Torsion theories and Auslander-Reiten SEQUENCES

PuIMAN NG

Thesis submitted for the degree of Doctor of Philosophy

School of Mathematics \mathcal{E} Statistics
Newcastle University
Newcastle upon Tyne
United Kingdom

February 2011

The Road goes ever on and on
Down from the door where it began.
Now far ahead the Road has gone,
And I must follow, if I can,
Pursuing it with eager feet,
Until it joins some larger way
Where many paths and errands meet.
And whither then? I cannot say.
J. R. R. Tolkien

The Lord of the Rings

The author would like to express her thankfulness for the financial assistance from the School of Mathematics and Statistics, Newcastle University, for the Newcastle University International Postgraduate Scholarship (NUIPS), for the Overseas Research Students Awards Scheme (ORSAS) Award, and for the Croucher Foundation Scholarship, which have enabled her study in Newcastle University. The author would like to express her thankfulness to R.B.J.T. Allenby and John Truss, who have both been enriching and nourishing in their touch of British sense of humour, which has been internalized and absorbed into the author's being and has graced her nature. The author would like to express her thankfulness to Rafael Bocklandt and Vanessa Miemietz for being her examiners, who have read the thesis with utmost conscientiousness and profound thoroughness, and who have stimulated her understanding during the viva and who have offered a few gentle suggestions, including an example which illustrates that not all torsion theories are t-structures (Example 4.5.8). The author would like to express her thankfulness to Yann Palu for suggesting the constructions of mapping cones of (compositions of) downward morphisms in $D^{b}\left(\bmod k A_{7}\right)$ and in the cluster category of Dynkin type A_{∞} (Section A.3.1 and Section A.3.2). The author would like to express her thankfulness to Robert Marsh for reading the very first draft of the thesis, who is always subtle in his support and guidance, and who is currently reading the book Asterix in Switzerland ([12]). The author would like to express her thankfulness to Agustín Fernández who has always been and shall always be the source of the author's inspiration. The author would also like to express her special gratitude to her supervisor, Peter Jørgensen, for his immense ability in seeing the sophistication in simple things and his elegance of simplicity in his unique and individual art and mastery of telling a story.

Abstract

Chapter 0 gives a gentle background to the thesis. It begins with some general notions and concepts from homological algebra. For example, not only are the notions of universal property and of duality central to the flavour of the subject, they are also suggestive in understanding mathematics at another depth. In category theory, objects and morphisms are the two main elements in a category, and notions such as kernels and cokernels are defined in terms of objects together with morphisms. In accordance with it, the morphisms are given a very subtle significance within a category. The chapter then introduces the notion of a triangulated category, where due to the lack of uniqueness of certain morphisms described in the axioms, is allowed to be far from an abelian category. A few examples of triangulated categories are given, the homotopy category, the derived category and certain stable categories. The chapter ends with a little description of an Auslander-Reiten quiver defined on a Krull-Schmidt category, as well as the notions of Serre functor and of Auslander-Reiten triangles in subcategories. The introduction chapter selects lemmas and theorems not only to be referenced in later chapters, but also those which can induce good intuition on the reader, for example, in their capacity of being analogues to each other, in the interplay between them and in their different suggestiveness in approximating or generalizing concepts in different ways and directions.

Chapter 1 studies torsion pairs in abelian categories and torsion theories with torsion theory triangles in triangulated categories. It then gives a necessary and sufficient condition for the existence of certain adjoint functors in triangulated categories. Intuitively, they are all different expressions of subcategories approximating their ambient categories. The chapter goes on to introduce two special cases of torsion theories, namely t-structures and split torsion theories, and finishes with a characterization of a split torsion theory and a classification of split torsion theories in a chosen derived category.

There is a very close and subtle relationship between the existence of torsion theory triangles and the existence of Auslander-Reiten triangles. Chapter 2 studies the existence of Auslander-Reiten sequences in subcategories of $\bmod (\Lambda)$, where Λ is a finite-dimensional k-algebra over the field k, based on the theory of the existence of Auslander-Reiten triangles in subcategories developed by Jørgensen. The existence theorems strengthen the results by Auslander and Smalø and by Kleiner.

Chapter 3 sees that quotients of certain triangulated categories are triangulated and are in addition derived categories, appealing to a theorem which is a slight variation of the results by Rickard and Keller. In this chapter, the Auslander-Reiten triangles play a predominant role in reflecting the tri-

angulation structure of a triangulated category, and the Auslander-Reiten triangles can be read off from the Auslander-Reiten quiver.

The cluster category \mathcal{D} of Dynkin type A_{∞} was introduced by Jørgensen. One of its several definitions, which is completely analogous to the definition of the cluster category of type A_{n}, motivates us to say that \mathcal{D} is a cluster category of type A_{∞}. In the result by Holm and Jørgensen, the cluster tilting subcategories of \mathcal{D} were shown to be in bijection with certain maximal sets of non-crossing arcs connecting non-neighbouring integers. Chapter 4 generalizes the result by giving a bijection between torsion theories in \mathcal{D} and certain configurations of arcs connecting non-neighbouring integers. Finally, a few examples, characterizing all t -structures and co-t-structures in \mathcal{D}, are given.

Contents

0 Introduction 1
0.1 Homological algebra 1
0.2 Triangulated categories 15
0.2.1 The homotopy category 18
0.2.2 The derived category 21
0.2.3 The stable category 33
0.3 Auslander-Reiten quiver 34
1 The approximation properties of subcategories 38
1.1 Introduction 38
1.2 Existence of certain adjoint functors 39
1.3 Examples of torsion theories 46
1.4 The finite derived category of Dynkin type 48
1.5 Anecdote 56
2 Existence of Auslander-Reiten sequences in subcategories 59
2.1 Introduction 59
2.2 Notations 60
2.3 Weakened notions of precovers (preenvelopes) 62
2.4 Existence of Auslander-Reiten sequences in subcategories 70
2.5 An example 75
3 Quotients of certain triangulated categories as derived cat-
egories 77
3.1 Introduction 77
3.2 The finite derived category $D^{b}\left(\bmod k A_{n}\right)$ 78
3.2.1 Lemmas 80
3.2.2 Mapping cone construction 85
3.2.3 Theorem 88
3.3 The cluster category of Dynkin type A_{∞} 88
3.3.1 Lemmas 91
3.3.2 Mapping cone construction 95
3.3.3 Theorem 101
3.4 The finite derived category $D^{b}\left(\bmod k D_{5}\right)$ 101
3.4.1 Hom spaces 105
3.4.2 Lemmas 108
3.4.3 Mapping cone construction 111
3.4.4 Theorem 119
4 A characterization of torsion theories in the cluster category of Dynkin type A_{∞} 120
4.1 Introduction 120
4.2 Coordinate system 121
4.3 Precovering (preenveloping) subcategories 126
4.4 Torsion theories 130
4.5 Examples 138
A 153
A. 1 Coherence problems for adjoint functors 153
A. 2 Coherence problems for Serre functors 155
A. 3 Mapping cone construction 161
A.3.1 The finite derived category $D^{b}\left(\bmod k A_{7}\right)$ 161
A.3.2 The cluster category of Dynkin type A_{∞} 168

Chapter 0

Introduction

The chapter serves as a prelude to the thesis. The definitions, lemmas and theorems are not introduced once and for all, but they will be reincarnated again and again in the subsequent chapters, so that each time they appear with a unique signification and acquire a life of their own, depending on the context where they manifest themselves, thus altogether a unique phenomenon each time. The totality of the thesis can only be attained when all the chapters are put together like an orchestra, serving a greater whole. Let us now begin.

0.1 Homological algebra

In this section, the reader is suggested to refer to [18] for the background.
Definition 0.1.1. A category \mathfrak{C} consists of
(i) a class of objects X, Y, Z, \ldots,
(ii) for any pair of objects X, Y in \mathfrak{C}, a set $\operatorname{Hom}_{\mathfrak{C}}(X, Y)$, or simply (X, Y), when the underlying category is understood, of morphisms from X to Y,
(iii) for objects X, Y, Z in \mathfrak{C}, a composition relation $(X, Y) \times(Y, Z) \rightarrow$ (X, Z).

The morphism f from X to Y is written $f: X \rightarrow Y$. The set $(X, Y) \times(Y, Z)$ consists of pairs (f, g) where $f: X \rightarrow Y, g: Y \rightarrow Z$ and the composition of f and g is written $g f$. In addition, \mathfrak{C} is to satisfy the following axioms.
(i) the sets $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$ are disjoint unless $X_{1}=X_{2}$ and $Y_{1}=Y_{2}$,
(ii) given the morphisms $f: W \rightarrow X, g: X \rightarrow Y$ and $h: Y \rightarrow Z$, the relation $h(g f)=(h g) f$,
(iii) for each object X there is an identity morphism $1_{X}: X \rightarrow X$, sometimes written id ${ }_{X}$, such that for any $f: X \rightarrow Y$ and $g: W \rightarrow X$, we have $f 1_{X}=f$ and $1_{X} g=g$. When the object X is understood, the identity morphism is simply written 1 or id.

Given a category \mathfrak{C}, let $\mathfrak{C}^{o p}$ be the opposite category. The objects of $\mathfrak{C}^{o p}$ and \mathfrak{C} are the same with $\operatorname{Hom}_{\mathbb{C}^{o p}}(X, Y)=\operatorname{Hom}_{\mathfrak{C}}(Y, X)$. The composition relation in $\mathfrak{C}^{o p}$ follows naturally from \mathfrak{C}, i.e. given morphisms $f^{o p}$ in $\operatorname{Hom}_{\mathfrak{C}^{o p}}(Z, Y)$, $g^{o p}$ in $\operatorname{Hom}_{\mathfrak{C}}{ }^{o p}(Y, X)$, with the corresponding morphisms f in $\operatorname{Hom}_{\mathfrak{C}}(Y, Z)$, g in $\operatorname{Hom}_{\mathfrak{C}}(X, Y)$, the composition $g^{o p} f^{o p}$ in $\operatorname{Hom}_{\mathfrak{C}^{o p}}(Z, X)$ takes the value $f g$ in $\operatorname{Hom}_{\mathfrak{C}}(X, Z)$.

A morphism $f: X \rightarrow Y$ in \mathfrak{C} is an isomorphism if and only if there is a morphism $g: Y \rightarrow X$ in \mathfrak{C} such that $g f=1_{X}$ and $f g=1_{Y}$, and we write $g=f^{-1}$ and $X \cong Y$. A morphism $f: X \rightarrow X$ in \mathfrak{C} is an endomorphism and an isomorphism $f: X \rightarrow X$ in \mathfrak{C} is an automorphism. A zero object 0 in \mathfrak{C} is one such that, for any object X in \mathfrak{C}, the sets $(X, 0)$ and $(0, X)$ both consist of precisely one element. Any zero objects in \mathfrak{C}, if they exist, are isomorphic.
Any class of morphisms \mathfrak{M} together with a composition relation is sufficient to define a category \mathfrak{C}. Then a subclass of morphisms \mathfrak{M}_{0} of \mathfrak{M} is to define a subcategory \mathfrak{C}_{0} of \mathfrak{C} if for every f, g in \mathfrak{M}_{0}, if $g f$ is defined in \mathfrak{M}, then $g f$ is in \mathfrak{M}_{0}, and given any identity morphism e in \mathfrak{M} and any morphism f in \mathfrak{M}_{0}, and if either ef or $f e$ is defined in \mathfrak{M}, then e is in \mathfrak{M}_{0}. In particular, a full subcategory \mathfrak{C}_{0} of a category \mathfrak{C} satisfies $\operatorname{Hom}_{\mathfrak{C}_{0}}(X, Y)=\operatorname{Hom}_{\mathfrak{C}}(X, Y)$ for any objects X, Y of \mathfrak{C}_{0}. Therefore to give a full subcategory \mathfrak{C}_{0} of \mathfrak{C}, it suffices to specify its objects. This notion illustrates the importance of morphisms in a category. For example, if a morphism is an isomorphism in \mathfrak{C}, then it is also an isomorphism in the full subcategory \mathfrak{C}_{0} of \mathfrak{C}.

A covariant (resp. contravariant) functor $F: \mathfrak{C} \rightarrow \mathfrak{D}$ assigns an object $F X$ in \mathfrak{D} for each object X in \mathfrak{C}, and a morphism $F f$ in $\operatorname{Hom}_{\mathfrak{D}}(F X, F Y)$ (resp. $\left.\operatorname{Hom}_{\mathcal{D}}(F Y, F X)\right)$ for each morphism f in $\operatorname{Hom}_{\mathfrak{C}}(X, Y)$, such that $F(f g)=(F f)(F g)($ resp. $F(f g)=(F g)(F f))$ and $F\left(1_{A}\right)=1_{F A}$ for each object A in \mathfrak{C}. A (covariant) functor $F: \mathfrak{C} \rightarrow \mathfrak{D}$ is full if given objects X, Y in \mathfrak{C}, the map $F_{X Y}: \operatorname{Hom}_{\mathfrak{C}}(X, Y) \rightarrow \operatorname{Hom}_{\mathfrak{Q}}(F X, F Y)$ is onto, and is faithful if given objects X, Y in \mathfrak{C}, the map $F_{X Y}: \operatorname{Hom}_{\mathfrak{C}}(X, Y) \rightarrow \operatorname{Hom}_{\mathcal{D}}(F X, F Y)$ is injective. Finally, F is a full embedding if F is full, faithful and injective on objects.

Let Λ be a finite-dimensional k-algebra over the field k. A left module over Λ, or a Λ-left-module, is an abelian group A with a scalar multiplication.
such that given λ in Λ and a in A, the element $\lambda \cdot a$ is in A, and given a, a_{1}, a_{2} in $A, \lambda, \lambda_{1}, \lambda_{2}$ in Λ, the following axioms are satisfied.
(i) $\left(\lambda_{1}+\lambda_{2}\right) \cdot a=\lambda_{1} \cdot a+\lambda_{2} \cdot a$,
(ii) $\left(\lambda_{1} \lambda_{2}\right) \cdot a=\lambda_{1} \cdot\left(\lambda_{2} \cdot a\right)$,
(iii) $1_{\Lambda} \cdot a=a$, where $1_{\Lambda} \neq 0$ is the unity element of Λ,
(iv) $\lambda \cdot\left(a_{1}+a_{2}\right)=\lambda \cdot a_{1}+\lambda \cdot a_{2}$.

A Λ-left-submodule is a subgroup A^{\prime} of A with $\lambda \cdot a^{\prime}$ in A^{\prime} for all λ in Λ and a^{\prime} in A^{\prime}. A Λ-right-(sub)module is defined similarly. A Λ-bi-module is a module which is simultaneously a Λ-left-module and a Λ-right-module.

Let A and B be Λ-left-modules. A map $f: A \rightarrow B$ is a homomorphism if given u, v in A and λ in Λ, we have $f(u+v)=f(u)+f(v)$ and $f(\lambda u)=\lambda f(u)$. Let S be a subset of A, and let A_{0} be the set of all elements a in A of the form $a=\Sigma \lambda_{s} s$ where λ_{s} is in Λ and $\lambda_{s} \neq 0$ for only a finite number of elements s in S. It is trivial that A_{0} is a submodule of A. If the submodule A_{0} is equal to A, then S is a set of generators of A. If A admits a finite set of generators, it is said to be finitely generated. A set S of generators of A is said to be a basis of A if every element a of A can be expressed uniquely in the form $a=\Sigma \lambda_{s} s$ where λ_{s} is in Λ and $\lambda_{s} \neq 0$ for only a finite number of elements s in S. If S is a basis of A, then A is said to be free on the set S. If A is free on some subset, then A is said to be free.
Example 0.1.2. The category $\operatorname{Mod}(\Lambda)$ is a category with Λ-left-modules as objects and homomorphisms as morphisms. The category $\bmod (\Lambda)$ is a category with finitely generated Λ-left-modules as objects and homomorphisms as morphisms.

Below are a few definitions in an additive category. They are deeply involved in an abelian category. Both notions will be introduced in a little while. A kernel of a morphism $\varphi: A \rightarrow B$, denoted by $\operatorname{ker} \varphi$, is a morphism $\mu: K \rightarrow A$ such that $\mu \varphi=0$ and if $\varphi \psi=0$ for $\psi: X \rightarrow A$, then there is a unique $\psi^{\prime}: X \rightarrow K$ such that $\psi=\mu \psi^{\prime}$. This is suggestive of the following dual notion. A cokernel of a morphism $\varphi: A \rightarrow B$, denoted by coker φ, is a morphism $\mu: B \rightarrow C$ such that $\mu \varphi=0$ and if $\psi \varphi=0$ for $\psi: B \rightarrow X$, then there is a unique $\psi^{\prime}: C \rightarrow X$ such that $\psi=\psi^{\prime} \mu$. The image of a morphism $\varphi: A \rightarrow B$, denoted by $\operatorname{im} \varphi$, is the kernel of the cokernel of φ. For example, consider Λ-left-modules A and B and the homomorphism $\varphi: A \rightarrow B$. Then simply $\operatorname{ker} \varphi=\{a \in A \mid \varphi a=0\}, \operatorname{im} \varphi=\varphi A=\{b \in B \mid b=\varphi a$ for some $a \in A\}$ and $\operatorname{coker} \varphi=B / \operatorname{im} \varphi$.

A morphism $\mu: A \multimap B$ is a monomorphism if $\mu \alpha=\mu \beta$ implies $\alpha=\beta$ for all morphisms α, β. This lends to the dual notion. A morphism $\varepsilon: A \rightarrow B$ is an epimorphism if $\alpha \varepsilon=\beta \varepsilon$ implies $\alpha=\beta$ for all morphisms α, β.

An object P is projective if given any epimorphism $B \xrightarrow{\varepsilon} C$, the map (P, ε) : $(P, B) \rightarrow(P, C)$ is surjective.

An injective object is defined dually, i.e. an object I is injective if given any monomorphism $A \stackrel{\iota}{\hookrightarrow} B$, the map $(\iota, I):(B, I) \rightarrow(A, I)$ is surjective.

Given a family $\left\{X_{i}\right\}$ of objects of a category \mathfrak{C}, the product of the X_{i} is $\left(X, p_{i}\right)$, where X is an object and the morphisms $p_{i}: X \rightarrow X_{i}$ are the projections with the universal property, this is to say, given any object Y and morphisms $f_{i}: Y \rightarrow X_{i}$, there is a unique morphism $f=\left\{f_{i}\right\}: Y \rightarrow X$ such that $p_{i} f=f_{i}$. The notion of a coproduct is defined dually, i.e. given a family $\left\{X_{i}\right\}$ of objects of a category \mathfrak{C}, the coproduct of the X_{i} is $\left(X, q_{i}\right)$, written $X=\coprod X_{i}$, where X is an object and the morphisms $q_{i}: X_{i} \rightarrow X$ are the injections with the universal property, this is to say, given any object Y and morphisms $f_{i}: X_{i} \rightarrow Y$, there is a unique morphism $f=\left\langle f_{i}\right\rangle: X \rightarrow Y$ such that $f q_{i}=f_{i}$.

In the category of Λ-left-modules, the product and the coproduct are simply the direct product and the direct sum, written $\prod X_{i}$ and $\bigoplus X_{i}$ respectively.

This reveals the notion of duality in category theory, see [18, II.3.] for an account on it. For example, a morphism φ is a monomorphism in a category \mathfrak{C} if and only if φ is an epimorphism in $\mathfrak{C}^{o p}$, and the notions are said to be dual to each other. Similarly, the diagram illustrating the notion of a projective object, by reversing the arrows and changing epimorphism to monomorphism, is precisely the diagram illustrating the notion of an injective object, and vice versa, thus the notions are dual to each other, and so are the notions of a product and a coproduct. Since $\left(\mathfrak{C}^{o p}\right)^{o p}=\mathfrak{C}$, any statement involving certain notions which is true in a category \mathfrak{C} remains true if they are replaced by their respective dual notions, with the necessary adjustments entailed by the changes. Though the duality pair, when it occurs, is written in its entirety more often in the introduction chapter, the duals of the statements and proofs are usually left to the reader.

Definition 0.1.3. The finite-dimensional k-algebra Λ over the field k is said to be right hereditary if any right ideal of Λ is projective as a Λ-module. A
left hereditary algebra is defined dually, i.e. the algebra Λ is said to be left hereditary if any left ideal of Λ is projective as a Λ-module. Since the algebra Λ is right hereditary if and only if it is left hereditary, we simply say a hereditary algebra, see the remark after [1, Theorem VII.1.4].

Let M be a Λ-right-module, N be a Λ-left-module and consider the set $B=\{m \otimes n \mid m \in M, n \in N\}$, and let V be a k-vector space with B as the underlying set. Then the tensor product of M and N, written $M \otimes_{\Lambda} N$, is defined to be the k-vector space V modulo the following relations.
(i) $m_{1} \otimes n+m_{2} \otimes n=\left(m_{1}+m_{2}\right) \otimes n$,
(ii) $m \otimes n_{1}+m \otimes n_{2}=m \otimes\left(n_{1}+n_{2}\right)$,
(iii) $m \lambda \otimes n=m \otimes \lambda n, \lambda \in \Lambda$.

The tensor product $M \otimes_{\Lambda} N$ does not necessarily have a module structure.
Lemma 0.1.4. Let M be a Λ-right-module, N be a Λ-left-module and J be a Λ-bi-module. Then
(i) $M \otimes_{\Lambda} \Lambda \cong M$ and $\Lambda \otimes_{\Lambda} N \cong N$,
(ii) $J \otimes_{\Lambda} N$ is injective if J is injective as a Λ-left-module and N is projective.

A category \mathfrak{C} is additive if \mathfrak{C} has a zero object, any two objects in \mathfrak{C} have a product in \mathfrak{C} and given objects A, B, C in \mathfrak{C}, the morphism sets (A, B) are abelian groups such that the composition $(A, B) \times(B, C) \rightarrow(A, C)$ is bilinear. An additive category \mathfrak{C} is abelian if every morphism has a kernel and a cokernel, every monomorphism is the kernel of its cokernel and every epimorphism is the cokernel of its kernel and finally, every morphism can be expressed as the composite of an epimorphism and a monomorphism. The categories $\operatorname{Mod}(\Lambda)$ and $\bmod (\Lambda)$ are examples of additive and abelian categories, see [18, II.9.]. Finally, let $F: \mathfrak{C} \rightarrow \mathfrak{D}$ be a functor between the additive categories. Then F is an additive functor if given X, Y in \mathfrak{C}, the $\operatorname{map} F_{X Y}: \operatorname{Hom}_{\mathfrak{C}}(X, Y) \rightarrow \operatorname{Hom}_{\mathfrak{D}}(F X, F Y)$ is a homomorphism.

A sequence $A_{0} \xrightarrow{j_{0}} A_{1} \rightarrow \ldots \rightarrow A_{n} \xrightarrow{j_{n}} A_{n+1}$ in a category \mathfrak{C} satisfies $j_{i+1} j_{i}=0$ for $0 \leq i \leq n-1$. A sequence $A \xrightarrow{\varphi} B \xrightarrow{\psi} C$ in $\operatorname{Mod}(\Lambda)$ is exact at B if $\operatorname{ker} \psi=$ $\operatorname{im} \varphi$. A sequence $A_{0} \rightarrow A_{1} \rightarrow \ldots \rightarrow A_{n} \rightarrow A_{n+1}$ in $\operatorname{Mod}(\Lambda)$ is exact if it is exact at all the $A_{i}, 1 \leq i \leq n$. The exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ in $\operatorname{Mod}(\Lambda)$ is a short exact sequence. The notion of exactness can readily be generalized in any abelian categories, with some delicate considerations.

A covariant functor F is left exact if given the exact sequence $0 \rightarrow A \rightarrow$ $B \rightarrow C$, the sequence $0 \rightarrow F A \rightarrow F B \rightarrow F C$ is exact. A contravariant functor F is left exact if given the exact sequence $A \rightarrow B \rightarrow C \rightarrow 0$, the sequence $0 \rightarrow F C \rightarrow F B \rightarrow F A$ is exact. The right exactness of a functor F, covariant or contravariant, is defined similarly.

The notions of a monomorphism and an epimorphism are generalizations of the following.

Definition 0.1.5. Let $\alpha: A \rightarrow B$ be a morphism in a category \mathfrak{C}. Then α is a split monomorphism if there is a morphism $\beta: B \rightarrow A$ such that $\beta \alpha=1_{A}$. A split epimorphism is defined dually, i.e. α is a split epimorphism if there is a morphism $\beta: B \rightarrow A$ such that $\alpha \beta=1_{B}$.

In a different manner, the following generalizes the notions of a monomorphism and an epimorphism.
Definition 0.1.6. Let A and B be in a category \mathfrak{C}. A morphism $\alpha: A \rightarrow B$ is right minimal if $\alpha f=\alpha$ for a morphism $f: A \rightarrow A$ implies that f is an automorphism. Dually, a morphism $\alpha: A \rightarrow B$ is left minimal if $f \alpha=\alpha$ for a morphism $f: B \rightarrow B$ implies that f is an automorphism.

Let \mathfrak{A} be an abelian category in this chapter. The following lemma is standard.
Lemma 0.1.7. (Five Lemma) In the following commutative diagram, considered in \mathfrak{A},

assume that the rows are exact. If $\varphi_{1}, \varphi_{2}, \varphi_{4}$ and φ_{5} are isomorphisms, then φ_{3} is also an isomorphism.

Given a category \mathfrak{C}, any functor $F: \mathfrak{C} \rightarrow \mathfrak{C}$ is an endofunctor. If there is a functor $G: \mathfrak{C} \rightarrow \mathfrak{C}$ such that $F G=G F=$ id, then F is an automorphism and written $G=F^{-1}$. Given functors $F, G: \mathfrak{C} \rightarrow \mathfrak{D}$ and objects X, Y in \mathfrak{C}, a natural transformation t from F to G is a collection of morphisms $t_{X}: F X \rightarrow G X$ in \mathfrak{D} such that for any morphism $f: X \rightarrow Y$ in \mathfrak{C}, there is the relation $G(f) t_{X}=t_{Y} F(f)$, as shown in the following commutative diagram.

If t_{X} is an isomorphism for each X, then t is a natural equivalence and we write $F \simeq G$. Let $F: \mathfrak{C} \rightarrow \mathfrak{D}, G: \mathfrak{D} \rightarrow \mathfrak{C}$ be functors such that $G F \simeq \mathrm{id}: \mathfrak{C} \rightarrow \mathfrak{C}$ and $F G \simeq \mathrm{id}: \mathfrak{D} \rightarrow \mathfrak{D}$. Then F (and also G) is an equivalence and they are quasi-inverses of each other, and the categories \mathfrak{C} and \mathfrak{D} are equivalent categories. If $\mathfrak{C}=\mathfrak{D}$, then F (and also G) is an autoequivalence. For example, an automorphism is an antoequivalence.
Example 0.1.8. (i) ([18, Exercise II.4.1.]) Let \mathfrak{C}_{0} be a full subcategory of \mathfrak{C} such that given any object A in \mathfrak{C}, there is precisely one object A_{0} in \mathfrak{C}_{0} with $A_{0} \cong A$. Then \mathfrak{C}_{0} is equivalent to \mathfrak{C}, and the subcategory \mathfrak{C}_{0} is said to be a skeleton of \mathfrak{C}. Along with this, any two skeletons of \mathfrak{C} are isomorphic.
(ii) ([31, Theorem IV.4.1]) Consider the functor $F: \mathfrak{C} \rightarrow \mathfrak{D}$. Then F is a natural equivalence of categories if and only if F is full, faithful and essentially surjective, this is to say, for all Y in \mathfrak{D}, there is some X in \mathfrak{C} such that $F X \cong Y$.

The object X in an additive category \mathfrak{C} is indecomposable if X is non-zero and if $X \cong X_{1} \oplus X_{2}$, then either $X_{1} \cong 0$ or $X_{2} \cong 0$. If \mathfrak{C} is the module category $\operatorname{Mod}(\Lambda)$, then $\operatorname{End}(X)$ is also a k-algebra, where $\operatorname{End}(X)$ is the endomorphism ring $\operatorname{Hom}(X, X)$. A k-algebra A is a local algebra if A has a unique maximal right ideal. A characterization of a finite-dimensional k-algebra A as a local algebra is given in [1, Lemma I.4.6].

Lemma 0.1.9. ([1, Corollary I.4.8]) Let M be a Λ-left-module. Then M is indecomposable if and only if the algebra $\operatorname{End}(M)$ is local.

Let k be a field and let X, Y, Z be objects in a category \mathfrak{C}. Then \mathfrak{C} is said to be k-linear if it is additive, each Hom set (X, Y) is a k-vector space and each composition map $(X, Y) \times(Y, Z) \rightarrow(X, Z)$ is bilinear. It is Hom finite if given any X, Y in \mathfrak{C}, the morphism space (X, Y) is a finite-dimensional k-vector space.

A category \mathfrak{C} is finite-dimensional k-additive if \mathfrak{C} is k-linear and all Hom sets (X, Y) are finite-dimensional k-vector spaces. If all idempotents split, that is, given $e=e^{2}$ in (X, X) for an object X in \mathfrak{C}, there are maps $\mu: Y \rightarrow X$ and $\rho: X \rightarrow Y$ with $\rho \mu=1_{Y}$ and $\mu \rho=e$, then the endomorphism ring $\operatorname{End}(X)$ of any indecomposable object X of \mathfrak{C} is a local ring, so that the category \mathfrak{C} is to be a Krull-Schmidt category, see the following definition in [41, 2.2].

Definition 0.1.10. (c.f. Example 0.1.8) Let \mathfrak{C} be a finite-dimensional k linear category. Then \mathfrak{C} is Krull-Schmidt if given indecomposable objects $x_{i}, x_{j}, 1 \leq i \leq s, 1 \leq j \leq t$, in \mathfrak{C} such that $\bigoplus_{i=1}^{s} x_{i} \cong \bigoplus_{j=1}^{t} y_{j}$, then $s=t$ and there is a permutation π of $\{1, \ldots, s\}$ such that $x_{i} \cong y_{\pi(i)}$ for all i.

For example, the category $\bmod (\Lambda)$ is Krull-Schmidt, where we remind the reader that Λ is a finite-dimensional k-algebra over the field k.
Notation 0.1.11. Let \mathfrak{C} be a Krull-Schmidt category, and let $\left\{X_{i}\right\}$ be a complete set of representatives from the isomorphism classes of indecomposable objects in \mathfrak{C}. The full subcategory of \mathfrak{C}, with objects the X_{i}, is denoted by ind \mathfrak{C}. Let \mathfrak{C} be any additive category and \mathfrak{C}_{0} a subcategory of \mathfrak{C}. Then denote by add \mathfrak{C}_{0} the smallest subcategory of \mathfrak{C} containing all the objects in \mathfrak{C}_{0}, which is closed under direct sums and direct summands. The category add \mathfrak{C}_{0} is said to be the additive closure of \mathfrak{C}_{0}, or informally, the add of objects in \mathfrak{C}_{0}.
Definition 0.1.12. Let \mathfrak{C} be an additive category. A chain complex $C=$ $\left\{C_{n}, \partial_{n}\right\}$ over \mathfrak{C} is

$$
C=\cdots \longrightarrow C_{n+1} \xrightarrow{\partial_{n+1}} C_{n} \xrightarrow{\partial_{n}} C_{n-1} \xrightarrow{\partial_{n-1}} C_{n-2} \longrightarrow \cdots,
$$

where the C_{i} are in \mathfrak{C} and $\partial_{i} \partial_{i+1}=0$.
The following is the dual notion.
A cochain complex $C=\left\{C^{n}, \partial^{n}\right\}$ over \mathfrak{C} is

$$
C=\cdots \longrightarrow C^{n-2} \xrightarrow{\partial^{n-2}} C^{n-1} \xrightarrow{\partial^{n-1}} C^{n} \xrightarrow{\partial^{n}} C^{n+1} \longrightarrow \cdots
$$

where the C^{i} are in \mathfrak{C} and $\partial^{i+1} \partial^{i}=0$.
Remark 0.1.13. Contexts written in terms of chain complexes can be translated suitably in the context of cochain complexes, where the prefix "co-" is to be added when it makes sense, and vice versa. This is to be seen readily as subscripts are used for chain complexes and superscripts for cochain complexes.

A chain complex $C=\left\{C_{n}, \partial_{n}\right\}$ is said to be bounded below if $C_{n}=0$ for $n \ll 0$. Similarly, there is the notion of a chain complex which is bounded above or bounded on both sides. An object M in \mathfrak{C} is identified with the chain complex

$$
\cdots \longrightarrow 0 \longrightarrow 0 \longrightarrow M \longrightarrow 0 \longrightarrow 0 \longrightarrow \cdots
$$

with M in degree 0 when there is no confusion.
Definition 0.1.14. Let \mathfrak{C} be an additive category and let $C=\left\{C_{n}, \partial_{n}\right\}$ and $D=\left\{D_{n}, \tilde{\partial}_{n}\right\}$ be chain complexes over \mathfrak{C}. Then a chain map $\varphi: C \rightarrow D$ is a family $\left\{\varphi_{n}: C_{n} \rightarrow D_{n}\right\}$ of morphisms such that the following diagram,

is commutative for each value of n.

Given an additive category \mathfrak{C}, the category with (co)chain complexes over \mathfrak{C} as objects and (co)chain maps as morphisms is denoted by $C(\mathfrak{C})$. The category of $($ co chain complexes over $\operatorname{Mod}(\Lambda)$ is denoted by $C(\Lambda)$.
Definition 0.1.15. Let \mathfrak{C} be an additive category and let $C=\left\{C_{n}, \partial_{n}\right\}$ and $D=\left\{D_{n}, \tilde{\partial}_{n}\right\}$ be chain complexes over \mathfrak{C}. Given a chain map $\varphi: C \rightarrow D$, let the mapping cone of φ be the chain complex $E=E(\varphi)=\left\{E_{n}, \tilde{\tilde{\partial}}_{n}\right\}$, where $E_{n}=C_{n-1} \oplus D_{n}$ and $\tilde{\tilde{\partial}}_{n}(a, b)=\left(-\partial_{n-1} a, \varphi_{n-1} a+\tilde{\partial}_{n} b\right)$ for $a \in C_{n-1}$ and $b \in D_{n}$.

Definition 0.1.16. Let $C=\left\{C_{n}, \partial_{n}\right\}$ be a chain complex in $C(\Lambda)$. Let $\mathrm{H}_{n}(C)=\operatorname{ker} \partial_{n} / \mathrm{im} \partial_{n+1}$ be the n-th homology module of C and write $\mathrm{H}(C)=$ $\left\{H_{n}(C)\right\}$. Also $Z_{n}=Z_{n}(C)=\operatorname{ker} \partial_{n}$.

Let $C=\left\{C_{n}, \partial_{n}\right\}$ and $D=\left\{D_{n}, \tilde{\partial}_{n}\right\}$ be chain complexes in $C(\Lambda)$ and consider the chain map $\varphi: C \rightarrow D$. Then it is natural to define $\mathrm{H}_{n}(\varphi)$: $\mathrm{H}_{n}(C) \rightarrow \mathrm{H}_{n}(D)$ to be $\mathrm{H}_{n}(\varphi)\left(x_{n}+\operatorname{im}_{n+1}\right)=\varphi_{n}\left(x_{n}\right)+\operatorname{im} \tilde{\partial}_{n+1}$ for x_{n} in $\operatorname{ker} \partial_{n}$. Since x_{n} is in $\operatorname{ker}_{\tilde{\partial}}$ and $\tilde{\partial}_{n} \varphi_{n}\left(x_{n}\right)=\varphi_{n-1} \partial_{n}\left(x_{n}\right)=0$, therefore $\varphi_{n}\left(x_{n}\right)$ is indeed in $\operatorname{ker} \tilde{\partial}_{n}$.

The $\operatorname{map} \mathrm{H}_{n}(\varphi)$ is well-defined. Consider the following diagram,

Let x_{n} and x_{n}^{\prime} be in $\operatorname{ker} \partial_{n}$ such that $x_{n}+\operatorname{im} \partial_{n+1}=x_{n}^{\prime}+\operatorname{im} \partial_{n+1}$, which is to say $x_{n}-x_{n}^{\prime}$ is in $\operatorname{im} \partial_{n+1}$. Therefore $x_{n}-x_{n}^{\prime}=\partial_{n+1}(u)$ for some u in C_{n+1}. Hence $\varphi_{n} x_{n}-\varphi_{n} x_{n}^{\prime}=\varphi_{n}\left(x_{n}-x_{n}^{\prime}\right)=\varphi_{n} \partial_{n+1}(u)=\tilde{\partial}_{n+1} \varphi_{n+1}(u)$, which gives $\varphi_{n} x_{n}-\varphi_{n} x_{n}^{\prime}$ in im $\tilde{\partial}_{n+1}$ indeed.
Example 0.1.17. Functors can be defined on different levels. Here are a few examples.
(i) A group can be viewed as a category with a single object. The morphisms of the category are the elements of the group, which are all invertible. A functor between two groups is then a homomorphism between them.
(ii) Consider the chain complex $X=\left\{X_{n}, \partial_{n}\right\}$. The suspension functor Σ is defined by shifting the complex X one place to the left, and changing the sign of the differential ∂, i.e. for the chain complex $\Sigma(X)=\left\{\Sigma(X)_{n}, \tilde{\partial}_{n}\right\}$, let $\Sigma(X)_{n}=X_{n-1}$ and $\tilde{\partial}_{n}=-\partial_{n-1}$.
(iii) Let C and D be two chain complexes in $C(\Lambda)$ with a chain map φ : $C \rightarrow D$. This induces a well-defined morphism $\mathrm{H}(\varphi): \mathrm{H}(C) \rightarrow \mathrm{H}(D)$ and the homology functor $\mathrm{H}(-)$ correspondingly, by the little description after Definition 0.1.16. The chain map φ is a quasi-isomorphism if the induced homomorphisms $\mathrm{H}_{n}(\varphi)$ are isomorphisms.
(iv) Let \mathcal{A} and \mathcal{B} be arbitrary categories. A pair of functors $L: \mathcal{A} \rightarrow \mathcal{B}$ and $R: \mathcal{B} \rightarrow \mathcal{A}$ are adjoints if there is an isomorphism $\tau:(L A, B) \xlongequal{\rightrightarrows}$ $(A, R B)$ for all A in \mathcal{A} and B in \mathcal{B}, such that τ is natural in A and B. For the isomorphism τ to be natural in A is to say that given a morphism $f: A_{1} \rightarrow A_{2}$ in \mathcal{A}, the following diagram is commutative.

Similarly, for the isomorphism τ to be natural in B is to say that given a morphism $g: B_{1} \rightarrow B_{2}$ in \mathcal{B}, the following diagram is commutative.

L is the left adjoint and R is the right adjoint of the pair of functors.
In Example 0.1.17(iv), given A in \mathcal{A} and B in \mathcal{B}, the map $\eta_{A}=\tau\left(\mathrm{id}_{L A}\right): A \rightarrow$ $R L A$ is the unit of the adjunction, and the map $\varepsilon_{B}=\tau^{-1}\left(\operatorname{id}_{R B}\right): L R B \rightarrow B$ is the counit of the adjunction. If \mathcal{A} and \mathcal{B} are abelian, then L is right exact and R is left exact, see [42, Theorem 2.14]. In this way, adjoints approximate exactness as well.

Intuitively, adjoints are approximations of inverse functors. Indeed suppose the functors L and R are inverse functors. Then their actions can be retrieved through τ. For example, let A_{1} and A_{2} be in \mathcal{A} and consider the morphism $f: A_{1} \rightarrow A_{2}$. Suppose $A_{2}=R B_{2}$ for some B_{2} in \mathcal{B}. Then the morphism $L f: L A_{1} \rightarrow L A_{2}$, where $L A_{2}=L R B_{2}=B_{2}$, takes the value $\tau^{-1} f$.

Any two left adjoints of a functor R are naturally equivalent, dually, any two right adjoints of a functor L are naturally equivalent, see [11, A5.2.1]. A functor with a left adjoint respects products, and a functor with a right adjoint respects coproducts. Any invertible functor has both a right and a left adjoint, see [35, Proposition 1.1.6].

The following lemma follows from the definition of a quasi-isomorphism.

Lemma 0.1.18. Let X be a chain complex in $C(\Lambda)$ and consider the morphism $f: 0 \rightarrow X$ in $C(\Lambda)$. Then f is a quasi-isomorphism if and only if X is exact.

Lemma 0.1.19. ([18, Theorem IV.2.1]) Let \mathfrak{C} be an abelian category and let $A \multimap B \rightarrow C$ be a short exact sequence of chain complexes over \mathfrak{C}, which is equivalent to saying $A_{n} \mapsto B_{n} \rightarrow C_{n}$ is a short exact sequence in \mathfrak{C} for each value of n. Then there is a long exact sequence

$$
\cdots \longrightarrow \mathrm{H}_{n}(A) \longrightarrow \mathrm{H}_{n}(B) \longrightarrow \mathrm{H}_{n}(C) \longrightarrow \mathrm{H}_{n-1}(A) \longrightarrow \cdots
$$

in \mathfrak{C}.
Lemma 0.1.20. Consider a chain map $\varphi: C \rightarrow D$ in $C(\Lambda)$ and the mapping cone $E=E(\varphi)$ in Definition 0.1.15. Let Σ be the suspension functor. Then there is a short exact sequence $D \stackrel{\imath}{\mapsto} E(\varphi) \stackrel{\rho}{\rightarrow} \Sigma C$ in $C(\Lambda)$, where \imath is the canonical inclusion and ρ is the canonical surjection. In addition,
(i) By Lemma 0.1.19, there is a long exact sequence
$\cdots \longrightarrow \mathrm{H}_{n}(C) \longrightarrow \mathrm{H}_{n}(D) \longrightarrow \mathrm{H}_{n}(E(\varphi)) \longrightarrow \mathrm{H}_{n-1}(C) \longrightarrow \cdots$
in $\operatorname{Mod}(\Lambda)$. Therefore $\mathrm{H}(E(\varphi))=0$ if and only if $\mathrm{H}(\varphi): \mathrm{H}(C) \xlongequal{\cong}$ $\mathrm{H}(D)$.
(ii) Let X be a chain complex in $C(\Lambda)$ and consider the chain map $\mu: X \rightarrow$ $E(\varphi)$ such that $\rho \mu=0$. Then there is a unique chain map $\mu^{\prime}: X \rightarrow D$ such that $\imath \mu^{\prime}=\mu$.

In Lemma 0.1.20(i), the map φ is a quasi-isomorphism if and only if the mapping cone $E=E(\varphi)$ is exact.
The construction of a projective resolution is a subtle way of encoding a module A in $\operatorname{Mod}(\Lambda)$ into a complex in $C(\Lambda)$.

Definition 0.1.21. Let A be in $\operatorname{Mod}(\Lambda)$. A projective resolution $P(A)$ of A is a chain complex

$$
P(A)=\cdots \longrightarrow P_{2} \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow 0 \longrightarrow \cdots
$$

in $C(\Lambda)$ where P_{i} is projective for all $i \geq 0, \mathrm{H}_{i}(P)=0$ for all $i \geq 1$ and $\mathrm{H}_{0}(P) \cong A$.

Definition 0.1.22. Let A be in $\operatorname{Mod}(\Lambda)$. An injective resolution $I(A)$ of A is a cochain complex

$$
I(A)=\cdots \longrightarrow 0 \longrightarrow I^{0} \longrightarrow I^{1} \longrightarrow I^{2} \longrightarrow \cdots
$$

in $C(\Lambda)$ where I^{i} is injective for all $i \geq 0, \mathrm{H}^{i}(I)=0$ for all $i \geq 1$ and $\mathrm{H}^{0}(I) \cong A$.

Example 0.1.23. Below are some examples of projective resolutions.
(i) Let k be a field. Consider the ring $R=k[X] /\left(X^{2}\right)$, and turn k into an R-module by letting $\left(k_{0}+k_{1} X\right) m=k_{0} m$ for m in k. Then the projective resolution $P(M)$ of k is

$$
P(M)=\cdots \longrightarrow k[X] /\left(X^{2}\right) \xrightarrow{\cdot X} k[X] /\left(X^{2}\right) \longrightarrow 0 \longrightarrow \cdots
$$

(ii) Let k be a field. Consider the ring $R=k[X]$, and turn k into an R-module by letting $\left(k_{0}+k_{1} X+\ldots+k_{n} X^{n}\right) m=k_{0} m$ for m in k. Then the projective resolution $P(M)$ of k is

$$
P(M)=\cdots \longrightarrow 0 \longrightarrow k[X] \xrightarrow{\cdot X} k[X] \longrightarrow 0 \longrightarrow \cdots \quad .
$$

Definition 0.1.24. ([18, VII.7.]) The global dimension of Λ, denoted by $g l$. $\operatorname{dim} . \Lambda$, is less than or equal to m if for all Λ-modules A and all projective resolutions $P(A)$ of $A, \operatorname{ker}\left(P_{m-1} \rightarrow P_{m-2}\right)$ is projective. Then gl. dim. Λ $=m$ if gl. dim. $\Lambda \leq m$ but gl. dim. $\Lambda \not \leq m-1$.

Example 0.1.25. ([1, Theorem VII.1.4]) The algebra Λ is hereditary if and only if the global dimension of Λ is at most one.
Definition 0.1.26. Let \mathfrak{C} be an additive category and let $C=\left\{C_{n}, \partial_{n}\right\}$ and $D=\left\{D_{n}, \tilde{\partial}_{n}\right\}$ be chain complexes over \mathfrak{C}. A homotopy $h: \varphi \rightarrow \psi$ between chain maps $\varphi, \psi: C \rightarrow D$ is a collection of morphisms $\left\{h_{n}: C_{n} \rightarrow D_{n+1}\right\}$ such that $\varphi_{n}-\psi_{n}=\tilde{\partial}_{n+1} h_{n}+h_{n-1} \partial_{n}$.

If there is a homotopy $h: \varphi \rightarrow \psi$, then φ, ψ are homotopic and we write $\varphi \simeq \psi$. The homotopy relation is an equivalence relation, so that given a chain map φ, let $\bar{\varphi}$ be the equivalence class of φ. The chain complexes C and D are homotopy equivalent if there are chain maps $\varphi: C \rightarrow D$ and $\psi: D \rightarrow C$ such that $\psi \varphi \simeq \mathrm{id}$ and $\varphi \psi \simeq \mathrm{id}$.

A chain complex C in $C(\Lambda)$ is projective if C_{n} is projective for all $n \geq 0$ and $C_{n}=0$ for all $n \leq-1$. A cochain complex D in $C(\Lambda)$ is injective if D^{n} is injective for all $n \geq 0$ and $D^{n}=0$ for all $n \leq-1$. A (co)chain complex C in $C(\Lambda)$ is acyclic if $\left(\mathrm{H}^{n}(C)=0\right) \mathrm{H}_{n}(C)=0$ for $n \geq 1$.

Lemma 0.1.27. (i) ([18, Theorem IV.4.1]) Let C be a projective chain complex and D be an acyclic chain complex in $C(\Lambda)$. Then for every homomorphism $\varphi: \mathrm{H}_{0}(C) \rightarrow \mathrm{H}_{0}(D)$, there is a chain map $\tilde{\varphi}$ inducing φ and any two such chain maps are homotopic.
(ii) ([18, Theorem IV.4.4]) Let C be an acyclic cochain complex and D be an injective cochain complex in $C(\Lambda)$. Then for every homomorphism $\varphi: \mathrm{H}^{0}(C) \rightarrow \mathrm{H}^{0}(D)$, there is a chain map $\tilde{\varphi}$ inducing φ and any two such chain maps are homotopic.

Example 0.1 .28 . For any M in $\operatorname{Mod}(\Lambda)$, the projective resolution $P(M)$ always exists, see [18, Lemma IV.4.2]. Consider the isomorphism f_{0} : $\mathrm{H}^{0} P(M) \cong M$. By Lemma 0.1.27(i), the morphism f_{0} can be extended to a chain map $f: P(M) \rightarrow M$. The chain map f is a quasi-isomorphism. It follows from Lemma 0.1 .27 (i) that any two projective resolutions of M are homotopy equivalent.

Lemma 0.1.29. Let P be a chain complex in $C(\Lambda)$. If P is projective, then $\mathrm{H}(P)=0$ if and only if $1 \simeq 0: P \rightarrow P$.

Proof. (if) Since $1 \simeq 0: P \rightarrow P$, there are morphisms $h_{n}: P_{n} \rightarrow P_{n+1}$ such that $1=\partial_{n+1} h_{n}+h_{n-1} \partial_{n}$.

Let $y \in \operatorname{ker} \partial_{n}$. Therefore $y=\left(\partial_{n+1} h_{n}+h_{n-1} \partial_{n}\right) y=\left(\partial_{n+1} h_{n}\right) y$ and so $y \in \operatorname{im} \partial_{n+1}$. (only if) Consider the morphism $\pi: \mathrm{H}_{0}(P) \rightarrow \mathrm{H}_{0}(P)$. Since $\mathrm{H}_{0}(P)=0$, therefore $\pi=1=0$. Lemma 0.1.27(i) then gives $1 \simeq 0: P \rightarrow$ P.

Lemma 0.1.30. ([18, Exercise IV.3.1.]) Let C and D be chain complexes in $C(\Lambda)$ and let φ and ψ be homotopic chain maps $: C \longrightarrow D$. Then the mapping cones $E(\varphi)$ and $E(\psi)$ are isomorphic.

The homotopy category $K(\Lambda)$ is a category whose objects are the chain complexes in $C(\Lambda)$, and whose morphisms are the homotopy equivalence
classes of chain maps between chain complexes, see [17, Chapter I. §2.]. This is possible because the null homotopic morphisms form an ideal in $C(\Lambda)$. Let $K_{+}(\Lambda), K_{-}(\Lambda)$ and $K_{b}(\Lambda)$ be the full subcategories of $K(\Lambda)$ consisting of the complexes bounded below, bounded above and bounded on both sides, respectively.

Lemma 0.1.31. Let X and Y be chain complexes in $K(\Lambda)$ and let φ and ψ be homotopic chain maps : $X \rightarrow Y$. Let $F: K(\Lambda) \rightarrow K(\Lambda)$ be an additive functor and consider the homology functor $\mathrm{H}(-)$. Then
(i) $\mathrm{H}(\varphi)=\mathrm{H}(\psi)$,
(ii) $F \varphi \simeq F \psi$,
(iii) The morphism $f: 0 \rightarrow X$ in $K(\Lambda)$ is an isomorphism if and only if X is null homotopic, i.e. $X \simeq 0$.

Proof. This is trivial.

By virtue of Lemma 0.1.31, the homology functor $\mathrm{H}(-)$ and subsequently quasi-isomorphisms are well-defined on $K(\Lambda)$.

Lemma 0.1.32. Let P be a projective module in $\operatorname{Mod}(\Lambda)$ and let X be in $C(\Lambda)$. Then $\operatorname{Hom}_{\Lambda}\left(P, \mathrm{H}_{0} X\right) \cong \mathrm{H}_{0}\left(\operatorname{Hom}_{\Lambda}(P, X)\right)$.

Proof. Let the chain complex $X=\left\{X_{n}, \partial_{n}\right\}$ be

$$
X=\cdots \longrightarrow X_{2} \longrightarrow X_{1} \xrightarrow{\partial_{1}} X_{0} \xrightarrow{\partial_{0}} X_{-1} \longrightarrow X_{-2} \longrightarrow \cdots
$$

and the chain complex (P, X) be

$$
(P, X)=\cdots \longrightarrow\left(P, X_{1}\right) \xrightarrow{d_{1}}\left(P, X_{0}\right) \xrightarrow{d_{0}}\left(P, X_{-1}\right) \longrightarrow \cdots,
$$

where $d_{i}=\left(P, \partial_{i}\right)$.
Let $\theta: \operatorname{Hom}_{\Lambda}\left(P, \mathrm{H}_{0} X\right) \rightarrow \mathrm{H}_{0}\left(\operatorname{Hom}_{\Lambda}(P, X)\right)$ and $\theta^{\prime}: \mathrm{H}_{0}\left(\operatorname{Hom}_{\Lambda}(P, X)\right) \rightarrow$ $\operatorname{Hom}_{\Lambda}\left(P, \mathrm{H}_{0} X\right)$ be maps between the two Hom sets, which are going to be defined. Let p be in P. Given a morphism $f: P \rightarrow \mathrm{H}_{0} X$ where $f(p)=x_{p}+$ $\operatorname{im} \partial_{1}$ for some x_{p} in $\operatorname{ker} \partial_{0}$, consider the canonical morphism $\pi_{X}: \operatorname{ker} \partial_{0} \rightarrow$ $\mathrm{H}_{0}(X)$. Since P is projective, there is a morphism $g: P \rightarrow \operatorname{ker}_{0}$ such that $\pi_{X} g=f$.

This gives a morphism $g: P \rightarrow X_{0}$. Since $\partial_{0} g=0$, therefore g is in ker d_{0} and define $\theta(f)=g+\operatorname{im} d_{1}$ in $\mathrm{H}_{0}\left(\operatorname{Hom}_{\Lambda}(P, X)\right)$. Conversely, consider the morphism $g+\operatorname{imd} d_{1}$ in $\mathrm{H}_{0}\left(\operatorname{Hom}_{\Lambda}(P, X)\right)$ where $g: P \rightarrow X_{0}$ and $\partial_{0} g=0$. Given p in P, define $\theta^{\prime}\left(g+\operatorname{imd}_{1}\right)=f$ where $f(p)=g(p)+\operatorname{im} \partial_{1}$. Finally, one can verify that θ and θ^{\prime} are well-defined and that $\theta \theta^{\prime}=\theta^{\prime} \theta=1$.

0.2 Triangulated categories

This section is in reminiscence of [17] and [44], though the reader can also seek guidance from [24], [34], [35] and [25].

Unlike an abelian category, whose properties are inherent in the category, a triangulated category is a category with extra structure layered on it. Let us begin with the definition.

Definition 0.2.1. ([17, Chapter I. §1.]) A triangulated category is an additive category \mathfrak{T}, together with
(a) an automorphism $\Sigma: \mathfrak{T} \rightarrow \mathfrak{T}$ known as the translation functor, and
(b) a collection of sextuples (x, y, z, u, v, w) known as the distinguished triangles of \mathfrak{T}, written $x \xrightarrow{u} y \xrightarrow{v} z \xrightarrow{u} \Sigma x$, or simply $x \xrightarrow{u} y \xrightarrow{v} z \rightarrow$. Here x, y, z are objects and u, v, w are morphisms of \mathfrak{T}.

A morphism from the distinguished triangle (x, y, z, u, v, w) to the distinguished triangle ($x^{\prime}, y^{\prime}, z^{\prime}, u^{\prime}, v^{\prime}, w^{\prime}$) is a commutative diagram,

If the morphisms f, g and h are isomorphisms, the distinguished triangles (x, y, z, u, v, w) and ($x^{\prime}, y^{\prime}, z^{\prime}, u^{\prime}, v^{\prime}, w^{\prime}$) are then said to be isomorphic.
The above is required to satisfy
(i) (TR1) Every sextuple (x, y, z, u, v, w) isomorphic to a distinguished triangle is a distinguished triangle. Every morphism $u: x \rightarrow y$ can be imbedded in a distinguished triangle (x, y, z, u, v, w). For each x, the sextuple ($x, x, 0, \mathrm{id}_{x}, 0,0$) is a distinguished triangle.
(ii) (TR2) (x, y, z, u, v, w) is a distinguished triangle if and only if $(y, z, \Sigma(x), v, w,-\Sigma(u))$ is a distinguished triangle.
(iii) (TR3) Given distinguished triangles (x, y, z, u, v, w) and $\left(x^{\prime}, y^{\prime}, z^{\prime}, u^{\prime}, v^{\prime}, w^{\prime}\right)$, and morphisms f and g such that $g u=u^{\prime} f$, there is a morphism h such that the following diagram is commutative.

(iv) (TR4) The octahedral axiom. Given two composable morphisms f : $x \rightarrow y$ and $g: y \rightarrow u$, as in the following commutative diagram,

we can extend it to the following commutative diagram,

where all the rows and columns are distinguished triangles.

