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Abstract

E
VER since telephone services were available to the public, technologies have

evolved to more efficient methods of handling phone calls. Originally circuit

switched networks were a breakthrough for voice services, but today most technologies

have adopted packet switched networks, improving efficiency at a cost of Quality of

Service (QoS). A good example of packet switched network is the Internet, a resource

created to handle data over an Internet Protocol (IP) that can handle voice services,

known as the Voice over the Internet Protocol (VoIP).

The combination of wireless networks and free VoIP services is very popular,

however its limitations in security and network overload are still a handicap for most

practical applications. This thesis investigates network performance under VoIP ses-

sions. The aim is to compare the performance of a variety of audio codecs that

diminishes the impact of VoIP in the network. Therefore the contribution of this re-

search is twofold: To study and analyse the extension of speech quality predictors by

a new speech quality model to accurately estimate whether the network can handle a

VoIP session or not and to implement a new application of network coding for VoIP

to increase throughput.

The analysis and study of speech quality predictors is based on the mathematical

model developed by the E-model. A case study of an embedded Session Initiation

Protocol (SIP) proxy, merged with a Media Gateway that bridges mobile networks to

wired networks has been developed to understand its effects on QoS. Experimental

speech quality measurements under wired and wireless scenarios were compared with

the mathematical speech predictor resulting in an extended mathematical solution

of the E-model. A new speech quality model for cascaded networks was designed

and implemented out of this research. Provided that each channel is modelled by a

Markov Chain packet loss model the methodology can predict expected speech quality

and inform the QoS manager to take action.

From a data rate perspective a VoIP session has a very specific characteristic;

exchanged data between two end nodes is often symmetrical. This opens up a new

opportunity for centralised VoIP sessions where network coding techniques can be

applied to increase throughput performance at the channel. An application layer has

been implemented based on network coding, fully compatible with existing protocols

and successfully achieves the network capacity.
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1.1 Introduction

1.1 Introduction

V
OICE over Internet Protocol (VoIP) substantially increases traffic load and can

become a problem if it is not addressed in advance. One possible but expensive

solution would be to set up an entire new data network dedicated to VoIP. A more

sensible approach however is to combine the data network with the VoIP service which

requires a monitoring system if customer satisfaction has to be delivered.

Quality of Service (QoS) is the requirement to guarantee good customer experience

as well as fairness in network allocation, but what is a good customer experience? The

International Union of Telecommunications (ITU) has developed a recommendation

called the Mean Opinion Score (MOS) [1] describing a procedure to validate voice

quality perception throughout large number of customers assessment. A more efficient

approach is to use known communication parameters to set a mathematical model to

predict VoIP call quality. For example, if parameters such as delay and packet losses

are known, a prediction of voice quality can be computed using the E-model [2].

This model analytically clarifies the feedback received from the MOS experiments,

consequently becoming apparent that the prediction of phone quality is feasible and

very important aspect when designing more efficient network architectures. This is

the main reason why in the last decade QoS has become such important topic since

it is known that the customer is always right.

Managing VoIP in wire networks with QoS is already a challenge [3], thus the

emergence of wireless networks, whilst making it more attractive to customers, has

increased complexity in allocating resources to guarantee good quality. At the same

time, customer awareness of the technological issues related to wireless networks has

brought down the expectations of a good quality VoIP experience. This fact opens

an opportunity to network managers to use more efficient though less accurate audio

codecs with higher compression rates to maximise the throughput of the network.

Hence, in this thesis, speech prediction is considered when improving VoIP com-

munications implementing a test-bench for wire to wireless networks with Forward

Error Correction (FEC) algorithms. Furthermore, the current E-model is extended

to predict VoIP quality over heterogeneous networks which is a key feature for future

network design.

Whilst researching these future architecture designs, network coding will play

an important part as its major achievement, the gain in network throughput, has
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1.2 Introduction

shown great potential to change the paradigm of broadcast communications. At the

moment, conventional nodes within the network are initially set to route information

according to the shortest path or fixed tables since this method focuses on maximising

the highest throughput of point to point communication. A new point of view, is to

consider network resources as a whole rather than a single path to the destination.

Hence, the new system has multiple information sources to be delivered to multiple

destinations thus creating opportunities to insert encoding methods at nodes that

were previously just storing and forwarding information. In this thesis, network

coding schemes for VoIP sessions over a Basic Service Set have been designed and

implemented in a hardware platform to investigate the performance of these methods

over real-time services.

1.2 Motivation

Most research in VoIP has been dedicated to the study of performance from a single

network point of view but real world network and usage scenarios are more likely

to be deployed as depicted in Figure 1.1. This illustration shows a global network

where customers are connected via different technologies; Example A represents a

VoIP call from a soft-phone to a wireless connected cell phone, example B reflects

the communication between two wireless nodes and example C is a soft-phone to soft-

phone connection through a Wide Area Network (WAN). The cross interaction shown

in these examples has an impact on call quality performance. For example, consider

example A where a soft-phone might be using a low data rate audio codec and the

receiver in a wireless network has a fixed audio codec. In this case, the Gateway

(GW) has to decode the codec only to encode again according to the specifications of

that network and in doing so becomes a critical node of the system. If example B is

considered, mobility issues related to channel performance or handover can lead to an

increase on delay and packet loss rates becoming the base station a bottleneck. Finally

the WAN connection in example C can be exposed to packet drops whenever Internet

servers have to deal with large queues. Hence, from a network designer perspective, it

is crucial to know how a network will perform before allocating the required resources.

An experimental case scenario and a deep understanding of speech prediction models

under heterogeneous networks can give an answer to this problem. Furthermore, in

order for future networks to become more efficient, intermediate nodes will have to
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Figure 1.1: Example of a current network topology integrating a variety of technolo-
gies.

take a more active role than simply store, translate and forward the information.

1.3 Aims and Objectives

The aim of this project is to investigate the prediction of VoIP performance over

heterogeneous networks incorporating forward error correction and network coding

schemes to real-case scenarios. A SIP proxy GW to a mobile network is implemented

as starting point of this research where MOS tests are performed to assess VoIP calls.

This implementation is improved by developing active VoIP nodes with awareness of

end-to-end QoS. The results obtained are used to design and implement a new math-

ematical model based on the current E-model [2] to predict speech performance under

heterogeneous networks. This thesis is also focused on improving VoIP efficiency. As

a matter of fact, research is performed on network coding schemes to be applied to

VoIP systems. The investigation aims to improve substantially throughput and delay
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performance of VoIP calls over wireless broadcast networks without dependency of

the physical layer.

The primary objectives of this research can be summarised as follows:

• Understand and investigate on SIP proxy GWs to connect wire networks to

wireless networks with special attention to Small Office Home Office (SOHO)

applications.

• Implement an algorithm that improves speech quality performance over bursty

networks using active SIP proxy GWs in a test-bench platform.

• Investigate analytical models to assess VoIP quality performance.

• Expand current analytical models to predict VoIP quality over a number of

heterogeneous networks.

• Understand and investigate network coding schemes

• Design and implement in hardware, a network coding based VoIP system that

improves the throughput performance without undermining QoS criteria.

1.4 Statement of Originality

This research has designed and created an embedded system test-bed for a portable

SIP Proxy Gateway to diagnose QoS requirements. This system adopted a FEC al-

gorithm, therefore becoming an active node capable of outperforming conventional

GW but at the cost of extra throughput. The study of speech quality from this

research resulted in an analytical model to extend the E-model [2] predicting VoIP

performance under concatenated networks. Within this procedure, new codecs based

on Linear Prediction (LP) have been tested and parametrised to fit the E-model stan-

dard. The proposed model adds a new equalization impairment factor to distinguish

between poor and bad speech prediction and in addition a methodology to achieve

good prediction under two channel communication with a different audio codec. The

importance of forecasting VoIP performance under different case scenarios brings the

last contribution of this thesis: VoIP with network coding. Recent research carried

out in the field of Information Theory suggests that network coding can increase the
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throughput of a network. In this last chapter, an application layer based VoIP sys-

tem has been designed and developed to prove the efficiency of network coding. The

proposed system concludes that the same speech quality can be obtained even with

a larger number of users in a Basic Service Set.

1.5 Publications arising from this research

All technical chapters presented in this thesis resulted in a number of tutorials related

to VoIP implementation as well as the following IEEE papers:

1. I. Lopetegui , R. A. Carrasco and S. Boussakta, ”Speech Quality Prediction

in VoIP Concatenating Multiple Markov-Based Channels”, in Proc. IEEE 6th

Advanced International Conference on Telecommunications (AICT 10), May

2010, pp 226-230.

2. I. Lopetegui , R. A. Carrasco and S. Boussakta, ”Embedded Implementation

of a SIP Server Gateway with Forward Error Correction to a Mobile Network”,

in Proc. IEEE 10th International Conference on Computer and Information

Technology (CIT 10), June 2010, pp 2415 -2420.

3. I. Lopetegui , R. A. Carrasco and S. Boussakta, ”VoIP design and implemen-

tation with network coding schemes for wireless networks”, in Proc. IEEE 7th

International Symposium on Communication Systems, Networks and Digital

Signal Processing (CSNDSP10),July 2010, pp 857 -861.

4. I. Lopetegui , R. A. Carrasco and S. Boussakta, ”Experimental measurements

for VoIP with network coding in IEEE 802.11”, in Proc. IEEE 7th International

Symposium on Wireless Communication Systems (ISWCS10), September 2010,

pp795 -799.

5. I. Lopetegui , R. A. Carrasco and S. Boussakta, ”Multicasting VoIP packets

with network coding”, IEEE Trans. Multimedia, submitted (February 2011).
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1.6 Organization of the Thesis

This thesis is divided into four chapters. Chapter 2 presents a literature review and

introduces VoIP architecture including protocols, topologies and references to the

audio codecs utilised throughout this thesis. E-model and MOS methods are described

to enable understanding the subsequent chapters as part of the QoS measurement

methodologies. This chapter is concluded with an introduction to network coding.

In Chapter 3, the implementation of a SIP proxy GW for embedded systems

introduces the test bed utilised to perform MOS experiments. The SIP proxy is

equipped with FEC correction to overcome a self developed on board packet loss

model based on Markov Chain (MC) theory. Results are compared and discussed

with a conventional SIP proxy GW resulting in a favourable performance for the

active SIP proxy GW. This study leads to a speech prediction model, explained in

the following chapter.

Chapter 4 proposes an extension to the E-model to predict speech quality un-

der heterogeneous networks. The audio codecs chosen at Chapter 2 are tested to

measure their equipment impairment factor and robustness. These audio codecs are

applied into a set of experiments including two independent networks where all possi-

ble combinations are carried out and assessed by the MOS. The experimental results

are utilised to investigate an analytical formula in order to achieve the lowest error-

margin possible between the subjective speech quality predictor and the mathematical

model. The mathematical model and its results are discussed showing a high accuracy

with very low error factor.

In Chapter 5, the understanding of speech prediction is used to assess the impact

of a network coding based VoIP system. A new VoIP design based on an application

layer network coding is described. The design is implemented to corroborate the

advantages of network coding in a single Basic Service Set (BSS) where the results

reveal a great improvement in throughput performance. These results are discussed

alongside speech prediction algorithms where a larger number of VoIP calls have been

performed without loosing speech quality performance.

Finally, the conclusion of the research along with the contributions from this thesis

is presented in Chapter 6, followed by a set of possible future research directions.
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Literature Review



2.1 Literature Review

2.1 Introduction

T
HIS chapter provides a general overview of VoIP protocols, quality of service

algorithms and network coding schemes. In Section 2.2, Session Initiation Pro-

tocol (SIP) and Real time Transport Protocol (RTP) are described and it is followed

by an insight of utilised audio codecs in this thesis. In Section 2.3, both subjective

and objective methods to assess speech quality are discussed. Section 2.4 gives an

extensive overview of network coding fundamentals and finally Section 2.5 concludes

the chapter.

2.2 VoIP Protocols

Voice over Internet Protocol (VoIP) is a technology that can be divided in two fun-

damental theoretical aspects: the signalling system and the delivery of audio packets.

The former refers to the signalling protocol responsible to initiate, control and finish

a session of a voice call. The latter is the protocol for transferring voice data through

the network. There are a number of alternatives developed for each cornerstone but

overall a synergy of protocols around SIP and RTP have become the most popular

ones due to its simplicity.

2.2.1 Signalling Protocol: SIP

Originally the signalling systems for VoIP was taken from the Signalling System

7 (SS7) and adapted to the packet switched domain. The development started

with the Media Gateway Control Protocol (MGCP), informally defined in Request

for Comments (RFC) 3435 [4] that later evolved into Media Gateway Controller

(MEGACO) [5]. These protocols are based on a master/slave architecture oriented

to the integration of the Public Switched Telephone (PSTN) and VoIP. Further devel-

opments led to a Peer-to-Peer orientated signalling system with two known protocols:

H.323 and SIP. H.323 is designed to work with local and wide area networks that do

not guarantee QoS. It was developed by the ITU-T and unifies older standards into

a single one [6]. The high complexity and scalability of H.323, made SIP an easier

and faster approach as an alternative to the signalling system over Packet Switched

Networks (PSN).
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SIP [7] has been developed and planned within the Internet Engineering Task

Force (IETF). The protocol has been designed with easy implementation, good scal-

ability, and flexibility in mind. SIP is specified mostly in the RFC 3261 and it defines

the creation, modification and termination of a session with one or more participants.

A session is a set of senders and receivers that communicate the state kept in those

senders and receivers during the communication. These entities with SIP support are

defined as User Agents (UA). Each UA is self-sufficient in creating a session with any

other node of the network. Hence, it is said that each node has two key components,

User Agent Server (UAS) and User Agent Client (UAC). The UAS handles any con-

nection request whereas UAC is responsible for creating any new connection. Four

type of entities are defined to route different UA within the network [7]:

• Location Server (LS): A service used by a SIP Proxy server to obtain information

regarding callees possible location(s). Sometimes can be found within the SIP

Proxy server.

• Proxy Server : An intermediary program that acts as both a server and a client

for the purpose of making requests on behalf of other clients.

• Redirect Server (RS): A server that accepts a SIP request, maps the address

into zero or more new addresses, and returns these addresses to the client.

• Gateway Server (GW): A intermediate server that acts on behalf of the SIP

agent to facilitate access to other existing technologies that do not support SIP

signalling system.

SIP is designed to interact with nodes in the same way as Hipertext Transfer

Protocol (HTTP) does, i.e. in a request-response method [8]. Hence, SIP defines six

request methods,

• REGISTER: used to register the users or a third party to the servers.

• INVITE: initiates the call signalling sequence.

• ACK and CANCEL: used to support session setup.

• BYE: terminates a session.

• OPTIONS: queries a server about its capabilities.
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Request methods are replied with one of the following six main response codes,

• 1xx: Provisional responses, for instance 180 Ringing.

• 2xx: Dialogue acceptance response, for instance 200 OK.

• 3xx: Response with the new address where the UA might be reached, for in-

stance 302 Moved.

• 4xx: Non accepted final response for a dialogue with information for resubmis-

sion the request, for instance 407 Proxy Authentication Required.

• 5xx: Non accepted final response for a dialogue due to server failure, for instance

503 Service Unavailable.

• 6xx: Non accepted final response for a dialogue although the server has all the

information to proceed with the request, for instance 603 Decline.

SIP uses Uniform Resource Identifier (URI) [9] to identify a logical destination

instead of using IP addresses. It consists of three parts; the protocol that communi-

cates UAs with the SIP server, the name of the server (domain.com) and the name of

the resource. The name of the resource can be defined as an email address, telephone

number or nickname. An example of that could be SIP:Bob@sip.ncl.ac.uk. Addition-

ally, a SIP message includes other headers such as To, From, Via etc. to facilitate

the description of the request. The readers are referred to [7] for further details on

the subject.

Digital era facilitates audio compressions of different data rate to maximise the

throughput performance of VoIP sessions. This implies that if two UAs are about to

start a VoIP session both have to support the same audio codec since asymmetrical

audio codecs are not allowed. Session Description Protocol (SDP) [10] is commonly

used along with SIP to inform other UAs supported audio/video codecs. SDP is a

challenge/response method based on priority ordering, i.e. the order of the offered

audio codec matters. An example of an SDP message is shown below.

v= 0

o= -7 2 IN IP4 10.12.9.10

s= myphone

c= IN IP4 10.12.9.10
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m= audio 65312 RTP/AVP 0 3 38

a= rtpmap:38 SPEEX mode/4

There are five main headers in this example, v,o,s,c,m standing for version, origin-

field, session name, connection-field and media. Version header is a single digit value

and origin-field specifies four parameters: user name space, -7, session identification

, 2, network type, IN IP4 and address of sender, 10.12.9.10. Session name refers to

the name of the phone and media header defines supported audio/video codecs. In

this case audio is supported at port 65312 with RTP protocol running as an Audio

Video Protocol (AVP), followed by a set of numbers that describe the audio codecs

supported by the node in priority order. The audio codecs ciphering are defined in [11]

where 0 and 3 stand for PCMu and GSM codecs. SDP can add other codecs not

specified in RFC 1890 by using Multi-purpose Internet Mail Extensions (MIME) [12].

Such example is the codec defined here as 38. The codec description is followed by an

optional attribute a= rtpmap: 38 SPEEX mode/4, where rtpmap defines the format

and parameters of Speex codec including the supported mode, i.e. mode/4. Further

details on audio codecs are covered at Section 2.2.3.

2.2.1.1 SIP routing methods

Depending on the request methods there are three SIP models for connecting UAs:

Method 1, Method 2 and Method 3 [7].

Method 1: In this method, two UAs take part in the communication process as

seen in Figure 2.1 on the following page and no intermediate nodes are used. Note that

in this case the UA does not need to be registered in any place. The Invite message is a

session initialization packet from SIP in which UAC sends the information such as who

this invite is sent from, to whom and which SDP is supported for the communication.

Once this packet is received by the recipient, a 180 Ringing message is sent saying

that the phone of the destination is ringing. If the recipient answers the phone call,

an 200 OK is sent with the SDP features that the recipient can support. If the caller

agrees, an ACK is sent and RTP packets are exchanged. The phone call is finished

by sending a Bye message.

Method 2: In the following method, the UA is registered in a LS connected to a

SIP Proxy as shown in Figure 2.2 on the next page. Since both servers are connected,
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Figure 2.1: SIP method 1.

Figure 2.2: SIP method 2.

the caller is redirected to the destination with a 302 Moved response message. Once

the UAC learns the new destination, it reproduces the request with the new informa-

tion following the same steps as method 1. With this method if a SIP account moves
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from one network to another it can be tracked down. This is a more scalable choice

than method 1 since Alice does not need to know where Bob is located.

Method 3: In this method, the SIP Proxy interacts with the LS to generate a par-

allel Invite request on behalf of Alice to Bob as illustrated in Figure 2.3. Thus, the

SIP proxy is responsible for finding the next hop, which in this case is the destination

itself, and routing all pertinent messages. Once the end user is found, packets are

routed via the SIP proxy which monitors the process of the entire conversation. This

method is a general case of interaction where Bob and Alice are part of a heteroge-

neous network, where the bridging of the networks is carried out with a SIP proxy

and a Media Gateway.

Figure 2.3: SIP method 3.

2.2.1.2 SIP Proxy and Media Gateway

SIP protocol is designed to work with PSN but not all PSN nodes use SIP protocol

nor all networks are PSN. If a universal communication system based on PSN is to
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take over current telecommunication networks, it has to provide gateways to interact

with other technologies. The entity responsible of that interaction within SIP is the

SIP Proxy with a merged Media Gateway server.

Two main distinction can be made within these servers: SIPs that interact within

PSN or within Circuit Switched Networks (CSN). The former is an example of a

gateway that interacts between H.323 protocol and SIP. In this case, the signalling

system differs from one protocol to another but RTP packets remain the same. Thus

as long as both parties agree on the audio codec parameters the call established is

essentially a VoIP call over a PSN. The latter requires a more thorough understanding

of the CSN technology. Consider that a phone call from the Plain Old Telephony

System (POTS) is routed over a PSN. At some point of the network the Gateway

has to convert SS7 signalling system’s messages into SIP messages. In addition, once

the call is established, voice from the POTS has to be packetised and converted to an

agreed audio codec between the Gateway and the UA at the PSN side. Consequently

the Gateway server becomes a potential bottle neck of the communication system if

it does not deliver packets fast enough. In this thesis, Chapter 3 presents an analysis

and implementation of a SIP proxy with a merged Media Gateway on an embedded

platform to connect IEEE 802.3 and Global System of Mobile Communications (GSM)

network which leads to a speech prediction model in Chapter 4. The GSM is a mobile

network specifically designed for voice communication and thus it is based on a CSN.

