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Abstract

Bayesian inference for such things as collections of related binomial or Poisson distri-

butions typically involves rather indirect prior specifications and intensive numerical

methods (usually Markov chain Monte Carlo) for posterior evaluations. As well as

requiring some rather unnatural prior judgements this creates practical difficulties in

problems such as experimental design. This thesis investigates some possible alter-

native approaches to this problem with the aims of making prior specification more

feasible and making the calculations necessary for updating beliefs or for designing

experiments less demanding, while maintaining coherence.

Both fully Bayesian and Bayes linear approaches are considered initially. The most

promising utilises Bayes linear kinematics in which simple conjugate specifications for

individual counts are linked through a Bayes linear belief structure. Intensive numerical

methods are not required. The use of transformations of the binomial and Poisson

parameters is proposed.

The approach is illustrated in two examples from reliability analysis, one involving

Poisson counts of failures, the other involving binomial counts in an analysis of fail-

ure times. A survival example based on a piecewise constant hazards model is also

investigated.

Applying this approach to the design of experiments greatly reduces the computational

burden when compared to standard fully Bayesian approaches and the problem can be

solved without the need for intensive numerical methods. The method is illustrated

using two examples, one based on usability testing and the other on bioassay.
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Chapter 1

Introduction

1.1 Motivation

This thesis is concerned with the analysis of collections of quantities with conditional

binomial or Poisson distributions. Such situations occur frequently. General classes of

problem include dose response studies for such things as quantal bioassays, time series

analyses utilising log-linear and logistic-linear models and survival modelling in the

analysis of, for example, grouped life tables. A specific example in Fa-Si-Oen & Pieva-

tolo (2000) involved the numbers of ruptures in pipelines over six years. The pipelines

were categorised into eight systems by depth, diameter and site and were further cat-

egorised by year. Each combination of system and year in these data corresponds to a

Poisson random variable with a mean specific to that system and that year.

In Martz et al. (1996) the number of successful starts of each of a collection of emergency

diesel generators (EDGs) for nuclear power stations followed a binomial distribution.

The number of trials was the number of demands for that EDG and the unknown

parameter of interest was the probability that the EDG started successfully.

We are concerned with a subjective analysis from the point of view of an interested

party, termed “the expert”, who has prior beliefs about the collection of unknowns in

the analysis. The most widely used subjective approach to statistical inference is the

Bayesian paradigm. This gives a full joint probability distribution to all unknowns in

the analysis. Beliefs are then updated by conditioning on the observations and using

Bayes theorem to form a posterior distribution.

The Bayesian approach is not the only one to take a subjective view of probability, how-

ever. Another such approach is found in Bayes linear statistics (Goldstein & Wooff,

2007). A Bayes linear analysis takes expectation, rather than probability, as its primi-

tive. A partial prior specification is made for unknowns and beliefs are updated using

1
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a process of linear fitting. A Bayes linear analysis can be viewed either as a useful

approximation to a fully Bayesian analysis or as an alternative view of inference in

which artificial distributional assumptions are not necessary.

Typically the individual binomial or Poisson parameters are not independent in the

expert’s prior beliefs. For example, in the case of the pipelines data, if a larger than

expected number of ruptures were observed in one of the systems in the first year, this

may very well lead to a revision upwards of the expected numbers of ruptures in the

same system in subsequent years.

Typically such data are analysed using a generalised linear model with the linear pre-

dictors related via a linear model to a set of coefficients which are given a multivariate

normal prior distribution. See, for example, Dellaportas & Smith (1993); Clayton

(1996). Marginal predictive distributions are thus of rather complicated form, making

prior elicitation difficult. Computation of posterior distributions requires numerical

methods, usually Markov chain Monte Carlo (MCMC).

This can seem rather heavy handed for apparently simple problems and can become a

major obstacle in areas such as experimental design (Müller, 1999). In such situations a

method for analysing related Poisson and binomial distributions without the necessity

for intensive numerical methods is desirable.

Initially we review the standard Bayesian generalised linear modelling approach. In

the remainder of the chapter we consider a model for Poisson and binomial random

variables from the area of Bayesian time series which is tractable and so does not require

numerical methods, the power steady approach of Smith (1979, 1981). We then give

an introduction to the elicitation of prior beliefs in Bayesian statistics and the chapter

ends with an outline of the rest of the thesis.

1.2 Bayesian generalised linear models

Generalised linear models (GLMs) are used when standard linear regression techniques

are inappropriate. More specifically, the approach is suitable when the response vari-

able is discrete or has a range which is restricted. Two important cases of a discrete

response variable are when such a variable follows a Poisson or binomial distribution.

For information on generalised linear models see Nelder & Wedderburn (1972); McCul-

lagh & Nelder (1989); Congdon (2001).

Suppose, more generally, we consider a distribution from the exponential family. That

2
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is, a distribution whose density can be parameterised as

f(y | λ, φ) = exp

{

yλ− b(λ)

a(φ)
+ c(y, φ)

}

,

for response variable y, where λ is the canonical or natural parameter, φ is the scale

parameter and a(), b(), c() are functions. To avoid repetition we will use the word

“density” for either a probability density function for continuous random variables or

a probability mass function for discrete random variables. The mean and variance of

y (McCullagh & Nelder, 1989) are

µ = E(y | λ, φ) = b
′

(λ), Var(y | λ, φ) = b
′′

(µ).

We include covariates xi = (xi1, . . . , xip)
′

for individuals i = 1, . . . , n by introducing a

linear predictor η = (η1, . . . , ηn)
′

such that

ηi = g(µi),

where g() is known as the link function. The linear predictor takes the form of a

function of the covariates. The canonical or natural link function for an exponential

family distribution (McCullagh & Nelder, 1989) is that which satisfies

ηi = b
′−1(µi) = λi, (1.1)

for each i.

Suppose now that counts Y1, . . . , Yn are observed and that our beliefs are such that,

conditional on the values of unknown parameters θ1, . . . , θn, either

Yi ∼ Poisson(θi) or Yi ∼ bin(Ni, θi),

where bin(Ni, θi) denotes a binomial distribution with known number of trials Ni, for

i = 1, . . . , n . Further suppose that Yi, Yj are conditionally independent given θi, θj

for i 6= j.

Taking the Poisson distribution, its density is

f(y) =
θye−θ

y!
= exp

{

y log θ − θ

1
− log y!