The automorphism $\Sigma: \mathfrak{T} \rightarrow \mathfrak{T}$ is an additive functor. By abuse of notation, given a distinguished triangle $x \xrightarrow{u} y \xrightarrow{v} z \xrightarrow{w} \Sigma x$, the object z is the mapping cone of the morphism $u: x \rightarrow y$, see Definition 0.1.15. By (TR1), any object x in a triangulated category \mathfrak{T} yields a distinguished triangle $\left(x, x, 0, \mathrm{id}_{x}, 0,0\right)$. This is similar to the way any object in a category yields a chain complex, see Definition 0.1.12.

The following is a slight variation of (TR3).
(TR3') Given distinguished triangles (x, y, z, u, v, w) and $\left(x^{\prime}, y^{\prime}, z^{\prime}, u^{\prime}, v^{\prime}, w^{\prime}\right)$, and morphisms f and h such that $\Sigma f \circ w=w^{\prime} h$, there is a morphism g such
that the following diagram is commutative.

This follows from (TR2) and (TR3).
A full additive subcategory \mathfrak{S} in \mathfrak{T} is a triangulated subcategory if it is closed under isomorphisms and the translation functor Σ, and for any distinguished triangle $x \rightarrow y \rightarrow z \rightarrow \Sigma x$, if x and y are in \mathfrak{S}, then z is in \mathfrak{S}. Let \mathfrak{T} and \mathfrak{T}^{\prime} be triangulated categories with translation functors Σ and Σ^{\prime} respectively. A triangulated functor from \mathfrak{T} to \mathfrak{T}^{\prime} is a pair (F, σ) where $F: \mathfrak{T} \rightarrow \mathfrak{T}^{\prime}$ is an additive functor and $\sigma: F \Sigma \xlongequal{\simeq} \Sigma^{\prime} F$, such that given a distinguished triangle $x \xrightarrow{\alpha} y \xrightarrow{\beta} z \xrightarrow{\gamma} \Sigma x$ in \mathfrak{T}, the image $F x \xrightarrow{F \alpha} F y \xrightarrow{F \beta} F z \xrightarrow{\sigma_{x} F \gamma} \Sigma^{\prime} F x$ is a distinguished triangle in \mathfrak{T}^{\prime}. If a triangulated functor $F: \mathfrak{T} \rightarrow \mathfrak{T}^{\prime}$ is an equivalence, then F is an triangle equivalence and \mathfrak{T} and \mathfrak{T}^{\prime} are triangle equivalent.

Lemma 0.2.2. (i) Let $x \xrightarrow{\alpha} y \xrightarrow{\beta} z \rightarrow \Sigma x$ be a distinguished triangle. Then the composition $\beta \alpha$ is zero.
(ii) In (TR3), if the morphisms f and g are isomorphisms, then the morphism h is an isomorphism.
(iii) Let $x \xrightarrow{\alpha} y \rightarrow z \rightarrow \Sigma x$ be a distinguished triangle. Then α is an isomorphism if and only if $z \cong 0$.
(iv) If $x_{1} \rightarrow y_{1} \rightarrow z_{1} \rightarrow \Sigma x_{1}$ and $x_{2} \rightarrow y_{2} \rightarrow z_{2} \rightarrow \Sigma x_{2}$ are distinguished triangles, then $x_{1} \oplus x_{2} \rightarrow y_{1} \oplus y_{2} \rightarrow z_{1} \oplus z_{2} \rightarrow \Sigma x_{1} \oplus \Sigma x_{2}$ is a distinguished triangle. In particular, $x \rightarrow x \oplus z \rightarrow z \xrightarrow{0} \Sigma x$ is a distinguished triangle.
(v) The distinguished triangles $x \rightarrow y \rightarrow z \xrightarrow{\gamma} \Sigma x$ and $x \rightarrow x \oplus z \rightarrow z \xrightarrow{0} \Sigma x$ are isomorphic if and only if $\gamma=0$.
(vi) Let $x \xrightarrow{\alpha} y \xrightarrow{\beta} z \rightarrow \Sigma x$ be a distinguished triangle. If there is a morphism $f: m \rightarrow y$ such that $\beta f=0$, then there is a morphism $f^{\prime}: m \rightarrow x$ such that $\alpha f^{\prime}=f$.

Proof. (i) and (ii): This is [17, Proposition I.1.1.]. (iii) This is [35, Corollary 1.2.6]. (iv) This is [35, Proposition 1.2.3]. (v) This is [35, Corollary 1.2.7]. (vi) By (TR1) and (TR2), there is a distinguished triangle $0 \rightarrow m \xrightarrow{\text { id }} m \rightarrow 0$, and by (TR2), there is a distinguished triangle $\Sigma^{-1} z \rightarrow x \xrightarrow{\alpha} y \xrightarrow{\beta} z$. By (TR3'), there is a morphism $f^{\prime}: m \rightarrow x$ such that the following diagram is commutative.

This gives $\alpha f^{\prime}=f$.

Lemma $0.2 .2(\mathrm{vi})$ suggests that a triangulated category might not permit kernels, since the morphism f^{\prime} is not unique. A distinguished triangle of the form $x \rightarrow x \oplus z \rightarrow z \xrightarrow{0} \Sigma x$ is said to be a split distinguished triangle.

Lemma 0.2.3. ([14, Remark 3.2]) Let $x \xrightarrow{\alpha} y \xrightarrow{\beta} z \xrightarrow{\gamma} \Sigma x$ be a distinguished triangle. Then the following are equivalent.
(i) $\gamma \neq 0$,
(ii) α is not a split monomorphism,
(iii) β is not a split epimorphism.

Lemma 0.2.4. ([30, Lemma 2.5]) Let $x \xrightarrow{\alpha} y \xrightarrow{\beta} z \xrightarrow{\gamma} \Sigma x$ be a distinguished triangle. Then β is right minimal if and only if α is left minimal.

In each of the next three little sections a different flavour of triangulated categories is introduced. They show how triangulation is distilled and shaped in different categories.

0.2.1 The homotopy category

The homotopy category $K(\Lambda)$ is triangulated, see [17, Chapter I. §2.]. This is described as follows. Let the translation functor Σ take the value of the suspension functor. Given a morphism $\bar{\varphi}: X \rightarrow Y$ in $K(\Lambda)$, complete it to a $\operatorname{diagram} X \xrightarrow{\bar{\varphi}} Y \rightarrow E(\varphi) \rightarrow \Sigma X$, where $E(\varphi)$ is the mapping cone and the morphisms are viewed in $K(\Lambda)$. By Lemma 0.1.30, the mapping cone $E(\varphi)$ is independent of the choice of φ up to isomorphism. Let the distinguished triangles in $K(\Lambda)$ be either diagrams of such a form or diagrams isomorphic to them.

The following lemma is essentially a verification of (TR2) in the category $K(\Lambda)$.

Lemma 0.2.5. Consider the identity chain map $1_{X}: X \rightarrow X$ in $C(\Lambda)$. Then the mapping cone $E\left(1_{X}\right)$ is isomorphic to 0 in $K(\Lambda)$.

Proof. For $\left(x_{n-1}, x_{n}\right)$ in $X_{n-1} \oplus X_{n}$, define $h_{n}: X_{n-1} \oplus X_{n} \rightarrow X_{n} \oplus X_{n+1}$ to be $h_{n}\left(x_{n-1}, x_{n}\right)=\left(x_{n}, 0\right)$. Consider the following diagram,

Since $\left(\partial_{n+2} h_{n+1}+h_{n} \partial_{n+1}\right)\left(x_{n}, x_{n+1}\right)=\left(\partial_{n+2} h_{n+1}\right)\left(x_{n}, x_{n+1}\right)+\left(h_{n} \partial_{n+1}\right)\left(x_{n}, x_{n+1}\right)=$ $\partial_{n+2}\left(x_{n+1}, 0\right)+h_{n}\left(-\partial_{n} x_{n}, x_{n}+\partial_{n+1} x_{n+1}\right)=\left(-\partial_{n+1} x_{n+1}, x_{n+1}\right)+\left(x_{n}+\right.$ $\left.\partial_{n+1} x_{n+1}, 0\right)=\left(x_{n}, x_{n+1}\right)$, therefore $\partial_{n+2} h_{n+1}+h_{n} \partial_{n+1}=1$. Consequently, the identity chain map on $E\left(1_{X}\right)$ is homotopic to 0 , and so $\operatorname{Hom}_{K(\Lambda)}\left(E\left(1_{X}\right), E\left(1_{X}\right)\right)=$ 0 whence $E\left(1_{X}\right) \cong 0$ in $K(\Lambda)$.

Lemma 0.2.6. Let P be a projective module in $\operatorname{Mod}(\Lambda)$ and let X be in $K(\Lambda)$. Then $\operatorname{Hom}_{K(\Lambda)}(P, X) \cong \operatorname{Hom}_{\Lambda}\left(P, \mathrm{H}_{0}(X)\right)$.

Proof. Let the chain complex $X=\left\{X_{n}, \partial_{n}\right\}$ be

$$
X=\cdots \longrightarrow X_{2} \longrightarrow X_{1} \xrightarrow{\partial_{1}} X_{0} \xrightarrow{\partial_{0}} X_{-1} \longrightarrow X_{-2} \longrightarrow \cdots
$$

Let $\theta: \operatorname{Hom}_{K(\Lambda)}(P, X) \rightarrow \operatorname{Hom}_{\Lambda}\left(P, \mathrm{H}_{0}(X)\right)$ and $\theta^{\prime}: \operatorname{Hom}_{\Lambda}\left(P, \mathrm{H}_{0}(X)\right) \rightarrow$ $\operatorname{Hom}_{K(\Lambda)}(P, X)$ be maps between the two Hom sets, which are going to be defined. Consider a morphism f in $\operatorname{Hom}_{\Lambda}\left(P, \mathrm{H}_{0}(X)\right)$ and the canonical morphism $\pi_{X}: \operatorname{ker} \partial_{0} \rightarrow \mathrm{H}_{0}(X)$. Since P is projective, there is a morphism $f_{0}^{\prime \prime}: P \rightarrow \operatorname{ker} \partial_{0}$ such that $\pi_{X} f_{0}^{\prime \prime}=f$.

Extend $f_{0}^{\prime \prime}$ to a morphism $f_{0}^{\prime}: P \rightarrow X_{0}$, which can readily be extended to a chain map f^{\prime} in $\operatorname{Hom}_{C(\Lambda)}(P, X)$ and subsequently to a morphism $\overline{f^{\prime}}$ in $\operatorname{Hom}_{K(\Lambda)}(P, X)$ so that we define $\theta^{\prime}(f)=\overline{f^{\prime}}$.

Conversely, suppose a morphism \bar{g} in $\operatorname{Hom}_{K(\Lambda)}(P, X)$ is given. In particular, consider the morphism $g_{0}: P \rightarrow X_{0}$ obtained from the chain map g in $\operatorname{Hom}_{C(\Lambda)}(P, X)$.

Let us define $\theta(\bar{g})=h$ where $h(p)=g_{0}(p)+\operatorname{im} \partial_{1}$ for p in P. Finally, one can verify that θ and θ^{\prime} are well-defined and that $\theta \theta^{\prime}=\theta^{\prime} \theta=1$.

Example 0.2.7. Below is a special case in Lemma 0.2.6. Let P be the projective module Λ and consider the following diagram.

Then $\operatorname{Hom}_{K(\Lambda)}(P, X) \cong \operatorname{ker} \partial_{0} / \mathrm{im} \partial_{1}=\mathrm{H}_{0}(X) \cong \operatorname{Hom}_{\Lambda}\left(P, \mathrm{H}_{0}(X)\right)$.
The following lemma is a little consequence of Lemma 0.2.6.
Lemma 0.2.8. Let P be a projective module in $\operatorname{Mod}(\Lambda)$ and let $\bar{\alpha}: A \rightarrow B$ be a quasi-isomorphism in $K(\Lambda)$. Then $\operatorname{Hom}_{K(\Lambda)}(P, \bar{\alpha}): \operatorname{Hom}_{K(\Lambda)}(P, A) \xlongequal{\rightrightarrows}$ $\operatorname{Hom}_{K(\Lambda)}(P, B)$.

Proof. Consider the chain complexes $A=\left\{A_{n}, \partial_{n}^{A}\right\}, B=\left\{B_{n}, \partial_{n}^{B}\right\}$ and the quasi-isomorphism $\alpha: A \rightarrow B$ in the following diagram.

The lemma is to say that given a morphism $\bar{h}: P \rightarrow B$ in $\operatorname{Hom}_{K(\Lambda)}(P, B)$, there is a unique morphism $\bar{g}: P \rightarrow A$ such that $\bar{\alpha} \bar{g}=\bar{h}$. One can see the existence of \bar{g}, and here we shall only show its uniqueness.

Suppose there are morphisms \bar{g} and $\overline{g^{\prime}}$ in $\operatorname{Hom}_{K(\Lambda)}(P, A)$ such that $\bar{\alpha} \bar{g}=\bar{\alpha}$ $\overline{g^{\prime}}=\bar{h}$ in $\operatorname{Hom}_{K(\Lambda)}(P, B)$. By Lemma 0.2.6, there is an isomorphism $\theta:$ $\operatorname{Hom}_{K(\Lambda)}(P, B) \stackrel{\cong}{\rightrightarrows} \operatorname{Hom}_{\Lambda}\left(P, \mathrm{H}_{0}(B)\right)$. Hence $\theta(\bar{\alpha} \bar{g})=\theta\left(\bar{\alpha} \overline{g^{\prime}}\right)$, where $\theta(\bar{\alpha}$ $\bar{g})=f$ with $f(p)=\alpha_{0} g_{0}(p)+\operatorname{im} \partial_{1}^{B}$ and where $\theta\left(\bar{\alpha} \overline{g^{\prime}}\right)=f^{\prime}$ with $f^{\prime}(p)=$ $\alpha_{0} g_{0}^{\prime}(p)+\operatorname{im} \partial_{1}^{B}$ for p in P. Hence $\alpha_{0} g_{0}(p)+\operatorname{im} \partial_{1}^{B}=\alpha_{0} g_{0}^{\prime}(p)+\operatorname{im} \partial_{1}^{B}$, which gives $g_{0}(p)+\mathrm{im} \partial_{1}^{A}=g_{0}^{\prime}(p)+\mathrm{im} \partial_{1}^{A}$, so that $\bar{g}=\overline{g^{\prime}}$ again by Lemma 0.2.6.

The following lemma is a triangulated version of Lemma 0.1.19.
Lemma 0.2.9. ([17, Proposition I.1.1.]) Given a distinguished triangle (X, Y, Z, u, v, w) and an object M in $K(\Lambda)$, there is a long exact sequence

$$
\cdots \longrightarrow\left(M, \Sigma^{-1} Z\right) \longrightarrow(M, X) \longrightarrow(M, Y) \longrightarrow(M, Z) \longrightarrow(M, \Sigma X) \longrightarrow \cdots
$$

in $\operatorname{Mod}(\mathbb{Z})$, where all the Hom groups are considered in $K(\Lambda)$. In particular, if

$$
M=\cdots \longrightarrow 0 \longrightarrow 0 \longrightarrow \Lambda \longrightarrow 0 \longrightarrow>\longrightarrow
$$

then there is the long exact sequence

$$
\cdots \longrightarrow H_{1}(Z) \longrightarrow H_{0}(X) \longrightarrow H_{0}(Y) \longrightarrow H_{0}(Z) \longrightarrow H_{-1}(X) \longrightarrow \cdots
$$

by Lemma 0.2.6.

In Lemma 0.2 .9 , the functor $(M,-)$ is said to be a homological functor. The functor $(-, M)$ is also a homological functor.

Corollary 0.2.10. Let $X \xrightarrow{f} Y \rightarrow Z \rightarrow$ be a distinguished triangle in $K(\Lambda)$. Then by Lemma 0.2.9, f is a quasi-isomorphism if and only if Z is exact.

Lemma 0.2.11. ([29, Proposition 2.5.3]) Let $X \xrightarrow{f} Y \rightarrow Z \rightarrow$ be a distinguished triangle in $K(\Lambda)$. Then Z is quasi-isomorphic to the mapping cone $E(f)$.

0.2.2 The derived category

This section introduces one example of a quotient category. A collection S of morphisms in a category \mathfrak{C} is a multiplicative system if it satisfies the following axioms, see [17, Chapter I. §3.].
(i) (FR1) If f, g are in S, then $f g$ is in S. For any object X in $\mathfrak{C}, \mathrm{id}_{X}$ is in S.
(ii) (FR2) Any diagram

with s in S can be completed to a commutative diagram,

with t in S. Similarly for the opposite statement.
(iii) (FR3) If $f, g: X \longrightarrow Y$ are morphisms in \mathfrak{C}, then the following conditions are equivalent.
(i) There is an $s: Y \longrightarrow Y^{\prime}$ in S such that $s f=s g$,
(ii) There is a $t: X \longrightarrow X^{\prime}$ in S such that $f t=g t$.

The category of fractions $S^{-1} \mathfrak{C}$ is the localization of \mathfrak{C} with respect to S. Namely, $S^{-1} \mathfrak{C}$ has the same objects as \mathfrak{C}, and a morphism from X to Y in $S^{-1} \mathfrak{C}$ is represented by the following diagram,

where $s: Z \rightarrow X$ is a morphism in S and $f: Z \rightarrow Y$ is a morphism in \mathfrak{C}. The equivalence relation on and composition of morphisms in $S^{-1} \mathfrak{C}$ are given in [17, Chapter I. §3.], and are reproduced here.
(i) (Equivalence relation on morphisms) Given morphisms from X to Y in $S^{-1} \mathfrak{C}$ represented by the following diagrams,

and

the diagrams represent the same morphism if and only if there is a morphism $u: X^{\prime \prime \prime} \rightarrow X$ in S and morphisms $f: X^{\prime \prime \prime} \rightarrow X^{\prime}, g: X^{\prime \prime \prime} \rightarrow$ $X^{\prime \prime}$ in \mathfrak{C} such that $s f=u=t g$ and $a f=b g$, as shown in the following diagram.

(ii) (Composition of morphisms) To compose morphisms

and

consider the following commutative diagram given by (FR2),

and then take

to be the composition.

The canonical functor $\pi: \mathfrak{C} \rightarrow S^{-1} \mathfrak{C}$ maps a morphism $f: X \rightarrow Y$ in \mathfrak{C} to the morphism

in $S^{-1} \mathfrak{C}$.
Lemma 0.2.12. Let \mathfrak{C} be a category and S be a multiplicative system in \mathfrak{C}. Consider the canonical functor $\pi: \mathfrak{C} \rightarrow S^{-1} \mathfrak{C}$. Then
(i) Given a morphism $s: X \rightarrow Y$ in S, the morphism $\pi(s)$ is invertible.
(ii) If S consists of isomorphisms, then π is an equivalence of categories.

Proof.
(i) By definition, $\pi(s)=$

and then naturally $\pi(s)^{-1}=$

(ii) Consider the canonical functor $\pi: \mathfrak{C} \rightarrow S^{-1} \mathfrak{C}$ and a morphism $f: X \rightarrow Y$
in \mathfrak{C}. Then $\pi(f)=$

Also define the functor $G: S^{-1} \mathfrak{C} \rightarrow \mathfrak{C}$ by

Accordingly, G is well-defined and is a quasi-inverse to $F=\pi$.

Now let \mathfrak{D} be a category and consider a functor $F: \mathfrak{C} \rightarrow \mathfrak{D}$. Suppose $F(s)$ is an isomorphism for any s in S. Then there is a unique functor $\tilde{F}: S^{-1} \mathfrak{C} \rightarrow \mathfrak{D}$ such that the following diagram commutes, i.e. $\tilde{F} \pi=F$.

This is the universal property of $S^{-1} \mathfrak{C}$, see [17, Chapter I. §3.].
Let \mathfrak{C} be a triangulated category with translation functor Σ, and let S be a multiplicative system in \mathfrak{C} such that, other than (FR1) - (FR3), the following two axioms are also satisfied.
(iv) (FR4) s is in S if and only if $\Sigma(s)$ is in S,
(v) (FR5) The same as (TR3), but where f, g are assumed to be in S, and h is required to be in S.

The multiplicative system S is then said to be compatible with the triangulation, see [17, Chapter I. §3.]. Then by [17, Proposition I.3.2], the category $S^{-1} \mathfrak{C}$ has a unique triangulated structure such that the canonical functor $\pi: \mathfrak{C} \rightarrow S^{-1} \mathfrak{C}$ is triangulated. Given a morphism from X to Y in $S^{-1} \mathfrak{C}$,

complete the morphism $f: Z \rightarrow Y$ in \mathfrak{C} to a distinguished triangle $Z \xrightarrow{f} Y \rightarrow$ $C \rightarrow \Sigma Z$ in \mathfrak{C}. Then take $\pi X \xrightarrow{\theta} \pi Y \rightarrow \pi C \rightarrow \Sigma \pi X$, where $\theta=(\pi f)(\pi s)^{-1}$, to be a distinguished triangle in $S^{-1} \mathfrak{C}$.

Definition 0.2.13. Let \mathfrak{C} be a category and S be a multiplicative system in \mathfrak{C}. An object P in \mathfrak{C} is K-projective if given a morphism $s: X \rightarrow Y$ in S, the map $(P, s):(P, X) \rightarrow(P, Y)$ is bijective.

Lemma 0.2.14. Let \mathfrak{C} be a category and S be a multiplicative system in \mathfrak{C}. Let P in \mathfrak{C} be K-projective. Then $\operatorname{Hom}_{S^{-1} \mathfrak{C}}(P, Y) \cong \operatorname{Hom}_{\mathfrak{C}}(P, Y)$ for any Y in \mathfrak{C}.

Proof. Let $\theta: \operatorname{Hom}_{S^{-1} \mathfrak{C}}(P, Y) \rightarrow \operatorname{Hom}_{\mathfrak{C}}(P, Y)$ and $\theta^{\prime}: \operatorname{Hom}_{\mathfrak{C}}(P, Y) \rightarrow$ $\operatorname{Hom}_{S^{-1}} \mathfrak{C}(P, Y)$ be maps between the two Hom sets, which are going to be
defined. Given a morphism $g: P \rightarrow Y$ in \mathfrak{C}, define $\theta^{\prime}(g)$ to be the following morphism

in $S^{-1} \mathfrak{C}$. Conversely, given the following morphism $\mu=$

in $\operatorname{Hom}_{S^{-1} \mathfrak{C}}(P, Y)$, where $f: Z \rightarrow Y$ is any morphism in \mathfrak{C}, there is the bijective $\operatorname{map}(P, s):(P, Z) \stackrel{\cong}{\leftrightarrows}(P, P)$, since $s: Z \rightarrow P$ is a morphism in S and P is K-projective. In particular, consider the identity morphism id : $P \rightarrow P$ in (P, P). Then there is a unique p in (P, Z) such that $s p=i d$, and $\theta(\mu)$ is defined to be $f p$ in $\operatorname{Hom}_{\mathfrak{C}}(P, Y)$.

Finally, one can verify that θ and θ^{\prime} are well-defined and that $\theta \theta^{\prime}=1$. On the other hand, since the diagrams

and

represent the same morphism in $\operatorname{Hom}_{S^{-1}}(P, Y)$, therefore $\theta^{\prime} \theta$ does indeed equal 1.

Consider the category $K(\Lambda)$. By [17, Proposition I.4.1], the class of quasiisomorphisms forms a multiplicative system S in $K(\Lambda)$ compatible with the triangulation. The category of fractions $S^{-1} K(\Lambda)$ is defined to be the derived category $D(\Lambda)$ of Λ. Similarly, let S_{+}be the class of quasi-isomorphisms inside $K_{+}(\Lambda)$. Then S_{+}forms a multiplicative system in $K_{+}(\Lambda)$, and we define $D_{+}(\Lambda)=\left(S_{+}\right)^{-1} K_{+}(\Lambda), D_{-}(\Lambda)$ and $D_{b}(\Lambda)$. They are full subcategories of $D(\Lambda)$, and $D_{+}(\Lambda) \cap D_{-}(\Lambda)=D_{b}(\Lambda)$, see [17, Chapter I. §4.].

Since the homology functor sends quasi-isomorphisms to isomorphisms, it induces a well-defined functor on $D(\Lambda)$ by
$\mathrm{H}_{i}\left(\begin{array}{ccc} & s & \\ \\ X & & { }^{Z} \\ & & Y\end{array}\right)=\mathrm{H}_{i}(f) \mathrm{H}_{i}(s)^{-1}$.
Lemma 0.2.15. Let $P \rightarrow Q \rightarrow R \rightarrow$ be a distinguished triangle in $K(\Lambda)$. If P and Q are K-projective, then R is K-projective.

Proof. Let $s: A \rightarrow B$ be a quasi-isomorphism in $K(\Lambda)$. Since P and Q are K-projective, ΣP and ΣQ are K-projective. This gives the following commutative diagram,

Therefore the map $(R, A) \rightarrow(R, B)$ is an isomorphism by Lemma 0.1.7 and R is K-projective.

Lemma 0.2.16. Let P and Q be K-projective in $K(\Lambda)$. If $p: P \rightarrow Q$ is a quasi-isomorphism, then p is an isomorphism.

Proof. The proof given here helps understanding of some of the lemmas mentioned. Since $K(\Lambda)$ is triangulated, complete $p: P \rightarrow Q$ to a distinguished triangle $P \xrightarrow{p} Q \rightarrow R \rightarrow$. Then R is K-projective by Lemma 0.2.15. The triangle induces a long exact sequence

$$
\cdots \longrightarrow(R, P) \xrightarrow{\cong}(R, Q) \longrightarrow(R, R) \longrightarrow(R, \Sigma P) \stackrel{\cong}{\rightrightarrows}(R, \Sigma Q) \longrightarrow \cdots
$$

by Lemma 0.2 .9 . Therefore $(R, R)=0$ and $R \cong 0$, and p is an isomorphism by Lemma 0.2.2(iii).

Remark 0.2.17. Alternatively, by Lemma 0.2 .16 , the distinguished triangle $P \xrightarrow{p} Q \rightarrow R \rightarrow$ induces the long exact sequence $\mathrm{H}_{i}(P) \stackrel{\cong}{\rightrightarrows} \mathrm{H}_{i}(Q) \rightarrow$ $\mathrm{H}_{i}(R) \rightarrow \mathrm{H}_{i-1}(P) \stackrel{\cong}{\leftrightarrows} \mathrm{H}_{i-1}(Q)$. Therefore $\mathrm{H}_{i}(R)=0$ and R is exact, and the morphism $f: 0 \rightarrow R$ is a quasi-isomorphism by Lemma 0.1.18. Since R is also K-projective, $(R, 0) \cong(R, R)$. Then there is a unique morphism $g: R \rightarrow 0$ such that $f g=1_{R}$ where $1_{R}: R \rightarrow R$ is the identity morphism, as shown in the following diagram.

Therefore $1_{R}=f g=0$ as it factors through the zero object, and this gives $R \cong 0$.

Definition 0.2.18. Let \mathfrak{C} be a category and S be a multiplicative system in \mathfrak{C}. Let X be in \mathfrak{C}. A K-projective resolution of X is a K-projective Q in \mathfrak{C}, together with a morphism $s: Q \rightarrow X$ in S.

For example, given X in $K(\Lambda)$, a K-projective resolution of X is a K projective Q in $K(\Lambda)$, together with a quasi-isomorphism $q: Q \rightarrow X$.
Example 0.2.19. Let M be in $\operatorname{Mod}(\Lambda)$. Then the projective resolution $P(M)$ is also a K-projective resolution. For all X in $K(\Lambda)$, there is a K-projective resolution of X, see the (unnumbered) remark after [8, Proposition 2.12] and [43, Corollary 3.5].

Lemma 0.2.20. Let M and N be in $\operatorname{Mod}(\Lambda)$, and let $p: P \rightarrow M$ be a K projective resolution of M. Then $\operatorname{Hom}_{D(\Lambda)}\left(M, \Sigma^{i} N\right) \cong \operatorname{Hom}_{K(\Lambda)}\left(P, \Sigma^{i} N\right)$.

Proof. Let $\theta: \operatorname{Hom}_{D(\Lambda)}\left(M, \Sigma^{i} N\right) \rightarrow \operatorname{Hom}_{K(\Lambda)}\left(P, \Sigma^{i} N\right)$ and $\theta^{\prime}: \operatorname{Hom}_{K(\Lambda)}\left(P, \Sigma^{i} N\right) \rightarrow$ $\operatorname{Hom}_{D(\Lambda)}\left(M, \Sigma^{i} N\right)$ be maps between the two Hom sets.
Given the following morphism $\mu=$

in $\operatorname{Hom}_{D(\Lambda)}\left(M, \Sigma^{i} N\right)$, where $f: X \rightarrow \Sigma^{i} N$ is any morphism in $\operatorname{Hom}_{K(\Lambda)}\left(X, \Sigma^{i} N\right)$, there is the bijective map $(P, s):(P, X) \xlongequal{\cong}(P, M)$, since $s: X \rightarrow M$ is a quasi-isomorphism and P is K-projective. In particular, consider the morphism $p: P \rightarrow M$ in (P, M). Then there is a unique p^{\prime} in (P, X) such that $s p^{\prime}=p$. Let $\theta(\mu)$ be $f p^{\prime}$ in $\operatorname{Hom}_{K(\Lambda)}\left(P, \Sigma^{i} N\right)$.
Conversely, given a morphism $g: P \rightarrow \Sigma^{i} N$ in $K(\Lambda)$, let $\theta^{\prime}(g)$ be the following morphism

in $\operatorname{Hom}_{D(\Lambda)}\left(M, \Sigma^{i} N\right)$.
Finally, one can verify that θ and θ^{\prime} are well-defined and that $\theta \theta^{\prime}=\theta^{\prime} \theta=$ 1.

Remark 0.2.21. Alternatively, Lemma 0.2 .20 can also been seen directly from Lemma 0.2.12(i) and Lemma 0.2.14.

Let P_{Λ} be the full subcategory of $K(\Lambda)$ consisting of K-projectives, and let S be the class of quasi-isomorphisms in $K(\Lambda)$. Then $S \cap P_{\Lambda}$ forms a multiplicative system in P_{Λ}. Consider the following diagram,

where π_{P}, π_{C} are the canonical functors. By Lemma 0.2.12(i), quasi-isomorphisms in $K(\Lambda)$ become isomorphisms in $S^{-1} K(\Lambda)=D(\Lambda)$, hence there is a unique functor $\tilde{i}:\left(S \cap P_{\Lambda}\right)^{-1} P_{\Lambda} \rightarrow S^{-1} K(\Lambda)$ making the diagram commutative by the universal property of $\left(S \cap P_{\Lambda}\right)^{-1} P_{\Lambda}$. By Example 0.2.19, [17, Proposition I.3.3] and Example 0.1.8(ii), the functor \tilde{i} is an equivalence. By Lemma 0.2.12(ii) and Lemma 0.2.16, the functor $\pi_{P}: P_{\Lambda} \rightarrow\left(S \cap P_{\Lambda}\right)^{-1} P_{\Lambda}$ is also an equivalence. Hence the functor $\tilde{i} \pi_{P}: P_{\Lambda} \rightarrow S^{-1} K(\Lambda)$ is an equivalence. Therefore $D(\Lambda)$ can be viewed either as the category of fractions $S^{-1} K(\Lambda)$, or as P_{Λ}, the full subcategory inside $K(\Lambda)$.

By virtue of Lemma 0.1.27(i), define the functor $P(-): \operatorname{Mod}(\Lambda) \rightarrow K(\Lambda)$ which sends M in $\operatorname{Mod}(\Lambda)$ to the projective resolution $P(M)$ of M in $K(\Lambda)$. Similarly, define the functor $I(-): \operatorname{Mod}(\Lambda) \rightarrow K(\Lambda)$ which sends M in $\operatorname{Mod}(\Lambda)$ to the injective resolution $I(M)$ of M in $K(\Lambda)$.

The notations $P(-)$ and $I(-)$ will be used for the rest of this section.
Lemma 0.2.22. Given a short exact sequence $0 \rightarrow M^{\prime} \xrightarrow{\mu^{\prime}} M \xrightarrow{\mu^{\prime \prime}} M^{\prime \prime} \rightarrow$ 0 in $\operatorname{Mod}(\Lambda)$, the diagram $P\left(M^{\prime}\right) \xrightarrow{P\left(\mu^{\prime}\right)} P(M) \xrightarrow{P\left(\mu^{\prime \prime}\right)} P\left(M^{\prime \prime}\right) \xrightarrow{\partial} \Sigma P\left(M^{\prime}\right)$ is a distinguished triangle in $K(\Lambda)$, where the connecting morphism ∂ : $P\left(M^{\prime \prime}\right) \rightarrow \Sigma P\left(M^{\prime}\right)$ can be described explicitly.

Proof. Consider the morphism $\mu^{\prime}: M^{\prime} \rightarrow M$ in $\operatorname{Mod}(\Lambda)$ and then the corresponding morphism $P\left(\mu^{\prime}\right): P\left(M^{\prime}\right) \rightarrow P(M)$ in $K(\Lambda)$. Complete the morphism $P\left(\mu^{\prime}\right)$ to a distinguished triangle $P\left(M^{\prime}\right) \xrightarrow{P\left(\mu^{\prime}\right)} P(M) \rightarrow C \rightarrow \Sigma P\left(M^{\prime}\right)$ in $K(\Lambda)$, where C is the mapping cone $E\left(P\left(\mu^{\prime}\right)\right)$ of $P\left(\mu^{\prime}\right)$, since $K(\Lambda)$ is triangulated.

This is portrayed in the following diagram, where the morphism \imath is the canonical inclusion and the morphism ρ is the canonical surjection.

It can be readily seen that C is a projective resolution of $M^{\prime \prime}$. Consider the following diagram in $K(\Lambda)$,

where the first row is the distinguished triangle constructed and the second row is the diagram described in the lemma. Since both C and $P\left(M^{\prime \prime}\right)$ are projective resolutions of $M^{\prime \prime}$, by Lemma $0.1 .27(\mathrm{i})$, there is a chain map $\alpha: C \rightarrow P\left(M^{\prime \prime}\right)$ which is an isomorphism by Lemma 0.2 .16 . Let the connecting morphism $\partial: P\left(M^{\prime \prime}\right) \rightarrow \Sigma P\left(M^{\prime}\right)$ be $\rho \alpha^{-1}$, and since $\alpha \imath=P(\mu)$ by Lemma 0.1.27(i), the diagram on the second row is then a distinguished triangle by (TR1).

The description of the left derived functors and right derived functors is an abridgment of [18, IV.5., 6., 7., 8.]. Let Λ_{1} and Λ_{2} be finite-dimensional k-algebras over the field k.

Consider an additive covariant functor $F: \operatorname{Mod}\left(\Lambda_{1}\right) \rightarrow \operatorname{Mod}\left(\Lambda_{2}\right)$, and let $F_{C}: C\left(\Lambda_{1}\right) \rightarrow C\left(\Lambda_{2}\right)$ be the lift of F from the module category to the category of chain complexes, i.e. given a chain complex $M=\cdots \rightarrow M_{1} \xrightarrow{\partial_{1}}$ $M_{0} \xrightarrow{\partial_{0}} M_{-1} \rightarrow \cdots$ in $C\left(\Lambda_{1}\right)$, define the chain complex $F_{C}(M)=\cdots \rightarrow$ $F M_{1} \xrightarrow{F \partial_{1}} F M_{0} \xrightarrow{F \partial_{0}} F M_{-1} \rightarrow \cdots$ in $C\left(\Lambda_{2}\right)$. Let $f, g: M \rightarrow N$ be chain maps in $C\left(\Lambda_{1}\right)$ such that $f \simeq g$. Then it is immediate that $F_{C} f \simeq F_{C} g$ in $C\left(\Lambda_{2}\right)$. Therefore the functor F_{C} is well-defined on the homotopy category $K\left(\Lambda_{1}\right)$ as well. Let $F_{K}: K\left(\Lambda_{1}\right) \rightarrow K\left(\Lambda_{2}\right)$ be the lift of F_{C} from the category of chain complexes to the homotopy category. It is also a triangulated functor.

Definition 0.2.23. In the above description, let the i-th left derived functor of F be $L_{i} F=\mathrm{H}_{i} \circ F_{K} \circ P$.

The following lemma views the left derived functor $L_{i} F$ as generalizing the functor F.

Lemma 0.2.24. Let us assume that F is right exact, i.e. given a short exact sequence $0 \rightarrow M^{\prime} \xrightarrow{\mu} M \rightarrow M^{\prime \prime} \rightarrow 0$ in $\operatorname{Mod}\left(\Lambda_{1}\right)$, the sequence $F M^{\prime} \xrightarrow{F \mu}$ $F M \rightarrow F M^{\prime \prime} \rightarrow 0$ is right exact in $\operatorname{Mod}\left(\Lambda_{2}\right)$. Then
(i) $L_{i} F=0$ for $i<0$,
(ii) $L_{0} F \simeq F$,
(iii) There is a long exact sequence

$$
\begin{aligned}
& \left.\cdots \longrightarrow L_{2} F\left(M^{\prime \prime}\right) \longrightarrow L_{1} F\left(M^{\prime}\right) \longrightarrow L_{1} F(M) \longrightarrow L_{1} F\left(M^{\prime \prime}\right) \longrightarrow L_{0} F(M) \longrightarrow M^{\prime \prime}\right) \longrightarrow \\
& L_{0} F\left(M^{\prime}\right) \longrightarrow L_{0} \longrightarrow \\
& \text { in } \operatorname{Mod}\left(\Lambda_{2}\right) .
\end{aligned}
$$

In Lemma 0.2.24, the functor F fails to be an exact functor, and (iii) expresses $\operatorname{ker} F \mu$ in terms of the long exact sequence. Consider the functor $i: P_{\Lambda_{1}} \hookrightarrow K\left(\Lambda_{1}\right)$ and the equivalence $\tilde{i} \pi_{P}: P_{\Lambda_{1}} \rightarrow S^{-1} K\left(\Lambda_{1}\right)$ described above by taking $\Lambda=\Lambda_{1}$, the functors F and F_{K} in Definition 0.2.23 and the canonical functors $\pi_{i}: K\left(\Lambda_{i}\right) \rightarrow D\left(\Lambda_{i}\right)$. Let $L F$ be the functor $\pi_{2} F_{K} i\left(\tilde{i} \pi_{P}\right)^{-1}: D\left(\Lambda_{1}\right) \rightarrow D\left(\Lambda_{2}\right)$.

For example, given M in $\operatorname{Mod}(\Lambda)$, we have

$$
\begin{aligned}
\mathrm{H}_{i} L F(M) & =\mathrm{H}_{i} \pi F_{K}(P(M)) \\
& =\mathrm{H}_{i} F_{K}(P(M)) \\
& =L_{i} F(M)
\end{aligned}
$$

In turn, the description of the right derived functors of some special functors, namely, the functors $\operatorname{Hom}_{\Lambda}(-, N)$ and $\operatorname{Hom}_{\Lambda}(N,-)$, where N is in $\operatorname{Mod}(\Lambda)$, is given.

Both the contravariant functor $\operatorname{Hom}_{\Lambda}(-, N)$ and the covariant functor $\operatorname{Hom}_{\Lambda}(N,-)$ are left exact. This allows us to give the following definition.

Definition 0.2.25. Let the i-th right derived functor $R^{i} \operatorname{Hom}_{\Lambda}(-, N)$ of $\operatorname{Hom}_{\Lambda}(-, N)$, written $\operatorname{Ext}_{\Lambda}^{i}(-, N)$, be $\operatorname{Ext}_{\Lambda}^{i}(-, N)=H^{i} \operatorname{Hom}_{\Lambda}(P(-), N)$: $\operatorname{Mod}(\Lambda) \rightarrow \operatorname{Mod}(\Lambda)$. Similarly, let the i-th right derived functor $R^{i} \operatorname{Hom}_{\Lambda}(N,-)$ of $\operatorname{Hom}_{\Lambda}(N,-)$, written $\overline{\operatorname{Ext}}_{\Lambda}^{i}(N,-)$, be $\overline{\operatorname{Ext}}_{\Lambda}^{i}(N,-)=\mathrm{H}^{i} \operatorname{Hom}_{\Lambda}(N, I(-))$: $\operatorname{Mod}(\Lambda) \rightarrow \operatorname{Mod}(\Lambda)$.

Lemma 0.2.26. Let A and B be in $\operatorname{Mod}(\Lambda)$. Then
(i) ([18, Proposition IV.7.2]) Given a projective module P and an injective module I in $\operatorname{Mod}(\Lambda)$, we have $E x t_{\Lambda}^{i}(P, B)=0=E x t_{\Lambda}^{i}(A, I)$, where $i \geq 1$,
(ii) ([18, Proposition IV.8.1]) The functors $E x t_{\Lambda}^{i}(-,-)$ and $\overline{E x t}_{\Lambda}^{i}(-,-)$, where $i \geq 0$, are naturally equivalent.

Lemma 0.2.27. (c.f. Lemma 0.2.24) Consider a right exact sequence $M^{\prime} \rightarrow$ $M \rightarrow M^{\prime \prime} \rightarrow 0$ in $\operatorname{Mod}(\Lambda)$. Then
(i) $E x t_{\Lambda}^{i}(-, N)=0$ for $i<0$,
(ii) $E x t_{\Lambda}^{0}(-, N) \simeq(-, N)$,
(iii) There is a long exact sequence

$$
\begin{aligned}
& \left.\quad 0 \longrightarrow\left(M^{\prime \prime}, N\right) \longrightarrow(M, N) \longrightarrow \operatorname{Ext}_{\Lambda}^{1}(M, N) \longrightarrow M^{\prime}, N\right) \longrightarrow \operatorname{Ext}_{\Lambda}^{1}\left(M^{\prime}, N\right) \longrightarrow \operatorname{Ext}_{\Lambda}^{2}\left(M^{\prime \prime}, N\right) \longrightarrow \\
& \operatorname{Ext}_{\Lambda}^{1}\left(M^{\prime \prime}, N\right) \longrightarrow \\
& \text { in } \operatorname{Mod}(\Lambda)
\end{aligned}
$$

The following is consistent with Definition 0.1.24.
Definition 0.2.28. ([18, Exercise IV.8.8.]) The global dimension of Λ, denoted by gl. dim. Λ, is less than or equal to m if for all Λ-modules A, B, $\operatorname{Ext}_{\Lambda}^{q}(A, B)=0$ for all $q>m$. The smallest m with gl. dim. $\Lambda \leq m$ is the global dimension of Λ.

The following realizes the value of $\operatorname{Ext}_{\Lambda}^{i}(-, N)$ as the Hom space in the derived category.

Let M and N be in $\operatorname{Mod}(\Lambda)$.
By Lemma 0.2.6 and Lemma 0.2.20, we have

$$
\begin{aligned}
\operatorname{Hom}_{D(\Lambda)}\left(M, \Sigma^{i} N\right) \cong & \operatorname{Hom}_{K(\Lambda)}\left(P_{M}, \Sigma^{i} N\right) \\
& \text { where } P_{M} \text { is a } K \text {-projective resolution of } M \\
\cong & \operatorname{H}_{0} \operatorname{Hom}_{\Lambda}\left(P_{M}, \Sigma^{i} N\right) \\
\cong & \operatorname{H}_{0} \Sigma^{i} \operatorname{Hom}_{\Lambda}\left(P_{M}, N\right) \\
\cong & \operatorname{H}^{i} \operatorname{Hom}_{\Lambda}\left(P_{M}, N\right) \\
\equiv & \operatorname{Ext}_{\Lambda}^{i}(M, N)
\end{aligned}
$$

Lemma 0.2.29. ([17, Chapter I.§6.]) Let $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ be a short exact sequence of chain complexes in $C(\Lambda)$. Then there is a morphism $\zeta: Z \rightarrow \Sigma X$ in $D(\Lambda)$ such that $X \rightarrow Y \rightarrow Z \xrightarrow{\zeta} \Sigma X$ is a distinguished triangle in $D(\Lambda)$.

0.2.3 The stable category

The stable category described in this section is a different flavour of quotient category. For example, the left or right triangulated structure of stable categories of an artin algebra is studied in [6]. In the interim, the following naïve introduction serves as a minute interlude.

The stable categories described below are attainable because given A_{1} and A_{2} in $\bmod (\Lambda)$, the direct sum $A_{1} \oplus A_{2}$ is injective (resp. projective) if and only if A_{1} and A_{2} are injective (resp. projective).

Definition 0.2.30. Given A and B in $\bmod (\Lambda)$, let $\mathcal{I}(A, B)$ be the set of homomorphisms from A to B which factor through an injective module.

Definition 0.2.31. Given A and B in $\bmod (\Lambda)$, let $\mathcal{P}(A, B)$ be the set of homomorphisms from A to B which factor through a projective module.

Definition 0.2.32. The (injective) stable category $\overline{\bmod }(\Lambda)$ of $\bmod (\Lambda)$ has the same objects as $\bmod (\Lambda)$, while the morphism set $\overline{\operatorname{Hom}}(A, B)$ in $\overline{\bmod }(\Lambda)$ is defined to be $\operatorname{Hom}(A, B) / \mathcal{I}(A, B)$ for all A, B in $\overline{\bmod }(\Lambda)$.

Definition 0.2.33. The (projective) stable category $\bmod (\Lambda)$ of $\bmod (\Lambda)$ has the same objects as $\bmod (\Lambda)$, while the morphism set $\underline{\operatorname{Hom}}(A, B)$ in $\underline{\bmod }(\Lambda)$ is defined to be $\operatorname{Hom}(A, B) / \mathcal{P}(A, B)$ for all A, B in $\underline{\bmod }(\Lambda)$.

The following lemma shows that objects which are not isomorphic in $\bmod (\Lambda)$ can be isomorphic in $\underline{\bmod }(\Lambda)$. For example, the ring Λ is isomorphic to 0 in $\underline{\bmod (\Lambda)}$.

Lemma 0.2.34. (c.f. Lemma 0.1.29) Let 0 be the zero object and let X be an object in $\bmod (\Lambda)$. Then $\underline{f}: 0 \rightarrow X$ is an isomorphism in $\underline{\bmod (\Lambda) \text { if and }}$ only if X is projective.

Proof. (if) This is immediate. (only if) Let $g: X \rightarrow 0$ be a morphism in $\underline{\bmod }(\Lambda)$ such that $f \underline{g}=\underline{1_{X}}$. This means $f \bar{g}-1_{X}$ is in $\mathcal{P}(X, X)$. Since $f g=0$, therefore 1_{X} is in $\left.\overline{\mathcal{P}} X, X\right)$, i.e. there is a projective module P such that 1_{X} factorizes as $1_{X}=\beta \alpha$ as follows.

To see that X is projective, consider an epimorphism $\varepsilon: A \rightarrow B$ and a morphism $\theta: X \rightarrow B$ in $\bmod (\Lambda)$. We need to find a morphism $\pi^{\prime}: X \rightarrow A$ such that $\varepsilon \pi^{\prime}=\theta$.

Now consider the morphism $\theta \beta: P \rightarrow B$. Since P is projective, there is a morphism $\pi: P \rightarrow A$ such that $\varepsilon \pi=\theta \beta$. Therefore $\varepsilon \pi \alpha=\theta \beta \alpha=\theta 1_{X}=\theta$. Finally, $\pi^{\prime}=\pi \alpha$ is the required morphism.

0.3 Auslander-Reiten quiver

For this section, the reader is suggested to read [14] and [15] for a recapitulation. Let \mathfrak{C} be any category, \mathfrak{A} an abelian category and \mathfrak{T} a triangulated category.

Let \mathfrak{C}^{\prime} be a full subcategory of \mathfrak{C}.
Definition 0.3.1. A morphism $g: B \rightarrow C$ in the subcategory $\mathfrak{C}^{\prime \prime}$ is said to be a right almost split morphism in \mathfrak{C}^{\prime} if
(i) g is not a split epimorphism,
(ii) if $h: C^{\prime} \rightarrow C$ in \mathfrak{C}^{\prime} is not a split epimorphism, then there is an $h^{\prime}: C^{\prime} \rightarrow B$ such that $g h^{\prime}=h$.

The notion of a left almost split morphism in the subcategory \mathfrak{C}^{\prime} is defined dually, i.e. a morphism $f: A \rightarrow B$ in the subcategory \mathfrak{C}^{\prime} is said to be a left almost split morphism in \mathfrak{C}^{\prime} if
(i) f is not a split monomorphism,
(ii) if $h: A \rightarrow A^{\prime}$ in \mathfrak{C}^{\prime} is not a split monomorphism, then there is an $h^{\prime}: B \rightarrow A^{\prime}$ such that $h^{\prime} f=h$.

Lemma 0.3.2. ([30, Lemma 2.3]) Let the subcategory $\mathfrak{C}^{\mathfrak{C}^{\prime}}$ be additive. Then given a left almost split morphism $g: B \rightarrow C$ in the subcategory \mathfrak{C}^{\prime}, the endomorphism ring $\operatorname{End}(B)$ is a local ring.

Definition 0.3.3. A morphism $h: X \rightarrow Y$ in \mathfrak{A} is irreducible if h is neither a split monomorphism nor a split epimorphism, and if $h=h_{2} h_{1}$ then either h_{1} is a split monomorphism or h_{2} is a split epimorphism.

Given objects X and Y in a Krull-Schmidt category \mathfrak{C}, the subspace $\operatorname{rad}(X, Y)$ of (X, Y) is defined to be $\operatorname{rad}(X, Y)=\left\{h \in(X, Y) \mid 1_{X}-g h\right.$ is invertible for any $g \in(Y, X)\}$. Then for $m \geq 1$, the subspace $\operatorname{rad}^{m}(X, Y) \subseteq \operatorname{rad}(X, Y)$ of $\operatorname{rad}(X, Y)$ consists of all finite sums of morphisms of the form $X=X_{0} \xrightarrow{h_{7}}$ $X_{1} \xrightarrow{h_{2}} X_{2} \rightarrow \cdots \rightarrow X_{m-1} \xrightarrow{h_{m}} X_{m}=Y$, where h_{i} is in $\operatorname{rad}\left(X_{i-1}, X_{i}\right)$. Let $d_{X Y}$ be the dimension $\operatorname{dim}_{k} \operatorname{Irr}(X, Y)$, where $\operatorname{Irr}(X, Y)=\operatorname{rad}(X, Y) / \operatorname{rad}^{2}(X, Y)$.

If X and Y are indecomposable, then $f: X \rightarrow Y$ is irreducible if and only if f is in $\operatorname{rad}(X, Y)$ but not in $\operatorname{rad}^{2}(X, Y)$. Therefore there is an irreducible morphism from X to Y if and only if $\operatorname{Irr}(X, Y) \neq 0$.

Definition 0.3.4. Let \mathfrak{C} be a Krull-Schmidt category. Then the AuslanderReiten quiver of \mathfrak{C} is a quiver where the vertices are the isomorphism classes $[X]$ of the indecomposable objects X of \mathfrak{C}, and the quiver has $d_{X Y}$ arrows from $[X]$ to $[Y]$.

The following definition can be found in [14, 3.1] and in [22, Definition 1.3].
Definition 0.3.5. (c.f. Definition 2.2.2) A distinguished triangle $x \xrightarrow{\alpha} y \xrightarrow{\beta}$ $z \rightarrow$, with x, y and z in the subcategory \mathfrak{T}^{\prime} of \mathfrak{T}, is an Auslander-Reiten triangle in \mathfrak{T}^{\prime} if
(i) the triangle is not split,
(ii) if x^{\prime} is in \mathfrak{T}^{\prime}, then each morphism $x \rightarrow x^{\prime}$ which is not a split monomorphism factors through α,
(iii) if z^{\prime} is in \mathfrak{T}^{\prime}, then each morphism $z^{\prime} \rightarrow z$ which is not a split epimorphism factors through β.

Consider the Auslander-Reiten triangle $x \xrightarrow{\alpha} y \xrightarrow{\beta} z \rightarrow$ in Definition 0.3.5. By Lemma 0.2 .3 , the morphism α is left almost split and the morphism β is right almost split.

Let us recollect some standard results with regard to Auslander-Reiten triangles.

Lemma 0.3.6. ([30, Lemma 2.6]) Let $x \xrightarrow{\alpha} y \xrightarrow{\beta} z \rightarrow$ be a distinguished triangle in \mathfrak{T}. Suppose β is right almost split. Then the following are equivalent.
(i) $\operatorname{End}(x)$ is local,
(ii) β is right minimal,
(iii) α is left almost split,
(iv) The distinguished triangle is an Auslander-Reiten triangle.

The following lemma shows how the Auslander-Reiten triangles can be inherent in the Auslander-Reiten quiver.

Lemma 0.3.7. Let \mathfrak{T} be Krull-Schmidt. If $x \rightarrow y \rightarrow z \rightarrow$ is an AuslanderReiten triangle in \mathfrak{T}, then given an indecomposable object y_{i} in \mathfrak{T}, the following are equivalent.
(i) There is an irreducible morphism $x \rightarrow y_{i}$,
(ii) There is an irreducible morphism $y_{i} \rightarrow z$,
(iii) y_{i} is an indecomposable direct summand of y.

Proof. This is described in $[15,4.8]$.
Definition 0.3.8. [39, I.1.] Let \mathfrak{A} be k-linear and Hom finite. A right Serre functor is an additive functor $S: \mathfrak{A} \rightarrow \mathfrak{A}$, together with isomorphisms

$$
\varphi_{A, B}:(A, B) \xrightarrow{\cong}(B, S A)^{*}
$$

for any $A, B \in \mathfrak{A}$, which are natural in A and in B, and where $(-)^{*}=$ $\operatorname{Hom}_{k}(-, k)$. If S is an autoequivalence, then it is a Serre functor.

Let $\varphi_{A, A}\left(\mathrm{id}_{A}\right)$ be denoted by φ_{A}. Any two right Serre functors are isomorphic, and if ϵ is an autoequivalence of \mathfrak{A}, then $\epsilon S \cong S \epsilon$, see [32, Section $3]$.

Definition 0.3.9. The triangulated category \mathfrak{T} is said to have right (resp. left) Auslander-Reiten triangles if given any indecomposable z (resp. x) in \mathfrak{T}, there is an Auslander-Reiten triangle $x \rightarrow y \rightarrow z \rightarrow \Sigma x$. It is then said to have Auslander-Reiten triangles if it has both right and left AuslanderReiten triangles.

Lemma 0.3.10. The following are equivalent.
(i) \mathfrak{T} has a Serre functor,
(ii) \mathfrak{T} has Auslander-Reiten triangles.

Proof. This is [39, Theorem I.2.4]. In addition, the Auslander-Reiten triangle is of the form $S \Sigma^{-1} z \rightarrow y \rightarrow z \rightarrow S z$, where S is the Serre functor and Σ is the translation functor of \mathfrak{T}.

This leads us to the following definition.
Definition 0.3.11. The functor $\tau \cong S \Sigma^{-1}$ is the Auslander-Reiten translation.

Chapter 1

The approximation properties of subcategories

1.1 Introduction

The idea of approximation is very frequent in mathematics indeed. Several notions in Chapter 0 are inspired in such a way. For example, given A in $\operatorname{Mod}(\Lambda)$, a projective resolution $P(A)$ of A intuitively approximates how projective A is. The right derived functor $\operatorname{Ext}_{\Lambda}^{i}(-, N)$ of $\operatorname{Hom}_{\Lambda}(-, N)$ in Section 0.2.2 can also be understood to approximate the notion of a cokernel. The projective stable category of a given category in Section 0.2.3 approximates the original category by identifying the projective objects with the zero objects.

Paradoxical as it seems, the greater the degree of accuracy to be attained, the greater the strength and the more varieties of approximation needed. In this chapter, torsion pairs in abelian categories and torsion theories in triangulated categories are introduced. The existence of certain adjoint functors in triangulated categories is also studied. Intuitively, they are all different expressions of subcategories approximating their ambient categories. The chapter goes on to introduce some examples of torsion theories, namely tstructures and split torsion theories, and finishes with a characterization of a split torsion theory and a classification of split torsion theories in a chosen derived category.

1.2 Existence of certain adjoint functors

Let Λ be a finite-dimensional k-algebra over the field k. As usual, let $\operatorname{Mod}(\Lambda)$ be the category of Λ-left-modules. In this section, let \mathcal{T} be a triangulated category with translation functor Σ, and \mathcal{X} and \mathcal{Y} be full additive subcategories of \mathcal{T}. The subcategories \mathcal{X} and \mathcal{Y} are assumed to be closed under isomorphisms.

