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Abstract 
 

Recently discovered in 2001, human metapneumovirus (HMPV) is a member of the 

Paramyxoviridae family and is a major cause of respiratory tract infections in infants 

and young children as well as the elderly and immunocomprimised.  

 

In the related pneumovirus RSV, the two major surface glycoproteins, F and G are 

protective antigens in animal models although F is highly conserved and G highly 

variable. In this study, the equivalent glycoproteins of HMPV, F and G, were cloned 

into vaccinia virus to allow expression of the individual proteins. These recombinants 

were utilised for the generation of both monoclonal and glycoprotein specific 

polyclonal antibodies. Immunofluorescence studies revealed that the anti-F protein 

specific antibodies were cross reactive between both sub-groups and that anti-G 

antibodies were to a lesser extent, also cross reactive. These antibodies were also 

shown to neutralise homologous virus. Whilst anti-F protein antibodies also 

neutralised a heterologous strain of HMPV, so did anti-G antibodies directed towards 

a sub-group B but not a sub-group A strain. Western blotting with F and G 

glycoprotein specific anti-sera was unsuccessful due to high levels of non-specific 

reactivity in the sera. 

  

The generation of monoclonal antibodies towards the G glycoprotein was attempted 

by means of a novel screening system using inactivated recombinant vaccinia virus. 

However, due to the non-specific reactivity of the hybridomas with vaccinia virus, 

only one anti-G antibody was isolated along with two anti-F MAbs and one antibody 

directed towards an internal HMPV protein. Further characterisation of this antibody, 

by western blotting, indicated it was directed towards the phosphoprotein. 

 

The third surface glycoprotein of HMPV, SH, is larger than the equivalent in RSV 

and unlike the latter, may also play a role in protective immunity. Attempts to clone 

the HMPV SH gene identified several mutations in the sequence resulting in 

truncation of all or the majority of the lumenal domain of the proteins arising on 

adaption to replication in cell culture. SH glycoprotein specific antibodies generated 

against the recombinant vaccinia virus expressing the mutated SH protein of the B1 
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strain of virus were cross reactive with an A2 strain in immunofluorescence studies 

and also neutralised wild type HMPV. 

 

The tendency of the virus to mutate on adaptation to replication in cell culture 

frustrated attempts to establish an animal model. In mice, whilst low passage virus, 

with a mixed population of wild type and mutant virus, resulted in a productive 

infection, high passage virus, with no functional SH glycoprotein produced an 

abortive infection with evidence of genome replication and transcription but no 

release of infectious virus. However, in challenge studies with mutant viruses mice 

immunised with HMPV were protected when challenged with the homologous strain, 

however, immunisation of mice with recombinant vaccinia virus expressing the G 

glycoprotein showed no signs of protection against challenge suggesting that in this 

animal model, the G glycoprotein is not a protective antigen. 
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Chapter 1: Introduction  
 

1.1 Discovery of human metapneumovirus 

 In 2001 in the Netherlands, van den Hoogen et al reported the isolation of a new 

respiratory virus from nasopharyngeal secretions of 28 children, over a 20 year 

period, suffering from respiratory tract infections (RTIs). All but one of these patients 

were under the age of 5 years and 13 children were under 12 months old. These 

children presented with a range of symptoms similar to those caused by respiratory 

syncytial virus (HRSV) including bronchiolitis and pneumonia. 

 

Seroprevalence studies on a range of human sera, using indirect immunofluorescence 

(IF), indicated that 25% of children aged between 6 and 12 months had antibodies to 

the virus and revealed that by the age of 5 years, nearly all children had been exposed 

to human metapneumovirus (HMPV). Seventy-two serum samples taken from 

individuals in 1958 were all positive by IF, suggesting that the virus had been 

circulating in the human population for at least 40 years. 

 

Using negative contrast electron microscopy, the group demonstrated the presence of 

paramyxovirus-like particles between 150 and 600nm in diameter with external spikes 

13 to 17nm in length. The unidentified virus replicated in a slow, trypsin dependent 

manner in tertiary monkey kidney cells (tMK), did not haemagglutinate erythrocytes 

and could be inactivated with chloroform. 

 

Ferrets and guinea pigs inoculated intranasally with viral isolates seroconverted, 

allowing their sera to be used for further IF studies. Whilst the tMK cell cultures 

infected with viral isolates tested positive with this sera, cells infected with human 

parainfluenza viruses (HPIV) 1 to 4, HRSV and influenza viruses A and B did not. 

 

Reverse-transcription polymerase chain reaction (RT-PCR) performed on 15 of the 

isolates using primers specific for paramyxoviruses HPIV 1-4, mumps virus, measles 

virus, HRSV, simian virus type 5, Sendai virus and Newcastle disease virus (NDV) 

did not react with the isolates, thus suggesting the isolates were not closely related to 

these viruses. 
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Using random amplification PCR (RAP-PCR), 20 fragments specific to the isolates 

were sequenced. Ten of these fragments were matched in a BLAST search to avian 

metapneumovirus (AMPV) N, M, F and L gene sequences. Further sequencing using 

primers designed against the fragments revealed an absence of the 3’ non structural 

genes and positioned the M gene adjacent to the F gene in the open reading frame. 

Analysis of the amino-acid sequences of N, M, F and L genes showed far greater 

homology with AMPV in comparison to HRSV. Phylogenetic analysis suggested the 

new virus was most closely related to AMPV C than the other three serotypes of 

AMPV and the possibility of two sub-groups of HMPV due to the genetic variation. 

 

Since there was an apparent relationship between HMPV and AMPV, van den 

Hoogen et al investigated infection in birds (turkeys and chickens) and monkeys 

(cynomolgus macaques) and found signs of clinical disease and virus replication in 

the monkeys but not the birds suggesting this virus is a primate pathogen that 

produces a respiratory disease (van den Hoogen et al., 2001). 

 

On this basis, the group tentatively suggested the name human metapneumovirus, 

which was subsequently confirmed by the International Committee for the Taxonomy 

of Viruses (Fauquet et al., 2005). 

 

 

1.2 Classification of human metapneumovirus 

After analysis of the sequence data, HMPV has been classified in the order of 

Mononegavirales within the family of Paramyxoviridae. This is divided into two sub-

families; Paramyxovirinae and Pneumovirinae of which HMPV belongs within the 

Metapneumovirus genus (Figure 1.1) (Fauquet et al., 2005). 

 



  3   

 

 

 
 
Figure 1.1 Taxonomy of Mononegavirales family (Fauquet et al., 2005) 

 

 

1.3 The genomes of the Paramyxoviridae 

The genomes of the Paramyxoviridae can contain six to ten genes, five of which are 

structurally and functionally similar in all viruses. These are the nucleocapsid protein 

(N), a phosphoprotein (P), the RNA dependent RNA polymerase (L), the matrix 

protein (M) and the F glycoprotein (F). The N proteins association with the L and P 

proteins, which together form the ribonucleoprotein (RNP), is responsible for 

initiating transcription of the RNA genome to produce mRNAs. Situated between the 

RNP and the viral envelope is the M protein which is thought to be important in virion 

architecture and is released from the core during viral entry , (Lamb and Parks, 2007; 

van den Hoogen et al., 2002; van den Hoogen et al., 2001). All viruses possess two 

glycosylated protein spikes on the surface of the membrane involved in mediating 

viral attachment and fusion of viral and host cell membranes (Lamb and Parks, 2007).  
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1.4 The genomes of the human pneumoviruses 

Due to the recent isolation of HMPV in 2001, almost all that is known about the 

proteome and mechanisms of replication is by analogy with human respiratory 

syncytial virus (HRSV). Therefore I shall review the mechanism of infection in 

HRSV alluding where appropriate to information relating to HMPV. 

 

Both HRSV and HMPV have a single stranded, non-segmented, negative sense RNA 

genome which is tightly encapsidated by the nucleocapsid protein. Genomic RNA 

serves two purposes, the first as a template for the production of mRNA transcripts 

and the second, as a template for the synthesis of the antigenome; necessary for 

replication (Collins and Crowe, 2007). 

 

At the 3’ end of the HRSV genome, a 44-nucleotide leader region (41 nucleotides in 

HMPV and AMPV) is present containing promoters responsible for directing 

synthesis of the mRNAs and antigenome. A 155-nucleotide trailer region (179 

nucleotides in HMPV) located at the 5’ end contains the antigenome promoter, both 

of which are essential for replication (Melero, 2007; Mink et al., 1991; van den 

Hoogen et al., 2002). 

 

The negative sense RNA encodes ten genes, which in turn translate into eleven 

structural and non-structural proteins (Collins and Crowe, 2007) (see Figure 1.2). 

Each gene is separated by a small variable intergenic region, with the exception of the 

M2 and L genes, which overlap by 68 nucleotides. Apart from the M2 gene, which 

contains two overlapping open reading frames M2-1 and M2-2, each gene contains a 

single major open reading framing that is transcribed to produce a distinctive protein 

(Melero, 2007). 

 

The genome of HMPV lacks the non-structural proteins NS-1 and NS-2 of HRSV 

(Collins and Crowe, 2007) and as a result, encodes eight genes which translate into 

nine proteins. Consequently the genome of HMPV is slightly smaller measuring 

13,335bp (CAN97-83, Genbank accession number AY297749) compared to 15,222bp 

(HRSV A2, Genbank accession number M74568) in HRSV. Furthermore, the gene 
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order differs slightly with the F-M2 gene pair of HRSV located closer to the 5’ end of 

the genome (Figure 1.2). 

 

 
Figure 1.2 Gene order of HMPV and HRSV 

 

 

 

1.5 The virion structure of the human pneumoviruses 

The HRSV virions have a pleomorphic nature visualised as irregular spherical 

particles ranging in diameter from 150 to 300nm and long filamentous forms, 60 to 

100nm and up to 10µm in length (Bachi and Howe, 1973; Collins et al., 2001). The 

virion of HMPV is similar ranging in diameter from 150 – 350 nm and is also present 

in both pleomorphic and filamentous forms (Peret et al., 2002).  

 

Morphologically, the virion of both HRSV and HMPV consist of a helical 

nucleocapsid surrounded by a lipid envelope, which is derived from the plasma 

membrane of the host cell (Lamb and Kolakofsky, 2001). Embedded within this 

membrane are three transmembrane surface glycoproteins F, G and SH. These 

proteins are visualised as short ‘spikes’ that extend roughly 15nm from the particles 

and mediate viral attachment and entry into host cells (Collins and Crowe, 2007; Peret 

et al., 2002). 

 

Concealed within the lipid envelope is the viral genomic RNA tightly encapsidated by 

the N protein. This nucleocapsid is additionally associated with components of the 

viral RNA-dependent RNA polymerase (L, P and M2-1 proteins). The matrix protein 

is situated between the nucleocapsid and the outer envelope and is believed to form a 

layer on the internal surface of the membrane (Collins and Crowe, 2007). 
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1.6 Virus replication 

1.6.1 Virus attachment and cell entry 

Infection is initiated upon binding of the virus’ attachment protein to the cell surface 

receptor, which in case of HRSV is thought to be glycosaminoglycans (GAGs), 

namely heparin sulphate and chondroitin sulphate B (Hallak et al., 2000a). However, 

it is not clear whether this is a characteristic of wild virus or is limited to cell culture 

adapted strains (Hallak et al., 2007). GAGs are unbranched polysaccharides 

consisting of repeating disaccharide sub-units located on the surface of the cell 

membrane in the extracellular matrix (Melero, 2007). Identification of two clusters of 

positively charged amino acids on the G glycoprotein of HMPV are thought to 

represent heparin binding domains. In addition, studies demonstrated soluble GAGs 

were able to inhibit HMPV infection indicating an important role for the G protein 

and cellular GAGs during HMPV infection (Thammawat et al., 2008).   

 

Upon attachment of the virus to the cell surface receptor, fusion of the viral and cell 

plasma membrane ensues at neutral pH, mediated by the F glycoprotein (Smith et al., 

2009). However, recent studies have indicated that some strains of HMPV may utilise 

the endosome pathway for entry into the host cell. The low-pH environment 

encountered in the endosomes may trigger the F proteins conformational change that 

results in membrane fusion and entry (Smith et al., 2009). Schowalter et al (2009) 

demonstrated that pre-treatment of cells with chlorpromazine, an inhibitor of clathrin-

mediated endocytosis, conferred protection against the virus. In addition, blocking the 

final step in the vesicle formation of clathrin mediated endocytosis was highly 

effective at blocking HMPV infection by up to 90%. Furthermore, studies by Herfst et 

al (2008b) and Schowalter et al (2006) have shown certain strains of HMPV to favour 

fusion at low pH suggesting a role for endosomal entry. 

 

1.6.2 Transcription 

As a result of membrane fusion, the viral nucleocapsid is released into the cytoplasm 

of the host cell, where the entire process of RNA synthesis occurs. Early in virus 

infection, the viral RNA polymerase is restricted to the production of mRNA 

transcripts allowing the accumulation of viral proteins (Lamb and Kolakofsky, 2001).  
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Studies with minireplicon systems confirmed that the polymerase does not enter the 

genome at internal genes but instead transcribes in a sequential start stop manner, 

responding to gene start and gene end signals that flank each gene. This is common to 

other Mononegavirales (Dickens et al., 1984; Kuo et al., 1997; Lamb and Kolakofsky, 

2001).   

 

The gene end (GE) signal, located at the 3’ end of the upstream gene is a semi-

conserved 12-13 nucleotide sequence, responsible for the polyadenylation and 

termination of the mRNA. This motif is the same as that of HMPV  

(AGTTAnnnAAAAA) (Biacchesi et al., 2003; Kuo et al., 1997). The gene start (GS) 

signal positioned at the 5’ end of the downstream gene, is a highly conserved 9 to 10 

nucleotides (GGGGCAAAT[A/T]) that directs the addition of a guanylated and 

methylated cap to the nascent mRNA and initiates transcription (Melero, 2007). The 

first 10 of the 16 nucleotides that make up the GS signal of HMPV 

(GGGACAAnTnnnAATG) share some resemblance to the gene start motif of HRSV. 

However, instead of the first nucleotide representing the mRNA start site, as seen in 

the GS sequence of HRSV (Kuo et al., 1997), an unusual feature of the related GS 

motif of HMPV is the presence of an ATG start codon at positions 14-16, which 

initiates transcription (Biacchesi et al., 2003). Separating each gene lies a non-

transcribed transgenic region varying in length from 1 to 58 nucleotides (up to 190 

nucleotides for HMPV). The gene-end of an upstream gene, transgenic region and 

gene-start region of a downstream gene are collectively referred to as the gene 

junction. 

 

The viral RNA polymerase (RNAP) enters the genome at the single promoter located 

at the 3’ end and commences transcription at the gene start sequence of the primary 

gene. This is the NS1 gene for HRSV and the N gene for HMPV. As it travels 

downstream, newly synthesised individual mRNAs are released by termination of the 

polymerase at the gene end signals. The addition of a methylated 5’ guanine cap to 

each mRNA transcript assures its translation by the cell ribosomes (Melero, 2007). 

Upon termination of transcription at the gene end signal, the RNAP appears to remain 

attached to the template as it migrates across the transgenic region before reinitiating 

transcription of the downstream adjacent gene. However, the polymerase is inclined to 

dissociate from the template before reinitiation, leading to a gradient of expression, 
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with the genes closest to the 3’ end transcribed more abundantly than those at the 5’ 

end (Collins and Wertz, 1983). Gene expression is also controlled by the variable 

efficiency of transcription termination at the gene junctions resulting in read-through 

transcription creating polycistronic mRNAs. These read through messages contain 

two or more genes together with their intergenic sequences (Dickens et al., 1984) and 

can account for up to 10% of total mRNA. Since only the first gene of a polycistronic 

transcript is translated, it reduces the expression of the protein encoded by the next 

downstream gene (Collins and Crowe, 2007; Melero, 2007).  

 

1.6.3 Replication 

The accumulation of core proteins, namely the M2-2 protein, modulates the switch 

from transcription to replication (Bermingham and Collins, 1999). The availability of 

the N protein, however, does not alter the balance between mRNA or antigenome 

synthesis as is speculated for other members of the Mononegavirales (Fearns et al., 

1997). In HRSV, despite the extensive overlapping of the transcription and replication 

promoters at the 3’ end, they are not identical in sequence, suggesting that the 

polymerase complex may differ dependent on the commitment to transcription or 

replication (Fearns et al., 2002). Initiation of replication instigates the polymerase to 

disregard the gene junction signals as it travels from the 3’ to 5’ end and commit to 

the production of a full length antigenome which is complementary to the negative 

sense genome. The antigenome tightly assembles with the N protein (Kuo et al., 

1997) and its sole function is to act as a template to direct synthesis of genomic RNA, 

which is initiated from the antigenome promoter. The generation of negative strand 

genomes can subsequently be utilised as templates for mRNA synthesis, for the 

production of antigenomes or to be packaged into progeny virions (Lamb and Parks, 

2007). 

 

1.6.4 Virion assembly and release 

Viral components assemble on the apical surface and pinch off by the budding process 

to release virus particles. Like other Paramyxoviridae, HRSV is thought to exploit 

cytoskeletal elements in its replicative cycle. Evidence suggests that both actin and 

microtubules play an important role in HRSV assembly and release (Kallewaard et 

al., 2005). Viral components are transported to the plasma membrane by the exocytic 

pathway, mediated by the matrix protein. Upon assembly, the virions bud out 
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acquiring the host cell derived lipid membrane and pinch off releasing the newly 

formed progeny (Lamb and Parks, 2007). 

 

 

1.7 Genetic variation of HMPV 

Similar to that of HRSV, phylogenetic analysis has revealed HMPV to be divided into 

two major genetic sub-groups, A and B, which can further be divided into lineages 1 

and 2 (Bastien et al., 2003; Biacchesi et al., 2003; Galiano et al., 2006; Peret et al., 

2002; Stockton et al., 2002; van den Hoogen et al., 2001), based on the extensive 

variability of the G glycoprotein (Endo et al., 2008; Ishiguro et al., 2004; Padhi and 

Verghese, 2008; Peret et al., 2004; van den Hoogen et al., 2004). Each genetic lineage 

is thought to co-circulate within the population with no geographic clustering where 

epidemics occur mainly in the winter and early spring (Boivin et al., 2004; Ludewick 

et al., 2005; van den Hoogen et al., 2004; Vicente et al., 2006). Within each epidemic 

the prevalent strain differs and the lack of co-circulation of all four lineages in the 

same year suggests a mechanism for evading pre-existing immunity (Agapov et al., 

2006; Boivin et al., 2004; Ingram et al., 2006; Ludewick et al., 2005). 

 

Sequence homology between the two sub-groups of HMPV (A and B), across the 

entire proteome, is 80% with a higher intra-sub-group sequence homology of 92%. 

This is attributable to the most conserved proteins, including the nucleocapsid protein 

and the F glycoprotein which share 85-94% amino acid homology between sub-

groups. Extensive variation in the SH and G glycoproteins results in 59% and 37% 

homology respectively (Biacchesi et al., 2003). 

 

Extensive genetic variation at both nucleotide and amino acid level in the G 

glycoprotein as a consequence of nucleotide substitutions, insertions and the use of 

alternative stop codons results in a high degree of variability in the extracellular 

domain. This is postulated to be as a consequence of immunological pressure and is a 

strong indicator of positive selection (Bastien et al., 2004; Ishiguro et al., 2004; 

Ludewick et al., 2005; Padhi and Verghese, 2008; Peret et al., 2004; van den Hoogen 

et al., 2004). In contrast, the lack of variation in the conserved F glycoprotein may 

reflect both structural and functional constraints and account for the extensive cross-
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lineage neutralisation of antibodies to HMPV (Skiadopoulos et al., 2004; van den 

Hoogen et al., 2004).  

 

 

1.8 Viral proteins  

1.8.1 The non-structural proteins of HRSV 

The presence of two non-structural proteins, NS1 and NS2, are unique to HRSV and 

are located at the 3’ end of the genome. Location and the concept of transcription 

gradient would suggest they are the most abundantly transcribed proteins in the 

genome yet they are only detected in trace amounts (Collins and Crowe, 2007).  

One of their roles is to inhibit the induction of interferon α / β by inhibiting 

phosphorylation and nuclear translocation of the interferon regulatory factor 3, 

produced in response to viral infection (Collins and Crowe, 2007).  

 

1.8.2 The nucleocapsid proteins 

1.8.2.1 The nucleocapsid protein (N) 

The N protein of HRSV tightly encapsidates the viral RNA genome and antigenome 

to form a helical structure and together with the P and L protein form the highly 

stable, RNase resistant RNP complex. The association of the N protein with the viral 

RNA is vital for recognition by the viral RNA dependent RNA polymerase, essential 

for both transcription and replication (Melero, 2007). 

 

It was originally proposed that the cytoplasmic concentration of the N protein 

available for encapsidation might direct the switch from transcription to replication as 

suggested in other Mononegavirales (Lamb and Parks, 2007). Contradictory evidence 

indicates that whilst the increased levels of N protein amplified RNA replication in 

the mini-genome system, the balance between transcription and RNA replication 

remained invariable (Fearns et al., 1997). This suggests that the N protein may 

influence levels of replication but does not modulate the switch between mRNA and 

antigenome synthesis, a proposed function of the M2-2 protein (Bermingham and 

Collins, 1999). 
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The N terminal end of the N protein is relatively conserved among members of the 

Mononegaviradae. Barr et al (1991) identified three regions of high homology in 

sequence and secondary structure. Across these regions HMPV shares 99.3% 

sequence homology with AMPV-C and 78% with HRSV (Li et al., 1996; van den 

Hoogen et al., 2002). These regions are thought to be involved in the interaction with 

genomic RNA and to modulate self assembly. The variable C terminal end of the 

protein is required for interaction with the phosphoprotein (Karlin et al., 2003) and the 

matrix protein during viral assembly (Barr et al., 1991).  

 

The N protein of HMPV is 394 amino acids in length and has a molecular mass of 

43.5KDa similar to that of other pneumoviruses but smaller than that of other 

members of the Paramyxoviridae family. Within each sub-group of HMPV, the N 

protein shares 93-100% nucleotide sequence homology, whilst there is 85-86% 

nucleotide identity between sub-groups (Barr et al., 1991; Bastien et al., 2003; van 

den Hoogen et al., 2002). The HMPV N protein shares only 42-44% amino acid 

identity with that of HRSV N and 69-89% with the closely related AMPV-C where 

both polyclonal and monoclonal antibodies to the conserved region of AMPV N cross 

react with HMPV N protein (Alvarez et al., 2004b). 

 

1.8.2.2 The phosphoprotein (P) 

The 241 amino acid phosphoprotein of HRSV is smaller than its Paramyxovirinae 

counterparts with which it shares no sequence similarity (Collins et al., 2001). It is 

extensively phosphorylated, primarily at serine residue 232. Minor phosphorylation 

sites involve serine residues 116, 117, 119 and 237 (Barik et al., 1995).  

 

The role of phosphorylation remains elusive. Non-phosphorylated P protein expressed 

from bacteria could not support full-length transcription suggesting that 

phosphorylation has a role in stabilising the polymerase complex (Dupuy et al., 1999). 

However, the removal of phosphorylation at the identified residues above had a 

minimal effect on virus replication and has been postulated to play a role in virus 

budding as apposed to viral replication (Lu et al., 2002).  

 

The paramyxovirus P protein is an essential part of the RNP complex and the C 

terminus provides the bridge that links the L protein with the nucleoprotein 
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encapsidated RNA during transcription. During replication, the N terminal domain of 

P is believed to prevent N protein aggregation and therefore ensures efficient virion 

assembly (Lamb and Parks, 2007).  

 

The phosphoprotein of HMPV is composed of 294 amino acids with a molecular mass 

of 32.5KDa comparable with other pneumoviruses (Bastien et al., 2003; Biacchesi et 

al., 2003; van den Hoogen et al., 2002). With regard to the P protein, HMPV 

members of the same sub-group share 91-100% nucleotide sequence identity, 

compared to 78-79% identity between the sub-groups, with the majority of amino acid 

substitutions observed in the amino-proximal terminal of the protein (Bastien et al., 

2003; Ishiguro et al., 2004).  

 

Similar to that of AMPV-C and HRSV, the P protein of HMPV lacks any cysteine 

residues. A high number of glutamate residues in the C terminal is a common feature 

shared with all pneumoviruses with 100% similarity to AMPV-C and 81% to HRSV. 

It has been postulated that this common region may be involved in RNA synthesis or 

maintaining the structural integrity of the nucleocapsid complex (Bastien et al., 2003; 

Ling et al., 1995; van den Hoogen et al., 2002). 

 

1.8.2.3 M2 gene 

Uniquely present in all members of the Pneumovirus subfamily, the HMPV M2 gene 

encodes two overlapping ORFs, which are expressed as two separate proteins. ORF 1 

encodes the M2-1 protein measuring 187 amino acids in length (184 amino acids for 

HRSV) and the second ORF, M2-2, encodes a protein of 71 amino acids (83-90 

amino acids for HRSV) both of which are involved in RNA synthesis (Bermingham 

and Collins, 1999; Buchholz et al., 2005; Collins and Crowe, 2007; van den Hoogen 

et al., 2002). 

 

1.8.2.3.1 M2-1 

The M2-1 protein of HRSV is an internal protein that co-localises with the N and P 

proteins to form cytoplasmic inclusion bodies (Collins and Crowe, 2007). It appears 

to play an important role in the process of viral transcription of mRNAs. It displays 

processivity and anti-termination activities, essential functions in the production of 
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full length mRNA transcripts. In the absence of M2-1, the viral polymerase terminates 

prematurely, thus processivity of M2-1 prevents the polymerase from stalling during 

transcription, resulting in synthesis of full length mRNAs and increasing the 

concentration of polymerase available to genes downstream (Collins et al., 1996). The 

anti-termination function inhibits the polymerase from terminating at the gene end 

signals allowing read-through of the intergenic regions and resulting in the production 

of polycistronic mRNAs (Collins et al., 1996; Fearns and Collins, 1999). Despite the 

synthesis of read-through transcripts, the M2-1 protein appears to play no essential 

role in RNA replication as the production of antigenomes is unaffected by the 

presence or absence of the M2-1 protein (Fearns and Collins, 1999). 

 

The N terminus of M2-1 is the most conserved region and there are three cysteine 

residues within the first 30 amino acids. This is a common feature found in zinc 

binding proteins and the Cys/His motif found in the M2-1 of all pneumoviruses 

appears to have functional importance (Buchholz et al., 2005; Collins and Crowe, 

2007; van den Hoogen et al., 2002).  

 

The HMPV M2-1 protein reveals 84% sequence identity with that of AMPV-C and 

35-36% with HRSV (van den Hoogen et al., 2002). Studies involving the production 

of recombinant HMPV where the M2-1 ORF had been silenced indicated that the M2-

1 protein is not essential for virus replication in vitro, unlike the M2-1 protein of 

HRSV, but is required for replication and the production of virus neutralising 

antibodies in hamsters (Buchholz et al., 2005) suggesting M2-1 is essential for 

replication in vivo.  

 

1.8.2.3.2 M2-2 

The second ORF, M2-2 overlaps M2-1 in a conserved location and is thought to play 

an important role in genome synthesis by mediating the switchover from transcription 

to replication. Ablation of HRSV M2-2 expression resulted in reduction of both 

genomic and anti-genomic RNA and an accumulation in transcription products 

(Bermingham and Collins, 1999). The accumulation of mRNAs during transcription 

results in inhibition of mRNA synthesis and renders the nucleocapsid inactive before 

the formation of mature virions (Collins et al., 1996).  
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M2-2 is an accessory protein since mutants lacking M2-2 are viable in cell culture 

(Bermingham and Collins, 1999). However, silenced M2-2 virus is highly attenuated 

in vivo yet immunogenic and protective suggesting M2-2 negative mutants may be 

good candidates for a potential live attenuated vaccine (Teng et al., 2000). 

 

Similar, studies involving the ablation of the M2-2 ORF of HMPV discovered 

uncompromised growth in cell culture involving an increase in transcription although 

a reduction in RNA replication was not evident (Buchholz et al., 2005; Schickli et al., 

2008). However, contradictory evidence suggests that the M2-2 protein is inhibitory 

of both transcription and replication in the mini-genome system (Kitagawa et al., 

2009). Unexpectedly, expression of the M2-2 ORF of HMPV was completely 

unaffected when M2-1 was silenced, in contrast with HRSV, where the expression of 

M2-2 is dependable on the stop-restart translation of the cellular ribosomes exiting the 

M2-1 ORF (Buchholz et al., 2005). Concluding, the function of both HMPV M2-1 

and M2-2 may be quite different to that of the HRSV counterparts.  

 

1.8.2.4 Large polymerase protein (L) 

The L protein of the pneumoviruses is thought to be the major component of the viral 

RNA-dependent RNA polymerase complex involved in the synthesis of all viral 

RNA. Situated at the 5’ end of the genome, the L protein is usually found in low 

abundance due to the effect of the transcription gradient (Collins and Crowe, 2007). 

Enzymatic activities such as methylation, capping and polyadenylation are all 

attributed to the L protein. Six conserved domains identified in other negative sense 

RNA viruses (Poch et al., 1989) have been identified in the HMPV L protein and are 

thought to include four core polymerase motifs which are vital in polymerase 

function. 

 

The HMPV L gene encodes a 2005 amino acid protein and has 64% sequence identity 

with the L gene of AMPV-A and 44% with HRSV. HMPV L proteins within virus 

strains of the same HMPV sub-group have a nucleotide sequence homology of 95% 

compared with 84% homology between sub-groups (Biacchesi et al., 2003; van den 

Hoogen et al., 2002). 
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1.8.2.5 Matrix protein (M) 

The M protein of HRSV is non-glycosylated and comprises of 256 amino acids which 

is smaller than matrix proteins of other paramyxoviruses with no sequence homology 

(Collins and Crowe, 2007). 

 

The non-glycosylated M protein of HRSV localises at the plasma membrane and is 

considered to have a central role in the organisation of viral morphogenesis via 

interaction with the cytoplasmic tails of the membrane proteins, the lipid bilayer and 

the nucleocapsid (Collins and Crowe, 2007). The basic nature of the protein allows 

interactions with acidic residues in the N protein facilitating assembly and inhibiting 

transcription late in the virus life cycle prior to encapsidation (Ghildyal et al., 2002). 

In addition, the presence of the M protein in the host cell nucleus is thought to inhibit 

host cell transcription by the down regulation of some host cell genes, facilitating 

viral transcription early in infection (Ghildyal et al., 2003). 

 

The HMPV M gene has been found to have a molecular mass of 27.6KDa and 

encodes a 254 amino acid protein that closely resembles the M proteins of other 

pneumoviruses but only shares 37-38% sequence homology with HRSV (Bastien et 

al., 2003; van den Hoogen et al., 2002). It has 76-87% homology with the M proteins 

from AMPV and the ORF is exactly the same size as the other Metapneumoviruses. 

Within the sub-groups of HMPV, the M gene has 94-100% sequence identity and 

between the two sub-groups 83-85% homology (Bastien et al., 2003; Biacchesi et al., 

2003; Ishiguro et al., 2004; van den Hoogen et al., 2002). The majority of points of 

variation are conserved and distributed throughout the entire protein and a short 

region at the N terminal end is conserved between all pneumoviruses. 

Two small secondary ORFs in the HMPV M gene at positions 2281 and 2893 have 

been observed representing 54 and 33 amino acid in length respectively but no start or 

stop codons have been identified and they share no significant homology with any 

other secondary ORFs of other pneumoviruses (van den Hoogen et al., 2002). 

 

1.8.3 The surface glycoproteins 

The HMPV and HRSV envelope proteins are F, G and SH glycoproteins which are 

found embedded within the plasma membrane and expressed on the surface of the 

virion. 
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1.8.3.1 Attachment (G) protein  

1.8.3.1.1 Structure and processing 

The attachment protein of the pneumoviruses expresses no resemblance to the 

Paramyxoviridae attachment proteins H (hemagglutinin) and HN (hemagglutinin-

neuraminidase) (Wertz et al., 1985). It is an anchored type II transmembrane protein 

that is thought to mediate attachment to the host cell membrane. In HRSV, the protein 

exists as two forms: a transmembrane protein (Gm) which is incorporated into virions 

and as a soluble protein (Gs) which is secreted by infected cells (Hendricks et al., 

1987; Hendricks et al., 1988).  

 

The 289-299 amino acid HRSV Gm polypeptide is positioned with the N terminus 

orientated in the cytoplasm and the C terminal exposed extracellularly. A hydrophobic 

domain in the N terminus (amino acids 38-66) operates as a non-cleaved signal and 

transmembrane anchor domain which ensures transportation to the ER and subsequent 

translocation across the membrane (Wertz et al., 1985). 

 

The protein has an estimated molecular weight of 32KDa, however, due to extensive 

modification with both N- and O-linked glycosylation, the mature protein is converted 

to 80-90KDa when visualised by polyacrylamide gel electrophoresis. Intermediate 

species of approximately 45KDa, with the attachment of four high mannose N-linked 

sugars, have been identified prior to the addition of O-linked sugars in the Golgi 

compartment (Collins and Mottet, 1992; Wertz et al., 1989). The majority of 

carbohydrates are attached via O-glycosidic bonds to serine and threonine residues 

which make up 30.6% of the total amino acid composition (Wertz et al., 1985). 

Expression of HRSV G in cells defected in protein O glycosylation are only present as 

45KDa intermediates (Wertz et al., 1989). Expression of unglycosylated G protein has 

been detected on the cell surface but in reduced amounts and the presence of 

carbohydrate side chains appears to be essential for viral infection. The extent of 

glycosylation is dependent of the host cell and infection of different cell lines may 

lead to a change in glycosylation profile and a consequent difference in antigenicity of 

the protein (Garcia-Beato et al., 1996; Melero et al., 1997). 
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The C terminal ectodomain mainly consists of two highly variable mucin like 

domains that contain a high content of serine, threonine and proline residues and as a 

result are extensively glycosylated (Collins and Crowe, 2007). This area is believed to 

have an extended, unfolded secondary structure (Langedijk et al., 1996; Melero et al., 

1997). Interrupting these two structures is a conserved central hydrophobic region 

(amino acids 164-176) which is devoid of carbohydrate binding sites. Overlapping the 

conserved domain are four cysteines (residues 173, 176, 182 and 186) which are 

conserved in all HRSV strains. Disulphide bridges occur between Cys 173 and 186 

and between Cys 176 and 182 to form a cysteine noose motif (Johnson et al., 1987b).  

 

Gm assembles into homoligomers that are proposed to be trimers or tetramers 

(Escribano-Romero et al., 2004). Within each monomer lies an N terminus 

comprising a 37 amino acid cytoplasmic region followed by a transmembrane region 

spanning residues 38 to 66. The first hypervariable region preceding the cysteine 

cluster is thought to assume a rod-like structure representing the stalk of the protein 

due to the tightly spaced O-linked sugars. This is followed by the cysteine noose, at 

the surface of which lies a hydrophobic pocket thought to be involved in the receptor 

binding (Langedijk et al., 1996; Melero et al., 1997). The second mucin-like region 

runs anti parallel to the first, back towards to membrane and there has been suggestion 

the two halves of the C terminal domain interacting to produce an extra fold (Melero 

et al., 1997). 

 

The secreted form (Gs) of the HRSV G protein lacks the first 48 amino acids of Gm 

as a consequence of initiation of translation at a second in-frame start codon located 

within the transmembrane domain. The primary translation product enters the 

exocytic pathway where it is subsequently proteolytically trimmed to remove the 

remaining transmembrane domain and is subsequently secreted as a heavily 

glycosylated monomeric soluble protein (Escribano-Romero et al., 2004; Hendricks et 

al., 1988; Roberts et al., 1994). It is estimated that the soluble form accounts for up to 

16-20% of the total G protein synthesised and up to 80% of the G protein released 

into the medium by 24 hour post-infection (Hendricks et al., 1988).  
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1.8.3.1.2 Function 

The HRSV G protein was initially proposed as the attachment protein as antibodies 

specific for G inhibited the absorption of virus to HeLa cells (Levine et al., 1987). 

The receptor for HRSV has yet to be properly defined however studies have revealed 

that the virus can bind to GAGs, on proteoglycans (Hallak et al., 2000a) mainly 

mediated by the G protein (Techaarpornkul et al., 2002). GAG chains are covalently 

joined to the proteoglycans on the cell surface commonly through serine residues. The 

net negative charge of the proteoglycans, as a result of high levels of sulphate groups, 

is the basis for interactions with the positively charged regions of protein ligands 

(Feldman et al., 1999). Specifically, GAGs containing iduronic acid like heparin 

sulphate and chondroitin sulphate B have been shown to be important for interaction 

with HRSV (Hallak et al., 2000b). 

 

Studies with linear peptides have identified a positively charged region (amino acids 

184-198) involved in binding heparin (Feldman et al., 1999). However, this heparin 

binding domain is not the sole determinant of heparin binding since recombinant 

HRSV lacking that segment of G could still infect in vitro in a GAG dependent 

manner (Teng et al., 2001). Furthermore, studies have shown recombinant HRSV 

mutants lacking the G protein can replicate in cell culture, although they are highly 

attenuated in vivo (Karron et al., 1997; Techaarpornkul et al., 2001). Whilst the G 

protein is thought to mainly mediate cell attachment, a study where only the F 

glycoprotein was expressed on the surface revealed the virus could still infect certain 

cell types in a proteoglycan dependent manner (Techaarpornkul et al., 2002) 

suggesting a role for F protein attachment.  

 

Along side the heparin binding domains, the G glycoprotein of HRSV contains a 

CX3C motif between amino acids 182-186 (Johnson et al., 1987b). This motif is able 

to bind to the chemokine fractalkine CX3CR1 receptor present on the surface of cells. 

The interaction between the G glycoprotein and the CX3CR1 allows modulation of 

the immune response and inflammation which could potentially slow virus clearance 

and aid infection (Tripp et al., 2001). 
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1.8.3.1.3 The G glycoprotein of HMPV 

Similar to HRSV, the HMPV G protein is a predicted anchored type II transmembrane 

glycoprotein which is thought to mediate attachment during viral infection (Biacchesi 

et al., 2003; Biacchesi et al., 2004b; Ishiguro et al., 2004; Peret et al., 2004; 

Skiadopoulos et al., 2006; van den Hoogen et al., 2002) and whose length varies from 

217 to 236 amino acids. This variation in length is partly due to the usage of four 

different transcription termination codons at nucleotides 652, 658, 685 and 709 and 

partly due to nucleotide substitutions. These substitutions are mainly situated in the 

extracellular domain, giving rise to the variation within the G protein and may be a 

direct result of immunological pressure.  Sequence variation is extremely high as a 

result with 58% nucleotide identity between the sub-groups and a slightly higher 

percentage identity of 76% between members of the same sub-group. An increased 

level of divergence at the amino acid level in comparison to nucleotide level is 

suggestive of a selective pressure for amino acid change by the hosts immune 

response. It also implies the protein is relatively tolerant of variation which might be 

due to its proposed extended, unfolded structure (Bastien et al., 2004; Biacchesi et al., 

2003; Galiano et al., 2006; Ishiguro et al., 2004; Ludewick et al., 2005; Peret et al., 

2004; van den Hoogen et al., 2004).  

 

Recent studies by Thammawat et al (2008) have revealed that infectivity and G 

protein binding can be inhibited by soluble GAGs or by the enzymatic removal of 

cellular GAGs, indicating that the electrostatic interactions between the positively 

charged virion proteins and the negatively charged GAGs play a key role in HMPV 

infectivity. Nonetheless, pre-treatment of cells with soluble G protein could not inhibit 

infectivity to the level observed with competing GAGs, suggesting that similar to 

HRSV, interactions of other proteins with cellular receptors may play a role in 

attachment and infectivity, namely the F protein (Thammawat et al., 2008). 

 

For HMPV, HRSV and AMPV, a small secondary ORF within the G gene can be 

found however, instead of being within the primary ORF, it follows on from the main 

ORF and encodes a 68 amino acid protein. Unusually, for HMPV, a third ORF has 

also been found in the second reading frame overlapping the first two that encodes a 

194 amino acid protein and is followed by a fourth encoding a 65 amino acid protein. 
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Finally, a fifth ORF in the third reading frame has been identified with the potential to 

encode a 97 amino acid protein. No gene start or gene end sequences have been 

identified for these ORFs and so it is not known whether they are expressed (van den 

Hoogen et al., 2002). 

 

HMPV G has a similar hydrophobicity profile but higher threonine / serine and 

proline reside content compared to the other pneumoviruses especially in the 

extracellular domain suggesting the protein is a heavily glycosylated mucin like 

structure (Bastien et al., 2004; Biacchesi et al., 2003; Galiano et al., 2006; Ludewick 

et al., 2005; Peret et al., 2004; van den Hoogen et al., 2002). Up to five potential N-

linked and more than forty O-linked glycosylation sites are responsible for this level 

of glycosylation and may be important in evading the host immune responses by 

masking specific epitopes and evading antibody recognition. The predicted molecular 

mass based on the unmodified polypeptide is 23.7KDa but analysis from western blots 

have revealed it to be actually between 80 and 100KDa confirming the high level of 

post-translational N and O-linked glycosylation which has been recognized to occur in 

the trans-Golgi compartment (Liu et al., 2007).  

 

However, unlike HRSV and AMPV, the G protein lacks the 13-amino acid conserved 

central domain along with the four conserved cysteine residues that make up the 

cysteine motif, thought to be associated with protein conformation and signalling, and 

instead possesses only one conserved cysteine residue in the intracellular domain and 

a potential second in two of the secondary ORFs (Bastien et al., 2004; Galiano et al., 

2006; Ishiguro et al., 2004; Peret et al., 2004; van den Hoogen et al., 2002; van den 

Hoogen et al., 2004). However, Ishiguro et al did identify a partially conserved region 

(amino acids 92-103) between certain strains thought to be involved in attachment to 

cellular receptors (Ishiguro et al., 2004). HMPV G also lacks a CX3C fractalkine 

motif found in the G protein of both HRSV and AMPV-C, involved in mediating 

attachment and influencing the immune response by chemokine mimicry (Biacchesi et 

al., 2003; Peret et al., 2004; Tripp et al., 2001). The second start codon in the main 

ORF which is present in the HRSV G protein and gives rise to a secretory form of the 

glycoprotein is also absent in HMPV which as a consequence, expresses the 

transmembrane form only (Biacchesi et al., 2003; Roberts et al., 1994). 

 



  21   

 

 

Recent investigation by Biacchesi et al (2004a) has revealed that the deletion of the G 

protein alone or in combination with the SH glycoprotein did not inhibit replication in 

cell culture. However, investigations in hamsters and African green monkeys revealed 

the mutants to have an attenuated profile in vivo compared to wild type virus but are 

capable of inducing high titres of HMPV-neutralising antibodies and conferred 

complete protection upon challenge with wild type HMPV (Biacchesi et al., 2005a; 

Biacchesi et al., 2004b). 

 

 

1.8.3.2 Fusion (F) protein 

1.8.3.2.1 Structure and processing 

The F glycoprotein of the Paramyxoviridae is an anchored type I transmembrane 

protein that mediates fusion involved in viral entry and syncytium formation. The F 

gene of HRSV encodes a 574 amino acid protein, which is initially synthesised as 

inactive precursor, F0. The F0 precursor is translocated to the ER where it is adorned 

with high-mannose sugar chains which are later modified in the Golgi compartment. 

This precursor is post-translationally cleaved in the trans-Golgi compartment (Collins 

and Mottet, 1991; Gonzalez-Reyes et al., 2001) by furin-like proteases during 

maturation to release a short peptide (p27) producing two disulphide linked 

polypeptides, F1 (~50KDa) and F2 (~20KDa) (Fernie et al., 1985; Gonzalez-Reyes et 

al., 2001; Zimmer et al., 2001). 

