
Newcastle University

School of Electrical, Electronic and Computer Engineering

Interpreted Graph Models

by Ivan Poliakov

PhD Thesis

2011

Abstract

A model class called anInterpreted Graph Model (IGM)is defined. This class includes a large
number of graph-based models that are used in asynchronous circuit design and other applications
of concurrecy. The defining characteristic of this model class is an underlying static graph-like
structure where behavioural semantics are attached using additional entities, such as tokens or
node/arc states. The similarities in notation and expressive power allow a number of operations on
these formalisms, such as visualisation, interactive simulation, serialisation, schematic entry and
model conversion to be generalised.

A software framework called Workcraft was developed to takeadvantage of these properties
of IGMs. Workcraft provides an environment for rapid prototyping of graph-like models and
related tools. It provides a large set of standardised functions that considerably facilitate the task
of providing tool support for any IGM.

The concept ofInterpreted Graph Modelsis the result of research on methods of application
of lower level models, such as Petri nets, as a back-end for simulation and verification of higher
level models that are more easily manipulated. The goal is toachieve a high degree of automation
of this process. In particular, a method for verification of speed-independence of asynchronous
circuits is presented. Using this method, the circuit is specified as a gate netlist and its environ-
ment is specified as a Signal Transition Graph. The circuit isthen automatically translated into a
behaviourally equivalent Petri net model. This model is then composed with the specification of
the environment. A number of important properties can be established on this compound model,
such as the absence of deadlocks and hazards. If a trace is found that violates the required property,
it is automatically interpreted in terms of switching of thegates in the original gate-level circuit
specification and may be presented visually to the circuit designer.

A similar technique is also used for the verification of a model calledStatic Data Flow Struc-
ture (SDFS).This high level model describes the behaviour of an asynchronous data path. SDFS
is particularly interesting because it models complex behaviours such aspreemption, early evalu-
ationandspeculation. Preemption is a technique which allows to destroy data objects in a compu-
tation pipeline if the result of computation is no longer needed, reducing the power consumption.
Early evaluation allows a circuit to compute the output using a subset of its inputs and preempt-
ing the inputs which are not needed. In speculation, all conflicting branches of computation run
concurrently without waiting for the selecting condition;once the selecting condition is computed
the unneeded branches are preempted. The automated Petri net based verification technique is
especially useful in this case because of the complex natureof these features.

As a result of this work, a number of cases are presented wherethe concept of IGMs and
the Workcraft tool were instrumental. These include the design of two different types of arbiter
circuits, the design and debugging of the SDFS model, synthesis of asynchronous circuits from
the Conditional Partial Order Graph model and the modification of the workflow of Balsa asyn-
chronous circuit synthesis system.

ii

Acknowledgements

I am very grateful to my supervisor, Alex Yakovlev, for his invaluable guidance and constant

support.

I would like to thank my friends and colleagues for their input, especially Victor Khomenko

for the numerous fruitful discussions on the topics of verification, synthesis, and Interpreted Graph

Models; Danil Sokolov who formalised the SDFS model and Arseniy Alekseyev who contributed

a lot to the development of Workcraft.

I would also like to thank Jordi Cortadella, Oriol Roig and Tomohiro Yoneda for their help

setting up the verification tools which made it possible to dothe benchmarks for Chapter 4.

And a very special thanks to my family, my father Valery, my mother Natalia and my brother

Ilya who were always supporting me, even when the times were dire for themselves; and of course

to my wife Katerina, always loving and patient.

This work was supported by the EPSRC grants EP/D053064/1 (SEDATE) and EP/G037809/1

(VERDAD).

iii

Contents

Abstract ii

Acknowledgements iii

List of Figures x

List of Publications xv

1 Introduction 1

1.1 Motivation . 4

1.1.1 Automated verification of asynchronous circuits using Petri nets 6

1.1.2 Modelling, simulation and automated verification of the data path of asyn-

chronous circuits . 7

1.1.3 Multi-formalism models and interaction between formalisms 9

1.1.4 The tool interoperability problem 10

1.1.5 Interactive graphical environment 12

1.2 Contribution .. 14

1.3 Organisation of the thesis 15

2 Background 18

2.1 Asynchronous circuits 18

2.1.1 Delay models . 19

2.1.2 Operation modes . 19

2.1.3 Classes . 20

iv

CONTENTS

2.1.4 Handshake protocols .20

2.1.5 Data protocols . 21

2.2 Asynchronous circuit design paradigms 23

2.2.1 Direct mapping and syntax-driven translation 24

2.2.2 Logic synthesis . 26

2.2.3 Mixed approach . 29

2.3 CAD tools for the design of asynchronous circuits 30

2.3.1 Direct mapping/syntax-driven translation tools 31

2.3.2 Logic synthesis tools .. 33

2.3.3 Analysis and verification tools 36

2.3.4 Modelling tools . 40

2.4 Conclusions .42

3 Petri nets 43

3.1 Definitions .44

3.1.1 An example system: the Sleeping Barber’s Shop 45

3.1.2 Contextual nets . 48

3.1.3 Another example: a traffic network 50

3.2 Signal Transition Graphs 51

3.3 Properties and analysis of Petri nets 52

3.4 Conclusions .53

4 Automated verification of asynchronous circuits using Petri nets 54

4.1 The verification problem 56

4.2 Circuits and Petri nets 57

4.3 Construction of a circuit Petri net 59

4.3.1 Applying environment interface 59

4.3.2 Read arcs complexity reduction 61

4.4 Verification . 62

4.4.1 Detection of potential hazards 62

v

CONTENTS

4.4.2 Detection of interface non-conformance 64

4.5 A practical example .. . 66

4.6 Verification of a counterflow data path controller 70

4.7 Performance and comparison statistics 71

4.8 Conclusions .72

5 Modelling, simulation and automated verification of the data path of asynchronous

circuits 73

5.1 The Static Data Flow Structure model 74

5.2 Atomic token semantics 76

5.3 Spread token semantics 80

5.4 Counterflow semantics .. . 84

5.5 Hybrid semantics .. 92

5.6 Verification of SDFS models 98

5.7 Comparison of SDFS token game semantics 102

5.8 SDFS with dynamic elements 107

5.8.1 Dynamic elements . 108

5.8.2 Control . 108

5.8.3 Push . 109

5.8.4 Pop . 110

5.8.5 Mux and Demux . 110

5.8.6 Mapping of the dynamic SDFS elements into Petri net fragments 112

5.9 Conclusions .112

6 Interpreted Graph Models 114

6.1 Basic definitions .. . 116

6.2 Graphical representation of Interpreted Graph Models 117

6.2.1 Building a graphical representation of a Petri net 120

6.2.2 Using a separate visual model .. . 121

6.2.3 Using a hierarchical structure 122

vi

CONTENTS

6.2.4 Redefining the display operation 123

6.3 Logic networks .123

6.3.1 Using logic networks to verify multi-formalism models 126

6.4 Conclusions .126

7 Workcraft: a framework for Interpreted Graph Models 131

7.1 Objectives .131

7.1.1 Graphical user interface .. . 132

7.1.2 Tool integration .133

7.1.3 Formalism interoperation 134

7.2 Comparison with other tools 135

7.3 Tool architecture .. . 136

7.3.1 The framework core . 137

7.3.2 The plug-in manager . 138

7.3.3 The graphical user interface 139

7.3.4 Automated serialisation .. . 141

7.3.5 Visualisation . 141

7.3.6 External process management .. . 141

7.4 Availability .. 142

7.5 Conclusions .142

8 Use cases 143

8.1 Verification of asynchronous circuits 143

8.2 Static Data Flow Structures simulation and verification. 144

8.3 Asynchronous circuit synthesis based on Conditional Partial Order Graphs 146

8.4 Modification of the workflow of Balsa asynchronous circuit synthesis system . . 146

8.5 A development environment based on the STG model 148

8.6 Conclusions .148

9 Conclusions 150

9.1 Summary of the contribution 150

vii

CONTENTS

9.2 Future work . 152

A Workcraft user manual 154

A.1 Installation and system requirements 154

A.1.1 Setting up the Java Runtime Environment 154

A.1.2 Distribution structure 155

A.1.3 Plug-in reconfiguration .. . 156

A.1.4 Launching Workcraft .156

A.2 Command-line mode .157

A.3 GUI mode . 158

A.3.1 User interface overview .. 158

A.3.2 Workspace . 161

A.3.3 Working with models . 163

A.3.4 Changing the user interface layout 166

A.3.5 Changing the look and feel of the interface 167

B Extending Workcraft 169

B.1 Building Workcraft .. . 169

B.1.1 Creating a code branch .170

B.1.2 Building with Maven . 170

B.1.3 Building Workcraft using the Eclipse integrated development environment

(IDE) . 171

B.2 Creating a Workcraft module project in Eclipse 173

B.2.1 Creating a new Maven project .. 175

B.2.2 Creating a Workcraft module .. . 175

B.3 Adding tools .176

B.3.1 Using asynchronous tasks .. 177

B.3.2 Interfacing with external tools 179

B.4 Adding models . 180

B.4.1 Adding a node type . 181

viii

CONTENTS

B.4.2 Implementing the connection methods 182

B.4.3 Defining editable properties 184

B.4.4 Using the automatic serialisation 185

C Working with Signal Transition Graphs 197

C.1 Using the STG editor interface 197

C.1.1 STG editor tools . 198

C.1.2 Assigning signal names and types 199

C.1.3 Placing tokens . 200

C.1.4 Changing arc shapes . 200

C.2 Simulation .201

C.3 Using tools . 202

C.3.1 Visual layout . 202

C.3.2 Parallel composition .. 203

C.3.3 Decomposition . 204

C.3.4 Dummy contraction . 205

C.3.5 CSC conflict resolution .206

C.3.6 Deadlock detection .207

C.3.7 Reachability analysis .. . 207

Bibliography 209

ix

List of Figures

1.1 Architecture of an ARM-based system-on-a-chip. 2

1.2 A circuit model specified using a gate-level net-list andan environment STG. . . 9

1.3 The interaction between different formalisms. 9

1.4 Schematic of the asynchronous circuit design techniquecalled “resynthesis”. . . 11

1.5 Interactive STG simulation. Note that the enabled transitions (a+ and b+) are

highlighted. 12

2.1 Handshake protocols .. . 21

2.2 Data protocols .. 22

2.3 An implementation of the greatest common divisor (GCD) algorithm in Balsa . . 24

2.4 A tree of sequence elements 25

2.5 Logic synthesis .. 27

2.6 Handshake components and their corresponding STGs 29

2.7 Balsa design workflow .. 31

2.8 VeriSyn . 32

2.9 VeriMap design flow .33

2.10 Pipefitter design flow. 34

2.11 TAST design flow .34

2.12 MOODS design space traversal algorithm 35

2.13 Composition of a circuit and its environment in Versify. 37

2.14 CPN Tools GUI . 38

2.15 PDETool architecture 40

x

LIST OF FIGURES

2.16 Yasper GUI . 41

2.17 Draw-Net GUI . 42

3.1 The Sleeping Barber’s Shop 45

3.2 Petri net model .46

3.3 Improved Petri net model 47

3.4 A Petri net model with a complementary place and a read arc. 48

3.5 The gridlock problem .. . 49

3.6 A Petri net model of four intersecting roads 50

3.7 Graphical representation of an STG 51

4.1 An intuitive implementation of 3-input AND gate 56

4.2 Examples of elementary cycles in circuit Petri net 59

4.3 Composition of circuit and environment STGs 61

4.4 Read arcs complexity reduction

(a) multiple read arcs associated with one place

(b) only one read arc per place .. 61

4.5 Non-semi-modular states 63

4.6 A C-element interface STG 65

4.7 NAND C-element implementation 66

4.8 NAND-OR C-element implementation

(no wire delays) . 67

4.9 NAND-OR C-element implementation

(wire delay present on one fork only) 68

4.10 NAND-OR C-element implementation

(full set of wire delays) .. 68

4.11 A counterflow stage controller 69

4.12 Revised counterflow stage controller 69

5.1 SDFS example . 76

5.2 Behaviour of a register 79

xi

LIST OF FIGURES

5.3 Atomic token SDFS example .. . 80

5.4 Spread token SDFS example .. . 83

5.5 Behaviour of counterflow register 90

5.6 Counterflow SDFS example .. 91

5.7 Combined spread token and counterflow SDFS example 99

5.8 Underlying STG for spread token SDFS 99

5.9 Mapping SDFS with spread token semantics into Petri net 101

5.10 ARISC processor .. 103

5.11 Graphical representation of a control node 108

5.12 Graphical representation of the push and pop nodes 109

5.13 Implementation of the multiplexer and demultiplexer using dynamic components 111

5.14 Petri net mapping of the dynamic elements 111

6.1 High level model verification workflow based on Petri nets. 114

6.2 A directed graph .115

6.3 Different interpretations of a Petri net 116

6.4 An example of a graphical operation 117

6.5 Combining a local space drawing function with a transformation 118

6.6 Graphical notation violating the one-to-one correspondence 121

6.7 A Petri net model visualised using the SDFS graphical notation 121

6.8 An example of the hierarchical arrangement of graph nodes 122

6.9 Verification of a gate-level model using a logic network 128

6.10 Verification of an SDFS model using a logic network 129

7.1 Working with three different model types simultaneously 132

7.2 The tool integration aspect of Workcraft 134

7.3 The architecture of Workcraft 137

7.4 The graphical user interface of Workcraft 139

7.5 The property editor .. . 140

7.6 An example of automated serialisation 140

xii

LIST OF FIGURES

8.1 Implementation of a 3-way flat arbiter 144

8.2 Implementation of a multi-resource arbiter 145

8.3 Counterflow SDFS verification example 145

8.4 The STG specifications of handshake components 147

8.5 A complex model interoperability example 149

A.1 The Workcraft distribution structure 155

A.2 Workcraft running in the interactive command-line mode. 157

A.3 A script for automated generation of SVG images from .g files 159

A.4 The main window of Workcraft 160

A.5 The workspace window and its context menus 162

A.6 The “New work” dialogue .. 163

A.7 The model import dialogue 164

A.8 The model export sub-menu .. . 164

A.9 The editor tools window with a hotkey tool-tip 164

A.10 The set of tools applicable for the current model (an STG) 165

A.11 The tasks window .. 165

A.12 Changing the interface layout 166

B.1 Eclipse project import 171

B.2 Updating Eclipse project configuration 172

B.3 The run configuration .. . 173

B.4 Creating a new Maven project 174

B.5 Setting the project dependencies 174

B.6 Creating a Workcraft module class 176

B.7 A basic module implementation 177

B.8 A simple tool implementation 187

B.9 Registering a tool with a constructor parameter 188

B.10 A tool using the asynchronous tasks functionality 189

B.11 An asynchronous task implementation 190

xiii

LIST OF FIGURES

B.12 A progress monitor implementation 191

B.13 An exampleModelDescriptorimplementation 192

B.14 An exampleVisualModelDescriptorimplementation 193

B.15 A visual node implementation 194

B.16 An exampleNodeGeneratorimplementation . 195

B.17 An examplePropertyDescriptorimplementation 196

C.1 The STG editor tools .. 197

C.2 Creating a connection 198

C.3 Editing signal transitions 199

C.4 Arcs drawn using different shapes 200

C.5 Editor window in simulation mode 201

C.6 Simulation tool controls 201

C.7 The settings window .. 202

C.8 Automatic STG layout generation using Dot 203

C.9 STG selection for parallel composition 204

C.10 DesiJ configuration window 205

C.11 Dummy contraction example 206

C.12 Failure trace report 207

C.13 MPSat configuration interface 208

xiv

List of Publications

Conference papers

2007 Workcraft: A Static Data Flow Structure Editing, Visualisa tion and Analysis Tool

(Ivan Poliakov, Danil Sokolov, Andrey Mokhov),In Petri Nets and Other Models of Con-

currency (ICATPN ’2007)

2007 Asynchronous Data Path Models(Danil Sokolov, Ivan Poliakov, Alexandre Yakovlev),

In Proceedings of the Seventh International Conference on Application of Concurrency to

System Design (ACSD ’07)

2008 Automated Verification of Asynchronous Circuits Using Circuit Petri Nets (Ivan Poli-

akov, Andrey Mokhov, Ashur Rafiev, Danil Sokolov, and Alex Yakovlev), In Proceedings

of the 2008 14th IEEE International Symposium on Asynchronous Circuits and Systems

(ASYNC ’08)

2008 Static Data Flow Structures with Dynamic Elements(Ivan Poliakov, Danil Sokolov, Alex

Yakovlev, Charles Brej),In Proceedings of the 20th UK Asynchronous Forum (UKAF ’2008)

2009 Workcraft — a Framework for Interpreted Graph Models (Ivan Poliakov, Victor

Khomenko, Alex Yakovlev),In Proceedings of the 30th International Conference on Ap-

plications and Theory of Petri Nets (PETRI NETS ’09)

xv

LIST OF PUBLICATIONS

Journal papers

2008 Analysis of Static Dataflow Structures(Danil Sokolov, Ivan Poliakov, Alex Yakovlev),

Fundamenta Informaticae, Vol. 88, No.4, pp. 581-610, IOS Press

Public tool demonstrations

2007 Design and Testing in Europe (DATE)

2007 International conference on Petri Nets and Other Models of Concurrency (ICAPTN)

2009 International Conference on Applications and Theory of Petri Nets (PETRI NETS)

2008 – 2011IEEE International Symposium on Asynchronous Circuits andSystems (ASYNC)

xvi

Chapter 1

Introduction

With the continuous increase of the number of transistors that can be put on a single VLSI chip,

configurations known as system-on-a-chip (SoC) are becoming more and more popular [96]. Such

systems consist of a number of interconnected heterogeneous blocks, such as processors, memory

and I/O controllers, built as a single chip (Figure 1.1)1. Tighter integration reduces the size of

the system and the cost to produce, resulting in portable, high-performance and power efficient

consumer products, such as modern smartphones and tablet PCs.

Most of the circuits produced by industry today are synchronous. The operation of their com-

ponents is controlled by one or more globally distributed periodic signals called clock. Combining

pre-designed components into a globally clocked SoC is not atrivial task. Each component (usu-

ally called anIP core) is designed for a certain clock frequency, and its correct functionality relies

on the clock signal being delivered at the same time to all parts of the system. But it is not always

possible to use a common clock frequency for the whole SoC. Additionally, the variations in inter-

connects between IP cores lead to the clock skew problem: reliable distribution of the global clock

signal becomes an extremely complex task when the size of thesystem is in the order of billions

of transistors [48, 113].

Therefore, when designing such systems, it is no longer possible to rely solely on the tradi-

tional approach of using the globally distributed clock signal.

Solving the problem of communication between the various IPcores clocked with different

1Image by Colin M.L. Burnett, used under the terms of GFDL: http://www.gnu.org/copyleft/fdl.html

1

CHAPTER 1. INTRODUCTION

Figure 1.1: Architecture of an ARM-based system-on-a-chip.

2

CHAPTER 1. INTRODUCTION

frequencies, some potentially self-timed, and all runningin parallel becomes one of the central

requirements for a successful IC design.

One of the widely accepted solutions to this problem is the use of asynchronous circuits to

bridge the IP cores, resulting in what is called a GALS (globally asynchronous, locally syn-

chronous) design [37]. In a GALS system, each synchronous block is interfaced with an asyn-

chronous wrapper that provides communication facilities between blocks in an asynchronous man-

ner.

Asynchronous logic holds several important advantages over synchronous designs. For exam-

ple, in the context of SoCs, asynchronous circuits can be made to interface with a clocked circuit

independent of the clock frequency. Without an asynchronous communication layer, communi-

cation between blocks with unrelated clock frequencies (e.g. 333 MHz and 500 MHz) would be

very hard to implement efficiently. Having a reliable methodof interfacing blocks with arbitrary

frequencies not only eliminates the need for the global clock, but greatly increases the potential

for component re-use.

A logical evolution of the GALS paradigm is a fully self-timed system, where components do

not have local clocks but instead operate asynchronously, using causal relations between events.

In addition to better modularity and the lack of clock distribution problem, fully asynchronous

circuits possess properties that may be invaluable for certain applications. Among such proper-

ties are the inherent concurrency which can exploit parallelism, generally lower power require-

ments, better tolerance to voltage fluctuations and the ability to automatically adjust operating

speed according to changing environmental conditions [85,43, 110, 118]. These properties allow

asynchronous circuits to be used not only in systems where robust concurrent operation is im-

portant (e.g. SoCs), but also in specialised devices, such as those operating on harvested power,

where a synchronous circuit would be unusable. The absence of the global clock results in lower

electromagnetic interference, as well as better device security due to resistance to power analysis

attacks (e.g. differential power analysis [71]) – a property that is essential for security-sensitive

applications [78].

Unfortunately, asynchronous design technology has its ownshare of drawbacks that prevent

the technology from becoming mainstream. Mitigating some of these problems, which are out-

3

CHAPTER 1. INTRODUCTION

lined further in this chapter, is the motivation for this work.

1.1 Motivation

The complexity of the asynchronous circuit design process is generally seen as a major drawback

preventing the wider adoption of this technology by the industry. There are numerous factors

contributing to this perception, and one of the most important ones is the lack of appropriate design

tools. The availability of mature, robust tools for the design of synchronous circuits is much higher

than that of the tools aimed at an asynchronous approach. In fact, many asynchronous design

groups rely on modifying the tools that exist for synchronous design. Because those tools will treat

an asynchronous circuit as if it were synchronous, various tricks and workarounds are required to

ensure the correct functionality of the resulting design. In many cases, such workarounds are

inefficient. Additionally, important design stages, such as asynchronous logic verification, may be

very difficult to integrate into the design flow.

Tools that are available specifically for the purpose of asynchronous logic design tend to suffer

from limited efficiency due to the phenomenon of state space explosion [117]. This often means

that the designer of an asynchronous system is forced to design or verify parts of the circuit man-

ually to overcome these limitations, which is not only time-consuming, but also implies that the

designer must have vast knowledge and experience to producereliable solutions.

The design process of any relatively large asynchronous circuit generally consists of three

stages: behavioural specification, implementation and verification. During specification, the ex-

pected behaviour of the circuit is described using either a general-purpose hardware description

language, such as Verilog [114], VHDL [87] and SystemC [53],or a language designed specif-

ically for asynchronous circuits, such as Tangram [119] or Balsa [47]. The high-level language

description is decomposed into a set of communicating processes, or components. The interaction

between the processes is captured using a formal model. Numerous formalisms are used for this

purpose in different design flows, including Petri nets [84,90], Signal Transition Graphs [126],

process algebras [24, 29], Communicating Sequential Processes [56] and other. Different parts

of the system may be described using different formalisms, in contrast to synchronous systems,

where the finite state machine (FSM) model is most often the fundamental construct underlying

4

CHAPTER 1. INTRODUCTION

the whole design process.

For implementation, the specifications of control and data paths are extracted from the formal

model. The control and data paths are implemented and optimised separately to improve the

design features of each path independently. For example, the control path is often optimised for

low latency and size, while the data path is optimised for power consumption and throughput.

There are two distinct methodologies used to obtain the implementation of the control and data

paths: logic synthesis [68, 41] and direct mapping [47, 119,106]. In direct mapping, elements

of the formal model are mapped into pre-designed componentsusing one-to-one correspondence.

In logic synthesis, the implementation is produced throughthe analysis of the state graph of the

system. Logic synthesis produces more efficient solutions,however it is only applicable for small

controllers due to its algorithmic complexity. Direct mapping method is very fast and may be used

to build very large circuits, but it often produces slow circuits.

To formally verify an asynchronous circuit, various schemes are applied to mathematically

prove that the circuit does not exhibit incorrect behaviourfollowing any possible input sequence.

Completely automated verification of a complete system is often computationally infeasible be-

cause of the state space explosion phenomenon. The designermust be able to produce such ab-

stractions of the system that are small enough for automatedverification but are still representative

of the actual behaviour of the modelled system. In practice,many levels of abstractions may be

required to adequately model and analyse the system in question.

For large projects, it is often a mixture of various formalisms, implementation techniques and

verification methods that is used to produce the final design.There is no universally accepted de-

sign workflow for asynchronous systems. Despite the fact that a robust theoretical and technolog-

ical kernel exists for the most of the individual tasks outlined above, a truly complete production

pipeline, such that would cover all stages from specification to verification to mapping the net-list

to silicon, is indeed very hard to set up. The fragmented state of the tool base is one of the rea-

sons for that. There is not a package, either commercial or open-source, targeted at asynchronous

circuit design, that could be compared to the complete synchronous design solutions provided by

companies such as Synopsys, Cadence, or Mentor Graphics. Instead, there exists a multitude of

standalone tools, coming mostly from academia, that targetone particular task without much re-

5

CHAPTER 1. INTRODUCTION

gard to interaction with other tools that may be doing tasks that precede or follow it in the design

process. It is up to the designer to organise such an interaction, which may not be a trivial task;

unless such an interaction is automated, it quickly becomesvery cumbersome. In addition, the

tools coming from the academic environment are mostly focused on solving the mathematical and

algorithmic problems and rarely focus on the aspects of userinteraction. The interfaces to those

tools are mostly command-line- or file-based, which may be daunting even to an experienced user.

The output often requires post-processing to become human readable.

The complexities in the asynchronous circuit design therefore exist not only on the purely

computational level, but also on the level of organisation of the human-machine interaction during

the design process. This concern is the main motivation behind this work.

The specific problems that will be addressed in this thesis are outlined below. They include

the automation of specific tasks related to asynchronous circuit design, assisting in the organisa-

tion of interaction between existing tools, providing userfriendly visual representation of various

formal models and the results of their analysis using techniques such as interactive simulation and

visualisation of violation traces.

1.1.1 Automated verification of asynchronous circuits using Petri nets

The designs of relatively large circuits are often hierarchical and compositional. Individual blocks

of such designs are built after their sub-blocks have been designed and validated. Appropriate

forms of interface of the sub-blocks are required, in which the behavioural complexity of the in-

ternal implementation of sub-blocks is hidden behind a subset of interface signals. For example,

one can abstract away from the timing conditions used insidethe sub-blocks, thereby consider-

ing the system at the higher level of abstraction from the point of view of its delay-independent

behaviour. Conversely, the design may assume a block to be operating in a delay-independent

context but the actual internal behaviour of the implementation needs to be validated in terms of

its freedom from hazards.

Compositional approach can be achieved in different ways depending on the modelling method

used for verification. For example, in the context of Petri nets, a block with an implementation that

satisfies its Petri net based specification can be represented in a complex design not by the Petri

6

CHAPTER 1. INTRODUCTION

net model of its implementation but rather by the Petri net specification, which can be significantly

more compact, thereby helping to reduce the complexity of analysis at the higher level.

Aside from good support for modularity, the choice of Petri nets as the verification back-end

for asynchronous circuits is justified for several other reasons. A gate-level circuit implementation

can be efficiently converted into a Petri net model. Once sucha model is obtained, it is very

flexible with respect to the methods that can be applied for analysis. For instance, it is possible to

compose the Petri net model of a circuit with a Petri net modelof its environment, with the model

of another circuit, or even with a net generated from a totally different formalism to produce the

model of the complete system. Alternatively, the net may be simplified using techniques such as

dummy contraction [99] and serve as an environment specification for another model.

The flexibility also comes from the very rich tool base. Thereare a large number of tools

that apply drastically different techniques for analysis (LoLA [101], MPSat [68], Petrify [41],

etc.), which provides the possibility to choose the tool that copes best with the structure of the

system in question. In addition to performance considerations, modern Petri net tools support

the verification of non-standard property specifications which may be very helpful during the

debugging of specific systems [66].

Finally, it is possible to interpret a Petri net violation trace in terms of the signal switching

activity in the original circuit, which makes it easy to present the verification result to the designer

visually and using the original gate-level model.

1.1.2 Modelling, simulation and automated verification of the data path of asyn-

chronous circuits

The synthesis of asynchronous control path is well developed and supported by tools, e.g., Pet-

rify [41] and MPSat [68]. The synthesis of asynchronous datapath, on the other hand, has not

been studied as thoroughly. Usually, a designer makes the whole data path eitherbundled-data(to

achieve a smaller size of the circuit) ordual-rail (to get an average-case performance and greater

robustness to delay variations). In both cases the conventional EDA tools, such as Cadence or

Synopsis, are used to obtain the data path combinational logic. The synchronous nature of those

tools does not allow exploiting the full potential of the asynchronous data path. For instance,

7

CHAPTER 1. INTRODUCTION

early evaluation cannot be controlled and influenced at an early synthesis stage. Data encoding is

forced to single-rail, which is the norm for synchronous designs, but results in redundancy when

the obtained circuits are converted to dual-rail.

The combinational logic for the asynchronous data path can alternatively be produced by the

tools traditionally used for synthesis of asynchronous controllers, for example Petrify [41]. These

tools are based on the state-space exploration, and hence can only handle relatively small speci-

fications. To successfully use them, the data path has to be decomposed into small fragments the

state space of which would not exceed the limitations of the available computers. These fragments

are then synthesised separately and connected together to form the complete data path circuit.

The choice of the suitable synthesis methods for the variousparts of data path is also relevant.

It may be the case that implementing some branch of a data pathas “expensive” dual-rail does not

give any speed advantage because there is a concurrent branch that is very slow and never exhibits

early evaluation (the benefits of early evaluation are explained in Section 5.3).

In order to decompose, optimise and efficiently synthesise the asynchronous data path it must

be analysed at the level of a formal, technology independentmodel. At the moment of writing,

there is no formal model which adequately represents all thefeatures of the asynchronous data

path. Traditional models, such asPetri nets(PNs) [90] andfinite state machines(FSMs), are ab-

stract and low-level, and it is hard to use them to model the high-level behaviour of asynchronous

data path. The models that naturally capture the asynchronous data path, such as Static Data Flow

Structures (SDFS) [110], are not formally defined and require further research. In particular, mod-

elling preemption, early evaluationandspeculationin the asynchronous data path by SDFS is of

great interest. Preemption is a technique which allows dataitems to be destroyed in a computation

pipeline if the result of computation is no longer needed, thus reducing the power consumption.

Early evaluation and speculation techniques are based on the preemption idea. Early evaluation

allows a circuit to compute the output using a subset of its inputs and preempting the inputs which

are not needed. In speculation, all conflicting branches of computation run concurrently without

waiting for the selecting condition; once the selecting condition is computed the incorrect branches

are preempted.

Due to the presence of such complex behaviours, automated verification of SDFS models is

8

CHAPTER 1. INTRODUCTION

(a) C-element en-
vironment STG

(b) C-element implementation

Figure 1.2: A circuit model specified using a gate-level net-list and an environment STG.

Figure 1.3: The interaction between different formalisms.

very important: it is necessary to ensure that the system is free of problems such as deadlocks.

A verification technique based on the low-level Petri net representation, similar to the technique

proposed for the verification of circuits in Section 1.1.1 has several important advantages. In

particular, it provides a clear graphical presentation of problematic sequences of events found

during the verification, which may greatly assist the designer in isolating and fixing the issue.

1.1.3 Multi-formalism models and interaction between formalisms

One of the issues encountered in asynchronous circuit design is the large number of available

formal models. To increase productivity, it is often reasonable for the designer to use different

formalisms to model various aspects of a complex system. Forexample, whether a circuit design

functions correctly or not almost always depends on the behaviour of its environment, i.e. a circuit

can be functional in one environment and not functional in another. In most cases it is impractical

or even impossible to provide the specification of the environment as a gate-level circuit. The

abstractionof the environment is often given in the form of a Signal Transition Graph (STG). This

means that the overall specification is inherently heterogeneous, as one part of it is a gate net-list

9

CHAPTER 1. INTRODUCTION

and another part is an STG (Figure 1.2).

Analysis and verification of such a system is problematic, because very few tools support com-

pound system specification. Development of specialised tools for every new modelling solution is

not feasible: it takes years for an algorithmically complextool to become stable and robust.

In order to re-use existing tools, an attractive solution isto convert the system specification

into one of the formalisms with highly developed tool support, such as Petri nets. In this case

the analysis is performed on the resulting Petri net, but theresults (the violation traces) are then

interpreted in terms of the original model (Figure 1.3). Unfortunately, there are no tools that

provide adequate support for tasks such as conversion between different formalism types and re-

interpreting the low-level analysis results in terms of another, higher level model.

1.1.4 The tool interoperability problem

Even when working with one particular formal model, an asynchronous circuit designer may need

to routinely use several tools to perform various tasks. Forexample, there are different tools that

can be used to perform an analysis of a Petri net (e.g. Petrify[41], MPSat [68, 12], LoLA [101]).

All of them are based on different techniques and their performance depends greatly on the struc-

ture of the given Petri net. If there is a high degree of concurrency present in the net, MPSat

may be the best choice, because it is based on the concept of Petri net unfoldings that naturally

exploits concurrency [64]. On the other hand, if there are many parts involving choices, MPSat’s

performance may be unacceptable. The tools also have different sets of supported properties, and

their property specification methods differ significantly.

It is therefore impossible to choose one universally applicable tool even for one particular

task (verification). And yet besides verification, there aremany other practical things that can

be done with Petri nets, e.g. composition (supported by PComp [12]), decomposition (supported

by DesiJ [99]), synthesis (supported by SIS [103], Petrify [41], MPSat [68, 12] and several other

tools), graphical layout (supported by Dot [7]), etc.

This issue becomes even more evident when working with larger, more practical projects,

where the number of various model types (and their possible combinations) that need to be man-

aged grows quickly. Consider Figure 1.4, which shows the process of asynchronous system design

10

CHAPTER 1. INTRODUCTION

Figure 1.4: Schematic of the asynchronous circuit design technique called “resynthesis”.

11

CHAPTER 1. INTRODUCTION

known asresynthesis[89, 129]. In this design flow, the original system specification is written us-

ing Balsa language [47]. The Balsa compiler converts the specification into a network of so-called

handshake components– pre-defined primitive parts that synchronise their operation using hand-

shake signals. Then these components are replaced with Signal Transition Graphs that describe

the behaviour of each individual component. These small STGs are composed according to the

connections present in the original handshake component network to produce one large STG that

describes the expected behaviour of the whole system. To obtain the implementation in the form

of logic gates, this STG must be processed by a logic synthesis tool. However, for any practical

system, the STG will be too complex to obtain the synthesis result in a reasonable time. To elimi-

nate this problem, the STG needs to be decomposed into smaller directly synthesisable fragments.

Finally, the synthesised fragments of logic must be composed to form the final system net-list.

In this example, there are several standalone tools that areinvolved in the different stages of

the process. Additionally, some of them are interchangeable as mentioned above, e.g., the logic

synthesis can be done using one of the many available alternatives. Organising the interaction

between all of these tools, with their quirks and peculiarities, is a very tedious and error-prone

task.

1.1.5 Interactive graphical environment

Figure 1.5: Interactive STG simulation. Note that the enabled transitions (a+ and b+) are high-
lighted.

12

CHAPTER 1. INTRODUCTION

An interactive graphical environment may be very helpful during the process of system design

and debugging. Traditionally, graph layout tools such as Dot [7] have been used to produce the

graphical representation of graph-like models such as Petri nets, STGs, or state graphs. Using

this approach, it is only possible to produce a static snapshot of the system in question. However,

the nature of the majority of the models is dynamic. In Petri nets, for example, transitions get

enabled, fired and transfer tokens between places. While it is possible to produce a series of

images of different states describing the evolution of the net, a dynamic, interactive visualisation

is much more helpful.

Using tools such as PEP [11, 30, 112], it is possible to interactively simulate Petri nets. The

tool will highlight the currently enabled transitions, andthe user can click on them to cause them

to fire (Figure 1.5). This way, the user can experiment with the net and analyse its behaviour by

triggering different execution paths.

Petri nets and Petri net-derived formalisms are among the most widely used to model and

analyse concurrent systems. Many natural and man-made systems can be classified as concurrent,

and due to this reason numerous people from various areas of knowledge have contributed to the

theory of Petri nets and to the development of relevant software packages such as PEP.

But there are also a significant number of other useful modelsthat are similarly dynamic in

nature, but have been introduced recently and are not as mature, e.g., Static Data Flow Struc-

tures (SDFS) (Chapter 5) and Conditional Partial Order Graphs [80]. Because they are relatively

new, and may not be as widely applicable as Petri nets, they donot yet have a dedicated tool base.

To successfully apply these models in a practical design workflow, however, an adequate tool

support is extremely important. Designing and implementing a custom graphical environment to

support functionality such as visual entry and interactivesimulation for each of those models is

not a task that is readily undertaken by researchers.

A common feature of all of the formalisms mentioned above is astatic underlying graph struc-

ture augmented by a set of properties that describe the stateof the system, and a set of rules that

govern the evolution of those properties. By exploiting this similarity, it is possible to abstract

the visualisation task from the mathematical definition of the model, allowing researchers to pro-

vide an accessible and consistent visual interface to theirmodels without being bothered with the

13

CHAPTER 1. INTRODUCTION

implementation details beyond the model itself.

1.2 Contribution

The underlying issue of this thesis is the problem of interaction between formal models and tools

that provide a framework for asynchronous circuit design. The organisation of the thesis and the

way its contribution is presented is best seen as the evolution of a modelling approach where a

larger system is described using a number of different formal models either to describe its parts,

or to provide alternative “views” of the system in order to make it more amenable to analysis and

verification.

Automated verification of asynchronous circuits using Petri nets A novel method for auto-

mated verification of asynchronous circuits is proposed. The method is based on converting the

gate-level net-list of the circuit into a special type of Petri net called acircuit Petri net. This net

is then composed with the environment specification that is given in form of a Signal Transition

Graph. Verification is carried out on the compound system. Ifthe property that is being verified is

not satisfied, the Petri net-level violation trace may be re-interpreted in terms of switching activity

of the gates in the original net-list. The method is successfully applied to show that a previously

published version of a counterflow-style data path controller is incorrect.

Modelling, simulation and automated verification of the data path of asynchronous circuits

A new high-level model called a Static Data Flow Structure (SDFS) is presented. SDFS is a

token based model of asynchronous circuits involved in the data paths, and can be viewed as an

analogous to theregister transfer level(RTL) in synchronous design. The model allows advanced

concurrency techniques such aspreemption, early evaluationandspeculationto be modelled. This

is achieved by applying different sets of token game rules depending on the desired functionality

of a particular data path fragment. The key feature of the model is the design of token game rules,

specifically done in such a way that the model can be convertedinto a low-level Petri net for the

purpose of verification. Similarly to the technique appliedto the gate-level circuit models, the

mapping method allows the low-level violation traces to be propagated up to the high-level model.

14

CHAPTER 1. INTRODUCTION

Interpreted Graph Models A concept of anInterpreted Graph Modelis introduced. This con-

cept allows to exploit similarities between various graph-like models in order to provide a gener-

alised implementation of several important methods, such as using Petri nets for the verification

of the higher-level models and implementing the visualisation and simulation logic, which helps

to quickly set up new models by inheriting the basic functionality from the Workcraft framework.

Workcraft framework A software framework called Workcraft is presented. Workcraft is de-

signed to provide a flexible common framework for the rapid development of Interpreted Graph

Models, including visual entry, interactive simulation, inter-model conversion and the application

of third-party analysis tools. The framework is targeted attwo distinct classes of users. For system

designers the framework provides the means to model a particular system using the most appro-

priate formalism (or different formalisms for subsystems)and apply a wide range of external tools

for analysis and verification in a consistent and user-friendly fashion. The second class of users

are the researchers who wish to introduce new Interpreted Graph Models. For this class of users,

Workcraft provides numerous extension points that allow tocustomise the functionality of the

framework in order to accommodate for the new formalism, while retaining the important basic

features such as the GUI and the consistent interface to the external tools.

1.3 Organisation of the thesis

The thesis is organised as follows:

Chapter 1. Introduction. This chapter outlines the motivation for this work and its main con-

tribution.

Chapter 2. Background. This chapter provides the definitions of asynchronous circuits, their

properties, key stages in their design and contains an overview of the software tools relevant to

those stages.

Chapter 3. Petri nets. This chapter introduces the Petri net model which plays a fundamental

role in the design and verification of concurrent systems, particularly asynchronous circuits.

15

CHAPTER 1. INTRODUCTION

Chapter 4. Automated verification of asynchronous circuitsusing Petri nets. A method for

the verification of asynchronous circuits using a special class of Petri nets is introduced in this

chapter. The problems that need to be detected and eliminated in order to ensure the correct

functionality of an asynchronous circuit are explained. Analgorithm to convert a gate-level circuit

specification into a Petri net and to compose the obtained Petri net with a specification of the

environment is given. The violation of the speed independence property is formulated in terms

of the Petri net reachability problem that may be solved using the well-known Petri net tools.

Finally, the method is applied to verify the correctness of anumber of practical circuits, including

a previously published data path controller.

Chapter 5. Modelling, simulation and automated verification of the data path of asyn-

chronous circuits. This chapter presents a new model called a Static Data Flow Struc-

ture (SDFS). The definition of the fundamental structure of an SDFS is given. Three different

behavioural semantics (atomic token, spread token and counterflow) that are realised using distinct

sets of token game rules are defined and their advantages and disadvantages analysed. A method

of interfacing fragments of SDFS having different behavioural semantics is proposed. A Petri net

verification technique that is an extension of the verification technique proposed in the previous

chapter is described. A possible extension of the basic SDFSmodel with elements modelling the

influence of the control path is discussed.

Chapter 6. Interpreted Graph Models. This chapter introduces the concept of anInterpreted

Graph Model(IGM). A formal definition of an IGM is given. An general-purpose algorithm that

uses the IGM concept to generate a graphical representationof any graph-like model is detailed.

Several extensions to the algorithm are proposed, such as the use of an additional IGM to produce

the graphical representation without enforcing one-to-one correspondence between the mathemat-

ical and graphical objects. A generalised STG mapping algorithm and STG-based verification

technique is also proposed.

Chapter 7. Workcraft framework. A software framework called Workcraft is presented in this

chapter. The general idea behind the tool is explained. A comparison with previously existing

16

CHAPTER 1. INTRODUCTION

similar tools is given. The software architecture of the tool is described.