Although, fourth generation mobile phone networks are already under development,

there are many services that might not be adopted yet to PSN. For example, the

European Commission for Rail communications requires the use of GSM networks as

a communication system for trains [13]. Equally emergency communication systems

such as lift communications require a robust network for critical calls, where GSM is

a possible solution fulfilling the requirements of the European Norm EN 81-28 [14]. In

conclusion the need of interaction between PSN and CSN is a subject in an ongoing

study and it is also analysed in this thesis.

2.2.2 Real-Time Protocol

Voice packets are moved from source to destination with Real-time Transport Protocol

(RTP) [15] and controlled by Real Time Control Protocol (RTCP) [16]. RTP provides

end-to-end delivery services with a header specification as illustrated in Figure 2.4 on
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the following page. The header has initially two octets describing session’s version,

padding, extension, number of Contributing Source Identifier (CSRC), marker and

Payload Type. The first four bytes are completed by the sequence number of the

packet. The header is followed by a time stamp, Synchronisation Source (SSRC)

identifiers and CSRC. This last identifier defines the source identifier of the packet

which in this thesis is always set to zero, leaving a 12 byte packet header. RTP

typically runs on top of User Datagram Protocol (UDP), although the specification

is general enough to support other transport protocols. RTP does not intrinsically

provide any mechanism to ensure timely delivery or any QoS. It relies on lower-

layers to prevent out-of order packets and delivery acknowledgement. Thus, in an

IP network voice commonly travels as IP/UDP/RTP, equivalent to 20 + 8 + 12 = 40

bytes header, without delivery control and maximising the best effort characteristic of

the network. Simultaneously, at a default five second frequency, RTCP sends control

packets to all participants in the session. Its main function is to offer feedback on

the quality of the data distribution, having the chance to advise RTP of any features

that may have to be changed.

Figure 2.4: RTP packet header. V = version, P = Padding, X = extension, CC =
CSRC Count , M = Marker, PT = Payload Type.

2.2.3 Audio Codecs

Audio codecs play a very important role in VoIP performance. There are three type

of audio codecs: Waveform codecs, parametric codecs and hybrid codecs. Waveform

codecs shape the original message by digital values, resulting in a high quality per-

formance for high bit-rate coding. One example of this is Pulse Code Modulation
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(PCM) [17]. Parametric codecs estimate speech signal based on digital models and

only the parameters of such model are encoded in the bit-stream. This reproduces

a very low bit rate output but the perceptual quality can be very low. A commonly

used digital model is the Linear Prediction (LP) model that uses a time variant filter

whereby the parameters that define the filter are encoded in the bit-stream. Finally,

hybrid codecs are a combination of both waveform and parametric codecs. Hybrid

codecs use digital models, such as LP, with an error correction system that approaches

the model to real speech. An example of this model is Code Excited Linear Prediction

(CELP). In this thesis, one waveform codec and two hybrid codecs, named as PCM,

Regular-Pulse-Excited Long-Term Prediction (RPE-LTP) and CELP are used [17].

All codecs have to sample and quantify voice before any compression is applied. If

voice is considered as a band limited signal of 4Khz, by Nyquist theory the sampling

rate has to be 8Khz, which is the common choice for VoIP. Samples are quantified

according to the resolution of the Analogue to Digital converter, typically 16 or 8 bit

per sample. PCM is based on a 8Khz, 8 bit sampling codec resulting in a 64kbps

audio codec. Codified audio speech is packetised and delivered by the IP network

where the number of samples per packet is a trade-off between efficiency and delay.

Using a small packet size minimizes the delay between the parties, but the bandwidth

efficiency becomes poor. In the case of PCM, if just a sample is sent within a single

RTP packet, the packet delay would be 0.125 ms but the efficiency is 2.43% calculated

as follows [3].

RTP/UDP/IP header is equal to 40 bytes equal to 320 bits

Payload is 8 bit, with a Fs=8000 Hz equal to Ts = 0.125 ms

Required BW=328(bit)/(0.125 (ms)) = 2.624Mbps

Packet efficiency= (8/328)·100 = 2.43%

It is clear that using a 2.624 Mbps for a PCM encoding voice system does not

provide an efficient trade-off. In [18] it is demonstrated that most of the encoding

systems need to have around 20 ms payload to achieve their best relationship between

packetising/delay and utilised bandwidth. Both hybrid codecs utilised in this thesis

use 8Khz sampling rate, 16 bit quantifying speech input and 20 ms payload size.

Equally both of them are based on LP and Long term LP models which are described

next.
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LP is a model based on predicting the signal x[n] by using past samples. LP uses

an Auto Regression (AR) model to predict x[n] so that y[n] =
N
∑

i=1

aix[n−i] where y[n]

is the prediction of x[n], N is the number of samples considered for the prediction

and ai are the coefficients of the prediction, also named Linear Prediction Coefficients

(LPC). The error introduced by this model is e[n] = x[n] − y[n] and the objective

is to keep this error as low as possible. If LP attempts to model speech based on a

variant filter, Long Term LP uses the characteristic of pitch period implicit in speech

to produce a Long Term LP gain. Here different designs have different performance

as explained in the following codec by codec description.

Often speech algorithms are confused by patents and names that belong to dif-

ferent standards. In this research, next three codecs have been chosen: G.711, GSM

06.10 and Speex which use PCM, RPE-LTP and CELP algorithms respectively.

2.2.3.1 G.711 codec

G.711 is defined by the ITU-T Recommendation [19] and uses a non-uniform PCM

model to take the advantage of the statistical distribution of voice, where large ampli-

tudes diminishes with an increase in audio magnitude. Two algorithms are defined:

µ-law and A-law. Since the distortion comparison of these two algorithms is mini-

mum the use of any of them results in a similar performance. Thus, in this thesis

µ-law algorithm is used where the input variable x is captured with 14 bits of uni-

form quantification, and transformed with a memoryless function f(x) that reduces

the distortion error for speech as shown next [17].

f(x) = A
ln(1 + µ|x|/A)

ln(1 + µ)
sgn(x), |x| <= A (2.1)

where A is the input magnitude’s peak and µ is a compression control degree. To

decode such output, the inverse function is applied by using [17]

f−1(y) =
A

µ

[

exp

(

ln(1 + µ) · |y|

A

)

− 1

]

sgn(y), |y| <= A (2.2)

Real implementation for G.711 adopts a linear approximation through tables with

µ = 255 where only 8 Most Significant bits (MSB) are taken into consideration,

resulting in a bit rate of 64 kbps at 8Khz. The algorithm library for this thesis is

taken from [20].
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2.2.3.2 GSM 06.10 codec

GSM06.10 is the codec chosen by Global System for Mobile (GSM) communications

and is defined in [21]. The encoder and decoder generic block diagram is shown

in Figure 2.5. Speech input is a 16 bit word sampled at 8 Khz that is analysed

by the LP Analysis block to calculate the LPC. These coefficients are given to the

Predicition error filter where the difference between original message and predicted

values error are minimised. Since not all prediction errors are required for a good

quality reconstruction of the speech, only certain values of these are sent. The filtering

of these values is carried out by the regular-pulse excitation scheme where the signal

is down sampled into different sequences and only the amplitude of such signals is

sent. This method avoids to send the position of the predictive errors and reduces

considerably the output data rate. Long term LP encoders uses both LPC and error

Figure 2.5: GSM 06.10 codec’s general block diagram for encoder, top, and decoder,
bottom [17].

prediction to calculate the Long Term Prediction Gain index. These outputs are

all packed in a 33 byte payload size and transmitted to the decoder. The decoder

unpacks the amplitudes of the pulses, the Long Term Prediction index and LPC. Pulse

amplitudes are fed to the excitation generator to reproduce the encoded predictions.
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These predictions are given to the synthesiser that at the same time receives LPCs

and the long term gain decoders’ output. This output is a set of synthetic speech

values in the form of 16 bit PCM samples. The algorithm library for this thesis is

taken from [22].

2.2.3.3 Speex codec

Speex is a Code Excited Linear Prediction codec, which implies that the error predic-

tion is minimised with the use of a codebook. Speex codec’s block code is presented

in Figure 2.6 and full implementation details can be found at [23]. The encoder is

composed by an excitation codebook, which can deliver a random noise based on ei-

Figure 2.6: Speex codec’s general block diagram for encoder, top, and decoder, bottom
[17].
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ther fixed or adaptable codebook. This output is then filtered and cascaded with the

input gain coefficients relative to the last sample measurement. The pitch synthesis

filter is a short term LP that provides the LPCs and creates the periodicity of the

signal. The signal is then passed through the formant synthesis filter that gives the

envelope to the signal, producing the long term prediction parameters. The output

signal is compared with the original speech using a weighted error system where the

output is fed back to the gain and codebook. The process is repeated for all code-

book’s code vectors creating the commonly known analysis by synthesis process of an

audio codec. The complexity of the codec and bit rate output is determined by the

number of code vectors and therefore it can vary depending on the setup. The process

to decode the encoded bit stream follows the inverse steps of the coding process. The

difference is that the excitation index facilitates the search of the code vector at the

codebook. The gain, LPCs and long term LP parameters are applied to the filters

with no major complexity than that of multiplying vectors. The post filter inserted

before the synthetic output enhances overall performance by smoothing the increased

noise introduced by the error predictor at the encoder side. In this thesis, Speex has

been set to Mode 4 delivering 11,000 bps data rate and the algorithm library is taken

from [23].

2.2.3.4 Codec Comparison

The three codecs described above represent a wide range of current audio codecs.

G.711 is an example of wideband codec with 64 kbps data rate. Although it is not

often used as VoIP audio codec it represents the best voice performance for packet

switched networks and therefore is a reference for the rest of codecs. GSM 06.10 and

Speex represent narrow band audio codecs. On one side, GSM 06.10 is the officially

regulated codec for GSM networks and hence any network willing to interact with it

has to support this codec which is the case of the implementation shown in Chapter 3.

On the other hand, Speex is part of a last generation of codecs where analysis by

synthesis methods are utilised. This codec guarantees good performance over packet

losses and high delays, since long term and short term predictions are taken into

account and fed back to the error predictor. Current state of the art codecs are often

based on CELP.

The performance and characteristics of each audio codec is summarised in Table

2.1 where each encoder’s and decoder’s delay has been extensively tested, over 20
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Table 2.1: Used Codecs Characteristics

Codec G.711 GSM 06.10 Speex-
mod4

Bit rate(kbps) 64 13.2 11.2
Frame interval (ms) 20 20 20
Payload Size (Byte) 160 33 28
Encoding Delay (ms) 0.0231 0.1444 0.4314
Decoding Delay (ms) 0.0169 0.0591 0.0772

times. As expected, codecs with LP have larger encoder values than the waveform

based codec.

2.3 VoIP Quality of Service

VoIP technology enables real-time transmission for voice through PSNs using the

IP network. This network is known as a Best Effort network because each packet is

independently routed to its destination. Hence, packets transmitted by a single source

can take different paths to reach the destination while traversing the network. The

network performance compromises VoIP in four main aspects: Latency, Queueing

and Processing, Packet losses and Jitter [3].

Latency is defined as the delay that the voice data has while crossing the IP

network without including any processing or queuing. This parameter is a measure

of the propagation delay of the data through the wires.

Queuing and processing is the delay associated with the processing in the

router/switches that need to read the IP destination to route the packets to their

next hop. Sometimes, as the propagation delay can be assumed as zero, the concept

latency is used to express the delay of the propagation plus the queuing and processing

delay.

Assuming Latency as the summation of both delays it is necessary to distinguish

that in voice communication there are two latencies, one per voice direction. Round

trip latency is the summation of the two way latency. The ITU Recommendation

G.114 [24] says that the round trip latency range is acceptable when it is less than

150 ms for most user applications. Relatively between 150 and 400 ms is acceptable

for administrators that are aware of which connectivity they are using; over 400 ms is
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unacceptable. Likewise, different latency ranges can cause echo and talker overlap. If

the round trip latency is more than 50 ms, the echo from one of the speaker appears

in the communication, thus an echo canceller must be implemented in the vocoder.

The talker overlap is considered when the one-way delay is greater than 250 ms.

Packet losses occur mainly for two reasons; the first cause is related to a phys-

ical layer problem where too many bits are corrupted forcing the receiver to reject

the message. The second reason is due to finite memory space at the routers that

eventually can not allocate more space for incoming packets failing to deliver the

information to its destination.

Jitter is the variation of packets’ delay that reach their destination. The variation

of inter-packets arrival rate makes the conversation unbearable. This problem is

commonly solved by introducing a buffering system to reduce the effect of this feature.

The necessity to guarantee certain QoS might not affect to a well organised net-

work scheme within a LAN. The high speed connection of the typical Ethernet inter-

face of the PC makes the voice communication just as effective as it is with analogue

phones. However, to guarantee the same level of QoS over the Internet requires allo-

cating resources that might not belong to the end users any more, inducing the need

of extra protocols to overcome the problem. There are two different approaches at

this stage.

First option is to offer QoS with protocols working within the IP layer where two

alternatives are available: Integrated Services (IntServ) [25] and Differentiated Ser-

vices (DiffServ) [26]. IntServ is a model that guarantees the QoS between end nodes.

To cope with this task every single hop of the network must agree with the requirement

of the session initiation host. If these parameters are not satisfied the communica-

tion would not be started. IntServ was originally developed by Cisco System and

its corresponding signalling protocol is Resource Reservation Protocol (RSVP) [27].

The protocol defines a signalling system to reserve resources for both multicast and

unicast communications with a request-response methodology. In DiffServ model,

QoS is defined by classifying the traffic and adopting different priorities accordingly.

Therefore it is more scalable than IntServ because each router decides the priority

associated to the data. However in real case scenarios using DiffServ might not be as

effective as it seems. If a company agrees to use DiffServ with an ISP it can not be

guaranteed that all data is going to be routed by this ISP’s routers. Thus, crossing

different ISPs can not guarantee that the priorities are accomplished from the source
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to the destination, compromising the desirable QoS.

The second option to provide QoS is within the second layer of the OSI model.

Three possible options are available; Frame Relay (FR) [28], Asynchronous Transfer

Mode (ATM) [29] and Multi protocol Label Switching (MPLS) [30]. FR and MPLS

technologies are based on creating virtual circuits on the network and guarantee a

minimum bandwidth. ATM differs from the other solutions because it offers different

way of organizing the traffic of your network depending on the requirements. If a

parallelism is to be made, IntServ is equivalent to FR and MPLS at a higher layer

and DiffServ is an ATM/MPLS service above the IP layers. Although these solutions

are accessible, they are often expensive or simply not feasible. Subsequently VoIP

traffic is often routed on a Best Effort basis without considering network resource

allocation. Therefore the constraints of PSNs must be considered to understand the

quality performance of VoIP communications as it is shown in the following subsection

with subjective and objective methods to assess VoIP calls.

2.3.1 Mean Opinion Score

Mean Opinion Score (MOS) [1] is a subjective methodology in which a large number

of people (over twenty according to the recommendation) are interviewed and asked

to assess the quality of a voice call. Calls are rated from 5 to 1 where 5 is excellent

quality and 1 represents bad quality.

5. EXCELLENT: The call has excellent sound quality resulting in no technical diffi-

culties.

4. GOOD: The call has good sound quality with audio similar to a long distance

phone call.

3. FAIR: The call has fair sound quality with some interruptions requiring one or

both parties to repeat what they said in the call.

2. POOR: The call has poor sound quality with each party having difficulties hearing

the other speak clearly.

1. BAD: The call has such bad sound quality that neither party can communicate

effectively.

For instance, Public Switched Networks is a CSN using PCM and scores 4.3 out of
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5. The advantage of the method is that obtained results represent real voice quality

perception by human beings. Conversely the method is time-consuming and thus

alternative methods based on objective measurements are accepted to asses VoIP

phone calls.

2.3.2 Speech Quality Predictor: E-model

There are two types of objective methods: intrusive and non-intrusive. On one hand,

intrusive methods utilise a reference source to compare it with the degraded signal

where the larger the difference the worst is the quality. For example Perceptual

Evaluation Speech Quality (PESQ) and Perceptual Analysis Measurement System

(PAMS) are based in such method. The problem of this procedure is that the source

information or original voice, has to be compared with the received voice which in

most cases is impossible since users are physically apart. On the other hand, non-

intrusive methods observe parameters that interact with the VoIP call to predict the

quality. ITU-T’s G.107 defines the E-model [2] where speech quality is assessed by a

set of none time-varying additive impairments. This method allows to measure the

quality independently where the users are located which is essential for VoIP calls.

In this thesis, the E-model has been chosen as VoIP call quality assessment method

along with the MOS tests.

The E-model is an objective computational model to assess the transmission vari-

ations for a voice conversation of 3.1 KHz. The model is based on a mouth to ear

system that generates a rating factor namely, R-value. The model takes into account

impairment factors from an end-to-end perspective to conform the R-value which has

a range starting from 0 to 100. The model was developed in accordance to exten-

sive subject laboratory tests and it can be transformed to the MOS values with next

equation [2].

MOS =























1 for R = 0

1 + 0.035R +R(R− 60)(100− R)7 · 10−6 for 0 < R < 100

4.5 for R ≥ 100

(2.3)

Figure 2.7 shows the conversion from one model to another. Note that the max-

imum value of R corresponds to a 4.5 value of the MOS score which means that
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regardless how good the voice has been digitalised it is never as good as the original.

Bad - 1

Poor - 2

Fair - 3

Good - 4

Excellent - 5

 0  20  40  60  80  100

M
O

S

R-value

MOS=1+0.035R+R(R-60)(100-R)7´•10(-6)

Figure 2.7: Objective method, i.e. R-value, versus subjective method, i.e. MOS.

The R-value is defined as follows [2]:

R = R0 − IS − ID − Ie−eff + A (2.4)

where R0 is the basic signal to noise ratio, IS represents decrease in quality more

or less simultaneously with the voice transmission, ID is responsible for any kind

of delay and echo in the system without including the coding delay, Ie−eff denotes

the impairments due to audio codec and channel constraints and A is the advantage

factor related to the service convenience.

Figure 2.8 is the general schematic used by [2] to assess the R-value. The sig-

nal to noise parameter R0, describes the noisiness of the systems including: Sender

Loudness Rating (SLR), room noise at the sender side (Ps), sender distortion value

of the telephone (Ds), Receiver Loudness Rating (RLR), room noise at the receiver

side (Pr) and Listener Sidetone Rating (LSTR). Equally, simultaneous impairment

factor IS, depends on signal to noise parameter (R0), Sender Loudness Rating (SLR),

Receiver Loudness Rating (RLR), Side tone Masking Rating (STMR) and Talker

Echo Loudness Rating (TELR). The advantage factor, A, refers to the fact that users

perception of complex communications affects the expectation of voice quality. For
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Figure 2.8: E-model [2] communication system.

instance, this factor equalises the R-value when users are aware of speaking to some-

body in the other side of the Atlantic sea, where greater delays are more tolerated.

These parameters described so far, can be difficult to measure and in most of the

cases constitute invariant values throughout a call. Thus the ITU-T recommends the

use of default parameters (see Appendix A for a detailed description of default values

and formulae for these parameters) to facilitate the calculation of VoIP call quality

where equation (2.4) can be reduced to [2]

R = 93.3− ID − Ie−eff (2.5)

The reduced formula allows us to obtain a valid value of the quality of service

of our system focusing on two cornerstones for voice over packetised systems; delay

and packet loss. In our case, default parameters are used as specified in Appendix A

Table 1 with exception to those parameters referring to delay, channel status and

audio codec type. Delay parameters are defined in ID and are denoted following the

figure as follows : T is one-way delay, Ta is the absolute delay and Tr refers to the

round trip delay. In this thesis, the approximation of Tr = 2 · Ta is considered valid

and is used unless otherwise stated. Channel status and audio codec conform the

47



2.3 Literature Review

Ie−eff where Ppl refers to packet-loss probability, Bpl is packet-loss robustness and Ie

is the equipment impairment factor. Note that the Ie value is a given parameter by

the ITU-T G.113 recommendation [31] whereby codecs are tested under experimental

scenarios to assess their performance.

