 Correlation de novo cholesterol production and intestinal cholesterol 

absorption 
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In non-HCV healthy comparators, as endogenous synthesis decreases, dietary 

cholesterol absorption increases (r=-0.537, p<0.001). In HCV G3 this relationship is 

weakend (r=-0.422, p=0.032) and is non-significant in HCV G1 (r=-0.017, 

p=0.926).(Spearmans Rank correlation) 
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4.3.8 Sterol profiles pre and post anti-viral therapy 

Five patients (2 HCV G1 & 3 HCV G3) had paired fasting sterol profiles performed 

pre anti-viral therapy and at least 3 months post successful completion of treatment. 

The post treatment sterol profiles were taken when the participants were known to be 

HCV RNA PCR not detected, consistent with HCV eradication. Although the small 

numbers limits statistical power, it can be seen that lathosterol levels appear to 

increase (figure 25A), whilst desmosterol and sitosterol decrease with viral 

eradication (figure 25B and 25C). This reflects an increase in de novo cholesterol 

synthesis via lathosterol and reduction in absorption. Cholestanol levels did not 

change so significantly, possibly reflecting that cholestanol is both a synthesis and 

absorption marker (figure 25D). Interestingly NEFA‟s also appear to increase with 

viral clearance (figure 26).   
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Figure 25 Paired pre and post treatment sterol profiles 

 

Figure 25. Five HCV patients had paired fasting sterol profiles pre (viraemic) and 

post (non-viraemic) successful antiviral therapy. Lathosterol levels increased, and 

desmosterols and sitosterol levels decreased with HCV eradication. 

 

Figure 26 Paired pre and post treatment non-esterfied fatty acids (NEFA) 

 

Figure 26. NEFA levels increased with eradication of HCV post antiviral therapy 
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4.3.9  Sterols and steatosis 

Serum gamm-glutamyl-transpeptidase (GGT) is a liver enzyme that has been widely 

correlated with increasing steatosis in patients with hepatitis C and metabolic 

syndrome (Benini, Pigozzi et al. 2009). Relative desmosterol levels correlated 

significantly with GGT in HCV G3. 

Table 4-5 Relative sterol levels and GGT 

Correlation with GGT 

 

HCV G1 N=61 HCV G3 N=28 

Lathosterol / total 

cholesterol ratio 

r  = -0.138, p = 0.307 r = 0.034, p = 0.871 

Desmosterol/ total 

cholesterol ratio 

r = 0.185, p = 0.169 r = 0.475, p = 0.014 

Cholestanol / total 

cholesterol ratio 

r = -0.102, p = 0.455 r = 0.231, p = 0.256 

Sitosterol / total 

cholesterol ratio 

r = -0.079, p = 0.563 r = 0.223, p = 0.274 

Spearman’s Rank correlation analysis 

 

4.3.10  Sterols and ALT 

ALT, a marker of hepatic inflammation correlated negatively with relative lathosterol 

in HCV G1 but positively with relative desmosterol in HCV G3. 

Table 4-6 Relative sterol levels and ALT 

Correlation with ALT 

 

HCV G1 N=61 HCV G3 N=28 

Lathosterol / total 

cholesterol ratio 

r  = -0.301, p = 0.023 r = 0.102, p = 0.621 

Desmosterol/ total 

cholesterol ratio 

r = 0.221, p = 0.098 r = 0.421, p = 0.032 

Cholestanol / total 

cholesterol ratio 

r = -0.012, p = 0.933 r = 0.333, p = 0.096 

Sitosterol / total 

cholesterol ratio 

r = -0.037, p = 0.785 r = 0.385, p = 0.052 
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4.3.11 Sterols and liver stiffness 

Liver stiffness measurement by transient elastography (Fibroscan ®) correlated 

significantly with relative desmosterol, cholestanol and sitosterol levels in HCV G3 

but not in HCV G1. Liver stiffness measurements were not performed in all patients 

therefore note smaller sample size. 

Table 4-7 Relative sterol levels and Liver stiffness measurements 

Correlation with liver 

stiffness 

HCV G1 N=53 HCV G3 N=24 

Lathosterol / total 

cholesterol ratio 

r = -0.120, p = 0.391 r = -0.273, p = 0.196 

Desmosterol / total 

cholesterol ratio 

r = 0.118, p = 0.398 r = 0.470, p = 0.021 

Cholestanol /  total 

cholesterol ratio 

r = -0.019, p = 0.893 r = 0.513, p = 0.010 

Sitosterol / total 

cholesterol ratio 

r = 0.159, p = 0.261 r = 0.429, p = 0.036 

 

4.3.12 Sterols and Insulin Resistance 

In this prospective cohort, fasting glucose and insulin was measured and the HOMA 

IR calculated (glucose x insulin/22.5). Those with HOMA IR ≥2 were considered 

insulin resistant. 34% of HCV G1 and 40% of HCV G3 had insulin resistance by this 

definition (table 4-8).  
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Table 4-8 Metabolic parameters (fasting prospective cohort) 

Data are mean ± standard deviation; HOMA IR = Homeostasis model assessment of 

insulin resistance, (glucose  x  insulin / 22.5). 

 

Previous studies measuring sterol profiles in type 2 diabetes and normoglycaemic 

insulin resistant men, have indicated that insulin resistance is associated with 

increased cholesterol synthesis and decreased cholesterol absorption (Pihlajamaki, 

Gylling et al. 2004). For this reason, given that a significant proportion of HCV 

patients were insulin resistant, the relationship between cholesterol synthesis and 

absorption in insulin resistant HCV patients was explored.  

In HCV patients overall, lathosterol correlated positively with BMI (r=0.256, p= 

0.016) and waist circumference (r = 0.331, p=0.002) but not with insulin resistance as 

measured by HOMA IR (r = 0.153, p=0.152) and fasting insulin (r = 0.121, p=0.264).  

However in HCV G1 there was significant correlation between relative desmosterol 

levels and insulin resistance. 

 HCV G1 N=61 

 

HCV G3 N=28 

Glucose 4.99 ± 0.64 

 

5.44 ± 1.17 

Insulin 8.51 ± 6.16 

 

7.46 ± 3.51 

HOMA IR 1.91 ± 1.63 

1.61 (0.93 – 2.35) 

1.90 ± 1.24 

1.34 (1.02-2.53) 

HOMA IR ≥ 2 N(%) 21 (34%) 

 

11 (40%) 

HOMA IR < 2 N (%) 

 

40 (66%) 17 (60%) 

NEFA 

 

0.45 ± 0.31 0.45 ± 0.35 
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Table 4-9 Relative sterol levels and insulin resistance correlations 

Correlation with HOMA 

IR 

HCV G1 N=61 HCV G3 N=28 

Lathosterol / total 

cholesterol ratio 

r = 0.017, p = 0.902 r = 0.015, p = 0.943 

Desmosterol / total 

cholesterol ratio 

r = 0.385, p = 0.003 r = 0.142, p = 0.489 

Cholestanol /  total 

cholesterol ratio 

r = -0.030, p = 0.827 r = 0.061, p = 0.766 

Sitosterol / total 

cholesterol ratio 

r = 0.054, p = 0.693 r = 0.086, p = 0.677 
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4.4  PCSK9 

4.4.1 PCSK9 levels indicate differences in LDL clearance  

Absolute serum LDL cholesterol levels reflect the circulating pool size, which is 

determined by production and clearance. The sterol data indicates that cholesterol 

synthesis in HCV is reducedcompared to the non HCV group, but the relative 

contribution of lathosterol as a synthesis marker between HCV G1 and G3 was the 

same. However, HCV G3 patients had evidence of a smaller LDL pool size as 

indicated by significantly lower non-HDL cholesterol and apoB than HCV G1. This 

difference between HCV genotypes could be explained by increased clearance of 

LDL in HCV G3. Clearance of LDL is largely determined by LDLr expression. 

Therefore the hypothesis of increased LDL clearance in HCV G3 was tested by 

measuring PCSK9 levels, which are known to directly affect the expression of LDLr. 

PCSK9 alters the recycling and degradation of LDLr and is discussed in detail in 

1.5.2. Serum PCSK9 levels have been shown to negatively correlate with apoB 

fractional catabolic rate, such that high PCSK9 is associated with low LDLr 

expression and slow clearance, and low PCSK9 is associated with high LDLr and 

rapid apoB clearance (Chan, Lambert et al. 2009). The PCSK9 summary data is 

shown in table 4-10. 
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Table 4-10 PCSK9 levels in HCV G1, HCV G3 and non-HCV healthy 

comparators 

PCSK9 ng / ml HCV  G1 

N=41 

HCV G3 

N=18 

Comparator 

group B 

N=254  

All 95 ± 30 ng / ml 72 ± 22 ng / ml 89 ± 32 ng / ml 

Male 93 ± 29 ng / ml 71 ± 18 ng / ml 85 ± 27 ng / ml 

Female 101 ± 32 ng / ml 93 ± 16 ng / ml 93 ± 35 ng / ml 

PCSK9:LDL 

cholesterol ratio # 

38.3 ± 19.7 40.1 ± 17.4 31.1 ± 12.5 

Data are mean ± standard deviation PCSK9. (# ng of PCSK9 /μmol LDL cholesterol) 

 

Overall mean PCSK9 level was 88.4 ng / ml (SD ± 29.58) in CHC patients and 89.4 ± 

31.9 ng / ml in non-HCV comparators (group B) (p=0.789). However the mean 

PCSK9 levels were significantly lower in HCV G3 (72.2 ± 22.02 ng /ml) than G1 

(94.5 ± 29.6 ng/ml) (p=0.007). There was also significantly lower PCSK9 level in 

HCV G3 vs non HCV comparators (p=0.016), but not between HCV G1 vs non HCV 

comparators (p=0.789) (figure 27). PCSK9 levels were noted to be lower in males 

than females in both healthy non HCV comparators and HCV infected patients.  
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Figure 27 PCSK9 levels in HCV G1 & G3 and non-HCV comparators 
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PCSK9 levels were significantly lower in HCV G3 than non HCV comparators 

(p=0.016) and than HCV G1 (p=0.007). PCSK9 levels were not significantly different 

between HCV G1 and non HCV comparators (p=0.789) 
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4.4.2  PCSK9 Clinical and lipid profile correlations 

Table 4-11 shows that PCSK9 levels correlated significantly with total, LDL & non 

HDL cholesterol, age and BMI in non-HCV healthy comparators but these 

correlations were not significant in HCV patients.  

Table 4-11 PCSK9 correlations.  

 Comparator Group B HCV all 

 r p-value r p-value 

Total 

cholesterol 

0.38 <0.001 0.09 0.446 

Non HDL 

cholesterol 

0.40 <0.001 0.01 0.372 

LDL 

cholesterol 

0.35 <0.001 0.06 0.633 

age 0.38 <0.001 -0.15 0.170 

BMI 0.26 <0.001 0.03 0.766 

Pearson’s r correlation co-efficient.  
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4.4.3  PCSK9 correlations with sterol markers of endogenous cholesterol 

production and dietary cholesterol absorption 

 

Although PCSK9 did not correlate as expected with fasting lipid profiles in HCV 

patients, in male HCV patients, PCSK9 levels correlated significantly with relative 

lathosterol, and inversely with relative sitosterol levels. Figure 28 shows a significant 

positive correlation (r = 0.272, p = 0.046) between endogenous cholesterol synthesis 

(lathosterol/total cholesterol ratio) and PCSK9. 

 

Figure 28 Correlation of PCSK9 levels and endogenous cholesterol production 
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PCSK9 levels in HCV correlate weakly with endogenous cholesterol synthesis via 

lathosterol (r=0.272, p=0.046). 

 

.
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Figure 29 shows a significant inverse correlation (r = -0.284, p= 0.040) between 

intestinal cholesterol absorption (sitosterol/total cholesterol ratio) and PCSK9 in 

males with chronic HCV infection (both genotypes 1 & 3). This indicates that those 

HCV patients with reduced endogenous cholesterol production (i.e. low relative 

lathosterol) tend to have low PCSK9 levels consistent with high LDLr expression. 

 

 

Figure 29 Inverse correlation of PCSK9 and dietary cholesterol absorption 
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PCSK9 levels in HCV weakly correlate inversely with cholesterol absorption          

(r=-0.284, p=0.040). 
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4.4.4 Other PCSK9 correlations 

The PCSK9/LDL-C ratio was significantly higher in HCV G1 vs non HCV 

comparators (p<0.001) and HCV G3 vs non HCV comparators (p<0.001), but not 

significantly different between the two HCV genotypes (p=0.686). This implies that 

for a given level of LDL-C, the relative PCSK9 level in HCV patients is actually 

higher than would be expected for the same LDL-C level in a healthy individual. 

Overall there was no correlation between HCV RNA viral load and PCSK9 (r=0.046, 

p=0.986) which was non-significant for both HCV G3 (r=0.216, p=0.322) and HCV 

G1 (r=-0.029, p=0.835).  

There was no significant association of PCSK9 levels and treatment outcomes. 
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4.5  Discussion 

4.5.1  HCV G3 is associated with increased LDL clearance 

This study provides further evidence that chronic HCV infection causes a disorder in 

host lipid metabolism with distinct metabolic phenotypes for individuals infected by 

HCV G1 and HCV G3. The conclusions drawn assume that the sterol profiles in the 

non HCV comparator group A are “normal”. It should be noted however that the 

comparator group A had higher BMI than both HCV G1 and G3 patients. BMI, 

insulin resistance (Hoenig and Sellke 2010) and hepatic steatosis in NAFLD 

(Simonen, Kotronen et al. 2011) have been shown to correlate with increasing 

cholesterol synthesis markers. The sterol data in the literature is largely drawn from 

hyperlipidaemic subjects to investigate atheroscerosis and metabolic syndrome. 

However the observed lathosterol levels in this study in the HCV patients were still 

lower than those reported in the literature in a group of healthy men with similar 

characteristics to the HCV patients in this study (mean age of 46 and BMI of 24.2) 

(Prinsen, Romijn et al. 2003). In that study lathosterol was 3.61 ±0.64 µmol/l vs 2.60 

µmol/l in HCV G1 and 2.04 µmol/l in HCV G3, supporting the general conclusion 

that these markers are abnormally low in the HCV group. 

The first important conclusion of this study is that HCV G3 infection is likely to be 

associated with increased LDL clearance. A number of lines of evidence support this 

conclusion. Firstly is that the apoE3/E4 genotype in non-HCV patients is usually 

associated with down regulation of LDLr and delayed LDL clearance compared to 

wild type apoE3/E3. In those with apoE3/E4 and HCV G3 however, this reduced LDL 

clearance is largely overcome and is manifest by much lower apoB and non-HDL 

cholesterol than controls. The up regulation of LDL clearance in HCV G3 therefore 

appears to be particularly marked in those with apoE3/E4 genotype. Secondly, the 

sterol profiles also suggest increased LDL clearance in HCV G3 which would account 

for the low absolute lathosterol and desmosterol levels, compared to HCV G1 and 

controls. However, because relative lathosterol and desmosterol ratios were similar in 

HCV G3 to HCV G1, this implies similar low relative rates of cholesterol synthesis.  

The final piece of evidence supporting increased LDLr mediated clearance in HCV 

G3 is the significantly lower PCSK9 levels in patients with HCV G3 compared to 
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HCV G1 and non HCV comparators. Consistent with the known functions of PCSK9 

in LDLr regulation, low PCSK9 levels will permit both reduced competition with 

LDL for LDLr binding and also cause less degradation of LDLr. Hence with low 

PCSK9, more LDLr can be recycled back to the cell membrane to increase LDLr 

mediated clearance of apoB containing lipoproteins.  

Absolute PCSK9 levels are low in HCV G3 relative to non HCV comparatorsand non 

significantly increased in HCV G1. This implies normal or reduced LDL clearance in 

HCV G1 which would account for the relatively normal apoB levels in HCV G1, 

despite reduced endogenous cholesterol synthesis. However given the very low serum 

levels of LDL cholesterol in HCV G3, relative PCSK9 levels are also actually 

considerably higher than would be expected for a similar level of cholesterol in a non-

HCV population (i.e. higher PCSK9/LDL cholesterol ratio). This is important because 

it suggests that the compensatory responses observed in non-HCV patients treated 

with statins as cholesterol lowering agents are mirrored in chronic HCV infection. In 

statin therapy, serum LDL cholesterol is lowered by inhibiting cholesterol synthesis 

and increasing LDLr expression. PCSK9 levels are also noted to increase in patients 

on statins because of secondary SREBP-2 activation (Dubuc, Tremblay et al. 2009). 

This same pattern is seen in patients with HCV G3 infection where the PCSK9/LDL 

cholesterol ratio is high. This suggests that HCV is behaving in a similar way to a 

statin by inhibiting cholesterol synthesis enzymatically, and enhancing SREBP 

activation. Given the inhibitory effect of statins on HCV replication in vitro it is 

possible that in HCV the defect in endogenous cholesterol synthesis occurs at a later 

step post-geranylgeranyl. SREBP-2 activation would also permit over expression of 

LDLr to facilitate viral entry, and trigger an increase in PCSK9 to counter act this as a 

compensatory response, hence increase the PCSK9/LDL cholesterol ratio. Since 

PCSK9 is also a competitive ligand for LDLr, absolute serum PCSK9 levels may also 

be lowered indirectly by removal via over-expressed LDLr rather than by direct viral 

inhibition of PCSK9 in HCV G3.  

The concept of increased LDL clearance in HCV G3 provides a new insight into the 

mechanisms of hypocholesterolaemia in HCV G3 infection. This data therefore 

contributes further to the literature which  to date has considered that the low levels of 

apoB and LDL cholesterol in HCV G3 are largely due to reduced VLDL production 

by viral inhibition of microsomal triglyceride transfer protein (MTP). These studies 
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indicated that HCV core protein reduces MTP activity (Perlemuter, Sabile et al. 

2002), and reduced levels of MTP were identified in liver biopsies with steatosis 

(Mirandola, Realdon et al. 2006).  

 

4.5.2  HCV reduces endogenous cholesterol synthesis 

The second important conclusion from this study is that markers of endogenous 

cholesterol synthesis were reduced in both HCV G1 and HCV G3. Importantly the 

reduction in endogenous cholesterol synthesis was predominantly via the lathosterol 

pathway and was to a similar extent in both HCV genotypes as evidenced by 

significantly lower relative lathosterol levels (i.e. lathosterol/total cholesterol ratios) 

than non HCV comparators. Low lathosterol synthesis was apparent in HCV across all 

apoE genotypes. Unlike lathosterol however, desmosterol levels were largely normal 

in HCV G3, despite profound hypocholesterolaemia and varied more by apoE 

genotype. In those with wild type apoE3/E3, both the absolute and relative 

desmosterol levels were significantly higher in HCV G3 than G1. This suggests that 

in some HCV G3 patients, cholesterol synthesis via the desmosterol pathway makes a 

relatively larger contribution to total cholesterol synthesis compared to the lathosterol 

pathway which is consistently suppressed. The apparent substitution of desmosterol 

for cholesterol in some HCV G3 patients with profound hypocholesterolaemia may be 

functionally important. In this study in HCV G3 infection, relative desmosterol levels 

correlated with increasing GGT and liver stiffness, suggesting a possible association 

of desmosterol with hepatic steatosis. This hypothesis is biologically plausible given 

existing understanding of the regulatory roles of desmosterol. Desmosterol has been 

shown to be a potent activator of LXR. LXR is normally activated by cholesterol 

excess which up-regulates ABC Cassette transporter 1 to remove excess cholesterol, 

i.e. enhances reverse cholesterol transport. LXR can also activate SREBP-1c to switch 

on de novo lipogensis to buffer the toxic effects of excess free cholesterol. High 

relative desmosterol levels in HCV G3 may cause inappropriate lipogenesis and 

therefore contribute to the development of hepatic steatosis. 

The interactions of HCV and the endogenous cholesterol biosynthetic pathway are 

complex. The enzymes responsible for de novo cholesterol biosynthesis are located in 

the ER membrane, which is also the site of HCV replication. The early rate limiting 
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step in the endogenous cholesterol biosynthetic pathway is the activity of 3-hydroxy-

3-methylglutaryl (HMG) CoA reductase and the production of mevalonate. Following 

production of mevalonate, the intermediate geranyl can branch off to produce 

geranalygeranyl.  Geranylgeranylation of a host protein, FBL2 is essential for 

replication of HCVcc (Kapadia and Chisari 2005). This permits an interaction with 

HCV NS5A (Wang, Gale et al. 2005) and can be inhibited by HMG CoA reductase 

inhibitors (statins) (Ye, Wang et al. 2003). One explanation for the low lathosterol 

levels apparent in vivo may be that HCV replication is diverting pre-cholesterol 

intermediates towards geranylgeranyl production at the expense of cholesterol and the 

late precursors of cholesterol production such as lathosterol. Geranyl that is not used 

in prenylation is converted to farnesyl and subsequently to squalene. Squalene is 

converted to lanosterol which is the first sterol intermediate in the mevalonate 

pathway. Several enzymes then modify lanosterol to form cholesterol (Ikonen 2008). 

From lanosterol, cholesterol biosynthesis can proceed by two routes: via a 

desmosterol intermediate (Bloch pathway), or via a lathosterol intermediate 

(Kandutsch-Russel pathway). This is determined by the stage at which the carbon 

double bond at position 24 of the sterol side chain is reduced. In desmosterol 

production (Bloch pathway) the C24 double bond is retained until the final reaction, 

whereas in the formation of lathosterol and 7-dehydrocholesterol (Kandutsch-Russel 

pathway) the C24 double bond is reduced at an earlier step. The functional importance 

of this is not fully appreciated, but some evidence from Huh7 cells suggests that 

replacing cholesterol with desmosterol in plasma membrane lipid rafts can impair the 

formation of lipid raft domains and alter receptor function as evidenced by impaired 

insulin receptor signalling (Vainio, Jansen et al. 2006). Alternatively 7-

dehydrocholesterol, the post lathosterol precursor of cholesterol from the Kandutsch-

Russel pathway promoted plasma membrane lipid raft domains more strongly than 

cholesterol (Xu, Bittman et al. 2001). 7- dehydrocholesterol is converted via 

cholecalciferol to vitamin D by the action of UV light in the skin. HCV patients with 

low lathosterol levels may therefore be at increased risk of vitamin D deficiency. 

Indeed in a recent study, patients with HCV genotype 1 infection had significantly 

lower 25-hydroxyvitamin D levels than controls, and low vitamin D levels were 

associated with more severe fibrosis and less interferon response (Petta, Camma et 

al.). 
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This study has additionally identified that exogenous cholesterol from dietary sources 

contributes a relatively higher proportion of the serum cholesterol pool in HCV G3 

than in HCV G1, as evidenced by the significantly higher relative sitosterol levels. 

This is likely to be a compensatory increase in absorption of dietary sterols in the 

context of diminished hepatic cholesterol synthesis in HCV G3, particularly those 

with apoE3/E3. This is the opposite sterol profile to that which is seen in obesity  

(Miettinen and Gylling 2000) and Type 2 diabetes (Simonen, Gylling et al. 2002) 

where endogenous cholesterol synthesis is high and fractional intestinal cholesterol 

absorption is low. Moreover in normoglycaemic males, insulin resistance as measured 

by the hyperinsulinemic euglycaemic clamp correlated with cholesterol synthesis as 

measured by desmosterol and lathosterol levels and decreased cholesterol absorption 

(Pihlajamaki, Gylling et al. 2004). In the HCV cohort however there was no 

significant correlation between relative lathosterol levels and HOMA IR. However 

relative desmosterol levels correlated with HOMA IR in HCV G1 infection.  It is 

therefore possible that relative excess desmosterol may be promoting insulin 

resistance by impairing insulin receptor function by disrupting plasma membrane lipid 

rafts (Vainio, Jansen et al. 2006). Further disruption of membrane lipid rafts may also 

affect candidate HCV receptors such as SRB1 and CD81. 
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Figure 30 Schematic of the endogenous cholesterol biosynthetic pathway. 

Cholesterol synthesis involves a complex series of enzymatic reactions from the 2 

carbon acetyl coA to 27 carbon cholesterol. Late stages of cholesterol synthesis can 

occur via pathways involving either lathosterol or desmosterol intermediate. In HCV 

infection there is discordant cholesterol synthesis with downregulation of the 

lathosterol pathway and relative preservation of desmosterol, particularly in HCV 

G3. In vitro gene expression studies have shown down regulation of HMGCR (1) and 

SQLE (2) but up regulation of geranyl transfer proteins (3) (Blackham, Baillie et al. 

2010), supporting the concept that HCV can differentially dysregulate the endogenous 

cholesterol biosynthetic pathway. 
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The mechanisms causing low cholesterol synthesis in HCV and the apparent 

discordance in lathosterol and desmosterol pathways in HCV G3 are not clear. There 

is evidence that HCV can directly and differentially alter expression of a number of 

genes involved in lipid metabolism. Gene expression profiling of Huh 7 cells infected 

by JFH-1 showed complex effects on gene expression in a number of pathways 

including cell defence mechanisms such as apoptosis, trafficking and anti-oxidants, 

lipid and protein metabolism and intracellular transport. The effects on lipid genes in 

this system are noteworthy. Genes in cholesterol biosynthesis such as SQLE and 

HMGCR were decreased. However genes involved in Geranyl transfer to cellular 

proteins from intermediates in the mevalonate pathway were increased (e.g. GGPS1 

and PGGT1B), indicating differential regulation of branches of the cholesterol 

synthetic pathway. Genes involved in synthesis and transport of phospholipids were 

increased (SGPP1, SPTLC1, CHKA and ACSL3). Genes involved in oxidation and 

degradation of fatty acids were decreased (e.g. ACAT2 and ACADSB) whereas 

synthesis, transport (e.g. ELOVL4, ACSL3, VLDLR and FABP3), and regulation 

(e.g. PPARGC1A and TXNIP) of fatty acid metabolism were increased (Blackham, 

Baillie et al.). HCV may also be directly promoting de-novo lipogenesis by up-

regulating fatty acid synthase (FAS) via SREBP-1c. HCV core protein can activate 

FAS in an SREBP-1 dependent manner and blocking FAS decreases HCV production 

(Yang, Hood et al. 2008). NS2 protein also increases SREBP-1c transcription, protein 

expression and proteolytic processing, and as a result FAS transcription is up 

regulated (Oem, Jackel-Cram et al. 2008). Another study in Chimpanzees of gene 

expression analysis of liver biopsies following infection with HCV genotype 1a 

showed up-regulation of a number of genes including SREBP, SCAP, Lipase A, ATP 

citrate lyase, and fatty acid synthease (FAS). Additionally there was down regulation 

of PPARα and hepatic lipase C in this system. Further experiments inducing SREBP 

activation with nystatin which sequesters cholesterol, increased HCV replication 

levels by nearly 100%. In contrast cerulenin which directly inhibits FAS and 25-

hydroxycholesterol thereby inhibiting SREBP, inhibited HCV in a dose dependent 

manner (Su, Pezacki et al. 2002).  In vitro data from transfection studies indicate that 

HCV core protein has a direct effects on expression of genes involved in lipid 

metabolism (Yamaguchi, Tazuma et al. 2005). HCV core and NS4B derived from 

genotype 3a have been shown to induce activation of SREBP-2 (Waris, Felmlee et al. 

2007). These data suggest that SREBP-2 activation is required for HCV replication 
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and supports the concept that HCV is having differential effects on the endogenous 

cholesterol pathway and promoting de novo lipogenesis. 

In conclusion, HCV has co-evolved with the host (Pang, Planet et al. 2009) such that 

it utilises the different steps of cholesterol metabolism for its own advantage. HCV 

may increase demand for cholesterol or cholesterol precursors involved in viral 

replication (e.g. geranylgeranyl), and activate SREBP-2 directly to meet this demand. 