}

,

and so η = log θ, b(η) = eη, a(φ) = 1 and c(y, φ) = log y!. This gives µ = θ = eη and

b
′

(η) = eη and so the natural link function for the Poisson distribution is

ηi = log µi = log θi. (1.2)
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We can apply a similar process to the binomial distribution. The density of a bin(N, θ)

is

f(y) =

(

N

y

)

θy(1−θ)N−y = exp

{

y log(θ/1− θ)− [−N log(1− θ)]

1
− log

(

N

y

)}

,

and so η = log(θ/1− θ), b(η) = N log(eη +1), a(φ) = 1 and c(y, φ) = log

(

N

y

)

. This

gives

µ = b
′

(η) =
Neη

1 + eη
,

and so the natural link function for the binomial distribution is

ηi = log

(

µi
Ni − µi

)

= log

(

θi
1− θi

)

, (1.3)

from Equation 1.1 since µi = Niθi, which is known as the logit link function.

Thus the link function g() is used to transform the unknown binomial or Poisson

parameters θi to the linear predictor

ηi = g(θi),

with −∞ < ηi < ∞. Using the natural logarithm in the Poisson case as in Equation

1.2 leads to log-linear models (McCullagh & Nelder, 1989; Cameron & Trivedi, 1998).

In a binomial model as well as the logit link given in Equation 1.3, probit, ηi = Φ−1(θi),

where Φ−1() is the inverse of the standard normal distribution function, and comple-

mentary log-log, ηi = log(− log[1− θi]), link functions are commonly used (McCullagh

& Nelder (1989); Congdon (2001)).

The linear predictors η = (η1, . . . , ηn)
′ are typically related via a linear model

η = Xγ,

to a vector of unknown coefficients γ = (γ1, . . . , γp)
′

which are given a multivariate

normal prior distribution. That is

γ ∼ N(M , Σ),

for prior mean vector M and variance matrix Σ.

This induces a multivariate normal prior distribution over η. This non-conjugate struc-

ture makes prior elicitation awkward and requires intensive numerical methods for

posterior computation. The design matrix X contains the values of the covariates.
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In this standard approach the likelihood and prior distributions are not conjugate.

Therefore numerical methods, usually MCMC, are necessary to evaluate posterior dis-

tributions. A methodology for such situations in which posterior distributions are

tractable and hence numerical or simulation methods are not needed would greatly re-

duce the computational burden. This is particularly desirable in areas where the anal-

ysis of real problems can quickly become computationally infeasible, such as Bayesian

experimental design.

Tractable methods for the analysis of Poisson and binomial distributions have been

proposed previously in the area of Bayesian time series. One is the power steady model

of Smith (1979, 1981). We review this approach in the following section.

West et al. (1985) introduced an approach to the analysis of non-Normal time series,

based on dynamic linear models, called dynamic generalised linear models (DGLMs),

which combine fully Bayesian conjugate updating with Bayes linear updating to provide

a fully analytic analysis. Updating is not commutative in DGLMs however.

Settimi & Smith (2000) compared the DGLM approach of West et al. (1985) to a Bayes

linear approach and another analytic approach based on the DGLM from Gargoum

& Smith (1994, 1997). The comparison was with a full MCMC approach and they

concluded that the DGLM is a good approximation to the “exact” MCMC solution.

1.3 Power steady models

In time series analysis, tractable models, named power steady models, have been devel-

oped for binomial and Poisson random variables amongst others (Smith, 1979, 1981).

This is a generalisation of the steady model for Normal random variables given in

Harrison & Stevens (1976). For a full definition of the power steady model see Smith

(1979).

A steady model is one in which expectations for the parameters of interest remain

constant over future time periods but variances increase to reflect increased uncertainty

associated with moving further into the future.

The power steady model works in the following way. Suppose we have the time depen-

dent parameter θt, t = 1, 2, . . . and, for observation sets Dt = y1, y2, . . . , yt, relevant

densities of θt | Dt and θt+1 | Dt are ft|t(θ) and ft+1|t(θ) respectively. Then a power

steady model satisfies

ft+1|t(θ) ∝ [ft|t(θ)]
k, (1.4)

where k ∈ [0, 1) is called the rate of the steady model. If k is not time dependent then

this is a simple power steady model. We see from Equation 1.4 that the prior for θt+1
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is given by the posterior for θt raised to some power less than one. The effect of this is

that the variance of θt, and so the uncertainty associated with θt, increases with time.

If we take the beta-binomial case so that

θt | Dt ∼ beta(at, bt),

then ft|t(θ) ∝ θat(1−θ)bt . Application of the power steady model (Equation 1.4) yields

ft+1|t(θ) ∝ [θat(1− θ)bt ]k

= θkat(1− θ)kbt ,

and so θt+1 | Dt ∼beta(kat, kbt). Plots of beta densities for different values of k are

given in Figure 1.1 for some arbitrary parameter values a = 15, b = 20. We see the

effect of the rate parameter; the smaller k becomes the more diffuse the density and

so the higher the uncertainty associated with inferences and forecasts for later time

periods.
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Figure 1.1: A plot of beta densities for beta(15k, 20k) for different values of k

Observing yt+1 from

Yt+1 | θt+1 ∼ bin(nt+1, θt+1),

leads to a tractable fully Bayesian update as the beta and binomial distributions are

conjugate. Thus the posterior distribution is θt+1 | Dt+1 ∼beta(at+1, bt+1), where

at+1 = kat + yt+1 and bt+1 = kbt + nt+1 − yt+1.
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Smith (1979) also considers a gamma-Poisson model. In this case θt | Dt ∼gamma(at, bt)

with density ft|t(θ) ∝ θate−btθ. If we apply the power steady model (Equation 1.4) then

the prior density for θt+1 | Dt is

ft+1|t(θ) ∝ [θate−btθ]k

= θkate−kbtθ,

and so θt+1 | Dt ∼gamma(kat, kbt). Thus the parameters are updated by the power

steady model in the same form as the beta-binomial case. A plot of the gamma dis-

tribution density is given for different values of k in Figure 1.2. The parameter values

used in the plot are a = 5, b = 1. Once again as the rate parameter k decreases the

gamma density becomes more diffuse. Thus the smaller k is made the more uncertainty

is associated with the parameter θ for the next step.