ID has a different mathematical expression depending on Ta and STMR. While

Ta is considered as a variable parameter, STMR is set as a default parameter (15

dB). Setting STMR to a static value means that VoIP prediction is carried out under

devices that perform ideally with side tones and echo cancellation. ID is therefore

defined as [2]:

ID = Idte + Idle + Idd (2.6)

where Idte, Idle and Idd refer to impairments related to the Talker Echo, Listeners

Echo and too long absolute delay (Ta), respectively. At the same time, Idte is defined

as [2]:

For 9dB ≤ STMR ≤ 20dB

Idte =

(

Roe−Re

2
+

2

√

(Roe−Re)2

4
+ 100− 1

)

(

1− e−T
)

(2.7)

where, Roe and Re are [2]

Roe = −1.5(N0 − RLR)

Re = 80 + TERV − 14

TERV = TELR− 40 log10
1 + T

10

1− T
150

+ 6e−0.3T 2

N0 = −61.16, from Appendix A (2.8)

where N0 refers to the power addition of different noises calculated with R0 using

default values specified in [2] and the rest of parameters are intermediate variables.

The Idle factor is calculated using the following equation [2]:

Idle =
R0 − Rle

2
+

2

√

(R0 − Rle)2

4
+ 169 (2.9)
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where R0 = 94.74 is calculated using default values from Appendix A and Rle is [2]

Rle = 10.5 · (WEPL+ 7)(Tr + 1)−0.25

where WEPL is a default value from Appendix A . Finally Idd is a value that depends

upon the absolute delay value, whereby even with perfect echo cancelling the VoIP

call can be perturbed. Idd is set to 0 if Ta ≤ 100 and if not Idd is set to [2]

Idd = 25



(1 +X6)
1

6 − 3

(

1 +

(

X

6

)6
) 1

6

+ 2



 (2.10)

where

X =
log10

(

Ta

100

)

log10 2
(2.11)

Following the illustration in Figure 2.8, where it is shown that Ie−eff depends on

Ie, Ppl and Bpl, the E-model’s channel modelling is based on the interpretation of

Ppl under different burstiness scenarios. Hence Ie−eff is defined as follows [2]:

Ie−eff = Ie + (95− Ie) ·
Ppl

Ppl

BurstR
+Bpl

(2.12)

where BurstR refers to a Burst Ratio, defined as the average length of observed

burst in an arrival sequence over the average length of a expected burst under a ran-

dom loss channel. In other words, if a random channel is considered then BurstR = 1

which is a rare case for channel modelling. In the following chapters, channel models

based on experimental data are introduced and applied to different experiments to

investigate the performance of VoIP under heterogeneous networks.

In order to understand the impact of delay and packet losses, Figure 2.9 shows only

delay increasing versus only packet loss rate increasing performance. The prediction

is calculated for a G.711 case scenario where Bpl = 4.3, Ie = 0 and BurstR = 1.

The illustration shows that the increase of packet loss produces a severe quality drop

whereas delay increase has a smoother repercussion. In conclusion, it is visible that

a network should consider minimising the packet loss percentage.

The E-model describes a method to estimate the speech quality over different case

scenarios, whereby using delay and packet loss parameters, quality performance is

assessed. The great advantage of such this method is the rapid evaluation it provides
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Figure 2.9: R-value comparison for a delay only and packet loss only increase scenar-
ios.

to both end users and intermediate nodes. Conversely, the model remains limited.

For instance not all codecs are available in [31] nor is the method prepared to handle

multiple network channels. For these reasons Chapter 3 and Chapter 4 are dedicated

to the implementation and modelling of a SIP servers with two different link layers

that cover some of the existing limitations of the model.

2.4 Fundamentals of Network Coding

Previous sections introduced VoIP protocols and QoS assessment methods. In this

section, the literature review is concluded with an introduction to a set of schemes

that is highly promising to radically change the paradigm of future networks. A recent

breakthrough in an Information Theory paper showed that network coding techniques

can considerably improve throughput efficiency of the channel [32]. Essentially, the

theorem states that by combining existing packets in the network, the maximum flow

can be achieved, i.e. an encoding system within intermediate nodes can achieve the

capacity of the network. The following subsections describe network coding theory

and the network topology used in this thesis for a VoIP system with network coding

support.

In a point-to-point connection, information theory divides a communication in
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source and channel coding. The former aims to achieve the highest compression of

raw data, good examples are audio codecs used by VoIP services. The latter enables

transmission over the channel essentially error free providing that extra information

has to be added to the original information. For example, in the Internet itself raw

information is packetised (source coding) and transmitted (channel coding) from node

to node according to routing tables that provide the next hop address. This store

and forward method considers source information to be completely independent and

if the same information has to be delivered to two different destinations, then the

source has to be duplicated. In other words, if there are n receivers, the source

information is repeated n times overloading the network considerably. This problem

can be solved if intermediate nodes are actively used rather than simply store and

forward packets where such nodes would combine the incoming information, i.e. store,

code and forward. The method brings several enhancements: throughput efficiency,

robustness to packet loss, reduction of complexity and security [33].

Throughput performance is the best known characteristic of network coding. The

butterfly illustration, on Figure 2.10 (a), is an example of a set of nodes interconnected

with directed links of unit capacity, where bi stands for bit. This example shows that

by encoding bits in node 3, two information units can be exchanged from source to

destination at the same time. Network Coding can also achieve higher robustness by

adopting distributive communications. Consider a relay system where the source node

Figure 2.10: Throughput and robustness improvement examples with network coding.

51



2.4 Literature Review

sends a packet to an intermediate node that stores and forwards the information to

the destination. With network coding the system can be changed so that the source

sends information units to the relay as well as to the destination itself, reducing

packet loss probabilities as seen in Figure 2.10 (b). The advantages of distributive

networks with network coding can also be applied to reduce complexity [33]. Multicast

sub-graphs, require Steiner tree computations [34] that can be simplified in certain

scenarios by distributive systems with network coding. Finally, from a security point

of view, network coding encodes packets that can only be decoded at the destination.

This has two sides; from one side, discourages the spoofing of packets throughout the

network since they are not decodable. From the other side, if an intermediate node

is a malicious node, encoded packets will be delivered to the destination as source

information, breaking the confidentiality of the information.

Considering the network coding evolution time line, although network coding has

been attributed to Ahlswede et al. [32], Yeung and Zhang were first suggesting net-

work coding features for satellite communications in 1998 [35]. Since then, network

coding research in the field has been expanding mainly in encoding/decoding sys-

tems for a large number of nodes to achieve larger throughput values. Li, Yeung

and Cai [36] found that linear encoding at the interior nodes is sufficient to achieve

better performance. Koetter and Medard [37] expanded the work in [36] with linear

encoder/decoder functions by finding polynomial coefficients and Ho et al. [38] im-

proved this result by applying random linear codes for reliable communication. A

more recent research approach proposed Physical Network Coding (PNC) [39] which

has been widely researched with publications including [40] and [41].

The above work is based on theoretical and simulation results assuming combina-

tions of multicast traffic, optimal scheduling and channel models with steady rates.

Another approach to this method has shown a more practical angle; a widely known

application is Avalanche [42], a peer to peer content distribution network. A similar

suggestion was developed by Chung et al. who designed a peer to peer Streaming Sys-

tem named PNECOS that showed a reduction of bandwidth consumption for servers

with network coding techniques [43]. Katti et al. presented COPE, a new architecture

for wireless mesh networks, applicable to technologies such as IEEE 802.11 (Wi-Fi)

and IEEE 802.16 (WiMax) [44]. Vingelman et al. developed a random linear network

coding application based on OpenGl software that takes advantage of graphic cards

to perform calculations related to network coding [45].
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2.4.1 Network Coding Theory

In this subsection, network coding theory is explained by means of graphical examples.

Single source single destination model is used to introduce network coding followed

by single source multiple destinations models which leads to a wireless model utilised

in our proposed design in Chapter 5.

2.4.1.1 Single Source Single Sink

A graph G = (V,E) consists of a set of vertices, V , and a set of unidirectional

connecting lines called edges, E. There are three type of vertices: the source , the

intermediate node and the sink represented by s, a numbered circle and t respectively.

Source node is essentially the transmitter of a communication system and does not

receive any input edge. Intermediate nodes act as routing nodes and the sink is the

receiver of the information generated by the transmitter. Nodes are connected by

directional arrows that are defined by a numerical value, the capacity of the edge C.

An edge is denoted as e(i, j) with a direction from its ”initial point” i to its ”terminal

point” j. The flow of an edge, fij , are the information units that are sent from node

i to node j. In our graphs two conditions are imposed.

• The flow of an edge (i, j) in G is positive and equal or less than the capacity of

the edge [46].

0 ≤ fij ≤ Cij (2.13)

• Each vertex i, excluding s and t, has an input flow the same as the output flow

following the conservation law [46]. Inflow(F+(i)) = Outflow(F−(i))

F+(i) =
n
∑

k∈In(i)

fki (2.14)

and

F−(i) =

n
∑

j∈Out(i)

fij (2.15)

The conservation law requires that the output flow from s has to be equal to the

input flow of the sink t which defines the flow of the graph, F . The goal is to maximise
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the flow of G given different sets of Cij , in order to achieve the MAX-flow. F has to

be then greater or equal than any capacity in the network.

A cut set is a set of edges of the network whereby the network is divided into two

sets, one of them containing the source and the other the sink. The idea is to find

out what is the flow of the graph by cutting the network because any flow from s to

t must sometimes pass through some of theses edges. We denoted a cut set by (S, T )

where S is a set of vertices that lies on the source side and T is a set of vertices that

lies on the sink side. Figure 2.11 (a) shows an example of a single source single sink

graph. The dotted line expresses a cut set on the graph. In this example S = {s, 1, 2}

and T = {t}. The capacity of a cut, with respect to the capacity of each edge, is

defined as the sum of forward edges in the cut (S, T ) and only the forward edges,

where forward edges are defined as the edges of the direction from the source to the

sink [46].

capacity(S, T ) =
∑

i∈S,j∈T

Cij (2.16)

A MIN−cut is therefore a cut set where the capacity is less or equal than any other

cut set of the graph. The illustration in Figure 2.11 (a) shows a minimum cut set of

capacity 3. If the cut set is carried out in the same direction but above the nodes 1

and 2 the capacity is 4. Clearly the edges (s, 1) and (s, 2) with capacity 2 are actually

not contributing in anything to the maximum flow of the graph because edges (1, t)

and (2, t) can not handle more than 3 units of information per time. This intuitive

example led to the MAX-flow MIN-cut theorem presented by Ford and Fulkerson at

Figure 2.11: The single source single sink example. a) Capacities of the network, b)
Max-flow network, c) Example with binary units to achieve max-flow [46].
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the Canadian Journal of Mathematics [47].

Theorem 1. The maximum flow in any network G is equal to the minimum cut set

of the graph.

In Figure 2.11 (a) an initial graph with different capacities is shown. The mea-

surement of the cut sets proves that the minimum cut set is 3 and therefore the graph

is adapted to Figure 2.11 (b). The exchange of information at the maximum rate

is shown in Figure 2.11 (c) where 3 bits are sent from source to destination. It is

important to point out that the delay introduced by each edge is considered as non

existing. If other network topologies of single source single sink are studied it can be

proved that the max-flow bound is always achieved [46].

2.4.1.2 Single Source Multiple Sinks

The butterfly graph example of Figure 2.12 shows an example of single source multiple

sink graphs. In a graph G with sinks t1,t2, ... tL , we denote the information rate

received by each sink as γ. Hence we must have [46]

γ ≤ Fmax(tl) (2.17)

and

γ ≤ minl{Fmax(tl)} (2.18)

where Fmax is the maximum flow of a sink and equation (2.18) is the minimum

flow of all maximum flows of the graph. This is explained in Figure 2.12. The first

graph, Figure 2.12 (a), shows the capacity of the edges of the butterfly and the cuts

required to compute the Fmax of each sink. Recall that the max flow is the sum of the

edge capacities going forward to the sink. It can be seen that Fmax(t1) = 1+1 = 2 and

Fmax(t2) = 2 where the max flow of the graph is then γ = 2. Figure 2.12 (b) shows

how to achieve such max flow. The source sends two information bits simultaneously

from (s, 1) and (s, 2). b1 and b2 are replicated by nodes 1 and 2 respectively. At this

point node 3 disposes of two bit of information but only one can be sent. Since the

routing scheme for the sinks is fixed, node 3 can combine both bits and send them

to node 4 where they are forwarded to the sinks. If no network coding schemes were
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Figure 2.12: The butterfly example is a single source two sink example. a) Capacities
of the network, b) Max-flow example.

used, node 3 would have to send only one of the information units , either b1 or b2 and

therefore both sinks would not have received all the information sent by the source.

The butterfly graph, a single source and multiple sink model, has shown that

network coding is a necessary feature to achieve the MAX-flow MIN-cut theorem,

however real applications might not look like the butterfly model. In a wireless

broadcast network a central node called the access point ( for instance a satellite or

a hot spot of an IEEE 802.11 network) is responsible for broadcasting or unicasting

information to the receivers/sinks. Using the single source multiple sinks approach

next subsection describes the linear network coding problem.

2.4.1.3 Linear Network Codes

We present the linear network code problem by an acyclic network G, where the chan-

nels are assumed to have unit capacity of a symbol defined over a field F and parallel

channels are allowed. There exists a unique source node s that transmits γ number

of symbols per unit time that corresponds to the original message. The example in

Figure 2.13 (a), has two imaginary input edges and represents an acyclic network.

Each link has unit capacity and the max flow of the network can be computed with

the use of cut sets as γ = 2. The routing scheme to achieve max flow is shown in

Figure 2.13 (b). This graph is a good representation of a wireless network where the
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Figure 2.13: The acyclic network model for a wireless network. a) Capacities of the
network, b) Max-flow example, c) The encoding system for a wireless communication
model.

source node and node 1 are the central node, i.e. the access point, and t1, t2 are the

receivers or users of the network.

Focusing on Figure 2.13 (c) where the wireless network graph has been dissemi-

nated to describe linear network coding. The source node in this case receives two

flows, f(0,s) and f(0′,s) that represent the source information ~x where ~x = Xd · fd,s,

d ∈ In(s) and Xd ∈ F
γ. The output of s is received by k nodes in the form of

(fs,j)i,k ·Ms,j, where j ∈ Out(s), i and k represent the rows and columns of the out-

put matrix fs,j and M is the mapping encoder of each node. Since the conservation

law has to be accomplished, next hop symbol can be calculated as follows.

(fs,j)i,k =
∑

k∈Out(s)

~x ·Ms,j =
∑

k∈Out(s)

(Xd · fd,s) ·Ms,j =
∑

k∈Out(s)

Xd · (fd,s ·Ms,j) (2.19)

In this way, the original message is transmitted from node to node and can be

decoded as long as the mapping of each encoder, i.e. Ms,j in this case, is known. In

Figure 2.13 (c) there are two encoding nodes ( s and node 1) and 7 flows. The two

sources received at the source form a matrix such that
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fd,s =
[

f(0,s) f(0′,s)

]

=

[

1 0

0 1

]

Xd =
[

z1 z2

]

,where zi ∈ F
γ (2.20)

The encoders Ms,j and M1,l are constructed by rows that define the input symbol

and columns representing the next hop channel. Hence, Ms,j with a two input node

has two rows and since it is connected to 3 nodes it is constructed with 3 columns.

The same construction method is applied to node 1 where there is one input symbol,

thus one row, and two output channels giving two columns. The encoding system is

associative, i.e. the order of the operations can be changed, thus the mapping system

in Figure 2.13 (c) can be defined without considering the input symbols:

(fs,j)i,k = fd,s ·Ms,j =

[

1 0

0 1

]

×

[

1 1 0

0 1 1

]

=

[

1 1 0

0 1 1

]

, (2.21)

fs,t1 = (fs,j)i,1 =

[

1

0

]

, (2.22)

fs,1 = (fs,j)i,2 =

[

1

1

]

, (2.23)

fs,t2 = (fs,j)i,3 =

[

0

1

]

, (2.24)

(f1,j)i,k = fs,1 ×M1,l =

[

1

1

]

×
[

1 1
]

=

[

1 1

1 1

]

, (2.25)

f1,t1 = (f1,j)i,1 = f1,t2 = (f1,j)i,2 =

[

1

1

]

, (2.26)

On one hand, the encoder system is a set of linear equations where the symbols

are defined at the field specified by the designer. On the other hand, the decoder of

the system can be defined by a set of equations received at the sink. For instance,

sink t1 receives two flows, f(s,t1) and f(1,t1). Each row of received matrix flow is the

combination of the initial message. Therefore the decoder has to solve the following
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equations

f(s,t1) ⇒ (f(s,j))1,1 + (f(s,j))2,1 = symbol1 (2.27)

f(1,t1) ⇒ (f(1,j))1,1 + (f(1,j))2,1 = symbol2 (2.28)

where + is the sum in the base field defined by the designer. The set of lin-

ear equations can be solved because (f(s,j))2,1 = 0 and (f(s,j))1,1 = (f(1,j))1,1. Thus

equation (2.28) can be rewritten as symbol1 + (f(1,j))2,1 = symbol2 and solved as

(f(1,j))2,1 = symbol2 − symbol1 (2.29)

Accordingly, to decode the information in sink t2 the step process is the same as

sink t1.

Example: Let us now consider that the source wants to send two symbols z1 and

z2 defined over a field F2 = {0, 1}. The source will then receive two information units

defined as Xd · f(d,s) which produces a matrix such that

~x = Xd · fd,s =
[

z1 z2

]

·

[

1 0

0 1

]

=
[

z1 z2

]

(2.30)

the output flow of the source node is calculated using equation (2.19) and the

output of node 1 using the mapping in equation (2.25).

(fs,j)i,k = ~x ·Ms,j =
[

z1 z2

]

×

[

1 1 0

0 1 1

]

=
[

z1 z1 + z2 z2

]

(2.31)

(f1,j)i,k = fs,1 ·M1,l =
[

z1 + z2

]

×
[

1 1
]

=
[

z1 + z2 z1 + z2

]

(2.32)

using equations (2.27) and (2.28) the set of equations that are solved for t1 are

symbol1 = fs,t1 = z1

symbol2 = f1,t1 = (z1 + z2) (2.33)

solving the set of equations as

symbol2 = (z1 + z2)− z1 = (z1 + z2) + z1 = z2, from 2.33 (2.34)
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where minus sign is substituted by a sum because in F2 + = -. Equally the set

of equations to be solved by sink t2 are

symbol1 = fs,t2 = z2

symbol2 = f1,t2 = (z1 + z2) (2.35)

solving the set of equations as

symbol2 = (z1 + z2)− z2 = (z1 + z2) + z2 = z1, from 2.35 (2.36)

Hence, if the mapping system is known, i.e. Ms,j and M1,l, each sink can decode

sent information. This graph (see Figure 2.13 (c) ) is a representation itself of a

wireless broadcast network. On one hand, the base station offering a connection to

the users is equivalent to nodes s and 1 where received information or uplinks are the

inputs to node s and the sent information or downlinks are the outputs of node 1.

On the other hand, the users are represented by the sinks and the set of edges that

connect them to the source, i.e. e(s, ti). In other words, f0,s and f0′,s are known to

t1 and t2 respectively. In a real scenario this means that a user of a BSS has a buffer

of sent information allowing the receivers to decode incoming packets from node 1.

This is the key feature to understand network coding over wireless networks.

Consider that the encoder matrices are known by both, the end user and the access

point. An end user sends bits of information to the access point and keeps a buffer

memory with what has been sent. This means that end user has either z1 or z2 stored.

At this point the access point is aware that the end node is storing sent information

and proceeds to encode received information before transmitting it to all users. The

end nodes have stored sent information which means equation (2.27) is already at

the receiver. If the access point sends the encoded message in equation (2.28) the

user can retrieve the information by solving the system. The procedure guarantees a

remarkable gain in throughput but there is still a fact that has not been considered

so far, the delay. The graphs presented here have an ideal propagation feature free

of delay. In reality, delay can restrict a service where if exceeds a maximum value

might not be feasible to perform. Since VoIP is one of these services, the study of its

performance is analysed over a wireless network such as IEEE 802.11b in Chapter 5.
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2.5 Conclusion

In this chapter, SIP/SDP and RTP/RTCP are described to understand the signalling

system and audio exchange procedures within a VoIP network. State of the art audio

codecs G.711, GSM 06.10 and Speex are chosen because they are a good represen-

tation from the variety of codecs currently available. VoIP phone calls are assessed

throughout this thesis with the MOS and the E-model as presented in this chapter.