However, later enzymatic steps of endogenous cholesterol biosynthesis appear to be 

inhibited by HCV in vivo. This study provides evidence to support the concept that 

HCV reduces endogenous cholesterol biosynthesis predominantly via the lathosterol 

pathway, and that this effect is conserved in both HCV G1 and HCV G3. However in 

HCV G3, cholesterol synthesis via the desmosterol pathway appears relatively 

preserved. The distinct metabolic phenotype associated with HCV G3 infection of low 

apoB and LDL cholesterol compared to HCV G1 is therefore largely due to increased 

clearance of LDL probably by over-expression of LDLr rather than differences in 

synthesis per se. HCV is known to associate with host lipoproteins as lipoviral 

particles (LVP) (Andre, Komurian-Pradel et al. 2002; Nielsen, Bassendine et al. 2006) 

and these LVP have increased infectivity in vitro (Miyanari, Atsuzawa et al. 2007). 

LDLr has long been considered an important receptor for HCV attachment and entry 

in vivo (Agnello, Abel et al. 1999; Owen, Huang et al. 2009). High expression of 

unbound LDLr in HCV G3 would favour attachment and entry of HCV lipo-viral 

particles via LDLr. This state of a high fractional catabolic rate of LDL in HCV G3 

ideally needs to be confirmed by formal apoB kinetics studies. Taken together these 

observations may favour HCV on two levels, firstly to increase LDLr as a portal of 

entry and secondly to reduce the potentially anti-viral effect of PCSK9 which has 

been shown to inhibit viral entry via CD81 in vitro. This also suggests the potential 

use of recombinant PCSK9 as a novel anti-viral agent in those individuals with HCV 

induced hypocholesterolaemia. 
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5 Chapter 5. Do lipid profiles influence anti-viral treatment 

outcomes? 

5.1 Introduction and aims 

The primary aim of this study was to determine whether lipid profiles that are 

influenced by chronic hepatitis C (CHC) infection are important determinants of anti-

viral treatment outcome with pegylated interferon-α and ribavirin. This was 

investigated by a retrospective analysis of lipid profiles in CHC patients, comparing 

pre treatment lipid profiles in those patients that had achieved a sustained virological 

response (SVR) (i.e. HCV RNA subsequently not detected > 6 months post treatment) 

to non-responders.  

The second aim was to investigate host genetic polymorphisms associated with anti-

viral treatment outcomes. Previous work from the Newcastle HCV research group had 

suggested carriers of the apoE2 allele were more likey to have spontaneous resolution 

of acute HCV infection than those with apoE3/E3 who were more likely to become 

chronic (Price, Bassendine et al. 2006). However this hypothesis driven, candidate 

gene approach to genetic determinants of treatment outcomes in small clinical cohorts 

has resulted in largely non-reproducable results. More recently more powerful non-

hypothesis driven genome wide association study (GWAS) technology has become 

available. The GWAS technique is a powerful method of identifying susceptibility 

single nucleotide polymorphisms (SNP‟s) associated with disease or clinical 

outcomes. In order for a successful GWA study of HCV treatment outcomes, large 

case control cohorts are required to compare SVRs and non-responders, with DNA 

and matched clinical data. Effective research collaborations are therefore essential. 

The GWAS method utilises chip arrays with hundreds of thousands of SNP‟s 

distributed across the whole genome. Statistical analysis can determine whether there 

are significant differences in alleles, genes or haploytpes between cases and controls. 

The GWAS approach has the advantage of identifying many previously un-thought of 

and novel susceptibility genes. Another advantage of GWAS approach is 

identification of genes in a complex disease that have only modest effects on risk. 

GWA studies require large collaborative cohorts with DNA and well characterised 

clinical phenotypes. Detailed characterisation of HCV treatment outcomes, 
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demographics and clinical phenotypes with the establishment of a local DNA database 

enabled effective collaboration in a genome wide association study with the 

University of Sydney to investigate genetic determinants of anti-viral treatment 

outcome in patients with HCV G1 infection. The collaboration was a significant 

contribution to a landmark genetics study in HCV. 

The third section of this chapter stems from the results of the lipid profiles and 

treatment outcome study and the GWAS to investigate the relationship between the 

innate interferon response and lipid profiles. Prospective analysis of interferon gamma 

inducible protein 10 (IP10), a serum marker of hepatic interferon stimulated gene 

expression in the prospective fasting HCV group was correlated against alterations in 

fasting lipid profiles. A mechanistic link between host genetics, interferon 

susceptibility and lipid profiles in the context of anti-viral treatment outcomes is 

proposed in the discussion. 
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5.2 Retrospective lipid profiles and treatment outcomes study 

5.2.1 Demographics 

129 HCV patients in the retrospective cohort had undergone anti-viral treatment with 

standard or pegylated interferon-α 2A or 2B and ribavirin and had documented 

outcomes more than 6 months after completion of therapy. Those that were HCV 

RNA PCR not detected > 6 months post treatment were considered sustained 

virological responders (SVR‟s). Those that were still HCV RNA detected were 

considered non-responders (NR). Relapsers, i.e. those that were HCV RNA not 

detected during or at the end of treatment but became HCV RNA positive again were 

included in the non-responders group for this binary analysis. In total there were 72 

SVR‟s and 57 non responders. The summary demographics is shown in Table 5-1. 

 

Table 5-1 Retrospective HCV cohort. Treatment outcomes and demographics  
Parameter SVR 

 

Non Responders 

N 72 57 

Sex              Male 

                    Female 

63%  

37%  

65% 

35%  

Age years   Male 

 ± SD          Female 

42.05 ± 9.5 

44.0 ± 11.7 

48.7 ± 10.2 

52.3 ± 11.9 

HCV Genotype 1 N (%) 29 (47%) 33 (53%) 

HCV Genotype 3 N (%) 32 (64%) 18 (36%) 

Other HCV genotypes     (2, 4, 5, 6 & 

unknown) 

11 (65%) 6 (35%) 

APOE*E3/E3 62.5% 64.9% 

APOE*E3/E4 23.6% 29.8% 

APOE*E2/E3 9.7% 3.5% 

APOE*E2/E4 2.8% 0 

APOE*E4/E4 1.4% 1.8% 

APOE*E2/E2 0 0 
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5.2.2 Statistical analysis 

The distribution of continuous data was assessed by normality tests. Age, total 

cholesterol and non-HDL cholesterol conformed to a normal distribution. 

Triglycerides and HDL cholesterol levels were positively skewed and therefore log10 

transformed to normal distributions before parametric tests were applied. The F test 

was applied to test the assumption of equal variances and then paired t-tests were used 

to compare paired total cholesterol, log10 triglycerides, log10 HDL and non-HDL 

cholesterol levels pre and post treatment.  A two-sample t-test was used to compare 

the same lipid parameters between SVR‟s and non responders.  

Factors associated with achieving a SVR were assessed by a binary logistic regression 

model. The response was treatment outcome (SVR=1, NR =0). Continuous predictor 

factors in the model were total cholesterol, non HDL-cholesterol, log10 triglyceride, 

log10 HDL cholesterol and age. Categorical factors in the model were sex, HCV 

genotype and apoE genotype. All statistical analysis was performed in Minitab 

Version 15. Statistical significance was defined at the 5% level based on two-tailed 

test of the null hypothesis. 
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5.2.3 Results of logistic regression analysis 

The primary aim was to examine whether pre-treatment non-fasting lipid levels were 

associated with treatment outcome. However, HCV genotype, age and sex are known 

to influence treatment outcome. HCV genotype and host apoE genotype are also 

known to influence lipid levels as indicated from results chapter 1. Therefore to 

control for these interactions and confounders, a binary logistic regression analysis in 

88 patients was performed in whom complete data including apoE genotype was 

available. The results of this analysis are shown in table 5-2. The binary logistic 

regression analysis confirms the negative association of male sex (odds ratio 0.09, 

95% CI 0.02-0.37, p=0.001) and increasing age (odds ratio 0.93, 95% CI 0.87-0.99, 

p= 0.021) with SVR. The important finding was an independent association between 

higher apoB associated cholesterol (i.e. non HDL cholesterol) and increased odds of 

achieving SVR (OR 2.14, 95% CI 1.19-3.83, p=0.011) and a negative association of 

TG/HDL ratio and likelihood of SVR (OR 0.56, 95% CI 0.32 - 0.95, p=0.033).  There 

was no significant association of total cholesterol with SVR (OR 1.2, 95% CI 0.74-

1.97, p= 0.459). Overall apoE genotype was not significantly associated with SVR. 

However patients with apoE2/E3 had an increased odds ratio of 4.93 of achieving 

SVR, but this was not statistically significant (95% CI 0.66-36.6, p=0.119) owing to 

the low frequency of this apoE genotype. Overall SVR rate in HCV genotype 1 was 

45% and in genotype 3 was 63%. For those with wild type ApoE3/E3 the SVR rate 

was 44% for HCV genotype 1 and 68% for HCV genotype 3. Five patients with HCV 

genotype 3 were apoE2/E3 and all 100% (5/5) achieved an SVR compared to only 

38% (5/13) in those with apoE3/E4 (Fishers Exact Test p = 0.0359). 
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Table 5-2 Results table binary logistic regression analysis 

Variable Odds Ratio 

(OR) 

P value 95% Confidence 

interval of OR 

Age 

 

0.93 0.021* 0.87 - 0.99 

Male (vs Female) 

 

0.09 0.001* 0.02 – 0.37 

HCV Genotype 3  (vs 

genotype 1) 

3.05 0.025 * 1.15 – 8.05 

APOE*E3/E4 (vs 

E3/E3) 

0.72 0.611 (NS) 0.20 – 2.60 

APOE*E2/E3 (vs 

E3/E3) 

4.93 0.119 (NS) 0.66 – 36.61 

Non HDL 

Cholesterol 

2.14 0.011* 1.19 – 3.83 

TG/HDL Ratio 

 

0.56 0.033* 0.32 – 0.95 

Total Cholesterol 

 

1.2 0.459 (NS) 0.74 – 1.97 

N=88 Multivariate binary logistic regression analysis for factors associated with 

treatment outcome. Results are the Odds Ratio of the baseline event of a sustained 

virological response (SVR). 

 

The association of elevated non-HDL cholesterol with increased likelihood of SVR 

and high triglyceride / HDL ratio with non-response to anti-viral therapy is intriguing. 

One possible explanation is that host genetic polymorphisms associated with 

increased lipid levels are also important independent determinants of anti-viral 

treatment outcome. Although ApoE genotype was not independently associated with 

treatment outcome there was a tendency that those with ApoE2/E3 genotype had 

improved outcomes. The alternative hypothesis is that lipid profiles represent a 

surrogate marker of some other factor that determines outcome, such as activation of 

interferon stimulated genes (ISG‟s). Although a hypothesis that lipid modulating 

genes were important determinants of anti-viral treatment outcome has been made, 

collaboration with the University of Sydney in a GWA study permitted a more 

powerful non-hypothesis driven approach to investigate SNP‟s associated with anti-

viral treatment response. 
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5.3 Genome wide association study of anti-viral treatment outcomes - 

Collaboration with University of Sydney 

 

Collection of DNA and detailed clinical phenotyping of HCV patients that had 

undergone anti-viral therapy permitted a collaborative GWA study with the 

University of Sydney. The GWA study took a two-stage approach, a discovery phase 

and a replication phase. The University of Sydney performed a discovery genome 

wide association (GWA) study on 293 HCV G1 patients of northern European 

ancestry to identify candidate single nucleotide polymorphisms (SNP‟s) associated 

with treatment outcome. The Newcastle cohort contributed to the independent 

replication phase. DNA and clinical phenotypes data was collected for the Newcastle 

HCV cohort for 89 HCV G1 patients in whom anti-viral treatment outcomes were 

known. Additional replication cohorts were recruited in collaboration with groups 

from Germany and Italy. The demographics of the Australian GWAS discovery 

cohort, and the independent replication cohorts including the Newcastle cohort of 89 

patients that made up GWA study replication cohort are summarised in in tables 5-3 

and 5-4. It is noteworthy that the replication cohorts consistently had a higher 

proportion of females in the responder groups than non-responder groups.
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Table 5-3 Demographic characteristics of the GWAS Australian discovery 

cohort and combined replication cohorts in HCV G1 (Suppiah, Moldovan et al. 

2009).

 
 

GWAS 
Australian cohort 1 (n = 293) 

Combined replication phase 
(n = 555) 

Study Responders (131) 
Non-Responders 

(261) 
Responders (294) Non-responders (162) 

Age (years) 40.9 (10.0) 40.8 (11.2) 46.5 (10.3) 43.9 (7.0) 

Females 51 (38.9) 129 (49.4) 109 (37.1) 35 (21.6) 

Males 80 (61.1) 132 (50.6) 185 (62.9) 127 (78.4) 

BMI 26.9 (5.0) 24.9 (4.5) 25.9 (4.6) 27.5 (5.1) 

Viral load 
(IU/ml) 

NS NS 
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Table 5-4 Demographics of replication cohorts including the Newcastle cohort (UK) for the genome wide association study (Suppiah, 

Moldovan et al. 2009) 

 

 

Replication phase 

 
Berlin cohort (n = 298) Turin cohort (n = 93) UK cohort (n = 89) Bonn cohort (n = 43) 

Australian cohort 2  
(n = 32) 

 Responders 
(143) 

NR (155) 
Responders 

(50) 
NR (43) 

Responders 
(42) 

NR (47) 
Responders 

(13) 
NR (30) 

Responders 
(13) 

NR(19) 

Age 
(years) 

41.3 (10.4) 46.9 (10.1) 43.1 (13.0) 44.3 (10.1) 37.2 (11.4) 45.2 (11.9) 39.2 (12.8) 50.8 (10.9) 34.8 (9.9) 50.8 (4.9) 

Females 76 (53.1) 67 (43.2) 27 (54.0) 15 (34.9) 14 (33.3) 11 (23.4) 6 (46.2) 10 (33.3) 6 (46.2) 6 (31.6) 

Males 67 (46.9) 88 (56.8) 23 (46.0) 28 (65.1) 28 (66.7) 36 (76.6) 7 (53.8) 20 (66.7) 7 (53.8) 13 (68.4) 

BMI 25.2 (4.5) 25.9 (3.9) 24.1 (3.4) 24.6 (3.5) 24.3 (5.8) 26.5 (6.4) 24.3 (3.5) 27.3 (4.6) 26.7 (5.3) 25.7 (6.3) 
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Table 5-5 The most associated SNPs identified in the GWAS and replication phases of the GWA study ((Suppiah, Moldovan et al. 2009) 

SNP Locationa 
MAF 

(total) 
Responder 

allele 
Nonresponder 

allele 
GWAS P 
valueb 

Replication 
P valueb 

Merged P 
valueb 

OR (95% CI)c Gened 

rs8099917 
Chr:19 
44435005 

0.268 T G 7.06 10-8 9.39 10-4 9.25 10-9 1.98 (1.57–2.52) IL28B 

rs6806020 
Chr:3 
54949198 

0.303 T C 3.81 10-5 3.43 10-2 3.98 10-5 1.54 (1.25–1.90) CACNA2D3 

rs1931704 
Chr:10 
129229799 

0.272 G A 4.42 10-7 2.76 10-1 8.62 10 -5 1.54 (1.24–1.92) NPS 

rs7750468 
Chr:6 
118183677 

0.080 A G 1.48 10-5 1.01 10-1 8.91 10-5 2.09 (1.44–3.05)   

rs1503391 
Chr:11 
104417668 

0.158 C A 4.07 10-3 9.22 10-3 1.53 10-4 1.68 (1.28-2.20) CARD16 

rs2066911 
Chr:6 
23656329 

0.261 C T 9.03 10-6 1.86 10-1 2.58 10-4 1.52 (1.21–1.91)   

rs557905 
Chr:11 
104403053 

0.158 G A 5.68 10-3 1.28 10-2 2.87 10-4 1.64 (1.25–2.15) CASP1 

rs568910 
Chr:11 
104409780 

0.158 G T 5.68 10-3 1.83 10-2 4.30 10-4 1.61 (1.23–2.11) CASP1 

rs3093390 
Chr:16 
27370949 

0.227 T C 1.84 10-3 3.83 10-2 4.47 10-4 1.49 (1.19–1.87) IL21R 

rs7512595 
Chr:1 
27729758 

0.093 G A 2.72 10-4 7.67 10-2 5.34 10-4 1.81 (1.29–2.55) 
WASF2 and 
AHDC1 

rs1792774 
Chr:11 

104417763 
0.103 T C 1.39 10-3 6.08 10-2 6.71 10-4 1.74 (1.26–2.41) CARD16 

rs17461620 
Chr:9 
88152828 

0.180 T C 1.17 10-3 7.90 10-2 9.47 10-4 1.53 (1.19–1.97) ZCCHC6 

aFrom the Hapmap project data release 27. bP values based on Cochrane-Armitage trend test. cOR and 95% CI are calculated using logistic regression based on co-dominant 
model for inheritance.  dGenes were within 50 kb of the associated SNP. No gene listed indicates that no genes were within 50 kb of the SNP. 

 

http://www.nature.com/ng/journal/v41/n10/fig_tab/ng.447_T2.html#t2-fn1#t2-fn1
http://www.nature.com/ng/journal/v41/n10/fig_tab/ng.447_T2.html#t2-fn2#t2-fn2
http://www.nature.com/ng/journal/v41/n10/fig_tab/ng.447_T2.html#t2-fn2#t2-fn2
http://www.nature.com/ng/journal/v41/n10/fig_tab/ng.447_T2.html#t2-fn2#t2-fn2
http://www.nature.com/ng/journal/v41/n10/fig_tab/ng.447_T2.html#t2-fn3#t2-fn3
http://www.nature.com/ng/journal/v41/n10/fig_tab/ng.447_T2.html#t2-fn4#t2-fn4
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In the first stage of the GWA study, the University of Sydney analysed 293 samples 

from the Australian cohort (131 responders and 162 non responders) using an 

Illumina infinium HumanHap300 or the CNV370 Quad genotyping BeadChip with 

data on 311,159 SNP‟s. The threshold of genome wide significance was set at ≤ 1.6 

x10
-7

. SNPs with p-values between 1.6 x10
-7

 and 1.0 x 10
-5

 were considered to show a 

highly suggestive association. 172 candidate SNP‟s from the first stage were taken 

into the second replication stage. Of these, 14 SNPs achieved the threshold suggestive 

of an association with treatment outcome (table 5-5). The most associated SNP was 

rs8099917, located on chromosome 19. This SNP is upstream of the IL28B gene. 

rs8099917 was associated with a combined odds ratio for non-response of 1.98 (95% 

CI 1.57-2.52) p = 9.25 x 10
-9

. 

This association was further refined by genotyping 20 tag SNP‟s in the IL28A, IL28B, 

IL29 region. Fine mapping identified rs8099917 to tag a six allele haplotype block 

comprising of rs12980275 (p=7.74n x10
-10

), rs8105790, rs8103142, rs10853727, 

rs8109886 and rs8099917 (GCCTAG) (figure 31).  
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Figure 31 IL28A, IL28B and IL29 fine mapping. 

 

(Figure from (Suppiah, Moldovan et al. 2009) showing fine mapping of the IL28A, 

IL28B and IL29 genes in the discovery (stage 1) and replication (stage 2) cohorts. 

The Newcastle HCV cohort contributed 89 patients to the replication (stage 2) group. 

-log10P values are shown for all markers genotyped in stage 1 (blue crosses), fine 

mapping for all samples in stage 2 (red crosses) and merged P values (purple 

circles). Below is the haplotype block structure, shown for 18 genotyped SNPs in the 

IL28A, IL28B and IL29 gene regions. The block structure is based on criteria 

established previously
 
(Gabriel, Schaffner et al. 2002) with the use of pairwise 

estimates of standardized Lewontin's disequilibrium coefficient (D').Regions with high 

D' values are dark red, and regions with low D' values are lighter shades of red. 
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The frequencies of the non-response haplotype in the Newcastle cohort is shown in 

table 5-6. It can be seen that the non-response haplotype is relatively infrequent in this 

cohort of 89 HCV G1 patients. This emphasises the importance of large collaborative 

studies that are required to reach adequate statistcal power for meaningful results of 

genetic associations.  

Table 5-6 Frequency of the six allele non-response haplotype rs12980275, 

rs8105790, rs8103142, rs10853727, rs8109886 and rs8099917 (GCCTAG) in 

SVR’s and non-responders in the Newcastle cohort 

Haplotype 

GCCTAG 

SVR N(%) Non-responder 

N(%) 

p-value 

Yes 5 (15%) 4 (10%) Chi square =0.341, 

P = 0.559 No 28 (85%) 34 (90%) 
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5.4 Lipid profiles and IL28B polymorphisms 

Given the association of low non-HDL-C and non response, and IL28B genotype and 

non-response, an intriguing question arises whether these two new findings are 

connected. Total cholesterol levels were only available in 65 Newcastle patients who 

had IL28B genotypes performed from the GWA study. Full lipid profiles including 

HDL cholesterol and triglycerides were only available in 57 of these patients overall. 

Lipid profile data was not available for the other cohorts in the GWAS.  The small 

numbers therefore limits meaningful analysis of IL28B genotype and lipid profiles. Of 

those patients with lipid profiles available, there was a non significant trend towards 

higher total and non-HDL cholesterol and lower TG/HDL ratio in SVR‟s compared to 

non-responders (Table 5-7), supporting the findings of the larger logistic regression 

analysis but this has to be investigated further in larger numbers. 

Table 5-7 Lipid profiles in SVR’s and non-responders in HCV genotype 1 - the 

Newcastle genetics study replication cohort (mean ± standard deviation) 

 SVR  

 

Non responders P value 

Total Cholesterol  

mmol/l 

N=27 

4.68 ± 0.94 

N=37 

4.46 ± 0.87 

0.324 

Non HDL Cholesterol 

mmol/l  

N=24 

3.34 ± 0.90 

N=35 

3.05 ± 0.93 

0.239 

TG/HDL ratio N=24 

1.17 ± 0.64 

N=35 

1.49 ± 0.93 

0.568 

 

Lipid profiles were compared in those with and without the IL28B non-response 

haplotype (rs12980275, rs8105790, rs8103142, rs10853727, rs8109886 and 

rs8099917 (GCCTAG). No statistically significant differences in lipid profiles were 

found between those with and without the non-response haplotype because the 

numbers of patients with the non-response haplotype were too small (N=7). However 

there was a tendency for lower total cholesterol levels in those with the non-response 

haplotype (4.2 vs 4.6 mmol/l, p=0.226) and higher Triglyceride / HDL ratios (1.46 vs 

1.06, p=0.075). There was no significant differences in non-HDL cholesterol when 

patients were compared according to IL28B haplotype (3.19 vs 3.28 mmol/l p = 

0.798). Although not conclusive because of small numbers, these data suggest that 

there may be an association between the non-response IL28B haplotype with lower 
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cholesterol and higher triglycerides which will need to be investigated further in 

larger numbers. 
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5.5 IP10  

The alternative hypothesis to host genetic polymorphisms causing the association 

between lipid profiles and treatment outcome is that lipid profiles represent a 

surrogate marker of some other factor that determines outcome, such as activation of 

interferon stimulated genes (ISG‟s). 

Interferon-gamma-inducible protein 10kDa (IP10) is a serum marker for interferon 

stimulated gene (ISG) expression (Askarieh, Alsio et al. 2010). Serum IP10 levels 

were measured using a commercially available ELISA (see methods) on fasting serum 

from the prospective fasting HCV cohort. IP10 levels were correlated with lipid 

parameters using Spearmans rank correlation analysis in 51 HCV G1 and 24 HCV G3 

patients. 

5.5.1  IP10 and anti-viral treatment outcomes 

Previously published literature has shown high IP10 levels are associated with non-

response to anti-viral therapy (Butera, Marukian et al. 2005; Diago, Castellano et al. 

2006; Lagging, Romero et al. 2006). Small numbers limited analysis of IP10 and 

treatment outcomes in the prospective HCV study cohort which included both 

treatment naïve patients about to start anti-viral treatment and previous non-

responders. Since SVR is defined as undectable HCV RNA >6 months post 

completion of 48 weeks of anti-viral treatment, full data on SVR was unavailable 

prospectively. Instead treatment response after 12 weeks of therapy was used to define 

those that had at least a 2 log reduction in HCV RNA (partial or complete early 

virological response (EVR)) and those that did not (null responders). The null 

responders were largely retrospective (i.e. had previously failed treatment before IP10 

levels were measured) whereas the EVRs were prospectively treated after the IP10 

was measured. In HCV G1, serum IP10 levels tended to be higher in null responders 

(NR) compared to EVR, but this was at borderline statistical significance (NR N=22, 

median IP10 542 pg/ml vs EVR, N=25, median IP10 262 pg/ml; p=0.172) (Figure 

32), but supportive of the published literature. In HCV G3, numbers of non-

responders were too small for meaningful analysis, but no large differences in IP10 

levels between null responders and complete or partial EVR‟s were detected (NR 

N=5, median IP10 320 pg/ml vs EVR N=19, median IP10 327 pg/ml; p=0.804). 
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Figure 32 IP10 levels and anti-viral treatment response 
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Serum Interferon γ inducible protein 10 (IP10) levels in HCV genotype 1 measured by 

ELISA tended to be higher in those that failed to achieve ≥2 log10 reduction in total 

HCV RNA viral load at 12 weeks of treatment with PegIFN and ribavirin (null 

responders) than those that had ≥2 log10 reduction (partial and complete early 

virological response) but did not reach statistical significance (NR N=22, median 

IP10 542 pg/ml vs EVR, N=25, median IP10 262 pg/ml; p=0.172).   
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5.5.2 IP10 levels and lipid profiles 

Serum IP10 levels were correlated with fasting lipid parameters. The results are 

summarized in Table 5-8.  

Table 5-8 IP10 metabolic and lipid correlations in HCV G1 and HCV G3 

 HCV G1 

N=51 

HCV G3 

N=24 

Non-HDL cholesterol r = -0.319 

p = 0.007 

r = 0.102 

p = 0.546 

ApoB r = -0.313 

p = 0.017 

r = 0.132 

p=0.519 

Lathosterol r = -0.388 

p = 0.002 

r = 0.024 

p = 0.906 

Lathosterol/total 

cholesterol ratio 

r = 0.261 

p = 0.068 

r = 0.115 

p = 0.577 

PCSK9 r = 0.400 

p = 0.006 

r = 0.006 

p = 0.983 

Triglycerides r = -0.050 

p= 0.730 

r = 0.275 

p = 0.175 

Triglyceride / HDL ratio r = 0.012 

p = 0.936 

r = 0.285 

p = 0.159 

HOMA IR r= 0.096 

p= 0.509 
r = 0.508 

p = 0.008 

Spearman‟s rank correlation analysis 

 

In HCV G1, there was a significant inverse correlation between serum IP 10 levels 

and non-HDL cholesterol (r = -0.319, p = 0.007) (figure 33) and apoB (r = -0.313, 

p=0.017). There was also a significant correlation between IP10 and absolute 

lathosterol (r = -0.388, p = 0.002). IP10 correlated less strongly with relative 

lathosterol / total cholesterol ratio however (r=-0.261, p=0.068). There was also a 

strong correlation between IP10 and PCSK9 in HCV G1 (r = 0.400, p=0.006) (Figure 

34).  
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Figure 33 Correlation IP10 and non-HDL cholesterol in HCV G1 
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In HCV G1 there was a significant inverse correlation between serum IP10 levels and 

fasting non-HDL cholesterol (Spearmans Rank r=-0.319, p=0.007)  

 

Figure 34 Correlation IP10 and PCSK9 in HCV G1 
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In HCV G1 there was a significant inverse correlation between serum IP10 and 

PCSK9 (Spearmans Rank r=0.400, p=0.006) 
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In HCV G3 infection, serum IP10 levels did not correlate with apoB and non-HDL 

cholesterol but did correlate strongly with HOMA IR (r = 0.508, p = 0.008) figure 35.  