However, in this case, there is also an effect on the location of the density. The mode

decreases with decreasing k although the mean remains the same. This is in contrast

to the beta densities of Figure 1.1 where, although the mode decreases, this decrease

is far less pronounced.
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Figure 1.2: A plot of gamma densities for gamma(5k, k) for different values of k

Observation of

Yt+1 | θt+1 ∼ Poisson(θt+1),

means we can apply Bayes theorem and perform a conjugate update to obtain θt+1 |
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Dt+1. The resulting distribution is gamma(at+1, bt+1), where

at+1 = kat + yt+1 bt+1 = kbt + 1.

In this formulation a joint distribution for θ1, . . . , θt has not been specified. Thus,

without such a joint distribution, updates and forecasts more than one step ahead

cannot be made.

The idea of steady state models is extended to the multivariate case, θt = (θ1t, . . . , θpt)
′

in Smith (1981). Initially he considered the extension given by

ft+1|t(θ) ∝ [ft|t(θ)]
k,

with k ∈ (0, 1]. He found that, in general, this leads to an update which is overly

restrictive as it implies that information is lost about all of the parameters at the same

rate.

Instead, the stacked power steady model was developed (Smith, 1981). Rather than a

single rate constant k, a vector k = (k1, . . . , kp)
′

is used so that each parameter evolves

at a separate rate. If the parameters are ordered so that information is lost about θ1t

slowest and θpt most quickly the resulting stacked power steady model is:

(i) If ki is associated with θit then 0 < ki < ki+1 ≤ 1 for i = 1, . . . , p− 1.

(ii) Each θi | θi+1, . . . , θp evolves as

ft+1|t(θi) = [ft|t(θi)]
ki ,

i.e., as a simple power steady model.

Power steady models are very useful when considering a process with a natural ordering

such as a time series. We wish to also model situations in which this is not the case

and so we shalll not consider power steady models further in this thesis.

1.4 Elicitation of prior information

What is elicitation?

In order to perform a Bayesian, or Bayes linear, analysis it is necessary first to specify

prior information for the unknowns in the analysis. In a full Bayesian analysis this takes

the form of a joint prior distribution over all unknowns such as parameters. In a Bayes

linear analysis this corresponds to a full second-order specification. This information
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is found as the subjective beliefs of an ‘expert’. The term ‘expert’ simply refers to the

person or people from whom information is being elicited, usually somebody within

the field in which the investigation is to take place. Elicitation is the process used to

transform the expert’s beliefs into prior distributions or moments.

Why is elicitation necessary?

As Kadane (1998) and Farrow (2003) note, expertise in a specific subject is not the

same as expertise in statistics and probability. Therefore, though the expert has a

great deal of knowledge of the subject in question, they invariably and understandably

find it difficult to transfer that knowledge directly to specifying prior distributions

for parameters. Garthwaite et al. (2005) describe the elicitation process as that of a

facilitator helping the expert to express his current knowledge in probabilistic form.

Questions should, when possible, only be asked in terms of observable quantities

(Kadane, 1998). It is up to the facilitator to choose which, and how many, quanti-

ties to elicit from the expert. It is important to educate the expert in the type of

questions to be asked before the procedure begins in order that they aquire a feel for

the process.

Which quantities should be elicited?

A joint prior distribution is chosen for the parameters of interest in a Bayesian anal-

ysis. The elicitation procedure is then often concerned with finding the values of the

hyperparameters in these distributions. Unless these parameters have a direct meaning

(for example, the mean and variance in a normal distribution) this is not possible to do

directly. One way to overcome this is to elicit moments (mean, variance, etc.) directly

and then convert these into parameter values. For symmetric distributions people tend

to be able to estimate the mean well. This is not the case in skewed distributions,

however, where estimates of modes and medians tend to be more accurate (Garthwaite

et al., 2005).

Non-statisticians (and, indeed, statisticians) are also very poor at determining variances

accurately in general. As a result of this, the spread of a distribution is usually elicited

via other quantities, typically credible intervals (Garthwaite et al., 2005), most often

in the form of quantiles (Garthwaite & O’Hagan, 2000). Commonly upper and lower

quartiles are chosen but these tend to lead to overconfidence in the spread of the

distribution as estimates of the interquartile range are generally too small. Instead

of quartiles, Garthwaite & O’Hagan (2000) recommend using tertiles (33% and 67%

points) as there is evidence this reduces overconfidence somewhat. This was also found

by Peterson et al. (1972).

There are important psychological considerations to take into account when performing
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elicitations. Issues such as how a question is asked and even in what order questions

are asked can affect the answers given (Payne, 1951).

There are also certain inherent biases, often called heuristics, in how people assess

probabilities which must be overcome in any elicitation. These are:

• judgement by representativeness,

• judgement by availability,

• anchoring.

Example 1: The following example of judgement by representativeness is given in

Slovic (1972), taken from Kahneman & Tversky (1972). Participants were given the

following description of a student.

‘Tom W. is of high intelligence although lacking in true creativity. He has a need

for order and clarity, and for neat and tidy systems in which every detail finds its

appropriate place. His writing is rather dull and mechanical, occasionally enlivened by

somewhat corny puns and by flashes of imagination of the sci-fi type. He has a strong

drive for competence. He seems to have little feel and little sympathy for other people,

and does not enjoy interacting with others. Self-centered, he nonetheless has a deep

moral sense.’

The participants (graduate psychology students) were then asked to rank the following

subjects in order, with one being the most likely subject Tom is a graduate student

in; business administration, computer sciences, engineering, humanities and education,

law, library sciences, medicine, physical and life sciences and social science and social

work.

Most people chose computer science and engineering as the most likely subjects. They

did this by fitting the description to their stereotypes of the subjects. They ignored the

base rates, i.e., the fact that there are relatively few engineering and computer science

graduate students.

Example 2: Suppose you were given the following description of a place.

‘It is so clean here, you could eat off the streets. Snow capped mountains frame

picturesque log cabins, with geraniums in every window.’

Now suppose you are given a list of places which includes Europe, Brazil and Switzer-

land. When asked which of the places the letter was most likely written from, Bar-Hillel

& Neter (1993) found that Switzerland was rated ahead of Europe. This is a second

example of judgement by representativeness. People judge the likelihood of each of the

places based on how well the description fits their image of that place. Once again base

rates are ignored, specifically that Switzerland is part of Europe.
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Setup Elicit Fit Adequate?

Figure 1.3: The four stages of the elicitation process

This example exibits a more serious failing than the last in that the answers violate a

rule of probability, namely that if event A is a subset of event B then Pr(A) ≤ Pr(B).