Chapter 8. Use cases. This chapter gives an overview of several practical use cases where the

Workcraft framework and the IGM concept were instrumental.Among those cases are:

· Verification of an asynchronous data path controller;

· Verification of two different types of arbiters;

· Design and debugging of the SDFS model;

· Synthesis of asynchronous controllers using the Conditional Partial Order graph model;

· Modification of the workflow of Balsa asynchronous circuit synthesis system.

Chapter 9. Conclusions. This chapter concludes the thesis, providing an evaluationof the

contribution and considering the ways of further development of the theoretical concepts, practical

methods and pieces of software that are discussed throughout the thesis.

Appendix A. Workcraft user manual. This appendix gives an overview of the basic concepts

of Workcraft’s user interface and is aimed at those users whowould like to use Workcraft for a

particular practical application.

Appendix B. Extending Workcraft. This appendix gives several practical examples of exten-

sion classes in Workcraft. A step-by-step instruction is provided explaining how to design a new

Interpreted Graph Model class, how to define the way that its nodes are visualised, and how to add

custom tools to the new or to the previously existing models.This chapter is aimed at those users

who would like to use Workcraft as the base platform for development of their own models and/or

tools.

Appendix C. Working with Signal Transition Graphs This appendix contains a tutorial on

using Workcraft to create, edit an simulate the Signal Transition Graph models. It also explains

how to use the interface to external tools such as Punf, PComp, MPSat, Petrify and DesiJ to carry

out advanced operations on the STG models.

17

Chapter 2

Background

This chapter provides the basic definitions pertaining to the asynchronous circuits (delay models,

operation modes, classes and common signalling protocols)as well as an introduction to the meth-

ods used in the asynchronous circuit design and a brief overview of the CAD tools implementing

those methods.

2.1 Asynchronous circuits

In its basic form, an asynchronous circuit is a set of gates connected to each other through a set

of wires, where awire is a conducting medium that connects an output of a single gate to one

or more inputs of other gates and agate is an element that generates its output signal based on a

logical function that depends on the level of input signals.The simplest gate, an inverter, produces

the inversion of its input signal as its output, that is logical one if the input is logical zero, and

logical zero if the input is logical one. The process of switching from one value of the output

signal to another is never instantaneous due to a number of limiting factors, such as the finite

propagation speed of the electric signal in the wires and thenon-zero capacitance of the wires and

the transistors that the circuit is built from.

The phenomenon of delays is responsible for numerous potential problems that need to be

accounted for during the design process.

18

CHAPTER 2. BACKGROUND

2.1.1 Delay models

There are two generally accepted delay models. An element exhibiting pure delayeventually pro-

duces all expected output signal transitions regardless ofthe shape of the input signal’s waveform.

The behaviour of aninertial delayelement may be dependent on the input waveform, in particular

it requires the input signal to stay on the same level for a certain period of time before an output

signal transition may occur. If the input pulse is too short,it will not result in a change in the

output.

The length of the delays are characterised using one of the following timing models. In the

unbounded delaymodel, the delay time is assumed to be finite (i.e. the output signal transition

will eventually occur), but the upper bound is unknown. Thebounded delaymodel assumes that

the transition will occur within a known time interval. Thefixed delaymodel assumes that the

delay time is always the same.

2.1.2 Operation modes

The protocol that a circuit environment uses to interact with the circuit is calledoperation mode.

In theinput-outputoperation mode, the environment may produce a transition ofan input signal in

response to any output signal transition. In thefundamental modethe environment is only allowed

to change an input signal if the circuit is stable, i.e. no further output transitions may be produced

given the current state of inputs.

The fundamental mode is further divided into several sub-modes as follows. If only one input

signal transition is allowed to occur before the environment has to wait for the circuit to become

stable again, such an operation mode is calledsingle input change fundamental mode(SIC). If

multiple input signals are allowed to change, the mode is called themultiple input change funda-

mental mode(MIC). A circuit operating in the MIC mode is usually faster than a similar circuit

operating in the SIC mode, however it is much more difficult todesign a circuit operating cor-

rectly in the MIC mode. To receive certain benefits of the MIC mode without overly complicating

the circuit implementation it may be helpful to group the input signal transitions into sets called

bursts. Inputs in a burst may arrive in arbitrary sequence, howeverit is guaranteed that no signal

transitions from another burst arrive until the previous burst completes. The circuit is allowed to

19

CHAPTER 2. BACKGROUND

stabilise between bursts. A circuit operating in this fashion is called aburst-modecircuit.

2.1.3 Classes

Asynchronous circuits are often classified based on their tolerance to delays in various elements

of the circuit. The most robust class is calleddelay insensitive(DI). Circuits that belong to this

class are guaranteed to function as intended regardless of delays in gates and wires. This implies

the highest tolerance to environmental and manufacturing process variations. There are not many

practical circuits that can be constructed as DI [116, 39] using the standard set of simple gates.

A less robust, but more practical class is calledquasi delay insensitive(QDI) [73]. QDI circuits

are characterised by the existence ofisochronic forks,branching wires where delays in different

branches are assumed to be equal for all practical purposes.Except for this assumption, QDI

circuits must still behave in the same robust fashion as DI with respect to the wire and gate delays.

Speed independent(SI) [83] circuits are designed to function correctly givenany (bounded)

delay in gates. Wire delays are assumed to be negligible.

Self-timedcircuits [102] are constructed from a set of sub-circuits. There is no restriction

on the internal implementation of each sub-circuit, but they must be tolerant to any delay in the

external communication channels.

In each of the above cases, the circuit is assumed to functionin the input-output mode.

2.1.4 Handshake protocols

The communication between the components of an asynchronous circuit is typically based on

two types of signals, called therequestand theacknowledgement. The request signal is issued

by a component to initiate a certain procedure. When the procedure is complete, the component

receives the acknowledgement signal and may act on the results.

Generally, the exchange of these signals follows a strict protocol calleda handshake.A hand-

shake consists of one component issuing a request signal to another component, and waiting until

that component responds with an acknowledgement, which concludes the handshake. The requests

and the acknowledgements are not allowed to interleave.

There are several ways to interpret the transitions of thesesignals that are called thehandshake

20

CHAPTER 2. BACKGROUND

(a) four-phase protocol

(b) two-phase protocol

Figure 2.1: Handshake protocols

protocols. Two most commonly used protocols are the four-phase and two-phase. The four-

phase protocol, also called return-to-zero (RTZ), is shownin Figure 2.1a. The numbers in circles

represent the ordering of signal transitions. The delay between the two consecutive transitions is

not specified. In this protocol there are four signal transitions (two on the request and two on the

acknowledgement) comprising a single handshake.

The two-phase protocol, also called non-return-to-zero, is shown in Figure 2.1b. The dif-

ference is that every transition on both the request and acknowledgement wires indicates a new

event. Although this protocol appears more compact the control circuits are usually smaller for

the four-phase version [61].

2.1.5 Data protocols

As with the control signals, there are several ways to organise the transfer of data. The most

popular protocol is calledbundled data. In this protocol, the data is transferred over an n-bit wide

data bus and two additional signals,requestandacknowledge,are used to negotiate data transfer

and to signal its completion (Figure 2.2a). This protocol isthe most efficient one in terms of wires

used per bit of data, however it relies on an assumption that the control signals propagate faster

21

CHAPTER 2. BACKGROUND

(a) Bundled data

(b) Dual-rail

Figure 2.2: Data protocols

than the data signals.

In practice, the acknowledgement signal is often generatedby routing the request through a

delay element. The length of the delay is determined at design time in such a way that it guarantees

that the computations on the receiving end will complete andthe data will no longer be needed by

the time the acknowledgement signal is produced. Although this approach is optimal with respect

to the number of wires, the delay should be long enough to guarantee completion in the worst-case

scenario.

The common alternative to the bundled-data approach is dual-rail encoding. In this case, a bit

of data is encoded with using two wires. A standard dual-railencoding convention is as follows:

00 data not valid (“spacer”)

10 zero

01 one

11 not used

In this case, for an n-bit data value, the link between senderand receiver must contain 2n+1

wires: two wires for each bit of data plus another bit for the acknowledgement signal (Figure 2.2b).

In a standard four-phase variant of the dual-rail protocol,sending a bit requires the transition from

the spacer state to either the valid one or valid zero state and then, upon receiving the acknowl-

edgement, the transition back to the spacer state. The acknowledgement wire must be reset prior

22

CHAPTER 2. BACKGROUND

to a subsequent transmission of a valid data bit.

Compared to the bundled data protocol, dual-rail protocol is more robust as it does not rely on

any timing assumptions, however the additional logic that detects transitions between spacers and

valid data values (calledcompletion detectionlogic) may incur large overheads.

M-of-n codes [122] are a more general encoding scheme in which data is represented using n

wires, m of which are set to an active level. The simplest example is 1-of-2 code which is called

dual-rail and is discussed above. An important feature of all m-of-n encodings is their balanced

power consumption which improves the security of the circuit with respect to power analysis

attacks [71]. In particular, switching from a spacer to any code word consumes the same amount

of power due to the symmetry between rails.

2.2 Asynchronous circuit design paradigms

The majority of the integrated circuits designs are called synchronous because they rely on a global

clock signal to synchronise the changes of states throughout the circuit. The global clock allows

hiding certain features of the underlying technology from the designer and providing a highly

abstract, discrete view of the system (called the register transfer level, or RTL) where all state

transitions can be viewed as occurring simultaneously.

This design approach relies on the assumption that the clocksignal is distributed evenly, with-

out delays or phase shifts, to all parts of the circuit. When the circuit grows more and more

complex, however, it becomes difficult to satisfy this assumption. The clock distribution networks

grow to constitute considerable parts of such circuits and draw significant amount of power. In

addition, dependency on the clock signal of particular frequency makes interfacing circuits that

were designed for different clock frequencies very problematic.

Asynchronous circuits are naturally composable and avoid the clock distribution overheads.

Due to the absence of global clock, however, the problems of local synchronisation, relative tim-

ing and hazards become prevalent and have to be dealt with. Although in many historical cases

asynchronous controllers have been designed manually by experienced designers, it is clear that

for any large scale application automated methods are required to ensure adequate designer effi-

ciency [42].

23

CHAPTER 2. BACKGROUND

(a) GCD algorithm in Balsa language (b) GCD implementation in handshake
components

Figure 2.3: An implementation of the greatest common divisor (GCD) algorithm in Balsa

A number of distinct techniques have been developed to meet that requirement. These tech-

niques are discussed briefly in the rest of this section alongwith an overview of the tools that

implement them. These are the tools that come mostly from academia and are available in the

public domain. Some of the tools from larger commercial packages, such as Synopsys, Cadence

or Mentor Graphics (packages targeted primarily at the design process of synchronous circuits)

are widely used as a back-end for tasks such as circuit layoutand routing in the asynchronous

circuit design groups, but they lack the capacity to providea complete workflow for the design of

asynchronous circuits.

In this section of the thesis only those tools that were created to solve problems directly related

to asynchronous circuit design will be reviewed, as one of the major contributions of this thesis

is a software framework specifically designed to integrate those useful, but scattered tools. At

the time of writing, several of the tools, namely Petrify, Punf, MPSat and DesiJ have been tightly

integrated with Workcraft.

2.2.1 Direct mapping and syntax-driven translation

In direct mapping, a representation of the system that is given as a graph is translated into a gate-

level circuit in such a way that the graph nodes correspond tothe circuit elements and graph arcs

correspond to the connecting wires [106]. Direct mapping can be applied at various abstraction

24

CHAPTER 2. BACKGROUND

Figure 2.4: A tree of sequence elements

levels. An example of high-level direct mapping is syntax-driven translation. It is a widely used

design paradigm in which a system specification is written ina high-level programming-like lan-

guage. This specification is then translated into a network of handshake components, pre-designed

control modules that directly implement the basic languageconstructs [47, 119, 88, 27].

The major advantages of the syntax-driven approach are the low algorithmic complexity of

the translation process and the transparency that is provided by a strict one-to-one mapping from

language constructs to the components that implement them [91]. The latter gives the designer

a greater ability to control the features of the resulting circuit and decide the trade-offs between

performance, area and power consumption, compared to methods such as logic synthesis, while

the former allows very large systems to be successfully designed. Another notable advantage is

that small changes in the source description generally result in small, predictable changes in the

resulting circuit.

The main drawback of this method is the considerable overheads required to implement the

control path. Because the translation is done directly fromthe syntax parsing tree, the control path

often contains redundant constructs that may be slower thanthe computational blocks that process

data. This causes stalls in the data path while the control path catches up [91]. An example of

such redundant control path is shown in Figure 2.4. When sucha tree of sequence elements is

activated, the components that are connected to the leafs ofthe tree will simply be activated in

sequence. The control signals, however, will have to travelup and down the branches between the

sequence components, performing handshakes that are in this case redundant, which will hurt the

25

CHAPTER 2. BACKGROUND

overall performance of the circuit.

Prominent examples of this approach is the Tangram languagewith its “silicon com-

piler” [119], and Balsa, an asynchronous circuit synthesissystem [47]. In Figure 2.3a, a Balsa

language specification of a simple algorithm (finding a greatest common divisor) is shown next to

the network of handshake components that is generated by theBalsa compiler from this specifica-

tion (Figure 2.3b).

As an alternative to the direct mapping from a special language, several techniques use Petri

nets as an intermediate specification format. The Petri netsare extracted from a traditional hard-

ware description language, such as Verilog, VHDL or SystemC. The control path and the data

path are optimised and synthesised separately [34]. This allows different mapping and optimi-

sation techniques to be applied to the different parts of thecircuit. A method proposed in [106]

further splits the control path Petri net into a device and anenvironment, which synchronise via a

communication net that models wires. The device is represented as a tracker and a bouncer. The

tracker follows the state of the environment and provides reference points to the device outputs.

The bouncer interfaces to the environment and generates output events in response to the input

events according to the state of the tracker. Such architecture is easily mapped into a gate net-list.

The Gate Transfer Level (GTL) method [105] is a direct mapping method that is applied at

the very low level of individual gates. In this method the gates of a standard RTL net-list are

replaced by pipeline stages. Each stage contains the gate itself, a register to buffer the output, and

a controller that implements communication of the stage with its neighbours.

2.2.2 Logic synthesis

Logic synthesis is a method for automatic construction of asynchronous circuits from the specifi-

cation of the expected behaviour given by the designer. It isbased on the construction of a state

graph, in which each reachable state is assigned a binary code that holds the value of each signal.

This allows the generation of a circuit using state-of-the-art Boolean minimisation techniques.

Generally, the specification is given in the form of a Signal Transition Graph. To produce a

circuit from an STG, the following steps are required [68]:

1. Checking the necessary conditions for the implementability of the given STG as a logic

26

CHAPTER 2. BACKGROUND

(a) Orig-
inal STG
specification

(b) Modified
STG speci-
fication with
complete state
coding (CSC)

(c) Modified
STG specifica-
tion with CSC
and mappable
into simple
gates

(d) Synthesis result (complex gates) (e) Synthesis result (technology mapped)

Figure 2.5: Logic synthesis

27

CHAPTER 2. BACKGROUND

circuit;

2. Modifying, if necessary, the initial STG to make it implementable;

3. Finding the appropriate Boolean covers for the next-state functions of output and internal

signals and obtaining them in the form of Boolean equations for the (complex) logic gates

of the circuit;

4. Mapping the Boolean equations of the complex logic gates onto the set of standard gates

available in the gate library, preserving the speed-independence (logic decomposition).

The above steps are illustrated in Figure 2.5 (as performed by the tool Petrify [41]). In this ex-

ample, Figure 2.5a is the original STG specification, which is not immediately implementable

because it does not satisfy the Complete State Coding (CSC) condition (which means that there

are two semantically different states that share the same binary encoding of signal states). Fig-

ure 2.5b is the STG modified by the tool to have CSC, which allows a circuit to be derived from

it (Figure 2.5d). Note that the added signals, e.g.,csc0,are treated as internal signals (as opposed

to inputs or outputs), and therefore the externally observed behaviour of the STG is not changed

by this modification. The circuit shown in Figure 2.5d is composed out of so-called complex

gates that implement non-trivial Boolean functions in a speed-independent manner. Such gates,

however, are unlikely to be available in the industrial gatelibraries. In order to make the circuit

implementable in hardware, an additional step is required to map the Boolean equation obtained

during the previous step onto the set of gates available fromthe library. Figure 2.5c is the final

STG transformation performed by Petrify to produce the finalcircuit built out of simple 2-input

gates, shown in Figure 2.5e.

Petrify performs all of these steps with the help of a reachability graph that is extracted from

the initial STG specification (in the form of a Binary Decision Diagram (BDD) [21]). For highly

concurrent STGs the reachability graph can be prohibitively large due to the state space explosion

problem. This limits the practical size of circuits that canbe synthesised using Petrify.

An alternative technique, Petri net analysis based on causal partial order semantics (in the form

of Petri net unfoldings), can also be applied to the circuit synthesis problem. Experimental results

produced by the MPSat logic synthesis tool [12], which workson Petri net unfoldings, show

28

CHAPTER 2. BACKGROUND

(a) Sequencer

(b) Paralleliser

Figure 2.6: Handshake components and their corresponding STGs

significant performance improvements and more efficient memory usage when compared to the

methods based on reachability graphs, while producing similar solutions [68]. Although MPSat

is able to handle larger specifications than Petrify, it still suffers from the state space explosion

problem and is therefore also limited to relatively small specifications.

To tackle complex specifications, the initial STG has to be broken down into smaller fragments

directly synthesisable by the aforementioned tools. An efficient structural STG decomposition

method, specifically designed for synthesis of large asynchronous controllers, is described in [99].

Several other synthesis techniques work with different specification formats, e.g., [54, 115].

Compared to the direct mapping method, logic synthesis usually produces highly efficient so-

lutions, but is not applicable to large system specifications due to extremely high computational

cost. Additionally, small changes to the specification can result in unexpectedly large and unpre-

dictable changes in the resulting circuit, making it hard for the designer to fine-tune the result.

2.2.3 Mixed approach

The syntax-directed translation method greatly enhances the designer’s productivity, but has sev-

eral important drawbacks, of which the control-path overhead is the most decisive. The controllers

obtained by syntax-directed translation are usually far from optimal, because the pre-designed

components are required to implement their declared protocols fully and strictly in order to be

reusable in all possible circuit configurations. However, it is often the case that a significant part

of their functionality becomes redundant due to the peculiarities of a specific configuration, e.g.

in many cases full handshaking between the components can beavoided.

29

CHAPTER 2. BACKGROUND

This redundancy can be eliminated by replacing the manuallydesigned gate-level implemen-

tation of the high level components with an implementation synthesised automatically. The goal

is to produce an efficient implementation of a set of interconnected handshake components, as

opposed to the composition of the pre-designed general implementations of individual compo-

nents [89, 129]. This approach is often calledresynthesis.

One method to accomplish this is to design a Signal Transition Graph describing the expected

behaviour of each of the handshake components control circuits (Figure 2.6). Then, given a hand-

shake component network produced by the compiler, each component is replaced with its STG

specification. The separate component STGs are composed together via an operation calledpar-

allel compositionto form a complete system STG [89]. An optimal gate-level implementation

can then be automatically produced from the STG using tools such as petrify [41], SIS [103] and

MPSat [68]. Automatic synthesis can become problematic when the size of the STG becomes

too large: at the time of writing, the largest STG size that the synthesis tools can process in an

acceptable time is about 100 signals. The impact of this can be lessened by including STG decom-

position tools, such as DesiJ [99] into the workflow. The decomposition tool is able to break the

large optimised STG down into several smaller STGs that are synthesisable in reasonable time. A

schematic of this workflow, as implemented in Workcraft, is shown in Figure 1.4 (compare to the

standard workflow used in Balsa, shown in Figure 2.7).

It should be noted that although this method can significantly improve the efficiency of the

control circuits associated with the handshake components, it is not applicable to the majority

of the data path elements, such as registers and combinational logic, because their behaviour is

too complex to be automatically synthesised. These elements of the circuit are unaffected by

the resynthesis method, and therefore it should only be applied if the control path is actually the

bottleneck.

2.3 CAD tools for the design of asynchronous circuits

This section contains an overview of the notable tools that are often applied to the design of

asynchronous circuits.

30

CHAPTER 2. BACKGROUND

2.3.1 Direct mapping/syntax-driven translation tools

Figure 2.7: Balsa design workflow

Balsa Balsa is an asynchronous circuit synthesis system [47] developed over a number of years

at the APT group of the School Of Computer Science, The University of Manchester.

Balsa is built around the handshake circuits methodology and can generate gate level net-lists

from high-level descriptions written in the Balsa language. Both dual-rail (QDI) and single-rail

(bundled data) circuits can be generated.

The approach adopted by Balsa is that of syntax-directed compilation into communicating

handshaking components (Figure 2.7) and is similar to the Tangram system of Philips [119] (later

distributed as Haste by Handshake Solutions). The advantage of this approach is that the com-

pilation is transparent: there is a one-to-one mapping between the language constructs in the

specification and the intermediate handshake circuits thatare produced. It is relatively easy for an

experienced user to envisage the architecture of the circuit that results from the original descrip-

tion. Incremental changes made at the language level resultin predictable changes at the circuit

implementation level.

Although this property greatly enhances designer productivity, the controllers obtained by

syntax-directed mapping are usually not optimal, because the pre-designed components are re-

31

CHAPTER 2. BACKGROUND

quired to implement their declared protocols fully and correctly in order to be reusable in all

possible circuit configurations. It is often the case that a significant part of their functionality

becomes redundant due to the peculiarities of the specific configuration, e.g. in many cases full

handshaking between the components can be avoided. There have been attempts [89, 129] to en-

hance Balsa’s synthesis results by introducing a logic synthesis step for the control path instead of

direct mapping.

(a) VeriSyn design flow (b) VeriSyn interface

Figure 2.8: VeriSyn

VeriSyn In the VeriSyn tool [104, 18] the high-level language descriptions (Verilog, VHDL) are

initially compiled and converted into an intermediate Petri net format. The intermediate format is

subsequently used as a medium for direct mapping to asynchronous circuits. The control nets are

split into two types for mapping: global control nets which are used for direct mapping to David

Cells and local control nets for mapping to simple control gates.

The intermediate format is subsequently passed to optimisation tools and mapping tools where

it is directly mapped into asynchronous data path and control circuits using David Cells. Hardware

components are selected from a basic library for mapping. AnRTL Verilog description can also be

output to a synthesis converter: i.e. a synchronous synthesis tool (e.g. Synopsys Design Compiler)

generates circuits which are converted back to asynchronous circuits using a tool called VeriMap.

Finally logic optimisation tools are applied to generate speed independent (SI) circuits.

The design flow schematic and a screen shot of the tool’s interface are shown in Figure 2.8.

32

CHAPTER 2. BACKGROUND

Figure 2.9: VeriMap design flow

VeriMap The VeriMap design kit [17] converts single-rail RTL net-lists into dual-rail circuits

which are resistant to Differential Power Analysis (DPA) attacks. VeriMap design kit successfully

interfaces to the Cadence CAD tools. It takes as input a structural Verilog net-list file, created

by Cadence Ambit (or another logic synthesis tool), and converts it into dual-rail net-list. The

resulting net-list can then be processed by Cadence or otherEDA tools. All Design For Testability

(DFT) features incorporated at the logic synthesis stage are preserved.

The VeriMap design flow is shown in Figure 2.9.

2.3.2 Logic synthesis tools

Pipefitter Pipefitter [31] is a tool chain that implements a fully automated synthesis flow for

asynchronous circuits. It can be used to design simple asynchronous microcontrollers using RTL-

like Verilog HDL as the input format.

Pipefitter directly synthesises the control path as a hazard-free standard cell net-list, and uses

a genetic algorithm to perform binding and multiplexer optimisation for the data path. It produces

a synthesisable Verilog specification for the data path, as well as a set of scripts driving both its

synthesis and timing analysis by state-of-the-art commercial synchronous RTL and logic synthesis

tools. The automated insertion of matched delays completesthe logic design, and hands off the

net-list to the standard cell-based layout tools. The schematics of the tool’s design flow is shown

in figure 2.10.

33

CHAPTER 2. BACKGROUND

Figure 2.10: Pipefitter design flow.

Figure 2.11: TAST design flow

TAST (Tima Asynchronous Synthesis Tools) TAST (Tima Asynchronous Synthesis

Tools) [46] is an open design framework devoted to asynchronous circuits. It consists of three

parts: a compiler, a synthesiser and a simulation-model generator. TAST offers the capability

of targeting several outputs from a high level, CSP-like description language called CHP (Com-

municating Hardware Processes). The compiler translates CHP programs into Petri nets (PN)

associated to Data Flow Graphs (DFG). The synthesiser generates asynchronous circuits from the

PN representation of the CHP programs (Figure 2.11). It provides a set of rules to guarantee that

34

CHAPTER 2. BACKGROUND

PN-DFG graphs are synthesisable into QDI circuits.

Figure 2.12: MOODS design space traversal algorithm

MOODS (Multiple Objective Optimisation for Data and contro l Synthesis) The multiple

objective optimisation for data and control synthesis (MOODS) [25] system implements global

optimisation of a design data flow and control graph by the repeated application of small reversible

(behaviour preserving) transforms under the control of a simulated annealing algorithm. The

system is designed to support overall optimisation with respect to various criteria, such as area,

delay, and power dissipation. The operation of the system isusually characterised by a design

trajectory – the entire structural design is represented byits values of area, delay, and power

dissipation and these numbers form the coordinates of a point in design space. The algorithm

moves the design through this space as shown in Figure 2.12 from an initial point created from a

line-by-line translation of the user-defined goal (typically, minimum area, delay and dissipation).

The speed of this process allows the designer to interactively study the trade-offs possible between

the three criteria.

Petrify Petrify [41] is a tool for manipulating concurrent specifications and synthesis and op-

timisation of asynchronous control circuits. Given a PetriNet (PN), a Signal Transition Graph

(STG), or a Transition System (TS) it generates another PN orSTG which is simpler than the

original description and produces its implementation in the form of a net-list of an asynchronous

controller in the target gate library with the specified input-output behaviour.

For transforming a specification Petrify performs token flowanalysis of the initial PN and pro-

35

CHAPTER 2. BACKGROUND

duces a transition system (TS). In the initial TS, all transitions with the same label are considered

as one event. The TS is then transformed and transitions relabelled to fulfil the conditions re-

quired to obtain a safe irredundant PN. For synthesis of an asynchronous implementation Petrify

performs state assignment by solving the Complete State Coding problem. State assignment is

coupled with logic minimisation and speed-independent technology mapping to a target library.

The final net-list is guaranteed to be speed-independent, i.e., hazard-free under any distribution of

gate delays and multiple input changes satisfying the initial specification.

Punf/MPSat Punf [55, 64, 12] is a parallel Petri net unfolder: it takes a Petri net (which may be

an STG or a high-level Petri net) and produces a finite and complete prefix of its unfolding. Such

a prefix is a concise representation of the net’s state space and can be used for efficient model

checking and, in case of STGs, synthesis of circuits. For STGs such a representation is often

superior to that based on explicit state graphs and BDDs due to the fact that STGs usually contain

a lot of concurrency but rather few choices. As a result, the memory requirements of synthesis

algorithms based on unfoldings are very moderate.

MPSat [67, 68, 12, 65] is a tool for model-checking and for synthesis of asynchronous circuits.

It works on an unfolding prefix (e.g. one produced by Punf) andhas several modes of operation.

Among those are model-checking (such as deadlock checking and reachability analysis), encoding

conflicts detection and resolution, and logic synthesis modes. MPSat supports an expressive lan-

guage called Reach [66] for the specification of reachability-like properties. It allows to formulate

non-trivial reachability-like conditions in a concise andhuman-readable form. Internally, MPSat

translates the problem into Boolean satisfiability (SAT) and employs one of the high performance

SAT-solvers to obtain a solution.

Punf and MPSat are used as a back-end for a large number of Petri net- and STG-related tasks

in Workcraft.

2.3.3 Analysis and verification tools

LoLA (Low Level Petri Net Analyser) LoLA (a Low Level Petri Net Analyser) [101] is a

space state reduction based tool for Petri net verification.It includes a large number of available

reduction techniques many of which may be applied jointly. Dedicated variations of state space

36

CHAPTER 2. BACKGROUND

reduction techniques for several frequently used properties are available. The tool’s interface is

text-based and designed for integration into other tools. Standard properties (liveness, reversibility,

boundedness, reachability, dead transitions, deadlocks,home states) as well as satisfiability of state

predicates and CTL model checking are supported. Reductiontechniques include stubborn sets,

sweep line method, cycle coverage, invariant based compression and other. Most techniques may

be applied in combination. In many cases, variations of a technique are used which are particularly

optimised for the analysed property.

Figure 2.13: Composition of a circuit and its environment inVersify

Versify Versify [19, 97] is a tool that verifies the speed-independence of a given circuit and its

specification. The specification is described as a Petri net and the circuit as a flat net-list of gates.

The Petri net describes both the behaviour of the environment and the expected behaviour of

the circuit. Circuit and environment are composed (Figure 2.13) forming a closed system, and the

reachability analysis of such a system is performed. Both specification and circuit are modelled by

Boolean functions and, therefore, the whole system can be represented and manipulated by using

binary decision diagrams (BDDs). Two approaches are used: the first one uses all the variables of

the circuit, whereas the second one automatically eliminates internal combinational signals. With

this reduction in the number of signals, complexity is made dependent on the number of memory

elements rather than on the number of signals.

A circuit is deemed to be correct if it does not generate any unexpected behaviour following

any possible input sequences that correspond to the environment specification.

37

CHAPTER 2. BACKGROUND

zeta zeta [75] is an asynchronous circuit verification tool that checks the conformance of se-

quences of input and output signal changes (traces) in the circuit against a Petri net specifica-

tion. The tool is based on an algorithm that uses zero-suppressed binary decision diagrams (ZB-

DDs) [79], which are a variant of BDD that is specifically optimised for the representation of

binary vectors that contain only a small number of ones. Because Petri nets often have sparse

state spaces, they can be handled very efficiently using a ZBDD representation [128]. Benchmark

results of the tool compare favourably to those of Versify.

GENET (GEneralised NET Synthesis) GENET (for GEneralised NET Synthesis) [36] is a tool

for mining and synthesis of Petri nets from transition systems. The tool is based on the theory of

regions. The input of the tool is a transition system from which it can generate a Petri net with a

reachability graph that is either bisimilar to the input transition system (synthesis) or is a a superset

of the input transition system’s language (mining).

GENET allows the user to transform a system with a state-based representation into a system

with event-based representation. If the system in questionexhibits a high level of concurrency,

event-based representation is often more efficient for visualisation and model-checking.

Figure 2.14: CPN Tools GUI

CPN tools CPN Tools [4] is a set of tools for editing, simulating and analysing Coloured Petri

Nets. The GUI (Figure 2.14) is based on advanced interactiontechniques, such as tool glasses,

38

CHAPTER 2. BACKGROUND

marking menus, and bi-manual interaction. Feedback facilities provide contextual error messages

and indicate dependency relationships between net elements. The tool features incremental syntax

checking and code generation which take place while a net is being constructed.

The simulator handles both untimed and timed nets. Full and partial state spaces can be gen-

erated and analysed, and a standard state space report contains information such as boundedness

properties and liveness properties. The functionality of the simulation engine and state space fa-

cilities are similar to the corresponding components in Design/CPN, which is a widespread tool

for Coloured Petri Nets [5].

Spin Spin [58, 57, 14] is a tool that primarily targets software verification as opposed to hard-

ware verification. The tool supports a high level language tospecify systems descriptions, called

PROMELA (a PROcess MEta LAnguage). Spin has been used to trace logical design errors in

distributed systems design, such as operating systems, data communications protocols, switching

systems, concurrent algorithms, railway signalling protocols, etc. The tool detects deadlocks, un-

specified receptions, race conditions, and unwarranted assumptions about the relative speeds of

processes. Spin works on-the-fly, which means that it avoidsthe need to preconstruct a global

state graph, as a prerequisite for the verification of systemproperties.

Spin can be used as a full LTL model checking system, supporting all correctness require-

ments expressible in linear time temporal logic, but it can also be used as an efficient on-the-fly

verifier for more basic safety and liveness properties. Manyof the latter properties can be ex-

pressed, and verified, without the use of LTL. Correctness properties can be specified as system or

process invariants (using assertions), as linear temporallogic requirements (LTL), as formal Büchi

Automata, or more broadly as general omega-regular properties in the syntax of never claims.

Spin has also been applied for the analysis of Petri nets, both in a standalone tool [49] and as

a part of PEP tool [52].

PEP tool (Programming Environment based on Petri nets) The PEP tool (Programming En-

vironment based on Petri nets) [30, 112, 11] is a comprehensive set of modelling, compilation,

simulation and verification components, linked together within a Tcl/Tk-based graphical user in-

terface.

39

CHAPTER 2. BACKGROUND

The programming component allows the user to design concurrent algorithms in an easy to

use imperative language, and the PEP system then generates Petri nets from such programs. The

simulation of a Petri net can even trigger the simulation of the corresponding program.

PEP’s verification component contains various Petri net indigenous algorithms to check reach-

ability properties and deadlock-freeness, as well as verification algorithms.

2.3.4 Modelling tools

Figure 2.15: PDETool architecture

PDETool PDETool [62] is a multi-formalism modelling and simulationtool for stochastic

discrete-event systems which uses a simulation engine based on a unified abstract description

called SDES [130]. This modelling tool provides features for construction and translation of mod-

els into the XML-based input language of PDETool’s simulation engine. Currently, some useful

extensions of Petri nets have been implemented in the tool, including generalised stochastic Petri

nets, stochastic reward nets, stochastic activity networks and coloured stochastic activity networks.

PDETool is designed to be extensible (Figure 2.15) to support a wide range of graphical and

non-graphical formalisms.

Yasper (Yet Another Smart Process EditoR) Yasper (Yet Another Smart Process Edi-

toR) [120] is a tool for modelling and simulating discrete processes. Yasper uses extended Petri

nets as its modelling back-end. It supports manual simulation, in which the user selects execution

40

CHAPTER 2. BACKGROUND

Figure 2.16: Yasper GUI

steps by clicking on the model, and automatic simulation, which randomises the choice of steps

and produces an aggregated report with relevant statistics. Yasper models directly support some

popular Petri net extensions, and can emulate several othertechniques, such as state machines,

flowcharts, UML 1 activity diagrams, and EPCs.

The Moebius framework The Moebius framework [44] is an environment for implementation

of multiple modelling formalisms and solution techniques.Models expressed in formalisms that

are compatible with the framework are translated into equivalent models using Moebius frame-

work components. This translation preserves the structureof the models, allowing efficient solu-

tions. The framework is implemented in the tool by a well-defined abstract functional interface.

Models and solution techniques interact with one another through the use of the standard interface,

allowing them to interact with Moebius framework components, not formalism components. This

permits novel combinations of modelling techniques to be used for research.

Draw-Net The Draw-Net Modelling System (DMS), a framework supporting the design and the

solution of models expressed in a graph-based formalism. The system is characterised by an open

architecture and includes an XML based language family thatcan be used to define existing as

well as new formalisms, and multi-formalism models expressed through such formalisms. The

idea behind Draw-Ne, that differentiates it from the other approaches, is the possibility of easily

adding new formalisms via a GUI, favouring the reuse and integration of existing tools for solving

41

CHAPTER 2. BACKGROUND

Figure 2.17: Draw-Net GUI

multi-formalism models, rather than the creation of new tools.

2.4 Conclusions

A number of fundamental definitions related to asynchronouscircuits (circuit classes, operation

modes, control and data protocols) were given in this chapter. The most popular approaches to the

design of asynchronous circuits were discussed. An overview of the tools implementing stages in

the design workflow was included.

42

Chapter 3

Petri nets

The process ofcommunicationis a key concept that is the basis of any information-driven system.

The more complex a system becomes, the more intricate is the communication between its parts.

Failure in communication between the smallest components can quickly lead to the malfunction-

ing or even collapse of the whole system. Therefore, a systemdesigner must have a very good

understanding of all the possible ways that the components could interact. It is easily seen that for

any practical system the number of such possibilities is unmanageable without automated tools.

For example, a tool may be able to prove that the system will not behave in any unwanted man-

ner given every possible combination of control actions, or, if a behaviour is found violating the

required system property, assist the designer by identifying the sequence of events leading to the

undesired state. For this purpose, the system in question must be described using a formally de-

fined model. The choice of the model is generally based on two characteristics: expressive power

and ease of analysis, i.e. the possibility and computational feasibility of verification of essential

properties. Unfortunately, there is always a trade-off between these features.

A Petri net is a mathematical model that in many ways hits the “sweet spot” in this trade-

off. Petri nets are expressive just enough to model the most important features of a concurrent

system, and yet are amenable to automated analysis techniques [68, 67, 49, 30, 84, 101]. Petri nets

allow modelling major aspects of behaviour of such systems,including concurrency, causality and

conflict [126]. Modern analysis tools are able to exploit thetrue concurrency representation in Petri

nets (as opposed to, for example, interleaving representation in automata) to drastically reduce the

43

CHAPTER 3. PETRI NETS

size of data required for state space representation, and hence memory and computational cost of

verification process. Moreover, Petri nets have a very simple and intuitive graphical representation

which is very helpful for human understanding.

Petri nets are, of course, not without drawbacks. Due to their simplicity, the size of the net

required to model a system with complex behaviour can be verylarge, quickly becoming un-

observable for the designer. To overcome this limitation, adesigner may be presented with a

higher-level view of the system, where the blocks of the underlying Petri net are represented as

compact high-level objects, while the Petri net itself is used “behind-the-scenes” for verification

tasks. This approach is one of the fundamental ideas behind this thesis.

3.1 Definitions

Definition 3.1. A Petri net (PN)is a quadrupleN = 〈P,T,F,m0〉, whereP is a finite non-empty

set of places,T is a finite non-empty set of transitions,F ⊆ (T ×P)∪ (P×T) is the flow relation

between places and transitions andm0 is the initial marking. A paira∈ F is called an arc. A Petri

net marking is a functionm : P→Z+, wherem(p) is called the number of tokens in placep∈P in

the markingm. The set of places•t = {p∈ P | (p, t) ∈ F} is called the preset of a transitiont ∈ T,

andt•= {p∈ P | (t, p) ∈ F} is called the postset oft. A transitiont ∈ T is enabledat markingm

if ∀p∈ •t,m(p) > 0. A transitiont ∈ T enabled at markingm can fire, producing a new marking

m′ (denotedm[t〉m′), such that

m′(p) = m(p)−1, p∈ •t \ t•

m′(p) = m(p)+1, p∈ t •\• t

m′(p) = m(p), p∈ t •∩• t

thus achieving the flow of information within the net.

Graphically, places of a PN are represented as circles (), transitions as boxes (), consuming

and producing arcs are shown using arrows (), and tokens of the PN marking are depicted by

dots in the corresponding places () (see e.g. Figure 3.2).

A very useful extension of a plain Petri net is a labelled Petri net:

44

CHAPTER 3. PETRI NETS

Definition 3.2. A labelled Petri net (LPN)is a 6-tupleS= 〈P,T,F,m0,Σ,λ 〉, where〈P,T,F,m0〉

is a Petri net,Σ is a finite alphabet andλ is a functionλ : T → Σ associating each transition of a

Petri net with a label.

This allows for some meaningful semantics to be attached to the transitions. For example,

each transition may be labelled with the name of an event. Then, having observed a sequence

of transitions firing, one can judge from that a sequence of events that happened in the system

modelled by the Petri net.

3.1.1 An example system: the Sleeping Barber’s Shop

Figure 3.1: The Sleeping Barber’s Shop

Let us take a variation of the Sleeping Barber Problem [45] tobuild an example Petri net

model.

A barber (who notably likes to sleep a lot) has set up the following routine for his work. He

has put a bed by the entrance to his shop which he uses to sleep at the first opportunity. If he is

sleeping in his bed, the customer who enters the shop sees it and wakes up the barber, who then

takes the customer to his working room and cuts his or her hair. If he is not in his bed, the customer

assumes that the barber is busy with another client and goes to the waiting room, where he or she

waits until the barber comes for them. The barber, having finished serving a client, takes a quick

look through a small window (Figure 3.1). If there is anotherclient waiting, he invites them to the

45

CHAPTER 3. PETRI NETS

working room and cuts their hair. Otherwise, he proceeds to his bed using a personal door that he

has set up for quickest access to the bed, and falls asleep. What is the flaw in this routine?

Figure 3.2: Petri net model

A Petri net that models the barber’s work routine is shown in Figure 3.2. In the initial state,

the barber has just finished serving a client and is checking if another client is waiting for him

(note the tokens in the correspondingly labelled places). At this point, the transition labelled “Go

to bed” is enabled as per definition 3.1. If it fires, it transfers the token from the place labelled

“Checking for customer” to the place labelled “Going to bed”, reflecting the change in the state

of the barber. Transition labelled “Get next customer” is not enabled, however, because there is

no token in the place labelled “Customer waiting”. This transition requiring two tokens to fire

reflects the precondition that for the next customer to be served, both he/she must be waiting and

the barber must have finished serving the previous client. For simplicity, we assume that only one

client can be in the barber’s shop at one time.

By randomly firing enabled transitions, one can see that the system indeed behaves in the way

described in the problem statement. But where is the problem, and how the Petri net helps to

identify it?

By running the net through an automated analysis tool, such as MPSat [63, 12] or Petrify [41],

the problem is quickly found: the net has a deadlock state. Adeadlockis a state where no transition

is enabled, hence no progress can be made in the system. Unless such a state is recognised as one

of the accepted final states, this means that the system does something wrong. Using the failure

trace given by the tool, one can reproduce the sequence of events that need to have happened for

the system to fail. In this case, this sequence is as follows:“Go to bed”, “Wait”, “Sleep”. This

means that the barber has checked his window and found no client waiting, so he started walking

46

CHAPTER 3. PETRI NETS

Figure 3.3: Improved Petri net model

to his bed. However at the same time, a client has entered the shop, and having seen no barber

sleeping in the bed, goes to the waiting room. The barber has successfully reached his bed and

went to sleep. Now, the barber is waiting for a client to wake him up, but the client is waiting

for the barber to invite him to the working room. Neither everhappens, and the system stops

functioning.