 

Figure 35 Correlation IP10 and HOMA IR in HCV G3 
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In HCV G3 there was a significant correlation between IP10 and insulin resistance as 

estimated by the Homeostasis Model Assessment (HOMA IR) (fasting glucose x 

insulin /22.5) (Spearmans Rank r=0.508, p=0.008). 

 

This suggests that in individuals with high IP10 levels in HCV G1, there is a 

combination of low endogenous cholesterol synthesis and high PCSK9 which is likely 

to result in slower LDLr mediated clearance. In HCV G3 high IP10 levels are 

associated with insulin resistance. 
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5.6 Discussion 

5.6.1 Lipid profiles influence anti-viral treatment outcome 

This study shows that high non-HDL (i.e. apoB associated) cholesterol is positively 

associated with increased odds of achieving a SVR (OR = 2.14, P< 0.05). However 

because of incomplete retrospective data, the relative importance of non-HDL 

cholesterol to other factors known to influence SVR such as insulin resistance 

(Romero-Gomez, Viloria et al. 2005; Poustchi, Negro et al. 2008) and advanced 

fibrosis (Everson, Hoefs et al. 2006; Asselah, Estrabaud et al. 2010) was unable to be 

determined.   

This was the first HCV treatment outcomes study to include apoE genotype as a 

covariate factor in the logistic regression analysis, which is important given that apoE 

genotype is the most common genetic variant known to influence lipid profiles. Prior 

to publication of this study (Sheridan, Price et al. 2009), four other retrospective 

studies had shown similar observations that high LDL cholesterol is associated with 

improved SVR in HCV mono-infected patients (Gopal, Johnson et al. 2006; Akuta, 

Suzuki et al. 2007; Backus, Boothroyd et al. 2007; Economou, Milionis et al. 2008). 

However these previous studies had not considering the potential confounding effects 

of apoE genotype, nor considered that LDL cholesterol as estimated by the Friedwald 

equation may not be valid in chronic HCV. A study in HIV-HCV co-infected patients 

has also shown independent association with LDL-cholesterol greater that 100mg/dl 

and SVR (OR 2.51) (del Valle, Mira et al. 2008). One large study of US veterans 

showed that low cholesterol was a significant predictor of decreased likelihood of an 

SVR in HCV genotype 1 patients, but this was not found in genotype 2 or 3 (Backus, 

Boothroyd et al. 2007). More recently since this work was published, data from two 

large prospective randomised controlled trials has now confirmed the association of 

high LDL cholesterol and improved SVR rates in HCV G1 infection  (Harrison, 

Rossaro et al. 2010; Ramcharran, Wahed et al. 2010). The published studies finding 

an association of high LDL / non-HDL cholesterol and SVR are summarised in 

chronological order in table 5-9.  
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Table 5-9 Summary of published studies indicating an association of high LDL 

cholesterol in chronic HCV with sustained virological response 
Author N= HCV 

Genotypes 

Prospective 

or 

retrospective 

Country Association with SVR p-value 

(Gopal, Johnson 

et al. 2006) 

99 49G1, 

50G2/3 

retrospective USA LDLC >130mg/dl 

OR 2.598 

0.0092 

(Backus, 

Boothroyd et al. 

2007) 

5944 G1, G2/3 retrospective USA Total  choleseterol 

<130mg/dl 

OR 0.73 

0.009 

(Akuta, Suzuki et 

al. 2007) 

114 G1 prospective Japan LDLC > 86mg/dl OR 12.8 0.005 

(Economou, 

Milionis et al. 

2008) 

109 G1,2,3,4 retrospective Greece Total cholesterol OR 2.84 

apoB OR 1.62 

<0.001 

(del Valle, Mira et 

al. 2008) 

260 HIV co-

infected 

G1,2,3,4 

retrospective Spain LDL >100 OR 2.51 0.003 

(Sheridan, Price 

et al. 2009) 

88 G1 & 3 retrospective UK Non-HDLC OR 2.09 0.042 

(Angelico, 

Francioso et al. 

2009) 

65 37 G1,  

28 G2/3 

prospective Italy Total cholesterol 

>165mg/dl  

OR of RVR 62.3 

0.003 

(Mawatari, 

Yoneda et al. 

2010) 

44 G1b prospective Japan Higher cholesterol in 

VLDL >44.5 nm in SVR‟s 

vs NR 

0.019 

(Harrison, 

Rossaro et al. 

2010) 

1464 G1 prospective USA LDLC OR 1.6 <0.001 

(Ramcharran, 

Wahed et al. 

2010) 

330 G1 prospective USA LDL RR of SVR 1.04 0.001 
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5.6.2  Host genetics are important determinants of anti-viral treatment 

outcome 

Evidence is now clearly indicating that high LDL / non-HDL cholesterol in CHC is a 

factor independently associated with improved response to treatment with pegIFN and 

ribavirin. However a mechanistic explanation of this association has hitherto not been 

forthcoming. A hypothesis for the observation that high LDL / non-HDL cholesterol 

improves anti-viral treatment response is that common host genetic variants known to 

affect lipid profiles, such as apoE genotype also directly affect interferon 

responsiveness. Serum lipoprotein levels of the majority of individuals in the 

population are known to be influenced by several genes with common variants which 

influence levels of cholesterol and triglycerides around the median levels of the 

population. Genes with common variants have been identified from previous classical 

candidate gene studies and more recently genome wide association (GWA) studies 

(Kathiresan, Melander et al. 2008; Kooner, Chambers et al. 2008). Common variants 

that influence LDL cholesterol include ApoE, LDLr, PCSK9, ApoB, and HMGCR. 

Recently a large GWAS in >100,000 individuals found 95 loci with genome wide 

associations with variation in plasma lipids, including several previously 

uncharacterised SNP‟s that demand further investigation (Teslovich, Musunuru et al. 

2010). Variants that influence HDL cholesterol include CETP and ABCA1and LPL.  

Triglycerides are influenced by LPL and apoA5 amongst others. Rare polymorphisms 

with a prevalence < 1 in 10
5
 in the population affect the extreme ends of lipid 

distributions and often cause monogenic syndromes such as Familial 

Hypercholesterolaemia (Hegele 2009). The retrospective study was underpowered to 

detect significant differences in treatment response rates between ApoE genotypes 

given the low prevalence of apoE2/E3 in this study population. However, there was a 

trend for apoE2/E3 to be associated with improved interferon response which is 

intriguing. A previous study had shown that apoE2 allele was more prevalent in 

spontaneous resolvers and rarer in those with chronic infection than was observed in a 

control population, raising the hypothesis that the E2 allele may protect against viral 

persistence (Price, Bassendine et al. 2006). One possibility for this may be via 

defective binding of HCV lipoviral particles containing apoE2 to lipoprotein receptors 
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such as LDLr and SRB1 (Price, Bassendine et al. 2006; Catanese, Graziani et al. 

2007; Van Eck, Hoekstra et al. 2008; Sheridan, Price et al. 2009).  

Previous candidate gene studies of treatment outcomes in CHC have tended to be in 

small cohorts and have generated largely unreproducable findings, mainly focusing on 

candidate genes involved in pathways related to interferon signaling and 

immunomodulation (Lin, Hwang et al. 2006; Huang, Yang et al. 2007). Other 

approaches have studied gene expression in liver biopsies from responders and non-

responders (Hwang, Chen et al. 2006). These approaches have now been superseded 

by non-hypothesis driven genome wide association study (GWAS) methodology 

which has been extensively reviewed (McCarthy, Abecasis et al. 2008). The GWAS 

method requires recruitment of suitable discovery and replication cohorts. Obtaining 

cohorts of suffiently large numbers of samples with DNA and clinical phenotypes 

required for a GWAS is rarely possible from a single centre, hence collaborations are 

essential (Karlsen, Melum et al. 2010). Careful collection of DNA coupled with 

clinical phenotyping of the retrospective HCV cohort permitted the use of this cohort 

for the replication phase of a GWA study in collaboration with the University of 

Sydney. This collaboration has been an important contribution to a seminal discovery 

of IL28B genotype influencing interferon response in genotype 1 CHC infection 

(Suppiah, Moldovan et al. 2009). Having established discovery and replication 

cohorts, the next step of the GWAS is to select and use a genotyping array that has 

adequate coverage of the genome. The international HapMap project characterised 

genetic variation in 3.1 million single nucleotide polymorphisms (SNPs) across the 

human genome (http://hapmap.ncbi.nlm.nih.gov). The theortical paradigm of a 

GWAS is linkage disequilibrium. This is where two alleles of single nucleotide 

polymorphisms (SNP‟s) on the same chromosome occur more frequently together 

than would be expected from their relative frequencies, because they are close 

together in a genetic region. If two SNPs are always found together there is perfect 

linkage disequilibrium (r
2
 =1). There are ~2.8 million SNP‟s with minor allele 

frequency >5%. A proportion, (50-80%) of these SNPs have been captured in 

commercially available genotyping arrays and act as tag SNP‟s. The more SNPs 

covered by the array, the closer the coverage is to perfect linkage disequilibrium 

(r
2
=1). In reality, r

2
 thresholds of >0.8 are used. The Illumina HumanHap300 bead 

chip used for the Australian GWAS contains 317,000 tag SNP‟s within 10kb of genes 
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and has a threshold r
2
 of 0.8. The third step of the GWAS is a quality control exercise, 

excluding mismatches, duplicates, ethnic outliers, or failed genotyping. Statistical 

analysis needs to be performed by groups with experience and expertise in the field. 

Because the analysis involves multiple tests, many associations can arise by chance. 

Therefore the threshold of genome wide significance is defined by the Bonferroni 

correction as 0.05 divided by the number of SNPs analysed. Typical genome wide 

significant p-values are therefore ususally <10
-6

 to 10
-8

. Replication of any 

associations defined in the discovery cohort is required to validate that the findings 

are not spurious associations. In the replication cohort, further genotyping can be 

performed to home-in on the causal variant. 

The present GWA study identified that the most significant polymorphisms associated 

with anti-viral treatment outcome are in immune regulatory genes, in particular IL28B 

on chromosome 19, which codes for interferon lambda (IFNλ), a type III interferon. 

HCV has co-evolved with the human host over hundreds or thousands of years. 

During this time both the virus and host have developed adaptive mutations 

conferring either susceptibility or increasing resistance to the host innate immune 

response. The SNP rs8099917 in the IL28B promoter showed the strongest genome 

wide significance in the initial GWA study (p=7.06 x10
-8

, OR 3.36, 95% CI = 2.15-

5.35) for non-response to anti-viral therapy. This SNP is 8.9kb upstream of IL28B and 

16kb from the end of IL28A. The Newcastle cohort participated as part of the 

replication phase, and rs8099917 remained the most significant association in the 

replication cohort (p=9.39 x10
-4

, OR 1.59, 95% CI 1.21-2.11). In the combined 

overall analysis the G allele was associated with non-response; GG homozygotes 

OR‟s for non-response were 2.39 (95% CI 1.16-4.94) and GT heterozygotes OR 1.64, 

(95% CI 1.15-2.32) compared to non carriers (TT). For carriers of the non-response 

(GG) allele, the positive predictive value of failure to respond was 64%. Multivariate 

analysis in the overall group in the GWA study demonstrated that rs8099917 is an 

independent predictive factor, not confounded by viral load, age, gender or stage of 

fibrosis. The haplotype that distinguishes responders from non responders is tagged 

by rs8099917. The non-responder haplotype is carried by 27% of northern Europeans. 

69% of homozygotes (GG) and 64% of heterozygote (GT) carriers fail to clear HCV 

with PEG IFNα and ribavirin therapy. The rs8099917 SNP appears to be functional 

because  healthy individuals with rs8099917 TT have higher IL28A and IL28B 
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mRNA expression in peripheral blood than those with GT or GG (Suppiah, Moldovan 

et al. 2009).  

This GWAS was one of three landmark papers independently finding that IL28B 

SNP‟s were the predominant genetic determinant of anti-viral treatment outcome in 

HCV genotype 1. Two other independent GWA studies have independently replicated 

the findings (Ge, Fellay et al. 2009; Tanaka, Nishida et al. 2009). The first was a 

GWA study of 1600 individuals in the IDEAL trial which compared three different 

treatment regimens using PegIFN-α-2b (1.5 or 1 mcg / kg) and PegIFN-α-2a 

combined with ribavirin  (Ge, Fellay et al. 2009). This trial demonstrated significantly 

lower treatment efficacy in African Americans than Americans of European ancestry. 

A different polymorphism in IL28B, rs12979860, was strongly associated with SVR 

with genome wide significance (p=1.37 x10
-28

). The rs12979860 SNP is 3 kilobases 

upstream of the IL28B gene. The CC genotype was associated with twofold greater 

SVR than the TT genotype in Europeans (95% CI 1.8 – 2.3), threefold greater SVR in 

African Americans (95% CI 1.9-4.7) and twofold greater SVR in Hispanics (95%CI 

1.4 – 3.2). This SNP exerts greater influence over likelihood of SVR than other 

previously known clinical factors such as high baseline viral load, advanced fibrosis 

or African ethnicity. African Americans with the favourable CC genotype had a 

55.3% SVR, and did better than Europeans with the adverse TT genotype (33.3% 

SVR). The same group also genotyped the rs12979860 variant in 388 patients who 

had spontaneously resolved HCV and compared this to 620 patients with persistent 

infection (Thomas, Thio et al. 2009). They found that the CC genotype was also 

strongly associated with spontaneous resolution both among those of European and 

African ancestry. In those of European ancestry the C allele was present in 80.3% of 

those that spontaneously cleared HCV, compared to 66.7% of those with persistent 

infection. In those of African ancestry, the C allele was present in 56.2% of 

spontaneous resolvers compared to 37% of those with persistent infection (p=1 x 10
-

5
). CC homozygotes were three times more likely to clear HCV spontaneously than 

CT or TT. However there was no significant difference in clearance between CT and 

TT genotypes suggesting that the protective effect of the C allele is recessive. 

Although in the US study, a different IL28B SNP (rs12979860) was the most 

significantly associated with SVR (combined p = 1.38 x 10
-28

), two other IL28B SNPs 

identified in the Australian GWA study were also replicated in the US cohort; 
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rs12980275 was second most significant (combined p = 2.54 x 10
-27

), and rs8099917 

was third most significant (p = 3.70 x 10
-26

) (Ge, Fellay et al. 2009). An important 

observation is the population distribution of the favourable C allele of the rs12979860 

SNP which is more frequent in Caucasian and Asian populations than in Africans. 

90% of Chinese and Japanese carry this variant compared to only 30-50% of sub-

Saharan Africans. This may help explain why African Americans respond less well to 

anti-viral therapy than Caucasians and Asians (Conjeevaram, Fried et al. 2006). 

The other independent GWA study was from Japan. In the initial GWA scan, a chip 

array of ~900,000 SNP‟s in 82 non responders and 72 SVR‟s  confirmed rs8099917 

and rs12980275 as the most important SNP‟s associated with non-response (Tanaka, 

Nishida et al. 2009). Subsequently another independent GWA study from Switzerland 

of 1362 patients including 347 spontaneous resolvers and 1015 with persistent 

infection (Rauch, Kutalik et al. 2010) again found the strongest association was with 

rs8099917 (OR 2.31, 95% CI 1.74-3.06, p=6.07 x 10
-9

) and HCV persistence. It also 

remained significant in those with HIV / HCV co-infection. The frequency of 

rs8099917 TT was more common in spontaneous resolvers (78% vs 58%). Again 

male sex was independently but more weakly associated with HCV persistence. There 

was no significant direct association of rs8099917 with HCV RNA levels (OR 1.10, 

95% CI 0.81-1.25, p=0.94). When SNP‟s associated with treatment outcome were 

assessed, rs8099917 minor G allele was associated with treatment failure (OR =5.19, 

95% CI=2.90-9.30, p=3.11 x10
-8

) in patients with HCV genotypes 1 & 4 only. The 

frequencies of TT, GT and GG in non-responders were 0.42, 0.51 and 0.07 compared 

to 0.68, 0.29 and 0.03 in SVR‟s. No significant variation in IL28B and response to 

therapy was found in those with HCV genotypes 2 and 3.  

It should be noted that rs12979860 identified in the American study (Ge, Fellay et al. 

2009) is ~3kb upstream of IL28B and is in linkage disequilibrium with rs8099917, 

found ~8kb upstream of IL28B in Europeans (figure 36). Also in the Swiss study, 

rs1297860 was not measured in 149 individuals genotyped with the Illumina 550 

chip, but was measured in the remaining 1213 patients. They found that rs12979860 

was also highly associated with chronic infection (OR1.95, 95% CI 1.54-2.48, p=3.38 

x 10
-8

) and was in linkage disequilibrium with rs8099917 (Rauch, Kutalik et al. 2010). 
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Figure 36 Location of IL28B polymorphisms 

 

 

Location of most relevant interleukin (IL) 28B polymorphisms on chromosome 19 relative to 
the interferon (IFN)-λ gene.) (figure from (Ahlenstiel, Booth et al. 2010). 

 

The genes identified as important determinants of spontaneous resolution and IFN-α 

treatment response are in the promoter regions of lambda interferons (IFNλ) (figure 

36). Humans have three forms of λ interferons, IL28A, IL28B and IL29. The genes 

are clustered together on chromosome 19. IL28A and IL28B show 96% sequence 

homology. IFNλ are type III interferons and signal through a specific receptor 

heterodimer (IL10Rβ and IL28Rα). This specific receptor has a narrower tissue 

distribution than IFNα receptors but both IFNλ and IFNα signal through common 

downstream phosphorylation of kinases. Because of the more selective tissue 

distribution of IFNλ receptors, therapeutic use of IFNλ may theoretically have fewer 

side effects. Indeed IL29 is currently in phase 2 clinical trials in HCV treatment. 

Of the 172 SNP‟s identified from the initial GWA study from the University of 

Sydney collaboration that were taken into the replication cohort, only 10 were SNP‟s 

in genes involved in lipid metabolism. The most significant lipid gene was rs2830028 

(p=0.0035003), on chromosome 21 which codes for the Amyloid beta A4 precursor 

protein. The majority of the remaining SNP‟s were involved in immune regulation. 

Neither ApoE nor other genes with known common variants that determine plasma 

lipoproteins were amongst those SNP‟s significantly associated with anti-viral 

treatment outcome. In the American GWA study, the most significant SNP possibly 

involved in lipid metabolism was in the gene for Low Density Lipoprotein Receptor 

like-protein 1B (LRP1B) (rs970600) which was the 26
th

 most significant SNP 

associated with SVR (p = 6.73 x 10
-05

). However, the role of LRP1B in lipid 

metabolism is not fully understood. LRP1B is a member of the LDL receptor family 

and shares 59% DNA sequence homology and similar domain structure with LRP1, a 

major receptor involved in chylomicron remnant clearance via apoE. However, LRPs 
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are not only involved in lipoprotein metabolism but also have a multitude of other 

diverse functions in coagulation, cell adhesion, growth and differentiation. Whilst 

LRP is abundantly expressed in liver, LRP1B is not expressed in liver but detected in 

thyroid, salivary glands and brain where it is involved in neuronal growth and has 

been implicated in the pathogenesis of Alzheimer‟s Disease (Liu, Li et al. 2001). Both 

LRP1B and LRP have four extracellular ligand binding domains that can bind to 

several ligands including apoE, complexes of urokinase plasminogen activator, 

plasminogen activator inhibitor type-1, β-amyloid precursor protein and receptor 

associated protein (RAP) (Cam, Zerbinatti et al. 2004). When RAP binds to LRP it 

can inhibit binding of all other LRP ligands. Unlike LRP1, LRP1B also has an 

additional ligand binding repeat in domain IV, and an additional amino acid sequence 

in its cytoplasmic tail, not found in LRP. Functionally, endocytosis via LRP1B is 

slower than via LRP. LRP1B is frequently activated in non-small cell lung cancers 

and gastric cancer and is therefore a putative tumour suppressor gene (Lu, Wu et al.).  

Given that no genes with known common variants that influence lipid metabolism 

were identified as strongly related to treatment outcomes in three independent GWA 

studies, an alternative explanation for the relationship between higher non-HDL 

cholesterol and SVR needs to be considered. 

5.6.3  Lipid profiles are affected by the innate anti-viral response 

The IL28B genes are not close to any known lipid regulating genes. An alternative 

hypothesis is that LDL / non-HDL cholesterol levels are a surrogate marker of the 

host endogenous interferon response to hepatitis C. Although in this study, no 

significant difference in lipoprotein profiles was noted between those with the 

favourable and unfavourable IL28B SNP‟s, the sample size was too small to draw 

definitive conclusions. There was however a tendency for those with the non-response 

haplotype to have higher triglyceride / HDL ratios and lower total cholesterol levels 

which demands further investigation. A recent large study examined LDL cholesterol 

and apoB levels in 651 HCV genotype 1 patients and found that those with the 

favourable CC genotypes in rs12979860 had significantly higher LDL cholesterol and 

apoB levels than those with the unfavourable TT or TC genotypes (Li, Lao et al.). The 

close relationship between serum IP10 levels and low non-HDL cholesterol and apoB 

suggests that the unfavourable low lipid profile associated with non-response relates 
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to interferon stimulated gene (ISG) activation. IP10 is a C-X-C chemokine (CXCL10) 

that is produced by hepatocytes and sinusoidal epithelial cells in the liver to attract T 

lymphocytes, NK cells and monocytes (Neville, Mathiak et al. 1997). IP10 is induced 

by type 1 interferons and is a ligand for the CXCR3 receptor on Th1 lymphocytes, 

along with other CXC chemokines including MIG (monokine induced by interferon 

gamma, CXCL9) and I-TAC (inducible T-cell α chemo-attractant, CXCL11) 

(Zeremski, Petrovic et al. 2007). IP10 may therefore mediate the inflammatory T cell 

response to HCV to cause lobular inflammation and promote fibrosis (Zeremski, 

Petrovic et al. 2008).  Serum levels of IP10 reflect liver IP10 mRNA expression 

(Askarieh, Alsio et al. 2010). Several studies have reported high serum IP10 levels in 

patients with chronic hepatitis C, which are particularly elevated levels in non-

responders (Butera, Marukian et al. 2005; Romero, Lagging et al. 2006). High levels 

of IP10 have also been associated with mixed cryoglobulinaemia and active vasculitis 

in CHC (Antonelli, Ferri et al.). Moreover IP10 has been shown to decrease with viral 

clearance but remain elevated in non-responders (Diago, Castellano et al. 2006). 

Therefore pre treatment IP10 levels appear to predict response to PegIFNα in HCV 

G1. High pre treatment IP10 levels >600 pg/ml have been associated with lack of 

RVR and EVR. Cut off values >600 pg/ml had a negative predictive value of 79% for 

SVR which is comparable to the negative predictive value of <2 log reduction in HCV 

RNA at 12 weeks of 86%. A low IP10 level <150 pg/ml in contrast had a positive 

predictive value for SVR of 71% (Lagging, Romero et al. 2006; Romero, Lagging et 

al. 2006). Further characterisation of viral kinetics demonstrated that low IP 10 

predicted the first phase decline in HCV RNA during the initial 48 hours of therapy 

but not the slower second phase decline between day 8 and 29 or third phase between 

treatment day 29 and week 6 (Askarieh, Alsio et al. 2010).  

The mechanism by which IP10 is induced in HCV is not fully appreciated. Interferon 

α, β and γ are all known inducers of IP10 via the STAT1 signalling pathway. 

However in hepatitis B the viral protein HBx also induces IP10 directly by a 

mechanism of viral protein interactions with cellular kinases and the NF kappa B 

nuclear transcription factor (Zhou, Wang et al.), raising the possibility of direct viral 

factors in HCV as well.  

IP10 is a serum marker for interferon stimulated gene (ISG) expression. IFN-α non-

responders appear to have a maximally induced hepatic IFN response (Sarasin-
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Filipowicz, Oakeley et al. 2008). The effect of IL28B genotype on mediating non-

response may lie in the relationship with hepatic ISG induction. A recent study 

evaluating gene expression profiles in liver biopsies identified that up-regulated ISG‟s 

were significantly associated with non-response to treatment and with the 

unfavourable IL28B (rs8099917) genotype (minor TG or GG alleles) (Honda, Sakai et 

al.). In this study, multivariate analysis showed that up-regulated ISGs were 

associated with low HCV RNA and low LDL cholesterol levels, supporting the 

concept that low LDLC in HCV G1 is a surrogate of increased hepatic ISG expression 

(figure 37). This hypothesis is consistent with the reported effect of interferon alpha 

(IFNα) on serum lipid profiles; serum triglyceride levels, largely derived from VLDL, 

significantly increase following IFNα treatment (Hamamoto, Uchida et al. 2005) due 

to a decrease in lipoprotein lipase activity (Shinohara, Yamashita et al. 1997). 

Likewise, given that it is known that therapy with IFNα increases triglyceride levels, a 

possible explanation for the apparent higher TG / HDL ratio in those with the non-

response IL28B haplotype is that the higher TG‟s represent a marker of increased 

activation of ISGs, which is known from previous studies to be associated with non-

response to anti-viral therapy (Sarasin-Filipowicz, Oakeley et al. 2008). 

Another link between innate anti-viral responses and lipid metabolism occurs with 

micro RNA‟s. Recent reports indicate that a liver-specific microRNA (miR), miR-

122, is a key regulator not only in cholesterol and fatty acid metabolism in adult liver 

(Esau, Davis et al. 2006) but also in hepatitis C viral replication. miRNA-122 is a 

highly abundant liver expressed miRNA which binds to the 5‟ non-coding region of 

the HCV genome causing increased HCV replication (Jopling, Schutz et al. 2008). 

MicroRNA-122 inhibition has been shown to decrease plasma cholesterol levels in a 

diet-induced obesity mouse model (Esau, Davis et al. 2006). Interestingly decreased 

levels of miR 122 in the liver of CHC patients (which would be expected to be 

associated with lower plasma cholesterol levels) has recently been reported to 

correlate with a poor response to treatment (Sarasin-Filipowicz, Oakeley et al. 2008). 

Although IL28B genotype is important in determining hepatic ISG expression, this is 

not inevitably irreversible. A study using a novel miRNA 122 inhibitor (SPC3649) as 

anti-HCV therapy in Chimpanzees significantly lowered HCV RNA and IP10 levels, 

implying restoration of IFN sensitivity (Lanford, Hildebrandt-Eriksen et al.). 
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5.6.4  Competition hypothesis 

Another hypothesis to consider is that the effect of higher apoB-B associated 

cholesterol on improved SVR may be exerted at the stage of HCV entry. Non-HDL 

cholesterol is an indirect method of quantifying apoB associated lipoprotein particles. 

The key constituents of VLDL are apolipoprotein B100 (one molecule per VLDL 

particle), apoE, and apoC‟s. Since HCV RNA in plasma has been shown to be 

associated with both apoB (Andre, Komurian-Pradel et al. 2002) and apoE at a 

buoyant density similar to that of VLDL as „lipo-viral particles (LVP)‟ (Nielsen, 

Bassendine et al. 2006) it is possible that VLDL compete with HCV LVP for 

hepatocyte entry via shared receptors. It has long been proposed that the LDL receptor 

may be one of the receptors for HCV (Agnello, Abel et al. 1999; Monazahian, Bohme 

et al. 1999). Both apoB and apoE are ligands for the LDLr and it is thus possible that 

there is competition in vivo between LDL or VLDL remnants and HCV LVP for 

LDLr-mediated uptake, which has been demonstrated in vitro (Andre, Komurian-

Pradel et al. 2002). ApoE also interacts with heparin sulphate-proteoglycans (HSPG) 

and can be transferred to LDL receptor-related protein (LRP) for internalization and 

apoC1 interacts with HSPG in vitro (Meunier, Russell et al. 2008), so apoC1 on 

HCV-LVP may use the HSPG-LRP pathway for viral entry. Furthermore SR-B1, 

which is implicated as another receptor for HCV (Catanese, Graziani et al. 2007), 

plays an important role in the metabolism of VLDL remnants (Van Eck, Hoekstra et 

al. 2008), so VLDL remnants may also compete with HCV LVP for hepatocyte 

uptake via SR-B1.  Hence higher non-HDL cholesterol as a marker of the number of 

LDL and remnant particles may interfere with the HCV life-cycle by competing with 

HCV LVP for entry into hepatocytes via shared receptors.   