 

The un-cleaved precursor, F0, is not detected on the cell surface membrane indicating 

that cleavage is intracellular. However, as a consequence of incomplete cleavage, 

cleavage intermediates are detected along with fully processed F proteins in the 

virions (Gonzalez-Reyes et al., 2001). The two cleavage sites are strictly conserved 

between all strains of HRSV, site I, between residues 109/110 and site II, between 

residues 136/137, both of which are preceded by furin-recognition motifs (Melero, 

2007; Zimmer et al., 2001). The released 27-mer peptide is thought to facilitate the 

conversion of the F glycoprotein to its fusogenic form (Zimmer et al., 2001). The 

expression of unglycosylated mature F proteins on the surface indicates expression is 

reliant upon cleavage, possibly implicated in transportation to the surface, rather than 

glycosylation which is thought to help stabilise the protein (Collins and Mottet, 1991).  
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The F protein of all paramyxovirus have three main hydrophobic regions: one at the 

N-terminus, removed upon maturation of the glycoprotein, functions as a signal 

peptide for translocation to the ER during synthesis; the membrane anchor situated at 

the C-terminus; and the fusion peptide located at the N-terminus of the F1 chain 

(Figure 1.3) (Melero, 2007). There are two heptad repeat motifs, HR1 and HR2 

situated adjacent to the fusion peptide and transmembrane domain respectively. These 

are thought to aid the formation and stability of the mature F protein as a homotrimer 

on the virus and cell surface (Matthews et al., 2000).  

 

 

 

 
 
Figure 1.3 Antigenic map of the F glycoproteins of HRSV and HMPV 

Key: Sig, signal peptide; FP, fusion peptide; HR, heptad repeats; TM, transmembrane domain; CT, 

cytoplasmic tail 

 

 

 

1.8.3.2.2 Function 

The F protein plays an essential role in viral entry, mediating viral / host cell 

membrane fusion which results in the release of the viral nucleocapsid directly into 

the cell cytoplasm. Upon attachment of the viral particle to the host cell, the F protein 

undergoes a conformational change in which the hydrophobic fusion peptide is 

exposed and leads to insertion into the cell membrane. The trigger mechanism for this 

change in structure is still unknown (Hernandez et al., 1996).  
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The F glycoprotein also promotes fusion of nearby adjacent cells resulting in giant 

multinucleated syncytia formation (Lamb and Parks, 2007; Merz et al., 1980). This is 

the characteristic cytopathic effect of HRSV and unlike other paramyxoviruses, the F 

protein can single-handedly cause this phenomenon (Gonzalez-Reyes et al., 2001). 

Furthermore, the absence of both G and SH glycoproteins in HRSV mutants (Karron 

et al., 1997) and the production of recombinant HRSV solely expressing F 

glycoprotein (Techaarpornkul et al., 2002) can infect certain cell lines and induce the 

formation of syncytia indicating the F glycoprotein can serve as an auxiliary 

attachment protein and induce fusion in the absence of other viral glycoproteins. 

Nonetheless, HRSV lacking the G glycoprotein is highly attenuated in vivo indicating 

the inefficiency of the F proteins attachment function in vivo (Karron et al., 1997; 

Teng et al., 2001). 

 

The two heptad repeats, HR1 and HR2, play an important role in the fusion process 

(Chambers et al., 1990). Following insertion of the fusion peptide, the F1 chain is 

bound simultaneously to the target cell membrane through its N terminus and to the 

viral membrane via its transmembrane domain (Lamb and Parks, 2007). 

Conformational changes within the F trimer results in the α-helical coiled coils of 

HR1 assembling with the HR2 α-helices to form a 6-helix bundle conformation 

(Matthews et al., 2000). Situated perpendicular to the viral and host cell membranes, 

it is postulated that this highly stable structure brings the viral and host cell 

membranes within close proximity allowing the concomitant fusion of the two 

membranes by an unexplained mechanism. Lipid mixing of the two membranes 

allows the formation of a fusion pore connecting the interior of both the viral particle 

and the host cell cytoplasm (Melero, 2007). 

 

1.8.3.2.3 The F glycoprotein of HMPV 

The 539 amino acid HMPV F glycoprotein resembles that of other Paramyxoviridae 

and has a molecular mass of 58.4KDa (Bastien et al., 2003; Biacchesi et al., 2006; 

Biacchesi et al., 2004b; Schowalter et al., 2006; van den Hoogen et al., 2002). Similar 

to HRSV, the F protein is synthesised as an inactive precursor which is cleaved by 

host cell proteases into two subunits whereupon it remains linked by disulphide 

bonds. The fusion peptide is situated at the N terminus of the F1 subunit and is 23 
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amino acids in length (Biacchesi et al., 2006). However, unlike HRSV (Gonzalez-

Reyes et al., 2001), the precursor possesses only one cleavage activation site between 

residues 114 and 115 (equivalent to site II in HRSV) which does not conform to the 

consensus furin motif, and is consistent with the data describing the requirement of 

exogenous trypsin for growth in vitro in certain cell lines. Unsurprisingly, growth of 

HMPV in human bronchial epithelial cells does not require exogenous trypsin for 

efficient entry and replication (Ingram et al., 2006) and the substitution of serine for 

proline at the putative cleavage site conferred intracellular cleavability without 

affecting virulence in vivo (Schickli et al., 2005).  

 

As is the case for HRSV, proteolytic cleavage is an essential requirement to process 

the F protein into a fusogenic form (Schowalter et al., 2006). Groups have recently 

discovered stimulation of the F protein in certain strains of HMPV requires a low pH, 

suggesting a role for the lower endosomal pH in entry. Whilst the attachment protein 

of viruses within the Paramyxovirinae subfamily is required for viral attachment and 

membrane fusion, the G protein of viruses of the Pneumovirinae subfamily has been 

shown to be dispensable for entry into cultured cells (Biacchesi et al., 2006; Biacchesi 

et al., 2004b; Naylor et al., 2004; Techaarpornkul et al., 2001). Therefore, in the 

absence of the tight association between the attachment and fusion proteins, the low 

pH could potentially provide an F protein trigger during HMPV infection (Herfst et 

al., 2008b; Schowalter et al., 2009; Schowalter et al., 2006). 

 

Similar to HRSV, the F protein of HMPV has been predicted to utilise the formation 

of hexameric coiled coils of heptad repeats, which has an important role in fusion 

(Miller et al., 2007). Synthetic peptides derived from the heptad repeat domains have 

been shown to have a potent inhibitory affect both in vitro and in vivo (Deffrasnes et 

al., 2008; Miller et al., 2007). Peptides to HR1 were proposed to bind to the 

metastable prefusion state of the F protein preventing stalk extension and thus 

arresting the fusion peptide (Miller et al., 2007). The F protein has three potential N-

linked glycosylation sites, which may play a role in expression, cleavage and fusion 

but to what extent is not yet known. Fourteen conserved cysteine residues have been 

identified with ten positioned closely around the middle of the F1 chain suggesting a 

role in protein folding (Galiano et al., 2006; van den Hoogen et al., 2002). 
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The F protein is well conserved between lineages of the same sub-group having 97% 

nucleotide homology (94% between sub-groups), with small areas of variability and is 

potentially the main determinant of host tropism (de Graaf et al., 2009). The high 

nucleotide diversity yet low abundance of amino acid substitutions may be due to 

structural and functional constraints and as a result plays a major role in the antigenic 

relatedness between members of the same sub-groups (Boivin et al., 2002; Galiano et 

al., 2006; Skiadopoulos et al., 2004; van den Hoogen et al., 2004; Winther et al., 

2005; Yang et al., 2009). The lack of variability may be responsible for the key role it 

plays in the induction of neutralising antibodies, which offer protection across both 

lineages of HMPV (Biacchesi et al., 2004b; Skiadopoulos et al., 2006; Skiadopoulos 

et al., 2004). 

 

The immunisation with HMPV F protein, in a variety of formats and in several animal 

model systems, induced protective immunity and in some cases protected against 

subsequent challenge with both homologous and heterologous strains of HMPV 

(Cseke et al., 2007; Herfst et al., 2007; Ma et al., 2005; Skiadopoulos et al., 2004; 

Tang et al., 2005; Williams et al., 2007). Ulbrandt et al (2006) identified a small 

number of antibodies that cross-neutralised all four HMPV sub-groups both in vitro 

and in vivo. The failure of the majority of antibodies to cross-neutralise was suggested 

to be because neutralising epitopes are preferentially positioned in regions of highest 

variability as a result of selective pressure (Ulbrandt et al., 2006). Recent work by the 

same group identified these neutralising regions by the production of MAb - resistant 

mutants (MARMs). Interestingly, the antibodies that neutralise both in vitro and in 

vivo recognise the site on the HMPV F protein that corresponds to the region 

recognised by the neutralising anti-HRSV monoclonal antibody, Palivizumab. Others 

MAbs were thought to interact with the pre-fusion conformation of the F protein and 

prevent the formation of the hairpin loop created by the heptad repeats (The IMpact-

RSV Study Group, 1998; Ulbrandt et al., 2008), adding to the speculation that the 

fusion model is similar to that of HRSV (Miller et al., 2007). 

 

 

1.8.3.3 Small Hydrophobic protein 

The small hydrophobic glycoprotein of HRSV is a short (64-65 amino acids) type II 

transmembrane protein anchored by a hydrophobic signal/anchor sequence with its 
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carboxy terminus located extracellularly, whose role in the infectious cycle is not yet 

known (Collins and Mottet, 1993).  

 

The protein accumulates intracellularly in a variety of forms dependent upon its 

glycosylation status including an unglycosylated species (SH0) with a molecular mass 

of 7.5KDa; a minor glycosylated species of 4.5KDa produced as a consequence of 

initiation of translation at a second in-frame start codon, an N-linked glycosylated 

form (SHg) with a molecular mass of 13-15KDa and a SHp species (molecular mass of 

21-60KDa) produced as a consequence of further modification by the addition of 

polylactosaminoglycans. Each form appears to associate as oligomers that, as 

determined by chemical cross-linking, form pentamers (Collins and Mottet, 1993). 

 

HRSV recombinants lacking the SH protein gene are fully viable in cell culture 

(Bukreyev et al., 1997; Karron et al., 1997) and have a slight growth advantage in 

certain cell lines forming larger plaques. These recombinants however, were 

attenuated in both mouse (Bukreyev et al., 1997) and chimpanzee (Whitehead et al., 

1999) models suggesting the protein plays an essential role in viral pathogenesis. 

Expression of SH in E.coli increased cell permeability to lower molecular weight 

compounds suggesting the protein may play a role in the formation of membrane 

channels (Perez et al., 1997). Recombinant HRSV expressing the F and SH proteins 

only, displayed lower fusion activity and slower viral entry than F glycoprotein alone 

suggesting the presence of the SH protein had a negative effect on virus fusion in cell 

culture (Techaarpornkul et al., 2001). 

 

1.8.3.3.1 The SH glycoprotein of HMPV 

The SH protein of HMPV is also a type II transmembrane glycoprotein that is inserted 

into the plasma membrane by a hydrophobic signal-anchor sequence located near its 

amino terminus (Biacchesi et al., 2004b; Ishiguro et al., 2004; Skiadopoulos et al., 

2006). The SH gene located adjacent to the M2 gene is 179 amino acids in length and 

is the largest SH protein among the pneumovirus subfamily. It is poorly conserved 

between sub-groups having a nucleotide sequence identity of 69% with a higher 

percentage identity of 91% between members of the same sub-group (Biacchesi et al., 

2004b; Ishiguro et al., 2004; van den Hoogen et al., 2002). 
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The protein has a high percentage of threonine and serine residues and has a similar 

hydrophilicity profile to that of the HRSV and AMPV SH protein. Two to four 

potential motifs for N-linked glycosylation and three to four O-linked glycosylation 

sites have been observed along with nine to ten cysteine residues being present mainly 

in the extracellular domain. Nine of these residues are conserved among all strains 

(Biacchesi et al., 2003; Biacchesi et al., 2004b; Ishiguro et al., 2004; van den Hoogen 

et al., 2002). 

 

Evidence has been provided that the SH protein exists in multiple forms with varying 

lengths corresponding to those of HRSV. These forms include SH0, which has a 

molecular mass of 23KDa and is thought to represent the complete unglycosylated SH 

protein, SHg1, which has a molecular mass of 25-30 KDa and is the candidate for the 

N-linked glycosylated protein and finally SHg2, with a molecular mass of 80-220KDa 

which is thought to be the more extensively glycosylated version (Biacchesi et al., 

2003; Ishiguro et al., 2004). 

 

Recent experiments where recombinant mutants have been produced with the deletion 

of the SH gene suggest that the SH protein has no effect on virus infection or 

replication in vitro and in vivo indicating no essential role in attachment and entry. It 

has also been observed that antibodies to SH have a minor or insignificant role in 

neutralisation or protection which maybe as a consequence of extensive glycosylation 

of the extracellular domain of the protein (Biacchesi et al., 2004b; Buchholz et al., 

2005; Skiadopoulos et al., 2006). Infection with recombinant HMPV lacking SH 

expression appeared to enhance secretion of proinflammatory mediators including IL-

6 and IL-8 in vitro and in vivo indicating the SH protein may have a role in mediating 

NF-κB activation (Bao et al., 2008).  

 

 

1.9 HMPV transmission and clinical manifestations 

HMPV is an important respiratory pathogen and causes both upper and lower 

respiratory tract infections. HMPV infections are predominantly seen in infants and 

young children despite the presence of maternally derived antibodies (Bastien et al., 

2003; Peiris et al., 2003; Williams et al., 2004) as well as the elderly (Falsey et al., 
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2003; Stockton et al., 2002; van den Hoogen, 2007) and immunocomprimised patients 

(Boivin et al., 2002; Cane et al., 2003). Severe infection within these groups may 

result in hospitalisation where mechanical ventilation is required (Falsey et al., 2003; 

van den Hoogen et al., 2003). It has been estimated that HMPV infection accounts for 

approximately 5-8% of respiratory tract infections among hospitalised children (Cane 

et al., 2003; Ijpma et al., 2004; Peiris et al., 2003) and is thought to be a common 

cause of nosocomial infections mediated by health care workers in paediatric wards 

(Mahalingam et al., 2006). 

 

Similar to HRSV, HMPV is contagious and is spread via close contact with infected 

individuals or by contact with contaminated surfaces. The incubation period from 

infection to the development of symptoms has been observed to be 4-6 days and 

infections of HMPV are similar to that of HRSV although less severe. It has been 

reported that the majority of children over 5 years old were seropositive for HMPV 

(Boivin et al., 2003; Bosis et al., 2005; Ebihara et al., 2004; van den Hoogen et al., 

2001; Williams et al., 2004) and all children were by the age of 10 (Ebihara et al., 

2003; Ijpma et al., 2004). Severe infections are mainly seen in infants less than one 

year old, possibly due to the small diameter of the bronchioles, which obstruct easily. 

However, HMPV infections occur slightly later in childhood compared to HRSV. 

This may reflect an older age at presentation compared to HRSV infections and reflect 

a more mature immune response or larger airways resulting in an increased ability to 

clear congestion (Boivin et al., 2003; Ebihara et al., 2004; Klein et al., 2006; van den 

Hoogen et al., 2001). It has also been postulated that the existence of longer-lasting 

maternally derived antibodies to HMPV may dampen infection till later on in 

childhood (Boivin et al., 2003; Mullins et al., 2004). 

 

Upon infection, the virus primarily infects the airway epithelium which results in cell 

degeneration and necrosis which can be observed in specimens obtained by 

bronchoalveolar lavage (Kuiken et al., 2004; Vargas et al., 2004). Clinical 

manifestations can vary from mild respiratory tract infections to bronchiolitis, 

wheezing as well as pneumonia often accompanied by fever, myalgia and sometimes 

vomiting with a complication of otitis media in approximately one third of the cases. 

An influx of peribronchiolar mononuclear cells together with the increase in mucus 
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secretion and cell debris leads to obstruction of the bronchioles and alveoli (Collins 

and Crowe, 2007; Vargas et al., 2004).   

 

As for HRSV, clinical outcome is largely based on the age and health of the patient, 

however, it has been reported that certain HMPV sub-groups may cause more severe 

disease but for both viruses this still remains controversial (Agapov et al., 2006; 

Crowe, 2004; Esper et al., 2004; Manoha et al., 2007; Vicente et al., 2006). However, 

there is evidence suggests that severity of disease is associated with nasopharyngeal 

viral load where high viral load correlated with disease presentation and not type of 

HMPV (Bosis et al., 2008). 

 

HMPV infection may induce airway alterations and initiate the development of the 

atopic state in infants indicating a possible relationship to the onset of childhood 

asthma. Several studies have revealed an association of HMPV with acute wheezing 

in older children and the virus could potentially be a stronger trigger for asthma 

exacerbations than HRSV or influenza (Bosis et al., 2005; Crowe and Williams, 2003; 

Jartti et al., 2002; Manoha et al., 2007; Mullins et al., 2004; Peiris et al., 2003; van 

den Hoogen et al., 2003; Williams et al., 2004; Williams et al., 2005a). However, 

contradictory evidence from an Australian study indicated there was no real 

association between HMPV and the development of asthma exacerbations (Rawlinson 

et al., 2003). 

 

Limited data suggest that recurrent infection with HMPV is common, occurring 

throughout life. This indicates that the host immune response provides transient or 

incomplete protection and as a consequence allows repeat infection to occur with both 

homologous (Esper et al., 2004) and heterologous virus strains (Ebihara et al., 2004; 

Pelletier et al., 2002; van den Hoogen et al., 2004). The young and the elderly can 

present with both upper and lower respiratory tract disease during the second infection 

and repeat infections in immunocomprimised patients can be just as devastating as the 

initial illness. Nonetheless the second infection in healthy individuals appears to be 

milder suggesting neutralising antibodies produced to the initial disease may prevent 

severe infection even with heterologous strains (Collins and Crowe, 2007; Ebihara et 

al., 2004; Esper et al., 2004; Pelletier et al., 2002; van den Hoogen et al., 2004). 
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1.10 Animal models 

Since the discovery of HMPV in 2001, a number of animal species have been 

determined to be permissive for HMPV infection (Alvarez et al., 2004a; Darniot et 

al., 2005; Hamelin et al., 2005; Herd et al., 2006; Kuiken et al., 2004; MacPhail et al., 

2004; Skiadopoulos et al., 2004; Williams et al., 2005b; Wyde et al., 2005). These 

include small animals such as mice, cotton rats, hamsters and primates including 

chimpanzees, rhesus macaques and African green monkeys. In most of the susceptible 

animals HMPV replicates to high titres and induces high levels of neutralising 

antibodies. Research in these models is extremely useful for investigating features of 

HMPV infection including pathogenesis and anti-viral immunity including the innate 

and adaptive immune response which will be described later on (Schildgen et al., 

2007). 

 

HMPV replication has been shown to be confined to the lungs in both cynomolgus 

macaques and BALB/c mice where infection was evident in the ciliated epithelium 

(Alvarez et al., 2004a; Kuiken et al., 2004). Peak viral loads mainly occurred at day 4 

(Darniot et al., 2005; Huck et al., 2007; Kolli et al., 2008; Williams et al., 2005b) to 

day 5 post-infection (Hamelin et al., 2005; MacPhail et al., 2004). Early signs of 

disease were evident one to two days post-infection, where BALB/c mice exhibited 

weight loss along with ruffled fur, a tendency to huddle, mucus production and 

breathing difficulties (Alvarez et al., 2004a; Darniot et al., 2005; Guerrero-Plata et al., 

2006; Hamelin et al., 2005; Huck et al., 2007; Kolli et al., 2008). However, 

experiments involving cotton rats (Williams et al., 2005b), ferrets, hamsters and 

cynomolgus macaques (MacPhail et al., 2004) experienced no evidence of respiratory 

illness. MacPhail et al (2004) also discovered that cotton rats were not permissive to 

HMPV infection which contradicted work by Williams et al (2005) and Wyde et al 

(2005) where they recovered high levels of infectious virus in both the lungs and nasal 

mucosa. 

 

Discrepancies in the animal model system could be attributable to the differences 

arising in the inoculum. HMPV strains from nasopharyngeal secretions have to be 

isolated in the presence of exogenous trypsin to allow the virus to grow on Rhesus 

monkey kidney cells (LLC-MK2 or Veros). Before inoculation, these strains were 
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either passaged in cell culture several times (Darniot et al., 2005; Hamelin et al., 

2005; Huck et al., 2007) or filtered (Kolli et al., 2008; Williams et al., 2005b) to 

establish a high titre stock, allowing for the possibility of certain strains to mutate and 

adapt to cell culture. Certain groups utilised the extensively passaged prototype strains 

HMPV/NL/1/00 and HMPV/NL/1/99 (MacPhail et al., 2004) and CAN98-75 

(Alvarez et al., 2004a) for their animal model studies, which could have a significant 

affect on virulence and pathogenesis.  

 

 

1.11 Immunity 

The majority of research to date, studying the immune response to HMPV infection 

has been restricted to animal models and only limited data is available regarding the 

immune response in the human host. Both innate and adaptive immunity is believed to 

play an important role in controlling HMPV replication and persistence. However, 

primary HMPV infection is thought to elicit a weak innate and adaptive immune 

response and immunity is incomplete with secondary infections occurring throughout 

life. Preliminary studies in humans indicate both secretory and serum antibodies are 

produced in response to HMPV infection. However, the role of these antibodies in 

protection against reinfection is still unknown (Alvarez and Tripp, 2005; Mahalingam 

et al., 2006).  

 

1.11.1 Innate immunity 

Airway epithelial cells represent the major target of respiratory viruses and upon 

injury or infection, are able to synthesise and secrete soluble mediators which are 

important for the recruitment and activation of immune / inflammatory cells. 

Replication of HMPV induces a variety of cytokines and chemokines, whose 

expression is dependent on viral replication (Bao et al., 2007).  

  

Recent studies with BALB/c mice have shown that primary HMPV infection elicits a 

weak innate and humoral immune response, characterised by an early Th1 type 

response followed by a delayed Th2 type cytokine response with increased IL-10 

expression which inhibits the expression of immunoregulatory cytokines (Alvarez and 

Tripp, 2005; Darniot et al., 2005; Hamelin et al., 2007; Hamelin et al., 2006; Hamelin 



  32   

 

 

et al., 2005; Herd et al., 2006; Panuska et al., 1995). This mirrors observations in 

HMPV-infected infants (Melendi et al., 2007a) and is postulated to have a role in the 

association of HMPV and asthma exacerbations.  

 

In infected infants, HMPV elicited significantly lower levels of respiratory cytokines 

compared to HRSV and levels of cytokines in hospitalised children infected with 

HMPV compared to infants treated as outpatients were no higher. Despite the 

similarities between HMPV and HRSV in respiratory tract disease, HMPV may elicit 

symptoms via independent mechanisms including direct viral damage, Th2 

polarisation of the pulmonary immune system and chemokine mediated inflammation, 

which have all been postulated to play a role in the pathogenesis of HRSV. This 

suggests a possible common mechanism of illness that is independent of innate 

inflammation (Laham et al., 2004). Furthermore, the low levels of cytokine induction 

observed during HMPV infection has also been observed in epithelial cell lines, 

dendritic cells and animal models (Bao et al., 2007; Guerrero-Plata et al., 2005; 

Guerrero-Plata et al., 2006). 

 

Other reports have detected significant levels of IL-8 in epithelial cell lines, BALB/c 

mice and the respiratory secretions of HMPV-infected children with bronchiolitis, the 

function of which is to recruit and activate neutrophils (Bao et al., 2007; Hamelin et 

al., 2005; Jartti et al., 2002; Laham et al., 2004). HMPV was also found to be a strong 

inducer of IL-6, a proinflammatory cytokine (Bao et al., 2007; Douville et al., 2006; 

Huck et al., 2007; Laham et al., 2004) contradictorily to other findings, where HMPV 

was found to induce lower levels compared to HRSV (Guerrero-Plata et al., 2005).  

 

The two non-structural proteins of HRSV, NS1 and NS2, are thought to play a major 

role in blocking initiation of interferon (IFN) production during infection (Bitko et al., 

2007). Studies involving recombinant HRSV lacking the NS genes induced high 

levels of type I interferon in human epithelial cells and macrophages (Spann et al., 

2004; Spann et al., 2005). It is known that IFN regulates apoptosis via multiple 

pathways (Caraglia et al., 2004) and by inhibiting IFN synthesis and response, the NS 

proteins have been postulated to play a crucial role in suppressing premature 

apoptosis and augmenting viral replication (Bitko et al., 2007).  
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Little work has been done in the capacity of HMPV, which lacks NS1 and NS2 

proteins, to interfere with IFN responses. However, it is inconceivable that the virus 

could successfully infect the respiratory tract without countering IFN in some way.  

 

Discrepancies of the immune response to HMPV infection can be possibly assigned to 

the different properties of isolates, different infection models as well as the time 

period being evaluated, however the majority of studies have indicated that the 

immune response to HMPV infection differs significantly from that of HRSV 

(Douville et al., 2006; Guerrero-Plata et al., 2005; Huck et al., 2007; Laham et al., 

2004; Liu et al., 2009; Melendi et al., 2007a). 

 

1.11.2 Humoral immunity 

During respiratory virus infection, antibodies play an important role in protection 

against reinfection or disease. Respiratory virus infection elicits both serum and 

mucosal IgG, IgA and IgM antibody responses (Mahalingam et al., 2006; Ogra, 

2004). Five to ten days following primary infection, an IgM response is induced 

depending on the age of the patient. This is followed by a specific IgG response which 

peaks around 20 to 30 days after the onset of symptoms and declines to a low level 

approximately a year after the primary infection (Ogra, 2004). In subsequent 

reinfections, a booster affect allows IgG to be detected within five to seven days 

(Welliver et al., 1980). The IgA response appears slightly later than IgG and IgM. 

 

The predominant antibody found in the lungs is serum IgG, which is induced during 

infection and mediates protection in the lower respiratory tract (Crowe and Williams, 

2003). However, these antibodies are found to be less efficient at conferring 

protection in the upper respiratory tract, which could be attributed to the inefficient 

transport of serum antibodies to the mucosa. In the upper respiratory tract, IgA 

appears to be the major protective antibody and operates independently of the level of 

serum antibodies (Mills et al., 1971; Prince et al., 1987). The IgA response is short-

lived and wanes significantly several months after infection, however, multiple 

reinfections induce higher levels of secretory antibodies and a more sustained IgA 

response (Collins and Crowe, 2007; Ogra, 2004; Welliver et al., 1980). Immunity to 

HRSV infection has been shown to correlate better with high levels of locally sourced 

IgA antibodies compared to serum antibodies (Prince et al., 1987). 
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Infants acquire maternal IgG antibodies, primarily IgG1, around the 32nd week of 

gestation and antibody titres of the new born are comparable to that of the maternal 

level with about a 3-week half life. The passively acquired antibodies are thought to 

correlate well with protection against lower respiratory tract infections and can be 

detected up to six months in most infants and perhaps up to one year in some (Collins 

and Crowe, 2007; Crowe and Williams, 2003).  

 

Antibody responses of young infants to the protective surface glycoproteins of 

respiratory viruses are significantly lower in frequency and magnitude than that of 

older children and adults (Crowe and Williams, 2003). Studies in infants with primary 

HRSV infection demonstrated that most patients aged between 9 and 21 months 

developed moderate levels of serum and nasal antibodies to both the F and G 

glycoproteins. However, most infants less than 8 months failed to develop a 

significant response to these antigens (Murphy et al., 1986a). In addition, infants 

primarily respond by producing IgG1 and IgG3 subclasses and the absence of IgG2 

antibodies to carbohydrates has been postulated to account for the poor response to 

the highly glycosylated G protein (Crowe and Williams, 2003). 

 

The inability of young infants to elicit a satisfactory antibody response could be a 

consequence of immunological immaturity or the possibility that the passively 

acquired maternal derived antibodies suppress the active immune response of the 

infant. As a result, the incompleteness of protection after natural infection may be 

partly responsible for susceptibility to the severity of disease in some re-infections in 

the early years (Collins and Crowe, 2007; Crowe and Williams, 2003; Murphy et al., 

1986a).  

 

1.11.2.1 The use of prophylactic anti-RSV antibodies 

There are three major surface glycoproteins present on the membrane surface, F, G 

and SH, where F and G are thought to be involved in attachment and entry of the virus 

into the host cell. In HRSV infection, these two surface glycoproteins have been 

shown to play a major role in host cell immunity and have been shown to be capable 

of inducing neutralising antibodies. There is evidence to suggest that these 

neutralising antibodies can confer protection from severe disease and also subsequent 

reinfection (Taylor et al., 1984; Walsh et al., 1987). 
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Firstly, in infants, there is a strong correlation between levels of maternal antibodies 

and protection in the early years of life, when the risk of disease is at its greatest. 

HRSV infected infants with high levels of maternally derived anti-HRSV antibodies 

have been shown to have a lower incidence of hospitalisation and reduced severity of 

disease (Glezen et al., 1981; Ogilvie et al., 1981).  

 

Secondly, studies involving the evaluation of passively transferred serum anti-HRSV 

antibodies in animal models demonstrated protection in the lower respiratory tract 

(Prince et al., 1985). Furthermore, therapy with human intravenous immunoglobulin 

containing high levels of anti-HRSV neutralising polyclonal antibodies (RSV-IVIG) 

reduce both frequency and duration of hospitalisations and significantly reduced the 

development of RSV-associated lower respiratory tract infections (Groothuis et al., 

1995; Groothuis et al., 1993). RSV-IVIG is now licensed for the prevention of RSV 

infections in “at risk” infants (Groothuis et al., 1995). 

 

Thirdly, characterisation of the protective human antibody response has lead to the 

development of a partially protective prophylactic monoclonal antibody, palivizumab 

(Synagis; MedImmune) (The IMpact-RSV Study Group, 1998). Palivizumab is a 

humanised IgG1 monoclonal antibody that binds to a conserved epitope on the F 

protein of HRSV and is highly active both in vitro and in vivo against type A and B 

clinical HRSV isolates (Beeler and van Wyke Coelingh, 1989; Johnson et al., 1997). 

Palivizumab was derived from the murine monoclonal antibody, MAb 1129 produced 

by intranasally immunising BALB/c mice with the A2 strain of HRSV (Beeler and 

van Wyke Coelingh, 1989). This antibody was then humanised by grafting six 

complementarity determining regions of the murine monoclonal antibody to a human 

IgG1 framework. The monoclonal antibody showed broad neutralisation of more than 

50 clinical isolates of both HRSV sub-groups and pre-treatment of cotton rats resulted 

in a 99% reduction of HRSV lung titres (Johnson et al., 1997).  

 

In clinical trials, monthly intramuscular injections of palivizumab (15mg/kg) 

administered to children with prematurity or bronchopulmonary dysplasia (BPD) 

reduced the incidence of hospitalisation by 55% compared with a placebo (The 

IMpact-RSV Study Group, 1998). Palivizumab prophylaxis is currently available to 
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‘at risk’ patients and entails the administration of one intramuscular immunisation 

(15mg/kg) a month for five months surrounding the annual HRSV epidemic period 

(Deshpande, 2000).  

 

1.11.2.2 Antibody recognition of the F and G glycoproteins of HMPV 

In HMPV infection, there are a number of studies indicating that, in animal models, 

antibodies correlate with protection. Studies in BALB/c mice showed high serum 

antibody titres correlated well with a decrease in HMPV lungs titres. Furthermore, 

passive transfer of HMPV specific antibodies to naïve BALB/c mice provided 

considerable protection against challenge (Alvarez et al., 2004a; Alvarez and Tripp, 

2005). 

 

However, in HMPV, only the F glycoprotein has been found to be highly 

immunogenic and its highly conserved structure allows the production of cross-

neutralising antibodies which confer protection in animal models (Skiadopoulos et al., 

2006; Skiadopoulos et al., 2004; Tang et al., 2005). Williams et al (2007) used phage 

display to produce fully humanised monoclonal antibody fragments (Fabs) directed 

towards the F glycoprotein. Several of these anti-F Fabs neutralised HMPV in vitro 

and effected a virus titre reduction of more than 1000 fold in the lungs of cotton rats 

suggesting prophylactic potential.  

 

In a recent study, Ulbrandt et al (2006) developed a panel of mouse monoclonal 

antibodies to the F glycoprotein that were cross reactive in vitro and in vivo. One of 

these monoclonal antibodies, MAb338, was developed by MedImmune (Hamelin et 

al., 2008; Ulbrandt et al., 2006). MAb338 was administered intramuscularly into 

BALB/c mice, which were subsequently intranasally challenged 24 hours later. Five 

and forty-two days post infection, viral titres were determined and the results revealed 

lung titres to be significantly lower compared to the control. Histopathological 

changes were less severe in the pre-immunised mice suggesting a potential role for 

prophylactic administration (Hamelin et al., 2008).  

 

However, studies of HMPV infection in cynomolgus macaques have shown protection 

is potentially only transient. Evaluation of vaccine studies, where cynomolgus 

macaques had been vaccinated three times with HMPV within a ten week period 
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showed no protective immunity upon HMPV challenge 8 months later despite the 

presence of neutralising antibodies. Yet challenge 4 to 6 weeks after the primary 

infection resulted in protection (van den Hoogen et al., 2007). 

 

The variable nature of the G glycoprotein signifies it as a weak neutralising antigen. 

Studies in hamsters discovered neither the G, or SH glycoproteins induced detectable 

serum HMPV neutralising antibodies (Skiadopoulos et al., 2006), and immunisations 

with recombinant viruses expressing either protein were unable to protect the 

hamsters when challenged. The highly glycosylated structure of the G protein may 

contribute to the immunogenicity profile and its weak protective nature has been 

postulated to be attributable to the lack of an essential role in viral entry and 

replication in model systems (Biacchesi et al., 2005a; Biacchesi et al., 2004b). As a 

consequence, HMPV, unlike other members of the Paramyxoviridae, is thought to 

have only one major protective antigen

 

These results are interesting, given its extensive level of variability, the G 

glycoprotein must be under extreme immunological pressure to be so diverse. The G 

glycoprotein of HRSV displays similar high levels of variation thought to be 

attributed to the selective pressure of circulating antibodies (Cane et al., 1991). 

Generally MAbs generated towards the G glycoprotein of HRSV are strain or sub-

group specific (Taylor, 2007), where recognition of the G protein does not appear to 

be dependent on its conformational structure (Melero et al., 1997). The limited 

number of cross-reactive MAbs react with the conserved central region of the G 

protein, present in all strains of HRSV (Martinez et al., 1997). Despite the lack of 

neutralising activity, anti-G MAbs have been shown to be effective at protecting mice 

and cotton rats against HRSV infection (Taylor et al., 1984; Walsh et al., 1984).  

 

Re-infections with heterologous strains of HRSV have been reported as early as two 

months after primary infection yet repeated infections with homologous strains did 

not occur until six months after primary infection (Scott et al., 2006). This suggests 

that whilst primary infection induces largely anti-F cross reactive antibodies, the 

specific anti-G antibodies provide longer lasting protection (McGill et al., 2004). 
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1.11.3 Cellular immunity 

During infections with paramyxoviruses, cell-mediated immunity plays an important 

role for viral clearance and regulating the immune response, however it is not clear 

that it confers protection against reinfection and disease (Crowe and Williams, 2003). 

Alverez and Tripp have demonstrated that primary HMPV infection in BALB/c mice 

is associated with a delayed cytotoxic T lymphocyte (CTL) response which coincides 

with decreased HMPV titre in the lung. Depletion of T cells or natural killer (NK) 

cells was associated with a significant increase in HMPV titres, suggesting CTL 

directed responses may have a role in the control of replication and HMPV 

persistence (Alvarez et al., 2004a; Alvarez and Tripp, 2005). In addition, 

investigations in which CD4+ and CD8+ subsets were depleted individually or 

together showed they cooperate synergistically in HMPV eradication (Kolli et al., 

2008). However, even in the absence of CD4+ T cells and the consequently impaired 

generation of neutralising antibodies, mice were still protected from infection, 

suggesting that CD8+ subsets potentially could provide adequate protection in 

secondary infections (Kolli et al., 2008). 

 

The identification of CTL epitopes on HMPV proteins, many of which are conserved 

across HMPV types, may provide protein targets at the epitope level. Targeting cells 

expressing these HMPV proteins could prevent viral release and spread and 

potentially lead to reduced disease severity (Herd et al., 2008). To confirm this 

observation, Herd et al (2006) have recently shown that vaccination of mice with 

HMPV CTL epitopes reduces both the viral load and HMPV-associated 

histopathology in the lungs. This vaccination enhances Th1 type cytokine responses, 

increasing the expression of IL-12 and IFN-γ, thus reducing levels of Th2 type 

cytokines, eradicating the potential of Th2 mediated enhancement of disease. This 

may be a consideration in the development of future vaccines (Herd et al., 2006). 

Furthermore, passive transfer of T cell lines against certain epitopes in the M2-1 and 

N was shown to be protect against challenge (Melendi et al., 2007b). 
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1.12 Candidate vaccines 

1.12.1 Inactivated vaccines 

Trials in the 1960’s with the immunisation of infants with formalin-inactivated HRSV 

(FI-HRSV) vaccine unexpectedly potentiated HRSV disease during subsequent 

natural infection, leading to a more severe and in some cases fatal disease (Kapikian 

et al., 1969). Serum analysis revealed that anti-F and anti-G antibodies generated to 

the vaccine were poorly neutralising being largely non-functional due to the formalin 

disrupting the antigenic epitopes on the viral proteins (Murphy et al., 1986b).  

 

This phenomenon was reproduced in cotton rats and mice where the immune 

mechanisms responsible for enhancement of disease have been studied extensively 

(Taylor, 2007). Immunisations revealed high levels of non-neutralising antibodies that 

not only failed to protect against infection but led to the deposition of immune 

complexes and activation of complement (Polack et al., 2002). Further studies 

revealed live HRSV infection primed mice for a Th1 response, whereas a biased 

stimulation of Th2 subset of CD4+ T lymphocytes was evident in FI-RSV immunised 

mice together with an increase Th2 type cytokine expression (Waris et al., 1996). 

These studies established the animal model for immunopathology which is now being 

imitated in HMPV studies. 

 

Vaccination of cotton rats with formalin inactivated HMPV conferred almost 

complete protection upon challenge, yet there was a dramatic increase in lung 

pathology, resulting interstitial pneumonitis and alveolitis (Boukhvalova et al., 2009; 

Yim et al., 2007). Similar observations of vaccine enhanced disease were seen after 

challenging FI-HMPV vaccinated cynomolgus macaques. Serum neutralising 

antibodies were produced at low levels and immunisation failed to induce protective 

immunity upon HMPV challenge (de Swart et al., 2007). Enhanced pulmonary 

disease was observed in BALB/c mice challenged after vaccination with heat 

inactivated HMPV (potentiated with Freunds complete adjuvant) with a 26% 

mortality rate yet there was a reduced viral titre and high levels of neutralising 

antibodies corresponding to protection (Hamelin et al., 2007).  
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1.12.2 Live attenuated vaccines 

Live attenuated vaccines have the advantage of mimicking natural infection without 

inducing enhanced disease with addition of potentially providing protection against 

subsequent secondary infections (Herfst and Fouchier, 2008).  

 

Several strategies have been investigated for the development of live attenuated 

vaccines against HRSV. Extensive passage at suboptimal temperatures allowed the 

generation of cold-adapted mutants (cp), postulated to be less fit for natural 

conditions. Growth in the presence of mutagens identified several temperature 

sensitive mutants (ts), which would be restricted to growth in the upper respiratory 

tract (Collins and Murphy, 2007). The rationale was that these mutants would be 

sufficiently attenuated for HRSV-seronegative infants but immunogenic for 

experienced individuals. However, the chosen vaccine candidates were insufficiently 

attenuated and caused mild respiratory tract congestion in infants (Wright et al., 

2000). 

 

Cp and ts strains of HMPV have been developed by repeated passage at low 

temperatures. These mutants showed reduced replication in the upper and lower 

respiratory tract of hamsters nonetheless elicited high levels of neutralising antibodies. 

Upon challenge following immunisation with these mutants, hamsters were 

completely protected against challenge with a heterologous strain of HMPV 

confirming cross-protective immunity (Herfst et al., 2008a). Further investigation of 

these attenuated strains in cynomolgus macaques, revealed there to be no protection 

upon challenge 8 weeks after the last immunisation symptomatic of a rapid waning of 

immunity. Viral neutralising antibodies were only just above the detection limit 

following the second immunisation suggesting the vaccine was over-attenuated yet an 

apparent priming of T and B cell responses was enough to shorten the period of virus 

shedding and accelerate virus clearance (Herfst et al., 2008c).  

 

1.12.3 Chimeric vaccines 

The development of a chimeric bovine parainfluenza virus type 3 (PIV3) harbouring 

the F and hemagglutinin-neuraminidase (HN) genes of PIV3 by Tang et al, 2003, 

facilitated the expression of the F protein of HMPV. Immunisation of hamsters and 

African green monkeys induced both PIV3 and HMPV neutralising antibodies that 
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subsequently protected against PIV3 and HMPV challenge (Tang et al., 2005; Tang et 

al., 2003). 

 

Hamsters immunised with a recombinant human parainfluenza virus type 1 (PIV1) 

expressing the F protein of HMPV developed a serum antibody response that 

neutralised both homologous and heterologous strains. These hamsters were protected 

from subsequent HMPV challenge from both lineages (as well as PIV1) indicating 

HMPV F protein is the major antigen mediating cross-protective immunity 

(Skiadopoulos et al., 2004). Conversely, hamsters intranasally immunised with PIV1 

expressing either the G or SH glycoprotein of HMPV did not produce neutralising 

antibodies even with a booster immunisation. Furthermore, whilst the protective 

response against HMPV challenge from the G protein was only weak, the response 

elicited by the SH protein was insignificant (Skiadopoulos et al., 2006), concluding 

neither the G or SH glycoproteins of HMPV are major neutralising or protective 

antigens in this system. 

 

Other chimeric vaccines have been generated by replacing the nucleoprotein or the 

phosphoprotein of HMPV with their counterparts from AMPV-C. These chimeric 

vaccines induced high levels of neutralising antibodies after intranasal infection. 

Although there was no significant difference in viral titres in the lungs and nasal 

turbinates compared to the wild type HMPV. However, there was a 100-1000 fold 

reduction in replication of the P-chimera in the upper and lower respiratory tract of 

African green monkeys with the immunogenicity comparable to that of the wild type 

HMPV (Pham et al., 2005). 

 

1.12.4 Deletion mutants 

Recombinant HMPVs lacking the small hydrophobic, G, or the M2-2 proteins were 

developed using a reverse genetic system (Biacchesi et al., 2004a; Herfst et al., 2004). 

These deletion mutants have been reported to efficiently replicate in vitro whilst being 

attenuated in both hamsters and African green monkeys identifying them each as 

nonessential accessory proteins. Replication of G and M2-2 mutant viruses was 

reduced 6 and 160 fold respectively in the upper respiratory tract and 3200 and 4000 

fold respectively in the lower respiratory tract. Whereas the SH mutant replicated 

somewhat more efficiently and replication was only slightly lower compared to wild 



  42   

 

 

type HMPV. Upon challenge with wild type HMPV, all deletion mutants were highly 

protective (Biacchesi et al., 2005a; Biacchesi et al., 2004b; Buchholz et al., 2005). 

Furthermore, a similar study involving the deletion of M2-2 mirrored the results 

above and resulted in attenuation in hamsters and conferred protection against 

challenge with wild type HMPV (Schickli et al., 2008).  

 

1.12.5 Virus replicon particles 

Alpha based replicon particles based on Venezuelan equine encephalitis virus were 

generated encoding HMPV F or G proteins to test their immunogenicity in both mice 

and cotton rats. Intranasal inoculation with both constructs elicited significant levels 

of HMPV-specific IgA antibodies in both the upper and lower respiratory tract which 

has been shown to be associated with protection against respiratory tract infections. 