Let us begin with torsion pairs in abelian categories.
Definition 1.2.1. [1, Definition VI.1.1] A pair $(\mathcal{M}, \mathcal{N})$ of full subcategories of $\operatorname{Mod}(\Lambda)$ is a torsion pair if
(i) $\operatorname{Hom}(M, N)=0$ for all $M \in \mathcal{M}, N \in \mathcal{N}$,
(ii) $\left.\operatorname{Hom}(M,-)\right|_{\mathcal{N}}=0$ implies $M \in \mathcal{M}$,
(iii) $\left.\operatorname{Hom}(-, N)\right|_{\mathcal{M}}=0$ implies $N \in \mathcal{N}$.

Here, \mathcal{M} is the torsion class and \mathcal{N} is the torsion-free class. By virtue of (ii) and (iii), \mathcal{M} and \mathcal{N} uniquely determine each other.

Definition 1.2.2. [1, Proposition VI.1.4] Let U be in $\operatorname{Mod}(\Lambda)$ and $t U$ be the trace of \mathcal{M} in U, that is, the sum of images of all homomorphisms from modules in \mathcal{M} to U. Since \mathcal{M} is closed under images and direct sums, $t U$ is the largest submodule of U that lies in \mathcal{M}.

Remark 1.2.3. ([1, Propositions VI.1.4, 1.5]) Intuitively, the functor t in Definition 1.2 .2 is an indicator which measures how far U is from being in \mathcal{M} or in \mathcal{N}. It has the following significance.
(i) (approximation) It approximates U to give $t U$ in \mathcal{M},
(ii) (characterization) It characterizes the torsion and torsion-free classes, since $\mathcal{M}=\{M \in \operatorname{Mod}(\Lambda) \mid t M=M\}$ and $\mathcal{N}=\{N \in \operatorname{Mod}(\Lambda) \mid t N=$ $0\}$,
(iii) (existence and uniqueness) It gives existence and uniqueness of short exact sequences of the form $0 \rightarrow t U \rightarrow U \rightarrow \frac{U}{t U} \rightarrow 0$.

Instead of the decomposition of an object into direct summands, the following description of torsion theories in triangulated categories intuitively decomposes a category into a pair of subcategories. The definition given below is the one in [21, Definition 2.2], except that we do not assume \mathcal{X} and \mathcal{Y} to be closed under direct sums and direct summands.

Definition 1.2.4. Let $\mathcal{X}^{\perp}=\{t \in \mathcal{T} \mid(x, t)=0$ for all x in $\mathcal{X}\}$ and ${ }^{\perp} \mathcal{X}=$ $\{t \in \mathcal{T} \mid(t, x)=0$ for all x in $\mathcal{X}\}$.

Definition 1.2.5. $(\mathcal{X}, \mathcal{Y})$ forms a torsion theory if
(i) $(\mathcal{X}, \mathcal{Y})=0$,
(ii) $\mathcal{T}=\mathcal{X} * \mathcal{Y}$, i.e. given t in \mathcal{T}, there is a torsion theory triangle $x \rightarrow$ $t \rightarrow y \rightarrow \Sigma x$ with x in \mathcal{X} and y in \mathcal{Y}.

Remark 1.2.6. (i) In Definition 1.2.5, (i) gives $\mathcal{X} \cap \mathcal{Y}=0$. Otherwise a non-zero U in $\mathcal{X} \cap \mathcal{Y}$ would give id_{U} in $(\mathcal{X}, \mathcal{Y})$, which is not possible. Accordingly, there are no non-zero U in \mathcal{X} and V in \mathcal{Y} such that $U \cong V$.
(ii) Let $x \xrightarrow{\mu} t \xrightarrow{\nu} y \rightarrow \Sigma x$ be the torsion theory triangle described in (ii). Then by Lemma $0.2 .2(\mathrm{i})$, the composition $\nu \mu$ is zero, which accords with (i). By Lemma 0.2.2(iv), given $t \cong x \oplus y$ with t, x, y in $\mathcal{T}, \mathcal{X}, \mathcal{Y}$ respectively, there is always a distinguished triangle $x \rightarrow t \rightarrow y \rightarrow \Sigma x$, thus satisfying (ii) for the chosen t.

The following lemma gives the situations where \mathcal{X} and \mathcal{Y} uniquely determine each other.

Lemma 1.2.7. Let $(\mathcal{X}, \mathcal{Y})$ be a torsion theory.
(i) If $\Sigma \mathcal{X} \subseteq \mathcal{X}$, then $\mathcal{X}^{\perp}=\mathcal{Y}$ and ${ }^{\perp} \mathcal{Y}=\mathcal{X}$.
(ii) If \mathcal{X} and \mathcal{Y} are closed under direct summands, then $\mathcal{X}^{\perp}=\mathcal{Y}$ and ${ }^{\perp} \mathcal{Y}=\mathcal{X}$.

Proof. (i) This is [7, Remark I.2.2].
(ii) It is immediate that $\mathcal{Y} \subseteq \mathcal{X}^{\perp}$. To see that $\mathcal{X}^{\perp} \subseteq \mathcal{Y}$, consider t in \mathcal{X}^{\perp}. Since $(\mathcal{X}, \mathcal{Y})$ is a torsion theory, there is a distinguished triangle $x \rightarrow t \rightarrow y \rightarrow \Sigma x$ with x in \mathcal{X} and y in \mathcal{Y}, where the morphism $x \rightarrow t$ is zero. Then by Lemma $0.2 .2(\mathrm{v})$, the distinguished triangle $t \rightarrow y \rightarrow \Sigma x \rightarrow \Sigma t$ splits, i.e. $y \cong t \oplus \Sigma x$. Since \mathcal{Y} is closed under direct summands and isomorphisms, t is in \mathcal{Y}. Hence $\mathcal{X}^{\perp} \subseteq \mathcal{Y}$ and so $\mathcal{X}^{\perp}=\mathcal{Y}$. Similarly, ${ }^{\perp} \mathcal{Y}=\mathcal{X}$.

Torsion theories in triangulated categories are analogues of torsion pairs in abelian categories. Given a torsion pair $(\mathcal{M}, \mathcal{N})$, the functor t described in Definition 1.2.2 characterizes the subcategories \mathcal{M} and \mathcal{N}, see Remark 1.2.3.

The functor t involves the notion of images, which does not necessarily make sense in triangulated categories. Following on from this, an analogue of the functor t in torsion theories is not immediate, and this leads to the study of certain adjoint functors in triangulated categories.

Definition 1.2.8. An \mathcal{X}-precover for an object t in \mathcal{T} is a morphism α : $x \rightarrow t$ for some x in \mathcal{X}, such that for all x^{\prime} in \mathcal{X}, each morphism $x^{\prime} \rightarrow t$ factorizes through α. An \mathcal{X}-cover is an \mathcal{X}-precover which is right minimal. The notion of an \mathcal{X}-(pre)envelope is defined dually.

Definition 1.2.9. \mathcal{X} is said to be a (pre)covering for \mathcal{T} if every object in \mathcal{T} has an \mathcal{X}-(pre)cover. The notion of a (pre)enveloping for \mathcal{T} is defined dually.

Example 1.2.10. (i) In Remark 1.2.3(i), $t U \rightarrow U$ is an \mathcal{M}-cover.
(ii) Let $(\mathcal{X}, \mathcal{Y})$ be a torsion theory. Then \mathcal{X} is a precovering and \mathcal{Y} is a preenveloping for \mathcal{T}. This is because given t in \mathcal{T}, there is a distinguished triangle $x \rightarrow t \rightarrow y \rightarrow \Sigma x$ with x in \mathcal{X}, y in \mathcal{Y}, where $x \rightarrow t$ is an \mathcal{X}-precover and $t \rightarrow y$ is a \mathcal{Y}-preenvelope (Lemma $0.2 .2(\mathrm{vi})$).

The notion of adjoints is given in Example 0.1.17(iv).
Lemma 1.2.11. Let L be the embedding functor $\imath: \mathcal{X} \hookrightarrow \mathcal{T}$. Assume the right adjoint $R: \mathcal{T} \rightarrow \mathcal{X}$ exists. Let x be in \mathcal{X} and t be in \mathcal{T}. Consider the isomorphism $\tau:(x, t) \xrightarrow{\cong}(x, R t)$ and the morphism $\varepsilon_{t}=\tau^{-1}\left(\operatorname{id}_{R t}\right)$. Then given $f: x \rightarrow t$, there is a unique morphism $f^{\prime}: x \rightarrow R t$ such that the following diagram commutes.

In addition to this, the morphism $\varepsilon_{t}=\tau^{-1}\left(\mathrm{id}_{R t}\right)$ is right minimal.

Proof. By the naturality of τ, the morphism $f^{\prime}=\tau(f)$ is the required unique morphism, and this is also conceived of as the universal property of the counit $\varepsilon_{t}: R t \rightarrow t$. The morphism ε_{t} is also right minimal. Indeed suppose $\varepsilon_{t} g=\varepsilon_{t}$ for any given $g: R t \rightarrow R t$ and consider the following commutative diagram obtained from the naturality of τ,

Therefore $\left(\tau^{-1}\left(\mathrm{id}_{R t}\right)\right) g=\tau^{-1}\left(\mathrm{id}_{R t} g\right)$, which gives $\varepsilon_{t} g=\tau^{-1}(g)$ and then $\tau^{-1}(g)=\tau^{-1}\left(\mathrm{id}_{R t}\right)$. Since τ^{-1} is an isomorphism, $g=i d_{R t}$ which is an automorphism. Hence ε_{t} is right minimal.

Remark 1.2.12. In Lemma 1.2.11, \mathcal{X} is covering in \mathcal{T}. Intuitively, $R t$ in \mathcal{X} is the approximation of t in \mathcal{X}, i.e. the right adjoint R can be understood as measuring how close \mathcal{X} is in approximating \mathcal{T}.

Definition 1.2.13. ([5]) Let $(\mathcal{X}, \mathcal{Y})$ be a torsion theory. If $\Sigma \mathcal{X} \subseteq \mathcal{X}$, then $(\mathcal{X}, \mathcal{Y})$ is a t-structure.

Remark 1.2.14. Let $(\mathcal{X}, \mathcal{Y})$ be a t-structure. Then by Lemma 1.2.7(i), \mathcal{X} and \mathcal{Y} uniquely determine each other.

Lemma 1.2.15. Let $(\mathcal{X}, \mathcal{Y})$ be a t-structure. Then $\Sigma^{-1} \mathcal{Y} \subseteq \mathcal{Y}$.

Proof. This is [7, Remark I.2.2].
Lemma 1.2.16. Let $(\mathcal{X}, \mathcal{Y})$ be a t-structure. Then for each t in \mathcal{T}, there is a distinguished triangle $x \rightarrow t \rightarrow y \rightarrow \Sigma x$, with x in \mathcal{X} and y in \mathcal{Y}, and the third morphism $y \rightarrow \Sigma x$ is uniquely determined.

Proof. Suppose there are distinguished triangles $x \xrightarrow{\alpha} t \xrightarrow{\beta} y \xrightarrow{\gamma_{1}} \Sigma x$ and $x \xrightarrow{\alpha} t \xrightarrow{\beta} y \xrightarrow{\gamma_{2}} \Sigma x$. Then consider the following diagram,

By (TR3), there is a morphism $g: y \rightarrow y$ such that $\gamma_{1}=\gamma_{2} g$ and $g \beta=\beta$. Let $f=\operatorname{id}_{y}-g: y \rightarrow y$. Then $f \beta=\left(\operatorname{id}_{y}-g\right) \beta=\beta-g \beta=0$.

Now consider the following diagram,

Since $f \beta=0$, by (TR3) there is $h: \Sigma x \rightarrow y$ such that $h \gamma_{1}=\mathrm{id}_{y} f=f$. Since $(\Sigma x, y)=0, h=0$, and so $f=\operatorname{id}_{y}-g=0, g=\operatorname{id}_{y}$ and $\gamma_{1}=\gamma_{2}$.

Lemma 1.2.17. Let $\mathcal{U}=\mathcal{X} * \mathcal{Y}$. If $\Sigma \mathcal{X} \subseteq \mathcal{X}$ and $\Sigma \mathcal{Y} \subseteq \mathcal{Y}$, then $\Sigma \mathcal{U} \subseteq \mathcal{U}$.

Proof. This is immediate.
Definition 1.2.18. A subcategory \mathcal{X} is closed under extensions if given t in \mathcal{T} and a distinguished triangle $x_{1} \rightarrow t \rightarrow x_{2} \rightarrow \Sigma x_{1}$ with x_{1} and x_{2} in \mathcal{X}, then t is in \mathcal{X}.

Lemma 1.2.19. The subcategories $\mathcal{X}{ }^{\perp}$ and ${ }^{\perp} \mathcal{Y}$ are closed under extensions.

Proof. Let u be in \mathcal{Y}. Given t in \mathcal{T}, consider a distinguished triangle $x_{1} \rightarrow$ $t \rightarrow x_{2} \rightarrow \Sigma x_{1}$ with x_{1} and x_{2} in ${ }^{\perp} \mathcal{Y}$. Then by Lemma 0.2 .9 , the sequence $\left(x_{2}, u\right) \rightarrow(t, u) \rightarrow\left(x_{1}, u\right)$ is exact. Since $\left(x_{2}, u\right)=\left(x_{1}, u\right)=0$, it follows that $(t, u)=0$ and so t is in ${ }^{\perp} \mathcal{Y}$ and ${ }^{\perp} \mathcal{Y}$ is closed under extensions. Similarly, \mathcal{X}^{\perp} is closed under extensions.

Example 1.2.20. Let $(\mathcal{X}, \mathcal{Y})$ be a t-structure. By Remark 1.2.14, $\mathcal{X}={ }^{\perp} \mathcal{Y}$ which, by Lemma 1.2.19, is closed under extensions. For example, given t in \mathcal{T} and a distinguished triangle $x_{1} \rightarrow x_{2} \rightarrow t \rightarrow \Sigma x_{1}$ with x_{1} and x_{2} in \mathcal{X}, then t is in \mathcal{X}.
Remark 1.2.21. (i) Let \mathcal{X} be closed under extensions. Given x in \mathcal{X} and the isomorphism $x^{\prime} \cong x$, embed the isomorphism into a distinguished triangle $x \xlongequal{\cong} x^{\prime} \rightarrow z \rightarrow \Sigma x$ in \mathcal{T}. Then by Lemma $0.2 .2(\mathrm{iii}), z \cong 0$. Since \mathcal{X} is closed under isomorphisms, z is in \mathcal{X}. Since both x and z are in \mathcal{X} and \mathcal{X} is closed under extensions, x^{\prime} is in \mathcal{X}. The two conditions, that \mathcal{X} is closed under extensions, and that \mathcal{X} is closed under isomorphisms, are compatible.
(ii) If \mathcal{X} is closed under extensions, then \mathcal{X} is closed under direct sums. Let x_{1} and x_{2} be in \mathcal{X}. Then by Lemma $0.2 .2(\mathrm{iv})$, there is a distinguished triangle $x_{1} \rightarrow x_{1} \oplus x_{2} \rightarrow x_{2} \rightarrow \Sigma x_{1}$. Since \mathcal{X} is closed under extensions, $x_{1} \oplus x_{2}$ is in \mathcal{X}.

Definition 1.2.22. Let u and v be in \mathcal{T}. A morphism $f: u \rightarrow v$ is an \mathcal{X}-left phantom if given any x in \mathcal{X} and any morphism $g: x \rightarrow u$, the composition $f g$ is zero. Dually, a morphism $f: u \rightarrow v$ is a \mathcal{Y}-right phantom if given any y in \mathcal{Y} and any morphism $g: v \rightarrow y$, the composition $g f$ is zero.

For the rest of the chapter, given a torsion theory $(\mathcal{X}, \mathcal{Y})$, assume \mathcal{X} and \mathcal{Y} to determine each other uniquely. By Lemma 1.2.19, the subcategories \mathcal{X} and \mathcal{Y} are both closed under extensions and direct sums (Remark 1.2.21(ii)). The following propositions give necessary and sufficient conditions for the existence of certain adjoint functors in triangulated categories.

Proposition 1.2.23. (c.f. [27, 1.1], [7, Proposition I.2.3]) Let (X, Y) be a torsion theory. Then the inclusion $\imath: \mathcal{X} \hookrightarrow \mathcal{T}$ admits a right adjoint R $: \mathcal{T} \rightarrow \mathcal{X}$ if and only if for each t in \mathcal{T}, there is a distinguished triangle
$x \rightarrow t \rightarrow y \rightarrow \Sigma x$, where $x \in \mathcal{X}$ and $y \in \mathcal{Y}$, and the morphism $h: \Sigma^{-1} y \rightarrow x$ is an \mathcal{X}-left phantom.

Proof. (if) Let t be in \mathcal{T}. Then there is a distinguished triangle $x \rightarrow t \rightarrow$ $y \rightarrow \Sigma x$, with $x \in \mathcal{X}$ and $y \in \mathcal{Y}$, and the morphism $h: \Sigma^{-1} y \rightarrow x$ is an \mathcal{X}-left phantom. Let x^{\prime} be in \mathcal{X}. Applying the homological functor $\left(x^{\prime},-\right)$ to the distinguished triangle, there is the long exact sequence $\left(x^{\prime}, \Sigma^{-1} y\right) \rightarrow$ $\left(x^{\prime}, x\right) \rightarrow\left(x^{\prime}, t\right) \rightarrow\left(x^{\prime}, y\right)$ with $\left(x^{\prime}, y\right)=0$ (Lemma 0.2.9). The first map is zero since the morphism $h: \Sigma^{-1} y \rightarrow x$ is an \mathcal{X}-left phantom. Hence $\left(x^{\prime}, x\right) \cong\left(x^{\prime}, t\right)$ and R exists by defining $R(t)=x$. (only if) Since the right adjoint R exists, there is the isomorphism $\tau^{-1}:(x, R t) \stackrel{ }{\rightrightarrows}(x, t)$ for all x in \mathcal{X}, t in \mathcal{T}. Let $\alpha=\tau^{-1}\left(\operatorname{id}_{R t}\right): R t \rightarrow t$. Then by Lemma 1.2.11, α is right minimal. Embed α into a distinguished triangle $R t \xrightarrow{\alpha} t \rightarrow y \rightarrow \Sigma R t$. By [22, Lemma 2.1], y is in \mathcal{Y}. Let x^{\prime} be in \mathcal{X}. Applying the homological functor $\left(x^{\prime},-\right)$ to the distinguished triangle, there is the exact sequence $\left(x^{\prime}, \Sigma^{-1} y\right) \rightarrow\left(x^{\prime}, R t\right) \rightarrow\left(x^{\prime}, t\right)$ (Lemma 0.2.9). By Lemma 1.2.11, the second map is an isomorphism, and so the first map is zero. Hence the morphism $h: \Sigma^{-1} y \rightarrow R t$ is an \mathcal{X}-left phantom.

The following is the dual.
Proposition 1.2.24. Let $(\mathcal{X}, \mathcal{Y})$ be a torsion theory. Then the inclusion $\imath: \mathcal{Y} \hookrightarrow \mathcal{T}$ admits a left adjoint $L: \mathcal{T} \rightarrow \mathcal{Y}$ if and only if for each t in \mathcal{T}, there is a distinguished triangle $x \rightarrow t \rightarrow y \rightarrow \Sigma x$, where $x \in \mathcal{X}$ and $y \in \mathcal{Y}$, and the morphism $h: y \rightarrow \Sigma x$ is a \mathcal{Y}-right phantom.

Proof. This is the dual of Proposition 1.2.23.
Example 1.2.25. Let $(\mathcal{X}, \mathcal{Y})$ be a t-structure. Then the inclusion $\imath: \mathcal{X} \hookrightarrow \mathcal{T}$ admits a right adjoint $R: \mathcal{T} \rightarrow \mathcal{X}$. Similarly, the inclusion $\imath: \mathcal{Y} \hookrightarrow \mathcal{T}$ admits a left adjoint $L: \mathcal{T} \rightarrow \mathcal{Y}$.

Proof. Given t in \mathcal{T}, there is a distinguished triangle $x \rightarrow t \rightarrow y \rightarrow \Sigma x$, where $x \in \mathcal{X}$ and $y \in \mathcal{Y}$. By Lemma 1.2.15, $\Sigma^{-1} y$ is in \mathcal{Y} and so $\left(x^{\prime}, \Sigma^{-1} y\right)=$ 0 for any x^{\prime} in \mathcal{X} and $h: \Sigma^{-1} y \rightarrow x$ is trivially an \mathcal{X}-left phantom. Therefore by Proposition 1.2.23, the inclusion $\imath: \mathcal{X} \hookrightarrow \mathcal{T}$ admits a right adjoint R : $\mathcal{T} \rightarrow \mathcal{X}$. Similarly, by Proposition 1.2 .24 , the inclusion $\imath: \mathcal{Y} \hookrightarrow \mathcal{T}$ admits a left adjoint $L: \mathcal{T} \rightarrow \mathcal{Y}$.

Remark 1.2.26. In Example 1.2.25, given t in \mathcal{T}, there is a unique torsion theory triangle of the form $R t \rightarrow t \rightarrow L t \rightarrow \Sigma R t$. This makes sense, since any two right (resp. left) adjoints of the same functor are naturally equivalent.

Corollary 1.2.27. Let $(\mathcal{X}, \mathcal{Y})$ be a torsion theory. Suppose the right adjoint R in Proposition 1.2.23 and the left adjoint L in Proposition 1.2.24 exist. Then $\mathcal{X}=\{t \in \mathcal{T} \mid L t=0\}$ and $\mathcal{Y}=\{t \in \mathcal{T} \mid R t=0\}$.

Proof. Let x be in \mathcal{X} and t be in \mathcal{T}. If $R t=0$, then $t \in \mathcal{X}^{\perp}=\mathcal{Y}$, since $(\imath x, t) \cong(x, R t)=(x, 0)=0$. On the other hand, given $t \in \mathcal{Y}=\mathcal{X}^{\perp}$, since $0=(\imath x, t) \cong(x, R t)$ for each x in \mathcal{X}, therefore $R t=0$. Hence $\mathcal{Y}=\{t \in \mathcal{T} \mid$ $R t=0\}$. Similarly, $\mathcal{X}=\{t \in \mathcal{T} \mid L t=0\}$.

By virtue of Example 1.2.25, Remark 1.2.26 and Corollary 1.2.27 are summarized in the following.

Property 1.2.28. (c.f. Remark 1.2.3) Let $(\mathcal{X}, \mathcal{Y})$ be a t-structure and consider the right adjoint R and the left adjoint L in Example 1.2.25. Then
(i) (existence and uniqueness) For each t in \mathcal{T}, there is a torsion theory triangle $R t \rightarrow t \rightarrow L t \rightarrow \Sigma R t$, and it is unique up to a unique isomorphism,
(ii) (characterization) $\mathcal{X}=\{t \in \mathcal{T} \mid L t=0\}$ and $\mathcal{Y}=\{t \in \mathcal{T} \mid R t=0\}$.

Example 1.2.29. Let $(\mathcal{X}, \mathcal{Y})$ be a t-structure with \mathcal{X}, \mathcal{Y} closed under direct summands. Let t be in \mathcal{X}^{\perp}. Then since $(x, 0) \cong(x, t)=0$, therefore $R t=0$. This gives the distinguished triangle $0 \rightarrow t \rightarrow L t \rightarrow 0$. By Lemma 0.2 .2 (iii), $t \cong L t$, and the above distinguished triangle is isomorphic to $t \xrightarrow{i d} t \rightarrow 0 \rightarrow \Sigma t$. Alternatively, let $x \rightarrow t \rightarrow y \rightarrow \Sigma x$ be the torsion theory triangle, where x is in \mathcal{X} and y is in \mathcal{Y}. Since t is in \mathcal{X}^{\perp}, therefore $y \cong t \oplus \Sigma x$ by Lemma $0.2 .2(\mathrm{v})$. It follows that Σx is in \mathcal{Y}. On the other hand, since $(\mathcal{X}, \mathcal{Y})$ is a t-structure, Σx is in \mathcal{X} as well, therefore Σx is in $\mathcal{X} \cap \mathcal{Y}=0$. This gives $\Sigma x \cong 0$ and $t \cong y$. Then the torsion theory triangle is isomorphic to the distinguished triangle $0 \rightarrow t \xrightarrow{\alpha} t \rightarrow 0$ where α is an isomorphism.

Remark 1.2.30. (c.f. Remark 1.2.3, Remark 1.2.12) Intuitively, a torsion theory $(\mathcal{X}, \mathcal{Y})$ can be understood as measuring how far each t in \mathcal{T} is from being in \mathcal{X} or in \mathcal{Y}. Since $(\mathcal{X}, \mathcal{Y})$ is a torsion theory, $\mathcal{X} \cap \mathcal{Y}=0$ and so there is no contradiction (Remark 1.2.6(i)).

1.3 Examples of torsion theories

In this section, let k be a field and \mathcal{T} be a k-linear Hom finite and KrullSchmidt triangulated category with translation functor Σ and Serre functor S, see Definition 0.3.8. Let $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$ be full additive subcategories of \mathcal{T}. They are assumed to be closed under isomorphisms.

Let us begin with a few lemmas.
Lemma 1.3.1. (i) If $S^{-1} \Sigma \mathcal{X} \subseteq \mathcal{X}, \mathcal{X} \subseteq S^{-1} \mathcal{X}$, then $\Sigma \mathcal{X} \subseteq \mathcal{X}$.
(ii) If $S^{-1} \Sigma \mathcal{X} \subseteq \mathcal{X}, \mathcal{X} \subseteq \Sigma \mathcal{X}$, then $S^{-1} \mathcal{X} \subseteq \mathcal{X}$.
(iii) If $\Sigma \mathcal{X} \subseteq \mathcal{X}, S^{-1} \mathcal{X} \subseteq \mathcal{X}$, then $S^{-1} \Sigma \mathcal{X} \subseteq \mathcal{X}$.
(iv) If $\mathcal{Y} \subseteq S^{-1} \Sigma \mathcal{Y}, \Sigma \mathcal{X} \subseteq \mathcal{Y}$, then $S \mathcal{X} \subseteq \mathcal{Y}$.

Proof. (i) This is because $\Sigma \mathcal{X} \subseteq \Sigma S^{-1} \mathcal{X}=S^{-1} \Sigma \mathcal{X} \subseteq \mathcal{X}$.
(ii) This is because $S^{-1} \mathcal{X} \subseteq \Sigma^{-1} \mathcal{X} \subseteq \mathcal{X}$.
(iii) This is because $S^{-1} \Sigma \mathcal{X} \subseteq S^{-1} \mathcal{X} \subseteq \mathcal{X}$.
(iv) Since $\Sigma \mathcal{X} \subseteq \mathcal{Y} \subseteq S^{-1} \Sigma \mathcal{Y}$, therefore $\mathcal{X} \subseteq S^{-1} \mathcal{Y}, S \mathcal{X} \subseteq \mathcal{Y}$.

Lemma 1.3.2. Suppose $\mathcal{X}^{\perp}=\mathcal{Y}, \mathcal{X}={ }^{\perp} \mathcal{Y}$ and $(\mathcal{X}, \mathcal{Y})=0$. Then $S \mathcal{Y} \subseteq \mathcal{Y}$ if and only if $S^{-1} \mathcal{X} \subseteq \mathcal{X}$.

Proof. (only if) Let X be in \mathcal{X} and Y be in \mathcal{Y}. Since $S \mathcal{Y} \subseteq \mathcal{Y}$, therefore $S Y=Y^{\prime}$ for some Y^{\prime} in \mathcal{Y}. Hence

$$
\begin{aligned}
\left(S^{-1} X, Y\right) & \cong(X, S Y) \\
& =\left(X, Y^{\prime}\right) \\
& =0
\end{aligned}
$$

Therefore $S^{-1} X \in{ }^{\perp} \mathcal{Y}=\mathcal{X}$. (if) Similar.
Lemma 1.3.3. Suppose $\mathcal{X}^{\perp}=\mathcal{Y}, \mathcal{X}={ }^{\perp} \mathcal{Y}$ and $(\mathcal{X}, \mathcal{Y})=0$. Then $S \mathcal{X} \subseteq \mathcal{X}$ if and only if $S^{-1} \mathcal{Y} \subseteq \mathcal{Y}$.

Proof. Similar to Lemma 1.3.2.
Consider t_{1} and t_{2} in \mathcal{T} with $t_{1} \cong x_{1} \oplus y_{1}$ and $t_{2} \cong x_{2} \oplus y_{2} \oplus z$, where x_{1} and x_{2} are in \mathcal{X}, y_{1} and y_{2} are in \mathcal{Y} and z is in \mathcal{Z}. In both cases objects from both \mathcal{X} and \mathcal{Y} are present. However, there might or might not be the two subcategories \mathcal{U}_{1} and \mathcal{U}_{2} of \mathcal{T} such that each t in \mathcal{T} can be written $t \cong u_{1} \oplus u_{2}$ with u_{1} in \mathcal{U}_{1} and u_{2} in \mathcal{U}_{2}. A split torsion theory is an expression for this.

Definition 1.3.4. A split torsion theory is a torsion theory where all the torsion theory triangles split.

Theorem 1.3.5. (Characterizations of split torsion theories) Let $(\mathcal{X}, \mathcal{Y})$ be a torsion theory. Then the following statements are equivalent.
(i) $(\mathcal{X}, \mathcal{Y})$ is a split torsion theory,
(ii) $(Y, \Sigma X)=0$ for all $X \in \mathcal{X}, Y \in \mathcal{Y}$,
(iii) $S^{-1} \Sigma \mathcal{X} \subseteq \mathcal{X}$,
(iv) $S \Sigma^{-1} \mathcal{Y} \subseteq \mathcal{Y}$.

Proof. Let $x \in \mathcal{X}$ and $y \in \mathcal{Y}$.
(i) \Rightarrow (ii): Consider $f: y \rightarrow \Sigma x$. Complete it to a distinguished triangle $x \rightarrow t \rightarrow y \xrightarrow{f} \Sigma x$ in \mathcal{T}. Then $f=0$ by definition of a split torsion theory (Lemma 0.2.2(v)).
(ii) \Rightarrow (i): This is true by definition (Lemma 0.2.2(v)).
(ii) \Rightarrow (iii): Since $\left(S^{-1} \Sigma x, y\right) \cong(y, \Sigma x)^{*}=0$, therefore $S^{-1} \Sigma x \in{ }^{\perp} \mathcal{Y}=\mathcal{X}$.
(iii) \Rightarrow (ii): For $x^{\prime}=S^{-1} \Sigma x \in \mathcal{X}$, we have $(y, \Sigma x) \cong(\Sigma x, S y)^{*} \cong\left(S^{-1} \Sigma x, y\right)^{*}=$ $\left(x^{\prime}, y\right)^{*}=0$.
(ii) \Rightarrow (iv): Since $\left(x, S \Sigma^{-1} y\right) \cong\left(\Sigma^{-1} y, x\right)^{*} \cong(y, \Sigma x)^{*}=0$, therefore $S \Sigma^{-1} y \in \mathcal{X}^{\perp}=\mathcal{Y}$.
(iv) \Rightarrow (ii): For $y^{\prime}=S \Sigma^{-1} y \in \mathcal{Y}$, we have $(y, \Sigma x) \cong\left(\Sigma^{-1} y, x\right) \cong\left(x, S \Sigma^{-1} y\right)^{*}=$ $\left(x, y^{\prime}\right)^{*}=0$.

Remark 1.3.6. The composition $S \Sigma^{-1}$ is the Auslander-Reiten translation given in Definition 0.3.11.

Example 1.3.7. (c.f. Example 1.2.25) Let $(\mathcal{X}, \mathcal{Y})$ be a split torsion theory. Then the inclusion $\imath: \mathcal{X} \hookrightarrow \mathcal{T}$ admits a right adjoint $R: \mathcal{T} \rightarrow \mathcal{X}$. Similarly, the inclusion $\imath: \mathcal{Y} \hookrightarrow \mathcal{T}$ admits a left adjoint $L: \mathcal{T} \rightarrow \mathcal{Y}$.

Proof. Consider the morphism $h: \Sigma^{-1} y \rightarrow x$ in Proposition 1.2.23. Since $\left(\Sigma^{-1} y, x\right)=(y, \Sigma x)=0$ by Theorem 1.3.5, h is trivially an \mathcal{X}-left phantom. Therefore by Proposition 1.2.23, the inclusion $\imath: \mathcal{X} \hookrightarrow \mathcal{T}$ admits a right adjoint $R: \mathcal{T} \rightarrow \mathcal{X}$. Similarly, by Proposition 1.2.24, the inclusion \imath : $\mathcal{Y} \hookrightarrow \mathcal{T}$ admits a left adjoint $L: \mathcal{T} \rightarrow \mathcal{Y}$.

Remark 1.3.8. By virtue of Example 1.3.7, Property 1.2.28 is also true for split torsion theories.
Remark 1.3.9. Consider the diagram in Proposition 1.2.23. If the torsion theory $(\mathcal{X}, \mathcal{Y})$ is a t-structure, then the morphism $x^{\prime} \rightarrow \Sigma^{-1} y$ is zero and the right adjoint exists (Example 1.2.25). On the other hand, Theorem 1.3.5 describes the behaviour of the morphism $\Sigma^{-1} y \rightarrow x$, and characterizes another example of a torsion theory, the split torsion theory, where the right adjoint exists as well (Example 1.3.7).

Lemma 1.3.10. Let $(\mathcal{X}, \mathcal{Y})$ be a split torsion theory. Then for each indecomposable t in \mathcal{T}, either t is in \mathcal{X} or t is in \mathcal{Y}.

Proof. Since $(\mathcal{X}, \mathcal{Y})$ is a torsion theory, $\mathcal{X} \cap \mathcal{Y}=0$ and so t cannot be in both \mathcal{X} and \mathcal{Y} (Remark 1.2.6(i)). Given an indecomposable t in \mathcal{T}, there is a distinguished triangle $x \rightarrow t \rightarrow y \rightarrow \Sigma x$ for some x in \mathcal{X} and y in \mathcal{Y}. Since the torsion theory is split, $t \cong x \oplus y$. Since t is indecomposable, either $x \cong 0$ or $y \cong 0$, which gives either $t \cong y$ or $t \cong x$. Therefore either t is in \mathcal{X} or t is in \mathcal{Y}, since \mathcal{X} and \mathcal{Y} are closed under isomorphisms.

Remark 1.3.11. The converse of Lemma 1.3.10 is not true. Suppose (\mathcal{X}, \mathcal{Y}) is a torsion theory, and that for each indecomposable t in \mathcal{T}, either t is in \mathcal{X} or t is in \mathcal{Y}. Then $(\mathcal{X}, \mathcal{Y})$ does not need to be a split torsion theory. This is because the existence of a torsion theory triangle is not unique.
Lemma 1.3.12. Let $(\mathcal{X}, \mathcal{Y})$ be a split torsion theory. Then $(\mathcal{X}, \mathcal{Y})$ is a t-structure.

Proof. Consider an indecomposable x in \mathcal{X}. By Lemma 1.3.10, either Σx is in \mathcal{X} or Σx is in \mathcal{Y}. Suppose Σx is in \mathcal{Y}. By Theorem 1.3.5, $\mathcal{Y} \subseteq S^{-1} \Sigma \mathcal{Y}$, which gives $S x \in \mathcal{Y}$ (Lemma 1.3.1(iv)). By Lemma 0.3.10, there is the Auslander-Reiten triangle $u \rightarrow v \rightarrow x \rightarrow S x$ in \mathcal{T}. However, the triangle would split, since x is in \mathcal{X} and $S x$ is in \mathcal{Y}, which is not possible. Therefore Σx is in \mathcal{X}, i.e. $\Sigma \mathcal{X} \subseteq \mathcal{X}$.

1.4 The finite derived category of Dynkin type

Let \triangle be a quiver (a directed graph). Given an arrow α, the initial point (resp. end point) of α is denoted by $s(\alpha)$ (resp. $e(\alpha)$). A path of length
$l \geq 1$ from a vertex x to a vertex y is of the form $\left(x\left|\alpha_{1}, \ldots, \alpha_{l}\right| y\right)$ with arrows α_{i} satisfying $e\left(\alpha_{i}\right)=s\left(\alpha_{i+1}\right)$ for $1 \leq i<l, s\left(\alpha_{1}\right)=x$ and $e\left(\alpha_{l}\right)=y$. For any vertex x in \triangle, a path of length 0 is denoted by $(x \mid x)$. Let the path algebra $k \triangle$ be the k-vector space with basis the set of all paths of length $l \geq 0$ in \triangle. The product of two paths $p_{1}=\left(x_{1}\left|\alpha_{1}, \ldots, \alpha_{m}\right| y_{1}\right)$ and $p_{2}=\left(x_{2}\left|\beta_{1}, \ldots, \beta_{n}\right| y_{2}\right)$ is $p_{1} p_{2}=\left(x_{1}\left|\alpha_{1}, \ldots, \alpha_{m}, \beta_{1}, \ldots, \beta_{n}\right| y_{2}\right)$ if $y_{1}=x_{2}$. Otherwise it is zero. The global dimension of a path algebra $k \triangle$ is either 0 or 1 (Example 0.1.25).

Below are the cases where \triangle is a Dynkin graph.
The Dynkin graph of type A_{n} :

$$
1-2-3-\cdots-1-n
$$

The Dynkin graph of type $D_{n}, n \geq 4$:

The Dynkin graph of type E_{6} :

The Dynkin graph of type E_{7} :

The Dynkin graph of type E_{8} :

The finite derived category $D^{b}(\bmod k \triangle)$ is a k-linear Hom finite triangulated category. It is Krull-Schmidt as well. By [14, Theorem 3.6], the finite derived category $D^{b}(\bmod k \triangle)$ has Auslander-Reiten triangles, and by Lemma 0.3.10 also a Serre functor.

Given a quiver \triangle, there is the translation quiver $\mathbb{Z} \triangle$ naturally induced by \triangle. The vertices of $\mathbb{Z} \triangle$ is the set $\mathbb{Z} \times \triangle_{0}$, where \triangle_{0} is the set of vertices of \triangle. The number of arrows from (n, x) to (m, y) in $\mathbb{Z} \times \triangle_{0}$ is the number of arrows from x to y (resp. from y to x) in \triangle_{0} if $n=m$ (resp. $m=n+1$), and there are no arrows otherwise. If \triangle is a Dynkin graph, then $\mathbb{Z} \triangle$ does not depend on the orientation of \triangle, see [15, I.5.6], and the Auslander-Reiten quiver of the finite derived category $D^{b}(\bmod k \triangle)$ is $\mathbb{Z} \triangle$. This is given in [14, 4.5].

Lemma 1.4.1. Let x and y be indecomposable objects of the finite derived category $D^{b}(\bmod k \triangle)$, where \triangle is a Dynkin graph. Then by [14, 4.6], any non-zero morphism f from x to y is a linear combination of morphisms, written $f=\Sigma \alpha_{i} f_{i}$, where the α_{i} are scalars and the $f_{i}: x \rightarrow y$ are compositions of irreducible morphisms.

Let \triangle be a Dynkin graph. Then the category ind $D^{b}(\bmod k \triangle)$ is equivalent to the mesh category of $\mathbb{Z} \triangle$. This means that given an Auslander-Reiten triangle $a \xrightarrow{\alpha} b \xrightarrow{\beta} c \rightarrow$ in the finite derived category $D^{b}(\bmod k \triangle)$, which can be read off from the Auslander-Reiten quiver, there is the relation $\beta \alpha=0$ (Lemma $0.2 .2(i)$), and only relations of this kind are present. The above is only a gentle and informal initiation, and the reader will be able to seek guidance from [14, 4.6].

Together with Lemma 1.4.1, the finite derived category $D^{b}(\bmod k \triangle)$, where \triangle is a Dynkin graph, is then said to be standard.

For example, the Auslander-Reiten quiver of $D^{b}\left(\bmod k A_{n}\right)$ is

The following coordinate system on the quiver is employed. Suppose the
indecomposable object a has coordinates (i, j). The coordinates of some of its surrounding objects are given in the following diagram.

The coordinates on the bottom line of the quiver satisfy the equation $y-x=$ 2 , and those on the top line satisfy $y-x=n+1$.

Let Σ be the translation functor of $D^{b}\left(\bmod k A_{n}\right)$. Then the action of Σ is given by $\Sigma(i, j)=(j-1, i+n+2)([25$, Example 2.8]), and the action of the Auslander-Reiten translation τ by $\tau(i, j)=(i-1, j-1)$.

Definition 1.4.2. Let a be an indecomposable object of $D^{b}\left(\bmod k A_{n}\right)$, and let $\mathcal{L}(a)$ be the set of indecomposable objects with non-zero morphisms to a. Dually, let $\mathcal{R}(a)$ be the set of indecomposable objects to which there are non-zero morphisms from a.

Sketch 1.4.3. The two regions $\mathcal{L}(a)$ and $\mathcal{R}(a)$ are depicted below. The coordinates of the corners of $\mathcal{R}(a)$ are given by $a=(i, j), b=(j-2, j)$, $c=(j-2, i+n+1)$ and $d=(i, i+n+1)$.

Example 1.4.4. Consider the Auslander-Reiten quiver of $D^{b}\left(\bmod k A_{4}\right)$ and the indecomposable object c_{2}.

Since $b_{2} \rightarrow b_{3} \oplus c_{1} \rightarrow c_{2} \rightarrow$ is an Auslander-Reiten triangle, $\beta_{2}^{\prime} \beta_{2}+\gamma_{1} \beta_{1}^{\prime}=0$, and so by Lemma 1.4.1, $\left(b_{2}, c_{2}\right)$ is one-dimensional. In general, given indecomposable objects x and y of $D^{b}\left(\bmod k A_{4}\right)$, if (x, y) is non-zero, then (x, y) is one-dimensional. Since $b_{1} \rightarrow b_{2} \rightarrow c_{1} \rightarrow$ is an Auslander-Reiten triangle, $\beta_{1}^{\prime} \beta_{1}=0$. Therefore by Lemma 1.4.1, $\left(b_{1}, c_{1}\right)=0$ and so $\left(b_{1}, c_{2}\right)=0$, and then $\left(a_{2}, c_{2}\right)=\left(m_{3}, c_{2}\right)=0$. Similarly, since $m_{4} \rightarrow a_{3} \rightarrow a_{4} \rightarrow$ is an Auslander-Reiten triangle, by Lemma 1.4.1, $\left(m_{4}, a_{4}\right)=0$ and so $\left(m_{4}, c_{2}\right)=0$. Accordingly, $\mathcal{L}\left(c_{2}\right)=\left\{a_{3}, a_{4}, b_{2}, b_{3}, c_{1}, c_{2}\right\}$. Dually, $\mathcal{R}\left(c_{2}\right)$ $=\left\{c_{2}, c_{3}, c_{4}, d_{1}, d_{2}, d_{3}\right\}$.

For the rest of this section, let \mathcal{X}, \mathcal{Y} be full additive subcategories of the finite derived category $D^{b}\left(\bmod k A_{n}\right)$, denoted by \mathcal{T}, with translation functor Σ, Serre functor S and Auslander-Reiten translation $\tau \cong S \Sigma^{-1}$. The subcategories are assumed to be closed under isomorphisms and direct summands.

Definition 1.4.5. A zig zag Z in the Auslander-Reiten quiver of the finite derived category $D^{b}\left(\bmod k A_{n}\right)$ is a set of coordinates $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ where $y_{1}-x_{1}=2, y_{n}-x_{n}=n+1$ and $\left(x_{i+1}-x_{i}, y_{i+1}-y_{i}\right) \in\{(-1,0),(0,1)\}$ for $1 \leq i \leq n-1$.

Proposition 1.4.6. (c.f. Lemma 1.3.10) Let $(\mathcal{X}, \mathcal{Y})$ be a split torsion theory. If the indecomposable $u=(g, h)$ is in \mathcal{X}, then the region $R_{u}=$ $\{(x, y) \mid g \leq x, h \leq y$ and $2 \leq y-x \leq n+1\}$ is in \mathcal{X}.

Proof. Since $(\mathcal{X}, \mathcal{Y})$ is a torsion theory, \mathcal{X} is closed under extensions. In the following diagram, let $v_{1}=(g, h+1), v_{2}=(g+1, h)$ and $w=(g+1, h+1)$. Then there is the Auslander-Reiten triangle $u \rightarrow v_{1} \oplus v_{2} \rightarrow w \rightarrow$. Since $\tau^{-1} \mathcal{X} \subseteq \mathcal{X}$ by Theorem 1.3.5, $w=\tau^{-1}(u)$ is in \mathcal{X}. Since \mathcal{X} is closed under extensions and direct summands, v_{1} and v_{2} are in \mathcal{X}. By repeating a (similar) argument on v_{1} and v_{2} and so on, the two line segments t_{1} and t_{2} are in \mathcal{X}. Eventually, the region R_{u} is in \mathcal{X}, since $\tau^{-1} \mathcal{X} \subseteq \mathcal{X}$.

Corollary 1.4.7. Let $(\mathcal{X}, \mathcal{Y})$ be a split torsion theory. If \mathcal{X} is neither zero nor all of \mathcal{T}, then there is a zig zag Z such that ind $\mathcal{X}=\tau^{-i} Z$ for $i \geq 0$ and indY $=\tau^{j} Z$ for $j>0$. One example is as follows.

Proof. Consider a horizontal line $y-x=k$ with $3 \leq k \leq n$ in the AuslanderReiten quiver of \mathcal{T}. If there are objects from \mathcal{X} on this line, then there is a leftmost such object. Otherwise there are objects of \mathcal{X} arbitrarily far to the left on $y-x=k$, so all objects on $y-x=k$ are in \mathcal{X} because $\tau^{-1} \mathcal{X} \subseteq \mathcal{X}$ by Theorem 1.3.5. In the following diagram, let $d_{1}=\left(u_{1}, u_{2}\right)$ and $d_{2}=\left(u_{1}+1, u_{2}-1\right)$ be objects on the lines $y-x=k+1$ and $y-x=k-1$ respectively. Then there is the Auslander-Reiten triangle $d_{0} \rightarrow d_{1} \oplus d_{2} \rightarrow$ $d_{0}^{\prime} \rightarrow$, where $d_{0}=\left(u_{1}, u_{2}-1\right)$ and $d_{0}^{\prime}=\left(u_{1}+1, u_{2}\right)$. Since d_{0} and d_{0}^{\prime} both lie on the line $y-x=k$ which is in \mathcal{X}, it follows that d_{1} and d_{2} are in \mathcal{X}, since \mathcal{X} is closed under extensions and direct summands. Therefore the two neighbouring lines $y-x=k+1$ and $y-x=k-1$ are in \mathcal{X}.

Repeating the argument for other (horizontal) lines, \mathcal{X} has to contain all the indecomposable objects of \mathcal{T}, i.e. \mathcal{X} has to be all of \mathcal{T}. The cases where $k=2$ and $k=n+1$ are similar.

Now on the line $y-x=k, 2 \leq k \leq n+1$, let a_{k} be the leftmost object which is in \mathcal{X}, as shown in the following diagram. Suppose that for some k the object a_{k+1} was neither a_{k}^{+}nor a_{k}^{-}. If a_{k+1} were left of a_{k}^{-}, then its region $R_{a_{k+1}} \subseteq \mathcal{X}$ (Proposition 1.4.6) would contain an object to the left of a_{k} on $y-x=k$, which is a contradiction. Also a_{k+1} could not have been to the right of a_{k}^{+}since a_{k}^{+}is in the region $R_{a_{k}} \subseteq \mathcal{X}$ (Proposition 1.4.6). Therefore a_{k+1} can only be a_{k}^{+}or a_{k}^{-}.

Finally, the result follows by applying Proposition 1.4.6 on all such leftmost objects.

Theorem 1.4.8. (classification of split torsion theories) There is a bijection between the set of zig zag Z 's and the set of split torsion theories $(\mathcal{X}, \mathcal{Y})$ in the finite derived category $D^{b}\left(\bmod k A_{n}\right)$, where \mathcal{X} and \mathcal{Y} are separated by Z such that ind $\mathcal{X}=\tau^{-i} Z$ for $i \geq 0$ and ind $\mathcal{Y}=\tau^{j} Z$ for $j>0$.

Proof. If $(\mathcal{X}, \mathcal{Y})$ is a split torsion theory, then by Corollary 1.4.7, there is a zig zag Z which separates \mathcal{X} and \mathcal{Y} on the Auslander-Reiten quiver. Conversely, suppose there is a zig zag Z which separates \mathcal{X} and \mathcal{Y} on the

Auslander-Reiten quiver. Then by inspection, \mathcal{Y} (resp. \mathcal{X}) is precisely \mathcal{X}^{\perp} (resp. ${ }^{\perp} \mathcal{Y}$) (Sketch 1.4.3). Therefore by Lemma 1.2.19, \mathcal{X} is closed under extensions. The subcategory \mathcal{X} is trivially precovering since $(\mathcal{X}, \mathcal{Y})=0$. Therefore $(\mathcal{X}, \mathcal{Y})$ is a torsion theory by [21, Proposition 2.3]. Since it can be readily seen by considering the Auslander-Reiten quiver that $\tau^{-1} \mathcal{X} \subseteq \mathcal{X}$, by Theorem 1.3.5, $(\mathcal{X}, \mathcal{Y})$ is a split torsion theory.

The following lemma is a special case of Lemma 1.3.12. This is because the finite derived category $D^{b}\left(\bmod k A_{n}\right)$ has a Serre functor.

Lemma 1.4.9. Let $(\mathcal{X}, \mathcal{Y})$ be a split torsion theory. Then $(\mathcal{X}, \mathcal{Y})$ is a t structure.

Proof. Let $u=(g, h)$ be in \mathcal{X}. Then by Proposition 1.4.6, the region R_{u} is in \mathcal{X}. Thus $\Sigma u=\Sigma(g, h)=(h-1, g+n+2)$ is in $R_{u}=\{(x, y) \mid g \leq x, h \leq y$ and $2 \leq y-x \leq n+1\} \subseteq \mathcal{X}$.

An alternative proof is possible by inspecting the action of the Serre functor S and by appealing to Lemma 1.3.1(i). First we need a little lemma.

Lemma 1.4.10. Let $(\mathcal{X}, \mathcal{Y})$ be a split torsion theory. Then $S \mathcal{X} \subseteq \mathcal{X}$.
Proof. Remember $S \cong \Sigma \tau \cong \tau \Sigma$ (Definition 0.3.11). Let $u=(g, h) \in \mathcal{X}$ and consider the region R_{u} in Proposition 1.4.6. Thus $S x=S(g, h)=\tau \Sigma(g, h)=$ $\tau(h-1, g+n+2)=(h-2, g+n+1)$ is in $R_{u}=\{(x, y) \mid g \leq x, h \leq y$ and $2 \leq y-x \leq n+1\} \subseteq \mathcal{X}$.

An alternative proof of Lemma 1.4.9 is then given.
Proof. Since $(\mathcal{X}, \mathcal{Y})$ is a split torsion theory, $S^{-1} \Sigma \mathcal{X} \subseteq \mathcal{X}$ by Theorem 1.3.5 and $S \mathcal{X} \subseteq \mathcal{X}$ by Lemma 1.4.10. Finally, by Lemma 1.3.1(i), $S^{-1} \Sigma \mathcal{X} \subseteq \mathcal{X}$ and $S \mathcal{X} \subseteq \mathcal{X}$ give $\Sigma \mathcal{X} \subseteq \mathcal{X}$.

The following lemma is true not only for the subcategory \mathcal{X} of the finite derived category $D^{b}\left(\bmod k A_{n}\right)$, but simply of any k-linear Hom finite and Krull-Schmidt triangulated category. It is suggestive of the situation when the notions of split torsion theories and t -structures coincide.

Lemma 1.4.11. Suppose $S \mathcal{X} \cong \mathcal{X}$. Then the following are equivalent.
(i) $S^{-1} \Sigma \mathcal{X} \subseteq \mathcal{X}$,
(ii) $\Sigma \mathcal{X} \subseteq \mathcal{X}$.

Proof. This follows by Lemma 1.3.1(i) and Lemma 1.3.1(iii).
Remark 1.4.12. Suppose a torsion theory satisfies the condition in Lemma 1.4.11. Then the one characterized by (i) corresponds to a split torsion theory by Theorem 1.3.5, and the one characterized by (ii) corresponds to a t-structure by definition.

The following is an illustration of Lemma 1.4.11.
Example 1.4.13. Consider the finite derived category $D^{b}(k)=D^{b}\left(\bmod k A_{n}\right)$ where $n=1$. By [15, Section 5.2], an indecomposable X in $D^{b}(k)$ is of the form

$$
\cdots \longrightarrow 0 \longrightarrow 0 \longrightarrow k \longrightarrow 0 \longrightarrow 0 \longrightarrow \cdots,
$$

where k is at any i-th position.
By Lemma 0.3.6 and Lemma 0.1.9, the end terms of an Auslander-Reiten triangle are indecomposable. Therefore an Auslander-Reiten triangle in $D^{b}(k)$ is of the form

$$
X \xrightarrow{\alpha} Y \xrightarrow{\beta} Z \xrightarrow{\gamma \neq 0} \Sigma X,
$$

where X and Z are indecomposable, and $\Sigma^{-1} Z \cong X$ since $(Z, \Sigma X)$ is onedimensional and the morphism $\gamma: Z \rightarrow \Sigma X$ is non-zero. Therefore $Y \cong 0$ by Lemma 0.2.2(iii) and an Auslander-Reiten triangle in $D^{b}(k)$ is of the form

$$
X \longrightarrow 0 \longrightarrow Z \xrightarrow{\gamma \neq 0} \Sigma X .
$$

Together with $\tau Z \cong S \Sigma^{-1} Z \cong X$ this gives $S X \cong X$.
The Auslander-Reiten quiver of $D^{b}(k)$ is as follows.

Remark 1.4.14. Let $\left(\mathcal{X}_{1}, \mathcal{Y}_{1}\right)$ be a torsion theory in $D^{b}(k)$ (Example 1.4.13). Then by Lemma 1.4.11, the torsion theory is a split torsion theory if and only if it is a t-structure (c.f. Remark 1.4.12).

1.5 Anecdote

The chapter concludes with the following informal recapitulation. As usual, let k be a field. Let \mathcal{T} be a k-linear Hom finite and Krull-Schmidt triangu-
lated category with translation functor Σ, Serre functor S and AuslanderReiten translation $\tau \cong S \Sigma^{-1}$. Let \mathcal{X}, \mathcal{Y} be full additive subcategories of \mathcal{T}. They do not need to be triangulated, but are assumed to be closed under isomorphisms.

Three different types of distinguished triangles have been hitherto described.
(i) split distinguished triangles,
(ii) torsion theory triangles,
(iii) Auslander-Reiten triangles.

Torsion theory triangles can be split. On the other hand, Auslander-Reiten triangles are not split.

Lemma 1.5.1. Let $(\mathcal{X}, \mathcal{Y})$ be a torsion theory. If $\tau^{-1} \mathcal{X} \subseteq \mathcal{X}$, then there are no distinguished triangles (other than the one with all terms zero) ϵ where ϵ is both a torsion theory triangle and an Auslander-Reiten triangle.

Proof. Suppose $\epsilon: x \rightarrow t \rightarrow y \rightarrow \Sigma x$ is such a triangle. Then by Theorem 1.3.5, ϵ is split, but by definition Auslander-Reiten triangles are not split. Alternatively, $\tau^{-1} \mathcal{X} \subseteq \mathcal{X}$ implies that y is in \mathcal{X}, but then y would have to be in $\mathcal{X} \cap \mathcal{Y}=0$ (Remark 1.2.6(i)). Similarly, x would also have to be 0 since $\tau \mathcal{Y} \subseteq \mathcal{Y}$ by Theorem 1.3.5.