This problem is caused by the fact that the customer and the barber can both be changing state

at the same time. In the Petri net that is reflected by two simultaneously enabled transitions, “Wait”

and “Go to bed”, neither of which disables the other. In a real-life situation this could happen if

they were simultaneously taking different routes through the barber’s shop, each unaware of the

others actions, and thus had missed each other. A good way to prevent that would be introducing

a mutual exclusion, i.e. some action that can only be performed by one party at the same time,

and by performing which one party prevents the other from taking further actions. This is easily

implemented in the Petri net: only one additional place is required, as shown in (Figure 3.3). Both

state changing transitions now need to take a token from thatplace, and, because there is only one

token, only one transition can fire and by doing so disable theopposing transition. The token must

be put back into the mutex place at some point in time for the system to keep functioning. A real-

life analogy for this process could be a declaration of intentions by both parties: when a barber is

about to go to bed, he would announce that loud enough for the customer to hear, and after hearing

that the customer would not go to the waiting room. Similarly, if the customer, upon seeing no

sleeping barber, decides to go to the waiting room, he or she would announce that, and the barber

would not go to sleep. In this example, declaration of intentions is analogous to removing a token

from the mutex place (alternatively, one could think of the mutex as a mechanism that prevents

47

CHAPTER 3. PETRI NETS

Figure 3.4: A Petri net model with a complementary place and aread arc

opening both doors at the same time).

3.1.2 Contextual nets

An extension of a Petri net model is acontextual net[82]. It uses additional elements such as

non-consuming arcs, which only control the enabling of transitions and do not influence their

firing.

Definition 3.3. A contextual net [82]is a Petri net extended with a special type of non-consuming

arcs, namelyread-arcs,is defined asPN= 〈P,T,F,R,m0〉, where〈P,T,F,m0〉 is a Petri net andR

is the set of read arcs. A set of read-arcsR is defined asR⊆ (P×T), there is a read-arc between

p andt iff (p, t) ∈ R. Theread-presetof a transitiont ∈ T is defined as⋆t = {p | (p, t) ∈ R}, and

the read-postsetof a placep ∈ P as p⋆ = {t | (p, t) ∈ R}. A transition t is enabled iff∀p, p ∈

•t ∪ ⋆t ⇒ m(p) > 0. The rules for firing of the transitions are preserved. Graphically, a read-arc

is shown as a line without arrows.

Read arcs prove to be a very practical mechanism for modelling certain features of asyn-

chronous systems that otherwise would require much more complex and non-intuitive Petri net

constructs. They are particularly useful to model systems controlled by switching binary signals,

such as asynchronous circuits, as shown in Chapter 4.

To give an example, let us return to the original Petri net model of the barber’s shop (Fig-

ure 3.2). Assume that the barber has gone to bed after servinga customer and the new customer

has just arrived. In this case, there are two transitions enabled for the new customer: “Wait” and

“Wake up barber”. This contradicts the problem specification because the customer must wake the

48

CHAPTER 3. PETRI NETS

(a) Normal traffic – no problems (b) Heavy traffic – potential deadlock

Figure 3.5: The gridlock problem

barber up if he or she sees him sleeping. To fix this flaw, we haveto ensure that the “Wait” tran-

sition is only enabled if the barber is not sleeping. A read arc allows us to achieve this behaviour

with minimal effort. We cannot use a read arc directly in the original net, however, because the

read arc has to check the “Barber isnotsleeping” state, and the net only has a place that represents

the “Sleeping” state. In such situation acomplementary placeis helpful.

Definition 3.4. Given a placep, a placep′ is calledcomplementaryto p if ∀m∈ RM : m(p′) =

N−m(p) whereN is the maximum number of tokens that may appear in placep.

In a simple case wherep can hold at most one token, a complimentary placep′ is always

marked with a token whenp is not, and, vice versa,p′ is never marked whenp is.

In Figure 3.4, the place labelled “Not sleeping” is complementary to the place labelled “Sleep-

ing”. There is also a read arc between transition “Wait” and place “Not sleeping” that prevents

the transition from being enabled when there is no token in that place, i.e. prevents the customer

from going to the waiting room if the barber is sleeping. Notethat the deadlock problem is still

present in this net and it can be resolved in the same way as shown in Figure 3.3. Incidentally, the

introduction of mutex place resolves the conflict between the two transitions as well, and it can be

seen that using it for this reason is not as obvious as using a read arc.

49

CHAPTER 3. PETRI NETS

Figure 3.6: A Petri net model of four intersecting roads

3.1.3 Another example: a traffic network

Another typical example of a system where a Petri net model isvery useful for finding problems is

shown in Figure 3.5. This model illustrates something called a gridlock, a situation that arises both

in vehicular traffic in the road network as well as in the network traffic between a set of routers in

System-on-a-Chip. For clarity, let us consider the road network example. Figure 3.5a shows the

system of four intersecting one-way roads under normal conditions. The cars can freely go around

the inner ring formed by the four roads, which in this case is akin to a roundabout, although such

an arrangement is usually controlled by traffic lights. The cars may enter from any of the four

sides and exit to any other side after spending some time in the ring. The problem appears when

enough cars enter the system, as shown in Figure 3.5b. A car that has entered a junction on the

green light can become blocked in the middle, unable to move forward because of the heavy traffic

moving across, and unable to go back because there are too many cars behind it. If this happens

in all four junctions at the same time, then the whole system becomes deadlocked because no car

can either move along the ring or exit the junction.

This is indeed a problem for heavily congested road networks, especially those arranged in a

regular grid pattern (e.g. New York). To prevent this from happening, drivers should never enter

the crossing unless there is enough space in the road across for them to clear it, even if there

is a green light. Unfortunately, some over-eager traffic wardens may insist that such behaviour

50

CHAPTER 3. PETRI NETS

Figure 3.7: Graphical representation of an STG

constitutes deliberate blocking of the way and insist that you move on the green light in any case.

Similar deadlocks may occur in networks-on-chip [23].

3.2 Signal Transition Graphs

The Signal Transition Graph (STG) model, an extension of thePetri net model designed to to

formally model the behaviour of circuits, was introduced independently in [38] and [98]. A Signal

Transition Graph describes the causality relations between transitions on the input and output

signals of the specified circuit. It also allows the explicitdescription of data-dependent choices

between various possible behaviours. Because STGs are a special case of Petri nets, there exists a

rich theoretical and tool base for their analysis and specification.

Definition 3.5. A signal transition graph (STG)[69] is a tupleG= 〈P,T,F,m0,λ , I ,O,v0〉, where

〈P,T,F,m0〉 is an PN,I is a set of input signals,O is a set of output signals,I ∩O= /0, Z = I ∪O=

{z1,z2, ...,z|Z|} is a joint set of all signals,v0 = {0,1}|Z| is a vector of initial signal values,λ is an

injective labelling functionλ : T → Z×{+,−}, i.e. an STG is an LPN where each transition is

labelled with a signal level change event. If different transitions correspond to the same event, an

index is used to distinguish them. Note that graphically a signal event and its index are separated

using a slash symbol, and if there is only one instance of the event, the index is omitted.

For graphical representation of STGs a short-hand notationis often used (shown in Figure 3.7),

where a place is not shown if it has exactly one incoming and one outgoing arc (the tokens are

drawn on the arc instead).

51

CHAPTER 3. PETRI NETS

3.3 Properties and analysis of Petri nets

Checking whether a Petri net satisfies a certain property is very important for the analysis of system

models. In particular, the notions ofmarking reachabilityanddeadlockare used throughout this

thesis:

Definition 3.6. (Reachability) The set of reachable markings of a Petri net is the smallest (w.r.t.

⊆) setRM containingm0 and such that ifm∈ RM andm[t〉m′, for somet ∈ T thenm′ ∈ RM .

A markingm is reachableif m∈ RM .

Definition 3.7. (Deadlock) A markingm is deadlockedif at this marking no transitions are en-

abled. A Petri net isdeadlock-freeif none of its reachable markings is deadlocked.

Definition 3.8. (Boundedness) APetri net is k-bounded if∀m∈ RM ,m(p) ≤ N, p∈ P, i.e. for

every reachable marking the number of tokens in any place does not exceed k. A Petri net is safe

if it is 1-bounded. A Petri net is simply bounded if∃k such that the net is k-bounded.

To determine if there exists a reachable marking satisfyingcertain properties, the set of reach-

able markingsRM must be computed. This, however, quickly leads to a combinatorial explosion

problem, and requires state-space reduction techniques tobe employed. One such technique is

based on Petri net unfoldings [77].

Given a bounded Petri netN, the unfolding technique aims at building a labelled acyclic net

Un fN (prefix) satisfying two key properties [64]:

· Completeness. Each reachable marking ofN is represented by at least one “witness”, i.e.,

one marking ofUn fN reachable from its initial marking. Similarly, for each possible firing

of a transition at any reachable state ofN there is a suitable “witness” event inUn fN.

· Finiteness. The prefix is finite and thus can be used as an inputto model checking algo-

rithms, e.g., those searching for deadlocks.

A prefix satisfying these two properties can be used for modelchecking as a condensed represen-

tation of the state space of a system. Since its introduction[77], the unfolding-based approach

has been extensively improved and is able to deal with more complex and varied applications. In

52

CHAPTER 3. PETRI NETS

particular, recent research has shown that many verification problems for unfoldings can be for-

mulated in terms of Boolean satisfiability (SAT) and very efficiently dealt with by existing SAT

solvers [63].

The unfolding technique is not the only state-space reduction technique that is applicable to

Petri nets. However, it proved to be very efficient for the class of systems discussed throughout

this thesis and thus was chosen as the main model-checking method.

3.4 Conclusions

In this chapter, a formal definition of Petri nets was given. Using two illustrative examples, the

mechanics of the token game in a Petri net were explained. A number of problems characteristic to

concurrent systems are highlighted, and it is shown that Petri nets are highly helpful in discovering

such problems. Several properties of Petri nets relevant tothe context of the remaining chapters

of this thesis were defined.

53

Chapter 4

Automated verification of asynchronous

circuits using Petri nets

During the design of asynchronous circuits that are relatively small in size, but have peculiar be-

haviour (e.g., arbiters, data path controllers, handshakecomponent implementations), it is often

the case that some parts of the circuit are designed manuallyor generated by the software written

specifically for this task. Such circuits cannot be guaranteed to be correct by construction, as op-

posed to the solutions produced by logic synthesis tools. The circuit implementation obtained this

way needs to be validated against its specification to ensureits correctness before it is committed

to hardware.

The designer can usually choose between two methods of circuit validation: simulationor

formal verification. Simulation can be used to demonstrate the correct functionality of a circuit

under certain stimuli from the environment. However, this cannot reveal all of the possible circuit

behaviours since it would require exhaustive enumeration of all allowable sequences of actions

of the environment, which quickly leads to the combinatorial explosion problem. The aim of the

formal verification methods is to avoid the explicit enumeration of the input sequences to provide

a more efficient solution to the validation problem.

Simulation and verification are particularly different in their results for asynchronous circuits,

because the latter often exhibit high degree of concurrency. Moreover, the environment’s choice of

input signal transitions can be concurrent with the internal signal transitions, making techniques

54

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUITS USING
PETRI NETS

such as cycle accurate analysis ineffective. In those circumstances, the complexity of validation by

simulation increases, and demands for the use of analytic exploration of the behavioural models of

the circuit implementations. It is therefore imperative toconsider formal verification using models

similar to those used for specification.

When compared to synchronous circuits, asynchronous circuits are often described as having

significantly better modularity. To produce a robust modular solution, the designer must adhere to

a strict definition of the environment that the circuit is expected to work with. The circuit must

produce only those changes of output signal levels that are expected by the environment, only in

response to corresponding changes of input signals, at the correct time and in the correct sequence.

The “environment” in this case is the circuit that the circuit being designed is to be interfaced

with. Note that the circuit can only “see” those signal transition in its environment that are directly

connected to its inputs. This implies that even though the implementation of the environment

may be complex, the circuit designer does not need to be concerned with it. Only the abstract

environment specification that defines the proper ordering of output signal transitions in response

to the particular input transitions is required. Such specification is in most cases much smaller

than a concrete circuit implementing it. It is therefore practical, for the purpose of verification,

to represent a closed system as two parts: the circuit implementation and the specification of

the environment. It is also practical to describe these parts using different formal models: the

environment specification is most naturally expressed using a Signal Transition Graph, and the

circuit implementation is generally given as a network of logic gates.

Analysing such a system, however, is not a straightforward task. Because the different for-

malisms are used to describe the circuit implementation andthe environment specification, they

cannot be directly “glued” together to produce a closed system suitable for automated verification.

One solution to this problem is to convert both models into another representation. This is the

verification method underlying the tool Versify [19, 97]. The tool checks the correctness of a gate

level implementation of a circuit against its STG specification, by considering the closed system

whose state space is subject to analysis for undesirable conditions. The closed system is formed

implicitly, at a symbolic state-space traversal stage, where both the gate-level net-list (i.e. a set of

Boolean equations) and the specification STG contribute to the respective state vector components.

55

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUITS USING
PETRI NETS

(a) 2 AND gates (b) AND and synchronising
C-element

Figure 4.1: An intuitive implementation of 3-input AND gate

In this chapter we propose an alternative solution. The mainidea is to translate the circuit

implementation into the same modelling language as the specification. To accomplish this, the

gate net-list is converted into a special type of a Petri net (called a circuit Petri net) using a direct

mapping algorithm. Because the environment STG is also a Petri net, the composition of the two

parts of the system is simple.

Once the complete system is produced, it is passed to one of the available Petri net analysis

tools for automated verification.

4.1 The verification problem

Let us consider an example shown in Figure 4.1 (a), which is a possible implementation of a 3-

input AND gate. Intuitively, one would think that since((a∧b)∧ c) = (a∧b∧ c), this circuit is

correct. Given enough time for the circuit to stabilise between consecutive computation cycles

(which constitutes the synchronous design approach), thisis indeed true, but it is obviously ad-

vantageous to present the circuit with new data as soon as thecomputation of previous data is

complete. However, since no assumptions about gate delays are made in this approach, this can

quickly lead to problems. For example, the following firing sequence:

〈c+,a+,b+,g0+,g1+,c−,a−,b−,g1−,c+,g1+〉

leads the gateg1 into firing prematurely, which happens because the new waveof inputs arrives

before gateg0 could return back into a stable state. This produces an incorrect behaviour of the

circuit. If one tries to avoid this situation by substituting the second AND gate with a a C-element

56

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUITS USING
PETRI NETS

(Figure 4.1 (b)) in order to synchronise the two gates, another problematic sequence surfaces:

〈c+,a+,b+,g0+,g1+,c−〉

after which the outputq will remain stable, even though one of the inputs is low, which is

sufficient to state that this circuit is not a 3-input AND gate.

This very small example already illustrates the complex nature of interactions of the elements

in an asynchronous circuit. Detection of all possible coincidences that may result in the incorrect

behaviour of a circuit is a very complex task. Considering that the modern technology requires to

take into account not only possible delays of the logic gates, but also delays on the wires, it is also

extremely computationally expensive. Several approachesare known that alleviate the state space

explosion problem [97, 75], most of them based on explicit, although compressed, representation

of the reachability graph.

In this chapter we present an alternative, Petri net based approach to the problem of asyn-

chronous circuit validation. To compress the state space, Petri net unfolding techniques (as out-

lined in section 3.3) are employed, which represent the state space implicitly.

4.2 Circuits and Petri nets

An idea to represent switching circuits as a special class ofPetri nets was first proposed in [51] and

further refined in [121]. For a long time, this approach was deemed inefficient due to the fact that

several places and transitions, as well as a set of connecting arcs, are required to represent each

signal (as opposed to a pair of Boolean equations used in BDD-based approaches [97]). However,

in the light of recent developments in Petri net verificationtechniques, particularly of the tools

based on unfolding theory [64, 55, 66, 12] this approach cannot be ignored: the finite prefix of a

Petri net unfolding is usually able to represent all of the possible behaviours of the net in a very

compact way.

Definition 4.1. A circuit [97] is a tripleC= 〈V,F ,s0〉, whereV = {v,v1, ...,vn}is a set of signals,

F is a mappingF : vi → fvi ,vi ∈ V where fvi corresponds to the Boolean function of the logic

gate that drivesvi , ands0is the initial state of the circuit.

57

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUITS USING
PETRI NETS

Definition 4.2. A circuit Petri netRassociated with a circuitC is an STG that satisfies the follow-

ing properties:

1. For each signalvi ∈V there exist exactly two complementary places{pvi , pvi} ∈P, such that

at any reachable marking one and only one of{pvi , pvi} is marked with a single token. If in

initial states0 ∈C signalvi is high, then at the initial markingm0 ∈ R placepvi is marked.

Otherwise,pvi is marked.

2. For each pair of complementary places, there exists a finite number of rising signal transi-

tions t+vi
∈ T that transfer the token from the placepvi to the placepvi , corresponding to the

event of signalvi going from low to high. Similarly, there exists a finite number of falling

signal transitionst−vi
∈ T that transfer the token frompvi to pvi , corresponding to the event

of signalvi going from high to low.

3. Transitions between complementary places are controlled by a set of read arcs [82] that

non-destructively test the presence of tokens in other places in P. The read arcs are placed

in such a manner that they correspond to the dependence of a signalvi ∈V on other signals

in V exactly as defined byF (vi).

As can be seen from definition 4.2, a circuit Petri net consists of a number of so-calledelementary

cyclesinterconnected with read arcs. An elementary cycle is a set of two complementary places

and the transitions connecting them, associated with a signal in the circuit via labelling. Figure 4.2

shows the structure of such elementary cycles, and the way ofproducing different causality rela-

tions. In the figure, the regular arcs are shown as thin lines with arrowheads, and the read arcs

as thick lines with no arrows. Subfigure (a) is an elementary cycle with only one rising and one

falling transition; subfigure (b) is an elementary cycle with two rising transitions and one falling

transition, which means that the signal it represents exhibits OR-causality for positive excitation

and AND-causality for negative excitation (hence an OR-gate is driving it); subfigure (c) is an

elementary cycle with OR-causality for negative excitation and AND-causality for positive exci-

tation, which suggests that an AND-gate is driving the associated signal.

58

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUITS USING
PETRI NETS

Figure 4.2: Examples of elementary cycles in circuit Petri net

4.3 Construction of a circuit Petri net

Given a source gate-level model, a corresponding circuit Petri can be produced using Algorithm 1.

However, several further steps are necessary before the Petri net can be fed to the external tools

for verification. These steps are detailed below.

4.3.1 Applying environment interface

After the circuit Petri net has been constructed, it is necessary to compose it with the provided

environment interface STG. This is done by superposition ofthe corresponding transitions of the

two Petri nets. Figure 4.3 shows an example of such superposition of transitions corresponding to

the output signalQ. In the circuit Petri net, there is a rising transitionQ+ and a falling transition

Q−. Environment STG contains two occurrences of rising transition{Q+/1,Q+/2} and one

falling transitionQ− (see Subfigure(a)). The superposition ofQ− transition is trivial: it is removed

from environment STG and the token flow is redirected throughQ− transition in the circuit Petri

net. This is not possible with the rising transitionQ+: it needs to be duplicated in the circuit Petri

net to create two transitions{Q+/1,Q+/2} with the same preset and postset. After that these two

transitions can be superpositioned with the correspondingtransitions in the environment STG (see

Subfigure(b)).

This technique is called parallel composition [125].

59

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUITS USING
PETRI NETS

Algorithm 1 Conversion to circuit Petri netfor eah signal vi ∈V:insert plaes {pvi , pvi}into Pif vi is high in s0thenmark pvielsemark pviend ifend forfor eah signal vi ∈V:build a DNF DNFset for funtion F (vi)perform Boolean minimisation∗ of DNFsetk = 0for eah lause C∈DNFset:insert a transition t+k
vi

into Tinsert ars {

(pvi , t
+k
vi

),(t+k
vi

, pvi)
} into Ffor eah signal v j ∈C:if v j is negated theninsert ars {

(pv j , t
+k
vi

),(t+k
vi

, pv j)
} into Felseinsert ars {

(pv j , t
+k
vi

),(t+vi
, pv j)

} into Fend ifend forinrement kend forbuild a DNF DNFreset for funtion F (vi)perform Boolean minimisation of DNFresetk = 0for eah lause C∈DNFset:insert a transition t−k
vi

into Tinsert ars {

(pvi , t
−k
vi

),(t−k
vi

, pvi)
} into Ffor eah signal v j ∈C:if v j is negated theninsert ars {

(pv j , t
−k
vi

),(t−k
vi

, pv j)
} into Felseinsert ars {

(pv j , t
−k
vi

),(t−k
vi

, pv j)
} into Fend ifend forinrement kend forend for

∗using Quine-MCluskey algorithm [76℄
60

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUITS USING
PETRI NETS

(a) Circuit and environment STGs

(b) Compositional STG

Figure 4.3: Composition of circuit and environment STGs

4.3.2 Read arcs complexity reduction

Figure 4.4: Read arcs complexity reduction
(a) multiple read arcs associated with one place
(b) only one read arc per place

At the time of writing, the available Petri net unfolding tools do not recognise read arcs as

a special type of arc. Instead, read arcs need to be modelled as double-headed arcs, i.e. ifp ∈

•t ∩ t•, p ∈ P, t ∈ T then p and t are connected with a read arc. Though behaviourally correct,

this representation is semantically different from an actual read arc in that it introduces a choice,

which may lead to a drastic growth of the unfolding size. Thisproblem can be resolved to an

61

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUITS USING
PETRI NETS

extent by ensuring that any place is associated with at most one read arc [124], which can be

accomplished by making a necessary number of copies of each place with multiple outgoing read

arcs and rearranging the read arcs accordingly, as shown in (Figure 4.4).

4.4 Verification

A circuit is considered speed-independent under a given environment, if

1. It conforms to the environment, i.e. produces only those changes of output signals that do

not conflict with the environment’s STG.

2. It is hazard-free.

In the scope of this work, a hazard is defined to be an unexpected change of the input signal of a

gate, such that it causes an enabled (positively or negatively excited) gate to become disabled (i.e.

to return into a stable state without firing). A circuit that never exhibits such behaviour is called

hazard-free,or safe.

4.4.1 Detection of potential hazards

A pair of signals is calledconflicting if there exists a reachable state of the circuit such that a

change in the level of one of them disables the gate driving the other. In terms of a circuit Petri

net, a potentially hazardous state is a state which violatesthesemi-modularityproperty:

Definition 4.3. A Petri net is called semi-modular if any transition in this net, once enabled, cannot

be disabled until it has fired.

In other words, once each place in the preset of a transition has become marked with a token,

thus enabling the transition, no other transition can “steal” any of these tokens. In Figure 4.5 (a), an

example of non-semi-modularity is shown: if transitiong2−/1 fires, it disables transitiong4−/1

(enabled transitions are depicted as greyed boxes).

Definition 4.4. A pair of transitions{t1, t2} ∈ T is calledconflictingif •t1∩•t2 6= /0.

For the purpose of verification, we consider that if a circuitPetri net is semi-modular, then the

circuit it was constructed from by using Algorithm 1 is hazard-free.

62

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUITS USING
PETRI NETS

(a) Conflicting transitions (b) Transitions in allowable
conflict

(c) Transitions in allowable
conflict

Figure 4.5: Non-semi-modular states

This statement stems from the following: for each signal in the circuit, there is an elementary

cycle (see Section 4.2) in the Petri net, and for each possible combination of the levels of input

signals which lead the gate that drives this signal into a positively or negatively excited state,

there is a corresponding rising or falling transition in this cycle. Once any of these combinations

becomes active (the gate becomes excited), the corresponding transition becomes enabled. If the

state of any of the input signals changes in such a way that theexcitation condition is no longer

fulfilled and the gate has not yet fired, this produces hazard,but it will also cause the corresponding

circuit Petri net transition to become disabled, thus violating semi-modularity (see also [83] for

Muller’s original view of semi-modularity).

However, while the presence of a potential hazard in the source gate-level model will always

indicate a violation of the semi-modularity in the circuit Petri net, the reverse is not true. There

are two cases in which a violation of semi-modularity in the circuit Petri net does not indicate the

presence of a potential hazard in the original circuit.

The first situation arises due to the possibility of several transitions representing the same

63

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUITS USING
PETRI NETS

signal event, but being caused by different preceding events, as shown in Figure 4.5. In Subfig-

ure (b), the conflicting transitionsg2+/1 andg2+/2 represent the same event, signalg2 going

high. Hence, the conflict of these transitions does not constitute a signal conflict: they both have

the same semantic and thus their firing does not disable any other signal. In Subfigure (c), the con-

flict betweeng0−/1 andg0−/2 is allowed for the same reason, but there is also conflict between

a/+ andg0−/1 which are associated with different signals. However, even if a/+fires, disabling

g0−/1, the enabled transitiong0−/2 still keeps the signal eventg0− enabled, and thus disabling

of the transitiong0−/1 does not lead to the disabling of the negatively excited gate driving signal

g0, so there is again no signal conflict. On the other hand, if the transitiong0−/2 was not enabled,

then the conflict betweena/+ andg0−/1 would be a signal conflict.

The second situation occurs when the conflicting transitions are both associated with the input

signals. Since it is the environment that controls these signals, this situation should be considered

a choice of mode of circuit operation made by the environmentand not a signal conflict.

To summarise, if for some conflicting pair of transitions{t1, t2} ∈ T:

1. λ (t1) andλ (t2) are not both input signal events

2. λ (t1) 6= λ (t2)

3. there exists a reachable marking such that∀p∈ •t1∪•t2,m(p)> 0 and at this marking there

is no enabled transitiont ∈ T such that(λ (t) = λ (t1))∨ (λ (t) = λ (t2))

then there is a potential hazard in the original circuit.

4.4.2 Detection of interface non-conformance

A circuit Petri net, when composed with its environment, forms a closed system: the outputs of the

circuit are the inputs for the environment STG, and vice versa. Thus, the conformance verification

is twofold: if the environment part of the composed Petri netis able to produce a sequence of

inputs that causes “bad behaviour” of the circuit (i.e. a hazard or a deadlock), the circuit is said

not to conform to its environment and this situation is referred to asα-non-conformance; on the

other hand, if the circuit is ever able to produce an output signal change that is not expected by the

64

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUITS USING
PETRI NETS

Q−

A−

B+

Q+

A+

B−

Figure 4.6: A C-element interface STG

environment, it is also said not to conform to the environment, and this situation is referred to as

β -non-conformance.

An example ofα-non-conformance can be demonstrated if a XOR gate is verified against

the C-element interface STG (Figure 4.6). If the environment produces eventsA+ andB+ almost

simultaneously, quickly enough so that the XOR gate becomesexcited but does not fire and returns

into stable (output signal low) state, this leads to, first, ahazard on one of the inputs, and, second,

into a deadlock. The deadlock is present because the C-element environment, having switched

both input signals to high, expects an output signalQ to go high. But this never happens: a

XOR gate cannot switch output signal to high until one of its input signals goes low, and this

will never happen as well, because the STG does not allow to reset the inputsA andB until the

outputQ is produced. Thus,α-non-conformance is decided by checking the Petri net for hazards

and deadlocks. A method for hazard detection is explained inSubsection 4.4.1, and the deadlock

problem is solved by external model-checking tools, thus checking forα-non-conformance does

not require much additional effort.

If the XOR gate is replaced by an AND gate, however, there is noα-non-conformance: the

input goes high only when both outputs go high, thus no hazardis observed. But when either one of

the inputs goes low, the AND gate becomes negatively excited, and tries to reset the output, which

is not expected by the environment STG. However, in the corresponding compositional Petri net

the environmentrestricts the circuit because the two transitionsQ−(one provided by the circuit,

and the other by the environment) become superimposed (Subsection 4.3.1), which introduces

65

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUITS USING
PETRI NETS

a synchronisation, and thus the transitionQ− will only become enabled when the environment

resets the second input signal. Hence, the system has no hazards and no deadlock, but the AND

gate obviously does not conform to the C-element interface.If it would have not been restricted by

environment, it could produce eventQ− when it was unexpected, exhibitingβ -non-conformance.

Let C be a circuit,R be a circuit Petri net constructed fromC andE be the environment STG.

LetR.Pdenote the set of placesP∈R , E.P the setP∈E andM the set of all transitions which were

superimposed during circuit-environment composition. Then, if there exists a reachable marking

m such that at this marking for at least one transition fromM, all of the places in its preset that

belong toR are marked, and there exists at least one place in its preset that belongs toE which is

not marked, or, formally,∃t ∈ M : (∀p∈ •t ∩R.P,m(p)> 0)∧ (∃p∈ •t ∩E.P,m(p) = 0) then the

circuit C is β -non-conformant under environmentE.

4.5 A practical example

Figure 4.7: NAND C-element implementation

This section presents an example of application of the method proposed in this chapter and

implemented in the Workcraft framework (Chapter 7), and demonstrates the achieved integrity

of the design workflow. Figure 4.7 shows a NAND-based implementation of the C-element pro-

posed by Maevsky. The gate-level model was created using Workcraft’s visual editor and verified.

The verification fails and reports a following trace as the shortest firing sequence that leads to a

potential hazard:

〈input1, input0, inv1,g0,g1,g2,g3,g0,g4, inv2,out put0〉

The faulty trace can be simulated and the problematic firing sequence examined, which reveals

that indeed, provided theinv0 inverter’s delay is long enough, it can be excited but stillnot have

66

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUITS USING
PETRI NETS

fired after the environment has received output signalQ and resets input signalsA andB, disabling

inv0. However this is very unlikely, because in order for this hazard to actually happen,inv0 delay

should be longer that the total delay of all other gates. Hence, this potential failure can be safely

ignored for any practical application.

Figure 4.8: NAND-OR C-element implementation
(no wire delays)

By replacing the inverters{inv0, inv1} and the NAND gateg1 with an OR gate (Figure 4.8),

this problem is eliminated and the verification reports success, confirming that the implementation

of the C-element shown in Figure 4.8 is speed-independent, and the implementation shown of

Figure 4.7 is speed-independent under a very reasonable timing assumption.

But while this circuit is speed-independent, it could stillproduce unexpected behaviour if it

is not delay-insensitive. To verify whether it is delay-insensitive, possible wire delays should be

taken into account. Since it is enough to demonstrate that delay on any of the wires may lead to a

hazard in order to assert that the circuit is not delay-insensitive, it may be reasonable not to model

delays on all of the wires in order to minimise verification time. In Figure 4.9, a wire delay is

introduced in the form of a buffer into the fork following gateg3 output. Verification fails with the

following trace:

〈input1, input0,g1,g0,g2,g3,g0〉

Examination of this trace shows that the hazard can happen ifgateg0, after receiving the signal

from g3, will switch before the same signal fromg3, but travelling across the other branch of the

fork, reaches gateg2. In this case, the firing ofg0 will disable the already excited gateg2. This is

enough to state that this C-element implementation is not strictly delay-insensitive, but requires a

timing assumption that the delay of signal reachingg0 plusg0 switching delay is more than wire

delay on the other branch of the fork.

It may still be helpful to check this circuit considering allthe possible wire delays. This

67

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUITS USING
PETRI NETS

Figure 4.9: NAND-OR C-element implementation
(wire delay present on one fork only)

Figure 4.10: NAND-OR C-element implementation
(full set of wire delays)

can be done by providing branches of all forks with buffers (the buffers are not needed on non-

branching wires, and on the sections of wire preceding forks, because in this case it may simply

be considered that the delay of the gate producing signal on this wire includes the wire delay), as

shown in Figure 4.10. Verification in this case produces the following failure trace:

〈input1, input0,w2,w0,g0,w7,g2〉

This failure is similar to the one in the case above: if the delay of w7+g2 is less than delay

of w6, g4 will be disabled before it can fire. Note that the verification time is considerably longer

due to the growth of unfolding prefix.

68

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUITS USING
PETRI NETS

(a) Controller implementation

(b) Looped controller configuration for verification

Figure 4.11: A counterflow stage controller

Figure 4.12: Revised counterflow stage controller

69

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUITS USING
PETRI NETS

4.6 Verification of a counterflow data path controller

Let us consider a counterflow stage controller presented in [22] (Figure 4.11a). If the circuit is

configured as shown in Figure 4.11b, where the inverters are used to emulate the surrounding

pipeline stages, automated verification can be applied.

In this case, the verification completes in a negligible amount of time, and produces the fol-

lowing failure trace that leads to a potential hazard:

〈Fprev+, f+,B+,F+,Bsucc,b+,∼ d−,Fprev−, f−,B−,F−〉

By investigating the trace using the simulation feature in Workcraft, one can see that it corre-

sponds to the following scenario. The previous stage controller issues a data token, causing the

circuit to issue signalsB andF. At the same time, the next stage controller sends a token in the op-

posite direction (note that this token is not an acknowledgement of signalF but rather a request for

a borrowed token). Now the previous stage controller can reset the data token, which will cause

the circuit to reset signalsF andB. But the signalF may not have been latched yet into the C

elementC1of the next stage controller (which is emulated by the same circuit via an inverter loop

in the test configuration), which will cause a hazard. A similar problem may occur with signalB.

It can be argued that it is a reasonable timing assumption that the next stage controller latches

the value ofF into the C-element faster thanF resets to zero. This argument, however, does

not take into account the delay of the combinational logic between the registers. This problem

may not be critical for bundled-data implementations wherethe rising and falling transitions ofF

propagate through the matched delay with the same speed. However, in a dual-rail implementation

the propagation time of data and spacer through combinational logic varies significantly and a

wave of spacer may overtake the wave of data leading to a hazard. The hazards on outputsF

andB can be avoided by explicitly acknowledging these outputs asshown in Figure 4.12 [107].

Input f_succis connected to the outputf of the next stage controller and acknowledges outputF .

Similarly, inputb_previs connected to outputb of the previous stage controller and acknowledges

outputB. C-elementC3blocks all changes on inputsF_prevandB_succuntil both outputsF and

B are acknowledged.

70

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUITS USING
PETRI NETS

Benchmark States Net size (P/T) Unfolding size (events/cutoffs)

reg2 2.5*104 183/124 368/29
reg4 7.6*107 337/220 2464/177
reg8 7.1*1014 649/416 72192/4865
fifo5 2.6*103 97/58 86/1
fifo10 1.2*106 177/108 166/1
fifo15 5.8*108 257/158 246/1

(a) Benchmark statistics

Benchmark Versify zeta Workcraft (PUNF+MPSAT)

reg2 n/a 0.47 sec 0.11 sec
reg4 388 sec 2.75 sec 6.33 sec
reg8 7246 sec 83.9 sec 48.38 sec
fifo5 8 sec 0.15 sec 0.02 sec
fifo10 130 sec 0.61 sec 1.02 sec
fifo15 634 sec 3.99 sec 2.4 sec

(b) Comparison of proposed method with existing tools

4.7 Performance and comparison statistics

The presented verification approach was tested on a set of benchmarks (see Table 4.1b) which

included asynchronous multiport registers [86] and FIFO pipelines [74].

The results are compared with Versify [97] and zeta [75] tools. Note: the runtimes for Versify

were taken from [97] (because of the technical problems running the old software) and thus cannot

be compared directly with the results for zeta and Workcraftbecause the latter were obtained on

a modern machine. The times for Versify are provided in orderto highlight the rapid growth of

the runtime due to exponential growth of the state space. It is possible to see that Versify and

zeta runtimes grow considerably faster with the growth of the number of states that the size of the

unfoldings and reachability analysis time, which in many cases grow linearly because the analysed

circuits exhibit high degree of concurrency.

The tools used as the Petri net verification back-end were theunfolding-based Punf and MP-

Sat [64, 12]. The benchmark results were obtained on a single-core Pentium 4 machine. More

recent processors tend to be multi-core, which benefits the Petri net unfolding algorithm [55]. The

runtime therefore can be significantly reduced on a multi-core system whilst computations for

BDD-based techniques cannot be easily distributed betweenmultiple processing units.

71

CHAPTER 4. AUTOMATED VERIFICATION OF ASYNCHRONOUS CIRCUITS USING
PETRI NETS

4.8 Conclusions

In this chapter a new method for the verification of asynchronous circuits was proposed. This

method was previously published in [93]. It operates by translating a circuit specification (given

in the form of a gate-level netlist) into a special class of Petri nets called acircuit Petri net. This

net is then composed with a specification of the environment of the circuit given in the form of an

STG using the parallel composition operation. The resulting net is checked for deadlocks as well

as a number of reachability properties required to ensure that the circuit behaves correctly in the

given environment.

Compared to the previously existing verification methods, the approach presented in this chap-

ter exploits the flexibility and maturity of the existing Petri net verification tools. In particular,

it allows to apply the state-of-the-art Petri net unfoldingtechniques to the verification of asyn-

chronous circuits. Unfolding-based techniques are able toeffectively exploit concurrency in order

to build a highly compressed representation of the state space. This feature is especially useful

in the context of asynchronous circuits as they are naturally concurrent. At the same time, the

method is not bound to any single Petri net verification technique and therefore allows choosing

the most appropriate verification back-end based on the nature of the circuit that is being verified.

The proposed method was successfully applied to detect and eliminate a problem in a previ-

ously published circuit (Section 4.6).

72

Chapter 5

Modelling, simulation and automated

verification of the data path of

asynchronous circuits

There has recently been an increase in research on design of self-timed data path logic and pipeline

structures with much more sophistication in dynamic behaviour than simple Muller pipelines.

However, the modelling, analysis and synthesis support is still very limited, mainly due to the lack

of a formal model that could be used to adequately representsthe asynchronous data path.

As a result, there are examples of circuit level solutions [33, 22] that have not been suffi-

ciently analysed and the published circuits behave with certain undesirable effects. In particular,

verification of counterflow data path controller using a method presented in Chapter 4 revealed a

potentially hazardous behaviour (see Section 4.6). This example highlights the importance of a

formal model for the asynchronous data path that would allowto verify potential hardware solu-

tions against a set of strictly defined protocols.

Traditional models, such asPetri nets(PNs) [90] andfinite state machines(FSMs), are abstract

and are hard to mimic the behaviour of asynchronous data pathwith. The models which naturally

capture the asynchronous data path, such as SDFS [110], havenot yet been formally defined.

In this chapter the Static Data Flow Structure (SDFS) model is formally defined and three token

game semantics on this model are introduced: atomic token, spread token and counterflow. These

73

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

semantics are compared and the advantages of each of them arestudied. Atomic token model

is intended as a formalisation of the original SDFS [110]. Spread token SDFS model addresses

the drawbacks of the atomic token model and introduces a rudimentary early evaluation support.

The counterflow semantics is capable of modelling preemption, early evaluation and speculation

in asynchronous data path.

The goal of this chapter is to define a formal model and a verification method in order to assist

the designers in analysing such structures early on in the design process.

5.1 The Static Data Flow Structure model

The SDFS is a high-level model for asynchronous data path that can be viewed as an equivalent

to register transfer level(RTL) in synchronous design. The SDFS has been informally introduced

in [110] concentrating on the structural and syntactical aspects of the model. However, the token

game semantics (enabling and firing rules) is only defined by examples and is ambiguous in some

cases.

This section focuses on the structure and the syntax of the SDFS model. Token game semantics

is an independent issue as it is closely related to the architecture of the asynchronous data path.

The most interesting token game semantics are studied separately in the following sections.

Definition 5.1. A static data flow structure (SDFS) is a directed graphG= 〈V,E,D,M0〉, where

V is a set ofvertices(or nodes), E ⊆ V ×V is a set ofedgesdenoting the flow relation,D is a

semantic domain ofdata valuesandM0 is aninitial marking of the graph.

There is an edge between verticesx∈V andy∈V iff (x,y) ∈E. There are two types of vertices

with different semantics:register nodes(or simplyregisters) Randcombinational logic nodes(or

simply logic) L, R∪L =V. The registers can containtokens, thus defining the markingM of the

SDFS. The tokens can be associated with data values from the semantic domainD. The marking of

SDFS may evolve byenablingand subsequentfiring of register nodes. The rules of enabling and

firing are defined by the token game semantics and are discussed separately for each semantics.

Presets and postsets

The preset of a vertex x ∈ V is defined as•x = {y | (y,x) ∈ E} and the postsetas x• =

74

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

{y | (x,y) ∈ E}.

Source and sink

Only registers can have empty presets and postsets. A register with empty preset is called asource,

and with empty postset is called asink. Note that source and sink nodes can represent inputs and

outputs of a data path respectively, thus modelling a device-environment interface.

Path and cycle

A sequence of vertices(z0,z1, ...,zn) such that(zi−1,zi) ∈ E, i = 1...n is called apath from z0 ∈V

(called astart vertex) to zn ∈V (called anend vertex) and is denoted asδ (z0,zn). Note that there

can be several paths from one vertex to another or no path at all. A cycle is a path whose start

vertex is the same as end vertex. A path with no repeated vertices is called asimple path, and

cycle with no repeated vertices aside from the start/end vertex is asimple cycle.

Deadlock and liveness

An SDFS reaches adeadlockstate if no further firing can happen. If a deadlock state is not

reachable the SDFS is calleddeadlock-free.

An SDFS is calledlive if all its registers can fire infinitely many times. In order tobe live it is

necessary for SDFS to have at least one token in every cycle. This leads to an important structural

property of the SDFS model that any simple cycle must containat least one register. Note that this

condition may be not sufficient as liveness property also depends on token game semantics. For

example, applying a token game semantics to SDFS model may further limit this requirement to

at least three registers per simple cycle (similar to directmapping from Petri nets [70]).

Projection

Projectionof a pathδ onto a set of verticesX is defined asδ ↓ X = Set(δ)∩X, whereSet(δ) is

the set of vertices in sequenceδ .