In summary this study has shown that higher apoB associated cholesterol is a 

significant determinant of sustained virological response in CHC patients receiving 

anti-viral therapy with pegylated interferon-α and ribavirin. Polymorphisms of genes 

with common variants that influence lipid metabolism were not identified as 

predictors of anti-viral treatment response in a genome wide association study. 

Instead, the GWA studies have identified polymorphisms in IL28B, a type III 

interferon to be the most significant host genetic determinant of treatment response. 

Despite this, elevated LDL cholesterol remains associated with SVR, and elevated 

Triglyceride / HDL ratio with non-response. These lipid profiles are likely to be 
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surrogate markers of baseline innate immune responses mediated through endogenous 

interferons, ISG‟s and micro RNA‟s (figure 37). The clinical importance of these 

genetic studies is that advanced pre-treatment knowledge of the IL28B genotype 

could become an important part of future treatment algorithms. A genotyping test may 

be useful in identifying those who may respond better to new IL29 therapy, or indeed 

suggests the possibility of using IL28B as therapy. These studies also highlight the 

importance of the innate immune response on viral persistence and clearance and may 

point to a link between the innate immune system and regulation of lipid metabolism. 

Alternatively, the data is consistent with the hypothesis that the effect of higher apoB- 

associated cholesterol on improved SVR may be exerted at the stage of HCV entry, 

possibly due to competition between infectious low density HCV „lipoviral particles‟ 

and LDL for hepatocyte entry via shared receptors. The relationships between HCV 

lipoviral particles, lipid profiles, metabolic and clinical parameters is explored further 

in the next chapter. 
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Figure 37 Model for the interactions of IL28B polymorphisms, lipid profiles and 

interferon stimulated genes (ISG) associated with treatment outcome in chronic 

hepatitis C (CHC) virus infection (adapted from (Ahlenstiel, Booth et al. 2010). 
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The IL28B responder genotype is associated with low-level ISG induction in CHC 

(Honda, Sakai et al. 2010) characterised by low IP10 levels and normal or high apoB 

/ LDL cholesterol levels. High apoB / LDL results in high competiton for HCV 

lipoviral particles to infect hepatocytes via LDLr. When treated with IFN-α, there is 

strong ISG (Feld, Nanda et al. 2007) and IL28B induction. The IL28B may further 

enhance ISG induction, which may ultimately lead to a sustained virological response 

in the IL28B responder genotypes. In contrast, the IL28B non-responder genotype is 

associated with strong but ineffective ISG induction. High IP10 levels are a marker of 

high ISG. High IP10 correlates with low apoB and LDL cholesterol, which reduces 

competition for HCV lipoviral particles to infect hepatocytes via LDLr. When treated 

with IFN-α, there is suboptimal ISG response and IL28B induction. In these patients, 

ISG and therefore IFN responses are further impaired due to the activation of IFN 

inhibitory pathways secondary to the strong pretreatment ISG induction. High ISG 

levels correlate with low apoB / LDLC pre-treatment, and poor ISG induction on 

treatment is associated with non-response.  
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6 Chapter 6. Analysis of HCV Lipoviral particles: clinical, lipid & 

metabolic associations 

6.1 Introduction and Aims 

A large body of evidence now indicates that HCV is not only interacting with lipids at 

several stages of its life cycle but also that these interactions are likely to be clinically 

important. Previous characterisation of HCV in patient serum has demonstrated 

heterogeneity in the distribution of HCV RNA according to density. Low density 

HCV particles are associated with apolipoproteins B, E and C1 (Nielsen, Bassendine 

et al. 2006). These low density particles containing at least HCV RNA, core and apoB 

have been termed „lipoviral particles (LVP) (Andre, Komurian-Pradel et al. 2002)‟. 

Very Low Density Lipoprotein (VLDL) and its structural lipoprotein apoB in 

particular, appear to be essential for HCV assembly and maturation (Gastaminza, 

Kapadia et al. 2006; Huang, Sun et al. 2007). Silencing of apoB in HCV infected cells 

caused a 70% reduction in secretion of both apoB and HCV (Nahmias, Goldwasser et 

al. 2008). Both high and low density HCV particles in vivo are associated with 

antibodies (Thomssen, Bonk et al. 1993), although the ability of antibody mediated 

neutralisation is diminished in low density HCV compared to high density HCV 

(Grove, Nielsen et al. 2008). Low density cell culture derived HCV (HCVcc) had 

higher specific infectivity than high density HCVcc, despite being only a minority of 

HCV produced by this system (Miyanari, Atsuzawa et al. 2007), suggesting that the 

association with apolipoprotein B enhances infectivity.  

Given the close association of HCV with lipoproteins and the effects of chronic HCV 

infection on lipid metabolism, it is likely that these interactions are also clinically 

important. It has been known for some time that poorer anti-viral treatment responses 

were associated with host factors such as age, male sex, advanced fibrosis and insulin 

resistance. The data presented in the previous chapter has contributed further to 

understanding these host characteristics, indicating that genetic polymorphisms in 

IL28B predicts non-response to pegylated interferon-α and ribavirin. Furthermore, 

low non-HDL cholesterol levels and high triglyceride / HDL ratios are also associated 

with non response and there is a relationship between lipid levels, insulin resistance 

and IP10 as a maker of interferon stimulated gene activation. However it is also 
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noteworthy that although HCV genotype is a major viral determinant of anti-viral 

treatment response, total HCV RNA viral load is not (Ticehurst, Hamzeh et al. 2007), 

only being predictive if it is very low at treatment initiation or the change in HCV 

RNA titre after 4 or 12 weeks of therapy.  

The aim of this further work was to develop a clinically useful assay to measure apoB 

associated HCV „lipoviral particles (HCV LVP) in patients. After developing the 

HCV LVP assay, the next aim was to investigate host factors that influence HCV LVP 

levels and characterise the clinical relevance of HCV LVP in terms of important 

clinical end points, such as anti-viral treatment response and liver fibrosis. 

6.2 LVP Assay development 

The LVP assay development experiments were a modification of the protocol 

described by Nielsen et al (Nielsen, Bassendine et al. 2006). This previous work by 

Nielsen et al had demonstrated that >90% of HCV RNA could be immunoprecipitated 

from a low density fraction using antibodies to apolipoproteins B and E. However this 

work had been performed in an unusual patient with combined immunodeficiency that 

had no circulating antibodies. In contrast, most patients with chronic HCV infection 

have considerable amounts of circulating antibody. Dr Nielsen was working on 

purifying LVP from patients using a two-stage purification protocol; fractionation by 

density using iodixanol gradient ultracentrifugation and then by size, using size 

exclusion chromatography. Two immune competent HCV patients in the prospective 

HCV cohort with co-existing genetic haemochromatosis (H01 and H06) underwent 

therapeutic venesections and the large volume of plasma obtained enabled further 

purification of LVP. The purified LVP fractions were defined as low density (d<1.12 

g/ml) and large size (VLDL size or larger). Immune precipitation using capture anti-

apoB or protein G coated to sepaharose beads from the purified fractions from two 

immune competent patients demonstrated that there was high variability. In patient 

H01, 93% of HCV RNA in the purified LVP fraction could be immune precipitated 

with anti-apoB, but in patient H06 only 35% was immune precipitated by anti-apoB. 

Instead, protein G which binds non-specifically to immune complexes precipitated 

78% of the HCV RNA in patient H06, indicating that a considerable proportion of low 

density, large VLDL sized HCV particles are immune complexes (table 6-1). One 

reason that an anti-apoB immunoprecipitation approach to measuring LVP from 
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unfractionated plasma would not be reliable is because antibody coating of LVP may 

mask epitopes reacting with anti-apoB, and therefore underestimate the actual amount 

of apoB associated HCV present. Based on this data, an approach using immune 

precipitation using anti-apoB on unfractionated plasma was considered to be too 

variable to reliably estimate LVP. Moreover, multiple purification steps are too time 

consuming to be applicable to the large patient cohorts required to address important 

clinical questions regarding the clinical relevance of HCV LVP. Therefore a simpler 

method based purely on density distribution of apoB was developed. 
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Table 6-1 Percentage of HCV RNA immunoprecipitated from VLDL fraction purified by 

density (<1.12g/ml) and size  

Beads 

coated with 

Immunoprecipitation 

of  VLDL 

CHC 

patient H01 

CHC 

patient H06 

immuno-

deficient 

patient 

Protein G 

 

no 41% 78% 4% 

Anti- ApoB 

 

yes 93% 35% 90% 

Rabbit IgG 

Control 

 

no 5% 4% 2% 

(Data provided by Dr Soren Nielsen) 

 

Previous work had shown the iodixanol was superior to density gradients formed with 

Sodium Bromide or Sucrose in terms of preserving the integrity of lipoprotein 

associations with HCV RNA (Nielsen, Bassendine et al. 2006).  

A series of development experiments were performed by Dr Simon Bridge. A range 

of isotonic iodixanol density gradients were prepared with increasing concentrations 

of iodixanol: 6.25, 12.5, 18.75, 25, 31.25, 37.5, 43.75, 50% and the distribution of 

apoB within the density gradients was determined by Western blot. 12.5% iodixanol 

was found to be the optimum concentration because this formed the most linear 

distribution of apoB in the top fractions. Increasing the concentration of iodixanol 

above 12.5% reduced the density linearity and concentrated the apoB to the top of the 

gradient.  

Having determined that 12.5% iodixanol was the most appropriate concentration, the 

next step was to determine the reproducibility of the density gradients and to 

determine a cut off density which captures all the apoB containing lipoproteins. 

Plasma from 7 healthy volunteers was fractionated by 12.5% iodixanol density 

gradient ultracentrifugation into 20 x 500μl fractions and the density of each was 

measured using a refractometer. ApoB was detected by Western blotting in all the 

donors in the top 7 fractions (3.5mls) at a density <1.07g/mL. The density and apoB 

distributions were consistently reproduced using plasma from 13 patients with chronic 

hepatitis C infection. ApoB was never detected in a fraction with density > 1.07g/mL 

(figure 38). Therefore a cut-off value was defined separating two fractions; a low 

density fraction with density <1.07g/mL (top 3.5mL = fractions 1-7 of the gradient) 

capturing apoB and a high density fraction with a density >1.07g/ml in the remaining 
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6.5mls (fractions 8-20) where apoB was undetected by western blot.  HCV RNA was 

detected by real time PCR in the top 3.5 ml, low density fraction (d<1.07g/ml) was 

considered to represent „lipoviral particles (LVP)‟. HCV RNA detected in the high 

density fraction (d>1.07g/ml) was considered to represent non-LVP.  

The ratio of LVP as a proportion of total HCV was calculated thus:  

LVP ratio = LVP/ (LVP + non-LVP).  

Reproducability of the calculated LVP ratio was enhanced by the using measured 

(LVP + non LVP) to represent total viral load, rather than using total viral load 

measured directly from the unfractionated plasma because of potential variability in 

the fractionation process and down stream PCR steps. Evaluation of the yield was 

calculated by comparing the measured total viral load from whole plasma to the 

calculated LVP + non-LVP (% recovery = total viral load / (LVP +non LVP)). The 

median recovery was 117.5% (Q1 61.6% - Q3 190%) indicating some variability in 

recovery yields. Recoveries >100% can be explained by the presence of PCR 

inhibitors in the whole plasma which have been previously described, which may be a 

particular issue in haemolysed samples. A number of factors including haemoglobin, 

lactoferrin and immunoglobulin G are the major inhibitors of diagnostic PCRs (Al-

Soud and Radstrom 2001). The LVP assay dilutes the plasma and PCR inhibitors 1 in 

20 which may account for the higher median recovery. The LVP calculation assumes 

that any losses (or gains by dilution of PCR inhibitors) from the fractionation process 

are distributed equally between the two (LVP and non-LVP) fractions, and that this 

gives the best estimate of total viral load as the denominator in the LVP ratio 

calculation 

The two-fraction, LVP assay was applied to the prospective cohort of HCV patients. 

Clinical and metabolic correlates with HCV LVP, non-LVP, LVP ratio and total viral 

load were assessed in univariate analysis in two groups, those with HCV G1 and those 

with HCV G3.  
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Figure 38 Distribution of ApoB by western blot in 12.5% iodixanol density 

gradients in healthy volunteers and HCV patients 

 

Distribution of apoB detected by western blot in 12.5% iodixanol density gradients 

fractionated into 20 x 500µl fractions from 7 healthy volunteers and 9 HCV patients. 

Intensity of the western blot band is graded +, ++, +++, or not detected. ApoB was 

never detected at d >1.07 g/ml. 
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3 1.04 +++ +++ +++ +++ +++ +++

+++ +++ +++ +++2 1.035 +++ +++

+++ + ++ +++

P7 P8 P9

1 1.025 ++ +++ ++ +++ +++

P3 P4 P5 P6Fraction d (g/mL) P1 P2HV1 HV2 HV3 HV4 HV5 HV6
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6.3 Patient baseline characteristics 

The characteristics of the patients from the prospective HCV cohort that had 

determination of LVP are summarised in table 6-2. 51 patients were HCV G1 and 21 

were HCV G3. There were no significant differences in age, BMI, waist / hip ratio or 

sex. Liver stiffness measurements (LSM) were assessed by transient elastography. Of 

the HCV G1 group, 29% had a LSM ≥ 13.0 kPa, consistent with established cirrhosis 

(Friedrich-Rust, Ong et al. 2008). Of the HCV G3 group, 37% had LSM ≥ 13.0 kPa. 

In the HCV G1 group, two patients were type 2 diabetic and receiving insulin 

replacement. For this reason, measurement of insulin resistance using QUICKI was 

determined in addition to HOMA IR. Applying the criteria of the International 

Diabetes Federation (Appendix A) to this cohort (Alberti, Zimmet et al. 2005) a total 

of 12 (23.5%) HCV G1 patients and 4 (19.0%) of HCV G3 patients were defined as 

having the metabolic syndrome. 

Table 6-2 LVP assay - patient characteristics  

 HCV G1 (N=51) HCV G3 (N=21) 

Age years 48 ± 10.4 44 ± 11.6 

Sex male / female 37 / 14 17 /4 

Body Mass Index Kg/m
2
 25.4 ± 4.1 25.8 ± 3.4 

Waist / hip ratio 0.96 ± 0.06 0.97 ± 0.04 

Glucose mmol/l 4.97 ± 0.65 5.47 ± 1.29 

Insulin 7.94 ± 4.14 7.90 ± 3.75 

HOMA IR 1.71 ± 1.39 1.97 ± 1.40 

QUICKI 1.21 ± 0.39 1.20 ± 0.38 

NEFA 0.44 ± 0.30 0.52 ± 0.42 

Liver Stiffness kPa Mean 14.0 ± 15.4 

Median 7.7 (5.43-16.88) 

Mean 14.8 ± 13.3 

Median 8.8 (5.8-19.2) 

LSM ≥ 13 kPa (%) 

 

29% 37% 

Metabolic Syndrome (%) 

 

23.5% 19% 
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Fasting lipid profiles in HCV G1 and HCV G3 groups that had prospective 

determination of LVP are shown in table 6-3. Lipid profiles were performed in 

tandem with the LVP analysis and so represent a true measurement of the lipid profile 

that was subsequently correlated with viral parameters. The lipid profiles data 

confirms previous observations of significantly lower total cholesterol, non-HDL 

cholesterol, triglycerides and apoB in HCV G3 than HCV G1. In addition HCV G1 

patients had higher total cholesterol/HDL ratios and borderline significantly higher 

TG/HDL ratios. 

Table 6-3 Lipid profiles in patients evaluated for LVP 

 HCV G1 N=51 HCV G3 N=21 P-value 

 

#Total cholesterol 

mmol/l 

4.59 ± 0.99 3.84 ± 0.97 0.004 

#Non-HDL 

cholesterol mmol/l 

3.36 ± 0.95 2.55 ± 0.89 0.001 

*HDL Cholesterol 

mmol/l 

1.2 (1.1-1.4) 1.2 (0.9-1.6) 0.699 

*Triglycerides 

mmol/l 

1.20 (0.90-1.50) 0.80 (0.70-1.25) 0.032 

*ApoA1 g/l 

 

1.4 (1.3-1.6) 1.4 (1.2-1.7) 0.813 

#ApoB g/l 

 

0.89 ± 0.25 0.66 ± 0.24 0.001 

*TG/HDL ratio 

 

0.92 (0.69-1.40) 0.54 (0.44-1.51) 0.0580 

*Total cholesterol 

/ HDL ratio 

3.62 (3.07-4.42) 2.86 (2.31-3.86) 0.0103 

# normally distributed, summarised as mean ± standard deviation, 2-sample t test; 

*non-parametric distribution summarised as median (Q1-Q3), Kruskall Wallace test. 
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6.4 Variability of HCV LVP 

Summary statistics for HCV RNA total viral load, LVP fraction (d≤ 1.07 g/ml), non-

LVP fraction (d>1.07 g/ml) and the LVP ratio (calculated as LVP ratio = LVP / (LVP 

+ non-LVP)) are shown in Table 6-4 for HCV G1 and HCV G3. There were no 

significant differences between HCV genotypes in any of these parameters. 

Table 6-4 LVP summary statistics 

 HCV G1 N=51 HCV G3 N=21 p-value # 

 

Total viral load 

(log10 IU/ml) 

5.98 ± 0.57 

6.04 (5.76-6.29) 

5.91 ± 0.50 

6.05 (5.89-6.27) 

0.6736 

LVP (log10 IU/ml) 5.29 ± 0.73 

5.38 (4.81-5.82) 

5.15 ± 0.81 

5.35 (5.40-6.09) 

0.5857 

Non-LVP (log10 

IU/ml) 

5.88 ± 0.63 

5.94 (5.52-6.42) 

5.74 ± 0.63 

5.92 (5.40-6.09) 

0.3658 

LVP ratio 0.24 ± 0.18 

0.18 (0.13-0.31) 

0.27 ± 0.27 

0.14 (0.05-0.46) 

0.4278 

# Mann Whitney U test 

 

The distribution of HCV RNA total viral loads, LVP loads and LVP ratios are shown 

for HCV G1 in Figure 39 and for HCV G3 in Figure 40.  

In both HCV G1 and HCV G3 LVP ratios varied widely. For HCV G1 the range of 

LVP ratios was 0.03 to 0.74 (mean 0.24, median 0.18). In HCV G3 patients the range 

of LVP ratios was 0.03 to 0.83 (mean 0.27, median 0.14). 
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Figure 39 HCV G1 Variability of total viral load, LVP viral load and LVP ratio 

 

 
 

 
 

Distribution of viral parameters in HCV G1. (A) total HCV RNA viral load (log10 

IU/ml). (B) LVP load (log10 IU/ml) in fraction density<1.07 g/ml. (C) LVP ratio 

(=LVP / (LVP + non LVP)) 

 

A 

B 

C 
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Figure 40 HCV G3 Variability of total viral load, LVP viral load and LVP ratio 

 

 

 

Distribution of viral parameters in HCV G3. (A) total HCV RNA viral load (log10 

IU/ml). (B) LVP load (log10 IU/ml) in fraction density<1.07 g/ml. (C) LVP ratio 

(=LVP / (LVP + non LVP)) 

A 

C 

B 
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6.5 Metabolic Determinants of LVP 

 

To investigate the variation in total HCV viral load, LVP load, non-LVP load and 

LVP ratio, univariate Spearman‟s rank correlation analysis was used to determine 

metabolic and clinical correlates. The results of correlates for HCV G1 are shown in 

table 6-5 and for HCV G3 in table 6-7. Those correlations with p<0.05 were 

considered to be significant and were subsequently included in a multivariate linear 

regression model. 

6.5.1 HCV G1 correlations 

In HCV G1, LVP load IU/ml correlated significantly with glucose and insulin levels, 

and with the calculated markers of insulin resistance, HOMA IR (glucose x insulin / 

22.5) and QUICKI score (1/(log insulin x log glucose)). Both HOMA IR and QUICKI 

calculations were performed because although the HOMA score is widely reported, 

the QUICKI score is more valid in populations that include patients with diabetes 

mellitus where fasting glucose is inappropriately high and insulin inappropriately low, 

and in this situation has a better correlation with glucose clamp estimates than HOMA 

IR (Muniyappa, Lee et al. 2008). As insulin resistance increases, so QUICKI scores 

tend to decrease. 

LVP ratio (LVP/LVP+non-LVP) correlated significantly with triglycerides and the 

TG/HDL ratio in addition to insulin resistance as measured by HOMA IR and 

QUICKI in the univariate analysis. Additionally LVP ratio correlated with IP10 

(r=0.293, p= 0.039). Multivariate linear regression analysis showed that HOMA IR 

was the main independent determinant of LVP load (log10 IU/ml) (r
2
=16.6%, 

p=0.037), and TG/HDL ratio was the main independent predictor of LVP ratio 

(r
2
=24.4%, p=0.019). 
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Table 6-5 HCV G1 correlations 

Parameter Total Viral Load  

(log10 IU/ml) 

LVP  

(log10 IU/ml) 

LVP Ratio Non-LVP 

(log10IU/ml) 

Age 

 

r = 0.229 

p = 0.106 

r = 0.163  

p = 0.253 

r = 0.043 

p = 0.765 

r = 0.147 

p = 0.303 

Body mass index 

(kg/m
2
) 

r = 0.159 

p = 0.265 

r = 0.249  

p = 0.078 

r = -0.077 

p = 0.592 

r = 0.200 

p = 0.160 

Fibroscan score 

KPa 

r = -0.086  

p = 0.555 

r = 0.124  

p = 0.395 

r = 0.419  

p = 0.003 

r = -0.163 

p = 0.263 

Total cholesterol r = 0.181 

p = 0.203 

r = -0.018  

p = 0.899 

r = -0.141  

p = 0.324 

r = 0.127 

p = 0.374 

Non-HDL 

cholesterol 

r = 0.185 

p = 0.194 

r = 0.058 

p = 0.687 

r = -0.021 

p = 0.884 

r =  0.071 

p = 0.621 

HDL cholesterol r = 0.178 

p=0.216 

r = -0.014 

p= 0.921 

r = -0.073 

p = 0.615 

r = 0.079 

p = 0.584 

Total cholesterol 

/ HDL ratio 

r = 0.085 

p = 0.551 

r = 0.056 

p = 0.697 

r = 0.121 

p = 0.400 

r = 0.065 

p = 0.651 

Apo B r = 0.178 

p = 0.216 

r = -0.014 

p = 0.921 

r = -0.073 

p = 0.615 

r = 0.046 

p= 0.755 

ApoA1 r = -0.118 

p = 0.416 

r = -0.136 

p = 0.347 

r = -0.257 

p = 0.072 

r = 0.108 

p = 0.457 

Triglycerides r = 0.101 

p = 0.479 

r = 0.248 

p = 0.079 

r = 0.320 

p = 0.022 

r = 0.082 

p = 0.567 

TG /HDL ratio r = 0.082 

p = 0.568 

r = 0.256 

p = 0.070 

r = 0.392 

p = 0.004 

r = 0.000 

p = 0.997 

Glucose r = 0.171 

p = 0.231 

r = 0.307 

p = 0.028 

r = 0.311 

p = 0.026 

r = 0.113 

p = 0.430 

Insulin r = 0.121 

p = 0.407 

r = 0.393 

p = 0.005 

r = 0.393 

p = 0.005 

r = 0.177 

p = 0.228 

HOMA IR r = 0.078 

p = 0.585 

r = 0.383 

p = 0.005 

r = 0.397 

p = 0.004 

r = 0.144 

p = 0.314 

QUICKI r = -0.121 

p = 0.414 

r = -0.387 

p = 0.007 

r = -0.371 

p = 0.009 

r = -0.185 

p = 0.209 

IP10 r = -0.003 

p = 0.984 

r = 0.221 

p = 0.122 

r = 0.293 

p = 0.039 

r = 0.043 

p = 0.774 
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Figure 41 Correlation between LVP ratio and serum IP10 in HCV G1 
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There was a significant postitive correlation between serum IP10 levels (a marker of 

hepatic interferon stimulated genes) and LVP ratio in HCV Genotype 1 infection 

(N=51, r= 0.293, p=0.039). This remained significantly associated with LVP ratio 

after multi-variate linear regression analysis (p=0.048). 

 

In multivariate linear regression analysis, the most significant independent 

determinant of LVP ratio was TG/HDL ratio (p=0.001) and the only other 

independent determinant of LVP ratio was IP10 (p=0.048) (figure 40). The combined 

r
2
 was 26.4%. 