Below are a few comparisons between torsion theory triangles and AuslanderReiten triangles.
Comparison 1.5.2. (nature of restrictions) Let $(\mathcal{X}, \mathcal{Y})$ be a torsion theory, and $\epsilon: u \xrightarrow{\mu} v \xrightarrow{\nu} w \xrightarrow{\xi} \Sigma u$ be a distinguished triangle in \mathcal{T}. If ϵ is a torsion theory triangle ϵ_{1}, then it is defined in terms of the membership of u and w in the given subcategories \mathcal{X} and \mathcal{Y} respectively, and the morphisms μ and ν can be intuitively perceived as approximations of the canonical inclusion and the canonical projection respectively (Remark 1.2.30). On the other hand, if ϵ is an Auslander-Reiten triangle ϵ_{2}, then it is defined in terms of the morphisms μ, ν and ξ, and in the example given in Proposition 1.4.6, the (first three) objects $u, v_{1} \oplus v_{2}$ and w in the Auslander-Reiten triangle $u \rightarrow v_{1} \oplus v_{2} \rightarrow w \rightarrow$ are all in \mathcal{X}.

Comparison 1.5.3. (construction) A torsion theory triangle is of the form $R t \rightarrow t \rightarrow L t \rightarrow \Sigma R t$ when the right adjoint R and the left adjoint L exist (Property 1.2.28). An Auslander-Reiten triangle is of the form $S \Sigma^{-1} z \rightarrow$ $y \rightarrow z \rightarrow S z$ when the Serre functor S exists (Lemma 0.3.10).

Comparison 1.5.4. (right minimal morphisms) Let $(\mathcal{X}, \mathcal{Y})$ be a torsion theory, and $\epsilon: u \xrightarrow{\mu} v \xrightarrow{\nu} w \xrightarrow{\xi} \Sigma u$ be a distinguished triangle in \mathcal{T}. If ϵ is an Auslander-Reiten triangle, then ν is right minimal by Lemma 0.3.6. On the other hand, any given right minimal morphism $\mu: u \rightarrow v$ in \mathcal{T}, with μ an \mathcal{X}-precover, can be extended to a torsion theory triangle $u \xrightarrow{\mu} v \rightarrow w \rightarrow \Sigma u$ with w in \mathcal{Y} by Proposition 1.2.23. Accordingly, the occurrence of a right minimal morphism in a distinguished triangle affects whether the distinguished triangle is an Auslander-Reiten triangle or a torsion theory triangle.
Remark 1.5.5. (i) In Comparison 1.5.2, the example from Proposition 1.4.6 is given, where the (first three) objects $u, v_{1} \oplus v_{2}$ and w in the (Auslander-Reiten) triangle $u \xrightarrow{\alpha} v_{1} \oplus v_{2} \rightarrow w \rightarrow$ are all in \mathcal{X}. This can also be true in some distinguished triangles other than AuslanderReiten triangles. For example, consider the morphism $\alpha=\binom{\alpha_{1}}{\alpha_{2}}$ in the above Auslander-Reiten triangle. The objects u and v_{1} are in \mathcal{X}, and in Section 3.2.2, the mapping cone y of the morphism $\alpha_{1}: u \rightarrow v_{1}$ is shown to be in \mathcal{X} as well. The distinguished triangle $u \rightarrow v_{1} \rightarrow y \rightarrow$ is not however an Auslander-Reiten triangle.
(ii) Let $(\mathcal{X}, \mathcal{Y})$ be a torsion theory. Suppose for each t in \mathcal{T}, there is a torsion theory triangle $x \rightarrow t \rightarrow y \rightarrow \Sigma x$, where $x \in \mathcal{X}, y \in \mathcal{Y}$ and the morphism $h: \Sigma^{-1} y \rightarrow x$ is an \mathcal{X}-left phantom. Then by Lemma 1.2.23, the right adjoint $R: \mathcal{T} \rightarrow \mathcal{X}$ of the inclusion $\imath: \mathcal{X} \hookrightarrow \mathcal{T}$ is $R(t)=x$, i.e. $x=\Sigma^{-1} u$ where u is the mapping cone of the \mathcal{Y}-preenvelope $t \rightarrow y$. The action of the right adjoint R can be seen on the Auslander-Reiten quiver, if it is possible to recognize the \mathcal{Y}-preenvelope, the mapping cone construction as well as the action of Σ on the quiver. There is more description about mapping cone constructions in some selected situations in Section 3.2.2, Section 3.3.2 and Section 3.4.3, and an illustration is given in Example 4.5.6.

Chapter 2

Existence of
 Auslander-Reiten sequences in subcategories

This chapter is also written in the form of a paper which is accepted for publication in the Journal of Pure and Applied Algebra ([36]).

2.1 Introduction

The reader is reminded of the notion of Auslander-Reiten triangles in subcategories in Definition 0.3.5. The octahedral axiom of a triangulated category described in Section 0.2 is not necessarily true when it is confined to Auslander-Reiten triangles only. There will be more examples of applications of the octahedral axiom in Section 3.4.3, where not all the distinguished triangles induced by the octahedral axiom are Auslander-Reiten triangles. This leads us to other conditions of the existence of Auslander-Reiten triangles, which is very much related to the existence of Auslander-Reiten sequences described in this chapter.

Let \mathcal{X}, \mathcal{Y} be full subcategories of a triangulated category \mathcal{T}. The notions of a torsion theory and torsion theory triangles are given in Definition 1.2.5. Also the notions of an \mathcal{X}-(pre)cover and of \mathcal{X} as (pre)covering for \mathcal{T} in Definition 1.2.8 and in Definition 1.2.9. Suppose $(\mathcal{X}, \mathcal{Y})$ is a torsion theory. The connection between torsion theory triangles and Auslander-Reiten triangles is very subtle, and it has been described in Comparison 1.5.4.

The following offers another facet of the interrelationship. Since $(\mathcal{X}, \mathcal{Y})$ is a torsion theory, \mathcal{X} is a precovering for \mathcal{T}. If \mathcal{X} is also a covering for \mathcal{T}, then
given t in \mathcal{T}, there is an \mathcal{X}-cover of the form $x \xrightarrow{\alpha} t$ which can be extended to a torsion theory triangle $x \xrightarrow{\alpha} t \rightarrow y \rightarrow$ with y in \mathcal{Y} by Proposition 1.2.23.

This is very similar to the existence of Auslander-Reiten triangles in subcategories described in [22, Theorem 3.1]. Suppose \mathcal{T} is a skeletally small k-linear Hom finite triangulated category with split idempotents, and \mathcal{X} is a full subcategory of \mathcal{T} closed under extensions and direct summands. The theorem is restated as follows.

Theorem. ([22, Theorem 3.1]) Let x be in \mathcal{X} and let $u \rightarrow v \rightarrow x \rightarrow$ be an Auslander-Reiten triangle in \mathcal{T}. Then the following are equivalent.
(i) u has an \mathcal{X}-cover of the form $a \rightarrow u$,
(ii) There is an Auslander-Reiten triangle $a \rightarrow b \rightarrow x \rightarrow$ in \mathcal{X}.

Therefore there is a very close and subtle relationship between the existence of torsion theory triangles and the existence of Auslander-Reiten triangles. In this chapter, we study the existence of Auslander-Reiten sequences in subcategories of $\bmod (\Lambda)$, where Λ is a finite-dimensional k-algebra over the field k, based on the theory of the existence of Auslander-Reiten triangles in subcategories developed in [22].

In the above theorem, when u is in \mathcal{X}, (i) and (ii) are true trivially and independently. Therefore intuitively, (i) and (ii) are two equivalent forms in disguise for measuring how far for each $u \notin \mathcal{X}$ it is from \mathcal{X}. Accordingly, \mathcal{X}-covers and Auslander-Reiten triangles in \mathcal{X} are different expressions of the subcategory \mathcal{X} approximating \mathcal{T}.

2.2 Notations

Let Λ be a finite-dimensional k-algebra over the field k, and $\Lambda^{o p}$ be the opposite algebra. The elements of Λ and $\Lambda^{o p}$ are the same, and given multiplication \cdot and elements λ_{1}, λ_{2} in $\Lambda^{o p}$, let $\lambda_{1} \cdot \lambda_{2}=\lambda_{2} \lambda_{1}$, where $\lambda_{2} \lambda_{1}$ is considered in Λ. As usual, let $\bmod (\Lambda)\left(\right.$ resp. $\left.\bmod \left(\Lambda^{o p}\right)\right)$ be the category of finitely generated Λ-left-modules (resp. $\Lambda^{o p}$-left-modules or Λ-right-modules).

A finite-dimensional k-algebra Λ is said to be representation-finite if the number of isomorphism classes of indecomposable finite-dimensional Λ-leftmodules is finite. Otherwise, it is said to be representation-infinite.

Let D be the usual duality functor $\mathrm{D}(-)=\operatorname{Hom}_{k}(-, k): \bmod (\Lambda) \rightarrow$ $\bmod \left(\Lambda^{o p}\right)$. Given a Λ-left-module M in $\bmod (\Lambda)$, the set $\operatorname{Hom}_{k}(M, k)$ is a k-vector space, and is also a Λ-right-module. Indeed given μ in $\operatorname{Hom}_{k}(M, k)$
and λ in Λ, define $(\mu \cdot \lambda)(m)=\mu(\lambda \cdot m)$ for m in M. In particular, $\mathrm{D} \Lambda=$ $\operatorname{Hom}_{k}(\Lambda, k)$ is the k-linear dual of Λ which is a Λ-bi-module.

The duality functor $\mathrm{D}(-)$ is an exact, contravariant functor and it induces a contravariant equivalence between the categories $\bmod (\Lambda)$ and $\bmod \left(\Lambda^{o p}\right)$, so that the category $\bmod \left(\Lambda^{o p}\right)$ is equivalent to the opposite category of $\bmod (\Lambda)$.

Lemma 2.2.1. Let M be in $\bmod (\Lambda)$. Then
(i) M is indecomposable if and only if $\mathrm{D} M$ is indecomposable,
(ii) If M is projective (resp. injective), then $\mathrm{D} M$ is injective (resp. projective).

Subsequently, the duality $\mathrm{D}(-): \bmod (\Lambda) \rightarrow \bmod \left(\Lambda^{o p}\right)$ induces a duality $\mathrm{D}(-): \underline{\bmod }(\Lambda) \rightarrow \overline{\bmod }\left(\Lambda^{o p}\right)$.

Let \mathcal{M} be a full subcategory of $\bmod (\Lambda)$, and remember the notions of a right almost split morphism and of a left almost split morphism in Definition 0.3.1.

Definition 2.2.2. (c.f. Definition 0.3.5) An exact sequence $0 \rightarrow A \xrightarrow{g} B \xrightarrow{f}$ $C \rightarrow 0$ with A, B, C in the subcategory \mathcal{M} is an Auslander-Reiten sequence in \mathcal{M} if g is left almost split and f is right almost split in \mathcal{M}.

Following the notations of [22], let $\mathrm{K}(\operatorname{Inj} \Lambda)$ be the homotopy category of complexes of injective Λ-left-modules. Let \mathcal{T} be the full subcategory of $\mathrm{K}(\operatorname{Inj} \Lambda)$ consisting of complexes X for which each X^{i} is finitely generated, and where $\mathrm{H}^{i}(X)=0$ for $i \gg 0$ and $\mathrm{H}^{i} \operatorname{Hom}_{\Lambda}(\mathrm{D} \Lambda, X)=0$ for $i \ll 0$.

The category \mathcal{T} is a skeletally small k-linear Hom finite triangulated category with split idempotents. It is Krull-Schmidt as well. Let the suspension functor Σ be the translation functor of the triangulated category \mathcal{T}. Let \mathcal{C} be the full subcategory of \mathcal{T} which consists of injective resolutions of modules in $\bmod (\Lambda)$. The category \mathcal{C} is closed under extensions and direct summands. The reader can refer to [22, Remark 1.2] and [22, Lemma 4.3] for more details.

Let \mathcal{M} be a full subcategory of $\bmod (\Lambda)$ closed under extensions and direct summands, and let \mathcal{C}^{\prime} consist of the injective resolutions of the M in \mathcal{M}. The subcategories \mathcal{C}^{\prime} and \mathcal{M} need not be abelian.

Remark 2.2.3. (i) \mathcal{C} is equivalent to $\bmod (\Lambda)$, by the functor $F: \bmod (\Lambda) \rightarrow$ \mathcal{C} which sends X in $\bmod (\Lambda)$ to its injective resolution C in \mathcal{C}. Similarly, \mathcal{C}^{\prime} and \mathcal{M} are equivalent.
(ii) By [22, Lemma 4.5], \mathcal{C} is covering in \mathcal{T}. If \mathcal{C}^{\prime} is precovering in \mathcal{C}, then \mathcal{C}^{\prime} is precovering in \mathcal{T}.

By Remark 2.2.3(i), properties in the category $\bmod (\Lambda)$ can be passed on to the category \mathcal{C}, and vice versa. For example, $\bmod (\Lambda)$ is closed under extensions and direct summands if and only if \mathcal{C} is closed under extensions and direct summands. Also \mathcal{C}^{\prime} is (pre)covering in \mathcal{C} if and only if \mathcal{M} is (pre)covering in $\bmod (\Lambda)$.

The setup described above could be summarized in the following diagram,

Remark 2.2.4. Intuitively, \mathcal{C} stays away from \mathcal{T} far enough to be abelian $(\bmod (\Lambda)$ is abelian $)$. On the other hand, it needs to stay close enough so that there are \mathcal{C}-covers of objects in \mathcal{T}.

Finally, the bridge between Auslander-Reiten sequences and AuslanderReiten triangles in subcategories is shown in the following lemma.

Lemma 2.2.5. $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ is an Auslander-Reiten sequence in \mathcal{M} if and only if $A \rightarrow B \rightarrow C \rightarrow$ is an Auslander-Reiten triangle in \mathcal{C}^{\prime}, where A, B, C are injective resolutions of X, Y, Z respectively.

Proof. (if) This is Lemma 0.2.9. (only if) This is the dual of Lemma 0.2.22. Essentially, \mathcal{M} and \mathcal{C}^{\prime} are equivalent so that short exact sequences in \mathcal{M} correspond to distinguished triangles in \mathcal{C}^{\prime}.

2.3 Weakened notions of precovers (preenvelopes)

Let us begin this section with some notations and definitions.
Let $(-)^{*}$ be the functor $\operatorname{Hom}_{\Lambda}(-, \Lambda): \bmod (\Lambda) \rightarrow \bmod \left(\Lambda^{o p}\right)$. Given a $\Lambda-$ left-module M in $\bmod (\Lambda)$, the set $\operatorname{Hom}_{\Lambda}(M, \Lambda)$ is a k-vector space, and is also a Λ-right-module. Indeed given μ in $\operatorname{Hom}_{\Lambda}(M, \Lambda)$ and λ in Λ, define $(\mu \cdot \lambda)(m)=\mu(m) \cdot \lambda$ for m in M. In particular, $\operatorname{Hom}_{\Lambda}(\Lambda, \Lambda)=\Lambda$.

The functor $(-)^{*}$ is a left exact contravariant functor. However, unlike the duality functor $\mathrm{D}(-)$, the functor $(-)^{*}$ does not induce an equivalence between the categories $\bmod (\Lambda)$ and $\bmod \left(\Lambda^{o p}\right)$. Therefore, the functor $(-)^{*}$ is not a duality and given N in $\bmod \left(\Lambda^{o p}\right)$, there is not necessarily an M in $\bmod (\Lambda)$ such that $M^{*}=N$.

Lemma 2.3.1. (c.f. Lemma 2.2.1) Let M be in $\bmod (\Lambda)$.
(i) If M is free, then $\operatorname{Hom}_{\Lambda}(M, \Lambda)$ is also free,
(ii) If M is projective, then $\operatorname{Hom}_{\Lambda}(M, \Lambda)$ is also projective,
(iii) If M is projective, then $M^{* *} \cong M$.

Let M be in \mathcal{M}. Let

$$
P=\cdots \longrightarrow P_{2} \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow 0 \longrightarrow \cdots
$$

be a projective resolution of M. The P_{i} do not need to be in \mathcal{M}.
The sequence

$$
P_{1} \longrightarrow P_{0} \longrightarrow M \longrightarrow 0
$$

is right exact, and the functor (-$)^{*}$ induces the following left exact sequence,

$$
0 \longrightarrow M^{*} \longrightarrow P_{0}^{*} \longrightarrow P_{1}^{*} .
$$

Since the functor $(-)^{*}$ is not an exact functor, this leads us to the following definition.

Definition 2.3.2. The transpose $\operatorname{Tr} M$ of M is defined to be the cokernel of the map $P_{0}^{*} \rightarrow P_{1}^{*}$.

The transpose $\operatorname{Tr} M$ is a k-vector space and is also a Λ-right-module in $\bmod \left(\Lambda^{o p}\right)$. The transpose does not induce a duality $\operatorname{Tr}(-): \bmod (\Lambda) \rightarrow$ $\bmod \left(\Lambda^{o p}\right)$, and in general not even a functor from $\bmod (\Lambda)$ to $\bmod \left(\Lambda^{o p}\right)$ since $\operatorname{Tr}(-): \bmod (\Lambda) \rightarrow \bmod \left(\Lambda^{o p}\right)$ is well-defined on objects but in general not well-defined on morphisms.

Lemma 2.3.3. ([2, Proposition IV.1.7]) Let M be in $\bmod (\Lambda)$. Then
(i) $\operatorname{Tr} M=0$ if and only if M is projective,
(ii) If M is not projective, then M is indecomposable if and only if $\operatorname{Tr} M$ is indecomposable.

Subsequently, the transpose $\operatorname{Tr}(-)$ induces a well-defined contravariant functor and along with it a duality $\operatorname{Tr}(-): \underline{\bmod }(\Lambda) \rightarrow \underline{\bmod \left(\Lambda^{o p}\right)}$.

Now let P_{i} be a projective module in $\bmod (\Lambda)$. The tensor product $\mathrm{D} \Lambda \otimes_{\Lambda} P_{i}$ is naturally equipped with the structure of a Λ-left-module. Given d in $\mathrm{D} \Lambda$, p in P_{i} and λ in Λ, define $\lambda \cdot(d \otimes p)=(\lambda \cdot d) \otimes p$. By Lemma 0.1.4(ii), $\mathrm{D} \Lambda \otimes_{\Lambda} P_{i}$ is injective.

Since $\mathrm{D} \Lambda \otimes_{\Lambda} P_{i} \cong \operatorname{Hom}_{k}\left(\operatorname{Hom}_{\Lambda}\left(P_{i}, \Lambda\right), k\right)=\mathrm{D}\left(P_{i}^{*}\right)$, we write

$$
\mathrm{D} \Lambda \otimes_{\Lambda} P=\mathrm{D}\left(P^{*}\right)=\cdots \longrightarrow \mathrm{D}\left(P_{2}^{*}\right) \longrightarrow \mathrm{D}\left(P_{1}^{*}\right) \xrightarrow{d_{1}} \mathrm{D}\left(P_{0}^{*}\right) \longrightarrow 0 \longrightarrow \cdots
$$

Remark 2.3.4. Even though the $\mathrm{D} \Lambda \otimes_{\Lambda} P_{i}$ are injective, the complex $\mathrm{D} \Lambda \otimes_{\Lambda} P$ is far from being injective, let alone an injective resolution.

From the exact sequence

$$
0 \longrightarrow M^{*} \longrightarrow P_{0}^{*} \longrightarrow P_{1}^{*} \longrightarrow \operatorname{Tr} M \longrightarrow 0
$$

and the consideration that the functor $\mathrm{D}(-)$ preserves exactness, there is the following exact sequence,

$$
0 \longrightarrow \mathrm{D} \operatorname{Tr} M \longrightarrow \mathrm{D}\left(P_{1}^{*}\right) \longrightarrow \mathrm{D}\left(P_{0}^{*}\right) \longrightarrow \mathrm{D}\left(M^{*}\right) \longrightarrow 0
$$

Accordingly, $\mathrm{D} \operatorname{Tr} M$ and $\mathrm{D}\left(M^{*}\right)$ are the kernel and cokernel of the map d_{1}.
Remark 2.3.5. (i) Even though M is in \mathcal{M}, the module $\mathrm{DTr} M$ might not be in \mathcal{M},
(ii) The composition $\mathrm{DTr}(-): \bmod (\Lambda) \rightarrow \bmod (\Lambda)$ induces an equivalence $\mathrm{DTr}(-): \underline{\bmod }(\Lambda) \rightarrow \overline{\bmod }(\Lambda)$ of categories with inverse equivalence $\operatorname{TrD}(-): \overline{\bmod }(\Lambda) \rightarrow \underline{\bmod }(\Lambda)$,
(iii) The right exact sequence $P_{0}^{*} \rightarrow P_{1}^{*} \rightarrow \operatorname{Tr} M \rightarrow 0$ induces a left exact sequence $0 \rightarrow(\operatorname{Tr} M)^{*} \rightarrow P_{1}^{* *} \rightarrow P_{0}^{* *}$. Since $P_{i}^{* *} \cong P_{i}$ for $i=0,1$ by Lemma 2.3.1(iii), there is the exact sequence $0 \rightarrow(\operatorname{Tr} M)^{*} \rightarrow P_{1} \rightarrow$ $P_{0} \rightarrow M \rightarrow 0$. The module $(\operatorname{Tr} M)^{*}$, which is the kernel of the morphism $P_{1} \rightarrow P_{0}$, is known as the second syzygy of M, denoted by $\Omega_{2} M$.

Now we are ready to introduce a weakened notion of an \mathcal{M}-precover, i.e. an \mathcal{M}-precover with error term, and discover its relationship with a \mathcal{C}^{\prime}-precover.

Definition 2.3.6. Let M and N be in \mathcal{M}. Then $\nu: N \rightarrow D \operatorname{Tr} M$ is said to be an \mathcal{M}-precover with error term if for all L in \mathcal{M}, each morphism $s^{\prime}: L \rightarrow D \operatorname{Tr} M$ factors through ν up to an error term, i.e. there is a morphism $\nu^{\prime}: L \rightarrow N$ such that $\nu \nu^{\prime}-s^{\prime}$ factors through f_{2} in the following way: $L \rightarrow D\left(P_{2}^{*}\right) \xrightarrow{f_{2}} D \operatorname{Tr} M$, as indicated in the following diagram.

Remark 2.3.7. In Definition 2.3.6, there is a unique morphism $f_{2}: D\left(P_{2}^{*}\right) \rightarrow$ $\mathrm{D} \operatorname{Tr} M$ since $\mathrm{D} \operatorname{Tr} M$ is the kernel of the map d_{1}.

Similarly, consider the subcategory $D \mathcal{M}$ of $\bmod \left(\Lambda^{o p}\right)$. The subcategory $D \mathcal{M}$ is equivalent to the opposite category of \mathcal{M}. Let M be in \mathcal{M}. Let

$$
Q=\cdots \longrightarrow Q_{2} \longrightarrow Q_{1} \longrightarrow Q_{0} \longrightarrow 0 \longrightarrow \cdots
$$

be a projective resolution of $D M$.
Definition 2.3.8. Let M and N be in \mathcal{M}. Then $D f: D N \rightarrow \operatorname{DTr}(D M)$ is said to be a $D \mathcal{M}$-precover with error term if for all L in \mathcal{M}, each morphism $D s^{\prime}: D L \rightarrow D \operatorname{Tr}(D M)$ factors through $D f$ up to an error term, i.e. there is a morphism $D f^{\prime}: D L \rightarrow D N$ such that $D f D f^{\prime}-D s^{\prime}$ factors through $D\left(Q_{2}^{*}\right)$ in the following way: $D L \rightarrow D\left(Q_{2}^{*}\right) \xrightarrow{D\left(g_{2}\right)} D \operatorname{Tr}(D M)$, as indicated in the following diagram.

There is also the dual version.
Definition 2.3.9. Let M and N be in \mathcal{M}. Then $f: \operatorname{Tr}(D M) \rightarrow N$ is said to be an \mathcal{M}-preenvelope with error term if for all L in \mathcal{M}, each morphism $s^{\prime}: \operatorname{Tr}(D M) \rightarrow L$ factors through f up to an error term, i.e. there is a morphism $f^{\prime}: N \rightarrow L$ such that $f^{\prime} f-s^{\prime}$ factors through Q_{2}^{*} in the following way: $\operatorname{Tr}(D M) \rightarrow Q_{2}^{*} \rightarrow L$.
Lemma 2.3.10. Let M, N be in \mathcal{M} and $\nu: N \rightarrow D \operatorname{Tr} M$ be given. Let J in \mathcal{C}^{\prime} be the injective resolution of N. Then there is a chain map $\lambda: J \rightarrow$ $\Sigma^{-1} D\left(P^{*}\right)$ induced by ν as indicated in the following diagram.

Proof. This is Lemma 0.1.27(ii), but we shall show it explicitly here. The J^{i} here do not need to be in \mathcal{M}.

In the above diagram, let σN and C be the cokernels of i and of j_{1} respectively. Since $a^{0} a^{-1}=0$ and σN is the cokernel, there is a unique $i_{1}: \sigma N \rightarrow$ J^{1} such that $a^{0}=i_{1} h_{1}$. Similarly, there is a unique $j_{2}: C \rightarrow \mathrm{D}\left(P_{0}^{*}\right)$ such that $d_{1}=j_{2} f_{1}$.
Since $\mathrm{Z}^{0}(J)=N$ and $\mathrm{D}\left(P_{1}^{*}\right)$ is injective, there is a morphism $\lambda_{0}: J^{0} \rightarrow$ $\mathrm{D}\left(P_{1}^{*}\right)$ such that $\lambda_{0} i=j_{1} \nu$. Since $f_{1} \lambda_{0} i=f_{1} j_{1} \nu=0$, there is a unique morphism $\mu: \sigma N \rightarrow C$ such that $\mu h_{1}=f_{1} \lambda_{0}$, since C is the cokernel. Finally, there is a morphism $\lambda_{1}: J^{1} \rightarrow \mathrm{D}\left(P_{0}^{*}\right)$ such that $\lambda_{1} i_{1}=j_{2} \mu$ since $\mathrm{D}\left(P_{0}^{*}\right)$ is injective. Hence $\lambda_{1} a^{0}=d_{1} \lambda_{0}$ and there is a chain map $\lambda: J \rightarrow$ $\Sigma^{-1} D\left(P^{*}\right)$, which is only dependent on the morphism $\nu: N \rightarrow \mathrm{D} \operatorname{Tr} M$.

Remark 2.3.11. Conversely, given a chain map $\lambda: J \rightarrow \Sigma^{-1} D\left(P^{*}\right)$, since $\mathrm{Z}^{0}(J)=N$, therefore $d_{1} \lambda_{0} i=\lambda_{1} a^{0} i=0$, and so there is a unique morphism $\nu: N \rightarrow \mathrm{D} \operatorname{Tr} M$ such that $j_{1} \nu=\lambda_{0} i$, since $\mathrm{D} \operatorname{Tr} M$ is the kernel of the map d_{1}.

Lemma 2.3.12. Let M, N be in \mathcal{M} and $\nu: N \rightarrow D \operatorname{Tr} M$ be given. Let J in \mathcal{C}^{\prime} be the injective resolution of N and let $\lambda: J \rightarrow \Sigma^{-1} D\left(P^{*}\right)$ be a chain map induced by ν as indicated in the following diagram.

If λ is null homotopic, then ν factorizes as $f_{2} \varphi^{0} i$ for some φ^{0}.
Proof. Since λ is null homotopic, $\lambda_{0}=d_{2} \varphi^{0}+\varphi^{1} a^{0}=j_{1} f_{2} \varphi^{0}+\varphi^{1} a^{0}$ for some φ^{0}, φ^{1}. Hence $\lambda_{0} i=j_{1} f_{2} \varphi^{0} i+\varphi^{1} a^{0} i=j_{1} f_{2} \varphi^{0} i$ since $a^{0} i=0$. Since
$\lambda_{0} i=j_{1} \nu$ (by construction), we have $j_{1} \nu=j_{1} f_{2} \varphi^{0} i$. Since j_{1} is injective, $\nu=f_{2} \varphi^{0} i$.

Lemma 2.3.13. Let M, N be in \mathcal{M} and $\nu: N \rightarrow D T r M$ be given. Let J in \mathcal{C}^{\prime} be the injective resolution of N and let $\lambda: J \rightarrow \Sigma^{-1} D\left(P^{*}\right)$ be a chain map induced by ν as indicated in the following diagram.

If ν factorizes as $f_{2} \varphi^{0} i$ for some φ^{0}, then the chain map λ is null homotopic.

Proof. Since $\lambda_{0} i=j_{1} \nu$, we have $\lambda_{0} i=j_{1} f_{2} \varphi^{0} i=d_{2} \varphi^{0} i$. Hence $\left(\lambda_{0}-\right.$ $\left.d_{2} \varphi^{0}\right) i=0$. Let σN be the cokernel of i, then there is a unique $g: \sigma N \rightarrow$ $\mathrm{D}\left(P_{1}^{*}\right)$ such that $\lambda_{0}-d_{2} \varphi^{0}=g h_{1}$. Since $\mathrm{D}\left(P_{1}^{*}\right)$ is injective, there is φ^{1} : $J^{1} \rightarrow \mathrm{D}\left(P_{1}^{*}\right)$ such that $\varphi^{1} i_{1}=g$. Hence $\lambda_{0}-d_{2} \varphi^{0}=\varphi^{1} i_{1} h_{1}$ so $\lambda_{0}=$ $d_{2} \varphi^{0}+\varphi^{1} i_{1} h_{1}=d_{2} \varphi^{0}+\varphi^{1} a^{0}$. Similarly, we obtain a map $\varphi^{2}: J^{2} \rightarrow \mathrm{D}\left(P_{0}^{*}\right)$ such that $\lambda_{1}=d_{1} \varphi^{1}+\varphi^{2} a^{1}$.

The following proposition is a slight variation of Lemma 0.1.27(ii).
Proposition 2.3.14. Let M be in \mathcal{M}. Then $D \operatorname{Tr} M$ has an \mathcal{M}-precover with error term if and only if $\Sigma^{-1} D\left(P^{*}\right)$ has a \mathcal{C}^{\prime}-precover in \mathcal{T}.

Proof. Since $\Sigma^{-1} \mathrm{D}\left(P^{*}\right)$ need not be in \mathcal{C}, we cannot appeal to Remark 2.2.3. We begin by giving a useful diagram.

The following discussion is with reference to the diagram.
(only if) Let $\nu: N \rightarrow \mathrm{D} \operatorname{Tr} M$ be an \mathcal{M}-precover with error term. Let J be an injective resolution of N and extend ν to a chain map $\lambda: J \rightarrow \Sigma^{-1} \mathrm{D}\left(P^{*}\right)$ by Lemma 2.3.10. Then λ is a \mathcal{C}^{\prime}-precover. First of all, J is in \mathcal{C}^{\prime} since N is in \mathcal{M}. Suppose K is in \mathcal{C}^{\prime} with a chain map $s: K \rightarrow \Sigma^{-1} \mathrm{D}\left(P^{*}\right)$. Then there is the induced map $s^{\prime}: \mathrm{Z}^{0}(K)=L \rightarrow \mathrm{D} \operatorname{Tr} M$. Since L is in \mathcal{M} and ν is an \mathcal{M}-precover with error term, there is a morphism $\nu^{\prime}: L \rightarrow N$ such that $\nu \nu^{\prime}-s^{\prime}=f_{2} \varphi i_{l}$ for some $\varphi: K^{0} \rightarrow \mathrm{D}\left(P_{2}^{*}\right)$. By Lemma 2.3.10, extend ν^{\prime} to a chain map $r: K \rightarrow J$. By Lemma 2.3.13, $\lambda r-s$ is null homotopic, that is, $\lambda r=s$ in \mathcal{T} and λ is a \mathcal{C}^{\prime}-precover. (if) Suppose $\lambda: J \rightarrow \Sigma^{-1} \mathrm{D}\left(P^{*}\right)$ is a \mathcal{C}^{\prime}-precover. Then there is a morphism $\nu: \mathrm{Z}^{0}(J)=N \rightarrow \mathrm{DTr} M$, and ν is an \mathcal{M}-precover with error term. Suppose we are given $s^{\prime}: L \rightarrow \mathrm{D} \operatorname{Tr} M$ where L is in \mathcal{M}. By Lemma 2.3.10, extend s^{\prime} to a chain map $s: K \rightarrow \Sigma^{-1} \mathrm{D}\left(P^{*}\right)$ where K is an injective resolution of L. Since λ is a \mathcal{C}^{\prime}-precover, there is $r: K \rightarrow J$ such that $\lambda r=s$. This r induces a homomorphism $\nu^{\prime}: L \rightarrow N$. By Lemma 2.3.12, $\nu \nu^{\prime}-s^{\prime}$ factorizes as $f_{2} \varphi^{0} i$ for some φ^{0} and ν is therefore an \mathcal{M}-precover with error term.

Here we turn to study precovers in the stable category. First we need a little lemma.

Lemma 2.3.15. Let U in $\bmod (\Lambda)$ be a finitely generated injective Λ-module. Consider the complex $D\left(P^{*}\right)$ from Section 2.3. Then $\left(U, D\left(P_{2}^{*}\right)\right) \rightarrow\left(U, D\left(P_{1}^{*}\right)\right) \rightarrow$ $\left(U, D\left(P_{0}^{*}\right)\right)$ is exact.

Proof. First consider the case when $U=\mathrm{D} \Lambda$. Then the sequence becomes $\left(\mathrm{D} \Lambda, \mathrm{D}\left(P_{2}^{*}\right)\right) \rightarrow\left(\mathrm{D} \Lambda, \mathrm{D}\left(P_{1}^{*}\right)\right) \rightarrow\left(\mathrm{D} \Lambda, \mathrm{D}\left(P_{0}^{*}\right)\right)$, which is isomorphic to the sequence $\left(P_{2}^{*}, \Lambda\right) \rightarrow\left(P_{1}^{*}, \Lambda\right) \rightarrow\left(P_{0}^{*}, \Lambda\right)$ since the duality functor $\mathrm{D}(-)$ is a contravariant equivalence, which is the same as the sequence $P_{2}^{* *} \rightarrow P_{1}^{* *} \rightarrow$ $P_{0}^{* *}$, which by Lemma 2.3.1(iii) is isomorphic to the exact sequence $P_{2} \rightarrow$ $P_{1} \rightarrow P_{0}$. Finally, any finitely generated injective is a direct summand in a sum of copies of $D \Lambda$.

The following proposition shows that an \mathcal{M}-precover with error term is equivalent to an $\overline{\mathcal{M}}$-precover in the stable category.

Proposition 2.3.16. Let N be in \mathcal{M}. Then $\nu: N \rightarrow D \operatorname{Tr} M$ is an \mathcal{M}-precover with error term in $\bmod (\Lambda)$ if and only if its class $\bar{\nu}=\nu+$ $\mathcal{I}(N, D \operatorname{Tr} M)$ is an $\overline{\mathcal{M}}$-precover in the stable category $\overline{\bmod }(\Lambda)$.

Proof. (only if) Suppose $\nu: N \rightarrow \mathrm{D} \operatorname{Tr} M$ is an \mathcal{M}-precover with error term. Then $\bar{\nu}=\nu+\mathcal{I}(N, \mathrm{D} \operatorname{Tr} M)$ is an $\overline{\mathcal{M}}$-precover in the stable category. Suppose we are given $\overline{s^{\prime}}: L \rightarrow \mathrm{D} \operatorname{Tr} M$ in the stable category with L in $\overline{\mathcal{M}}$, i.e. $s^{\prime}: L \rightarrow \mathrm{D} \operatorname{Tr} M$ in $\bmod (\Lambda)$. Since ν is an \mathcal{M}-precover with error term,
 $s^{\prime}=\nu \nu^{\prime}-f_{2} \psi$ so $\overline{s^{\prime}}=\bar{\nu} \overline{\nu^{\prime}}-\overline{f_{2}} \bar{\psi}=\bar{\nu} \overline{\nu^{\prime}}$, since $\overline{f_{2}}=\overline{0}$.
(if) Suppose $\bar{\nu}$ is an $\overline{\mathcal{M}}$-precover in the stable category. Then ν is an \mathcal{M} precover with error term. Suppose we are given $s^{\prime}: L \rightarrow \mathrm{D} \operatorname{Tr} M$ with L in \mathcal{M}. Consider its class $\overline{s^{\prime}}$ in the stable category. Since $\bar{\nu}$ is an $\overline{\mathcal{M}}$-precover in the stable category, we have $\overline{\nu^{\prime}}: L \rightarrow N$ such that $\overline{s^{\prime}}=\bar{\nu} \overline{\nu^{\prime}}$ for some $\overline{\nu^{\prime}}$, i.e. $\nu \nu^{\prime}-s^{\prime}$ factors through an injective U, say $\nu \nu^{\prime}-s^{\prime}=u_{2} u_{1}$. We would like $\nu \nu^{\prime}-s^{\prime}$, however, to factor through $\mathrm{D}\left(P_{2}^{*}\right) \xrightarrow{f_{2}} \mathrm{D} \operatorname{Tr} M$ instead.

Consider the morphism $j_{1} u_{2}: U \rightarrow \mathrm{D}\left(P_{1}^{*}\right)$, where j_{1} is as in Definition 2.3.6.

Since $d_{1} j_{1} u_{2}=0$, by Lemma 2.3.15, there is g such that $d_{2} g=j_{1} u_{2}$, which gives $j_{1} f_{2} g=j_{1} u_{2}$. Since j_{1} is injective, $f_{2} g=u_{2}$ and $\nu \nu^{\prime}-s=u_{2} u_{1}=$ $f_{2} g u_{1}$.

Proposition 2.3.17. Let N be in \mathcal{M}. Then $D f: D N \rightarrow D T r(D M)$ is a $D \mathcal{M}$-precover with error term in $\bmod \left(\Lambda^{o p}\right)$ if and only if the class $\underline{f}=f+\mathcal{P}(\operatorname{Tr}(D M), N)$ is an $\underline{\mathcal{M} \text {-preenvelope in the stable category } \underline{\bmod }(\Lambda) \text {. } ~}$

Proof. Similar.
Proposition 2.3.18. Let N be in \mathcal{M}. Then $f: \operatorname{Tr}(D M) \rightarrow N$ is an \mathcal{M}-preenvelope with error term in $\bmod (\Lambda)$ if and only if the class $\overline{D f}=$ $D f+\mathcal{I}(D N, D \operatorname{Tr}(D M))$ is a $\overline{D M}$-precover in the stable category $\overline{\bmod }\left(\Lambda^{o p}\right)$.

Proof. Similar.

2.4 Existence of Auslander-Reiten sequences in subcategories

Let N be in $\bmod (\Lambda)$. The functors $\operatorname{Ext}_{\Lambda}^{i}(-, N)$ and $\overline{\operatorname{Ext}}_{\Lambda}^{i}(N,-)$, the right derived functors of $\operatorname{Hom}_{\Lambda}(-, N)$ and $\operatorname{Hom}_{\Lambda}(N,-)$ respectively, are described in Section 0.2.2. By Lemma 0.2.26(ii), the functors $\operatorname{Ext}_{\Lambda}^{i}(-,-)$ and $\overline{\operatorname{Ext}}_{\Lambda}^{i}(-,-)$, where $i \geq 0$, are naturally equivalent.

Definition 2.4.1. ([18, III.1.], [45, 3.4]) Let A, B, X and X^{\prime} be in $\bmod (\Lambda)$. An extension of A by B in $\bmod (\Lambda)$ is an exact sequence $0 \rightarrow B \rightarrow X \rightarrow$ $A \rightarrow 0$ in $\bmod (\Lambda)$. Two extensions ε and ε^{\prime} are equivalent if there is the following commutative diagram in $\bmod (\Lambda)$.

An extension is split if it is equivalent to $0 \rightarrow B \rightarrow A \oplus B \rightarrow A \rightarrow 0$.
Let $\mathrm{E}(A, B)$ be the set of equivalence classes of extensions of A by B.
The following lemmas are standard.
Lemma 2.4.2. ([45, Lemma 3.4.1]) Let A and B be in $\bmod (\Lambda)$. If $\mathrm{E}(A, B)=$ 0 , then every extension of A by B is split.

Lemma 2.4.3. ([18, Theorem III.2.4], [18, Proposition IV.7.1], [45, Theorem 3.4.3]) Let A and B be in $\bmod (\Lambda)$, and consider the extension $\varepsilon: 0 \rightarrow$ $B \rightarrow X \rightarrow A \rightarrow 0$ in $\bmod (\Lambda)$. The functors Ext $t_{\Lambda}^{i}(A,-)$ induce the exact sequence $(A, X) \rightarrow(A, A) \xrightarrow{\partial} \operatorname{Ext}^{1}(A, B)$ in $\bmod (\Lambda)$. Then $\theta: \mathrm{E}(A, B) \rightarrow$ $\operatorname{Ext}^{1}(A, B)$, given by $\theta(\varepsilon)=\partial\left(\mathrm{id}_{A}\right)$, is a one-one correspondence, in which the split extension corresponds to the element 0 in $\operatorname{Ext}^{1}(A, B)$.

Lemma 2.4.4. Let $\varepsilon: 0 \rightarrow B \rightarrow X \rightarrow A \rightarrow 0$ be an extension in $\bmod (\Lambda)$. If either A is projective or B is injective, then the extension ε is split.

Proof. This is true by Lemma 0.2.26(i), Lemma 2.4.2 and Lemma 2.4.3.

Let us reminisce the following with regard to Auslander-Reiten sequences in $\bmod (\Lambda)$.

Lemma 2.4.5. ([2, Theorem V.1.16]) Let $0 \rightarrow A \xrightarrow{g} B \xrightarrow{f} C \rightarrow 0$ and $0 \rightarrow A^{\prime} \xrightarrow{g^{\prime}} B^{\prime} \xrightarrow{f^{\prime}} C^{\prime} \rightarrow 0$ be two Auslander-Reiten sequences in $\bmod (\Lambda)$. Then the following are equivalent.
(i) $A \cong A^{\prime}$,
(ii) $C \cong C^{\prime}$,
(iii) The sequences are isomorphic, which is to say there is a commutative diagram,

where all the vertical morphisms are isomorphisms.
Lemma 2.4.6. ([2, Proposition V.1.14]) Let $0 \rightarrow A \xrightarrow{g} B \xrightarrow{f} C \rightarrow 0$ be an exact sequence in $\bmod (\Lambda)$. Then the following are equivalent.
(i) The sequence is an Auslander-Reiten sequence,
(ii) The module A is indecomposable and the morphism f is right almost split,
(iii) The module C is indecomposable and the morphism g is left almost split,
(iv) $A \cong \mathrm{D} \operatorname{Tr} C$ and the morphism f is right almost split,
(v) $C \cong \operatorname{TrD} A$ and the morphism g is left almost split.

By Lemma 2.4.5 and Lemma 2.4.6, the existence of Auslander-Reiten sequences in $\bmod (\Lambda)$ implies that given an indecomposable A in $\bmod (\Lambda)$, there is up to isomorphism a unique indecomposable C in $\bmod (\Lambda)$ such that $\mathrm{D} \operatorname{Tr} C \cong A$. Similarly, given an indecomposable C in $\bmod (\Lambda)$, there is up to isomorphism a unique indecomposable A in $\bmod (\Lambda)$ such that $\operatorname{Tr} \mathrm{D} A \cong C$.

Originally in [3, Theorem 2.4], Auslander and Smalø developed a theory for the existence of Auslander-Reiten sequences in subcategories of $\bmod (\Lambda)$. Then in [28, Corollary 2.8], Kleiner gave a new proof of their existence theorems without the use of the theory of dualizing R-varieties. These are rephrased below.

Theorem. Let \mathcal{C} be a precovering of $\bmod (\Lambda)$ closed under extensions and direct summands, and let C be an indecomposable module in \mathcal{C} such that $\operatorname{Ext}^{1}(C, \tilde{C}) \neq 0$ for some \tilde{C} in \mathcal{C}. Then there is an Auslander-Reiten sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ in \mathcal{C}.

Theorem. Let \mathcal{A} be a preenveloping of $\bmod (\Lambda)$ closed under extensions and direct summands, and let A be an indecomposable module in \mathcal{A} such that $\operatorname{Ext}^{1}(\tilde{A}, A) \neq 0$ for some \tilde{A} in \mathcal{A}. Then there is an Auslander-Reiten sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ in \mathcal{A}.

In this section, we strengthen Auslander-Smalø's and Kleiner's results by providing necessary and sufficient conditions, based on the theory of AuslanderReiten triangles developed in [22]. The proof here is more subtle than the proof of [22, Theorem 3.1], since we cannot replace \mathcal{C} by \mathcal{C}^{\prime} and \mathcal{T} by \mathcal{C}, because \mathcal{T} is triangulated and \mathcal{C} is not triangulated.

It is conceivable that the necessary condition of the existence of AuslanderReiten sequences in subcategories provided here is weaker, because in [22, Theorem 3.1], for the subcategory $\mathcal{C} \subseteq \mathcal{T}$ to have Auslander-Reiten triangles, only certain objects X in \mathcal{T} are required to have \mathcal{C}-covers. This naturally leads us to give a characterization of the existence of Auslander-Reiten sequences in subcategories not in terms of a global condition but in terms of a condition which describes locally at the level of objects.

Now we state the existence theorem for (right) Auslander-Reiten sequences in subcategories.

Theorem 2.4.7. Let \mathcal{M} be a subcategory of $\bmod (\Lambda)$ closed under extensions and direct summands, and let $M_{\tilde{\sim}}$ be an indecomposable module in \mathcal{M} such that $\operatorname{Ext}^{1}(M, \tilde{M}) \neq 0$ for some \tilde{M} in \mathcal{M}. Then the following are equivalent.
(i) $D \operatorname{Tr} M$ has an $\overline{\mathcal{M}}$-precover in the injective stable category $\overline{\bmod }(\Lambda)$,
(ii) There is an Auslander-Reiten sequence $0 \rightarrow X \rightarrow Y \rightarrow M \rightarrow 0$ in \mathcal{M}.

Proof. (i) \Rightarrow (ii): Let P and C be a projective and an injective resolution of M. By Proposition 2.3.16, $\mathrm{DTr} M$ has an \mathcal{M}-precover with error term, and then by Proposition 2.3.14, $\Sigma^{-1} \mathrm{D}\left(P^{*}\right)$ has a \mathcal{C}^{\prime}-precover. By [22, Theorem 4.6], there is an Auslander-Reiten triangle $A \rightarrow B \rightarrow C \rightarrow$ in \mathcal{C}^{\prime}, and finally an Auslander-Reiten sequence $0 \rightarrow \mathrm{H}^{0}(A) \rightarrow \mathrm{H}^{0}(B) \rightarrow \mathrm{H}^{0}(C) \rightarrow 0$ in \mathcal{M}, where M is retrieved through the isomorphism $\mathrm{H}^{0}(C) \cong M$ (Lemma 2.2.5).
(ii) \Rightarrow (i): Let P and C be a projective and an injective resolution of M. Following the argument in Theorem 4.6 in [22], there is an Auslander-Reiten triangle $\Sigma^{-1} \mathrm{D}\left(P^{*}\right) \rightarrow Y^{\prime} \rightarrow C \rightarrow$ in \mathcal{T}. Since there is an Auslander-Reiten sequence $0 \rightarrow X \rightarrow Y \rightarrow M \rightarrow 0$ in \mathcal{M}, by Remark 2.2.5, there is an Auslander-Reiten triangle $A \rightarrow B \rightarrow C \rightarrow$ in \mathcal{C}^{\prime}. By Theorem 3.1 in [22], $\Sigma^{-1} \mathrm{D}\left(P^{*}\right)$ has a \mathcal{C}^{\prime}-precover. By Proposition 2.3.14, $\mathrm{D} \operatorname{Tr} M$ has an \mathcal{M} precover with error term. Finally by Proposition $2.3 .16, \mathrm{D} \operatorname{Tr} M$ has an $\overline{\mathcal{M}}$-precover in the stable category $\overline{\bmod }(\Lambda)$.

Remark 2.4.8. (i) In the proof of Theorem 2.4.7, (i) \Rightarrow (ii), the AuslanderReiten sequence not only exists, but also takes the form $0 \rightarrow \mathrm{H}^{0}(A) \rightarrow$ $\mathrm{H}^{0}(B) \rightarrow \mathrm{H}^{0}(C) \rightarrow 0$ in \mathcal{M}.
(ii) In the proof of Theorem 2.4.7, (ii) \Rightarrow (i), the Auslander-Reiten triangle $\Sigma^{-1} \mathrm{D}\left(P^{*}\right) \rightarrow Y^{\prime} \rightarrow C \rightarrow$ in \mathcal{T} induces the exact sequence $\cdots \rightarrow 0 \rightarrow$ $\mathrm{H}^{0}\left(\Sigma^{-1} \mathrm{D}\left(P^{*}\right)\right) \rightarrow \mathrm{H}^{0}\left(Y^{\prime}\right) \rightarrow M \rightarrow \mathrm{H}^{1}\left(\Sigma^{-1} \mathrm{D}\left(P^{*}\right)\right) \rightarrow \cdots$ in $\bmod (\Lambda)$ by Lemma 0.2 .9 , but does not render any Auslander-Reiten sequences in $\bmod (\Lambda)$.
Remark 2.4.9. (i) The necessary condition (i) in Theorem 2.4.7 is weaker than that of Auslander-Smalø and Kleiner in two senses. Firstly, only precovers in the stable category are considered, and secondly, only precovers of the $\mathrm{D} \operatorname{Tr} M$ in $\bmod (\Lambda)$ with M in \mathcal{M} are considered. As \mathcal{M} is precovering in $\bmod (\Lambda)$ if and only if \mathcal{C}^{\prime} is precovering in \mathcal{C}, correspondingly we do not require as much as \mathcal{C}^{\prime} to be precovering in \mathcal{C} either.
(ii) In the proof of Theorem 2.4.7, (ii) \Rightarrow (i), even though $\mathrm{D}\left(P^{*}\right) \rightarrow \Sigma Y^{\prime} \rightarrow$ $\Sigma C \rightarrow$ is also an Auslander-Reiten triangle in \mathcal{T}, the object ΣC is not necessarily in \mathcal{C} since \mathcal{C} is not triangulated.

Before we give the existence theorem for (left) Auslander-Reiten sequences in subcategories, we need the following.

Lemma 2.4.10. Let \mathcal{L} be a subcategory of $\bmod (\Lambda)$. Then the following are equivalent.
(i) $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ is an Auslander-Reiten sequence in \mathcal{L},
(ii) $0 \rightarrow D Z \rightarrow D Y \rightarrow D X \rightarrow 0$ is an Auslander-Reiten sequence in $D \mathcal{L}$.

Proof. Please refer to the remark after [2, Proposition V.1.13].
Proposition 2.4.11. Let \mathcal{L} be a subcategory of $\bmod (\Lambda)$. Denote $D \mathcal{L}$ by \mathcal{M}. Let L be in \mathcal{L}. Then the following are equivalent.
(i) DL has an $\overline{\mathcal{M}}$-precover in the injective stable category $\overline{\bmod }\left(\Lambda^{o p}\right)$,
(ii) L has an $\underline{\mathcal{L}}$-preenvelope in the projective stable category $\underline{\bmod (\Lambda)}$.

Proof. This can be shown by standard arguments. However, we shall only consider the special case $L=\operatorname{TrD} L^{\prime}$ for some L^{\prime} in \mathcal{L}, since this is what is needed in Theorem 2.4.13. Let N be in \mathcal{L}. Then by Proposition 2.3.17, $\underline{f}=f+\mathcal{P}\left(\operatorname{TrD} L^{\prime}, N\right)$ is an $\underline{\mathcal{L}}$-preenvelope in the projective stable category $\underline{\bmod (\Lambda)}$ if and only if $D f: D N \rightarrow \mathrm{DTr} L^{\prime}$ is a $D \mathcal{M}$-precover with error
term in $\bmod \left(\Lambda^{o p}\right)$. This is equivalent to saying $f: \operatorname{TrD} L^{\prime} \rightarrow N$ is an \mathcal{L}-preenvelope with error term in $\bmod (\Lambda)$, which by Proposition 2.3.18 is equivalent to saying $\overline{D f}=D f+\mathcal{I}\left(D N, D \operatorname{TrD} L^{\prime}\right)$ is an $\overline{\mathcal{M}}$-precover in the injective stable category $\overline{\bmod }\left(\Lambda^{o p}\right)$.

Proposition 2.4.12. Let \mathcal{L} be a subcategory of $\bmod (\Lambda)$ closed under extensions and direct summands. Denote $D \mathcal{L}$ by \mathcal{M}. Let L be an indecomposable module in \mathcal{L} such that $\operatorname{Ext}^{1}(D L, D \tilde{L}) \neq 0$ for some \tilde{L} in \mathcal{L}. Then the following are equivalent.
(i) $D \operatorname{Tr} D L$ has an $\overline{\mathcal{M}}$-precover in the injective stable category $\overline{\bmod }\left(\Lambda^{\text {op }}\right)$,
(ii) There is an Auslander-Reiten sequence $0 \rightarrow D A \rightarrow D B \rightarrow D L \rightarrow 0$ in \mathcal{M}, where A and B are in \mathcal{L}.

Proof. Since $\mathcal{M}=\mathrm{D} \mathcal{L}$, and \mathcal{L} is closed under extensions and direct summands, \mathcal{M} is a subcategory of $\bmod \left(\Lambda^{o p}\right)$ closed under extensions and direct summands. Since L is an indecomposable module in $\mathcal{L}, \mathrm{D} L$ is an indecomposable module in \mathcal{M}. The rest follows from the right module version of Theorem 2.4.7.

Finally, we give the dual of Theorem 2.4.7.
Theorem 2.4.13. Let \mathcal{L} be a subcategory of $\bmod (\Lambda)$ closed under extensions and direct summands, and let L be an indecomposable module in \mathcal{L} such that $\operatorname{Ext}^{1}(\tilde{L}, L) \neq 0$ for some \tilde{L} in \mathcal{L}. Then the following are equivalent.
(i) $\operatorname{Tr} D L$ has an $\underline{\mathcal{L}}$-preenvelope in the projective stable category $\underline{\bmod }(\Lambda)$,
(ii) There is an Auslander-Reiten sequence $0 \rightarrow L \rightarrow B \rightarrow A \rightarrow 0$ in \mathcal{L}.

Proof. Let $\mathcal{M}=\mathrm{D} \mathcal{L}$. By Proposition 2.4.11, $\operatorname{Tr} \mathrm{D} L$ has an \mathcal{L}-preenvelope in $\underline{\bmod }(\Lambda)$ if and only if $D \operatorname{TrD} L$ has an $\overline{\mathcal{M}}$-precover in $\overline{\bmod }\left(\Lambda^{o p}\right)$. Also $\operatorname{Ext}^{1}(\tilde{L}, L) \neq 0$ if and only if $\operatorname{Ext}^{1}(\mathrm{D} L, \mathrm{D} \tilde{L}) \neq 0$. Hence the result follows from Proposition 2.4.12, with the help of Lemma 2.4.10.

Remark 2.4.14. Theorem 2.4 .13 can also be shown directly from [22, Theorem 3.2].

Remark 2.4.15. Theorem 2.4.7 and Theorem 2.4.13 together give back the results by Auslander-Smalø and by Kleiner. For example, suppose \mathcal{M} is precovering in $\bmod (\Lambda)$. Then given M in \mathcal{M}, the module $\mathrm{D} \operatorname{Tr} M$ has an \mathcal{M} precover in $\bmod (\Lambda)$ and then an $\overline{\mathcal{M}}$-precover in the injective stable category $\bmod (\Lambda)$. Finally, by Theorem 2.4.7, there is an Auslander-Reiten sequence $0 \rightarrow X \rightarrow Y \rightarrow M \rightarrow 0$ in \mathcal{M}.

2.5 An example

In this section, examples of Theorem 2.4.7 and Theorem 2.4.13 are given. First, we need a little lemma.

Lemma 2.5.1. Let \mathcal{M} be a full subcategory of $\bmod (\Lambda)$ closed under direct sums and direct summands. Let M be in $\bmod (\Lambda)$. Suppose there are only finitely many indecomposable modules in \mathcal{M} with non-zero maps to M. Then M has an \mathcal{M}-precover in $\bmod (\Lambda)$.

Proof. Since there are only finitely many indecomposable modules in \mathcal{M} with non-zero maps to M, let them be denoted by $K_{1}, K_{2}, \ldots, K_{n}$.
(i) Suppose $n=1$.