R-preset and register R-postset

The R-presetof a vertexx ∈ V is defined as⋆x = {r ∈ R | ∃δ (r,x) : δ (r,x) ↓ R= {r,x}∩R},

i.e. a registerr is in R-preset of a nodex iff there exists a pathδ (r,x) with no other

75

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

R2

R3

R4

R5

L2

L3 L4

R1 L1

R6L5

Figure 5.1: SDFS example

registers exceptr and x (if x is a register). Similarly, theR-postsetis defined asx⋆ =

{r ∈ R | ∃δ (x, r) : δ (x, r) ↓ R= {x, r}∩R}, i.e. a registerr is in R-postset of a nodex iff there

exists a pathδ (x, r) with no other registers exceptx (if x is a register) andr.

Graphical representation

Graphically, the combinational logic nodes are represented as boxes (), the registers as boxes

with two vertical lines (), and the edges are depicted by arrows (). The tokens are usually

drawn as filled cycles (•), however, this representation varies for different tokengame seman-

tics (see Sections 5.3, 5.4 and 5.4).

For example, the SDFS fragment shown in Figure 5.1 consists of 11 nodes: 5 combinational

logic nodes (L1, L2, L3, L4 andL5) and 6 registers (R1, R2, R3, R4, R5 andR6). Note thatR1

andR2 are sources whileR5 andR6 are sinks. The preset of nodeL3 is{L2,R3} and it postset is

{L4}; the R-preset of nodeL3 is{R2,R3} and its R-postset is{R4,R5}.

In this section we have formally defined the structure and syntax of SDFS model using [110]

as a guideline. The following sections introduce differenttoken game semantics for the SDFS

model.

5.2 Atomic token semantics

The atomic token semantic of the SDFS model, or simplyatomic token model, is a formalisation

of the intuitive token game which is presented in [110] on a set of simple examples.

Marking semantics

Themarkingin the atomic token model is defined as a functionM : R→{0,1}, i.e. a register can

contain at most one token. The marking in this model represents data validity. The presence of a

token in a register means it stores valid data. The absence ofa token in a register represents invalid

76

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

data or spacer. Because a register can hold no more than one token, it is convenient to assume that

the codomain of the functionM is the Boolean domain.

A current marking in atomic token model can be viewed as a front of computation phase in a

circuit, followed by a reset phase. Subsequent computationphases must not overlap, therefore for

a marked registerr ∈ Rall registers in its preset and postset must be unmarked, i.e.:

∀r ∈ R,q∈ ⋆r ∪ r⋆ : M (r)⇒ M (q).

Evaluation and reset of combinational logic nodes

Theevaluation stateof the atomic token model is a Boolean functionΞ : L →{0,1} which defines

if a combinational logic nodel ∈ L has computed its output (Ξ(l) = 1) or has not computed it yet

(Ξ(l) = 0). A nodel ∈ L is said to be inreset stateif Ξ(l) = 0; it is said to be inevaluated state

if Ξ(l) = 1. The switching of a combinational logic node form reset to evaluated state is called

evaluation transition; its change from evaluated to reset state is calledreset transition. Note, that

words “state” and “transition” are often omitted in the textif it is clear from the context what is

referred: the state of a node or its transition from one stateto another.

Initially all combinational logic nodes are in reset states. A reset combinational logic node may

evaluate iff all the combinational logic nodes in its presetare in evaluated states and all the registers

in its preset are marked. This is theevaluation condition. Similarly, an evaluated combinational

logic node may reset iff all the combinational logic nodes inits preset are in reset states and all

the registers in its preset are unmarked. This is theresetting condition. For a combinational logic

nodel ∈ L the evaluation conditionξ+ (l) and resetting conditionξ− (l) can be formally expressed

as:

ξ+ (l) =
∧

k∈•l∩L

Ξ(k) ∧
∧

q∈•l∩R

M (q)

ξ− (l) =
∧

k∈•l∩L

Ξ(k) ∧
∧

q∈•l∩R

M (q)

In other words, a combinational logic nodel ∈ L may evaluate whenξ+ (l) = 1 and may reset

whenξ− (l) = 1. The evaluation and resetting conditions of atomic token SDFS are similar to

77

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

the firing conditions of phased logic [72], where a gate is enabled when all its input phases are

opposite to the gate output phase; when an enabled gate fires,its outputs toggle to the opposite

phase.

Enabling and disabling of registers

Theenabling stateof the atomic token model is a Boolean functionΣ : R→ {0,1} which defines

if a registerr ∈ R is disabled(Σ(r) = 0) or enabled(Σ(r) = 1).

Initially all unmarked registers are disabled and all marked registers are enabled. A disabled

and unmarked register becomes enabled iff all the combinational logic nodes in its preset are eval-

uated and all the registers in its preset are marked. This is aregisterenabling condition.Similarly,

an enabled and marked register becomes disabled iff all the combinational logic nodes in its preset

are reset and all the registers in its preset are unmarked. This is a registerdisabling condition.

The enabling conditionσ+ (r) and disabling conditionσ− (r) of a registerr ∈ R can be formally

represented as follows:

σ+ (r) = M (r)∧
∧

k∈•r∩L

Ξ(k) ∧
∧

q∈•r∩R

M (q)

σ− (r) = M (r)∧
∧

k∈•r∩L

Ξ(k) ∧
∧

q∈•r∩R

M (q)

A registerr ∈ Rbecomes enabled whenσ+ (r) = 1 and it becomes disabled whenσ− (r) = 1.

Propagation of tokens

In order to be marked with a token a register must be enabled first; and to be unmarked a register

needs to get disabled. Therefore a register cycles through the following four phases: enabling,

marking, disabling and unmarking, as shown by a register state graph in Figure 5.2. The state

of each register is encoded by a vector〈M (r) ,Σ(r)〉. The excited variables (the ones which may

change in the current state) of this vector are denoted by ’*’symbol on top right. In the initial state

00∗, which is outlined, a register is disabled and unmarked. This register may get enabled, which

is denoted by the ’*’ symbol next to theΣ(r) component of the vector. After being enabled it may

be marked with a token, then get disabled and finally be unmarked, thus coming to the initial state.

78

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

< M(r),Σ(r) >

11*01* 10*00*

phase
enabling

phase
unmarking

phase
disabling

phase
marking

Figure 5.2: Behaviour of a register

To prevent overlapping of tokens from subsequent phases of computation, when propagating

a token, the following two conditions have to be satisfied: i)a token can be removed from a

disabled register iff all the registers in its R-postset areunmarked; ii) a token can be put into an

enabled register iff all the registers in its R-preset are marked. Following these conditions, in a

current marking, a set of registersR− from which tokens can be potentially removed and a set of

registersR+ which can potentially receive tokens are defined as:

R− =
{

r ∈ R | M (r)∧Σ(r)
}

, R+ =
{

q∈ R | M (q)∧Σ(q)
}

Token propagation takes place when i) each register inR− also belongs to R-preset of some

register inR+, i.e.: ∀r ∈ R−,q∈ r⋆⇒ q∈ R+; and ii) each register inR+belongs to R-postset of

some register inR−, i.e. ∀r ∈ R+,q∈ ⋆r ⇒ q∈ R−. When these two conditions hold, the registers

in R− may fire in a single action, removing tokens from all registers of R− and producing tokens

in each register ofR+. The atomic nature of token propagation in this model is similar to firing

in Petri nets, where places correspond to registers and transitions correspond to (possibly empty)

combinational logic “clouds” between the registers.

This token game semantics works for simple examples but can be problematic for a more

complex SDFS. For instance, consider the SDFS in Figure 5.3.At Step 1 only registerR1 is

enabled and has a token. It enables registerR2 at Step 2 and the token propagates fromR1 toR2 at

Step 3 . Now the token in registerR2 allows combinational logic nodeL1 to evaluate and enable

the registerR3.

Note thatR2 still cannot fire and produce a token intoR3, because there is registerR5 in

its R-postset which is still disabled. This results in a concurrency reduction, where the whole

branch{R3,L2,R4} waits for evaluation of the concurrent branch{L3}.

Another problem arises at Step 4, when the evaluation of the combinational logic nodeL3

leads to a deadlock. Indeed, after Step 4 the combinational logic nodeL4 cannot evaluate until

79

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

R3 L2 R4

L3

R1 L1R2 L4 R5

Register:

Marking:

Logic: − reset;

− disabled; − enabled.

− evaluated;

− atomic token.

R3 L2 R4

L3

R1 L1R2 L4

reduction
concurrency

R5

R6

R6

Step 1

Step 3

R6

R6

R3 L2 R4

L3

R1 L1R2 L4 R5

R3 L2 R4

L3

R1 L1R2 L4 R5

deadlock

Step 2

Step 4

Figure 5.3: Atomic token SDFS example

a token propagates to the registerR3 and then toR4. At the same time the registerR3 can only

receive a token when the combinational logic nodeL4 evaluates and enables registerR5.

These concurrency reduction and deadlock problems can be avoided in two different ways.

The easiest would be to introduce a set of constraints forwell-formedSDFS. For example, a

necessary constraint would be: if one of the concurrent branches contains a register, then all

the other branches concurrent to it must also contain a register. However, this approach would

significantly restrict the class of circuits the model can capture. A more practical approach is

to define the token game rules which would naturally capture the pipeline-style behaviour of the

asynchronous data path. For example, the firing can be split in two atomic actions: i) propagation

of the tokens into the next-stage registers (can be associated with a request signal in a pipeline),

and ii) removing the tokens from the previous stage registers (models an acknowledgement signal).

Thus, a token can stretch over a chain of registers before being removed from the beginning of the

chain. This token game semantics is calledspread tokenand is formally defined in Section 5.3.

5.3 Spread token semantics

The spread token semantics of the SDFS model, or simplyspread token model, is an extension

of the atomic token semantics. It models asynchronous circuits of Muller pipeline architecture.

80

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

The spread token semantics does not capture preemption or token borrowing. However, it can be

extended to modeltoken borrowingas in low-latency structures with slack [35].

Marking, evaluation and enabling

The marking semantics, evaluation and reset of combinational logic nodes, and also enabling and

disabling of registers in this model are exactly the same as in atomic token. The only difference is

in the way tokens propagate from a register to a register. Also a concept of early evaluation will

be introduced in this model, which has not been discussed in [110]. Therefore, in this section we

concentrate on modelling the early evaluation and the new rules of token propagation. The rest of

the terminology is adopted from Section 5.2.

Early evaluation

It is often sufficient to have only a subset of the inputs readyto evaluate a combinational logic node.

This is calledearly evaluationand can be modelled by modifying the evaluation conditionξ0 of

the node. For example, a combinational logic nodel ∈ L which evaluates as soon as any of its

inputs is ready, has the following evaluation condition:

ξ+(l) =
∨

k∈•l∩L

Ξ(k) ∨
∨

q∈•l∩R

M (q).

Modification of the evaluation and resetting conditions is not limited to early evaluation. In

fact, anyreasonableexpressions can be assigned to conditionsξ+(l) andξ−(l) of a combinational

logic nodel ∈ L. For example, it is reasonable to assume thatξ+ (l)∧ ξ− (l) ≡ 0, i.e. evaluation

and resetting conditions of a node are mutually exclusive toprevent a node from enabling and

resetting at the same time. Also it is reasonable to assume that evaluation and resetting conditions

depend on the marking and evaluation state of SDFS, i.e. theyare not constant 1 or constant 0.

The concept of early evaluation can also be applied to enabling and disabling of a register.

However, the same result can be achieved by splitting such a register into an early evaluation com-

binational logic node and the register itself. Therefore, the notion of early evaluation is restricted

to combinational logic nodes.

Propagation of tokens

A token can be put into an enabled register iff all the registers in its R-preset are marked and all

81

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

the registers in its R-postset are unmarked. This is amarking condition. Similarly, a token can be

removed from a disabled register iff all the registers in itsR-preset are unmarked an all the registers

in its R-postset are marked. This isunmarking condition. Formally this can be represented by

assigning each registerr ∈ Ra marking conditionm+ (r) and unmarking conditionm− (r):

m+ (r) = Σ(r)∧
∧

q∈⋆r

M (q) ∧
∧

s∈r⋆

M (s)

m− (r) = Σ(r)∧
∧

q∈⋆r

M (q) ∧
∧

s∈r⋆

M (s)

A registerr ∈ R can be marked with a token whenm+ (r) = 1 and can be unmarked when

m− (r) = 1.

Note that an unmarked source is always enabled because its R-preset is empty. Therefore, a

new token can be put into an enabled source as soon as its R-postset is unmarked. Similarly, a

token can be removed from a disabled sink as soon as its R-preset is unmarked (its R-postset is

empty). These features of the source and sink registers are useful to model the communication

with the environment which produces new tokens and consumesprocessed ones.

Consider the spread token model on a simple example of Figure5.4. Enabled registers and

evaluated combinational logic nodes are highlighted. Notethat combinational logic nodeL4 is

labelled withEE tag. This tag means the node exhibits early evaluation, i.e.for L4 to evaluate it

is sufficient to haveR4 marked orL3 evaluated:ξ+ (L4) = M (R4)∨Ξ(L3). Therefore, on Step 2,

when token propagates toR2, combinational logic nodesL3 andL4 evaluate and registerR5

becomes enabled. However,R5 cannot be marked with a token until all registers in its R-preset are

marked. For this to happen two more steps are needed: at Step 3the registerR3 is marked and at

Step 4 token propagates toR4. At Step 5 registerR5 is finally marked. Similarly, the token cannot

be removed fromR2 until Step 6 when all registers in its R-postset are marked.Because of these

restrictions the token spreads over four registers (at least four, as a tokens could still stay inR1

andR2) at Step 5. Finally, the tokens are removed one by one from the tail of the spread token, as

shown at Steps 6-8.

The spread token model solves the concurrency reduction anddeadlock problems of the atomic

82

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

R3 L2 R4

R3 L2 R4

R3 L2 R4

L3

L3

L3

R1 L1R2

R1 L1R2

R1 L1R2

L4 R5

L4 R5

L4

EE

EE

EE

Step 5

Step 3

Step 1

R3 L2 R4

R3 L2 R4

R3 L2 R4

L3

L3

L3

R1 L1R2

R1 L1R2

R1 L1R2

L4 R5

L4 R5

L4 R5

EE

EE

EE

Step 2

Step 4

Step 6

R5

R6

R6

R6 R6

R6

R6

R3 L2 R4

L3

R1 L1R2 L4 R5

EE

Step 7

R3 R4

L3

R1 L1R2 L4 R5

L2 EE

Step 8

R6 R6

− early evaluation.

Register:

Marking:

Logic: EE− reset;

− disabled;

− spread token.

− enabled.

− evaluated;

Figure 5.4: Spread token SDFS example

83

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

token semantics. It also has some rudimentary means to modelearly evaluation. However, in this

model a register can only accept a token when all the registers in its R-preset are marked. This

limits the early evaluation to one pipeline stage only and makes the model unusable for capturing

preemption and speculation.

It would be natural to allow further propagation of a token into an enabled register without

waiting for all the tokens in its R-preset, but there is a riskof mixing tokens from different com-

putation cycles. In order to avoid this mixture, when a tokenpropagates into an enabled register,

all unmarked registers in its R-preset should be marked withanegative token. The next data token

to arrive into a register with negative marking must be ignored as it carries old data. Therefore the

data token and the negative token cancel each other. The described technique is calledtoken bor-

rowing. Different types of token borrowing and one of SDFS models implementing this technique

are discussed in Section 5.4.

5.4 Counterflow semantics

The token borrowing techniques can be partitioned into two classes:passive borrowingandac-

tive borrowing. In the passive borrowing a special join block is responsible for counting the

number of tokens borrowed from each of its inputs. The borrowing does not propagate further

in the direction opposite to the token flow. The passive borrowing is introduced as a feature of

the change diagramsmodel and is also modelled by unsafe (places can be marked with more

than one token) Petri nets [127]. A model and an implementation of a join element capable of

unbounded borrowing are presented in [35]. The main disadvantage of the passive borrowing is

the lack of preemption mechanism in the unwanted branches, which may result in a higher power

consumption and longer computation time.

The active borrowingis characterised by negative tokens which are able to propagate in the

direction reverse to the data token flow. When a data token anda negative token collide, they are

both eliminated. The major drawback of this technique is caused by the resolution of the conflicts

when a data token and a negative token want to occupy the same register simultaneously. Usually,

such conflicts result in arbitration which cause significantimplementation overheads (increase

in circuit size, power consumption and latency). On the positive side, preemption is captured

84

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

naturally by active borrowing.

Both passive and active borrowing can be defined as token gamesemantics for the SDFS

model. In this thesis we model active borrowing only, as it issomewhat superior to passive bor-

rowing and is advantageous for implementing the preemptionmechanism. There are two SDFS

model of active borrowing mechanism, namelyantitoken modelandcounterflow model.

The antitoken semantics of the SDFS model, or simply antitoken model, is based on the idea

of the two pipelines of opposite directions, one for data tokens and the other for negative tokens.

Data tokens and negative tokens eliminate each other on collision. Similar idea is employed in

counterflow pipeline processor(CFPP) [111] which allows instructions to move one way alonga

processing pipeline while results flow freely in the opposite direction; when collide instructions

are executed on the corresponding data.

The main disadvantage of the antitoken model is that in ordernot to miss each other, data

tokens and negative tokens must synchronise within each pipeline stage. This requires arbitration

which is associated with metastability problems at the level of circuit implementation. The arbi-

tration problem is avoided in counterflow semantics of SDFS model which is the main focus of

this section. For more details on antitoken SDFS semantics the reader is referred to [107].

The counterflow semantics of SDFS model, or simply counterflow model, is based on the idea

of OR-causality [127], which allows to avoid arbitration inherent in antitoken model. Data tokens

and negative tokens are not distinguished in this model at the level of individual stages: the first

to arrive propagates in both directions (as a data token forward and as a negative token backward),

the second one is ignored. The idea of antitokens without arbitration is introduced in [33, 32] and

is revisited with minor modifications in [22].

Marking semantics

In the counterflow SDFS model there are two types of tokens:OR-tokensandAND-tokens. The

marking in the counterflow model is defined asM = MOR×MAND, where theMOR and MAND

are Boolean functions:MOR : R→{0,1} is theOR-markingandMAND : R→ {0,1} is theAND-

marking. The presence of an OR-token in a register means either that data has been received from

its R-preset or that data is not needed anymore by its R-postset (e.g. due to early evaluation form

another branch). An AND-token in a register means that data has been received from its R-preset

85

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

and has been consumed (or ignored, in case of early evaluation) by its R-postset. Graphically, an

OR-token is depicted as a filled triangle (N) while an AND-token as a filled box (�).

Evaluation and reset of combinational logic nodes

Forward evaluation stateof SDFS is a Boolean functionΞF : L → {0,1} which defines if a com-

binational logic nodel ∈ L has computed its output (ΞF (l) = 1) or has not computed it yet

(ΞF (l) = 0). A node l ∈ L is said to beforward evaluatedif ΞF (l) = 1 and forward resetif

ΞF (l) = 0. Initially all combinational logic nodes are forward reset. A forward reset combi-

national logic node may forward evaluate iff all the combinational logic nodes in its preset are

forward evaluated and all the registers in its preset have OR-tokens. Similarly, a forward evaluated

combinational logic node may forward reset iff all the combinational logic nodes in its preset are

forward reset and all the registers in its preset do not have OR-tokens. These areforward evalua-

tion conditionandforward resetting conditionrespectively.

Backward evaluation stateof SDFS is a Boolean functionΞB : L → {0,1} which defines if

the output of a combinational logic nodel ∈ L has been consumed and is not needed any longer

(ΞB (l) = 1) or the output has not been received yet and is still awaited(ΞB (l) = 0). A combi-

national logic node maybackward evaluateiff all the combinational logic nodes in its postset

are backward evaluated and all the registers in its postset have OR-tokens. Similarly, a backward

evaluated combinational logic node maybackward resetiff all the combinational logic nodes in

its postset are backward reset and all registers in its postset do not have OR-tokens. These are

backward evaluation conditionandbackward resetting condition.

Formally, the forward evaluation conditionξ F
+ (l) and the forward resetting conditionξ F

− (l)

of a combinational logic nodel ∈ L can be expressed as:

ξ F
+ (l) =

∧

k∈•l∩L

ΞF (k) ∧
∧

q∈•l∩R

MOR(q)

ξ F
− (l) =

∧

k∈•l∩L

ΞF (k) ∧
∧

q∈•l∩R

MOR(q)

Similarly, the backward evaluation conditionξ B
+ (l) and the backward resetting conditionξ B

− (l)

are:

86

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

ξ B
+ (l) =

∧

k∈l•∩L

ΞB(k) ∧
∧

q∈l•∩R

MOR(q)

ξ B
− (l) =

∧

k∈l•∩L

ΞB(k) ∧
∧

q∈l•∩R

MOR(q)

A combinational logic nodel ∈ L may forward evaluate whenξ F
+ (l) = 1 and it may forward

reset whenξ F
− (l) = 1. Similarly, a combinational logic nodel ∈ L may backward evaluate when

ξ B
+ (l) = 1 and it may backward reset whenξ B

− (l) = 1.

The above conditions do not allow early forward (backward) evaluation because the change on

all the node inputs (outputs) is required to change its forward (backward) state. By analogy with

spread token model, the effect of early evaluation in counterflow semantics can be modelled by

modifying the evaluation and resetting conditions of a combinational logic node, so, that a subset

of node inputs (outputs) is sufficient to trigger its forward(backward) state.

Enabling and disabling of registers

Forward enabling stateof SDFS is a Boolean functionΣF : R→{0,1} which defines if a register

r ∈ R is forward enabled(ΣF (r) = 1) or forward disabled(ΣF (r) = 0). Similarly, backward en-

abling stateof SDFS is a Boolean functionΣB : R→ {0,1} which defines if a registerr ∈ R is

backward enabled(ΣB (r) = 1) or backward disabled(ΣB (r) = 0).

Initially all registers without AND-tokens are both forward disabled and backward disabled.

All registers which are marked with AND-tokens are both forward enabled and backward enabled.

A register without an AND-token becomes forward enabled iffall the combinational logic

nodes in its preset are forward evaluated and all the registers in its preset have OR-tokens. A

register with an AND-token becomes forward disabled iff allthe combinational logic nodes in

its preset are forward reset and all the registers in its preset do not have OR-tokens. These are

forward enabling conditionandforward disabling condition. Note that a source without an AND-

token becomes forward enabled and a source with AND-token becomes forward disabled (because

its preset is empty).

A register without an AND-token becomes backward enabled iff all the combinational logic

nodes in it postset are backward evaluated and all the registers in its postset have OR_tokens. A

87

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

register with an AND-token becomes backward disabled iff all the combinational logic nodes in

its postset are backward reset and all the registers in its postset do not have OR-tokens. These

arebackward enabling conditionandbackward disabling conditionrespectively. Note that a sink

without AND-token becomes backward enabled and a sink with AND-token becomes backward

disabled (because its postset is empty).

Formally, the forward enabling conditionσF
+ (r) and the forward disabling conditionσF

− (r) of

a registerr ∈ R is defined as:

σF
+ (r) = MAND(r)∧

∧

k∈•r∩L

ΞF (k) ∧
∧

q∈•r∩R

MOR(q)

σF
− (r) = MAND(r)∧

∧

k∈•r∩L

ΞF (k) ∧
∧

q∈•r∩R

MOR(q)

The backward enabling conditionσB
+ (r) and the backward disabling conditionσB

− (r) formally

are:

σB
+ (r) = MAND(r)∧

∧

k∈r•∩L

ΞB(k) ∧
∧

q∈r•∩R

MOR(q)

σB
− (r) = MAND(r)∧

∧

k∈r•∩L

ΞB (k) ∧
∧

q∈r•∩R

MOR(q)

A registerr ∈ Rbecomes forward enabled whenσF
+ (r) = 1 and it becomes forward disabled when

σF
− (r) = 1. Similarly, a registerr ∈Rbecomes backward enabled whenσB

+ (r) = 1 and it becomes

backward disabled whenσB
− (r) = 1.

Propagation of tokens

A register can be marked with an OR-token iff it does not have an AND-token, it is either forward

enabled or backward enabled and neither its R-preset nor itsR-postset is marked with AND-token.

An OR-token can be removed from a register iff it is marked with AND-token, it is either forward

disabled or backward disabled and its R-preset and R-postset are both marked with AND-tokens.

These areOR-marking condition mOR
+ (r) andOR-unmarking condition mOR

− (r) of a registerr ∈ R,

88

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

which are formally defined as:

mOR
+ (r) = MAND(r)∧

(

ΣF (r)∨ΣB(r)
)

∧
∧

q∈⋆r∪r⋆

MAND(q)

mOR
− (r) = MAND(r)∧

(

ΣF (r)∨ΣB(r)
)

∧
∧

q∈⋆r∪r⋆

MAND(q)

A register can be marked with an AND-token iff it has an OR-token and it is both forward

enabled and backward enabled and its R-preset and R-postsetare marked with OR-tokens. An

AND-token can be removed from a register iff it does not have an OR-token and it is both forward

disabled and backward disabled and its R-preset and R-postset are not marked with OR-tokens.

These are OR-marking and OR-unmarking conditions. TheseAND-marking condition mAND
+ (r)

andAND-unmarking condition mAND
− (r) are assigned to each registerr ∈ Ras follows:

mAND
+ (r) = MOR(r)∧ΣF (r)∧ΣB(r)∧

∧

q∈⋆r∪r⋆

MOR(q)

mAND
− (r) = MOR(r)∧ΣF (r)∧ΣB(r)∧

∧

q∈⋆r∪r⋆

MOR(q)

A registerr ∈ Rcan be marked with an OR-token whenmOR
+ (r) = 1 and the OR-token can be

removed whenmOR
− (r) = 1. Similarly, a registerr ∈ R can be marked with an AND-token when

mAND
+ (r) = 1 and the AND-token can be removed whenmAND

− (r) = 1.

A counterflow register operation is represented by the stategraph in Figure 5.5. Each state of

the graph is encoded by a vector
〈

MAND(r) ,MOR(r) ,ΣB (r) ,ΣF (r)
〉

. In the initial state 000∗0∗,

which outlined by a box, a register is both forward and backward disabled and does not have

tokens. This register may be forward and/or backward enabled, which is denoted by ’*’ symbol

next toΣB (r) andΣB (r) variables. Changing any of the excited variables leads to the next state,

where the variableMOR(r) becomes excited, i.e. the register may be marked with an OR-token,

and so on.

Note the states where two variables are excited, e.g. the state 00∗0∗1. Changing one of the

excited variables does not remove the excitement from the other one. Eventually both excited

variables have to switch leading to the same state 0∗111. It is also possible for both excited

variables to change simultaneously, which is depicted by dotted arcs.

89

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

< MAND(r),MOR(r),ΣB(r),ΣF(r)>

0000

0001 0010

0011

0101 0110

0111

**

** **

*

* *

* 1111**

1110 1101

1100

1000

10011010

**

*

**

*

**

marking phase unmarking phase

Figure 5.5: Behaviour of counterflow register

There are two distinctive phases in the operation of a counterflow register: marking phase

andunmarking phase. At the marking phase a register gets enabled (forward and/or backward),

then marked with OR-token and finally marked with AND-token.At the unmarking phase it is

first disabled (forward and/or backward), then the OR-tokenleaves the register and finally the

AND-token is removed.

Figure 5.6 illustrates the counterflow SDFS semantics on a simple example. Forward (back-

ward) enabled registers and forward (backward) evaluated combinational logic nodes are high-

lighted on top (bottom). The combinational logic nodeL4 labelled withEE tag exhibits early

forward evaluation:ξ F
+ (L4) = MOR(R4)∨ΞF (L3), ξ F

− (L4) = MOR(R4)∧ΞF (L3).

At Step 1 only registerR1 has an OR-token, which forward enables registerR2 (this models

a request signal in the circuit). The OR-token propagates toR2 at Step 2 and backward enables

registerR1 (this models an acknowledgement signal). Also the combinational logic nodesL1, L3

andL4 evaluate at this step (note thatL4 exhibits early evaluation). This allows forward enablingof

registersR3 andR5. At Step 3 an AND-token is produced in registerR1 because it is both forward

enabled and backward enabled; as AND-token appears inR1 and it is a source, it becomes forward

disabled. Also the OR-tokens propagate to forward enabled registersR3 andR5. Now registerR4

becomes both forward enabled and backward enabled. As it does not have a token yet, first, an

OR-token is generated inR4 at Step 4. After that, at Step 5, an AND-tokens appear registersR3

andR4 as they are both forward enabled and backward enabled. At Step 6 OR-token disappears

from the forward disabled registerR2, which leads to forward disabling ofR3. OR-token leaves

the forward disabled registerR3 and registerR4 becomes forward disabled at Step 7, therefore

90

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

− − −

− −

R3 L2 R4

R3 L2 R4

R3 L2 R4

R3 L2 R4

L3

L3

L3

L3

R1 L1R2

R1 L1R2

R1 L1R2

R1 L1R2

L4

L4 R5

L4 R5

L4 R5

Step 3

Step 5

Step 7

R6

R6

R6

R5

R6

Step 1

R6

R6

R6

R6

R3 L2 R4

R3 L2 R4

R3 L2 R4

R3 L2 R4

L3

L3

L3

L3

R1 L1R2

R1 L1R2

R1 L1R2

R1 L1R2

L4 R5

L4 R5

L4 R5

L4 R5

Step 4

Step 6

Step 8

Step 2

R1 L1R2

R3 L2 R4

L3

L4 R5

Step 9

R6 R6R1 L1R2

R3 L2 R4

L3

L4 R5

Step 10

Register:

Marking:

Logic: − reset; evaluated;
forward

evaluated;
backward EE early

evaluation.

− disabled; forward backward
enabled; enabled;

− OR−token; − AND−token.

EE

EE

EE

EE

EE

EE

EE

EE

EE EE

Figure 5.6: Counterflow SDFS example

OR-token is removed formR4 which forward disablesR5 at Step 8. Now, at Step 9, OR-token

leavesR5 and registersR2 andR4 become both forward disabled and backward disabled, therefore

AND-tokens can be removed from them, as show at Step 10.

Note that at Step 4 it does not matter which register,R3 orR5, initiates the OR-token inR4 - the

resultant marking is the same. Thus, the merge of the data tokens (moving in forward direction)

and the negative tokens (moving in backward direction) is modelled by OR-causality instead of

arbitration. This is the main advantage of the counterflow model over the antitoken model.

The major drawback of the counterflow model is the complex behaviour of its registers. It

91

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

is difficult to design a fully indicating and hazard-free controller for counterflow registers. In-

teresting implementations of such controller were proposed in [32, 22]. Due to the complexity

of the counterflow protocol these implementations are several times larger than a Muller pipeline

stage. This is particularly disadvantageous when no token borrowing is actually possible. For

example, consider a long linear pipeline with a small section Shaving parallel branches, e.g. for

speculative computation. The token borrowing is only possible within sectionS, but in order to

satisfy the counterflow protocol the whole pipeline has to beimplemented using large counterflow

controllers.

A combination of counterflow pipeline (for the sections which require preemption) and Muller

pipeline (for the rest of the circuit) is a promising way to build asynchronous data path. Such data

path has all advantages of counterflow pipelines (no arbitration, preemption, early evaluation,

speculation) for the price of moderate area increase compared to Muller pipeline. The hybrid data

path can be modelled by combining spread token and counterflow semantics of SDFS model as is

described in Section 5.5.

5.5 Hybrid semantics

The idea of combining a counterflow pipeline with a Muller pipeline originates from [107], where

PN models and gate-level implementations for converters between different pipeline types were

proposed. The subject of this section is to capture the behaviour of such hybrid pipeline in special

SDFS model, which is a combination of spread token and counterflow models. The main idea for

this model is that only those parts of data path which may exhibit preemption should be modelled

by the counterflow semantics while the rest of the data path should have the spread token seman-

tics. Such a syndication of the token game semantics is called ahybrid SDFS model. One of the

ways to achieve this hybrid functionality is to introduce a pair of converters between the spread

token SDFS nodes and the counterflow SDFS nodes. For this the set of SDFS registersRneeds to

be extended with a special kind of registersC ⊆ R, which have spread token type of interface on

one side and counterflow interface on the other side.

A spread token to counterflow(ST2CF) converter behaves as a spread token register to its pre-

set and as a counterflow register to its postset. Only nodes with spread token semantics are allowed

92

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

in the preset of an ST2CF converter and only nodes with counterflow semantics are allowed in its

postset. The set of ST2CF converters is denoted asCST2CF ⊆C.

A counterflow to spread token(CF2ST) converter appears as a counterflow register to its preset

and as a spread token register to its postset. The preset of a CF2ST converter can only contain

nodes with counterflow semantics, while its postset only allows nodes with spread token semantics.

The set of ST2CF converters is denoted asCCF2ST ⊆C.

The behaviour of ST2CF and CF2ST converters is somewhat symmetrical. They are used in

pairs forming structures of fork-join type. An ST2CF converter is used as fork interface from a

part of the data path without early propagation to the part with several concurrent branches where

preemption mechanism is employed. These concurrent branches are subsequently joined into a

CF2SF converter which limits the early propagation and preemption to the fork-join part of the

data path.

Marking semantics

The ST2CF and CF2ST converters should be able to accept threetypes of tokens: ordinary to-

kens (used in spread token model), OR-tokens and AND-tokens(used in counterflow model).

Therefore the marking of the converters is defined asMC = M ×MOR×MAND, where function

M : C→{0,1} is spread token marking,MOR : C→{0,1} is OR-marking andMAND : C→{0,1}

is AND-marking.The semantics of these markings are the sameas in spread token and counterflow

models, respectively.

Enabling state

The hybrid enabling state for SDFS converters comprises of three components. The first compo-

nent is enabling stateΣ : C → {0,1} for the spread token part of all converters. The other two are

ΣF : C →{0,1} andΣB : C→ {0,1} which are forward enabling and backward enabling states of

the counterflow parts. The semantics of these enabling states are the same as for the registers of

spread token model and counterflow model.

Operation of ST2CF converter

The enabling and disabling conditions for the spread token part of an ST2CF converterc∈CST2CF

93

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

are the same as for a spread token register:

σ+ (c) = M (c)∧
∧

k∈•c∩L

Ξ(k) ∧
∧

q∈•c∩R

M (q)

σ− (c) = M (c)∧
∧

k∈•c∩L

Ξ(k) ∧
∧

q∈•c∩R

M (q)

The spread token part of an ST2CF converterc∈CST2CF becomes enabled whenσ+ (c) = 1

and it becomes disabled whenσ− (c) = 1.

The forward enabling and forward disabling conditions for the counterflow part of an ST2CF

converterc ∈ CST2CF are similar to those of a counterflow register. The major simplification is

because an ST2CF converter does not have any counterflow nodes in its preset and the marking of

its spread token part is taken into account instead:

σF
+ (c) = MAND(c)∧M (c) ; σF

− (c) = MAND(c)∧M (c)

The backward enabling and backward disabling conditions are the same as for a counterflow

register:

σB
+ (c) = MAND(c)∧

∧

k∈c•∩L

ΞB(k) ∧
∧

s∈c•∩R

MOR(s)

σB
− (c) = MAND(c)∧

∧

k∈c•∩L

ΞB (k) ∧
∧

s∈c•∩R

MOR(s)

The counterflow part of an ST2CF converterc ∈ CST2CF becomes forward enabled when

σF
+ (c) = 1 and it becomes forward disabled whenσF

− (c) = 1. Similarly, it becomes backward

enabled whenσB
+ (c) = 1 and it becomes backward disabled whenσB

− (c) = 1.

Once the spread token part of an ST2CF converter is enabled, it may accept a spread token,

providing all the spread token registers in its R-preset aremarked and its counterflow part does not

have an OR-token. When the spread token part becomes disabled it may lose the token. Formally,

these marking conditions are:

94

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

m+ (c) = MOR(c)∧Σ(c)∧
∧

q∈⋆c

M (q)

m− (c) = MOR(c)∧Σ(c)∧
∧

q∈⋆c

M (q)

The spread token part of a converterc∈CST2CF can be marked with a token whenm+ (c) = 1

and can be unmarked whenm− (c) = 1.

The marking and unmarking conditions for the counterflow part of an ST2CF converter are

identical to those of counterflow register. The only simplification is that there are no counterflow

nodes in the preset of a ST2CF converter:

mOR
+ (c) = MAND(c)∧

(

ΣF (c)∨ΣB(c)
)

∧
∧

q∈c⋆

MAND(q)

mOR
− (c) = MAND(c)∧

(

ΣF (c)∨ΣB(c)
)

∧
∧

q∈c⋆

MAND(q)

mAND
+ (c) = MOR(c)∧ΣF (c)∧ΣB(c)∧

∧

q∈c⋆

MOR(q)

mAND
− (c) = MOR(c)∧ΣF (c)∧ΣB(c)∧

∧

q∈c⋆

MOR(q)

The counterflow part of a converterc ∈ CST2CF can be marked with an OR-token when

mOR
+ (c) = 1 and the OR-token can be removed whenmOR

− (c) = 1. Similarly, it can be marked

with an AND-token whenmAND
+ (c) = 1 and the AND-token can be removed whenmAND

− (c) = 1.

Operation of CF2ST converter

The forward enabling and forward disabling conditions for the counterflow part of a CF2ST con-

verterc∈CCF2ST are identical to those of a counterflow register:

σF
+ (c) = MAND(c)∧

∧

k∈•c∩L

ΞF (k) ∧
∧

q∈•c∩R

MOR(q)

95

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

σF
− (c) = MAND(c)∧

∧

k∈•c∩L

ΞF (k) ∧
∧

q∈•c∩R

MOR(q)

For the backward enabling and backward disabling conditions there is a significant simplifi-

cation compared to the counterflow registers. This is due to the fact that there is no counterflow

nodes in the postset of a CF2ST converter and the marking of its spread token part is taken into

account instead:

σB
+ (c) = MAND(c)∧M (c) ; σB

− (c) = MAND(c)∧M (c)

The counterflow part of a CF2ST converter becomes forward enabled whenσF
+ (c) = 1 and

it becomes forward disabled whenσF
− (c) = 1. Similarly, it becomes backward enabled when

σB
+ (c) = 1 and it becomes backward disabled whenσB

− (c) = 1.

The spread token part of a CF2ST converterc ∈ CCF2ST becomes enabled when there is an

OR-token in its counterflow part; it becomes disabled when the OR-token leaves the converter.

These enabling and disabling conditions can be formalised as:

σ+ (c) = M (c)∧MOR(c); σ− (c) = M (c)∧MOR(c)

Marking and unmarking conditions of the counterflow part of aCF2ST converter are sim-

ilar to those of a counterflow register. Formally, for a CF2STconverterc ∈ CCF2ST the OR-

making/unmarking conditions and AND-marking/unmarking conditions are:

mOR
+ (c) = MAND(c)∧

(

ΣF (c)∨ΣB(c)
)

∧
∧

q∈⋆c

MAND(q)

mOR
− (c) = MAND(c)∧

(

ΣF (c)∨ΣB(c)
)

∧
∧

q∈⋆c

MAND(q)

mAND
+ (c) = MOR(c)∧ΣF (c)∧ΣB(c)∧

∧

q∈⋆c

MOR(q)

96

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

mAND
− (c) = MOR(c)∧ΣF (c)∧ΣB(c)∧

∧

q∈⋆c

MOR(q)

The counterflow part of a converterc ∈ CCF2ST can be marked with an OR-token when

mOR
+ (c) = 1 and the OR-token can be removed whenmOR

− (c) = 1. Similarly, it can be marked

with an AND-token whenmAND
+ (c) = 1 and the AND-token can be removed whenmAND

− (c) = 1.

Finally, the marking and unmarking of the spread token part of a CF2ST converterc∈CCF2ST

are determined by the following conditions:

m+ (c) = Σ(c)∧
∧

s∈c⋆

M (s); m− (c) = Σ(c)∧
∧

s∈c⋆

M (s)

These conditions are derived from the marking and unmarkingconditions for the spread token

register, assuming there is no spread token register in the R-preset of a CF2ST controller. The

spread token part of a converterc∈CCF2ST can be marked with a token whenm+ (c) = 1 and can

be unmarked whenm− (c) = 1.

Consider the operation of the hybrid SDFS model on a simple example shown in Figure 5.7.

At Step 1 only ST2CF converterR2 is enabled and a token propagates into it as Step 2. This

forward enables the counterflow part of the controller and itgets an OR-token at Step 3; the

counterflow registerR3 and the CF2ST converterR5 are forward enabled now. Also the tail of

spread token is removed from disabled registerR1 at this step. At Step 4 both forward enabled

registerR3 and forward enabled CF2ST converterR5 get marked with OR-tokens and backward

enable the counterflow part of ST2CF converterR2. The OR-token in registerR3 also forward

enables registerR4 and the OR-token in CF2ST converterR5 enables its spread token part. At

Step 5 the counterflow part of ST2CF converterR2 is marked with AND-token because it has

an OR-token and is both forward enabled and backward enabled. Also a token propagates to

the spread token part of the CF2ST converterR5. At Step 6 a token is removed from the disabled

spread token part of the ST2CF converterR2; also a token propagates from the CF2ST converterR5

to the registerR6. The forward disabled counterflow part of the ST2CF converter R2 is freed of

OR-token at Step 7, which forward disables the registerR3. At Steps 8 and 9 OR-tokens first

leave the registerR3 and then the registerR4, which forward disables the counterflow part of the

97

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

CF2ST converterR5. Now OR-token disappears from the forward disabled CF2ST converterR5,

thus disabling its spread token part. Also the registerR4 and the ST2CF converterR2 become

backward disabled, see Step 10. Finally, the rest of the registers return to the initial state at

Steps 11 and 12.

5.6 Verification of SDFS models

Direct verification of the SDFS models is a difficult task as there are no formal methods and no

software tools to do this. It is however reasonable to reuse the variety of verification methods

and model checking tools developed for Petri nets. In order to do this a conversion technique is

required, which maps SDFS models into equivalent Petri nets.

An SDFS model with its token game semantics is a high level paradigm. At the low level this

model can be viewed as a Petri net, or more precisely an STG, inwhich each state variable of the

SDFS model is represented by anelementary cycle.