Furthermore, systemic IgG antibodies were detected with HMPV F-specific 

antibodies possessing neutralising activity. However, the elevated levels of HMPV G-

specific antibodies did not contribute to neutralisation or protection against HMPV 

challenge. Homologous challenge of the vaccinated animals resulted in reduced 

replication in the lower respiratory tract although HMPV titres were not completely 

reduced in the nasal turbinates. Surprisingly, despite the inability to produce cross 

specific neutralising antibodies, vaccinated animals were still protected in the lower 

respiratory tract when challenged with a heterologous strain. The ability to skew the 

immune response towards a Th1 type response may have prevented the development 

of disease potentiation (Mok et al., 2008).  

 

1.12.6 Subunit vaccines 

Due to its highly immunogenic nature, the F glycoprotein has been studied for subunit 

vaccine development. Antibodies generated to the F protein have been found to be 

protective both in vitro and in vivo (Hamelin et al., 2008; Ma et al., 2005; 

Skiadopoulos et al., 2006; Skiadopoulos et al., 2004; Tang et al., 2005; Ulbrandt et 

al., 2006; Williams et al., 2007).  

 

Immunisations of Syrian hamsters and cotton rats with soluble F protein resulted in 

the induction of high levels of virus neutralising antibodies with a more then 1500-

fold replication reduction in the lower respiratory tract (Cseke et al., 2007).  

Generation of two soluble F protein subunit vaccines were evaluated for 
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immunogenicity, antigenicity and cross-protective efficacy in Syrian golden hamsters. 

Following two immunisations, high titres of neutralising antibodies were detected and 

upon challenge with both homologous and heterologous strains, the lower respiratory 

tract was completely protected against infection (Herfst et al., 2007). Further 

immunisations in cynomolgus macaques induced HMPV-F specific neutralising 

antibodies and cellular immune responses but the humoral response waned over time. 

Challenge 8 weeks following the last immunisation resulted in no lower respiratory 

tract protection indicating a certain threshold of virus neutralising antibody titres may 

be needed for protection against subsequent infection (Herfst et al., 2008c).  

 

 

1.13 Vaccinia virus 

The dissection of the humoral response to HRSV infection was greatly facilitated by 

the individual expression of the viral glycoprotein genes in eukaryotic systems, in 

which the glycoproteins achieved near-authentic folding and post-translational 

modifications. Principle among these was the recombinant vaccinia virus system 

(Moss, 1991). Evaluation of these recombinants in animal models identified the key 

roles of each viral protein and characterised the correlates of protection (Connors et 

al., 1991; Olmsted et al., 1988). Expression of HMPV glycoproteins in recombinant 

vaccinia virus is therefore, an urgent requirement for the progress in the understanding 

of the human immune response and for the generation of glycoprotein specific 

monoclonal antibodies which may be of use in prophylaxis.  

 

1.13.1 Classification and structure 

Vaccinia virus belongs to the family of Poxviridae, which is split into two subfamilies 

Entomopoxvirinae (insect poxviruses) and Chordopoxvirinae (vertebrate poxviruses). 

Vaccinia virus belongs to the Chordopoxvirinae and is classified among the 

Orthopoxvirus genus along with the viruses cowpox and variola virus (Moss, 1996). 

 

Vaccinia virus has a large bricked-shaped virion, which ranges in diameter from 300-

400nm. A complex core is surrounded by a lipoprotein envelope containing a single 

liner double stranded DNA of approximately 200kbp with a hair-pin loop at each end 

(Moss, 1991; Moss, 1996). 
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Virus-encoding enzymes including a multi-subunit DNA-dependent RNA 

polymerase, a transcription factor, capping and methylated enzymes and a poly (A) 

polymerase are located within the core of the virus and together are involved in the 

synthesis of translatable mRNA (Moss, 1991). 

 

1.13.2 Vaccinia virus as an immunological tool 

A number of expression systems are available for the expression of eukaryotic genes 

in prokaryotic cells. Despite the ability of bacteria to provide high expression levels, 

correct folding, proteolytic processing, glycosylation, secretion and subunit assembly 

may not occur precisely in prokaryotic systems. Therefore eukaryotic genes are best 

expressed in eukaryotic cells (Fuerst et al., 1986). 

 

Poxviruses have been found to be excellent eukaryotic expression vectors due to the 

fact that both RNA and DNA synthesis occurs within the cytoplasm instead of the 

host cell nucleus. This allows the host events to be separated from those of the virus 

and means potential problems of integration into the host cell genome are not an issue 

(Hruby, 1990; Moss, 1991). Incorporation of genetic information required to ensure 

the correct transport of the foreign transcripts from the nucleus to the cytoplasm can 

also be avoided. 

 

Vaccinia virus, in particular, has a broad host range and has the ability to replicate in 

many different cell culture lines. Its large genome has the capability of 

accommodating both large inserts of foreign DNA (>25kbp) and large deletions of 

viral sequence (>20kbp) and thus has the potential to allow insertion of several 

different genes into the same genome. Usually a non-essential region of the genome is 

targeted to allow the virus to replicate independently (Hruby, 1990). 

 

There has been evidence to suggest that foreign genes incorporated into the viral 

genome can be expected to undergo a variety of post-translational modifications 

including N and O glycosylation, phosphorylation, myristylation, proteolytic 

cleavage, polarised membrane and nuclear transport and secretion. The proteins in 

general are biologically active, transported to the correct cellular compartment and 

exhibit complete functional activity allowing the protein to have authentic antigenicity 

(Hruby, 1990; Moss, 1991). 
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1.13.3 Vaccinia virus expression systems 

There are at least two vaccinia virus promoters commonly used in the construction of 

expression vectors, the 7.5-KDa gene promoter and the 11-KDa promoter. The P7.5 is 

a constitutive early/late promoter allowing the gene of interest to be expressed in the 

early and late phase of vaccinia virus infection, whereas the P11 promoter is only 

expressed as a late gene, after viral replication. Both of these promoters are capable of 

directing the high-level expression of downstream foreign genes (Hruby, 1990). An 

alternative, enhancing recombinant protein production, is the bacteriophage T7 

promoter. The gene of interest, located downstream of the T7 promoter, is transcribed 

by the bacteriophage T7 DNA-dependent RNA polymerase, noted for its high-

transcriptase activity, stringent promoter specificity and single-subunit structure 

(Mohamed and Niles, 2004; Moss, 1991).  

 

1.13.4 Construction of expression vectors 

Homologous recombination occurs naturally during the replication of poxviruses 

allowing foreign DNA to be integrated into the viral genome. To exploit this 

phenomenon for the introduction of foreign genetic material into the virus genome, a 

shuttle vector must first be constructed where foreign DNA is first integrated into the 

multiple cloning site (MCS) of a plasmid using restriction endonucleases. Such a 

shuttle vector is pTM1, in which the MCS is embedded within a region encoding the 

thymidine kinase gene, which will facilitate efficient recombination between the 

homologous thymidine kinase (TK) sequence in the vaccinia virus genome. This 

occurs in about 0.1% of the progeny virions (Moss et al., 1990). The 

encephalomyocarditis virus independent ribosomal entry site (EMC) is located 

upstream of the MCS and, in the absence of capping and methylation of the T7 

transcripts, is required for efficient cap-independent translation (Elroy-Stein et al., 

1989; Fuerst and Moss, 1989). The EMC and MCS are flanked by promoter and 

terminator elements for the bacteriophage polymerase T7, necessary for expression of 

the gene of interest when recombination occurs within the vaccinia virus. The plasmid 

also contains an ampicillin resistance gene that will allow for selection in Escherichia 

coli during cloning, and the bacteriophage f1 single strand DNA origin of replication 

which allows the plasmid to replicate once inside the bacterial cell (Moss et al., 1990). 

 

 



  46   

 

 

 
 
 

 

 

 

 

 

 

 

 

Figure 1.4 Schematic diagram of plasmid, pTM1. 

 

 

 

A number of alternative shuttle vectors can be utilised to aid construction and 

selection of recombinant viruses, including the related plasmid, pTM3 and pSC11 

(Chakrabarti et al., 1985; Mohamed and Niles, 2004). The plasmid, pTM3, contains 

the Escherichia coli guanine phosphoribosyltransferase (gpt) gene that permits 

selection of recombinant vaccinia virus with mycophenolic acid (Mohamed and Niles, 

2004; Moss et al., 1990). In the co-expression vector, pSC11, embedded within the 

TK sequence, the target gene is under the control of the P7.5 promoter. The presence 

of a β-galactosidase gene under the control of the vaccinia virus P11 promoter allows 

additional screening of recombinant plaques with X-gal (Chakrabarti et al., 1985).  

TK_L/TK_R Thymidine kinase gene 

PT_7/TT_7 T7 promoter/T7 terminator 

EMC  Encephalomyocarditis virus independent ribosomal entry site 

MCS  Multiple cloning site 

F1_ORI  Bacteriophage f1 origin of replication 

pUC19_ORI pUC19 origin of replication 

ApR  Ampicillin resistance gene 
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In the most widely used format cells are infected with a recombinant vaccinia virus 

expressing the bacteriophage T7 RNA polymerase, which is under the control of the 

early/late vaccinia virus P7.5 promoter and so is continuously expressed. The cells are 

then transfected with the shuttle vector carrying the gene of interest flanked by the T7 

promoter and terminator elements (Fuerst et al., 1986).  

 

Homologous recombination occurs between the TK coding region flanking the T7 

promoter-regulated target gene in the plasmid and the TK sequence present in the 

vaccinia virus genome and renders the TK gene inactive (Mackett et al., 1982). TK 

negative recombinants can be selected using by 5-bromodeoxyuridine (BuDR), which 

blocks the replication of TK positive virus. This BuDR is a synthetic nucleoside that 

is an analogue of thymidine. Upon addition to cell culture, the BuDR is 

phosphorylated by thymidine kinase and incorporated into the nucleotide sequence 

during DNA replication as a replacement for thymine. However, instead of pairing 

with adenine as part of the replication process, the conformation of BuDR leads to 

miss pairing with guanine and consequently alters the nucleotide sequence and thus 

proteins translated will be non-functional (Earl and Moss, 1991). 

 

Relatively large scale protein expression can be achieved by integrating the T7 

promoter-regulated gene into the genome of a second recombinant vaccinia virus. 

When coinfected into cells with the recombinant virus expressing the T7 RNA 

polymerase, high levels of target gene expression can be achieved (Fuerst et al., 

1987). Under favourable conditions, levels of recombinant protein made within 24 

hours can exceed 10% of the total cell protein (Elroy-Stein et al., 1989). Nonetheless, 

the co-infection protocol requires accurate determination of virus titres and can be 

quite costly. However, studies by Fuerst et al (1987) discovered that construction of a 

recombinant vaccinia virus containing both the T7 RNA polymerase and a T7 

promoter-regulated gene seemed to have poor viability. A possible solution is the 

incorporation of the bacteriophage T7 RNA polymerase gene into a stable cell line. 

Upon transfection, the target gene under the control of the T7 promoter could be 

expressed in the presence of the EMC untranslated region. However, protein yields 

were low and required vaccinia virus infection for high levels of expression (Elroy-

Stein and Moss, 1990; Lieber et al., 1989).  
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Chapter 2: Aims 
 

The aim of this study was to distinguish the immunogenic epitopes of the 

glycoproteins of HMPV. The initial aims are discussed below. 

 

1. To clone the F, G and SH genes of both subtypes of HMPV into pTM1 in order to 

produce recombinant vaccinia viruses capable of expressing the individual 

glycoproteins. 

 

2. To develop a screening assay with these recombinant vaccinia viruses, primarily 

vaccinia virus expressing the G glycoprotein, that will allow the generation of 

monoclonal antibodies. 

 

3. To characterise the antibodies generated and assess the ability of the anti-viral 

glycoprotein antibodies to neutralise 

 

 

The second part of the project is to develop an animal model that will define the 

protective immunogens of HMPV. The initial aims are discussed below. 

 

1. To establish the infection model of the four genotypes of HMPV in mice, 

monitoring the kinetics of viral replication in the lungs and nasal mucosa and lung 

pathology by histochemical and immunohistochemical methods. 

 

2. Ascertain the protective nature of the G glycoprotein of HMPV by immunisation of 

BALB/c mice with the vaccinia virus recombinants generated followed by challenge 

with wild type HMPV. 
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Chapter 3: Materials and methods 
 

3.1 General reagents 

All chemicals were obtained from Sigma (Poole, UK) unless otherwise stated. 

Distilled water was produced by the Aquatron A4S distillation system (J, Bibby 

Science Products Ltd., UK). Diethyl pyrocarbonate (DEPC) – treated water for 

molecular protocols was produced by the addition of 0.1% DEPC to Aquatron 

purified water, incubated at 37°C overnight and autoclaved. 

Reagents, glassware and plastics were sterilised by autoclaving at 121°C, 15lb PSI for 

15 minutes. 

 

3.2 Immunological reagents 

3.2.1 Primary antibodies 

3.2.1.1 Monoclonal antibodies 

MAb 24 (anti-F glycoprotein), MAb 57 (anti-N protein) and HMPV MAb pool were 

supplied as hybridoma cell supernatant by Fiona Fenwick (Fenwick et al., 2007). 

 

3.2.1.2 Polyclonal antibodies 

Anti HMPV mouse serum was produced in-house, using strains NCL03-4/145, 

NCL03-4/174 and NCL03-4/128 – infected human bronchiolar epithelial (16HBE140) 

cells (Section 3.5.1). All serum collected was absorbed with 16HBE140 cells to 

remove any cross reactive anti – cell antibody (see Section 3.5.3). 

 

3.2.2 Secondary antibodies 

3.2.2.1 Fluoresceine isothiocyanate (FITC) conjugates 

Sheep Anti-Mouse Fluoresceine isothiocyanate (FITC) conjugated Immunoglobulin 

(SAM FITC; Novocastra). 

 

3.2.2.2 Horse radish peroxidase (HRP) conjugates 

Polyclonal goat anti-mouse IgG (“NCL-GAMP”) (Novacastra) 

Polyclonal goat anti-mouse IgA  
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In ELISA, both antibodies were used at 1/1000 dilution as determined by 

chequerboard titration. 

 

3.2.3 Isotyping reagents  

Control mouse serum (Nordic immunology) 

 

3.2.4 Isotype-specific ELISA for immunoglobulins 

An ELISA was developed (Section 3.8.4) to identify the generated monoclonal 

antibodies isotype and quantify the levels of antibody in the hybridoma supernatant 

when compared with a standard. Goat anti-mouse immunoglobulins specific to IgG1, 

IgG2a and IgG2b were obtained from sigma and HRSV MAbs were used as positive 

controls for each isotype (Table 3.1). 

 

 
Table 3.1 Dilutions of goat anti-mouse immunoglobulin used to coat ELISA plates 

Goat anti-mouse immunoglobulin Positive control MAbs 

IgG1 1E3 

IgG2a BD51 

IgG2b 1A12 

 

 

A control mouse serum with known quantities of all isotypes was used to calibrate the 

quantity of antibody in each hybridoma supernatant (Section 3.8.4) (concentrations of 

isotyped antibodies in Table 3.2).  

 

 
Table 3.2 Concentration of each isotype in the standard mouse serum 

Isotype Concentration (mg/ml) 

IgG1 2 

IgG2a 8.54 

IgG2b 1.25 

IgG3 0.754 

IgA 2.75 

IgM 0.277 
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3.3 Cell culture methods  

3.3.1 Cell lines 

 
Table 3.3 Sources of cell lines used  

Name Source Reference 

HeLa Human cervical carcinoma Clinical Virology unit, RVI 

Vero Monkey kidney Clinical Virology unit, RVI 

16HBE140 Human bronchiole epithelial Dr Dieter Grunert† 

NS-1 Mouse plasmacytoma Prof, C. R. Madeley‡ 

TK-143B Monkey kidney ECACC*, no 87032605 

CV-1 African green monkey kidney fibroblasts ECACC, no 91112502 

L cells Mouse fibroblasts Department of Virology, 

Newcastle University 

LLC-MK Rhesus monkey kidney cells Clinical Virology unit, RVI 

 

† Cozens et al, 1994 

‡ Professor C. R Madeley, Newcastle upon Tyne Health Protection Agency 

* European collection of cell cultures 

 

3.3.2 Cell culture growth media 

Medium was prepared under sterile conditions, stored at 4°C and warmed to 37°C 

before use, unless otherwise stated. 

 

3.3.2.1 Growth medium for HeLa, Vero, LLC-MK and L cells 

Eagle minimal essential medium (EMEM), (Cambrex) containing: 

10% Foetal calf serum (PAA Labs) 

1% 10mg/ml penicillin (Cambrex) 

1% 10mg/ml streptomycin (Cambrex) 

1% 2mM L-glutamine (Cambrex) 

0.02% NaHCO3 containing phenol red 

 

3.3.2.2 Maintenance medium for HeLa, Vero, LLC-MK2 and L cells 

Eagle minimal essential medium (EMEM), (Cambrex) containing: 

2% Heat-inactivated foetal calf serum (PAA labs) 
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1% 10mg/ml penicillin (Cambrex) 

1% 10mg/ml streptomycin (Cambrex) 

1% 2mM L-glutamine (Cambrex) 

0.02% NaHCO3 containing phenol red 

 

3.3.2.3 Growth medium for 16HBE140, TK-143 and CV-1 cells 

EMEM medium as above with 0.1mM Non-essential amino acids (Cambrex) 

TK-143 cells have the addition of 1% 1.5mg/ml 5-Bromo-2-deoxyuridine (BuDR)  

 

3.3.2.4 Maintenance medium for 16HBE140, TK-143 and CV-1 cells 

EMEM medium as above with 0.1mM Non-essential amino acids (Cambrex) 

TK-143 cells have the addition of 1% 1.5mg/ml BuDR  

 

3.3.2.5 Hank’s Balanced Salt Solution (HBSS) 

100ml HBSS (Gibco) 

1% gassed NaHCO3 containing 4% phenol red (Gibco) 

 

3.3.2.6 Growth medium for hybridoma cells 

RPMI-1640 medium (Cambrex) containing: 

2-20% Foetal calf serum (PAA Labs) 

1% 10mg/ml penicillin (Cambrex) 

1% 10mg/ml streptomycin (Cambrex) 

1% 2mM L-glutamine (Cambrex) 

10% BM condimed H1 hybridoma cloning supplement (Roche) 

 

3.3.3 Routine cell culture 

Cells were either grown in 4oz sterile glass bottles or plastic tissue culture flasks 

where confluent cell cultures were split in a ratio of 1:3. The cell medium was 

removed and the monolayer was washed with 5ml of PBS followed by 5ml of versene 

containing 1% trypsin and incubated at 37°C for 10 minutes to dissociate the cell 

monolayer.  The cells were then washed with 3ml of growth medium (GM) and the 

cell suspension was split into 3 bottles; this was carried out approximately every 2-3 

days. 
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3.4 Virus and plasmid stocks 

3.4.1 HMPV isolates 

Strains NCL03-4/145, NCL03-4/174 and NCL03-4/128 were all isolated and kindly 

supplied by Fiona Fenwick and Rosemary McGuckin (Newcastle University, UK) 

 

3.4.2 Vaccinia virus stocks 

Wild type vaccinia virus (strain western reserve [VWT – WS2.1]), was kindly 

provided by Dr Gail Wertz (Alabama, USA). 

VTF7.3 (recombinant vaccinia virus containing the bacteriophage T7 polymerase 

under the control of the p7.5 promoter) (Fuerst et al., 1987) was kindly provided by 

Dr Bernard Moss (Laboratory of viral disease, NIAID, Bethesda, Maryland) 

Working stocks of wild type vaccinia virus and VTF7.3 was prepared as described in 

section 3.5.9. Viral titres were established by plaque assay (Section 3.5.11) and 

infectivity titres ranged from 7 x 107 to 2 x 108 pfu/ml. 

 

3.4.3 pTM1 

Plasmid pTM1 was kindly supplied by Dr Bernard Moss (Laboratory of viral disease, 

NIAID, Bethesda, Maryland).  

 

3.5 Virological methods 

3.5.1 HMPV inoculation 

Confluent cell cultures of 16HBE140 in 24-well tissue culture plates containing 1 x 

107 cells were inoculated with 200µl of rapidly thawed virus, diluted 1/10 in ice-cold 

MM. Plates were centrifuged at 740 x g for 1 hour in a MSE Mistral 3000 centrifuge 

to aid attachment. A further 800µl of MM was added to all wells and the plates were 

incubated at 37°C with 5% CO2, replacing the medium with fresh MM after 7 days, 

until 75% of the cells were infected as determined by indirect immunofluorescence 

(Section 3.5.4). To harvest, the cells were scraped into the medium using a plastic 

Pasteur pipette, centrifuged at 80 x g for 5 minutes in a bench top centrifuge and the 

cell pellet resuspended in 3ml of MM. The cells suspension was then aliquoted, snap 

frozen in liquid nitrogen and stored at -80°C. 
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3.5.2 Production of high titre virus inocula 

To obtain high titre virus, HMPV infected cells harvested were subsequently re-

infected onto confluent cultures of 16HBE140 cells as described in section 3.5.1. This 

process was repeated until virus titre increased to sufficient levels established by a 

fluorescent focus assay (Section 3.5.6). See Table 3.4 for titres of multiple passages of 

HMPV174, 145 and 128. 

 
Table 3.4 Yields of multiple passages of HMPV174, 145 and 128 on 16HBE140 cells 

Passage 
HMPV strain (titre ffu / ml) 

174 145 128 

4 5 x 105 - 9.6 x 104 

5 1 x 104 - 1.04 x 104 

6 8.53 x 105 5 x 106 8.53 x 105 

7 1.78 x 105 3.2 x 105 2.42 x 104 

8 6.13 x 105 1.64 x 106 7 x 103 

9 7.2 x 105 2.93 x 106 5.5 x 105 

10 7.3 x 105  1.2 x 105 

11 2.6 x 106   

12 7 x 106   

 

 

3.5.3 Absorption of anti-sera  

Four confluent 225cm3 tissue culture flasks of 16HBE140 cells containing a total of 

2.5 x 108 cells were washed two times with PBS. Cells were scraped into fresh PBS 

and pelleted by centrifugation at 700 x g for 20 minutes. The supernatant was 

removed with a Pasteur in order to remove as much fluid as possible and the pellet 

was sonicated three times for 30 seconds on ice with 30 second rests in between.  

 

Blood samples collected from immunised mice (see Section 3.15) were centrifuged at 

10000 x g for 5 minutes at 4°C in a microcentrifuge. Serum was carefully removed 

using a Gilson pipette and mixed with the 16HBE140 pellet to resuspend the cells. 

The cell suspension was placed in a 14ml falcon tube and rotated on a roller at 37°C 

for 1 hour, which was transferred to 4°C for a further 42 hours. The serum / cell 

suspension was then centrifuged at 10000 x g for 30 minutes at 4°C in a 
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microcentrifuge and the serum was carefully removed and stored at 4°C before testing 

by immunofluorescence.  

A further one or two absorptions may have been required to remove all non-specific 

antibodies.  

 

3.5.4 Indirect fixed cell immunofluorescence 

As described by Gardner and McQuillin, 1980 all antibodies were used, as 

appropriate, at an optimal dilution determined by chequerboard titration performed by 

Fiona Fenwick unless otherwise stated. 

 

Cells from infected cultures were fixed onto slides as below. The medium from a well 

in a HMPV infected 24-well plate (Section 3.5.1) was removed into a sterile tube 

leaving a residual volume. A small area of cells was scraped into this volume using a 

Pasteur pipette. 10µl of this cell suspension was placed onto each corresponding spot 

on a 10-spot multi well slide and the medium replaced in the well to prevent the 

monolayer from dying out. These were left to dry, fixed in cold acetone for 10 

minutes and stored at -20°C until required. When necessary, the slides were defrosted 

and left to dry. 10µl of primary antibody was added to each spot and the slides were 

incubated in a moist box for 30 minutes at 37°C. The slides were then washed and left 

to soak in PBS for 5 minutes before air-drying. 10µl of secondary antibody, 1/50 

dilution of SAM-FITC in a 1/1000 dilution of Evan’s blue in PBS, was added to each 

spot. The slides were incubated as above, washed and soaked in PBS for 5 minutes. 

This was followed by a 1-minute soak in distilled water and the slides were air dried. 

The spots were observed by ultra violet (UV) light under oil at 50 X magnification 

using a Nikon Eclipse E400 fluorescence microscope.  

 

3.5.5 Membrane immunofluorescence 

Once HMPV infected 16HBE140 cell cultures had achieved 75% cytopathic effect 

(CPE) (Section 3.5.1) determined by immunofluorescence (Section 3.5.4), three wells 

from a 24 well plate of HMPV infected cells and three wells from a negative mock 

inoculated 16HBE140 control plate were scraped into the medium and pipetted 

vigorously with a pasteur to break up cell clumps. Each cell suspension was 

transferred to labelled eppendorfs and microcentrifuged for 2 minutes at 535 x g to 
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pellet the cells. The cell pellet was washed twice in PBS and finally resuspended in 

650µl of PBS. 100µl of serial dilution of mouse serum or mouse monoclonal antibody 

was added to 100µl of both infected and uninfected cell suspensions and incubated for 

1 hour at 37°C in a CO2 incubator. Following incubation, the cell pellets were washed 

twice in PBS and resuspended in 50µl of SAM-FITC diluted 1/25 in PBS, and 

incubated for a further 1 hour as above. After incubation, cell pellets were washed 

three times as above and resuspended with a drop of PBS. This was transferred to a 

glass slide, covered with a cover slip and observed under a fluorescent microscope as 

described in section 3.5.4. 

 

3.5.6 Fluorescence focus assay  

After harvesting, all HMPV cultures were titred by a fluorescence focus assay adapted 

from that used for HRSV (Routledge et al., 1988) 

 

3.5.6.1 Plate preparation and infection 

A 96-well tissue culture plate was seeded with 3 x 106 16HBE140 cells/ml in growth 

medium and incubated overnight in 5% CO2 at 37°C. Serial ten-fold dilutions of virus 

sample, up to 10-7, were made in cold MM and held on ice. The growth medium on 

the 96-well plate was discarded and the plate blotted with a sterile paper towel. 25µl 

of each virus dilution was inoculated in triplicate onto the confluent cells. The plate 

was then incubated in a moist box for 1 hour at 37°C with 5% CO2. The inoculum was 

discarded and the cells washed with 200µl per well of warm HBSS. 200µl of warm 

MM was added to the cells, which were then incubated as above for a further 24 

hours. 

 

3.5.6.2 Fixing and staining 

At 24 hours post-inoculation, the medium was discarded and the cells were fixed with 

75% acetone in PBS for 10 minutes at 4°C. The acetone was discarded and the 

monolayer air dried, following which, 25µl of HMPV MAb pool was added to each 

well and the plate incubated for 30 minutes at 37°C. After incubation, the HMPV 

MAb pool was discarded and the cells were washed twice with PBS soaking for 5 

minutes each time. 25µl of a 1/50 dilution of SAM-FITC in PBS was then added to 

each well and incubated as above. After washing twice with PBS, 200µl of 0.0033% 
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naphthalene black was added as a counter stain, and the plate was incubated at room 

temperature for 10 minutes. This was discarded and the plates were washed twice 

with PBS and once with distilled water and air dried, before viewing under a 

fluorescence microscope (Nikon Eclipse E400) with a 20x objective lens. The number 

of fluorescing foci was counted and the titre calculated using the following formula. 

 

(Where f.f.u. means foci-forming units) 

 Virus titre (f.f.u. /ml) = Average number of foci x 40 x dilution factor 

 

3.5.7 Mock neutralisation 

Serial ten-fold dilutions of HMPV up to 10-6 were prepared in ice-cold MM. Each 

dilution was incubated in a round bottomed 96-well tissue culture plate at 37°C with 

5% CO2 for 1 hour. Confluent monolayers of 16HBE140 in a 24-well tissue culture 

plate were inoculated with 200µl of each virus dilution (four wells per dilution). 

Plates were centrifuged at 740 x g for 1 hour in a MSE Mistral 3000 centrifuge to aid 

attachment. A further 800µl of MM was added to all wells and the plates were 

incubated at 37°C with 5% CO2, replacing the medium with fresh MM after 7 days. 

At 15 days, cells from each well were scraped into medium and transferred to spots on 

a slide ready for immunofluorescence (Section 3.5.4).  

 

3.5.8 Neutralisation 

In a round bottomed 96-well tissue culture plate, 500µl of the appropriate dilution of 

virus, where approximately 75% of cells exhibited specific antibody staining at 15 

days as established from the method above, was incubated with 500µl dilutions of 

MAbs for 1 hour at 37°C with 5% CO2. Alongside this, 500µl of the diluted virus was 

incubated with 500µl of MM to act as a positive control. After the incubation, 200µl 

of each virus-antibody mix was transferred to four wells on a 16HBE140 confluent 

24-well plate and the plates were centrifuged at 740 x g for 1 hour. A further 800µl of 

MM was added to all wells and the plates were incubated at 37°C with 5% CO2, 

replacing the medium with fresh MM after 7 days. At 15 days, cells from each well 

were scraped into medium and transferred to spots on a slide ready for 

immunofluorescence (Section 3.5.4). 
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3.5.9 Preparation of vaccinia virus stocks 

Wild type and recombinant vaccinia viruses were handled in a contained biohazard 

category II laboratory. Frozen stocks of virus were thawed rapidly and held on ice, the 

vials of virus were sonicated 3 x 30 seconds in an ultrasonic bath and returned to ice. 

To each vial, 1/10th of the sample volume of 0.25% trypsin was added and the vials 

were incubated at 37°C in a water bath for 30 minutes and then returned to ice.  

To prepare virus stocks, 75cm2 tissue culture flasks containing HeLa cell monolayers 

were rinsed with warm sterile PBS and 3ml of the virus, diluted 1/10 in MM, was 

added to each flask. The flasks were incubated at 37°C in 5% CO2 for 1 hour to allow 

virus attachment, rocking the flasks every 15 minutes to prevent the cells from drying 

out. 

 

After the incubation, a further 17ml of MM was added to the flasks and these were 

returned to the incubator until full CPE was observed. Once this occurred, the cells 

were harvested into 3ml of MM from a 75cm2 tissue culture flask and aliquoted into 

200µl volumes. The aliquots were freeze/thawed 3 times using solid CO2/acetone and 

stored at -70°C. 

 

3.5.10 Passage of inactivated vaccinia virus 

Once inactivated (Section 3.5.18), vaccinia virus was passaged onto veros to ensure 

inactivation was complete. Frozen stocks of inactivated vaccinia virus were thawed 

rapidly and held on ice, the vials of virus were sonicated 3 x 30 seconds in an 

ultrasonic bath and returned to ice. To each vial, 1/10th of the sample volume of 

0.25% trypsin was added and the vials were incubated at 37°C in a water bath for 30 

minutes and then returned to ice. At the same time, frozen stocks of non-inactivated 

vaccinia virus was prepared in the same way. Confluent cell cultures of veros in 24-

well tissue culture plates were inoculated with 200µl per well of freeze/thawed 

viruses, diluted 1/10 in ice-cold MM. The plate was incubated at 37°C in 5% CO2 for 

1 hour to allow virus attachment and subsequently topped up with 800µl of MM 

before being incubated as above for 1 week to monitor infection. This process was 

repeated once a week for three weeks to ensure the virus was fully inactivated. 
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3.5.11 Vaccinia virus plaque assay 

For virus titration, ten-fold dilutions of virus were made in a total volume of 1ml in 

MM at 4°C to a dilution of 10-9.  The growth medium was removed from confluent 

Vero cells cultured in a 24 well plate and the monolayers were rinsed in warm sterile 

PBS. 150µl of each virus dilution from 10-5 to 10-9 was inoculated in duplicate onto 

the wells of Vero cells, with 4 wells inoculated with 150µl MM as negative controls.  

The plate was incubated at 37°C in 5% CO2 for 1 hour to allow attachment, rocking 

the plate every 15 minutes to prevent the cells from drying out. After attachment, the 

virus inoculum was removed and the cells were rinsed with warm sterile PBS.  1ml of 

MM was added to each well and the plate was incubated as before for 48 hours. 

After 48 hours, 1ml of 10% formal saline (3.8% formaldehyde in 0.85% sodium 

chloride) was added to each well and the plate was incubated at room temperature for 

10 minutes. The formal saline was then removed and the plate was rinsed under a 

running tap.  Plaques were stained with a drop of 2.5% (w/v) crystal violet for 3 

minutes, and then the plate was rinsed under the tap again. Plaques were counted.  

 

Virus titre = Number of plaques x dilution factor x 1/volume of inoculum (pfu/ml) 

 

3.5.12 Transient expression of HeLa cells with vaccinia virus VTF7.3 and pTM1 

recombinant DNA vectors encoding HMPV glycoproteins 

A 24 well plate was seeded with 3 x 106 HeLa cells and incubated overnight at 37°C 

with 5% CO2. The next day, 1ml stock of vaccinia VTF7.3 was rapidly thawed and 

sonicated for 3 x 30 seconds in an ultrasonic water bath.  100μl of 0.25% trypsin was 

added to the virus, and the vial was incubated in a 37°C water bath for 30 minutes. 

The virus was diluted to an MOI of 30 and was held on ice. The HeLa monolayers in 

3 wells were washed with warm PBS twice. 500µl of diluted virus was added to the 

first two wells and 500µl of serum and antibiotic free maintenance medium (SAF 

MM) was added to the third to act as an uninfected control. The plate was incubated 

for 30 minutes at 37°C with 5% CO2. During incubation, the transfection mix was 

prepared:  
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100µl     recombinant pTM1 plasmid DNA (10ug) 

5µl         Lipofectin reagent (Invitrogen) 

95µl       SAF MM 

 

The transfection mix was incubated at room temperature for 15 minutes, and a further 

800µl of SAF MM was added. After incubation, the virus was removed from the cells 

which were washed twice with SAF MM. The transfection mix was added to the first 

vaccinia virus infected well and 1ml of SAF MM to both the second well of virus 

infected cells and the uninfected control well and the plate was incubated for 3 hours 

at 37°C with 5% CO2. After incubation, the transfection mix was removed and 1ml of 

GM was added and the plate was incubated for a further 21 hours. 

The cells from each well were scraped into PBS and spot slides were made for 

indirect immunofluorescence. 

 

3.5.13 Recombination of wild type vaccinia virus and pTM1 recombinant DNA 

vectors encoding HMPV glycoproteins in CV-1 cells 

Three 25cm2 flasks were seeded from a confluent 75cm2 tissue culture flask 

containing 1 x 107 CV-1 cells and incubated overnight at 37°C with 5% CO2. The next 

day, 200µl of wild type vaccinia virus was rapidly thawed and sonicated for 3 x 30 

seconds in an ultrasonic water bath. 20µl of 0.25% trypsin was added to the virus and 

the vial was incubated for 30 minutes at 37°C in a water bath. The virus was diluted to 

give a multiplicity of infection (MOI) of 0.05 pfu per cell in each monolayer in 3ml of 

SAF MM and was held on ice. The CV-1 monolayers in all flasks were washed twice 

with warm PBS. 1ml of virus was added to two flasks and 1ml of SAF MM was 

added to the third as an uninfected cell control. The flasks were then incubated at 

37°C with 5% CO2 for two hours, rocking the flasks every 20 minutes to prevent the 

cells from over-drying. During the incubation, the transfection mix was prepared: 

 

3μg  Recombinant or control pTM1 DNA from maxiprep 

Tube one 

295μl Serum and antibiotic free MM 
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30μl  Lipofectin® reagent, 1mg/ml (Invitrogen) 

Tube two 

270μl  Serum and antibiotic free MM 

 

The two tubes were combined and held at room temperature for 15 minutes and a 

further 2.4ml of SAF MM was added to the mixture. The inoculum was removed from 

the infected cells and the monolayers were washed twice with warm PBS. 1ml of the 

transfection mix was added to each of the 3 flasks which were then incubated at 37°C 

with 5% CO2 for 30 minutes, rocking the flasks half way through to prevent the cells 

drying up. After incubation, 9ml of MM containing 5% FCS was added to each flask 

and the cells were incubated for a further 3.5 hours. The medium was then replaced 

with 10ml of fresh MM with 5% FCS and incubated as above for 48 hours. 

Once full CPE was observed, the cells were scraped into the medium and pooled. The 

virus/cell suspension was centrifuged at 80 x g for 5 minutes to pellet the cells and 

resuspended in 1.6ml of SAF MM. This was aliquoted into 200µl volumes, snap-

frozen and thawed in solid CO2/acetone and stored at -70°C. 

 

3.5.14 Plaque purification of recombinant vaccinia virus from transfected CV-1 

cells 

 

Reagents 

15mg 5-Bromo-2-deoxyuridine  

BuDR stock solution 

10ml Water 

 

10ml 10x Eagles minimum essential medium (Cambrex) 

TK- BUdR medium 

10ml Foetal calf serum (PAA Labs) 

1ml Non essential amino acids 0.1mM (Cambrex) 

1ml 10mg/ml penicillin / streptomycin (Cambrex) 

1ml  2mM L-glutamine (Cambrex) 

1ml BuDR stock solution 
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Two 6 well tissue culture plates were seeded with TK-143 cells that had been growing 

in TK- BUdR medium, and were incubated at 37°C with 5% CO2
 until confluent. A 

200μl aliquot of transfected CV-1 cell lysate (from Section 3.5.13) and a 200μl 

aliquot of wild type vaccinia virus stock were thawed and sonicated for 30 seconds in 

an ultrasonic water bath.  20μl of 0.25% trypsin was added to both vials and they were 

incubated for 30 minutes in a 37°C water bath, and then held on ice. Ten fold 

dilutions of the transfected CV-1 cell lysate to 10-4 were made in MM containing 8% 

FCS. The wild type vaccinia was ten fold diluted to 10-3 in MM.  The TK-143 cells in 

the 6 well tissue culture plates were rinsed with warm PBS, and 500µl of the four 

dilutions of CV-1 transfected cell lysate, along with the 10-3 dilution of wild type 

vaccinia and a “no virus” control well were inoculated in duplicate, into both 6-well 

plates.  The two plates were incubated at 37°C with 5% CO2 for 2 hours, rocking the 

plates every 20 minutes to prevent the cells from over drying.  After incubation, the 

inoculum was removed from the plates and the wells in one plate were overlayed with 

2% low temperature gelling agarose in EMEM at 37°C containing 1.5µg/ml BuDR (+ 

BuDR plate). The second plate was overlaid in similar medium but lacking BuDR (No 

BuDR plate). The plates were incubated at room temperature until the agarose had set, 

then were transferred to the incubator 37°C with 5% CO2 for 48 hours. After 48 

hours, 2ml of neutral red solution was added to each well and the plate incubated as 

before until plaques become visible. Well isolated plaques were collected from the + 

BuDR plate using a pipette tip and were placed in vials containing 200µl of SAF MM. 

The vials were then snap frozen and thawed three times in solid CO2 / acetone and 

stored at -70°C. 

 

3.5.15 Production of high titre stocks 

Each plaque pick from section 3.5.14 was rapidly thawed and sonicated 3 x 30 

seconds in an ultrasonic water bath. To each vial, 1/10th of the sample volume of 

0.25% trypsin was added and the vials were incubated for 30 minutes at 37°C in a 

water bath.  

 

To prepare virus stocks, a 24-well tissue culture plate containing 1 x 107 L cells was 

rinsed with warm sterile PBS and 100µl of each virus, diluted 1/2 in MM, was added 
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to each well. The plate was incubated at 37°C in 5% CO2 for 2 hours to allow virus 

attachment, rocking the plate every 20 minutes to prevent the cells from drying out. 

After the incubation, a further 800µl of MM was added to the wells and the plate was 

returned to the incubator until full CPE was observed. Once this occurred, the cells in 

each well were harvested into 400µl of SAF MM and aliquoted into 200µl volumes. 

The aliquots were freeze/thawed 3 times using solid CO2/acetone and stored at -70°C. 

DNA was extracted from a 200μl aliquot of each plaque pick as described in section 

3.5.16, before further passage of an individual clone. 

To increase titres, the chosen clone was subsequently passaged from a 24-well plate 

through to a 225cm3 tissue culture flask as described above using the volumes stated 

in Table 3.5. 

 
Table 3.5 Conditions for passage of vaccinia virus plaque picks 

Tissue culture plastic 
Volume of 

inoculum (ml) 
Dilution in MM 

Harvested volume 

(ml) 

24 well plate 0.2 1/2 0.4 

6 well plate 0.5 1/4 0.8 

25cm3 flask 1 1/10 1 

75cm3 flask 3 1/10 3 

225cm3 flask 5 1/10 9 

 

 

3.5.16 DNA prep 

DNA from a 200µl aliquot of recombinant vaccinia viruses containing the HMPV 

glycoproteins grown in a 24 well plate (Section 3.5.15) was purified and eluted in 

100µl of Buffer AE using a QIAgen DNA purification mini kit (QIAgen) according to 

the manufacturer’s instructions. 

These preps were stored at -20°C until required. 

 

3.5.17 Coinfection of L cells with recombinant vaccinia virus expressing HMPV 

G and F glycoproteins and vaccinia virus VTF7.3 

Recombinant vaccinia virus, VTF7.3, was cultured in L cells as described in section 

3.5.9 to produce stocks for coinfection. Viral titres were established by plaque assay 

(Section 3.5.11) and infectivity titres ranged from 7 x 107 to 2 x 108 pfu/ml. 
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A 75cm2 tissue culture flask was seeded with L cells and incubated until confluent at 

37°C with 5% CO2. A vial of vaccinia VTF7.3 was rapidly thawed and sonicated for 3 

x 30 seconds in an ultrasonic water bath. 1/10th of the sample volume of 0.25% 

trypsin was added and the vial was incubated at 37°C for 30 minutes then held on ice. 

In parallel, a vial of putative recombinant vaccinia virus clone expressing HMPV 

glycoproteins (Section 3.5.15) was rapidly thawed, sonicated, trypsinised and 

incubated as above. Both VTF7.3 and the recombinant vaccinia virus expressing the 

HMPV glycoprotein was diluted to give an MOI of 3 in a volume of 1.5ml MM 

containing 5% FCS. The L cells were washed twice with warm PBS and 1.5ml of 

VTF7.3 was added to the flask. 1.5ml of the recombinant vaccinia virus clone was 

also added to the flask and rocked to mix. The flask was incubated at 37°C in 5% CO2 

for 2 hours, rocking every 20 minutes to prevent drying. After incubation, the 

inoculum was removed and replaced with 10ml of MM containing 5% FCS and 

incubated as above for 22 hours. 

To harvest the cells, the medium was removed from each well and the cells were 

carefully washed with warm PBS. The cells were then scraped into 3ml of PBS and 

spot slides were made as above and stained for antigen expression by 

immunofluorescence. 

 

For inactivation (Section 3.5.18), a coinfection of recombinant VTF7.3 and vaccinia 

virus expressing the HMPV glycoproteins was carried out on a larger scale using 

225cm2 tissue culture flasks. Once the 22-hour incubation period was complete, the 

medium was removed and the cells were scraped into 9ml of PBS. 

 

3.5.18 Inactivation of vaccinia virus expressing HMPV G and F glycoproteins 

and vaccinia virus VTF7.3 

 

Reagents 

0.175M Sodium hydroxide in distilled water 

Binary Ethylenimine (BEI) solution  

2.049g  Binary ethylamine (BEA) 
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BEI solution was prepared fresh for each inactivation and used immediately. The 

preparation was incubated at 37°C in a water bath for 30-60 minutes until the pH had 

dropped from 12.5 to 8.5. Subsequently 3.3ml was added to 96.7ml 2mM EDTA 

diluted in PBS. Protease inhibitor was added at 1% of the final volume and this 

solution was sterile filtered with a 2nm filter. 