The speech prediction model is followed by a network coding introduction that gives

an insight to the design of these network architectures. The study of heterogeneous

network performance is addressed in the following chapter with a MOS test for an

active SIP proxy GW.

61



CHAPTER 3

VoIP Quality in Heterogeneous

Networks



3.1 VoIP Quality in Heterogeneous Networks

3.1 Introduction

N
OWADAYS due to the multiplicity of network communication solutions there

is an increased possibility that VoIP calls not only take part within a single

network but rather within a number of networks that often function using different

standards and link layers. SIP has been widely adopted as the signalling system

for PSN and thus the integration with existing technologies is important in order to

offer full services. From an end-to-end user perspective SIP GWs are SIP entities

that cross interact with these technologies and their performance can become critical.

Consider that Alice uses a soft phone at her office desktop to call Bob whose location

is unknown to Alice, as shown in Figure 1.1 on page 24. In an ideal scenario, Alice

would call the UA corresponding to Bob and so the task that the network has to

proceed is to locate Bob. Regardless of Bob using a land line, a cell phone or an office

computer, Alice expects good phone call quality. Therefore, the critical subject is

to know what are the requirements from the network’s perspective to achieve such

transparency.

Firstly, the signalling systems from the differing technologies must be translated

to guarantee that the location and availability of Bob can be determined. Secondly,

voice data is exchanged between end nodes through the GW, but the quality degrada-

tion of a single network can affect the whole conversation. For example, the fact that

Bob may be on a mobile network which guarantees a minimum QoS will not be suffi-

cient if Alice’s network is overloaded (consider example A at Figure 1.1 on page 24).

This could eventually lead to a drop in a number of packets during the conversation.

Heterogeneous network communications require that gateways not only provide sim-

ple forwarding methods but also end-to-end VoIP quality performance. Furthermore,

if a SIP GW can sense the end-to-end speech quality then it can enforce entities to

use methods such as Forward Error Correction (FEC) to overcome the situation.

The development of SIP entities have been growing in the last decade. Hyun

et al. presented a SIP implementation and design of proxy and registrar in [48].

In [49] Huy et al. described User Agent (UA) implementation for voice services

including call establishment, termination, registration and capability of negotiation.

Other implementations take advantage of Private Branch Exchange (PBX) to develop

an integrated telecommunication system. A recognised approach was achieved by

Anjum et al. who developed ChaiTime [50], a Java Telephony API along with SIP to
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design an integrated system. Asterisk [51], an open source software implementation,

is another example of a PBX that offers multiple protocol integration such as H.323,

SIP and self developed IAX [52]. Although the developments above achieve different

technological integration none of them considers the VoIP communication quality

performance as a whole.

In this chapter, a SIP proxy emerged with a Media Gateway is presented as a test-

bed implementation system to bridge IEEE 802.3 (wired) to GSM networks (wireless)

and vice-versa. The platform senses in real-time the quality delivered to end users

using the packet loss rate and supports FEC to overcome conditional scenarios where

the wire section shows low end-to-end VoIP quality performance. This development

is based on an embedded platform to provide the system with higher mobility and

integration for future implementations. The comparison of the passive GW versus

the active GW, i.e. with FEC system integrated, results in a better performance for

active nodes according to the MOS rates.

The remainder of this chapter is organized as follows. Section 3.2 describes FEC

for VoIP with an overview to channel estimations. Section 3.3 presents implementa-

tion tools and software architecture. Section 3.4, discusses the Mean Opinion Score

(MOS) test results, and finally, Section 3.5 concludes the chapter.

3.2 FEC for VoIP

FEC for VoIP services was initially presented by Bolot [53] proving that, even at high

packet loss probabilities, speech quality is maintained satisfactorily. More recently,

advanced FEC methods have been tested for VoIP services; Wenyu et al. showed the

feasibility of FEC under bursty loss Gilbert Elliot Model [54]. Sheng et al. presented

a combination of FEC mechanism for wireless methods, including iterative decoders

such as concatenated zigzag (CZ) [55]. Although most of this research focuses on FEC

for VoIP they do not consider the whole communication system with a combination

of wired and wireless networks, i.e. heterogeneous networks. In our integrated SIP

server GW with FEC, the results in [53] are corroborated and its usage is extended

to a wire-to-wireless network application. In addition, our application includes an

integrated Markov Chain theory based loss model for test purposes; this allows us to

emulate the behaviour of a multiplicity of channels.
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Figure 3.1: Speech quality prediction for a RanDomly interpreted channel (RD) versus
a Markov Chain (MC) based model with codec parameters defined as Bpl = 4.3,
Ie = 0 for G.711 and Bpl = 39, 32,Ie = 24.3 for GSM as specified in Chapter 4.
FSMC is defined with q = 0.7.

3.2.1 Channel estimation with Markov Chain Theory

From a channel estimation point of view, channels are often modelled based on Bit

Error Rates (BER) that consequently lead to frame errors. From a network point

of view, channels are often modelled as Packet Error Rates (PER) or packet loss

percentage. In Section 2.2.2 on Page 35 it is mentioned that RTCP exchanges the

value of packet loss rate in relation to the link between end users. This percentage

can have different interpretations, but mainly there are two schemes to follow. The

packet loss percentage is either random or non-random. In case of a non random

process, different mathematical models can be applied, where a widely applied model

is Finite State Markov Chain (FSMC) models. Figure 3.1 represents the difference

of both interpretations using the E-model for G.711 and GSM. From the illustration

it is shown that the performance of Markov Chain (MC) based models has worse

performance than RanDom (RD) based interpretation, reaching to a conclusion that

the use of random packet loss model can be misleading in VoIP quality performance

prediction.

FSMC are channel loss models often utilised in network modelling for wired and

wireless communications. In wireless communications, FSMC models have been used
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Figure 3.2: Fist-Order Finite State Markov Chain model [62].

to model error burst in fading channels, facilitating designers to analyse and improve

performance measurements in both physical and medium access control services. In

[56] it was proven that higher information rates can be achieved if FSMC memory

is taken into account. A common approximation for fading channels is Rayleigh

Probability Distribution Function (PDF). This PDF is divided into Markovian states

depending on the nature of the fading channel [57], i.e. the higher the number of

states the greater the complexity. Although higher order FSMC models have proven

better in performance, they considerably increase the complexity which for a real-time

channel modelling is not desirable. Hence in this thesis first order FSMC models are

used due to their computational simplicity and accuracy [58].

In wired communications performance of the Internet is affected by routing schemes.

Packet loss due to congestions in routers, delay or priority policies are every-day con-

straints. In [59–61] it is shown that the Internet packet loss can be represented as on

and off states, whereby on refers to all packets being dropped and off signifies no

packets are lost. This behaviour is well suited for a first order FSMC.

A single first order Markov Chain is shown in Figure 3.2 where P (G− > B) = p

represents the probability of moving from the Good state to the Bad State and

P (B− > G) = q the probability of moving from the Bad state to the Good.

If the channel is in the Good state packets are delivered to their destination

whereas within the Bad state packets are dropped. The average probability of being

in each state is then given by equation (3.1), where π0 and π1 are the Good and Bad

states respectively [62].

π0 = (q/(p+ q)), π1 = (p/(p+ q)) (3.1)

Figure 3.3 illustrates the packet loss probability for packets lost in a row with

q = 0.7. The graph demonstrates that the probability of loosing the first packet

is always the highest provided that previous packet was not lost. Consequently,

the probability of loosing yet another packet in a row diminishes as the number of
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Figure 3.3: 2-state-Markov Chain loss model, q=0.7.

packets lost in a row increases. This graph clearly shows that if the UAs are able to

avoid loosing a single packet the highest probability of packet loss can be decreased

considerably and hence the perception of speech quality is higher. A method to

avoid single packet losses is FEC with piggy backing as explained in the following

subsection.

3.2.2 FEC Algorithms

FEC algorithms use redundant information to guarantee the quality of a VoIP session

is not degraded. The aim of FEC utilisation in our system is to avoid single packet

losses because FSMC showed a very high probability of loosing such packets.

There are a variety of algorithms for FEC illustrated in Figure 3.4 where RTP

packets are represented by a Header (HDR) and a Payload (PL). FEC with repetition,

as presented in Figure 3.4 (a), guarantees that if a single packet is lost it can be

recovered by the next incoming message. Although this is a practical approach it

introduces n number of redundant packets where n is considered as the total number

of packets sent in one RTP stream. The following case shown in Figure 3.4 (b),

refers to a method that follows the repetition algorithm but in this case is carried out

by padding the current message in the following packet. This method sends n − 1

redundant packets, however the number of headers required for this method is reduced

to the half, resulting in a more efficient option. The last option, in Figure 3.4 (c),
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Figure 3.4: Different Forward Error Correction algorithms where HDR stands for
header and PL payload.

depicts a FEC system where packets are xor -ed and padded to the third payload.

This method also named as FEC with piggy backing, ensures that a single packet is

not lost with a probability of [54]

π1.FEC =
p

(p+ q)
((1− q)2 + pq + q(1− q)) (3.2)

where the equation is constructed by starting at the Bad state, i.e. one packet

is already lost, and multiplying it with the addition of three possible cases where

recovering lost packets is not possible; the first case refers to loosing the following

two packets, (1−q)2; the second represents the case when the second packet is received

but the third is lost, pq and finally the last possibility is to loss the second packet

but receive the third one, (1 − q)p. This method only requires (n − 1)/2 number

of redundant packets, which is a considerable gain in comparison to the other two

options. For this reason, the following SIP proxy GW is implemented using FEC with

piggy backing.
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3.3 System Implementation

In this chapter, an embedded SIP proxy GW connected to a GSM capable of working

on a Small Office/Home Office (SOHO) environment written in C code is presented.

The implementation is based on a general purpose board, a GSM modem and an

expansion board, specifically designed for this implementation.

The test board is based on NGW100, a general purpose development board for the

AT32AP7000 processor [63]. The 32-bit Micro-Controller Unit (MCU) is a processor

core with an architecture created specifically for cost-sensitive embedded applications

that require both high performance and low power consumption. This architecture is

based on a RISC processor core designed to do more processing per clock cycle so that

the same throughput can be achieved at a lower clock frequency with substantially

less power consumption. The NGW100 is equipped with a 8MB Parallel flash, a

non-volatile flash memory reloaded with the U-Boot boot loader for Linux, 8MB

Serial flash dedicated to store permanent code and 32MB SDRAM used to store

temporary data. The expansion board has a CS4202 mixed-signal serial audio codec

with an integrated headphone power amplifier compliant with the Intel Audio Codec

97 specification, referred as AC 97 capable of supporting PCM. Finally, the GSM

modem is controlled by a level converter from a serial port from the NGW100 and its

audio input/output are connected to the expansion board. Telit has been chosen for

this development [64]. The embedded SIP server incorporates Linux 2.6.23 Operation

System (OS) and this can be controlled by both serial port and Telnet. Vendors cross

compiler and Integrated Design Environment (IDE) has been used in a Fedora Core

8 to develop the software. Further description of the implementation can be found at

Appendix B .

Software implementation is based on three main sections: Firstly the SIP server

Gateway’s functionality and the call flow of a VoIP session is described, secondly, our

algorithm to support FEC with piggy backing (encoder/decoder) is presented and

thirdly, state machines synchronisation for the SIP and Modem network is explained.

3.3.0.1 Embedded SIP Server merged with a Media Gateway

The Embedded SIP server GW has two main tasks; on one hand it must control the

signalling system from both VoIP and Mobile network, and on the other hand it must

handle the RTP protocol and translate it to the GSM network audio input. oRtp [65]
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Figure 3.5: Block diagram of the SIP server merged with a Media Gateway connected
to a mobile network.

and oSIP [66] libraries are used to implement the SIP server. The block diagram

of the implementation is presented in Figure 3.5. The figure shows the set up for

VoIP calls carried out in the experiments where Alice is connected to the SIP proxy

merged with the Media Gateway. The gateway includes a monitoring system that

allows to the entity to react under poor quality circumstances. The media gateway

is connected to the mobile network through a modem that provides a communication

system from Alice to Bob through the base station. The flow chart of a current VoIP

call is presented next.

Figure 3.6 shows the signalling flow of the embedded SIP server merged with a Me-

dia Gateway. Several assumptions are made for simplicity; Mobile Stations (MS) have

already been assigned their channel number to guarantee synchronisation with the

Base Station (BS) and Authentication and Ciphering processes have been discarded.

In the graph the Mobile Control Centre (MCC) is a unified concept that includes;

Base Station Controller (BSC), Mobile Switching Centre (MSC), Visitor Location

Register (VLR), Home Location Register (HLR) and Authentication Centre (AuC).

BSC is in charge of several BS, MSC is responsible for switching routing and control-

ling a call, VLR stores all relevant information related to the user, HLR is responsible

for the user location information and the AUC is in control of authentication. Readers

are referred to [67] for further details.

This flow chart starts with the registration from Alice’s UA to the Embedded SIP
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Figure 3.6: Flow chart for a wire to mobile network VoIP call [68].

Server GW. If this person has permission to be registered, the server will reply with

a 200 OK accepting the request or it will be rejected. Alice generates a phone call to

Bob by sending an Invite request including its options for audio codecs, i.e. SDP. The

embedded SIP server checks its Register Servers entrance and codec compatibility.

Bob is not in the local area network and therefore a mobile network session is initiated

by sending a request call to the Mobile Gateway (Mobile GW), see Figure 3.6. The

Mobile GW is connected through the Base Station 1 (BS1) to the MCC and forwards

a Call request to contact Bob. MCC checks in the routing tables to track down Bob’s

Mobile Station. Bob’s MS receives a Connection Request while the Mobile GW sends

a 100 Trying response to advise Alice’s UA that the call has been processed. Bob’s

MS confirms that the call has gone through and starts ringing and in return the
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Embedded Server SIP GW sends a 180 Ringing to Alice. If Bob’s phone is switched

off or not available, then this will be noticed by the Embedded Server to Alice and

the phone call will be finished. In this case, Bob accepts the phone call and a 200 OK

message is sent to Alice with codec priorities. It is after this process when Alice and

Bob can talk through the Embedded SIP Server GW. The conversation is finished in

this example by Alice sending a Bye request. This request is forwarded to the MCC

and Bob is informed that Alice has hung the phone up. Confirmation is received at

the embedded Server and a response with a 200 OK is sent.

The embedded SIP server GW allows a routing scheme to track down the user

location. If the user is not logged in, the phone call is routed to the mobile network.

This internal routing system is a very useful feature that always makes sure a cheaper

phone call will be performed, avoiding any extra action from the end user and blindly

integrating both technologies.

As mentioned in the introduction of this chapter, it is possible that Alice’s side

(wired communication) might not be able to deliver packets degrading the VoIP

performance. This problem can be tackled with the use of FEC algorithms as shown

next.

3.3.0.2 FEC with piggy backing algorithm

FEC with piggy backing improves the quality of an end-to-end VoIP session. In

this chapter, the SIP server GW is presented with the support of FEC with piggy

backing. The GW becomes an active node within the network that sensing the QoS

of the communication can enforce the use of FEC.

Both FEC encoder and decoder have been developed in C programming language

at the wire network section. The encoder block code algorithm for Figure 3.4 (c)

is presented in Figure 3.7. Once all variables are set to their default values, the

algorithm starts reading voice frames from the Analogue to Digital (A/D) converter,

Praw and encodes them in G.711 audio codec, Pn. If this is the first packet then

Pfirst = 1 and the packet is sent using conventional method after being copied to an

internal buffer (cpy(Pn, Pa)). At the time of reading the second packet, Pfirst = 2

the packet is sent conventionally as well as being copied to a different internal buffer

(cpy(Pn, Pb)). Third packet’s case is different because Pfirst = 3. Therefore the

xor of previous two packets is performed and the output is concatenated with the

original message, i.e. Pxor = xor(Pa, P b) and Pfec = conc(Pn, Pxor). The new
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Figure 3.7: FEC encoder with piggy backing [68].

packet is sent with the FEC padding and the third packet is copied to the internal

buffer Pa. Since the variable Pfirst is set to zero the forth packet takes diagram’s

right tree in Pfirst > 0. In this case fec = 0 and hence, forth packet is sent without

FEC but it is copied to the internal buffer Pb. Consequently the fifth packet follows

the path of the forth packet but this time FEC is added entering in a loop that sends

packets with FEC as piggy backing.

The decoder reads the sequence number of received packets, decides whether a
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packet is lost or not and if possible implements the xor to recover the lost packet.

The pseudo code for this algorithm is presented in Algorithm 3.1. Received packets

are divided into a set of three packets called fecblocks as shown in Figure 3.4 c), so

that synchronisation within received packets is not lost. A socket is the source of

received packets which are copied to an internal buffer, Prx, where the payload and

the sequence number are stored in Prx.buf and Prx.seq, respectively. Consider that

the first FEC block does not loose any packet; Since the first received packet opens a

new FEC block, it is copied by the ADD function to the FEC buffer. This function

takes the payload and sequence number from Prx and copies them to Pfec.buf and

Pfec.seq. Pfec is considered as an auxiliary buffer to perform FEC when necessary.

Once the first packet of the block is received the second packet arrives to the socket.

In this case, the sequence number of the received packet is compared with the one

in Pfec and stored as diff = Packet2 − Packet1 = 1. Because the received packet

does not contain FEC, the program jumps from line 8 to line 26 where diff value

is checked to be equal or greater than two. If the latter occurs it means that several

packet looses have happened. Since this is not the case, the payload retained at the

FEC buffer and the received payload are copied to the jitter buffer in this order by

using the ADDtoJitter function. Note that the order of adding the payloads to the

jitter buffer have to be respected. Before closing the loop, the initiation of a new

FEC block is allowed in line 32. Consequently the third packet received is stored at

Pfec. Consider that the new FEC block losses the forth packet, which means that

the following received packet is the fifth which contains a FEC padded payload. Line

8 is then true and the difference between sequence numbers is considered. In this

case, because packet four is lost, diff = 5 − 3 = 2 and the recovery of the packet is

performed with the third and the fifth packets, namely Pnew (see line 10). At this

point, there are two possibilities: the first or the second packet of a FEC block is lost,

which means that diff = 1 or diff = 2, respectively.

It is important to determine the order in which payloads are copied to the jitter

buffer. In our case the second packet is lost and therefore FEC buffer, i.e. packet

three, is copied before Pnew. There is also the case that several packets have been

lost having no chance of packet recovery. This is reflected in line 22 where only the

FEC buffer is copied to the jitter buffer. The system continuous the loop until the

socket is closed.
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Algorithm 3.1 FEC Decoder with piggy backing [68].

1: newfecblock = 1
2: � Synchronisation
3: while Prx = packet received do

4: if newfecblock then

5: ADD(Prx to Pfec)
6: newfecblock = 0
7: else

8: diff = Prx.seq − Pfec.seq
9: if Prx with FEC == (True) then
10: if diff ≤ 2 then

11: Pnew = XOR(Prx.buf, Pfec.buf)
12: � Recover Lost packet
13: if diff == 2 then

14: ADDtoJitter(Pfec.buf)
15: ADDtoJitter(Pnew.buf)
16: else

17: ADDtoJitter(Pnew.buf)
18: ADDtoJitter(Pfec.buf)
19: end if

20: ADD (Prx to Pfec)
21: else

22: � Several packets lost
23: ADDtoJitter(Pfec.buf)
24: ADD (Prx to Pfec)
25: end if

26: else

27: if diff ≥ 2 then

28: ADDtoJitter(Pfec.buf)
29: ADD (Prx to Pfec)
30: else

31: ADDtoJitter(Pfec.buf)
32: ADDtoJitter(Prx.buf)
33: newfecblock = 1
34: end if

35: end if

36: end if

37: end while
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3.3.0.3 Synchronisation

The software uses dynamically allocated threads to handle both the signalling system

and audio packets. There are two audio threads: RTP packet receiver and RTP packet

sender. Similarly, the signalling system is comprised of two threads SIP thread and

Modem thread.

Figure 3.8 depicts the finite state machine for the SIP thread responsible for in-

coming calls (SIP fsm) whereas Figure 3.9 shows the modem finite state machine

(GSM fsm). The former’s initial status is at Invite Received and the latter’s is at

Checking Status. When a call request is received and a mobile phone call is initiated,

codec type and modem availability are checked before SIP fsm changes to Trying.