If $\left(K_{1}, M\right)$ is one-dimensional with basis $\{\kappa\}$, then $K_{1} \xrightarrow{\kappa} M$ is an \mathcal{M} precover. Let a morphism $m: K^{\prime} \rightarrow M$, with K^{\prime} an indecomposable in \mathcal{M}, be given.

If $K^{\prime} \neq K_{1}$, then m is zero. If $K^{\prime}=K_{1}$, then m factors through κ by a scalar multiple of κ. On the other hand, if $\left(K_{1}, M\right)$ is q-dimensional with basis $\left\{\kappa_{1}, \kappa_{2}, \ldots, \kappa_{q}\right\}$, then $\underbrace{K_{1} \oplus K_{1} \oplus \ldots \oplus K_{1}}_{q} \xrightarrow{\kappa} M$ is an \mathcal{M} precover, where $\kappa=\left(\begin{array}{llll}\kappa_{1} & \kappa_{2} & \ldots & \kappa_{q}\end{array}\right)$.
(ii) Suppose $n=2$.

If (K_{1}, M) has basis $\left\{\kappa_{1}^{1}, \kappa_{2}^{1}, \ldots, \kappa_{s}^{1}\right\}$ and $\left(K_{2}, M\right)$ has basis $\left\{\kappa_{1}^{2}, \kappa_{2}^{2}, \ldots, \kappa_{t}^{2}\right\}$, then $\underbrace{K_{1} \oplus K_{1} \oplus \ldots \oplus K_{1}}_{s} \oplus \underbrace{K_{2} \oplus K_{2} \oplus \ldots \oplus K_{2}}_{t} \stackrel{\kappa}{\rightarrow} M$ is an \mathcal{M}-precover, where $\kappa=\left(\begin{array}{llllllll}\kappa_{1}^{1} & \kappa_{2}^{1} & \ldots & \kappa_{s}^{1} & \kappa_{1}^{2} & \kappa_{2}^{2} & \ldots & \kappa_{t}^{2}\end{array}\right)$. Let a morphism m : $K^{\prime} \rightarrow M$, with K^{\prime} an indecomposable in \mathcal{M}, be given. Without loss of generality, assume $K^{\prime}=K_{1}$.

> If $m=\alpha_{1} \kappa_{1}^{1}+\alpha_{2} \kappa_{2}^{1}+\ldots+\alpha_{s} \kappa_{s}^{1}$, then m can be factorized as $m=\kappa g$, $$
\left(\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{s} \\ 0 \\ 0 \\ \vdots \\ 0\end{array}\right) . \text { Thus } M \text { has an } \mathcal{M} \text {-precover in } \bmod (\Lambda)
$$

The case of $n>2$ is similar.

In Lemma 2.5.1, an \mathcal{M}-precover is given by construction. For example, in case (ii), $K_{1} \oplus K_{1} \oplus \ldots \oplus K_{1} \oplus K_{2} \oplus K_{2} \oplus \ldots \oplus K_{2} \xrightarrow{\kappa} M$ is an \mathcal{M}-precover. This is not the minimal construction when, for example, each κ_{i}^{1} factors through κ_{j}^{2}, some j, in which case $K_{2} \oplus K_{2} \oplus \ldots \oplus K_{2} \rightarrow M$ will be sufficient to be an \mathcal{M}-precover.

Example 2.5.2. Let Λ be a representation-infinite hereditary algebra. Let \mathcal{M} be any full subcategory of $\bmod (\Lambda)$ which consists of postprojective modules, which is closed under extensions and direct summands, see [1, Definition VIII.2.2]. Let M be an indecomposable module in \mathcal{M} such that $\operatorname{Ext}^{1}(M, \tilde{M}) \neq 0$ for some \tilde{M} in \mathcal{M}. Then there is an Auslander-Reiten sequence $0 \rightarrow X \rightarrow Y \rightarrow M \rightarrow 0$ in \mathcal{M}.

Proof. By [1, Lemma VIII.2.5], there are only finitely many indecomposable modules in \mathcal{M} which have non-zero maps to $\mathrm{D} \operatorname{Tr} M$. Therefore by Lemma 2.5.1, $\mathrm{D} \operatorname{Tr} M$ has an \mathcal{M}-precover in $\bmod (\Lambda)$ and then an $\overline{\mathcal{M}}$-precover in the stable category $\overline{\bmod }(\Lambda)$. The existence of the Auslander-Reiten sequence $0 \rightarrow X \rightarrow Y \rightarrow M \rightarrow 0$ in \mathcal{M} follows from Theorem 2.4.7.

Remark 2.5.3. Dually, let \mathcal{L} be the full subcategory of $\bmod (\Lambda)$ consisting of preinjective modules over Λ and is closed under extensions and direct summands. Let L be an indecomposable module in \mathcal{L} such that $\operatorname{Ext}^{1}(\tilde{L}, L) \neq$ 0 for some \tilde{L} in \mathcal{L}. Then the existence of the Auslander-Reiten sequence $0 \rightarrow L \rightarrow Y \rightarrow X \rightarrow 0$ in \mathcal{L} follows from Theorem 2.4.13.

Chapter 3

Quotients of certain triangulated categories as derived categories

3.1 Introduction

Let us begin with the notion of a pretriangulated category. This is an additive category with an endofunctor σ and a class of diagrams of the form $x \rightarrow y \rightarrow z \rightarrow \sigma x$ known as distinguished right triangles, and another endofunctor ω and a class of diagrams of the form $\omega z \rightarrow x \rightarrow y \rightarrow z$ known as distinguished left triangles. The distinguished right triangles have to satisfy the axioms of a triangulated category, except that σ does not need to be an equivalence. Similarly for the distinguished left triangles. It is worth acknowledging that (σ, ω) is an adjoint pair of functors, which is reminiscent of the intuition that adjoints are approximations of inverse functors.

Let k be a field and \mathcal{T} be a k-linear triangulated category with translation functor Σ and Serre functor S, which is Hom finite and Krull-Schmidt. Let \mathcal{X} be a subcategory of \mathcal{T} which is both precovering and preenveloping, and let $\mathcal{T}_{\mathcal{X}}$ be the quotient category defined in [23, Introduction]. By [23, Theorem 1.2], the quotient category $\mathcal{T}_{\mathcal{X}}$ is pretriangulated. The quotient category $\mathcal{T}_{\mathcal{X}}$ is triangulated if and only if $\tau \mathcal{X}=\mathcal{X}$, where τ is the Auslander-Reiten translation, see [23, Theorem 2.3]. This means the subcategory \mathcal{X} is a union of orbits of τ.

The definition of a Frobenius category is given in [14]. A subcategory of a triangulated category is thick if it is triangulated and closed under direct summands. A thick subcategory generated by X, where X is an object of \mathcal{T}, is denoted by thick (X). A triangulated category \mathcal{T} is of algebraic origin
if it is equivalent, as a triangulated category, to the quotient category $\mathcal{E}_{\mathcal{P}}$ of a k-linear Frobenius category \mathcal{E}, where \mathcal{P} is the class of projective objects of \mathcal{E}, see [23, Section 3]. By [23, Theorem 3.2], if \mathcal{T} is of algebraic origin, then \mathcal{T} is also of algebraic origin.

Let Λ be a finite-dimensional k-algebra over the field k. A compact derived category $D^{c}(\Lambda)$ is the full subcategory of the derived category $D(\Lambda)$ consisting of compact objects, i.e. those finitely built from the algebra Λ using suspensions, distinguished triangles, direct sums and direct summands. If Λ is Noetherian and of finite global dimension, then the compact derived category $D^{c}(\Lambda)$ is equivalent to the finite derived category $D^{b}(\Lambda)$. Let $D^{c}(A)$ be the compact derived category generated by A.

In this chapter, quotients of certain triangulated categories are triangulated and are in addition derived categories, appealing to the following theorem which is a slight variation of [40, Theorem 6.4] and of $[26,3.3]$.

Theorem 3.1.1. Let k be a field and \mathcal{U} be a k-linear triangulated category of algebraic origin such that $\mathcal{U}=\operatorname{thick}(X)$ for some X in \mathcal{U}. Let Σ be the translation functor of the triangulated category \mathcal{U} and let $A=\operatorname{End}_{\mathcal{U}}(X)$. Suppose $\operatorname{Hom}_{\mathcal{U}}\left(X, \Sigma^{i} X\right)=0$ for $i \neq 0$. Then there is an equivalence of triangulated categories $f: \mathcal{U} \xlongequal{\simeq} D^{c}(A)$ where $f(X)=A$.

3.2 The finite derived category $D^{b}\left(\bmod k A_{n}\right)$

In this section, let \mathcal{T} be the finite derived category $D^{b}\left(\bmod k A_{n}\right)$ described in Section 1.4. The category \mathcal{T} is a k-linear Hom finite triangulated category. It is Krull-Schmidt as well. The Auslander-Reiten quiver of $D^{b}\left(\bmod k A_{n}\right)$ is reproduced here, with the coordinate system described in Section 1.4.

Given an indecomposable object (i, j) of $D^{b}\left(\bmod k A_{n}\right)$, the action of Σ is
given by $\Sigma(i, j)=(j-1, i+n+2)$, and the action of τ by $\tau(i, j)=(i-1, j-1)$ (Section 1.4).

The following is an example of Lemma 1.4.1 and the narration after it, and is rewritten below to remind the reader.

Lemma 3.2.1. Let x and y be indecomposable objects of $D^{b}\left(\bmod k A_{n}\right)$. Then by [14, 4.6], any non-zero morphism f from x to y is a linear combination of morphisms, written $f=\Sigma \alpha_{i} f_{i}$, where the α_{i} are scalars and the $f_{i}: x \rightarrow y$ are compositions of irreducible morphisms. The finite derived category $D^{b}\left(\bmod k A_{n}\right)$ is also standard.

The Auslander-Reiten quiver of $D^{b}\left(\bmod k A_{n}\right)$ contains the following local configuration throughout, which gives rise to Auslander-Reiten triangles and commutativity relations.

Configuration 3.2.2.

In Configuration 3.2.2, since $a \rightarrow b \oplus c \rightarrow d \rightarrow$ is an Auslander-Reiten triangle, $t s+r q=0$. This gives $t s=-r q$, which means the different morphisms from a to d are equal up to signs by Lemma 3.2.1.

Given an indecomposable object a of $D^{b}\left(\bmod k A_{n}\right)$, the notions of $\mathcal{L}(a)$ and of $\mathcal{R}(a)$, and the sketches of the two respective regions, are described in Section 1.4. Given indecomposable objects x and y of $D^{b}\left(\bmod k A_{n}\right)$, if (x, y) is non-zero, then by Lemma 3.2.1 and by virtue of the little remark after Configuration $3.2 .2,(x, y)$ is one-dimensional.

With the following lemma we end the section.
Lemma 3.2.3. Let a, b and c be indecomposable objects of $D^{b}\left(\bmod k A_{n}\right)$. Let c be in $\mathcal{R}(a)$, and let $f: a \rightarrow b$ and $g: b \rightarrow c$ be non-zero morphisms. Then the composition $g f: a \rightarrow c$ is non-zero.

Proof. Assume $g f$ is zero. Let h be a non-zero morphism in (a, c). Since (a, c) is non-zero, it is one-dimensional. Thus the morphism h is a composition of irreducible morphisms. Furthermore, the morphism h can be written $h=\alpha \tilde{g} f$ for some scalar α and some non-zero $\tilde{g}: b \rightarrow c$ by the commutativity relation described above. Since (b, c) is one-dimensional, $\tilde{g}=\beta g$ for some scalar β. However, this would give $h=\alpha \beta g f=0$, which is a contradiction.

3.2.1 Lemmas

Consider the indecomposable objects in a band of width n^{\prime} vertices along the top of the Auslander-Reiten quiver of \mathcal{T}. Henceforth, let \mathcal{X} be add of them.

Lemma 3.2.4. In the following sketch, the indecomposable objects of \mathcal{X} lie in the region bounded by and including the two upper lines. Let m be an indecomposable object in \mathcal{T}. Then m has an \mathcal{X}-cover $g: x \rightarrow m$. Similarly, m has an \mathcal{X}-envelope.

Proof. If m is in \mathcal{X}, then the lemma is trivial. The following sketch shows the case where m is not in \mathcal{X}.

Let x be an object in \mathcal{X} which lies on the bottom line of the upper band, and is on the upper right hand boundary of the region $\mathcal{L}(m)$. Then the non-zero morphism $g: x \rightarrow m$ is an \mathcal{X}-precover of m. Indeed consider an indecomposable y in \mathcal{X} with a non-zero morphism $h: y \rightarrow m$. Then y is in the region $a b x$ which is the intersection of \mathcal{X} and $\mathcal{L}(m)$. Since the region $a b x$ is inside $\mathcal{L}(x)$, there is a non-zero morphism $f: y \rightarrow x$. By Lemma 3.2.3, the composition $g f$ is non-zero. Since h and $g f$ are both in (y, m) which is one-dimensional, $h=k(g f)$, where k is a scalar, and so h factors through g.

Furthermore, g is an \mathcal{X}-cover. Suppose $\varphi: x \rightarrow x$ is a morphism such that $g \varphi=g$. Then again since (x, x) is one-dimensional, $\varphi=\alpha \cdot \mathrm{id}_{x}$ where α is a scalar, so $g \varphi=g$ gives $\alpha \cdot g=g$ but $g \neq 0$ so $\alpha=1$. Therefore φ is invertible. The dual argument gives an \mathcal{X}-envelope.

Remark 3.2.5. In Lemma 3.2.4, the region $a b x$, which is the intersection of \mathcal{X} and $\mathcal{L}(m)$, has only finitely many objects. Therefore an \mathcal{X}-precover of m can be obtained in the same fashion as in Lemma 2.5.1. The above shows how an \mathcal{X}-precover can be strengthened into an \mathcal{X}-cover.

By Lemma 3.2.4 and [23, Theorem 1.2], the quotient category $\mathcal{T}_{\mathcal{X}}$ is pretriangulated. Since evidently $\tau \mathcal{X}=\mathcal{X}$, therefore $\mathcal{T}_{\mathcal{X}}$ is in addition triangulated by [23, Theorem 2.3]. By [23, Theorem 3.2], the Auslander-Reiten quiver of $\mathcal{T}_{\mathcal{X}}$ is obtained by deleting the upper n^{\prime} lines of vertices and the incident arrows from the Auslander-Reiten quiver of \mathcal{T}. Suppose the Auslander-Reiten quiver of $\mathcal{T}_{\mathcal{X}}$ is of width m vertices.

Definition 3.2.6. Let a be an indecomposable object in $\mathcal{T}_{\mathcal{X}}$. Similarly to Definition 1.4.2, let $\mathcal{L}_{\mathcal{X}}(a)$ be the set of indecomposable objects with nonzero morphisms to a in $\mathcal{T}_{\mathcal{X}}$. Dually, let $\mathcal{R}_{\mathcal{X}}(a)$ be the set of indecomposable objects to which there are non-zero morphisms from a in $\mathcal{T}_{\mathcal{X}}$.

Lemma 3.2.7. Suppose the Auslander-Reiten quiver of \mathcal{T} lies in the following sketch in the region bounded by $y-x=2$ and $y-x=n+1$, and the indecomposable objects of \mathcal{X} form the upper band, which is the region bounded by $y-x=m+2$ and $y-x=n+1$. The Auslander-Reiten quiver of $\mathcal{T}_{\mathcal{X}}$ lies in the lower band, which is the region bounded by $y-x=2$ and $y-x=m+1$. Here the lower band is of width m vertices.

Then $\mathcal{L}_{\mathcal{X}}(a)$ is the region $a b^{\prime} u^{\prime} v^{\prime}$ and $\mathcal{R}_{\mathcal{X}}(a)$ is the region abuv.

Proof. Since $\mathcal{R}(a)$ is the region $a b c d$ (Sketch 1.4.3), $\mathcal{R}_{\mathcal{X}}(a)$ is at most the region abuv, since any path from a to an object in $\mathcal{R}(a)$ outside abuv can be written as a path which factors through the object w in \mathcal{X}, by virtue of the little remark after Configuration 3.2.2. Now let s be an object within the region abuv. Since s is in $\mathcal{R}(a)$, there is a non-zero morphism $f: a \rightarrow s$ in \mathcal{T}, and the corresponding morphism $\bar{f}: a \rightarrow s$ in $\mathcal{T}_{\mathcal{X}}$ is non-zero in $\mathcal{T}_{\mathcal{X}}$. Suppose it is not. Then f is a morphism in \mathcal{T} which factors through a (not necessarily indecomposable) object t in \mathcal{X}, i.e. f factorizes as $f: a \rightarrow t \rightarrow s$ in \mathcal{T}. By Lemma 3.2.4, a has the \mathcal{X}-preenvelope $a \rightarrow w$, therefore f further factorizes as $f: a \rightarrow w \rightarrow t \rightarrow s$ in \mathcal{T}. However, s is not in $\mathcal{R}(w)$, which
contradicts f non-zero. This gives \bar{f} non-zero in $\mathcal{T}_{\mathcal{X}}$. Also Lemma 3.2.3 is implicitly used throughout. The situation for $\mathcal{L}_{\mathcal{X}}(a)$ is similar.

The following lemma shows how a triangulated subcategory can be recovered from a finite set of indecomposable objects by virtue of the Auslander-Reiten triangles alone.

Lemma 3.2.8. The following sketch shows some indecomposable objects in $\mathcal{T}_{\mathcal{X}}$. Consider $t=\bigoplus_{i=1}^{m} t_{i}$ in $\mathcal{T}_{\mathcal{X}}$. Then the thick subcategory thick (t) of $\mathcal{T}_{\mathcal{X}}$, generated by t, is in fact equal to $\mathcal{T}_{\mathcal{X}}$.

Proof. This makes sense since thick (t) is triangulated by definition and $\mathcal{T}_{\mathcal{X}}$ is triangulated by [23, Theorem 2.3]. For $1 \leq i \leq m, t_{i}$ is in thick (t), since thick (t) is closed under direct summands. By [23, Theorem 3.2], $\mathcal{T}_{\mathcal{X}}$ has Auslander-Reiten triangles, and they can be read off from the AuslanderReiten quiver. Since $t_{1} \rightarrow t_{2} \rightarrow u_{1} \rightarrow$ is an Auslander-Reiten triangle, u_{1} is in thick (t). Similarly, for $2 \leq i \leq m-1, t_{i} \rightarrow t_{i+1} \oplus u_{i-1} \rightarrow u_{i} \rightarrow$ is an Auslander-Reiten triangle, and so u_{i} is in thick (t). Finally, since $t_{m} \rightarrow u_{m-1} \rightarrow u_{m} \rightarrow$ is an Auslander-Reiten triangle, u_{m} is in thick (t). Subsequently, all the u_{i} immediately next to the t_{i} on the right hand side are in thick (t). By induction, all the indecomposable objects on the right hand side of t_{i} are in thick (t). By a mirror argument, all the indecomposable objects on the left hand side of t_{i} are in thick (t). It follows that all the indecomposable objects of \mathcal{T} 號 $\operatorname{thick}(t)$, and $\operatorname{thick}(t)$ is equal to $\mathcal{T}_{\mathcal{X}}$.

Lemma 3.2.9. Consider $t=\bigoplus_{i=1}^{m} t_{i}$ in $\mathcal{\mathcal { X }}$ in the following sketch. Then $E n d_{\mathcal{T}_{\mathcal{X}}}(t) \cong E n d_{\mathcal{T}}(t)$.

Proof. The idea is that for $1 \leq i, j \leq m$, there are no non-zero morphisms $h: t_{i} \rightarrow t_{j}$ in \mathcal{T} which factor through an object in \mathcal{X}. Assume $i \leq j$ since it is apparent that t_{j} is not in $\mathcal{R}\left(t_{i}\right)$ for $j<i$. Suppose there is a non-zero $h: t_{i} \rightarrow t_{j}$ such that h factors through an object y in \mathcal{X} as $h: t_{i} \rightarrow y \rightarrow t_{j}$. In the above sketch, y is assumed to be indecomposable, though this assumption is not necessary. By Lemma 3.2.4, t_{j} has an \mathcal{X}-cover $x \rightarrow t_{j}$, hence the morphism h further factorizes as $h: t_{i} \rightarrow y \rightarrow x \rightarrow t_{j}$. But x is above and behind t_{j} in the quiver, so that x is not in $\mathcal{R}\left(t_{i}\right)$. Therefore the only morphism from t_{i} to t_{j} factoring through an object in \mathcal{X} is the zero morphism, and the isomorphism exists.

Remark 3.2.10. The path algebra $k A_{n}$ is isomorphic to its opposite alge$\operatorname{bra}\left(k A_{n}\right)^{\circ}$. Suppose the quiver A_{n} is $x_{1} \xrightarrow{f_{1}} x_{2} \rightarrow \cdots \rightarrow x_{n-1} \xrightarrow{f_{n-1}} x_{n}$, then an isomorphism φ could be obtained by $\varphi\left(x_{1}\right)=x_{n}, \varphi\left(x_{2}\right)=x_{n-1}$, $\varphi\left(f_{1}\right)=f_{n-1}$, and so on. The distinguishment between $k A_{n}$ and $\left(k A_{n}\right)^{\circ}$ is nevertheless made explicitly, since this is not true for an arbitrary algebra.

Lemma 3.2.11. Let k be a field. Suppose that in a k-linear category \mathcal{S}, objects p_{1}, \ldots, p_{m} satisfy

$$
\left(p_{i}, p_{j}\right) \cong \begin{cases}k & \text { for } i \leq j \tag{A}\\ 0 & \text { otherwise }\end{cases}
$$

Suppose the non-zero morphisms $p_{i} \rightarrow p_{j}$ and $p_{j} \rightarrow p_{l}$ compose to a non-zero morphism $p_{i} \rightarrow p_{l}$. Then $E n d_{\mathcal{S}}(S) \cong\left(k A_{m}\right)^{\circ}$ where $S=\bigoplus_{i=1}^{m} p_{i}$.

Proof. Let h be an endomorphism in $\operatorname{End}_{\mathcal{S}}(S)$,

$$
h: p_{1} \oplus p_{2} \oplus \cdots \oplus p_{m} \longrightarrow p_{1} \oplus p_{2} \oplus \cdots \oplus p_{m}
$$

Then h can be viewed as a matrix,

$$
\left(\begin{array}{cccc}
\rho_{11} & \rho_{12} & \cdots & \rho_{1 m} \\
\rho_{21} & \rho_{22} & \cdots & \rho_{2 m} \\
& \ddots & & \\
& & & \\
\rho_{m 1} & \rho_{m 2} & \cdots & \rho_{m m}
\end{array}\right)
$$

where the $\rho_{i j}$ are morphisms $\rho_{i j}: p_{j} \rightarrow p_{i}$ for $1 \leq i, j \leq m$.
By the given condition (A) on the $\left(p_{i}, p_{j}\right)$, the above matrix has the form of a lower triangular matrix,

$$
\left(\begin{array}{lllll}
k_{11} & 0 & 0 & \cdots & 0 \\
k_{21} & k_{22} & 0 & \cdots & 0 \\
k_{31} & k_{32} & k_{33} & \cdots & 0 \\
& & & & \\
& & \ddots & & \\
& & & & \\
k_{m 1} & k_{m 2} & k_{m 3} & \cdots & k_{m m}
\end{array}\right)
$$

where each $k_{j i}$ for $1 \leq i \leq j \leq m$ takes a value in the field k. Therefore the endomorphism algebra $\operatorname{End}_{\mathcal{S}}(S)$ is isomorphic to the following lower triangular $m \times m$ matrix algebra

$$
M=\left(\begin{array}{cccc}
k & 0 & \cdots & 0 \\
k & k & \cdots & 0 \\
& & & \\
& \ddots & & \\
k & k & \cdots & k
\end{array}\right)
$$

On the other hand, by [1, Lemma II.1.12], the path algebra $k A_{m}$ is also isomorphic to the lower triangular $m \times m$ matrix algebra M. This gives the isomorphisms $\operatorname{End}_{\mathcal{S}}(S) \cong k A_{m} \cong\left(k A_{m}\right)^{\circ}$ (Remark 3.2.10).

Corollary 3.2.12. Consider the categories \mathcal{T}, \mathcal{X} and $\mathcal{T}_{\mathcal{X}}$ as usual, and the object $t=\bigoplus_{i=1}^{m} t_{i}$ as in Lemma 3.2.8. Then $E n d_{\mathcal{T}_{\mathcal{X}}}(t) \cong E n d_{\mathcal{T}}(t) \cong\left(k A_{m}\right)^{\circ}$.

Proof. The first isomorphism exists by Lemma 3.2.9. The existence of the second isomorphism follows by identifying the t_{i} with the p_{i} in Lemma 3.2.11, with the help of Lemma 3.2.3.

3.2.2 Mapping cone construction

In the following sketch, the Auslander-Reiten quiver of \mathcal{T} lies in the region bounded by $y-x=2$ and $y-x=n+1$, and the indecomposable objects of \mathcal{X} form the upper band, the region bounded by $y-x=m+2$ and $y-x=n+1$. The Auslander-Reiten quiver of $\mathcal{T}_{\mathcal{X}}$ lies in the lower band of width m vertices, the region bounded by $y-x=2$ and $y-x=m+1$.

Let i and j be two fixed integers. Suppose the object a has coordinates (i, j). The coordinates of some other objects are listed: $p=(i, i+2)$, $x_{p}=(i, i+m+2), g=(i, i+n+1), q=(i+n-1, i+n+1), s=(j-2, i+m+1)$. Modules are identified with their coordinates. $\mathcal{R}(a)$ is the region agcb, and $\mathcal{R}_{\mathcal{X}}(a)$ is the region arsb (Lemma 3.2.7).
By Lemma 3.2.4, (i, j) has the \mathcal{X}-envelope $(i, j) \rightarrow(i, i+m+2)$. A copy of the module category $\bmod \left(k A_{n}\right)$ can be placed inside $D^{b}\left(\bmod k A_{n}\right)$ in such a way that its Auslander-Reiten quiver corresponds to the region pgq. Then the modules on the line $x=i$ may be perceived as projective modules in $\bmod \left(k A_{n}\right)$. Perceiving the projective modules as representations of the quiver A_{n}, the projective module (i, j) becomes

$$
0 \rightarrow 0 \rightarrow \ldots \rightarrow 0 \rightarrow k \rightarrow k \rightarrow \ldots \rightarrow k
$$

where there are $j-i-1$ copies of k at the end, and the projective module $(i, i+m+2)$ becomes

$$
0 \rightarrow 0 \rightarrow \ldots \rightarrow 0 \rightarrow k \rightarrow k \rightarrow k \rightarrow \ldots \rightarrow k,
$$

where there are $m+1$ copies of k at the end.
The cokernel of the embedding $(i, j) \hookrightarrow(i, i+m+2)$ is $(i, i+m+2) /(i, j)$, which, when perceived as a representation, becomes

$$
0 \rightarrow \ldots \rightarrow 0 \rightarrow k \rightarrow \ldots \rightarrow k \rightarrow 0 \rightarrow \ldots \rightarrow 0
$$

where $j-i-1$ copies of k are removed from the end. Correspondingly, in the diagram, the cokernel lies in the same descending line as $(i, i+m+2)$, but it is $j-i-1$ steps down the line. Therefore the cokernel has coordinates $(i+(j-i-1), i+m+2)=(j-1, i+m+2)$, which is denoted by u in the diagram.

There is an alternative way of realizing the mapping cone (c.f. Section 3.3.2), and the reader will be reminded again in Remark 3.3.21. An example is described in the Appendix (Lemma A.3.1 and Lemma A.3.2).

Using the same notation as in [23, Theorem 2.3], let σ be the translation functor of the triangulated category $\mathcal{T}_{\mathcal{X}}$. The construction of the functor σ is described in [23, Setup 1.1].

Lemma 3.2.13. For $i+2 \leq j^{\prime} \leq i+m+1$, we have $\sigma\left(i, j^{\prime}\right)=\left(j^{\prime}-1, i+m+2\right)$.

Proof. By the above description, given the \mathcal{X}-envelope $\left(i, j^{\prime}\right) \rightarrow(i, i+m+2)$ of $\left(i, j^{\prime}\right)$, extend it to the short exact sequence $0 \rightarrow\left(i, j^{\prime}\right) \rightarrow(i, i+m+2) \rightarrow$ $\left(j^{\prime}-1, i+m+2\right) \rightarrow 0$ in the module category $\bmod \left(k A_{n}\right)$. By Lemma 0.2.29, this induces a distinguished triangle in the derived category \mathcal{T}, which is in the form of the distinguished triangle (2) in [23, Setup 1.1] when M is replaced by $\left(i, j^{\prime}\right)$. Hence $\sigma\left(i, j^{\prime}\right)=\left(j^{\prime}-1, i+m+2\right)$.

The special case when $n=6$ and $m=4$ is given in the following diagram. The action of σ is $\sigma\left(t_{i}\right)=s_{i}$ for $1 \leq i \leq 4$.

Diagram 3.2.14.

Corollary 3.2.15. For $i+2 \leq j^{\prime} \leq i+m+1$ and $N \geq 0$ an integer,

$$
\sigma^{N}\left(i, j^{\prime}\right)= \begin{cases}\left(i+\frac{N}{2}(m+1), j^{\prime}+\frac{N}{2}(m+1)\right) & \text { for } N \text { even }, \\ \left(j^{\prime}+\frac{N-1}{2}(m+1)-1, i+\frac{N+1}{2}(m+1)+1\right) & \text { for } N \text { odd }\end{cases}
$$

Proof. Immediate from Lemma 3.2.13 by induction.

For example, for $i+2 \leq j^{\prime} \leq i+m+1$, we have $\sigma^{2}\left(i, j^{\prime}\right)=\left(i+m+1, j^{\prime}+m+1\right)$.
Since the translation functor σ is an autoequivalence, there is also an explicit description of σ^{-1}.

Lemma 3.2.16. For $j-m-1 \leq i^{\prime} \leq j-2$, we have $\sigma^{-1}\left(i^{\prime}, j\right)=(j-m-$ $2, i^{\prime}+1$).

Proof. Immediate from Lemma 3.2.13.

The special case when $n=6$ and $m=4$ is given in the following diagram. The action of σ^{-1} is $\sigma^{-1}\left(t_{i}\right)=u_{i}$ for $1 \leq i \leq 4$.

Diagram 3.2.17.

Corollary 3.2.18. For $j-m-1 \leq i^{\prime} \leq j-2$ and $N \geq 0$ an integer,

$$
\sigma^{-N}\left(i^{\prime}, j\right)= \begin{cases}\left(i^{\prime}-\frac{N}{2}(m+1), j-\frac{N}{2}(m+1)\right) & \text { for } N \text { even } \\ \left(j-\frac{N+1}{2}(m+1)-1, i^{\prime}-\frac{N-1}{2}(m+1)+1\right) & \text { for } N \text { odd }\end{cases}
$$

Proof. Immediate from Lemma 3.2.16 by induction.
Lemma 3.2.19. Let $N \geq 1$ be an integer. Consider $t=\bigoplus_{j^{\prime}=i+2}^{i+m+1}\left(i, j^{\prime}\right)$ in $\mathcal{T}_{\mathcal{X}}$. Then $\operatorname{Hom}_{\mathcal{T}_{\mathcal{X}}}\left(t, \sigma^{N} t\right)=0$.

Proof. Suppose $N=1$. The action of σ is as given in Lemma 3.2.13. For $i+2 \leq j^{\prime} \leq i+m+1$, the set $\mathcal{R}_{\mathcal{X}}\left(i, j^{\prime}\right)$ is the region bounded by $\left(i, j^{\prime}\right),(i, i+$ $m+1),\left(j^{\prime}-2, i+m+1\right)$ and $\left(j^{\prime}-2, j^{\prime}\right)$ (Lemma 3.2.7). The idea is that for $i+2 \leq j^{\prime} \leq i+m+1$, there are no non-zero morphisms from $\left(i, j^{\prime}\right)$ to $(l, i+m+2)$, where $i+1 \leq l \leq i+m$. This is apparent because for $i+1 \leq l \leq i+m$, the object $(l, i+m+2)$ lies outside $\mathcal{R}_{\mathcal{X}}\left(i, j^{\prime}\right)$, which is bounded by $y=i+m+1$. Suppose $N>1$. Then by similar considerations, the result is immediate from Corollary 3.2.15.

Lemma 3.2.20. Let $N \geq 1$ be an integer. Consider $t=\bigoplus_{j^{\prime}=i+2}^{i+m+1}\left(i, j^{\prime}\right)$ in $\mathcal{T}_{\mathcal{X}}$. Then $\operatorname{Hom}_{\mathcal{T}_{\mathcal{X}}}\left(t, \sigma^{-N} t\right)=0$.

Proof. Similar.

3.2.3 Theorem

The following is the main theorem of the section.
Theorem 3.2.21. Consider the categories \mathcal{T}, \mathcal{X} and $\mathcal{T}_{\mathcal{X}}$ as usual, and the object $t=\bigoplus_{i=1}^{m} t_{i}$ as in Lemma 3.2.8. Then there is an equivalence of triangulated categories $f: \mathcal{T}_{\mathcal{X}} \stackrel{\simeq}{\rightrightarrows} D^{b}\left(\bmod \left(k A_{m}\right)^{\circ}\right)$ where $f(t)=\left(k A_{m}\right)^{\circ}$.

Proof. Let \mathcal{U} and X in Theorem 3.1.1 be $\mathcal{T} \mathcal{X}$ and t respectively. By Corollary 3.2.12, $A \cong\left(k A_{m}\right)^{\circ}$. Let us take Σ in Theorem 3.1.1 to be the translation functor σ of the triangulated category $\mathcal{T}_{\mathcal{X}}$. Then the result follows from Lemma 3.2.8, Lemma 3.2.19 and Lemma 3.2.20.

3.3 The cluster category of Dynkin type A_{∞}

In this section, let \mathcal{T} be the cluster category \mathcal{D} of Dynkin type A_{∞} described in $[19$, Section 1]. The category \mathcal{D} is a k-linear Hom finite triangulated category. It is Krull-Schmidt as well.

The Auslander-Reiten (AR) quiver of \mathcal{D} is $\mathbb{Z} A_{\infty}$, endowed with the same coordinate system described in [19, Remark 1.4].

Since \mathcal{D} is 2-Calabi-Yau, its Serre functor is $S=\Sigma^{2}$ and the AuslanderReiten translation τ is $\tau=S \Sigma^{-1}=\Sigma$, where Σ is the translation functor of
\mathcal{D}. In terms of coordinates, the action of $\Sigma=\tau$ is $\Sigma(m, n)=(m-1, n-1)$, see [19, Remark 1.4].

The following lemma describes the morphism spaces between indecomposable objects of \mathcal{D}. Its significance is in giving the picture of the category \mathcal{D} without a priori knowledge of how it originated and was derived. Let x be an indecomposable object of \mathcal{D}. The regions $\mathrm{H}^{-}(x)$ and $\mathrm{H}^{+}(x)$ in the Auslander-Reiten quiver of \mathcal{D}, described in [19, Definition 2.1], are sketched as follows.

We write $\mathrm{H}(x)=\mathrm{H}^{-}(x) \cup \mathrm{H}^{+}(x)$.
Lemma 3.3.1. ([19, Corollary 2.3]) Let x and y be indecomposable objects of \mathcal{D}. Then the following are equivalent.
(i) $(x, y) \neq 0$,
(ii) $(x, y)=k$,
(iii) $y \in \mathrm{H}(\Sigma x)$,
(iv) $x \in \mathrm{H}\left(\Sigma^{-1} y\right)$.

In Lemma 3.3.1, there are two different types of non-zero morphisms going from x to y. Those morphisms with y in $\mathrm{H}^{+}(x)$ are said to be forward morphisms and those morphisms with y in $\mathrm{H}^{-}(x)$ are said to be backward morphisms.
Remark 3.3.2. (i) If f is a backward morphism, then it can always be written $f=g f^{\prime}$ where f^{\prime} is a backward morphism and g is a forward morphism (Lemma 3.3.4). Therefore backward morphisms are not irreducible (can be decomposed indefinitely), and so they do not arise in the Auslander-Reiten quiver.
(ii) The analogue of Lemma 3.2 .1 for \mathcal{D} is false in view of the occurrence of the backward morphisms.

With the following lemmas we end the section.

Lemma 3.3.3. Let a, b and c be indecomposable objects of \mathcal{D}. Then
(i) b is in $\mathrm{H}^{+}(\Sigma a)$ if and only if $S a$ is in $\mathrm{H}^{-}(\Sigma b)$,
(ii) c is in $\mathrm{H}^{-}(\Sigma a)$ if and only if $S a$ is in $\mathrm{H}^{+}(\Sigma c)$.

Proof. This is [19, Lemma 2.6].
Lemma 3.3.4. Let a, b and c be indecomposable objects of \mathcal{D}. Suppose b and c are in $\mathrm{H}^{-}(\Sigma a)$ and c is in $\mathrm{H}^{+}(\Sigma b)$. Consider the non-zero morphism $f: b \rightarrow c$. Then each morphism $a \rightarrow c$ factors as $a \rightarrow b \xrightarrow{f} c$.

Proof. This is [19, Lemma 2.7].
Lemma 3.3.5. (c.f. Lemma 3.2.3)
(i) Let a, b and c be indecomposable objects of \mathcal{D}. Suppose b and c are in $\mathrm{H}^{+}(\Sigma a)$ and c is in $\mathrm{H}^{+}(\Sigma b)$. Consider the non-zero morphisms $f: a \rightarrow b$ and $g: b \rightarrow c$. Then the composition $g f: a \rightarrow c$ is non-zero.
(ii) Let a, b and c be indecomposable objects of \mathcal{D}. Suppose b and c are in $\mathrm{H}^{-}(\Sigma a)$ and c is in $\mathrm{H}^{+}(\Sigma b)$. Consider the non-zero morphisms $f: a \rightarrow b$ and $g: b \rightarrow c$. Then the composition $g f: a \rightarrow c$ is non-zero.

Proof. (i) This is [19, Lemma 2.5(i)].
(ii) Assume $g f$ is zero. Let h be any morphism in (a, c). By Lemma 3.3.4, $h=g \tilde{f}$ for some morphism $\tilde{f}: a \rightarrow b$. Since (a, b) is one-dimensional, $\tilde{f}=\alpha f$ for some scalar α. Then $h=g(\alpha f)=\alpha(g f)$ would have to be zero. Since h is arbitrary, (a, c) would have to be zero as well, which is a contradiction since there is c in $\mathrm{H}^{-}(\Sigma a)$.

Lemma 3.3.6. Let a, b and c be indecomposable objects of \mathcal{D}. Suppose b and c are in $\mathrm{H}^{+}(\Sigma a)$ and c is in $\mathrm{H}^{+}(\Sigma b)$. Consider the non-zero morphism $f: b \rightarrow c$. Then each morphism $a \rightarrow c$ factors as $a \rightarrow b \xrightarrow{f} c$.

Proof. This is [19, Lemma 2.5(ii)].
Lemma 3.3.7. Let a, b and c be indecomposable objects of \mathcal{D}. Suppose b is in $\mathrm{H}^{+}(\Sigma a)$ and c is in both $\mathrm{H}^{-}(\Sigma a)$ and $\mathrm{H}^{-}(\Sigma b)$. Consider the non-zero morphism $f: b \rightarrow c$. Then each morphism $a \rightarrow c$ factors as $a \rightarrow b \xrightarrow{f} c$.

Proof. This is to show that $(a, f):(a, b) \rightarrow(a, c)$ is surjective. By Serre duality, this is equivalent to $(f, S a):(c, S a) \rightarrow(b, S a)$ injective. This map sends $\xi: c \rightarrow S a$ to the composition $b \xrightarrow{f} c \xrightarrow{\xi} S a$. Since c is in $\mathrm{H}^{-}(\Sigma a)$, by Lemma 3.3.3(ii), $S a$ is in $\mathrm{H}^{+}(\Sigma c)$. If ξ is non-zero, then it is a forward morphism. Since b is in $\mathrm{H}^{+}(\Sigma a)$, by Lemma 3.3.3(i), $S a$ is in $\mathrm{H}^{-}(\Sigma b)$. Therefore by Lemma 3.3.5(ii), the composition ξf is non-zero.

Lemma 3.3.8. (c.f. Lemma 3.2.3) Let a, b and c be indecomposable objects of \mathcal{D}. Suppose b is in $\mathrm{H}^{+}(\Sigma a)$ and c is in both $\mathrm{H}^{-}(\Sigma a)$ and $\mathrm{H}^{-}(\Sigma b)$. Consider the non-zero morphisms $f: a \rightarrow b$ and $g: b \rightarrow c$. Then the composition gf : $a \rightarrow c$ is non-zero.

Proof. Assume $g f$ is zero. Let h be any morphism in (a, c). By Lemma 3.3.7, $h=g \tilde{f}$ for some morphism $\tilde{f}: a \rightarrow b$. Since (a, b) is one-dimensional, $\tilde{f}=\alpha f$ for some scalar α. Then $h=g(\alpha f)=\alpha(g f)$ would have to be zero. Since h is arbitrary, (a, c) would have to be zero as well, which is a contradiction since there is c in $\mathrm{H}^{-}(\Sigma a)$.

However, the composition of non-zero backward morphisms is always zero, and this is stated below. The proof is left to the reader.

Lemma 3.3.9. Let a, b and c be indecomposable objects of \mathcal{D}. Suppose b is in $\mathrm{H}^{-}(\Sigma a)$ and c is in both $\mathrm{H}^{-}(\Sigma a)$ and $\mathrm{H}^{-}(\Sigma b)$. Consider the non-zero morphisms $f: a \rightarrow b$ and $g: b \rightarrow c$. Then the composition $g f: a \rightarrow c$ is zero.

3.3.1 Lemmas

Consider an infinite band of indecomposable objects, given by $\{(x, y) \mid y-$ $x \geq m+2\}$, along the top of the Auslander-Reiten quiver of \mathcal{D}. Henceforth, let \mathcal{X} be add of them.

Lemma 3.3.10. (c.f. Lemma 3.2.4) In the following sketch, the indecomposable objects of \mathcal{X} lie in the region bounded below by and including the dotted boundary line $y-x=m+2$. Let a be an indecomposable object in \mathcal{D}. Then a has an \mathcal{X}-preenvelope $a \rightarrow u$.

Proof. If $a=(i, j)$ is in \mathcal{X}, then the lemma is trivial. The following sketch illustrates the situation when a is not in \mathcal{X}.

Consider $u=(i, i+m+2)$ on the dotted line $y-x=m+2$, which is the leftmost object on the line in the region $\mathrm{H}^{+}(\Sigma a)$. Then the non-zero morphism $g: a \rightarrow u$ is an \mathcal{X}-preenvelope of a. Indeed suppose w is in $\mathrm{H}^{+}(\Sigma a) \cap \mathcal{X}$ which is inside $\mathrm{H}^{+}(\Sigma u)$. Then each morphism $a \rightarrow w$ factors as $a \xrightarrow{g} u \rightarrow w$ (c.f. Lemma 3.3.6). Now suppose w^{\prime} is in $\mathrm{H}^{-}(\Sigma a) \cap \mathcal{X}$ which is inside $\mathrm{H}^{-}(\Sigma u)$. To show that each morphism $a \rightarrow w^{\prime}$ factors as $a \xrightarrow{g} u \rightarrow w^{\prime}$ is to show that $\left(g, w^{\prime}\right):\left(u, w^{\prime}\right) \rightarrow\left(a, w^{\prime}\right)$ is surjective. By Serre duality, this is equivalent to $\left(w^{\prime}, S g\right):\left(w^{\prime}, S a\right) \rightarrow\left(w^{\prime}, S u\right)$ injective. This map sends $\xi: w^{\prime} \rightarrow S a$ to the composition $w^{\prime} \xrightarrow{\xi} S a \xrightarrow{S g} S u$. Since w^{\prime} is in $\mathrm{H}^{-}(\Sigma a)$, by Lemma 3.3.3(ii), $S a$ is in $\mathrm{H}^{+}\left(\Sigma w^{\prime}\right)$. If ξ is non-zero, then it is a forward morphism. Since g is non-zero, $S g$ is non-zero. Since u is in $\mathrm{H}^{+}(\Sigma a), S u$ is in $\mathrm{H}^{+}(\Sigma S a)$ and thus $S g$ is also a forward morphism. Finally, $w^{\prime} \xrightarrow{\xi} S a \xrightarrow{S g} S u$ is non-zero by Lemma 3.3.5(i) since $S u$ is in $\mathrm{H}^{+}\left(\Sigma w^{\prime}\right)$, and this holds by Lemma 3.3.3(ii) since w^{\prime} is in $\mathrm{H}^{-}(\Sigma u)$.

Lemma 3.3.11. (c.f. Lemma 3.2.4) In the following sketch, the indecomposable objects of \mathcal{X} lie in the region bounded below by and including the dotted boundary line $y-x=m+2$. Let a be an indecomposable object in \mathcal{D}. Then a has an \mathcal{X}-precover $u \rightarrow a$.

Proof. If $a=(i, j)$ is in \mathcal{X}, then the lemma is trivial. The following sketch illustrates the situation when a is not in \mathcal{X}.

Consider $u=(j-m-2, j)$ on the dotted line $y-x=m+2$, which is the rightmost object on the line in the region $\mathrm{H}^{-}\left(\Sigma^{-1} a\right)$. Then the nonzero morphism $g: u \rightarrow a$ is an \mathcal{X}-precover of a. Indeed suppose w is in $\mathrm{H}^{-}\left(\Sigma^{-1} a\right) \cap \mathcal{X}$ which is inside $\mathrm{H}^{-}\left(\Sigma^{-1} u\right)$. Then by Lemma 3.3.6 each morphism $w \rightarrow a$ factors as $w \rightarrow u \xrightarrow{g} a$. This is because a is in both $\mathrm{H}^{+}(\Sigma u)$ and $\mathrm{H}^{+}(\Sigma w)$, and u is in $\mathrm{H}^{+}(\Sigma w)$ (Lemma 3.3.3(ii)). Now suppose w^{\prime} is in $\mathrm{H}^{+}\left(\Sigma^{-1} a\right) \cap \mathcal{X}$ which is inside $\mathrm{H}^{+}\left(\Sigma^{-1} u\right)$. To show that each morphism $w^{\prime} \rightarrow$ a factors as $w \rightarrow u \xrightarrow{g} a$ is to show that $\left(w^{\prime}, g\right):\left(w^{\prime}, u\right) \rightarrow\left(w^{\prime}, a\right)$ is surjective. By Serre duality, this is equivalent to $\left(g, S w^{\prime}\right):\left(a, S w^{\prime}\right) \rightarrow\left(u, S w^{\prime}\right)$ injective. This map sends $\xi: a \rightarrow S w^{\prime}$ to the composition $u \xrightarrow{g} a \xrightarrow{\xi} S w^{\prime}$. Since w^{\prime} is in $\mathrm{H}^{+}\left(\Sigma^{-1} a\right), S w^{\prime}$ is in $\mathrm{H}^{+}(\Sigma a)$ by Lemma 3.3.3(i), (ii). If ξ is non-zero, then it is a forward morphism. Similarly, g is non-zero, and since u is in $\mathrm{H}^{-}\left(\Sigma^{-1} a\right)$, a is in $\mathrm{H}^{+}(\Sigma u)$ by Lemma 3.3.3(ii) and thus g is also a forward morphism. Finally, $u \xrightarrow{g} a \xrightarrow{\xi} S w^{\prime}$ is non-zero by Lemma 3.3.5(i) since $S w^{\prime}$ is in $\mathrm{H}^{+}(\Sigma u)$, and this holds by Lemma 3.3.3(i), (ii) since w^{\prime} is in $\mathrm{H}^{+}\left(\Sigma^{-1} u\right)$.

Remark 3.3.12. Alternatively, in Lemma 3.3.11, each morphism $w^{\prime} \rightarrow a$ factors as $w \rightarrow u \xrightarrow{g} a$ by Lemma 3.3.4, since w^{\prime} in $\mathrm{H}^{+}\left(\Sigma^{-1} a\right)$ and $\mathrm{H}^{+}\left(\Sigma^{-1} u\right)$ implies a, u in $\mathrm{H}^{-}\left(\Sigma w^{\prime}\right)$ (Lemma 3.3.3(i)).

By Lemma 3.3.10, Lemma 3.3.11 and [23, Theorem 1.2], the quotient category $\mathcal{D}_{\mathcal{X}}$ is pretriangulated. Since $\tau=\Sigma$ and evidently $\tau \mathcal{X}=\mathcal{X}$, therefore $\mathcal{D}_{\mathcal{X}}$ is in addition triangulated by [23, Theorem 2.3]. By [23, Theorem 3.2], the Auslander-Reiten quiver of $\mathcal{D}_{\mathcal{X}}$ is obtained by deleting the vertices of \mathcal{X} and the incident arrows from the Auslander-Reiten quiver of \mathcal{D}. Suppose the Auslander-Reiten quiver of $\mathcal{D}_{\mathcal{X}}$ is of width m vertices. This means $\mathcal{D}_{\mathcal{X}}$ has Auslander-Reiten quiver $\mathbb{Z} A_{m}$.

Lemma 3.3.13. (c.f. Lemma 3.2.8) The following sketch shows some indecomposables in $\mathcal{D}_{\mathcal{X}}$.

Consider $d=\bigoplus_{i=1}^{m} d_{i}$ in $\mathcal{D}_{\mathcal{X}} . \quad$ Then the thick subcategory thick (d) of $\mathcal{D}_{\mathcal{X}}$,
generated by d, is in fact equal to $\mathcal{D}_{\mathcal{X}}$.
Proof. Similar to Lemma 3.2.8, since $\mathcal{D}_{\mathcal{X}}$ has Auslander-Reiten triangles by [23, Theorem 3.2].
Lemma 3.3.14. (c.f. Lemma 3.2.9) Consider $d=\bigoplus_{i=1}^{m} d_{i}$ in $\mathcal{D}_{\mathcal{X}}$ in the following sketch.

Then $E n d_{\mathcal{D}_{\mathcal{X}}}(d) \cong E n d_{\mathcal{D}}(d)$.
Proof. The idea is that for $1 \leq i, j \leq m$, there are no non-zero morphisms $h: d_{i} \rightarrow d_{j}$ in \mathcal{D} which factor through an object in \mathcal{X}. Assume $i \leq j$ since it is apparent that d_{j} is not in $\mathrm{H}\left(\Sigma d_{i}\right)$ for $j<i$. Suppose there is a non-zero $h: d_{i} \rightarrow d_{j}$ such that h factors through a (not necessarily indecomposable) object t in \mathcal{X} as $h: d_{i} \rightarrow t \rightarrow d_{j}$. By Lemma 3.3.10, d_{i} has the \mathcal{X}-preenvelope $d_{i} \rightarrow u$, thus the morphism h further factorizes as $h: d_{i} \rightarrow u \rightarrow t \rightarrow d_{j}$. Since it is again apparent that d_{j} is not in $\mathrm{H}(\Sigma u)$, the only morphism from d_{i} to d_{j} factoring through an object in \mathcal{X} is the zero morphism, and the isomorphism exists.

Corollary 3.3.15. (c.f. Corollary 3.2.12) Consider the categories \mathcal{D}, \mathcal{X} and $\mathcal{D}_{\mathcal{X}}$ as usual, and the object $d=\bigoplus_{i=1}^{m} d_{i}$ as in Lemma 3.3.13. Then $E n d_{\mathcal{D}_{\mathcal{X}}}(d) \cong E n d_{\mathcal{D}}(d) \cong\left(k A_{m}\right)^{\circ}$.

Proof. The first isomorphism exists by Lemma 3.3.14. The existence of the second isomorphism follows by identifying the d_{i} with the p_{i} in Lemma 3.2.11, with the help of Lemma 3.3.1 and Lemma 3.3.5(i).

3.3.2 Mapping cone construction

This section displays the significance of Auslander-Reiten triangles in determining the mapping cones of certain morphisms in the category \mathcal{D}, and the way Auslander-Reiten triangles alone reflect the (unique) triangulation structure of the triangulated category \mathcal{D}.

The mapping cone constructions realized in this section might not remain the same in other triangulated categories with Auslander-Reiten quivers which contain the same (local) configurations. This is because properties of a category, for example, the actions of the translation functor and the Auslander-Reiten translation, are inherent attributes of the quiver.

Consider the Auslander-Reiten quiver of \mathcal{D} in the following diagram.

The coordinates of some of the objects are as follows: $a_{0}=(i, j), b_{0}=$ $(i, j+1), a_{1}=(i-1, j), b_{1}=(i-1, j+1), a_{2}=(i-2, j), b_{2}=(i-2, j+1)$ and $c=(i+1, j+1)$. As usual, the coordinates of objects on the bottom line satisfy the equation $y-x=2$.
Lemma 3.3.16. The mapping cones of the maps $f_{n}:(i-n, j) \rightarrow(i-n, j+1)$ are all isomorphic to $c=(i+1, j+1)$.

Proof. Since $a_{0} \rightarrow b_{0} \rightarrow c \rightarrow$ is an Auslander-Reiten triangle, the statement is true for $n=0$. Suppose the statement is true for $n=p, p \geq 0$, i.e. the mapping cone of the map $f_{p}: a_{p} \rightarrow b_{p}$ is $c=(i+1, j+1)$. To see that the statement is true for $n=p+1$, consider the following commutative diagram,

where $\mu_{p+1}=\binom{g_{p+1}}{f_{p+1}}$ and the map \jmath is the canonical surjection. By the octahedral axiom, it may be extended to the following commutative diagram,

where the map \imath is the canonical injection. The distinguished triangle on the second row is an Auslander-Reiten triangle. Hence the mapping cone of the map $f_{p+1}: a_{p+1} \rightarrow b_{p+1}$ is the same as the mapping cone of the map $f_{p}: a_{p} \rightarrow b_{p}$, which is $c=(i+1, j+1)$ by the induction hypothesis.

Remark 3.3.17. The connecting morphism ∂ in the Auslander-Reiten triangle $a_{p+1} \xrightarrow{\mu_{p+1}} a_{p} \oplus b_{p+1} \rightarrow b_{p} \xrightarrow{\partial} \Sigma a_{p+1}$ on the second row is a backward morphism.

Lemma 3.3.18. Consider the following sketch.

For $-1 \leq n \leq j-i-2$, let $a_{n}=(i, j-n)$. Let f_{n} be the morphism $f_{n}:(i, j-n) \rightarrow(i, j-n+1)$. Then for $0 \leq r \leq j-i-2$, the composition $f_{0} \ldots f_{r-1} f_{r}:(i, j-r) \rightarrow(i, j+1)$ has mapping cone $c_{r}=(j-1-r, j+1)$.

Proof. Consider the object $c_{0}=(j-1, j+1)$ on the bottom line $y-x=$ 2. It lies in the same descending line as $(i, j+1)$, where the composition
$f_{0} \ldots f_{r-1} f_{r}$ maps to. The mapping cone $c_{r}=(j-1-r, j+1)$ lies in the same descending line as c_{0}, but it is r steps up the line. This is how we understand the location of the mapping cone c_{r}.

Let us consider again the Auslander-Reiten quiver of \mathcal{D}.

The statement is true for $r=0$ by Lemma 3.3.16. Suppose the statement is true for $r=p, p \geq 0$, and then the statement is also required to be true for $r=p+1$.
Consider the following commutative diagram,

where g is the morphism $f_{1} \ldots f_{p+1}:(i, j-p-1) \rightarrow(i, j)$.
By the octahedral axiom, it may be extended to the following commutative diagram,

Consider the object $d_{0}=(j-2, j)$ on the bottom line $y-x=2$. It lies in the same descending line as (i, j), where the morphism g maps to. By the induction hypothesis, the mapping cone of the morphism g lies in the same descending line as d_{0}, but it is p steps up the line, i.e. it is the object $d=(j-2-p, j)$. This gives the distinguished triangle on the first row. The mapping cone of the morphism f_{0} is $c_{0}=(j-1, j+1)$ by Lemma 3.3.16, which gives the distinguished triangle in the second column.