 

In a bijou, 2.75ml of vaccinia virus infected cell suspension at a concentration of 3 x 

106 cells/ml was added to 2.75ml of fresh BEI. Along side, 250µl of PBS was added 

to 250µl of cell suspension to act as a control. The bijoux were then incubated for 24 

hours at 37°C, switching the bijoux after two hours to ensure no pockets of virus 

remained. 

 

After 24 hours, the inactivation process was stopped by the addition of 1M sodium 

thiosulphate at 10% of the volume of BEI used. The cells were then centrifuged in a 

bench top centrifuge at 80 x g for 5 minutes. The pelleted cells were resuspended in 

5ml of SAF MM, centrifuged again as above to wash the cells and resuspended in a 

final volume of 2.75ml of SAF MM. This was aliquoted into 200µl volumes, snap-

frozen and thawed three times in solid CO2/acetone and stored at -80°C. 

 

A vial of each virus was thawed along side the positive control and passed onto a 24 

well tissue culture plate containing Vero cells as previously described (Section 

3.5.10). The virus was blind passaged once a week for 3 weeks. One week after the 

third passage, if no CPE developed, the virus was considered inactivated. 

 

 

3.6 Polymerase chain reaction (PCR) 

3.6.1 One-way product flow 

Assay set up, RNA extraction and addition, cDNA addition and product visualisation / 

extraction were all performed in different rooms using separate laboratory coats, 

pipettes and equipment. RNA, cDNA and amplicand remained in different freezers 

within the allotted rooms until use in the reaction. A one-way flow system ensured 

that once the assay mix had been removed from each room throughout the system, it 
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was not returned to prevent contamination. All plastics and reagents used in each 

designated area were pre-sterilised and un-opened to prevent contamination.  

 

3.6.2 RNA extraction 

3.6.2.1 HMPV 

In an RNase-free environment, total RNA from 2ml of HMPV infected 16HBE140 

cells and 2ml of negative control 16HBE140 cells was extracted using a QIAgen 

RNeasy mini kit. The aliquots were thawed into 600µl of QIAgen lysis buffer 

containing 0.1% β-Mercaptoethanol and the RNA extraction was carried out 

according to the manufacturers instructions. The RNA was eluted in 100µl of RNase 

free water and stored at -80°C. 

 

3.6.2.2 Tissues 

In an RNase-free environment, viral RNA from 140µl of each tissue lysate was 

extracted using a Viral QIAamp mini kit according to the manufacturers instructions. 

The RNA was eluted in 40µl of AVE buffer and stored at -20°C.    

 

3.6.3 Polymerase chain reaction (PCR) amplifications 

Both RT and PCR reactions were carried out in sterile 0.2ml eppendorf tubes in a 

PTC-200 Peltier thermal cycler (M.J. Research Inc., USA). All reactions were 

optimised for magnesium chloride and primer concentration. 

  

3.6.4 Reverse transcriptase reaction (RT PCR) 

Reverse transcriptase reactions were carried out in 30µl volumes, 10µl of which was 

extracted total RNA solution (Table 3.9 and Table 3.11) under the conditions 

described in Table 3.12. Resulting cDNA was either used immediately or stored at -

20°C.  

 

3.6.5 PCR 

The reactions were carried out in 50µl volumes containing 5µl of cDNA from the RT 

reaction (Table 3.7) under the conditions described in Table 3.10. Amplified DNA 

was either used / visualised immediately or stored at -20°C until needed. 
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Table 3.6 Primers used for reverse transcription-polymerase chain reaction amplification from 

RNA of HMPV128 

 

Primer  

set 
Primer Sequence (5’- 3’) 

Location 

1 

HMPV 

128F F 
CGCATATCATGAGTTGGAAAGTGATGATCATCATTTC 

HMPV F 

(1-29) 

HMPV 

128F R 
CGCATACTCGAGCTAACTATGTGGTATGAAACCGCC 

HMPV F 

(1620-1597) 

2 

HMPV 

128G F 
CGCATACCATGGAAGTAAGAGTGGAGAACATTC 

HMPV G 

(1-25) 

HMPV 

128G R 
CGCATACTCGAGAACAGTAGATTCACAAAACGGATCCAT 

HMPV G 

(27-1 of L) 

3 

HMPV 

128SH F 
CGCATATCATGAAAACATTAGATGTCATAAAAAGTGATG 

HMPV SH 

(1-31) 

HMPV 

128SH R 
CGCATACTCGAGCGAATGTTCTCCACTCTTACTTC 

HMPV SH 

(26-4 of G) 

 

 

 
Table 3.7 Primers used for reverse transcription-polymerase chain reaction amplification from 

RNA of HMPV145 

 

Primer  

set 
Primer Sequence (5’- 3’) 

Location 

1 

HMPV 

145G F 
CGCATACCATGGAGGTGAAAGTGGAGAACAT 

HMPV G 

(1-23) 

HMPV 

145G R 
CGCATACTCGAGAACAGTGGATTCATTAAGAGGATCCAT 

HMPV G 

(24-1 of L) 
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Table 3.8 Primers used for reverse transcription-polymerase chain reaction amplification from 

RNA of HMPV174 

 

Primer  

set 
Primer Sequence (5’- 3’) 

Location 

1 

MF1499F* GCGGCAATTTTCAGACAACG 
HMPV F 

(626-645) 

MF2175R* ACATGCTGTTCGCCTTCAAC 
HMPV F 

(1321-1302) 

2 

HMPV 

174G F† 
GCGGAATTCCTATGGAGGTGAAAGTGGAGAACAT 

HMPV G 

(1-23) 

HMPV 

174G R† 
GCGGGATCCAACAGTGGATTCATTAAGAGGATCCAT 

HMPV G 

(24-1 of L) 

3 

HMPV 

174G F2 
AGCTCACCACCCACAGAATC 

HMPV G 

(155-174) 

HMPV 

174G R2 
TGTGGACTGTCGGAGTTGTC 

HMPV G 

(404-385) 

4 

HMPV 

174SH F 
CGCATATCATGATAACATTGGATGTCATTAAAAATGATG 

HMPV SH 

(1-31) 

HMPV 

174SH R 
CGCATACTCGAGCCATAACTACTTGTCCCATATTTTTG 

HMPV SH 

(4-736 of 

SH) 

5 

HMPV 

174SH F2 
CCACTCTAAACCATGATATAACACAG 

HMPV SH 

(251-276) 

HMPV 

174SH R2 
CTGTGTTATATCATGGTTTAGAGTGG 

HMPV SH 

(276-251) 

 

Primers were provided by * Ingram (2006) and † Robinson (2007). 
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Table 3.9 Optimized reaction conditions for the reverse transcription-polymerase chain reaction 

amplification from RNA of HMPV 

Reaction (cycling 

programme) 

Reagents (final working 

concentration) 

Volume used  

Reverse 

Transcription (RT) 

step 

Primer (2µM) 

MgCl2 (5mM) 

Mixed dNTPs (1mM) 

RT buffer (1x) 

RNasin Ribonuclease Inhibitor (30U) 

AMV-RT (8U) 

RNA 

DEPC treated water 

1.5µl  

6µl  

3µl  

3µl  

0.75µl  

0.8µl 

10µl 

4.95µl 

RUTH1 

(MF1499F and 

MF2175R) 

 

All F primers (800nM) 

MgCl2 (2mM) 

Mixed dNTPs (250µM) 

Taq polymerase (1.25U) 

PCR buffer (1x) 

cDNA 

DEPC treated water 

2µl 

4µl 

1.25µl 

0.25µl 

5µl 

5µl 

32.5µl 

NHOT 

(HMPV174GF and 

HMPV174GR) 

All G primers (3.2µM) 

MgCl2 (4mM) 

Mixed dNTPs (250µM) 

Taq polymerase (1.25U) 

PCR buffer (1x) 

cDNA 

DEPC treated water 

8µl  

4µl 

1.25µl 

0.25µl 

5µl 

5µl 

26.5µl 

AliT2 All primers (800nM) 

MgCl2 (3.5mM) 

Mixed dNTPs (250µM) 

Taq polymerase (1.25U) 

PCR buffer (1x) 

cDNA 

DEPC treated water 

2µl  

7µl  

1.25µl  

0.25µl 

5µl  

5µl 

29.5µl 
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RNasin Ribonuclease Inhibitor, Avian Myeloblastosis Virus Reverse Transcriptase (AMV-

RT) and 10 x RT buffer were all purchased from Promega. 2’ -deoxynucleoside 5’ -

triphosphates (dNTPs) were supplied by Invitrogen with each nucleoside at a concentration of 

10mM in Tris-HCL (pH 7.5). Amplitaq gold DNA polymerase, 10x PCR buffer and 

magnesium chloride (MgCl2) were supplied by Applied Biosystems. 

 

 

Table 3.10 Primers used for quantitative PCR 

Primer Sequence (5’- 3’) Location Source 

N-LN F CATACAAGCATGCTATATTAAAAGAGTCTC 
HMPV N 

(16-45) 

Maertzdorf 

et al, 2003 
N-LN R CCTATTTCTGCAGCATATTTGTAATCAG 

HMPV N 

(178-151) 

NLN 

probe 
FAM-TGYAATGATGAGGGTGTCACTGCGGTTG-TAMRA 

HMPV N 

(76-103) 

 

All PCR primers were ordered from MWG Biotech at a scale of 0.2µMol and were purified 

by HPLC. Probes were ordered from Applied Biosystems at a concentration of 6nmol. 

 

 
Table 3.11 Optimized reaction conditions for the real time PCR of RNA from HMPV 

Reaction Reagents (final working concentration) Volume used 

Reverse Transcription 

(RT) step for 

Quantitative PCR 

(N-LN F and N-LN R) 

N-LN F primer (2.75µM) 

MgCl2 (5mM) 

Mixed dNTPs (1mM) 

RT buffer (1x) 

RNasin Ribonuclease Inhibitor (30U) 

AMV-RT (5U) 

RNA 

DEPC treated water 

1.5µl  

6µl  

3µl  

3µl  

0.75µl  

0.5µl 

10µl 

5.25µl 

Quantitative PCR 

(N-LN F and N-LN R) 

N-LN primers (600nM) 

2x Taqman universal PCR mastermix 

N-LN probe (200nM) 

cDNA 

DEPC treated water 

2.4µl  

15µl 

1µl  

6µl 

5.6µl 
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Table 3.12 Optimized PCR cycle programmes 

Cycle name Cycle stages and conditions Number of cycles 

RTPCR Primer extension - 42°C for 30mins 

1 RT enzyme deactivation - 99°C for 5mins 

Held at 4°C 

RUTH1 Enzyme activation – 94°C for 10mins  

Heat Denaturation – 93°C for 1min 

Primer annealing – 58°C for 1min 

Primer extension – 72°C for 1min 

 

35 

Held at 4°C  

NHOT Enzyme activation – 95°C for 10mins  

Heat Denaturation – 93°C for 90secs 

Primer annealing – 58°C for 90secs 

Primer extension – 72°C for 90secs 

 

30 

Held at 4°C  

AliT 3 Enzyme activation – 95°C for 10mins  

Heat Denaturation – 93°C for 90secs 

Primer annealing – 55°C for 90secs 

Primer extension – 72°C for 90secs 

 

30 

Held at 4°C  

QTPCR Initial denaturation – 95°C for 10mins  

95°C for 1min 

60°C for 15secs 

55°C for 45secs 

 

45 

 

 

 

3.6.6 Reaction product visualisation by agarose gel electrophoresis 

 

Preparation of 10x TBE buffer 

1 litre DEPC-treated water  

900mM Tris base 

900mM Boric acid 

20mM EDTA 
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The mixture was adjusted to pH 8.3 with concentrated HCl before autoclaving. 

Immediately before use 100ul of ethidium bromide (5mg/ml) was added.  

 

1% Agarose 

0.5g Agarose (Life Technologies) 

50ml 1x TBE buffer 

 

The agarose was heated in the TBE buffer until fully dissolved. The molten gel was 

mixed with 10µl ethidium bromide (5mg/ml) and transferred directly to a horizontal 

submarine agarose slab gel mould (Northumbria Biological, UK) to set. 

10µl of each reaction product was added to 2μl of 6x sample loading buffer 

(Promega), and mixed before loading into individual wells of the 1% agarose gel. 12 

µl of 100bp DNA or 1KB DNA molecular weight markers (Promega) were also 

loaded either side. Using a Bio-Rad powerpack (Bio-Rad Laboratories Ltd, Hemel 

Hempstead, UK), 100V was passed through the gel for 1 hour in 0.5x TBE buffer, and 

the amplicand band was visualised using a gel ultraviolet transilluminator (Bio-Rad 

Fluor-S Multimager). 

 

3.6.7 Purification of products 

The HMPV gene PCR products were purified by running the amplicand on a 1% 

agarose gel (Section 3.6.6). The DNA was extracted from the agarose using a 

QIAquick gel extraction kit (Qiagen) according to the manufacturer’s instructions, 

eluted in 50µl of EB buffer (supplied with the kit) and stored at -20°C. 

 

3.6.8 Quantitative PCR (qT-PCR) 

The method for quantitation of HMPV genome was based on the protocol by 

Dewhurst-Maridor et al (2004) with some modifications using the primers and probe 

designed by Maertzdorf et al (2004). The probe, synthesised by Applied Biosystems, 

which contains a reporter dye (FAM) at the 5’ end and a quencher dye (TAMRA) at 

the 3’ end, anneals to the specific cDNA sequence downstream of the N-LN R primer. 

As the primer is extended by the action of the polymerase during PCR, it cleaves the 

probe separating the reporter and quencher dyes, resulting in an increased 
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fluorescence intensity which is proportional to the amount of amplicon being 

produced in a given sample.  

 

3.6.8.1 Standard curve 

For quantitation, a standard curve constructed from a sample of known concentration 

is required. As a RNA standard of known viral RNA content was not available, an 

arbitrary standard was created using RNA extracted from HMPV174 stock. The 

amount of viral RNA in a neat sample of this standard was arbitrary assumed to be 

106 units. 

 

RNA, extracted from HMPV174 (infectivity titre 6.54 log10), was defrosted and serial 

1 in 3 dilutions prepared using DEPC treated water with carrier RNA (made by 

passing a sample of DEPC water through the QIAamp kit) from neat to 1/177147 

(106U to 5.64U). The dilution series was tested in each assay to produce a standard 

curve (Figure 3.1). At a CT of 25 the mean concentration was 3.28 log10 with a 

standard deviation of +/- 6.8%. 

 

Log10 genome copy (arbitrary units)

0 1 2 3 4 5 6 7
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Figure 3.1. Standard curves of cycle threshold versus quantity of viral RNA. 
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3.6.8.2 Reverse transcription reaction 

Reverse transcription reactions were carried out in 48-well PCR plates (scientific 

specialities inc.) in 30µl volumes. 20µl of mastermix (Table 3.11) was added to the 

appropriate number of wells followed by 10µl of RNA, mixed by pipetting and the 

plate sealed using a Microseal ‘A’ film (M. J. Research, Waltham, U.S.A). The plate 

was briefly centrifuged and the reaction carried out as described in Table 3.12. Plates 

were then stored at -20°C until required. 

 

3.6.9 PCR amplification 

All quantitative PCR reactions were carried out in 96-well PCR plates (Microplate, 

Applied Biosystems) in 30µl volumes. 24µl of mastermix (Table 3.11) was added to 

the required number of wells followed by 6µl of cDNA, tested in triplicate.  The 

cDNA was amplified in an ABI-Prism 7000 Real-Time PCR machine under the 

described conditions (QT PCR; Table 3.12).  

For each reaction, the end point was determined by comparison of the CT value with 

the standard curve. 

 

 

3.7 Bacterial production of recombinant plasmids 

3.7.1 Escherichia coli 

Escherichia coli TG1 suppressor strain (K12, D (lac-pro), sup E, thi, hsd, 5/F’ 

traD36, proA+B+, lacIq, lacZDM15) was used as a source of competent cells for 

transformation experiments. 

 

3.7.2 pTM1 

Stocks were prepared by transforming cultures of E.coli TG1 with the plasmid pTM1 

as described in section 4.1.3. 850µl of the overnight culture (Section 3.7.8) was mixed 

with 150µl of sterile glycerol, snap frozen in liquid nitrogen and stored at -80°C to be 

used as a glycerol stock. 
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3.7.3 Reagents 

3.7.3.1 LB medium 

8g Bactotryptone (Oxoid) 

4g Yeast extract (Oxoid) 

8g Sodium chloride 

240µl 5M Sodium hydroxide 

 

Dissolved in 800ml distilled water, autoclaved and stored at 4oC. Before use, 200µl of 

50mg/ml ampicillin per 100ml was added. 

 

3.7.3.2 LB agar plates with ampicillin 

8g Bactotryptone (Oxoid) 

4g Yeast extract (Oxoid) 

8g Sodium chloride 

240µl 5M Sodium hydroxide 

6g Bacto™ Agar (Becton Dickinson) 

 

Dissolved in 800ml of distilled water, autoclaved and melted in boiling waterbath and 

left to cool to approximately 50oC. 200µl of 50mg/ml ampicillin per 100ml was added 

and poured into sterile Petri dishes (Scientific Laboratory supplies) in the class II 

cabinet. 

 

3.7.3.3 SOB medium 

8g Bactotryptone (Oxoid) 

2g Yeast extract (Oxoid) 

234mg Sodium chloride 

75mg Potassium chloride 

 

Dissolved in 800ml of distilled water, autoclaved on the same day and stored at 4°C. 

 

On day of use, add 

4ml 1M Magnesium chloride 

4ml 1M Magnesium sulphate 
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3.7.3.4 Transformation buffer 

490mg MES (Mr 195.2) – (2-[N-morpholino]ethanesulphonic acid) 

 

Dissolved in 200ml Millipore water and adjusted to pH 6.3 

 

1.85g Potassium chloride 

2.22g Manganese II chloride tetrahydrate 

367mg Calcium chloride 

200mg Hexamine cobalt III chloride 

 

The salts were added to the MES solution, mixed with a stirrer and topped up to 

250ml with Millipore water. A 0.2µM filter was rinsed with 2 x 20ml Millipore water 

and used to filter the transformation buffer into 50ml tubes which were stored at -

20°C.  

 

3.7.4 Procedure for making competent bacteria 

5ml of SOB medium was transferred into two sterile universals and subsequently 

inoculated with E. coli TG1 (Section 3.7.1) using a sterile toothpick. These universals 

were incubated overnight in an orbital shaker at 37°C. The next day, 100µl of TG1 

culture was inoculated into a 250ml conical flask containing 60ml of SOB medium 

preheated to 37°C. The conical flask was incubated as above for 2 hours and the OD 

was measured at 550nm in a spectrophotometer using SOB medium as a blank. 

Incubation continued until the OD reached 0.45-0.55. 

 

50ml of the TG1 culture was transferred to a 50ml falcon tube and incubated on ice 

water for 15 minutes. The culture was centrifuged at 1250 x g for 10 minutes at 4°C 

and the supernatant was subsequently discarded. The bacteria pellet was resuspended 

in 5ml of ice cold transformation buffer. A further 15ml of ice cold transformation 

buffer was added and mixed by inverting the tube. The bacteria were incubated on ice 

for 10 minutes and then centrifuged at 1250 x g for 10 minutes at 4°C. The 

supernatant was discarded and the pellet was resuspended in 4ml of ice-cold 

transformation buffer. 140µl of dimethyl sulfoxide (DMSO) was added and swirled to 

mix. The solution was incubated on ice for 10 minutes. 140µl of dithiothreitol (DTT) 
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was added and swirled to mix. This was followed by incubation on ice for 10 minutes 

and finally addition of 140µl of DMSO was added to the solution and swirled gently. 

 

3.7.5 Digestion of purified products for ligation 

10μl  HMPV cDNA 

2μl Buffer 

1μl Restriction endonuclease1 (New England Biolab) 

1μl Restriction endonuclease2 (New England Biolab) 

6μl  DEPC treated water 

(see Table 3.13  for details) 

 

The reactions were incubated for 3 hours at 37oC in a water bath.  Reaction products 

were then run on a 1% agarose gel as described in section 3.6.6. 

 
Table 3.13 Restriction digest of HMPV genes with restriction endonucleases 

 

 

 

3.7.6 Ligation  

Reaction products from section 3.7.5 were purified from enzymes and buffer by 

running on a 1% agarose gel as described in sections 3.6.6 and 3.6.7. 

The digested plasmid pTM1 and HMPV genes were ligated using T4 ligase (2500 

Weiss units/ml, Invitrogen) in the reactions described in Table 3.14. 

Gene Restriction 

endonucleases for 

ligation 

Buffer 

number 

Restriction 

endonucleases after 

transformation 

Buffer 

number 

HMPV174 F BamH1 and EcoR1 3 BamH1 and EcoR1 3 

G BamH1 and EcoR1 3 BamH1 and EcoR1 3 

SH BspH1 and Xho1 4 Kpn1 and Xho1 1 

HMPV128 F BspH1 and Xho1 4 Kpn1 and Xho1 1 

G Nco1 and Xho1 2 Nco1 and Xho1 2 

SH BspH1 and Xho1 4 Kpn1 and Xho1 1 

HMPV145 F BspH1 and Xho1 4 Kpn1 and Xho1 1 

G Nco1 and Xho1 2 Nco1 and Xho1 2 
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Table 3.14 Ligation reactions 

Ratio  

Vector : insert 

Plasmid 

pTM1 (µl) 

DNA 

(µl) 

5x Gibco ligase 

buffer (µl) 

T4 DNA 

ligase (µl) 

DEPC treated 

water (µl) 

1:0 1 - 2 1.2 5.8 

1:1 1 1 2 1.2 4.8 

2:5 4 10 4 2.4 - 

1:3 1 3 2 1.2 2.8 

1:5 2 10 4 2.4 1.6 

0:0 - - 2 1.2 6.8 

 

 

Reagents were assembled in sterile eppendorf tubes and incubated in a waterbath at 

16°C overnight. The next day, DEPC treated water was added to all tubes to produce 

a final volume of 100µl and the reactions were stored at -20°C until required. 

 

3.7.7 Transformation of competent E. coli 

2µl, 8µl and 20µl from each ligation reaction (Section 3.7.6) was pipetted into a 14ml 

Falcon tube and kept on ice. 210µl of competent bacteria preparation (Section 3.7.4) 

was aliquoted into each of the 18 tubes and incubated on ice for 40 minutes. The 

bacteria were then heat shocked by placing the tubes in a 42°C waterbath for 90 

seconds. The tubes were then transferred to ice for 2 minutes. 800µl of SOB medium 

was added to each tube and the tubes were incubated for 30 minutes at 37°C. In a 

class II cabinet, 200µl of each preparation was plated onto a LB + Ampicillin agar 

plate using a sterile plate spreader. The plates were left to dry then inverted and 

placed in an incubator at 37°C overnight. 

 

3.7.8 Miniprep of recombinant plasmids 

To produce an overnight culture, a sterile loop of each transformed bacteria was 

streaked onto a LB + Ampicillin agar plate using a sterile plate spreader. Plates were 

left for approximately 30 minutes at room temperature until the surface was dry.  

Plates were inverted and incubated at 37oC overnight. Glass universals containing 5ml 

of LB + ampicillin medium were then inoculated with a single colony from each 

corresponding plate and left to incubate overnight in the orbital shaker at 37oC. 
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1.5ml of each of the overnight culture was used in the QIAgen miniprep kit (QIAgen, 

UK) following manufacturers instructions and eluted in 50µl of EB Buffer (supplied 

in kit).  

 

3.7.9 Maxiprep of recombinant plasmids 

Large scale preparation of plasmid DNA was performed using a QIAgen maxiprep kit 

(QIAgen) and following the manufacturers instructions. Briefly a 5ml overnight 

culture of E. coli TG1 transformed with the pTM1 plasmids was prepared as stated in 

section 3.7.8. 100µl of this culture was inoculated into 500ml of LB + ampicillin 

medium and left to incubate overnight in an orbital shaker at 37°C. The plasmid DNA 

from this 500ml suspension was eventually eluted in 240µl of EB Buffer (supplied in 

kit). 

 

Concentration of DNA was determined by diluting the sample in PBS and reading the 

OD in a spectrophotometer at 260nm according to the following formula: 

 

Concentration (µg/ml) = OD260 reading x dilution factor x 50 

 

 

3.8 Enzyme Linked Immunosorbent Assay 

3.8.1 Preparation of ELISA antigen 

3.8.1.1 HMPV 

Virus infected and uninfected 24-well cultures of 16HBE140 cells were prepared as 

previously described (Section 3.5.1). After confirmation of 75% CPE determined by 

immunofluorescence, the medium on both infected and uninfected monolayers was 

changed to SAFMM and incubated at 37°C in 5% CO2 for a further 24 hours. 

Monolayers from 3 plates were then scraped into 1ml of medium, sonicated for 3 x 30 

seconds and snap frozen and stored at -80°C. 

 

3.8.1.2 Vaccinia virus 

Coinfected cultures of L cells expressing HMPV glycoproteins and mock coinfected 

cultures infected with VTF7.3 alone were prepared in 225cm3 tissue culture flasks as 

previously described (Section 3.5.17). After inactivation of the virus with BEI 
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(Section 3.5.18), the cells were washed and resuspended in 3ml of SAFMM per flask, 

sonicated 3 x 30 seconds in an ultrasonic waterbath and snap frozen and thawed three 

times in liquid nitrogen. The antigen was stored at -80°C. 

 

3.8.2 Estimation of ELISA antigen protein concentration 

The protein concentration of each ELISA antigen was determined by comparison with 

known standards using a BIORAD protein assay following the manufacturers 

instructions.  

 

3.8.3 ELISA Reagents 

3.8.3.1 Antigen coating buffer (10X) 

Distilled water to 600ml 

9.539g Sodium carbonate 

17.64g Sodium bicarbonate  

The solution was adjusted to pH 9.6 and autoclaved. 

 

3.8.3.2 Substrate buffer 

Distilled water to 1 litre 

5.106g Citric acid 

18.426g Di-sodium hydrogen orthophosphate (anhydrous) 

The solution was adjusted to pH 5.0 and autoclaved. 

 

3.8.3.3 OPD stock solution 

1.25g O-phenylenediamine dihydrochloride (OPD) 

20ml Substrate buffer 

Dissolved and aliquoted into 400ml volumes, stored at -20°C 

 

3.8.3.4 OPD substrate solution 

24.6ml Substrate buffer 

0.4ml OPD 

10µl 30% (v/v) H2O2 solution  

This solution was prepared immediately before use 
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3.8.3.5 Stopping solution (3M H2SO4) 

420ml Distilled water 

80ml Concentrated sulphuric acid (H2SO4)  

The water was placed on ice and the acid added slowly with mixing at regular 

intervals. 

 

3.8.3.6 Washing buffer (10X PBST/PBSTx) 

Distilled water to 2 litres 

160g Sodium chloride  

4g Potassium di-hydrogen orthophosphate 

23g Di-sodium hydrogen orthophosphate (anhydrous) 

4g Potassium chloride 

10ml Tween 20 (PBS/T or 20ml Triton X-100 (PBS/Tx) 

The solution was adjusted to pH 7.4 and autoclaved 

 

3.8.4 Isotype 

Nunc Maxisorb immuno-plates were coated with 50µl per well of goat anti-mouse 

isotype immunoglobulins at the dilutions stated in Table 3.15 overnight at 4°C. 

 
Table 3.15 Dilutions of goat anti-mouse immunoglobulin used to coat ELISA plates 

Goat anti-mouse immunoglobulin Dilution in coating 

buffer 

Positive control 

IgG1 1/800 1E3 

IgG2a 1/12800 BD51 

IgG2b 1/12800 1A12 

  

 

The next day, the wells were washed with PBST, three times for 3 minutes, blotting 

the plates on paper towels between washes. Standard mouse serum, positive control 

MAbs and MAbs to be tested were serially diluted 1 in 4 from 1/256 to 1/ 1048576 in 

PBST containing 10% heat-inactivated foetal calf serum (PTF) and 25µl per well of 

each dilution added to the plates. Plates were incubated at 37°C for 90 minutes in a 

moist box (sealed box containing a wet paper towel) before washing as above. 

Secondary antibody, Goat anti-mouse peroxidase-conjugated immunoglobulin 
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(GAMP IgG), was diluted 1/1000 in PTF and 25µl was added to all wells, which were 

incubated for 1 hour at 37°C. After further washing, 50µl of substrate buffer was 

added to each well and incubated for 30 minutes at 37°C, after which the reaction was 

stopped with the addition of 50µlof stopping solution. 

The ELISA plate was read with an MRX II Microplate reader (Dynex Technologies, 

UK) using revelation software version 4.02 at an optical density of 492nm. 

 

3.8.5 Antigen capture ELISA 

The wells of a flat bottomed 96 well plate (Nunc Maxisorb immuno-plate) were 

coated with 50µl of either HMPV infected or uninfected ELISA antigen (Section 

3.8.1.1) (diluted to 24µg/ml in antigen coating buffer) overnight at 4°C. The next day, 

the wells were washed with PBST, three times for 3 minutes. 25µl per well of primary 

antibody, diluted in PTF, was added to the plate and incubated at 37°C for 90 minutes 

in a moist box before washing as above. Secondary antibody, diluted 1/1000 in PTF, 

was added at 25µl per well and the plate was incubated for 1 hour at 37°C. The rest of 

the ELISA was performed as described in section 3.8.4. 

Antigen concentration was determined by chequerboard titration. 

 

3.8.6 Lectin capture ELISA 

The wells of a flat bottomed 96 well plate were coated with 50µl of Concanavalin A 

at a concentration of 50µg/ml in antigen coating buffer and incubated overnight at 

4°C. The next day, the wells of the plate were washed with PBSTx three times for 3 

minutes. Inactivated recombinant HMPV antigen or VTF7.3 negative antigen (Section 

3.8.1.2) was diluted in PBSTx to a concentration of 23.7µg/ml and 50µl per well 

added to the plates. Plates were incubated in a moist box for 2 hours at 37°C before 

washing and blotting as before. Primary antibody was diluted in PTF and 25µl added 

to each well. Plates were incubated for 90 minutes as before, followed by washing 3 x 

3 minutes with PBSTx. The rest of the ELISA was performed as described in section 

3.8.4. 

Antigen concentration was determined by chequerboard titration. 
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3.8.7 Immobilised immunoglobulin ELISA 

The wells of a 96 well ELISA plate were coated with 50μl of primary antibody diluted 

from 1/50 to 1/204800 in antigen coating buffer and incubated overnight at 4°C. The 

next day, the wells of the plate were washed with PBST three times for 3 minutes, 

blotting in between. Secondary antibody, Goat anti-mouse peroxidase-conjugated 

immunoglobulin (GAMP IgA), was diluted 1/1000 in PTF and 25µl was added to all 

wells, which were incubated for 1 hour at 37°C. The rest of the ELISA was performed 

as described in section 3.8.4. 

 

 

3.9 Immunisation of mice 

3.9.1 Mouse stocks 

Female Balb/c mice were ordered from Charles River Laboratories, UK at 6-8 weeks 

old, and inoculations begun 1 week after arrival. The animals were maintained by the 

Comparative Biology Centre, Newcastle University. 

 

3.9.2 Isofluorane anaesthetic  

Mice were anesthetised using an isofluorane circuit. Isofluorane initially flowed into 

the anaesthetic induction chamber (Alfred Cox Ltd) at concentration of 5% with 

oxygen. Once the chamber was filled, the flow rate was reduced to 2% with waste 

anaesthetic gases scavenged by a ‘fluo-vac’ scavenger unit (International Market 

Supplies). Mice were placed into the chamber, one at a time, until they lost 

consciousness. Animals were then removed from the chamber and the intranasal 

inoculations administered (Section 3.10.1) before recovery (Waynforth and Flecknell, 

1992). 

 

3.9.3 Preparation of antigen in Freund’s adjuvant  

Equal volumes of antigen and Freund’s adjuvant were drawn into two 2ml syringes. 

The syringes were joined with a hub, and the mixture was emulsified by repeat 

plunging of the syringes until a think paste formed. PBS-tween 20 was subsequently 

added to the paste at 2 x the final volume using the same technique as above. 
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3.10 Methods of inoculation 

3.10.1 Intranasal inoculations 

Anaesthetised mice (Section 3.9.2) were removed from the chamber and held in a 

category two hood where 50μl of antigen preparation (live antigen or antigen with a 

cholera toxin adjuvant) was instilled into the nostrils using a 0.5ml ‘LO-DOSE’ 

insulin syringe / needle (Becton Dickinson). The mouth was pushed closed to allow 

the preparation to be taken up into the lungs. 

 

3.10.2 Subcutaneous inoculations 

Mice were handled by the scruff of the neck and placed onto a bench for ease of 

handling. Antigen preparation in Freund’s adjuvant (complete / incomplete) was then 

injected into four sites in the neck at 50μl per site using a 1ml syringe and 25G 

needle. 

 

3.10.3 Intraperitoneal inoculations 

Mice were handled by the scruff of the neck and turned over to expose the 

peritoneum. 20μl of antigen preparation without adjuvant was inoculated into a 

posterior quadrant of the abdomen using a 1ml syringe and 25G needle. 

 

 

3.11 Production of hybridomas 

3.11.1 Immunisation schedule 

Day 1 Intranasal inoculation of antigen 50µl / mouse  

Day 14 Injection of antigen in Freund’s complete adjuvant (Sigma) 20µg / 

mouse at four sites subcutaneously in the neck 

Day 28 Injection of antigen in Freund’s incomplete adjuvant (Sigma) 20µg / 

mouse at four sites subcutaneously in the neck  

Day 35 Test bleed 

 

4 days pre-fusion, for the generation of hybridomas, the mice were inoculated by 

intraperitoneal injection of antigen with no adjuvant, 20µg / mouse in 20µl 
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3.11.2 HAT medium 

HAT medium supplement (5 x 10-3M hypoxanthine, 2 x 10-5M aminopterin, 8 x 10-

4M thymidine) was diluted in 10ml of sterile water. 4.5ml of this HAT solution was 

added to 10ml of BM Condimed H1 hybridoma cloning supplement (Roche) and 

made up to 50ml with RPMI-1640 containing 20% foetal calf serum (R20). This HAT 

/ Condimed / R20 solution was sterile filtered into 50ml of R20 and warmed to 37°C. 

 

 

3.12 Fusion technique for the production of hybridomas 

NS-1 cells were cultivated in RPMI containing 10% foetal calf serum and sub 

cultured at a ratio of 1:2 every day in 75cm3 tissue culture flasks. Immune mice were 

sacrificed by cardiac puncture, and the spleen aseptically removed. Splenocytes were 

dissociated using two curve end forceps by teasing the cells from the spleen into 10ml 

of R20, and drawing the splenocytes through a 25G needle several times with a 10ml 

syringe. Both NS-1 cells and splenocytes were counted using a haemocytometer so 

that the splenocytes were added to the NS-1 cells at a ratio of 8:1. The cell suspension 

was centrifuged at 1000rpm for 5 minutes, where after nearly all the supernatant was 

removed and the cells resuspended in the remainder. 1 ml of Polyethylene glycol 1500 

(PEG-1500, Roche) was added to the cell mix slowly over 1 minute, gently rotating 

the tube and keeping the cells warm by immersing the bottom of the centrifuge tube in 

a beaker of water at 37°C. 1 ml of R20 was then added slowly over a minute, while 

gently agitating the mixture. 20ml of R20 was then slowly added to the cell 

suspension over 4 minutes and the cells were poured into 200ml of HAT medium. The 

cells were then plated out onto 11 x 96 well plates, 200µl per well and incubated for 

10 days at 37°C with 5% CO2. These plates were screened on inactivated recombinant 

vaccinia virus antigens (see Section 3.13)  

 

 

3.13 Screening fusions 

3.13.1 Concanavalin A ELISA 

For each hybridoma plate one maxisorb 96-well ELISA plates was coated with 50µl 

Concanavalin A (ConA) as described in section 3.8.6 and incubated overnight at 4°C. 
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The next day the wells were washed 3 times with PBSTx and the plates coated with 

either recombinant HMPV virus antigen or VTF7.3 negative control antigen (Section 

3.8.6) as appropriate. The plates were incubated in a moist box at 37°C for 2 hours 

before washing as described above. Using a transplator (Corning), hybridoma 

supernatant from each fusion plate was transferred to each corresponding ELISA plate 

then incubated for 90 minutes as above. The ELISA continued as described in section 

3.8.4. 

 

3.13.2 Rescreening of HMPV antigen  

Hybridomas were rescreened on HMPV174 infected and uninfected 16HBE140 cells 

as described in section 3.8.5 transferring the hybridoma supernatants as described in 

section 3.13.1. 

 

 

3.14 Cloning hybridoma cells 

3.14.1 Preparation of spleen feeders 

12 mice were supplied by Charles River (UK) Laboratories. On the day of arrival, 

each mouse was sacrificed by cervical dislocation and their spleen removed under 

aseptic conditions. Splenocytes were dissociated using two curve end forceps by 

teasing the cells from the spleen into 10ml of RPMI-1640, and drawing the 

splenocytes through a 25G needle several times with a 10ml syringe. The splenocytes 

were counted using a haemocytometer and frozen as 1.2 x 108 cells / vial, enough to 

seed two plates. 

 

3.14.2 Cloning  

A 96-well plate was seeded with 3 x 106 / ml of spleen feeders at 200µl per well. Each 

chosen hybridoma was harvested from the primary well and counted using a 

haemocytometer and diluted to 1000 cells in 2ml of HAT medium. 100µl was added 

to the first 2 columns of the feeder plate and subsequently two fold diluted down the 

plate as to isolate individual cells. The plates were incubated at 37°C with 5% CO2 for 

a week or more and screened again on either HMPV or vaccinia virus (Section 3.13).  
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3.15 Extraction of blood 

Blood samples were taken from the lateral tail vein with the mouse restrained in a 

purpose built restraining device. A maximum of 10% of the circulating volume was 

taken on a single occasion.  

Mice were also bled by cardiac puncture when requiring a larger volume and where 

maximum amounts needed to be retrieved, mice were anaesthetised by intraperitoneal 

injection of Fentanyl / fluanisone and midazolam (2.7 ml/kg) prior to cardiac puncture 

(Flecknell, 2009). 

 

3.16 Extraction of tissues 

Mice were sacrificed by cervical dislocation. Using aseptic techniques, the lungs and 

nasal mucosa were removed, weighed and placed into 1ml of MM on ice. One lobe of 

the right lung was clamped with a pair of Spencer wells artery clamps and inflated 

with neutral buffered formalin to be later used for immunohistochemistry (Section 

3.19). The rest of the tissues were homogenised using Griffith’s grinders and 

suspension was centrifuged at 300 x g for 5 minutes at 4°C. The supernatant was 

carefully removed and kept on ice to be used for quantitative PCR (Section 3.6.8) and 

infectivity assay (Section 3.17).   

 

3.17 Infectivity assay 

A 96-well tissue culture plate was seeded with 3 x 106 16HBE140 cells/ml in growth 

medium and incubated overnight in 5% CO2 at 37°C. 

The next day, the growth medium was discarded and 25µl of each homogenate was 

inoculated in triplicate onto the confluent cells. The plate was then incubated in a 

moist box for 90 minutes at 37°C in 5% CO2. The inoculum was discarded and the 

cells washed with 200µl per well of warm PBS. The rest of the assay was performed 

as described in section 3.5.6. 

 
Virus titre (f.f.u / g) = Average no. of foci x 40 x dilution factor x 1/ (weight of lung in g) x 2 
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3.18 Challenge 

3.18.1 Immunisation schedule 

Day 1 Injection of antigen in Freund’s complete adjuvant (Sigma) 20µg / 

mouse at four sites subcutaneously in the neck (Section 3.10.2) 

Day 14 Injection of antigen in Freund’s incomplete adjuvant (Sigma) 20µg / 

mouse at four sites subcutaneously in the neck 

Day 28 Injection of antigen in Freund’s incomplete adjuvant (Sigma) 20µg / 

mouse at four sites subcutaneously in the neck 

Day 42 Injection of antigen in Freund’s incomplete adjuvant (Sigma) 20µg / 

mouse at four sites subcutaneously in the neck 

Day 366 Intranasal inoculation of 10µl of antigen containing 20ng Cholera toxin 

and 2µg Heat-labile Enterotoxin, B subunit from E. Coli (LTB) under 

isofluorane anaesthetic (Section 3.10.1) 

Day 380 Intranasal inoculation of 10µl of antigen containing 20ng Cholera toxin 

and 2µg Heat-labile Enterotoxin, B subunit from E. Coli (LTB) under 

isofluorane anaesthetic 

 

 

Once high antibody titres had been established by immunofluorescence (Section 

3.5.4), two mice from each group were sacrificed by cardiac puncture. 1ml of PBS 

was washed through the nasal mucosa to collect any secretory immunoglobulins. 

The rest of the mice were challenged with an intranasal inoculation of 50µl of 

HMPV174. They were weighed daily for signs of illness and on the 5th day sacrificed 

by cervical dislocation. 

 

 

3.19 Immunohistochemistry 

Immunohistochemistry was carried out using the Vector mouse on mouse (M.O.M.) 

immunodetection kit (Vector Laboratories). It is designed specifically to localise 

mouse primary monoclonal and polyclonal antibodies on mouse tissues avoiding the 

problem of anti – mouse secondary antibodies having to distinguish between the 

mouse primary antibody and endogenous mouse immunoglobulins in the tissue. The 

kit utilises a novel blocking agent and proprietary detection methodology to 
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significantly reduce the high background staining as a consequence of the endogenous 

mouse immunoglobulins.  

 

3.19.1 Preparation of sections 

Tissues were fixed in 10% neutral buffered formalin before being paraffin embedded 

by the histopathology department at the Royal Victoria Infirmary (RVI). Sections 

were then cut to 3µm thick using a standard microtome. Cut sections were mounted 

onto Superfrost coated slides. These were then dried at 60°C for an hour followed by 

overnight at 37°C. 

 

3.19.2 Histochemistry 

Sections were deparaffinised in xylene for 5 minutes and rehydrated in absolute 

alcohol followed by 95% alcohol before being washed in water. Slides were immersed 

in Haematoxylin Gill II (Surgipath) for 1 – 2 minutes and washed under water until 

the sections turned blue. The slides were then soaked in Eosin Y (Alcoholic solution, 

Surgipath) for 30 seconds to 1 minute before being washed under running water until 

the water ran clear. Sections were dehydrated through graded alcohols and cleared in 

xylene with subsequent mounting under coverslips in DPX. 

 

3.19.3  Immunohistochemistry  

 

Reagents  

42g Citric acid 

Vector antigen retrieval solution (10mM Sodium citrate buffer – 20x) 

21g Sodium hydroxide 

Dissolve in 1 litre of distilled water and pH to 6.0 

 

To use, dilute 75ml into 1425ml of distilled water and check pH. 

 

121.14g Tris 

Tris buffered saline (TBS) – 20x 

160g Sodium chloride 

Dissolve in 1 litre of distilled water and pH to 7.6. 
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To use, dilute 250ml into 4750ml of distilled water and check pH. 

 

Sections were deparaffinised in xylene for 5 minutes and rehydrated in absolute 

alcohol followed by 95% alcohol before being washed in water. Antigen retrieval 

solution was brought to the boil in a pressure cooker using a hot plate. The slides were 

added and cooked at pressure (15lbs psi) for 1 minute before allowing them to cool 

for 5 to 10 minutes in water.  

To block endogenous peroxidase, the sections were immersed in 3ml of 30% H2O2 in 

180ml of methanol at room temperature for 10 minutes and subsequently washed 

thoroughly in water followed by TBS for 10 minutes.  