With regards to the modem thread, Invite is a call event that changes the status

to Dialling provided that the modem is not in use by any other previous thread. If

no other event occurs during this process, GSM fsm changes to Ringing Status and

subsequently makes the SIP fsm’s status shift to Ringing. At this stage, the mo-

bile station is ringing. If the end user accepts the phone call the GSM fsm and the

SIP fsm switch to connected status. The conversation can be finished by any of the

two end users returning back to the Checking Status and Terminated for GSM fsm

and SIP fsm respectively. The colours of Figure 3.8 and 3.9 illustrate the follow up

of the status of each synchronisation state-machine.
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Figure 3.8: SIP thread state machine [68].
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3.4 Testing and Results

The embedded SIP server GW has been successfully tested with commercial soft-

phones such as X-LITE [69], SjPhone [70] as well as open source Ekiga [71]. None

of these sofphones offer FEC with piggy backing and therefore a self-developed User

Agent with FEC is utilised in these experiments.

The test bench has a first order FSMC integrated for both audio threads (sender

and receiver) with q = 0.7 following tested values for an Internet communication

record cited in [53]. The packet losses were set up from 0 to 20% and G.711 [19] was

chosen as a codec to the wired channel. Speech at the softphone was recorded to

evaluate its quality according to the MOS [1] recommendation (see Section 2.3.2 on

Page 45).

The experiment consists of a set of VoIP phone calls from a computer to a mobile

phone where packet loss rates at the SIP gateway vary from 0 to 20 %. Firstly, phone

calls without FEC algorithm are performed and secondly, FEC with piggy backing

algorithm are considered. In addition, single network audio codec performance is

also added to these experiments to prove that heterogeneous networks performance

is worse than single network communication. The methodology followed for these

results is based on the simulation tool developed in this thesis and explained further

in Section 4.2 on Page 84. In Figure 3.10 the MOS test average results are illustrated

depending on the packet loss percentage applied to the wired channel. These exper-
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Figure 3.10: MOS test with q=0.7 for wire-to-wireless connection and single network
connection [68].

iments have been assessed by over 20 people, in English, with both native and non

native listeners following the MOS standard requirements.

On one hand, the illustration shows FEC and no-FEC sessions perform equally

when the channel is free of packet losses. As the packet loss rate increases, FEC’s in-

fluence is more noticeable. This reveals that with a 10% of packet losses, FEC registers

a performance of a fairly good connection whereas the no-FEC channel is evaluated

as worse than poor. Even when considering a 20% packet loss rate, FEC shows a

poor performance but still achieves adequate speech quality. On the other hand,

single network VoIP performance for G.711 and GSM 06.10 is depicted. The com-

parison between cascaded two network performance and single network performance

highlights the impact of dual codec connection and corroborates that the awareness

of cascaded two networks connection can be advantageous to improve over all perfor-

mance. Consider the case of five percent of packet loss; a single network performance

for G.711 is 3.2 whereas double channel connection, i.e. G.711 to GSM with no-FEC,

shows a 2.3. This difference means that if a node is not aware that there is more

than one audio codec taking part in the communication, it could believe that overall

performance value is fair, i.e. 3.2, in stead of poor, i.e. 2.3. Hence, if intermediate
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nodes are aware of the communication system their assessment of the quality is more

accurate and the decision of considering FEC methods is more accurate.

One of the drawbacks related to FEC in addition to the redundant information

is the delay introduced to the communication. In this case, the microcontroller reg-

istered a delay that never exceeds 35 ms. With regards to the jitter performance 12

ms for a non FEC connection and at 13.5 ms for a FEC connection are recorded.

Although these values could influence a session’s quality, they are compensated by a

jitter buffer in the program.

A comparable result to data shown above is derived from the analysis of the

received sequence number in real-time versus the number of received packets, as seen

in Figure 3.11. As expected the greater the packet loss rate, the greater the slope of

the response is. This is shown in the expanded figure of 15% of packet loss where a

packet is lost between the sequences 90 and 100. Furthermore, TABLE 3.1 shows the

recorded values for the experiments where the benefits of using FEC in percentages

can be seen. In the packet loss column, the captured packet loss percentage in a

real scenario matches the theoretical values corroborating that the system is running

correctly. In the packet recovered column, values are almost halved in comparison to
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Table 3.1: Results For A Wire to Wireless VoIP Session with FEC

Sent Lost (%) Packet Loss Recovered with FEC Efficien-
Packets Packets Recorded Recorded (%) Recorded Recorded(%) cy (η)
1304 0 0 0.00 0 0 0.04
1028 5 62 6.03 30 2.91 0.75
1162 10 110 9.47 66 5.67 0.97
874 15 110 12.59 72 8.23 0.88
808 20 163 20.17 89 11.01 0.81

the packet loss rate value, leading to the conclusion that an extra 64/3 = 21.33 kbps

throughput required by FEC noticeably improves the system’s overall performance.

Therefore the FEC efficiency is defined from equation (3.3).

η =
(△MOS)

(△BW )
(MOS/Kbps) (3.3)

The numerator (△MOS) is the difference of FEC and non-FEC based MOS test

normalized to the maximum value of MOS. The denominator (△BW ) is the band-

width difference between FEC and non FEC system for a specific codec. In order to

associate each codec’s performance the numerator value is normalised to the band-

width of the codec itself, i.e 64 in case of G.711. The equation represents how valuable

is the extra information sent through FEC over the quality of voice received. Exper-

imental results show that with 0% of packet loss the efficiency proves to be very low

where theoretical response should be 0. However, the higher the packet loss the bet-

ter the efficiency, in other words, the higher the losses the more worthy is to send

redundant data. This efficiency parameter can be considered as a regulator for end

nodes to evaluate the use of FEC under bursty losses.

3.5 Conclusion

In this chapter, an embedded SIP server Gateway to mobile networks with FEC

is presented. Wired and wireless networks have been interfaced by developing an

expansion board and integrating FEC system for VoIP sessions as an example of

a heterogeneous network connection. Our development demonstrates that utilising

FEC for a wired to wireless system, performs satisfactorily even under high packet

80



3.5 VoIP Quality in Heterogeneous Networks

loss channels. Furthermore, the efficiency cost of such model, as shown in TABLE

3.1, determines that under poor channel conditions the implementation of FEC is

beneficial if action is taken by the gateway. Consequently it is proved that active

SIP GWs can enhance end-to-end speech quality, however this is only approved for a

single case scenario. Hence, an analytical model to predict speech quality perception

under a number of different networks is required for the rapid assessment of QoS

which is presented in the following chapter.
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4.1 Speech Quality Prediction for Heterogeneous Networks

4.1 Introduction

I
N the previous chapter a VoIP GW implementation proved that passive GWs, i.e.

only store and forward GWs, perform worse when compared to GW’s with FEC

that are aware of channel conditions. The results gained from such implementation

highlight the advantage of intelligent networks to improve QoS. In next generation

networks, end-to-end communications will utilise a variety heterogeneous technolo-

gies and consequently predicting quality performance can play an important role in

network design. In Section 2.3, MOS and E-model showed that VoIP calls can be

rated with subjective and objective methodologies respectively. In Chapter 3 the

MOS model is used to present the results while in this chapter the E-model is con-

sidered to predict speech quality in heterogeneous networks. However, this analytical

model presents a number of limitations where the restricted number of parametrised

audio codecs , see recommendation [31], narrows down the scope of further research

to be carried out. In addition, the model is based on a single audio codec connection

from an end-to-end perspective which is acceptable for an Internet core soft-phone

to soft-phone call but not for a heterogeneous communication system. Considering

the implementation in Chapter 3 for a wired-to-wireless communication, where the

wired network is provided with G.711 audio codec, packet losses rate clearly have an

impact on overall performance. The crucial question is what happens if the wired

network uses another audio codec? Is it necessary to set the implementation again or

can speech quality perception be predicted? Current state of the art models do not

provide a straight forward solution to this problem, however the analytical model pre-

sented in this chapter can predict speech quality perception under two independent

channels using a self developed simulation tool.

In this chapter, the proposed model provides up to three audio codes and two

cascaded network estimations at a time. Simulator response is tested with MOS and

results are compared to the proposed E-model extension where the lower the error-

margin the better the prediction. Channels are modelled through the Finite State

Markov Chain (FSMC) analytical model due to extensive literary research that has

proved it highly successful [72]. The analysis of the effect of multiple channels on

speech quality is carried out in two parts. Firstly, single network tests are performed

to compute codec specific parameters, i.e Ie and Bpl for G.711, GSM06.10 and Speex.

Recall that the E-model uses Ie ( equipment impairment factor) and Bpl ( packet
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loss robustness factor) to parametrise an audio codec (see equation (2.12)). Secondly,

double channel tests with codec and packet loss variations are tested and analysed

following the implementation presented in the previous chapter. The results proved

that low error-margins are achieved with the proposed method.

The remainder of the chapter is organised as follows. Section 4.2 describes the

simulation system design, utilising audio codecs and the packet loss dependency over

multiple channels for VoIP session. Section 4.3 presents the proposed formula to ex-

tend the E-model. Section 4.4 validates the proposed analytical model and evaluates

the performance to predict speech quality under heterogeneous networks. Finally

Section 4.5 concludes the chapter.

4.2 New Simulation Design for Multiple Channels

In this section, a new simulation design for multiple channels is presented. The

idea is to design a generic system capable of modelling the behaviour of multiple

different sub-networks that take part in an heterogeneous communication network

as long as these sub-networks can be mathematically modelled. Figure 4.1 depicts

the comparison between the conventional E-model and the proposed system in this

chapter. The conventional E-model is based on a single network single audio codec

prediction system. The model has been widely researched and its performance has

been agreed to have a fair accuracy in the prediction of speech quality. The proposed

model expands the conventional method to adopt a multiple number of networks and

audio codecs where a Gateway provides the communication to the differing networks.

Consider the implementation in Chapter 3 where a VoIP connection from a soft

phone to a mobile phone using a SIP proxy GW crossing IEEE 802.3 and the GSM

networks is presented. Currently such connection can not be modelled using con-

ventional E-model. To solve this problem audio codecs described in Section 2.2.3

on Page 36 are used with FSMC channel models to set a MOS test. Initially, the

analytical model for multiple independent FSMC networks is shown and then the

simulation tool is described.
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Figure 4.1: Comparison of the conventional E-model and extended E-model for mul-
tiple channels.

4.2.1 Markov Based Channel Modelling

In the previous chapter, the use of FSMC [62] has been presented as a model for

bursty networks, where network’s packet loss probability is related to the delivery

or not of last packet. Recall from Figure 3.2 on page 66 that P (G → B) = p

represents the probability of moving from the Good state to the Bad State whereas

P (B → G) = q represents the probability of moving from the Bad to the Good state.

Hence, the probability of being in either the Good or the Bad is calculated using

π0 = (q/(p + q)), π1 = (p/(p + q)) respectively. Considering that the actual path of

communication must travel across multiple channels, each of them can be represented

by a first order FSMC as seen in Figure 4.2. This figure illustrates n number of two

state Markov Chain model. The analytical expression of this communication system

is defined by the transition matrix in equation (4.1) [73].

This matrix is a multiple independent FSMCs gathered in a single matrix where

πi is P (Gi− > Bi) of the ith channel and qi P (Bi− > Gi) for (i = 1, 2, ...n). The

average packet loss probability per channel is independent and therefore the overall

average packet loss probability, Pplt, is calculated by equation (4.2) where ppli is
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FSMCi’s average packet loss probability which depends on πi.0 taken from equation

(4.1) defined from equation (3.1) [73].

Pplt = 1−
∏

(1− ppli) (4.2)

4.2.2 Simulation Tool

Figure 4.3 on the next page shows the developed simulation tool for speech prediction

tests, written in C language. Voice is sampled to 8 KHz, 16 bit, Little Endian, grouped

in 160 samples for a 20ms packet size. Packets are encoded, filtered by Markov Chain

(MCi) model and buffered at the receiver side to avoid jitter distortion. A decoder

is applied (if necessary) and encoded again to be filtered by the next channel model.

Note that the process to exchange different codec types is done by an entity called
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Figure 4.3: VoIP session model for Multiple channels [73].

Gateway (GW). When the packets arrive at the final destination they are decoded

and played back as 16 bit, 8KHz sampled signal. The model is flexible to be set from

1 to n number of channels, although in these experiments only up to two channels

have been investigated.

4.3 Proposed Extended E-model

The new simulation design in the previous section, presents an scenario where n

number of channels with n number of audio codecs is possible. This new paradigm

introduces a number of constraints to predict speech quality where conventional E-

model described in [2] is not valuable any more. In this section, the conventional

E-model is extended based on extended trial and error approaches that minimises the

difference between subjective experiments and the mathematical model itself. The

proposed new R-value is defined as follows [73]:

R = R0 − IS − ID − Ie−efft + Ieq + A (4.3)

where the signal to noise ratio, R0, the simultaneous impairment factors, IS, and

the advantage factor , A, are evaluated using default values as shown in equation

(2.5). Equally, the delay impairment factor, ID, is also defined according to the

conventional method (see equation (2.6)). This is conceivable because this impairment
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is independent of channel status or utilised audio codec type. Hence, the extended

R-value can be rewritten as [73]

R = 93.3− ID − Ie−efft + Ieq (4.4)

The proposed equation differs in a number of aspects from the conventional E-

model. The effective equipment impairment factor, Ie−efft, is defined as the number of

factors that predicts the impairment factor related to channel response with different

audio codecs. Recall that Ie−eff uses Ppl and BurstR to model the channel and

Ie and Bpl for audio codec performance (see equation (2.12)). In a communication

system with multiple channels and multiple audio codecs, the overall performance is

always dependant on the poorest audio codec and channel. In a parallelism with a

production line, the poorest audio codec is presumably the bottleneck of the system

whereby productions maximum output is the output of the bottle neck production.

Consequently, the proposed analytical model for Ie−efft is based on the poorest Ie−effi

within the communication system to predict over all performance where the poorest

audio codec is determined from the Ie values [73].

Ie−efft = Ie−eff1 +
n
∑

i=1

ρi × Ie−effi+1
(4.5)

where

ρi =











1 for Iei = Ie1

Iei
Iei+1

× 100 for Iei 6= Iei+1

(4.6)

and

Ie1 > Ie2 > ...Ien (4.7)

BurstRi =
pi

pi + qi
(4.8)

In this case, Ie−eff1 refers to the poorest audio codec out of n number of channels

and ρ is a factor that allows diminishing the impact of other codecs degradation in

comparison with the performance of Ie1 . It is important to note that multiple channels

with the same audio codec, i.e. Iei = Ie1 , are predicted as a sum of independent

effective equipment factors. The burstiness modelled with FSMC is represented by
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equation 4.8 where pi refers to the average packet loss percentage of the channel and

qi is the parameter that defines the channel itself.

In addition to the extended effective equipment factor, the proposed analytical

model adds a new impairment factor, defined as the distortion equaliser impairment

factor, Ieq. This factor has been incorporated to the analytical model due to inaccu-

racies obtained with very high packet losses, i.e. packet losses above 15%. The main

reason behind this parameter is that human perception barely distinguishes between

a communication system with 20 % and 15 % of packet looses resulting in large differ-

ence between MOS tests and proposed analytical model. The new impairment factor

is defined as [73]:

Ieq = 1 + e
Pplt−15

15 (4.9)

where Pplt follows equation (4.2) and 15 refers to a fixed numerical value defined

after substantial experimental results.

4.3.1 Methodology to determine audio codecs’ parameters

The above formula extends the conventional E-model prediction to heterogeneous

networks which is tested in the following section. Nevertheless, the audio codecs

described in Section 2.2.3 are not defined by the ITU-T recommendation [31] and

hence experimental measurements are required to determine their parameters.

An audio codec in the E-model is defined by Ie and Bpl. To determine the value

of Ie, MOS tests for each audio codec are carried out with zero delay and zero packet

loss. The experimental values are converted to the R-value which is set with default

values. Since Ppl = 0 and the rest of the parameters are known, Ie is calculated by

using the following equation:

Ie = 93.3−R− ID (4.10)

Once Ie is defined, the value of Bpl is determined. In this case, MOS tests are

performed for each audio codec with a variety of packet loss percentages using a

MC model with q = 0.7. The reason behind this q value is that previous chapter’s

implementation is based on this parameter which provides results with a closer match

to real implementations. The packet loss range is varied from 5% to 20% where each

time the Bpl value is measured as
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Bpl =
(95− Ie)Ppl

93.3−R − ID − Ie
−

Ppl

BurstR
(4.11)

Obtained values from these results are averaged and presented in the following

section.

4.4 Results

The simulation tool in Figure 4.3 is used to record experiments with different audio

codecs and packet loss models. Recorded files are uploaded to our website [74] and

MOS tests are carried out to assess the speech quality. Results are converted to the

R-value with equation (2.3) to compare the results. Using the extended E-model

and parameters that correspond to each recorded file, the differences between the

experimental results and analytical values are presented in this section. MOS tests

are carried out for over 20 people from different gender, age and nationality. The

tests’ statistical values are shown in Table 4.1 where parameters are defined in rows

and the columns correspond to the performed tests as explained hereafter.

The results are divided in three subsections. The first part is based on a single

network performance using the conventional E-model method to determine audio

codec parameters. The second part is based on experiments with two channels which

is also known as two hop connection. The results include two options: on one hand

two channels with different packet loss rates considering that both networks agreed

using the same audio codec and in the other hand two channels with different packet

loss rates and audio codecs.

Table 4.1: Statistical values for the MOS test, where Diff. refers to Different and
values are presented in percentages (%) [73].

Paramaters Options Single Network 2 Networks
Equal Codec

2 Networks Diff.
Codec

Gender
Male 61.23 77.05 62.36
Female 38.77 22.95 37.64

Age

0 to 20 0 0 0
21 to 30 90.88 91.80 100
31 to 40 9.12 8.20 0
41 and above 0 0 0
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4.4.1 Validating the Model

The proposed model for heterogeneous networks is validated with the hardware im-

plementation presented in Chapter 3 as shown in Figure 4.4. On one hand, the results

that refer to G.711-GSM 0610 Hardware are taken from Figure 3.10 on page 78 using

the data with regards to G711 to GSM with no-FEC. These values have been trans-

lated to the E-model using equation 2.3. On the other hand, the results obtained by

the proposed model for cascaded network performance using the mathematical model

described in previous section, are represented under the name of G.711-GSM06.10

Model. Comparing the results of both experiments, it is concluded that the model is

a good and fair approach of the hardware model since the differences between both

results is negligible. Hence the variety of the results obtained throughout this chap-

ter are considered as realistic as hardware implementation results for speech quality

prediction.
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4.4.2 New Parameters for Audio Codecs

In these tests a single network with single audio codec is tested in order to define

the parameters for G.711, GSM and Speex audio codecs. The simulation tool is set

to q = 0.7 [53] and no delay is introduced. The obtained results are presented in

Figure 4.5 and Table 4.2 following the formulae in Section 4.3.1. On one hand, the

figure illustrates the average performance of each codec whereas the table presents

Ie and Bpl parameters for each audio codec which are divided in two columns. First

column represents the already available parameters from ITU-T recommendation [31]

where unknown values are shown with ’-’ symbol. Second column is the experimental

results obtained using equations (4.10) and (4.11). Note that the Ie difference for

G.711 between the experimental results and values from [31] is negligible whereas the

Bpl shows higher differences. This is due to the fact that measurements are carried

out with FSMC models rather than random losses. Regarding to GSM audio codec it

can be seen that the Ie differs slightly from the values provided by the ITU-T, which

ensures that the experimental results and the methodology to obtain the values are

accurate. Overall, robustness values appear to have high value for linear predictive

codes (Speex and GSM06.10) however, the codec performance adjusts to the obtained
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measurements as seen in the following subsections.

Table 4.2: Codec Measurement Results [73].

Reference
ITU-T [31] Experimental
Ie Bpl Ie Bpl

GSM06.10 20 - 24.37 39.32
Speex-MOD4 - - 5.37 37.82
G.711 0 4.3 0.37 12.92

4.4.3 Speech Quality Prediction for a Two Hop Connection

In this set of experiments, two channels are tested with MOS, converted to the R-

value and compared to our proposed model. The results are based on two independent

FSMC models with two variations: one for equal codecs per channel and the other

for different codecs.

4.4.3.1 Equal Audio Codecs per Hop

Equal codecs per hop experiment is based on two FSMC models where qi value is

fixed to 0.7 in both channels and two different packet losses per channel, ppl1 and

ppl2, are configured at the simulation tool. Pplt is calculated using equation (4.2)

with i = 2 whereas Ie− efft is calculated with equation (4.5) where ρ = 1 since both

channels’ Ie is the same. Finally, audio codec parameters are taken from Table 4.2.