The map $\rho: a_{0} \rightarrow d$ is non-zero, as otherwise $a_{p+1} \cong \Sigma^{-1} d \oplus a_{0}$ by Lemma $0.2 .2(\mathrm{v})$, which is not possible since a_{p+1} is indecomposable. Therefore the map $\Sigma \rho: \Sigma a_{0} \rightarrow \Sigma d$ is non-zero as well. Similarly, the map $\varrho: c_{0} \rightarrow \Sigma a_{0}$ is non-zero. Therefore by Lemma 3.3.5(ii) the composition $(\Sigma \rho) \varrho: c_{0} \rightarrow \Sigma d$ is non-zero, and the distinguished triangle $d \rightarrow * \rightarrow c_{0} \rightarrow$ Σd is non-split.

Let an object e have coordinates $(j-2-p, j+1)$. By Lemma 3.3.16, the mapping cone of $d \rightarrow e$ is c_{0}. Since $\left(c_{0}, \Sigma d\right)$ is one-dimensional, the object $*$ is indeed equal to e. Therefore the mapping cone of the morphism $f_{0} g$ is $e=(j-2-p, j+1)=(j-1-(p+1), j+1)=c_{p+1}$ as desired.

Using the same notation as in [23, Theorem 2.3], let σ be the translation functor of the triangulated category $\mathcal{D}_{\mathcal{X}}$. The construction of the functor σ is described in [23, Setup 1.1]. The following example helps understand it.

Example 3.3.19. Consider again the Auslander-Reiten quiver in Lemma 3.3.18 with the same coordinate system.

Consider an infinite band of indecomposable objects along the top of the Auslander-Reiten quiver bounded below by and including the dotted bound-
ary line, i.e. the region given by $\{(x, y) \mid y-x \geq j+1-i\}$, and let \mathcal{X} be add of them.
For example, the morphism $f_{1}: a_{1} \rightarrow a_{0}$ is an \mathcal{X}-monomorphism in \mathcal{D}, i.e. a morphism such that each morphism $a_{1} \rightarrow x$ with x in \mathcal{X} factors through f_{1} (c.f. Lemma 3.3.10). Extend $f_{1}: a_{1} \rightarrow a_{0}$ to the distinguished triangle $a_{1} \xrightarrow{f_{7}} a_{0} \rightarrow d_{0} \xrightarrow{\partial_{7}} \Sigma a_{1}$ in \mathcal{D} by Lemma 3.3.18. On the other hand, the mapping cone of the morphism $f_{0} f_{1}$ is c_{1} by Lemma 3.3.18, where $f_{0} f_{1}$: $a_{1} \rightarrow a_{-1}$ is an \mathcal{X}-preenvelope of a_{1} by Lemma 3.3.10. Then the diagram $a_{1} \xrightarrow{\overline{f_{f}}} a_{0} \rightarrow d_{0} \xrightarrow{\overline{\sigma_{2}}} c_{1}$, considered in $\mathcal{D}_{\mathcal{X}}$, is defined to be a distinguished triangle in $\mathcal{D}_{\mathcal{X}}$, so that $\sigma\left(a_{1}\right)=c_{1}$. The reader can refer to [23, Setup 1.1] for more details.

The following deserves attention.
(i) The connecting morphism ∂_{1} in the distinguished triangle $a_{1} \xrightarrow{f_{1}} a_{0} \rightarrow$ $d_{0} \xrightarrow{{ }^{\partial}} \Sigma a_{1}$ in \mathcal{D} is a backward morphism, while the connecting morphism ∂_{2} in the distinguished triangle $a_{1} \xrightarrow{\overline{f_{子}}} a_{0} \rightarrow d_{0} \xrightarrow{\overline{\sigma_{2}}} c_{1}$ in $\mathcal{D}_{\mathcal{X}}$ is a forward morphism.
(ii) The morphism $f_{0} f_{1}: a_{1} \rightarrow a_{-1}$ is an \mathcal{X}-preenvelope of a_{1}, hence an \mathcal{X}-monomorphism as well. Therefore $a_{1} \xrightarrow{\overline{f_{0} f_{1}}} a_{-1} \rightarrow c_{1} \xrightarrow{\bar{\sigma}} c_{1}$ is a distinguished triangle in $\mathcal{D}_{\mathcal{X}}$ by construction. However, a_{-1} in \mathcal{X} is isomorphic to zero in $\mathcal{D}_{\mathcal{X}}$, so that the connecting morphism $\bar{\partial}$ has to be an isomorphism in $\mathcal{D}_{\mathcal{X}}$.
(iii) Similarly, to suggest but a few, there is the distinguished triangle $a_{2} \stackrel{\overline{f_{1} f_{2}}}{ } a_{0} \rightarrow d_{1} \rightarrow c_{2}$ in $\mathcal{D}_{\mathcal{X}}$, and also $a_{3} \xrightarrow{\overline{f_{1} f_{2} f_{3}}} a_{0} \rightarrow d_{2} \rightarrow c_{3}$ in $\mathcal{D}_{\mathcal{X}}$. The distinguished triangles in $\mathcal{D}_{\mathcal{X}}$ seem to be quite symmetrical.

Lemma 3.3.20. (c.f. Lemma 3.2.13) For $i+2 \leq j^{\prime} \leq i+m+1$, we have $\sigma\left(i, j^{\prime}\right)=\left(j^{\prime}-1, i+m+2\right)$.

Proof. By Lemma 3.3.10, $\left(i, j^{\prime}\right) \rightarrow(i, i+m+2)$ is an \mathcal{X}-preenvelope. Extend the map $\left(i, j^{\prime}\right) \rightarrow(i, i+m+2)$ to the distinguished triangle $\left(i, j^{\prime}\right) \rightarrow(i, i+$ $m+2) \rightarrow\left(j^{\prime}-1, i+m+2\right) \rightarrow$ given in Lemma 3.3.18, which is in the form of the distinguished triangle (2) in [23, Setup 1.1] when M is replaced by $\left(i, j^{\prime}\right)$. Hence $\sigma\left(i, j^{\prime}\right)=\left(j^{\prime}-1, i+m+2\right)$.

Remark 3.3.21. The mapping cone construction described in this section can be imitated to accommodate the previous situation in Section 3.2.2. An example in the finite derived category $D^{b}\left(\bmod k A_{7}\right)$ is given in the Appendix (Lemma A.3.1 and Lemma A.3.2). Since there is a high resemblance
between the respective locations of the \mathcal{X}-preenvelopes (Lemma 3.2.4 and Lemma 3.3.10), there is no surprise that Lemma 3.2.13 and Lemma 3.3.20 yield the same consequence accordingly.

Corollary 3.3.22. (c.f. Corollary 3.2.15) For $i+2 \leq j^{\prime} \leq i+m+1$ and $N \geq 0$ an integer,

$$
\sigma^{N}\left(i, j^{\prime}\right)= \begin{cases}\left(i+\frac{N}{2}(m+1), j^{\prime}+\frac{N}{2}(m+1)\right) & \text { for } N \text { even }, \\ \left(j^{\prime}+\frac{N-1}{2}(m+1)-1, i+\frac{N+1}{2}(m+1)+1\right) & \text { for } N \text { odd. }\end{cases}
$$

Proof. Immediate from Lemma 3.3.20 by induction.
For example, for $i+2 \leq j^{\prime} \leq i+m+1$, we have $\sigma^{2}\left(i, j^{\prime}\right)=\left(i+m+1, j^{\prime}+m+1\right)$.
Since the translation functor σ is an autoequivalence, there is also an explicit description of σ^{-1}.

Lemma 3.3.23. (c.f. Lemma 3.2.16) For $j-m-1 \leq i^{\prime} \leq j-2$, we have $\sigma^{-1}\left(i^{\prime}, j\right)=\left(j-m-2, i^{\prime}+1\right)$.

Proof. Immediate from Lemma 3.3.20.
Lemma 3.3.23 is deduced from Lemma 3.3.20, where \mathcal{X} is perceived as preenveloping. Alternatively, one can obtain the value of σ^{-1} directly if \mathcal{X} is perceived as precovering. An example is given in the Appendix (Example A.3.8).

Corollary 3.3.24. (c.f. Corollary 3.2.18) For $j-m-1 \leq i^{\prime} \leq j-2$ and $N \geq 0$ an integer,

$$
\sigma^{-N}\left(i^{\prime}, j\right)= \begin{cases}\left(i^{\prime}-\frac{N}{2}(m+1), j-\frac{N}{2}(m+1)\right) & \text { for } N \text { even }, \\ \left(j-\frac{N+1}{2}(m+1)-1, i^{\prime}-\frac{N-1}{2}(m+1)+1\right) & \text { for } N \text { odd } .\end{cases}
$$

Proof. Immediate from Lemma 3.3.23 by induction.
Lemma 3.3.25. (c.f. Lemma 3.2.19) Let $N \geq 1$ be an integer. Consider $d=\bigoplus_{j^{\prime}=i+2}^{i+m+1}\left(i, j^{\prime}\right)$ in $\mathcal{D}_{\mathcal{X}}$. Then $\operatorname{Hom}_{\mathcal{D}_{\mathcal{X}}}\left(d, \sigma^{N} d\right)=0$.

Proof. This is similar to Lemma 3.2.19.
Lemma 3.3.26. (c.f. Lemma 3.2.20) Let $N \geq 1$ be an integer. Consider $d=\bigoplus_{j^{\prime}=i+2}^{i+m+1}\left(i, j^{\prime}\right)$ in $\mathcal{D}_{\mathcal{X}}$. Then $\operatorname{Hom}_{\mathcal{D}_{\mathcal{X}}}\left(d, \sigma^{-N} d\right)=0$.

Proof. This is similar to Lemma 3.2.20. However, for $i+2 \leq j^{\prime} \leq i+m+$ 1 , any non-zero morphism in \mathcal{D} from $\left(i, j^{\prime}\right)$ to an object y in $\mathrm{H}^{-}\left(\Sigma\left(i, j^{\prime}\right)\right)$ has to factor through an object in \mathcal{X}. This is true by Lemma 3.3.4, since there is always a non-zero forward morphism $u: x \rightarrow y$ where x is an indecomposable object in \mathcal{X} and in $\mathrm{H}^{-}\left(\Sigma\left(i, j^{\prime}\right)\right)$. An example is given in the following diagram, where the indecomposable objects of \mathcal{X} lie in the region bounded below by and including the dotted boundary line.

By Lemma 3.3.1, the non-zero morphism space from $\left(i, j^{\prime}\right)$ to y is onedimensional. Therefore there are no non-zero morphisms in $\mathcal{D}_{\mathcal{X}}$ from $\left(i, j^{\prime}\right)$ to an object y in $\mathrm{H}^{-}\left(\Sigma\left(i, j^{\prime}\right)\right)$.

3.3.3 Theorem

The following is the main theorem of the section.
Theorem 3.3.27. Consider the categories \mathcal{D}, \mathcal{X} and $\mathcal{D}_{\mathcal{X}}$ as usual, and the object $d=\bigoplus_{i=1}^{m} d_{i}$ as in Lemma 3.3.13. Then there is an equivalence of triangulated categories $f: \mathcal{D}_{\mathcal{X}} \xrightarrow{\widetilde{ }} D^{b}\left(\bmod \left(k A_{m}\right)^{\circ}\right)$ where $f(d)=\left(k A_{m}\right)^{\circ}$.

Proof. Let \mathcal{U} and X in Theorem 3.1.1 be $\mathcal{D}_{\mathcal{X}}$ and d respectively. By Corollary 3.3.15, $A \cong\left(k A_{m}\right)^{\circ}$. Let us take Σ in Theorem 3.1.1 to be the translation functor σ of the triangulated category $\mathcal{D}_{\mathcal{X}}$. Then the result follows from Lemma 3.3.13, Lemma 3.3.25 and Lemma 3.3.26.

3.4 The finite derived category $D^{b}\left(\bmod k D_{5}\right)$

In this section, let \mathcal{T} be the finite derived category $D^{b}\left(\bmod k D_{5}\right)$ described in Section 1.4. The category \mathcal{T} is a k-linear Hom finite triangulated category. It is Krull-Schmidt as well. The Auslander-Reiten quiver of $D^{b}\left(\bmod k D_{5}\right)$ is given below (Section 1.4).

Let $i \in\{1,2,3\}$ and $j \in\{2,3,+,-\}$. If there is an arrow $b_{i} \rightarrow b_{j}$, then let the arrow be $\beta_{i}: b_{i} \rightarrow b_{j}$ if $j \in\{2,3\}$ and let the arrow be $\beta_{j}: b_{i} \rightarrow b_{j}$ if $j \in\{+,-\}$. Now let $i \in\{2,3,+,-\}$ and $j \in\{1,2,3\}$. If there is an arrow $b_{i} \rightarrow c_{j}$, then let the arrow be $\beta_{i-1}^{\prime}: b_{i} \rightarrow c_{j}$ if $i \in\{2,3\}$ and let the arrow be $\beta_{i}^{\prime}: b_{i} \rightarrow c_{j}$ if $i \in\{+,-\}$. The rest of the arrows are named similarly in terms of γ 's, δ 's, etc. The vertices $m_{+}, m_{-}, a_{+}, a_{-}, b_{+}, b_{-}, \ldots$ are the exceptional vertices. The vertices $a_{3}, b_{3}, c_{3}, \ldots$ are the bridge vertices. The exceptional vertices together with the bridge vertices are said to lie in the exceptional part of the Auslander-Reiten quiver. The vertices other than the exceptional vertices are the type A vertices, and are said to lie in the type A part of the Auslander-Reiten quiver. The exceptional and type A parts of the Auslander-Reiten quiver are not disjoint. The vertices a_{3} and b_{3} are assigned to be one horizontal unit apart, and so are a_{+}and b_{+}etc.

The following coordinate system is employed. Suppose the indecomposable object a_{3} has coordinates $(i-1, i+3)$. The coordinates of some of its surrounding objects are given in the following diagram.

The coordinates of objects of the bottom line satisfy the equation $y-x=2$, and the coordinates of the exceptional vertices satisfy the equation $y-x=5$.

The action of the translation functor Σ on the Auslander-Reiten quiver is
given in [33, Table 4.I.]. It acts by shifting 4 units to the right and switching each pair of exceptional vertices. For example, $\Sigma\left(b_{2}\right)=f_{2}$ and $\Sigma\left(a_{+}\right)=e_{-}$.

The following is an example of Lemma 1.4.1 and the narration after it, and is rewritten below to remind the reader.

Lemma 3.4.1. (c.f. Lemma 3.2.1) Let x and y be indecomposable objects of $D^{b}\left(\bmod k D_{5}\right)$. Then by [14, 4.6], any non-zero morphism from x to y is a linear combination of morphisms, written $f=\Sigma \alpha_{i} f_{i}$, where the α_{i} are scalars and the $f_{i}: x \rightarrow y$ are compositions of irreducible morphisms. The finite derived category $D^{b}\left(\bmod k D_{5}\right)$ is also standard.

Definition 3.4.2. Let a be an indecomposable object of $D^{b}\left(\bmod k D_{5}\right)$, and let $\mathcal{L}(a)$ be the set of indecomposable objects with non-zero morphisms to a. Dually, let $\mathcal{R}(a)$ be the set of indecomposable objects to which there are non-zero morphisms from a.

The Auslander-Reiten quiver contains different types of local configurations which give rise to different Auslander-Reiten triangles and commutativity relations. In the configurations below, the black dots indicate the bridge vertices.

In Configuration (i), since $a \rightarrow x \oplus y \oplus z \rightarrow b \rightarrow$ is an Auslander-Reiten triangle, $v^{\prime \prime} u^{\prime \prime}+v^{\prime} u^{\prime}+v u=0$. There are also the Auslander-Reiten triangles $x \rightarrow b \rightarrow x^{\prime} \rightarrow$ and $y \rightarrow b \rightarrow y^{\prime} \rightarrow$, and so $w^{\prime \prime} v^{\prime \prime}=0$ and $w^{\prime} v^{\prime}=0$.

In Configuration (ii), since $a \rightarrow b \oplus c \rightarrow d \rightarrow$ is an Auslander-Reiten triangle, $t s+r q=0$. There is also the Auslander-Reiten triangle $c \rightarrow d \rightarrow c^{\prime} \rightarrow$, and so $q^{\prime} r=0$.

The above description permits us to give examples of the region $\mathcal{R}(x)$ for some indecomposable objects x in $D^{b}\left(\bmod k D_{5}\right)$. The way they are derived is very similar to the situation given in Example 1.4.4.

Diagram 3.4.3. The region $\mathcal{R}\left(a_{3}\right)$ is as shown by the black dots in the following diagram.

Diagram 3.4.4. The region $\mathcal{R}\left(a_{-}\right)$is as shown by the black dots in the following diagram.

Diagram 3.4.5. The region $\mathcal{R}\left(a_{1}\right)$ is as shown by the black dots in the following diagram.

With the following lemma we end this section.

Lemma 3.4.6. (c.f. Lemma 3.2.3) Let a, b and c be indecomposable objects of $D^{b}\left(\bmod k D_{5}\right)$. Assume $(a, b),(b, c)$ and (a, c) are all one-dimensional. Let $f: a \rightarrow b$ and $g: b \rightarrow c$ be some non-zero morphisms. Then the composition $g f: a \rightarrow c$ is non-zero.

Proof. Similar to Lemma 3.2.3.

3.4.1 Hom spaces

In this section, the non-zero morphisms between certain indecomposable objects are described. This will lead to the calculations of the dimensions of some of the Hom spaces.
Lemma 3.4.7. Suppose a is a bridge vertex and b is an exceptional vertex where b is in $\mathcal{R}(a)$. Then any non-zero morphism $f: a \rightarrow b$ can be written as a linear combination of paths lying in the exceptional part of the quiver.

Proof. Let y be the bridge vertex with an arrow to b. Any non-zero morphism $f: a \rightarrow b$ can be factored as $a \xrightarrow{g} y \rightarrow b$ by Lemma 3.4.1, since y is the only vertex with an arrow to b. Consider $g: a \rightarrow y$. Write $g=\Sigma \alpha_{i} p_{i}$, where α_{i} is a scalar and p_{i} is a path from a to y. It is enough to show that the path p_{i} is a linear combination of paths lying in the exceptional part of the quiver.

If in the path p_{i} there are consecutive arrows q and r placed as follows, where the black dot is a bridge vertex,

then $r q$ can be replaced by $-t s$, by virtue of the little remark after Configuration (ii). And if in the path p_{i} there are consecutive arrows u and v placed as follows, where the black dots are the bridge vertices,

then $v u$ can be replaced by $-\left(v^{\prime} u^{\prime}+v^{\prime \prime} u^{\prime \prime}\right)$, by virtue of the little remark after Configuration (i). In this way, the path p_{i} is transformed into a linear combination of paths lying in the exceptional part of the quiver.

Lemma 3.4.8. Suppose a is an exceptional vertex and b is a type A vertex where b is in $\mathcal{R}(a)$. Then any non-zero morphism $f: a \rightarrow b$ can be written $f=\Sigma \alpha_{i} f_{i} g$, where α_{i} is a scalar, g is an irreducible morphism from the vertex a to a bridge vertex y and $f_{i}: y \rightarrow b$ is a path lying in the type A part of the quiver.

Proof. It is sufficient to consider the example $a=a_{-}$. The region $\mathcal{R}\left(a_{-}\right)$is given in Diagram 3.4.4, which is as shown by the black dots in the following diagram.

The bridge vertex y is b_{3} and $g=\alpha^{\prime}$ _ here. The lemma is immediate when $b=b_{3}, c_{2}$ and d_{1}. Suppose $b=c_{3}$, then write $f=\Sigma \alpha_{i} p_{i} \alpha^{\prime}$, where p_{i} is a path from b_{3} to c_{3}. Then it remains to show that $p_{i} \alpha^{\prime}{ }_{-}$can be written $p_{i} \alpha^{\prime}{ }_{-}=f_{i} \alpha^{\prime}{ }_{-}$, where f_{i} is a path lying in the type A part of the quiver. However, p_{i} can only be
(i) $p_{i}=\beta^{\prime}{ }_{+} \beta_{+}$,
(ii) $p_{i}=\beta^{\prime}{ }_{-} \beta_{-}$,
(iii) $p_{i}=\gamma_{2} \beta^{\prime}{ }_{2}$.

For (iii), the path p_{i} already lies in the type A part of the quiver. For (ii), we have however $p_{i} \alpha^{\prime}{ }_{-}=\beta^{\prime}{ }_{-} \beta_{-} \alpha^{\prime}{ }_{-}=0$ by virtue of the little remark after Configuration (i). Finally, for (i), we have $p_{i} \alpha^{\prime}{ }_{-}=\beta^{\prime}{ }_{+} \beta_{+} \alpha^{\prime}{ }_{-}=-\left(\beta^{\prime}{ }_{-} \beta_{-}+\right.$ $\left.\gamma_{2} \beta^{\prime}{ }_{2}\right) \alpha^{\prime}{ }_{-}=-\gamma_{2} \beta^{\prime}{ }_{2} \alpha^{\prime}{ }_{-}$by virtue of the little remark after Configuration (i), and $\gamma_{2} \beta^{\prime}{ }_{2}$ lies in the type A part of the quiver. The case where $b=d_{2}$ or $b=d_{3}$ is similar.

Corollary 3.4.9. Suppose a is a bridge vertex and b is an exceptional vertex where b is in $\mathcal{R}(a)$. Then (a, b) is one-dimensional.

Proof. It is sufficient to consider the example $a=a_{3}$. The region $\mathcal{R}\left(a_{3}\right)$ is given in Diagram 3.4.3, which is as shown by the black dots in the following diagram.

If $b=a_{+}$or $b=a_{-}$, then it is true by Lemma 3.4.1. Consider a nonzero morphism $f: a \rightarrow b$. Then by Lemma 3.4.7, assume f to be a linear combination of paths lying in the exceptional part of the quiver. If $b=$ b_{+}, then there is only one non-zero path $\beta_{+} \alpha^{\prime}{ }_{-} \alpha_{-}: a \rightarrow b$ lying in the exceptional part of the quiver. This is because the other path $\beta_{+} \alpha^{\prime}{ }_{+} \alpha_{+}$: $a \rightarrow b$ is a zero path by virtue of the little remark after Configuration (i). The case where $b=b_{-}, b=c_{+}$or $b=c_{-}$is similar.

Corollary 3.4.10. Suppose a is an exceptional vertex and b is a type A vertex where b is in $\mathcal{R}(a)$. Then (a, b) is one-dimensional.

Proof. Consider a non-zero morphism $f: a \rightarrow b$. Then by Lemma 3.4.8, f can be written $f=\Sigma \alpha_{i} f_{i} g$, where α_{i} is a scalar, g is an irreducible morphism from a to a bridge vertex y and $f_{i}: y \rightarrow b$ is a path lying in the type A part of the quiver. And the result is immediate from the little remark after Configuration (ii).

Corollary 3.4.11. Let a and b be two exceptional vertices where b is in $\mathcal{R}(a)$. Then (a, b) is one-dimensional.

Proof. Consider a non-zero morphism $f: a \rightarrow b$. Then f can be written $f=\Sigma \alpha_{i} f_{i} f^{\prime}$, where α_{i} is a scalar, $f^{\prime}: a \rightarrow y$ is a morphism from the vertex a to a bridge vertex y, because there is only one arrow going from a. Since f_{i} is then a morphism from the bridge vertex y to the exceptional vertex b, the rest is very similar to Corollary 3.4.9.

Corollary 3.4.12. The Hom space $\left(a_{1}, d_{1}\right)$ is one-dimensional.

Proof. The region $\mathcal{R}\left(a_{1}\right)$ is given in Diagram 3.4.5. Consider a non-zero morphism $f: a_{1} \rightarrow d_{1}$. Then write $f=\Sigma \alpha_{i} p_{i}$ as a linear combination of paths with $p_{i}: a_{1} \rightarrow d_{1}$. The path p_{i} cannot contain the vertices b_{1}, b_{2} nor c_{1}, since they are not in $\mathcal{R}\left(a_{1}\right)$, therefore it has to either go through the vertex a_{+}or the vertex a_{-}. However, the two choices are equal up to signs.

For example, consider a path p_{i} which goes through the vertex a_{+}. Since the vertex b_{2} is not in $\mathcal{R}\left(a_{1}\right)$, it can be written as a path which goes through the vertex a_{-}by virtue of the little remark after Configuration (i).

3.4.2 Lemmas

Consider the indecomposable objects $a_{+}, b_{+}, c_{+}, \ldots$ along the top line of the Auslander-Reiten quiver of \mathcal{T}. Henceforth, let \mathcal{X} be add of them.

Lemma 3.4.13. The indecomposable object a_{3} has an \mathcal{X}-preenvelope $a_{3} \rightarrow$ $a_{+} \oplus b_{+}$.

Proof. The objects in \mathcal{X} to which there is a non-zero morphism from a_{3} are a_{+}, b_{+}and c_{+}. The cases for a_{+}and b_{+}are trivial. Suppose a nonzero morphism $h: a_{3} \rightarrow c_{+}$is given. It is enough to assume that h is a composition of irreducible morphisms and to show that h factors through $a_{3} \rightarrow a_{+}$. This is true by Lemma 3.4.7 and Corollary 3.4.9.

Lemma 3.4.14. The indecomposable object a_{2} has an \mathcal{X}-preenvelope $a_{2} \rightarrow$ $a_{+} \oplus b_{+}$.

Proof. This is because the intersection of $\mathcal{R}\left(a_{2}\right)$ and \mathcal{X} only consists of a_{+}and b_{+}, and that $\left(a_{+}, b_{+}\right)$is zero by virtue of the little remark after Configuration (i).

Lemma 3.4.15. The indecomposable object a_{-}has an \mathcal{X}-preenvelope $a_{-} \rightarrow$ b_{+}.

Proof. This is because the intersection of $\mathcal{R}\left(a_{-}\right)$and \mathcal{X} is the same as the intersection of $\mathcal{R}\left(b_{+}\right)$and \mathcal{X} (the intersection consists of b_{+}and d_{+}), and since $\left(a_{-}, d_{+}\right)$is one-dimensional by Corollary 3.4.11, any non-zero morphism $f: a_{-} \rightarrow d_{+}$has to factor through b_{+}. This is in the proof of Corollary 3.4.11 as well.

Lemma 3.4.16. The indecomposable object a_{1} has an \mathcal{X}-preenvelope $a_{1} \rightarrow$ a_{+}.

Proof. Similar to Lemma 3.4.15.

By Lemma 3.4.13, Lemma 3.4.14, Lemma 3.4.15, Lemma 3.4.16 and [23, Theorem 1.2], the quotient category $\mathcal{T}_{\mathcal{X}}$ is pretriangulated. Since evidently $\tau \mathcal{X}=\mathcal{X}$, therefore $\mathcal{T}_{\mathcal{X}}$ is in addition triangulated by [23, Theorem 2.3]. By [23, Theorem 3.2], the Auslander-Reiten quiver of $\mathcal{T}_{\mathcal{X}}$ is obtained by deleting
vertices on the top line and the incident arrows from the Auslander-Reiten quiver of \mathcal{T}. Therefore the two categories $\mathcal{T}_{\mathcal{X}}$ and $D^{b}\left(\bmod k A_{4}\right)$ have the same Auslander-Reiten quiver $\mathbb{Z} A_{4}$.

Definition 3.4.17. Let a be an indecomposable object in $\mathcal{T}_{\mathcal{X}}$. Similarly to Definition 3.4.2, let $\mathcal{L}_{\mathcal{X}}(a)$ be the set of indecomposable objects with nonzero morphisms to a in $\mathcal{T}_{\mathcal{X}}$. Dually, let $\mathcal{R}_{\mathcal{X}}(a)$ be the set of indecomposable objects to which there are non-zero morphisms from a in $\mathcal{T}_{\mathcal{X}}$.

Lemma 3.4.18. (c.f. Lemma 3.2.7) The region $\mathcal{R}_{\mathcal{X}}\left(a_{3}\right)$ is as shown by the black dots in the following diagram.

Proof. The philosophy of Section 3.4.1 allows us to see that the region $\mathcal{R}_{\mathcal{X}}\left(a_{3}\right)$ is at most the region as indicated. Now let s be an object in it. Since s is in $\mathcal{R}\left(a_{3}\right)$, there is a non-zero morphism $f: a_{3} \rightarrow s$ in \mathcal{T} so that the corresponding morphism $\bar{f}: a_{3} \rightarrow s$ is non-zero in \mathcal{T}. Suppose otherwise that \bar{f} is zero. Then f is a morphism in \mathcal{T} which factors through a (not necessarily indecomposable) object t in \mathcal{X}, i.e. f factorizes as $f: a_{3} \rightarrow t \rightarrow s$ in \mathcal{T}. By Lemma 3.4.13, a_{3} has the \mathcal{X}-preenvelope $a_{3} \rightarrow a_{+} \oplus b_{+}$, therefore f further factorizes as $f: a_{3} \rightarrow a_{+} \oplus b_{+} \rightarrow t \rightarrow s$ in \mathcal{T}. The morphism $a_{+} \oplus b_{+} \rightarrow t$ is non-zero, therefore either $a_{+} \rightarrow t$ is non-zero, or $b_{+} \rightarrow t$ is non-zero. In the first case, t is to be (finite sums of) c_{+}, but s is not in $\mathcal{R}\left(c_{+}\right)$. In the second case, t is to be (finite sums of) d_{+}, but s is not in $\mathcal{R}\left(d_{+}\right)$either. This gives \bar{f} non-zero in $\mathcal{T}_{\mathcal{X}}$. Also Lemma 3.4.6 is implicitly used throughout.

Lemma 3.4.19. (c.f. Lemma 3.2.7) The region $\mathcal{R}_{\mathcal{X}}\left(a_{2}\right)$ is as shown by the black dots in the following diagram.

Proof. Similar.
Lemma 3.4.20. (c.f. Lemma 3.2.7) The region $\mathcal{R}_{\mathcal{X}}\left(a_{1}\right)$ is as shown by the black dots in the following diagram.

Proof. Similar.
Lemma 3.4.21. (c.f. Lemma 3.2.7) The region $\mathcal{R}_{\mathcal{X}}\left(a_{-}\right)$is as shown by the black dots in the following diagram.

Proof. Similar.
Lemma 3.4.22. (c.f. Lemma 3.2.8) Consider $a=a_{1} \oplus a_{2} \oplus a_{3} \oplus a_{-}$in $\mathcal{T}_{\mathcal{X}}$. Then the thick subcategory thick (a) of $\mathcal{T}_{\mathcal{X}}$, generated by a, is in fact equal to $\mathcal{T}_{\mathcal{X}}$.

Proof. Similar to Lemma 3.2.8, since $\mathcal{T}_{\mathcal{X}}$ has Auslander-Reiten triangles by [23, Theorem 3.2].

Lemma 3.4.23. (c.f. Lemma 3.2.9) Consider $a=a_{1} \oplus a_{2} \oplus a_{3} \oplus a_{-}$in $\mathcal{T}_{\mathcal{X}}$. Then $E n d_{\mathcal{T}_{\mathcal{X}}}(a) \cong E n d_{\mathcal{T}}(a)$.

Proof. This is similar to Lemma 3.2.9. But surely, we shall do it again. The idea is that there are no non-zero morphisms $h: a_{i} \rightarrow a_{j}$ in \mathcal{T}, where $i, j \in\{1,2,3,-\}$, which factor through an object in \mathcal{X}. Only the cases where $i, j \in\{1,2,3\}$ or $j=-$ need to be considered, since there are no non-zero morphisms from a_{i} to a_{j} otherwise. Assume $i \leq j$ if $i, j \in\{1,2,3\}$. Suppose
there is a non-zero $h: a_{i} \rightarrow a_{j}$ such that h factors through an object y in \mathcal{X} as $h: a_{i} \rightarrow y \rightarrow a_{j}$. By Lemma 3.4.13, Lemma 3.4.14, Lemma 3.4.15 and Lemma 3.4.16, a_{i} has an \mathcal{X}-preenvelope $a_{i} \rightarrow x$, thus the morphism h further factorizes as $h: a_{i} \rightarrow x \rightarrow y \rightarrow a_{j}$. Since x can only be a_{+}, b_{+}or $a_{+} \oplus b_{+}$, there are apparently no non-zero morphisms from x to a_{j}. Therefore the only morphism from a_{i} to a_{j} factoring through an object in \mathcal{X} is the zero morphism, and the isomorphism exists.

Corollary 3.4.24. (c.f. Corollary 3.2.12) Consider the categories \mathcal{T}, \mathcal{X} and $\mathcal{T}_{\mathcal{X}}$ as usual, and the object $a=a_{1} \oplus a_{2} \oplus a_{3} \oplus a_{-}$in $\mathcal{T}_{\mathcal{X}}$ as in Lemma 3.4.22. Then $E n d_{\mathcal{T}_{\mathcal{X}}}(a) \cong \operatorname{End}_{\mathcal{T}}(a) \cong\left(k A_{4}\right)^{\circ}$.

Proof. The first isomorphism exists by Lemma 3.4.23. The existence of the second isomorphism follows by identifying the a_{i} with the p_{i} for $1 \leq$ $i \leq 3$ and by identifying a_{-}with p_{4} in Lemma 3.2.11, with the help of Lemma 3.4.6.

3.4.3 Mapping cone construction

Lemma 3.4.25. The mapping cone of the morphism $\beta_{1}^{\prime}: b_{2} \rightarrow c_{1}$ is Σb_{1}.

Proof. This is because $b_{1} \rightarrow b_{2} \rightarrow c_{1} \rightarrow$ is an Auslander-Reiten triangle.
Lemma 3.4.26. The mapping cone of the morphism $\beta_{2}^{\prime}: b_{3} \rightarrow c_{2}$ is Σb_{1}.

Proof. By the octahedral axiom, extend to the following commutative diagram,

The distinguished triangle on the second row is an Auslander-Reiten triangle, and the distinguished triangle on the first column is given by Lemma 3.4.25.

Lemma 3.4.27. The mapping cone of the morphism $\gamma_{1}^{\prime} \beta_{2}^{\prime}: b_{3} \rightarrow d_{1}$ is Σb_{2}.

Proof. By the octahedral axiom, extend to the following commutative diagram,

The distinguished triangle on the third row is given by Lemma 3.4.25 and the distinguished triangle in the second column is given by Lemma 3.4.26.

By Corollary 3.4.12, $\left(c_{1}, \Sigma b_{1}\right)=\left(c_{1}, f_{1}\right)$ is one-dimensional (replacing a_{1} by c_{1} and d_{1} by f_{1}). Since b_{3} is indecomposable, the distinguished triangle $b_{1} \rightarrow b_{3} \rightarrow c_{2} \rightarrow \Sigma b_{1}$ is non-split, and the morphism $c_{2} \rightarrow \Sigma b_{1}$ is non-zero. Similarly, since d_{1} is indecomposable, the morphism $c_{1} \rightarrow c_{2}$ is non-zero, hence the morphism $c_{1} \rightarrow \Sigma b_{1}$ is non-zero by Lemma 3.4.6. Therefore the distinguished triangle in the first column has to be the Auslander-Reiten triangle $b_{1} \rightarrow b_{2} \rightarrow c_{1} \rightarrow$.

Lemma 3.4.28. The mapping cone of the morphism $\mu: a_{+} \rightarrow d_{1}$ is d_{+}.

Proof. The Hom space $\left(a_{+}, d_{1}\right)$ is one-dimensional by Corollary 3.4.10, therefore the mapping cones of all non-zero morphisms $\mu: a_{+} \rightarrow d_{1}$ are isomorphic. Such considerations permeate this section, and they will not be repeated each time, since most Hom spaces are one-dimensional.

In the following diagram, the region $\mathcal{R}\left(d_{1}\right)$ is as shown by the black dots.

Extend a non-zero morphism μ to the distinguished triangle $a_{+} \xrightarrow{\mu} d_{1} \xrightarrow{\nu}$ $* \rightarrow$. By [16, Lemma 6.5], the mapping cone $*$ is indecomposable. The
morphism ν is non-zero, otherwise the distinguished triangle $\Sigma^{-1} * \rightarrow a_{+} \xrightarrow{\mu}$ $d_{1} \xrightarrow{\nu} *$ splits, but this is impossible since a_{+}is indecomposable. Therefore the object $*$ has to be in $\mathcal{R}\left(d_{1}\right)$.

The object $*$ cannot be d_{1}, d_{2}, d_{3} or d_{-}. Assume it is. Since $\left(a_{+}, d_{1}\right)$ is onedimensional by Corollary 3.4.10, $\left(d_{1}, *\right)$ is one-dimensional by Lemma 3.4.1 and $\left(a_{+}, *\right)$ is one-dimensional by Corollary 3.4.10 and Corollary 3.4.11, the composition $\nu \mu$ is non-zero by Lemma 3.4.6. However, this is a contradiction given that the composition of two consecutive morphisms of a distinguished triangle is zero by Lemma 0.2.2(i).

Appealing to the octahedral axiom, extend to the following commutative diagram,

The distinguished triangle on the second row is given in Lemma 3.4.27. The distinguished triangle in the second column is an Auslander-Reiten triangle. Suppose the object $*$ is e_{3}. Then the distinguished triangle on the first row is $a_{3} \rightarrow a_{+} \xrightarrow{\mu} d_{1} \xrightarrow{\nu} e_{3}$. But again this is not possible for the same reason.

Consider the distinguished triangle in the first column. Since b_{2} is indecomposable, the distinguished triangle is non-split. This means the morphism from b_{+}to $*$ is non-zero. The object $*$ cannot be f_{2} or g_{1}, since neither of them is in $\mathcal{R}\left(b_{+}\right)$. Hence the mapping cone has to be the object d_{+}.

Corollary 3.4.29. The mapping cone of the morphism $\mu: b_{2} \rightarrow b_{+}$is d_{+}.
Proof. Consider the distinguished triangle $\Sigma^{-1} * \rightarrow b_{2} \rightarrow b_{+} \rightarrow *$ in the first column of the commutative diagram in Lemma 3.4.28, and the result is evident. Also the Hom space (b_{2}, b_{+}) is one-dimensional.

Lemma 3.4.30. The mapping cone of the morphism $\mu: m_{+} \rightarrow b_{2}$ is b_{-}.

Proof. The Hom space (m_{+}, b_{2}) is one-dimensional by Corollary 3.4.10. By
the octahedral axiom, extend to the following commutative diagram,

The distinguished triangle $m_{+} \rightarrow c_{1} \rightarrow c_{+} \rightarrow$ is given by Lemma 3.4.28 and the distinguished triangle $b_{2} \rightarrow c_{1} \rightarrow \Sigma b_{1} \rightarrow$ is given by Lemma 3.4.25. Finally, the mapping cone of the morphism $c_{+} \rightarrow \Sigma b_{1}$ is Σb_{-}by Lemma 3.4.28. Also the Hom space $\left(c_{+}, \Sigma b_{1}\right)$ is one-dimensional.

Lemma 3.4.31. The mapping cone of the morphism $\alpha_{+}: a_{3} \rightarrow a_{+}$is d_{-}.

Proof. By the octahedral axiom, extend to the following commutative diagrams,

In the first diagram, the distinguished triangle on the second row is an Auslander-Reiten triangle. In the second diagram, the distinguished triangle
in the middle column is given by Lemma 3.4.27. Finally, the mapping cone of the morphism $a_{-} \rightarrow d_{1}$ is d_{-}, by a mirror version of Lemma 3.4.28.

Corollary 3.4.32. The mapping cone of the morphism $a_{2} \rightarrow a_{+}$is c_{+}.

Proof. It is the same as Corollary 3.4 .29 by a suitable translation of coordinates.

Corollary 3.4.33. The mapping cone of the morphism $a_{1} \rightarrow a_{+}$is b_{-}.

Proof. The Hom space $\left(a_{1}, a_{+}\right)$is one-dimensional by Lemma 3.4.1. By the octahedral axiom, extend to the following commutative diagram,

The distinguished triangle $a_{1} \rightarrow a_{2} \rightarrow b_{1} \rightarrow$ is an Auslander-Reiten triangle. The distinguished triangle on the second row is given by Corollary 3.4.32.

Since a_{+}is indecomposable, the morphism $\Sigma^{-1} c_{+} \rightarrow a_{2}$ is non-zero. Similarly, since a_{1} is indecomposable, the morphism $a_{2} \rightarrow b_{1}$ is non-zero, hence the morphism $\Sigma^{-1} c_{+} \rightarrow b_{1}$ is non-zero by Lemma 3.4.6.

Finally, the mapping cone of the morphism $\Sigma^{-1} c_{+} \rightarrow b_{1}$ is b_{-}, by a mirror version of Lemma 3.4.28.

Lemma 3.4.34. The mapping cone of the morphism $m_{+} \rightarrow b_{+}$is d_{2}.

Proof. The Hom space $\left(m_{+}, b_{+}\right)$is one-dimensional by Corollary 3.4.11. By Corollary 3.4.32, the mapping cone of $m_{2} \rightarrow m_{+}$is b_{+}. Hence the mapping cone of $m_{+} \rightarrow b_{+}$is $\Sigma m_{2}=d_{2}$.

Lemma 3.4.35. The mapping cone of the morphism $a_{3} \rightarrow a_{+} \oplus b_{+}$is d_{2}.

Proof. By the octahedral axiom, extend to the following commutative diagram,

The distinguished triangle on the last row is given by Lemma 3.4.31 and the distinguished triangle in the third column is given by Lemma 3.4.34.

Finally, rest reassured that the morphism $m_{+} \rightarrow b_{+}$considered is non-zero. Assume it is. Then the object $*$ would have to be isomorphic to $b_{+} \oplus d_{-}$, and θ_{1} would have to be the non-zero canonical inclusion and θ_{2} would have to be the non-zero canonical surjection. Since square (i) is commutative, γ_{1} would have to be zero although e_{3} is in $\mathcal{R}\left(b_{+}\right)$. Similarly, since square (ii) is commutative, γ_{2} would have to be zero although e_{3} is in $\mathcal{R}\left(d_{-}\right)$. However, this is a contradiction since a_{+}is indecomposable. Therefore the morphism $m_{+} \rightarrow b_{+}$considered is non-zero indeed.

Remark 3.4.36. In Lemma 3.4.35, it is not possible to use [16, Lemma 6.5] to show that $*$ is indecomposable, as in Lemma 3.4.28.

Corollary 3.4.37. The mapping cone of the morphism $a_{2} \rightarrow a_{+} \oplus b_{+}$is c_{3}.

Proof. By the octahedral axiom, extend to the following commutative diagram,

The distinguished triangle on the last row is given by Lemma 3.4.32. There is an Auslander-Reiten triangle $b_{+} \rightarrow c_{3} \rightarrow c_{+} \rightarrow$, and the result is immediate since $\left(a_{2}, a_{+} \oplus b_{+}\right)$is one-dimensional.

Finally, the morphism $\Sigma^{-1} c_{+} \rightarrow b_{+}$considered is non-zero indeed. This is very similar to Lemma 3.4.35 where the morphism $m_{+} \rightarrow b_{+}$is non-zero.

Lemma 3.4.38. The mapping cone of the morphism $a_{-} \rightarrow b_{+}$is e_{1}.

Proof. By a mirror version of Corollary 3.4.33, the mapping cone of the morphism $a_{1} \rightarrow a_{-}$is b_{+}. Hence the mapping cone of the morphism $a_{-} \rightarrow b_{+}$ is $\Sigma a_{1}=e_{1}$.

Using the same notation as in [23, Theorem 2.3], let σ be the translation functor of the triangulated category $\mathcal{T} \mathcal{X}$. The construction of the functor σ is described in [23, Setup 1.1].

Lemma 3.4.39. (c.f. Lemma 3.2.13) Let $a=(u, v)$ be an indecomposable object of $\mathcal{T}_{\mathcal{X}}$. Let p and q be integers and let $\lambda=v-u$. Then

$$
\sigma(u, v)= \begin{cases}(p+4, q+1) & \text { if }(u, v)=(p, q)_{-} \\ (u+\lambda, v+(5-\lambda))=(v, u+5) & \text { if } 1<\lambda<4 \\ (u+1, v+4)_{-} & \text {if } \lambda=1\end{cases}
$$

Proof. The first line is true by Lemma 3.4.15 and Lemma 3.4.38. The second line is true by Lemma 3.4.13, Lemma 3.4.14, Lemma 3.4.35 and Corollary 3.4.37. The last line is true by Lemma 3.4.16 and Corollary 3.4.33.

The action of σ is shown in the following diagram.
Diagram 3.4.40.

The action of σ is given by $\sigma\left(a_{1}\right)=b_{-}, \sigma\left(a_{2}\right)=c_{3}, \sigma\left(a_{3}\right)=d_{2}$ and $\sigma\left(a_{-}\right)=$ e_{1}.

Corollary 3.4.41. (c.f. Corollary 3.2.15) Let $a=(p, q)_{-}$be an indecomposable object of $\mathcal{T}_{\mathcal{X}}, N \geq 0$ an integer. Then

$$
\sigma^{N}(a)= \begin{cases}\left(p+\frac{5 N}{2}, q+\frac{5 N}{2}\right)_{-} & \text {for } N \text { even } \\ \left(p+\frac{5(N+1)}{2}-1, q+\frac{5(N-1)}{2}+1\right) & \text { for } N \text { odd }\end{cases}
$$

Proof. Immediate from Lemma 3.4 .39 by induction.
Corollary 3.4.42. (c.f. Corollary 3.2.15) Let $a=(u, v)$ be an indecomposable object of $\mathcal{T}_{\mathcal{X}}$. Let $\lambda=v-u, N \geq 0$ an integer. If $1<\lambda<4$, then

$$
\sigma^{N}(a)= \begin{cases}\left(u+\frac{5 N}{2}, v+\frac{5 N}{2}\right) & \text { for } N \text { even }, \\ \left(v+\frac{5(N-1)}{2}, u+\frac{5(N+1)}{2}\right) & \text { for } N \text { odd }\end{cases}
$$

Proof. Immediate from Lemma 3.4 .39 by induction.
Corollary 3.4.43. (c.f. Corollary 3.2.15) Let $a=(u, v)$ be an indecomposable object of \mathcal{T}. Let $N \geq 0$ be an integer. If $v-u=1$, then

$$
\sigma^{N}(a)= \begin{cases}\left(u+\frac{5 N}{2}, v+\frac{5 N}{2}\right) & \text { for } N \text { even }, \\ \left(u+\frac{5(N-1)}{2}+1, v+\frac{5(N+1)}{2}-1\right)_{-} & \text {for } N \text { odd. }\end{cases}
$$

Proof. Immediate from Lemma 3.4 .39 by induction.
For example, let $a=(u, v)$ be an indecomposable object. Then $\sigma^{2}(u, v)=$ $(u+5, v+5)$.

Since the translation functor σ is an autoequivalence, there is also an explicit description of σ^{-1}.

Lemma 3.4.44. (c.f. Lemma 3.2.16) Let $a=(u, v)$ be an indecomposable object of $\mathcal{T}_{\mathcal{X}}$. Let p and q be integers and let $\lambda=v-u$. Then

$$
\sigma^{-1}(u, v)= \begin{cases}(p-1, q-4) & \text { if }(u, v)=(p, q)_{-}, \\ (v-5, u) & \text { if } 1<\lambda<4, \\ (u-4, v-1)_{-} & \text {if } \lambda=1 .\end{cases}
$$

Proof. Immediate from Lemma 3.4.39.
Corollary 3.4.45. (c.f. Corollary 3.2.18) Let $a=(p, q)_{-}$be an indecomposable object of $\mathcal{T}_{\mathcal{X}}, N \geq 0$ an integer. Then

$$
\sigma^{-N}(a)= \begin{cases}\left(p-\frac{5 N}{2}, q-\frac{5 N}{2}\right)_{-} & \text {for } N \text { even }, \\ \left(p-\frac{5(N-1)}{2}-1, q-\frac{5(N+1)}{2}+1\right) & \text { for } N \text { odd } .\end{cases}
$$

Proof. Immediate from Lemma 3.4 .44 by induction.

Corollary 3.4.46. (c.f. Corollary 3.2.18) Let $a=(u, v)$ be an indecomposable object of $\mathcal{T}_{\mathcal{X}}$. Let $\lambda=v-u, N \geq 0$ an integer. If $1<\lambda<4$, then

$$
\sigma^{-N}(a)= \begin{cases}\left(u-\frac{5 N}{2}, v-\frac{5 N}{2}\right) & \text { for } N \text { even } \\ \left(v-\frac{5(N+1)}{2}, u-\frac{5(N-1)}{2}\right) & \text { for } N \text { odd }\end{cases}
$$

Proof. Immediate from Lemma 3.4.44 by induction.
Corollary 3.4.47. (c.f. Corollary 3.2.18) Let $a=(u, v)$ be an indecomposable object of $\mathcal{T}_{\mathcal{X}}$. Let $N \geq 0$ be an integer. If $v-u=1$, then

$$
\sigma^{-N}(a)= \begin{cases}\left(u-\frac{5 N}{2}, v-\frac{5 N}{2}\right) & \text { for } N \text { even } \\ \left(u-\frac{5(N+1)}{2}+1, v-\frac{5(N-1)}{2}-1\right)_{-} & \text {for } N \text { odd }\end{cases}
$$

Proof. Immediate from Lemma 3.4.44 by induction.
Lemma 3.4.48. (c.f. Lemma 3.2.19) Let $N \geq 1$ be an integer. Consider $a=a_{1} \oplus a_{2} \oplus a_{3} \oplus a_{-}$in $\mathcal{T}_{\mathcal{X}}$. Then $\operatorname{Hom}_{\mathcal{T}_{\mathcal{X}}}\left(a, \sigma^{N} a\right)=0$.

Proof. Similar to Lemma 3.2.19, with the help of Lemma 3.4.18, Lemma 3.4.19, Lemma 3.4.20, Lemma 3.4.21, Corollary 3.4.41, Corollary 3.4.42 and Corollary 3.4.43.

Lemma 3.4.49. (c.f. Lemma 3.2.20) Let $N \geq 1$ be an integer. Consider $a=a_{1} \oplus a_{2} \oplus a_{3} \oplus a_{-}$in $\mathcal{T}_{\mathcal{X}}$. Then $\operatorname{Hom}_{\mathcal{T}_{\mathcal{X}}}\left(a, \sigma^{-N} a\right)=0$.

Proof. Similar.

3.4.4 Theorem

The following is the main theorem of the section.
Theorem 3.4.50. Consider the categories \mathcal{T}, \mathcal{X} and $\mathcal{T}_{\mathcal{X}}$ as usual, and the object $a=a_{1} \oplus a_{2} \oplus a_{3} \oplus a_{-}$in $\mathcal{T}_{\mathcal{X}}$ as in Lemma 3.4.22. Then there is an equivalence of triangulated categories $f: \mathcal{T}_{\mathcal{X}} \stackrel{\simeq}{\rightrightarrows} D^{b}\left(\bmod \left(k A_{4}\right)^{\circ}\right)$ where $f(a)=\left(k A_{4}\right)^{\circ}$.

Proof. Let \mathcal{U} and X in Theorem 3.1.1 be $\mathcal{T}_{\mathcal{X}}$ and a respectively. By Corollary 3.4.24, $A \cong\left(k A_{4}\right)^{\circ}$. Let us take Σ in Theorem 3.1.1 to be the translation functor σ of the triangulated category $\mathcal{T}_{\mathcal{X}}$. Then the result follows from Lemma 3.4.22, Lemma 3.4.48 and Lemma 3.4.49.

Chapter 4

A characterization of torsion theories in the cluster category of Dynkin type A_{∞}

This chapter is also written in the form of a paper which is submitted for publication in Homology, Homotopy and Applications ([37]).

4.1 Introduction

The cluster category \mathcal{D} of Dynkin type A_{∞} was introduced in [19]. One of its several definitions, which is completely analogous to the definition of the cluster category of type A_{n}, motivates us to say that \mathcal{D} is a cluster category of type A_{∞}. Namely, it is the orbit category $D^{f}(\bmod \Gamma) / S \Sigma^{-2}$. Here Γ is a quiver of type A_{∞} with zigzag orientation and S and Σ are the Serre and translation functors of the finite derived category $D^{f}(\bmod \Gamma)$.

There are also several other ways to realize the category \mathcal{D}. In brief, it is the algebraic triangulated category generated by a 2 -spherical object. It is also the compact derived category $D^{c}(A)$ of the differential graded cochain algebra $A=C^{*}\left(S^{2} ; k\right)$ where S^{2} is the 2 -sphere and k is a field. Finally, \mathcal{D} is the finite derived category $D^{f}(k[T])$ where $k[T]$ is viewed as a DG algebra with T placed in homological degree 1 and zero differential. It is ubiquitous and the reader can refer to [19, Section 0] for more details.

In [19], the cluster tilting subcategories of \mathcal{D} were shown to be in bijection with certain maximal sets of non-crossing arcs connecting non-neighbouring integers. One can think of these maximal sets as "triangulations of the ∞-gon".

A torsion theory in \mathcal{D} is a pair $(\mathcal{X}, \mathcal{Y})$ of subcategories such that there are no non-zero morphisms from any object in \mathcal{X} to any object in \mathcal{Y}, and that for each d in \mathcal{D}, there is a distinguished triangle $x \rightarrow d \rightarrow y \rightarrow$ in \mathcal{D}, with x in \mathcal{X} and y in \mathcal{Y} (Definition 1.2.5). If \mathcal{T} is a cluster tilting subcategory, then $(\mathcal{T}, \Sigma \mathcal{T})$ is a torsion theory, but t-structures and co-t-structures are other examples of torsion theories.

In this chapter, the results of [19] are generalized by giving a bijection between torsion theories in \mathcal{D} and certain configurations of arcs connecting non-neighbouring integers. A few examples, characterizing all t-structures and co-t-structures in \mathcal{D}, are given.

4.2 Coordinate system

Let us recollect some material from [19]. The category \mathcal{D} has finite-dimensional Hom spaces over a field k and split idempotents, so it is KrullSchmidt ([19, Remark 1.2]). In this chapter, a subcategory of \mathcal{D} is assumed to be a full subcategory closed under direct sums and direct summands. For subcategories \mathcal{X} and \mathcal{Y} of \mathcal{D}, the set of morphisms from any x in \mathcal{X} to any y in \mathcal{Y} is denoted by $(\mathcal{X}, \mathcal{Y})$. In particular, for objects x and y of \mathcal{D}, the set of morphisms from x to y is denoted by (x, y).
By [19, Remark 1.4], the Auslander-Reiten quiver of \mathcal{D} is $\mathbb{Z} A_{\infty}$, and the following standard coordinate system is laid down on the Auslander-Reiten quiver.

Let Σ be the translation functor of \mathcal{D}. Since \mathcal{D} is 2-Calabi-Yau, its Serre functor is $S=\Sigma^{2}$ and the Auslander-Reiten translation is $\tau=S \Sigma^{-1}=\Sigma$. In terms of coordinates, the action of $\Sigma=\tau$ is given by $\Sigma(m, n)=(m-1, n-1)$, see [19, Remark 1.4].

The definitions to follow interpret coordinate pairs in an alternative way, as arcs connecting non-neighbouring integers.

Definition 4.2.1. ([19, Definition 3.1]) An arc is a pair (m, n) of integers with $n-m \geq 2$. The arc (m, n) is said to end in each of the integers m and n.

Two arcs $\left(m_{1}, n_{1}\right)$ and (m_{2}, n_{2}) are said to cross if either $m_{1}<m_{2}<n_{1}<n_{2}$ or $m_{2}<m_{1}<n_{2}<n_{1}$. The action of Σ makes sense on arcs as well.

In the diagrams to follow arcs are drawn on number lines which are numbered thus.

For example, in the above diagram, the arc $(-1,2)$ is drawn as a curve between the integers -1 and 2 . Crossing of arcs has been defined to match this geometrical picture in the natural way.

This, together with the following definition, relies heavily on the coordinate system.

Definition 4.2.2. ([19, Definition 3.2]) Let \mathfrak{A} be a set of arcs. If, for each integer n, there are only finitely many arcs in \mathfrak{A} which end in n, then \mathfrak{A} is said to be locally finite. A left (resp. right) fountain of \mathfrak{A} is an integer n for which there are infinitely many arcs of the form (m, n) (resp. (n, m)) in \mathfrak{A}. A fountain of \mathfrak{A} is an integer n which is both a left and a right fountain of \mathfrak{A}. A left (resp. right) fountain n of \mathfrak{A} is said to be full if for each m the arc of the form (m, n) (resp. (n, m)) is in \mathfrak{A}. Finally, \mathfrak{A} is said to be non-crossing if \mathfrak{A} does not contain any pairs of crossing arcs.