An elementary cycle models a state of a binary variablex ∈ {0,1} by two placesx = 0 and

x = 1, which represent the value associated to variablex. There is at least one transitionx+

and one transitionx− between placesx= 0 andx= 1, such thatx+ ∈ (x= 0)•, x+ ∈ •(x= 1),

x−∈ (x= 1)•, x−∈ •(x= 0). Transitionx+ determines the change of variable state from 0 to 1,

while x− represents the change of the state from 1 to 0. Transitionsx+ andx− may also connected

to read-arcs which enable the transitions only when a certain condition is held.

Consider the mapping of spread token model into elementary cycles of PN. In this model a

combinational logic nodel ∈ L is associated with a single evaluation state variableΞ(l) and a pair

of evaluation conditionξ+ (l) and resetting conditionξ− (l) (see Section 5.3 for details). At the PN

level this is modelled as an elementary cycleΞ(l) shown in Figure 5.8(a). The read-arc connected

to Ξ(l)+ allows this transitions to fire only when enabling conditionξ+ (l) = 1 is held. Similarly,

transitionΞ(l)− becomes enabled only if its enabling conditionξ− (l) = 1 is held. Note that for

readability of the figure the variable nameΞ(l) is only shown in the middle of the elementary

cycle; places and transitions associated with this variable are labelled in a shorthand notation. In

particular, placesΞ(l) = 0 andΞ(l) = 1 are labelled′0′ and′1′ while transitionsΞ(l)+ andΞ(l)−

are labelled′+′ and′−′ respectively.

98

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

R3 L2 R4

L3

L1 L4R2 R5R1 R6

R3 L2 R4

L3

L1 L4R2 R5R1 R6

R3 L2 R4

L3

L1 L4R2 R5R1 R6

R3 L2 R4

L3

L1 L4R2 R5R1 R6

R3 L2 R4

L3

L1 L4R2 R5R1 R6

R3 L2 R4

L3

L1 L4R2 R5R1 R6

Step 1

Step 3

Step 5

Step 7

Step 9

Step 11

R3 L2 R4

L3

L1 L4R2 R5R1 R6

R3 L2 R4

L3

L1 L4R2 R5R1 R6

R3 L2 R4

L3

L1 L4R2 R5R1 R6

R3 L2 R4

L3

L1 L4R2 R5R1 R6

R3 L2 R4

L3

L1 L4R2 R5R1 R6

R3 L2 R4

L3

L1 L4R2 R5R1 R6

Step 2

Step 4

Step 6

Step 8

Step 10

Step 12

Converter: − spread token to counterflow; − counterflow to spread token.

EE

EE

EE

EE

EE

EE

EE

EE

EE

EE

EE

EE

Figure 5.7: Combined spread token and counterflow SDFS example

+

−

0 1Ξ(l)

ξ+(l) = 1

ξ−(l) = 1
(a) Logic nodel ∈ L

+

−

10

+

−

0 1Σ(r)

σ+(r) = 1

σ−(r) = 1

M(r)

m+(r) = 1

m−(r) = 1
(b) Register noder ∈ R

Figure 5.8: Underlying STG for spread token SDFS

99

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

Mapping of a spread token register into a PN is illustrated inFigure 5.8(b). There are two state

variables associated with a registerr ∈ R: enabling stateΣ(r) and markingM (r). Therefore two

elementary cycles are required to capture the register behaviour by a PN. Conditionsσ+ (r) = 1

andσ− (r) = 1 control transitionsΣ(r)+ andΣ(r)− respectively. The former denotes when the

register is enabled and the later when it is disabled. Likewise, the change of register marking is

defined by conditionsm+ (r) = 1 andm− (r) = 1, which enable transitionsM (r)+ andM (r)−

respectively.

Usually the enabling conditions on the read-arcs are more complex than a single variable. Such

conditions should be represented into a disjunctive normalform (DNF). Then each DNF clause is

mapped into a separate transition of the elementary cycle and each variable of the clause is read

by its own read-arc.

In order to illustrate how the enabling conditions are represented by means of read-arcs con-

sider a simple spread token example shown in Figure 5.9(a). Note that the combinational logic

node l2 is tagged withEE label, which means it can evaluate as soon as one of its inputsis

ready. Let us concentrate on mapping of this node into an elementary cycleΞ(l2). The evaluation

condition associated with this node isξ+ (l2) = Ξ(l1)∨M (r2) while the resetting condition is

ξ− (l2) = Ξ(l1)∧M (r2).

For the evaluation phaseξ+ (l2) = 1 implies(Ξ(l1) = 1)∨ (M (r2) = 1). This expression has

two DNF clauses, therefore transitionΞ(l2)+, which is controlled by the conditionξ− (l2), is

split into a pair of transitionsΞ(l2)+/1 andΞ(l2)+/2. TransitionΞ(l2)+/1 is enabled when

placeΞ(l1) = 1 is marked and transitionΞ(l2)+ /2 is enabled by a token in placeM (r2) = 1,

as shown in Figure 5.9(b). Firing either of these transitions changes the evaluation state of node

l2∈ L, which models the early evaluation.

At the reset phase,ξ− (l1) = 1 implies (Ξ(l1) = 0)∧ (M (r1) = 0). This expression has a

single DNF clause and therefore both read-arcs, one from place Ξ(l1) = 0 and the other from

placeM (r1) = 0, are connected to the same transitionΞ(l2)−. This means that both places must

be marked to allow the reset of nodel2∈ L, i.e. no early reset is possible.

Elementary cycles for the rest of the nodes are built the sameway. Note that the resultant

STG is consistent by construction because the positive and negative transitions of each signal (or

100

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

r1

r2

l1

l2 r3

EE

(a) Static data flow structure

− −

−

0 1

+

0 1

−

−

0 1

+

+

0 1

−

−

−

0 1

0 1

+

+

0 1

0 1

+

+/2

+/1

r1

l1

r2

r3

l2

Ξ(l1)

Ξ(l1)=0

Ξ(l1)=1

Ξ(l2)

Ξ(l2)=0

Ξ(l2)=1
Σ(r1)

Σ(r1)=0

Σ(r1)=1

M(r1)

M(r1)=0

M(r1)=0

M(r1)=0

M(r1)=1

M(r1)=1

M(r1)=1
Σ(r2)

Σ(r2)=0

Σ(r2)=1

M(r2)

M(r2)=0

M(r2)=0

M(r2)=0

M(r2)=1

M(r2)=1

M(r2)=1

Σ(r3)

Σ(r3)=0

Σ(r3)=1

M(r3)

M(r3)=0

M(r3)=0

M(r3)=0

M(r3)=1

M(r3)=1

M(r3)=1

(b) Petri net

Figure 5.9: Mapping SDFS with spread token semantics into Petri net

101

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

variable) alternate in each the elementary cycle.

Consider the conversion of SDFS models into PNs on a more realistic benchmark, e.g. ARISC

processor whose SDFS model is shown in Figure 5.10(a). This is a relatively small example

which consists of 17 combinational logic nodes and 14 registers. However, its underlying PN is

quite big even for a basic spread token semantics without early propagation, see Figure 5.10(b).

The PN consists of 45 elementary cycles: 17 elementary cycles for combinational logic nodes and

28 elementary cycles to represent 14 registers. The names ofplaces and transitions are hidden as

they are not readable at this scale. It is still possible to see the correspondence of the elementary

cycles to the original SDFS nodes - their relative layout is preserved.

Due to high concurrency this PN has more than 107 states and therefore cannot be verified by

analysing the whole state space in reasonable time. For example, it took Petrify three hours before

it ran out of memory. Instead, verification tools based on analysis of unfolding prefixes should be

employed. The unfolding prefix for this PN has only 164 eventsand is built by Punf [64] in 18ms.

Analysis of the resultant unfolding by MPSAT confirms that the model of the ARISC processor

does not have deadlocks.

In this section a method for mapping of high-level spread token SDFS model into low-level

PN has been presented. The same technique can be used to buildunderlying PNs for other SDFS

models. The only difference is in the number of elementary cycles representing the state of SDFS

nodes. For example, in counterflow model each combinationallogic nodel ∈ L is associated with

two state variables, the forward evaluation stateΞF (l) and the backward evaluation stateΞB (l)

which are mapped into a pair of elementary cycles. A counterflow registerr ∈ R has four state

variables: forward enablingΣF (r), backward enablingΣB(r), OR-markingMO(r) and AND-

markingMA (r). Each of these variables is represented by its own elementary cycle. The transpar-

ent correspondence between SDFS and PNs allows to reuse model checking tools developed for

PNs to verify SDFS specifications.

5.7 Comparison of SDFS token game semantics

All the token game semantics presented in this chapter have their advantages and drawbacks. In

this section the models are informally compared in few aspects, which are summarised in Ta-

102

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

(a) SDFS model

(b) PN model

Figure 5.10: ARISC processor

103

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

Table 5.1: Comparison of SDFS token game semantics

Token game Model Model Early Preemption Conflict Control

semantics complexity power evaluation mechanism resolution complexity

Atomic token simple limited no no n/a simple

Spread token simple good partially no n/a simple

Antitoken complex excellent yes yes arbitration complex

Counterflow moderate excellent yes yes OR-causality moderate

Hybrid simple/moderate excellent yes yes OR-causality simple/moderate

ble 5.1. In particular, the model complexity, model power, control complexity, support for early

evaluation and preemption are compared.

The SDFS token game semantics can be classified asbasicandadvancedmodels. The former

models only capture basic features of the asynchronous datapath, while the later are able to capture

more advanced concepts, such as preemption and speculation. Clearly, the atomic token and the

spread token semantics belong to the class of basic models, while the antitoken and the counterflow

are advanced models.

In the basic model category, both the atomic token and the spread token models have similar

complexity. However, the atomic token semantics can only beapplied to some class of well-

formed SDFS, which limits its model power. The spread token semantics represents a much wider

class of asynchronous data path circuits and has a rudimentary support for early evaluation (within

one pipeline stage). Therefore, the spread token semanticsa better choice for basic SDFS mod-

elling.

In the category of advanced models the difference is mostly in the complexity of the semantics

and the implementation of control logic. Both, antitoken and counterflow semantics capture early

evaluation and preemption. However, the counterflow semantics has simpler token game rules.

Also, the use of OR-causality (as opposed to arbitration in antitoken semantics) for the resolution

of conflicts between tokens results in a simpler implementation for control logic. These advan-

tages make counterflow semantics a better choice for modelling SDFS with early evaluation and

preemption.

The hybrid token game semantics has the advantages of both, basic and advanced models.

In this model the relatively complex counterflow semantics is only used in those parts of SDFS

where preemption can be exploited to speed up the data path. In the rest of the SDFS simple

104

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

spread token semantics is employed. At the level of implementation this results in significant area

decrease compared because the ordinary Muller pipeline stages are much smaller than counterflow

pipeline controllers.

Verification of SDFS models is based on their conversion intoschematic PNs, as has been

described in Section 5.6. The verification tools which use the explicit state space representation

of the underlying PN fail even on relatively small SDFS examples. The reason for this is a high

level of concurrency in SDFS models, which leads to the statespace explosion. The high level

of concurrency does not cause a problem for unfolding-basedverification tools because unfolding

prefixes capture the concurrency in a very compact form, comparable to the size of original PNs.

Choice becomes a problem for unfolding though, because eachchoice branch needs to be unfolded

and stored explicitly. However, there is not much choice in the SDFS models. The only source

of choice is early evaluation, which is usually limited to few nodes where concurrent branches

synchronise. In our experiments, if no early evaluation wasallowed, the unfolding time did not

exceed few seconds even on relatively large SDFS examples containing few hundred nodes. If

early evaluation was enabled, then benchmarks of up to a hundred counterflow SDFS nodes could

be verified using unfolding-based tools. The benchmark results based on PUNF unfolder and

MPSAT model checker [64] are presented in Table 5.2.

All the benchmarks in Table 5.2 have combinational logic nodes with early evaluation. In

the small benchmark, which has 27 nodes only, the presence of early evaluation is not critical

for the unfolder - it handles both spread token and counterflow semantics within a second. For

theaveragebenchmark, which has 70 nodes, the counterflow semantics becomes a problem - the

unfolding prefix grows much larger than the PN and it takes nearly two minutes to build. The

hybrid SDFS model becomes useful in this case. If the counterflow semantics is only applied to

those 12 nodes which can exhibit preemption, then the unfolding size is much smaller and the

computation time is just 4 seconds. Thelargebenchmark, which consists of 524 nodes, is verified

in 2 seconds under spread token semantics. However, if the counterflow semantics is applied, the

computation time exceeds 38 minutes; if the hybrid semantics is used with 96 nodes exhibiting

preemption, then the computation time is reduced to 8 minutes. Therefore, few hundred nodes is a

practical limit for the size of SDFS models which can be verified by our method within acceptable

105

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

Table 5.2: Benchmark results

Benchmark Model SDFS size PN size Unfolding size Computation

semantics (basic / advanced) (place / transition) (event / cutoff) time (sec)

spread token 27 / 0 172 / 83 125 / 3 <1

small counterflow 0 / 27 484 / 193 524 / 18 <1

hybrid 17 / 10 318 / 135 351 / 19 <1

spread token 70 / 0 452 / 205 2,063 / 92 1

average counterflow 0 / 70 1,080 / 463 20,933 / 858 117

hybrid 58 / 12 602 / 261 7,668 / 443 4

spread token 524 / 0 3,352 / 1,520 6,570 / 192 2

large counterflow 0 / 524 9,324 / 3,448 144,574 / 6,444 2,319

hybrid 428 / 96 4,632 / 1,976 83,476 / 7,484 492

spread token 58 / 0 436 / 188 297 / 9 <1

ee2 counterflow 0 / 58 1,212 / 440 4,202 / 212 2

hybrid 36 / 22 780 / 304 3,015 / 219 1

spread token 58 / 0 436 / 190 309 / 13 <1

ee3 counterflow 0 / 58 1,212 / 442 11,516 / 742 15

hybrid 25 / 33 952 / 364 9,652 / 793 8

spread token 58 / 0 436 / 192 321 / 17 <1

ee4 counterflow 0 / 58 1,212 / 444 31,604 / 2,783 291

hybrid 14 / 44 1,124 / 424 30,163 / 2,805 199

deadlock hybrid 5 / 19 300 / 128 26,658 / 5,407 103

106

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

time.

Let us study the influence of early evaluation on the size of unfolding prefix and computation

time using benchmarksee2, ee3andee4. These benchmarks are essentially the same SDFS, but

with different number of early evaluating fork-join blocks- two, three and four early evaluating

blocks, respectively. The early evaluating block in these benchmarks is such that any of its three

inputs is sufficient to produce the output. For the spread token semantics the number of early eval-

uation blocks does not change the unfolding time or size muchbecause there is no preemption in

this model and the early evaluation is limited to a single pipeline stage. Contrary, for the counter-

flow semantics both the size of unfolding prefix and its computation time grow exponentially with

the number of early evaluation blocks. This is due to the choices introduced by early evaluating

combinational logic nodes.

In the last benchmark, calleddeadlock, the evaluating and resetting conditions of combina-

tional logic nodes were modified to force a deadlock in the model. Verification of the model

revealed a trace leading to a deadlock state.

5.8 SDFS with dynamic elements

Let us consider a following situation: data that comes into asection of the data path may need to

be processed via two alternative computation paths, one significantly slower than the other. The

decision which computation path to take is produced by the control path, which is external to the

data path. In a fully static data flow model that has been presented in this chapter, both paths

will have to start executing the computation simultaneously. Although the faster result can be

output immediately by making the join element early propagative, in order to start the next wave

of the computation the execution of the slower path still needs to be completed. If a more complex

token game, such as counterflow, were used in the pipeline, then the execution of the slower path

could be interrupted. However, in the modelled system only one path is enabled at a time, and

the computation in the other branch should not start at all. Therefore, it is not always possible to

model the expected behaviour using SDFS.

107

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

5.8.1 Dynamic elements

To resolve this limitation, it is necessary to introduce elements that would model the influence of

the control path on the underlying data path. These elementsare calleddynamic,because they

modify the otherwise static, or deterministic, execution flow of the model. To model the activity

of the control signals, it is necessary to introduce a new class of tokens, calledcontrol tokens,

that would represent the propagation of the control signalsin a way similar to the propagation

of data. As opposed to the data tokens that represent abstract data items in the SDFS model, the

control tokens need to be associated with the actual data values. In the scope of this work only

two possible values are used, depicted as-token and -token.

Figure 5.11: Graphical representation of a control node

5.8.2 Control

The control node acts similarly to the spread token SDFS register, with the exception that it propa-

gates control tokens preserving their values. Note that thecontrol is allowed to be connected only

to the push/pop nodes or to another control node.

A control node is initially in a disabled state. It can beenablediff all nodes in its preset are

marked with a token. An enabled node can bemarkedwith a -token if it is enabled, not yet

marked and all nodes in its preset are marked with a-token, and, similarly, it can be marked with

a -token iff all nodes in its preset are marked with a-token, thus achieving the propagation of

the tokens while preserving their values. A marked control node can becomedisablediff any of

its preset nodes become unmarked, and the token can be removed from a disabled node iff none of

its preset nodes hold a token.

If a control node has an empty preset, it is called anexternal controlnode. An external control

node is always enabled and can be marked either with a-token or a -token in a free choice. A

control node is not allowed to have an empty postset.

108

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

Figure 5.12: Graphical representation of the push and pop nodes

5.8.3 Push

Push is an element that, depending on the choice made by the control, either forwards the data

token or destroys (acknowledges) it. Paired with pop, it canbe used to select one of several

possible paths of the data flow. The Push element is comprisedof the three blocks: theouter

interface (OI), theinner interface (II),and thecontrol interface (CI)(Figure5.12). The outer and

inner interfaces act as a pair of regular SDFS registers for the other SDFS nodes, i.e. they can be

enabled, disabled, marked and unmarked; however the marking visible to its postset and preset

nodes is different. If an SDFS node is in the push node’s preset, it reads the marking of theouter

interface.If an SDFS node is in the push node’s postset, it reads the marking of theinner interface.

The transfer of tokens between the outer and inner interfaces is governed by a special set of

rules, which are as follows. Note thatpreset, postset, r-preset, r-postsetare defined for the Push

and pop elements in the same way they are defined for regular SDFS elements [107].

The OI, II and CI are initially disabled and unmarked. The OI can become enabled iff all

registers in the push’s preset are marked and all logic nodesin the push’s preset are evaluated. The

OI can become marked with a token iff it is enabled, the II and CI are unmarked, the r-preset of

the push is marked. OI can become disabled iff any of the registers in the push’s preset becomes

unmarked or any of the logic nodes in the push’s preset becomes reset. The disabled OI can be

unmarked iff the r-preset of the push is unmarked and the II ismarked.

The II can become enabled iff the OI holds a token and the CI holds a -token. The enabled

II can be marked iff the r-postset of the push is unmarked.

The CI behaves according to the similar set of rules as a control node, with the exception that

it can only accept a token when the OI is marked, and can be unmarked when the OI is unmarked.

To summarise, the push element synchronises a data token on the outer interface with a control

109

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

token. If the control token is a-token, it forwards the data token by transferring it into its inner

interface, and then allows the token to be removed from the outer interface. If the data token is a

-token, it allows the token to be removed from the outer interface without transferring it into the

inner interface.

5.8.4 Pop

Pop is an element that, depending on the choice made by the control, either forwards the data

token or produces a dummy token. Paired with push, it can be used to select one of several

possible execution paths. Its structure is similar to the push, but the marking rules are different

and are as follows.

The OI, II and CI are initially disabled and unmarked. The OI can become enabled iff all

registers in the pop’s preset are marked and all logic nodes in the pop’s preset are evaluated. The

OI can become marked with a token iff it is enabled, the II is unmarked, the CI is holds a-token

and the r-preset of the pop is marked. OI can become disabled iff any of the registers in the pop’s

preset becomes unmarked or any of the logic nodes in the pop’spreset becomes reset. The disabled

OI can be unmarked iff the r-preset of the pop is unmarked and the II is marked.

The II can become enabled if the OI holds a token and the CI holds a -token, or if the OI

does not hold a token and CI holds a-token. The enabled II can be marked iff the r-postset of

the pop is unmarked.

The CI behaves according to the similar set of rules as a control node, with the exception that

in can only be marked when the II is unmarked, and can be unmarked when the II is marked.

To summarise, the pop element first receives a control token.If it is a -token, it then syn-

chronises it with a data token on the outer interface and transfers it into the inner interface. If the

token is a -token, it immediately produces a dummy data token on the inner interface.

5.8.5 Mux and Demux

The multiplexer and demultiplexer are good examples of how the basic dynamic elements can be

used. In Figure 5.13 (a), the demux is an element that, depending on the choice made by the

control, forwards a data token from its input to one of its outputs. This is implemented using

110

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

(a) Demux (b) Mux

Figure 5.13: Implementation of the multiplexer and demultiplexer using dynamic components

(a) Control element

(b) Push/Pop element

Figure 5.14: Petri net mapping of the dynamic elements

push elements. Depending on the value of the control token, one of the push elements receives a

-token and forwards the input token received via the fork element, and the other one receives a

-token and blocks the token from entering its correspondingdata path.

The mux (Figure 5.13 (b)) is an element that, depending on thechoice made by the control,

forwards a data token from one of its inputs to its output. Muxis implemented using two Pop

elements. Depending on the value of the control token, one ofthe Pop elements receives a-

token and forwards the input token to the join element, whilethe other one receives a-token and

generates a dummy token that is also sent to the join element,where it is OR-ed with the actual

data token resulting in the propagation of the data from the selected channel.

111

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

5.8.6 Mapping of the dynamic SDFS elements into Petri net fragments

To apply the verification method given in Section 4.4 to the dynamic elements, it is necessary to

define the set of signals that are to be mapped into elementarycycles.

For the control node (Figure 5.14 (a)), 3 signals are necessary: the enabling state of the control

node, and the presence of the control token. Because the control token can carry data, it has to

be represented with more than one signal to encode the “value” of the token. The control tokens

are allowed to only have 2 different values: 0 and 1, and thus two signals are enough to encode

the value. The token presence signal can also be encoded using the same signals, similar to dual-

rail encoding: the 00 value means “no token”, 10 means “0-token present”, 01 means “1-token

present” and the value of 11 is not allowed. To build the firingrules that need to test only for

the presence of a token (and do not care about its value) in theform of Boolean equations an OR

construct is used. This approach also allows to extend the data domain if need arises simply by

adding additional cycles.

For the push and pop nodes(Figure 5.14 (b)), the number of required signals is higher because

they act as a 3-way node: they accept control tokens, data tokens and can generate (dummy) data

tokens themselves. The signals for the outer and inner interfaces are the same as for the usual

SDFS register: enabling and marking, and the signals for thecontrol interface are the same as for

the Control node: enabling and 2 signals for the control token value.

Once the Petri net cycles are constructed for each of the signals, they are ready to be intercon-

nected using read arcs to impose the firing rules.

5.9 Conclusions

In this chapter a new token-based model (called a Static DataFlow Structure) that captures the

behaviour of an asynchronous data path has been defined. The basic idea of an SDFS described

in [110] has been formalised and extended using three different sets of token game rules: atomic

token, spread token and counterflow. The rules controlling the behaviour of various elements in

an SDFS pipeline (e.g., the marking and disabling of registers, propagation of tokens) have been

formally defined and explained for each token semantic. The advantages and disadvantages of

112

CHAPTER 5. MODELLING, SIMULATION AND AUTOMATED VERIFICATION OF THE
DATA PATH OF ASYNCHRONOUS CIRCUITS

each set of token game rules have been analysed. Additionally, a hybrid SDFS model, which

allows combining the advantages of spread token and counterflow semantics, has been presented.

An extension of SDFS model with dynamic elements that further extends the modelling power of

SDFS had been defined.

The strict formalisation of the token game rules was used to implement an automated ver-

ification technique. SDFS models can be automatically translated into low-level Petri nets for

subsequent verification and model checking by existing tools. The low level traces produces by

those tools can be automatically re-interpreted in terms ofthe higher level SDFS model.

All of the SDFS models presented in this chapter have been implemented as plug-ins to

Workcraft (Chapter 7) which were used to analyse the advantages and drawbacks of different

SDFS token game rules on a set of benchmarks.

This chapter is based on a number of previously published papers [108, 109, 94].

113

Chapter 6

Interpreted Graph Models

Petri nets [90, 84] have historically been known as a formalism that is especially suitable for the

modelling of concurrent and distributed systems. The valueof Petri nets originates mainly from

the fact that their clean and intuitive graphical notation is backed by a strict mathematical model

of their behaviour. The graphical notation is very helpful during the manual system design and

investigation. At the same time there exists a rich and mature formal theory of Petri nets as well as

the numerous automated tools that are able to efficiently verify various behavioural properties of

a given net. In particular, model checking [40] is an automated technique designed to either prove

that a certain property (e.g., deadlock freeness, reachability of a certain marking, etc.) holds for

a given net or to produce a trace demonstrating how the property is violated. This information is

very useful for troubleshooting, and often allows to detectand fix errors early in the system design

process.

On the other hand, Petri nets are often seen as a low-level formalism, much like an assembly

language. The size of a Petri net required to describe the behaviour of a useful system can become

so large that the designer is no longer able to comfortably perceive and manage it. To work around

this problem, specialised higher level formalisms are often employed instead of Petri nets to de-

Figure 6.1: High level model verification workflow based on Petri nets

114

CHAPTER 6. INTERPRETED GRAPH MODELS

v1

v2

v3

v4

v5

Figure 6.2: A directed graph

scribe concurrent systems. Such formalisms include, e.g.,coloured Petri nets [60], Conditional

Partial Order Graphs (CPOG) [80], networks of handshake components [47, 119], the Static Data

Flow Structures (SDFS) model presented in Chapter 5 and manyothers. To be of practical use, the

high level formalisms must be supported by an adequate set ofanalysis and verification methods.

Development of specialised theory and tools for every formal model is often impractical — it may

be more efficient to express a formalism in terms of another one (e.g., a Petri net) for which mature

theory and tools have already been developed. Then, the result of the analysis (such as a violation

trace) can be re-interpreted in terms of the original high-level model and presented to the designer

(Figure 6.1). Naturally, Petri nets are a good choice for thetarget model, as their compositions are

well understood, and efficient model checking tools for Petri nets are readily available.

A common feature of the high-level models mentioned above (and also of Petri nets) is the

presence of an underlying static graph structure. Their semantics are defined using additional en-

tities, such as tokens or node/arc states, which together form the overall state of the system. We

jointly refer to such formalisms asInterpreted Graph Models (IGM).The similarities in notation

and expressive power allow a number of basic operations on these formalisms, such as visualisa-

tion and translation from one formalism into another, to be generalised. More complex operations

on the models can also be used, such as interfacing one model type with another. This enables the

designer to model subsystems using the most appropriate formalism, while still maintaining the

ability to simulate and analyse the overall system.

115

CHAPTER 6. INTERPRETED GRAPH MODELS

(a) Mathematical interpretation (firing
equation for transitiont)

(b) Graphical interpretation

Figure 6.3: Different interpretations of a Petri net

6.1 Basic definitions

Definition 6.1. A graph is a pairG = 〈V,E〉 whereV is a set of vertices andE is a set of two-

element subsets ofV that define edges representing connections between vertices. Often it is

practical to consider the elements ofE as ordered pairs (E ⊆V ×V), then an edge(a,b) ∈ E is

said to be directed froma to b (and usually called an arc). A graph with directed edges is called a

directed graph or a digraph (Figure 6.2).

An Interpreted Graph Model (IGM)is a pairM = 〈G, I〉 whereG is a graph representing the

static structureof the model andI is theinterpretationof the elements of the graph. Note thatI is

not strictly defined and depends on the specific interpretation.

For instance, given a Petri netN = 〈P,T,F,m0〉, let G = 〈P∪T,F〉 and I = 〈P,T,m0,M 〉,

whereM represents the firing equations, then the Petri netN is also an IGMM = 〈G, I〉 with

the Petri net token game interpretation (Figure 6.3a). Alternatively, letG = 〈P∪T,F〉 and I =

〈P,T,m0,G 〉whereG is the set of rules describing the Petri net graphical notation. ThenM = 〈G, I〉

is an IGM with a graphical Petri net interpretation (Figure 6.3b). Similarly, a gate-level circuit

model can be interpreted as a set of logic gates, a set of signals, simply a graph, or as information

that can be used to produce an image.

The main idea behind the concept of an Interpreted Graph Model is to split thestructureof the

model from itsinterpretation. This allows to apply different interpretations to the samebacking

data structure, similar to how Petri nets may both be interpreted using the graphical notation or

using the mathematical definitions such as the firing equations (Figure 6.3).

116

CHAPTER 6. INTERPRETED GRAPH MODELS

Figure 6.4: An example of a graphical operation

6.2 Graphical representation of Interpreted Graph Models

Models that have an underlying graph structure are generally rendered as a set of shapes that

represent vertices and a set of lines or arrows that represent edges. For example, in Figure 6.2

a simple directed graph is drawn as a set of circles depictingvertices and a set of straight lines

depicting edges. The lines end with arrows that represent the direction of the edges.

For the more complex models, the shapes of both vertices and edges may also depend on

some additional state information. For example, a place of aPetri net is usually drawn as a circle

with a number of smaller filled circles inside correspondingto the number of tokens in the place.

Otherwise, however, Petri nets, as well as most other graph-based models, graphically look quite

similar to the basic directed graph. In this section we will attempt to capture the similarities in the

graphical presentation to construct a general-purpose graphical presentation algorithm.

The relative location of the graphical objects corresponding to the objects in the graph is

determined either manually or using an automated layout tool (an example of the automated layout

is shown in Figure C.8). When rendered on a computer screen, additional transform operations

can be applied: the graphical objects may be translated, scaled or rotated to give an appropriate

view to the user.

Let G be the set of graphical operations. The individual graphical operations can be seen

as, for instance, sets of vector graphics commands that can be executed to produce an image

(Figure 6.4). LetD(g) be a display operation1 that executes a graphical operationg ∈ G and

1D is assumed to be an external operation, implemented by, e.g., a graphical toolkit. For example, it may be a

117

CHAPTER 6. INTERPRETED GRAPH MODELS

Figure 6.5: Combining a local space drawing function with a transformation

presents the result on the display. Then to display a graphical representation of a given graph

G= 〈V,E〉 it is necessary to define such functionγ(G) that gives a graphical operation that can be

used produce an image ofG and evaluateD(γ(G)).

Let ε ∈ G be an empty graphical operation that produces no image. Letg1 ◦g2 be a compo-

sition operation overG that produces a graphical operation that is the sequential execution of the

operationsg1 andg2. Let D be a functionD : V∪E → G that associates a graphical operation with

every object in the graph. Then

γ(G) =

ε , if V ∪Eis empty

©
n∈V∪E

D(n), otherwise
G= 〈V,E〉 (6.1)

It is usually natural that all objects of the same type are drawn using the same graphical opera-

tion. For instance, every vertex in a graph is drawn using a circle of the same size and in the same

colours. However, if functionD that associates the same graphical operation with every object

were used in equation 6.1, thenD(γ) would display all objects drawn on top of each other, which

is obviously not the desired outcome. It is therefore practical to assume that there exists a function

Dlocal that produces a set of graphical operations relative to a local coordinate space. The function

D can then be derived fromDlocal and anaffine transformationassociated with every object. This

way using the correct transformations the objects of the same type can be drawn using the same

graphical operation but will assume the desired arrangement in the final image (Figure 6.5).

function that rasterises a sequence of vector graphics commands and paints the result in a window.

118

CHAPTER 6. INTERPRETED GRAPH MODELS

Let ∆ be the set of all allowable affine transformations. LetT be a transformation function2

T : G ×∆→G that given a graphical operationg∈G and an affine transformationδ ∈∆ produces

a graphical operationg′ such thatD(g′) displays an image that isD(g) transformed byδ . Let X

be a functionX : V ∪E → ∆ that associates each object in the graph with an affine transformation.

Equation 6.1 can then be rewritten as

γ(G) =

ε , if V ∪Eis empty

©
n∈V∪E

T (Dlocal(n),X(n)), otherwise
G= 〈V,E〉 (6.2)

which given an appropriateX will produce the correct graphical operation that can be used to

generate an image of the graphG usingD(γ(G)).

So far in this section a graphG = 〈V,E〉 has been extended with an interpretationI =

〈Dlocal,X〉 which a graphical representation for this graph to be formally defined. Combining

G andI into a single object we get an Interpreted Graph ModelM = 〈G, I〉. Then

γIGM((G, I)) = γ(G) (6.3)

whereDlocal,Xare inI

which gives a general-purpose graphical operation function for any IGM given an interpretation

that definesDlocal andX.

A pair I = 〈Dlocal,X〉 associated with a graphG= 〈V,E〉 whereDlocal is the drawing function

Dlocal : V ∪E → G and X is the transformation functionX : V ∪E → ∆ is called agraphical

interpretationof the graphG.

2Similar toD , the implementation of the functionT is provided by the graphical toolkit.

119

CHAPTER 6. INTERPRETED GRAPH MODELS

6.2.1 Building a graphical representation of a Petri net

Let N be a Petri netN = 〈P,T,F,m0〉 andDPN
local be a function

DPN
local(n) =

DT
local, if n∈ T

DP
local(m0(n)), if n∈ P

DA
local(n), if n∈ F

that defines a graphical operation for an objectn∈P∪T∪F, whereDT
local is a graphical operation

that draws a Petri net transition,DP
local is a graphical operation that draws a Petri net place with

the corresponding amount of tokens,DA
local is a graphical operation that draws an arc. LetXPN be

a functionXPN : P∪T ∪F → ∆ that associates each object in the Petri net with an affine trans-

formation. LetMap(N) = M whereM = 〈G, I〉 ,G= 〈P∪T,F〉 , I =
〈

DPN
local,XPN

〉

be the function

giving the IGM form of a Petri netN, such thatI is a graphical interpretation. Then the equation

6.3 can be used to calculate the graphical representationγPN of the Petri netN:

γPN(N) = γIGM(Map(N))

To use this equation one needs to associate an affine transformation not only with places and

transitions but also with arcs. However a more practical wayis to derive the shape of a particular

arc from the transformations of those objects that it connects. Then the arc will “follow” those

objects even if their transformations change without the need to change the transformation asso-

ciated with the arc. Let(n1,n2) ∈ F be an arc connecting two objectsn1 andn2. Let A (δ1,δ2)

be a graphical operation3 that draws an arc in such a way that it connects the objects having

transformationsδ1 andδ2. Let XPN(n) = δ0,n∈ F whereδ0 is the identity transformation. Then

DA
local((n1,n2)) = A (XPN(n1),XPN(n2)),(n1,n2) ∈ F is the graphical representation function for

arcs that does not require to explicitly define arc transformations.

To summarise, by converting a Petri net into an IGM form with agraphical interpretation, a

generalised algorithm can be applied to produce its graphical representation. Any other IGM can

3This graphical operation may be implemented, for example, by assuming the origins of the local coordinate spaces
of the two objects to be their centres, then using their corresponding transformations to calculate the positions of their
centres in the global model coordinate space and then draw anarc connecting the centres.

120

CHAPTER 6. INTERPRETED GRAPH MODELS

(a) A place with one outgoing and one
incoming arc

(b) The shorthand graphical notation
used in the STG models

Figure 6.6: Graphical notation violating the one-to-one correspondence

Figure 6.7: A Petri net model visualised using the SDFS graphical notation

similarly be extended with such an interpretation allowingit to be presented graphically. This

feature is used in the Workcraft framework (Chapter 7) to provide a general-purpose graphical

rendering implementation for the client models.

6.2.2 Using a separate visual model

Sometimes it may be practical to avoid the strict one-to-onemapping between the objects in a

model and their graphical representations. For example, inFigure 6.6, a shorthand graphical

notation used to represent the objects in an STG model is shown. Figure 6.6a shows a fragment

of a Petri net containing a place with exactly one incoming and one outgoing arc. In Figure 6.6b

the same fragment of the Petri net is shown using the shorthand STG notation (the place and

its incident arcs are replaced with a single arc said to contain an implicit place). This notation

is useful because such configuration of places is encountered very often in the STG models and

121

CHAPTER 6. INTERPRETED GRAPH MODELS

Figure 6.8: An example of the hierarchical arrangement of graph nodes

using the implicit place concept allows to reduce the visualcomplexity of the model’s graphical

representation.

Let M be an IGMM = 〈G, I〉. Let I = 〈Mvisual〉, whereMvisual is an IGMMvisual = 〈G, I〉 , I =

〈Dlocal,X〉. Let γ(M) = γIGM(Mvisual) be the graphical operation used to produce the image of the

modelM. Then it is said thatMvisual is thevisual modelassociated with themathematical model

M andI is called thevisual model interpretationof the modelM.

Using a visual model interpretation allows to define an arbitrary number of graphical repre-

sentations of the same model. For example, the same Petri netcan then be presented using the

canonical graphical notation (Figure 6.6a) or using the STGnotation (Figure 6.6b) depending on

the context. A more complex example is shown in Figure 6.7. Inthis example, large fragments of

a Petri net are mapped into the high level graphical objects (spread token SDFS registers).

6.2.3 Using a hierarchical structure

There are a number of models that are best represented in a hierarchical fashion: some objects are

treated asparentsof other objects. The transformation function is defined in such a way that the

transformation of the parent object also affects its child objects. For example, in the gate-level

circuit model a gate object acts as a parent for the set of its pins (Figure 6.8), which means that the

transformations of the contacts are relative to the transformation of the gate object. Graphically,

this results in contacts “following” the gate object when its transformation is changed (e.g., when

the user is moving the gate object in the editor). The arrangement of the contacts relative to the

parent gate can still be changed without affecting any otherobjects.

Let M be an IGMM = 〈G, I〉 ,G = 〈V,E〉. Let I = 〈Dlocal,X,H〉 where 〈Dlocal,X〉 is the

graphical interpretation ofG andP is thehierarchy function H : V ∪E → V ∪E that associates

122

CHAPTER 6. INTERPRETED GRAPH MODELS

each object of the graphG with a parent object. Let

XH(n) =

X(n) if H(n) = /0

X(n)•XH(H(n)) otherwise

be the hierarchical transformation function where• is the transformation concatenation operation

• : ∆×∆ → ∆. Then

γ(M) = γIGM(〈G,〈Dlocal,XH〉〉)

is the graphical representation of the hierarchical modelM.

6.2.4 Redefining the display operation

So far in this section the display functionD(g) was defined as a function that given a graphi-

cal operationg displays an image generated by the operation on the screen. By redefining this

function, additional functionality can be obtained using the same graphical operationg. For ex-

ample, instead of drawing the images on screen the graphicaloperations can be converted to a

serial format such as EPS or SVG and stored to disk. This feature is exploited in the Workcraft

framework (Chapter 7) to provide a graphics export functionto any model that defines its graphical

interpretation.

6.3 Logic networks

The ideas behind the verification methods for the gate-levelcircuits (Section 4.4) and the Static

Data Flow Structures (Section 5.6) are quite similar. In both cases, the state of the analysed

system is encoded using a set of binary signals. Their switching behaviour is captured using the

setandresetfunctions associated with each signal. Those functions control when the signal may

change its state based on the values of a set of other signals.Then a Signal Transition Graph is

constructed in such a way that the state of each signal is encoded using a pair of complementary

places, and transitions that transfer the token between those places are arranged in such a way that

the token may only be transferred only when thesetor resetconditions are met. The enabling

123

CHAPTER 6. INTERPRETED GRAPH MODELS

of these transitions is controlled using read arcs4 that allow to read the state of other signals non-

destructively. Verification is then carried out on this STG,which is called theverification STG.

For the gate-level circuit model the construction of the verification STG is straightforward.

Each gate is associated with exactly one output signal, and the set and reset functions of that

signal depend only on the set of gates directly connected to the inputs. For the SDFS model the

construction of the STG is more complex, because thesetand resetfunctions for a given node

may depend on the state of nodes that are not connected to it directly (such as, e.g., the R-preset

or a register). Additionally, the state of the SDFS nodes hasto be described using more that one

signal per node.

In the previous chapters, the algorithms that produce the verification STGs from the gate-level

circuits or SDFS models were defined informally. In this section a formal framework for the

STG-backed verification of high level models is proposed. Using the concept of an Interpreted

Graph Model, the verification method can be applied to any model that defines alogic network

interpretationfor its graph structure.

Definition 6.2. Let S be a set of signals. LetF be a function that associates a signals∈ S

with a tuple
〈

Is, f set
s , f reset

s ,v0
s

〉

, whereIs ⊂ S is the set of input signals,f set
s is the set function

f set
s : {0,1}Is →{0,1} of signals∈ S, f reset

s is thereset function freset
s : {0,1}Is →{0,1} of signal

s∈ S, andv0
s ∈ {0,1} is the initial value of the signals∈ S. Thevalue vs of a signals∈ S may

change from 0 to 1 at any time whenf set
s evaluates to 1, and from 1 to 0 at any time whenf reset

s

evaluates to 1. LetI be a set of input signalsI ⊂ S. Let O be a set of output signalsO⊂ S. Then a

logic network (LN)is a tupleL = 〈I ,O,F 〉.

Let L be a logic networkL = 〈In,Out,F 〉. Then the functionΓ(L) = 〈P,T,F,m0,λ , I ,O,v0〉

that constructs a verification STG fromL is defined as follows.

Let I = In and O = Out respectively be the sets of input and output signals. LetS= In∪

Out. Let v0 =
{

v0
s | s∈ S

}

be the vector of initial signal values. LetP = S×{0,1} be the set

of places of the required STG such that(s,0) ∈ P represents the low value of the signals∈ S

4Unfortunately, the available verification tools do not recognise read arcs as a special class of arcs. Read arcs have
to be emulated using two opposite arcs forming a loop. Although this technique is acceptable for verification, it is not
as efficient as a true read arc would have been.