When the HCV G1 patients were divided into two groups, those with a low LVP ratio 

(defined as below the median value of 0.177) (n = 25) and those with a high LVP ratio 

(defined as above the median value of 0.177) (n = 26), characteristic differences in 

metabolic profiles were noted (table 6-6). Those with a high LVP ratio had a 

significantly higher fasting glucose (p = 0.044), insulin (p = 0.005), and HOMA-IR (p 

= 0.008). Additionally those with high LVP ratios had a higher triglycerides (p = 

0.015), lower HDL cholesterol (p = 0.015), hence higher TG/HDL ratios (p = 0.003) 

and larger waist circumferences (p = 0.037). These are all noted to be characteristics 

of the metabolic syndrome. 
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Table 6-6 Metabolic Syndrome characteristics of HCV G1 patients with high 

LVP ratio 

 Low LVP ratio 

(N=25) 

High LVP ratio 

(N=26) 

p-value 

Waist circumference 

cm 

85.7 ± 11.1 92.7 ± 12.2 0.037 

Triglycerides 

 

1.08 ±0.46 1.62 ± 0.89 0.015 

HDL cholesterol 

 

1.36 ± 0.33 1.11 ± 0.25 0.015 

Triglyceride / HDL  

 

0.84 ± 0.4 1.62 ± 1.1 0.003 

Glucose 

 

4.84 ± 0.65 5.1 ± 0.64 0.044 

Insulin 

 

5.96 ± 2.75 9.56 ± 4.67 0.005 

HOMA IR 

 

1.25 ± 0.68 2.17 ± 1.3 0.008 
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6.5.2  HCV G3 correlations 

Table 6-7 shows univariate Spearman‟s rank correlation analysis that demonstrated 

that in HCV G3 there was a significant negative correlation between total cholesterol 

and total viral load (r = -0.631, p = 0.002). This negative correlation was accounted 

for by the non-LVP fraction (r = -0.674, p = 0.001) more than the LVP (r = -0.402, p 

= 0.071), and was related to the non-HDL cholesterol component (r = -0.650, p = 

0.001) rather than HDL cholesterol (r = -0.326, p = 0.149), and was confirmed by the 

negative correlation with apoB (r = -0.432, p = 0.050). LVP had a significant negative 

correlation with HDL cholesterol (r = -0.460, p = 0.036), which was confirmed with 

the negative correlation with apoA1 (r = -0.488, p = 0.025). The LVP ratio was 

significantly correlated with the total cholesterol/HDL ratio (r = 0.510, p = 0.018) 

(figure 42). In contrast to HCV G1, there was no significant correlation of LVP or 

LVP ratio with triglycerides, TG/HDL ratio or insulin resistance. 
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Table 6-7 HCV G3 correlations 

Parameter Total Viral Load  

(log10 IU/ml) 

LVP  

(log10 IU/ml) 

LVP Ratio Non-LVP 

(log10IU/ml) 

Age 

 

r = -0.195 

p = 0.396 

r = -0.295  

p = 0.194 

r = -0.145  

p = 0.529 

r = -0.156 

p = 0.499 

Body mass index 

(kg/m
2
) 

r = -0.187  

p = 0.418 

r = 0.008  

p = 0.971 

r = -0.078  

p = 0.738 

r = 0.115 

p = 0.620 

Fibroscan score 

KPa 

r = 0.215  

p = 0.378 

r = -0.046  

p = 0.853 

r = -0.121  

p = 0.623 

r = 0.323 

p = 0.178 

Total cholesterol r = -0.631  

p = 0.002 

r = -0.402  

p = 0.071 

r = 0.162  

p = 0.483 

r = -0.674  

p = 0.001 

Non-HDL 

cholesterol 

r = -0.541  

p = 0.011 

r = -0.056 

p=0.810 

r = 0.339 

p = 0.113 

r = -0.650  

p = 0.001 

HDL cholesterol r = -0.291 

p=0.201 

r = -0.460 

p= 0.036 

r = -0.384 

p = 0.086 

r = -0.326 

p = 0.149 

Total cholesterol 

/ HDL ratio 

r = -0.184 

p = 0.424 

r = 0.265 

p = 0.246 

r = 0.510  

p = 0.018 

r = -0.245 

p = 0.285 

Apo B r = -0.416 

p = 0.061 

r = -0.041 

p = 0.859 

r = 0.267 

p = 0.242 

r = -0.432 

p= 0.050 

ApoA1 r = -0.338 

p = 0.134 

r = -0.488 

p = 0.025 

r = -0.411 

p = 0.064 

r = -0.238 

p = 0.299 

Triglycerides r = -0.071 

p = 0.760 

r = 0.267 

p = 0.242 

r = 0.283 

p = 0.213 

r = -0.027 

p = 0.908 

TG /HDL ratio r = 0.124 

p = 0.594 

r = 0.357 

p = 0.112 

r = 0.330 

p = 0.144 

r = 0.219 

p = 0.340 

Glucose r = 0.305 

p = 0.179 

r = 0.115 

p = 0.619  

r = -0.015 

p = 0.949 

r = 0.348 

p = 0.122 

Insulin r = 0.009 

p = 0.969 

r = 0.052 

p = 0.823 

r = -0.060 

p = 0.797 

r = 0.045 

p = 0.847 

HOMA IR r = 0.179 

p = 0.439 

r = 0.023 

p = 0.920 

r = -0.140 

p = 0.544 

r = 0.266 

p = 0.243 

QUICKI r = -0.043 

p = 0.854 

r = -0.053 

p = 0.819 

r = 0.068 

p = 0.771 

r =-0.066 

p = 0.778 

IP 10 r = 0.138 

p = 0.610 

r = 0.156 

p = 0.564 

r = 0.006 

p = 0.983 

r = -0.029 

p = 0.914 
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Figure 42 Correlation HCV G3 and total cholesterol / HDL ratio 
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LVP ratio (=LVP / LVP + non LVP) correlates significantly with the total cholesterol 

/ HDL ratio in HCV G3, (r=0.510, p=0.018) 
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6.6 Correlations VLDL1, VLDL2, IDL and LDL apoB 

Given that HCV LVP in HCV G1 correlated most significantly with triglycerides, 

further experiments were performed to test the assumption that fasting triglycerides 

were predominantly contained within the VLDL1 fraction in HCV G1 patients. 

Additional fasting plasma was collected at the same time as the LVP plasma in 23 

HCV G1 patients which was used for sequential density gradient flotation using salt 

gradients as described in the methods. ApoB was quantitated in each fraction using a 

quantitative ELISA as described in methods. Quantities of apoB in each fraction were 

then correlated against fasting whole plasma lipid parameters. Table 6-8 shows that 

VLDL1 apoB contributes only ~2% of the fasting apoB, yet correlates most 

significantly with fasting triglycerides (r=0.712, p<0.001) (table 6-9). In contrast 

VLDL2 accounts for ~10% of the total apoB and only accounts for a minority of 

fasting triglycerides. Therefore the assumption that fasting triglycerides are 

predominantly in the VLDL1 fraction appears to be valid in HCV G1. 

  

Table 6-8 VLDL1, VLDL2, IDL and LDL ApoB sub fractions  

Fraction apoB mg / dl % of total apoB 

VLDL1 (Sf 60-400) 1.00 ± 0.35 2.01 ± 4.64 

VLDL2 (Sf 20-60) 7.30 ± 2.44 10.59 ± 14.60 

IDL (Sf 12-20) 23.42 ± 10.68 23.40 ± 12.09 

LDL (Sf 0-12) 69.37 ± 27.70 64.00 ± 17.95 

Mean ± standard deviation (N=23) 
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Table 6-9 VLDL apoB correlations  

Correlations N=23 

 

r r
2
 P value 

VLDL1 apoB vs TG (log10) 

 

0.712 0.51 <0.001 

VLDL2 apoB vs TG (log10) 

 

0.112 0.01 0.612 

LDL apoB vs LDL chol (Friedwald 

calculated) 

0.317 0.10 0.150 

 

TG vs LVP ratio (ranks) 

 

0.199 0.04 0.362 

VLDL1 apoB vs LVP  ratio (ranks) 

 

0.198 0.04 0.366 

VLDL2 apoB vs LVP  ratio (ranks) 

 

0.022 <0.01 0.922 
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6.7 HCV LVP associations with clinical outcomes 

In HCV G1 the LVP assay indicated stronger associations with important clinical 

outcomes that total HCV viral load measurements. The two major clinical outcomes 

were estimation of liver stiffness by transient elastography (Fibroscan®), a non-

invasive marker of hepatic fibrosis and anti-viral treatment outcomes. 

6.7.1  HCV LVP and liver stiffness measurements 

The LVP ratio correlated significantly with liver stiffness measurement (LSM) scores 

(r = 0.419, p = 0.003). When HCV G1 patients were divided into those with LVP 

ratios above and below the median of 0.17, those with high LVP ratios were more 

likely than expected to have high LSM scores >13kPa (χ
2 

5.95, p = 0.015).  

6.7.2 LVP and anti-viral treatment outcomes 

Of the 51 patients in the HCV G1 group, 42 had undergone antiviral therapy. 24 of 

these had received previous treatment with pegylated interferon-α and ribavirin at 

least six months before the LVP / lipids were assessed, hence the treatment data was 

retrospective. These patients were all relapsers or non-responders who remained 

viraemic. An additional 18 patients provided the LVP / lipid profiles prospectively 

prior to commencing anti-viral therapy. Given that time from initiation of therapy to 

determination of outcome six months post completion is at least 18 months, data on 

SVR was incomplete for these prospectively treated patients. Instead, assessment of 

HCV RNA as a response to therapy at week 12 (i.e. Early Virological Response 

(EVR)) was compared. 18 (43%) were non-responders at week 12, the remaining 24 

(57%) were either complete or partial early virological responders (i.e. achieving at 

least >2 log reduction in HCV RNA viral load at 12 weeks compared to baseline). 

Non-responders at week 12 had significantly higher LVP ratios than the EVR group 

(median LVP ratio for non-responders 0.338 vs 0.201 for EVR, p = 0.031) (figure 43). 

Likewise when the HCV G1 group was divided above and below the median LVP 

ratio, those with low LVP ratios were more likely than expected to have had an EVR 

(χ
2
 4.36, p = 0.037). Importantly, total HCV RNA viral load was not significantly 

different between non-responders and EVR‟s.  
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Figure 43 Total viral load, LVP viral load and LVP ratio (%) in null responders 

and early virological responders to pegylated interferon-α and ribavirin 

(A)

 

(A) Total HCV RNA viral load was not significantly different between those achieving 

a complete or partial early virological response (EVR) vs those not (null responders). 

LVP was also not significant (B). LVP ratio was significantly lower in EVRs than null 

responders (p=0.031). The line in the box is the median value and the box represents 

the interquartile range. Lower whisker is Q1 + 1.5(Q3-Q1) and upper whisker 

represents Q3 + 1.5(Q3-Q1). 



 182 

 

6.8 Discussion 

6.8.1 LVP assay development and potential clinical utility 

HCV can associate with apoB-containing lipoproteins as HCV „lipoviral particles‟ 

(LVP), however the variability of LVP and host metabolic factors that influence 

variation in LVP levels is poorly understood. Moreover the relationship of LVP to 

clinically important outcomes has hitherto been unknown.  In this study, LVP was 

measured in 51 patients with HCV G1 infection and 21 patients with HCV G3 using 

iodixanol density gradients which have previously been shown to maintain the 

integrity of the lipoprotein associations with HCV RNA (Nielsen, Bassendine et al. 

2006). The density cut-off separating „LVP‟ from „non-LVP‟ fractions was 

determined by the distribution of apoB, which was never detected at densities higher 

than 1.07 g/ml by western blot in preliminary experiments in 9 HCV patients and 7 

healthy volunteers. The novel assay measured HCV RNA in the low density 

(d<1.07g/mL) fraction that is likely to contain the vast majority of apoB. This was 

considered to represent the „LVP‟ fraction. HCV RNA was also measured in the high 

density (>1.07 g/ml) fraction that was considered to be „non-LVP‟ and contained little 

if any apoB. Lastly HCV RNA was measured in whole undiluted plasma by sensitive 

qRT- PCR methods. The proportion of total HCV RNA found in plasma as LVP (i.e. 

LVP ratio) was also calculated from the equation LVP ratio = LVP/(LVP+non-LVP). 

The denominator (LVP+nonLVP) was used instead of measured total viral load from 

whole plasma. This was to overcome variation in losses or gains from the dilution and 

fractionation process. Therefore LVP ratio assumes that losses or gains from 

fractionation are equally distributed between the LVP and non-LVP fractions. This 

study indicated that the novel HCV LVP method provided additional information over 

and above that from conventional measurement of total plasma HCV RNA viral load. 

The metabolic associations of LVP in HCV G1 and HCV G3 appeared distinct. In 

HCV G1 those with high LVP ratios had characteristic features of the metabolic 

syndrome such as larger waist circumference raised triglycerides, low HDL and 

insulin resistance. LVP ratio in HCV G1 also correlated with IP10 and adverse 

clinical outcomes including more advanced fibrosis as measured by LSM and poorer 

anti-viral treatment response. In contrast, in HCV G3 the most significant metabolic 
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correlates of LVP were inverse relationships between LVP and HDL cholesterol, and 

non-LVP with apoB and non-HDL cholesterol. In this small cohort of HCV G3 

patients there was no association of LVP with liver stiffness or treatment response but 

this needs to be investigated in larger numbers. 

6.8.2 LVP in HCV G1 correlate with insulin resistance and triglycerides 

In HCV G1 there was a strong correlation between LVP load and insulin resistance as 

determined by HOMA-IR and QUICKI scores. LVP ratio also correlated significantly 

with insulin resistance as measured by HOMA-IR and QUICKI. In multivariate 

analysis, HOMA-IR accounted for approximately 16% of the variability of LVP load. 

Additionally LVP ratio correlated with triglycerides and TG/HDL ratio. The 

association of LVP ratio and TG/HDL ratio provides a possible explanation for the 

association of high TG/HDL ratio and poor response to anti-viral therapy identified 

from the logistic regression analysis of treatment outcomes in results chapter 3. In 

contrast there was no association between total viral load and any host clinical or 

metabolic parameter. The lack of association of total viral load with host factors has 

been reported previously in a study of 2472 HCV G1 patients. In this study, host 

factors including age and BMI correlated weakly with total viral load and explained 

only <0.05% of the variability of HCV RNA (Ticehurst, Hamzeh et al. 2007). The 

strong correlations in this study between LVP, insulin resistance and TG/HDL ratio 

but not total viral load in HCV G1 indicate that the host factors known to be 

associated with adverse clinical outcomes impact largely on the LVP fraction. 

The association of HCV G1 LVP and insulin resistance is particularly intriguing. 

Epidemiological evidence indicates that patients with chronic hepatitis C have a high 

risk for development of insulin resistance and diabetes mellitus (Mehta, Strathdee et 

al. 2001; Hui, Sud et al. 2003; Mehta, Brancati et al. 2003; Huang, Dai et al. 2007; 

Serfaty and Capeau 2009; Park, Cho et al. 2010). This risk is particularly associated 

with HCV genotypes 1 and 4 (Moucari, Asselah et al. 2008). Moreover, suppression 

or clearance of HCV results in improved insulin sensitivity (Delgado-Borrego, Jordan 

et al.). 

HCV may promote insulin resistance through genotype-specific molecular 

mechanisms (Pazienza, Clement et al. 2007; Douglas and George 2009) although 

recent evidence suggests insulin resistance in chronic hepatitis C is mainly in 
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peripheral skeletal muscle rather than the liver (Milner, Van Der Poorten et al. 2009). 

The development of insulin resistance in HCV is clinically important because it is 

associated with more advanced fibrosis (Fartoux, Poujol-Robert et al. 2005; Muzzi, 

Leandro et al. 2005; Svegliati-Baroni, Bugianesi et al. 2007), increased liver stiffness 

(Merchante, Rivero et al. 2009), the development of oesophageal varices (Petta, 

Camma et al. 2008; Camma, Petta et al. 2009; Petta, Camma et al. 2009) and poorer 

response to anti-viral therapy (Romero-Gomez, Viloria et al. 2005; Poustchi, Negro et 

al. 2008).  

6.8.3 LVP in HCV G1 correlate with IP10 

This study found that the second most important independent determinant of LVP 

ratio after triglyceride / HDL ratio was the serum IP10 level. This is a potentially very 

significant finding. In the previous chapter, IP10 levels correlated inversely with non-

HDL cholesterol and apoB and provided a possible link between the lipid 

abnormalities associated with poor anti-viral treatment response in HCV G1 (i.e. low 

LDL cholesterol) and high IP10 levels that have been reported to be associated with 

poor interferon response  (Butera, Marukian et al. 2005; Lagging, Romero et al. 

2006). The correlation of LVP ratio and IP10 further links the formation of LVP with 

the lipid abnormailites associated with chronic stimulation of endogenous interferons. 

This may be an evolutionary adaptation of HCV to effectively evade the innate 

immune response or represent increased activation of innante immune defenses by 

HCV LVP compared to non-LVP. 

6.8.4  LVP may be important in anti-viral treatment outcome 

Antiviral treatment outcomes were available in a subgroup of 42 HCV G1 patients. In 

this group, LVP ratio was significantly higher in non-responders compared with those 

with a complete or partial EVR.  It is possible therefore that increased LVP fraction 

contributes to persistent infection. Furthermore HCV G1 patients with higher LVP 

ratios had increased liver stiffness. It remains to be tested whether reducing LVP can 

improve clinical outcomes such as fibrosis or anti-viral treatment response or whether 

insulin sensitisers can lower LVP. Therapeutic interventions with insulin-sensitizing 

drugs, used either before or in combination with pegylated interferon-α and ribavirin 

are being evaluated with some conflicting results (Khattab, Emad et al. ; Romero-
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Gomez, Diago et al. 2009). The data from this study indicate that insulin resistance 

may be a surrogate marker of LVP load. Measurement of LVP may be more relevant 

in determining patients that may benefit for adjunctive therapies such as lipid 

modulators or insulin sensitisers in future clinical trials. The measurement of LVP in 

appropriately powered larger prospective studies would confirm whether it could be 

clinically useful in predicting patient responsiveness to standard antiviral therapy and 

identifying patients that would benefit from receiving insulin sensitizing or lipid 

modulating therapies.  

6.8.5 Mechanisms of LVP production in HCV G1 

The association of LVP ratio with triglycerides implies that HCV G1 preferentially 

associates with VLDL1 rather than VLDL2. These two sub fractions of VLDL are 

defined by different flotation rates in salt gradients. VLDL1 (Sf 60-400) are 

considered to be larger and normally account for the majority of triglycerides in the 

fasting plasma, but are only a minority of apoB containing lipoproteins. VLDL2 

(Sf20-60) are smaller, contain relatively less triglycerides but more cholesterol and 

are the predominant precursors of LDL which contain the majority of apoB in the 

plasma. The relationship between VLDL1 apoB and triglycerides was confirmed in 

this study by salt gradient ultracentrifugation methods in 23 HCV G1 patients. 

VLDL1 apoB was more strongly correlated with fasting serum triglycerides than 

VLDL2 apoB.  

Although there is a clear association of HCV LVP with triglyceride rich VLDL1 and 

insulin resistance, it is not apparent from this study whether this is cause or effect. 

However, it is possible that it is both. There is now a body of evidence that links 

insulin resistance to over production of VLDL1 (Adiels, Olofsson et al. 2006; Adiels, 

Olofsson et al. 2008; Verges 2010). HCV promotes insulin resistance which has the 

effect of increasing VLDL1 and TG availability, which then increases LVP. Therefore 

insulin resistance promoted by HCV G1 may be impacting on the VLDL1 pathway 

and promoting the formation of LVP. 

In fasting patients with both HCV G1 and HCV G3, LVP ratio varied widely, from 

<0.03 to >0.74. However, on average, LVP contributed less than a fifth of total viral 

load (median HCV G1 18%, HCV G3 14%). Instead, in the fasting state the majority 

of HCV RNA resides in the „non-LVP‟ fraction. The amount of HCV in a particular 
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fraction will be determined by rates of input and clearance from the fraction. Inputs 

can be from de novo HCV production, and / or movement of virus from an adjacent 

density fraction above or below due to alterations in lipid and antibody association. 

Clearance can be due to receptor mediated uptake (infectivity) or movement into an 

adjacent density fraction by lipolysis or transfer (i.e. like exchangeable 

apolipoproteins). Given these assumptions, it is likely that the non-LVP fraction must 

have higher inputs from production and / or slower outputs than the LVP fraction. The 

LVP fraction may represent a minority of total viral load because of more rapid 

clearance of HCV from the LVP fraction. In the HCVcc system, low density HCV 

showed higher specific infectivity than high density HCV but contributed a minority 

of viral particles (Miyanari, Atsuzawa et al. 2007). By analogy to the HCVcc system, 

LVP in vivo may represent a highly infectious and rapidly clearing fraction of HCV in 

plasma.  

The evidence presented in the previous chapters suggests that the key differences 

between the HCV genotypes in terms of lipid profiles is that HCV G3 patients have 

less apoB containing lipoproteins overall, specifically less large triglyceride rich 

VLDL, and a rapidly turning over LDL compartment. Therefore the difference in 

LVP correlations between the HCV genotypes may reflect the differences in the 

availability of TRLs in the low density fraction. 

HCV LVP could be derived either from de novo assembly and secretion of HCV 

directly associated with apoB containing lipoproteins or from transfer from the high 

density (non-LVP) fraction onto TRL‟s in the LVP fraction, or a combination of both 

processes. There is mounting evidence to suggest that HCV co-assembles with VLDL 

(Huang, Sun et al. 2007; Gastaminza, Cheng et al. 2008; Yao and Ye 2008). However 

there is now also new evidence from additional work undertaken by our group that 

HCV is able to transfer directly onto TRL‟s including chylomicrons following a post 

prandial surge in TRL‟(Felmlee, Sheridan et al. 2010). Intravascular HCV transfer 

onto TRLs appears to explain much of the redistribution into very low density 

fractions after a high fat meal. Moreover HCV in these very low density fractions 

(d<1.025 g/ml) appears to be rapidly cleared rather than migrating to the adjacent 

higher density fraction by lipolysis. If transfer is the predominant mechanism 

determining the amount of HCV LVP post prandially, then availability of an acceptor 

TRL pool is the limiting factor determining the amount of LVP present at any one 
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time. Given that transfer of HCV onto TRLs may be rapid, in the fasting state it is 

likely that transfer has reached a steady state. Not all TRLs may be equally efficient 

HCV acceptors. Large VLDL or chylomicrons may be more efficient acceptors for 

HCV transfer than small cholesterol rich LDL. These important potential mechanisms 

need to be tested in further experimental studies. 

6.8.6  Hypothesis - a unifying LVP model 

In light of the above evidence, a unifying model is proposed for HCV LVP in the 

fasting state (figure 44). In the model, the majority of HCV is likely to be held in a 

„non-LVP‟ fraction in the fasting state, potentially associated with ApoA1/HDL, lipid 

poor apoB, antibodies or as „free virions‟. A minority of HCV is low density, 

associated with apoB containing lipoproteins VLDL, IDL and LDL as LVP, detected 

at d<1.07g/ml. HCV LVP may be derived from both de novo production of HCV LVP 

co-assembled with VLDL and from transfer onto TRL‟s from the „non-LVP‟ fraction. 

In the model HCV is cleared in vivo predominantly from the LVP fraction into the 

liver via lipoprotein receptors. Furthermore, within the LVP fraction, HCV associated 

with very large TRL‟s such as VLDL1 and chylomicrons and TRL remnants may be 

cleared more rapidly than HCV associated with smaller VLDL2 / IDL / LDL, which 

may subsequently be shifted down into the „non-LVP‟ fraction if bound by antibody.  

In the model, HCV in the „non-LVP‟ fraction is slowly cleared but can preferentially 

move to the LVP fraction for rapid clearance by directly transferring onto TRL‟s in 

the presence of sufficient TRL acceptors. HCV G1 may promote VLDL1 / remnant 

mediated clearance, whereas HCV G3 may promote a high turnover LDL mediated 

clearance pathway. There may be a trade off between promoting sufficient acceptor 

TRL‟s and competition for hepatocyte entry via shared lipoprotein receptors. 

In the fasting state, HCV transfer from „non-LVP‟ to LVP is likely to have reached a 

steady state, its rate limited by the availability of acceptor TRL‟s. The mechanism of 

transfer is completely unknown, but candidate mediators include CETP or 

exchangeable lipoproteins such as ApoE or apoC‟s. In HCV G1, insulin resistance 

promotes the formation of large TG rich VLDL1.  This favours HCV which is both 

co-assembled / secreted with VLDL1 and excess VLDL1 are also available as 

acceptors for HCV transferring from the „non-LVP‟ fraction. This accounts for the 

positive correlations between LVP and TG & TG/HDL ratios in HCV G1. It also 
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accounts for the association of HCV G1 LVP and insulin resistance. However in HCV 

G3 infection, there is reduced VLDL production and limited TRL‟s available. 

Moreover there is a smaller LDL pool because of rapid LDL clearance. Therefore in 

HCV G3, the predominant determinant of LVP is ApoA1/HDL because this 

determines how much HCV can transfer from the predominant „non-LVP‟ fraction 

into the LVP fraction for rapid clearance. In situations of high apoA1/HDL, less HCV 

can transfer to the LVP fraction for clearance, hence lower LVP levels. When there is 

reduced apoA1/HDL, more HCV can transfer to LVP, hence higher LVP levels. 

Likewise if there is an increase in the LDL acceptor pool (i.e. increased apoB and 

non-HDL cholesterol) then the non-LVP fraction gets smaller because more is being 

pulled up as LVP which is then rapidly cleared. Therefore in the model the balance 

between apoA1/HDL lipoproteins and apoB containing lipoproteins is critical for the 

relative distribution of HCV between the LVP and non-LVP fractions in the fasting 

state. 

 

In summary this is the first accurate measurement of the LVP fraction of total 

hepatitis C viral load in a well-characterized cohort of HCV G1 and HCV G3 patients. 

The results show that LVP ratio varies at least 25-fold between patients and is 

strongly associated with metabolic parameters in both genotypes and important 

clinical outcomes in HCV G1. In particular, higher LVP ratio associates strongly with 

insulin resistance and higher TG levels in HCV G1, both components of the metabolic 

syndrome. Higher LVP ratios were also found in non-responders to antiviral 

treatment, higher IP10 levels and those with more advanced fibrosis. This study offers 

further insight into the life-cycle of HCV outside the liver in the circulation and 

suggests that HCV preferentially associates with triglyceride rich lipoproteins. In 

HCV G1 infection, the promotion of insulin resistance to increase VLDL1 like TRL‟s 

may drive the production of more infectious LVP, providing an explanation of why 

HCV G1 patients with insulin resistance have poorer response to therapy than those 

without insulin resistance and those with HCV G3. 
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Figure 44 The‘Lipoviral particle (LVP)’ model 

1. The majority of HCV particles in the fasting state are high density (d>1.07 g/ml) 

‘non-LVP’, associated with HDL / ApoA1, lipid poor apoB, antibodies or ‘free’ 

virions. The ‘non-LVP’ represent the largest proportion of total viral load 

(represented by the dashed line triangle);2. A minority of total HCV in the fasting 

state is low density (d<1.07 g/ml), associated with apoB containing lipoproteins, 

VLDL, IDL and LDL as‘LVP’; 3. ‘Non-LVP’ can transfer to a lipoprotein acceptor 

into the ‘LVP’ fraction to enhance clearance; 4. Low density ‘LVP’ are more rapidly 

cleared and of higher infectivity compared to the high density ‘non-LVP’. 5. HCV G1 

has selective adaptations that favour the VLDL1 / remnant uptake pathway via apoE 

mediated clearance. This is enhanced by insulin reistance; 6. HCV G3 in contrast 

promotes high turnover LDL clearance mediated via apoB binding to LDLr.  
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7 Chapter 7. A randomised, controlled, factorial pilot study 

investigating Omacor and/or Fluvastatin in patients with chronic 

hepatitis C who have not responded to standard combination 

anti-viral therapy 

7.1 Introduction and aims 

Current treatment options are limited for HCV patients that have previously not 

responded to combination PegIFNα and ribavirin therapy. In those that failed to 

achieve at least a 2 log reduction in HCV RNA (null responders), current guidelines 

do not advocate re-treatment  because of very low response rates (Ghany, Strader et 

al. 2009). Although specifically targeted anti-viral therapies for hepatitis C (STAT-

C‟s) are in phase III clinical trials, these new agents require the addition of PegIFNα 

and ribavirin to minimise breakthrough of resistant HCV strains (Thompson and 

McHutchison 2009; Chary and Holodniy 2010; Lange, Sarrazin et al. 2010; Michaels 

and Nelson 2010). Therefore alternative strategies are required for this group of 

difficult to treat patients. This pilot trial was designed to evaluate whether lipid 

modulating therapy in the form of Fluvastatin and Omega 3 polyunsaturated fatty 

acids (Omacor) could have a beneficial impact in non-responders to previous anti-

viral therapy. Specifically, given the close relationship between HCV and VLDL 

metabolism for the production of HCV lipoviral particles (LVP) and the reliance of 

HCV on cholesterol pathways for viral replication (Ye 2007), this study aimed to 

determine whether lipid modulating therapy can reduce total viral load, or factors that 

influence HCV LVP such as triglycerides and IP10 (see results chapter 4), high levels 

of which are also associated with non-response to PegIFNα and ribavirin. HCV LVP 

is also being measured as an end-point but at the time of writing this data was not yet 

available.  

The potential benefits of lipid modulating agents as adjunctive therapy for HCV is 

supported by a number of pre-clinical studies. Statins are a class of drug that are 

HMG CoA reductase inhibitors. In HCV genomic and subgenomic replicons, 

Lovastatin markedly suppressed HCV RNA levels (Ye, Wang et al. 2003). The 

inhibitory effect of Lovastatin  was mediated by inhibiting geranylgeranylation of a 
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host protein FBL2 required for HCV replication (Kapadia and Chisari 2005). 