Example 3: When asked to judge the probability of an event occuring people often

base their estimates on how readily they can recall instances of that event taking place

(Slovic, 1972). When asked whether the letter k is more likely to be the first or third

letter in a word most subjects choose the first letter (Tversky & Kahneman, 1971).

This is because it is easier to think of words which start with the letter k rather than

have k as their third letter.

Actually k is far more likely to be the third letter in a word than the first (as in likely!).

This is an example of judgement by availability.

Example 4: Anchoring occurs when subjects are given a value for something (their

anchor) and then asked to adjust that value in the light of new information. The anchor

could be explicit or implicit. An example of an explicit anchor would be:

Q1. Do you think Sunderland’s football team will end up with more or fewer than 40

points this season?

Q2. How many points do you think Sunderland will end up with?

The first question provides the anchor value of 40 points. In answer to the second

question the subject will adjust this value up or down depending on how they think

Sunderland will do. It has been found, however, that this adjustment will not be large

enough even though there is no implication that 40 is a sensible figure (Slovic, 1972).

Garthwaite et al. (2005) describe the elicitation process as consisting of four stages;

setup, elicit, fit and adequacy. A representation of the process, also in the paper, is

given in Figure 1.3.

The setup stage contains everything which needs to be done before conducting the
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elicitation. It involves, amongst other things,

• identifying and recruiting the expert,

• identifying the unknowns in the analysis,

• formulating the questions,

• training the expert in probability.

In the elicit stage questions are put to the expert to obtain the required summaries.

The fit stage then takes these summaries and fits a probability distribution to them.

The adequacy stage is concerned with whether the fitted distribution is an accurate

reflection of the expert’s beliefs. If they feel that it is then the elicitation is complete.

If not the process returns to the elicit stage for re-evaluation of the elicited summaries.

We investigate elicitation for the beta binomial model in Section 4.2.1. The information

in this section shall be used later in the thesis when we consider which quantities to

elicit for specific models.

1.5 Thesis outline

In this thesis we consider subjectivist approaches to the problem of related binomial

and Poisson distributions. The aim of the thesis is to find such an approach in which

• intensive numerical or simulation based methods are not required in the calcula-

tion of posterior quantities,

• a careful assessment of genuine prior beliefs for the unknowns in the analysis can

be made, and

• realistically complex problems can be solved within a reasonable time frame in

the area of Bayesian experimental design.

The remainder of the thesis is structured as follows. In Chapter 2 we consider fully

Bayesian approaches to the problem in two dimensions. Most of the models in this

chapter are based on the introduction of density multipliers, a method for constructing

joint densities in which correlations are induced between parameters whilst the conju-

gacy of the Bayesian updates is preserved. Two specific types of density multiplier are

considered, copula functions and mixtures. An example is given in each case.

Chapter 3 investigates Bayes linear approaches to the two parameter problem. Ini-

tially Bayes linear methods (Goldstein & Wooff, 2007) are introduced. We consider a
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model for count data which takes advantage of ideas of exchangeability between vari-

ables. Bayes linear kinematics (Goldstein & Shaw, 2004), a Bayes linear equivalent

of probability kinematics, is then utilised. We apply Bayes linear kinematic updating

to the binomial and Poisson parameters and suggest suitable transformations to these

parameters in order to increase the effectiveness and suitability of the updating.

In Chapter 4 we extend the problem of related binomial and Poisson distributions into

more than two parameters and then apply the most promising approach from the two

preceding chapters, that of Bayes linear kinematics performed on the transformed pa-

rameters, in the case of the binomial distribution. Special attention is paid to ensuring

a commutative solution exists. An example involving the effects of smoking on health

is considered. An approach to the specification of a coherent covariance structure for

the transformed parameters based upon ideas in Farrow (2003) is used.

Chapter 5 is concerned with the application of the generalised Bayes linear kinematic

approach to reliability and survival analysis. Two applications in the area of reliability

are investigated. The first involves Poisson counts of failures and the second binomial

counts in the analysis of failure times. The methodology is applied to an example in

both cases. The remaining part of the chapter considers a piecewise constant hazards

model in which hazards for different individuals are considered proportional. In par-

ticular we present a commutative solution in contrast to the non-commutative solution

of Gamerman (1991).

In Chapter 6 we apply the Bayes linear kinematic methodology to Bayesian experi-

mental design. Two problems are considered; usability testing and bioassay. In the

usability testing application we give a Bayes linear solution to the problem explored by

Valks (2005) using fully Bayesian methods. Within the context of bioassay we provide

solutions to both the sample size and design point problems simultaneously. To do this

we introduce the Bayes linear kinematic benefit utility.

In Chapter 7 we give some conclusions and areas for further work.
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Fully Bayesian approaches

2.1 Introduction

In this chapter we consider the problem of two correlated binomial probabilities or

Poisson parameters. We consider models based on fully Bayesian approaches. Most of

the approaches take a joint density for parameters in the form of a density multiplier,

a function which, when multiplied by the marginal densities, induces a correlation

between the parameters. Within this context two classes of density multipliers are

considered; copula functions and mixtures. The copula family investigated is the Farlie-

Gumbel-Morgenstern family and some extensions of this. In terms of mixtures for the

binomial distribution we consider mixture distributions of beta densities and in the

Poisson case the result is mixtures of gamma densities. We see that copula functions

are a special case of multipliers which obey a marginality property. We also consider a

Dirichlet model in the binomial case. We illustrate the methodology developed using a

binomial example involving patients who have had heart attacks and a Poisson example

involving the numbers of failures of piston rings in compressors.

2.2 Density Multipliers

Let us suppose that counts X1, X2 are observed and that our beliefs are such that,

conditional on the values of the unknown parameters θ1, θ2, either

Xi ∼ bin(ni, θi) or Xi ∼ Po(θi),

for i = 1, 2 where X1, X2 are conditionally independent given θ1, θ2.

We can give θ1, θ2 conjugate prior distributions. So forXi binomially distributed we use
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a beta prior distribution θi ∼beta(ai, bi) and if Xi is Poisson we have a gamma prior

distribution θi ∼gamma(ai, bi). Then, if θ1, θ2 were independent, their joint density

would take the form

f0(θ1, θ2) = f01(θ1)f02(θ2),

where f0i(θi) is the appropriate beta or gamma density.