Figure 4.6 shows the performance graphs for different packet loss channels and

audio codecs. Each graph is represented by a fixed packet loss rate depicted in the

upper left label and a variable packet loss rate in the x axis. In the y axis the R-value

of the analytical model versus the experimental results is illustrated. All graphs

include the three audio codecs: G.711, GSM and Speex, where audio˙codec˙name

E-model refers to the proposed extended model and audio˙codec˙name MOS is the

experimental result obtained through the website.

G.711 performance with an error-margin average of 5.02R and a maximum error

of 9.54R shows the consistency of the proposed formula. The maximum error appears

at Ppl1 = 20% & Ppl2 = 5% where a rather exceptional case occurs. In this error

percentage, the tested file suffers from a combination of packet losses where a number
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Figure 4.6: MOS versus proposed E-model, 2 channel-FSMC, q1=q2=0.7 [73].
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of short words (1 syllable) are lost and the comprehension of the speech becomes hard,

resulting in a lower rate in the MOS test. Conversely the mathematical models do

not distinguish between words or packets and therefore the estimated speech quality

is slightly better than that of users perception. As the packet percentages increases,

MOS tests show that users barely distinguish tests with 15% of packet loss rates or

higher rates. This can be seen with Ppl1 = 15% & Ppl2 = 15% and Ppl1 = 10%

& Ppl2 = 20% where the MOS is dropped to one which is equivalent to the lowest

value of the MOS system.

GSM 06.10 codec error-margin average is 1.68R the lowest of all of them. The

smooth response obtains the largest error in Ppl1 = 20% & Ppl2 = 5% where the

value rises to 6.84R. Again this is related to the same problem described for G.711,

where the loss of a number of consequent words generates a bad performance for the

users. Despite of it all, the performance of the analytical model is very accurate in

this case.

Finally, Speex performance shows an average error-margin value of 3.03R with a

maximum peak of 4.92R recorded at Ppl1 = 5% & Ppl2 = 20%. In this case, the

error average of the analytical model is always marginally more positive than the

actual user perception but due to low error differences this is considered insignificant.

These experiments demonstrate that in the scenarios where both channels have the

same audio compressors, predictions are accurate compared to those values obtained

through subjective testing.

4.4.3.2 Different Codecs per Hop

Different codecs per hop experiment is based on two FSMC models where q1 and q2

values are set to 0.7 and 0.1492, respectively. The former value represents an Internet

connection [53] whereas the later is taken from research based on GSM networks [75].

Different packet losses and audio codecs per channel are utilised as input sources

of the simulation tool. Pplt is calculated using equation (4.2) with i = 2 whereas

Ie− efft is calculated with equation (4.5) where ρ value depends upon the audio

codecs considered per channel.

Figure 4.7 shows the performance graphs for different packet loss channels and

audio codecs. The representation of each graph follows the equal codecs graphs

shown in the previous experiment. In this case, experiments for G.711 with GSM,

G.711 with Speex and Speex with GSM are presented. It is important to point out
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that the order of the audio codecs is considered irrelevant since the analytical model

takes into consideration the poorest audio codec to predict speech quality.

G.711 with GSM error-margin shows an average of 8.35R and a maximum error

peak of 22R. This combination of codecs illustrate the poorest performance all results

for the proposed analytical model where the peak can be found at ppl1 = 15% & ppl2 =

20%. There are two main reasons related to this discrepancy: firstly from previous

experiments is understood that human perception for very high packet losses tends

to be distorted due to the incapacity of humans to distinguish between bad and very

bad quality. Secondly, it is believed that the combination of LP codecs with waveform

codecs is expected to perform poorly due to the difference in the Ie parameter which

is reflected in the lower values obtained by the mathematical model.

The combination of G.711 and Speex presents a performance of 2.28R average

error-margin with a maximum peak of 8.05R. The peak is found at ppl1 = 20% &

ppl2 = 0% which if compared with the performance of G.711 with GSM it can be seen

that the high percentage of packet losses in G.711 has an impact on LP based audio

codecs. Nevertheless, the performance of the analytical model can be considered as

fair due to low average error-margin.

Finally Speex with GSM shows a performance of 3.71R error-margin error with a

peak of 8.55R at ppl1 = 15% & ppl2 = 0%. In this case, the lower quality obtained

through Speex codec affects the natural performance of GSM and therefore the MOS

test shows lower values than the analytical model. Despite of it, the average error-

margin is low and proves the proposed analytical model to be a good approach.

Considering all the results, several conclusions that can be drawn. Initially, wave-

length based speech codecs always have the best audio performance. This is observed

in both cases where ppl1 = 0% & ppl2 = 0% where results with G.711 codec show

the best R-value. The second conclusion is that very high packet loss rates are not

distinguishable by human perception regardless of the audio codec utilised. This is

interesting because intermediate nodes could take action by forcing to either end a

VoIP session or consider FEC systems if the expected overall quality drops down to

40R or below. The third conclusion refers to cases with different audio codecs are

utilised where two LP based audio codecs perform worse than a wavelength and a LP

based calls. In fact, throughout all these experiments the best performance is given

to G.711 with Speex codec. Finally, although few examples of high error-margins are

found, it is expected that the on going test results will corroborate even greater the
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Figure 4.7: MOS versus proposed E-model, 2 channel-FSMC, q1=0.7, q2=0.1492 [73].

formula presented in this thesis.
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4.5 Conclusion

In this chapter, an analytical study for VoIP with two network channels is presented

based on the current E-model. Firstly, the study presented single network results

where three audio codecs are tested. Ie and Bpl values for them are measured using

FSMC models and validated with the current G.711 codecs parameters as defined

by the ITU-T. Secondly, two channel network experiments are carried out with two

major set-ups:

1. Equal audio codecs in both channels

2. Different audio codecs per channel

The proposed extended E-model is used to match the MOS test by introducing two

main variables: a new impairment factor to equalise results with high packet loss

rates, and the ρ factor which balances the performance of independent channels with

different audio codecs. The average error-margin of the analytical model compared

with the MOS values shows a reasonable 1.68R to 8.35R error-range.
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CHAPTER 5

Network Coding on VoIP



5.1 Network Coding on VoIP

5.1 Introduction

I
N telecommunications there are three types of communication methods: unicast-

to-unicast, unicast-to-multicast and multicast-to-multicast. The telephone net-

work is based on a unicast-to-unicast method belonging to a hierarchical topology

whereas a broadcast network, based in a flat topology, allows communications be-

tween all peers facilitating unicast-to-multicast and multicast-to-multicast methods.

Nowadays, broadcast networks are preferred, specially wireless broadcast networks

because they cut down costs to service providers for the last mile connection.

Wireless networks often function on omnidirectional basis however, rather than

making use of such beneficial characteristics, most technology has been designed to

achieve unicast-to-unicast communications. This is understandable when taking into

consideration the security issues relating to private or personal information and its

protection against fraudulent use. This can be seen in home networks where the core

of the Internet remains mainly unicast communication. Conversely services such as

satellite TV have already developed a unicast-to-multicast service.

Network coding addresses unicast-to-multicast and multicast-to-multicast commu-

nications from an unknown angle, as seen in Section 2.4. Initially Yeung and Zhang

presented a pioneering research on unicast-to-multicast for satellite communications

in [35]. This concept was further developed by Ahlswede et al. in [32] in a later

paper naming the method as ”network coding”. This inspiring method makes use of

coding theory to increase channel throughput by combining existing packets in the

network and multicast them so that receivers can decode the message. This theory is

particularly encouraging for an increase in performance of half duplex networks and

it is not restricted to any particular layer of the Open System Interconnection (OSI)

model.

VoIP suffers from long delays caused by queues that converge into packet losses

resulting in poor call performance. To insert network coding schemes and create

even more delays at first glance might appear counterproductive but in this chapter,

a new proposal to use network coding theory for VoIP services is presented without

dependency on the physical layer. The block diagram of a possible case scenario where

the proposed model can be implemented is shown in Figure 5.1. In this illustration

a base station with multiple cells is connected to a network with a SIP proxy and

a Media Gateway that provides VoIP services. The users are connected to the base
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Figure 5.1: Scenario where Network Coding for VoIP is an improvement.

station which divides the geographical area into cells. In particular, one of the cells,

registers a large number of user as it could be the case when popular events happen in

a concentrated area, for example, a football match or a music concert. Subsequently

the aim of this research is to improve the performance of conventional VoIP services

with special care at last mile wireless networks. The theoretical overview described in

Section 2.4, presents a broadcast network graph model using acyclic networks. One

such network, as shown in Figure 2.13 on page 57, was considered whilst designing a

new paradigm for VoIP communications to support network coding techniques. This

paradigm requires a set of changes: a packet modification, queue systems and call

flow synchronisation. This new algorithm for VoIP, remarkably increases by 100 %

the number of VoIP calls that a Basic Service Set (BSS) can handle.

The remainder of this chapter is organised as follows. Section 5.2 presents the

proposed algorithm for VoIP with network coding. Section 5.3 defines theoretical

minimum delays for VoIP with QoS followed by an applied analysis to IEEE 802.11b

networks. Section 5.4 implementation and 5.5 its results, describe and discuss the

theoretical models and obtained performance. Finally, Section 5.6 concludes the

chapter.

5.2 An algorithm for VoIP with Network Coding

In this section, a new proposal for VoIP services is presented, fully compliant with

current state of the art and independent of the physical layer.

VoIP requires a large scale of network resources to both Internet Core and end

users. The traditional method for VoIP is based on central nodes called SIP Proxies

with user Registrar and Location Service (LS) capabilities. End users make use of

101



5.2 Network Coding on VoIP

Figure 5.2: Design comparison between conventional method and our proposed
method over a half duplex channel [76].

SIP Proxies to locate the call receiver; depending on session features, calls would

be routed either from end user to end user (Peer to Peer system as seen Figure 2.2

on page 33) or through a centralised server as seen in Figure 2.3 on page 34. The

former releases the traffic load to the central server and the latter keeps control of all

data exchanged between users. In some cases, such as wireless communications, end

users are connected to their base station and communication between end nodes must

go through a centralised node. Conventional base stations will simply forward the

message, missing the opportunity to maximise throughput of the channel applying

network coding techniques.

Consider a SIP Proxy that acts as information relay between two end nodes. The

conventional method would only forward packets from node A to node B by simply

repeating them. With network coding central node can combine received packets to

create a new set of outgoing packets reducing the usage of the network as explained

in Section 2.4 on Page 50. In this case, we use the model of Figure 2.13 on page 57

to represent the real environment depicted by Figure 5.2 [76].

In this figure, Alice and Bob are defined as the sink nodes from Figure 2.13 on

page 57 and the SIP server is the central node that acts on behalf of the source

node and node 1. The information units are set with the simplest field, F2 = {0, 1},

the matrix encoders Ms,j and M1,l are used as defined in equation (2.21) and (2.25),

respectively and hence the broadcasted information is a modulo two addition in ac-

cordance with equation (2.29).

Illustration on Figure 5.2, compares the packet flow for a conventional centralised

VoIP session against network coding method. The former implies that all packets
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from Alice to Bob and Bob to Alice are sent to the server and then forwarded ac-

cording to its routing table values. This method would be suitable for a Gateway

which interconnects networks handled by different signalling systems, for example

the implementation in Chapter 3. Conversely, it would be an inefficient approach if

the network between Alice and Bob is a broadcast network, such as Wi-Fi, WiMax

or Ethernet. In these cases, central nodes could perform a linear encoding between

received packets providing that end users keep a record of their own packets, repre-

sented by buffer{P1} and buffer{P2} for Alice and Bob respectively in Figure 5.2 (b).

As shown by the illustration the impact on throughput and time sequence of network

coding can be considerable if compared to a half duplex conventional method at a

specific downlink. On the other hand, if full duplex channels are in use, the time

sequences for network coding and conventional method are the same, as it is shown

in Section 5.5. In spite of this, the traffic load with network coding remains more

efficient in terms of throughput than conventional methods.

The encoded new packet is delivered to end users by multicasting it, which implies

that end nodes must be aware of which IP and port they should join to. This is

achieved by using SDP values where network coding support is specified; by default

the destination port is chosen as the session initialiser port, i.e. in case of Figure 5.2

(b) Alice’s source port. Although multicasting has been mainly dedicated to voice

and video on demand, in this case, since the packet is encoded, only both end users

are able to decode it, inheriting an extra layer of security to prevent eavesdropping

and man in the middle attacks.

5.2.1 Packet Flow

The flow chart in Figure 5.3 represents a phone call from Alice to Bob, assuming

that both end users have been previously registered against the SIP proxy. Alice

generates a phone call to Bob by sending an Invite request including the options for

audio codecs and network coding support (SDP:NTWCDN ). The SIP server checks

the registered users table to ensure that the request belongs to an internal user as

well as ensuring network coding compatibility. If any of these two conditions fails the

phone call will be rejected with the appropriate message response, for instance 606

Not Acceptable. The server sends a 100 Trying response to advise Alice that the call

has been processed. Bob’s UA is active and therefore sends a 180 Ringing message
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Figure 5.3: Packet flow of multicasting VoIP with network coding schemes [77].

followed by a call acceptance 200 OK message. In this last message, SDP:NTWCDN

is appended and monitored by the proxy in case it is not compatible with SIP proxy’s

configuration. Once the signalling system has established the parameters, Alice and

Bob can start talking. On one hand the UAs, Alice and Bob, send messages to the

central node keeping an internal buffer with sent packets. On the other hand, central

node computes a bitwise xor with received packets, sending the outcome by multicast

to both end users. Both end users will then decode the message xor -ring the received

packet and their internal buffer packet. The conversation ends, in this example, by

Alice sending a Bye request. This request is forwarded to Bob which replies with a

200 OK, terminating the conversation.

5.2.2 Packet Layout

In a conventional system (see Figure 5.2 (a)) where Alice and Bob send P (Alice)i and

P (Bob)i number of packets, for i = 1, 2, 3...n respectively, the network would handle
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2(P (Alice)n+P (Bob)n) Packets per conversation (Ppc). Since the number of packets

on a constant bit rate is equal for both users, i.e. P (Alice)n = P (Bob)n = Pn, then

Ppc = 4·Pn where Pn is the number of packets sent from a single user. In this chapter,

UAs uplink is considered as regular VoIP session that sends packets to the central

server, thus Alice and Bob are sending packets as they would in the conventional

format to their servers. The SIP Proxy uses the messages obtained from Alice and

Bob to generate a new information packet P (xor)i = P (Alice)i⊕P (Bob)i sent to end

user by multicast. Network load is then given by equation (5.1) where P (xor)n is the

number of packets sent from the proxy to the UAs. This is in accordance with the

theory described in Section 2.4 on Page 50 whereby the maximum flow of the network

is achieved by the new proposal [78].

Ppc = P (Alice)n + P (Bob)n + P (xor)n = 3 · Pn (5.1)

In order to retrieve P (xor)i packets, Alice needs to know which P (Alice)i was used

by the server. This is important as packets sent by the UA might be lost, forcing

the SIP Proxy to use a previous packet for the encoder. Figure 5.4 illustrates the

modified packet format to be applied to downlink packets; The RTP header follows

the recommendation in [16] and adds, by padding, two numbers at the end of the

packet: source sequence number and destination sequence number. These sequence

numbers are the packets sent from the UAs that were captured and used for the

encoder, i.e P (Alice)i for Alice’s case. The node that initiates the session (sending an

Invite request to SIP Proxy) is considered to be the source node whereas the receiver

is the destination. Finally, following the recommendation from RFC 3551 [16] a last

padding octet is added to specify the number of octets added to the standard payload

size. This design allows the end node to synchronise received values with those stored

at a local buffer.

Multicasting xor-ed packets adds an extra delay at the proxy server but does not

overshadow its multiple advantages. The method is independent of the link layer

and therefore easily applicable to any environment where a broadcast network is

the medium. From previous research of VoIP capacity in broadcast network and

primarily in wireless networks, down link throughput and delay is the bottle neck

of the system [79]. Although extra 5 bytes at the header level is introduced to

achieve synchronisation, throughput maximisation is guaranteed reaching a reduced

load of %50 for a full VoIP session in the downlink. Furthermore the proposed design

105



5.3 Network Coding on VoIP

Figure 5.4: Our proposed packet format for RTP [76]. V = version, P = Padding, X
= extension, CC = CSRC Count , M = Marker, PT = Payload Type.

is fully compatible with existing RTP and SIP/SDP packet headers and could be

implemented with no major changes.

Although throughput performance is a clear advantage when network coding is in

use, delay introduced by the network propagation and encoders must be considered.

In the next section minimum delay analysis is applied to IEEE 802.11b networks.

5.3 Theoretical Minimum Delay

In this section, we analyse the theoretical Minimum Delay (MD) of the proposed

design and compare it with the MD of the conventional method for a Constant Bit

Rate (CBR) VoIP session. Since MD determines the performance of a single VoIP

session, the number of calls that the network can handle can be derived from it, i.e.

the capacity of the network.

To derive the Delay Lower Limit (DLL) for a VoIP system with network coding

it is necessary to define the achievable MD. This is only possible if the system is in

the best case scenario, i.e. the channel is an ideal channel with no errors and at each

transmission cycle there is only one active station to transmit a packet while other

stations can only receive packets and provide acknowledgements if required by the

link layer.

In a CBR system VoIP stations generate a packet every packetization interval.

For an infinite long phone call if this packet is not transmitted before a new packet
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is generated the queue at the source station will be infinite too. Since this is not

realistic it is assumed that transmission delay must be lower than the transmission

time [79].

Tt < Tg (5.2)

where Tg stands for packetization delay and Tt for total transmission delay of one

voice packet per user including all overhead. Considering that our case scenario is a

star topology network where an Access Point (AP) is the central node and users are

within the service set (see Figure 5.2), then each VoIP packet has to be transmitted

from one station to the AP firstly and from the AP to the next station secondly. On

one hand, on a half duplex network this means that the network is busy four times

for a packet exchange between users and therefore Tt = 4 · Tp where Tp is the delay

introduced by a single standard packet. On the other hand, a full duplex network

requires Tt = 3 · Tp because packet exchange between pair of network users can be

done simultaneously and bidirectionally as described in Section 5.5. Network coding

method implies that two packets are sent through the network as it would be the

case in a conventional system. There is an additional delay of waiting time until both

packets are received and a response message with the modulo two addition of both

messages, including the extra overhead i.e. 5 bytes in our proposal. Equation (5.2)

for network coding can be rewritten as [78]:

Tg > (τ · Tp) + Tntw (5.3)

where τ is the number of independent packets required to perform network coding,

i.e. τ = 2 in our case, but it could be larger if other coding methods are used at the

central node and Tntw refers to network coding delay introduced by the waiting time

of two arrival packets and the encoded message response with extra overhead. Figure

5.5 illustrates a generic packet transmission for a network coding system. Packets are

received in two different queues but from the same broadcast network which means

that packets to these queues can not arrive at the same time. Once a packet is received

modulo two addition is performed and the new packet with synchronisation overhead

is sent as a multicast to all stations. The illustration shows that the transmission delay

of a conventional voice packet, received at each input queue, consists of a MAC layer

overhead Toh and voice packet delay Tdata. Toh depends on the physical and link layers

whereas voice packet delay is considered as the addition of overheads from the network

107



5.3 Network Coding on VoIP

Figure 5.5: Transmission of a packet with network coding [78].

layer and above i.e. IP/UDP/RTP/PAYLOAD. Our proposed system requires the

following new delay parameters: Tarr is the delay introduced by the waiting time to

receive a second packet to perform the modulo two addition of the packets; Txor is

the time to compute the operation itself which is dependant on hardware processors

and Tldata is the time associated with larger packet data due to synchronisation that

consists of Tsync, the delay introduced by additional header for synchronisation and

Tdata. Equation (5.4) defines the values for a single standard packet, Tp, and a single

network coding packet, Tntw [78].

Tp = Toh + Tdata

Tntw = Tarr + Txor + Toh + Tdata + Tsync (5.4)

Two types of delays can be seen from Figure 5.5: fixed and variable. Overhead

and data delays are related to standard specification and do not vary within a VoIP

session. Similarly Txor depends upon the hardware chosen for the encoder system

which without loss of generality can be considered a fixed delay. Conversely delay

introduced by network coding varies upon Tarr and it is derived from the design of

our proposed system which maximises the probability of performing network coding.