124

CHAPTER 6. INTERPRETED GRAPH MODELS

and (s,1) ∈ P represents the high value. LetDNF(f) = C be a disjunctive normal form of a

Boolean functionf , whereC is a family of sets overP. The DNF function is constructed in such

a way that its clauses are sets overP and (s,1) ∈ P corresponds to the positive literal referring

to signals while (s,0) ∈ P corresponds to the negative literal. LetTset(s) = s×DNF(f set
s) be

the set of rising transitions for the signals∈ S labelled with DNF literals such that for every

clause in the DNF there is a single transition. Similarly, let Treset(s) = s×DNF(f reset
s) be the set

of falling transitions for signals∈ S. Let Fr = {p,(z,c) | (z,c) ∈ Tset(s)∪Treset(s), p∈ c,s∈ S}

be the set of read arcs such that each transitiont is connected with a set of places contained in

the DNF clause that the transition is labelled with. LetFpt+ = {(s,0), t | t ∈ Tset(s),s∈ S} be the

set of arcs connecting the places representing the low signal values to the rising transitions. Let

Fpt− = {(s,1), t | t ∈ Treset(s),s∈ S} be the set of arcs connecting the places representing the high

signal values to the falling transitions. LetFt p+ = {t,(s,1) | t ∈ Tset(s),s∈ S} be the set of arcs

connecting the rising transitions to the corresponding places representing the high signal values.

Let Ft p− = {t,(s,0) | t ∈ Treset(s),s∈ S} be the set of arcs connecting the rising transitions to the

corresponding places representing the low signal values. LetFloop = Fr ∪{t, p | (p, t) ∈ Fr} be the

set of arc loops emulating the read arcs. LetT =
⋃

s∈S

Tset(s)∪Treset(s) be the set of transitions of

the required STG. LetF = Ft p+∪Ft p−∪Fpt+∪Fpt−∪Floop be the set of arcs of the required STG.

Let m0((s,v)) = v,(s,v) ∈ P be the initial marking of the required STG. Let

λ ((s,c)) =

(s,−) if t ∈ Treset

(s,+) if t ∈ Tset

be the labelling function of the required STG. All the elements of the required STG are now

defined. By carefully controlling the names of the signals inSany violation trace produced by a

verification tool for this STG can be converted into a trace for the source high level model.

Algorithm 2 is a possible implementation of the functionΓ in an imperative programming lan-

guage. This implementation works as follows. For every signal in the input logic network, a pair of

complimentary places is created. A token is put into the place that corresponds to the initial state

of the signal. Then the set and reset functions are convertedinto disjunctive normal form (DNF).

For every clause in the DNF of the set function, a rising transition is created and connected to the

125

CHAPTER 6. INTERPRETED GRAPH MODELS

two places. For every literal in the DNF clause, a read arc connecting the transition with the place

corresponding to the state of the signal represented by thatliteral is created. Falling transitions are

constructed in a similar way using the DNF of the set function.

Figure 6.9 illustrates the method described in this sectionas applied to a gate-level circuit

model. Figure 6.10 is the application of the same method to anSDFS model.

6.3.1 Using logic networks to verify multi-formalism models

Definition. LetM be an IGMM = 〈G, I〉 whereI = L is a logic network.I is called alogic network

interpretationof the modelM.

Let K be a set of models with a logic network interpretation. LetLNk be the logic network for

the modelk∈ K. Let n1 ‖ n be a composition operation producing an STG from two source STGs

n1 andn2. Then

V = ‖
k∈K

Γ(LNk) (6.4)

is the verification STG of the setK. The operation‖ may be defined in any appropriate way, for

instance as the parallel composition of Petri nets [125]. Equation 6.4 is a very powerful composi-

tional verification tool. It allows to co-verify and co-simulate an arbitrary set of models of various

types, such as substituting a black box containing an STG specification for a part of a gate-level

circuit, or using gate-level circuits to provide the environment for an SDFS model.

6.4 Conclusions

In this chapter a class of models called Interpreted Graph Models (IGM) has been defined. Such

models use a static graph structure and an arbitrary number of interpretationsof that structure.

The separation of the structure from its interpretations allows generalised algorithms to be intro-

duced. To access those algorithms, an IGM may be extended with additional interpretations with-

out affecting the underlying static structure or the already existing interpretations. Two important

algorithms that use this abstraction have been described (an algorithm for generating a graphi-

cal representation of an IGM and a verification algorithm that generates an STG that reflects the

behaviour of the model).

126

CHAPTER 6. INTERPRETED GRAPH MODELS

The concept of an IGM allows to bridge the strictly mathematical objects comprising the

various formal models used to describe concurrent systems with practical algorithms that can be

implemented in a programming language. The Interpreted Graph Models serve as the fundamental

abstraction in the CAD tool Workcraft described in the next chapter.

127

CHAPTER 6. INTERPRETED GRAPH MODELS

Figure 6.9: Verification of a gate-level model using a logic network

128

CHAPTER 6. INTERPRETED GRAPH MODELS

Figure 6.10: Verification of an SDFS model using a logic network

129

CHAPTER 6. INTERPRETED GRAPH MODELS

Algorithm 2 Generation of a verification STG from a logic networklet S= I ∪O be the set of all signals in the soure logi networklet V be the required STG, initially emptyfor eah signal s in S:reate plaes s0, s1 in Vend forfor eah signal s in S:set k = 0build a DNF setDNF from f set
sperform Boolean minimisation* of the setDNFfor eah lause C in setDNF:reate a transition T+k
s in Vk = k+1add ars (s0,T+k

s) and (T+k
s ,s1)for eah literal L in C:if (L is positive)find a plae P in Vlabelled L1elsefind a plae P in Vlabelled L0end ifadd a read-ar (T+k

s ,P)end forend forset k = 0build a DNF resetDNF from f reset
sperform Boolean minimisation of resetDNFfor eah lause C in setDNF:reate a transition T−k

s in Sysdstk=k+1add ars (s1,T−k
s ,T−k

s -s0)for eah literal L in C:if (L is positive)find a plae P in Vlabelled L1elsefind a plae P in Vlabelled L0end ifadd a read-ar T−k
j -Pend forend forend for

130

Chapter 7

Workcraft: a framework for

Interpreted Graph Models

This chapter introduces a computer aided design (CAD) tool called Workcraft. The tool is a

software framework based on the Interpreted Graph Models (IGM) concept. Instead of binding

to a particular set of supported models and analysis methods, Workcraft implements a number

of fundamental features that can be inherited from the framework by the plug-ins that realise the

concrete models and tools.

The plug-in driven architecture of the tool allows extending it with additional Interpreted

Graph Models definitions, new interpretations of existing models and analysis/verification mod-

ules. By controlling the set of plug-ins that are included with Workcraft, the tool can be configured

to serve as a specialised working environment for the designof specific types of concurrent sys-

tems. For instance, Appendix C contains a manual for using Workcraft as an environment for

asynchronous circuit design based on the STG model.

7.1 Objectives

The primary design goal of the Workcraft framework is twofold. One target category of users

are the researchers who would like to provide tool support for the new models, while the other

category are those who wish to design, analyse and verify systems using the formalisms that have

already been implemented. To appeal to the former category,a plug-in based architecture was

131

CHAPTER 7. WORKCRAFT: A FRAMEWORK FOR INTERPRETED GRAPH MODELS

Figure 7.1: Working with three different model types simultaneously

designed, which allows new formalisms to be introduced withthe minimum effort (Appendix B)

— the benefits of the graphical presentation, automated serialisation and interfacing with external

tools are inherited from the framework. In addition, some ofthe important algorithms (such as the

Petri net-based verification) are generalised: by providing a model with a logic network interpreta-

tion (detailed in Section 6.3) the author of the model can usethe verification functionality without

worrying about implementing the Petri net generation and calling the external tools to carry out

the verification.

7.1.1 Graphical user interface

One of the major features of Workcraft is the graphical user interface (GUI). Historically, auto-

mated graph layout tools such as Dot [7] have been used to produce the images of graph-based

models using their graphical notation. This approach is notvery efficient because most of the

models are in fact dynamic. In Petri nets, for example, transitions transfer tokens between places

according to the token game rules. To observe theevolutionof the model state graphically, a series

of static snapshots has to be produced and inspected. To remedy this shortcoming, tools such as

PEP [11, 30, 112] that support the interactive simulation ofPetri nets were developed. The tool

132

CHAPTER 7. WORKCRAFT: A FRAMEWORK FOR INTERPRETED GRAPH MODELS

is able to highlight the currently enabled transitions, andthe user can click them to cause them to

fire and immediately see the consequences. This way, the usercan investigate the behaviour of the

net by triggering the different execution paths.

PEP tool, however, is closely tied to the Petri net model. Despite Petri nets being a very

popular model, new models that aim to provide a more specific modelling solution are intro-

duced relatively often (e.g., Static Data Flow Structures (Chapter 5), Conditional Partial Order

Graphs [80]). To successfully apply these models in a practical design workflow an adequate tool

support is extremely important. Designing and implementing a custom graphical environment to

support functionality such as visual entry and interactivesimulation for every new models is a task

that usually requires significant effort.

Workcraft’s GUI system is designed in such a way that it handles most of the routine tasks

such as the creation of document windows, menus and configuration dialogues, managing the

UI layout. Coupled with a generalised graphical presentation algorithm for Interpreted Graph

Models, this enables rapid development of model plug-ins with support for advanced features

such as visual entry and interactive simulation. For example, in Figure 7.1 a configuration of three

editor windows arranged side-by-side is shown. The windowsall contain different model types.

The plug-ins that define these model types are unaware that such functionality is possible and only

implement the drawing routines specific to the model type.

7.1.2 Tool integration

Most of the tools available in the academia, particularly inthe context of asynchronous system

design, are based on the command-line interface. This is justified because such tools are mostly

designed to carry out one particular task (and do it well), but ultimately results in a fragmented

state of the tool base because there exists a multitude of standalone tools but not a consistent devel-

opment environment. From the point of view of a system designer, organising interaction between

the tools may be rather cumbersome: every tool has its own setof command-line arguments and

configuration parameters that are easy to forget, especially when a large number of tools is used

in a single workflow.

Workcraft aims to improve this situation by introducing lightweight plug-ins that wrap the

133

CHAPTER 7. WORKCRAFT: A FRAMEWORK FOR INTERPRETED GRAPH MODELS

Figure 7.2: The tool integration aspect of Workcraft

command-line tools into organisational units called tasks(detailed in Sections A.3.3 and B.3.1).

The tasks can be chained together to form sophisticated workflows by using simple and consistent

APIs instead of calling the tools directly. Additionally, the tasks can be executed asynchronously

without blocking the rest of the program.

Figure 7.2 illustrates the amount of tools that can be applied to one specific model type (STG).

One of the goals of Workcraft is the integration of those tools in a consistent, user-friendly envi-

ronment.

7.1.3 Formalism interoperation

Workcraft supports formalism interoperability using the STG composition operation (see Section

6.3). In this modelling approach different parts of the system can be specified using different

formalisms. To produce a complete model of the system, the parts are individually converted into

STGs, then merged to form an STG that describes the behaviourof the whole system which can

then be used for verification. For example, it is often convenient to specify a circuit as a gate

net-list and its environment as an STG. Then the verificationresult (i.e. the violation trace) is

propagated back and presented to the user as a trace of the original model (Figures 6.9 and 6.10),

rather than that of the STG to which the model was translated for verification.

134

CHAPTER 7. WORKCRAFT: A FRAMEWORK FOR INTERPRETED GRAPH MODELS

7.2 Comparison with other tools

The tool closest to Workcraft with respect to the design philosophy is probably the OsMoSys

framework [123] and its GUI shell called DrawNet [26].

OsMoSys/DrawNet is an environment specifically designed for multi-formalism modelling.

The simulation and verification of the multi-formalism models are carried out using a process

calledorchestration, which involves simulating each fragment of the compound specification sep-

arately, using an algorithm specific to the formalism used tomodel that fragment. The simulation

results are shared between the fragments using adapters called bridge formalisms. OsMoSys and

DrawNet use a custom XML-based language called the Formalism Description Language (FDL)

to add new formalisms to the framework. The language allows to define model classes, types of

objects (nodes and arcs) allowable in those models, their properties and graphical representations.

FDL supports object-oriented features such as inheritanceand allows to formulate restrictions on

the structure of the model (e.g., to disallow arcs between places and transitions).

Compared to OsMoSys/DrawNet, Workcraft does not place as much stress on the multi-

formalism modelling paradigm. The multi-formalism approach is supported in Workcraft, but

is not a fundamental part of the framework and is realised viaplug-ins of the same level as the

individual formalism plug-ins. This gives Workcraft more flexibility with respect to the modelling

paradigms that can be used at the cost of additional development effort required to implement

them. Workcraft also does not use a custom language to define formalisms. Instead all of the

model logic is written in Java. Similarly, this allows much more freedom in customising the fea-

tures of a particular model, but requires a slightly more complicated development process. For

instance, the STG model uses the short-hand notation to display the objects of the model but

maintains a standard Petri net in the background. Adding advanced editing features such as in-

place editing of signal names (Section C.1.2) is also not possible in DrawNet without changing

the internal code.

At the time of writing, the DrawNet project seemed to have been abandoned and neither its

source code or binary distributions were available.

Pep tool [11, 30, 112] is a comprehensive and extensible framework that includes a set of

utilities for verification of Petri nets. Pep tool supports aconsiderable number of models, including

135

CHAPTER 7. WORKCRAFT: A FRAMEWORK FOR INTERPRETED GRAPH MODELS

process algebrae, high-level and low-level Petri nets; it can also export the models into a variety of

formats (SPIN, INA etc.). The only models in Pep that supportvisual representation are high-level

and low-level Petri nets; in particular, there is no supportfor circuits.

The Moebius framework [44] is a tool similar to OsMoSys in that it focuses on the multi-

formalism modelling approach, however it does that differently. Instead of simulating the various

formalisms individually, Moebius converts each block expressed in terms of a single formalism

into an internal representation which allows composing them into a monolithic model that is used

for simulation and verification. A comparable approach is used in Workcraft to enable multi-

formalism modelling. In contrast to Moebius, Workcraft uses the STG model as the base model

type that the other formalisms are translated into. This allows re-using the Petri net verification

tools instead of maintaining its own verification code.

Visual STG Lab [59] is a tool for the visual editing of STGs. The tool is tightly integrated with

Petrify [41] and is able to apply operations implemented in Petrify to the STG models designed

using the GUI. The tool does not support any other model typesor tools. The development of the

tool is discontinued, and the existing version suffers fromserious issues.

Overall, the main design decision that makes Workcraft different from the other similar tools

is that it does not focus on algorithms for a particular modeltype, analysis tool or a modelling

paradigm, but aims to provide a common environment, operating system of sorts, that helps to

“glue” the existing tools together allowing to use them in a consistent manner. For example,

Workcraft provides the visualisation and editing functionality for Petri nets, but does not have any

internal verification routines. Instead, it relies on externals tools such as Punf [64] and MPSat [67]

to carry out the verification. Then it is able to parse the verification output and present it to the

user in a graphical manner. Similarly, Workcraft is interfaced with the tools such as Petrify, Dot

and DesiJ and benefits from their algorithmic power while at the same time providing the tools

with a user-friendly front-end.

7.3 Tool architecture

The Workcraft framework consists of three major parts (Figure 7.3). These parts are the plug-in

manager that scans and categorises the plug-in classes, a set of services accessible to the plug-ins,

136

CHAPTER 7. WORKCRAFT: A FRAMEWORK FOR INTERPRETED GRAPH MODELS

Figure 7.3: The architecture of Workcraft

and the core part of the framework that manages the start-up and shutdown processes, the GUI

windows and also provides the scripting support for the command-line mode.

7.3.1 The framework core

The main responsibility of the framework core is to start theother systems that together form

Workcraft. The start-up sequence works as follows. The configuration manager is the first com-

ponent to be started. It loads the configuration files and allows other components to read their

configuration variables in a centralised fashion. Then, theplug-in manager is initialised. It either

reads the plug-in manifest (if it is present) or starts the plug-in reconfiguration process. When all

of the plug-ins are loaded, the start-up scripts are executed. These scripts contain additional start-

up logic that can be customised by the user. At this point all of the sub-systems are initialised.

The framework core then decides what actions to take next by examining the command-line ar-

guments. Workcraft can optionally be started in the command-line mode, in the script execution

mode (a specified script file will be executed and the program will then quit), or, if no arguments

are supplied, Workcraft start in the default graphical userinterface mode (a detailed explanation

137

CHAPTER 7. WORKCRAFT: A FRAMEWORK FOR INTERPRETED GRAPH MODELS

of the various modes of operation is given in Appendix A). When the program is shutting down,

the configuration manager is informed so that it can save the current configuration to disk.

Configuration manager

The configuration manager is responsible for storing the configuration variables and provide the

other components with a centralised way to access those variables. This allows the system compo-

nents (including the plug-ins) to use the configuration interface without worrying about saving or

loading their configuration parameters: the configuration manager loads the variables on start-up

and automatically saves them to disk them on shutdown.

JavaScript engine

JavaScript is used as the scripting language in Workcraft. The scripting engine allows to execute

script files or individual commands to further customise thefunctionality of the framework without

having to go through the process of building a complete plug-in module. For example, Section A.2

describes a script that can be used to automatically producevector graphics from the STG models

without having to use the interface.

7.3.2 The plug-in manager

The plug-in manager is responsible for discovering the plug-in modules1 and categorising the in-

dividual plug-ins. Its functionality is realised using thereflection mechanism of the Java language

that allows the Workcraft run-time to dynamically load Javaclasses and inspect them to establish

what interfaces they implement. Those classes that implement theModule interface defined by

Workcraft (see Section B) are instantiated and initialised. During the initialisation each module

is allowed to register the individual plug-in classes that implement some extended functionality.

The nature of the functionality is defined by the Java interface that the plug-in implements (the set

of plug-in interfaces is pre-defined). For each plug-in interface the plug-in manager maintains a

list of registered plug-ins that implement it. When anotherpart of the framework needs to know,

1A “plug-in module” is a related collections of plug-ins thattogether implement specific functionality such as a new
model.

138

CHAPTER 7. WORKCRAFT: A FRAMEWORK FOR INTERPRETED GRAPH MODELS

Figure 7.4: The graphical user interface of Workcraft

say, what tools are currently available for the current model it simply passes the corresponding

interface to the plug-in manager which responds with the list of plug-ins.

Plug-in reconfiguration

Reconfiguration is an automated process during which the contents of the plug-in packages are

analysed, and a list of all discovered compatible plug-ins is built and stored in a special file.

During start-up, the plug-in manager uses this list to load the plug-ins instead of scanning the

contents of the plug-ins directory every time, which greatly reduces the start-up time. Workcraft

automatically reconfigures itself during the first start-up, however if any changes are made to the

set of plug-ins in the future the reconfiguration must be triggered manually.

7.3.3 The graphical user interface

The graphical user interface (Figure 7.4) is fully managed by Workcraft, allowing the plug-in au-

thors to focus on implementing the desired functionality oftheir tools and models without having

to worry about things such as window creation and placement.The underlying window toolkit

used by Workcraft is the Java Swing, which ensures compatibility and consistent look across

all platforms. Workcraft supports a number of advanced GUI capabilities, including a multi-

139

CHAPTER 7. WORKCRAFT: A FRAMEWORK FOR INTERPRETED GRAPH MODELS

Figure 7.5: The property editor

Figure 7.6: An example of automated serialisation

document interface, the full-screen mode, the non-overlapping window docking system and the

persistent window layout manager (the window layout configuration is saved to disk when the

GUI is shutting down, and restored on the next start-up).

Most of the utility windows (e.g., the new model creation dialogue or the pages in the pref-

erences window) are automatically constructed by Workcraft using the information provided by

the plug-ins. Similarly, a graphical property editor (Figure 7.5) that provides support for the user-

friendly editing of various property types (such as numerical values, strings and colours) can be

used by the model plug-ins without having to explicitly specify the underlying GUI components.

A detailed explanation of Workcraft’s GUI features is givenin Appendix A.

140

CHAPTER 7. WORKCRAFT: A FRAMEWORK FOR INTERPRETED GRAPH MODELS

7.3.4 Automated serialisation

The automated serialisation feature is very helpful to quickly get a working implementation of

a new model in Workcraft. It uses the features of the Java language that allow it to inspect the

objects contained in a given model to determine their types and extract the declaration of properties

they contain. The object types and the values of the extracted properties are then recorded using

an XML-based format (Figure 7.6). A set of frequently used property types (numbers, strings,

colours, vectors, matrices etc.) is supported “out of the box” and models that use those property

types to describe the state of their components can be saved and loaded as Workcraft documents

without any additional effort from the author of the model plug-in. If needed, the set of the

automatically managed property types can be extended with serialisation plug-ins. For advanced

models that define their own serialisation format the automatic serialisation can be disabled.

7.3.5 Visualisation

Workcraft uses the generalised Interpreted Graph Model visualisation algorithm given in Sec-

tion 6.2. Any model that defines the drawing and transformation functions for its node types can

be used with the visual editor provided by Workcraft. Auxiliary editing operations, such as con-

trolling the viewport via panning and zooming, selecting and moving individual nodes, choosing

the nodes to be connected etc. are inherited from the framework and need not be implemented.

Vector graphics export function that saves the model’s graphical representation in the Scalable

Vector Graphics format (SVG) can also be automatically applied to any model that defines the

drawing functions mentioned above.

7.3.6 External process management

A mechanism for managing external processes (e.g., verification tools) is built into the Workcraft

framework. Tool plug-ins relying on external programs can use this feature to avoid manually

writing the code that starts and monitors the execution of programs. The task monitoring code is

executed on a separate thread which allows executing time-consuming processes without blocking

the reset of the program. Workcraft automatically places all external process tasks into the task

manager interface. The task manager maintains the list of all running tasks and allows the user to

141

CHAPTER 7. WORKCRAFT: A FRAMEWORK FOR INTERPRETED GRAPH MODELS

cancel individual tasks.

7.4 Availability

Workcraft supports all major OS platforms (Windows, Linux,Mac OS) and is freely available for

academic use. The latest binary distribution can be downloaded from the tool web site [20]. Please

see Appendix A for installation instructions and the user manual. Alternatively, Workcraft can be

built using the source code. The building process is detailed in Appendix B.

7.5 Conclusions

In this chapter, a software framework called Workcraft was introduced. Goals pursued during the

design and development of the tool were explained. The tool was compared to the previously

existing similar tools. An overall architecture of the tooland the individual services accessible to

the plug-ins were described.

Workcraft is based on the concept of Interpreted Graph Models that was explained in Chap-

ter 6, which allowed a number of formal models to be implemented in a visually consistent and

inter-operable fashion. These models include Signal Transition Graphs [126], Static Data Flow

Structures (Chapter 5), Digital Circuits, Conditional Partial Order Graphs [80] and other. The tool

has been successfully used in a number of practical applications (see Chapter 8).

Workcraft has been previously presented in [95, 92, 93].

142

Chapter 8

Use cases

The Workcraft framework based on the Interpreted Graph Model concept has been successfully

used in a number practical applications, some of them employing complex interactions between

several different model types. Several examples are presented in this chapter.

8.1 Verification of asynchronous circuits

The asynchronous circuit verification method described in Chapter 4 was applied to the following

designs.

Verification of a counterflow controller A counterflow stage controller implementation pub-

lished in [22] was verified and found to be hazardous. A detailed explanation of the verification

process and the problem with the circuit that was discoveredis given in Section 4.6.

Verification of the flat arbiter design Arbiters are special blocks controlling access to shared

resources. They play a very important role in asynchronous circuit design an it is therefore critical

to ensure their correct implementation. A method of constructing N-way arbiters was presented

in [81]. The ‘flat’ arbitration method proposed in the paper is prone to threats such as formation of

cycles, leading to deadlocks. The construction algorithm presented in the paper gives the correct

implementations of N-way arbiters that are deadlock-free.

The circuit verification method presented in this thesis (and implemented in Workcraft) was

143

CHAPTER 8. USE CASES

Figure 8.1: Implementation of a 3-way flat arbiter

applied to ensure that the resulting arbiter circuits are deadlock-free and conform to the environ-

ment specification.

Verification of a multi-resource arbiter A different class of arbiter circuits was studied in [50].

They are the general-purpose arbiters distributing M resources to N clients for the cases when the

resources can be either active or passive participants of the arbitration. In the paper, the arbitra-

tion problem is first solved for the case of two active resources being offered to two clients (the

implementation is shown in Figure 8.2). Then a general problem solution is provided.

The implementations of the arbiters were verified using Workcraft.

8.2 Static Data Flow Structures simulation and verification

Workcraft played a crucial role in the development of the SDFS model (Chapter 5). An essential

property of the logic nodes in the model is the possibility ofearly evaluation (EE) —the situation

where just a subset of inputs is sufficient to start producingthe computation result. In such a case,

all the other inputs are no longer required, and it is best to send a signal to terminate their com-

putation in order to save power and time. There are several types of SDFS capable of expressing

datapaths with EE, including spread token, and counterflow.

Systems with EE often have very intricate behaviour, and it is very easy to introduce subtle

144

CHAPTER 8. USE CASES

Figure 8.2: Implementation of a multi-resource arbiter

EE

(a) Initial state

EE

(b) Deadlock state

Figure 8.3: Counterflow SDFS verification example

errors when designing them. For example, the shortest traceleading to a deadlock in a (rather

small) Counterflow SDFS model in Figure 8.3 contains 29 steps. This problem would be rather

hard to discover using the manual simulation, due to a very long and peculiar sequence of events

that leads to the deadlock. In this example, Workcraft was able not only to detect a deadlock, but

also to graphically reproduce, step-by-step, the problematic event trace. This has led to a better

understanding of the limitations of the Counterflow SDFS model, and provided the motivation and

essential ideas for further adjustment of the token game rules.

145

CHAPTER 8. USE CASES

8.3 Asynchronous circuit synthesis based on Conditional Partial Or-

der Graphs

Conditional Partial Order Graph [80] is a formalism for circuit specification that combines advan-

tages of both Petri nets and Finite State Machines: it does not have the explicit notion of states

(unlike Petri nets) and models the choice on the level of logic conditions (unlike FSMs). The

specification size of a highly concurrent system with multiple combinational choice is often much

smaller in the CPOG model than in a PN or FSM one.

CPOG support was implemented in Workcraft. The CPOG model appears to be the formalism

with most links to other model types (Figure 8.5). Asynchronous circuits can be synthesised

directly from CPOG specifications, and verified for speed-independence using the verification

algorithm described in this thesis. A CPOG model can also be directly converted into a Petri net,

and checked for properties such as deadlocks. Petrify tool can be used as an alternative method

of synthesising the same specification, and its result can becompared with that of CPOG-based

synthesis so that the user can choose the best one.

8.4 Modification of the workflow of Balsa asynchronous circuit syn-

thesis system

The asynchronous controllers obtained by syntax-directedmapping (see Section 2.2.1) methods

realised is systems such as Balsa [47] are usually not optimal, because the pre-designed imple-

mentations of the handshake components are required to implement their declared protocols fully

and correctly in order to be reusable in all possible circuitconfigurations. However, it is often

the case that a significant part of their functionality becomes redundant due to the peculiarities of

the specific configuration, e.g. in many cases full handshaking between the components can be

avoided.

This redundancy can be eliminated by replacing the manuallydesigned gate-level implementa-

tion of the high level components with an equivalent STG (Figure 8.4). The individual component

STGs are then composed together to form a complete system STG, which is optimised using Pet-

rify [41]. An optimal gate-level implementation can then beautomatically produced from the

146

CHAPTER 8. USE CASES

Figure 8.4: The STG specifications of handshake components

STG using tools such as Petrify [41], SIS [103] and MPSat [68]. Automatic synthesis becomes

problematic when the size of the STG becomes large: modern synthesis tools can handle STGs of

no more than 100 signals. The impact of this problem can be lessened by including STG decom-

position tools [99] into the workflow that would break the large optimised STG down into several

smaller STGs that are synthesisable in reasonable time. Alternatively, the decomposition step can

be carried out on the level of the handshake circuits, dividing the circuit into smaller blocks of

components. The whole process is illustrated in Figure 1.4.

For the purpose of implementation of this design flow the Workcraft framework was extended

with a plug-in that introduces support for Breeze [28] handshake components. The handshake

component model allows Workcraft’s visual editing tools tobe applied for the creation and editing

of Breeze net-lists. The same plug-in also performs generation of the STG behaviour model from

a given handshake circuit. The STG generation algorithm is designed to be highly customisable,

with support of multiple handshake protocols and various STG implementations for each type of

component.

147

CHAPTER 8. USE CASES

8.5 A development environment based on the STG model

A configuration of Workcraft that makes it possible to use thetool as a feature-rich development

environment based around the STG model is described in Appendix C. The tool is able to im-

port and export STG models from the .g file format, automatically generate the graphical layout,

perform logic synthesis using various tools (Petrify, MPSat and DesiJ), compose and decompose

STG models.

8.6 Conclusions

In this chapter a number of practical applications of the Workcraft framework based on the Inter-

preted Graph Model concept were presented. These include the application of the asynchronous

circuit verification method presented in the Chapter 4 of this thesis for the verification of a coun-

terflow data path controller and two different types of arbiters; the simulation and verification of

the SDFS model; the modification of the Balsa asynchronous circuit synthesis system and the

application of Workcraft as an asynchronous circuit development environment based on the STG

model.

148

CHAPTER 8. USE CASES

Figure 8.5: A complex model interoperability example

149

Chapter 9

Conclusions

In this thesis, several formal models and methods relevant to the design of asynchronous circuits

were presented. The methods were implemented within a software framework called Workcraft

which was also detailed.

9.1 Summary of the contribution

In chapter 2, the fundamental concepts behind the theory of asynchronous circuits concepts were

given, such as delay models, operation modes, control, dataprotocols and the classification of

circuits. The most widely used approaches to the design of asynchronous circuits were discussed

including an overview of the tools implementing these techniques.

In chapter 3 a formal definition of the Petri net model that is often used in the thesis is given.

Using two illustrative examples, the token game of a Petri net was explained. A number of prob-

lems characteristic to concurrent systems were highlighted, and it was shown that Petri nets are

highly helpful in discovering such problems. Several properties of Petri nets relevant in the context

of the thesis were defined.

In chapter 4, a method for verification of asynchronous circuits using Petri nets was proposed.

The method checks a circuit given together with a specification of its environment for hazards and

deadlocks. Among the advantages of the proposed method is that it uses the well-established Petri

net tool base to solve the verification problem. This allows choosing the most efficient verification

tool based on the structure of the original circuit. The performance of the new method was com-

150

CHAPTER 9. CONCLUSIONS

pared to the previously existing verification techniques. Apractical application example involving

the verification of a previously published asynchronous data path controller circuit was given. The

verification revealed critical problems with the controller which provided the motivation for the

development of a formal model for asynchronous circuit datapath.

In chapter 5, a new formal model of the data path in asynchronous circuits was detailed. The

model, called the Static Data Flow Structure (SDFS) is comparable to the Register Transfer Level

(RTL) used in the design of synchronous circuits. In contrast to the RTL model, it provides means

to describe complex behaviours such aspreemption, early evaluationandspeculationthat are use-

ful in an asynchronous data path. Preemption is a technique which allows the destruction of data

objects in a computation pipeline if the result of computation is no longer needed, reducing the

power consumption. Early evaluation allows a circuit to compute the output using a subset of its

inputs and preempting the inputs which are not needed. In speculation, all conflicting branches

of computation run concurrently without waiting for the selecting condition; once the selecting

condition is computed the unneeded branches are preempted.The proposed Petri net based verifi-

cation technique is especially useful because of the complex nature of these features. A possible

extension of the SDFS model that allowed to model the influence of the control path was investi-

gated.

In chapter 6, a modelling abstraction called an InterpretedGraph Model (IGM) was introduced.

This abstraction allows to separate the structure of a graph-based model from the interpretation of

the objects that it contains. By associating different interpretations with the same underlying

structure, various generalised algorithms can be applied.Two important algorithms were given in

the chapter to illustrate the usability of the IGM concept. The first example is an algorithm that

allows to produce a graphical representation of a graph-based model with minimal effort. The

second example is the generalisation of the Petri net-basedverification approach used in Chapters

4 and 5 that enables the application of the technique to othermodels, which is particularly useful

for the multi-formalism modelling approach.

In chapter 7, a software framework called Workcraft was presented. Workcraft is designed to

provide a consistent development environment based on various graph-like models. The frame-

work is heavily based on the Interpreted Graph Model (IGM) concept which greatly facilitates

151

CHAPTER 9. CONCLUSIONS

the introduction of new model types. The chapter explained the goals pursued during the design

and development of the tool, compared the tool to other similar solutions and detailed its software

architecture.

In chapter 8, a number of practical applications of Workcraft and its underlying IGM concept

were presented, including the verification of several asynchronous circuit designs, debugging of

the SDFS model, implementation of asynchronous circuit synthesis method based on the Con-

ditional Partial Order Graph model and the modification of the workflow of Balsa asynchronous

synthesis system.

The features and capabilities of the Workcraft framework are further detailed in the appen-

dices. Appendix B explains how to introduce new models and tools into the framework from a

programmer’s point of view. Appendix A contains the overview of the graphical user interface

of Workcraft from a user’s point of view. Finally, Appendix Cpresents an example of using

Workcraft as a development environment based on the STG model

9.2 Future work

The Workcraft framework that bases on the concept of Interpreted Graph Model has proven itself

to be a useful tool in the context of asynchronous circuit design. However, there is still much

work to be done before Workcraft meets its ultimate goal — to become a complete development

environment for the design of asynchronous circuits.

In particular, the asynchronous circuit verification method proposed in this thesis can be im-

proved by introducing means of detecting livelocks. There are rare cases of circuits that can be

caused to be stuck in an in an infinite loop by the environment,repeating some actions but never

achieving progress. The verification method described in this thesis is unable to detect such be-

haviour. The method could also be improved by adding supportfor relative timing assumptions,

which would allow to exclude potential circuit failures that can never happen in practice due to the

timing constraints.

To make the SDFS model more practical, a method for translating the abstract SDFS specifi-

cations into concrete asynchronous circuits has to be developed. Such method would be especially

useful if realised in the Workcraft framework to complementthe already existing methods for

152

CHAPTER 9. CONCLUSIONS

verification and synthesis of asynchronous controllers.

To improve the modelling power of Workcraft, a hierarchicalmodelling solution could be

implemented. In this paradigm a system would be composed using modular blocks in such a way

that the designer could control the observed level of detalisation of the sub-blocks. For example,

a model of a CPU on the highest level of abstraction would consist of large blocks such as the

ALU, the microcontroller, the register banks etc. Using thehierarchical modelling method, a

designer would be able to “descend” into one of the high levelsub-blocks to explore and change

its specification. The specification of the sub-blocks couldbe expressed using different formal

models, such as, e.g., the CPOG model for the microcontroller, the SDFS model for the data paths

in the ALU, the STG model for an external communication unit or even manually designed blocks

for components such as the arbiters in the data bus controllers. Because each of these models can

be translated into fragments of asynchronous logic, the whole model could be compiled into a

monolithic gate-level implementation.

In order to support such modelling approach, a meta-model needs to be implemented. This

model would be an IGM in itself, and its nodes would be the highlevel blocks containing the

specifications expressed using the lower level formalisms.Several levels of abstraction could be

introduced, where the specifications of the sub-blocks would also be meta-models. Additionally,

support for a library of standard elements (e.g., arbiters,mutexes, registers) needs to be imple-

mented. Using the library, the designer would be able to instantiate the pre-designed blocks to

build a complex model instead of assembling them manually.

153

Appendix A

Workcraft user manual

This appendix contains a general manual for Workcraft. It explains the steps required to in-

stall, configure and run the tool and gives an introduction onusing the two operating modes:

the command-line and the GUI.

A.1 Installation and system requirements

Latest Workcraft distributions are available from its web site [20].The distributions currently do

not include an automatic installer. To install Workcraft, the files from the distribution archive need

to be extracted manually into the preferred directory.

There are no strict system requirements to run Workcraft, the only requirement is that the

system has a compatible Java Runtime Environment. Performance of the tool was found to be

acceptable on any modern machine, including those based on the slower Intel Atom processors.

A.1.1 Setting up the Java Runtime Environment

Workcraft requires a properly configured Java Runtime Environment (JRE) version 6 or higher to

run. The standard JRE [8] is provided by Sun Microsystems andis available for Windows, Linux,

and Mac OS. OpenJDK [10], the open-source Java Development Kit, also includes a compatible

JRE.

Workcraft is regularly tested only against Sun’s proprietary JDK, and may have performance

issues when run using OpenJDK. It is therefore recommended to switch to Sun’s JRE if any unex-

154

CHAPTER A. WORKCRAFT USER MANUAL/ — Workraft distribution root/plugins — Diretory ontaining theplug -in pakages/onfigonfig.xml — Configuration variablesplugins.xml — The plug-in manifestuilayout.xml — Layout of the UI elementsworkraft.js — Windows startup sriptORworkraft.sh — Ma/Linux startup sript
Figure A.1: The Workcraft distribution structure

pected behaviour or performance problems arise.

In Ubuntu (and derived operating systems) the Sun’s proprietary JDK is available through the

package sun-java6-jdk, which may be installed either usingthe Synaptics package manager or by

running the following command:sudo apt -get install sun -java6 -sdk
For better performance in GNU/Linux operating systems it isalso recommended to turn off

the desktop effects managers (e.g. Compiz).

A.1.2 Distribution structure

Figure A.1 shows the structure of the distribution. The directory called “plugins” is of particular

interest to the user: it contains the plug-in packages that provide the implementation of various

Interpreted Graph Models and the supporting tools. By managing the contents of this directory,

Workcraft may be configured to provide the necessary functionality. The plug-in management

process is straightforward: the plug-in packages (in the form of jar files) may simply be added to

or removed from this directory.

The directory called “config” contains three files. The “config.xml” file contains various user-

defined configuration parameters such as visual preferences, external tool paths, etc. This file is

usually updated from the GUI, however it is stored in a human-readable XML format and may be

edited manually if some variables need to be changed withoutstarting the GUI. The “plugins.xml”

file contains the list of plug-ins found during the reconfiguration process (see Section A.1.3). It

should never be changed manually. Finally, the “uilayout.xml” file contains the layout parameters

155

CHAPTER A. WORKCRAFT USER MANUAL

of the user interface elements. If it is removed, the UI will reset to the default configuration. This

may be useful for troubleshooting and can also be done from the GUI (Utility → Reset UI layout

in the main menu, see Figure A.4).

A.1.3 Plug-in reconfiguration

If any changes are made to the contents of the “plugins” directory, Workcraft must bereconfig-

ured. Reconfiguration is an automated process during which the contents of the plug-in packages

are analysed, and a list of all discovered compatible plug-ins is built and stored in the “config/plu-

gins.xml” file. During startup, Workcraft uses this list to load the plug-ins instead of scanning the

contents of the directory every time, which greatly reducesthe start-up time. Reconfiguration must

be triggered manually, either by starting Workcraft from the command-line with the “-reconfigure”

argument, or using the GUI (Utility → Reconfigure pluginsin the main menu, see Figure A.4).

A.1.4 Launching Workcraft

In the Windows distribution, the start-up script is called workcraft.js and can be run either by

double-clicking on it in the Windows Explorer window or by typing “workcraft” in the command-

line window (the current directory should be the directory extracted from the distribution archive).

In the Linux distribution, the script is called workcraft.sh and can be similarly run either from the

command-line (“./workcraft.sh”) or from a graphical file manager.

When creating an application launcher in a desktop environment (also called a “shortcut” in

Windows), it is necessary to ensure that the working directory is set to the root of the Workcraft

distribution. It is possible to set the working directory inthe shortcut properties tab in Windows,

however in some Linux desktop environments (e.g., GNOME) application launchers do not have

such a parameter. To work around this limitation, the start-up command must change the working

directory before launching Workcraft. One way to achieve this is as follows:bash - "d [Workraft distribution diretory℄ && ./workraft.sh"
156

CHAPTER A. WORKCRAFT USER MANUAL

Figure A.2: Workcraft running in the interactive command-line mode

A.2 Command-line mode

Workcraft supports two different modes of operation: the command-line mode and the GUI mode.

The command-line mode is implemented using a JavaScript interpreter and may be used either in

the interactive mode or in the batch mode. The interactive mode allows to execute single JavaScript

statements and immediately see their results (Figure A.2).The batch mode is used to execute a set

of script files without user interaction.

Workcraft is started in the interactive command-line mode using the “-nogui” argument:./workraft.sh -nogui
Alternatively, “exec:filename” argument is used to run a script file without interaction:./workraft.sh -nogui -exe:gtosvg.js seq.g
The command-line mode allows to use Workcraft for processing Interpreted Graph Models as

a part of a larger task. In Figure A.3, an example script is given that produces an SVG image

of a Signal Transition Graph given in the form of a .g file. The script works as follows. First,

the STG model is imported from a .g file using the DotGImporterclass. Because the .g file does

not define any visual layout information for the model, a visual model must be created explicitly.

When that is done, the dot layout plug-in (implemented by theclass DotLayout) is applied to the

model. Finally, the model is exported to an .svg file using theSVGExporter class.

157

CHAPTER A. WORKCRAFT USER MANUAL

This script may be run as a standalone command as shown above.Apart from producing

the SVG files, this command can be used, for example, as a part of a shell script to generate a

PostScript image of the STG (using the Inkscape editor):./workraft.sh -nogui -exe:gtosvg.js $1inksape $1.svg --export-eps=$1.eps --export-text -to-path
Workcraft uses the Rhino engine to execute JavaScript. Because Rhino is implemented in

Java, it allows to use the Java objects directly from JavaScript and therefore no special objects are

needed to organise the interaction of the script with the Workcraft’s core objects. A useful tutorial

on using the Rhino JavaScript implementation to interact with Java programs is available in [13].

A.3 GUI mode

The GUI mode is the default mode used by Workcraft. In this mode, the interaction with the

Interpreted Graph Models is done via the visual editing interface and the interactive tools. The

GUI mode also provide facilities for managing larger projects (Workspace).