However, if we believe θ1, θ2 to be dependent, then we must find some other way to

represent their joint density. One possibility would be to use a function g(θ1, θ2) so

that

f0(θ1, θ2) ∝ f01(θ1)f02(θ2)g(θ1, θ2).

We call the function g(θ1, θ2) a density multiplier. It is used to induce a correlation

between θ1 and θ2.

Now let us suppose that we observe X1 = x1 and X2 = x2. In our beta-binomial setup

the prior marginal densities are given by

f0i(θi) =
Γ (ai + bi)

Γ (ai)Γ (bi)
θai−1
i (1− θi)

bi−1, (2.1)

and the likelihood is

L(x1, x2 | θ1, θ2) =
(

n1

x1

)

θx1
1 (1− θ1)

n1−x1

(

n2

x2

)

θx2
2 (1− θ2)

n2−x2 . (2.2)

Using Bayes theorem we obtain the posterior joint density for θ1, θ2,

f1(θ1, θ2) = f0(θ1, θ2)L(x1, x2 | θ1, θ2)
∝ θa1+x1−1

1 (1− θ1)
b1+n1−x1−1θa2+x2−1

2 (1− θ2)
b2+n2−x2−1 × g(θ1, θ2)

∝ θA1−1
1 (1− θ1)

B1−1θA2−1
2 (1− θ2)

B2−1 × g(θ1, θ2),

where A1 = a1 + x1, B1 = b1 + n1 − x1, A2 = a2 + x2 and B2 = b2 + n2 − x2.

Similarly, if we take the Poisson-gamma setup the prior density of θi is

f0i(θi) =
baii θ

ai−1
i e−biθi

Γ (ai)
,

and the likelihood is

L(x1, x2 | θ1, θ2) =
θx1
1 e

−θ1

x1!
× θx2

2 e
−θ2

x2!
. (2.3)
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Thus the posterior density of θ1, θ2, found by applying Bayes theorem, is

f1(θ1, θ2) ∝ θa1−1
1 e−b1θ1θa2−1

2 e−b2θ2g(θ1, θ2)× θx1
1 e

−θ1θx2
2 e

−θ2

∝ θA1−1
1 e−B1θ1θA2−1

2 e−B2θ2 × g(θ1, θ2),

where A1 = a1 + x1, B1 = b1 + 1, A2 = a2 + x2 and B2 = b2 + 1. Thus we see that, in

both cases, the posterior density is given by

f1(θ1, θ2) ∝ f11(θ1)f12(θ2)g(θ1, θ2),

where f1i(θi) follow the same distributions as their prior counterparts but with ai

and bi updated to Ai and Bi. We also see that the density multiplier, g(θ1, θ2), is

unaffected when data are observed and so multiple updates are possible without the

loss of conjugacy.

We must now find suitable functional forms for the density multiplier g(θ1, θ2) to take.

There is also the question of how to measure association for variables on [0, 1]. We

review methods of association in the following section.

2.3 Measures of Association

Initially let us consider the bivariate Normal distribution. If X = (X1, X2)
′

then

X ∼ BVN(µ, Σ),

where

µ = (µ1, µ2)
′

and Σ =

(

σ21 σ212
σ212 σ22

)

.

Thus the bivariate Normal distribution is defined by 5 parameters; 2 means µ1, µ2, 2

variances σ21, σ
2
2 and a product-moment correlation (or covariance σ212). The product-

moment correlation is found from the covariance and variances as

ρ12 =
σ212

√

σ21σ
2
2

.

For variables on (−∞,∞), the product-moment correlation is a widely used measure

of association. However, this simple approach may not be appropriate for situations

where the variables of interest are on a restricted domain such as 0 < θi < 1 for i = 1, 2.

We shall consider four alternative measures of association; Kendall’s τ , Spearman’s ρ,

16
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the Pearson (product-moment) correlation applied to transformations of the parameters

and a specification made directly in terms of observables.

2.3.1 Kendall’s τ

Suppose (θ1, θ2)
′

have some bivariate distribution. Consider observing a sequence of

independent draws (T1j , T2j)
′

, j = 1, 2, 3, . . . from this distribution.

Then Kendall’s τ (Kendall, 1938; Kruskal, 1958) is defined as

τ12 = Pr {(T11 − T12)(T21 − T22) > 0} − Pr {(T11 − T12)(T21 − T22) < 0} .

That is, Kendall’s τ is given by the probability of concordance minus the probability of

discordance, where the pairs of observations are concordant if T11 > T12 and T21 > T22

or T11 < T12 and T21 < T22 and discordant if the second inequality in each condition is

reversed.

Equivalently,

τ12 = 2Pr {(T11 − T12)(T21 − T22) > 0} − 1.

2.3.2 Spearman’s ρ

If a third draw is made and T12 and T23 are independent then Spearman’s ρ (Spearman,

1904; Kruskal, 1958) can be defined as

ρ12 = 3 [Pr {(T11 − T12)(T21 − T23) > 0} − Pr {(T11 − T12)(T21 − T23) < 0}] .

The interpretation is not as straightforward as with Kendall’s τ . However, Spearman’s

ρ is proportional to the probability of concordance minus the probability of discordance

for (T11, T12) and (T21, T23).

2.3.3 Transformations

Let us define the transformed quantities (η1, η2)
′

as

ηi = g(θi),

where g() is a suitable transformation such as logit, probit or complementary log-log

in the binomial case or natural logarithm in the Poisson model. We could then simply

calculate the Pearson product-moment correlation of the transformed quantities.

The choice of transformation is a little arbitrary, at least in the binomial case, however.

17
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We would also need to consider how an elicitation would be carried out in this case.

2.3.4 Directly from observables

In the case of related binomial parameters we could consider a method based on ob-

servables. Consider individual Bernoulli trials where for trial j

Xij =







1, with probability θi,

0, with probability 1− θi,

for i = 1, 2. Expectations in terms of the Bernoulli variables are given by

E(Xij) = E(θi),

E(Xi1, Xi2) = E(θ2i ),

E(X11X21) = E(θ1θ2).

The required variances and covariance are then

Var(θi) = E(Xi1Xi2)− E(Xi1)
2,

Cov(θ1, θ2) = E(X11X21)− E(X11)E(X21),

and so the product-moment correlation can be found.

This method would appear to argue in favour of the simple product-moment correlation

for (θ1, θ2)
′

. However, would such an elicitation work in practice bearing in mind the

mean-variance relationship for Bernoulli and binomial variables? Also, can we relate

these moments to parameters of tractable joint distributions?