Coordinate pairs (m, n), $n-m \geq 2$, are identified with either indecomposable objects of \mathcal{D} or with arcs. Thereupon a set \mathfrak{A} of arcs induces a collection of indecomposable objects of \mathcal{D}, and add of them gives a subcategory \mathcal{A} of \mathcal{D}, thus there is a bijection between sets of arcs and subcategories of \mathcal{D}.

It is our intention to display (in diagrams) at times both versions of interpretations, coordinate pairs as indecomposable objects of \mathcal{D} on the quiver and as arcs on number lines. The reader should be able to feel so comfortable with the simultaneous visualizations in the mind's eye, so much so that any one interpretation is at once able to find an echo and a corroboration in the other.

The following pairs of definitions describe some constraints on a set of arcs \mathfrak{A}.

Definition 4.2.3. A set of arcs \mathfrak{A} is said to satisfy condition (\star) if, for each pair of crossing arcs (a, b) and (c, d) in \mathfrak{A}, those of the pairs $(a, c),(c, b)$, (b, d) and (a, d) which are arcs belong to \mathfrak{A} (for instance, (a, c) is only an arc if $c-a \geq 2$).

The following example visualizes condition (\star) on the quiver.
Example 4.2.4. Suppose the set of arcs \mathfrak{A} satisfies condition (\star). Then given the arcs $(-4,0)$ and $(-2,2)$ in \mathfrak{A}, the $\operatorname{arcs}(-4,-2),(-2,0),(0,2)$ and $(-4,2)$ are in \mathfrak{A}.

Definition 4.2.5. A set of arcs \mathfrak{A} is said to satisfy condition $(\star \star)$ if it has the following property: if a is a left fountain but not a right fountain of \mathfrak{A}, b is a right fountain but not a left fountain of \mathfrak{A} and $b-a \geq 2$, then the arc (a, b) is in \mathfrak{A}.

The following example visualizes condition ($\star \star$) on the quiver.
Example 4.2.6. Suppose the set of arcs \mathfrak{A} satisfies condition ($\star \star$). Then given the left fountain (but not right fountain) -1 and the right fountain (but not left fountain) 2 of \mathfrak{A}, the arc $(-1,2)$ is in \mathfrak{A}. The diagram below shows only some of the arcs from the fountains.

Definition 4.2.7. Given a subcategory \mathcal{U} of \mathcal{D}, let $\mathcal{U}^{\perp}=\{d \in \mathcal{D} \mid(u, d)=0$ for all u in $\mathcal{U}\}$ and ${ }^{\perp} \mathcal{U}=\{d \in \mathcal{D} \mid(d, u)=0$ for all u in $\mathcal{U}\}$.

Definition 4.2.8. Given a set of $\operatorname{arcs} \mathfrak{U}$, let $\operatorname{ort}(\mathfrak{U})$ be the set of arcs ort(\mathfrak{U}) $=\{\mathfrak{d} \mid \mathfrak{d}$ does not cross any arcs in $\mathfrak{U}\}$.

Lemma 4.2.9. Let \mathfrak{U} be a set of arcs. Then $\operatorname{ort} \operatorname{ort} \operatorname{ort}(\mathfrak{U})=\operatorname{ort}(\mathfrak{U})$.

Proof. That $\operatorname{ort} \operatorname{ort}(\mathfrak{U}) \supseteq \mathfrak{U}$ is immediate, so that ort ort $\operatorname{ort}(\mathfrak{U}) \subseteq \operatorname{ort}(\mathfrak{U})$, since ort reverses inclusions. Similarly, ort ort $\operatorname{ort}(\mathfrak{U}) \supseteq \operatorname{ort}(\mathfrak{U})$. Therefore ort $\operatorname{ort} \operatorname{ort}(\mathfrak{U})=\operatorname{ort}(\mathfrak{U})$.

Lemma 4.2 .9 gives the minimal level when the operation ort becomes periodic. Later on, Lemma 4.4.20 gives the equivalent condition for the equality ort ort $\mathfrak{A}=\mathfrak{A}$.

Remark 4.2.10. In addition, the operation ort ${ }^{2}$ satisfies the following.
(i) $\operatorname{ort} \operatorname{ort}(\mathfrak{U}) \supseteq \mathfrak{U}$,
(ii) $\operatorname{ort}^{4}(\mathfrak{U})=\operatorname{ort}^{2}(\mathfrak{U})$, which is immediate from Lemma 4.2.9.

Lemma 4.2.11. Let \mathfrak{U} be a set of arcs. Then $\mathfrak{U}=\operatorname{ort}(\mathfrak{C})$ for some set of arcs \mathfrak{C} if and only if $\mathfrak{U}=\operatorname{ort} \operatorname{ort}(\mathfrak{U})$.

Proof. (if) This is immediate. (only if) Since $\mathfrak{U}=\operatorname{ort}(\mathfrak{C})$, therefore ort ort $(\mathfrak{U})=$ $\operatorname{ort} \operatorname{ort} \operatorname{ort}(\mathfrak{C})=\operatorname{ort}(\mathfrak{C})=\mathfrak{U}$ by Lemma 4.2.9.

Lemma 4.2.12. Let \mathfrak{U}, \mathfrak{U}^{\prime} be sets of arcs. Suppose $\operatorname{ort} \operatorname{ort}(\mathfrak{U})=\mathfrak{U}$, ort $\operatorname{ort}\left(\mathfrak{U}^{\prime}\right)=$ \mathfrak{U}^{\prime}. Then
(i) If $\operatorname{ort}(\mathfrak{U}) \supseteq \operatorname{ort}\left(\mathfrak{U}^{\prime}\right)$, then $\mathfrak{U} \subseteq \mathfrak{U}^{\prime}$.
(ii) If $\operatorname{ort}(\mathfrak{U})=\operatorname{ort}\left(\mathfrak{U}^{\prime}\right)$, then $\mathfrak{U}=\mathfrak{U}^{\prime}$.

Proof. (i) If $\operatorname{ort}(\mathfrak{U}) \supseteq \operatorname{ort}\left(\mathfrak{U}^{\prime}\right)$, then $\operatorname{ort} \operatorname{ort}(\mathfrak{U}) \subseteq \operatorname{ort} \operatorname{ort}\left(\mathfrak{U}^{\prime}\right)$ which gives $\mathfrak{U} \subseteq \mathfrak{U}^{\prime}$.
(ii) This is immediate by (i).

Lemma 4.2.13. Let \mathfrak{U} be a set of arcs. Then
(i) \mathfrak{U} is non-crossing if and only if $\mathfrak{U} \subseteq \operatorname{ort}(\mathfrak{U})$.
(ii) \mathfrak{U} is maximal non-crossing if and only if $\mathfrak{U}=\operatorname{ort}(\mathfrak{U})$.

Proof. This is immediate.

Let $x=(i, j)$ be an indecomposable object of \mathcal{D}, accompanied by the regions $\mathrm{H}^{-}(x)=\{(m, n) \mid m \leq i-1, i+1 \leq n \leq j-1\}$ and $\mathrm{H}^{+}(x)=\{(m, n) \mid$ $i+1 \leq m \leq j-1, j+1 \leq n\}$ in the Auslander-Reiten quiver of \mathcal{D} ([19, Definition 2.1]). They are sketched as follows.

We write $\mathrm{H}(x)=\mathrm{H}^{-}(x) \cup \mathrm{H}^{+}(x)$.
Remark 4.2.14. Let (a, b) and (c, d) be arcs. Then the two arcs cross if and only if (c, d) is in $\mathrm{H}(a, b)$.

The following lemma describes morphisms in the category \mathcal{D}.
Lemma 4.2.15. ([19, Corollary 2.3]) Let x and y be indecomposable objects of \mathcal{D}. Then the following are equivalent.
(i) $(x, y) \neq 0$,
(ii) $(x, y)=k$,
(iii) $y \in \mathrm{H}(\Sigma x)$,
(iv) $x \in \mathrm{H}\left(\Sigma^{-1} y\right)$.

Remark 4.2.16. By virtue of the coordinate system, the way the regions $\mathrm{H}^{-}(x)$ and $\mathrm{H}^{+}(x)$ are defined, and the above lemma, crossing of arcs is endowed with a meaningful interpretation. This is to say, given indecomposable objects x and y of \mathcal{D}, then $(x, y) \neq 0$ if and only if the arcs corresponding to x and $\Sigma^{-1} y$ cross, see [19, Lemma 3.6].

Now let \mathcal{X} and \mathcal{Y} be two subcategories of \mathcal{D} such that $\mathcal{X}={ }^{\perp} \mathcal{Y}$ and $\mathcal{Y}=\mathcal{X}^{\perp}$, accompanied by the sets of arcs \mathfrak{X} and \mathfrak{Y} respectively. By Remark 4.2.16, $\mathfrak{X}=\{\mathfrak{d} \mid \Sigma \mathfrak{d}$ does not cross any arcs in $\mathfrak{Y}\}$ and $\mathfrak{Y}=\left\{\mathfrak{d} \mid \Sigma^{-1} \mathfrak{d}\right.$ does not cross any arcs in $\mathfrak{X}\}$. Together they determine each other.

Let $\Sigma^{-1} \mathfrak{Y}=\mathfrak{W}$. The above can be rewritten as $\mathfrak{X}=\{\mathfrak{d} \mid \mathfrak{d}$ does not cross any arcs in $\mathfrak{W}\}=\operatorname{ort}(\mathfrak{W})$ and $\mathfrak{W}=\{\mathfrak{d} \mid \mathfrak{d}$ does not cross any arcs in $\mathfrak{X}\}=\operatorname{ort}(\mathfrak{X})$.

The following lemma bridges indecomposable objects of \mathcal{D} on the quiver and arcs on number lines.

Lemma 4.2.17. (double orthogonal property) Let \mathcal{X} and \mathfrak{X} be defined as above. Then $\mathcal{X}={ }^{\perp}\left(\mathcal{X}^{\perp}\right)$ is equivalent to $\mathfrak{X}=\operatorname{ort} \operatorname{ort}(\mathfrak{X})$.

Proof. This is immediate by the above description.

4.3 Precovering (preenveloping) subcategories

In this section, precovering and preenveloping subcategories are characterized in terms of their corresponding sets of arcs.

Theorem 4.3.1. Let \mathcal{A} be a subcategory of \mathcal{D} and let \mathfrak{A} be the corresponding set of arcs. Then \mathcal{A} is precovering if and only if each right fountain of \mathfrak{A} is in fact a fountain.

Proof. Suppose \mathcal{A} is precovering. A right fountain of \mathfrak{A} is an integer n for which there are infinitely many arcs of the form (n, p) in \mathfrak{A}. The corresponding collection P of indecomposable objects of \mathcal{A} lies on a diagonal half line r in the Auslander-Reiten quiver of \mathcal{D}. The following sketch shows r along with some of the indecomposable objects a_{i} in P (indicated by the black dots) and, in dotted lines, their respective regions $\mathrm{H}\left(\Sigma a_{i}\right)$.

To show that n is also a left fountain, that is, there are infinitely many arcs in \mathfrak{A} of the form (m, n), is the same as showing that there are infinitely many indecomposable objects of \mathcal{A} which are on the half line s. Consider an object x on the half line s and its region $\mathrm{H}\left(\Sigma^{-1} x\right)$ indicated by dashed lines in the following diagram.

Let $\beta: b \rightarrow x$ be an \mathcal{A}-precover, where b and β are written $b_{1} \oplus \cdots \oplus b_{q}$ and $\left(\beta_{1}, \ldots, \beta_{q}\right)$ respectively. The morphism $\beta: b \rightarrow x$ can be assumed to be non-zero on each direct summand b_{j} of b, so that all the b_{j} belong to $\mathrm{H}\left(\Sigma^{-1} x\right)$.

It is apparent that x is in $\mathrm{H}^{-}\left(\Sigma a_{i}\right)$ for all the a_{i} in P. Pick an indecomposable a in P and let $\alpha: a \rightarrow x$ be a non-zero morphism. Then α factors through β as shown in the following diagram, where the morphism γ is written $\left(\begin{array}{c}\gamma_{1} \\ \vdots \\ \gamma_{q}\end{array}\right)$.

Since α is non-zero and $\alpha=\beta_{1} \gamma_{1}+\cdots+\beta_{q} \gamma_{q}$, there is a term $\beta_{k} \gamma_{k}$ which is non-zero. Hence $\gamma_{k}: a \rightarrow b_{k}$ is non-zero so b_{k} is in $\mathrm{H}(\Sigma a)$.

Therefore b_{k} can only be on the half line s above x, or in the infinite region inside $\mathrm{H}^{+}\left(\Sigma^{-1} x\right)$ bounded by t^{\prime}, s^{\prime} and l_{i} for some i. But it cannot be the latter because then β_{k} and γ_{k} would both be backward morphisms whence $\beta_{k} \gamma_{k}$ would be zero (Lemma 3.3.9). Therefore b_{k} can only be on the half line s above x. Repeating the argument, consider an object x_{1} on the half line s above b_{k}. Then another object c in \mathcal{A} on the half line s above x_{1} is revealed. Since it can be continued in this way indefinitely, there are infinitely many indecomposable objects of \mathcal{A} which are on the half line s.

Now suppose each right fountain of \mathfrak{A} is in fact a fountain.
In the following diagram, consider an object x and its region $\mathrm{H}\left(\Sigma^{-1} x\right)$ in the Auslander-Reiten quiver of \mathcal{D}, indicated by wavy lines. As indicated, half lines (which start from the bottom line) of the form r_{i} or s_{i}, where $i \in \mathbb{N}$ is a variable, are also introduced. Suppose the region $\mathrm{H}^{-}\left(\Sigma^{-1} x\right)$ (resp. $\mathrm{H}^{+}\left(\Sigma^{-1} x\right)$) has boundary half lines s_{0} and s_{m} (resp. r_{0} and r_{m}). Then each line s_{i} (resp. r_{i}), $0 \leq i \leq m$, has to pass through the region $\mathrm{H}^{-}\left(\Sigma^{-1} x\right)\left(\right.$ resp. $\left.\mathrm{H}^{+}\left(\Sigma^{-1} x\right)\right)$ and is parallel to the boundary lines of the region $\mathrm{H}^{-}\left(\Sigma^{-1} x\right)\left(\right.$ resp. $\left.\mathrm{H}^{+}\left(\Sigma^{-1} x\right)\right)$.

Let S be the intersection of $\mathrm{H}^{-}\left(\Sigma^{-1} x\right)$ and the objects of \mathcal{A}. On each line $s_{i}, 0 \leq i \leq m$, consider the first object a_{i} in \mathcal{A} which lies above the line segment t. Denote by a_{s} the direct sum of all the a_{i} and consider the
canonical morphism $a_{s} \rightarrow x$. By Lemma 3.3.6, each morphism $a \rightarrow x$ with a in S factors as $a \rightarrow a_{s} \rightarrow x$.

For example, in the following diagram, let $m=5$ and the circles and bullets indicate the first few objects of \mathcal{A} on each line s_{i}. The object a_{s} described above is the direct sum of the objects indicated by circles 0 .

Let R be the intersection of $\mathrm{H}^{+}\left(\Sigma^{-1} x\right)$ and the objects of \mathcal{A}. There is the desire of an a_{r} in \mathcal{A} with a morphism $a_{r} \rightarrow x$ such that each morphism $a \rightarrow x$ with a in R factors as $a \rightarrow a_{r} \rightarrow x$.

Suppose R is finite. Then let a_{r} be the direct sum of the objects in R (Lemma 2.5.1). Otherwise R is infinite. Since there are only finitely many r_{i}, there is a line r_{j} which contains infinitely many objects in \mathcal{A} with a nonzero morphism to x. Let $J \subseteq\{0, \ldots, m\}$ consist of the j such that the line r_{j} contains infinitely many objects in \mathcal{A} with a non-zero morphism to x.

Now for each j in J, the line r_{j} corresponds to a right fountain of \mathfrak{A}, and by assumption, each right fountain is also a fountain. Hence the corresponding line s_{j} contains infinitely many objects in \mathcal{A} with a non-zero morphism to x. Among the s_{j} with j in J, take the line s_{q} which is closest to the boundary line s_{m}, and then consider any object which is in both \mathcal{A} and $\mathrm{H}^{-}\left(\Sigma^{-1} x\right)$ on that line. By Lemma 3.3.4, this object plays the role of a_{r}.

For example, in the following diagram, $m=5$ and $J=\{1,2\}$. The line s_{q} described above is the line s_{2} here. The bullets on the r_{i} indicate the first few objects of \mathcal{A} in $\mathrm{H}^{+}\left(\Sigma^{-1} x\right)$. The bullets and the circle on the s_{i} indicate the first few objects of \mathcal{A} on those half lines. The object a_{r} described above is indicated by the circle \circ (one of the infinitely many choices).

Finally, an \mathcal{A}-precover of x can be obtained as $a_{r} \oplus a_{s} \rightarrow x$.
Remark 4.3.2. (i) In the only if part of the proof of Theorem 4.3.1, the way the position of the direct summand b_{k} is calibrated is very similar to the descriptions found in two previous situations, by simply looking at which morphisms are zero and which are not. The first situation is in Lemma 3.2.7, where the regions $\mathcal{L}_{\mathcal{X}}(a)$ and $\mathcal{R}_{\mathcal{X}}(a)$ are determined. The other situation is in Lemma 3.4.28, where the mapping cone of the morphism $\mu: a_{+} \rightarrow d_{1}$ is determined.
(ii) In the if part of the proof of Theorem 4.3.1, the occurrence of the backward morphisms begets the simultaneous occurrence of a left fountain (where it is a right fountain already) in pursuance of symmetry. Even though the introduction of the left fountain induces more objects in \mathcal{A}, it also provides another distribution of objects in \mathcal{A} with different suggestiveness, thus permitting \mathcal{A} to be precovering.

The following is the dual of Theorem 4.3.1.
Theorem 4.3.3. Let \mathcal{A} be a subcategory of \mathcal{D} and let \mathfrak{A} be the corresponding set of arcs. Then \mathcal{A} is preenveloping if and only if each left fountain of \mathfrak{A} is in fact a fountain.

Proof. Similar.

4.4 Torsion theories

In this section, let \mathfrak{A} be a set of arcs. A sequence of results regarding \mathfrak{A} is given, and then also a checkable condition equivalent to $\mathfrak{X}=\operatorname{ort} \operatorname{ort}(\mathfrak{X})$, see Lemma 4.4.20. Finally, the main theorem of this chapter is given in Theorem 4.4.22.

Definition 4.4.1. Let \mathcal{U} be a subcategory of \mathcal{D}. Then \mathcal{U} is said to be weak cluster tilting if it satisfies $\mathcal{U}=\left(\Sigma^{-1} \mathcal{U}\right)^{\perp}$ and $\mathcal{U}={ }^{\perp}(\Sigma \mathcal{U})$, and is said to be cluster tilting if it is weak cluster tilting, precovering and preenveloping.

In [19], the cluster tilting subcategories of \mathcal{D} were shown to be in bijection with certain maximal sets of non-crossing arcs connecting non-neighbouring integers. This is rephrased as follows.

Theorem 4.4.2. ([19, Theorem 4.4]) Let \mathcal{U} be a weak cluster tilting subcategory of \mathcal{D} with \mathfrak{U} as the corresponding maximal set of non-crossing arcs. Then \mathcal{U} is precovering and preenveloping (that is, \mathcal{U} is a cluster tilting subcategory of \mathcal{D}) if and only if \mathfrak{U} is (i) locally finite, or (ii) has a fountain.

In this section, the above theorem is generalized in terms of a bijection between torsion theories in \mathcal{D} and certain configurations of arcs connecting non-neighbouring integers.

The following little lemma is a simple play of concepts.
Lemma 4.4.3. Let (a, b) be an arc (not necessarily in $\mathfrak{A})$. Then the following are equivalent.
(i) ort ort $\mathfrak{A}=\mathfrak{A}$,
(ii) If (a, b) is an arc such that each arc crossing (a, b) also crosses an arc in \mathfrak{A}, then (a, b) is in \mathfrak{A}.

Proof. (i) \Rightarrow (ii): Suppose ort ort $\mathfrak{A}=\mathfrak{A}$ and let the arc (a, b) be as described. Then the arc (a, b) is in ort ort \mathfrak{A}, otherwise there would have to be an arc (c, d) in ort \mathfrak{A} which crossed (a, b). Subsequently, (c, d) would be an arc which crossed (a, b) but would not cross any arcs in \mathfrak{A}, which is a contradiction. Therefore the arc (a, b) is in ort ort $\mathfrak{A}=\mathfrak{A}$.
(ii) \Rightarrow (i): Suppose otherwise that ort ort $\mathfrak{A} \supset \mathfrak{A}$. Let (a, b) be an arc in ort ort \mathfrak{A} but not in \mathfrak{A}. Then there has to be an arc (c, d) which crosses (a, b) but does not cross any arcs in \mathfrak{A}. Therefore (c, d) is in ort \mathfrak{A}. However, (c, d) is not in ort ort $\operatorname{ort}(\mathfrak{U})$, which is a contradiction since ort ort ort (\mathfrak{U}) $=\operatorname{ort}(\mathfrak{L})$ by Lemma 4.2.9. Therefore ort ort $\mathfrak{A} \subseteq \mathfrak{A}$ which, together with $\operatorname{ort} \operatorname{ort}(\mathfrak{U}) \supseteq \mathfrak{U}$, gives ort ort $\mathfrak{A}=\mathfrak{A}$.

Now let us enter the spirit of this section.
Lemma 4.4.4. Suppose ort ort $\mathfrak{A}=\mathfrak{A}$. Then \mathfrak{A} satisfies conditions (\star) and ($\star \star$) of Definitions 4.2.3 and 4.2.5.

Proof. To see that \mathfrak{A} satisfies condition (\star), consider the diagram in Definition 4.2.3. The $\operatorname{arc}(a, c)$ is in ort ort \mathfrak{A}, otherwise there would have to be an $\operatorname{arc}(m, n)$ in ort \mathfrak{A} which crossed (a, c), but the $\operatorname{arc}(m, n)$ cannot be in ort \mathfrak{A} since it crosses either the $\operatorname{arc}(a, b)$ or the $\operatorname{arc}(c, d)$ in \mathfrak{A}. Therefore the $\operatorname{arc}(a, c)$ is in ort ort $\mathfrak{A}=\mathfrak{A}$. The rest is similar.

To see that \mathfrak{A} satisfies condition $(\star \star)$, consider the diagram in Definition 4.2.5. Suppose the $\operatorname{arc}(a, b)$ is not in ort ort \mathfrak{A}. Then there is an arc (m, n) in ort \mathfrak{A} which crosses (a, b), that is, $m<a<n<b$ or $a<m<b<n$. For the first case the $\operatorname{arc}(m, n)$ cannot however be in ort \mathfrak{A}, since there is always an $\operatorname{arc}(q, a)$ with $q<m$ in \mathfrak{A} which crosses (m, n), and similarly for the second case. Therefore the $\operatorname{arc}(a, b)$ is in ort ort $\mathfrak{A}=\mathfrak{A}$.

Lemma 4.4.5. Suppose \mathfrak{A} satisfies condition (\star) and suppose there are only finitely many (but not zero) arcs in \mathfrak{A} that end in a. Suppose there are both arcs going to the left and arcs going to the right from a. If (p, a) is the longest arc in \mathfrak{A} going to the left from a and (a, q) is the longest arc in \mathfrak{A} going to the right from a, then (p, q) is an arc in ort \mathfrak{A}.

Proof. There are no $\operatorname{arcs}(m, n)$ in \mathfrak{A} with $m<p, p<n<a$, otherwise (m, a) would be in \mathfrak{A} by condition (\star), contradicting that (p, a) is the longest arc in \mathfrak{A} going to the left from a. There are also no $\operatorname{arcs}(m, n)$ in \mathfrak{A} with $p<m<a$, $q<n$, otherwise (a, n) would be in \mathfrak{A} by condition (\star), contradicting that (a, q) is the longest arc in \mathfrak{A} going to the right from a.

Similarly, there are no $\operatorname{arcs}(m, n)$ in \mathfrak{A} with $a<m<q, q<n$, and there are also no $\operatorname{arcs}(m, n)$ in \mathfrak{A} with $m<p, a<n<q$. By construction there are no $\operatorname{arcs}(m, a)$ in \mathfrak{A} with $m<p$, and there are also no $\operatorname{arcs}(a, n)$ in \mathfrak{A} with $q<n$.

Combining all these shows that there are no arcs in \mathfrak{A} crossing (p, q) so (p, q) has to be in ort \mathfrak{A}.

Lemma 4.4.6. Suppose \mathfrak{A} satisfies condition (\star) and suppose there are only finitely many (but not zero) arcs in \mathfrak{A} that end in a. Suppose there are only arcs going to the left from a. If (p, a) is the longest arc in \mathfrak{A} going to the left from a, then $(p, a+1)$ is in ort \mathfrak{A}.

Proof. There are no $\operatorname{arcs}(m, n)$ in \mathfrak{A} with $m<p, p<n<a$, otherwise (m, a) would be in \mathfrak{A} by condition (\star), contradicting that (p, a) is the longest arc in \mathfrak{A} going to the left from a. There are also no $\operatorname{arcs}(m, n)$ in \mathfrak{A} with $p<m<a, n>a+1$, otherwise (a, n) would be in \mathfrak{A} by condition (\star), contradicting that there are no arcs in \mathfrak{A} going to the right from a. By construction there are no arcs (m, a) in \mathfrak{A} with $m<p$ and it is a condition that there are no $\operatorname{arcs}(a, n)$ in \mathfrak{A}. Therefore $(p, a+1)$ has to be in ort \mathfrak{A}.

Lemma 4.4.7. Suppose \mathfrak{A} satisfies condition ($*$) and suppose there are only finitely many (but not zero) arcs in \mathfrak{A} that end in a. Suppose there are only arcs going to the right from a. If (a, p) is the longest arc in \mathfrak{A} going to the right from a, then $(a-1, p)$ is in ort \mathfrak{A}.

Proof. Similar to Lemma 4.4.6.
Remark 4.4.8. Suppose (a, b) is an arc in $\operatorname{ort}^{2}(\mathfrak{A})$. Then there has to be some arc in \mathfrak{A} which ends in a (resp. b). Otherwise the arc ($a-1, a+1$) (resp. $(b-1, b+1)$) is in ort \mathfrak{A}, which is a contradiction since it crosses (a, b) in $\operatorname{ort}^{2}(\mathfrak{A})$.

Corollary 4.4.9. Suppose \mathfrak{A} satisfies condition (\star). Suppose that (a, b) is an arc in $\operatorname{ort}^{2}(\mathfrak{A})$ and that there are only finitely many arcs in \mathfrak{A} that end in a. Then it is not possible that all arcs in \mathfrak{A} that end in a are of the form (m, a).

Proof. Suppose all arcs in \mathfrak{A} that end in a were of the form (m, a) and let (p, a) be the longest one. Then by Lemma 4.4.6 the arc $(p, a+1)$ is in ort \mathfrak{A}, but this is a contradiction since it crosses (a, b) which is in $\operatorname{ort}^{2}(\mathfrak{A})$.

Corollary 4.4.10. Suppose \mathfrak{A} satisfies condition (\star). Let (a, b) be an arc in $\operatorname{ort}^{2}(\mathfrak{A})$ and suppose there are only finitely many arcs in \mathfrak{A} that end in a. Then there is an arc (a, m) in \mathfrak{A} with $b \leq m$.

Proof. By Corollary 4.4.9, it is not possible that all arcs in \mathfrak{A} that end in a are of the form (m, a). Therefore only the following two cases remain.
(i) Suppose there are arcs in \mathfrak{A} going to the left and going to the right from a. Let (a, q) be the longest arc in \mathfrak{A} going to the right from a and (p, a) be the longest arc in \mathfrak{A} going to the left from a. By Lemma 4.4.5, (p, q) is in ort \mathfrak{A}, so $q<b$ is not possible since then (p, q) would cross (a, b) in $\operatorname{ort}^{2}(\mathfrak{A})$.

Therefore $b \leq q$.
(ii) Suppose there are only arcs in \mathfrak{A} going to the right from a. Let (a, p) be the longest arc in \mathfrak{A} going to the right from a. By Lemma 4.4.7, $(a-1, p)$ is in ort \mathfrak{A}, so $p<b$ is not possible since then $(a-1, p)$ would cross (a, b) in $\operatorname{ort}^{2}(\mathfrak{A})$.

Therefore $b \leq p$.

Corollary 4.4.11. Suppose \mathfrak{A} satisfies condition (\star). Suppose that (a, b) is an arc in $\operatorname{ort}^{2}(\mathfrak{A})$ and that there are only finitely many arcs in \mathfrak{A} that end in b. Then it is not possible that all arcs in \mathfrak{A} that end in b are of the form (b, m).

Proof. Similar to Corollary 4.4.9.
Corollary 4.4.12. Suppose \mathfrak{A} satisfies condition (\star). Let (a, b) be an arc in $\operatorname{ort}^{2}(\mathfrak{A})$ and suppose there are only finitely many arcs in \mathfrak{A} that end in b. Then there is an arc (m, b) in \mathfrak{A} with $m \leq a$.

Proof. Similar to Corollary 4.4.10.
Lemma 4.4.13. Suppose \mathfrak{A} satisfies condition $(*)$. Let (a, b) be an arc in $\operatorname{ort}^{2}(\mathfrak{A})$ and suppose that each of a and b is only an end point of finitely many arcs in \mathfrak{A}. Then (a, b) is in \mathfrak{A}.

Proof. By Corollary 4.4.10, there is an $\operatorname{arc}(a, q)$ in \mathfrak{A} with $b \leq q$. On the other hand by Corollary 4.4.12, there is an $\operatorname{arc}(p, b)$ in \mathfrak{A} with $p \leq a$. If $q=b$ or $p=a$ already, then this is what is to be shown. Assume otherwise that $q>b$ and $p<a$. But then (a, b) is in \mathfrak{A} by condition (\star).

Lemma 4.4.14. Suppose \mathfrak{A} satisfies condition (\star). Let both a and b be right (resp. left) fountains of \mathfrak{A} with $b-a \geq 2$. Then (a, b) is in \mathfrak{A}.

Proof. Suppose both a and b are right fountains of \mathfrak{A}. Choose an arc (a, p) in \mathfrak{A} with $b<p$ and then choose an $\operatorname{arc}(b, q)$ in \mathfrak{A} with $p<q$. Then (a, b) is in \mathfrak{A} by condition (\star).

The other case is similar.
Lemma 4.4.15. Suppose \mathfrak{A} satisfies condition ($*$). Let a be a right fountain of \mathfrak{A}, b be a left fountain of \mathfrak{A} with $b-a \geq 2$. Then (a, b) is in \mathfrak{A}.

Proof. Choose an $\operatorname{arc}(a, q)$ in \mathfrak{A} with $b<q$ and then choose an $\operatorname{arc}(p, b)$ in \mathfrak{A} with $p<a$. Then (a, b) is in \mathfrak{A} by condition (\star).

Lemma 4.4.16. Suppose \mathfrak{A} satisfies condition (\star). Let (a, b) be an arc in $\operatorname{ort}^{2}(\mathfrak{A})$. Suppose b is a left fountain of \mathfrak{A} and suppose there are only finitely many arcs in \mathfrak{A} that end in a. Then (a, b) is in \mathfrak{A}.

Proof. By Corollary 4.4.10, there is an $\operatorname{arc}(a, m)$ in \mathfrak{A} with $b \leq m$. If $m=b$ already, then this is what is to be shown. Otherwise choose an arc (p, b) in \mathfrak{A} with $p<a$. Then (a, b) is in \mathfrak{A} by condition (\star).

Lemma 4.4.17. Suppose \mathfrak{A} satisfies condition ($*$). Let (a, b) be an arc in $\operatorname{ort}^{2}(\mathfrak{A})$. Suppose b is a right fountain of \mathfrak{A} and suppose there are only finitely many arcs in \mathfrak{A} that end in a. Then (a, b) is in \mathfrak{A}.

Proof. By Corollary 4.4.10, there is an $\operatorname{arc}(a, m)$ in \mathfrak{A} with $b \leq m$. If $m=b$ already, then this is what is to be shown. Otherwise choose an arc (b, q) in \mathfrak{A} with $m<q$. Then (a, b) is in \mathfrak{A} by condition (\star).

Lemma 4.4.18. Suppose \mathfrak{A} satisfies condition (\star). Let (a, b) be an arc in $\operatorname{ort}^{2}(\mathfrak{A})$. Suppose a is a right fountain of \mathfrak{A} and suppose there are only finitely many arcs in \mathfrak{A} that end in b. Then (a, b) is in \mathfrak{A}.

Proof. Similar to Lemma 4.4.16.
Lemma 4.4.19. Suppose \mathfrak{A} satisfies condition (\star). Let (a, b) be an arc in $\operatorname{ort}^{2}(\mathfrak{A})$. Suppose a is a left fountain of \mathfrak{A} and suppose there are only finitely many arcs in \mathfrak{A} that end in b. Then (a, b) is in \mathfrak{A}.

Proof. Similar to Lemma 4.4.17.

Finally, we deliver the following lemma which is a recollection of the above lemmas.

Lemma 4.4.20. (c.f. Lemma 4.2.17) ort ort $\mathfrak{A}=\mathfrak{A}$ if and only if \mathfrak{A} satisfies conditions (\star) and $(\star \star)$.

Proof. (only if) This is Lemma 4.4.4. (if) It is immediate that $\mathfrak{A} \subseteq$ ort ort \mathfrak{A}. Let (a, b) be an arc in $\operatorname{ort}^{2}(\mathfrak{A})$. Suppose that each of a and b is only an end point of finitely many arcs in \mathfrak{A}. Then (a, b) is in \mathfrak{A} by Lemma 4.4.13. Otherwise suppose that both a and b are end points of infinitely many arcs in \mathfrak{A}. Then (a, b) is in \mathfrak{A} by Lemma 4.4.14, Lemma 4.4.15 and condition ($\star \star$). Finally, suppose that precisely one of a and b is an end point of finitely many arcs in \mathfrak{A}. Then (a, b) is in \mathfrak{A} by Lemma 4.4.16, Lemma 4.4.17, Lemma 4.4.18 and Lemma 4.4.19.

Unlike Lemma 4.4.3, Lemma 4.4 .20 expresses explicitly ort ort $\mathfrak{A}=\mathfrak{A}$ in terms of the configuration of \mathfrak{A}. It can also be seen directly that the condition in Lemma 4.4.3 does imply conditions (\star) and ($\star \star$).
Example 4.4.21. (i) Let \mathfrak{U} be a set of arcs. By Lemma 4.2.9, ort ort ort (\mathfrak{U}) $=\operatorname{ort}(\mathfrak{U})$. Therefore $\operatorname{ort}(\mathfrak{U})$ satisfies conditions (\star) and $(\star \star)$ by Lemma 4.4.20. The same is true for $\operatorname{ort}^{\mathrm{n}}(\mathfrak{U}), n \geq 1$.
(ii) Suppose \mathfrak{A} is a set of non-crossing arcs where ort ort $\mathfrak{A}=\mathfrak{A}$. Then it is not necessary that \mathfrak{A} is a maximal set of non-crossing arcs. For example, let \mathfrak{A} consist only of a left fountain a, a right fountain b and the arc (a, b). The following diagram shows only some of the arcs from the configuration described.

By Lemma 4.4.20, ort ort $\mathfrak{A}=\mathfrak{A}$. However, it is certainly not a maximal set of non-crossing arcs. For example, it is possible to add an arc as in the following diagram.

Now we are ready to deliver the main theorem of this chapter.
Theorem 4.4.22. Let \mathcal{X} be a subcategory of \mathcal{D} and let \mathfrak{X} be the corresponding set of arcs. Then the following conditions are equivalent.
(i) \mathfrak{X} satisfies conditions (\star) and $(\star \star)$, and each right fountain of \mathfrak{X} is in fact a fountain,
(ii) The subcategory \mathcal{X} is precovering and is closed under extensions,
(iii) $(\mathcal{X}, \mathcal{Y})$ is a torsion theory for some subcategory \mathcal{Y} of \mathcal{D}. In particular, $\mathcal{Y}=\mathcal{X}^{\perp}$.

Proof. (i) \Rightarrow (ii): \mathfrak{X} satisfying conditions (\star) and ($\star \star$) implies \mathcal{X} being closed under extensions by Lemma 4.2.17 and Lemma 4.4.20 (as well as Lemma 1.2.19). Finally, \mathcal{X} is precovering if and only if each right fountain of \mathfrak{X} is in fact a fountain by Theorem 4.3.1. (ii) \Leftrightarrow (iii): This is true by [21, Proposition 2.3]. (iii) \Rightarrow (i): Since $(\mathcal{X}, \mathcal{Y})$ is a torsion theory, $\mathcal{X}={ }^{\perp}\left(\mathcal{X}^{\perp}\right)$ (Lemma 1.2.7) and \mathcal{X} is precovering. Therefore \mathfrak{X} satisfies conditions (\star) and $(\star \star)$ by Lemma 4.2.17 and Lemma 4.4.20 and each right fountain of \mathfrak{X} is in fact a fountain by Theorem 4.3.1.

Example 4.4.23. (c.f. Example 4.4.21(ii)) In Theorem 4.4.22, if \mathcal{X} is only closed under extensions, then \mathfrak{X} does not necessarily satisfy condition (\star). For example, by Lemma 3.3.18, $(-4,-1) \rightarrow(-4,1) \rightarrow(-2,1) \rightarrow$ is a distinguished triangle. Suppose the arcs $(-4,-1),(-4,1)$ and $(-2,1)$ are all in \mathfrak{X}. This however does not imply the $\operatorname{arcs}(-4,-2)$ and $(-1,1)$ in \mathfrak{X}, which is required by condition (\star).

Example 4.4.24. Let \mathcal{U} be a cluster tilting subcategory with the corresponding set of $\operatorname{arcs} \mathfrak{U}$. Then by definition $(\mathcal{U}, \Sigma \mathcal{U})$ is a torsion theory. Therefore by Theorem 4.4.22, \mathfrak{U} satisfies conditions (\star) and $(\star \star)$, and each right fountain of \mathfrak{U} is in fact a fountain. This is compatible with the description given in Theorem 4.4.2, and is altogether a generalization of it.
Remark 4.4.25. This is a little digression. The way torsion theories generalize cluster tilting subcategories reminds us of the way distinguished triangles generalize Auslander-Reiten triangles. It is good mathematics to consider (different) special cases of the given notions, and then unveil the special relationships hidden not because they are particularly enigmatic but that coincidences are simply nature's camouflage.

4.5 Examples

In this section, two special types of torsion theories in \mathcal{D} are described, those of t-structures and co-t-structures. Given a subcategory \mathcal{U} of \mathcal{D}, examples where the pair $\left(\mathcal{U}, \mathcal{U}^{\perp}\right)$ might or might not be a torsion theory are given. In the context of a t-structure, an example is given to illustrate the torsion theory triangles explicitly on the Auslander-Reiten quiver.

Let us first describe t-structures.

Theorem 4.5.1. Let $(\mathcal{U}, \mathcal{V})$ be a t-structure in \mathcal{D}, that is, $(\mathcal{U}, \mathcal{V})$ is a torsion theory with $\Sigma \mathcal{U} \subseteq \mathcal{U}$. Suppose \mathcal{U} is neither zero nor all of \mathcal{D}, then there is a half line such that the indecomposable objects of \mathcal{U} are precisely the objects on the half line and to the left of it, as shown in the following diagram.

Proof. Let \mathfrak{U} be the corresponding set of arcs for the subcategory \mathcal{U}.
(Step 1) Consider a horizontal line $y-x=k$ with $k \geq 3$ in the AuslanderReiten quiver of \mathcal{D}. If there are objects from \mathcal{U} on this line, then there is a rightmost such object. Namely, suppose not. Then there are objects of \mathcal{U} arbitrarily far to the right on $y-x=k$, so all objects on $y-x=k$ are in \mathcal{U} because $\Sigma \mathcal{U} \subseteq \mathcal{U}$. In the following diagram, let $d_{1}=\left(u_{1}, u_{2}\right)$ and $d_{2}=\left(u_{1}+1, u_{2}-1\right)$ be objects on the lines $y-x=k+1$ and $y-x=k-1$ respectively. Then there is the Auslander-Reiten triangle $d_{0} \rightarrow d_{1} \oplus d_{2} \rightarrow$ $d_{0}^{\prime} \rightarrow$, where $d_{0}=\left(u_{1}, u_{2}-1\right)$ and $d_{0}^{\prime}=\left(u_{1}+1, u_{2}\right)$. Since d_{0} and d_{0}^{\prime} both lie on the line $y-x=k$ which is in \mathcal{U}, it follows that d_{1} and d_{2} are in \mathcal{U}, since \mathcal{U} is closed under extensions and direct summands. Therefore the two neighbouring lines $y-x=k+1$ and $y-x=k-1$ are in \mathcal{U}. Repeating the argument for other (horizontal) lines, \mathcal{U} has to contain all the indecomposable objects of \mathcal{D}, i.e. \mathcal{U} has to be all of \mathcal{D}. The case where $k=2$ is similar.

(Step 2) Pick an object $d=(m, n)$ in \mathcal{U} and assume it is the rightmost object of \mathcal{U} on the horizontal line $y-x=n-m$. Here it will be shown that the region $L=\{(x, y) \mid y \leq n, y-x \geq 2\}$ is in \mathcal{U}.
(i) Suppose $n-m=2$. In the following diagram, let $u_{1}=(m-1, n)$. Then there is the Auslander-Reiten triangle $\Sigma d \rightarrow u_{1} \rightarrow d \rightarrow$. Since $\Sigma \mathcal{U} \subseteq \mathcal{U}$, therefore Σd is in \mathcal{U}. Hence u_{1} is in \mathcal{U}, since \mathcal{U} is closed
under extensions. By applying a (similar) argument on u_{1} and so on, the half line $y=n$ is in \mathcal{U}, and so are all the half lines $y=n^{\prime}$ with $n^{\prime} \leq n$, since $\Sigma \mathcal{U} \subseteq \mathcal{U}$. Therefore the region L is in \mathcal{U}.

$$
y=n
$$

(ii) Suppose $n-m>2$. Since $\Sigma \mathcal{U} \subseteq \mathcal{U}$, therefore $\Sigma d=(m-1, n-1)$ is in \mathcal{U}. In the following diagram, let $u_{1}=(m-1, n)$ and $u_{2}=(m, n-1)$. Then there is the Auslander-Reiten triangle $\Sigma d \rightarrow u_{1} \oplus u_{2} \rightarrow d \rightarrow$. Therefore u_{1} and u_{2} are both in \mathcal{U}, since \mathcal{U} is closed under extensions. By applying a (similar) argument on u_{1} and u_{2} and so on (if possible), the two half lines t_{1} and t_{2} are in \mathcal{U}. Eventually, the region labelled L_{0} (including the two half lines t_{1} and t_{2}) is in \mathcal{U}, since $\Sigma \mathcal{U} \subseteq \mathcal{U}$.

Now it remains to show that the little triangular region, $L_{1}=\{(x, y) \mid$ $m+1 \leq x \leq n-2, m+3 \leq y \leq n$ and $y-x \geq 2\}$, is also in \mathcal{U}.
Let $r_{0}=(m-1, m+1)$. Since the arcs r_{0} and $d=(m, n)$ cross, it follows that $q_{0}=(m+1, n)$ is in \mathcal{U} since \mathfrak{U} satisfies condition (\star) by Theorem 4.4.22.

Similarly, with the help of $r_{1}=(m-1, m+2)$, it follows that $q_{1}=$ $(m+2, n)$ is in \mathcal{U}, and so on (if possible), until all the objects (m^{\prime}, n),
with $m+1 \leq m^{\prime} \leq n-2$, are in \mathcal{U}. This argument is to be repeated, starting with $u_{2}=(m, n-1), u_{3}=(m, n-2)$ and so on instead (if possible), until the region L_{1} is in \mathcal{U}. Therefore $L=L_{0} \cup L_{1}$ is in \mathcal{U}, and this is what is needed to be shown.

(Step 3) Suppose there is an indecomposable object $d^{\prime}=(u, v)$ of \mathcal{U} which lies outside the region L, i.e. $n<v$. Similar to Step 2, all the half lines $y=v^{\prime}$ with $v^{\prime} \leq v$ will be in \mathcal{U}. Therefore the indecomposable object $\Sigma^{-1} d=$ ($m+1, n+1$) will also be in \mathcal{U}, contradicting that d is the indecomposable object of \mathcal{U} which is rightmost on the line $y-x=n-m$. Therefore the indecomposable objects of \mathcal{U} are precisely the objects on the half line $y=n$ and to the left of it, i.e. the region L.

Remark 4.5.2. Consider \mathcal{U} and \mathfrak{U} in Theorem 4.5.1. Other possible choices of crossing of arcs within \mathfrak{U} would not give us any more new arcs not contained in \mathfrak{U} already (Example 4.2.4 and Remark 4.2.14).

Alternatively, one can conceive the set of $\operatorname{arcs} \mathfrak{U}$ as a sequence of left full fountains going to the left. This means there is an integer p such that q is a left full fountain of \mathfrak{U} for all $q \leq p$ and there are no left (full) fountains $q>p$ of \mathfrak{U} (p is the rightmost left full fountain of \mathfrak{U}). Any arcs (a, b) induced by crossing of arcs within \mathfrak{U} (those arcs that are to be included under condition $(\star))$ are in \mathfrak{U} already (i.e. b has to be a left full fountain of \mathfrak{U} already). Therefore the set of arcs \mathfrak{U} in Theorem 4.5.1 does satisfy condition (\star).

For example, let $p=2$. The following diagram shows, amongst other arcs of \mathfrak{U}, the $\operatorname{arcs}(-4,0)$ and $(-2,2)$ and they cross.

The arc $(0,2)$ has to be in \mathfrak{U} since 2 is a left full fountain, and similarly the $\operatorname{arcs}(-2,0),(-4,-2)$ and $(-4,2)$ have to be in \mathfrak{U}, since $0,-2$ and 2 are all left full fountains.
Example 4.5.3. Let \mathcal{U} be a subcategory of \mathcal{D}. Lemma 4.2 .15 is needed for the following.
(i) In the following diagram, suppose the indecomposable objects of \mathcal{U} are precisely the objects on the dotted half line $l_{1}: y=m$ (some m) and to the left of it. Then the indecomposable objects of \mathcal{U}^{\perp} are precisely the objects on the dotted half line $l_{2}: x=m-1$ and to the right of it, and the indecomposable objects of $\left(\mathcal{U}^{\perp}\right)^{\perp}$ are precisely the objects on the dotted half line $l_{3}: y=m-2$ and to the left of it.

(ii) In the following diagram, suppose the indecomposable objects of \mathcal{U} are precisely the objects on the dotted half line $l_{1}: y=m$ (some m) and to the left of it. Then the indecomposable objects of ${ }^{\perp} \mathcal{U}$ are precisely the objects on the dotted half line $l_{2}: x=m+1$ and to the right of it, and the indecomposable objects of ${ }^{\perp}\left({ }^{\perp} \mathcal{U}\right)$ are precisely the objects on the dotted half line $l_{3}: y=m+2$ and to the left of it.

Here it is true that $\mathcal{U}={ }^{\perp}\left(\mathcal{U}^{\perp}\right)$ and that $\mathcal{U}=\left({ }^{\perp} \mathcal{U}\right)^{\perp}$.
Let \mathcal{U} be as described in Theorem 4.5.1. Then all the rightmost objects of \mathcal{U} on their respective horizontal lines form a straight half line. This is profoundly different from Corollary 1.4.7, where given a split torsion theory
$(\mathcal{X}, \mathcal{Y})$ in the finite derived category $D^{b}\left(\bmod k A_{n}\right)$, the leftmost objects a_{k} (on their respective lines $y-x=k$) which are in \mathcal{X} form a zig zag Z. It would not be true if the straight half line in Theorem 4.5 .1 were replaced by a half zig zag line. One example is as follows.
Example 4.5.4. Let \mathcal{U}^{\prime} be a subcategory of \mathcal{D}. Suppose there is a half zig zag line such that the indecomposable objects of \mathcal{U}^{\prime} are precisely the objects on the half zig zag line and to the left of it, as shown in the following diagram. Here the solid line segment on the top keeps on going to the left. The dotted half line is $l_{1}: y=m$ (some m).

In the following diagram, let \mathcal{U}_{0}^{\prime} be the region outside \mathcal{U}^{\prime} bounded by and including the dotted line.

Let \mathfrak{U}^{\prime} be the corresponding set of arcs for the subcategory \mathcal{U}^{\prime}.
Either interpretation, as arcs or as indecomposable objects of \mathcal{D} on the quiver, gives that \mathcal{U}^{\prime} is not equal to ${ }^{\perp}\left(\mathcal{U}^{\prime \perp}\right)$. This is described as follows.

In terms of arcs, follow (with variations) Step 2 of the proof of Theorem 4.5.1 (since $\mathcal{U}^{\prime}={ }^{\perp}\left(\mathcal{U}^{\prime \perp}\right)$ is equivalent to \mathfrak{U}^{\prime} satisfying conditions (\star) and $(\star \star)$ by Lemma 4.2.17 and Lemma 4.4.20, to have $\mathcal{U}^{\prime}={ }^{\perp}\left(\mathcal{U}^{\prime \perp}\right)$ is to have the region
\mathcal{U}_{0}^{\prime} in \mathcal{U}^{\prime} as well, similar to the way the little triangular region L_{1} is to be in \mathcal{U} in Theorem 4.5.1).

In terms of indecomposable objects of \mathcal{D} on the quiver, this is simply by inspection. The regions $\mathcal{U}^{\prime \perp}$ and ${ }^{\perp}\left(\mathcal{U}^{\prime \perp}\right)$ are as follows, i.e. the indecomposable objects of $\mathcal{U}^{\prime \perp}$ are precisely the objects on the dotted half line $l_{2}: x=m-1$ and to the right of it, and the indecomposable objects of ${ }^{\perp}\left(\mathcal{U}^{\prime}\right)$ are precisely the objects on the dotted half line $l_{1}: y=m$ and to the left of it (c.f. Example 4.5.3).

Both interpretations give $\mathcal{U}^{\prime} \subset{ }^{\perp}\left(\mathcal{U}^{\prime \perp}\right)$.
Remark 4.5.5. In Example 4.5.4, the set of arcs \mathfrak{U}^{\prime} does not satisfy condition (\star). Therefore by Theorem 4.4.22, $\left(\mathcal{U}^{\prime}, \mathcal{U}^{\prime \perp}\right)$ is not a torsion theory, even though \mathfrak{U}^{\prime} contains no right fountains at all. This is no surprise, as $\mathcal{U}^{\prime} \subset$ ${ }^{\perp}\left(\mathcal{U}^{\prime \perp}\right)$ contradicts Lemma 1.2.7.

Given an (indecomposable) object t of \mathcal{D} which is neither in \mathcal{U}^{\prime} nor in $\mathcal{U}^{\prime \perp}$, there might not even be a torsion theory triangle $u^{\prime} \rightarrow t \rightarrow u^{\prime \prime} \rightarrow$, where u^{\prime} is in \mathcal{U}^{\prime} and $u^{\prime \prime}$ is in $\mathcal{U}^{\prime \perp}$. Nevertheless, the following example illustrates the existence of (some) torsion theory triangles in a t-structure explicitly.

Example 4.5.6. Consider again the t-structure $(\mathcal{U}, \mathcal{V})$ in Theorem 4.5.1, and let \mathfrak{U} and \mathfrak{V} be the corresponding sets of arcs for the subcategories \mathcal{U} and \mathcal{V} respectively. The lines $l_{1}: y=m$ and $l_{2}: x=m-1$, and the regions \mathcal{U} and \mathcal{U}^{\perp} are shown in the following diagram (Example 4.5.3(i)).

As seen in Lemma 1.2.7, $\mathcal{U}^{\perp}=\mathcal{V}$ and $\mathcal{U}={ }^{\perp}\left(\mathcal{U}^{\perp}\right)$. This is again no surprise (Example 4.5.3).
(i) Let $t_{0}=(m-2, m+1)$. Then there is the Auslander-Reiten triangle $u_{0} \rightarrow t_{0} \rightarrow v_{0} \rightarrow$, which is also a torsion theory triangle, where $u_{0}=$ $(m-2, m)$ is in \mathcal{U} and $v_{0}=(m-1, m+1)$ is in $\mathcal{U}^{\perp}=\mathcal{V}$.
(ii) Let $t_{1}=\left(a_{1}, b_{1}\right)$ be an indecomposable object of \mathcal{D} which is neither in \mathcal{U} nor in \mathcal{U}^{\perp}. Then by Lemma 3.3.18, there is the distinguished triangle $u_{1} \rightarrow t_{1} \rightarrow v_{1} \rightarrow$, which is a torsion theory triangle, where $u_{1}=\left(a_{1}, m\right)$ is in \mathcal{U} and $v_{1}=\left(m-1, b_{1}\right)$ is in $\mathcal{U}^{\perp}=\mathcal{V}$.
(iii) Let $u=(m-4, m-2)$ be in \mathcal{U} and let $t_{2}=(m-4, m+1)$ be an indecomposable object of \mathcal{D} which is neither in \mathcal{U} nor in \mathcal{U}^{\perp}. Then by Lemma 3.3.18, there is the distinguished triangle $u \rightarrow t_{2} \rightarrow q \rightarrow$, where $q=(m-3, m+1)$. This is however not a torsion theory triangle, since q is not in $\mathcal{U}^{\perp}=\mathcal{V}$. But similar to (ii) there is a torsion theory triangle $u_{2} \rightarrow t_{2} \rightarrow v_{2} \rightarrow$, where $u_{2}=(m-4, m)$ is in \mathcal{U} and $v_{2}=v_{0}=(m-1, m+1)$ is in $\mathcal{U}^{\perp}=\mathcal{V}$.
(iv) It can be seen directly from the diagram that $\mathcal{U}^{\perp}=\mathcal{V}$ is not closed under the action of Σ (it is closed under the action of Σ^{-1}, and it is of no surprise, see Lemma 1.2.15), and it is not true that each right fountain of \mathfrak{V} is in fact a fountain (it is however true that each left fountain of \mathfrak{V} is in fact a fountain, though \mathfrak{V} does not have any left fountains).
(v) The morphisms $u_{0} \rightarrow t_{0}$ in (i), $u_{1} \rightarrow t_{1}$ in (ii) and $u_{2} \rightarrow t_{2}$ in (iii) are all \mathcal{U}-precovers, and the morphisms $t_{0} \rightarrow v_{0}$ in (i), $t_{1} \rightarrow v_{1}$ in (ii) and $t_{2} \rightarrow v_{2}$ in (iii) are all \mathcal{V}-preenvelopes (Example 1.2.10(ii)). Compare Lemma 3.3.10 and Lemma 3.3.11.
(vi) This example echoes Remark 1.5.5 in Section 1.5. Since $(\mathcal{U}, \mathcal{V})$ is a t-structure, the inclusion $\imath: \mathcal{U} \hookrightarrow \mathcal{D}$ admits a right adjoint R :
$\mathcal{D} \rightarrow \mathcal{U}$. Similarly, the inclusion $\imath: \mathcal{V} \hookrightarrow \mathcal{D}$ admits a left adjoint $L: \mathcal{D} \rightarrow \mathcal{V}$ (Example 1.2.25). Given t in \mathcal{D}, there is a (unique) torsion theory triangle $R t \rightarrow t \rightarrow L t \rightarrow \Sigma R t$ with $R t$ in \mathcal{U} and $L t$ in \mathcal{V}. Accordingly, the torsion theory triangles $u_{i} \rightarrow t_{i} \rightarrow v_{i} \rightarrow$ in (i), (ii) and (iii) serve as examples of realizing the actions of the left and right adjoints on the Auslander-Reiten quiver. For example, in (ii), $\Sigma u_{1}=\Sigma\left(a_{1}, m\right)=\left(a_{1}-1, m-1\right)$ is indeed the mapping cone c_{1} of the \mathcal{V}-preenvelope $t_{1} \rightarrow v_{1}$ (Lemma A.3.7), thus the value of $R t_{1}$ can be retrieved (i.e. $R t_{1}=\Sigma^{-1} c_{1}=\Sigma^{-1} \Sigma u_{1}=u_{1}$).
(vii) Simultaneously, $R t \rightarrow t$ in (vi) is right minimal (Lemma 1.2.11), thus in (i), (ii) and (iii), $u_{i} \rightarrow t_{i}$ is a \mathcal{U}-cover.