The system is based on two independent queues which theoretically receive packets

at average time equal to the packetization interval time. Consider that the arrival of

a packet is modelled as two independent Poisson processes with a single service time.

From queueing theory it is known that two joined Poisson processes is also a Poisson
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processes [80]. Therefore, since the minimum number of received packets has to be

two, one packet per station, our queueing design can be modelled as follows [80]:

P2(tw) =
(λtw)

2

2
e−λt (5.5)

where the maximun probability of having two packets is defined as dP2(tw)
dt

= 0 and

calculated as
dP2(tw)

dt
=

λ2

2

(

2te−λtw − λt2e−λtw
)

(5.6)

the equation has a solution of

tw =
2

λ
(5.7)

In a generic Poisson process, λ is the average arrival time which is equivalent to

the average of generating one packet per packetization time. Since the system is a

joined Poisson process the average arrival time is now doubled, which by considering

a commonly used 20 ms per packet packetization time gives λ = 1/10 ms. This

concludes that the maximum probability of having two packets in the queue is every

tw = 20 ms. In other words, the minimum time that the server has to wait to maximise

network coding performance is 20 ms which has been adopted in our implementation

as seen in the next section. Although the waiting time for a network coding process in

VoIP holds at most 20 ms, it does not mean that if two packets arrive one after each

other with Tarr → 0 the real delay introduced by network coding simply depends

on Txor and the extra overhead introduced by synchronisation. This is interesting

because the capacity of a broadcast network changes if MD of a network coding

system is lower than the MD of the conventional method. From equation (5.2) the

capacity of the network can be derived as the number of sessions that can be placed

in a packetization interval.

Ccalls =
Tg

Tt

(5.8)

Many papers including [81], [82], [83], [84] and [79] used equation (5.8) to measure

the capacity a network utilising the IEEE 802.11 protocol. Although this formula

can be used to any type of network, these papers always address the capacity of the

wireless channel to host VoIP session based on a point-to-point topology from a wire

to wireless network, similar to a peer-to-peer system. Conversely in this chapter, we

focus on a star-based protocol which changes the values we introduce for Tt. If the
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network is half duplex there is a threshold to reach in order to be more efficient than

the conventional method and this is shown in next theorem [78].

Theorem 1. A VoIP single packet’s delay has to be greater than the delay introduced

by network coding in order to ensure a feasible VoIP communication with network

coding schemes.

Tp > Tarr + Txor + Tsync (5.9)

In order to corroborate our method we solve the equations for IEEE 802.11 [85], a

half duplex wireless broadcast network and the results are compared to a full duplex

network such as IEEE 802.3 [86]. Since different type of codecs result in different

Tdata values, three audio codecs described in Section 2.2.3 on Page 36 are considered.

5.3.1 Minimum Delay for IEEE 802.11b

The link layer at IEEE 802.11 is based on a Carrier Sense Multiple Access protocol

with Collision Avoidance (CSMA/CA). This protocol is designed for networks where

sensing the network and sending information at the same time is not compatible which

is the case of wireless networks. The standard defines a binary exponential backoff

method named Distributed Coordination Function (DCF) which allows stations to

transmit data units over a Contention Period (CP). Optionally a Point Coordination

Function (PCF) is described as a guarantor of a minimum QoS per station. This

method uses an AP to manage a Basic Service Set (BSS) in a round robin pooling

system to synchronise with the stations and offers a Contention Free Period (CFP)

to each and one of them. A VoIP Proxy server is connected via a wire to an AP

that gives, in DCF mode, access to multiple stations where all nodes compete for the

channel including the AP.

Priority access to the wireless medium is controlled by a time interval defined

as Inter-Frame Space (IFS). Every sent frame has to wait at least a period of time

before transmitting a message named Short Inter-frame Space (SIFS), TSIFS. The

next longest interval is the PCF Inter-Frame Space (PIFS), an interval designed to

give priority to an access point over the next station at a BSS. At a lower priority,

and therefore longer waiting period, it is defined as DCF Inter-Frame Space (DIFS),
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TDIFS. Next longer interval time is Arbitration Inter-Frame Space (AIFS) followed

by the Extended Inter-Framed Space (EIFS).

One of the drawbacks of using wireless channels over centralised nodes is that

exchanged packets between stations and AP might not be read by all stations arising

the hidden station problem. IEEE 802.11 overcomes this issue by using Request To

Sent (RTS) frame before any data is sent. RTS is confirmed by a Clear To Send

(CTS) message followed by the data unit and the correspondent Acknowledgement

(ACK) frame, TACK . Although this solution solves the problem it requires a large

overhead. Instead, a basic frame exchange can be done in IEEE 802.11 so that no RTS

or CTS packets are exchanged before each transmission cycle. This requires a timing

interval protocol to maximise the usage of the channel diminishing the probabilities

of a collision. An example of such transmission is illustrated in Figure 5.6. Any

station willing to send a data frame has to sense the medium for DIFS period. If the

channel is free the station will generate a random backoff period (Tbackoff) additional

to DIFS. In this case, Tbackoff = rand(0, CWmin) · Ts where CWmin is the minimum

contention window, rand is a uniform random function between 0 and CWmin with

an average of CWmin/2 and Ts refers to the slot time. If after the backoff time the

channel is free data is transmitted. AP receives the frame and responds after a SIFS

period with an ACK frame confirming the delivery of the frame. Meanwhile other

stations such as Bob’s, generate a Network Allocation Vector (NAV) indicating the

period the medium will be busy.

IEEE 802.11 physical overhead is defined as a computational of Physical Layer

Convergence Protocol (PLCP) Data Unit (PPDU) as seen in the upper graph of

Figure 5.6. The preamble is required at the receiver side for synchronization purposes

and it comprises a set of synchronisation bits plus a Start of Frame Delimiter (SFD).

There are two optional preamble sizes: either short with 56 bit or long with 128

but in both cases the preamble will be sent at 1 Mbps. PLCP header consists of 48

bits that allows the receiver to know the physical specification of the frame such as

modulation type and it is vendor’s choice to choose the data rate which in our case

is set to 2 Mbps. The rest of the headers are sent at the rate agreed between AP and

stations which we define as RAP and is set to 11 Mbps. The frame control provides

the specifications of sent frame, duration is a field of 2 bytes that includes Frame

Check Sequence (FCS) and Address 1 is referred as the source address. These fields

compose the minimal frame size. Address 2, 3 and 4 refer to the destination addresses,
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Figure 5.6: Transmission of a packet in IEEE 802.11 [85].

transmitting station and receiving station respectively but these are optional. Finally

the sequence number is associated to the MAC Service Data Unit (MSDU).

To compute MD and considering the above description of IEEE 802.11, we define

the delay introduced by this overhead as follows [78]

Toh = TDIFS + TCW + Theader + TSIFS + TACK (5.10)

where Theader is the time interval of PLCP preamble at 1 Mbps, PLCP header

at 2 Mbps and the rest of the frame header at the data rate agreed between station

and AP i.e RAP . TACK is a 14 byte frame transmitted at 2 Mbps and TCW is the

average time before any packet is sent. In this case, the waiting time introduced by

the contention window is compulsory for all the peers and therefore its average value

is considered. Hence, definition of the time delay introduced by IEEE 802.11 can be

read as follows considering Tarr → 0, RAP in bits per second and Bpayload and Bsync

in bytes [78]:

Tt = (2 · Tp) + Tntw, from (5.4)

= 2 · (Toh + Tdata) +

(Tarr + Txor + Toh + Tdata + Tsync)

= 3 · (Toh + Tdata) + (Tsync + Txor)
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Table 5.1: Parameter values for IEEE 802.11b

Parameters Time (µs ) Size (bytes)
PLCP Preamble (short) 72.00 9
PLCP Header 24.00 6
MAC Header + FCS 20.36 28
ACK 56 14
SIFS 10.00
DIFS 50.00
Slot 20
CWmin 31 slots

= 3 · Toh +
8

RAP

(3Bpayload +Bsync) + Txor (5.11)

which means that the minimum delay is not only dependant on the data rate

of the network but a fixed delay is introduced by the MAC layer, highlighting the

limitations that IEEE 802.11 has when sending packets with an increasing throughput.

A summary of utilised IEEE 802.11b parameters is presented in Table 5.1.

Table 5.2: Minimum Delay Bounds and Capacity for IEEE 802.11 [78].

-
G.711 GSM 06.10 Speex-mod4

CM NC CM NC CM NC
Tt(ms) 2.751 2.067 2.382 1.790 2.367 1.779
Ccalls 7.26 9.67 8.39 11.17 8.45 11.24

CM = Conventional Method, NC=Network Coding method

A comparison between conventional method and network coding is shown in Table

5.2 using values from Table 5.1. The assumption made in this method is that multicast

networks provide an ACK frame after a packet is sent. According to [85] multicast

networks do not conceive ACK frames due to obvious congestion if all receivers decide

to acknowledge the delivery of the packet. Thus, the research presented in [87] proved

that the use of a Leader Base Protocol (LBP) on the BSS outperforms conventional

multicasting. The method works as follows; The AP sends a multicast RTS (m-RTS)

that is only replied by the leader with an (m-CTS). The leader is selected according to

113



5.3 Network Coding on VoIP

first in first served method, in other words, the first station connected to the service

set and willing to listen to multicast packets becomes the leader. Once the leader is

chosen, packets are exchanged without RTS/CTS messages. Every packet received

by the leader is acknowledged. In this chapter, the destination port of the multicast

server is decided by the station that started the VoIP session. Equally this station is

the only station sending acknowledgements back to the AP. This method ensures that

the packet loss rate can be reduced to a minimum ensuring a good quality service.

Alternatives to this multicasting method can be found in [88], however, most of the

solutions are either for lower layers or upper layers of RTP.

Values at Table 5.2 present the theoretical boundaries for three audio codecs. As

it can be seen, network coding in comparison to conventional method improves the

number of VoIP calls a BSS can handle. G.711 can handle two more VoIP calls

and the other two codecs, GSM and Speex, are improved by three VoIP calls. The

main reason behind this improvement is the fact that the wireless channel acts as a

half duplex channel, making the network coding method more efficient for real-time

services.

5.3.2 Full Duplex Networks with Network Coding

The advantages of network coding along with our system have been explained in

Section 2.4 on Page 50 , however it is important to put into contest real case scenarios

where network coding is advantageous to network performance. IEEE 802.11b is a

broadcast wireless network that acts as a half duplex channel where clearly network

coding can overcome some of the maximum flow graph problems, however this is not

applicable to all broadcast networks. Full duplex networks perform as shown in Figure

5.7. In this scenario, packets between the SIP proxy and Alice can be exchanged at

the same time as network coding does. The example shows Alice sending a message

to the SIP proxy at t0. In the next time unit, Bob sends a packet to the SIP proxy

but now it is also used by the SIP server to send a packet to Bob. This is only

possible if Bob and Alice have a full duplex channel. Equally in the next time frame,

t2, Alice receives a packet at the same time it sends a new packet to the proxy. This

conventional method exchanges more packets than network coding and therefore is

less efficient as is the case of IEEE 802.3 Ethernet connections. In conclusion full

duplex networks do not have better performance in terms of time units if network
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Figure 5.7: Design comparison between the conventional method and our proposed
method with a full duplex channel [78].

coding is utilised.

5.4 Implementation of VoIP services with Network

Coding

In this section, detailed specifications of the experiments are presented. Utilised

hardware, queueing system parameters and delays related to the codecs are discussed

in order to understand the performance of network coding over IEEE 802.11b.

Our proposed method has been carried out with a D-link G604T AP, a SIP proxy

running a Fedora core 8 with Linux kernel 2.6.26 and a laptop with Ubuntu OS, Linux

kernel 2.6.31 running multiple UA, i.e VoIP users. The AP includes 4 Ethernet ports

and a IEEE 802.11b compatible wireless card that has been set to transmit with full

power, sending beacon frames every 100 ms and RTS/CTS are enabled only if packet

size exceeds 4096 bits. With this set-up, RTS/CTS are never sent and introduced

overhead by beacon frames can be dismissed. The distance between stations has been

kept in a range of 5 meters and therefore no major interference is considered. The

SIP proxy station has two Ethernet cards whereas the laptop is provided with four

cards; two Ethernet cards and two wireless cards that give us access to low level frame

spoofing. SIP proxy and RTP clients are written in C code using gcc compiler.

Analysis of packets is carried out using Tcpdump [89] in monitor mode to capture

packets as well as internal timers at each station. Capacity is measured capturing

end-to-end delay of packets. This is possible due to the fact that each station has
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a dual interface and thus the same C programming process can capture sent and

received packets from different network cards. Sequence numbers are used to confirm

the packet loss as well as end-to-end delay. All phone calls have been performed over

20 times with a duration of 60 seconds and presented results are averaged values of

the experimental results unless otherwise stated. Note that during CBR phone calls,

the length of the conversation does not have any influence in throughput.

The system is based on a SIP Proxy connected to an AP through an IEEE 802.3

(Ethernet) 100 Mbps link and a wireless station connected to the BSS at a rate of

11 Mbps. Each VoIP call, referred as a pair of users since each VoIP call requires

two UAs, generates one sender and two receivers threads at the SIP proxy and two

senders with two receivers at the mobile station. Note that the UA’s receiver is a

multicast receiver joined to the corresponding IP and port number. The receivers

are joined to the multicasting service on a single IP and an odd number of port

destination starting at 7861 which is incremented by four each time a new VoIP call

is generated. Other parameters in our experiments are shown in Table 5.1.

5.4.1 Implementation Setup

Queueing design has been based on the theoretical result obtained from equation (5.7)

and its pseudo algorithm is shown in Algorithm 5.1. The waiting time that ensures

the highest probability of having received one packet per station station is 20 ms,

therefore the queue system has to satisfy Tlimit = qmin · (20 ms) where qmin defines

the minimum number of packets that has to be in the queue to perform the modulo

two addition, qmin ∈ N. This value ensures that most of the packets in the queues are

xor -red. When a VoIP session is started the SIP proxy allocates two queues shown

as Alice’s queue , Q1, and Bob’s queue, Q2. The queues are standard First In First

Out queues where each time qget function is called the packet in the first position of

the queue is retrieved. The algorithm sets a timer, Tmax, and checks whether Alice’s

queue has as many packets as qmin. If this is true, Bob’s queue is checked and if

both queues contain more packets than qmin, they are sent by multicast xor -ing the

payloads. If not enough packets have been received by Bob’s queue then the timer

is checked. On the contrary, if Alice’s queue has not received enough packets Bob’s

queue is checked and if the timer is over, Tmax > Tmin, it will empty the queue by

multicasting the packets, this is the case where Alice’s sequence number is set to null.
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It must be noted that in this algorithm qmin is not specified as different values achieve

different performances.

Capacity measurements have been conducted for the wireless channel but a clarify-

ing experiment for a full duplex channel is also carried out to point out that delay-wise

the performance of network coding does not improved conventional methods, as seen

in the next section. Capacity values have been obtained by generating consecutive

threads in the wireless station. The fact that a single laptop is used reduces the

chances of packet collision since only two stations at the BSS compete for the chan-

nel. Therefore the saturation limit of the network is a good reflection of networks

maximum throughput.

5.5 Experimental Results for VoIP with Network

Coding

Three main aspects are discussed in this section, throughput gain of network coding,

efficiency of our proposed queueing system and delay limits calculated as described

in the previous section. Firstly, a single VoIP session is captured and analysed to

corroborate that network coding is feasible, i.e. equation (5.9) can be achieved.

Secondly, the capacity of network coding is shown and discussed.

5.5.1 Feasibility of Network Coding

The network coding throughput gain is clearly shown in Figure 5.8 on a single VoIP

phone call of 15 seconds where qmin = 1. This illustration corroborates equation (5.1)

and confirms that in terms of throughput, the gain in network coding is of 50% if

downlink interface is considered which is represented by the filtered results from the

VoIP calls. The spikes shown every 5 seconds are the RTCP packet required by the

standard. It is important to understand that the throughput performance is shown

in Packets/second which is independent of the link layer and audio codec utilised.

Throughput performance also reveals the efficiency of our proposed method. As

mentioned in the previous section qmin can be varied to achieve higher or lower effi-

ciency in network coding, where efficiency is defined as the number of packets received

with an xor applied to the total number of packets received. Table 5.3 shows the ef-

ficiency of a single VoIP session in percentages for both Ethernet IEEE 802.3 and
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Algorithm 5.1 Network Coding Decision

Tlimit = qmin · (20ms)
StartTime(Tmax)
while 1 do

� Check Queue for Alice
if Q1 ≥ qmin then

� Check Queue for Bob
if Q2 ≥ qmin then

while ((Q2 >= qmin)and(Q1 >= qmin)) do
p1 = qget(Q1)
p2 = qget(Q2)
send(p1(xor)p2)

end while

StopTime(Tmax)
StartTime(Tmax)

else

if Tmax > Tlimit then

while Q1 ≥ qmin do

p1 = qget(Q1)
send(p1)

end while

StopTime(Tmax)
StartTime(Tmax)

end if

end if

else

if ((Q2 >= qmin)and(Tmax > Tlimit)) then
while Q2 ≥ qmin do

p2 = qget(Q1)
send(p2)

end while

StopTime(Tmax)
StartTime(Tmax)

end if

end if

end while
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Figure 5.8: Throughput Performance Comparison [78].

Table 5.3: Efficiency of Network Coding Decision (NCD) % [78].

Tlimit(ms)
IEEE 802.3 NCD (%) IEEE 802.11b NCD (%)

G.711 GSM Speex G.711 GSM Speex
20 99.86 98.81 99.80 99.10 98.48 98.63
40 99.10 99.27 99.77 99.04 98.03 98.87

Wireless LAN IEEE 802.11b. It can be observed that with qmin = 1, Tlimit = 20 ms,

efficiency is already very close to 100%. In fact, as it is monitored which packets were

not xor -ed it can be seen that 2% of packets sent unchanged are at the beginning

and end of the experiment which is due to both stations start sending packets at the

same time but with a slight difference. Another important fact is that there is no

major difference between codecs which fortifies the robustness of the design.

The critical parameter for a VoIP session is the delay. High delays induce packet

losses since queues have finite size and the variation of delay causes jitter. In both

cases the perception of voice quality is distorted if any of these occurs. In our exper-

iments UA’s queues are as large as the entire conversation which leaves the AP as

the only bottle neck of the system rather than the end users or SIP Proxy. Jitter is

compensated by an internal buffer set to ten payload packets, however this has not

been taken into account for an end-to-end delay. Obtained results are presented in

Figure 5.9.
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First two histograms refers to IEEE 802.3 Ethernet link layer results. Figure 5.7

forecasts that the delay comparison of network coding with conventional method is

minimal in full duplex channels which is corroborated by first two histogram sets at

Figure 5.9. In all cases, a single VoIP session’s end-to-end delay is similar to the

packetization delay Tg which is understandable since Tt values for the wire link are

lower than a millisecond. Although theoretically G.711 should always have larger

delay values, the slight variation within different codecs is considered insignificant

since they all are very close to Tt. Conversely, last two histograms present the results

for IEEE 802.11b link layer. These graphs prove one of the important achievements

of this research where most importantly network coding does not only achieve better

performance in terms of throughput but also in terms of delay. This difference between

network coding and conventional method can be clearly seen by the delay difference,

where the average delay of G.711 codec varies from 53.69 to 35.05. Equally the

differences between the rest of the codecs change accordingly which corroborates the

robustness of the method.

The average value of end-to-end delay is not meaningful if the inter-arrival time

is not under certain levels. The inter-arrival time is defined as the time between the

arrival of two consecutive packets. Conventional methods have an inter arrival of

20 ms since the packetization interval is 20 ms, however the performance of network

coding has not been studied yet.
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Figure 5.10 illustrates the inter arrival time of three randomly chosen phone calls,

for both IEEE 802.3 and IEEE 802.11b channels. The full duplex channel results, left

column, show a very steady delay values averaged to 20 ms. Each graph shows an inner

graph with a higher resolution to give a full understanding of the performance. In

reality, since the physical layer at IEEE 802.3 can sense the network while transmitting

it does not have to wait until the network is idle. This explains the steady response

in inter-arrival time and can be extended to any codec type.