2.4 Copulas

2.4.1 Introduction

A copula (Nelson, 1999, 2006) is a joint distribution functionG(u1, . . . , un) for a number

of random variables U1, . . . , Un where each marginal distribution is Ui ∼ U(0, 1). The

corresponding joint probability density function is

g(u1, . . . , un) =
∂

∂u1
· · · ∂

∂un
G(u1, . . . , un).

Copulas also obey certain properties. It follows from the definitions above that

18



Chapter 2. Fully Bayesian approaches

1. G(0, . . . , 0) = 0 and G(1, . . . , 1) = 1,

2. G(u1, . . . , un) = 0 if at least one of u1, . . . , un is 0.

The requirement that each marginal is uniform means that G(1, . . . , 1, ui, 1, . . . , 1) = ui.

That is, the value of the distribution function at a point where every variable takes the

value 1 except for ui is ui. To see this, consider, without loss of generality, the case of

Un. The marginal distribution function of Un is

Hn(un) =

∫ 1

0
· · ·
∫ 1

0

∫ un

0
g(u1, . . . , un−1, u

∗
n) du1 · · · dun−1du

∗
n,

= G(1, . . . , un).

If this is to be the distribution function of a U(0, 1) distribution then it must be the

case that Hn(un) = un.

A copula must also be n-increasing. This is the n-dimensional analogue of a one-

dimensional non-decreasing function. In the 2-dimensional case this requirement is

satisfied as long as

G(u12, u22)−G(u12, u21)−G(u11, u22) +G(u11, u21) ≥ 0

for u11 ≤ u12 and u21 ≤ u22 (Nelson, 1999, 2006).

It is possible to choose a copula function in such a way that U1, . . . , Un are not inde-

pendent even though all of the marginals are uniform.

If X1, . . . , Xn are some continuous random variables with distribution functions

F1(x1), . . . , Fn(xn), then

Ui = Fi(Xi)

where Ui ∼ U(0, 1). Then U1, . . . , Un can be linked through a suitable copula. If

X1, . . . , Xn are dependent then U1, . . . , Un are also dependent. The distribution func-

tion of U1, . . . , Un is then G(u1, . . . , un).

Clearly Ui is a strictly non-decreasing function ofXi so Ui ≤ ui ⇔ Xi ≤ xi. Thus we can

also make G the distribution function of F1(X1), . . . , Fn(Xn). That is, the distribution

function of X1, . . . , Xn is G[F1(x1), . . . , Fn(xn)]. If this is differentiated with respect to

x1, . . . , xn the joint probability density function of X1, . . . , Xn is obtained. This is

fX(x1, . . . , xn) = f1(x1) · · · f(xn)g[F1(x1), . . . , Fn(xn)] (2.4)

where fi(xi) is the marginal probability density function of Xi. We can show that the

marginal distribution of Xi, under this structure, is Fi(xi). We know from above that
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Xi < xi ⇔ Ui < ui. Then,

Pr(Xi < xi) = Pr(Ui < ui) = ui = Fi(xi). (2.5)

2.4.2 Families of copula functions

There are many different families of copula functions. Two of the most widely used bi-

variate families are the Farlie-Gumbel-Morgenstern (FGM) family (Farlie, 1960; Gum-

bel, 1958; Morgenstern, 1956) and the Archimedian family. We shall now consider these

families in two dimensions.

Farlie-Gumbel-Morgenstern family

This is a polynomial copula family in which members take the form of quadratic func-

tions of the two random variables. They have been widely used in many different areas

(Balakrishnan & Lai, 2009) due to their simple analytic form. The copula family is

given by

G(u1, u2) = u1u2 + λu1u2(1− u1)(1− u2),

for some parameter λ which controls the strength of the dependence between U1 and

U2. The parameter λ is constrained to [−1, 1] so that G is a valid distribution function.

Archimedian family

Copulas in this family take the form

G(u1, u2) = φ−1[φ(u1) + φ(u2)],

where φ is called the generator function and must satisfy φ(1) = 0, limx→0 φ(x) = ∞,

φ
′

(x) < 0 and φ
′′

(x) > 0. Some commonly used generators and their copulas are;

(i) The Clayton copula (Clayton, 1978), also known as the Cook-Johnson copula

(Cook & Johnson, 1981): This takes the generator φ(x) = 1
θ (x

−θ − 1) resulting in

the copula

G(u1, u2) = (u−θ
1 + u−θ

2 − 1)−
1
θ ,

where θ ∈ [−1,∞)\{0} is the parameter which controls the dependence between

u1 and u2.

(ii) The Gumbel copula (Gumbel, 1960): This copula has a logarithmic generator
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φ(x) = (− log(x))θ which leads to the copula

G(u1, u2) = exp{−[(− log u1)
θ + (− log u2)

θ]
1
θ },

for θ ∈ [1,∞).

(iii) The Frank copula (Frank, 1979): Once again a logarithmic generator function is

used. On this occasion φ(x) = log
(

e−θx−1
e−θ−1

)

and so

G(u1, u2) =
1

θ
log

{

1 +
(e−θu1 − 1)(e−θu2 − 1)

e−θ − 1

}

with support (−∞,∞)\{0} for θ.

2.5 Copulas for counts

Let us return to counts X1 and X2 and parameters θ1 and θ2 which follow either the

beta-binomial model or gamma-Poisson model of Section 2.2. Then associated with θ1

and θ2 are their distribution functions, U = F01(θ1) and V = F02(θ2), which we can

link together using a suitable copula C(u, v).

The joint prior density of θ1 and θ2 is then

f0(θ1, θ2) = f01(θ1)f02(θ2)c(u, v), (2.6)

where c(u, v) is the copula density associated with C(u, v). Thus we see that copulas

are a special case of density multiplier where the normalising constant is equal to one.

This means, by the property given in Equation 2.5, that the prior expectations and

variances of θ1 and θ2 are simply those of the marginal beta and gamma distributions.

In the beta-binomial model they are

E0(θi) =
ai

ai + bi
, Var0(θi) =

aibi
(ai + bi)2(ai + bi + 1)

,

for i = 1, 2, and in the gamma-Poisson setup

E0(θi) =
ai
bi
, Var0(θi) =

ai
b2i
.