The following example is a slight modification of Example 4.5.6.
Example 4.5.7. Let \mathcal{U} be a subcategory of \mathcal{D}, and \mathfrak{U} be the corresponding set of arcs for the subcategory \mathcal{U}.

In the following diagram, suppose the indecomposable objects of \mathcal{U} are precisely the objects on the dotted half line $l_{1}: y=m$ (some m) and to the left of it, except the object \circ. Then the indecomposable objects of \mathcal{U}^{\perp} are precisely the objects on the dotted half line $l_{2}: x=m-1$ and to the right of it, and the indecomposable objects of ${ }^{\perp}\left(\mathcal{U}^{\perp}\right)$ are precisely the objects on the dotted half line l_{1} and to the left of it, thus including the object \circ (c.f. Example 4.5.3).

Let $\circ=(m-4, m-1), a=(m-5, m-1)$ be objects on the line $l_{3}: y=m-1$, and $u_{0}=(m-6, m-4), u_{1}=(m-4, m-2)$ and $u_{2}=(m-3, m-1)$ be objects on the line $y-x=2$. Even though $\left(\mathcal{U}, \mathcal{U}^{\perp}\right)=0$, and as seen in Example 4.5.6(ii), that given an indecomposable object $t=(a, b)$ of \mathcal{D} which is neither in \mathcal{U} nor in \mathcal{U}^{\perp} nor the object \circ, there is the distinguished triangle $u \rightarrow t \rightarrow v \rightarrow$ with $u=(a, m)$ in \mathcal{U} and $v=(m-1, b)$ in \mathcal{U}^{\perp}, the pair $\left(\mathcal{U}, \mathcal{U}^{\perp}\right)$ is not a torsion theory.

This is because there are no torsion theory triangles $\circ_{u} \rightarrow 0 \rightarrow \circ_{v} \rightarrow$ with \circ_{u} in \mathcal{U} and o_{v} in \mathcal{U}^{\perp}. Assume there is. Then since the object \circ is in ${ }^{\perp}\left(\mathcal{U}^{\perp}\right)$, the morphism $\circ \rightarrow \circ_{v}$ is zero, and thus the distinguished triangle $\Sigma^{-1} \circ_{v} \rightarrow \circ_{u} \rightarrow \circ \rightarrow \circ_{v}$ splits, i.e. $\circ_{u} \cong \Sigma^{-1} \circ_{v} \oplus \circ$. Since \mathcal{U} is closed under isomorphisms and direct summands, the object o will have to be in \mathcal{U}, which is a contradiction. Therefore $\left(\mathcal{U}, \mathcal{U}^{\perp}\right)$ is not a torsion theory.

This is again no surprise by Theorem 4.4.22, since
(i) \mathcal{U} is not closed under extensions. This is because $u_{1} \rightarrow 0 \rightarrow u_{2} \rightarrow$ is an Auslander-Reiten triangle with u_{1}, u_{2} in \mathcal{U} but not \circ. Alternatively, let $b_{1}=(m-6, m-3)$ and $b_{0}=(m-6, m-1)$. Then by Lemma 3.3.18, $b_{1} \rightarrow b_{0} \rightarrow \circ \rightarrow \Sigma b_{1}$ is a distinguished triangle. Since both b_{0} and Σb_{1} are in \mathcal{U} but not \circ, this is another example where \mathcal{U} fails to be closed under extensions.
(ii) \mathfrak{U} does not satisfy condition (\star). Again consider the pair of crossing arcs $u_{0}=(m-6, m-4)$ and $a=(m-5, m-1)$, but the arc $\circ=$ $(m-4, m-1)$ is not in \mathfrak{U}.
(iii) Simply, $\mathcal{U} \subset{ }^{\perp}\left(\mathcal{U}^{\perp}\right)($ Lemma 4.2.17 and Lemma 4.4.20).

The author would like to thank Rafael Bocklandt and Vanessa Miemietz for suggesting the following example.

Let \mathcal{U} be some subcategory of \mathcal{D}. The following gives the example where the pair $\left(\mathcal{U}, \mathcal{U}^{\perp}\right)$ is a torsion theory but not a t-structure.
Example 4.5.8. Let the indecomposable objects of \mathcal{U} consist precisely of the objects on the half lines $y=m$ and $x=m$. Then the indecomposable objects of \mathcal{U}^{\perp} consist precisely of the objects on the dotted half lines $x=m-1$ and $y=m-1$ (Example 4.5.3(i)).

Then by Theorem 4.4.22, the pair $\left(\mathcal{U}, \mathcal{U}^{\perp}\right)$ is a torsion theory, and it is readily seen from Theorem 4.5.1 that the pair is not a t-structure. The
reader can also readily establish the torsion theory triangle $u_{0} \rightarrow t_{0} \rightarrow v_{0} \rightarrow$ where u_{0} is in \mathcal{U} and v_{0} is in \mathcal{U}^{\perp} (c.f. Example 4.5.6). Similarly, by virtue of Lemma A.3.7, there is a torsion theory triangle $u_{1} \rightarrow t_{1} \rightarrow v_{1} \rightarrow$ where u_{1} is in \mathcal{U} and v_{1} is in \mathcal{U}^{\perp}, and then finally by virtue of Lemma 3.3.18, there is a torsion theory triangle $u_{2} \rightarrow t_{2} \rightarrow v_{2} \rightarrow$ where u_{2} is in \mathcal{U} and v_{2} is in \mathcal{U}^{\perp}. Remark 4.5.9. By virtue of Remark 4.5.2, the subcategory \mathcal{U} of the given form in Theorem 4.5.1 does indeed satisfy the conditions in Theorem 4.4.22 because the corresponding set of arcs \mathfrak{U} contains no right fountains at all. Since such a subcategory \mathcal{U} is also closed under the action of Σ, the converse of Theorem 4.5.1 has to be true.
Remark 4.5.10. In Example 4.5.6, let \mathfrak{U} and \mathfrak{V} be the corresponding sets of arcs for the subcategories \mathcal{U} and $\mathcal{U}^{\perp}=\mathcal{V}$ respectively. Then $\mathfrak{V}=\Sigma$ ort \mathfrak{U}. This gives $\Sigma \operatorname{ort} \mathfrak{U}=\left\{\mathfrak{d} \mid \Sigma^{-1} \mathfrak{d}\right.$ does not cross any arcs in $\left.\mathfrak{U}\right\}=\{\mathfrak{d} \mid \mathfrak{d}$ does not cross any arcs in $\Sigma \mathfrak{U}\}=\operatorname{ort}(\Sigma \mathfrak{U})$. Therefore ort ort $(\Sigma \operatorname{ort} \mathfrak{U})=$ ort $\operatorname{ort} \operatorname{ort}(\Sigma \mathfrak{U})=\operatorname{ort}(\Sigma \mathfrak{U})=\Sigma \operatorname{ort} \mathfrak{U}($ Lemma 4.2.9). Alternatively, ort ort $\mathfrak{V}=$ \mathfrak{V} (Lemma 4.2.17) since $\mathcal{U}^{\perp}={ }^{\perp}\left(\left(\mathcal{U}^{\perp}\right)^{\perp}\right)$ (Example 4.5.3).

On the other hand, \mathfrak{V} satisfies conditions (\star) and $(\star \star)$, by a mirror argument of the situation in \mathfrak{U} (Remark 4.5.2 and Remark 4.5.9). This is no surprise (Lemma 4.4.20).

By virtue of Remark 4.5.9, there are by contrast no non-trivial co-t-structures ([10], [38]).

Theorem 4.5.11. Let $(\mathcal{U}, \mathcal{V})$ be a co-t-structure in \mathcal{D}, that is, $(\mathcal{U}, \mathcal{V})$ is a torsion theory with $\Sigma^{-1} \mathcal{U} \subseteq \mathcal{U}$. If \mathcal{U} is non-zero, then \mathcal{U} has to be all of \mathcal{D}.

Proof. Let \mathfrak{U} be the corresponding set of arcs for the subcategory \mathcal{U}. If \mathcal{U} is non-zero, let $d=(m, n)$ be an indecomposable object of \mathcal{U}.
(Step 1) Here it will be shown that the region $R_{0}=\{(x, y) \mid m \leq x, n \leq y$ and $y-x \geq 2\}$ is in \mathcal{U}.
(i) Suppose $n-m=2$. In the following diagram, let $u_{1}=(m, n+1)$. Then there is the Auslander-Reiten triangle $d \rightarrow u_{1} \rightarrow \Sigma^{-1} d \rightarrow$. Since $\Sigma^{-1} \mathcal{U} \subseteq \mathcal{U}$, therefore $\Sigma^{-1} d$ is in \mathcal{U}. Hence u_{1} is in \mathcal{U}, since \mathcal{U} is closed under extensions. By applying a similar argument on u_{1} and so on, the half line $x=m$ is in \mathcal{U}, and so are all the half lines $x=m^{\prime}$ with $m \leq m^{\prime}$, since $\Sigma^{-1} \mathcal{U} \subseteq \mathcal{U}$. Therefore the region R_{0} is in \mathcal{U}.

(ii) Suppose $n-m>2$. Since $\Sigma^{-1} \mathcal{U} \subseteq \mathcal{U}$, therefore $\Sigma^{-1} d=(m+1, n+1)$ is in \mathcal{U}. In the following diagram, let $u_{1}=(m, n+1)$ and $u_{2}=(m+1, n)$. Then there is the Auslander-Reiten triangle $d \rightarrow u_{1} \oplus u_{2} \rightarrow \Sigma^{-1} d \rightarrow$. Therefore both u_{1} and u_{2} are in \mathcal{U}, since \mathcal{U} is closed under extensions. By applying a (similar) argument on u_{1} and u_{2} and so on (if possible), the two half lines t_{1} and t_{2} are in \mathcal{U}. Eventually, the region R_{0} is in \mathcal{U}, since $\Sigma^{-1} \mathcal{U} \subseteq \mathcal{U}$.

(Step 2) It follows from Step 1 that m is a right fountain of \mathfrak{U}. By Theorem 4.4.22, it is a fountain.

In particular, choose an indecomposable object $d_{0}=(p, m)$ of \mathcal{U} with $m-p>$ 2 , as shown in the following diagram. Similar to (ii) in Step 1, the region $R_{1}=\{(x, y) \mid p \leq x, m \leq y$ and $y-x \geq 2\} \supset R_{0}$ is in \mathcal{U}.

(Step 3) Similarly, p is a right fountain of \mathfrak{U}, and so repeating the argument of Step 2, there is a region $R_{2} \supset R_{1}$ in \mathcal{U}. Since the argument can be continued in this way indefinitely, \mathcal{U} has to contain all the indecomposable objects of \mathcal{D}, i.e. \mathcal{U} has to be all of \mathcal{D}.

At last we have arrived at the finale of the thesis. The following is an echo of Section 1.3 and Section 1.4 in Chapter 1.
Remark 4.5.12. Let $(\mathcal{U}, \mathcal{V})$ be a t-structure in \mathcal{D}.
(i) Lemma 1.3.12 and Theorem 1.4.8 together classifies t-structures in the finite derived category $D^{b}\left(\bmod k A_{n}\right)$. Compare Theorem 4.5.1.
(ii) Remark 1.4.12 describes the condition where the notions of split torsion theories and t-structures coincide $(S \mathcal{U} \cong \mathcal{U})$. This is very far from the situation in $\mathcal{D}\left(S=\Sigma^{2}\right)$.
(iii) The distinguished triangles given in Example 4.5.6(i), (ii) and (iii) are indubitably non-split, and there are no doubt indecomposable objects t in \mathcal{D} which are neither in \mathcal{U} nor in \mathcal{V}. Again $(\mathcal{U}, \mathcal{V})$ is not a split torsion theory (Lemma 1.3.10).

Remark 4.5.13. Let $(\mathcal{U}, \mathcal{V})$ be a co-t-structure in \mathcal{D}.
(i) By Theorem 1.3.5, a torsion theory in \mathcal{D} is a co-t-structure if and only if it is a split torsion theory, since $\tau=S \Sigma^{-1}=\Sigma$. However, Theorem 4.5.11 differs very much from Theorem 1.4.8, where the split torsion theories in the finite derived category $D^{b}\left(\bmod k A_{n}\right)$ are classified.
(ii) By Lemma 1.3.10 and (i), each indecomposable d in \mathcal{D} is either in \mathcal{U} or in \mathcal{V}. This is vacuously true, since if \mathcal{U} is non-zero, then \mathcal{U} has to be all of \mathcal{D} by Theorem 4.5.11.
(iii) By Lemma 1.3.12, every split torsion theory is a t-structure. Together with (i), this means $(\mathcal{U}, \mathcal{V})$ is a t-structure. However, this is again vacuously true, since there are no non-trivial co-t-structures by Theorem 4.5.11.
"It is a land of peace," whispered Frodo, though he knew not from whence his words came. "A land of quiet, and of healing, and of bright white light. There is joy there, and there is rest."
"There is quiet and rest in the Shire," Merry pointed out, "or at least, there is for me."
"Yes," said Frodo, laughing suddenly, "and I do not want for quiet and rest while you are with me. You are the light in my darkness, the gentle strength that has carried me through the darkest of times. You are my family, and no more could I wish for until my work here is done."

The white gem that hung upon Frodo's neck flashed with a sudden light, and all four hobbits turned to see the sun rising above the mountains of Mordor, chasing away the lingering shadows with her healing rays of gold. The hobbits stood transfigured, silver cloaks gently rippling in the soft breeze, faces shining with light, and in each eye a vision of white shores and rolling hills of soft green grass glimmering in the golden light of day.
J. R. R. Tolkien

The Lord of the Rings

Appendix A

In Section A. 1 and Section A.2, coherence problems in the situations of adjoint functors and Serre functors are studied. In category theory, a multitude of notions are portrayed in terms of commutative diagrams. As suggested by the word coherence, certain diagrams are considered and shown to be commutative. Problems of this nature are largely contributed by the myriad paths connecting different Hom sets, and it is not always trivial that the different paths are the same.

In Section A.3.1, some mapping cone constructions in the finite derived category $D^{b}\left(\bmod k A_{7}\right)$ are illustrated. It is an attempt to provide an alternative to the mapping cone construction in Section 3.2.2, in the manner of Section 3.3.2.

In Section A.3.1 and Section A.3.2, mapping cones of (compositions of) downward morphisms in $D^{b}\left(\bmod k A_{7}\right)$ and the cluster category of Dynkin type A_{∞} are also portrayed. They serve to enrich our répertoire of mapping cone constructions, albeit the different suggestiveness bequeathed upon them.

A. 1 Coherence problems for adjoint functors

In this section, let \mathcal{A} and \mathcal{B} be arbitrary categories, and let the pair of functors $L: \mathcal{A} \rightarrow \mathcal{B}$ and $R: \mathcal{B} \rightarrow \mathcal{A}$ be adjoints, i.e. there is an isomorphism $\tau:(L A, B) \xlongequal{\leftrightharpoons}(A, R B)$ for all A in \mathcal{A} and B in \mathcal{B}, such that τ is natural in A and B. This is given in Example 0.1.17(iv).

Let A be in \mathcal{A} and B be in \mathcal{B}. Then the map $\eta_{A}=\tau\left(\operatorname{id}_{L A}\right): A \rightarrow R L A$ is the unit of the adjunction, and the map $\varepsilon_{B}=\tau^{-1}\left(\operatorname{id}_{R B}\right): L R B \rightarrow B$ is the counit of the adjunction.
Example A.1.1. Let A be in \mathcal{A} and B be in \mathcal{B}. Suppose η_{A} is invertible, and consider $\eta_{R B}=\tau\left(\mathrm{id}_{L R B}\right): R B \rightarrow R L R B$. Then $\eta_{R B}^{-1}=R\left(\varepsilon_{B}\right): R L R B \rightarrow$
$R B$.

Proof. Since τ is natural in B, there is the following commutative diagram.

Therefore $\left(R B, R \varepsilon_{B}\right) \tau_{R B, L R B}\left(\mathrm{id}_{L R B}\right)=\tau_{R B, B}\left(L R B, \varepsilon_{B}\right)\left(\mathrm{id}_{L R B}\right)$.
Thus $\left(R B, R \varepsilon_{B}\right) \eta_{R B}=\tau_{R B, B} \varepsilon_{B}$, and finally, $R \varepsilon_{B} \eta_{R B}=\operatorname{id}_{R B}$.

Since $\eta_{R B}$ is invertible, $\eta_{R B}^{-1}=R\left(\varepsilon_{B}\right)$.
Example A.1.2. Let A be in \mathcal{A} and B be in \mathcal{B}. Suppose \mathcal{A} and \mathcal{B} are triangulated with translation functors $\Sigma_{\mathcal{A}}$ and $\Sigma_{\mathcal{B}}$ respectively. If $\left(L, \sigma^{L}\right)$: $\mathcal{A} \rightarrow \mathcal{B}$ is a triangulated functor where $\sigma^{L}: L \Sigma_{\mathcal{A}} \xlongequal{\leftrightharpoons} \Sigma_{\mathcal{B}} L$, then by [35, Lemma 5.3.6], $\left(R, \sigma^{R}\right)$ is also a triangulated functor where $\sigma^{R}: R \Sigma_{\mathcal{B}} \xlongequal{\cong}$ $\Sigma_{\mathcal{A}} R$.

Consider $\varepsilon_{\Sigma_{\mathcal{B}} B}: L R \Sigma_{\mathcal{B}} B \rightarrow \Sigma_{\mathcal{B}} B$ and $\Sigma_{\mathcal{B}}\left(\varepsilon_{B}\right): \Sigma_{\mathcal{B}} L R B \rightarrow \Sigma_{\mathcal{B}} B$. Since $\sigma_{B}^{R}: R \Sigma_{\mathcal{B}} B \xlongequal{\cong} \Sigma_{\mathcal{A}} R B$, therefore $L \sigma_{B}^{R}: L R \Sigma_{\mathcal{B}} B \xlongequal{\cong} L \Sigma_{\mathcal{A}} R B$. Also $\sigma_{R B}^{L}$: $L \Sigma_{\mathcal{A}} R B \xrightarrow{\cong} \Sigma_{\mathcal{B}} L R B$. Is the following diagram commutative? The author at the time of writing is not able to give an answer.

A. 2 Coherence problems for Serre functors

In this section, let \mathfrak{A} be a k-linear and Hom finite additive category with a Serre functor S. This is given in Definition 0.3.8. Nevertheless, it is stated as follows.
Notation A.2.1. A right Serre functor is an additive functor $S: \mathfrak{A} \rightarrow \mathfrak{A}$, together with isomorphisms

$$
\varphi_{A, B}:(A, B) \xlongequal{\cong}(B, S A)^{*}
$$

for any $A, B \in \mathfrak{A}$, which are natural in A and in B, and where $(-)^{*}=$ $\operatorname{Hom}_{k}(-, k)$. If S is an autoequivalence, then it is a Serre functor.

Let $\varphi_{A, A}\left(\mathrm{id}_{A}\right)$ be denoted by φ_{A}. The notations φ_{A} and $\varphi_{A, B}$, where $A, B \in$ \mathfrak{A}, will be used for the rest of the section.

Let V and W be k-vector spaces and consider $f: V \rightarrow W$. Then for θ in W^{*} and v in V, there is a natural way to define $f^{*}: W^{*} \rightarrow V^{*}$ described as follows.

$$
\begin{equation*}
f^{*}(\theta)(v)=\theta(f(v)) \tag{A.2.1}
\end{equation*}
$$

Given the k-vector spaces U, V and W, consider $f: U \rightarrow V$ and $g: V \rightarrow W$. Then by equation (A.2.1), we have

$$
\begin{equation*}
(g f)^{*}=f^{*} g^{*} . \tag{A.2.2}
\end{equation*}
$$

Notation A.2.2. Let U be a finite-dimensional k-vector space. Then there is a natural way to define the double dual isomorphism $\eta_{U}: U \xlongequal{\cong} U^{* *}$, i.e. for u in U, f in U^{*},

$$
\begin{equation*}
\eta_{U}(u)(f)=f(u) . \tag{A.2.3}
\end{equation*}
$$

The notation η_{U}, simply written η, where U is a finite-dimensional k-vector space, will be used for the rest of the section.

The isomorphism η is natural in the following sense. Suppose U and V are finite-dimensional k-vector spaces. Then given $f: U \rightarrow V$, there is the following commutative diagram.

This is because given ρ in V^{*}, u in U, we have

$$
\begin{aligned}
f^{* *}(\eta(u))(\rho) & =\eta(u)\left(f^{*}(\rho)\right) & & \text { (by equation (A.2.1)) } \\
& =f^{*}(\rho)(u) & & (\text { by equation (A.2.3)) } \\
& =\rho(f(u)) . & & (\text { by equation (A.2.1)) }
\end{aligned}
$$

On the other hand, since

$$
\eta(f(u))(\rho)=\rho(f(u)), \quad \quad \text { (by equation (A.2.3)) }
$$

therefore

$$
\begin{equation*}
f^{* *}(\eta(u))=\eta(f(u)) . \tag{A.2.4}
\end{equation*}
$$

This means the diagram is commutative.
Example A.2.3. Let A, B be in \mathfrak{A}. Consider $\varphi_{B, S A}:(B, S A) \xlongequal{\cong}(S A, S B)^{*}$, $\eta:(S A, S B) \xlongequal{\leftrightharpoons}(S A, S B)^{* *}$ and $f: A \rightarrow B, g: B \rightarrow S A$ in \mathfrak{A}. Then we have

$$
\begin{aligned}
\left(\varphi_{B, S A}^{*} \eta(S f)\right)(g) & =(\eta(S f))\left(\varphi_{B, S A}(g)\right) & & \text { (by equation (A.2.1)) } \\
& =\left(\varphi_{B, S A}(g)\right)(S f) . & & \text { (by equation (A.2.3)) }
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\left(\varphi_{B, S A}^{*} \eta(S f)\right)(g)=\left(\varphi_{B, S A}(g)\right)(S f) . \tag{A.2.5}
\end{equation*}
$$

Example A.2.4. Let A_{1}, A_{2}, B be in \mathfrak{A}. Consider $\varphi_{A_{i}, B}:\left(A_{i}, B\right) \xlongequal{\cong}$ $\left(B, S A_{i}\right)^{*}, i=1,2$. Consider $g: A_{1} \rightarrow A_{2}, \theta: A_{2} \rightarrow B$ and $f: B \rightarrow S A_{1}$ in \mathfrak{A}. Since $\varphi_{A_{i}, B}$ is natural in the first variable, there is the following commutative diagram.

This is to say

$$
\begin{equation*}
\varphi_{A_{1}, B} \circ(g, B)=(B, S g)^{*} \circ \varphi_{A_{2}, B}, \tag{A.2.6}
\end{equation*}
$$

which gives

$$
\left(\varphi_{A_{1}, B}(\theta g)\right)(f)=\varphi_{A_{2}, B}(\theta)((S g) f)
$$

Suppose $A_{2}=B$ and $\theta=\mathrm{id}_{B}$, then

$$
\begin{equation*}
\left(\varphi_{A_{1}, B}(g)\right)(f)=\varphi_{B, B}\left(\operatorname{id}_{B}\right)((S g) f)=\varphi_{B}((S g) f) \tag{A.2.7}
\end{equation*}
$$

Finally, A.2.2 and A.2.6 together give

$$
\begin{equation*}
(g, B)^{*} \circ \varphi_{A_{1}, B}^{*}=\varphi_{A_{2}, B}^{*} \circ(B, S g)^{* *} \tag{*}
\end{equation*}
$$

Example A.2.5. Let A, B_{1}, B_{2} be in \mathfrak{A}. Consider $\varphi_{A, B_{i}}:\left(A, B_{i}\right) \xlongequal{\rightrightarrows}$ $\left(B_{i}, S A\right)^{*}, i=1,2$. Consider $g: B_{1} \rightarrow B_{2}, \theta: A \rightarrow B_{1}$ and $f: B_{2} \rightarrow S A$ in \mathfrak{A}. Since $\varphi_{A, B_{i}}$ is natural in the second variable, there is the following commutative diagram.

This is to say

$$
\begin{equation*}
\varphi_{A, B_{2}} \circ(A, g)=(g, S A)^{*} \circ \varphi_{A, B_{1}} \tag{A.2.8}
\end{equation*}
$$

which gives

$$
\left(\varphi_{A, B_{2}}(g \theta)\right)(f)=\varphi_{A, B_{1}}(\theta)(f g) .
$$

Suppose $A=B_{1}$ and $\theta=\operatorname{id}_{B_{1}}$, then

$$
\begin{equation*}
\varphi_{B_{1}, B_{2}}(g)(f)=\varphi_{B_{1}, B_{1}}\left(\operatorname{id}_{B_{1}}\right)(f g)=\varphi_{B_{1}}(f g) . \tag{A.2.9}
\end{equation*}
$$

Finally, A.2.2 and A.2.8 together give

$$
\begin{equation*}
(A, g)^{*} \circ \varphi_{A, B_{2}}^{*}=\varphi_{A, B_{1}}^{*} \circ(g, S A)^{* *} \tag{A.2.8*}
\end{equation*}
$$

Lemma A.2.6. Let A, B be in \mathfrak{A}, and consider $f: A \rightarrow B$ and $g: B \rightarrow S A$ in \mathfrak{A}. Then $\varphi_{B, S A}(g)(S f)=\varphi_{A, B}(f)(g)$.

Proof.

$$
\begin{align*}
\varphi_{B, S A}(g)(S f) & =\varphi_{B}((S f) g) \tag{A.2.9}\\
& =\varphi_{A, B}(f)(g)
\end{align*}
$$

(by equation (A.2.7))

The first equality corresponds to the lower commutative square, while the second equality corresponds to the upper commutative square in the following diagram.

Lemma A.2.7. Let A, B be in \mathfrak{A}, and consider $g: A \rightarrow B$ and $\theta: B \rightarrow S A$ in \mathfrak{A}. Then $\left(\varphi_{S A, S B}(S g)\right)(S \theta)=\varphi_{A, B}(g)(\theta)$.

Proof.

$$
\begin{aligned}
\left(\varphi_{S A, S B}(S g)\right)(S \theta) & =\varphi_{S A}(S \theta S g) & & \text { (by equation (A.2.9)) } \\
& =\varphi_{B, S A}(\theta)(S g) & & \text { (by equation (A.2.7)) } \\
& =\varphi_{B}((S g) \theta) & & \text { (by equation (A.2.9)) } \\
& =\varphi_{A, B}(g)(\theta) . & & \text { (by equation (A.2.7)) }
\end{aligned}
$$

$$
\begin{gathered}
(A, B) \xrightarrow{\varphi_{A, B}}(B, S A)^{*} \\
S(-,-) \\
\downarrow \\
(S A, S B) \xrightarrow{\varphi_{S A, S B}}\left(S B, S^{2} A\right)^{*}
\end{gathered}
$$

Lemma A.2.8. Let A, B be in \mathfrak{A}. Consider $\eta:(S A, S B) \cong(S A, S B)^{* *}$ and then $f: A \rightarrow B$ and $g: B \rightarrow S A$ in \mathfrak{A}. Then $\left(\varphi_{B, S A}^{*} \eta(S f)\right)(g)=$ $\varphi_{A, B}(f)(g)$.

Proof.

$$
\begin{array}{rlrl}
\left(\varphi_{B, S A}^{*} \eta(S f)\right)(g) & =\varphi_{B, S A}(g)(S f) & \text { (by equation (A.2.5)) } \\
& =\varphi_{A, B}(f)(g) . & & (\text { by Lemma A.2.6) }
\end{array}
$$

Therefore $\varphi_{B, S A}^{*} \eta(S f)=\varphi_{A, B}(f)$.
Lemma A.2.9. Let A, B be in \mathfrak{A}. Consider $\eta:(S A, S B) \xrightarrow{\cong}(S A, S B)^{* *}$ and then $g: A \rightarrow B$ and $f: B \rightarrow S A$ in \mathfrak{A}. Then $\left(\varphi_{B, S A}^{*} \eta(S g)\right)(f)=$ $\varphi_{S A, S B}(S g)(S f)$.

Proof.

$$
\begin{align*}
\left(\varphi_{B, S A}^{*} \eta(S g)\right)(f) & =\varphi_{A, B}(g)(f) & & \text { (by Lemma A.2.8) } \tag{byLemmaA.2.8}\\
& =\varphi_{S A, S B}(S g)(S f) . & & \text { (by Lemma A.2.7) }
\end{align*}
$$

Example A.2.10. Consider again the diagram in Lemma A.2.7.

Consider $\eta:(S A, S B) \xlongequal{\cong}(S A, S B)^{* *}$. The diagram can be expressed as follows.

The upper square corresponds to the diagram in Lemma A.2.8, while the lower square corresponds to the diagram in Lemma A.2.9.

Lemma A.2.11. Let A, B, Y be in \mathfrak{A}, and consider $y: S Y \rightarrow B$ in \mathfrak{A}. Then the following diagram is commutative.

Proof. The diagram can be decomposed as follows.

The upper left square commutes by equation (A.2.4). The square on the right commutes by equation (A.2.8*). The square on the bottom commutes by Lemma A.2.8.

A. 3 Mapping cone construction

The author would like to thank Yann Palu for suggesting the constructions of mapping cones of (compositions of) downward morphisms in $D^{b}\left(\bmod k A_{7}\right)$ and in the cluster category of Dynkin type A_{∞}.

A.3.1 The finite derived category $D^{b}\left(\bmod k A_{7}\right)$

This section considers only the finite derived category $D^{b}\left(\bmod k A_{7}\right)$, nevertheless the lemmas can be readily generalized in the finite derived category $D^{b}\left(\bmod k A_{n}\right)$. As usual, let Σ be the translation functor of $D^{b}\left(\bmod k A_{7}\right)$.

Lemma A.3.1 and Lemma A.3.2 in this section have been mentioned in Remark 3.3.21.

Consider the Auslander-Reiten quiver of the finite derived category $D^{b}\left(\bmod k A_{7}\right)$ in the following diagram.

The coordinates of some of the objects are as follows: $a_{0}=(i, j), b_{0}=$ $(i, j+1), a_{1}=(i-1, j), b_{1}=(i-1, j+1), a_{2}=(i-2, j), b_{2}=(i-2, j+1)$ and $c=(i+1, j+1)$. As usual, the coordinates of objects on the bottom line satisfy the equation $y-x=2$.

Lemma A.3.1. (c.f. Lemma 3.3.16) The mapping cones of the maps f_{n} : $(i-n, j) \rightarrow(i-n, j+1)$ are all isomorphic to $c=(i+1, j+1)$.

Proof. This is similar to Lemma 3.3.16. The two categories, the finite derived category $D^{b}\left(\bmod k A_{n}\right)$ and the cluster category of Dynkin type A_{∞}, are distinct, though their Auslander-Reiten quivers have some similarity. The action of the translation functor Σ is not relevant in this situation. Nevertheless, a proof is given below. Since $a_{0} \rightarrow b_{0} \rightarrow c \rightarrow$ is an AuslanderReiten triangle, the statement is true for $n=0$. Suppose the statement is
true for $n=p, p \geq 0$, i.e. the mapping cone of the map $f_{p}: a_{p} \rightarrow b_{p}$ is $c=(i+1, j+1)$. To see that the statement is true for $n=p+1$, consider the following commutative diagram,

where $\mu_{p+1}=\binom{g_{p+1}}{f_{p+1}}$ and the map \jmath is the canonical surjection. By the octahedral axiom, it may be extended to the following commutative diagram,

where the map \imath is the canonical injection. The distinguished triangle on the second row is an Auslander-Reiten triangle. Hence the mapping cone of the map $f_{p+1}: a_{p+1} \rightarrow b_{p+1}$ is the same as the mapping cone of the map $f_{p}: a_{p} \rightarrow b_{p}$, which is $c=(i+1, j+1)$ by the induction hypothesis.

The following is similar to Lemma 3.3.18, and the proof is left to the reader. The action of Σ is implicitly alluded and is not entirely irrelevant in this situation (c.f. Lemma A.3.1). This will be illustrated in Example A.3.3.

Lemma A.3.2. (c.f. Lemma 3.3.18) Let $3 \leq j-i \leq 8$ and consider the following sketch where the Auslander-Reiten quiver of $D^{b}\left(\bmod k A_{7}\right)$ lies in the region bounded by $y-x=2$ and $y-x=8$.

\qquad

For $0 \leq r \leq j-i-2$, let $a_{r}=(i, j-r)$. Let f_{r} be the morphism f_{r} : $(i, j-r-1) \rightarrow(i, j-r)$, where $0 \leq r \leq j-i-3$. Then for $0 \leq r \leq j-i-3$, the composition $f_{0} \ldots f_{r-1} f_{r}:(i, j-r-1) \rightarrow(i, j)$ has mapping cone $c_{r}=$ $(j-r-2, j)$.

Example A.3.3. Consider the following sketch.

For $-1 \leq n \leq 5$, let $a_{n}=(i, i+7-n)$. Let f_{n} be the morphism f_{n} : $(i, i+7-n) \rightarrow(i, i+8-n)$, where $0 \leq n \leq 5$. Then for $0 \leq r \leq 5$, the composition $f_{0} \ldots f_{r-1} f_{r}:(i, i+7-r) \rightarrow(i, i+8)$ has mapping cone $c_{r}=(i+6-r, i+8)$.

Proof. Consider the object $c_{0}=(i+6, i+8)$ on the bottom line $y-x=$ 2. It lies in the same descending line as $(i, i+8)$, where the composition $f_{0} \ldots f_{r-1} f_{r}$ maps to. The mapping cone $c_{r}=(i+6-r, i+8)$ lies in the same descending line as c_{0}, but it is r steps up the line. This is how we understand the location of the mapping cone c_{r}.

Consider the Auslander-Reiten quiver of the finite derived category $D^{b}\left(\bmod k A_{7}\right)$.

The statement is true for $r=0$ by Lemma A.3.2. Suppose the statement is true for $r=p, p \geq 0$, and then the statement is also required to be true for $r=p+1$.
Consider the following commutative diagram,

where g is the morphism $f_{0} \ldots f_{p}:(i, i+7-p) \rightarrow(i, i+8)$.
By the octahedral axiom, it may be extended to the following commutative diagram,

By the induction hypothesis, the mapping cone of the morphism g is $c_{p}=$ $(i+6-p, i+8)$, which gives the distinguished triangle in the second column. By Lemma A.3.1, the mapping cone of the morphism f_{p+1} is the object $d_{p}=(i+5-p, i+7-p)$. This gives the distinguished triangle on the first row.

The map $\rho: a_{p} \rightarrow d_{p}$ is non-zero, as otherwise $a_{p+1} \cong \Sigma^{-1} d_{p} \oplus a_{p}$ by Lemma $0.2 .2(\mathrm{v})$, which is not possible since a_{p+1} is indecomposable. Therefore the map $\Sigma \rho: \Sigma a_{p} \rightarrow \Sigma d_{p}$ is non-zero as well. Similarly, the map $\varrho: c_{p} \rightarrow \Sigma a_{p}$ is non-zero. For $-1 \leq p \leq 4, d_{p}$ lies on the line $y=i+7-p$ and hence Σd_{p} lies on the line $x=i+6-p$. This gives Σd_{p} in $\mathcal{R}\left(c_{p}\right)$. Therefore the composition $(\Sigma \rho) \varrho: c_{p} \rightarrow \Sigma d_{p}$ is non-zero by Lemma 3.2.3, and the distinguished triangle $d_{p} \rightarrow * \rightarrow c_{p} \rightarrow \Sigma d_{p}$ is non-split.

Let an object e have coordinates $(i+5-p, i+8)$. By Lemma A.3.2, the mapping cone of $d_{p} \rightarrow e$ is c_{p}. Since ($c_{p}, \Sigma d_{p}$) is one-dimensional, the object $*$ is indeed equal to e. Therefore the mapping cone of the morphism $g f_{p+1}$ is $e=(i+5-p, i+8)=(i+6-(p+1), i+8)=c_{p+1}$ as desired.

The following two lemmas consider mapping cones of (compositions of) downward morphisms, and they are delivered entirely out of leisure. Their proofs are the mirror versions of the proofs of Lemma A.3.1 and Lemma A.3.2 respectively, since the action of the translation functor Σ corresponds to the glide reflection. Nevertheless, they are given below, so that the reader can be guided formally and rigorously with good intuition.

They also engender yet another significance in the construction of distinguished triangles in the quotient categories. This is similar to the forthcoming section, and the reader can refer to the description given there.

Consider again the Auslander-Reiten quiver in the following diagram.

For $-1 \leq n \leq 5$, let $a_{n}=(i, i+7-n), b_{n}=(i+1, i+8-n)$.
Lemma A.3.4. (c.f. Lemma A.3.1)
The mapping cones of the maps $f_{n}:(i, i+8-n) \rightarrow(i+1, i+8-n)$ are all isomorphic to $b_{-1}=(i+1, i+9)$.

Proof. Since $a_{-1} \rightarrow b_{0} \rightarrow b_{-1} \rightarrow$ is an Auslander-Reiten triangle, the statement is true for $n=0$. Suppose the statement is true for $n=p, p \geq 0$, i.e. the mapping cone of the map $f_{p}: a_{p-1} \rightarrow b_{p}$ is $b_{-1}=(i+1, i+9)$. To see that the statement is true for $n=p+1$, consider the following commutative diagram,

where $\mu_{p-1}=\binom{g_{p-1}}{f_{p+1}}$ and the map \jmath is the canonical surjection. By the octahedral axiom, it may be extended to the following commutative diagram,

where the map \imath is the canonical injection. The distinguished triangle on the second row is an Auslander-Reiten triangle. Hence the mapping cone of the map $f_{p+1}: a_{p} \rightarrow b_{p+1}$ is the same as the mapping cone of the map $f_{p}: a_{p-1} \rightarrow b_{p}$, which is $b_{-1}=(i+1, i+9)$ by the induction hypothesis.

Lemma A.3.5. (c.f. Lemma A.3.2, Example A.3.3)
Consider the following sketch.

For $-1 \leq n \leq 5$, let $a_{n}=(j-7+n, j)$ and $b_{n}=(j-6+n, j+1)$. Let f_{n} be the morphism $f_{n}:(j-8+n, j) \rightarrow(j-7+n, j)$, where $0 \leq n \leq 5$. Then for $0 \leq r \leq 5$, the composition $f_{r} \ldots f_{1} f_{0}:(j-8, j) \rightarrow(j-7+r, j)$ has mapping cone $c_{r}=b_{r-1}=(j-7+r, j+1)$.

Proof. Consider the object $b_{-1}=(j-7, j+1)$ on the top line $y-x=8$. The mapping cone $c_{r}=(j-7+r, j+1)$ lies in the same descending line as b_{-1}, but it is r steps down the line. The object b_{-1} lies immediately to the right of a_{-1}, where a_{-1} is whence the composition $f_{r} \ldots f_{1} f_{0}$ maps from. This is how we understand the location of the mapping cone c_{r}.

Consider again the Auslander-Reiten quiver in the following diagram.

The statement is true for $r=0$ by Lemma A.3.4. Suppose the statement is true for $r=p, p \geq 0$, and then the statement is also required to be true for $r=p+1$.

Consider the following commutative diagram,

where g is the morphism $f_{p} \ldots f_{0}:(j-8, j) \rightarrow(j-7+p, j)$.
By the octahedral axiom, it may be extended to the following commutative diagram,

The distinguished triangle on the first row is given by the induction step. The mapping cone of the morphism f_{p+1} is $d_{p}=(j-6+p, j+2+p)$ by Lemma A.3.4, which gives the distinguished triangle in the second column.

The map $\rho: a_{p} \rightarrow c_{p}$ is non-zero, as otherwise $a_{-1} \cong \Sigma^{-1} c_{p} \oplus a_{p}$ by Lemma $0.2 .2(\mathrm{v})$, which is not possible since a_{-1} is indecomposable. Therefore the map $\Sigma \rho: \Sigma a_{p} \rightarrow \Sigma c_{p}$ is non-zero as well. Similarly, the map $\varrho: d_{p} \rightarrow \Sigma a_{p}$ is non-zero. Since $\Sigma c_{p}=(j, j+2+p)$ lies on the line $y=j+2+p$, this gives Σc_{p} in $\mathcal{R}\left(d_{p}\right)$. Therefore the composition $(\Sigma \rho) \varrho: d_{p} \rightarrow \Sigma c_{p}$ is nonzero by Lemma 3.2.3, and the distinguished triangle $c_{p} \rightarrow * \rightarrow d_{p} \rightarrow \Sigma c_{p}$ is non-split.

Let an object e have coordinates $(j-6+p, j+1)$. By Lemma A.3.4, the mapping cone of $c_{p} \rightarrow e$ is d_{p}. Since $\left(d_{p}, \Sigma c_{p}\right)$ is one-dimensional, the object * is indeed equal to e. Therefore the mapping cone of the morphism $f_{p+1} g$ is $e=(j-6+p, j+1)=(j-7+(p+1), j+1)=c_{p+1}$ as desired.

A.3.2 The cluster category of Dynkin type A_{∞}

This section considers mapping cones of (compositions of) downward (forward) morphisms in the cluster category \mathcal{D} of Dynkin type A_{∞}. As usual, let Σ be the translation functor of \mathcal{D}.

Given a subcategory \mathcal{X} of \mathcal{D} which is both precovering and preenveloping, the quotient category $\mathcal{D}_{\mathcal{X}}$ is pretriangulated. $\mathcal{D}_{\mathcal{X}}$ is triangulated if and only if $\tau \mathcal{X}=\mathcal{X}$, where τ is the Auslander-Reiten translation. This is described in Section 3.1.

The distinguished triangles in $\mathcal{D}_{\mathcal{X}}$ are described in [23, Setup 1.1]. They are obtained either by apprehending \mathcal{X} as preenveloping or as precovering. If \mathcal{X} is perceived as preenveloping, then Lemma 3.3.16 and Lemma 3.3.18 are needed (Example 3.3.19). In a different manner, if \mathcal{X} is perceived as precovering, then the following lemmas are needed (Example A.3.8).

Consider the Auslander-Reiten quiver of \mathcal{D} in the following diagram.

Let us write down the coordinates of some of the objects shown: $a_{0}=$ $(i, j), b_{0}=(i+1, j+1), a_{1}=(i, j+1), b_{1}=(i+1, j+2), a_{2}=(i, j+2), b_{2}=$ $(i+1, j+3)$ and $c=(i-1, j-1)$. As usual, the coordinates of objects on the bottom line satisfy the equation $y-x=2$.

Lemma A.3.6. (c.f. Lemma 3.3.16, Lemma A.3.4) The mapping cones of the maps $g_{n}:(i, j+n+1) \rightarrow(i+1, j+n+1)$ are all isomorphic to $c=\Sigma a_{0}=(i-1, j-1)$.

Proof. Since $a_{0} \rightarrow a_{1} \rightarrow b_{0} \rightarrow \Sigma a_{0}$ is an Auslander-Reiten triangle, the statement is true for $n=0$. Suppose the statement is true for $n=p, p \geq 0$, i.e. the mapping cone of the map $g_{p}: a_{p+1} \rightarrow b_{p}$ is $c=(i-1, j-1)$. To see that the statement is true for $n=p+1$, consider the following commutative diagram,

where $\mu_{p+1}=\binom{f_{p+1}}{g_{p}}$ and the map \jmath is the canonical surjection. By the octahedral axiom, it may be extended to the following commutative diagram,

where the map \imath is the canonical injection. The distinguished triangle on the second row is an Auslander-Reiten triangle. Hence the mapping cone of the map $g_{p+1}: a_{p+2} \rightarrow b_{p+1}$ is the same as the mapping cone of the map $g_{p}: a_{p+1} \rightarrow b_{p}$, which is $c=(i-1, j-1)$ by the induction hypothesis.

Lemma A.3.7. (c.f. Lemma 3.3.18, Lemma A.3.5) Consider the following sketch.

For $0 \leq n$, let $a_{n}=(i+n, j)$. Let g_{n} be the morphism $g_{n}:(i+n, j) \rightarrow(i+$ $n+1, j)$. Then for $0 \leq r$, the composition $g_{r} g_{r-1} \ldots g_{0}:(i, j) \rightarrow(i+r+1, j)$ has mapping cone $c_{r}=(i-1, i+1+r)$.

Proof. Consider the object $c_{0}=(i-1, i+1)$ on the bottom line $y-x=2$. It lies in the same ascending line as $\Sigma(i, j)$. The mapping cone $c_{r}=(i-$ $1, i+1+r)$ lies in the same ascending line as c_{0}, but it is r steps up the line. This is how we understand the location of the mapping cone c_{r}.

Consider again the Auslander-Reiten quiver of \mathcal{D}.

The statement is true for $r=0$ by Lemma A.3.6. Suppose the statement is true for $r=p, p \geq 0$, and then the statement is also required to be true for $r=p+1$.

Consider the following commutative diagram,

where g is the morphism $g_{p} g_{p-1} \ldots g_{0}:(i, j) \rightarrow(i+p+1, j)$.
By the octahedral axiom, it may be extended to the following commutative diagram,

Again consider the object $c_{0}=(i-1, i+1)$ on the bottom line $y-x=2$. It lies in the same ascending line as Σa_{0}, where a_{0} is the place from where the morphism g maps. By the induction hypothesis, the mapping cone of the morphism g lies in the same ascending line as c_{0}, but it is p steps up the line,
i.e. $d_{p}=c_{p}=(i-1, i+1+p)$. This gives the distinguished triangle on the first row. The mapping cone of the morphism g_{p+1} is $e_{p}=(i+p, i+p+2)$ by Lemma A.3.6, which gives the distinguished triangle in the second column.
The map $\rho: a_{p+1} \rightarrow d_{p}$ is non-zero, as otherwise $a_{0} \cong \Sigma^{-1} d_{p} \oplus a_{p+1}$ by Lemma $0.2 .2(\mathrm{v})$, which is not possible since a_{0} is indecomposable. Therefore the map $\Sigma \rho: \Sigma a_{p+1} \rightarrow \Sigma d_{p}$ is non-zero as well. Similarly, the map $\varrho: e_{p} \rightarrow$ Σa_{p+1} is non-zero. Therefore the composition $(\Sigma \rho) \varrho: e_{p} \rightarrow \Sigma d_{p}$ is non-zero by Lemma 3.3.8, and the distinguished triangle $d_{p} \rightarrow * \rightarrow e_{p} \rightarrow \Sigma d_{p}$ is non-split.

Let an object s have coordinates $(i-1, i+2+p)$. By Lemma 3.3.16, the mapping cone of $d_{p} \rightarrow s$ is e_{p}. Since $\left(e_{p}, \Sigma d_{p}\right)$ is one-dimensional, the object * is indeed equal to s. Therefore the mapping cone of the morphism $g_{p+1} g$ is $*=s=(i-1, i+2+p)=(i-1, i+1+(p+1))=c_{p+1}$ as desired.

The section finishes with the following example which illustrates the obtaining of the distinguished triangles in the quotient category $\mathcal{D}_{\mathcal{X}}$ in virtue of \mathcal{X}-precovers. The reader can refer to [23, Setup 1.1] for more details.
Example A.3.8. (c.f. Example 3.3.19) Consider again the Auslander-Reiten quiver and the subcategory \mathcal{X} in Example 3.3.19. As usual, let σ be the translation functor of $\mathcal{D}_{\mathcal{X}}$.

For example, the morphism $g=g_{2} g_{1} g_{0}: a_{0} \rightarrow d_{1}$ is an \mathcal{X}-epimorphism in \mathcal{D}, i.e. a morphism such that each morphism $x \rightarrow d_{1}$ with x in \mathcal{X} factors through g (c.f. Lemma 3.3.11). Extend $g: a_{0} \rightarrow d_{1}$ to the distinguished triangle $a_{0} \xrightarrow{g} d_{1} \rightarrow b_{2} \rightarrow \Sigma a_{0}$ in \mathcal{D} by Lemma A.3.7, i.e. b_{2} is the mapping cone of the morphism g. On the other hand, the mapping cone of the morphism $g g_{-1}$ is Σb_{1} by Lemma A.3.7, where $g g_{-1}: b_{-1} \rightarrow d_{1}$ is an \mathcal{X}-precover of
d_{1} by Lemma 3.3.11. Then the diagram $\Sigma^{-1} \Sigma b_{1} \rightarrow \Sigma^{-1} b_{2} \rightarrow a_{0} \rightarrow d_{1}$, which is the diagram $b_{1} \rightarrow a_{2} \rightarrow a_{0} \rightarrow d_{1}$, considered in $\mathcal{D}_{\mathcal{X}}$, is defined to be a distinguished triangle in $\mathcal{D}_{\mathcal{X}}$, so that $\sigma^{-1}\left(d_{1}\right)=b_{1}$. Compare in Example 3.3.19(iii) the distinguished triangle $a_{2} \rightarrow a_{0} \rightarrow d_{1} \rightarrow c_{2}$ in $\mathcal{D}_{\mathcal{X}}$.

Bibliography

[1] I. Assem, A. Skowroński and D. Simson, Elements of the representation theory of associative algebras, Volume 1 Techniques of representation theory, London Mathematical Society Student Texts 65, Cambridge University Press, Cambridge, 2006.
[2] M. Auslander, Idun Reiten and S. O. Smalø, Representation theory of artin algebras, Cambridge Studies in Advanced Mathematics 36, Cambridge University Press, Cambridge, 1995.
[3] M. Auslander and S. O. Smalø, Almost split sequences in subcategories, J. Algebra 69(2), 426-454 (1981).
[4] M. Auslander and S. O. Smalø, Addendum to "Almost split Sequences in subcategories", J. Algebra 71 (1981), 592-594.
[5] A. A. Beilinson, J. Bernstein and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981), Astèrisque 100, Soc. Math. France, Paris (1982), 5-171.
[6] A. Beligiannis and N. Marmaridis, Left triangulated categories arising from contravariantly finite subcategories, Comm. Algebra 22 (1994), 5021-5036.
[7] A. Beligiannis and I. Reiten, Homological and homotopical aspects of torsion theories, Memoirs of the American Mathematical Society 188, Number 883, Providence, Rhode Island, 2007.
[8] M. Bökstedt and A. Neeman, Homotopy limits in triangulated categories, Compositio Mathem. 86(2), 209-234 (1993).
[9] A. I. Bondal and M. M. Kapranov, Representable functors, Serre functors and mutations, Math. USSR Izvestija 35 (1990), 519-541.
[10] M. V. Bondarko, Weight structures vs. t-structures; weight filtrations, spectral sequences, and complexes (for motives and in general), to appear in J. K-theory. math.KT/0704.4003v5.
[11] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics 150, Springer-Verlag, New York, 1995.
[12] René Goscinny (stories) and Albert Uderzo (illustrations), translated by Anthea Bell and Derek Hockridge, Asterix in Switzerland, original french title Astérix chez les Helvètes, Brockhampton Press, Leicester, 1973.
[13] D. Happel, Auslander-Reiten triangles in derived categories of finitedimensional algebras, Proceedings of the American Mathematical Society 112 (3), 641-648 (1991).
[14] D. Happel, On the derived category of a finite-dimensional algebra, Comment. Math. Helv. 62 (1), 339-389 (1987).
[15] D. Happel, Triangulated categories in the representation of finite dimensional algebras, London Mathematical Society Lecture Note Series 119, Cambridge University Press, Cambridge, 1988.
[16] D. Happel, B. Keller and I. Reiten, Bounded derived categories and repetitive algebras, J. Algebra 319, 1611-1635.
[17] R. Hartshorne, Residues and duality, Lecture Notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/1964, Lecture Notes in Mathematics 20, Springer-Verlag, Berlin Heidelberg, 1966.
[18] P. J. Hilton and U. Stammbach, A course in homological algebra, Graduate Texts in Mathematics 4, Springer-Verlag, New York, 1971.
[19] T. Holm and P. Jørgensen, On a cluster category of infinite Dynkin type, and the relation to triangulations of the infinity-gon, to appear in Math. Z.
[20] O. Iyama, Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories, Advances in Mathematics 210 (2007), 22 50.
[21] O. Iyama and Y. Yoshino, Mutation in triangulated categories and rigid Cohen-Macaulay modules, Invent. Math. 172 (2008), 117-168.
[22] P. Jørgensen, Auslander-Reiten triangles in subcategories, J. K-theory 3 (2009), 583-601.
[23] P. Jørgensen, Quotients of cluster categories, Proc. Roy. Soc. Edinburgh Sect. A 140 (2010), 65-81.
[24] M. Kashiwara and P. Schapira, Sheaves on manifolds, A Series of Comprehensive Studies in Mathematics 292, Springer-Verlag, Berlin Heidelberg, 1990.
[25] B. Keller, Derived categories and tilting, Handbook of tilting theory, London Mathematical Society Lecture Note Series 332, Cambridge University Press, New York, 2007, 49-104.
[26] B. Keller, On the construction of triangle equivalences, Derived equivalences of group rings, Lecture Notes in Mathematics 1685, SpringerVerlag, Berlin, Heidelberg, 1998, 155-176.
[27] B. Keller and D. Vossieck, Aisles in derived categories, Bull. Soc. Math. Belg. Ser. A 40(2), 239-253 (1988).
[28] M. Kleiner, Approximations and almost split sequences in homologically finite subcategories, J. Algebra 198 (1997), 135-163.
[29] Steffen König, Basic definitions and some examples, Derived equivalences of group rings, Lecture Notes in Mathematics 1685, SpringerVerlag, Berlin, Heidelberg, 1998, 5-32.
[30] H. Krause, Auslander-Reiten theory via Brown representability, KTheory 20 (2000), 331-344.
[31] S. MacLane, Categories for the working mathematician, Graduate Texts in Mathematics 5, Springer-Verlag, New York, 1971.
[32] V. Mazorchuk and C. Stroppel, Projective-injective modules, Serre functors and symmetric algebras, J. Reine und Angew. Math. 616 (2008), 131-165.
[33] J.-I. Miyachi and A. Yekutieli, Derived picard groups of finitedimensional hereditary algebras, Compositio Math. 129 (2001), 341 - 368.
[34] A. Neeman, Some new axioms for triangulated categories, J. Algebra 139 (1), 221 - 255 (1991).
[35] A. Neeman, Triangulated categories, Annals of Mathematics Studies, Number 148, Princeton University Press, Princeton and Oxford, 2001.
[36] P. Ng, Existence of Auslander-Reiten sequences in subcategories, to appear in the Journal of Pure and Applied Algebra. math.RT/0911.0633v1.
[37] P. Ng, A characterization of torsion theories in the cluster category of Dynkin type A_{∞}. math.RT/1005.4364v1.
[38] D. Pauksztello, Compact corigid objects in triangulated categories and co-t-structures, Cent. Eur. J. Math. 6 (2008), 25-42.
[39] I. Reiten and M. Van den Bergh, Noetherian hereditary abelian categories satisfying Serre duality, J. Amer. Math. Soc. 15 (2002), 295 366.
[40] J. Rickard, Morita theory for derived categories, J. London Math. Soc. (2) 39, 436-456 (1989).
[41] C. M. Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics 1099, Springer-Verlag, Berlin, 1984.
[42] J. J. Rotman, An introduction to homological algebra, Academic Press, New York, 1979.
[43] N. Spaltenstein, Resolutions of unbounded complexes, Compositio Math. 65(2), 121 - 154 (1988).
[44] J.-L. Verdier, Catégories dérivées, état 0, Cohomologie Etale, Séminaire de Géométrie Algébrique du Bois-Marie SGA $4 \frac{1}{2}$, Lecture Notes in Mathematics 569, Springer-Verlag, Berlin Heidelberg, 1977, 262-311 (French).
[45] C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics 38, Cambridge University Press, Cambridge, 1994.