Different statins appear to have different effects on HCV replication, with Lovastatin 

showing the weakest anti-HCV activity, Pravastatin having no anti-HCV activity and 

Fluvastatin possessing the strongest anti-HCV activity (IC50: 0.9micro-molar) (Ikeda, 

Abe et al. 2006). In combination with interferon α (IFN), Fluvastatin possessed the 

strongest synergistic inhibitory activity (Ikeda, Abe et al. 2006), hence was the statin 

of choice for this pilot trial.  

Several polyunsaturated fatty acids (PUFA‟s) including arachadonic acid (AA), 

docosahexanoic acid (DHA) and eicosapentanoic acid (EPA) dramatically inhibit 

HCV replication in vitro using the HCV RNA replicon system (Kapadia and Chisari 

2005).  A strong synergistic anti-HCV effect has also been observed when n3 PUFA 

were used in combination with IFN (Leu, Lin et al. 2004). Data suggests that PUFA‟s 

may inhibit HCV replication in vitro by a mechanism that is independent of their 

ability to suppress lipogenic gene expression (Kapadia and Chisari 2005). 

This trial utilised a factorial design. The major advantage of the factorial design is its 

efficiency such that two interventions can be investigated in a single trial. Analysis of 

the trial was undertaken according to the principles set out by McAlister et al 

(McAlister, Straus et al. 2003). This factorial trial was designed to be analysed “at the 

margins” by comparing outcomes of all patients treated with Fluvastatin (with or 

without Omacor) vs no Fluvastatin. The efficacy of Omacor was assessed by 

comparing all those taking Omacor to those not on Omacor (with or without 

Fluvastatin). When the two treatments act independently, addititve effects would be 

expected and this analysis “at the margins” is appropriate. However when the 

intervention effects are less than additive or more than additive (synergistic) then an 

interaction is occurring and appropriate analysis should be performed “inside the 

table” for each separate group. The aim of this pilot trial was to evaluate whether n3 

PUFA fish oils [Omacor] and/or Fluvastatin, as monotherapy and combination 

therapy shows a trend towards efficacy in patients with chronic hepatitis C who have 

not had a SVR to standard combination anti-viral therapy [non-responders]. This was 

a pilot study looking at short-term treatment and was not expected to produce 

definitive results. This pilot study was open, that is both physicians and patients were 

aware of the treatment group to which patients have been allocated. However the 
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primary outcome variable was objective and was not expected to be influenced unduly 

by knowledge of the treatment group. A larger definitive study would be run blind. 
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7.2 Methods –study design and analysis. 

7.2.1  Recruitment 

Patients were recruited from two centers, Freeman Hospital, Newcastle upon Tyne 

and St Mary‟s Hospital, Imperial College, London. Patients were approached to take 

part in the study through normal follow-up clinics and had as long as they needed 

before coming to a decision whether or not to participate. Once informed consent had 

been signed, participants were scheduled for a screening visit to confirm inclusion and 

exclusion criteria. Participants were then randomised to one of 6 groups described 

below. The recruitment target was for 72 patients to be randomised, 12 in each of six 

groups.  

7.2.2  Inclusion and Exclusion criteria 

To be eligible for this study, participants had the following inclusion criteria: age≥18 

years; positive Hepatitis C RNA for more than 6 months; elevated serum alanine 

transaminase (ALT) above normal limits, as defined by Prati D. et al. (Annals of 

Internal Medicine 2002: 137: 1-9); previous lack of sustained virological response 

(SVR) to treatment with standard combination anti-viral therapy (Standard interferon 

α and Ribavirin and/or Pegylated interferon α and Ribavirin); no lipid modulating 

agents for at least 3 months; negative urine pregnancy test (for women of child 

bearing potential) documented within the 48 hour period prior to the first dose of test 

drug. Additionally all participants had to ensure adequate contraception during and for 

one month after treatment.  

The following exclusion criteria were applied: HBV, HDV or HIV co-infection; a 

medical condition associated with chronic liver disease other than viral hepatitis, 

specifically excluding non-alcoholic fatty liver disease by Body Mass Index (BMI) ≥ 

30; clinical evidence of decompensated cirrhosis (ascites, portal hypertension with 

Grade 2 oesophageal varices, hepatocellular cancer); alcohol use in excess of safe 

limits [28 units per week for men and 21 units per week for women]; unable to 

conform to study protocol due to alcohol misuse or drug abuse; serum 

alphafoetoprotein ≥ 100; platelet count < 60,000 cells per/ml; any research study 

within previous 3 months; severe seizure disorder or concurrent phenytoin use; 

lactation; history of muscular toxicity secondary to statins or fibrates; hereditary 
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muscle disorder or family history of hereditary muscle disorder; concurrent anti-

coagulant use. 



 195 

7.2.3  Study Groups 

 

This study was designed as a 3x2 factorial, randomised, open pilot trial. A factorial 

design was chosen for its efficiency allowing two treatments to be tested 

simultaneously, and for its ability to detect any additional effects of using both 

Omacor and Fluvastatin in combination. All patients received 12 weeks of either no 

active drug, Omacor in 2 different doses, Fluvastatin 40mg for 4 weeks, increasing to 

80mg for a further 8 weeks or a combination of the active drugs in a factorial design 

(see Table 7-1). Group A received no active drug and acted as a control group. 

Table 7-1 Factorial design of HCV lipid pilot study 

Intervention No Omacor Omacor 1 gram  Omacor 2-4 

grams 

No Fluvastatin 

 

Group 1 (A) Group 2 (B) Group 3 (C) 

Fluvastatin 

 

Group 4 (D) Group 5 (E) Group 6 (F) 

 

Patients were randomised to: 

Group A – No active drug for 12 weeks 

Group B - Omacor 1g daily for 12 weeks 

Group C - Omacor 2g daily for 4 weeks increasing to 1g q.d.s. from week 5-12 

Group D - Fluvastatin 40mg daily for 4 weeks, then 80mg daily from week 5-12.  

Group E - Omacor 1g daily for 12 weeks, combined with Fluvastatin 40mg daily for 

4 weeks, then 80mg daily from week 5-12 

Group F - Omacor 2 g daily for 4 weeks combined with Fluvastatin 40mg daily for 4 

weeks, then Omacor 1 g q.d.s and Fluvastatin 80mg daily from week 5-12. 

7.2.4  Randomisation 

Randomisation was stratified according to HCV genotype [genotype 1 & other, or 

genotypes 2 & 3] as this has been shown to influence response to standard 

combination anti-viral therapy. A blocked allocation system was used to allocate 

patients to the 6 groups (block size was not disclosed to the investigators).  
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Randomisation was administered centrally via Newcastle Clinical Trials Unit using a 

secure web based system.  www.ncl.ac.uk/random 

7.2.5  Omacor 

Omacor is a fish oil that contains Omega-3-acid ethyl esters. It is licensed for 

adjunctive therapy to diet for the reduction of elevated triglycerides and for secondary 

prevention post myocardial infarction. It was taken either in the dose of 1 capsule 

daily (Groups B and E) or in the recommended dose of initial treatment with 2 

capsules daily, increased to 4 capsules daily at end of week 4 (Groups C and F). 

Common side-effects encountered are predominantly gastro-intestinal (GI) and 

include nausea, dyspepsia, abdominal distension, abdominal pain, eructation and 

diarrhoea. If GI side effects were encountered the dose was reduced to the maximum 

tolerated.  

7.2.6  Fluvastatin 

Fluvastatin is licensed for adjunctive therapy to diet in mixed dyslipidaemia, in 

primary hypercholesterolaemia and for secondary prevention of coronary events post 

percutaneous coronary intervention. It was taken in the recommended starting dose of 

40mg once daily and, as the maximum reduction in LDL-C at a given dose is seen 

within 4 weeks, the dose was adjusted at 4 weeks to the recommended maximum 

daily dose of 80mg. Common anticipated side-effects include myalgia, muscle pain 

and muscle weakness, GI symptoms such as flatulence, nausea, diarrhoea and allergic 

reactions such as rash and angioedema have been reported. If there was evidence of 

myopathy &/or creatine kinase levels >5x upper limit of normal the statin was 

discontinued. If GI side effects were encountered the dose was reduced to the 

maximum tolerated. 

7.2.7  Study Visits 

There were seven study visits in total. All participants had a screening visit up to 8 

weeks prior to starting treatment. Following randomisation, participants received 

treatment for 12 weeks and were followed up at day 2, weeks 4, 8, 12 and week 24.  

The age, sex, BMI, waist circumference and blood pressure were recorded in all 

participants. As chronic HCV infection is associated with insulin resistance and 

http://www.ncl.ac.uk/random
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diabetes, all participants had a two-hour seven-sample oral glucose tolerance test 

(OGTT) to formally assess glucose tolerance status and insulin sensitivity prior to 

commencing treatment at the screening visit. All participants were well characterised 

by a questionnaire detailing dietary history, alcohol, smoking and exercise. 

Additionally a depression and anxiety questionnaire (HAD score) was used to detect 

any exacerbation in symptoms during therapy. Participants were seen at each visit 

after a 12 hour fast. Patients on medication for diabetes were given specific 

instruction to delay taking hypoglycaemic medication on the morning of each visit 

until after the fasting blood tests to avoid hypoglycaemia 
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7.2.8 Trial discontinuation criteria (withdrawal from study drug) 

Participants were withdrawn from the study drug if any of the following occurred: 

serious or life-threatening adverse reaction; participant found to be in violation of the 

protocol eligibility criteria; failure to comply with the dosing, evaluations or other 

requirements of the study; request of the participants (participants had the right to 

discontinue treatment at any time for any reason); the investigator felt that 

discontinuation is in the best interest of the participant; pregnancy; myopathy &/or 

creatine kinase levels >5x upper limit of normal; ALT levels > 5 x the baseline level. 

7.2.9  Concomitant medication and treatment 

Systemic anti-viral, anti-neoplastic and immunomodulatory treatments (including 

steroids and radiation) were not allowed during the entire study period. Steroids given 

as replacement were permitted. Other investigational drugs and herbal or other 

remedies being taken for possible or perceived effects against HCV were excluded. A 

complete listing of all concomitant drugs received was recorded in the electronic case 

report form (eCRF). 
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7.2.10 Safety data - Definitions 

An adverse event (AE) was defined as any untoward medical occurrence. An AE did 

not necessarily have a causal relationship with the treatment. “Treatment” included all 

investigational agents (including comparative agents) administered during the course 

of the study.  Medical conditions/diseases present before starting study treatment were 

only considered adverse events if they worsened after starting study treatment. 

An adverse reaction (AR) was defined as any untoward or unintended responses to an 

Investigational Medicinal Product (IMP) related to any dose administered - All AEs 

judged by either the reporting investigator or the sponsor as having reasonable causal 

relationship to a medicinal product qualified as adverse reactions.  An assessment of 

causality was made using the definitions listed in table 7-2.  

A Serious Adverse Event (SAE) or Serious Adverse Reaction: was defined as any 

untoward medical occurrence or effect that at any dose resulted in death, or was life-

threatening, required hospitalisation or prolongation of existing inpatients‟ 

hospitalisation, resulted in persistent or significant disability or incapacity, or resulted 

in a congenital anomaly or birth defect. 

Suspected, Unexpected Serious Adverse Reactions (SUSARs) were defined as an 

adverse reaction that was both unexpected and serious.  An adverse reaction was 

„unexpected‟ if its nature or severity was not consistent with the applicable product 

information.   
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Table 7-2 Adverse event causality definitions 

Relationship Description 

Unrelated No evidence of any causal relationship 

Unlikely Little evidence to suggest a causal relationship (e.g. the event 

did not occur within a reasonable time after administration of 

the trial medication).  There is another reasonable explanation 

for the event (e.g. the participant‟s clinical condition, other 

concomitant treatment). 

Possible Some evidence to suggest a causal relationship (e.g. because 

the event occurs within a reasonable time after administration 

of the trial medication).  However, the influence of other 

factors may have contributed to the event (e.g. the participant‟s 

clinical condition, other concomitant treatments). 

Probable Evidence suggests a causal relationship and the influence of 

other factors is unlikely. 

Definitely Clear evidence to suggest a causal relationship and other 

possible contributing factors can be ruled out. 

Not assessable Insufficient or incomplete evidence to make a clinical 

judgement of the causal relationship. 
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7.3 Trial research governance 

7.3.1 Data Monitoring 

Monitoring of study conduct and data collected was performed by a combination of 

central review and site monitoring visits.  Study site monitoring was undertaken by 

Newcastle Clinical Trials Unit.  The main areas of focus were consent, serious 

adverse events, essential documents in study files and drug accountability & 

management. 

7.3.2 Clinical Trial Authorisation (CTA) 

The trial had Clinical Trials Authorisation from the UK Competent Authority; 

MHRA.  Reference: 31008/0001/001-0001 and EudraCT reference 2006-004335-29. 

7.3.3 Ethics Approval 

The trial had approval from the Fife and Forth Valley Research Ethics Committee 

REC Ref: 07/S0501/21. The study was conducted in accordance with the 

recommendations for physicians involved in research on human subjects adopted by 

the 18th World Medical Assembly, Helsinki 1964 and later revisions. 
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7.4 Statistics and data analysis 

The two primary outcome measures were a fall in HCV total viral load (log10 IU/ml) 

and ALT  from pre-treatment (average of screening and baseline visits) to end of 

treatment week 12. The main hypothesis was that PUFAs [Omacor] as monotherapy 

or in combination with Fluvastatin would alter cholesterol and fatty acid biosynthesis 

pathways in the liver and that this will reduce the level of HCV replication and 

inflammation as assessed by HCV RNA and ALT level. These two primary outcomes 

were evaluated by intention to treat analysis in 56 patients that attended all study 

visits, including all available data even in those that did had to discontinue the study 

drugs prematurely due to side effects (figure 45). Separate analysis was performed in 

50 patients that completed the full 12 weeks protocol of study drugs to evaluate direct 

treatment effects, although this may marginally bias against those that could not 

tolerate treatment due to side effects. 

This was a pilot study and not expected to clear of HCV RNA in any participant but 

was looking for evidence of a treatment effect in decreasing HCV RNA and liver 

damage. If a treatment effect was found in any group, then larger studies would be 

needed. The FDA (Food and Drug Agency) recommend that 12 subjects per arm 

represents a sufficient number of subjects for a pilot study (FDA  Guidance for 

industry  (http://www.fda.gov/cder/guidance/5356fnl.pdf.). 

The factorial design of this pilot study allowed „at the margins analysis‟ of patients 

receiving no Fluvastatin (Groups A,B & C) versus receiving Fluvastatin (Groups D,E 

& F). Similarly analysis was performed comparing Omacor versus No Omacor and 

the 2 Omacor doses (No Omacor: Groups A & D versus  Omacor 1 gram daily: 

Groups B & E versus Omacor 2-4 grams daily; Groups C & F). Lastly the effect of 

combination therapy could be assessed by comparing the combination Omacor and 

Fluvastatin (groups E & F) with Fluvastatin monotherapy (group D), Omacor 

monotherapy (groups B & C) or no drug (group A). 

A formal power calculation for the pilot trial was not made. However, analysis of pre 

treatment HCV RNA viral loads measured routinely in the clinic by Roche Amplicor 

PCR in 152 patients demonstrated a mean total HCV RNA viral load of 5.413 log10 

IU/ ml with a standard deviation of 0.694 log10 IU / ml. Therefore a minimum number 

of 48 patients (8 per group) would allow detection of a difference of 0.711 log10 in 

http://www.fda.gov/cder/guidance/5356fnl.pdf
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total HCV RNA with 80% power at a significance level (α) of 0.05 using a 2 sample t 

test, by combining groups together so that n is at least 16 in each group (i.e. those on 

low dose Omacor (Groups B+C) vs no Omacor (A+D) vs high dose Omacor (C+F) 

and Fluvastatin (D+E+F) vs no fluvastatin (A+B+C). This compares favourably to the 

only other published trial of Fluvastatin in 31 HCV patients which observed a 

maximum 1.75 log10 reduction in total HCV RNA (Bader, Fazili et al. 2008). The 

purpose of the analysis was to make a preliminary assessment of outcome in order to 

inform the planning of a larger trial; thus sample size calculations had not been 

performed and this study did not have the power to make a definitive conclusion.   

The purpose of the factorial design of the trial was to allow evaluation of the 

treatment effect of two drugs (Fluvastatin and Omacor) to be tested simultaneously.  

Fluvastatin - The effects of Fluvastatin were evaluated by comparing the combined 

groups randomized to Fluvastatin, either alone or in combination with Omacor (i.e 

groups D + group E + group F) and those not taking any Fluvastatin (i.e group A + 

group B + group C). Paired differences in total viral load, liver function tests, lipid 

profiles, liver stiffness and IP10 were calculated by subtracting the week 12 data from 

the average of the screening and baseiline visits. The null hypothesis of a paired 

difference of zero was tested using a 1 sample t-test.The data for this analysis is 

shown in table 7-5. 

Omacor – The effects of Omacor, either alone or in combination with Fluvastatin 

were evaluated by combining all those on Omacor (groups B + C + E + F) and those 

not on Omacor (groups A + D). The effect of low dose Omacor was evaluated by 

combining group B + group E. The effect of high dose Omacor was evaluated by 

combining group C + group F and no Omacor by combining group A + group D. 

Paired differences in total viral load, liver function tests, lipid profiles, liver stiffness 

and IP10 were calculated by subtracting the week 12 data from the average of the 

screening and baseiline visits. The null hypothesis of a paired difference of zero was 

tested using a 1 sample t-test and the data is summaried in table 7-6. 
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Figure 45 Trial summary of screening, randomization and analysis. 

Group F

Omacor 2-4g + 

Fluvastatin 40-80mg

N=9

Group E Omacor 1g + 

Fluvastatin 40-80mg

N=11

Group D

Fluvastatin 40-80mg

N=10

Group C

Omacor 2-4g

N=10

Group B

Omacor 1g OM

N=10

Group A

No drug

N=10 

60 randomised

64 screened

4 screen fails

10 stopped before 12 

weeks 50 completed full 

12 weeks protocol

No Fluvastatin

vs

Fluvastatin

No Omacor vs Omacor

Intention to treat analysis N=56

6 followed up at 

12 weeks
4 DNA’d

Per protocol 

analysis 

N=50

 
64 HCV patients that were previous non-responders to Pegylated interferon-α and 

ribavirin therapy were screened. 60 were randomized to one of six treatment groups 

in a 3 x 2 factorial design. 10 patients did not complete the full 12 weeks of study 

drugs, of whom 4 did not attend further follow-up and 6 had adverse events. 50 

patients completed the protocol. 

 

. 
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7.5 Results 

7.5.1  Demographics / baseline characteristics 

 

Sixty-four patients were consented and screened for the trial. There were four screen 

failures, hence 60 patients were randomized. The reasons for two of the screen fails 

was BMI>30; another screen fail was due to platelets <60,000, and the remaining 

screen failure was due to normal ALT and non-compliant with protocol. Of the 60 

participants randomized, 10 did not complete the full 12 weeks of study drug. The 

reasons for withdrawal from the study drug are discussed later and given in table 7-8. 

Of the 10 not completing the protocol, 6 still attended for a week 12 visit (group B = 

1, group C =1, group D = 1, group E = 2 and group F = 1), so viral load and ALT data 

from this visit was included in intention to treat analysis of the primary end-points. 

Separate completion of protocol only analysis was performed in those 50 participants 

that completed 12 weeks of the study drug to evaluate any treatment effect 

(summarized in figure 44).  

The baseline characteristics of the 60 patients initially randomized is shown in table 7-

3. Participants randomized to group D were older than those in group A (one way 

ANOVA p=0.05), but there was no difference in body mass index (p=0.523). There 

were no significant differences in ALT, AST or GGT levels between the trial groups. 

However, despite randomisation, lipid profiles were significantly different between 

trial groups, with lower total cholesterol and non-HDL cholesterol in groups C (high 

dose Omacor) and E (low dose Omacor + Fluvastatin) than in the other groups (table 

7-3). When the groups were sub-analysed according to viral genotype - HCV G1&4, 

(HCV G1 n=33, + HCV G4 n= 6) and HCV G2&3 (HCV G2 n= 2, HCV G3 n=19), it 

is apparent that the difference in non-HDL cholesterol is accounted for by the HCV 

G3 patients rather than HCV G1 & G4. Comparison of trial groups for HCV G1 & G4 

only, indicated no significant differences in total or non-HDL cholesterol table 7-4. 

However in the HCV G3 sub-population, total and non-HDL cholesterol remained 

significantly lower in groups C (high dose Omacor) and E (low dose Omacor + 

Fluvastatin) (one way ANOVA p=0.006). Pre-treatment triglycerides were lower in 

group B (low dose Omacor) and C (high dose Omacor) compared to group A (control) 

in HCV G1&4 (one way ANOVA p=0.040). HDL was higher in group B (low dose 
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Omacor) compared to E (low dose Omacor + Fluvastatin) in those with HCV G1&4 

(one way ANOVA p=0.018).   

Analysis of completed protocol was performed in those 50 randomised participants 

that completed 12 weeks of study drug. The analysis calculated the paired differences 

at week 12 vs the average of screening and baseline visits and compared this 

calculated difference to the null hypothesis of a mean difference of zero, using a 1 

sample t-test. The significance level was defined at p<0.05. This approach comparing 

the paired differences with or without an intervention therefore minimised the 

statistical relevance of the differences between study groups in baseline lipid 

parameters in the subsequent analysis.  
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Table 7-3 HCV lipid trial baseline characteristics – Liver function tests and fasting lipid profiles 
Group (N=60) A (10) B (10) C (10) D (10) E (11) F (9) P value 

ANOVA 

(reason for 

difference) 

Treatment Controls 

 
Omacor 1g 

 
Omacor 2-4g Fluvastatin Omacor 1g + 

Fluvastatin 

Omacor 2-4g  + 

Fluvastatin 

Did not complete 12 weeks 

study drug (N=10) 

 

2 

 

1 

 

1 

 

2 

 

3 

 

1 

 

Age 47.9 ± 5.4 49.1 ± 6.3 50.0 ± 8.8 56.8 ± 7.4 50.8 ± 8.2 54.2 ± 7.1 

 

0.05 (D>A) 

Sex m/f 7/3 9/1 6/4 4/6 10/1 5/4 
 

 

BMI 25.5 ± 3.5 25.1 ± 2.6 24.9 ± 3.5 25.8 ± 3.1 26.6 ± 2.9 24.8 ± 2.4 

 

0.523 

HCV G1 7 5 6 6 5 4 
 

 

HCV G3 2 4 3 3 4 3 

 

 

other 1 (G2) 1 (G4) 1 (G4) 1 (G2) 2 (G4) 2 (G4) 
 

 

        

ALT 93 ± 53 93 ± 39 88 ± 72 78 ± 39 119 ± 91 70 ± 27 0.561 

AST 82 ± 55 72 ± 36 74 ± 54 58 ± 25 87 ± 66 54 ± 22 0.572 

GGT 99 ± 72 112 ± 59 104 ± 58 96 ± 72 91 ± 101 107 ± 83 0.985 

 

Total cholesterol 5.18 ± 0.76 4.54 ± 0.89 3.45 ± 0.80 4.18 ± 0.98 3.80 ± 1.08 4.46 ± 0.74 0.003 (A>C&E) 

Non HDL-Cholesterol 3.97 ± 0.76 3.02 ± 0.72 2.36 ± 0.61 2.87 ± 0.87 2.72 ± 1.13 2.94 ± 0.73 0.005 (A>C&E) 

HDL cholesterol* 1.23 ± 0.29 1.50 ± 0.14 1.10± 0.25 1.28 ± 0.409 1.08 ± 0.23 1.58 ± 0.42 0.002 (A>B) 

Triglyceride* 1.63 ± 0.77 0.87 ± 0.31 1.03 ± 0.46 1.16 ± 0.39 1.17 ± 0.97 1.05 ± 0.30 0.156 

TG/HDL 1.51 ± 1.09 0.59 ± 0.25 0.97 ± 0.46 1.03 ± 0.54 1.15 ± 1.06 0.72 ± 0.31 0.114 

HOMA IR 1.71 ± 0.48 1.40 ± 0.54 2.31 ± 0.58 2.06 ± 0.76 1.95 ± 1.28 2.03 ± 0.97 0.526 

Mean ± standard deviation *ANOVA performed on log10 triglyceride and. log10 HDL. 
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Table 7-4 HCV G1 & 4 Baseline lipid profiles 
 Group A 

Controls 

 

N=7 

Group B 

Omacor 1g 

 

N=7 

Group C 

Omacor 2-

4g  

N=6 

Group D 

Fluvastatin 

 

N=6 

Group E 

Omacor 1g 

+Fluvastatin 

N=7 

Group F 

Omacor 2-4g 

+Fluvastatin 

N=6 

P value 

ANOVA 

Total 

cholesterol 

4.89 ± 0.63 4.54 ± 1.09 3.83 ± 0.46 4.31 ± 1.15 4.33 ± 0.97 4.66 ± 0.81 0.435 

Non HDL 

cholesterol 

3.81 ± 0.72 3.00 ± 0.86 2.62 ± 0.40 3.02 ± 1.08 3.25 ± 1.02 3.21 ± 0.75 0.283 

Triglycerides* 

 

1.79 ± 0.86 0.94 ± 0.34 0.92 ± 0.28 1.35 ± 0.35 1.63 ± 1.02 1.16 ± 0.23 0.040 

HDL 

cholesterol* 

1.08 ± 0.22 1.50 ± 0.15 1.21 ± 0.20 1.24 ± 0.37 1.08 ± 0.26 1.46 ± 0.25 0.018 

Mean ± standard deviation *ANOVA performed on Log10 triglycerides and log10 

HDL cholesterol 
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Table 7-5 Baseline to week 12 change in viral, biochemical and liver stiffness 

parameters in those completing 12 weeks of study drug –Effect of Fluvastatin 
 Fluvastatin 

(groups D+E+F)  

N=24 

No Fluvastatin  

(groups A+B+C) 

N= 26 

Mean change 

(±SD) 

p-value 

(95% CI) 

Mean change 

(±SD) 

p-value 

(95% CI) 

 

Total viral load (log10 

IU/ml) 

-0.10 (±0.39) 0.249  

(-0.27, 0.07) 

+0.03 (±0.50) 0.788 

(-0.21, 0.27) 

 

ALT u/l +17.0 (±37.1) 0.035 

(1.3, 36.6) 

+25.5 (±70.3) 0.096 

(-4.9, 55.9) 

AST u/l +15.3 (±27.0) 0.011 

(3.9, 26.6) 

+16.5 (±55.6) 0.160 

(-70, 40) 

GGT u/l +19.5 (±44.2) 0.042 

(0.8, 38.1) 

+16.0 (±51.2) 0.158  

(-6.7, 38.6) 

 

Total Cholesterol 

mmol/l 

-0.77 (±0.55) <0.001 

(-1.00, -0.54) 

+0.11 (±0.57) 0.359 

(-0.14, 0.37) 

Non-HDL cholesterol 

mmol/l 

-0.81 (±0.72) <0.001 

(-1.11, -0.51) 

+0.04 (±0.51) 0.702 

(-0.183, 0.266) 

HDL cholesterol 

mmol/l 

+0.02 (±0.30) 0.761 

(-0.11, 0.15) 

+0.07 (±0.18) 0.095 

(-0.01, 0.15) 

Triglycerides 

mmol/l 

-0.28 (0.38) 0.002 

(-0.44, -0.11) 

-0.19 (±0.37) 0.018 

(-0.34, -0.04) 

ApoB g/l -0.17 (±0.12) <0.001 

(-0.22, -0.11) 

+0.03 (±0.14) 0.366 

(-0.03, 0.08) 

 

Liver stiffness kPa +0.2 (±8.4) 

N=19 

0.916 

(-3.8, 4.3) 

-1.4 (±4.84) 

N=17 

0.243 

(-3.9, 1.1) 

 

IP10 pg/ml -18.6 (±128.7) 0.496 

(-74.2, 37.1) 