Thus, using copulas, prior marginality is preserved. If we observeX1 = x1 andX2 = x2,

i.e., one of the likelihoods in Equations 2.2 and 2.3, then in either case we obtain a
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joint posterior density of

f1(θ1, θ2) ∝ f0(θ1, θ2)L(x1, x2 | θ1, θ2)
= f01(θ1)f02(θ2)c(u, v)L(x1, x2 | θ1, θ2)
= f11(θ1)f12(θ2)c(u, v). (2.7)

Notice here that U and V are still the prior distribution functions of θ1 and θ2 and so

c(u, v) is a copula density for the prior not the posterior. Thus the distribution is still

conjugate. However, we no longer have the marginality property so summaries and

predictive distributions are no longer straightforward and the normalising constant is

no longer equal to one.

In both cases the likelihood is the same as in Section 2.2 and so f11(θ1) and f12(θ2) are

of the same form as f01(θ1) and f02(θ2) but with ai and bi updated to Ai and Bi.

2.6 The Farlie-Gumbel-Morgenstern Copula for counts

Suppose we have either the beta-binomial or Poisson-gamma setup explored in the

previous section. Then, under the Farlie-Gumbel-Morgenstern (FGM) copula, the joint

distribution function for θ1 and θ2 is

C(u, v) = uv[1 + λ(1− u)(1− v)],

for −1 < λ < 1. The copula density is found by differentiating this quantity to give

c(u, v) = 1 + λ(1− 2u)(1− 2v).

The joint prior density for θ1 and θ2 is given in Equation 2.6. It is therefore

f0(θ1, θ2) = f01(θ1)f02(θ2)[1 + λ(1− 2u)(1− 2v)], (2.8)

for the relevent prior densities f01(θ1) and f02(θ2).

2.6.1 Specification of prior parameters

Let us first consider specifying λ. We consider two of the measures of association for

constrained variables considered in Section 2.3 (Nelson, 1999, 2006), Kendall’s τ and

Spearman’s ρ. Kendall’s τ can be expressed for copula functions as

τθ1,θ2 = 4

∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1.
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The equation for Spearman’s ρ can be similarly expressed and is given by

ρθ1,θ2 = 12

∫ 1

0

∫ 1

0
C(u, v)dudv − 3.

For further explanation of this see Schweizer & Wolff (1981). We choose to use Spear-

man’s ρ in order to specify the association parameter λ. Substituting the FGM copula

into this integral we see that

∫ 1

0

∫ 1

0
C(u, v)dudv =

∫ 1

0

∫ 1

0
[uv + λ(u− u2)(v − v2)]dudv

=

∫ 1

0
[
1

2
v +

1

6
λ(v − v2)]dv

=
1

4
+

1

36
λ

Thus ρθ1,θ2 = 1
3λ and so, since λ ∈ [−1, 1] ⇒ ρθ1,θ2 ∈ [−1

3 ,
1
3 ]. Hence for the FGM

copula it is not possible to specify a prior correlation of greater than 1/3 or less than

−1/3. This is clearly not desirable. This will also have an effect on the possible values

for the posterior correlation and it would seem reasonable to assume that these would

be even more restricted than the prior correlation. We shall discuss this further in

Section 2.8.

2.6.2 The Posterior Density

Application of Bayes theorem on observation of data leading to one of the likelihoods

in Equation 2.2 or Equation 2.3 leads to a posterior density of the form of Equation

2.7, namely,

f1(θ1, θ2) ∝ f11(θ1)f12(θ2)[1 + λ(1− u)(1− v)], (2.9)

where u and v are the prior distribution functions of θ1 and θ2. Thus the marginality

property is lost and the integrating constant must be found before posterior moments

can be calculated.

2.6.3 Example: A Clinical Trial

The Anturane Reinfarction Trial Research Group (1980) reported a clinical trial on

the use of the drug sulfinpyrazone in patients who had suffered myocardial infarctions

(heart attacks). The data were reproduced in Hand et al. (1994). The idea was to see

whether the drug had an effect on the number dying within a certain time. Patients

in one group were given the drug while patients in another group were given a placebo

(inactive substitute).
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Table 2.1 gives the number of all analysable deaths up to 24 months after the myocardial

infarction and the total number of eligible patients who were not withdrawn and did

not suffer a non-analysable death during the study.

Deaths Total

Sulfinpyrazone (group 1) 44 560
Placebo (group 2) 62 540

Table 2.1: Post heart attack deaths

This situation can be represented by saying that there are two groups, containing n1

and n2 patients, and two parameters, θ1 and θ2, such that, given these parameters, the

number of deaths Xi in group i is distributed as

Xi | θi ∼ bin(ni, θi). (2.10)

Natural selections of prior distributions for the parameters θi are

θi ∼ beta(ai, bi), (2.11)

but it seems reasonable that the prior beliefs would be such that θ1 and θ2 would not

be independent. That is, if we observe a number of deaths in group i then this will

cause us to revise our beliefs about the probability of death in the other group as well

as group i.

Let us suppose that our prior beliefs are such that we wish to specify a prior Spearman’s

Rho of 1/3 between θ1 and θ2 which is achieved by setting λ = 1. Thus

C(u, v) = uv(1 + (1− u)(1− v)).

We now turn to the marginal specification, that of prior values for a1, b1, a2, and

b2. In order to do this suppose that past evidence suggests that a suitable symmetric

probability interval for θ2 is

Pr(θ2 < 0.06) = Pr(θ2 > 0.19) = 0.025,

and so Pr(θ2 < 0.19) = 0.975. Thus we have two equations with two unknowns, namely

∫ 0.06

0
f02(θ2)dθ2 = 0.025,
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and
∫ 0.19

0
f02(θ2)dθ2 = 0.975,

where f02(θ2) is the beta density given in Equation 2.1. We can use these two equations

in two unknowns to find values for a2 and b2. Iterative methods are used leading to

the parameter values of

a2 = 10.72, b2 = 80.84.

Suppose that a priori our beliefs about θ1 and θ2 are that θ1 has the same mean and a

standard deviation double that of θ2 to reflect the greater uncertainty that is felt about

the new drug.

As we have seen, one useful property of copulas is that they preserve the marginality

of prior means and variances for θ1 and θ2. Thus it is known that

E0(θ2) =
a2

a2 + b2
= 0.117,

and

Var0(θ2) =
a2b2

(a2 + b2)2(a2 + b2 + 1)
= 0.0011.