 

A streptavidin / Biotin blocking step was performed using the Streptavidin / Biotin 

blocking kit (Vector) following the manufacturers instructions. Sections were 

incubated for 1 hour in working solution of M.O.M. Ig blocking reagent prepared as 

described in the M.O.M. kit (Vector Laboratories). Sections were then soaked in TBS 

three times for 5 minutes before being incubated for 5 minutes with working solution 

of M.O.M. diluent prepared as described in the kit. Excess diluent was removed from 

the sections and the primary antibody (HMPV MAb pool), diluted at 1/50 in the 

diluent, was added for 30 minutes. Slides were washed as above before being 

incubated with working solution of M.O.M. biotinylated anti – mouse IgG reagent 

prepared as described in the kit for 30 minutes. A washing step followed as described 

previously after which, sections were incubated with Vectastain ABC reagent (Vector 

Laboratories) for 5 minutes. A final wash in TBS was performed before being 

developed in chromogen, using the Vector ImmPact DAB system (Vector 

Laboratories), where 1 drop of DAB substrate was added to 1ml of buffer. The 

sections were incubated for 5 to 10 minutes then washed in running water, 

counterstained with haematoxylin for 1 minute and ‘blue’ in Scotts Tap Water. 

Sections were dehydrated through graded alcohols and cleared in xylene with 

subsequent mounting under coverslips in DPX. 
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3.20 SDS Polyacrylamide gel electrophoresis (SDS PAGE) 

3.20.1 Preparation of reagents 

3.20.1.1  8x stacking gel buffer 

6.05g Tris base 

Dissolved in 50ml of distilled water and adjusted to pH 6.8 

 

3.20.1.2  6x sample buffer 

15g Glycerol 

3mg Bromophenol blue 

2.4g Sodium dodecly sulphate (SDS) 

7.5ml 8x stacking buffer 

Volume was adjusted to 20ml with distilled water and stored in aliquots at -20°C. 

Immediately before use; 50µl / ml of β-mercaptoethanol was added. 

 

3.20.1.3  2x Resolving gel buffer 

45.4g Tris base 

1g SDS 

Dissolved in 500ml of distilled water and adjusted to pH 8.8 

 

3.20.1.4  SDS running buffer 

28.8g Glycine 

6.05g Tris base 

2g SDS 

Dissolved in 2 litres of distilled water 

 

3.20.1.5  10% Ammonium persulphate (APS) solution 

1g APS 

9ml Distilled water  

Stored at 4°C for 7 days 

 

3.20.1.6  Low concentration acrylamide solution 

25ml 40% Acrylamide 29: Bisacrylamide 1 solution (BDH) 

75ml Distilled water 
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Stored at 4°C in foil wrapper 

 

3.20.1.7  High concentration acrylamide solution 

40% Acrylamide 29: Bisacrylamide solution (BDH) 

Stored at 4°C in foil wrapper 

 

3.20.1.8  3% acrylamide solution 

9ml  Low concentration acrylamide solution 

15ml 2x resolving gel buffer 

6ml Distilled water 

The solution was gently mixed and degassed using a vacuum pump for 5 minutes. 

Immediately before pouring, 240µl of 10% APS solution and 15µl N,N,N,N-

tetramethletylenediamine (TEMED) were added and the solution gently mixed. 

 

3.20.1.9  18% acrylamide solution 

3.9g Sucrose 

11.7ml High concentration acrylamide solution 

13ml 2x resolving gel buffer 

The solution was gently mixed and degassed using a vacuum pump for 5 minutes. 

Immediately before pouring, 180µl of 10% APS solution and 10µl TEMED were 

added and the solution gently mixed. 

 

3.20.2 Pouring gradient gels 

Gels were poured into Protean II gel moulds (Bio-Rad Laboratories) using a Jencons-

PLS gradient mixer. A magnetic flea was placed into the column of the gradient mixer 

containing the 18% solution and as the acrylamide flowed into the mould, the 

concentration of acrylamide gradually decreased from 18% to 3% at the top of the gel. 

Once poured, a 15-well comb was gently inserted into the top of the gel and the gel 

was allowed to set. The wells were subsequently washed five times with distilled 

water and once with 1 x stacking gel buffer. 
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3.20.3 Running gradient gels 

Samples were prepared by adding 5µl of protease inhibitor to frozen stocks which 

were then rapidly thawed. Samples were mixed 6:1 in 6x sample buffer and heated to 

100°C for 3 minutes. Gels were removed from pouring apparatus and wells washed 

gently with SDS running buffer before being transferred to a Protean II tank (Bio-Rad 

Laboratories) which was half filled with SDS running buffer. 60µl of each sample was 

loaded into the wells of the gel along with 10µl of molecular weight markers 

(Fermentas) and 60µl of 1x sample buffer to all unused wells. The tank was placed on 

a magnetic stirrer connected to a Grant cooling system set to 0.5°C. Using an 

electrophoresis power supply (EPS) 600, a current of 27mA, 600 V, 100 W was 

applied to the gel overnight. 

 

 

3.21 Western blot of SDS PAGE gels 

3.21.1  Preparation of reagents 

3.21.1.1  Tris-glycine protein transfer buffer 

3.03g Tris base 

14.4g Glycine 

200ml Methanol 

Dissolved in 650ml of distilled water and finally adjusted to 1 litre. Stored at 4°C. 

 

3.21.1.2  10x phosphate buffered saline 

160g Sodium Chloride 

4g Potassium dihydrogen orthophosphate  

23g Di-sodium hydrogen orthophosphate  

4g Potassium chloride 

Dissolved in 2 litres of distilled water and adjusted to pH 6.8. 

 

3.21.1.3 Blocking buffer 1 

200ml PBS containing 0.1% Tween-20 (PBS/T) 

10g Marvel milk powder 

2g Bovine serum albumin (BSA) (BDH) 

The solution was filtered through Whatman glass microfibre filter paper before use. 
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3.21.1.4  Blocking buffer 3 

360ml PBS/T 

40ml Heat inactivated foetal calf serum 

4g BSA 

The solution was filtered through a 0.2µM vacuum filter and stored at -20°C. 

 

3.21.2 Transfer of SDS PAGE gels 

The gel was washed 3x 20 minutes in tris-glycine protein transfer buffer whilst 

Hybond-P Polyvinylidene fluoride (PVDF) transfer membrane (GE healthcare) was 

cut to the exact size of the SDS gel and soaked in methanol for 5 minutes followed by 

20 minutes in protein transfer buffer. The gel and membrane were sandwiched 

together in a Bio-Rad transplant apparatus (Bio-Rad Laboratories) with 4 sheets of 

3mm Whatman filter paper and one sponge either side of them. The transfer apparatus 

filled with protein transfer buffer was attached to the Grant cooling system set at 

0.5°C. 120 V was applied to the equipment using a BIO-Rad 200 power pack for 5 

hours. After transferring, the PDVF membrane was washed 3 times in distilled water 

and blocked overnight in blocking buffer 1 at room temperature. 

 

 

3.22 Staining western blots with Enhanced Chemiluminescence (ECL) kit 

3.22.1 Preparation of reagents 

3.22.1.1 1x Developer solution 

390ml Distilled water 

110ml GBx concentrated developer (Kodak, from Sigma) 

Kept in foil wrapper and used within 4 days 

 

3.22.1.2  1x Fixer solution 

390ml Distilled water 

110ml GBx concentrated fixer (Kodak, from Sigma) 

Kept in foil wrapper and used within 4 days 
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3.23  ECL plus western blotting detection system 

ECL detection solution 

20ml ECL solution A (Amersham Biosciences) 

500µl ECL solution B (Amersham Biosciences) 

Solutions were mixed just before use and stored wrapped in tin foil until required. 

 

The PVDF membrane was washed 2 x 5 minutes in PBS/T and subsequently 

incubated in 50ml of primary antibody (mouse monoclonal or mouse monospecific 

antibody) diluted in blocking buffer 3 for 90 minutes at room temperature on an 

orbital shaker. The membrane was washed 3 x 15 minutes and 1 x 30 minutes in 

PBS/T, followed by a 5 minute wash in blocking buffer 3. Dilutions of secondary 

antibody were made in blocking buffer 3 (1/6000 RAMP) and incubated on the 

membranes for 90 minutes at room temperature on an orbital shaker. The membrane 

was rinsed 3 x 15 minutes in PBS/T, blotted dry on filter paper and incubated in ECL 

detection solution for 5 minutes. The membrane was blotted again before being 

wrapped in clingfilm and transferred to the dark room. The membrane was then 

exposed to photographic film (Hyperfilm ECL, Amersham Biosciences) for between 

10 seconds and 1 minute, depending on the strength of the luminescence. The films 

were developed for 2 minutes in Gbx developer followed by 2 minutes in Gbx fixer 

and were finally rinsed in distilled water. Films were left to dry overnight at room 

temperature. 

 

 

 

 

 

 

 

 

 

 

 

 



  96   

 

 

Chapter 4: Production of recombinant vaccinia virus expressing 

HMPV glycoproteins 
 

4.1 Preparation of polyclonal mouse anti-sera to HMPV174, HMPV145 

and HMPV128 
Three groups of 3 mice were immunised fortnightly with an initial intranasal 

inoculation (Section 3.10.1) followed by two subcutaneous inoculations (Section 

3.10.2) with either HMPV174, 145 or 128 grown in 16HBE140 at a titre of 5 x 105 

ffu/ml. Thirty-five days after the initial intranasal inoculation, the serum antibody 

titres (Table 4.1) were established by titrating the tail bleeds by indirect 

immunofluorescence, staining on HMPV infected cells in comparison with uninfected 

cells. Mice immunised with HMPV128 received an additional subcutaneous 

inoculation on day 42 to boost serum antibody titres. 

 
Table 4.1 Antibody titres of tail bleeds and cardiac punctures from HMPV immunised mice 

against the homologous strain. 

Inoculum 

Titre (log10) 

Tail bleed 1 

Day 35 

Tail bleed 2 

Day 49 
Final bleed 

HMPV174 2.81 - 2.81 

HMPV145 2.81 - 2.81 

HMPV128 2.2 2.51 2.51 

 

 

All serum collected was absorbed with 16HBE140 cells (Section 3.5.3) to remove any 

cross reactive anti-human antibodies before being used for the detection of HMPV 

glycoprotein expression. 

 

 

4.2 Immunofluorescence 

4.2.1 Polyclonal anti-serum 

All sera collected were tested for cross reactivity against strains HMPV174 and 

HMPV145 (both clustered with sub-group A2 (Ingram, 2006)) and HMPV128 
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(clustered with sub-group B1 (Ingram, 2006)) and the results are presented in Table 

4.2. 

 
Table 4.2 Cross reactivity of polyclonal anti-HMPV mouse serum on HMPV infected 16HBE140 

cell cultures. 

Virus Mouse polyclonal anti-HMPV antibody (titre log10) 

Anti-174 Anti-145 Anti-128 

HMPV174 2.81 2.51 2.2 

HMPV145 2.51 2.81 2.2 

HMPV128 2.51 2.51 2.51 

 

 

Whilst all polyclonal serum cross reacted against all tested strains of HMPV, anti 

HMPV128 polyclonal serum had generally lower titres in comparison to HMPV174 

and 145. 

 

 

4.3 Production of recombinant pTM1 HMPV clones 
In order to produce recombinant vaccinia virus clones expressing the different 

glycoproteins of HMPV174, 145 and 128, the glycoprotein genes were first amplified 

by reverse transcription PCR from the viral RNA. The PCR products were inserted 

into the vector, pTM1, to allow recombination to occur between the thymidine kinase 

regions in the plasmid and the vaccinia virus genome. Once cloned into pTM1, all 

genes were sequenced using the forward and reverse primers used for cloning and 

cross referenced with sequences on the NCBI database for anomalies.  

The vaccinia virus recombinants were finally coinfected with VTF7.3 to allow 

authentic expression of the gene. 

 

4.3.1 Plasmid pTM1 

Initially, pTM1 DNA was transformed into competent E. coli, TG1, as described in 

section 3.7.7. Plasmid bearing colonies were identified using a miniprep kit as 

described in section 3.7.8. The eluted DNA was digested with restriction 

endonucleases Nco1 and Xho1 (Section 3.7.5), before being visualised by ethidium 

bromide staining following gel electrophoresis (Section 3.6.6). A positive colony was 
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inoculated into 500ml of LB + ampicillin broth and pTM1 DNA was prepared using a 

QIAgen maxiprep kit as described in section 3.7.9. The concentration of plasmid 

DNA was determined as 3.2 mg/ml. A restriction digest was performed on the 

plasmid using enzymes Nco1 and Xho1 and the results are presented in Figure 4.1. An 

expected band of 5357bp corresponding to the digested pTM1 plasmid was present 

(lane 3). 

 

   
 

 

4.3.2 HMPV128 F and G glycoproteins 

4.3.2.1 PCR primer design 

In the VTF7.3 system, mRNA expressed from the T7 promoter requires a hairpin loop 

to stabilise the transcript. Since the hairpin loop prevents capping of the transcript and 

potentially ribosome binding and scanning, an encephalomyocarditis virus 

independent ribosomal entry site (EMC) sequence is also required for efficient 

translation of non-capped transcripts (see Figure 4.2) (Elroy-Stein et al., 1989; Fuerst 

and Moss, 1989). The plasmid, pTM1 (Figure 1.4), possesses an AUG start codon in 

the Nco1 restriction enzyme site downstream from the T7 promoter and EMC site. 

Utilising this start codon to represent the AUG start codon of the target gene would 

allow efficient translation of the gene when inserted into the vaccinia virus genome.  

 

 

 
Figure 4.2 Structure of the expression cassette in pTM1 

Figure 4.1 Agarose gel electrophoresis of 

pTM1 restriction digests. 

The lanes were loaded as follows; 1 - 1kb 

molecular marker, 2 - 1µg pTM1 undigested, 

3 - 1µg pTM1 digested with Nco1 and Xho1. 
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Therefore, to insert the glycoprotein genes of HMPV into pTM1, the primer 

sequences must incorporate the restriction endonuclease site Nco1 at the 5’ end over 

the start codon and another restriction enzyme site, present in the MCS of pTM1, at 

the 3’ end.  

 

The Nco1 site contains the start codon, bases 3 to 5, with the sixth base being a 

guanosine. Therefore, each gene inserted into the plasmid must possess a guanosine 

after the start codon to be recognised by the restriction enzyme. However, as this is 

not the case with both the F and SH genes of HMPV, other restriction endonucleases 

could be substituted that would reproduce the same overhang as Nco1 (Table 4.3), 

allowing ligation between the 5’ end of the gene and the Nco1 digested plasmid. 

 
Table 4.3 Restriction enzyme sites and overhangs 

Restriction enzyme Sequence (5’ to 3’) Overhang HMPV gene  

Nco1 
C / C A T G G 

G G T A C / C 
CATG G 

BspH1 
T / C A T G A 

A G T A C / T 
CATG SH 

Pci1 
A / C A T G  T 

T G T A C / A 
CATG F 

 

 

4.3.2.1.1 PCR of HMPV128 F gene 

Searching the NCBI nucleotide database for HMPV F gene sequences from the B 

subtype, yielded several sequences that all shared a common 3’ end. The start codon 

is followed by TC and so the restriction endonuclease Pci1 could be used for insertion 

into pTM1. For PCR design, the first 29 bases from the AUG start codon were used as 

a sequence for the forward primer. The 5’ end also shared close homology between 

the different database sequences and 24 bases including the TAG stop codon were 

used as a complimentary sequence for the reverse PCR primer. The HMPV F gene 

was searched for restriction endonucleases Pci1 and Xho1 (a restriction enzyme site 

present in the MCS of pTM1) however, the Pci1 enzyme cuts within the gene. Since 

no other restriction enzymes were available, during primer design the first 2 

nucleotides (thymine and cytosine) in the sequence after the start codon were 
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substituted for adenine and guanine. This alteration maintains the integrity of the 

amino acid sequence, conserving the serine residue (UCU and AGU encode serine), 

but allows the restriction enzyme BspH1 to be used for digestion of the gene at the 5’ 

end. 

Therefore, the PCR product will incorporate the BspH1 upstream of the HMPV F 

gene and the Xho1 downstream to allow correct orientation of the gene into the pTM1 

plasmid. 

 

 

(BspH1) TCATGAG - - - -     HMPV F gene    - - - -   TAG

                           

   - - - - Xho1 

Start codon                                               

 

Stop codon 

 

The reverse transcription reaction was carried out using the reverse primer as this will 

transcribe mRNA, which is more abundant than genome in infected cell lysate. RT-

PCR was performed with primer set 1 (Table 3.6) using the conditions described in 

Table 3.9 and 3.12 (RT step and AliT2). 

 

4.3.2.1.2 PCR of HMPV128 G gene 

A search on the NCBI nucleotide database yielded several sequences for the HMPV G 

gene, where the B subtype strains showed high homology within the first 90 

nucleotides. The AUG is followed by a G allowing Nco1 to be used for cloning into 

pTM1. The forward primer included the first 25 nucleotides including the AUG start 

codon and an Nco1 site over the AUG start codon. For the reverse primer, there was 

not enough homology between the sequences in the database to obtain a consensus 

sequence so the primer was designed around the start of the adjacent L gene. The first 

27 nucleotides including the start codon were used as a primer template. The entire 

gene was checked for the presence of restriction endonuclease sites, and Nco1 and 

Xho1 were not found allowing these sites to be added to the forward and reverse 

primers respectively.  

 

 

   (Nco1) CCATG

      

G -    HMPV G gene   - -  G / L intergenic region   - -   start of L gene    - Xho1 

Start codon 
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As the reverse primer is located in a separate gene, the forward primer was used in the 

reverse transcription of virus genome, as the transgenic region is required for 

amplification. RT-PCR was performed with primer set 2 (Table 3.6) and was carried 

out according to the RT step and AliT2 program (Table 3.9 and 3.12). 

 

4.3.2.2 Digestion of HMPV128 F and G gene PCR products and pTM1 plasmid 

RT-PCR produced a band of approximately 1600bp for the F gene reaction (expected 

1620 bp) and 900bp for the G gene reaction (expected 901bp) when the reaction mix 

was run on a 1% agarose gel. The products were cut from the gel and purified as 

described in section 3.6.7. 

To facilitate ligation of the genes into pTM1, gel purified HMPV F gene product 

(Section 3.6.7) was digested with restriction endonucleases BspH1 and Xho1, whilst 

HMPV G gene product and pTM1 were digested with Nco1 and Xho1. Reactions were 

incubated for 3 hours and subsequently run on a 1% agarose gel to be observed with 

ethidium bromide staining and ultraviolet light. The results are shown in Figure 4.3. 

 

 

(a)             (b)  

 

 

 

Bands of appropriate size for the F gene (1620 bp, Figure 4.3a) and the G gene (901 

bp, Figure 4.3b) and a band of approximately 5357 base pairs (the pTM1 plasmid) 

were identified and removed with a clean scalpel. Using a QIAquick gel extraction 

kit, bands were purified and eluted in EB buffer (Section 3.6.7), ready for ligation. 

Figure 4.3 Plasmid pTM1, (a) F 

gene and (b) G gene restriction 

digest. 

The lanes were loaded as follows; 

1 - 1kb molecular marker, 2 - 

pTM1 digested with Nco1 and 

Xho1, 3(a) F gene digested with 

BspH1 and Xho1 3(b) G gene 

digested with Nco1 and Xho1. 
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4.3.2.3 Ligation and transformation of pTM1 with HMPV128 gene products 

To ensure a successful transformation, 18 different ligations were carried out as 

described in section 3.7.6. Once ligation products were produced, they were 

transformed into E. coli TG1 (Section 3.7.7) and spread onto LB agar plates 

containing ampicillin. The results are shown in Table 4.4. 

 

 
Table 4.4 Number of colonies counted after transformation of bacteria with pTM1.128F and 

pTM1.128G. 

Reaction pTM1.128F pTM1.128G 

Vector only 2µl 2 0 

Vector only 8µl 2 0 

Vector only 20µl 2 1 

Vector + insert 1:1, 2µl 7 10 

Vector + insert 1:1, 8µl 20 25 

Vector + insert 1:1, 20µl 13 54 

Vector + insert 2:5. 2µl 17 0 

Vector + insert 2:5, 8µl 39 0 

Vector + insert 2:5, 20µl 75 0 

Vector + insert 1:3, 2µl 8 8 

Vector + insert 1:3, 8µl 15 24 

Vector + insert 1:3, 20µl 32 26 

Vector + insert 1:5, 2µl 25 10 

Vector + insert 1:5, 8µl 70 38 

Vector + insert 1:5, 20µl 83 51 

No DNA control 0 0 

No DNA control 0 0 

No DNA control 0 0 

 

 

One colony from each successful plate was taken and grown up overnight in 5ml of 

LB medium containing ampicillin. To check the validity of the clones, plasmid DNA 

was prepared using a QIAgen miniprep spin column as described in section 3.7.8. The 
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eluted DNA was digested according to Table 3.13. The product was resolved on a 1% 

agarose gel and the results for pTM1.128F are presented in Figure 4.4. 

 

 

           
  

 

 

 

 

 

 

 

All but two of the twelve transformed bacterial clones contained two bands, one just 

over 5kbp, corresponding to the pTM1 plasmid and another approximately 1.7kbp 

corresponding to 1620bp for the F gene and approximately 100bp lying between the 

end of the F insert and the Kpn1 site in the vector (Figure 1.4). Based on the gel in 

Figure 4.4, one clone (pTM1.128F clone 5) was picked and recloned onto LB agar 

with ampicillin. Three colonies were inoculated into LB medium, containing 

ampicillin, overnight. DNA was prepared as above and digested with both Kpn1 and 

Xho1 restriction enzymes to ensure purity of the culture (Figure 4.5). One of these 

clones (pTM1.128F clone 5.2) was chosen for large scale preparation of a plasmid 

DNA maxiprep (see Section 3.7.9). The concentration of DNA eluted was 2.5 mg/ml. 

 

Figure 4.4 Restriction digest of transformation of 

pTM1 with the HMPV128 F gene. 

The lanes are as follows; 1 - 1Kb molecular marker, 2 

to 13 – various colonies picked, 14 – 1Kb molecular 

marker. 

Figure 4.5 Restriction digest of 

pTM1.128F clone 5. 

The lanes are as follows; 1 - 1Kb 

molecular marker, 2 to 4 - 

colonies picked from one clone, 5 

– 1Kb molecular marker. 
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The results for pTM1.128G are presented in Figure 4.6. All nine transformed bacterial 

clones contained two bands, one just over 5kbp corresponding to the pTM1 plasmid 

and another at approximately 900bp corresponding to the G gene. One clone 

(pTM1.128G clone 8) was picked and recloned similarly to the F gene above, and the 

DNA digested with restriction enzymes Nco1 and Xho1 (Figure 4.7). Using a QIAgen 

maxiprep kit, large scale plasmid DNA prep was prepared as above with pTM1.128G 

clone 8.2 and produced a yield of 3.1 mg/ml total DNA.  

To ensure the plasmid DNA was eluted correctly, both pTM1.128F clone 5.2 and 

pTM1.128G clone 8.2 DNA preparations were double digested with restriction 

enzymes Kpn1 and Xho1, and Nco1 and Xho1 respectively. The results are presented 

in Figure 4.8. 

                         

Figure 4.6 Restriction digest of transformation of 

pTM1 with the HMPV128 G gene. 

The lanes are as follows; 1 - 1Kb molecular marker, 

2 to 10 – various colonies picked, 11 – 1Kb 

molecular marker. 

 

Figure 4.7 Restriction digest of 

pTM1.128G clone 8. 

The lanes are as follows; 1 - 1Kb 

molecular marker, 2 to 4 - colonies picked 

from one clone, 5 – 1Kb molecular marker. 

 

Figure 4.8 Restriction digest of 

pTM1.128F clone 5.2 and 

pTM1.128G clone 8.2 maxiprep. 

Lanes are as follows; 1 - 1Kb 

molecular marker, 2 - pTM1.128F5.2, 

3 - pTM1.128G8.2 
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4.3.3 HMPV145 F and G glycoprotein 

4.3.3.1 Primers 

HMPV145 clusters with subtype A2 strains in phylogenetic analyses (Ingram, 2006). 

As the sequence homology between the A and B subgroups of HMPV is high, the 

subtype B HMPV128 F primers (primer set 1, Table 3.6) were used to amplify the 

subtype A HMPV strain 145 F gene using the RT step and AliT2 conditions (Table 

3.9 and 3.12). 

 

4.3.3.2 PCR of HMPV145 G gene 

For the G gene of HMPV145, HMPV174 G primers (primer set 2, Table 3.8) were 

modified from Robinson, 2007 where Nco1 and Xho1 restriction enzyme sites were 

added to the forward and reverse primers respectively (as described in Section 

4.3.2.1.2). The subtype A HMPV strain 145 G gene was amplified with primer set 1 

(Table 3.7) using the RT step and AliT2 conditions (Table 3.9 and 3.12). 

 

4.3.3.3 Digestion of HMPV145 F and G gene PCR products and pTM1 plasmid 

HMPV145 F and G gene products were purified as described in section 3.6.7 and 

were digested with restriction enzymes specified in Table 3.13. Reactions were 

incubated for 3 hours and the products run on a 1% agarose gel. The results are shown 

in Figure 4.9. 

 

 

(a)              (b)  

 

 

A band corresponding to the 1620 base pairs for the F gene (a) and the 901 base pairs 

for the G gene and a band of approximately 5357 base pairs (the pTM1 plasmid) were 

Figure 4.9. Plasmid pTM1, (a) 

HMPV145 F gene and (b) 

HMPV145 G gene restriction digest. 

The lanes were loaded as follows; 1 - 

1kb molecular marker, 2 - pTM1 

digested with Nco1 and Xho1, 3 – F 

gene digested with BspH1 and Xho1 / 

G gene digested with Nco1 and Xho1. 
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identified and removed with a clean scalpel. Using a QIAquick gel extraction kit, 

bands were purified and eluted in EB buffer (section 3.6.7), ready for ligation. 

 

4.3.3.4 Ligation and transformation of pTM1 with HMPV145 gene products 

18 different ligation reactions were carried out as described in section 3.7.6. Once 

ligation products were produced, they were transformed into E. coli TG1 (Section 

3.7.7) and spread onto LB agar plates containing ampicillin. The results are shown in 

Table 4.5. 

 

 
Table 4.5 Number of colonies counted after transformation of bacteria with pTM1.145F and 

pTM1.145G. 

Reaction pTM1.145F pTM1.145G 

Vector only 2µl 0 0 

Vector only 8µl 0 0 

Vector only 20µl 0 0 

Vector + insert 1:1, 2µl 9 69 

Vector + insert 1:1, 8µl 33 262 

Vector + insert 1:1, 20µl 45 too many to count 

Vector + insert 2:5. 2µl 82 272 

Vector + insert 2:5, 8µl 167 568 

Vector + insert 2:5, 20µl 194 too many to count 

Vector + insert 1:3, 2µl 15 82 

Vector + insert 1:3, 8µl 57 235 

Vector + insert 1:3, 20µl 122 too many to count 

Vector + insert 1:5, 2µl 55 148 

Vector + insert 1:5, 8µl 223 272 

Vector + insert 1:5, 20µl 248 456 

No DNA control 0 0 

No DNA control 0 0 

No DNA control 0 0 
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One colony from each successful plate was taken and grown up as described 

previously. Plasmid DNA obtained from a QIAgen miniprep was digested according 

to Table 3.13. The results for pTM1.145F are presented in Figure 4.10. 

 

 

 

                              
 

 

 

 

 

 

 

All but one of the twelve transformed bacterial clones contained two bands, one just 

over 5kbp representing the pTM1 plasmid and the other, approximately 1.7kbp, 

corresponding to the F gene (Figure 4.10). One of these eleven clones (pTM1.145F 

clone 8) was picked and recloned on LB agar ampicillin plates followed by growth in 

LB medium containing ampicillin overnight. DNA was prepared as before and 

digested with both Kpn1 and Xho1 restriction endonucleases to ensure stability of the 

clone (Figure 4.11). One clone (pTM1.145F clone 8.1) was subsequently used for 

maxiprep of recombinant plasmid DNA (see Section 3.7.9). The concentration of 

DNA yielded 382.5µg/ml.  

 

 

 

 

Figure 4.10 Restriction digest of transformation of 

pTM1 with the HMPV145 F gene. 

The lanes are as follows; 1 - 1Kb molecular marker, 2 

to 13 – various colonies picked, 14 – 1Kb molecular 

marker. 

 

Figure 4.11 Restriction digest of 

pTM1.145F clone 8. 

The lanes are as follows; 1 - 1Kb 

molecular marker, 2 to 4 - colonies picked 

from one clone, 5 – 1Kb molecular marker. 
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The results for pTM1.145G are presented in Figure 4.12. All twelve transformed 

bacterial clones contained two bands, one just over 5kbp representing the pTM1 

plasmid and the other just over 900bp, corresponding to the G gene. Clones 11 to 13 

contained an additional faint band at approximately 3300bp, however it is not clear 

what they represent. One clone (pTM1.145G clone 2) was picked and recloned 

similarly to the F gene above, and the DNA digested with restriction enzymes Nco1 

and Xho1 (Figure 4.13). Preparation of plasmid DNA of pTM1.145G clone 2.3 was 

carried out using a QIAgen maxiprep kit (Section 3.7.9) and produced a yield of 

425µg/ml total DNA. 

 

To ensure the plasmid DNA was eluted correctly, both pTM1.145F clone 8.1 and 

pTM1.145G clone 2.3 DNA preparations were double digested with restriction 

enzymes Kpn1 and Xho1, and Nco1 and Xho1 respectively. The results are presented 

in Figure 4.14. 

Figure 4.12 Restriction digest of transformation 

of pTM1 with the HMPV145 G gene. 

The lanes are as follows; 1 - 1Kb molecular marker, 

2 to 13 – various colonies picked, 14 – 1Kb 

molecular marker. 

 

Figure 4.13 Restriction digest of 

pTM1.145G clone 2. 

The lanes are as follows; 1 - 1Kb 

molecular marker, 2 to 4 - colonies picked 

from one clone, 5 – 1Kb molecular marker. 
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4.3.4 HMPV174 F and G glycoproteins 

E. coli, TG1, transformed with pTM1 plasmids containing the F and G gene of 

HMPV174, were kindly provided by Dr Mark Robinson. The genes were integrated 

into the MCS of the pTM1 plasmid using restriction endonucleases BamH1 and 

EcoR1 (see Figure 1.4). Both preparations were recloned as before and DNA was 

once again extracted from the cultures and digested using restriction enzymes BamH1 

and EcoR1. The results are presented in Figure 4.15 and Figure 4.16. 

 

                             
 

 

 

 

 

 

All transformed bacterial colonies were positive for both pTM1 (5357bp) and the 

gene insert (F gene at 1620bp and G gene at 901bp). Maxipreps of the recombinant 

plasmids were prepared (Section 3.7.9) and produced a yield of 640µg/ml total DNA 

for pTM1.174F clone 6.1 and 1.506mg/ml total DNA for pTM1.174G clone 3.6. 

Figure 4.14 Restriction digest of 

pTM1.145F clone 8.1 and pTM1.145G 

clone 2.3 maxiprep. 

Lanes are as follows; 1 - 1Kb molecular 

marker, 2 - pTM1.145F8.1, 3 - 

pTM1.145G2.3 

 

Figure 4.15. Restriction digest of 

pTM1.174F clone 6. 

The lanes are as follows; 1 - 1Kb molecular 

marker, 2 to 6 - colonies picked from one 

clone, 7 – 100bp molecular marker. 

 

Figure 4.16. Restriction digest of 

pTM1.174G clone 2. 

The lanes are as follows; 1 – 100bp 

molecular marker, 2 to 6 - colonies picked 

from one clone. 
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These plasmids were digested with restriction endonucleases BamH1 and EcoR1 for 3 

hours before being visualised by ethidium bromide staining following agarose gel 

electrophoresis (Figure 4.17). 

 

 

          
 

 

4.4 Sequencing 
Once cloned into pTM1, all genes were sequenced. As a comparison, each gene was 

evaluated for both its nucleotide and amino acid identity with the corresponding genes 

from either HMPV128, HMPV145 or HMPV174 to remove the possibility of cross 

contamination (Table 4.6). 

These genes were also evaluated for both their nucleotide and amino acid identity 

with strains from the NCBI database representing all four lineages (Table 4.7). These 

were an A1 strain JPS03/180 (Accession number AY530092), an A2 strain 

CAN97/83 (Accession number AY297749), a B1 strain JPS02/76 (Accession number 

AY530089) and a B2 strain CAN98/75 (Accession number AY297748). 

 

 
Table 4.6 Percentage of amino acid or nucleotide sequence identity between HMPV128, 

HMPV145 and HMPV174 F and G genes 

HMPV 

genes 

Percent amino acid sequence identity (percent nucleotide sequence identity†) 

 HMPV128 vs HMPV145  HMPV128 vs HMPV174  HMPV145 vs HMPV174 

F 98 (97) 93 (83) 93 (82) 

G 68 (92) 31 (59) 34 (59) 
 

† See footnote Table 4.7 

Figure 4.17 Restriction digest of 

pTM1.174F clone 6.1 and pTM1.174G 

clone 3.6 maxiprep. 

Lanes are as follows; 1 - 1Kb molecular 

marker, 2 – 100bp molecular marker, 3 - 

pTM1.174F clone 6.1, 4 - pTM1.174G 

clone 3.6. 
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Table 4.7 Percentage of amino acid or nucleotide sequence identity between HMPV128, 

HMPV145 and HMPV174 genes and other HMPV strains from the NCBI database 

HMPV128 

genes compared 

Percent amino acid sequence identity (percent nucleotide sequence 

identity†) 

JPS03/180 (A1) CAN97/83 (A2) JPS02/76 (B1) CAN98/75 (B2) 

Fa 94 (84) 94 (83) 99 (98) 98 (94) 

Gb 30 (57) 34 (61) 92 (94) 65 (79) 

HMPV145 

genes compared 
    

Fa 93 (84) 93 (83) 98 (97) 97 (93) 

Gc 30 (61) 36 (61) 70 (94) 55 (79) 

HMPV174 

genes compared 
    

Fa 98 (93) 98 (96) 93 (83) 94 (83) 

Gd 64 (80) 84 (91) 32 (59) 35 (61) 

 
† Amino acid sequence identities were calculated based on the complete predicted proteins; in the case 

of G, overhangs on the carboxy-terminal side of the alignments due to length differences were not 

included in the calculations. Nucleotide sequence identities are shown in parentheses and are based on 

the protein-coding sequence exclusive of non-coding sequences. 
a The F genes from HMPV128, HMPV145 and HMPV174 were sequenced in both directions using 

primer set 1 (Table 3.6) (Appendix 1). 
b HMPV128 G gene was sequenced using primer set 2 (Table 3.6) (Appendix 2) 
c HMPV145 G gene was sequenced using primer set 1 (Table 3.7) (Appendix 2) 
d HMPV174 G gene was sequenced using primer set 2 (Table 3.8) (Appendix 2) 

 

 

Whilst HMPV128 appears to most closely resemble JPS02/76 B1 and HMPV174 

most closely resembles CAN97/83 A2 in both genes, the F and G genes of HMPV145 

appear to be most closely related to JPS02/76 B1 despite the previous report by 

Ingram (2006) that the N gene sequence of HMPV145 clustered with sub-group A2. 

Therefore, the N gene was sequenced again and evaluated for its nucleotide and 

amino acid identity with strains from the NCBI database (Table 4.8). 

Sequence analysis confirms the results by Ingram (2006) with HMPV145 N gene 

most closely resembling CAN97/83 A2. 
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Table 4.8 Percentage of amino acid or nucleotide sequence identity between HMPV145 N gene 

and other HMPV strains from the NCBI database 

HMPV145 

genes compared 

Percent amino acid sequence identity (percent nucleotide sequence 

identity†) 

JPS03/180 (A1) CAN97/83 (A2) JPS02/76 (B1) CAN98/75 (B2) 

N* 98 (94) 98 (97) 98 (88) 98 (89) 

 
* HMPV145 N gene was sequenced using primer set N-LN F / N-LN R (Table 3.10) (Appendix 4) 

 

 

 

4.5 Transient expression of HMPV.pTM1 clones in vaccinia virus 
Recombinant vaccinia viruses were generated from only HMPV174 (A2 strain) and 

HMPV128 (B1 strain), however, HMPV145 (A2 strain) was utilised in the transient 

expression system. 

 

To ensure the constructs had the ability to allow authentic expression of the HMPV 

glycoproteins in the vaccinia virus system, DNA from pTM1.174F clone 6.1, 

pTM1.174G clone 3.6, pTM1.145F clone 8.1, pTM1.145G clone 2.3, pTM1.128F 

clone 5.2 and pTM1.128G clone 8.2 were transfected into VTF7.3 infected HeLa cells 

(section 3.5.12). After 21 hours, the cells were tested for expression of F and G 

antigen by immunofluorescence staining with an anti-F monoclonal antibody, 

MAb24, and homologous and heterologous mouse anti-HMPV polyclonal serum (see 

Section 3.2.1.2) diluted at 1/20 in PBS (Figures 4.18 and 4.19 and Table 4.9). 

 

Specific binding of both MAb24 and the mouse polyclonal anti-HMPV serum to the 

transiently expressed HMPV F glycoprotein of all three F clones was observed, 

indicating the F glycoproteins from all strains of HMPV are expressed and are 

antigenically similar. The control VTF7.3 infected HeLa cells which were not 

transfected with plasmid DNA and uninfected, non-transfected HeLa cells showed no 

staining with MAb24 but there was slight non-specific binding of the mouse 

polyclonal anti-HMPV serum to both negative controls. Therefore, a staining score of 

≥ ++ was taken as indicative of specific antibody binding with the polyclonal 

antibodies. 
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(a)   (b)   (c)  
Figure 4.18 Example of immunofluorescence staining in transiently expressed (a) pTM1.174F, (b) 

VTF7.3 infected HeLa cells (c) and HeLa cells all stained with MAb24. 

 

 

Staining of the three G glycoprotein expressing clones with mouse polyclonal anti-

HMPV antibodies was strain specific suggesting the G glycoprotein from all three 

clones was expressed but that the G glycoprotein is highly antigenically variable. No 

staining of the three G glycoprotein expressing clones occurred with MAb24, 

confirming that the G glycoprotein is expressed alone. 

 

 

(a)   (b)   (c)  
Figure 4.19 Example of immunofluorescence staining in transiently expressed (a) pTM1.174G, 

(b) VTF7.3 infected HeLa cells (c) and HeLa cells all stained with mouse anti-HMPV174 

polyclonal antibody. 
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Table 4.9 Reactivity of mouse anti-HMPV polyclonal serum with transiently expressed HMPV F 

and G genes from HMPV174, 145 and 128. 

Virus Mouse polyclonal anti-HMPV antibody MAb24 

Anti-174 Anti-145 Anti-128 

pTM1.174 G clone 3.6 ++ + + - 

 F clone 6.1 +++ +++ ++ ++ 

pTM1.145 G clone 2.3 -/+ ++ + - 

 F clone 8.1 +++ +++ ++ ++ 

pTM1.128 G clone 8.2 -/+ + ++ - 

 F clone 5.2 +++ +++ ++ ++ 

VTF7.3 infected HeLa (not 

transfected) 
-/+ + + - 

HeLa cells (not infected or 

transfected) 
-/+ + + - 

 

- No antibody staining 

+ Small number of cells with a small amount of antibody staining 

++ Approximately 50% of cells with specific antibody staining 

+++ Approximately 80% or more cells with specific antibody staining 

++++ Approximately 100% or more cells with specific antibody staining 

 

 

 

4.6 Production of vaccinia virus recombinants 
Vaccinia virus clones were produced by initially infecting CV-1 cells with wild type 

vaccinia virus and transfecting them with either a maxiprep of pTM1.174F clone 6.1, 

pTM1.174G clone 3.6, pTM1.128F clone 5.2 or pTM1.128G clone 8.2 (Section 

3.5.13). Lysates of these transfected CV-1 cells were then inoculated onto TK-143 

cells under BuDR selection pressure to select for TK- recombinant virus and overlaid 

with agarose and neutral red to allow virus plaques to become visible (Section 3.5.14). 

Several individual plaques were collected for each co-infection and subsequently 

cultured in a 24 well plate containing TK-143 cells to produce a stock for DNA 

preparation (Section 3.5.15).  

 

DNA was purified from vaccinia virus clones from both HMPV174 and HMPV128 F 

and G glycoprotein co-infections and amplified by PCR. DNA from vv174F clones 1 
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to 7 was amplified using primer set 1 (Table 3.8) under their optimised conditions 

(Table 3.9 and 3.12) whilst DNA from vv174G clones 1 to 7 was amplified using 

primer set 2 (Table 3.8) under the conditions described in NHOT (Table 3.9 and 

3.12).The amplicand was resolved on a 1% agarose gel and visualised with ethidium 

bromide using ultraviolet light. The results are presented in Figure 4.20. 

 

 

                      

            
 

 

 

All vaccinia virus plaques derived from pTM1.174F clone 6.1 produced a band of 

around 700bp (Figure 4.20a) corresponding to the expected product size of 696bp. 

Four of the seven clones derived from pTM1.174G clone 3.6 produced a band of 

approximately 250bp corresponding to that expected for the primer set (Figure 4.20b). 

A band of 500bp can be observed in the other three clones. The vaccinia virus genome 

of these clones may contain a double insert as this length is twice the size of the 

expected product.  

 

DNA from vv128F clones 1 to 7 was amplified using primer set 1 (Table 3.8) under 

their optimised conditions (Table 3.9 and 3.12) whilst PCR for vv128G clones 1 to 7 

was performed using primer set 2 (Table 3.6) under the AliT2 conditions described in 

tables 3.9 and 3.12. The amplicand was resolved on a 1% agarose gel and visualised 

with ethidium bromide using ultraviolet light. The results are presented in Figure 4.21 

and 4.22. 

 

 

Figure 4.20 PCR products of vv174F 

DNA preps and vv174G DNA preps 

Lanes are as follows; 1 – 1Kb molecular 

marker, 2a to 8a - vv174F clones 1 to 7, 

2b to 8b – vv174G clones 1 to 7, 9a – 

pTM1.174F maxiprep at dilution 10-3, 9b 

- pTM1.174G maxiprep at dilution 10-3 

positive control. 

(a) 

 

(b) 
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 (a)               (a)  

(b)            (b)  

 

 

 

 

 

 

 

 

 

Only one out of seven of the vaccinia virus recombinants derived from pTM1.128F 

clone 5.2 produced a band at 696bp with primers MF1499F and MF2175R (Figure 

4.21a). However, after recloning the single positive plaque (vv128F clone 5) on TK-

143 cells, all plaques picked contained the gene of interest (Figure 4.22a). Similarly, 

only two of the recombinants derived from pTM1.128G clone 2.3 produced a band of 

901bp with the primer set used (Figure 4.21b) Plaque 3 was recloned and all 

derivative plaques contained the G insert (Figure 4.22b). 

 

 

4.7 Co-expression of HPMV vaccinia recombinants 
All recombinant vaccinia virus clones (vv174F clone 7, vv128F clone 5.5, vv174G 

clone 5 and vv128G clone 3.5) were grown up to high titres by successive passage in 

L cells as described in section 3.5.15. Once passaged into 75cm3 tissue culture flasks, 

each clone was titred according the method described in section 3.5.11.  

Each clone was coinfected into L cells with VTF7.3 at an MOI of 3 (Section 3.5.17). 

The infected cells were incubated for 24 hours, where after, the cells were scraped 

into PBS and either made into spot slides (Section 3.5.4) or inactivated for future use 

(Section 3.5.18). 

Figure 4.21 PCR products of vv128F DNA 

preps and vv128G DNA preps 

Lanes are as follows; 1 – 1Kb molecular 

marker, 2a to 7a – vv128F clones, 2b to 7b – 

vv128G clones, 8 – negative PCR control, 9 

– 1Kb molecular marker 

 

Figure 4.22 PCR products of recloned vv128F 

clone 5 and recloned vv128G clone 3 DNA preps 

Lanes are as follows; 1 – 1Kb molecular marker, 2a 

to 7a – vv128F clone 5 clones, 2b to 7b – vv128G 

clone 3 clones, 8a – pTM1.128F maxiprep at 

dilution 10-3, 8b – pTM1.128G maxiprep at dilution 

10-3, 9 – negative PCR control, 10 – 1Kb molecular 

marker 
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The slides were tested for expression of the F and G antigen by immunofluorescence 

staining with both anti HMPV F glycoprotein, MAb24, and homologous and 

heterologous mouse polyclonal anti-HMPV serum (see Table 4.10 and Figure 4.23 

and 4.24). 