-79.7 (±187.5) 0.059  

(-162.8, 3.4) 
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Table 7-6 Baseline to week 12 change in viral, biochemical and liver stiffness parameters in those completing 12 weeks of study drug – 

Effect of Omacor  
 All Omacor 

Groups B+C+E+F 

N=34 

Low dose Omacor 

Groups B+E 

N= 17 

High dose Omacor 

Groups C+F 

N=17 

No Omacor 

Groups A+D 

N=16 

Mean change 

(±SD) 

p-value 

(95% CI) 

Mean change 

(±SD) 

p-value 

(95% CI) 

Mean change 

(±SD) 

p-value 

(95% CI) 

Mean change 

(±SD) 

p-value 

(95% CI) 

 

Total viral load  

(log10 IU/ml) 

-0.07 (±0.45) 0.412 

(-0.24, 0.10) 

-0.13 (±0.37) 0.125 

(-0.37, 0.05) 

-0.02 (±0.51) 0.884 

(-0.28, 0.32) 

+0.02 (±0.45) 0.849 

(-0.24,0.29) 

 

ALT u/l +12.6 (±31.3) 0.030 

(1.3, 23.8) 

+7.8 (±28.9) 0.300 

(-7.6, 23.1) 

+17.4 (±33.7) 0.057 

(-0.6,35.4) 

+39.5 (±86) 0.097 

(-8.2, 87.1) 

AST u/l +8.2 (±23.4) 0.053 

(-0.10, 16.5) 

+4.3 (±18.1) 0.348  

(-5.1, 13.5) 

+12.4 (±28.0) 0.097 

(-2.5, 27.3) 

+32.7 (±67.6) 0.082 

(-4.7, 70.2) 

GGT u/l +19.5 (±50.3) 0.039 

(1.1, 38.0) 

+15.0 (±49.0) 0.256  

(-12.2, 42.2) 

+23.8 (±52.6) 0.091  

(-4.3, 51.8) 

+14.2 (±41.5) 0.206 

(-8.8, 37.2) 

 

Total Cholesterol  

mmol/l 

-0.27 (±0.75) 0.058 

(-0.54, 0.01) 

-0.27 (±0.80) 0.218 

(-0.71, 0.18) 

-0.26 (±0.73) 0.165 

(-0.65, 0.12) 

-0.52 (±0.61) 0.006 

(-0.86, -0.18) 

Non-HDL cholesterol 

mmol/l 

-0.37 (±0.82) 0.019 

(-0.67, -0.07) 

-0.34 (±0.68) 0.070 

(-0.72, 0.03) 

-0.39 (±0.96) 0.126 

(-0.90, 0.12) 

-0.48 (±0.60) 0.008 

(-0.81, -0.14) 

HDL cholesterol 

mmol/l 

+0.04 (±0.18) 0.181  

(-0.02, 0.11) 

+0.09 (±0.21) 0.116 

(-0.03, 0.21) 

+0.001 (±0.14) 0.986 

(-0.07, 0.08) 

+0.04 (±0.37)  0.694 

(-0.16, 0.24) 

Triglycerides 

mmol/l 

-0.26 (±0.40) 0.001  

(-0.40, -0.12) 

-0.33 (±0.48) 0.010 

(-0.57, -0.09) 

-0.18 (±0.25) 0.016 

(-0.31=2,-0.04) 

-0.17 (±0.32) 0.066 

(-0.35, 0.01) 

ApoB g/l -0.06 (±0.17) 0.052 

(-0.13, 0.01) 

-0.11 (±0.17) 0.030 

(-0.20, -0.01) 

-0.02 (±0.17) 0.647 

(-0.11, 0.07) 

-0.09 (±0.15) 0.029 

(-0.17, -0.01) 

 

Liver stiffness kPa -1.6 (±6.0) 

(N=25) 

0.201 

(-4.0, 0.9) 

-3.4 (±7.6) 0.157  

(-8.2, 1.5) 

+0.1 (±3.3) 

(N=13) 

0.929 

(-1.9, 2.1) 

+1.7 (±8.6) 

(N=11) 

0.525 

(-4.1, 7.5) 

 

IP10 pg/ml -53.5 (±167) 0.085  

(-114.7, 7.8) 

-97.7 (±160) 0.019 

(-177.3, -18.1) 

+7.7 (±162.6) 0.867 

(-90.5, 105.9) 

-37.3 (±153.3) 0.380 

(-125.8, 51.3) 
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7.6 Primary Outcomes 

There were two primary oucome measures: 1) change in total HCV RNA viral load, 

2) change in ALT after 12 weeks of study drug. 

7.6.1 Total HCV RNA viral load 

The primary outcome measure was a change in total HCV RNA viral load after 12 

weeks of intervention. „Within the table‟ analysis indicated that there was no 

significant reduction in total HCV RNA between baseline and week 12 in any of the 

treatment groups in the overall (figure 46). However this analysis is greatly limited by 

the small numbers in any individual treatment group. The factorial design enabled 

comparison of those on Fluvastatin (groups D+E+F) vs not on Fluvastatin (groups 

A+B+C) to be compared (table 7-7). There was no significant difference in total viral 

load at pre treatment or at week 12 of treatment with Fluvastatin compared to no 

Fluvastatin in either the „intention to treat‟ analysis or only in those completing the 

protocol (table 7-7). Analysis of paired change in total viral load from baseline to 

week 12 in those that completed the protocol again revealed no significant change in 

total HCV viral load in either those taking Fluvastatin for 12 weeks (p=0.249) or 

those not taking Fluvastatin (p=0.788) (see table 7-5).  



 212 

Table 7-7 Total viral load intention to treat and per protocol analysis 

 Fluvastatin 

(groups D + E + F) 

No fluvastatin  

(groups A + B + C) 

p-value 

Intention to treat N = 56 (28 / 28) 

Pre treatment 5.77 ± 0.79 5.87 ± 0.85 0.635 

Week 12 5.71 ± 0.87 5.90 ± 0.89 0.460 

    

Completed protocol  N =50 (24 / 26) 

Pre treatment 5.73 ± 0.83 5.76 ± 0.86 0.539 

Week 12 5.63 ± 0.86 5.88 ± 0.94 0.364 

 

 Omacor 

(groups B + C + E + F) 

No Omacor 

(groups A + D) 

p-value 

Intention to treat N = 56 (39 / 17) 

Pre treatment 5.67 ± 0.85 6.13 ± 0.66 0.048 

Week 12 5.60 ± 0.90 6.09 ± 0.77 0.054 

    

Completed protocol  N =50 (34 / 16) 

Pre treatment 5.61 ± 0.86 6.01 ± 0.72 0.085 

Week 12 5.56 ± 0.87 6.01 ± 0.87 0.058 

 

Sub-group analysis according to HCV genotype, indicated that in HCV G1&4 only 

(N=32) total HCV RNA was modestly but significantly reduced in those taking 

Fluvastatin (groups D + E + F, N=15). The pre treatment total viral load on 

Fluvastatin (N=15) was 5.94 ± 0.60 log10 IU/ml. The week 12 total viral load fell to 

5.70 ± 0.79 log10 IU/ml. The mean reduction in total viral load was -0.24 log10 IU/ml 

(95% CI -0.43, -0.05), p=0.019. In contrast there was no significant change in total 

viral load in those not taking Fluvastatin with HCV G1 & G4 (Groups A + B + C, 

N=17), pre treatment total HCV RNA viral was 5.79 ± 0.88 log10 IU/ml and at week 

12 was 5.89 ± 1.01 log10 IU/ml. The mean change in total viral load in the non-

Fluvastatin group was +0.11 log10 IU/ml (95% CI -0.21, 0.42), p=0.472) (figure 47).  

In HCV G2 & G3 patients only (N=18 overall), no significant change in total viral 

load was detected in those on Fluvastatin [(groups D + E + F, N=9); +0.14 log10 

IU/ml (95% CI -0.10, 0.39) p=0.218], and not taking Fluvastatin [group A + B + C, 

N=9, mean change in total viral load -0.13 log10 IU/ml ( 95% CI -0.47, 0.20) 

p=0.393], but these numbers are too small to be conclusive. 
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Figure 46 HCV lipid trial change total viral load baseline to week 12 

 
Dotplot representing change in total viral load log10 IU/ml calculated from paired 

week 12 – baseline total viral load (protocol completion anaysis N=50). Blue cross 

represents the mean value. Group A (control, N=8, p=0.733), group B (low dose 

Omacor, N=10, p=0.305), group C (high dose Omacor,N=8, p=0.510), group D 

(Fluvastatin, N=8, p=0.903), group E (low dose Omacor + Fluvastatin, N=8, 

p=0.301), group F (high dose Omacor + Fluvastatin, N=8, p=0.483).  
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Figure 47 Change in total viral load HCV G1 & G4 Fluvastatin vs no Fluvastatin 

 

Dotplot representing change in total HCV RNA viral load from baseline to end of 

treatment in those completing 12 weeks of Fluvastatin therapy (N= 15 on Fluvastatin 

vs, no Fluvastatin N=17) with HCV genotypes 1 & 4 only. Total HCV RNA viral load 

decreased by -0.24 log10 IU/ml (p=0.019, 95% CI -0.43, -0.05) in those completing 

12 weeks of Fluvastatin . In those not on Fluvastatin, mean change in total viral load 

was +0.11 log10 IU/ml (p=0.472, 95% CI -0.21, 0.42). The blue cross represents the 

mean value. 
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Omacor in high or low dose did not have a significant effect on change in total HCV 

viral load. Intention to treat analysis indicated pre treatment total viral load was lower 

at pre-treatment in the Omacor group compared to the no Omacor group but was not 

significantly different at week 12 (table 7-7). Completion of protocol analysis did not 

confirm these differences and there was no significant reduction in total viral load 

from baseline to week 12 in those taking Omacor overall, or in high dose Omacor 

(group C + F, p=0.884), low dose Omacor (groups B + E, p=0.125) or no Omacor 

(groups A + D, p=0.849) (table 7-6). Sub-group analysis for HCV G1 & G4 was 

suggestive of a non-significant trend towards reduction in viral load on low dose 

Omacor (groups B + E fall in viral load -0.23 ± 0.39 log10 IU/ml, p=0.080, 95% CI -

0.49, 0.03 log10 IU/ml, figure 48). Additionally in HCV G1&4 there may be a small 

synergistic effect with a reduction in total viral load from taking Omacor in 

combination with Fluvastatin (-0.29 log10 IU/ml, 95%CI -0.55, -0.02 log10 IU/ml, 

p=0.038, figure 49). 
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Figure 48 Change in total viral load HCV G1 & G4, high dose Omacor vs low 

dose Omacor vs no Omacor 

Dotplot representing the change in total HCV RNA viral load (TVL) between baseline 

and week 12 in those completing therapy with HCV G1&4 only. There was no 

significant difference in TVL between high, low or no Omacor, but a weak trend 

towards lower total viral load with low dose Omacor (group B + E, change in TVL -

0.23 ± 0.39 log10 IU/ml, p=0.080) than high dose Omacor (group C + F, p=0.908) 

or no Omacor (group A + D, p=0.871). 
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Figure 49 HCV G1&4, combination Fluvastatin + Omacor vs mono therapy 

change in total HCV viral load 

 
Dotplot representing the change in total viral load (TVL) in HCV G1&4 only that 

completed 12 weeks of treatment.There was a significant reduction in TVL of -0.29 

log10 IU/ml (95% CI -0.55, -0.02, p= 0.038) in those on combination Fluvastatin + 

Omacor (groups E + F, N=9).  There was no significant change in TVL in those on 

Fluvastatin alone (group D, N=5, -0.15 log10 IU/ml, 95% CI -0.56, 0.26, p=0.366),  

Omacor alone (groups B + C, N=10, +0.05 log10 IU.ml 95% CI -0.37, 0.46, 

p=0.802) or no active drug. Blue cross represents the mean value. 

 

 

 

 



 218 

7.6.2 Liver transaminases – ALT, AST and GGT 

The other primary endpoint of the trial was a reduction in liver transaminases. There 

was no significant change in ALT from baseline to week 12 in any of the individual 

trial groups overall. Instead there was a modest but statisticallly significant increase in 

liver transaminases in those that completed 12 weeks of Fluvastatin therapy (groups D 

+ E + F) (table 7-5). There was also a modest but non-significant increase in ALT, 

AST and GGT in those not taking statins (groups A + B + C) (table 7-8). Omacor in 

low or high doses was also associated with small increases in liver transaminases 

(table 7-6) but were neither clinically or statisitically significant. 
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7.7 Secondary Outcomes 

There were a number of secondary outcomes of this pilot study that were considered 

to be of value to aid design of future trials. Firstly was an evaluation of safety and 

tolerability of lipid modulating agents in chronic HCV with specific reference to 

withdrawals and whether changes in cholesterol impact on depression and anxiety 

symptoms. Secondly was to evaluate whether lipid modulating therapy affects liver 

stiffness. Thirdly was an evaluation of IP10 levels after 12 weeks of lipid modulating 

therapy, because of the relationship between this serum marker, hepatic interferon 

stimulated gene expression and non-response to pegylated interferon therapy. 

  

7.7.1  Withdrawals from study drugs 

Ten of the 60 participants that were randomized did not complete the full 12 weeks of 

study drug. Four were due to non-compliance / non-attendance at subsequent follow-

up visits. The remaining six premature withdrawals from study drug were related to 

adverse events (table 7-8). 
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Table 7-8 Reasons for early withdrawals from study 

Group code Genotype Reason for premature 

withdrawal 

Duration of 

study drug 

completed 

A 

 

NS14 1 Non-compliance – DNA‟s 0 

A NS20 1 Non-compliance – DNA‟d 8 weeks 

 

B NS22 1 Non-compliance – DNA‟d 4 weeks 

 

C LS05 3 AE‟s – GI symptoms and 

worsening depression 

2 weeks 

 

D LS09 1 AE‟s Malaise and 

palpitations 

10 weeks 

D LS18 3 AE‟s Headache and 

depression 

5 days 

 

E NS31 1 Non-compliance – DNA‟d 0 

 

E NS03 3 AE‟s Worsening Depression 5 weeks 

 

E NS29 4 AE‟s GI symptoms and 

worsening depression 

1 week 

F NS26 1 AE‟s GI symptoms 11 days 
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7.7.2  Adverse events 

All the adverse events (AEs) reported in the trial are listed in Table 7-9 and Table 

7-10. Nine AEs were considered to be probably related to the study drugs (i.e adverse 

reactions AR).  All these AR‟s were gastrointestinal (GI) side effects; three GI AR‟s 

were reported in each of groups C, E and F, and were attributed likely to be due to the 

fish oils. The severity GI ARs was mild in most and moderate in only two participants 

in groups E and F. Exacerbation of depression was reported in six participants, (1 in 

group B, 1 in group C, 1 in group D and 3 in group E). The only SAE was the 

worsening depression in one participant in group B which led to attempted suicide 

two weeks after completing the study drugs. The local investigators considered this to 

be reactive to the individual‟s circumstances and unlikely to be directly related to the 

study drug. Another participant in group E had a severe exacerbation of depression 

which led to discontinuation of the study drugs after 3 weeks, but again was thought 

by the local investigators to be reactive to life events.  
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Table 7-9 Trial all adverse events 
Group Adverse Event Severity Related to 

study 
drug? 

Onset of 
AE 

End of AE Duration 
of AE 

Study 
drug 
stopped? 

Serious 
AE 

Outcome Duration of 
study drug 
completed 

A URTI mild unrelated week 14 week 15 7 days no no resolved Completed 

B haematuria mild unrelated week 6 week 6 1 day no no resolved Completed 

B flu syndrome moderate possible week 7 week 8 7 days no no resolved Completed 

B depression severe –suicide attempt unlikely week 14 ongoing ongoing no yes ongoing Completed 

C dyspepsia mild probable week 4 week 6 14 days no no resolved Completed 

C nausea mild probable day 7 week 4 21 days no no resolved Completed 

C diarrhoea mild probable week 2 week 3 7 days yes no resolved 14 days 

C vomiting mild possible week 2 week 3 7 days yes no resolved 14 days 

C insomnia moderate possible week 5 week 6 7 days yes no resolved 14 days 

C anxiety mild possible week 5 week 6 7 days yes no resolved 14 days 

C depression mild possible week 5 week 6 7 days yes no resolved 14 days 

D malaise moderate possible week 8 week 10 2 weeks yes no resolved 10 weeks 

D palpitations mild possible week 8 week 10 2 weeks yes no resolved 10 weeks 

D rash mild possible week 4 week 12 8 weeks no no resolved Completed 

D headache severe possible day 3 day 8 5 days yes no resolved 5 days 

D depression severe possible day 3 day 8 5 days yes no resolved 5 days 

D flu syndrome mild possible week 4 week 4 3 days no no resolved Completed 

D vomiting moderate unrelated week 9 week 9 1 day no no resolved Completed 
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Table 7-10 Trial all adverse events continued 
Group Adverse Event Severity Causality Onset of 

AE 
End of AE Duration 

of AE 
Study 
drug 
stopped? 

Serious 
AE 

Outcome Duration of 
study drug 

E diarrhoea mild probable day 4 week 2 10 days no no resolved Completed 

E itch mild possible week 8 week 12 14 days no no resolved Completed 

E lethargy moderate possible week 8 week 12 28 days no no resolved Completed 

E dyspepsia mild probable week 2 week 3 7 days no no resolved Completed 

E depression severe possible week 3 week 5 14 days yes no resolved 5 weeks 

E fatigue mild possible day 7 week 3 14 days yes no resolved 7 days 

E diarrhoea moderate probable day 2 week 3 19 days yes no resolved 7 days 

E depression moderate possible day 7 week 3 14 days yes no resolved 7 days 

E headache mild possible week 3 week 3 1 day no no resolved Completed 

E depression mild possible week 23 week 24 1 weeks no no ongoing Completed 

E insomnia mild possible week 13 week 19 6 weeks no no resolved Completed 

E chest pains mild unrelated week 8 week 8 1 day no no resolved Completed 

E myalgia mild possible week 4 week 5 7 days no no resolved Completed 

E flu syndrome mild possible week 4 week 5 7 days no no resolved Completed 

F diarrhoea moderate probable day 3 week 2 11 days yes no resolved 11 days 

F ado pain moderate probable day 3  week 2 11 days yes no resolved 11 days 

F headache mild possible day 2 week 5 3 days no no resolved Completed 

F diarrhoea mild probable day 2 week 4 26 days no no resolved Completed 

F headache mild possible day2 day 3 1 day no no resolved Completed 
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Depression and anxiey symptoms were recorded in each participant at each visit 

(except day 2) using the HAD depression and anxiety questionnaire. Table 7-11 

indicates that both depression and anxiety symptoms are common in patients with 

chronic HCV infection. Overall 21.7% of the HCV cohort at screening had HAD 

depression scores ≥8 and 43% had HAD anxiety scores ≥8. Patients with HCV G3 

tended to have more frequent depressive symptoms that other genotypes (HAD-D ≥8, 

31.6% (G3) vs 17.1%  G1, 2 & 4), but similar frequency of anxiety symptoms (HAD-

A ≥8, 47.3% (G3) vs 41% G1, 2 & 4). Depressive symptoms were more frequent in 

those 10 patients that did not complete the 12 week protocol (40% vs 18%) table 7-12. 

 

Table 7-11 Baseline Characterisitics depression and anxiety scores N=60 

HCV 

Genotype (N) 

Depression 

score 

HAD-D ≥ 8  

N (%) 

Anxiety score HAD-A ≥ 8  

N (%) 

G1 (N=33) 4 (1 – 6) 6/33 (18.2%) 6 (3-9.5) 14/33 (42.4%) 

G2 (N=2) 2 0 2.5 0 

G3 (N=19) 6 (1-8) 6/19 (31.6%) 6. (4-12) 9/19 (47.3%) 

G4 (N=6) 5.5 (1.5-6.5) 1/6 (16.7%) 7.5 (5.5-9.5) 3/6 (50%) 

Overall 4 (1.3-6.8) 13/60 (21.7%) 6 (3.3-10) 26/60 (43%) 

Median (Q1-Q3) HAD depression (D) and anxiety (A) scores (maximum possible 

score 21 for each) 

 

Table 7-12 Frequency of depression and anxiety symptoms in relation to 

completion of trial protocol 

 HAD-D ≥ 8 (%) HAD-A ≥ 8 (%) 

Completed 12 weeks (N=50) 9 (18%) 21 (42%) 

Drop outs (N=10) 4 (40%) 5 (50%) 
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7.7.3 Lipid profiles and relationship with depression and anxiety 

As expected, those taking Fluvastatin (Groups D, E and F) showed significant 

reductions in total cholesterol, non-HDL cholesterol, apoB and triglyceride after 12 

weeks of therapy (table 7-5). Low and high dose Omacor was associated with 

significant decrease in triglycerides (table 7-6). 

Depression was more frequent in HCV G3 than in other genotypes at the screening 

visit. A possible explanation was that low cholesterol associated with HCV G3 

infection was correlative with depression and / or anxiety symptoms. Fasting lipid 

profiles at screening visit were compared in those reporting depressive symptoms as 

indicated by HAD-D ≥8 and anxiety symptoms as indicated by HAD-A ≥8 in the 

overall cohort (N=60). This analysis indicated a tendency for lower total cholesterol 

in depressed HCV patients (HAD-D ≥8) than in non-depressed HCV patients 

(p=0.053) table 7-13. Although no significant differences in non-HDL cholesterol, 

HDL cholesterol and apoB were found between the depressed and not depressed 

groups, quantitiative apoE was significantly lower in the depressed group (p=0.029). 

Lipid profiles were not significantly different in those HCV patients with and without 

anxiety symptoms (table 7-14) 
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Table 7-13 Lipid profiles and HAD Depression – all HCV genotypes 

 HAD D <8 (N=47) HAD D ≥8 (N=13) p-value 

Total cholesterol 

mmol/l 

4.4 ± 0.9 3.8 ± 1.2 0.053 

Non HDL-C 

mmol/l 

3.1 ± 0.9 2.7 ± 1.0 0.171 

HDL-C# mmol/l 

 

1.3 (1.1-1.5) 1.2 (1.0-1.3) 0.096 

ApoB g/l 

 

0.78 ± 0.23 0.67 ± 0.24 0.136 

ApoE g/l 

 

0.039 ± 0.013 0.030 ± 0.012 0.029 

 

Table 7-14 Lipid profiles and HAD Anxiety - all HCV genotypes 

 HAD A <8 (N=26) HAD A ≥8 (N=34) p-value 

Total cholesterol 

mmol/l 

4.3 ± 1.1 4.2 ± 0.8 0.801 

Non HDL-C 

mmol/l 

3.0 ± 1.0 2.9 ± 0.8 0.837 

HDL-C# mmol/l 

 

1.3 (1.1-1.5) 1.3 (1.0-1.5) 0.729 

ApoB g/l 

 

0.76 ± 0.26 0.75 ± 0.20 0.864 

ApoE g/l 

 

0.038 ± 0.012 0.036 ± 0.015 0.508 

Mean ± standard deviation, comparison using 2-sample t-test. # Median (Q1-Q3) 

comparison using Kruskall Wallace test 
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7.7.4 Depression and anxiety – treatment effects 

The change in HAD-Depression and anxiety scores from the screening visit to week 

12 was evaluated those 50 participants that completed 12 weeks of the study protocol. 

The frequency of depressive symptoms as indicated by HAD-D ≥8 increased overall 

from 16% to 24% at week 12. This increase was greatest in those randomised to 

combination Fluvastatin and Omacor (groups E + F, 17% to 33%) compared to 

Fluvastatin only or Omacor only that had no change in HAD-D scores (figure 50). 

HAD-D scores ≥8 were more frequent in HCV G3 than other genotypes at screening 

and at week 12, but the increase in depressive symptoms on combination Fluvastatin 

and Omacor was observed in all HCV genotypes (figure 51). 

 

Anxiety symptoms as indicated by HAD-A score ≥8 decreased in frequency with 12 

weeks of protocol completion from 40% at screening to 28% at week 12 overall 

(figure 52). This reduction in anxiety scores was observed largely in the combination 

therapy group (56% to 33%) rather than Fluvastatin or Omacor only groups. The 

reduction in HAD-A scores was observed in all HCV genotypes (figure 53). 
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Figure 50 Frequency of HAD depression scores ≥8 with 12 weeks Fluvastatin 

and/ or Omacor therapy  

Depressive symptoms were defined by HAD-D score ≥8 measured at screening and 

week 12. Overall the frequency of those reporting depression increased from 16% to 

24%, and was accounted for largely by those taking combination Omacor and 

Fluvastatin therapy (17% to 33%), rather than monotherapy. 

 

Figure 51 Frequency of HAD depression scores ≥8 at screening and week 12 in 

HCV G3 and other genotypes (1,2 &4) 

Depression (defined as HAD-D score ≥8) was more frequent in HCV G3 patients than 

in other genotypes (G1, 2 & 4). Depressive symptoms were more frequent at week 12 

than screening for all genotypes. 
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Figure 52 Frequency of HAD anxiety scores ≥8 with 12 weeks Fluvastatin and/ or 

Omacor therapy 

 

Anxiety symptoms were defined by HAD-A score ≥8 measured at screening and week 

12. Overall the frequency of those reporting anxiety decreased from 40% to 28%, and 

was accounted for largely by those taking combination Omacor and Fluvastatin 

therapy (56% to 33%), rather than monotherapy. 

 

Figure 53 Frequency of HAD anxiety scores ≥8 at screening and week 12 in HCV 

G3 and other genotypes (1,2 &4) 

 

Anxiety (defined as HAD-A score ≥8) was more frequent in HCV G3 patients than in 

other genotypes (G1, 2 & 4). Anxiety symptoms were less frequent at week 12 than 

screening for all genotypes. 
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7.7.5  Liver stiffness 

The majority, but not all of the trial participants underwent assessment of liver 

stiffness measurement (LSM) using Fibroscan ® which was performed between 

screening and baseline visits and repeated within 1 month of the week 12 visit. There 

was a non-significant tendency for a reduction in median LSM for those in trial group 

B after completion of 12 weeks of low dose Omacor, compared to a pre treatment 

LSM (table 7-15). Although not statistically significant because of small sample size, 

this was a potentially clinically important reduction in liver stiffness of 8.5 kPa and 

needs to be validated in future studies. The apparent improvement in LSM was 

greatest in HCV G1 & G4 rather than in G2 & G3 but the sample size was too small 

to draw definitive conclusions. Given that there was also a modest reduction in liver 

stiffness measurements in group E as well as B, when the two groups were combined 

the paired differences in pre / post treatment LSM reached borderline statistical 

significance (Combined Group B + E (N=13), pre 17.2 KPa, post 11.2 KPa, difference 

-6.0 K Pa, paired t-test p=0.076) 

The mean reduction in LSM in those taking low dose Omacor (B+E) was -6.0 KPa 

compared to +1.75 KPa in those not taking any Omacor (groups A+D) p=0.059. 

LSM did not appear to be affected by Fluvastatin. 
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Table 7-15 Mean liver stiffness measurement (LSM) scores paired pre/post 12 

weeks of intervention (paired t-test) 

Group 

 

N Pre-screen 

LSM kPa 

>Week 12 

LSM kPa 

Paried 

Difference 

kPa 

p-value 

A. Control 5 9.5 9.0 

 

-0.5 0.819 

B. low dose Omacor 

 

7 15.6 7.1 -8.5 0.126 

C. high dose Omacor 

 

6 17.3 17.6 +0.3 0.857 

D. Fluvastatin 

 

7 10.9 14.2 +3.3 0.412 

E. low dose Omacor + 

Fluvastatin 

6 19.2 15.9 -3.3 0.452 

F. high dose Omacor 

+ Fluvastatin 

7 8.7 8.6 -0.1 0.833 
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7.7.6 IP10 

Interferon gamma inducible protein 10 (IP10) is a serum maker of interferon 

stimulated gene activation. Previous studies have shown high IP10 levels in non-

responders to PegIFNα and ribavirin (Lagging, Romero et al. 2006). Because this trial 

selected previous non-responders, high IP10 levels were anticipated. Recent studies in 

Chimpanzees using a miRNA 122 inhibitor that efficiently blocked HCV replication 

showed a correlative reduction in IP10(Lanford, Hildebrandt-Eriksen et al. 2010). 