The half duplex channel, right column, show a slight different panorama. From

illustrations it can be seen that the average performance is 20 ms but maximum values

are 112, 100 and 89 milliseconds for Speex, GSM and G.711 respectively. Since the

channel acquisition is preceded by a randomly generated Contention Window (see

equation (5.10)) the end-to-end packet delivery depends upon three times randomly

generated value (one per station plus the response from the proxy). In addition the

propagation delay introduced by the wireless channel has a negative effect on the

performance in comparison to a wired channel. The inner pictures of each figure

show a closer plot where the variation of such delay can be seen to fluctuate from

almost 0 ms up to 40 ms. This is an expected variation since the SIP server has to

wait for two packets before performing the joint packet. The high variation of the

inter-arrival time compromises the receiver where jitter buffers have to be increased

to achieve good quality of service. However, results clearly demonstrate that high

peaks appear occasionally and do not dominate the general performance.

The proposed design confirms that Network Coding is a feasible method even

for real-time services and unveils the need of a large jitter buffer to overcome the

invariance introduced by the combination of wireless channel access and network

coding itself.

5.5.2 Capacity of Network Coding on IEEE 802.11b

The comparison of capacity measurements for IEEE 802.11b wireless network with

Conventional Method (CM) and Network Coding (NC) method are presented in this

subsection. The theoretical results summarised in Table 5.2 asserts that conventional

method can handle up to 7 VoIP users for G.711 and 8 for GSM and Speex codecs.

Figure 5.11 (a) shows our experimental measurements obtained with regards to the

CM and NC method. The x axis represent the number of VoIP pair of users (recall
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Figure 5.10: Inter-Arrival Delay for Network Coding over IEEE 802.3, full duplex
channel (left column), and over IEEE 802.11b, half duplex channel, right column
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that a session involves two VoIP users) and y axis shows the end-to-end delay values.

Each value has its standard deviation plotted along giving a full understanding of the

overall performance of the phone call. The illustration also shows an ideal maximum

delay given by the quality of service requirements stated by the E-model [2] for VoIP

services. If this delay limit of 150 ms is taken as a guide line to determine whether

the number of VoIP sessions are feasible or not, then CM experimental results show

that G.711 GSM and Speex can achieve 6 VoIP pair of users. Comparing these results

with the theoretical bound in Table 5.2, it can be seen that G.711, GSM and Speex

are expected to achieve 7,8 and 8 VoIP calls respectively. This is understandable

because the theoretical bound assumes an ideal scenario where there is no collision at

all, i.e. a perfect channel. Nevertheless, as the number of pair user increases G.711

shows a higher delay than GSM and Speex as verified by the theoretical analysis.

The NC performance depicts capacity values of 9 for G.711 codec and 10 for GSM

and Speex. If these values are compared with the Table 5.2 where the theoretical

boundaries are 9, 11 and 11 for G.711, GSM and Speex respectively, it can be seen

that there is a close match between the theory and experimental measurements. In

fact, network coding experiments are arguably a closer match to the theory than

conventional method. We attribute this variation to the fact that network coding

requires to access the channel 25 % less than the CM and therefore the performance

of the model can achieve a better match with theoretical boundaries.

The flat characteristic of the overall performance of VoIP user pairs is a particular

feature of the Internet Protocol and in general of broadcast networks. Recall that IP

is designed for bursty load networks whereby users send a high load of information

in a short period of time. This can also be understood if the broadcast network is

compared to a water pipe, where the users traffic is the incoming water. The water

flowing through the pipe is the same for any user as long as we do not exceed the

maximum capacity of it, at which point the pipe is flooded. Figures in 5.11 are not

any different. Delay performance is fairly stable until it reaches the boundaries of the

link layer and delays increase significantly.

Illustrations from Figure 5.11 (b) to (d) are codec based comparisons, whereby

G.711, GSM and Speex performance is contrasted individually for both conventional

and network coding methods. Figure 5.11 (b) shows the comparison of the G.711

codec. In this graph, if strict delays below 150 ms are considered, it can be seen that

5 and 8 VoIP pair of users are the limits to CM and NC method respectively. This
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Figure 5.11: Capacity results for IEEE 802.11b, where CM refers to Conventional
Method and NC to Network Coding method [78].

proves that at least a 60 % of improvement over the conventional method is obtained

which is considered a remarkable achievement. For the case of GSM, see Figure 5.11

(c), the strict difference between both methods proves to be 100 % of improved, a

result that is also achieved for Speex codec as shown in Figure 5.11 (d).

5.5.3 Mean Opinion Score for Network Coding

As mentioned in Section 2.3.2 on Page 45 VoIP call quality is often rated using the

MOS method. Due to the limitations of this subjective method, the E-model is an

elegant alternative to predict speech quality performance. In this section, the delay

and packet loss results are utilised to calculate the R-value (see equation (2.4)) and

transformed to the MOS value using equation (2.3). It is important to note that there
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5.5 Network Coding on VoIP

are not packet losses in these experiments except last phone call of capacity where

very large delays produce packet losses higher than one percent.

Figure 5.12 (a) illustrates the quality response for both conventional and network

coding methods. In the conventional method the codecs in descending order of qual-

ity are: G.711, Speex and GSM. This is due to the fact that there are no lost packets

in the experiments for G.711 which being a lossless audio codec, will always achieve

the best voice quality under ideal circumstances. For lossy compression audio codecs

with the CM, it is remarkable that the performance of Speex, a CELP based audio

codec with a payload size five times smaller than G.711, still achieves a very good

performance. In this figure, rather than having a steady loss of quality, as would be

the case for an increasing loss of packets, quality is kept stable until a breaking point

(5th phone call) where the QoS has dropped to minimal values for a VoIP call and

further values are considered unsatisfactory. Results for NC method clearly show the

better performance in comparison to CM. The breaking point is at 8th phone call for

G.711 and 11th for Speex and GSM, standing out as the better choice of compressing

audio codecs for higher capacity, a feature not seen in the conventional method due

to the nature of IEEE 802.11b medium access time delay.

Figure 5.12 (b) to (d) depict the comparison of each codec individually. From

these illustrations, it can be seen that network coding is a better choice with any

of the audio codecs chosen. In Figure 5.12 (b), G.711’s difference between breaking

points can be considered 9 to 5 for NC and the CM respectively, where VoIP QoS

is improved 100%. The GSM performance, see Figure 5.12 (c), where the breaking

points are 5 to 11 shows a 125 % improvement which is also the case for Speex as

seen in Figure 5.12 (d). If experimental results are compared with the theoretical

response it can be seen that overall performance is slightly below expected capacity

measurements (see Table 5.2). This difference is believed to be the difference between

real experiments and ideal theoretical response where collision free links are expected.

This study clearly clarifies that network coding for VoIP services not only is fea-

sible but it improves the overall performance in throughput, delay and consequently

QoS.
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Figure 5.12: Mean Opinion Score (MOS) results for IEEE 802.11b, where CM refers
to Conventional Method and NC to Network Coding method [78].

5.6 Conclusion

Network coding introduces new opportunities to maximise the throughput perfor-

mance adding an extra cost of computation. Combining VoIP services and network

coding is an innovative idea to reduce the network load. In this chapter, an application

layer coding method is presented to handle unicast VoIP calls where packet multicas-

ting results in remarkable gains in throughput and delay over half duplex channels.

The method involves a queuing system and synchronisation packet designed to be

fully compliant with current VoIP services but satisfying QoS requirements at the

same time. Experimental results are based on an extensively used wireless network

standard, IEEE 802.11b, proving the trade-off between network coding and addi-
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tional delays as seen in equation (5.9). Furthermore, a maximum 100% improvement

of VoIP call throughput over conventional methods, as shown in Figure 5.11 (a), is

evidence that network coding enhances network performance.
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6.1 Conclusion and Future Work

6.1 Conclusion

N
EXT generation of VoIP communications will involve a mixture of current and

future technologies where customer satisfaction will play a key role. As more

technologies are developed the likelihood of using SIP proxy with a merged Media

Gateway that interact within different networks increases substantially. The nature of

this real-time service over heterogeneous networks depends on the performance that

the Media Gateway can deliver. Current intermediate nodes simply store and forward

the message to minimise end to end delay and packet loss probabilities. Although

initially this method reduces the size of the queue at the node it is not always the best

solution to guarantee specific QoS. Hence, in this thesis the SIP proxy with a merged

Media Gateway is considered as an active entity aware of customer satisfaction where

QoS performance is a priority of the network.

State of the art speech prediction algorithms do not consider heterogeneous net-

works and as a consequence of that each technology tackles QoS individually. In this

thesis, VoIP performance is studied for a variety of network topologies and structures,

based on real case scenarios implemented in hardware. The analysis of heterogeneous

networks is divided in two parts: firstly, a SIP proxy with a merged Media Gate-

way with awareness of global speech quality is investigated to activate FEC systems

that overcome with high packet losses; secondly, an new analytical model to predict

speech quality over cascaded networks is researched and compared with customers

quality perception. This model provides a fast assessment of speech quality over het-

erogeneous networks. In addition, a more efficient VoIP method based on network

coding schemes is developed without dependency on the physical layer. This inde-

pendence ensures that VoIP can take advantage of any broadcast network with minor

modifications, maximising the throughput of current and future broadcast networks.

In Chapter 3, a SIP proxy with a merged Media Gateway is implemented with

a new perspective of quality degradation in VoIP communications. In this chapter,

based on a real case scenarios where VoIP is bridged to different technologies, end-

to-end VoIP quality is monitored from the Media Gateway that connects both end

users. As it is common for Media Gateways, each users sits in a different link layer

with different audio codec characteristics which results in a performance that only

the intermediate node can assess since it has access to both network features. Con-

ventional methods have not considered a global VoIP performance but in this chapter
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the awareness of global QoS is considered to configure a FEC system avoiding single

packet losses. The results shown in Figure 3.10 on page 78 not only asserts that

FEC improves the performance but also proves that if the communication between

end users is considered or modelled as a single network, the quality estimation of

the session is clearly far from realistic values. The experiments from this chapter are

investigated using the MOS test which demands a large number of people and time.

Taking this into consideration a more efficient approach to predict VoIP performance

under heterogeneous networks is required.

In Chapter 4, a new analytical model is presented to predict speech quality per-

formance over n number of networks providing the network can be mathematically

modelled by FSMC. The proposed model expands the limitations shown by the cur-

rent E-model by two means: new audio codecs are measured and new formulae is

introduced to cope with n networks. On one hand, GSM and SPEEX, in MOD 4,

have been tested and analysed to obtained their Ie and Bpl parameters. On the

other hand, the new formulae includes: a new impairment factor to equalise high

packet losses and a definition of a new effective equipment impairment factor based

on ρ factor that uses the Ie value of the channel. Experimental results based on two

independent channels are carried out through the MOS test method and compared

to the proposed analytical model where each network is modelled using FSMC chan-

nel models with q = 0.7 and q = 0.1492. The difference between the MOS and the

analytical model showed low average error-margins between 1.68R and 8.35R.

If active GW’s have a better quality performance at the cost of higher throughput

then a more efficient approach with the same speech quality performance is desired.

To achieve this, Chapter 5 proposes an active proxy that encodes packets. The

new algorithm uses network coding schemes at the application layer to implement a

new approach to VoIP communications over a single Basic Service Set (BSS), where

unicast packets are encoded and multicasted to all users. The method requires a new

payload header compliant with current protocols to achieve users synchronisation.

The theoretical study developed for IEEE 802.11b predicates that there is a maximum

waiting time for network coding to be performed or other wise queue sizes tend to

increase infinitely. Considering this investigation, queue systems in the SIP proxy to

encode packets are implemented where VoIP call throughput is increased by 100% for

G.711 and 125% for GSM and Speex without undermining the quality of the phone

call, a remarkable improvement from conventional methods.

130



6.2 Conclusion and Future Work

In conclusion, this thesis shows evidences that active nodes in VoIP networks

enhance both throughput efficiency and speech quality.

6.2 Future Work

The emergence of new technologies with different features is leading to a heteroge-

neous network where the end-to-end QoS has to be considered in order to satisfy the

customer. Although the proposed algorithms in this thesis significantly facilitate the

incorporation of two networks to a VoIP quality prediction there is still potential to

further exploit these benefits. It should be noted however that the trade off between

quality and throughput performance is an ongoing issue. Consequently the following

points are viable future research ideas:

1. E-model optimisation for further audio codecs and technologies: The

methods proposed in this thesis could be expanded further to a number of

heterogeneous networks whereby cases such as wireless-wire-wireless communi-

cations are considered with wider audio codec range and more realistic wireless

channel models.

2. VoIP with network coding. The potential of active SIP proxy GW has

been demonstrated throughout this thesis to outperform conventional servers.

A key feature of the proposed methods is to apply network coding schemes

at the SIP proxy. This type of server can achieve up to 50% of throughput

increase without loosing speech quality at all. This outstanding achievement has

not been fully exploited because more complex coding algorithms and resource

allocation techniques have not yet been applied.
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Appendix A

A Calculation of parameters for the E-model with

default values

The Impairment factors R0 and IS are dependant on default values shown in Table

1, where abbreviations and units have been clarified. In this appendix, the formulae

to calculate these values is described following the specification in [2].

Table 1: Default values and permitted ranges for parameters of the Emodel [2]
Parameter Abbr. Unit Default Permitted range

Send Loudness Rating SLR dB +8 0...+ 18
Receive Loudness Rating RLR dB +2 −5...+ 14
Sidetone Masking Rating STMR dB 15 10...20
Listener Sidetone Rating LSTR dB 18 13...23
D-Value of Telephone, Send Side Ds - 3 −3... + 3
D-Value of Telephone, Receive Side Dr - 3 −3... + 3
Talker Echo Loudness Rating TELR dB 65 5...65
Weighted Echo Path Loss WEPL dB 110 5...110
Mean One WayDelay of the Echo Path T ms 0 0...500
Round-Trip Delay in a 4-wire Loop Tr ms 0 0...1000
Absolute Delay in echo-free Connection Ta ms 0 0...500
Number of Quantisation Distortion Units qdu - 1 1...14
Equipment Impairment Factor Ie - 0 0...40
Packet Loss Robustness Factor Bpl - 1 1...40
Random Packet-Loss Probability Ppl % 0 0...20
Burst Radio BurstR - 1 1...2
Circuit Noise referred to 0 dBr-point Nc dBm0p −70 −80...− 40
Noise Floor at the Receive Side Nfor dBm0p −64 -
Room Noise at the Send Side Ps dB(A) 35 35...85
Room Noise at the Receive Side Pr dB(A) 35 35...85
Advantage Factor A - 0 0...20
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A.I Basic Signal To Noise Ration, R0

R0 is defined as [2]:

R0 = 15− 1.5(SLR +N0) (A.I)

where N0 is the sum of noise sources Nc, Nos, Nor and Nfo , referred as all circuit noise

powers, sender side’s room noise, receiver side’s room noise and noise floor at the receiver

side, respectively [2]:

N0 = 10 log10

(

10
Nc
10 + 10

Nos
10 + 10

Nor
10 + 10

Nfo

10

)

(A.II)

Nos = Ps− SLR−Ds− 100 + 0.004(Ps −OLR−Ds− 14)2 (A.III)

Nos = RLR− 121 + Pre+ 0.008(Pre − 35)2 (A.IV)

where Pre is the effective room noise defined as [2]

Pre = Pr + 10 log10

(

1 + 10
10−LSTR

10

)

Nfo = Nfor +RLR (A.V)

A.II Simultaneous Impairment Factor, IS

IS is the sum of three impairment factors that happen simultaneously with the voice trans-

mission [2].

IS = Iolr + Ist+ Iq (A.VI)

where Iolr, Ist and Iq stand for the decrease in quality caused by too-low values of OLR,

non-optimum sidetone, and quantising distortion, respectively. They are computed with

the following equations [2]:

Iolr = 20





{

1 +

(

Xolr

8

)8
} 1

8

−
Xolr

8



 (A.VII)
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where

Xolr = OLR+ 0.2(64 +N0 −RLR)N (A.VIII)

Ist = 12

[

1 +

(

STRM0 − 13

6

)8
] 1

8

− 28

[

1 +

(

STRM0 + 1

19.4

)35
] 1

35

−13

[

1 +

(

STRM0 − 3

33

)13
] 1

13

+ 29 (A.IX)

where

STMR0 = −10 log10

(

10
−STMR

10 + e
−T
4 10

−TELR
10

)

(A.X)

Iq = 15 log10
(

1 + 10Y + 10Z
)

(A.XI)

where

Y =
R0− 100

15
+

46

8.4
−

G

9
(A.XII)

Z =
46

30
−

G

40
(A.XIII)

G = 1.07 + 0.258Q + 0.0602Q2 (A.XIV)

Q = 37 − 15 log10(qdu) (A.XV)

A.III Default parameter values of the Emodel

Using formulae from previous subsection and the default values in Table 1, the R-factor can

be reduced as follows where the calculation of equations are summarised in Table 2.

R = R0 − IS − ID − Ie−eff +A,using values from Table 1

R = 94.74 − 1.41 − ID − Ie−eff

R = 93.33 − ID − Ie−eff

(A.XVI)
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Table 2: Values of described equation in this appendix using default values from Table
1

EquationDefault Value Unit Reference

R0 94.74 dBm0 A.I
N0 −61.16 dBm0p A.II
Nos −75.74 dBm0p A.III
Nor −80.91 dBm0p A.IV
Pre 38.01 dBm0p A.V
Nfo −62.00 dBm0p A.V
IS 1.41 dBm0 A.VI
Iolr 0.44 dBm0 A.VII
Xolr 10.17 dBm0 A.VIII
Ist 0.00 dBm0 A.IX

STMR0 14.99 dBm0 A.X
Iq 0.97 dBm0 A.XI
Y −5.21 - A.XII
Z −0.79 - A.XIII
G 93.03 - A.XIV
Q 37.00 - A.XV

Appendix B

B Hardware Specification for the development of

an embedded SIP proxy Gateway

The embedded SIP proxy Gateway (GW) is based on NGW100, a development board

from AVR with an AT32AP7000 processor. The development platform has two Eth-

ernet ports, a single serial port and several input/output pins. These pins are utilised

in this development to connect the system to a GSM modem. The connection be-

tween the platform and the modem is carried out with a signalling system based on a

RS-232 port and an audio codec with an integrated headphone power amplifier com-

pliant with the Intel Audio Codec 97 specification, the CS4202. Figure 1 illustrates

the hardware development for the SIP proxy GW connecting the processor board to

self designed expansion board that manages the connection between the processor

and the GSM modem. The figure is divided in three blocks specifying the proces-

sor board, the designed expansion board and the GSM modem. In each block, the
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main components described in this paragraph are highlighted. The expansion board

is designed with Multisim software and the schematic of the entire development is

divided in two figures. Figure 2 depicts the main schematic for the CS4202 whereas

Figure 3 shows the RS232 connection for the modem control. The specifications of

each component of the Printed Circuit Board (PCB) can be found in Table 3.

Figure 1: SIP Proxy GW hardware platform.
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Table 3: Components of designed board

VALUE SHAPE N. REFDES
1.5k RES1300- 700X250 1 R16
1nF KERKO5X4R5 6 C22,C23,C24,C25,C39,C40
1uF ELKO5R5 2 C5,C26
1uF KERKO5X4R5 1 C20
1uF TANKO4˙5R5 1 C15
1uF ELKO5R5 1 C27
1uF TANKO4˙5R5 1 C14
2.2k RES1300- 700X250 1 R17
2.2uF TANKO4˙5R5 1 C19
6.8k RES1300- 700X250 4 R10,R11,R12,R13
10k RES1300- 700X250 2 R18,R19
10uF ELKO5R5 3 C18,C37,C38
22pF KERKO5X4R5 2 C1,C2
47 RES1300- 700X250 2 R1,R2
100 RES1300- 700X250 1 R25
100nF KERKO5X4R5 13 C6,C7,C8,C17,C21,C30,

C31,C32,C33,C34,C35,C36,C41
220k RES1300- 700X250 2 R21,R22
220uF ELKO5R5 2 C28,C29
470 RES1300- 700X250 2 R23,R24
AC97˙LINK HDR1X5 1 U10
ANALOG Pwr.Sup. HDR1X2 1 U8
CS4202b TSQFP50-P900X 1 U2
DIGITAL PwrSup. HDR1X2 1 U9
DSUB9F DB9FL 1 J1
HC-49/US 25MHz QUARZ˙HC49 1 X1
LM7805CT TO220 1 U5
MAX3232 DIP16300 1 U7
Stereo Socket 3.5mm Stereo socket 4 U1,U3,U4,U6
USART HDR1X5 1 U11

138



B

Figure 2: PCB Schematic Part 1, main board
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Figure 3: PCB Schematic Part 2, RS-232 serial Link
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