 

 

4.8 Inactivation of vaccinia virus infectivity retaining HMPV antigenicity 
Once coinfection was complete, cells were scraped into PBS and added to BEI for 

inactivation of the vaccinia virus over a 24 hour time period (Section 3.5.18). Treated 

virus was passaged three times, blind, in Vero cells as described in section 3.5.10 to 

ensure the vaccinia virus was fully inactivated. Immunofluorescence staining was 

repeated once the clones had been inactivated to ensure the antigenicity was preserved 

(Table 4.10 and Figure 4.23 and 4.24).  

 

 
Table 4.10 Reactivity of mouse anti-HMPV polyclonal serum with HMPV F and G genes from 

HMPV174 and 128. 

Virus (before / after 

inactivation) 

Mouse polyclonal anti-HMPV antibody MAb24 

Anti-174 Anti-145 Anti-128 

vv174G5/VTF7.3  +++ / +++ -/+ / -/+ -/+ / -/+ - / - 

vv174F7/VTF7.3  ++++ / +++ +++ / ++ ++ / ++ ++ / - 

vv128G3.5/VTF7.3  -/+ / -/+ -/+ / -/+ ++ / ++ - / - 

vv128F5.5/VTF7.3  +++ / ++ +++ / ++ ++ / ++ ++ / ++ 

VTF7.3 infected HeLa -/+ / -/+ -/+ / -/+ -/+ / -/+ - / - 

HeLa negative cells -/+ / -/+ -/+ / -/+ -/+ / -/+ - / - 

 

- No antibody staining 

+ Small number of cells with a small amount of antibody staining 

++ Approximately 50% of cells with specific antibody staining 

+++ Approximately 80% or more cells with specific antibody staining 

++++ Approximately 100% or more cells with specific antibody staining 
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(a)   (b)   (c)  
Figure 4.23 Example of immunofluorescence staining of L cells (a) coinfected with vv174F7 and 

VTF7.3 stained with MAb24 (b) coinfected with vv174F7 and VTF7.3 stained with anti-

HMPV174 polyclonal antibody and (c) coinfected with vv174F7 and VTF7.3 after inactivation 

stained with anti-HMPV174 polyclonal antibody. 

 

 

(a)   (b)   (c)  
Figure 4.24 Example of immunofluorescence staining of L cells (a) coinfected with vv174G5 and 

VTF7.3 (b) coinfected with vv174G5 and VTF7.3 after inactivation and (c) VTF7.3 only (before 

inactivation), all stained with anti-HMPV174 polyclonal antibody. 

 

 

This technique allows the recombinant clones to be brought out of the designated lab 

for use in the development of glycoprotein specific antibody assays and to be used as 

a potential inoculum for animal work. 

 

Once inactivated, the relative intensity of fluorescent staining in all clones was, to 

some extent, reduced with the mouse polyclonal anti-HMPV antibodies. The control 

VTF7.3 infected L cells displayed the same low levels of non-specific staining before 

and after inactivation. The MAb24 epitope was completely diminished in the 

inactivated vv174F/VTF7.3 clone 7 but surprisingly, this epitope was preserved in the 

vv128F/VTF7.3 clone 5.5. This result appeared robust as it was reproduced in three 

independent experiments. 



  119   

 

 

4.9 Preparation of mono-specific mouse anti-sera 
Four groups of three BALB/c mice were inoculated subcutaneously (Section 3.10.2) 

every two weeks with BEI inactivated preparations of vv174F7/VTF7.3, 

vv174G5/VTF7.3, vv128F5.5/VTF7.3 and vv128G3.5/VTF7 (Section 4.7). Thirty-

five days after the initial subcutaneous inoculation, the serum antibody titres (Table 

4.11) were established by titrating the final cardiac puncture by indirect 

immunofluorescence staining on homologous HMPV grown in 16HBE140 cells (see 

Section 3.5.4). Mice immunised with vv174G5/VTF7.3 and vv128G3.5/VTF7.3 

received an additional subcutaneous inoculation on day 42 to boost serum antibody 

titres. 

 
Table 4.11 Antibody titres against the homologous strains of HMPV of the final cardiac puncture 

from vaccinia recombinant immunised mice. 

 

Inoculum Titre (log10) 

vv174F7/VTF7.3 3.11 

vv174G5/VTF7.3 2.81 

vv128F5.5/VTF7.3 3.11 

vv128G3.5/VTF7.3 2.51 

 

 

 

4.10 Strain specificity of mono-specific anti-sera by; 

4.10.1 Immunofluorescence 

Monospecific sera to vv174F7/VTF7.3, vv174G5/VTF7.3, vv128F5.5/VTF7.3 and 

vv128G3.5/VTF7.3 were diluted to 1/20 in PBS and tested by immunofluorescence 

on HMPV174, 145 and 128 infected 16HBE140 cells (Section 3.5.4). The results are 

presented in Table 4.12 and Figure 4.25. 

 

Monospecific anti-F174 and anti-F128 antibody preparations were cross reactive with 

all strains of HMPV tested. Surprisingly anti-G128 antibodies were cross reactive 

with both HMPV174 and HMPV145, however the staining pattern was less intense 

compared to both anti-F antibody preparations. Furthermore, anti-G174 antibodies 

were also slightly cross reactive with both HMPV128 and HMPV145 since the 
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staining pattern / intensity was above that observed in the negative controls. Whilst 

staining of HMPV infected 16HBE140 cells with HMPV anti-serum produces an 

apple green fluorescence which coats the cell, the anti-VTF7.3 serum produced a 

yellow strand like staining pattern which could be easily interpreted as non-specific 

staining. 

 

 
Table 4.12. Cross reactivity of monospecific anti-HMPV mouse serum on HMPV infected 

16HBE140 cell cultures. 

Virus Anti-174 G Anti-174 F Anti-128 G Anti-128 F Anti-VTF7.3 

HMPV174 ++++ ++++ ++ ++++ <+ 

HMPV145 + ++++ +/++ ++++ <+ 

HMPV128 + ++++ +++ ++++ <+ 

Uninfected 

16HBE140 cells 
- - - - - 

 
- No antibody staining 

+ Small number of cells with a small amount of antibody staining 

++ Approximately 50% of cells with specific antibody staining 

+++ Approximately 80% or more cells with specific antibody staining 

++++ Approximately 100% or more cells with specific antibody staining 

 

 

(a)   (b)   (c)  
Figure 4.25 Example of immunofluorescence staining of 16HBE140 cells (a) infected with 

HMPV128 (b) infected with HMPV174 and (c) uninfected all stained with monospecific anti-

vv128G3.5/VTF7.3 antibodies. 

 

To ensure all antibody preparations were targeting the surface glycoproteins of 

HMPV, the serum samples were tested using membrane immunofluorescence of 
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unfixed HMPV infected and control 16HBE140 cells (Section 3.5.5). All antibodies 

produced specific membrane staining of cells infected with the homologous virus as 

seen in Figure 4.26, whilst the uninfected cells showed no sign of specific 

fluorescence with any of the monospecific antibodies. 

 

 

(a)   (b)   (c)  
Figure 4.26. Example of membrane immunofluorescence staining in (a) HMPV174 infected cells 

stained with monospecific anti-vv174G5/VTF7.3 antibodies, (b) HMPV174 infected cells stained 

with monospecific anti-vv174F7/VTF7.3 antibodies and (c) uninfected 16HBE140 cells stained 

with monospecific anti-vv174F7/VTF7.3 antibodies. 

 

 

4.10.2 Neutralisation 

HMPV174 and 128 infected 16HBE140 cell lysates predetermined to generate 75% of 

cells exhibiting specific antibody staining at day 15 were incubated with each 

monospecific antibody to produce a final dilution series of 1/10 to 1/2560 and 

inoculated onto 16HBE140 cells as described in section 3.5.8. At 15 days post-

infection, spots were made and tested by immunofluorescence using HMPV 

monoclonal antibody pool (Section 3.5.4). 

 

Each spot was rated by the number of infected cells together with the intensity of 

fluorescence in comparison with the positive control as described in Table 4.12. The 

cut off for neutralisation was < ++ (where the positive control was +++) and 50% 

neutralisation titres were calculated according to the Reed and Muench method. The 

results are displayed in Table 4.13. 
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Table 4.13 Neutralisation of HMPV with monospecific antibodies  

Monospecific antibody 

50% serum neutralising antibody titre 

(log10) 

HMPV174 HMPV128 

α vv174F7/VTF7.3 2.5 2.8 

α vv174G5/VTF7.3 2.6 1.87 

α vv128F5.5/VTF7.3 2.5 3.25 

α vv128G3.5/VTF7.3 3.25 2.8 

α VTF7.3 1.75 1.75 

Normal mouse serum ≤ 0.7 ≤ 0.7 

 

 

Whilst the normal mouse serum had no neutralising activity, the anti-VTF7.3 serum 

neutralised both HMPV174 and HMPV128 to a titre of 101.75 suggesting the 

involvement of some sort of non-specific binding. However, both anti-F antibodies 

neutralised both strains to much higher titres indicating these antibodies have a higher 

neutralising capacity for HMPV than anti-vaccinia virus antibodies alone. This was 

also the case for anti-G antibodies where both antibody preparations neutralised the 

homologous strain of HMPV to a high titre. Surprisingly, whilst anti-G174 displayed 

similar neutralising ability to anti-VTF7.3 with HMPV128, anti-G128 antibodies also 

neutralised HMPV174 to a high titre (103.25).  
 

 

4.10.3 Western blot 

To further characterise the monospecific antibodies, uninfected 16HBE140 cells plus 

HMPV174 and 128 infected cultures were harvested after twelve days (Section 3.5.1) 

where 75% infectivity was confirmed by immunofluorescence (Section 3.5.4). These 

cultures were boiled in SDS reducing buffer before being loaded into a 3% to 18% 

gradient polyacrylamide gel and run overnight alongside molecular weight markers 

(Fermentas). The protein bands within the polyacrylamide gel were blotted onto 

PVDF membrane and stained with either a 1/500 dilution of monospecific antibody or 

MAb 57 at 5µg/ml. Antibody labelled bands were visualised with the secondary goat 

anti-mouse peroxidase conjugated antibody and the ECL chemiluminescence kit. To 

visualise the stained bands, membranes were exposed to photosensitive film which 

was then developed (see Section 3.23). 
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The resulting image (Figure 4.27) showed MAb 57 stained a strong band at 39KDa in 

both HMPV174 and 128 lanes, which was specific to HMPV and is consistent with 

the staining of the N protein using this protocol (Ingram, 2006 and G.L. Toms, 

personal communication). Monospecific anti – G174 blotted non-specifically both 

HMPV174 and 128 antigen and was thus uninterpretable despite being highly reactive 

in immunofluorescence (data not shown). All other monospecific antibodies were 

extremely cross reactive with all samples blotting two very heavy bands at 70KDa and 

41KDa, with numerous heavier and lighter bands. All three antibodies also blotted a 

major band at approximately 62KDa in the HMPV positive lanes but there was no 

differentiation between anti - F and anti - G staining of either HMPV antigen. 

 

 
 

Figure 4.27. Comparison of HMPV174, 128 infected and uninfected 16HBE140 cell lysate stained 

with MAb57 and anti-HMPV monospecific antibodies in western blots. 

Lanes were loaded as follows; 1 – molecular weight marker (KDa); 2, 5, 8, 11 – HMPV174 infected 

cell lysate; 3, 6, 9, 12 – HMPV128 infected cell lysate; 4, 7, 10, 13 – uninfected 16HBE140 cells.  

Text below the figure indicates antibody used to stain each blot. These results are representative of two 

independent experiments. * The apparent HMPV128 specific band in lane 12 at 25KDa is observed in 

lanes 11 and 13 but is not visible in figure. 

 

          MAb57                  Anti-F174                 Anti-F128                Anti-G128                  

70KDa 
62KDa 

41KDa 
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Chapter 5: Hybridomas 
Identification of hybridomas requires a sensitive and specific assay. ELISA offers 

sensitivity and a convenient format for rapidly screening a large number of 

hybridomas. However, conventional ELISA antigens contain cell culture reagents and 

host cell material and are not sufficiently specific when assaying for hybridomas 

generated from mice immunised with cell culture derived virus. By producing the 

recombinant protein in a cell line distinct from that used to grow the immunogen and 

by semi-purifying the recombinant glycoproteins on Concanavalin A, the specificity 

should be improved to a point where antigen specific hybridomas could be 

recognised.  

 

The G glycoprotein expressed from vaccinia virus is fully glycosylated (Ball et al., 

1986) and unwanted cell culture antigens can be removed by lectin based 

chromatography using Concanavalin A, a lectin derived from the Jack Bean (Von 

Damme et al., 1998), which binds to sugars found on RSV glycoproteins (Hendricks 

et al., 1988). A more convenient method is to incorporate the lectin semi-purification 

into the ELISA assay. In the Concanavalin A capture assay ELISA plates are coated 

with the lectin to capture out un-purified G glycoprotein produced from recombinant 

vaccinia virus. This has been used successfully with both HIV and RSV glycoproteins 

(Robinson et al., 1990; Robinson, 2007). 

 

 

5.1 Development of Concanavalin A assay 
Initially, Concanavalin A capture of recombinant HMPV174 G glycoprotein 

expressed from a vaccinia virus grown in L cells was compared with the same antigen 

bound directly to the ELISA plate at pH 9.6. 

Two ELISA plates coated with Concanavalin A were prepared as described in section 

3.8.6. At the same time, another two ELISA plates were coated directly (50µl per 

well) with two-fold dilutions of recombinant vaccinia virus expressing HMPV174 G 

glycoprotein or VTF7.3 ELISA antigens (Section 3.8.1.2) from 1/2 to 1/128. 

The next morning, the Concanavalin A coated plates were washed with PBSTx 

(Section 3.8.6) and 50µl per well dilutions of recombinant vaccinia virus expressing 

HMPV174 G glycoprotein and VTF7.3 ELISA antigens (Section 3.8.1.2) were bound 
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to the plates from 1/2 to 1/128 in PTF. These plates were incubated for 2 hours at 

37°C. All plates were then washed with PBSTx and 25µl of polyclonal mouse anti – 

HMPV174 serum (Section 3.2.1.2) diluted 1/80 in PTF was added to each well and 

incubated for 1 hour at 37°C. The plate bound antibody was detected with GAMP for 

1 hour followed by detection with OPD substrate (see Section 3.8.4 for methods). 

 

The results are presented in Figure 5.1 and show Concanavalin A is capable and more 

efficient of capturing out vv174G inactivated antigen to produce a G specific ELISA 

without interference from the cell culture antigens.  
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Figure 5.1. A Concanavalin A capture and direct capture ELISA (subtracted values) 

 

 

5.2 Fusion using vaccinia virus Concanavalin A capture ELISA screen 
Three mice were immunised with HMPV strain 174 (subtype A2) at a titre of 5 x 105 

ffu/ml according to the method described in section 3.11. 

One mouse was bled one week after the last immunisation and the serum collected 

titrated on vv174G and VTF7.3 inactivated ELISA antigen using a Concanavalin A 

capture ELISA (Figure 5.2) (Section 3.8.6). 12 months post immunisation, the spleen 
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from the mouse was removed aseptically and splenocytes fused with NS1 cells as 

described in section 3.12. Blood collected at the time of splenectomy was titrated by 

immunofluorescence on HMPV174 infected 16HBE140 cells and gave a titre of 2.81 

log10. Hybridomas were screened for subgroup specific anti-HMPV antibodies by 

Concanavalin A capture ELISA using vv174G and VTF7.3 antigens (Section 3.13.1). 

A total of 60 hybridoma vv174G positive wells were generated. Interestingly, during 

screening, several hybridomas produced high optical density readings with both 

vv174G and VTF7.3 antigen. As a result, all hybridomas that either had an optical 

density reading of at least 0.5 on both antigens, or a difference of more than 0.2 when 

comparing vv174G and VTF7.3 antigens, were picked for rescreening.  
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Figure 5.2 Titration of HMPV174 immunised mouse serum on vv174G and VTF7.3 antigen 

(subtracted values) 

 

 

Rescreening by ELISA using HMPV174 antigen (Section 3.13.2) revealed 5 HMPV 

specific hybridomas that were cloned by limiting dilution as described in section 3.14. 

When retested by ELISA on HMPV174 infected HBE cell lysate and uninfected HBE 

cell lysate, four hybridomas were still producing subgroup specific MAbs and bound 

to HMPV174 antigen. These were MAbs AT1, 2, 4 and 5. 
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5.3 Characterisation of HMPV antibodies 

5.3.1 Determination of isotype and immunoglobulin concentration 

For all characterisation experiments, MAbs were generated in 75cm3 tissue culture 

flasks and allowed to overgrow. Antibody concentration was determined using control 

mouse serum in an isotype specific ELISA as described in section 3.8.4. 

All MAbs were titrated simultaneously in all isotype specific ELISAs to 

simultaneously determine the isotype and immunoglobulin concentration. The results 

are presented in Table 5.1. None of the four MAbs reacted in the IgG2a assay (data 

not shown), MAbs AT1, 2 and 4 bound only to anti-IgG2b capture and MAb5 only to 

anti-IgG1 capture (Figure 5.3 and 5.4). 

 
Table 5.1 MAb characteristics 

MAb Isotype Ig concentration (µg/ml) 

AT1 IgG2b 64 

2 IgG2b 50 

4 IgG2b 32 

5 IgG1 14 
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Figure 5.3 Titration of MAbs AT1, 2, 4 and 5 on IgG2b ELISA 
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Figure 5.4 Titration of MAbAT1, 2, 4 and 5 on IgG1 ELISA 

 

 

 

5.3.2 Immunofluorescence 

To ensure the monoclonal antibodies were specific for the G glycoprotein, each MAb 

was tested for immunofluorescence staining of VTF7.3 infected HeLa cells 

transfected with pTM1.174F6.1, pTM1.174G3.6, pTM1.145F8.1, pTM1.145G2.3, 

pTM1.128F5.2 or pTM1.128G8.2 DNA (generated during the course of this study, 

see Section 4.3) as well as HMPV174, 145 and 128 infected 16HBE140 cells. The 

results are displayed in Table 5.2 and Figure 5.5. 

 

Surprisingly, only MAbAT1 reacted with infected HeLa cells expressing HMPV174 

G glycoprotein. MAbs 2 and 4 appear to be a strain specific anti F174 antibodies 

reacting with infected HeLa cells expressing HMPV174 F glycoprotein and 

HMPV174 only. MAb 5 appears to target an internal protein as this antibody has a 

distinct staining pattern, does not stain either F or G surface glycoproteins but is 

specific for HMPV174.  
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Table 5.2 Reaction of monoclonal antibodies by immunofluorescence against HMPV174, 145 and 

128 and transiently expressed HMPV F and G genes from HMPV174, 145 and 128. 

 

 Monoclonal antibody (titre log10) 

AT1 2 4 5 

HMPV174 2.81 2.51 2.51 2.51 

HMPV145 - - - - 

HMPV128 - - - - 

pTM1.174 

 

G clone 3.6 2.81 - - - 

F clone 6.1 - 2.51 2.51 - 

pTM1.145 

 

G clone 2.3 - - - - 

F clone 8.1 - - - - 

pTM1.128 

 

G clone 8.2 - - - - 

F clone 5.2 - - - - 

VTF7.3 infected HeLa 

(not transfected) 
- - - - 

HeLa cells (not infected 

or transfected) 
- - - - 

16HBE140 cells - - - - 

 

 

 

(a)   (b)   (c)  
Figure 5.5 Example of immunofluorescence staining (a) in transiently expressed pTM1.174G3.6 

with MAbAT1, (b) in transiently expressed pTM1.174F6.1 with MAb2 and  (c) HMPV174 with 

MAb5. 
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5.3.3 Neutralisations 

HMPV174 infected 16HBE140 cell lysates were incubated with each monoclonal 

antibody to produce a final dilution series of 1/2 to 1/2048 and inoculated onto 

16HBE140 cells as described in section 3.5.8. At 15 days post-infection, spots were 

made and tested by immunofluorescence using HMPV monoclonal antibody pool 

(Section 3.5.4). 

Each spot was rated by the number of infected cells together with brightness of the 

fluorescence in comparison with the positive control and results are displayed in 

Table 5.3.  

 
Table 5.3 Neutralisation of HMPV174 with all monoclonal antibodies generated 

Monoclonal antibody 
50% serum neutralising 

antibody titre (log10) 

50% inhibitory 

concentrations (µg/ml) 

AT1 ≤ 0.3 > 40 

2 0.45 17.7 

4 2.41 0.13 

5 ≤ 0.3 7.01 

 

 

Neither the anti-G specific MAb nor the unidentified MAb 5 neutralised the virus. 

Both anti-F MAbs however showed some neutralisation with MAb 4 more effective 

than MAb 2 despite their similar IgG concentration. 

 

5.3.4 Western blot 

Uninfected and infected HMPV cell cultures were prepared as before (Section 4.10.3) 

and run on a 3-18% gradient polyacrylamide gel overnight alongside molecular 

weight markers. The gel was blotted onto the PVDF membrane, which was 

subsequently stained with MAb57 at 5µg/ml and MAbs AT1, 2, 4 and 5 at 2µg/ml. 

MAb57 stained a 39KDa band, visible after only 30-second exposure. After an 

increased exposure time of 5 minutes, MAb5 stained a HMPV174 specific band at 

38KDa, all other bands were cross reactive with both HMPV128 and 16HBE140 

negative cells. MAbs AT1, 2 and 4 did not blot (data not shown). 
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                    MAb57                            MAb5 

Figure 5.6 Comparison of 

HMPV174, 128 infected and 

uninfected 16HBE140 cells 

stained with either MAb57 

or MAb5 western blot. 

Lanes were as follows; 1, 5 – 

molecular weight markers; 2, 

6 – HMPV174 infected cell 

lysate; 3, 7 – HMPV128 

infected cell lysate; 4, 8 – 

uninfected 16HBE140 cells. 

Text below the figure 

indicates antibody used to 

stain each blot. Blots are 

presented separately as a 

result of different exposure 

times. 
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Chapter 6: Animal model 
 

6.1 Establishing an animal model for HMPV 
To determine the optimal titre at which to inoculate an animal model, where infection 

occurs but is not life threatening, four groups of three mice were inoculated 

intranasally with 10 fold serial dilutions of HMPV174 under isofluorane anaesthesia 

(Section 3.10.1). They were weighed daily to observe any alteration in weight post 

inoculation and the results are presented in Figure 6.1. 
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Figure 6.1. Average weight increments of Balb/c mice inoculated with 10 fold serial dilutions of 

HMPV174 

 

 

The graph indicates that the mice who received a titre 5 x 105 ffu/ml were the most 

distressed, determined by their slight loss in weight over the eight day period. The 

other groups appeared to have little or no response as their weights did not deviate and 

eventually increased towards the end of the week. Further experiments were carried 

out using the highest titre of HMPV174 as this was well tolerated by the animals. 

 



  133   

 

 

6.2 Growth curve of HMPV in a mouse model 

6.2.1 HMPV174 at 5 x 105 ffu/ml 

To determine the stage during infection where the virus titre is at its highest in vivo, 

twenty one mice were intranasally inoculated (Section 3.10.1) with HMPV174 at 5 x 

105 ffu/ml (cell culture passage four, see Section 3.5.2). Each day post infection, three 

mice were killed, their lungs and nasal mucosa aseptically removed, homogenised and 

the supernatant assayed for infectivity of 16HBE140 cells (see Section 3.17 for 

methods).  
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Figure 6.2 Plaque forming units in the lungs and nasal mucosa of HMPV174 infected Balb/c 

mice. 

 

The results are presented in Figure 6.2. In the nasal mucosa, the virus titre was at its 

highest two days post infection, peaking at 102.96 ffu/g, coinciding with maximum 

weight loss observed in Figure 6.1. In the lungs, titres were lower with a day 4 peak at 

102.49 ffu/g.  

 

6.2.2 HMPV174 at 2.6 x 106 ffu/ml 

Since the previous experiment did not appear to elicit a substantial lower respiratory 

tract infection, HMPV174 was passaged several times on 16HBE140 cells as 
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previously described (Section 3.5.2) to increase the titre before repeating the above 

experiment. A titre of 2.6 x 106 ffu/ml was achieved at passage 11, which was 

subsequently inoculated intranasally (Section 3.10.1) into another twenty one mice as 

before. The results are presented in Figure 6.3. 
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Figure 6.3 Plaque forming units in the lungs and nasal mucosa of HMPV174 infected Balb/c 

mice. 

 

Again, virus was detected in the nasal mucosa at day two, albeit at slightly reduced 

titre, peaking at 102.89 ffu/g. However, virus was unable to establish an infection in the 

lower respiratory tract, with even lower yields being recovered than with the lower 

dose.  

 

6.2.3 HMPV145 at 2 x 106 ffu/ml 

To investigate whether the inability to retrieve infectious virus was attributable to the 

virus strain, 2 x 106 ffu/ml of another strain, HMPV145 (passage 9 in 16HBE140 

cells) was inoculated intranasally (Section 3.10.1) into another twenty one mice as 

before. The lungs and nasal mucosa from each mouse were aseptically removed, 

homogenised and the supernatant was infected onto 16HBE140 cells to calculate the 

titre using a fluorescent focus assay. The results revealed no infectious virions were 

present in any of the samples obtained by dissection 
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6.3 PCR 

To ensure, HMPV174 was present in the samples recovered after dissection of mice 

inoculated with 2.6 x 106 ffu/ml of HMPV174 (see Section 6.2.2), viral RNA was 

extracted from macerate supernatants using a QIAamp viral RNA minikit. The 

purified RNA was subsequently assayed in a reverse transcription PCR using primer 

set 1 (Table 3.8) and the F glycoprotein gene as a target (see Section 3.6 and Table 3.9 

and 3.12 for conditions). The results displayed in Figure 6.4 confirm the presence of 

viral RNA in the homogenised samples of lung, and indicates the quantity of RNA 

increases over time to peak between day 4 and day 6.  

 

 
 

 

 

 

6.4 Quantitative PCR (qT-PCR) 

To obtain quantitative results of the growth curve above, a qT-PCR assay was 

established using a method based on Maertzdorf et al (2004), where primers and 

probes were derived from the nucleoprotein gene. The N gene was chosen as a target 

because it is one of the most conserved genes in the HMPV genome. cDNA was 

synthesised as above using the N-LN primer set and conditions stated in Table 3.10, 

3.11 and 3.12. The standard curve was constructed as described in section 3.6.8.1. 

 

6.4.1 Optimisation of the concentration of RNA template 

In order to investigate the tissue macerates for the presence of inhibitors, quantitation 

was carried out on ten-fold dilutions of RNA extracted from the lung and nasal 

mucosa samples as well as viral RNA extracted from HMPV infected 16HBE140 

cells. Dilutions were set up from neat to 1/10000 for lung lysates and 1/100 for nasal 

Figure 6.4 Amplification of F 

glycoprotein RNA extracted from 

lungs lysates obtained in the 

HMPV174 2.6 x 106 growth curve. 

Lanes are as follows; 1 – 1Kb molecular 

marker, 2 to 8 – day 1 to day 7 post 

inoculation (each band represents one 

mouse), 9 – PCR positive control, 10 – 

PCR negative control, 11- 1Kb 

molecular marker 



  136   

 

 

mucosa samples using DEPC water plus carrier RNA. PCR was carried out in 

triplicate and the mean amount of RNA genome was determined for each dilution 

factor. The results are presented in Figure 6.5 and Figure 6.6. 
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Figure 6.5.Optimisation of RNA from lung samples for qT-PCR. 
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Figure 6.6.Optimisation of RNA from nasal mucosa samples for qT-PCR. 
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Figure 6.5 shows the amount of PCR product does not increase with the dilution of 

RNA from either the lung lysates or the HMPV infected cells observed by the linear 

plots. PCR product from the nasal mucosal RNA (Figure 6.6) revealed a slight 

increase at 1/10 dilution compared to the neat sample and would suggest some 

unknown PCR inhibitors may be present in the RNA samples. Therefore, as a 

precaution, in subsequent qT-PCR, all RNA templates derived from lung lysates were 

diluted to 1/100 and from nasal mucosal samples to 1/10 before addition to the 

reaction mix unless otherwise stated. 

 

6.4.2 HMPV174 2.6 x 106 ffu/ml lung lysates 

Viral RNA from the lung lysates was extracted as before and cDNA synthesised using 

the N-LN primer set as stated above. For quantitation, 6µl of cDNA was added to 

24µl of reaction mix (Table 3.11) and run as stated in methods 3.6.8. Figure 6.7 

illustrates that after day 3, when the inoculum was cleared by the host, an increase in 

viral RNA genome which peaks at 104.96 arbitrary units at day 4. This would suggest 

whilst most of the inoculated virus was cleared by the hosts immune system upon 

invasion, some virus was able to escape and begin infection before being detected and 

completely removed.  
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Figure 6.7 Average quantities of viral RNA genome extracted from lung lysates of the HMPV174 

2.6 x 106 ffu/ml growth curve. 
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6.4.3 HMPV174 2.6 x 106 ffu/ml nasal mucosal samples 

Viral RNA was extracted and cDNA prepared as above for all nasal mucosal samples 

from the growth curve. These were subsequently run in the qT-PCR assay to establish 

the relative levels of viral RNA genome.  

 

Number of days

0 1 2 3 4 5 6 7 8

Vi
ra

l g
en

om
e 

co
pi

es
 p

er
 g

 o
f n

as
al

m
uc

os
a 

(a
rb

itr
ar

y 
un

its
)

0

2x103

4x103

6x103

8x103

104

1x104

1x104

2x104

2x104

2x104

 
Figure 6.8 Average quantities of viral RNA genome extracted from nasal mucosa samples of the 

HMPV174 2.6 x 106 ffu/ml growth curve. 

 

 

Results presented in Figure 6.8 show an increase in viral RNA from day 1, peaking at 

104.17 arbitrary units at day 4 before trailing off.  

 

 

6.5 HMPV174 at 7 x 106 ffu/ml 
Despite the presence of viral RNA in both the lungs and nasal mucosa of the mouse 

model, an inoculum of 2.6 x 106 ffu/ml resulted in very low infectivity titres in the 

lungs and only trivial weight loss. To discover if an even higher titre of virus would 

result in higher levels of replication, HMPV174 was passaged once more in 

16HBE140 cells (Section 3.5.1) and cells from 9 plates were harvested and 

resuspended in a total of 3ml of MM to produce a 9 fold increase in the virus 
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concentration. A titre of 7 x 106 ffu/ml was achieved. This stock of HMPV was 

inoculated intranasally (Section 3.10.1) into three mice with another three mice 

receiving the same concentration of uninfected 16HBE140 cells as a negative control.  

 

6.5.1 Weights post infection 

Measurement of weight pre and post inoculation was essential to assess the health of 

the animals and was also an indicator of whether the animal had succumbed to 

infection.  
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Figure 6.9 Weight of each animal post inoculation with HMPV at 7 x 106 ffu/ml. 

 

 

Two of the HMPV inoculate mice exhibited rapid weight loss evident from day 2 post 

infection. For the third infected mouse, weight loss was trivial and returned to pre-

inoculation levels by day 3. For mice inoculated with uninfected cells, minor weight 

loss occurred 24 to 48 hours post inoculation returning to pre-inoculation levels by 

day three. Of the two mice infected with HMPV174, which showed severe weight loss 

two days post infection (Figure 6.9), one mouse was killed on day 2 and the other on 

day 3 (mice must be culled if they lost more than 20% of their original body weight). 

Two HBE infected mice were killed alongside these to act as negative controls. The 

last HMPV and HBE infected mice were killed on day 4.  
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6.5.2 Infectivity  

The lungs and nasal mucosa from each mouse were aseptically removed, 

homogenised and the supernatant was infected onto 16HBE140 cells to calculate the 

titre using a fluorescent focus assay. The results revealed no infectious virions were 

present in any of the samples obtained by dissection.  

 

6.5.3 QT-PCR 

To ensure viral RNA was present in the samples, quantitative PCR was performed on 

the RNA extracted from all specimens as before. The results in Figure 6.10 show 

there to be a large amount of HMPV RNA present in all samples.  
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Figure 6.10 Quantity of viral RNA present in the lungs and nasal mucosa of HMPV174 infected 

Balb/c mice. 

 

 

6.6 Histochemistry and Immunohistochemistry 

To obtain a better understanding of the damage occurring in the lungs of mice 

inoculated with 7 x 106 ffu/ml of HMPV, formaldehyde fixed and wax embedded 

sections of mouse lung were stained with haematoxylin and eosin or with anti-HMPV 
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monoclonal antibody pool by immunohistochemistry (Section 3.19). Histological 

differences were observed between mice inoculated with HMPV174 and those 

immunised with 16HBE140 cells (Figure 6.11). Whilst uninfected, 16HBE140 cell 

inoculated mice showed low levels of peri-bronchiolar infiltration, lungs from HMPV 

infected mice had significant interstitial infiltration of inflammatory cells. There was 

evidence of large areas of consolidation together with destruction of alveolar walls 

which was markedly different from the sham infected mice. 

 

 

(a)  (b)  (c)          
 

Figure 6.11 Haematoxylin-eosin staining of lungs (a) uninfected, (b) mock infected with 

16HBE140 cells and (c) infected with HMPV174 

 

 

Immunolabelling of mouse lung stained with anti-HMPV monoclonal pool (Section 

3.19) revealed there to be large areas of viral protein expression, mainly observed in 

the lungs of mice two and three days post-infection. There was extensive granular 

staining of the cytoplasm which was mainly located around the bronchioles (Figure 

6.12). 
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(a)i  ii  (b)i  ii  

                                (c)i  ii  

 
Figure 6.12 Immunohistochemical staining for HMPV ((i) with and (ii) without primary 

antibody) in mice lungs (a) 2 days post-infection, (b) 3 days post-infection and (c) 4 days post-

infection. 

 

 

6.7 Infectivity study with the addition of trypsin 
As both the quantitative PCR and immunohistochemistry results revealed evidence of 

HMPV RNA and antigen present within the lungs and nasal mucosa of infected mice, 

it suggests that RNA replication and transcription is occurring. Virus infectivity 

recovered is, however, minimal. Virus recovered from human tissues is incapable of 

replicating in some cell lines without the addition of exogenous protease. To test 

whether exogenous protease was required for infectivity of virus in mouse respiratory 

tissue macerates, two mice were inoculated intranasally with HMPV174 at a titre of 

2.6 x 106 ffu/ml. At 5 days post-infection, lungs and nasal mucosa were collected, 

homogenised in SAFMM with 0.007% trypsin before being inoculated onto 

16HBE140 cells as previously described (Section 3.17).  
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Infectivity results revealed there to be no infectious virus present in the homogenised 

samples with or without the addition of trypsin.  

 

Quantitative PCR was performed on the same samples to ensure HMPV was present 

in both the lungs and nasal mucosal dissections. The results confirm the presence of 

viral RNA in all samples and are presented in Figure 6.13.  
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Figure 6.13 Quantity of viral RNA present in the lungs and nasal mucosa of HMPV infected mice 

after the addition of trypsin. 

 

 

These experiments indicate that intranasal inoculation of 16HBE140 HMPV174 

infected cell lysate results in infection of a substantial number of cells in the 

respiratory tract of the mouse with viral RNA replication and viral protein synthesis 

increasing to peak at day 3 post infection in the nasal mucosa and day 4 in the lungs. 

This is however, associated with only a low level of infectious virus in the nasal 

mucosa and even lower level in the lungs.  
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6.8 Challenge experiment 
This experiment was designed to establish whether a series of immunisations with the 

G glycoprotein of HMPV174 would protect against challenge with the whole virus in 

vivo. Three groups of 6 mice were immunised by subcutaneous inoculations of 

antigen in Freunds adjuvant according to the schedule in section 3.18. The first group 

was immunised with inactivated vv174G5/VTF7.3 coinfected L cells as prepared in 

section 4.7 and 4.8, another group with inactivated VTF7.3 infected L cells (Sections 

4.7 and 4.8) and the final group with 16HBE140 cells infected with HMPV174 as 

described in section 3.5.1. To boost mucosal immunity, all groups were immunised 

intranasally with the same antigen as above prepared in cholera toxin (Section 3.10.1) 

to stimulate local IgA responses. 

 

Once systemic immunity had been established, as judged by serum IgG antibody 

responses to virus infected cells (Table 6.1) by immunofluorescence, two mice from 

each group were sacrificed by cardiac puncture, blood was collected and their nasal 

mucosa washed with PBS. The rest of the mice were subsequently challenged with 2.6 

x 106 ffu/ml HMPV174 infected 16HBE140 cells by intranasal inoculation under 

isofluorane anaesthesia (Section 3.10.1) and their weights monitored over a five day 

period. On the fifth day, all mice were sacrificed by cervical dislocation and the lungs 

and nasal mucosa aseptically removed for infectivity studies (Section 3.17) and 

quantitative PCR assays (Section 3.6.8). 

 

 
Table 6.1 Antibody titres of tail bleeds from HMPV174, vv174G5/VTF7.3 and VTF7.3 

immunised mice 

Inoculum Titrated on: Titre (log10) 

HMPV174 vv174G5/VTF7.3 infected L cells 3.4 

vv174G5/VTF7.3 HMPV174 infected 16HBE140 cells 3.1 

VTF7.3 HMPV174 infected 16HBE140 cells - 
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6.8.1 ELISA of serum and nasal-secretions pre-challenge 

6.8.1.1 Serum antibody 

Serum was obtained from the blood taken by cardiac puncture from the pre-

challenged mice and tested by ELISA for anti – IgG antibody (see Section 3.8), as this 

is the predominant antibody found in blood, on both whole HMPV virus antigen and 

on vv174G5/VTF7.3 and VTF7.3 inactivated antigen (Section 3.8.1) using the 

vaccinia virus capture assay as described in section 3.8.6. 

 

An ELISA plate was coated with HMPV174 ELISA antigen on one half and 

16HBE140 negative ELISA antigen on the other as described in section 3.8.5. At the 

same time, another plate was coated with Con A as previously described (Section 

3.8.6). The next morning, the Con A plate was washed and charged with 

vv174G5/VTF7.3 and VTF7.3 ELISA antigens as described in section 3.8.6. Both 

plates were then washed and dilutions of the serum samples (1/80 to 1/5120) from the 

vv174G5/VTF7.3 and VTF7.3 immunised mice were incubated on the HMPV coated 

plate, whilst the HMPV174 immunised serum sample dilutions were charged to the 

vv174G and VTF7.3 coated plate. Both plates were also coated with HMPV 

polyclonal mouse serum as a positive control and incubated for 90 minutes, before 

being washed and bound antibody detected with NCL-GAMP at 1/1000 followed by 

OPD (see Section 3.8.4 for methods). 

 

The results are shown in Figure 6.14. HMPV174 immunised mice had high levels of 

antibody directed towards vv174G5/VTF7.3 antigen. Similar results were seen in the 

vv174G5/VTF7.3 immunised mice, albeit slightly lower titres, when tested on 

HMPV174. However, no immunity to HMPV174 could be observed in the VTF7.3 

immunised animals.  

 

Assuming levels of IgG in the mice above are similar to the levels found in standard 

mouse serum (7-10mg/ml), at the end point dilution where the optical density is at 0.2, 

the concentration of antibody is ~355µg/ml for the HMPV immunised mice and 

~162µg/ml for the vv174G5/VTF7.3 immunised mice. 
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Figure 6.14 Serum samples obtained from pre-challenged mice titrated on HMPV174 infected 

16HBE140 cells or recombinant vaccinia virus expressing HMPV174 G glycoprotein ELISA 

antigens. 

 

 

6.8.1.2 Nasal antibody 

Intranasal inoculations with cholera toxin adjuvant were designed to stimulate the 

development of mucosal immunity pre-challenge. With IgA antibody being the 

predominant immunoglobulin in the mucosa, anti – HMPV IgA antibody in the nasal 

mucosal washes was measured by ELISA using the same method as the serum 

samples above (Section 6.7.1.1). This method proved unable to detect either mouse 

IgA or anti-viral IgA antibodies in these samples for reasons which have not been 

resolved. 

 

 

6.8.2 Neutralisation  

HMPV174 infected 16HBE140 cell lysates predetermined to generate 75% of cells 

exhibiting specific antibody staining at day 15 were incubated with each serum 

sample to produce a final dilution series of 1/10 to 1/2560 and inoculated onto 
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16HBE140 cells as described in section 3.5.8. At 15 days post-infection, spots were 

made and tested by immunofluorescence using HMPV monoclonal antibody pool 

(Section 3.5.4). 

 

Each spot was rated by the number of infected cells together with the intensity of 

fluorescence in comparison with the positive control as described in Table 4.12. The 

cut off for neutralisation was < ++ (where the positive control was +++) and 50% 

neutralisation titres were calculated according to the Reed and Muench method.  The 

results are displayed in Table 6.2. 

 
Table 6.2 Neutralisation of HMPV174 with all three serum samples collected pre-challenge 

Serum 
50% serum neutralising 

antibody titre (log10) 

HMPV174 - 

vv174G5/VTF7.3 2.62 

VTF7.3 1.75 

 

 

Whilst the anti-VTF7.3 serum neutralised HMPV174 to a titre of 101.75, anti-G174 

antibodies neutralised HMPV174 to a much higher titre indicating these antibodies 

have a higher neutralising capacity for HMPV than anti-vaccinia virus antibodies 

alone. The neutralising capacity of anti-HMPV174 antibodies could not be measured 

due to the high levels of anti-16HBE140 cell antibodies present in the preparation. 

 

 

6.8.3 Weights post-challenge 

To monitor the health of the mice post-challenge, weights were taken each morning 

and the average weight loss of each group is shown in Figure 6.15. Surprisingly, the 

group immunised with HMPV174 lost the most amount of weight, almost 10%. A 

two-way ANOVA showed this weight loss was significantly different in comparison 

to mice immunised with vv174G5/VTF7.3 (P=0.01, F=8.80). However, there was no 

significant difference between the weight loss of HMPV174 and VTF7.3 infected 

mice. 
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Figure 6.15 Average weight increments of Balb/c mice post-challenge with HMPV174. 

 

 

6.8.4 Infectivity 

Samples extracted from the lungs and nasal mucosa were homogenised and the 

macerates titrated for infectivity onto 16HBE140 cells. No infectious virions were 

present in any of the samples collected. 

 

6.8.5 PCR 

To ensure, HMPV174 was present in the samples recovered after dissection, viral 

RNA was extracted from the supernatant using a QIAamp viral RNA minikit. The 

purified RNA was subsequently utilized in a reverse transcription PCR using the 

primer set N-LN and the N protein as a marker (see Section 3.6 for conditions). 

Results indicated a difference in the amount of viral RNA detected between the three 

groups which can be quantified using the qT-PCR assay. 
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Figure 6.16 Amplification of N protein RNA extracted from lungs lysates (a) and nasal mucosa 

samples (b) obtained in the challenge experiment. 

Lanes are as follows; 1 – 1Kb molecular marker, 2 to 5 – HMPV immunised mice; 6 to 9 – VTF7.3 

immunised mice; 10 to 13 – vvG immunised mice; 14- PCR positive control; 15 – PCR negative 

control; 16 – 1Kb molecular marker. 