IP10 was therefore measured in all study visits on fasting serum using a commercially 

available ELISA kit (described in material & methods chapter). Analysis was 

performed on the week 12 – average of screen and baseline IP10 levels to determine 

whether there had been any significant change in IP10 with 12 weeks of therapy with 

Fluvastatin or Omacor. „Within the table‟ analysis indicated a reduction in serum IP10 

levels at week 12 compared to baseline in patients in trial groups B and E overall 

(figure 54). This fall in IP10 was apparent only in those with HCV G1 & G4, and not 

in those with HCV G2 & G3.  „At the margins‟ ananlysis for all those completing 12 

weeks of low dose Omacor (groups B + E) indicated a mean reduction in IP10 of 97.7 

pg/ml (95% CI -177.3, -18.1, p=0.0019) (table 7-6) but no significant change with 

high dose Omacor or no Omacor (figure 55). In contrast, in those on Fluvastatin 

(groups D + E + F) there was not a significant reduction in IP10 (p=0.049) (table 7-5 

and figure 56). 
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Figure 54 HCV lipid trial overall change in IP10 levels baseline to week 12 
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The mean reduction in serum IP10 in group B after 12 weeks of low dose Omacor was 

156 pg/ml (95% CI 3 to 293 pg/ml; p=0.053).  The mean reduction in IP10 in group E 

after 12 weeks of Omacor + Fluvastatin was 33.5 pg / ml (95% CI 17.9 to 80.5 pg/ml; 

p=0.013. Mean and 95% confidence intervals are shown. 
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Figure 55 Change in IP10 levels in those completing 12 weeks of study drug – 

Effect of Omacor dose 
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Low dose Omacor [groups B + E (also on fluvastatin), N=18] was associated with a 

significant reduction in serum IP10 of -97.7 pg/ml after 12 weeks compared to 

baseline (p=0.019). IP10 levels did not change significantly in those on high dose 

Omacor [groups C + F (also on fluvastatin), N=16, p=0.867] or in those not 

receiving Omacor [(groups A (control) + D (fluvastatin only) N=16, p=0.380]. 
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Figure 56 Change in IP10 levels in those completing 12 weeks of study drug – 

Effect of Fluvastatin 
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Fluvastatin treatment [groups D + E (also on low dose Omacor) + F (also on high 

dose Omacor) N=24] was not associated with any significant change in serum IP10 

after 12 weeks compared to baseline (p=0.496). There was a non-significant trend 

towards decreased IP10 level in those not on Fluvastatin [groups A (control) + B 

(low dose Omacor) + C (high dose Omacor, N=26, p=0.059]. 
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The timing of the reduction in IP10 in groups B and E started at week 4 and continued 

until week 12. Of those that had a fall in IP10 levels the effect was maximal at week 8 

as indicated by one-way ANOVA analysis table 7-16 and figure 57. The reduction in 

IP10 was not sustained to week 24, supporting that the change is likely to be a drug 

response. 

 

Figure 57 IP10 levels in trial groups B and E 
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IP10 levels during the trial for combined low dose Omacor (groups B + E). Shaded 

columns represent mean IP10 level pg/ml, interval bars are the 95% confidence 

interval. The line connects the median (*) values at each visit. 

 

 

Table 7-16 Differences in IP10 levels between study groups during the trial – one 

way ANOVA analysis 

Visit 

 

One-way ANOVA  

p-value 

Screen / Base average 0.238 

Day 2 0.188 

Week 4 0.035 

Week 8 0.007 

Week 12 0.074 

Week 24 0.114 
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7.8  Discussion 

This randomised pilot clinical trial has provided data that will be informative to the 

approach and design of further trials of lipid modulating therapies in chronic HCV. 

The data has suggested some potential benefits of Fluvastatin and n3 PUFA‟s in 

selected patients with chronic HCV that were previous non-responders to Peg-

interferon-α and ribavirin therapy.  

The primary outcome measure in the trial was a reduction in total HCV RNA. 

Overall, 12 weeks of therapy with Omacor and / or Fluvastatin was not associated 

with a clinically significant reduction in total HCV RNA, and these agents are clearly 

not potent anti-viral agents. However it was noteworthy that in a sub-group with HCV 

G1 & G4 infection there was a modest but statistically significant reduction in total 

HCV RNA viral load in those taking Fluvastatin. The numbers of HCV G2&3 

randomised to each group were too small to draw any definitive conclusions about 

efficacy for these genotypes. N3 PUFA‟s did not have any apparent significant impact 

on total HCV viral load in this small trial. There was a suggestion of an additive 

synergistic effect of combination Fluvastatin + Omacor in HCV G1 & G4.  

A viral suppressive effect of fluvastatin would be consistent with the effects shown on 

viral replication by statins in HCVcc. Statins are thought to exhibit an anti-HCV 

effect by inhibition of geranylation of the host protein FBL2, thereby disrupting a 

subsequent association with NS5A and suppressing HCV replication (Wang, Gale et 

al. 2005). Fluvastatin has been reported to have the strongest anti-HCV activity in 

vitro followed by atorvastatin and simvastatin having moderate effects and Lovastatin 

the weakest. Pravastatin had no HCV inhibitory effects (Ikeda, Abe et al. 2006). 

Statins have been shown to have synergistic additive anti-viral activity in combination 

with IFNα in vitro (Ikeda, Abe et al. 2006; Delang, Paeshuyse et al. 2009). Since 

Pegylated interferon was not used in this trial, synergistic activity of combination with 

Omacor or Fluvastatin was not evaluated. A recent in vitro study combining statins 

with a non-nucleoside inhibitor resulted in more profound anti-viral effects and 

reduced the selection of resistant HCV replicons (Delang, Paeshuyse et al. 2009) 

justifying further assessment of these agents in patients.  However in pilot trials to 

date there have been variable responses to statin mono therapy in HCV, some 

showing modest reductions in viral load and others no difference in HCV 
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monoinfected patients. These previous studies have also been largely small, with 

poorly designed entry criteria and variable statin doses. An early study gave ten 

hyperlidaemic HCV patients (8 HCV G1, 1 G2, 1 G4)  Atorvastatin for 12 weeks but 

found no significant reduction in HCV RNA (O'Leary, Chan et al. 2007). A later 

study using variable doses of fluvastatin up to 320mg as monotherapy for variable 

durations found a maximum reduction in HCV RNA of 1.75 log10 IU/ml. (Bader, 

Fazili et al. 2008). That study had a confusing study design and included 15 HCV G1 

and 7 HCV G3 patients including treatment naive. Another small pilot study 

randomised 22 HIV/HCV G1 co-infected patients to Fluvastatin at high doses of 

80mg QDS for 4 weeks but found a significant increase in total HCV viral load from 

5.63 to 5.84 log10 IU/ml (Milazzo, Meroni et al. 2009). However with subsequent 

anti-viral treatment there was an improved RVR rate but no improved SVR (Milazzo, 

Caramma et al.). Another study from Japan used 20mg of Fluvastatin in combination 

with PegIFNα and ribavirin in 21 HCV G1 patients and achieved 67% SVR. This trial 

had no control group however (Sezaki, Suzuki et al. 2009). A retrospective study of 

50 hyperlipidaemic patients receiving concurrent statin therapy found no change in 

total HCV viral load (Forde, Law et al. 2009). Recently sub-group analysis from the 

IDEAL trial indicated a beneficial effect of taking statins in combination with 

Pegylated IFNα in HCV G1 infection (Harrison, Rossaro et al.). In this study, 66 

patients receiving a statin pre-interferon treatment had a higher SVR rates those not 

receiving statins (53.0% versus 39.3%, p = 0.02).This study also confirmed the 

observation that a high LDL cholesterol level and a low HDL level and statin use 

were all independently associated with SVR. 

The present study adds to the literature concluding there is insufficient evidence of 

clinically significant efficacy to use Fluvastatin or n3PUFA‟s as mono-therapy in 

chronic HCV. However the data from this study suggest some modest anti-viral effect 

of Fluvastatin in patients with HCV G1 & G4 infection. Future trials should consider 

the combination of Fluvastatin with Pegylated interferon therapy in this selected 

group of patients.  Overall Fluvastatin and Omacor were safe and reasonably well 

tolerated in patients with chronic HCV. The most commonly reported adverse event 

was GI upset but this was mild in most cases. Depression and anxiety are both 

common symptoms in chronic HCV, and were more prevalent in those with HCV G3 

infection. Depression was associated with low serum cholesterol and apoE, and 
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depressed patients were more likey to stop the medication prematurely. Therefore this 

study does not support the use of Fluvastain or Omacor in HCV G3 patients 

particularly with hypocholesterolaemia and depression. Any future trials of lipid 

modulating agents in this HCV population should estimate a 15% drop out rate when 

making calulations of sample size. 
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7.8.1 n3-PUFA and decreased IP10 

Secondary analysis of this pilot trial suggested a reduction in serum IP10 levels in 

those HCV G1 & G4 patients taking low dose n3 PUFAs. This raises the possibility of 

improving interferon sensitivity in this group of difficult to treat patients. Data from 

the previous chapters has already demonstrated an independent association of serum 

IP10 and HCV LVP ratio in genotype 1 infection (results chapter 4). IP10 levels also 

correlate inversely with lipid profiles in HCV (results chapter 3). In HCV G1 high 

IP10 levels are correlated with low non-HDL cholesterol and low apoB. In HCV G3 

high IP10 levels correlate with HOMA IR. Therefore as a marker of interferon gene 

activation, IP10 provides a likely link between these lipid abnormalities and adverse 

response to interferon α treatment outcomes (results chapter 3). 

The observation in this pilot trial that 12 weeks of low dose n3–PUFA may reduce 

serum IP10 levels is intriguing because it suggests an improvement in the 

unfavourable state of ISG activation in previous IFNα non-responders, and raises the 

possibility of restoration of interferon sensitivity. This needs to be evaluated in further 

studies, either in a Chimpanzee animal model or in future trials with n3 PUFA in 

HCV which should consider paired liver biopsies at baseline and 12 weeks to evaluate 

interferon stimulated gene expression profiles, prior to initiating further interferon 

therapy.  

The mechanism by which n3-PUFA may lower IP10 levels remains to be elucidated. 

However n3 PUFA‟s are widely recognised as having anti-inflammatory properties. 

Two mechanisms are likely to be involved. Firstly n3 PUFA are incorporated into 

phospholipids at the expense of the n6 PUFA arachadonic acid (AA). AA is converted 

to pro-inflammatory prostaglandins by the action of cyclo-oxygenase (COX). The n3-

PUFA‟s Docosahexanoic acid (DHA) and Eicosapentaeoic acid (EPA) are also 

substrates for COX and lipoxygenase (LO). N3 PUFAs are preferentially catabolised 

by COX-2 over COX-1. Hence both DHA and EPA compete with AA as substrates 

for COX and LO. (Schmoker, Weylandt et al. 2007). Eicosanoids produced from AA 

such as leukotriene B4 are more pro-inflammatory than those produced from n3-

PUFA long chain fatty acid substrates such as leukotriene B5. Therefore the 

antagonism of AA by n3-PUFA‟s promotes anti-inflammatory properties (Mori and 

Beilin 2004).   
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N3 PUFAs may also lower IP10 by an effect on gene expression mediated by the 

action of n3 PUFA as PPAR activators (Huwiler and Pfeilschifter 2009). Previous 

data from the transgenic fat-1 mouse animal model of acute liver injury indicated a 

beneficial effect of n3-PUFA in dampening inflammation, by reducing hepatic gene 

expression of TNFα, IL1β, IFNγ and IL6. An alternative mechanism may be via 

PPARγ induced activation which has been shown to inhibit IFNγ induced expression 

of IP10 in human endothelial cells. (Marx, Mach et al. 2000). Increased levels of n3 

PUFA in cell membranes reduces the production of inflammatory cytokines such as 

IL6, IL10 and TNFα. N3 PUFAs inhibit signalling through Toll –like receptor 2 and 

thereby suppress NF kappa B which has the effect of reducing transcription of pro- 

inflammatory cytokines (Lo, Chiu et al. 1999). DHA in particular has been shown to 

reduce IP10 production from Rhinovirus infected respiratory epithelial cells 

(Saedisomeolia, Wood et al. 2009). The IP10 gene has an NF kappa B response 

element, therefore decreased IP10- levels may be due to decreased NF Kappa B 

activation (Wu, Ohmori et al. 1994). 

The data from this pilot study support a further prospective randomised trial using low 

dose n3-PUFA as lead in therapy in previous IFNα non-responders.  This may be 

particularly important in those with the unfavourable IL28B genotype to evaluate 

whether pre-treatment with n3 PUFA as adjunctive therapy can improve interferon 

sensitivity.  

7.8.2 n3 PUFA and liver stiffness 

Another interesting secondary outcome from the trial was some reduction in liver 

stiffness in a number of participants receiving low dose Omacor. Given the magnitude 

of improved LSM with only a short 12 week intervention, it is likely that n3 PUFA 

are impacting on liver fat and / or inflammation rather than fibrosis. N3 PUFA may 

impact on steatosis by its action as a PPARα activator. PPARα is a transcription factor 

that up-regulates genes involved in the β oxidation and transport of fatty acids (Staels, 

Dallongeville et al. 1998). PPARα is expressed in liver, heart, skeletal muscle and 

brown adipose tissue and regulates oxidation of fatty acids in mitochondria and 

peroxisomes. When fatty acid concentrations increase, PPARα activation increases 

FFA uptake and oxidation.  



 242 

Both n3 PUFA‟s docosahexanoic acid (DHA) and eicosapentanoic acid (EPA) can 

bind to and activate PPARα. Levels of PPARα have been reported to be lower in 

HCV patients with steatosis than those without steatosis (Dharancy, Malapel et al. 

2005), and lower in liver biopsies from patients with HCV genotype 3 than genotype 

1 so it was anticipated that the greatest improvements would be found in those with 

HCV G3. There have been a few pilot studies in patients with NAFLD suggestive of 

reduced hepatic steatosis in those taking n3 PUFA (Masterton, Plevris et al. ; Capanni, 

Calella et al. 2006) and there are n3PUFA trials ongoing in NAFLD. 
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7.9 Summary, trial limitations and conclusions 

This pilot trial had a number of limitations. The major limitation related to small 

numbers. Although a recruitment target was originally set for 72 pateints to be 

randomised to give 12 per treatment group, it was apparent during the trial that this 

would not be reached. One major factor for failing to reach the recruitment target was 

competing trials using new anti-protease inhibitors in combination with PegIFNα and 

ribavirin for HCV G1 non-responders. This trial did not include re-treatment with 

PegIFNα and hence offered participants no immediate prospect of a cure. Furthermore 

the in-vitro studies using Fluvastatin and n3 PUFA‟s in cell culture have indicated a 

synergistic effect when combined with PegIFNα, hence it may have been better to 

follow a monotherapy phase with combination treatment. However this would have 

greatly increased the cost, duration and likelihood of significant side effects. 

The factorial design had the advantage of being able to compare two different 

treatments. However because this trial included two different doses of Omacor in a 3 

x 2 design, the numbers in each individual group were very small. It may have been 

better to simplify the study with just one Omacor dose and one Fluvastatin dose as a 2 

x 2 factorial study rather that a 3 x 2 study to increase the sample size for the 

individual groups.  

Since the date when the trial protocol was written and initiated, mounting evidence is 

indicating that HCV G3 is metabolically distinct from HCV G1, and has profund 

effects on host lipid metabolism. Inclusion of small numbers of HCV G3 patients into 

each study group serves largely to skew lipid profiles data. However the numbers of 

patients with HCV G3 in each group were too small to make any meaningful sub-

analysis for this particular genotype. In future trials it would be more appropriate to 

separate HCV genotype 3 completely in the inclusion criteria.  

Of the 60 patients that were randomised, 10 did not complete the full 12 week 

duration of study drug for various reasons. In 4 /10 the reason for non-completion was 

non-attendance with further study visits. This is a practical difficulty of any trial in 

this population, many of whom have a history of injecting drug use and chaotic 

lifestyles. The other 6 that did not complete the full 12 weeks reported side effects. 

The major adverse events reported were gastrointestinal which are expected AE‟s 

from the study drugs. Because the study was not blinded, each participant was given 
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the manufacturer‟s patient information sheet about the medication to which they were 

randomised, on the recommendation of the research ethics committee. This may have 

contributed bias to an excess in reporting of anticipated adverse events. Depression 

was prevalent at screening, more frequent in HCV G3 than other genotypes and also 

more commonly reported on combination n3 PUFA / Fluvastatin lipid modulating 

therapy. Two individuals with a past history of depression had signifcant depressive 

exacerbations.These episodes were considered by the investigators to be reactive to 

their individual circumstances rather than directly related to the study drug. This study 

showed a significant reduction in anxiety symptoms in those taking high dose n3 

PUFA‟s for 12 weeks.  

Depression and anxiety are common symptoms of chronic HCV infection and have 

been reported in other studies to affect 20-30 % of HCV patients (Golden, O'Dwyer et 

al. 2005). Studies of patients that acquired HCV from contaminated anti-D 

immunoglobulin showed an increase in prevalence of anxiety and depression 

(Goulding, O'Connell et al. 2001) that suggests that HCV may have some biological 

relationship with cognitive symptoms. Cognitive and neuropsychological symptoms 

in HCV may be related to a direct biological effect of HCV infection in the CNS, 

causing immune activation of microglial cells (Forton, Taylor-Robinson et al. 2006; 

Forton, Hamilton et al. 2008). Depression has also been widely reported to be 

associated with low cholesterol in the psychiatric literature, although the mechanisms 

are not elucidated (Partonen, Haukka et al. 1999; Sansone 2008). It is possible that the 

combined effects of chronic HCV infection in the CNS coupled with low cholesterol 

in HCV G3 account for the high prevalence of depressive symptoms of this group in 

this trial. Depressive symptoms are also common side effects of interferon therapy 

and limit compliance affecting >30% of patients treated (Martin-Santos, Diez-

Quevedo et al. 2008). Studying biological mediators of depression in HCV however is 

difficult because of the high prevalence of co-existing clinical depression and HCV 

amongst injecting drug users.  

Polyunsaturated fatty acids may have a biological effect on cognitive function. The 

neurotransmitters glutamate, dopamine and serotonin are derived from arachadonic 

acid. It has been proposed that in depression there is enhanced AA signalling 

promoted by relative deficiency of n3-PUFA (Liperoti, Landi et al. 2009). EPA can 

also inhibit phospholipase A2, which is involved in releasing unesterified fatty acids 
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from phospholipids. EPA appears to have anti-depressant activity whereas DHA does 

not. The improved anxiety symptoms in those treated with high dose fish oil may be 

mediated through these central mechanisms. 

Despite the limitations, the pilot trial justifies a further trial of Fluvastatin in 

combination with PegIFNα and ribavirin in patients with HCV G1 and 4. Additionally 

it needs to be evaluated in a further trial whether a lead in phase with 8 to 12 weeks of 

low dose Omacor can enhance interferon responsiveness in previous PegIFNα and 

ribavirin non-responders. The impact of these lipid modulating agents on HCV LVP 

and LVP ratio is also in progress.
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Final Discussion and future work 

The data presented in this thesis have provided further understanding of the 

interactions of HCV and lipid metabolism and how these interactions may impact on 

the response to anti-viral therapy.  

The data in chapter 3 indicated that the clinical phenotype of dyslipidaemia in HCV 

appears to be distinct between HCV G1 and G3, whereby those with HCV G3 have 

particularly marked reductions in LDL. In chapter 4 the evidence presented indicates 

that endogenous cholesterol synthesis is reduced equally between HCV G1 and G3, 

predominantly via the lathosterol pathway. In HCV G3 there is relative sparing of the 

desmosterol pathway which appears to be discordantly up-regulated. These 

abnormalities appear to resolve with successful eradication of HCV after anti-viral 

therapy. A key difference between the HCV genotypes is low PCSK9 levels in HCV 

G3. This supports the concept that the major distinction between the metabolic 

phenotype of low LDL in HCV G3 compared to HCV G1 is largely due to increased 

LDL clearance in G3. The data indicating that low LDL in HCV G3 is due at least in 

part to increased LDL clearance require further validation by a formal stable label 

apoB kinetics study, ideally in a number of HCV G3 patients before and after 

successful anti-viral therapy. Profound hypocholesterolaemia in HCV G3 may be a 

factor in exacerbating depressive symptoms in this group of patients. This was evident 

in the clinical trial where depressive symptoms were common amongst those with 

HCV G3 infection and correlated with low LDL cholesterol and particularly low 

apoE. This is clincally very relevant because depression limits compliance with 

PegIFNα and RBV therapy in up to 30% of those treated (Golden, O'Dwyer et al. 

2005). It is possible that recombinant PCSK9 may be of therapeutic value in HCV G3 

patients with profound hypocholesterolaemia, potentially reducing LDLr expression 

to normal and restoring the dyslipidaemia.  

The combination of low PCSK9, relatively high desmosterol and hepatic steatosis in 

HCV G3 also demands further investigation. The hypothesis is that HCV may 

modulate endogenous cholesterol synthesis preferentially via desmosterol rather than 

lathosterol pathway. One approach to address this hypothesis in vitro would be to use 

radio labelled C
13

 acetyl co-A, and monitor its incorporation into sterol intermediates 

in Huh7.5 cells before and after infection with HCVcc. It would also be important to 

evaluate the effects of relative desmosterol excess on de novo lipogenesis and fatty 
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acid oxidation. It would be interesting to compare sterol profiles in patients with HCV 

to patients with non-alcoholic fatty liver disease, and obese individuals without 

steatosis. The working hypothesis is that relative desmosterol excess maybe important 

in regulating the development of hepatic steatosis via inappropriate activation of de 

novo lipogenesis, and may be an important factor in determining which individuals 

with central obesity develop steatosis.  

Chapter 5 showed an independent association of LDL cholesterol and anti-viral 

treatment outcome, independent of viral genotype. Individulas with low LDL-C 

tended to be less likely to respond to PegIFNα and ribavirin than those with high LDL 

cholesterol. This important observation has subsequently been corroborated in 

prospective clinical trials (Harrison, Rossaro et al. 2010). Also TG/HDL ratio was 

associated with poor response to anti-viral therapy. The most likely explanation for 

the association of LDL cholesterol and interferon treatment outcome is an interaction 

between the endogenous interfon response and lipid metabolism. Collaboration in a 

GWA study  led to the discovery that the most important host genetic determinant of 

treatment outcome is IL28B genotype, a type III interferon involved in innate anti-

viral defences. High endogenous IFN responses are associated with poor response to 

therapy and serum IP10 has been well documented as a serum marker of hepatic ISG 

activation (Sarasin-Filipowicz, Oakeley et al. 2008). The negative correlation between 

IP10 and LDL cholesterol links the innate interferon response to the lipid 

abnormalities associated with adverse treatment outcomes in HCV G1. This explains 

the apparent paradox that low LDL is associated with poorer treatment response, and 

yet HCV G3 which lowers LDL more than HCV G1 responds better to anti-viral 

therapy. A possible explanation is that in HCV G1, low LDL cholesterol is another 

marker of hepatic ISG activation, but in HCV G3 low LDL is likely to be 

predominantly caused by a different mechanism through independent genotype 

specific up-regulation of LDLr.  

Development of a novel assay to measure HCV LVP has indicated that the LVP ratio 

is associated with poor treatment response and more advanced liver disease in HCV 

G1. The primary metabolic determinants of LVP in HCV G1 appear to be 

triglycerides and insulin resistance. The association between IP10 and LVP ratio in 

HCV G1 again links the innate anti-viral response and dyslipidaemia to the formation 

of potentially more infectious virions, favouring viral persistence in the host.  
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In future studies, genetic determinants of LVP need to be investigated. Any further 

measurement of LVP in future clinical cohorts should be combined with collection of 

genomic DNA and evaluated in the context of IL28B genotype. A GWAS approach in 

a large cohort of patients comparing those with high and low LVP may help 

characterise the specific host genetic determinants of LVP and provide further insight 

into the possible mechanisms of HCV interactions with lipid metabolism. 

Finally this study has indicated that lipid modulating therapy with Fluvastatin may 

reduce HCV replication in HCV G1 & G4. Moreover low dose n3 PUFA may lower 

IP10 in HCV G1 & G4, raising the potential capacity of restoring interferon 

sensitivity. A priority for further work is to complete the measurement of LVP from 

the intervention trial, to elucidate whether n3-PUFAs and Fluvastatin are modulating 

LVP directly. Ideally further larger prospective intervention trials are required. The 

LVP assay in its existing form is rather too laborious and time consuming for 

application in a large multi-center clinical trial. The LVP assay will require further 

development for more routine applications. However the data from the pilot trial 

would support a larger randomised clinical trial in HCV G1 non-responders. The 

results from this pilot study would suggest testing an 8 to 12 week lead in phase 

comparing low dose n3 PUFA to placebo to determine whether a fall in IP10 can 

favourably impact on subsequent IFN sensitivity. This lead in phase could be 

followed by combination therapy with PegIFNα and ribavirin, with and without the 

addition of Fluvastatin. In addition to standard clinical end points such as RVR, EVR 

and SVR, assessment of LVP ratio would be important. The relationship between 

LVP and insulin resistance in HCV G1 also highlights the utility of measuring LVP in 

future trials using insulin sensitisers to determine whether these agents can favourably 

impact on LVP ratio. Use of LVP ratio in future practice may be helpful in 

discriminating which patients may benefit from such adjunctive therapies, possibly 

combined with a genetic test for IL28B genotype. 

Patients with HCV G3 are at risk of being left behind with current anti-HCV drug 

developments. Although 70-80% of HCV G3 patients are cured with existing 

therapies, the options for the 20-30% that do not respond are limited. Clinical trials to 

date have indicated that the new generation of protease inhibitors have limited 

efficacy in HCV G3, and are unlikely to be licensed for use in HCV G3 in the first 

wave (Asselah, Benhamou et al. 2009). In this study, the major metabolic correlates 
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(insulin resistance and raised triglycerides) with LVP appeared to be in HCV G1 

rather than HCV G3. In contrast in HCV G3, LVP correlated mainly with low HDL. 

The data for HCV G3 in particular need to be considered only preliminary because of 

small numbers of HCV G3 patients in this cohort so far. However, raising HDL may 

be a beneficial therapeutic strategy for both HCVG1 and G3, to potentially lower LVP 

directly in G3 and indirectly by reducing VLDL TG in HCV G1. Existing HDL 

raising drugs include Niacin and CETP inhibitors that could be piloted for efficacy in 

HCV.  

Although much more research needs to be done in the field of HCV and host lipid 

interactions, the data presented in this thesis has clarified some of the important 

research questions and direction for future studies. 
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8 Appendices 

8.1 Appendix A- International Diabetes Federation definition of Metabolic 

syndrome 

Central Obesity - waist circumference, ethnicity specific (>80cm women, >94cm 

Europoid or >90 Asian) 

Plus any two of: 

Raised triglycerides >1.7mmol/l 

Reduced HDL cholesterol <1.03 mmol/l in men; <1.29 mmol/l women 

High blood pressure >130 mmHg systolic, >85 mmHg diastolic, or previously treated 

hypertension 

Raised fasting glucose >5.6mmol/l 

Previously diagnosed type 2 diabetes 
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