A.3.1 User interface overview

The default GUI configuration is shown in Figure A.4. This configuration is used when Workcraft

is started for the first time, or when the GUI layout is reset asexplained in Section A.1.2. All of the

interface windows can be re-arranged by the user, and the layout configuration will automatically

be saved and restored during the next start-up of the program.

The user interface of Workcraft consists of eight main elements as shown in Figure A.4.

The main menu (1) is composed of the “File” and “Edit” menus that provide the general file-

and editing-related operations, the “View” menus that controls the visibility of various GUI ele-

ments and the “Tools” menu that contains the automatically selected set of tools that are applicable

to the current model.

The editor tabs (2) allow to switch between the individual editor windows. The editor win-

dows (4) provide a graphical view of the current model and theinterface of the selected tool. These

windows are used for navigating the model and support scaling (using the mouse wheel) and pan-

ning (holding the middle mouse button and dragging) operations to control the viewport. The same

158

CHAPTER A. WORKCRAFT USER MANUAL

importPakage(org.workraft.util);importPakage(org.workraft.plugins.interop);importPakage(org.workraft.plugins.layout);importPakage(org.workraft.workspae);if (args.length != 1){ println ('.g �le name missing, aborting');}else{ println ('Converting ' + args[0℄ + ' to ' + args[0℄ + '.svg');stgImporter = new org.workraft.plugins.interop.DotGImporter();svgExporter = new org.workraft.plugins.interop.SVGExporter();dotLayout = new org.workraft.plugins.layout.DotLayout(framework);modelEntry =org.workraft.util.Import.importFromFile(stgImporter, args[0℄);visualModel =modelEntry.getDesriptor().getVisualModelDesriptor().reate(modelEntry.getModel());modelEntry.setModel(visualModel);workspaeEntry = new org.workraft.workspae.WorkspaeEntry(null);workspaeEntry.setModelEntry(modelEntry);dotLayout.run(workspaeEntry);org.workraft.util.Export.exportToFile(svgExporter, visualModel, args[0℄ + '.svg');println ('Done!');}done();
Figure A.3: A script for automated generation of SVG images from .g files

159

C
H

A
P

T
E

R
A

.W
O

R
K

C
R

A
F

T
U

S
E

R
M

A
N

U
A

L

Figure A.4: The main window of Workcraft

160

CHAPTER A. WORKCRAFT USER MANUAL

model representation is usually used for the interactive simulation, however this functionality may

be changed by the implementation of a particular model.

Editor tools (5) are used to switch between working modes, such as creating a particular type of

node, creating connections between nodes, simulating the model etc. The tool buttons optionally

define hotkeys that allow to quickly switch between the toolsusing the keyboard. The hotkey

associated with a tool is displayed when the mouse pointer hovers over the tool button for a certain

amount of time.

The property editor (3) displays the properties of the currently selected node and provides the

user with the means to change them. The property editor is used, for example, to change the node

label or its colour, to set the number of tokens in a Petri net place, set the type and the logical

function of a circuit gate.

The tool controls window (6) contains the control elements defined by the active tool. In the

figure, the simulation tool is the active tool, and this window contains buttons that allow to step

the simulation forward and backward, to save and load simulation traces etc.

The utility area (7) has four tabs: the output, which is used to display various information

during normal execution of the program, the problems windowthat displays errors which might

have occurred during the execution, the JavaScript window that allows to execute scripts and the

tasks window that allows to control the progress of currently executed tasks.

The workspace window (8) shows the files that are contained inthe current workspace (see

Section A.3.2).

A.3.2 Workspace

Workcraft uses the concept ofworkspaceto make managing collections of related files easier. A

workspace is very similar to what is usually called aproject in an integrated development envi-

ronments (IDE) such as Eclipse or Visual Studio. More specifically, a workspace is a directory in

the file system that contains files and directories that are shown in the Workcraft’s workspace win-

dow (Figure A.5), allowing to perform actions on those files using the interface of Workcraft. Ad-

ditionally, a workspace stores a set ofmount pointsthat are directories external to the workspace,

but are treated as a part of the workspace by Workcraft. This feature allows to share files between

161

CHAPTER A. WORKCRAFT USER MANUAL

(a) Workspace operations (b) Workspace entry operations

Figure A.5: The workspace window and its context menus

several workspaces.

When Workcraft is started, a temporary workspace is created. This workspace is stored in the

system’s standard location for temporary files. All files that are opened or created will automati-

cally be added to this workspace. Additional external directories may be added to the workspace

either using the main menu (File→Link files to the root of workspace) or using the context menu

that is brought up by right-clicking on the blank space in theworkspace window (Figure A.5a).

The current workspace may be saved to a user-specified location using either of those menus.

A context menu for workspace entries is brought up by right-clicking on a particular entry.

The contents of this menu depend on the type of the selected entry. For example, in Figure A.5b a

context menu for a Signal Transition Graph entry (stored in a.g file) is shown. This menu contains

the same set of tools (applicable to a Signal Transition Graph model) as does the “Tools” sub-menu

of the main menu. However, it is not necessary to open an editor window for the model to access

the tools using the workspace interface.

162

CHAPTER A. WORKCRAFT USER MANUAL

Figure A.6: The “New work” dialogue

A.3.3 Working with models

Creating models

New models are created using the “New work” dialogue (FigureA.6). This dialogue is accessible

either from the main menu (File→Create work), by using the keyboard shortcut (Ctrl+N) or from

the workspace context menu. To create a new model, its type and the optional title should be

specified. By default, the model is created with the corresponding visual model, but this can be

disabled by unchecking the check-box labelled “Create visual model”. Omitting the visual model

may be useful if the new model is not supposed to be edited manually, but rather using tools

or scripts. Some model types may also lack support for visualediting. If the “Open in editor”

check-box is checked, an editor window will automatically be opened for the new model.

Import and export

The import operation creates a Workcraft model from a given file and adds it to the workspace.

The set of supported file types is defined by the set of currently loaded import plug-ins. The model

import dialogue (Figure A.7) is accessible from the main menu (File→Import). It is possible to

import multiple files at once using the dialogue by shift-clicking on the additional files to add them

to the selection. It is also possible to filter the displayed files using the “Files of type” combo-box,

showing only those that are supported by the chosen import plug-in.

Export is the reverse operation, i.e. it creates a file of a certain type from a Workcraft model.

It is similarly accessible from the main menu (File→Export). Export operations are also defined

163

CHAPTER A. WORKCRAFT USER MANUAL

Figure A.7: The model import dialogue

Figure A.8: The model export sub-menu

by the plug-ins, and it is possible to have an arbitrary number of target file formats for a given

model type. For instance, the graphical representation of model may be written as an image file.

In Figure A.8, several possible export targets for a Signal Transition Graph model are shown.

Editing

A new visual editor window can be created by right-clicking on a model entry in the workspace

window and choosing “Open editor”. The number of simultaneously open editor windows is not

limited by Workcraft. Additional editor windows will be attached to the primary editor window

using a tab-panel interface (see Figure A.4, items 2 and 4). The currently active editor window is

highlighted with a black border. Focus can be shifted between the editor windows by clicking on

Figure A.9: The editor tools window with a hotkey tool-tip

164

CHAPTER A. WORKCRAFT USER MANUAL

Figure A.10: The set of tools applicable for the current model (an STG)

Figure A.11: The tasks window

their contents.

The contents of the toolbox (Figure A.4, item 5) and the “Tools” sub-menu (Figure A.4, item

1) depend on the type of the model that the currently active editor window holds. When another

editor window is made active, the tools are updated accordingly. The editor tools can be switched

either by clicking on the tool icon with a mouse, or by pressing the corresponding hotkey. The

hotkeys are shown when the mouse cursor hovers above the toolbutton for a small period of

time (Figure A.9).

The set of editor tools and the way they interact with the model via the editor window is

completely defined by the model plug-in and the user should refer to the documentation of a

particular model plug-in for reference. The only conventions are that the mouse wheel controls

the zoom level of the editor viewport, holding the right (or middle) mouse button and moving the

mouse pans the view. These operations are also accessible from the keyboard:+ and - keys control

the zoom level andCtrl+arrow keyscontrols the panning.

165

CHAPTER A. WORKCRAFT USER MANUAL

(a) Window being dragged to another docking location

(b) Window moved to the new docking location

Figure A.12: Changing the interface layout

Applying tools and controlling asynchronous processes

The analysis tools can be invoked either from the main menu asshown in Figure A.10 or from the

workspace window as shown in Figure A.5b. The set of applicable tools is defined by the currently

loaded plug-ins. The tools usually present the user with a dialogue for interaction, although this is

not required. If the operation performed by the tool potentially takes a considerable a considerable

amount of time, the tool may choose to start its computationally intensive process asynchronously,

without blocking the rest of the user interface. When the tasks completes, the tool will present the

user with the results.

The progress of such tasks can be monitored using the “Tasks”window shown in Figure A.11.

Tasks that are no longer needed or take unexpectedly long to complete may be cancelled from this

window.

A.3.4 Changing the user interface layout

The layout of the user interface in Workcraft is defined usingthe relation called docking. Every

window, regardless of its type, is assigned a docking regionrelative to some other window (ex-

cept for the root window that is invisible to the user). Thereare two types of regions: the side

regions and the central region. If the window is docked to another window’s central region, the

two windows will share the same space on the screen, and will be placed into a tabbed window

166

CHAPTER A. WORKCRAFT USER MANUAL

container to allow switching between them. An example of such docking arrangement is the util-

ity area (Figure A.4, item 7). If the window is docked to another window’s side region, they will

be arranged in a side-by-side fashion. The divider between them can be dragged to distribute the

screen space as required.

Docking of any window can be changed by “dragging” its headerto the desired location. As

the mouse cursor is moved over the regions of other windows, the position that the window would

take if the button were released is shown using a grey shade. For side-to-side arrangements, a half

of the target window (top, bottom, left or right) is shaded. For the tabbed pane arrangement, the

whole window area is shaded. Figure A.12 show the window titled “Javascript” being moved to

another docking location. In subfigure A.12a, the window is being dragged and the grey docking

location preview is seen. In subfigure A.12b, the new dockinglocation is accepted and the window

is docked.

The layout is persistent and is restored each time Workcraftis started. It can be reset back to

the default arrangement using the main menu (Utility→Reset UI layout).

Workcraft has eight standard utility windows. They are “Output”, “Problems”, “Javascript”,

“Workspace”, “Property editor”, “Editor tools”, “Tasks” and “Tool controls”. These windows may

be hidden at any time either by clicking on the close button (located in the window header panel)

or by using the main menu (View→Windows). A hidden utility window may be shown again by

clicking its name in theView→Windowsmenu. Those windows that are currently shown will have

a checked box near their name.

A.3.5 Changing the look and feel of the interface

Workcraft uses the Java Swing library for its user interface. This library is designed to achieve

a consistent look across all platforms. The look of the SwingUI elements is defined by a “look

and feel” package that may be changed on the fly. The look and feel used by Workcraft may be

changed using the main menu (View→Look and feel). An advanced look and feel package called

Substance [15] is included with the Workcraft distribution. This package provides a large selection

of colour schemes and styles for the UI elements. Additionally, it honours the DPI setting of the

monitor correctly (as opposed to the standard Swing look andfeel) which may be critical for very

167

CHAPTER A. WORKCRAFT USER MANUAL

high resolution displays. To achieve the best performance,however, the default Swing look and

feel is the best choice and it is recommended to use it on the slower systems.

168

Appendix B

Extending Workcraft

This appendix explains how to build a Workcraft distribution from the source code and how to

extend Workcraft with additional Interpreted Graph Model classes and tools.

B.1 Building Workcraft

Before building Workcraft from the source code, it is necessary to make sure that the Java Devel-

opment Kit (JDK) is properly set up. This can be checked by trying to run the binary Workcraft

distribution and the command-line Java tools:java, javac. If Workcraft does not work correctly or

some of the Java tools are missing, the JDK should be reinstalled. The JDK implementations that

are known to compile and run Workcraft correctly are the Sun Microsystems standard JDK [8]

and OpenJDK [10]. Most of the development of the main code base is done using the Sun’s JDK.

When running with OpenJDK, Workcraft may have some small (but not fatal) issues.

Workcraft uses the Bazaar version control system [3] to manage the source code base and the

Launchpad collaboration platform [9] to publish the development branches and to track issues.

This chapter assumes that the reader is familiar with Bazaarand has it installed (Bazaar web

site [3] contains very good documentation and tutorials). Workcraft web site [20] also contains a

quick introduction to getting started with Bazaar.

169

CHAPTER B. EXTENDING WORKCRAFT

B.1.1 Creating a code branch

This documentation is written against the version 2.0.1 of Workcraft. The following command

will get this code branch:bzr branh lp:~workraft/workraft/2.0.1
The following command will get the main development branch:bzr branh lp:workraft

Please note that this branch contains the latest development code and may be unstable. The plug-

in API discussed in this chapter is also likely to change significantly over time. It is therefore

recommended to use the version 2.0.1 to follow this document, or to refer to the Workcraft web

site for the up-to-date documentation.

B.1.2 Building with Maven

Workcraft uses Maven [1] as its build system — a Maven installation is therefore required to build

Workcraft. With Maven properly installed and the path to itsexecutable present in the PATH

environment variable, Workcraft can be built using the following command (provided that the

current directory is the root of the code branch):mvn lean pakage
Note that Maven can take quite a long time to build Workcraft for the first time. This is because

Maven depends heavily on plug-ins to perform the various build steps, and during the first build the

set of the plug-ins that are required to build Workcraft (such as, e.g., the JavaCC parser generator)

will be downloaded from the central Maven repository on the web. In addition to the plug-ins,

Maven will need to download some of the supporting libraries(e.g., the DesiJ library) from the

repository located on Workcraft’s web site. Having a working Internet connection is therefore

critical during the first build.

Maven will cache all the plug-ins and dependencies locally.This means that all the subsequent

builds will be performed much faster and will no longer require Internet access.

The result of the Maven build will be the four distribution archives. The projects that contain

the distributions have names starting with “WorkcraftDistr”. Projects that have “Full” in their

170

CHAPTER B. EXTENDING WORKCRAFT

(a) Selecting import source (Maven project) (b) Selecting projects

Figure B.1: Eclipse project import

name will include all the plug-ins available in the code branch, while projects that are called

“Basic” will only include the STG and Petri net model support.

B.1.3 Building Workcraft using the Eclipse integrated development environment

(IDE)

Using an IDE makes managing a large project such as Workcrafteasier. The Maven build system

is supported by most of the Java IDEs, natively (such as NetBeans) or through a plug-in (Eclipse).

Bazaar version control system, however, is not supported well enough by some IDEs (Bazaar

support status in various IDEs is listed in [2]). This is not critical because Bazaar has its own

GUI interface implementations (QBzr, TortoiseBzr etc.) and its command-line interface is simple

enough, however support for operations such as version control aware file renaming directly from

an IDE is helpful.

The Eclipse IDE [16] provides good support for both Maven build system and Bazaar version

control system and is recommended for Workcraft development. The rest of this section assumes

that the user’s Eclipse installation has the m2eclipse plug-in [6] installed for Maven integration.

Installing the Bazaar integration plug-ins (BzrEclipse orQBzrEclipse) is optional.

171

CHAPTER B. EXTENDING WORKCRAFT

Figure B.2: Updating Eclipse project configuration

Importing the Workcraft projects into an Eclipse workspace

Workcraft projects can be imported to Eclipse directly fromthe code branch created by Bazaar

using the Import window (Figure B.1a). The Workcraft sourcecode package consists of a number

of separate projects (Figure B.1b). If there are other projects already in the Eclipse workspace, all

Workcraft projects can be added to a new working set (“Add projects to working set” option) for

easier organisation, however it may be more convenient to create a new empty Eclipse workspace

specifically for Workcraft.

Fixing the missing type errors

When the Workcraft Maven projects are imported into an Eclipse workspace and built for the

first time, Eclipse will not be able to find some parsing related types and the red error icons

will appear next to the projects that use those types (WorkcraftCore and STGPlugin). This is

because some Java classes are generated by JavaCC from the grammar definition files, and they

are created only when the first build completes. To fix this issue, Eclipse project configuration must

be updated by Maven following the first build. This operationis available in the project context

menu (Figure B.2) accessible by right-clicking on a projectin the Package Explorer window. At

this point all Workcraft projects should be able to be built without errors.

Creating a run configuration

To start Workcraft from Eclipse, it is necessary to create a run configuration for the project that

contains the main executable class of Workcraft. The run configurations window is accessible

172

CHAPTER B. EXTENDING WORKCRAFT

(a) Choosing the start-up project and the main class (b) Configuring the classpath

Figure B.3: The run configuration

from the main menu (Run→Run configurations...). A new run configuration can be created by

double-clicking on “Java Application”. As shown in Figure B.3a, the name of the start-up project

is “WorkcraftCore” and the name of the main class is “org.workcraft.Console”. All other projects

(except the project called “Tests” that contains the unit tests and is not required at runtime) should

be added into the classpath of the run configuration (Figure B.3b). This step is required because

Workcraft searches its classpath to locate compatible plug-in classes, and most of Workcraft’s

functionality is contained in the plug-ins. At this point Workcraft can be started by clicking on

the “Run” button in the run configurations window. For subsequent runs it is not necessary to use

the run configuration window — a shortcut “Run” button (a green button with a white triangle) is

available in the toolbar.

B.2 Creating a Workcraft module project in Eclipse

During the plug-in reconfiguration process, Workcraft scans the classpath to find all classes that

implement theorg.workcraft.Moduleinterface. All discovered modules are initialised via their

init method during the plug-in initialisation phase. Modules can use theFrameworkinterface

passed to this method to register individual plug-ins such as tools or models. AWorkcraft module

is therefore an organisational unit that represents a related collection of plug-ins that implement

the extended functionality. Modules can be added and removed from the classpath to achieve a

particular configuration of Workcraft (see Section A.1.3).

The module interface is defined as follows:

173

CHAPTER B. EXTENDING WORKCRAFT

(a) Selecting the project type (b) Configuring the Maven project

Figure B.4: Creating a new Maven project

Figure B.5: Setting the project dependencies

174

CHAPTER B. EXTENDING WORKCRAFTpubli interfae Module {publi String getDesription();publi void init(Framework framework);}
ThegetDescriptionmethod returns a human-readable description of the module,and theinit

method is called to initialise the module as explained above.

B.2.1 Creating a new Maven project

Although it does not matter where the module is located as long as it is present on the classpath,

it is recommended to create a separate project for each module for better organisation. A new

Maven project can be created in Eclipse using the “New project” window, accessible from the

main menu (File→New project) or using the keyboard shortcut (Ctrl+N). The type of the project

should be “Maven project” as shown in Figure B.4a. The project should be created as a simple

project (“Create a simple project (skip archetype selection)” option in the following configuration

dialogue). The artifact details should be filled with the appropriate values of the Artifact ID and

version, as shown in Figure B.4b).

In the final stage of the project configuration the project dependencies must be configured. A

dependency on the “WorkcraftCore” project must be present in all projects (Figure B.5). Addi-

tional dependencies are optional.

When the project has been created, it is necessary to ensure that it uses the correct Java lan-

guage version. This can be done in the project property window (right-click on the project name,

thenProperties),section “Java compiler”. The compiler compliance level should be set to 1.6 or

higher. It is often enough to uncheck the “Use project specific settings” option — Eclipse will

then use the compliance level corresponding to the currently installed JDK version.

B.2.2 Creating a Workcraft module

The rest of this section explains how to create a simple module that registers a tool. Because

the tool will be applied to Signal Transition Graph (STG) models, dependencies on the Petri net

and STG plug-ins must be set when the project is created. If the project has already been created

175

CHAPTER B. EXTENDING WORKCRAFT

Figure B.6: Creating a Workcraft module class

without those dependencies, they can be added by right-licking the project name in the Package

Explorer and selectingMaven→Open POMfrom the context menu. Current dependencies are

listed in the “Dependencies” tab in the POM editor window, and more dependencies can be added

using the “Add...” button.

A new class can be added to the project using the main menu (File→New→Class) or the

project’s context menu (New→Class). By convention, the package name of a module class must

start with “org.workcraft.plugins”, otherwise it will be ignored by Workcraft. The class must

implement theorg.workcraft.Moduleinterface (Figure B.6). An example implementation of a

module class is shown in Figure B.7.

As can be seen from the code, during its initialisation the module registers a tool classNode-

Counter. The implementation of the tool itself is explained in the next section.

B.3 Adding tools

The tool classes can be created using the Eclipse UI in the same way as the module class, except

that they must implement theorg.workcraft.Toolinterface instead oforg.workcraft.Module. The

implementation of the NodeCounter tool is shown in Figure B.8. The tool counts the different

176

CHAPTER B. EXTENDING WORKCRAFTpakage org.workraft.plugins;import org.workraft.Framework;import org.workraft.Module;publi lass MyModule implements Module {publi String getDesription() {return "My module";}publi void init(Framework framework) {framework.getPluginManager().registerTool(NodeCounter.lass);}}
Figure B.7: A basic module implementation

types of objects in an STG model: places, dummy transitions and signal transitions.

The methodisApplicableTodefined in theTool interface determines whether the tool is com-

patible with a given model. The NodeCounter tool accepts a model if its underlying mathematical

model is an STG (and simply ignores the visual model if one is present). The methodgetSection

is used to organise tools in the Tools menu (Figure A.4) by semantic categories. TheNodeCounter

tool tells the framework to put it in the “Statistics” category. The methodgetDisplayNamedefines

the name of the tool that is shown to the user. Finally, the method run is called when the user

chooses to apply the tool to the current model. Since it is guaranteed that the tool will not be

passed a model that failed theisApplicableTocheck, the tool can assume that the mathematical

model that is passed to the methodrun is an STG and obtain a correspoding interface using a

type-cast operation. The method then builds a string containing the result and displays it using the

standard Swing message window.

B.3.1 Using asynchronous tasks

TheNodeCountertool is very simple: it does not perform any complex computations or calls to

the external tools. In this case it is acceptable for the toolto perform all its work directly in the

run method. If the tool potentially takes long to complete, however, this may be unacceptable.

The tool’s run method is called on the same thread as the GUI and hence the whole application

is blocked until the method returns. Workcraft framework provides facilities for executing longer

177

CHAPTER B. EXTENDING WORKCRAFT

tasks asynchronously. Using this functionality, the tool needs only to request the framework to

queue the task and then immediately return from itsrun method. The framework will then auto-

matically start the task on a separate thread, without affecting the rest of the application. When the

task finishes, the framework will notify the progress monitor provided by the tool. The progress

monitor can verify the result and react accordingly.

To be able to queue tasks, the tool needs to obtain a referenceto theTaskManagerinterface

provided by the framework. This is done by passing a reference to the required interface to the

tool’s constructor. As the tools are instantiated by the framework when needed, the constructor

argument must be included to theregisterToolcall in the module’sinit method along with the tool

class (Figure B.9).

An example asynchronous tool implementation is shown in Figure B.10. The tool registers as

compatible with any model (because it only serves a demonstrative purpose) and in itsrun method

it queues a new task instance. The class that defines the task to be executed is calledMyTaskand

is shown in Figure B.11. TheTaskinterface has a type parameter that defines the type of the value

that the task is expected to produce upon successful completion. In the example the return type

is Nothing, a special type meaning that no return value is actually expected. The tool also passes

a progress monitor (MyTaskProgressMonitor) that is responsible for handling the task’s progress

updates and completion.

In its run method the task emulates a sequence of a hundred of computationally expensive

steps. Each step takes a random amount of time to complete (emulated by theThread.sleepcall).

In every step the task reports the progress to the task monitor that is passed as argument to therun

method. The task also checks if the monitor reports the cancel request (usually initiated by the

user via GUI).

The run method must return an object of typeResult. This is a parametrised type that encap-

sulates the return value and the outcome of the task. It can beoptionally constructed without an

actual return value (e.g., if the calculations were terminated prematurely), but the outcome must

always be specified. The outcome of the task may be one of the following: finished correctly,

failed or cancelled. In theMyTaskexample, the task does not need to return any value so it only

returns the outcome.

178

CHAPTER B. EXTENDING WORKCRAFT

The implementation of the progress monitor used to handle the completion ofMyTaskis shown

in Figure B.12. The methodfinishedof the progress monitor is called when the queued task

completes (i.e., returns from itsrun method). In this example, the progress monitor simply checks

if the task has successfully completed and, if that is the case, shows a simple message window.

Note that it uses theSwingUtilities.invokeLatermethod to execute the GUI code (as opposed to the

simple tool example shown in Figure B.8). This is because theprogress monitor code is executed

on a separate thread to avoid blocking the GUI and all the GUI-related code must be executed on

the Swing event dispatch thread. TheinvokeLatermethod will call the code passed to it on the

event dispatch thread at the first opportunity.

The progress of the task can be observed using the Tasks window (Figure A.11). Tasks can be

terminated using the “Cancel” button in a particular task’sbox in the Tasks window.

B.3.2 Interfacing with external tools

Workcraft provides several convenience classes for interfacing with external tools. The classEx-

ternalProcessTaskallows starting external processes and provides support for operations such as

stopping the process and reading its standard output. To create a Workcraft tool that relies on

an external command-line based tool, a small modification can be made to theAsyncToolexam-

ple (Figure B.10). Instead of queueing a custom task, an instance ofExternalToolTaskshould be

queued as follows:taskManager.queue(new ExternalProessTask(new String[℄ {"eho", "Hello world!"}, "."),"External tool test", new ExternalTaskProgressMonitor());
This will queue a task that starts the tool “echo” with the parameter “Hello world!”. “echo” is

the standard tool in most operating systems that simply repeats whatever line was passed to it as an

argument to its standard output. The completion of theExternalProcessTaskis handled in the same

fashion as that of any other task, except that the task resulttype is fixed toExternalTaskResult.A

progress monitor implementation calledExternalTaskProgressMonitorcan be produced by mod-

ifying the MyTaskProgressMonitorslightly: the type parameter should be changed fromNothing

to ExternalProcessResult, and the line that generates the message window should be changed as

follows:

179

CHAPTER B. EXTENDING WORKCRAFTJOptionPane.showMessageDialog(null, new String(result.getReturnValue().getOutput()));
This will construct a string from the standard output of the external process, which is in this

case “Hello world!”.

B.4 Adding models

Adding support for new model types in Workcraft is very similar to adding new tools for existing

models, although the classes that define a model may seem morecomplex than the tool classes.

A model is added to Workcraft by implementing theModelDescriptorinterface and registering it

with the plug-in manager during the module initialisation:framework.getPluginManager().registerModel(MyModelDesriptor.lass);
An exampleModelDescriptorimplementation is shown in Figure B.13. This interface exposes

three operations to the Workcraft framework. ThegetDisplayNamemethod returns a human-

readable name of the model that will be displayed, e.g., in the model creation dialogue. Thecre-

ateMathModelmethod generates a new instance of the mathematical model. ThegetVisualMod-

elDescriptoroptionally returns a visual model descriptor that implements additional operations

that define the visual model. If this method returnsnull, the framework assumes that the model

does not support visual editing and will not be able to createeditor windows.

An exampleVisualModelDescriptorimplementation is shown in Figure A.2. It consists of only

two methods: thecreateVisualModelmethod returns a new visual model instance given a reference

to the mathematical model which it should represent. The type of the mathematical model that will

be passed to this method is guaranteed to be the same as the type returned by thecreateMathModel

method in the corresponding model descriptor. The second method,createTools, defines the set

of graph editor tools that will be used to interact with the visual model. In the example, the visual

model descriptor defines two standard tools: the selection tool and the connection tool (these tools

are described in Section A.3.3).

To return the new instances of the mathematical and the visual models, the model descriptors

create new instances of theMyModelandMyVisualModelclasses correspondingly. These classes

implement the model logic and store the node graph. Workcraft provides two helper classes,

180

CHAPTER B. EXTENDING WORKCRAFT

AbstractMathModelandAbstractVisualModelthat implement the general functionality of an In-

terpreted Graph Model. To produce a working instance ofMyModel andMyVisualModel, it is

enough to declare these classes as extending theAbstractMathModelandAbstractVisualModelre-

spectively and leave the methods such asconnectandvalidateConnectionempty. At this point,

Workcraft will be able to create models of the type “My model”through the new model dialogue

and to create editor windows for these models. The models will be empty at this time, however,

because no node types have yet been defined.

B.4.1 Adding a node type

To add a new node type to the model, two steps are required. First, the new node class should be

implemented both for the mathematical and the visual model.The implementation of a node in

the mathematical model is trivial (it may even be empty, but in this example we assume that it has

an integer field calledmyProperty), but the implementation of a node in the visual model is more

complicated. To help with this task Workcraft provides the base class calledVisualComponentthat

implements most of the logic required for a visual graph node. The only methods that have to be

implemented by the user aredraw that produces the graphical representation of the node,hitTestIn-

LocalSpacethat tests whether a given point is inside the node’s visibleshape (this method is used

to check whether a mouse pointer is inside the node), getBoundingBoxInLocalSpacethat returns

a rough approximation of the node’s shape in the form of an axis-aligned rectangle (the bounding

box is used during the first pass of mouse pointer/node hit detection to quickly reject most of the

nodes before calling the potentially expensivehitTestInLocalSpace) andgetMathReferencesthat

returns a list of all nodes in the mathematical model that thevisual node refers to.

Figure B.15 shows an example implementation of a visual node, the class calledMyVisualN-

ode.

The second step is to add a graph editor tool that will allow the nodes of the new type to be

created. Workcraft provides a generalised implementationfor this class of tools calledNodeGener-

atorTool. To create an instance of aNodeGeneratorTool, an implementation of theNodeGenerator

interface for the node type is required. An example implementation is shown in Figure B.16. The

methodgetIconreturns an icon that will be drawn on the graph editor tool button. In the example,

181

CHAPTER B. EXTENDING WORKCRAFT

the icon is created from an SVG file located in the project’s “resources” directory. The method

getLabelreturns the text that will be displayed in the button’s tool-tip. The methodgetTextreturns

the text that will be shown in the graph editor window when thetool is activated. The method

getHotKeyCodereturns the code of the key that is used to quickly activate the tool using the key-

board (in this case, it is the “N” key). The methodgenerateis responsible for the instantiation

of a new node at the given location. In the example, the node generator delegates this task to the

model. The methodcreateNodein the typeMyVisualModelis defined as follows:publi void reateNode (Point2D position) {// reate a new baking node in the math. modelMyNode node = new MyNode();mathModel.add(node);// reate the visual node orresponding to the math. nodeMyVisualNode node = new MyVisualNode(node);node.setPosition(position);// add the node to the graphadd(node);}
Finally, the tool is added to the list of tools returned byMyVisualModelDescriptor:tools.add(new NodeGeneratorTool(new MyNodeGenerator()));

B.4.2 Implementing the connection methods

The two methods that are used by the graph editor to create arcs connecting the nodes in the model

are theconnectandvalidateConnectionmethods in the typeMyVisualModel. ThevalidateCon-

nectionmethod is called when the user has selected a node in the connection mode and hovers

the mouse cursor above some other node. This method should donothing if the connection be-

tween these nodes is allowed, and throw anInvalidConnectionExceptionotherwise. An example

implementation is as follows:

182

CHAPTER B. EXTENDING WORKCRAFT�Overridepubli void validateConnetion(Node �rst, Node seond) throws InvalidConnetionExeption{if (!(�rst instaneof MyVisualNode && seond instaneof MyVisualNode))throw new InvalidConnetionExeption ("Unexpeted node types");for (Connetion on : getConnetions(�rst))if (on.getSeond() == seond)throw new InvalidConnetionExeption ("Ar already exists");}
This implementation first checks that both nodes are of the correct type (MyVisualNode) and

then ensures that an arc between the nodes does not yet exist.

The method that is called to create a connection between the two nodes (guaranteed to have

passed thevalidateConnectioncheck) is calledconnect.This method should create a connection

between the two visual nodes and the corresponding connection in the mathematical model. To

implement it, a method in the mathematical model (MyModel) that would create a connection

between the mathematical nodes is required:publi MathConnetion onnet (MathNode �rst, MathNode seond) {MathConnetion result = new MathConnetion(�rst, seond);add (result);return result;}
Using this method, theconnectmethod in the visual model (MyVisualModel) can be imple-

mented as follows:�Override publi void onnet(Node �rst, Node seond) throws InvalidConnetionExeption{MyVisualNode �rstVisualNode = (MyVisualNode)�rst;MyVisualNode seondVisualNode = (MyVisualNode)seond;
183

CHAPTER B. EXTENDING WORKCRAFTMathConnetion on = mathModel.onnet(�rstVisualNode.getReferenedNode(),seondVisualNode.getReferenedNode());VisualConnetion von = new VisualConnetion(on, �rstVisualNode, seondVisualNode);add(von);}
This implementation uses the default connection classes provided by Workcraft (MathCon-

nectionandVisualConnection) that model a directed arc.

B.4.3 Defining editable properties

Workcraft provides a user-friendly property editor interface (Figure A.4, item 3) that allows chang-

ing the values of the node properties such as, e.g., the number of tokens in a Petri net place. To

determine what properties should be displayed in the property editor, Workcraft requests a list of

property descriptors from the model implementation via thegetPropertiesmethod. The default im-

plementation of this method provided by theAbstractVisualModelandAbstractMathModeltypes

is empty, so it needs to be overridden in the following way (inthe typeMyModel):�Overridepubli Properties getProperties(Node node) {if (node instaneof MyNode) {return Properties.Set.of(new MyPropertyDesriptor((MyNode)node));}return Properties.Set.empty();}
With this implementation, the model checks the type of the node whose properties are being

requested.MyModeldefines only one type of node:MyNode, and therefore it returns an empty

property descriptor list if the node is of any other type. If the node is of the typeMyNode, the model

adds an implementation of thePropertyDescriptorinterface (MyPropertyDescriptor,shown in

Figure B.17) that defines how the property should be presented to the user. The methods are mostly

self-explanatory. ThesetValueandgetValuemethods handle the exchange of the property values

184

CHAPTER B. EXTENDING WORKCRAFT

between the node and the GUI controls that are used to displayand edit them. ThegetChoice

method allows defining a set of values that the user will be able to choose from instead of being

allowed to edit the value directly. ThegetTypereturns the type of the property that is used to

determine how the property value is displayed and edited.

To determine the complete set of properties displayed by theproperty editor, Workcraft uses

the following algorithm. Given a visual node, it first requests a list of properties defined for this

type of node from the visual model. Then, for each mathematical node from the list of nodes

referred to by the visual node, Workcraft requests its list of properties from the mathematical

model. All those property lists are finally merged.

To keep the UI up-to-date, the framework must be notified whenthe property is changed. This

is done in the property setter method as follows:publi void setMyProperty(int myProperty) {this.myProperty = myProperty;sendNoti�ation(new PropertyChangedEvent(this, "myProperty"));}
B.4.4 Using the automatic serialisation

Workcraft provides an automatic serialisation facility for all models. The example model defined

in this section will be able to be serialised (i.e., saved to disk) without any additional code. To

support deserialisation (loading from the files on disk), however, models must define a special

constructor that accepts the graph data loaded from the disk. Workcraft’sAbstractMathModeland

AbstractVisualModelclasses implement those constructors, and it is enough to call those construc-

tors from theMyModelandMyVisualModeltypes to implement the deserialisation support:// for the type MyModelpubli MyModel(MathGroup root) {super(root);}...
185

CHAPTER B. EXTENDING WORKCRAFT

//for the type MyVisualModelpubli MyVisualModel (MyModel model, VisualGroup root) {super(model, root);this.mathModel = model;}
At this point, Workcraft will be able to save and load the models of type “My model”.

186

CHAPTER B. EXTENDING WORKCRAFT

pakage org.workraft.plugins;import javax.swing.JOptionPane;import org.workraft.Tool;import org.workraft.plugins.stg.STGModel;import org.workraft.workspae.WorkspaeEntry;publi lass NodeCounter implements Tool {publi boolean isAppliableTo(WorkspaeEntry we) {if (we.getModelEntry().getMathModel() instaneof STGModel)return true;else return false;}publi String getSetion() {return "Statistis";}publi String getDisplayName() {return "Count nodes";}publi void run(WorkspaeEntry we) {STGModel stg = (STGModel)we.getModelEntry().getMathModel();StringBuilder result = new StringBuilder();result.append("STG statistis:\n");result.append("Number of plaes: " + stg.getPlaes().size() + "\n");result.append("Number of signal transitions: " + stg.getSignalTransitions().size() + "\n");result.append("Number of dummy transitions: " + stg.getDummyTransitions().size() + "\n");JOptionPane.showMessageDialog(null, result.toString());}}
Figure B.8: A simple tool implementation

187

CHAPTER B. EXTENDING WORKCRAFT

pakage org.workraft.plugins;import org.workraft.Framework;import org.workraft.Module;publi lass MyModule implements Module {publi String getDesription() {return "My module";}publi void init(Framework framework) {framework.getPluginManager().registerTool(NodeCounter.lass);// the task manager will be passed to the AsynTool's ontstrutor// whenever an instane of this tool is reatedframework.getPluginManager().registerTool(AsynTool.lass, framework.getTaskManager());}}
Figure B.9: Registering a tool with a constructor parameter

188

CHAPTER B. EXTENDING WORKCRAFT

pakage org.workraft.plugins;import org.workraft.Tool;import org.workraft.tasks.TaskManager;import org.workraft.workspae.WorkspaeEntry;publi lass AsynTool implements Tool {private �nal TaskManager taskManager;publi AsynTool(TaskManager taskManager) {this.taskManager = taskManager;}�Overridepubli boolean isAppliableTo(WorkspaeEntry we) {return true;}�Overridepubli String getSetion() {return "General";}�Overridepubli String getDisplayName() {return "Asynrhonous tool test";}�Overridepubli void run(WorkspaeEntry we) {taskManager.queue(new MyTask(), "Testing my task", new MyTaskProgressMonitor());}}
Figure B.10: A tool using the asynchronous tasks functionality

189

CHAPTER B. EXTENDING WORKCRAFT

pakage org.workraft.plugins;import org.workraft.Nothing;import org.workraft.tasks.ProgressMonitor;import org.workraft.tasks.Result;import org.workraft.tasks.Result.Outome;import org.workraft.tasks.Task;publi lass MyTask implements Task<Nothing> {�Overridepubli Result<Nothing> run(ProgressMonitor<? super Nothing> monitor) {for (int i=0; i < 100; i++) {try {if (monitor.isCanelRequested()) {return new Result<Nothing>(Outome.CANCELLED);}// emulate a long alulation stepThread.sleep((int)(Math.random()∗100+20));} ath (InterruptedExeption e) {return new Result<Nothing>(Outome.FAILED);}monitor.progressUpdate(i/99.0);}return new Result<Nothing>(Outome.FINISHED);}}
Figure B.11: An asynchronous task implementation

190

CHAPTER B. EXTENDING WORKCRAFT

pakage org.workraft.plugins;import javax.swing.JOptionPane;import javax.swing.SwingUtilities;import org.workraft.Nothing;import org.workraft.tasks.DummyProgressMonitor;import org.workraft.tasks.Result;import org.workraft.tasks.Result.Outome;publi lass MyTaskProgressMonitor extends DummyProgressMonitor<Nothing> {�Overridepubli void �nished(Result<? extends Nothing> result, �nal String desription) {if (result.getOutome() == Outome.FINISHED){ SwingUtilities.invokeLater(new Runnable() {�Overridepubli void run() {JOptionPane.showMessageDialog(null, "Task " + desription + " �nished!");}});}}}
Figure B.12: A progress monitor implementation

191

CHAPTER B. EXTENDING WORKCRAFT

pakage org.workraft.plugins;import org.workraft.dom.ModelDesriptor;import org.workraft.dom.VisualModelDesriptor;import org.workraft.dom.math.MathModel;publi lass MyModelDesriptor implements ModelDesriptor {�Overridepubli String getDisplayName() {return "My model";}�Overridepubli MathModel reateMathModel() {return new MyModel();}�Overridepubli VisualModelDesriptor getVisualModelDesriptor() {return new MyVisualModelDesriptor();}}
Figure B.13: An exampleModelDescriptorimplementation

192

CHAPTER B. EXTENDING WORKCRAFT

pakage org.workraft.plugins;import java.util.LinkedList;import java.util.List;import org.workraft.dom.VisualModelDesriptor;import org.workraft.dom.math.MathModel;import org.workraft.dom.visual.VisualModel;import org.workraft.exeptions.VisualModelInstantiationExeption;import org.workraft.gui.graph.tools.ConnetionTool;import org.workraft.gui.graph.tools.GraphEditorTool;import org.workraft.gui.graph.tools.SeletionTool;publi lass MyVisualModelDesriptor implements VisualModelDesriptor {�Overridepubli VisualModel reate(MathModel mathModel)throws VisualModelInstantiationExeption {return new MyVisualModel((MyModel)mathModel);}�Overridepubli Iterable<GraphEditorTool> reateTools() {List<GraphEditorTool> tools = new LinkedList<GraphEditorTool>();tools.add(new SeletionTool());tools.add(new ConnetionTool());return tools;}}
Figure B.14: An exampleVisualModelDescriptorimplementation

193

CHAPTER B. EXTENDING WORKCRAFTpakage org.workraft.plugins;/∗ imports omitted ∗/publi lass MyVisualNode extends VisualComponent {�nal Path2D shape;�nal MyNode node;publi MyVisualNode(MyNode node) {// the baking node in the math. modelthis.node = node;// a simple diamond shapeshape = new Path2D.Float();shape.moveTo(−0.5, 0);shape.lineTo(0.0, 1.0);shape.lineTo(0.5, 0);shape.lineTo(0, −1);shape.losePath();}�Overridepubli void draw(DrawRequest r) {Graphis2D graphis = r.getGraphis();// draw a �lled shape �rstgraphis.setColor(Coloriser.olorise(Color.LIGHT_GRAY, r.getDeoration().getColorisation()));graphis.�ll(shape);// now draw an outlinegraphis.setStroke(new BasiStroke(0.1f));graphis.setColor(Coloriser.olorise(Color.BLACK, r.getDeoration().getColorisation()));graphis.draw(shape);// draw the value of "my property"String text = "" + node.getMyProperty();Font font = new Font("Sans−serif", Font.PLAIN, 1);graphis.setFont(font);// alulate the text bounds to enter the text on the nodeRetangle2D stringBounds = font.getStringBounds(text, graphis.getFontRenderContext());graphis.drawString(text, (�oat)(−0.5∗stringBounds.getWidth()), (�oat)(−0.5f∗−stringBounds.getHeight()));}�Overridepubli boolean hitTestInLoalSpae(Point2D pointInLoalSpae) {return shape.ontains(pointInLoalSpae);}�Overridepubli Retangle2D getBoundingBoxInLoalSpae() {return shape.getBounds2D();}�Overridepubli Colletion<? extends MathNode> getMathReferenes() {return Colletions.singletonList(node);}}
Figure B.15: A visual node implementation

194

CHAPTER B. EXTENDING WORKCRAFT

lass MyNodeGenerator implements NodeGenerator {�Overridepubli Ion getIon() {return GUI.reateIonFromSVG("mynode.svg");}�Overridepubli String getLabel() {return "Create my node";}�Overridepubli String getText() {return "Clik to reate a node";}�Overridepubli void generate(VisualModel model, Point2D where)throws NodeCreationExeption {((MyVisualModel)model).reateNode(where);}�Overridepubli int getHotKeyCode() {return KeyEvent.VK_N;}}
Figure B.16: An exampleNodeGeneratorimplementation

195

CHAPTER B. EXTENDING WORKCRAFT

pakage org.workraft.plugins;import java.lang.re�et.InvoationTargetExeption;import java.util.Map;import org.workraft.gui.propertyeditor.PropertyDesriptor;publi lass MyPropertyDesriptor implements PropertyDesriptor {private �nal MyNode node;publi MyPropertyDesriptor(MyNode node){ this.node = node;}�Overridepubli boolean isWritable() {return true;}�Overridepubli Objet getValue() throws InvoationTargetExeption {return node.getMyProperty();}�Overridepubli void setValue(Objet value) throws InvoationTargetExeption {node.setMyProperty((Integer)value);}�Overridepubli Map<Objet, String> getChoie() {return null;}�Overridepubli String getName() {return "My property";}�Overridepubli Class<?> getType() {return int.lass;}}
Figure B.17: An examplePropertyDescriptorimplementation

196

Appendix C

Working with Signal Transition Graphs

A set of plug-ins that together provide a rich environment for system design based on the Sig-

nal Transition Graph (STG) model is included with the standard Workcraft distribution. Besides

providing the support for visual entry and simulation of Signal Transition Graphs, these plug-ins

implement a number of advanced operations such as verification, encoding conflict resolution,

logic synthesis and other.