 

 

6.8.6 QT-PCR 

6.8.6.1 Lungs lysates 

Quantitative PCR was performed on the RNA samples extracted, as described in 

3.6.8. The results presented in Figure 6.17 show mice immunised with whole virus 

had a mean of 103.83 (+/- 100.16) viral genome copies, whereas mice immunised with 

VTF7.3 and vv174G5/VTF7.3 had a mean of 105.53 (+/- 100.59) and 105.64 (+/- 100.33) 

viral genome copies respectively. A one-way ANOVA revealed there to be a 

significant difference between the numbers of viral genome copies recovered from the 

lungs of HMPV174 immunised mice and both VTF7.3 and vv174G5/VTF7.3 

immunised mice (P=0.001, F=19.37). There was no significant difference between the 

numbers recovered from VTF7.3 immunised mice and vv174G5/VTF7.3 immunised 

mice. 

     (a) 

     (b) 
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Figure 6.17 Quantity of viral RNA present in the lungs of post-challenge mice (each bar 

represents one mouse) 

 

 

 
 

6.8.6.2 Nasal mucosal samples 

Samples from the nasal mucosa were treated in the same way as above and results are 

presented in Figure 6.18. Viral RNA recovered from the HMPV174, VTF7.3 and 

vv174G5/VTF7.3 immunised mice had a mean of 103.08 (+/- 100.19), 104.06 (+/- 100.26), 

104.42 (+/- 100.15) viral genome copies respectively. A one-way ANOVA revealed 

there to be significant difference between the numbers of viral genome copies 

recovered from the nasal mucosa of HMPV174 immunised mice and both VTF7.3 and 

vv174G5/VTF7.3 immunised mice (P=0.000, F=37.09). There was no significant 

difference between the numbers recovered from VTF7.3 immunised mice and 

vv174G5/VTF7.3 immunised mice. 

The results showed that immunisation with whole virus but not the G glycoprotein 

alone protects the upper respiratory tract against HMPV challenge. 
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Figure 6.18 Quantity of viral RNA present in the nasal mucosa of post-challenge mice (each bar 

represents one mouse) 

 

 

 

6.8.7 Histochemistry and Immunohistochemistry 

Histological results revealed there to be no significant difference between mice 

immunised with HMPV174, VTF7.3 or vv174G5/VTF7.3. Lungs had moderate levels 

of peri-bronchiolar and peri-vascular inflammation with a large population of 

lymphocytes. In certain preparations, signs of granulation were evident along with 

interstitial and sub-pleural inflammation but these manifestations were not associated 

with a particular group. These results were also observed in mice that had been 

immunised with vv174G5/VTF7.3 but challenged with non-infected 16HBE140 cells 

but not in mice who had only received vv174G5/VTF7.3 immunisations.  

Immunolabelling revealed extremely low levels of viral protein expression which was 

only evident in certain sections and not specific for any particular group. 
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Chapter 7: SH glycoprotein 
 

The SH glycoprotein is the third membrane protein and its function is yet unknown. 

HMPV128 and 174 SH vaccinia virus recombinants were prepared using the approach 

successful for the generation of F and G glycoprotein recombinants. 

 

7.1 Production of recombinant pTM1 HMPV clones 

7.1.1 HMPV128 

7.1.1.1 PCR of HMPV128 SH gene 

Searching the NCBI nucleotide database for the HMPV SH gene sequence, five B 

subtype sequences share high levels of homology for the first 35 nucleotides. For PCR 

design, the first 31 nucleotides including the start codon were used for the forward 

primer. The homology between sequences at the 5’ end was not high enough to 

produce a strong consensus sequence therefore the reverse primer was designed 

around the start of the adjacent gene, the G gene. The first 23 nucleotides after the G 

gene start codon were used as a primer template. The start codon is followed by an 

adenine allowing the restriction enzyme, BspH1 to be used for insertion into pTM1 

(see Section 4.3.2.1). The entire gene was checked for the presence of restriction 

enzyme sites, and BspH1 and Xho1 were not found allowing these sites to be 

integrated into the forward and reverse primers respectively. 

 

 

(BspH1) TCATG

      

A -   HMPV SH gene    -  SH / G intergenic region   -  start of G gene      - Xho1 

 

Start codon 

 

As the reverse primer is located in a separate gene, the forward primer which binds to 

genome sense RNA was used in the reverse transcription step as the transgenic region 

is required for amplification.  

 

RNA was extracted from HMPV128, passage 10 (Section 3.5.2) and RT PCR 

performed using the primer set 3 (Table 3.6) under the AliT2 conditions described in 
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Table 3.9 and 3.12. A band of approximately 770bp was produced when the reaction 

mix was run on a 1% agarose gel. The product was cut from the gel and purified as 

described in section 3.6.7. 

 

7.1.1.2 Digestion of HMPV128 SH gene PCR products and pTM1 plasmid 

To facilitate the ligation of the SH gene into the pTM1 plasmid, gel purified HMPV 

SH gene product was digested with restriction endonucleases BspH1 and Xho1, whilst 

pTM1 were digested with Nco1 and Xho1. Reactions were incubated for 3 hours and 

run on a 1% agarose gel. The results are displayed in Figure 7.1. 

 

                      
 

A band of 5357bp, representing the pTM1 plasmid, and a band of 770bp, 

corresponding to the SH gene were identified and removed with a clean scalpel. Using 

a QIAquick gel extraction kit, bands were purified and eluted in EB buffer (Section 

3.6.7), ready for ligation. 

 

 

7.1.1.3 Ligation and transformation of pTM1 with HMPV128 gene products 

18 different ligation reactions were carried out as described in section 3.7.6. Once 

ligation products were produced, they were transformed into E. coli TG1 (Section 

3.7.7) and spread onto LB agar plates containing ampicillin. The results are shown in 

Table 7.1. 

 

One colony from each successful plate was taken and grown up overnight in 5ml of 

LB containing ampicillin. To check the validity of the clones, plasmid DNA was 

prepared from 1.5ml of the overnight culture using a QIAgen miniprep spin column 

Figure 7.1 Plasmid pTM1 and HMPV128 

SH gene restriction digest. 

The lanes were loaded as follows; 1 - 1kb 

molecular marker, 2 - pTM1 digested with 

Nco1 and Xho1, 3 – HMPV128 SH gene 

digested with BspH1 and Xho1. 
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(Section 3.7.8). The DNA was eluted in 50µl of EB buffer (supplied in kit) and 

digested with Kpn1 and Xho1 as in section 3.7.5. The results are presented in Figure 

7.2. 

 
Table 7.1 Number of colonies counted after transformation of bacteria with pTM1.HMPVSH128 

Reaction pTM1.HMPV128SH 

Vector only 2µl 0 

Vector only 8µl 0 

Vector only 20µl 0 

Vector + insert 1:1, 2µl 9 

Vector + insert 1:1, 8µl 33 

Vector + insert 1:1, 20µl 45 

Vector + insert 2:5. 2µl 82 

Vector + insert 2:5, 8µl 167 

Vector + insert 2:5, 20µl 194 

Vector + insert 1:3, 2µl 15 

Vector + insert 1:3, 8µl 57 

Vector + insert 1:3, 20µl 122 

Vector + insert 1:5, 2µl 55 

Vector + insert 1:5, 8µl 223 

Vector + insert 1:5, 20µl 248 

No DNA control 0 

No DNA control 0 

No DNA control 0 

 

 

The results presented in Figure 7.2 revealed all nine transformed bacterial colonies 

digested into two bands, one corresponding to the pTM1 plasmid (5257bp) and 

another representing the SH gene (870bp – 770bp of SH gene plus 100bp of plasmid). 

Lane 2 represented pTM1 without an insert to define the length cut out by digesting 

with restriction endonucleases Kpn1 and Xho1. One of the transformed clones 

(pTM1.128SH clone 7) was chosen and streaked onto a LB agar plate containing 

ampicillin before being grown overnight in LB selective medium. 
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DNA was prepared as before and digested with both Kpn1 and Xho1 restriction 

endonucleases to ensure stability of the culture (Figure 7.3). 

 

                     
 

 

 

 

 

 

 

One of these clones (pTM1.128SH clone 7.1) was subsequently used for large scale 

production of recombinant plasmid DNA using a QIAgen maxiprep kit following the 

manufacturers instructions. The concentration of DNA yielded 2.0 mg/ml. The eluted 

DNA was digested with restriction endonucleases Kpn1 and Xho1 and the results are 

presented in Figure 7.4. 

                                        

Figure 7.2 Restriction digest of 

transformation of pTM1 with the 

HMPV128SH gene. 

The lanes are as follows; 1 - 1Kb molecular 

marker, 2 – pTM1, 3 to 11 – various colonies 

picked, 12 – 1Kb molecular marker. 

 

Figure 7.3 Restriction digests of cloned 

recombinant pTM1 with HMPV128 SH 

gene. 

The lanes are as follows; 1 - 1Kb molecular 

marker, 2 to 4 - colonies picked from one 

clone, 5 – 1Kb molecular marker. 

 

Figure 7.4 Restriction digest of 

pTM1.128SH8.1 maxiprep. 

Lanes are as follows; 1 - 1Kb molecular 

marker, 2 - pTM1.128SH8.1. 
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Once cloned into pTM1, the gene was sequenced in both directions from primers 

HMPV128SHF and HMPV128SHR (primer set 3, Table 3.6) and cross referenced 

against the database sequences.  

 

Nucleotide and amino acid identities are presented in Table 7.4 and conclude that the 

SH glycoprotein of HMPV128 is most closely related to JPS02/76 B1. Upon 

evaluation of the amino acid structure, it appeared there was a stop codon caused by 

an amino acid substitution at residue 203 (Site B, Table 7.2). This would therefore 

only allow 67 amino acids to be translated with approximately 60 amino acids located 

in the cytoplasmic and transmembrane domain (Collins and Crowe, 2007). Despite 

being a truncated form of the SH gene, work was continued to allow expression in the 

vaccinia virus system. 

 

 

7.1.2 HMPV174 

7.1.2.1 PCR of HMPV174 SH gene 

Searching the NCBI nucleotide database for the HMPV SH gene sequence, six A 

strain sequences share high levels of homology for the first 35 nucleotides. For PCR 

design, the first 31 nucleotides including the start codon were used for the forward 

primer. The homology between sequences at the 5’ end was not high enough to 

produce a strong consensus sequence therefore the reverse primer was designed 

around the start of the adjacent gene, the G gene. The first 23 nucleotides after the G 

gene start codon were used as a primer template. The entire gene was checked for the 

presence of restriction enzyme sites, and BspH1 and Xho1 were not found allowing 

these sites to be integrated into the forward and reverse primers respectively. 

 

 

(BspH1) TCATG

      

A -   HMPV SH gene    -  SH / G intergenic region   -  start of G gene      - Xho1 

 

Start codon 

As the reverse primer is located in a separate gene, the forward primer which binds to 

genome sense RNA was used in the reverse transcription step as the transgenic region 

is required for amplification.  
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RNA was extracted from HMPV174, passage 11 (Section 3.5.2) and RT PCR 

performed using the primer set 4 (Table 3.8) under the AliT2 conditions described in 

Table 3.9 and 3.12. A band of approximately 770bp was produced when the reaction 

mix was run on a 1% agarose gel. The product was cut from the gel and purified as 

described in section 3.6.7. 

 

7.1.2.2 Site directed mutagenesis 

HMPV174 SH product was purified as described in section 3.6.7 and digested with 

restriction endonucleases BspH1 and Xho1, whilst pTM1 were digested with Nco1 

and Xho1. Reactions were incubated for 3 hours followed by visualisation on a 1% 

agarose gel (data not shown). Interestingly, two bands (250bp and 500bp) appeared on 

the gel and after sequencing the gene in both directions (using the primer set 4, Table 

3.8), a BspH1 restriction site was identified between bases 267 and 272 (Figure 7.5). 

As no other restriction endonuclease could be employed, site directed mutagenesis 

was performed. Forward (HMPV174SHF2) and reverse (HMPV174SHR2) primers 

were designed to overlap the restriction site and substitute a thymine for a cytosine 

preserving the asparagine amino acid (see Figure 7.5).  

 

 

 
 

Figure 7.5 Schematic diagram of HMPV174 SH gene from bases257 to 282.  

 

 

RNA extracted from HMPV174 infected 16HBE140 cells (passage 11, 2.6 x 106 

ffu/ml, Section 3.5.2) was reverse transcribed using the HMPV174SH F primer 

according to the conditions stated in Table 3.9 and 3.12. Using the AliT2 cycling 

programme, amplification of the SH gene was then performed using the 

HMPV174SH F / HMPV174SH R2 and the HMPV174SH F2 / HMPV174SH R 
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primer sets in two separate reactions to produce bands of approximately 250bp and 

500bp respectively. The results are presented in Figure 7.6 

 

            
 

 

The multiple bands present in lane three represent the target 500bp amplified product 

as well as unidentified 750bp and 1400bp bands. Bands at 250bp (lane 2) and 500bp 

(lane 3) were extracted and purified (Section 3.6.7) and the eluate added to a PCR mix 

containing the primer set 4 (Table 3.8) and run under the AliT2 conditions stated in 

section 3.6.5. A band of 750bp was evident when run on a 1% agarose gel (data not 

shown) suggesting the site directed mutagenesis had been successful. This was 

retrieved from the gel with a clean scalpel and DNA extracted (Section 3.6.7) before 

being digested with restriction endonucleases BspH1 and Xho1 alongside the pTM1 

plasmid digested with Nco1 and Xho1. The results presented in Figure 7.7 reveal the 

BspH1 restriction site at position 267 has been eradicated and the SH gene is ready for 

ligation into the pTM1 plasmid. 

 

                           

               

Figure 7.6 Amplification of fragments of 

the HMPV174 SH gene after site 

directed mutagenesis. 

Lanes are as follows; 1 – 100bp molecular 

marker; 2 – results of HMPV174SH F and 

HMPV174SH R2; result of HMPV174SH 

F2 and HMPV174SH R; 4 – 1Kb 

molecular marker. 

Figure 7.7 Plasmid pTM1 and 

HMPV174 SH gene restriction 

digest. 

Lanes are as follows; 1 – 1Kb 

molecular marker; 2 – pTM1 

plasmid digested with digested 

with Nco1 and Xho1, 3 – 

HMPV174 SH gene digested 

with BspH1 and Xho1. 
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 The HMPV174SH gene extracted was sequenced in both directions with primer set 4 

(Table 3.8) (Figure 7.8). This confirmed that the BspH1 site had been removed.  

 

 

   
 
Figure 7.8 Chromatogram section of HMPV174SH gene 

 

 

 

7.2 Sequencing 
Upon alignment of HMPV174 SH gene with subgroup A strain sequences from the 

NCBI database, a frame shift mutation was found as a result of an adenine deletion at 

position 64 (Site A) (see Figure 7.9). This resulted in the translation of a truncated 

form of the protein consisting only of approximately 20 amino acids of the 

cytoplasmic region. 

 

 

 
 

Figure 7.9 Schematic diagram of the alignment of HMPV174 SH gene passage 11 with the 

consensus sequence from the NCBI database 
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Since a truncated form of the SH gene from HMPV128 was already cloned into pTM1 

(Section 7.1.1), RNA from an earlier passage of HMPV174 (passage 2, Section 3.5.2) 

was extracted from HMPV174 infected 16HBE140 cells as described in section 

3.6.2.1 and amplified using primer set 4 (Table 3.8) under the conditions described in 

section 3.6.5 (RT step and AliT2). The SH gene was then sequenced in both directions 

using the same primer set to establish whether the frame shift mutation was present. 

Analysis of the chromatogram (Figure 7.10) revealed there to be no nucleotide 

deletion at position 64 (see Appendix 3). Following the procedure outlined in section 

7.1.2.2, HMPV174 SH gene from passage 2 was cloned into pTM1 to allow 

presentation of the wild type SH gene. 

 

 

 
 

Figure 7.10 Chromatogram section of passage 2 and 11 of HMPV174 SH gene 

 

 

7.2.1 Comparison of the SH gene from a variety of strains of HMPV 

Discovering both HMPV174 and HMPV128 SH genes had mutated to non-functional 

forms at high passage, HMPV145 (passage 9, Section 3.5.2) was sequenced for 

comparison. Surprisingly, results revealed there to be the same frame shift mutation at 

passage 11 as in HMPV174, resulting in a 20 amino acid truncated SH gene (Table 

7.2). To ensure these mutations were not a characteristic of the specimens isolated 

from nasopharyngeal secretions, early passages (passage 2) of both HMPV174 and 

145 were sequenced. There were no mutations in the early passages of either of the 

strains indicating the mutations must have occurred as a result of passage in cell 

culture. As a confirmation, two further subgroup A strains (NCL03-4/228 and 
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NCL03-4/230) at passage two were sequenced. Both possessed a wildtype genotype 

(Appendix 3). An earlier passage of HMPV128 (passage 2) could not be isolated 

without the mutation. 

 
Table 7.2 Sequence analysis of the SH gene from a variety of HMPV strains at two mutation sites 

HMPV 

strain 
Passage Site A (residue 64) Site B (residue 203) Mutation 

HMPV174 
2 AAAAAAATAA CTGAGTCA - GA 

11 AAAAAA - TAA CTGAGTCA Frame shift GA 

HMPV145 
2 AAAAAAATAA CTGAGTCA - GA 
9 AAAAAA - TAA CTGAGTCA Frame shift GA 

HMPV128 10 AAAAAAATAA CTGAGTAA Stop codon GA 
HMPV228 2 AAAAAAATAA CTGAGTCA - GA 
HMPV230 2 AAAAAAATAA CTGAGTCA - GA 

 

 

Each gene was evaluated for both its nucleotide and amino acid identity with either 

HMPV128, HMPV145 or HMPV174 to remove the possibility of cross contamination 

(Table 7.3). These genes were also evaluated for both their nucleotide and amino acid 

identity with strains from the NCBI database representing all four lineages (Table 

7.4).  

 

 
Table 7.3 Percentage of amino acid or nucleotide sequence identity between HMPV128 (passage 

10), HMPV145 (passage 2) and HMPV174 (passage 2) SH genes 

HMPV 

genes 

Percent amino acid sequence identity (percent nucleotide sequence identity†) 

 HMPV128 vs HMPV145  HMPV128 vs HMPV174  HMPV145 vs HMPV174 

SH 58 (68) 59 (69) 98 (99) 

 
† Amino acid sequence identities were calculated based on the complete predicted proteins; in the case 

of G, overhangs on the carboxy-terminal side of the alignments due to length differences were not 

included in the calculations. Nucleotide sequence identities are shown in parentheses and are based on 

the protein-coding sequence exclusive of non-coding sequences. 
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Table 7.4 Percentage of amino acid or nucleotide sequence identity between HMPV128, 145 and 

174 SH genes and other HMPV strains from the NCIB database 

HMPV genes 

compared 

Percent amino acid sequence identity (percent nucleotide sequence 

identity†) 

JPS03/180 (A1) CAN97/83 (A2) JPS02/76 (B1) CAN98/75 (B2) 

Passage 10 

HMPV128 SH 
59 (72) 60 (70) 94 (96) 81 (86) 

Passage 2 

HMPV145 SH 
85 (90) 95 (94) 60 (69) 54 (66) 

Passage 2 

HMPV174 SH 
85 (89) 96 (94) 60 (69) 55 (66) 

Passage 11 

HMPV174SH 
23 (89) 23 (94) 21 (69) 22 (66) 

 
† Amino acid sequence identities were calculated based on the complete predicted proteins; in the case 

of G, overhangs on the carboxy-terminal side of the alignments due to length differences were not 

included in the calculations. Nucleotide sequence identities are shown in parentheses and are based on 

the protein-coding sequence exclusive of non-coding sequences. 

 

 

Analysis of the results reveal HMPV128 SH gene is most closely related to JPS02-76 

(B1) and passage 2 HMPV174 SH gene to CAN97/83 (A2) corresponding to the 

results obtained from the analysis of the F and G genes. The marked differences 

observed at the amino acid level with passage 11 of HMPV174 are a result of the 

frame shift mutation at nucleotide residue 64.  However, HMPV145 SH gene most 

closely resembles CAN97/83 not JPS02-76. It thus differs from HMPV145 F and G 

genes but corresponds to the N gene sequence analysis. The possibility of 

contamination from the other strains has been removed since sequence analysis 

confirms each gene differs at both nucleotide and amino acid level from its 

counterpart. Furthermore, the likelihood of contamination with another A2 strain not 

discussed in this thesis is impossible since the SH gene of HMPV has not been 

amplified before this project. 

 

7.2.1.1 Ligation and transformation of pTM1 with HMPV174 gene products 

18 different ligation reactions were carried out between the amplified SH gene of 

HMPV174 passage 2 and pTM1 as described in section 3.7.6. Once ligation products 
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were produced, they were transformed into E. coli TG1 (Section 3.7.7) and spread 

onto LB agar plates containing ampicillin. The results are shown in Table 7.5. 

 

 
Table 7.5. Number of colonies counted after transformation of bacteria with pTM1.HMPVSH174 

 

Reaction pTM1.HMPV174SH 

Vector only 2µl 0 

Vector only 8µl 0 

Vector only 20µl 0 

Vector + insert 1:1, 2µl 0 

Vector + insert 1:1, 8µl 2 

Vector + insert 1:1, 20µl 6 

Vector + insert 2:5. 2µl 3 

Vector + insert 2:5, 8µl 21 

Vector + insert 2:5, 20µl 42 

Vector + insert 1:3, 2µl 0 

Vector + insert 1:3, 8µl 8 

Vector + insert 1:3, 20µl 2 

Vector + insert 1:5, 2µl 8 

Vector + insert 1:5, 8µl 28 

Vector + insert 1:5, 20µl 33 

No DNA control 0 

No DNA control 0 

No DNA control 0 

 

 

One colony from each successful plate was taken and grown up as described 

previously. Plasmid DNA obtained from a QIAgen miniprep was digested with 

BspH1 and Xho1. The results for pTM1.HMPV174SH are presented in Figure 7.11 

and reveal successful transformation of all nine bacterial colonies, with each 

containing two bands corresponding to the pTM1 plasmid (5257bp) and the SH gene 

(870bp). One colony (pTM1.174SH clone 7) was chosen to be recloned and results 

are presented in Figure 7.12. A maxiprep pTM1.174SH clone 7.3 was performed 
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using a QIAgen maxiprep kit (Section 3.7.9) and the yield of total DNA was 2.1 

mg/ml. 

 

             
 

 

 

 

 

 

 

 

 

To ensure the plasmid DNA was eluted correctly, pTM1.174SH7.3 DNA preparation 

was double digested with restriction enzymes Kpn1 and Xho1. The results are 

presented in Figure 7.13. 

 

                           

Figure 7.11. Restriction digest of transformation 

of pTM1 with the HMPV174 SH gene. 

The lanes are as follows; 1 - 1Kb molecular marker, 

2 to 11 – various colonies picked, 12 – 1Kb 

molecular marker. 

Figure 7.12. Restriction 

digests of cloned recombinant 

pTM1 with HMPV174SH 

gene. 

The lanes are as follows; 1 - 

1Kb molecular marker, 2 to 4 - 

colonies picked from one clone, 

     

Figure 7.13 Restriction digest 

of pTM1.174SH7.3 maxiprep. 

Lanes are as follows; 1 - 1Kb 

molecular marker, 2 - 

pTM1.174SH7.3. 
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7.3 Transient expression of HMPV.pTM1 clones in vaccinia virus 

10µg/ml of DNA from pTM1.174SH7.3 and pTM1.128SH7.1 was transfected into 

HeLa cells along with VTF7.3 at an MOI of 30 as described in section 3.5.12. After 

21 hours, the cells were tested for expression of SH antigen by immunofluorescence 

staining with mouse anti-HMPV174, 145 and 128 polyclonal sera (Section 3.2.1.2). 

The results are presented in Table 7.6. 

 
Table 7.6 Reactivity of mouse anti-HMPV174, 145 and 128 polyclonal serum with transiently 

expressed pTM1.174SH7.3 and pTM1.128SH7.3. 

Virus Mouse polyclonal anti-HMPV antibody MAb24 

Anti-174 Anti-145 Anti-128 

pTM1.174 SH clone 7.3 -/+ + + - 

pTM1.128 SH clone 7.1 -/+ + +/++ - 

VTF7.3 infected HeLa (not 

transfected) 
-/+ + + - 

HeLa cells (not infected or 

transfected) 
-/+ + + - 

 
- No antibody staining 

+ Small number of cells with a small amount of antibody staining 

++ Approximately 50% of cells with specific antibody staining 

+++ Approximately 80% or more cells with specific antibody staining 

++++ Approximately 100% or more cells with specific antibody staining 

 

 

 

There was weak specific staining of HMPV128 SH glycoprotein with the homologous 

polyclonal anti serum, demonstrating that the truncated form of the SH glycoprotein is 

very poorly immunogenic but can still elicit an immune response. It is not however 

cross-reactive with the subgroup A strain. However, there was no specific staining of 

polyclonal anti – HMPV174 or 145 antibodies with either of the transiently expressed 

SH glycoproteins. It is likely that the immunogen used to generate the anti-HMPV174 

and 145 polyclonal mouse sera carried the SH gene mutation and as a result would not 

have generated antibody directed towards the lumenal domain. It cannot be 

determined from this experiment whether the truncated SH protein in HMPV174 
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passage 11 was non-immunogenic or that protein is not being expressed from 

pTM1.174SH clone 7.3.  

 

 

7.4 Production of vaccinia virus recombinants 
As there is no way to detect the expression of the functional SH gene in the 

HMPV174 recombinant, only vaccinia virus recombinants were prepared from the 

HMPV128 SH gene. Vaccinia virus clones were produced by initially infecting CV-1 

cells with wild type vaccinia virus at an MOI of 0.05 subsequently transfected with 

3µg/ml of DNA from pTM1.128SH7.1 maxiprep (Section 3.5.13). Transfected 

infected CV-1 cell lysates were then inoculated onto TK-143 cells under BuDR 

selection pressure, overlaid with agarose and neutral red to allow virus plaques to 

become visible (Section 3.5.14). Several individual plaques were collected and 

subsequently cultured in a 24 well plate of TK-143 cells to produce a stock for DNA 

preparation (Section 3.5.15). 

 

7.4.1 PCR of DNA preps from recombinant vaccinia virus 

DNA was purified from vv128SH recombinant vaccinia virus clones 1 to 6 (Section 

3.5.16). The DNA was amplified by PCR using primer set 3 (Table 3.6) under the 

AliT2 reaction conditions as described in Table 3.9 and 3.12. The amplicand was 

resolved on a 1% agarose gel and visualised with ethidium bromide using ultraviolet 

light. The results are presented in Figure 7.14. 

 

 

               
 

 

 

 

 

 

Figure 7.14 PCR products of HMPV128 SH gene DNA preps. 

Lanes are as follows; 1 – 1Kb molecular marker, 2 to 5 – several 

SH clones, 6 – pTM1.128SH maxiprep at dilution 10-3; 7 - negative 

PCR control, 8 – 1Kb molecular marker 
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Only one out of five potential vaccinia virus recombinants produced a band at just 

over 750bp corresponding to the HMPV128 SH gene (Figure 7.14). Plaque 2 was 

recloned on TK-143 cells in the presence of BuDR and all plaques picked contained 

the gene of interest (Figure 7.15). 

 

 

                
 

 

 

 

 

 

 

 

7.5 Co-expression of HMPV vaccinia recombinants 
The recombinant vaccinia virus clone vv128SH2.1 was grown up to high titres by 

successive passage in L cells as described in section 3.5.15. Once passaged into 

75cm3 tissue culture flasks, the clone was titred according the method described in 

section 3.5.11.  

The recombinant vaccinia virus clone was coinfected into L cells with VTF7.3 at an 

MOI of 3 as described in section 3.5.17. They were incubated for 24 hours. Spot 

slides were produced and the remainder of the preparation was inactivated with BEI 

(Section 3.5.18) and further spot slides prepared.  

The slides were tested for expression of the HMPV128 SH antigen by 

immunofluorescence staining with both MAb24 and mouse polyclonal anti-

HMPV128 serum (Figure 7.16). 

 

 

Figure 7.15. PCR products of recloned SH gene DNA preps 

of HMPV128 SH clone 3 

Lanes are as follows; 1 – 1Kb molecular marker, 2 to 7 – 

several SH clones, 8 – pTM1.128SH maxiprep at dilution 10-3 

positive control, 9 – negative PCR control, 10 – 1Kb molecular 

marker 



  168   

 

 

        
 
Figure 7.16 Example of immunofluorescence staining of L cells (a) coinfected with vv128SH2.1 

and VTF7.3 (b) coinfected with vv128SH2.1 and VTF7.3 after inactivation and (c) VTF7.3 only ( 

before inactivation), all stained with anti-HMPV128 polyclonal antibody. 

 

 

 

Polyclonal anti-HMPV128 mouse serum produced specific staining of the coinfected 

L cells both before and after inactivation, similar to that of the transiently expressed 

protein (Table 7.6). There was no staining with MAb24 confirming the SH 

glycoprotein is expressed alone. 

 

 

7.6 Preparation of mono-specific mouse anti-sera 
Polyclonal monospecific antibody was prepared as before (Section 4.9) by 

immunising mice with inactivated vv128SH2.1/VTF7.3 antigen. Forty-nine days after 

the initial subcutaneous inoculation, the serum antibody titres (Table 7.7) were 

established by titrating the final cardiac puncture by indirect immunofluorescence 

staining on both homologous and heterologous HMPV grown in 16HBE140 cells (see 

Section 3.5.1).  

 
Table 7.7 Antibody titres of monospecific anti-HMPV128 SH mouse serum on HMPV infected 

16HBE140 cell cultures. 

Virus Anti-128 SH (Titre log10) 

HMPV174 3.11 

HMPV145 3.11 

HMPV128 3.11 
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To investigate whether the antibody preparation was targeting the cytoplasmic domain 

of the glycoprotein, the serum sample was tested using membrane 

immunofluorescence (Section 3.5.5). Live HMPV infected 16HBE140 cells were 

harvested and incubated with the monospecific antibody for 1 hour before being 

gently washed and stained with SAM FITC for detection by fluorescence microscopy. 

No membrane specific staining with the anti – HMPV128 SH antibody on either the 

HMPV128 infected cells or the uninfected 16HBE140 cells was observed. This 

suggests either the antibody is targeting either the cytoplasmic region or the 

transmembrane region of the protein as specific immunofluorescence can be observed 

in the fixed cell preparation or the truncated SH protein is not transported to the cell 

surface.  

 

 

             
  
Figure 7.17 Example of membrane immunofluorescence staining in (a) HMPV128 infected cells 

stained with monospecific anti-vv128F5.5/VTF7.3 antibodies, (b) HMPV128 infected cells and (c) 

uninfected 16HBE140 cells stained with monospecific anti-vv128SH2.1 antibodies. 

 

 

7.6.1 Neutralisation 

HMPV174 (passage 2) and HMPV128 (passage 10) infected 16HBE140 cell 

preparations were incubated with vv128SH2.1/VTF7.3 monospecific antibody to 

produce a final dilution series of 1/10 to 1/2560 and inoculated onto 16HBE140 cells 

as described in section 3.5.8. At 15 days post-infection, spots were made and tested by 

immunofluorescence using HMPV monoclonal antibody pool (Section 3.5.4). 

Each spot was rated by the number of infected cells together with the intensity of 

fluorescence in comparison with the positive control as described in Table 7.6. The 
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cut off for neutralisation was < ++ (where the positive control was +++) and 50% 

neutralisation titres were calculated according to the Reed and Muench method. The 

results are displayed in Table 7.8. 

 

 
Table 7.8 Neutralisation of HMPV128 with all monospecific antibodies generated 

Monospecific antibody 

50% serum neutralising antibody titre 

(log10) 

HMPV174 (P2) HMPV128 (P10) 

α vv128SH2.1/VTF7.3 3.25 1.9 

α VTF7.3 1.75 1.75 

Normal mouse serum 0 0 

 

 

Whilst anti-VTF7.3 antibodies have a low level of neutralising activity, anti-SH128 

antibodies neutralise HMPV174 to a much higher titre (103.25) suggesting an added 

neutralisation effect by anti-SH antibodies. However, the neutralisation effect of these 

antibodies on HMPV128 is similar to that seen with anti-VTF7.3 antibodies. 

 

 

7.6.2 Western blot 

Uninfected and infected passage 2 HMPV174 and passage 10 HMPV128 cell cultures 

were prepared as before (Section 4.10.3) separated by polyacrylamide gel 

electrophoresis alongside molecular weight markers as detailed in section 3.20 and 

blotted onto the PVDF membrane (Section 3.21). The membrane was stained with 

MAb57 at a concentration of 5µg/ml and monospecific anti vv128SH2.1/VTF7.3 

antibody at a 1/500 dilution. The bands were visualised as before (Section 4.10.3). 

The monospecific anti vv128SH2.1/VTF7.3 antibody stained a number of bands in the 

uninfected 16HBE140 cells. However, several bands of high molecular weight were 

stained in the HMPV174 infected cell lysate only, one above 170KDa, one at 

approximately 160KDa and the other at 130KDa all potentially representing the 

glycosylated form of the SH glycoprotein. The antibody also stained 14KDa and 

12KDa bands in both HMPV174 and HMPV128 infected cell lysates, potentially 
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representative of a partially digested form of the protein. All other bands appeared 

cross reactive with both HMPV lanes and 16HBE140 negative cells. 

 

         
 

 

 

 

7.7 Sequencing virus recovered from infected mice 
Infectivity results from mice infected with passage 11 / 12 HMPV174 (Chapter 6) 

were surprising since RNA could be easily isolated by quantitative PCR from all 

samples taken yet no infectious virus could be cultured in vitro. With the discovery of 

all high passage HMPV strains having a non functional SH gene, both the inoculum 

and RNA extracted from the lungs of all mouse studies were sequenced in both 

directions using primer set 4 (Table 3.8). The results presented in Table 7.9 revealed 

all inocula used in the animal studies possessed the non-functional SH gene apart 

from that in the original growth curve conducted with lower passage virus (Passage 4) 

which contained a mixed population of both wild type and mutated virus. Of two 

samples of infected lung from this experiment, collected on day 5 post-infection, one 

Figure 7.18.  Comparison of 

HMPV174, 128 infected and 

uninfected 16HBE140 cell lysate 

stained with either MAb57 or 

monospecific anti – 

vv128SH2.1/VTF7.3 antibody 

western blot. 

Lanes were as follows; 1 – 

molecular weight marker; 2, 5 – 

HMPV174 infected cell lysate; 3, 

6 – HMPV128 infected cell 

lysate; 4, 7 – uninfected 

16HBE140 cells. 

Text below the figure indicates 

antibody used to stain each blot. 

* Apparent HMPV174 specific 

bands in lane 5 at 12 and 14KDa 

are observed in lane 6 but are not 

visible in figure. 

 

 

  MAb57                  α SH128 

160 

130 

14 

12 

 

>170 
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yielded a mixed population of virus genome whilst the second yielded only wild type 

genome. Virus genome recovered from the lungs of all mice inoculated with mutant 

virus yielded only mutant genomes. 

 

 
Table 7.9 Sequence analysis of the HMPV174 SH gene from inoculum used in the mouse model 

experiments 

Inocula Passage Site A (residue 64) Mutation 

5 x 105 ffu/ml 4 
TAAAAAAATAAT Mixed population  

Wild type / Frame shift TAAAAAA - TAAT 

2.6 x 106 ffu/ml 11 TAAAAAA - TAAT Frame shift 

7 x 106 ffu/ml 12 TAAAAAA - TAAT Frame shift 

Challenge 11 TAAAAAA - TAAT Frame shift 

 

 

 
Table 7.10 Sequence analysis of the HMPV174 SH gene from lung homogenates extracted from 

the mouse model experiments 

Inocula Passage 
Samples 

sequenced 
Site A (residue 64) Mutation 

5 x 105 ffu/ml 4 2 

TAAAAAAATAAT Wild type 

TAAAAAAATAAT Mixed population  

Wild type / Frame shift TAAAAAA - TAAT 

2.6 x 106 ffu/ml 11 1 TAAAAAA - TAAT Frame shift 

7 x 106 ffu/ml 12 1 TAAAAAA - TAAT Frame shift 

Challenge 11 1 TAAAAAA - TAAT Frame shift 

 

 

Thus the recovery of infectious virus from the lungs of mice coincided with the 

recovery of wild type virus with a full SH gene. Further experimentation will be 

required to confirm the effect of the SH gene mutations on virus infectivity in vivo. 
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Chapter 8: Discussion  
 

The aims of this project were initially to develop vaccinia virus recombinants 

expressing the individual glycoproteins of at least two strains of HMPV, one from 

each sub-group. These would be used to generate both glycoprotein specific 

polyclonal and monoclonal antibodies and evaluate the protective effects of antibody 

to the individual glycoproteins in an animal model system. 

 

8.1 Strains of HMPV 

Two strains of HMPV were chosen for this study, HMPV174, representing the A2 

subgroup and HMPV128, representing the B1 sub-group. HMPV145, a second 

reported A2 strain, was also chosen to investigate intra-subgroup reactivity of the 

antibodies generated. These viruses were isolated in Newcastle upon Tyne during the 

2003 / 2004 epidemic and passaged in 16HBE140 cells to create working stocks. 

Sequence analysis of both the F and G genes with strains from the NCBI database 

revealed similar levels of variability to those observed by other groups (Bastien et al., 

2004; Biacchesi et al., 2003; Biacchesi et al., 2004b; Ishiguro et al., 2004; Ludewick 

et al., 2005; van den Hoogen et al., 2002; van den Hoogen et al., 2004). Whilst the F 

genes of both HMPV128 and 174 displayed high levels of conservation with members 

of homologous sub-groups from the database, resulting in a mean of 95% nucleotide 

identity, compared to 94% reported by others (Biacchesi et al., 2003; Ludewick et al., 

2005). There was 83% identity between sub-groups (compared to 83-85% in similar 

studies (Biacchesi et al., 2003; Ludewick et al., 2005)). These results were mirrored at 

the amino acid level.  

 

The levels of divergence observed between the G genes of both strains of HMPV also 

reflect those reported previously. Whilst here, a mean of 86% nucleotide identity was 

observed between strains belonging to the same sub-group (70-100% in similar 

studies), a higher degree of variation of 60% was observed between sub-groups (46-

59% (Biacchesi et al., 2003; Ludewick et al., 2005)). These results indicate these 

genes are a good representation of the appropriate lineage.  
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Interestingly, sequence analysis of the F and G genes from HMPV145, previously 

reported to cluster with sub-group A2 (Ingram, 2006), aligned this strain within the 

B1 lineage. In contrast, the N and SH genes most closely resembled strains of the A2 

lineage suggesting HMPV145 is a complex recombinant of two strains belonging to 

both A and B sub-groups. The possibility of contamination was eliminated since 

sequence analysis of all four genes confirmed degrees of variation between 

HMPV128, 145 and 174. As RNA recombination is a rare event, an alternative 

hypothesis is the presence of a mixed population in the culture. Genes from either the 

A2 or B1 strain were being amplified dependent on their homology with the primers. 

However, the results do not support this notion as both N and F gene primer sets were 

designed to accommodate all four HMPV lineages and would thus be expected to 

amplify both sequences in a mixed infection. 

 

 

8.2 Production of recombinant vaccinia viruses 

The production of recombinant vectors allowing eukaryotic expression of the 

glycoproteins of HMPV has previously been reported in a number of studies. By 

means of a reverse genetics system, several human parainfluenza virus recombinants 

have been generated expressing the F, G and SH glycoproteins of HMPV 

(Skiadopoulos et al., 2006; Skiadopoulos et al., 2004; Tang et al., 2005; Tang et al., 

2003). Skiadopoulos et al modified the full-length anti-genomic PIV1 cDNA 

(Newman et al., 2002) by insertion of the HMPV F gene flanked by PIV1 gene start 

and gene end transcription signals upstream of the PIV1 N ORF (Skiadopoulos et al., 

2004).  Subsequently this was repeated for the HMPV G and SH proteins which were 

separately inserted immediately downstream of the PIV1 P protein ORF and modified 

to contain the flanking PIV1 cis-acting signals (Skiadopoulos et al., 2006).  

 

Tang et al (2003) fashioned chimeric PIV3 containing the HMPV F gene using the 

chimeric bovine / human PIV3 harbouring the F and HN genes of PIV3 (Haller et al., 

2001; Haller et al., 2000). The HMPV F gene was inserted into the PIV3 genome as a 

transcriptional cassette. 
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These previous studies were, however, designed for the evaluation of potential 

multivalent vaccines not as an expression system. PIV is relatively fastidious and 

yields of the target protein are likely to be low. In the vaccinia virus expression 

system, which had already been established in this laboratory and was therefore 

chosen for the expression of HMPV glycoproteins, the target gene is located 

downstream of a T7 promoter and is transcribed by the highly efficient bacteriophage 

T7 polymerase (Mohamed and Niles, 2004; Moss, 1991). It is one of the highest 

yielding eukaryotic expression systems and this together with the ease of 

manipulation and production of recombinant vaccinia viruses makes this system very 

attractive (Fuerst et al., 1987). Furthermore, for the production of monospecific anti-

sera and monoclonal antibodies, the ability of the virus to infect an extensive host 

range is extremely useful in avoiding overwhelming background anti-cell antibody 

response. 

 

Using the shuttle vector pTM1 (Moss et al., 1990), constructs expressing either the F 

or G genes of HMPV downstream of the T7 promoter were constructed allowing the 

initial evaluation of potential levels of protein expression via the transient expression 

system (Fuerst et al., 1986). Detection by indirect immunofluorescence with 

polyclonal mouse HMPV anti-sera revealed a good level of expression with the F and 

G glycoproteins of all three strains. However, expression of foreign proteins using this 

method does have its limitations and is not adequate for monoclonal and monospecific 

antibody production since high concentrations of pTM1 plasmid DNA is required for 

each infection along with high titres of the recombinant vaccinia virus, VTF7.3, which 

supplies the T7 polymerase. Therefore, the production of a recombinant virus was the 

next step, where the target gene was inserted into the wild type vaccinia virus genome 

downstream of a T7 promoter. This allowed high levels of protein expression to be 

obtained by co-infecting with VTF7.3 (Fuerst et al., 1987). F and G protein 

expression of both HMPV174 and 128 from recombinant viruses was detected by 

immunofluorescence using polyclonal HMPV anti-sera indicating that the transient 

expression system was a good indication of subsequent glycoprotein recombinant 

vaccinia virus expression. 
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8.3 Inactivation of recombinant vaccinia virus 

Inactivation of the recombinant vaccinia viruses was a necessary step to allow safe 

handling when utilising these reagents. The revelation that both β-propiolactone and 

formaldehyde led to an apparent alteration and destruction of epitopes upon 

inactivation (Hulskotte et al., 1997; Robinson, 2007), led to the application of another 

method that was thought to preserve epitopes. Inactivation with BEI is thought to 

inactivate viral infectivity by reacting with nucleic acids without interaction with 

proteins suggesting preservation of antigenicity (Bahnemann, 1976; Bahnemann, 

1990; Hulskotte et al., 1997). Results after coinfection suggested that whilst the 

majority of epitopes as detected by the polyclonal mouse serum, were accurately 

conserved, some had been destroyed as indicated by the lack of detection of 

vv174F7/VTF7.3 with anti-F MAb24. As a consequence, the monospecific anti-sera 

generated, after inactivating the recombinant vaccinia viruses, may lack some 

specificity for BEI labile epitopes. 

 

 

8.4 Reactivity of polyclonal anti-HMPV sera 

Production of polyclonal HMPV anti-sera allowed the detection of the individual 

HMPV glycoproteins expressed by vaccinia virus. The immunisation schedule used to 

generate these included a preliminary intranasal inoculation, thought to increase 

antibody titres as this results in infection (Beeler and van Wyke Coelingh, 1989), 

followed by two subcutaneous inoculations before antibody titres were measured. 

Analogous to previous reports, the antibodies generated were cross reactive to 

homologous strains and heterologous strains albeit to lower levels (MacPhail et al., 

2004; Skiadopoulos et al., 2004; van den Hoogen et al., 2007; Wyde et al., 2005). 

 

Whilst all HMPV anti-sera stained the vaccinia virus expressed HMPV F protein from 

all three strains, only the homologous sera stained the HMPV G glycoprotein 

confirming its high variability and diversification as previously observed by others 

(Biacchesi et al., 2005a; Biacchesi et al., 2004b; Endo et al., 2008; Mok et al., 2008; 

Skiadopoulos et al., 2006). Despite the 68% amino acid identity between the G genes 

of the genetically related HMPV128 and HMPV145, anti-HMPV145 serum did not 
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react with recombinant vaccinia virus expressing HMPV128 G glycoprotein and vice 

versa.  

 

However, differences in the ability of the two sub-groups to induce high levels of 

antibodies meant mice immunised with sub-group B strain HMPV128 received an 

additional subcutaneous inoculation to induce a response comparable to that to sub-

group A strain HMPV174. Similar reports have suggested a difference in replication 

of group A and B HMPV strains resulting in the induction of lower levels of 

neutralising antibodies from infection with a sub-group B strain (MacPhail et al., 

2004; Skiadopoulos et al., 2004; van den Hoogen et al., 2007; Wyde et al., 2005) 

Furthermore, a report by Vicente et al (2006) suggested a possibility that HMPV A 

strains cause more severe disease in infants possibly as a consequence of increased 

replication efficiency, yet this still remains controversial. As the primary 

immunisation here was intranasal, differences in the ability of the virus to replicate in 

the mouse respiratory tract might have influenced the subsequent immune response. 

 

 

8.5 Reactivity of monospecific anti-glycoprotein sera 

The F and G glycoproteins expressed in vaccinia virus were highly immunogenic. The 

monospecific anti-F antibodies possessed similar characteristics to the polyclonal 

HMPV anti-sera in that they were cross reactive to both homologous and heterologous 

strains of HMPV. However, surprisingly, the anti-G antibodies were also to some 

extent also cross reactive. Antibodies generated to HMPV128 G protein were the most 

reactive with both HMPV174 and HMPV145, whereas the specific staining pattern 

seen with the anti-G174 antibodies was just above the background level seen with the 

negative controls. This result is surprising given the extensive level of sequence 

variability between the G proteins of the two sub-groups (Bastien et al., 2004; 

Biacchesi et al., 2003; Galiano et al., 2006; Ishiguro et al., 2004; Ludewick et al., 

2005; Peret et al., 2004; van den Hoogen et al., 2004). It is also inconsistent with the 

failure of polyclonal anti-sera raised against the whole virus to exhibit any cross 

reactivity for heterologous G glycoproteins expressed in vaccinia virus. The removal 

of the other viral proteins, which possibly contain immunodominant epitopes, may 

allow the generation of antibodies directed towards normally immunologically silent 
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regions. Although the amino acid identity between HMPV128 G and HMPV174 G 

proteins is 32% and there are no conserved sequences of any length, the possibility 

still remains that a particular antibody could be directed towards a cross reactive 

conformational epitope. 

 

Poor responses to vv174G5/VTF7.3 and vv128G3.5/VTF7.3 necessitated an 

additional immunisation compared to vaccinia virus F preparations. Even so both anti-

F antibody titres were higher. Since all preparations contained the equivalent levels of 

antigen, these results suggest that the F glycoprotein is more antigenic than the G 

glycoprotein. 

 

 

8.6 Neutralisations 

A further aim of this study was to investigate the ability of the monospecific specific 

anti-sera generated to neutralise HMPV strains from both sub-groups.  

 

Neutralisation of viruses has been defined as the ability of antibodies to abrogate virus 

infectivity by direct binding to the virion. The ability of antibody to bind and 

inactivate virus infectivity has been proposed to be mediated by a variety of different 

methods including: aggregation of virions, inhibition of virion attachment, inhibition 

of fusion with the target cell and post entry neutralisation where antibody complexed 

with the virion blocks further stages of replication. These mechanisms rely upon the 

theory that antibodies bind to critical sites on the virion surface (Dimmock, 1993). 

 

Another theory proposed is the simple occupancy model (Parren and Burton, 2001). It 

is suggested that neutralisation ensues when a significant proportion of available sites 

on the virion surface are antibody occupied since each virion requires a certain 

number of unimpeded surface antigens to infect. These antibodies coat the surface of 

the pathogen and, only once this coating has reached critical density, inhibit virus 

attachment or fusion with the target cell (Klasse and Sattentau, 2002; Parren and 

Burton, 2001). Various factors are thought to influence antibody occupancy including 

the size of the virion, the number of antigens on the virion surface, the number of 
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antibody binding sites and the proximity of the viral antigens on the virion surface 

(Klasse and Sattentau, 2002). 

 

Whatever, the neutralisation method, the presence of complement is thought to 

enhance neutralisation either by interfering with the virus and target cell interaction or 

via complement-mediated cytotoxicity (Parren and Burton, 2001). 

 

The neutralisation results with monospecific anti-sera for HMPV glycoproteins 

confirmed the staining patterns observed with the monospecific antibodies by 

immunofluorescence.  Both preparations of anti-F antibodies neutralised in the 

presence of complement both HMPV174 and HMPV128 up to a titre of 103.25, which 

was not unexpected by either theory of neutralisation given that F is abundant on the 

surface of the virion and its apparent role in mediating viral and cell membrane fusion 

during infection (Hernandez et al., 1996). Other groups have reported similar findings 

with both polyclonal (Herfst et al., 2007; Skiadopoulos et al., 2006; Skiadopoulos et 

al., 2004) and monoclonal antibodies generated against the F glycoprotein (Hamelin 

et al., 2008; Ma et al., 2005; Ulbrandt et al., 2008; Ulbrandt et al., 2006; Williams et 

al., 2007). 

 

Intriguingly, the anti-G174 monospecific antibodies also neutralised homologous 

HMPV174 but not HMPV128. This was unexpected since it has been reported that the 

immunisation of recombinant PIV1 expressing the G glycoprotein of HMPV does not 

induce detectable neutralising antibodies (Skiadopoulos et al., 2006). In addition, 

Biacchesi et al (2004b, 2005a) reported deletion mutants lacking the G protein were 

highly attenuated yet capable of replication in both the upper and lower respiratory 

tract of hamsters and African green monkeys. It was therefore suggested that it is an 

accessory protein, not required for efficient assembly or release of progeny virus and 

not essential for virus replication. However, the proteins high level of variation, 

thought to be driven by host immunity suggests that it is either under greater pressure 

than the F protein to evolve or its structure is more forgiving of sequence variation 

leading to immune escape (Bastien et al., 2004; Biacchesi et al., 2003; Ludewick et 

al., 2005; van den Hoogen et al., 2004).  
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Even more surprising, anti-G128 antibodies neutralised both HMPV128 and 

HMPV174. This does support the results achieved in the immunofluorescence studies 

but there has been no previous report of cross reactive anti-G protein antibodies 

neutralising or non-neutralising (Bastien et al., 2004; Endo et al., 2008). Studies with 

HRSV revealed that whilst monoclonal antibodies exhibited little neutralising activity, 

polyclonal antiserum raised against purified G protein or several G-specific MAbs 

exhibited enhanced neutralisation (Johnson et al., 1987b; Martinez and Melero, 1998).  

 

A possible explanation for such results could be attributable to the phenotypic 

differences observed between the strains of HMPV. Unlike viruses in other studies 

where infection of vero / LLC-MK2 cells requires the presence of exogenous trypsin, 

the strains used in this study may require the G glycoprotein for attachment and entry 

into the host cell. Blocking of this protein by the polyclonal antibodies would 

therefore neutralise the virus and inhibit subsequent infection and spread. An 

alternative explanation may be that the G glycoprotein is not required for infection in 

cell culture. However, its presence on the virion surface could permit antibody of 

sufficient avidity to coat the virion which would sterically inhibit the attachment of 

the virus mediated by other virion surface components.  

 

The differences observed in the capacity of anti-G128 antibodies to neutralise both 

HMPV128 and HMPV174 compared with anti-G174 antibodies which were strain 

specific have been mirrored in RSV studies. Evidence of this asymmetric cross 

reactivity / neutralisation pattern was obtained when immunisation of mice with a 

sub-group A virus produced cross-reactive anti-G antibodies, whilst immunisation 

with a sub-group B virus only generated sub-group specific antibodies (Johnson et al., 

1987a; Stott et al., 1987).  

 

8.7 Western blots 

The monospecific antibodies were further characterised by western blotting. Each 

polyclonal antibody was tested against both HMPV174 and HMPV128 as well as a 

16HBE140 control. MAb57 was used as a positive control, staining a single HMPV 

specific band at approximately 40KDa. Previous work in this laboratory used 

MALDI-TOF analysis to demonstrate that this antibody is specific for the N protein 
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(Ingram, 2006). All of the monospecific antibodies gave some background staining of 

the blots but non-specific staining with the anti-G174 was so heavy as to render the 

blot uninterpretable. Antibodies to HMPV174 F, HMPV128 F and G were highly 

reactive with uninfected cells blotting two very heavy bands at 70KDa and 41KDa, 

and numerous heavier and lighter bands. This anti-cell reactivity was not apparent 

when the antibodies were tested by immunofluorescence staining. All antibodies also 

blotted a major band at approximately 62KDa in the HMPV positive lanes but there 

was no differentiation between anti - F and anti - G staining of either HMPV antigen. 

A number of hypotheses could be made to explain this 62KDa band. As monospecific 

anti-sera were generated by immunisation of mice with recombinant vaccinia virus 

grown in mouse L cells, L cells or vaccinia virus may have a shared epitope with 

HMPV that would allow antibodies to cross react. Alternatively the immunised mice 

are making a response to a 62KDa stress protein which shares an epitope with an 

equivalent protein in virus infected 16HBE140 cells. Finally, the HMPV F and G 

glycoproteins may share an epitope and the 62KDa protein represents the HMPV F 

protein. This is least likely as others have not reported a shared epitope in other 

systems. 

 

The failure of these monospecific antibodies to detect any HMPV specific viral 

proteins could be attributable to the high levels of non-specific binding. It has been 

reported that the F precursor protein, F0, has blotted at 59KDa (Biacchesi et al., 2006; 

Cseke et al., 2007) and therefore the heavy cross reactive bands located at 

approximately 62KDa could be masking this observation. Furthermore, the heavy 

non-specific bands at approximately 100KDa in the anti-G128 blots could be masking 

the specific blotting of the G glycoprotein since it has been observed in PAGE at 

approximately 90KDa (Biacchesi et al., 2004b; Biacchesi et al., 2005b). 

 

 

8.8 Hybridomas 

A further aim of this study was to generate anti-G glycoprotein monoclonal antibodies 

preliminary directed towards HMPV174. There are currently few monoclonal 

antibodies available for HMPV especially directed towards the G glycoprotein.  

Ulbrandt et al (2006) isolated a panel of monoclonal antibodies to HMPV F protein 
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that have been found to neutralise both in vitro and in vivo. These antibodies were 

generated by intranasal inoculation with wild type HMPV followed by immunisations 

with either recombinant adenovirus or recombinant bovine parainfluenza virus 

expressing the HMPV F protein. One particular antibody MAb338 was tested for 

prophylactic efficiency in mice (Hamelin et al., 2008).  A similar study revealed the 

generation of anti-HMPV F protein monoclonal antibodies by subcutaneous 

immunisations with HMPV infected cells (Ma et al., 2005), similar to the process 

used here, although cloned hybridomas were subsequently injected intraperitoneally 

back into BALB/c mice to facilitate collection of asites fluid.  

 

High levels of post translational glycosylation of the G glycoprotein including 

mannose N –linked sugars and O – linked sugars leads to the formation of the mature 

protein which is expressed on the surface of the cell membrane (Liu et al., 2007). 

Expression of the G glycoprotein in eukaryotic cells from a vaccinia virus vector 

allows transportation of the protein to the correct cellular compartment, accurate post 

translational modifications and authentic antigenicity (Hruby, 1990; Moss, 1991). The 

lectin Concanavalin A, derived from the Jack bean, shows high affinity binding 

towards D-mannose sugars, found on glycoproteins (Hendricks et al., 1988; Von 

Damme et al., 1998). A method based on the ability of Concanavalin A to capture the 

G glycoprotein of HRSV was adapted for use with HMPV and subsequently used to 

screen and isolate anti-G glycoprotein hybridomas (Robinson, 2007). 

 

Here, BALB/c mice were immunised with whole HMPV grown in 16HBE140 cells 

and screened by Concanavalin A ELISA using as antigen mouse L cells infected with 

recombinant vaccinia virus expressing the G glycoprotein. This was to increase the 

availability of the G glycoprotein for detection by monoclonal antibodies but also to 

reduce the non-specific binding of cross reactive 16HBE140 anti-host cell antibodies 

that would lead to false positives (Routledge et al., 1985).  

 

Intriguingly, screening hybridomas on vv174G5 and VTF7.3 created some difficulty 

attributable to certain hybridomas reacting with both positive and negative controls 

equally. This observation was strange since the immunised mice had not encountered 

vaccinia virus before and therefore should not have produced vaccinia virus specific 

antibodies. To circumvent this anomaly, a mixture of positive and cross reacting 
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hybridomas were picked and subsequently screened on antigen produced from HMPV 

infected 16HBE140 cells to eliminate non-HMPV secreting hybridomas. 

 

Four anti-HMPV monoclonal antibodies were eventually isolated and tested by 

immunofluorescence, all of which showed strong staining when tested against 

HMPV174. Further analysis by immunofluorescence on recombinant vaccinia virus 

expressing HMPV F and G proteins revealed MAbAT1 to be an anti-G glycoprotein 

antibody whereas MAb2 and 4 were surprisingly anti-F monoclonal antibodies. 

Interestingly, the final antibody MAb5 was directed towards an internal HMPV 

protein deciphered by the staining pattern in HMPV174 infected cells. Despite 

initially screening on captured G glycoprotein using the Concanavalin A ELISA, three 

HMPV specific MAbs have been inadvertently generated that are not directed towards 

the G glycoprotein.  

 

A possible explanation is that immunisation of mice with HMPV in 16HBE140 cells 

gave rise to antibodies which also bound the vaccinia virus VTF7.3 in L cells by 

ELISA. These antibodies are not HMPV specific as they were not recovered when 

selecting and cloning hybridomas on HMPV / 16HBE140 cells and furthermore, all 

hybridomas failed to react with VTF7.3 once cloned. Instead, these antibodies are 

most likely directed towards a host protein which is up-regulated by VTF7.3 infection 

and was not evident when the ELISA was being developed since the serum used for 

development had been absorbed with 16HBE140 cells.  

 

Neutralisation analysis of all four antibodies revealed that the anti-F MAbs MAb2 and 

4 have 50% neutralisation efficiency against HMPV174 at a concentration of 

approximately 17.7µg/ml and 0.13µg/ml, respectively with MAb4 comparable to that 

of Palivizumab at ~ 0.5µg/ml (Johnson et al., 1997) although interestingly, these 

antibodies were strain specific only showing definite staining with HMPV174. This is 

surprising given that the F glycoprotein is one of the most highly conserved proteins 

in HMPV with 94% amino acid identity between lineages (Biacchesi et al., 2003; 

Boivin et al., 2004; van den Hoogen et al., 2004). The anti-G MAbAT1 was also 

strain specific which is not surprising given the G glycoproteins highly variable 

nature. Furthermore, the antibody did not neutralise suggesting either the antibody did 
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not have high enough avidity to coat the virion or its target was not a critical epitope 

required for attachment. MAbs AT1, 2 and 4 did not blot but could easily be identified 

as anti-G and anti-F antibodies by immunofluorescence on recombinant vaccinia 

virus. Generally, neutralising antibodies have greater requirements for the native 

epitope conformation suggesting the anti-F MAbs are probably directed towards a 

conformational type epitope (Ma et al., 2005).  

 

MAb5, the proposed anti-P antibody, which on the basis of western blot appeared to 

bind the viral phosphoprotein, did not neutralise which is not unanticipated since 

antibody directed towards an internal protein would not prevent virus attachment and 

entry into the host cell upon infection. Similar to MAb2 and 4, this antibody was 

strain specific which is again surprising given that the phosphoprotein displays more 

than 78% identity between lineages with up to 100% intra-lineage identity (Bastien et 

al., 2003; Ishiguro et al., 2004).  

 

This antibody stained a HMPV specific band at around 38KDa when blotted with 

numerous lighter and heavier non specific bands. Previous reports have identified the 

phosphoprotein at approximately 40KDa (Biacchesi et al., 2005a; Buchholz et al., 

2005), this along with the staining pattern observed by immunofluorescence would 

allow MAb5 to fit this profile. 

 

  

8.9 Animal models 

The final aim of the project was to develop an animal model for the infection of 

HMPV that could be employed to complete a protection study. Since the discovery in 

2001, a variety of species have been found to be permissive to HMPV infection. 

These include small animals such as mice, rats, hamsters and guinea pigs as well as 

primates including chimpanzees, cynomolgus macaques and African green monkeys 

(Alvarez et al., 2004a; Darniot et al., 2005; Hamelin et al., 2005; Herd et al., 2006; 

Kuiken et al., 2004; MacPhail et al., 2004; Skiadopoulos et al., 2004; Williams et al., 

2005b; Wyde et al., 2005).  
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Since previous studies within this laboratory with HMPV in BALB/c mice have 

proven successful (Robinson, 2007) these animals were used to study the infection of 

HMPV in vivo. Mice were subjected to various titres ranging from 5 x 105 ffu/ml 

(passage 4), which caused a slight loss in weight yet infectious titres of 102.96 ffu/g 

and 102.49 ffu/g were recovered from the nasal mucosa and lungs respectively on day 

four post-infection, to 7 x 106 ffu/ml (passage 12), where no infectious virus could be 

recovered yet mice were severely ill and lost up to 19% of their body weight as a 

result of infection. Along with weight loss, these mice exhibited breathing difficulties, 

ruffled fur and a tendency to huddle comparable to the observed pathogenesis of 

HMPV in other studies (Alvarez et al., 2004a; Darniot et al., 2005; Hamelin et al., 

2005).  

 

These results contrast markedly with those reported by others where HMPV passaged 

in either Vero or LLC-MK2 cells in the presence of exogenous trypsin resulted in 

titres ranging from 3.3 x 105 pfu/ml (Darniot et al., 2005) up to 108 TCID50 (Hamelin 

et al., 2005). Hamelin et al (2005) reported a comparable mean weight loss of 18.2% 

although they were able to recover peak viral titres of 1.92 x 107 TCID50 / g of lung on 

day five post-infection. Darniot et al (2005), who also observed signs of disease 

including a mean weight loss of 17.2%, were able to recover infectious virus which 

peaked at day 4 (log102.37 pfu/g) post infection. The discrepancies observed in these 

studies may reflect the differences in dose and virus strain which could alter the 

growth kinetics in vivo. 

 

In HRSV-infected mice, to observe significant viral replication and clinical 

alterations, a high viral inoculum is required (Jafri et al., 2004). However, the results 

from this study indicate that instead of increasing the recovery of infectious virus, an 

increase in titre (and passage level) had reduced viral replication in both the lungs and 

nasal mucosa although an increased weight loss was observed. This is contradictory to 

other reports where a dose-dependent relationship on the severity of infection was 

illustrated (Hamelin et al., 2005).  

 

Quantitative PCR confirmed the presence of viral RNA in the nasal mucosa and lungs 

of mice inoculated with 2.6 x 106 ffu/ml (passage 11). There was evidence of viral 

replication which peaked at 104.17 in the nasal mucosa and 104.96 in lungs on day four 
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post-infection. However, no rise in viral RNA was observed when the inoculum 

increased to 7 x 106 ffu/ml (passage 12) although RNA levels, presumably 

representing residual inoculum, exceeded 106 up to day four when the last mice was 

culled. Nonetheless, these results indicate that once the inoculum had been cleared, 

there was evidence of genome replication in both the lungs and nasal mucosa. 

 

Despite the absence of infectious virus in the lungs or nasal mucosa of mice 

inoculated with HMPV174 passage 12 at a titre of 7 x 106 ffu/ml, there was 

immunopathological evidence of limited viral protein synthesis. In addition, whilst 

there was some evidence of inflammation in the 16HBE140 infected mice, significant 

interstitial inflammation was apparent in the HMPV infected mice along with 

considerable areas of consolidation and destruction of alveolar walls. Taken together, 

these observations are suggestive of an abortive infection. 

 

 

8.10 Does the G glycoprotein protect against challenge? 

The G glycoprotein of HRSV displays high levels of variability, similar to that 

observed in HMPV, thought to be attributed to the selective pressure of circulating 

antibodies (Cane et al., 1991). Interestingly, whilst both G glycoprotein specific 

polyclonal anti-serum and pools of anti-G MAbs have displayed enhanced 

neutralisation, none of the anti-G monoclonal antibodies described to date have high 

neutralising activity (Martinez and Melero, 1998). These monoclonal antibodies were, 

however, effective in protecting mice and cotton rats against RSV infection (Taylor et 

al., 1984; Walsh et al., 1984). 

 

Since the immunogenic and protective effects of the F glycoprotein of HMPV have 

been extensively studied (Skiadopoulos et al., 2006; Skiadopoulos et al., 2004; Tang 

et al., 2005; Tang et al., 2003), the ability of antibodies directed towards the HMPV G 

glycoprotein to protect against challenge was explored to establish a role in vivo.  In 

addition to receiving subcutaneous immunisations, all animals were subjected to two 

intranasal inoculations of antigen delivered with cholera toxin adjuvant. Previous 

studies have shown that antigen administered by intranasal inoculation with 

Escherichia coli heat-labile toxin (LTB) together with trace amounts of cholera toxin 
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(CT) induced a high serum and secretory IgA antibody response with increasing titres 

upon secondary inoculations (Matsuo et al., 2000; Tamura et al., 1992; Tamura et al., 

1994). Protection in the upper respiratory tract correlates with high levels of IgA 

which operate independently from serum antibodies (Mills et al., 1971; Prince et al., 

1987), whilst IgG is the predominant antibody found in the lungs and mediates 

protection in the lower respiratory tract (Crowe and Williams, 2003). However, upon 

evaluating pre-challenge antibody titres, there was no sign of detectable HMPV 

specific IgA response in any of the samples collected. The inability to also detect 

HMPV specific IgA in the serum of hyper immune mice indicated the assay was 

unsuccessful. Although titres were not comparable as different antigens were used, 

detection of serum IgG antibody titres by ELISA confirmed HMPV174 and vv174G 

immunised mice had specific HMPV antibodies. Further analysis of the serum 

antibodies revealed the anti-G specific polyclonal antibodies to exhibit high levels of 

neutralising activity similar to those observed with the monospecific anti-G 

antibodies. 

 

Previous reports by Skiadopoulos et al (2006), where the G glycoprotein from HMPV 

was expressed in a recombinant PIV1 by reverse genetics, concluded that whilst 

immunisation with CAN97-83 (isolate of unknown passage propagated in LLC-MK2 

cells) protected against challenge with homologous virus, the G glycoprotein induced 

only a weak protective response in hamsters. Protection was evaluated by a 1.0log10 or 

greater reduction in viral titres in either the lungs or nasal mucosa. In addition, despite 

the presence of HMPV-binding antibodies (7.5log2), there was no induction of 

neutralising antibodies even after a second booster immunisation. In addition, work by 

Mok et al (2008) also concluded that despite the presence of elevated levels of 

HMPV-G specific antibodies, they were not neutralising and immunisation with virus 

replicon particles encoding the G glycoprotein did not confer protection against 

challenge in the animal model.  

 

In this study, post challenge, quantitation of viral RNA illustrated that immunisation 

with whole virus protected the animals in both the upper and lower respiratory tract 

against challenge with the homologous strain. However, there was no significant 

difference in the quantity of viral RNA recovered from either the lungs or the nasal 

mucosa between vv174G and VTF7.3 immunised mice, corroborating previous 
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reports (Skiadopoulos et al., 2006). However, detectable levels of neutralising 

antibodies were induced in the vv174G immunised mice. This result is surprising 

since other groups were unable to elicit neutralising antibodies directed towards the G 

glycoprotein (Mok et al., 2008; Skiadopoulos et al., 2006). This disparity suggests 

that either expression of the G glycoprotein in the vaccinia virus system has the ability 

to induce neutralising antibodies or potentially, the detection system for neutralising 

antibodies using 16HBE140 cells is more sensitive. It is, however, uncertain whether 

these antibodies are knocking out a key function or just coating the virus particle and 

preventing infection. If the former is true, then the failure of these antibodies to 

protect in vivo suggests that the G glycoprotein is not involved in infection of the 

mouse model. This differs from HRSV, where anti-G antibodies are protective via an 

Fc mediated mechanism (Mekseepralard et al., 2006). In HRSV, it is thought that the 

role of the G glycoprotein is not in infection but subsequently the spread of the virus. 

Since infection of HMPV in this study appears to be abortive, antibodies are only 

being tested for their ability to block infection, not subsequent spread of the virus 

within the lung. It may be, therefore, that this animal model is not appropriate for 

testing the efficacy of anti-G immunity. 

 

The inability of these antibodies to protect mice against challenge with the 

homologous virus suggests that the occupancy theory cannot fully explain our 

observations as antibodies coating the surface of the virions sufficient to prevent 

infection in cell culture should also prevent infection in vivo. Instead the anti-G 

antibodies appear to be neutralising by inactivating a specific epitope, which in cell 

culture is necessary for attachment and entry, but which is not required in the animal 

model. This suggests that this mouse model may not be reflecting the role of the G 

protein during human infection. 

 

The significant loss of weight, post challenge, in mice immunised with HMPV174 

was surprising since these animals were protected in both the lungs and nasal mucosa. 

There were no extensive differences in the histological data which could account for 

this observation. In similar experiments with mice immunised against RSV grown in 

cell culture and challenged with the same antigen, Piedra et al (1989a, 1989b) 

observed a severe lung response to the host cell element in the challenge inoculum.  

Here, immunisation of these animals with HMPV infected 16HBE140 cells could 
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have caused an analogous adverse reaction to the challenge material comprising of the 

same antigen. This wasn’t observed in the recombinant vaccinia virus immunised 

mice which were not pre-exposed to the same immunogens having been immunised 

with recombinant vaccinia virus grown in mouse L cells. 

 

8.11 SH genes  

Once cloned into pTM1, sequence analysis of the SH genes from HMPV128 passage 

10 and HMPV174 passage 2 with sequences from the NCBI database revealed similar 

levels of variability to those reported by others (Biacchesi et al., 2003; Ludewick et 

al., 2005). There were relatively high levels of homology between members of the 

same sub-group, resulting in 91% nucleotide identity which was comparative to 88% 

reported by Biacchesi et al (2003). A higher degree of variation was observed 

between sub-groups, where strains preserved 68-71% nucleotide homology (69% 

previously reported) (Biacchesi et al., 2003).  

 

During the initial cloning of the SH gene from HMPV174 passage 11 for the 

generation of a recombinant vaccinia virus, the gene was found to possess a 

nucleotide deletion at residue 64. This mutation resulted in a frame shift creating an 

ORF encoding only the 21 amino acids at the cytoplasmic tail of the SH. Hence, this 

frame shift ablates the expression of the majority of the SH protein. Intriguingly, this 

mutation was observed in the SH gene of HMPV145 at exactly the same position and 

the two genes were closely related with 99% nucleotide homology. Further 

examination of the B subtype SH gene from HMPV128 revealed there to be no such 

mutation at this residue. However, further downstream, a nucleotide substitution at 

residue 203 was observed resulting in the generation of a premature termination 

codon. This alteration would allow the cytoplasmic and transmembrane region to be 

translated with expression of approximately 10 amino acids in the lumenal domain. 

Sequence analysis of the SH genes from earlier stocks (passage 2) of HMPV174 and 

145 revealed both strains to possess the wild type phenotype. An earlier passage stock 

of HMPV128 was not available. Nonetheless, this suggests that these mutations had 

occurred as a result of passage in cell culture. Corroborating this observation was the 

sequence evaluation of two other A subtype isolates at passage 2 in cell culture, 

HMPV228 and 230, which were found to possess the wildtype phenotype. 



  190   

 

 

Mutations of the small hydrophobic protein of HMPV have been observed elsewhere 

(Biacchesi et al., 2007) where just over 50% of independent preparations tested 

possessed a nucleotide insertion at position 64. This mutation similarly resulted in a 

frame shift, ablating the expression of almost all of the protein. Other mutations, 

including point mutations and to a lesser extent nucleotide deletions, occurred less 

frequently but there was no observation of a nucleotide substitution at residue 203 

comparable to the HMPV128 SH gene. Furthermore, Biacchesi et al (2007) suggested 

that each mutation arose beginning with a frame shift mutation since some 

populations contained only the frame shift whereas others possessed both the frame 

shift combined with additional mutations. The results obtained from our isolates 

however, do not support this notion since HMPV128 SH gene only possesses a 

nucleotide substitution with no evidence of insertions or deletions leading to a frame 

shift mutation.  

 

It is well established that RNA viruses sustain mutations at a frequency of 

approximately 10-4 per base, allowing the capacity for favourable variants to outgrow 

in response to selective pressure (Biacchesi et al., 2007). The high frequency of 

truncations occurring in the SH gene suggests that the SH protein is not essential and 

may be detrimental for replication in vitro.  

 

A study by Techaarpornkul et al (2001) with HRSV showed that in the absence of the 

G protein, virus expressing the F and SH proteins displayed somewhat smaller 

plaques, lower fusion activity and slower viral entry than virus expressing the F 

protein alone suggesting the SH protein has a dampening effect in cell culture. A 

similar phenomenon could be a possible explanation for the high frequency rate of 

mutations occurring the SH protein of HMPV.  

 

 

8.12 Vaccinia virus expression of the SH glycoprotein of HMPV128 

Cells expressing the truncated SH gene from HMPV128 displayed moderate levels of 

staining when assessed by indirect immunofluorescence with the polyclonal 

HMPV128 anti-sera. However, there is evidence to suggest that even the functional 

SH glycoprotein is poorly expressed in wild type HMPV despite the presence of high 
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levels of SH mRNA and it might be unreasonable to expect bright fluorescence even 

with a good anti-serum (Skiadopoulos et al., 2006). Reduced levels of reactivity could 

be attributed to the poor immunogenicity of the virus rather than the low abundance of 

protein produced in the expression system. Mice immunised with HMPV128 did not 

generate high titres of total HMPV antibodies and required a further immunisation 

compared with HMPV174 and 145. In addition, the anti-sera generated may only 

contain low levels of anti-SH antibodies as Connors et al (1991) have reported that 

the related HRSV SH glycoprotein, which like this truncated form of HMPV SH has a 

small lumenal domain, is poorly immunogenic, perhaps as a consequence of heavy 

levels of glycosylation which might affect the antigenicity (Biacchesi et al., 2004b). 

Expression of the functional SH gene from HMPV174 could not be detected by 

immunofluorescence with homologous polyclonal mouse anti-sera since HMPV174 

expressing the mutated SH glycoprotein was used to generate the anti-sera. 

 

 

8.13 Reactivity of monospecific anti-128SH glycoprotein sera 

Despite the stop codon at amino acid 68, the truncated form of HMPV128 SH 

expressed from recombinant vaccinia virus proved highly immunogenic. Interestingly, 

anti-SH monospecific antibodies directed towards HMPV128 were cross reactive with 

both HMPV174 and HMPV145. Both of these strains were in possession of a mutated 

SH protein where only the first 21 amino acids were expressed. However, the 

observation that the SH protein of HMPV128 possessed a nucleotide substitution at 

residue 203 resulting in the generation of a premature termination codon, suggest that 

the cross-reactive antibodies generated to this immunogen might be directed towards 

the transmembrane / cytoplasmic region of the protein and potentially the 14 amino 

acids expressed in the lumenal domain. Conservation in this region would permit the 

induction of cross reactive antibodies with all three strains. Sequence analysis 

revealed there to be a 76% amino acid identity between sub-groups in the first 21 

amino acids of the SH glycoprotein (data not shown) making this a feasible 

hypothesis.  

 

No membrane staining was observed in HMPV128 infected cells where the antibody 

was made against the homologous construct. The same serum however did react in 
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membrane fluorescence with the full length HMPV174 SH glycoprotein. This 

suggests that the truncated HMPV128 SH protein is not actually incorporated and 

expressed on the surface of the infected cell and presumably, not the virion. Studies 

by Biacchesi et al (2007) involving the detection of a truncated form of the SH protein 

by Western blot analysis of purified virions with rabbit antiserum raised against a SH 

derived peptide (aa 82-96), revealed there to be no specific staining compared to wild 

type. These results were suggested to be attributable to the lack of incorporation of the 

alternative form of the SH protein into the mature virion (Biacchesi et al., 2007).  

 

 

8.14 Neutralisation of HMPV by anti-128SH antibodies 

Despite the SH glycoprotein being non-essential for replication in cell culture, anti-

SH128 antibodies were able to neutralise HMPV174 passage 2 but not HMPV128 

passage 10. This suggests that the presence of the SH glycoprotein allows 

neutralisation, enabled by the antibodies ability to coat the virion and impede enough 

viral antigens as to inhibit viral attachment and entry. The inability of these antibodies 

to neutralise HMPV128 may be due to the different phenotypes of the two viruses. 

HMPV174 possesses the wildtype phenotype with membrane expression of SH. 

HMPV128 contains the mutated SH glycoprotein, expressing only the first 67 amino 

acids which were not expressed on the membrane. Sequence homology between the 

first 14 amino acids in lumenal domain of the SH gene of HMPV174 and HMPV128, 

which represent the lumenal amino acids expressed in the truncated form, is 92% and 

it is therefore likely that the antibodies generated to this lumenal region of the 

truncated HMPV128 SH protein recognise and neutralise HMPV174.  

 

However, studies by Skiadopoulos et al (2006), where recombinant human 

parainfluenza virus expressing the SH glycoprotein was evaluated in hamsters 

indicated this vector was not effective at inducing HMPV neutralising antibodies 

despite the addition of a booster immunisation. Furthermore, it appeared that the SH 

protein was only negligibly immunogenic and its protective effect was insignificant 

despite being much larger than its paramyxovirus counterparts. 
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8.15 Western blot analysis of anti-128SH antibodies 

Monospecific antibodies generated to the SH protein of HMPV128 displayed similar 

staining patterns to the monospecific anti-F and anti-G antibodies, however, there 

were several HMPV specific bands evident. These included bands at approximately 

130KDa, 160KDa and above 170KDa all specific to HMPV174 passage 2, potentially 

representing the glycosylated forms of the protein as previously described (Biacchesi 

et al., 2003; Ishiguro et al., 2004). Identical staining was not apparent in the 

HMPV128 lane, as this virus possessed the mutated form of the SH protein with a 

premature termination codon. Furthermore, it is unlikely that the truncated protein 

would form high molecular weight glycosylated forms since there is only one serine 

present that could potentially act as an acceptor for O-linked glycosylation. The 

antibody also stained apparently HMPV specific bands at 14KDa and 12KDa possibly 

representing proteolytic cleavage products of the SH protein. This could have 

occurred since HMPV is a slow growing virus and requires at least 14 days in cell 

culture to reach full CPE. As a result, proteins could be partially digested during 

infection by host cell proteases despite the addition of protease inhibitors when 

preparing the viral antigens for blotting. It is not clear why fragments reacting with 

antibodies generated to the truncated form of the HMPV128 SH protein should not 

appear in HMPV128 infected cells. 

 

 

8.16 Implications of the SH glycoprotein in vivo 

The discovery that all working stocks of virus possessed the truncated form of the SH 

glycoprotein was unexpected and inadvertently all in vivo studies had been completed 

by this time. Consequently, all stocks used for the animal studies were sequenced and 

compared with genes already sequenced from the laboratory. Interestingly, all high 

passage stocks of both HMPV174 and HMPV145 contained only the mutated virus. 

However, the low passage stock used for the original growth curve contained a mixed 

population of both wild type and mutated virus. Furthermore, RNA from all ex vivo 

samples was extracted, sequenced and compared. Again, all samples from mice 

infected with high passage stocks of both viruses contained only the mutated form of 

the SH glycoprotein. However, samples from mice infected with passage 4, where a 

low titre of infectious virus was recovered from the lungs, despite the low titre 
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inoculum, contained a mixture of both wildtype and mutated virus. In addition, one 

sample from this experiment contained only wild type virus. 

 

Biacchesi et al (2004b) developed a recombinant virus where the SH protein of 

HMPV has been deleted by reverse genetics allowing investigations into the effects of 

this mutant both in vitro and in vivo. Results indicated this mutant was readily 

recovered and was found to replicate efficiently in LLC-MK2 cells. Furthermore, 

somewhat more efficient replication in the lungs of hamsters was observed compared 

to wild type HMPV suggesting that the SH glycoprotein is completely dispensable in 

vivo and that its deletion does not confer attenuation in the rodent model (Biacchesi et 

al., 2004b). A continuation of this work where the mutant was evaluated for 

replication in a primate model revealed replication of the virus was only marginally 

less efficient than that of wild type HMPV showing the protein is superfluous for 

efficient replication in vivo (Biacchesi et al., 2005a).  

 

Despite these reports, the possibility remains that the SH glycoprotein may have a 

crucial role in the efficient replication of the virus in vivo since every direct clinical 

isolate of HMPV described to date contains a completely functional SH gene and SH 

ORF (Ishiguro et al., 2004; van den Hoogen et al., 2002). Here, release of infectious 

virus correlated not with input virus titre but with the presence in the inoculum and 

recovery from infected tissues of virus carrying a wild type SH gene. These 

observations may not be incompatible with those of Biacchesi et al (2004b, 2005a) if 

the truncated form of the SH protein interferes with the production of infectious virus. 

If like the truncated form of HMPV128 SH, the truncated HMPV174 SH protein is 

not expressed on the surface of the virion, it may interfere with glycoprotein 

maturation in the endoplasmic reticulum producing an abortive infection. Why this 

effect should occur in vivo but not in cell culture is not clear. As Biacchesi et al 

deleted the entire protein, this was not evident in their study. In addition, there is a 

possibility that the SH gene mutation is an incidental factor and that other mutations 

may have occurred on passage in cell culture which produce an abortive infection in 

vivo. 

 



  195   

 

 

The discrepancy between the results from this study and those obtained in other 

laboratories studying virus adapted to culture in monkey kidney cells in the presence 

of exogenous trypsin are striking. 

 

Firstly, HMPV grown in 16HBE140 cells without exogenous trypsin was neutralised 

by monospecific antibodies to all three surface glycoproteins, whilst monkey kidney 

cell adapted virus was neutralised by only anti-F antibodies. Secondly, high passage 

virus with a truncated SH does not replicate in vivo, suggesting the SH is essential for 

in vivo infection. Thirdly, relatively low titres of virus produced serious weight loss in 

the mice with many cells infected. This may be due to the ability of 16HBE140 cells 

to cleave the virus on exit and produce virus capable of more efficient infection in the 

mouse lung.  
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8.17 Conclusions and future work 

This study has highlighted marked differences between high and low passage virus 

and the dissimilarities associated with the use of different disease models. The 

inability of the G glycoprotein alone to protect in the mouse model is surprising given 

its extensive level of variability reported throughout the sub-groups. High 

concentrations of mutations, especially in the ectodomain, is an indicator that this 

protein is under immunological pressure suggesting it has an important function 

which is essential for infection in the human host. Therefore it is essential to 

determine its biological function. The observation here that this virus can readily 

mutate to lose an entire surface glycoprotein, SH, in vitro, would suggest HMPV 

would readily ablate the expression of the G protein if not indispensable for infection 

and replication. 

 

Furthermore, the ability of the G glycoprotein to induce neutralising antibodies might 

be construed to indicate a potential role for the protein in attachment or entry of the 

virus into the host cell. The inability of these antibodies to protect in vivo but 

neutralise in vitro, suggests a potential flaw in the animal model and indicates the 

requirement for further work to establish the differences between the two systems. 

 

That mutations arise in the SH glycoprotein on passage in cell culture, that ablate the 

expression of almost the entire protein is consistent with studies in which the SH 

protein has been proven to be completely dispensable for infection both in vitro and in 

vivo. Yet every single direct clinical isolate described to date possesses the wildtype 

phenotype. Furthermore, the ability of antibodies directed towards the SH 

glycoprotein, prepared in this study, to neutralise HMPV in 16HBE140 cells, may 

imply it has a function in either the attachment or entry into the host cell, acting alone 

or in combination with the other two glycoproteins. 

 

In addition, the correlation of SH mutation and inability to replicate in vivo on passage 

suggests this protein has an important role in modulating the spread of the virus in the 

lung. However, the work presented here was limited by the failure to passage the virus 

to high titres without it mutating. This meant low passage stocks would be unable to 
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establish an infection in vivo. Therefore, further work is required to preserve the wild 

type form of the virus in cell cultures yielding sufficient virus for in vivo studies.  

 

Finally, the apparent heterologous nature of HMPV145 with genes related to both 

genotypes A2 and B1 requires further investigation. Genes need to be amplified 

across the intergenic region allowing the incorporation of two genes in one amplicand 

to determine whether this virus derives from a mixed infection or is a true 

recombinant.  

 

The function of the SH glycoprotein and the G glycoprotein remains elusive. It is 

hypothesised that these glycoproteins are more than just accessory proteins and the 

assumption that the F glycoprotein is the only major protective antigen is naïve in 

view of high levels of variability of the two proteins in the wild. The development of 

further model systems which may more closely resemble the conditions in the human 

respiratory tract and an increased cognizance of the changes which occur when 

viruses are passaged in non human hosts may be necessary to resolve these issues. 
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Appendix 1 

A.1 F sequence  

A.1.1 NCL03-04/128 

Sequenced with forward and reverse primers where bases 455 to 1009 were a 

consensus of the two sequences. Bases 1618 to 1620 represent the F gene stop codon. 
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A.1.2 NCL04-04/145 

Sequenced with forward and reverse primers where bases 461 to 1089 were a 

consensus of the two sequences. Bases 1618 to 1620 represent the F gene stop codon. 
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A.1.3 NCL03-04/174 

Sequenced with forward and reverse primers where bases 623 to 957 were a 

consensus of the two sequences. Bases 1618 to 1620 represent the F gene stop codon. 
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Appendix 2 

A.2 G sequence 

A.2.1 NCL03-04/128 

Sequenced with forward and reverse primers where bases 60 to 696 were a consensus 

of the two sequences. Bases 694 to 696 represent the G gene stop codon. 
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A.2.2 NCL03-04/145  

Sequenced with forward and reverse primers where bases 46 to 732 were a consensus 

of the two sequences. Bases 730 to 732 represent the G gene stop codon. 
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A.2.3 NCL03-04/174 

Sequenced with forward and reverse primers where bases 48 to 654 were a consensus 

of the two sequences. Bases 652 to 654 represent the G gene stop codon. 
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Appendix 3 

A.3 SH sequence 

A.3.1 NCL03-04/145 (1-752) 

Sequenced with forward and reverse primers where bases 54 to 690 were a consensus 

of the two sequences. Bases 549 to 551 represent the SH gene stop codon. 
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A.3.2 NCL03-04/174 (1-752) 

Sequenced with forward and reverse primers where bases 31 to 701 were a consensus 

of the two sequences. Bases 549 to 551 represent the SH gene stop codon. 
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A.3.3 NCL03-04/228 (1-752) 

Sequenced with forward and reverse primers where bases 61 to 701 were a consensus 

of the two sequences. Bases 549 to 551 represent the SH gene stop codon. 
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A.3.4 NCL03-04/230 (1-752) 

Sequenced with forward and reverse primers where bases 53 to 704 were a consensus 

of the two sequences. Bases 549 to 551 represent the SH gene stop codon. 
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Appendix 4 

A.4 N sequence 

A.4.1 NCL03-04/145 (35-197) 

Sequenced with forward and reverse primers. 
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