This appendix documents how to use Workcraft to design STG models and how to apply tools

to these models. Before reading this chapter, please see theAppendix A for the general overview

of the user interface of Workcraft.

C.1 Using the STG editor interface

The functionality of the visual STG editor is provided by theset of editor tools shown in Fig-

ure C.1. A particular tool is activated either by clicking onits icon in the “Editor tools” window

or by pressing the corresponding hotkey on the keyboard. Once activated, the tool handles all

Figure C.1: The STG editor tools

197

CHAPTER C. WORKING WITH SIGNAL TRANSITION GRAPHS

Figure C.2: Creating a connection

user input to the editor window (e.g., the mouse clicks and key presses) to implement a certain

operation. The functionality of the tools for editing the STG model is explained below.

C.1.1 STG editor tools

Selection tool (hotkey: S) This tool is used to select, delete, move and group nodes. Single

nodes are selected by clicking on them. Multiple nodes are selected by clicking on an empty

space, holding the mouse button and dragging the cursor to draw a selection box. Selected nodes

may be deleted by pressing theDeletekey on the keyboard. Nodes are moved by clicking on a

selected node and holding the left mouse button while movingthe cursor.

Selected nodes can be grouped together by pressingCtrl+G . Grouped nodes are treated as a

single node for the purpose of selection and transform operations. A group of nodes can be broken

apart by selecting it and pressingCtrl+U .

If a single node is selected, the property editor window (Figure A.4, item 3) will show the list

of properties defined for that node. Properties can be changed by clicking on their corresponding

values in the property editor window. The method of specifying the value depends on the type

of the property. For instance, numerical properties can be changed by simply typing in the new

value, but for the colour properties a special colour chooser window is used.

Connection tool (hotkey:C) The connection tool is used to create directed arcs. When this tool

is active, two nodes can be connected by clicking on the first node and then clicking on the second

node. During the choosing of the second node, a visual connection hint line is displayed (Fig-

ure C.2). The colour of this line depends on what is located under the cursor at the moment. If

there is no node, the line is blue. If there is a node that can beconnected with the first node, the

line is green. If there is a node under the cursor, but the types of node are such that the connection

198

CHAPTER C. WORKING WITH SIGNAL TRANSITION GRAPHS

(a) In-place signal transition editing (b) Signal transition properties

Figure C.3: Editing signal transitions

between them is invalid (e.g., two places) the line is red andthe reason why such a connection

cannot be created is displayed in the bottom part of the editor window.

Arcs created using the connection tool can be removed using the selection tool.

Place tool (hotkey: P) This tool is used to create places. When this tool is active, anew place

will be created under the mouse cursor when the user clicks anywhere in the editor window.

Signal transition and Dummy transition tools (hotkey: T) These tools are used similarly

to the Place tool to create transitions. Both tools share thesame hotkey and it may be pressed

repeatedly to cycle between them.

Simulation tool (hotkey: M) This tool activates the simulation mode. Detailed explanation of

the simulation functionality is given in Section C.2.

C.1.2 Assigning signal names and types

When a new signal transition is created, the signal name and direction can be assigned to it in

two ways. One way is to use in-place editing feature that is activated by double-clicking on a

signal transition in the editor window. A text box will appear with the current name and direction

of the signal transition (Figure C.3a). The new name and/or direction can be typed directly into

this text box (pressingEnter accepts the change). The second way is to use the property editor

199

CHAPTER C. WORKING WITH SIGNAL TRANSITION GRAPHS

(a) Polyline (b) Bezier curve

Figure C.4: Arcs drawn using different shapes

window (Figure C.3b). The type of the signal (input, output or internal) can also be changed using

the property editor.

C.1.3 Placing tokens

The number of tokens in a place (or in an implicit place) can beset using the property editor

window. For implicit places, the properties of the arc that holds them contain the corresponding

property.

There is also a shortcut to place and remove single tokens (places in an STG will most often

contain at most one token). This is done by double-clicking on a place or an arc with an implicit

place.

C.1.4 Changing arc shapes

When new arcs are created, they have a simple straight line shape. Sometimes it is useful to give

some arcs a more complex shape. Workcraft supports two modesof controlling the arc shapes:

polylines and Bezier curves. Polyline is the default mode, and the arc shape in this mode is

controlled by a series of anchor points (Figure C.4a). The graphical representation of the arc is

constructed from the straight line segments connecting theanchor points. In the Bezier mode, the

arc is drawn using a cubic Bezier curve. The shape of the curveis controlled by the two “handles”

as shown in Figure C.4b.

The shape editing mode can be selected in the property editor. The anchor points can be edited

using the Selection tool. When an arc is selected, its anchorpoints (or the handles of the Bezier

curve) are shown. They can be moved or deleted in the same way as moving nodes. In the Polyline

200

CHAPTER C. WORKING WITH SIGNAL TRANSITION GRAPHS

Figure C.5: Editor window in simulation mode

mode, additional control points are created by holdingCtrl and clicking on the line segment.

C.2 Simulation

Simulation mode is activated using the Simulation tool. In this mode, the editor window high-

lights the currently enabled transitions (Figure C.5). An enabled transition can be fired simply by

clicking on it. The Simulation tool control window (Figure C.6) maintains the history of transition

firing events. It is possible to restore the state of the STG toany point in history by double-clicking

Figure C.6: Simulation tool controls

201

CHAPTER C. WORKING WITH SIGNAL TRANSITION GRAPHS

Figure C.7: The settings window

on the transition name.

The “Reset” button resets the marking to the initial state (i.e., the marking that the STG had

when the Simulation tool was activated). The “Step back” and“Step forward” buttons allow

to move through a trace (or the simulation history) one eventat a time. “Load trace”, “Save

trace”, “Load marking” and “Save marking” buttons are self-explanatory: they allow managing

files storing the traces and markings. The buttons “To clipboard” and “From clipboard” allow

correspondingly saving and restoring the trace in the form of a comma-separated list of signal

transition to and from the system’s clipboard.

C.3 Using tools

The STG model implementation in Workcraft uses several external tools to provide support for a

number of advanced operations. These tools must be accessible to Workcraft for those operations

to work correctly. The commands used to start the external tools can be configured using the

“External tools” section in the Settings window (Figure C.7). This window can be brought up

using the main menu (Edit→Preferences).

All tools are accessible from the “Tools” sub-menu of the main menu (Figure A.4, item 1).

C.3.1 Visual layout

Tools→Layout

Workcraft can use the Dot tool [7] to automatically produce the graphical layout for models

202

CHAPTER C. WORKING WITH SIGNAL TRANSITION GRAPHS

(a) Source STG file (b) Generated graphical representation

Figure C.8: Automatic STG layout generation using Dot

that lack one. Signal Transition Graph models are usually stored in the .g file format that does

not contain any information about the arrangement of the nodes in the graphical STG represen-

tation. Workcraft will apply the Dot-based layout tool automatically when a non-visual model is

attempted to be edited using the visual editor, for example when a .g file is imported and opened

in the editor.

The main advantage of using Workcraft to work with visual representation of the STG models

is that the layout information obtained from Dot is used onlyto initialise the visual model. The

user can use the automatically produced layout as somethingto start with, and then modify parts

of the layout manually. This contrasts with tools such asdraw_astgin the Petrify package, that

also use Dot to calculate the layout but can only produce static images of the graph.

By default, Workcraft does not import the complex arc shapesproduced by Dot and treats all

arcs as straight lines instead. This behaviour can be changed by setting the “Import connection

shapes” option in the Settings window (sectionLayout→Dot).

C.3.2 Parallel composition

Tools→Composition→Parallel composition

Parallel composition [125] is an operation that builds a composite STG from a set of input

203

CHAPTER C. WORKING WITH SIGNAL TRANSITION GRAPHS

Figure C.9: STG selection for parallel composition

STGs by merging the signal transitions having the same label. This operation is used, e.g., to con-

struct a closed system from a circuit Petri net and the environment specification (see Section 4.3.1).

Workcraft can perform the parallel composition of an arbitrary input set of STGs using the PComp

tool [12]. The Parallel composition window (Figure C.9) allows choosing the set of input STGs

from the Workspace. The source of the STGs can be both Workcraft STG models or .g files

present in the Workspace. The “Search” text box allows to filter the list of displayed STG sources

by entering the partial name.

C.3.3 Decomposition

Tools→Decomposition

The decomposition operation [125] splits an STG into several components. STG decomposi-

tion is particularly useful for synthesis of large circuits, where synthesising the whole circuit at

once is computationally infeasible. Synthesising a set of smaller circuits is significantly easier, and

it is often the case that their composition gives a better implementation that one large circuit ob-

tained from the original STG [125]. Decomposition is also useful to detach library elements (such

as arbiters) to avoid the expensive synthesis process for the circuits that already have a well-known

implementation.

Workcraft supports STG decomposition using the DesiJ tool [99]. DesiJ is tightly integrated

204

CHAPTER C. WORKING WITH SIGNAL TRANSITION GRAPHS

Figure C.10: DesiJ configuration window

with Workcraft: it is used as an internal library and not a stand-alone tool. DesiJ can be run using

the default parameters (Tools→Decomposition→Standard decomposition) or with a customised

set of parameters (Tools→Decomposition→Customised function).

The parameters in the DesiJ configuration window (Figure C.10) mirror the command-line

arguments of the stand-alone version of DesiJ. A detailed explanation of those parameters is given

in [100]. The configuration window allows saving the currentvalues of the parameters in a named

preset. The presets are persistent across program runs — they are stored in the configuration

directory of Workcraft.

C.3.4 Dummy contraction

Tools→Dummy contraction

Dummy transitionsis a special class of transitions defined in the Signal Transition Graph

model. These transitions do not reflect any physical events in the modelled system and are used

as a design aid. The dummy contraction operation attempts toremove the dummy transitions

from the model while preserving the behaviour of the signal transitions, as shown in Figure C.11.

Subfigure C.11a is the original STG where some of the transitions are dummy transitions. Sub-

205

CHAPTER C. WORKING WITH SIGNAL TRANSITION GRAPHS

(a) Original STG with dummy transitions (b) STG with dummy transitions
removed

Figure C.11: Dummy contraction example

figure C.11b is an STG that has the same observed behaviour, but contains no dummies. In this

example dummy contraction was performed by Petrify (Tools→Dummy contraction→Contract

dummies (Petrify)). Petrify uses state space exploration techniques to produce the STG without

dummy transitions, which often results in very good solutions but may be very slow for larger

STGs. Workcraft supports an alternative (structural) dummy contraction method using DesiJ

(Tools→Dummy contraction→Contract dummies (DesiJ)). This method does not suffer from the

state space explosion problem, however it cannot guaranteethat all dummy transitions will be

removed.

When a dummy contraction tool is applied, the resulting STG will appear in the Workspace

window alongside the original STG with the suffix “_contracted”.

C.3.5 CSC conflict resolution

Tools→Encoding conflicts→Resolve CSC conflicts

The Complete State Coding (CSC) condition means that there are no semantically different

STG states (markings) that share the same binary encoding ofsignal states. This condition is a

necessary condition for successful synthesis of an asynchronous circuit from the STG (see Sec-

tion 2.2.2 and Figure 2.5). Workcraft uses MPSat for CSC conflict resolution.

When this tool is applied, the resulting STG will appear in the Workspace window alongside

the original STG with the suffix “_resolved”.

206

CHAPTER C. WORKING WITH SIGNAL TRANSITION GRAPHS

Figure C.12: Failure trace report

C.3.6 Deadlock detection

Tools→Verification→Check for deadlocks

Workcraft uses the unfolding-based tools Punf and MPSat to detect deadlock states (see Def-

inition 3.7) in Signal Transition Graphs. If a reachable deadlock state is found, Workcraft shows

a report window containing that trace. Optionally, the trace can be loaded into the simulation tool

which helps to examine the particular sequence of events that leads into the problematic state (Fig-

ure C.12).

C.3.7 Reachability analysis

Tools→Verification→Check custom property

Workcraft provides a user-friendly interface to the MPSat tool chain for verification of cus-

tom properties (Figure C.13). This mode is useful to specifyreachability-like properties (e.g.,

output persistence, consistency, variations of the deadlock property, etc.) using a language called

Reach [66]. The configuration of the MPSat parameters and theproperty specification can be

saved using the preset system similar to the DesiJ tool interface.

207

CHAPTER C. WORKING WITH SIGNAL TRANSITION GRAPHS

Figure C.13: MPSat configuration interface

208

Bibliography

[1] Apache Maven — http://maven.apache.org/.

[2] Bazaar IDE Integration — http://wiki.bazaar.canonical.com/ideintegration.

[3] Bazaar version control system — http://bazaar.canonical.com/.

[4] CPN Tools — http://wiki.daimi.au.dk/cpntools/.

[5] Design/CPN Online — http://www.daimi.au.dk/designCPN/.

[6] Eclipse Maven Integration — http://www.eclipse.org/m2e/.

[7] Graph visualisation tools — http://www.graphviz.org.

[8] Java SE downloads — http://java.sun.com/javase/downloads/.

[9] Launchpad collaboration platform — https://launchpad.net/.

[10] OpenJDK — http://openjdk.java.net/.

[11] PEP Tool — http://theoretica.informatik.uni-oldenburg.de/ pep/.

[12] Punf and MPSat tools — http://homepages.cs.ncl.ac.uk/victor.khomenko/home.formal/tools/mpsat/.

[13] Scripting Java — http://www.mozilla.org/rhino/ScriptingJava.html.

[14] SPIN — http://spinroot.com/.

[15] The Substance project — http://java.net/projects/substance/.

[16] The Eclipse Foundation — http://www.eclipse.org/.

209

BIBLIOGRAPHY

[17] VeriMap tool — http://async.org.uk/screen/verimap/.

[18] VeriSyn: asynchronous high-level synthesis tool — http://async.org.uk/besst/verisyn/.

[19] Versify: speed-independent asynchronous circuit verification tool —

http://research.ac.upc.edu/vlsi/versify/.

[20] Workcraft — http://workcraft.org/.

[21] Sheldon B. Akers. Binary Decision Diagrams.IEEE Transactions on Computers,

27(6):509–516, 1978.

[22] Manoj Ampalam and Montek Singh. Counterflow pipelining: architectural support for

preemption in asynchronous systems using anti-tokens. InProc. International Conference

Computer-Aided Design (ICCAD), November 2006.

[23] Sreekaanth Isloor Anthony and T. Anthony Marsland. Thedeadlock problem: An overview.

IEEE Computer, 13:58–78, 1980.

[24] J. C. M. Baeten, editor.Applications of Process Algebra. Cambridge Press, 2005.

[25] K.R Baker and A.J. Currie. Multiple objective optimization in a behavioral synthesis sys-

tem. Inin Proc. Inst. Elect. Eng., volume 140, pages 253–260, 1993.

[26] A. Baravalle, G. Franceschinis, M. Gribaudo, V. Lanfranchi, M. Iacono, N. Mazzocca, and

V. Vittorini. DrawNET Xe: GUI and Formalism Definition Language.

[27] A. Bardsley, L. Tarazona, and D. Edwards.Teak: A Token-Flow Implementation for the

Balsa Language. 2009.

[28] Andrew Bardsley.Implementing Balsa handshake circuits. PhD thesis, Dept. of Computer

Science, University of Manchester, 2000.

[29] Jan A. Bergstra, Jan Willem Klop, and J. V. Tucker. Algebraic tools for system construction,

1984.

[30] E. Best, J. Esparza, B. Grahlmann, S. Melzer, S. Romer, and F. Wallner. The PEP verifica-

tion system. Tool presentation In the FEmSys Conference., 1997.

210

BIBLIOGRAPHY

[31] I. Blunno and L. Lavagno. Designing an asynchronous microcontroller using Pipefitter. In

Proc. International Conference Computer Design (ICCD), pages 488 – 493, 2002.

[32] Charles Brej.Early output logic and anti-tokens. PhD thesis, Dept. of Computer Science,

University of Manchester, 2005.

[33] Charles Brej and Jim Garside. Early output logic using anti-tokens. InProc. International

Workshop on Logic Synthesis, pages 302–309. ACM Press, May 2003.

[34] Frank Burns, Delong Shang, Albert Koelmans, and Alex Yakovlev. An asynchronous syn-

thesis toolset using Verilog. InProceedings of the conference on Design, automation and

test in Europe (Volume 1), DATE ’04, Washington, DC, USA, 2004. IEEE Computer Soci-

ety.

[35] Alex Bystrov, Danil Sokolov, and Alex Yakovlev. Low-latency control structures with slack.

In Proc. International Symposium on Advanced Research in Asynchronous Circuits and

Systems (ASYNC), pages 164–173. IEEE Computer Society Press, May 2003.

[36] Josep Carmona, Jordi Cortadella, and Michael Kishinevsky. Genet: a tool for the synthesis

and mining of Petri Nets. pages 181–185, 2009.

[37] Daniel M. Chapiro. Globally-Asynchronous Locally-Synchronous systems. PhD thesis,

Stanford University, 1984.

[38] Tam-Anh Chu. Synthesis of self-timed VLSI circuits from graph-theoretic specifications.

PhD thesis, MIT Laboratory for Computer Science, June 1987.

[39] Wesley A Clark. Macromodular computer systems. In AFIPS Conference Proceedings:

1967 Spring Joint Computer Conference, volume volume 30. Academic Press, 1967.

[40] E.M. Clarke, O. Grumberg, and D.A. Peled.Model Checking. The MIT Press, 1999.

[41] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Petrify: a

tool for manipulating concurrent specifications and synthesis of asynchronous controllers.

IEICE Transactions on Information and Systems, E80-D(3):315–325, 1997.

211

BIBLIOGRAPHY

[42] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev.Logic Synthe-

sis of Asynchronous Controllers and Interfaces. Springer, 2002.

[43] Al Davis and Steven M. Nowick. An introduction to asynchronous circuit design. Technical

report UUCS-97-013. Technical report, University of Utah,1997.

[44] Daniel D. Deavours, Graham Clark, Tod Courtney, David Daly, Salem Derisavi, Jay M.

Doyle, William H. Sanders, and Patrick G. Webster. The Moebius Framework and its

implementation. Technical Report 10, Piscataway, NJ, USA,2002.

[45] E.W. Dijkstra. Technical Report EWD-123. Technical report, Technological University,

Eindhoven, The Netherlands, 1965.

[46] A. V. Dinh Duc, Jean-Baptiste Rigaud, Amine Rezzag, Antoine Sirianni, Joo Fragoso, Lau-

rent Resquet, and Marc Renaudin. TAST CAD Tools. Tutorial given at the International

Symposium on Advanced Research in Asynchronous Circuits and Systems (ASYNC’02),

April 2002.

[47] D. A. Edwards and A. Bardsley. Balsa: an asynchronous hardware synthesis language.The

Computer Journal, 45 (1):12–18, jan 2002.

[48] E. G. Friedman, editor.Clock Distribution Networks in VLSI Circuits and Systems. IEEE

Press, 1995.

[49] Gerald C. Gannod and Sunil Gupta. An automated tool for analyzing Petri Nets using SPIN.

In ASE ’01: Proceedings of the 16th IEEE international conference on Automated software

engineering, page 404, Washington, DC, USA, 2001. IEEE Computer Society.

[50] Stanislavs Golubcovs, Delong Shang, Fei Xia, Andrey Mokhov, and Alex Yakovlev. Mod-

ular approach to multi-resource arbiter design. InProceedings of the 2009 15th IEEE Sym-

posium on Asynchronous Circuits and Systems (async 2009), pages 107–116, Washington,

DC, USA, 2009. IEEE Computer Society.

[51] J. Grabowski. On the analysis of switching circuits by means of Petri nets.Elektronische

Informations-verarbeitung und Kybernetik, 14:611– 617, 1978.

212

BIBLIOGRAPHY

[52] Bernd Grahlmann, Carola Pohl, and Sercon Mainz. Profiting from Spin in PEP. 1998.

[53] T Grotker, S Liao, G. Martin, and Swan S.System Design with SystemC. Springer, 2002.

[54] Naohiro Hamada, Yuki Shiga, Takao Konishi, Hiroshi Saito, Tomohiro Yoneda, Chris My-

ers, and Takashi Nanya. A behavioral synthesis system for asynchronous circuits with

bundled-data implementation.Information and Media Technologies, 4(2):211–226, 2009.

[55] Keijo Heljanko, Victor Khomenko, and Maciej Koutny. Parallelisation of the Petri Net

unfolding algorithm. InTools and Algorithms for Construction and Analysis of Systems,

pages 371–385, 2002.

[56] C. A. R. Hoare. Communicating sequential processes, 2004.

[57] Gerard J. Holzmann. The model checker SPIN.IEEE Trans. Softw. Eng., 23(5):279–295,

1997.

[58] Gerard J. Holzmann.The Spin Model Checker: Primer and Reference Manual. Addison-

Wesley, 2004.

[59] Visual STG Lab http://vstgl.sourceforge.net/.

[60] Kurt Jensen. Coloured Petri nets: basic concepts, analysis methods, andpractical use.

Springer-Verlag, 1997.

[61] M.B. Josephs, S.M. Nowick, and C.H. Van Berkel. Modeling and design of asynchronous

circuits. Proceedings of the IEEE, 87(2):234 –242, February 1999.

[62] Ali Khalili, Amir Jalaly Bidgoly, and Mohammad Abdollahi Azgomi. PDETool: A multi-

formalism modeling tool for discrete-event systems based on SDES description. InPETRI

NETS ’09: Proceedings of the 30th International Conferenceon Applications and Theory

of Petri Nets, pages 343–352, Berlin, Heidelberg, 2009. Springer-Verlag.

[63] V. Khomenko. Computing shortest violation traces in model checking based on Petri Net

unfoldings and SAT (technical report CS-TR-84). Technicalreport, School of Computing

Science, Newcastle University, 2004.

213

BIBLIOGRAPHY

[64] Victor Khomenko.Model Checking Based on Prefixes of Petri Net Unfoldings. PhD thesis,

University of Newcastle upon Tyne, School of Computing Science, 2003.

[65] Victor Khomenko. Efficient automatic resolution of encoding conflicts using STG unfold-

ings. InACSD ’07: Proceedings of the Seventh International Conference on Application of

Concurrency to System Design, pages 137–146, Washington, DC, USA, 2007. IEEE Com-

puter Society.

[66] Victor Khomenko. A Usable Reachability Analyser. In Alex Yakovlev, editor,Proc. of 21st

UK Asynchronous Forum’2009, University of Bristol, 2009.

[67] Victor Khomenko, Maciej Koutny, and Alex Yakovlev. Detecting state encoding conflicts

in stg unfoldings using sat.Fundam. Inf., 62(2):221–241, 2004.

[68] Victor Khomenko, Maciej Koutny, and Alex Yakovlev. Logic synthesis for asynchronous

circuits based on stg unfoldings and incremental sat.Fundam. Inf., 70(1):49–73, 2005.

[69] M. A. Kishinevsky, A. Y. Kondratyev, A.R. Taubin, and V.I. Varshavsky. On self-timed

behavior verification. InACM Intl. Workshop on Timing Issues in the Specification and

Synthesis of Digital Systems, 1992.

[70] Michael Kishinevsky, Alex Kondratyev, Alexander Taubin, and Victor Varshavsky.Concur-

rent hardware: the theory and practice of self-timed design. Series in Parallel Computing.

Wiley-Interscience, John Wiley& Sons, Inc., 1994.

[71] P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. InCRYPTO, pages 388–397,

1999.

[72] Daniel H. Linder and James C. Harden. Phased logic: supporting the synchronous de-

sign paradigm with delay-insensitive circuitry.IEEE Transactions on Computers, 45:1031–

1044, September 1996.

[73] Alain J. Martin. Compiling communicating processes into delay-insensitive vlsi circuits.

Distributed Computing, 1(4):226–234, 1986.

214

BIBLIOGRAPHY

[74] Alain J. Martin. Self-timed FIFO: an exercise in compiling programs into VLSI circuits.

HDL description to guaranteed correct circuit design, North-Holland, 1986.

[75] Koichi Masukura, Moniru Tomisaka, and Tomohiro Yoneda. Verification of asynchronous

circuits based on zero-suppressed BDDs.Systems and Computers in Japan, 32:43–54,

2001.

[76] E. J. McCluskey. Minimization of Boolean functions.Bell Syst. Tech., 35:1417–1444, 1956.

[77] Kenneth L. McMillan. Symbolic Model Checking: An Approach to the State Explosion

Problem. PhD thesis, Carnegie-Mellon University Pittsburgh Dept.of Computer Science,

1992.

[78] Thomas S. Messerges, Ezzat A. Dabbish, and Robert H. Sloan. Examining smart-card

security under the threat of power analysis attacks.IEEE Trans. Comput., 51(5):541–552,

2002.

[79] Shin-ichi Minato. Zero-suppressed BDDs for set manipulation in combinatorial problems.

pages 272–277, 1993.

[80] Andrey Mokhov. Conditional Partial Order Graphs. PhD thesis, University of Newcastle

upon Tyne, School of Electrical, Electronic and Computer Engineering, 2009.

[81] Andrey Mokhov, Victor Khomenko, and Alex Yakovlev. Flat arbiters.Application of Con-

currency to System Design, International Conference on, 0:99–108, 2009.

[82] U. Montanari and F. Rossi. Contextual nets.Acta Informacia, 32(6):545–596, 1995.

[83] D. E. Muller and W. C. Bartky. A theory of asynchronous circuits. Annals of Computing

Laboratory of Harvard University, pages 204–243, 1959.

[84] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,

77:541–580, 1989.

[85] Chris J. Myers.Asynchronous circuit design. Wiley-Interscience, John Wiley& Sons, Inc.,

July 2001.

215

BIBLIOGRAPHY

[86] Takashi Nanya, Yoichiro Ueno, Hiroto Kagotani, Masashi Kuwako, and Akihiro Takamura.

Titac: Design of a quasi-delay-insensitive microprocessor. IEEE Des. Test, 11(2):50–63,

1994.

[87] Volnei A. Pedroni.Circuit Design with VHDL. The MIT Press, 2004.

[88] A. Peeters, F. te Beest, M. de Wit, and W. Mallon. Click elements: An implementation style

for data-driven compilation. pages 3 –14, May 2010.

[89] Marco A. Pena and Jordi Cortadella. Combining Process Algebras and Petri Nets for the

specification and synthesis of asynchronous circuits. InASYNC ’96: Proceedings of the 2nd

International Symposium on Advanced Research in Asynchronous Circuits and Systems,

page 222, Washington, DC, USA, 1996. IEEE Computer Society.

[90] Carl Adam Petri. Kommunikation mit Automaten.PhD thesis, Bonn: Institut für Instru-

mentelle Mathematik, Schriften des IIM Nr. 2, 1962. Englishtranslation: Technical Report

RADC-TR-65–377, Vol.1, 1966, New York: Griffiss Air Force Base,.

[91] Luis A. Plana, Doug Edwards, Sam Taylor, Luis A. Tarazona, and Andrew Bardsley.

Performance-driven syntax-directed synthesis of asynchronous processors. pages 43–47,

2007.

[92] Ivan Poliakov, Victor Khomenko, and Alex Yakovlev. Workcraft âĂŞ a framework for

interpreted graph models. In Giuliana Franceschinis and Karsten Wolf, editors,Applications

and Theory of Petri Nets, volume 5606 ofLecture Notes in Computer Science, pages 333–

342. Springer Berlin / Heidelberg, 2009.

[93] Ivan Poliakov, Andrey Mokhov, Ashur Rafiev, Danil Sokolov, and Alex Yakovlev. Au-

tomated verification of asynchronous circuits using circuit petri nets. volume 0, pages

161–170, Los Alamitos, CA, USA, 2008. IEEE Computer Society.

[94] Ivan Poliakov, Andrey Mokhov, Danil Sokolov, and Alex Yakovlev. High-level model

verification within workcraft framework. In19th UK Asynchronous Forum, 2007.

216

BIBLIOGRAPHY

[95] Ivan Poliakov, Danil Sokolov, and Andrey Mokhov. Workcraft: A static data flow structure

editing, visualisation and analysis tool. InPetri Nets and Other Models of Concurrency -

ICATPN 2007, 2007.

[96] Jan M. Rabaey and Alberto Sangiovanni-Vincentelli. System-on-a-Chip - A Platform Per-

spective. University of California.

[97] Oriol Roig. Formal Verification and Testing of Asynchronous Circuits. PhD thesis, Univer-

sitat Politecnica de Catalunya, 1997.

[98] Leonid Rosenblum and Alex Yakovlev. Signal graphs: from self-timed to timed ones. In

Proceedings of International Workshop on Timed Petri Nets, pages 199–207, Torino, Italy,

July 1985. IEEE Computer Society Press.

[99] M. Schaefer, D. Wist, and R. Wollowski. DESIJ–enablingdecomposition-based synthesis

of complex asynchronous controllers. pages 186 –190, jul. 2009.

[100] Mark Schaefer. DesiJ - A Tool for STG Decomposition. Technical report 2007-11. Techni-

cal report, Institute of Computer Science, University of Augsburg, 2007.

[101] Karsten Schmidt. LoLA: A low level analyser. 1825:465–474, 2000.

[102] Charles L. Seitz.Introduction to VLSI systems. Chapter 7: System timing.Addison-Wesley,

1980.

[103] E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj,

P.R. Stephan, Robert K. Brayton, and Alberto L. Sangiovanni-Vincentelli. Sis: A system

for sequential circuit synthesis. Technical Report UCB/ERL M92/41, EECS Department,

University of California, Berkeley, 1992.

[104] Delong Shang, Frank Burns, Albert M. Koelmans, Alex Yakovlev, and F. Xia. Asyn-

chronous system synthesis based on direct mapping using VHDL and Petri nets.IEE Pro-

ceedings, Computers and Digital Techniques, 151(3):209–220, May 2004.

217

BIBLIOGRAPHY

[105] Alexandre Smirnov, Alexander Taubin, Mark Karpovsky, and Leonid Rozenblyum. Gate

transfer level synthesis as an automated approach to fine-grain pipelining. Inin Workshop

on Token Based Computing (ToBaCo), 2004.

[106] Danil Sokolov. Automated synthesis of asynchronous circuits using directmapping for

control and data paths. PhD thesis, Microelectronic System Design Group, School of

EECE, University of Newcastle upon Tyne, 2006.

[107] Danil Sokolov, Ivan Poliakov, and Alex Yakovlev. Asynchronous data path models. In7th

International Conference on Application of Concurrency toSystem Design, 2007.

[108] Danil Sokolov, Ivan Poliakov, and Alex Yakovlev. Asynchronous data path models. In

International Conference Application of Concurrency to System Design, July 2007.

[109] Danil Sokolov, Ivan Poliakov, and Alexandre Yakovlev. Analysis of static data flow struc-

tures.Fundam. Inform., 88(4):581–610, 2008.

[110] Jens Sparsø and Steve Furber.Principles of asynchronous circuit design: a system perspec-

tive. Kluwer Academic Publishers, 2001.

[111] Robert F. Sproull, Ivan E. Sutherland, and Charles E. Molnar. The counterflow pipeline

processor architecture.IEEE Design & Test of Computers, 11(3):48–59, 1994.

[112] C. Stehno. PEP Version 2.0. Tool demonstration In the ICATPN conference, 2001.

[113] S. Tam, D.L. Limaye, and U.N Desai. Clock Generation and Distribution for the 130-nm

Itanium 2 Processor with 6-MB On-Die L3 Cache.IEEE Journal of Solid-State Circuits,

39, 2004.

[114] Donald E. Thomas and Philip R. Moorby.The Verilog hardware description language.

Springer.

[115] Sunan Tugsinavisut, Roger Su, and Peter A. Beerel. High-level synthesis for highly con-

current hardware systems.Application of Concurrency to System Design, International

Conference on, 0:79–90, 2006.

218

BIBLIOGRAPHY

[116] Jan Tijmen Udding.Classification and composition of delay-insensitive circuits. PhD the-

sis, Eindhoven University of Technology, 1984.

[117] Antti Valmari. The state explosion problem, 1998.

[118] C.H. (Kees) van Berkel, Mark B. Josephs, and Steven M. Nowick. Scanning the technology:

Applications of asynchronous circuits. pages 223–233, 1999.

[119] Kees van Berkel, Joep Kessels, Marly Roncken, Ronald Saeijs, and Frits Schalij. The

VLSI-programming language Tangram and its translation into handshake circuits. pages

384–389, 1991.

[120] Kees van Hee, Olivia Oanea, Reinier Post, Lou Somers, and Jan Martijn v an der Werf.

Yasper: a tool for workflow modeling and analysis.Application of Concurrency to System

Design, International Conference on, 0:279–282, 2006.

[121] V. Varshavsky, M. Kishinevsky, V. Marakhovsky, V. Peschansky, L. Rosenblum, A. Taubin,

and B. Tzirlin. Self-Timed Control of Concurrent Processes. Kluwer Academic Publisher,

Dordrecht, The Netherlands, 1990.

[122] Tom Verhoeff. Delay-insensitive codes – an overview.Distributed Computing, 3:1–8, 1988.

10.1007/BF01788562.

[123] V. Vittorini, M. Iacono, N. Mazzocca, and G. Franceschinis. The osmosys approach to

multi-formalism modeling of systems.Software and Systems Modeling, 3:68–81, 2004.

10.1007/s10270-003-0039-5.

[124] Walter Vogler, Alexei L. Semenov, and Alexandre Yakovlev. Unfolding and finite prefix for

nets with read arcs. InInternational Conference on Concurrency Theory, pages 501–516,

1998.

[125] Walter Vogler and Ralf Wollowski. Decomposition in asynchronous circuit design. In Jordi

Cortadella, Alex Yakovlev, and Grzegorz Rozenberg, editors, Concurrency and Hardware

Design, volume 2549 ofLecture Notes in Computer Science, pages 152–190. Springer-

Verlag, 2002.

219

BIBLIOGRAPHY

[126] A. Yakovlev, L. Lavagno, and A. Sangiovanni-Vincentelli. A unified Signal Transition

Graph model for asynchronous control circuit synthesis. InICCAD’92, 1992.

[127] Alex Yakovlev, Michael Kishinevsky, Alex Kondratyev, Luciano Lavagno, and Marta

Pietkiewicz-Koutny. On the models for asynchronous circuit behaviour with OR causal-

ity. Formal Methods in System Design, 9:189–233, 1996.

[128] T. Yoneda, H. Hatori, A. Takahara, and S. Minato. BDDs vs. Zero-Suppressed BDDs:

For CTL symbolic model checking of Petri Nets. InIn Proc. of International Conference

on Formal Methods in Computer-Aided Design (FMCAD’96), volume LNCS 1166, pages

435–449. Springer, 1996.

[129] Tomohiro Yoneda, Atsushi Matsumoto, Manabu Kato, andChris Myers. High level synthe-

sis of timed asynchronous circuits. Washington, DC, USA, 2005.

[130] Armin Zimmermann.Stochastic Discrete Event Systems: Modeling, Evaluation,Applica-

tions. Springer, 2008.

220

Index

Affine transformation, 118

AND-token, 85

Antitoken, 85

ARISC processor, 102

Asynchronous circuits, 18

Classes, 20

Data path, 73

Delay insensitive, 20

Delay models, 19

Design paradigms, 23

Hazards, 62

Operation modes, 19

Quasi delay insensitive, 20

Speed-independent, 20

Verification, 54, 62, 143

Atomic token, 76

Balsa, 31, 146

Binary decision diagram, 28

Boolean function, 57, 78

Borrowing, 84

Active, 84

Passive, 84

Boundedness, 52

Bundled data, 21

C-element, 66

CF2ST converter, 95

Circuit, 57

Combinational logic, 74

Complete State Coding, 206

Complete state coding, 28

Completion detection, 23

Conditional Partial Order Graphs, 115, 146

Contextual nets, 48

Control, 108

Control interface, 109

Cycle, 75

Data path, 7, 73

Deadlock, 52, 75, 207

Demux, 110

DI, 20

Direct mapping, 5, 24

Disabling, 78, 87

Disabling condition, 78

Display operation, 117, 123

Dual-rail, 22

Early evaluation, 81

Elementary cycle, 58, 98

Enabling, 78, 87

221

INDEX

Enabling condition, 78

Evaluation, 77

Early, 81

Framework, 137

GALS, 3

gate, 18

Graph, 74, 114, 116

Directed, 74, 116

Interpreted Graph Models, 114

Graphical, 12, 117

Layout, 117

Operation, 117, 119

Visualisation, 141

Graphical user interface, 132, 139

GUI, 132

Handshake, 20

Handshake component, 115

Hazard, 62

IGM, 114

Inner interface, 109

Interface conformance, 64

α-non-conformance, 64

β -non-conformance, 66

Interpretation, 116

Interpreted Graph Models, 114, 115, 131

Graphical presentation, 117

Hierarchical, 122

Interpretation, 116

Logic networks, 123

Visual model, 121

Java Runtime Environment, 154

JavaScript, 138

Layout, 202

Liveness, 75

Logic networks, 123, 126

Logic synthesis, 5, 26

Marking, 76

Model checking, 114

Muller pipelines, 73

Multi-formalism, 9, 126, 134

Mux, 110

OR-token, 85

Outer interface, 109

Parallel composition, 59

Path, 75

Petri nets, 6, 43, 44, 102, 112, 114, 120

Arcs, 44

Circuit, 58

Coloured, 115

Composition, 59

Labelled, 44

Marking, 44

Places, 44

Properties, 51

Read arcs, 58

222

INDEX

Semi-modularity, 62

Tokens, 44

Transitions, 44

Unfoldings, 57

Petrify, 28

Plug-in, 138

Pop, 110

Postset, 44, 75

Preset, 44, 75

Projection, 75

Protocol

Bundled data, 21

Dual-rail, 22

Four-phase, 21

Handshake protocol, 20

Return-to-zero, 21

Two-phase, 21

Push, 109

QDI, 20

R-postset, 75

R-preset, 75

Reachability, 52, 207

Read arcs, 58

Complexity reduction, 61

Reconfiguration, 139, 156

Register, 76

SDFS, 73

Semi-modularity, 62

Serialisation, 141

SI, 20

Signal, 57

Signal Transition Graph, 51, 102, 124, 148, 197

Composition, 203

Decomposition, 204

Dummy contraction, 205

Editing, 197

Layout, 202

Simulation, 201

Simulation, 7, 54

Sleeping barber, 45

ST2CF converter, 93

Static Data Flow Structure, 73, 115, 123, 144

Antitoken, 85

Atomic token, 76

Comparison, 102

Counterflow, 84

Dynamic elements, 107

Hybrid, 92

Spread token, 80

Tokens, 78

Verification, 98, 144

Syntax-driven translation, 24

System-on-a-chip, 1

Tools, 30

Balsa, 31

Comparison with Workcraft, 135

Integration, 133

223

INDEX

Interoperability, 10

MPSat, 36

Petrify, 35

Punf, 36

Trace, 66

Transformation, 118

Verification, 6, 7, 54, 62, 98, 112, 126, 143, 144,

207

Counterflow controller, 70

Visual model, 121

Visualisation, 141

Workcraft, 66, 113, 121, 131, 152

Adding models, 180

Adding tools, 176

Architecture, 136

Asynchronous tasks, 177

Building, 169

Command-line mode, 157

Extending, 169

External tools, 179

Installation, 154

Module, 173, 175

Reconfiguration, 156

User manual, 154

Workspace, 161

Workspace, 161

224