This gives a standard deviation for θ2 of 0.0334. Doubling this, a standard deviation

for θ1 is aquired and squaring this enables a variance to be found for θ1 which leads to

two equations;

E0(θ1) =
a1

a1 + b1
= 0.117,

and

Var0(θ1) =
a1b1

(a1 + b1)2(a1 + b1 + 1)
= 0.0045,

for a1 and b1 which can be solved resulting in

a1 = 2.59, b1 = 19.55.

It is concluded that the prior marginal distributions are

θ1 ∼ beta(2.59, 19.55), θ2 ∼ beta(10.72, 80.84).

We have now specified the prior joint density given in Equation 2.8 exactly. We can

plot it as in Figure 2.1. All figures and calculations in this thesis are performed in R

(R Development Core Team, 2011) unless otherwise stated. From the plot we can see

the dependence between θ1 and θ2 has produced a skewed joint density. The values

of θ1 and θ2 at the mode of this joint density are both much lower than their prior

expectations of 0.125. This skewness is also evident if the marginal densities are plotted.
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Figure 2.1: A plot of the joint prior density for the FGM copula model

The posterior joint density takes the form of Equation 2.9 up to proportionality with

A1 = 46.59, B1 = 535.55, A2 = 72.72, B2 = 558.84. Having found the posterior joint

density a posterior contour plot can be produced, as in Figure 2.2.

It would appear from the contour plot that the probability of death is higher in group

2 than group 1 and so sulfinpyrazone is of some benefit for patients who have had

heart attacks. If we compare this plot to that of the joint prior density given in Figure

2.1 we can see that the posterior is far less skewed. There also appears to have been

a significant reduction in correlation between θ1 and θ2 from prior to posterior. The

reduction in uncertainty can be seen if we plot the prior and posterior joint densities

on the same axes as in Figure 2.3.

Posterior means and variances for θ1 and θ2 are given in Table 2.2.

i E1(θi) Var1(θi)

1 0.081 1.27×10−4

2 0.114 1.56×10−4

Table 2.2: Posterior means and variance for θ1 and θ2

We see from the table that the posterior mean probability of death for patients taking

sulfinpyrazone is lower than that of patients taking the placebo. Both variances have

decreased significantly from prior to posterior.

To calculate these quantities we used MapleTM(Monagan et al., 2005) to compute the
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Figure 2.2: A posterior contour plot for the FGM copula

integrals. First A1, A2, B1, B2 were rounded to the nearest integer. Then the required

densities are defined in terms of polynomials in θ1, θ2 and u and v. Now, u and v are

proportional to partial beta functions, i.e.,

∫ θ

0
ya−1(1− y)b−1dy,

which are finite polynomials. Hence the integrating constant is a finite sum and poste-

rior moments are then ratios of finite sums and can be found approximately in MapleTM.

The same method can be used to calculate the prior product moment correlation. For

a Spearman’s Rho of 1/3 the prior product moment correlation is 0.298.

2.6.4 Example: piston ring failures

We consider a subset of the data given in Davies & Goldsmith (1972), reproduced in

Hand et al. (1994), on the numbers of failures of piston rings in steam driven compres-

sors. The number of failures in two of the compressors over some time period are given

in Table 2.3.

Compressor Failures

1 46
2 33

Table 2.3: Piston ring failures in compressors 1 and 2

27



Chapter 2. Fully Bayesian approaches

θ1

θ 2

 10 

 20 

 30 

 40 

 50 

 60 
 70 

 80 

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

 100 

 200 

 300 
 400 

 500  600 

 800 

Figure 2.3: Prior and posterior contour plots for the FGM copula, clinical trial example

The number of failures in compressor i = 1, 2, Xi, follows a Poisson distribution

Xi | θi ∼ Po(θi),

with expected number of failures θi. In order to perform an analysis using the FGM

copula we give each θi the conjugate prior distribution,

θi ∼ gamma(ai, bi).

Suppose we wish to specify a prior Spearman’s ρ between θ1 and θ2 of 1
4 . The FGM

copula is then

C(u, v) = uv

[

1 +
3

4
(1− u)(1− v)

]

.

In terms of the gamma distribution parameters, ai and bi, suppose we have no reason

to believe either compressor would be more prone to failures than the other. Further

suppose that our prior beliefs are such that

E0(θi) = 30, Var0(θi) = 30, (2.12)

for i = 1, 2. For a gamma distribution with mean mi and variance vi the parameter

values are

ai =
m2

i

vi
, bi =

mi

vi
.
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Thus, for the specifications above,

ai = 30, bi = 1.

The prior density takes the form of Equation 2.8. A contour plot of this density is

given in the left hand side of Figure 2.4.
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Figure 2.4: Prior and posterior contour plots using the FGM copula for the Poisson example

We observe x1 = 46 failures in group 1 and x2 = 33 failures in group 2. The posterior

density takes the form of Equation 2.7 with A1 = 76, B1 = 2, A2 = 63 and B2 = 2. A

contour plot of the posterior density is given in the right hand side of Figure 2.4.

There has been a clear reduction in uncertainty from prior to posterior. The location

of the density has also changed, with the mode of the joint density higher in both θ1

and θ2 in the posterior.

The posterior expectations and variances of θ1 and θ2 are given in Table 2.4.

θ1 E1(θi) Var1(θi)

1 37.50 19.83
2 30.89 15.38

Table 2.4: Posterior expectations and variances using the FGM copula for piston ring failures

Clearly the domain of the prior Spearman’s Rho being [−1/3, 1/3] significantly restricts

the FGM copula’s usefulness in modelling to situations of only weak dependence. Thus

extensions to the copula have been proposed with the aim of increasing the range of

correlation which can be represented. We shall now consider two such extensions.
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2.7 Extensions to the FGM copula

Johnson & Kotz (1977) proposed an extension which replaces the standard FGM copula

with a finite sum. This was built upon in Huang & Kotz (1984). They call the result

an “iterated” copula. Taking m− 1 iterations gives a copula of the form

CJ,m(u, v) = uv +
m
∑

i=1

λi(uv)
[ 1
2
i]+1{(1− u)(1− v)}[ 12 i+ 1

2
],

where [x] means take the largest integer less than or equal to x. Taking zero iterations

(setting m = 1) gives

CJ,1(u, v) = uv + λ1(uv)(1− u)(1− v),

the usual FGM copula. Taking a first iteration we see that

CJ,2(u, v) = uv + λ1(uv)(1− u)(1− v) + λ2u
2v2(1− u)(1− v),

for −1 ≤ λ1 ≤ 1 and −λ1 − 1 ≤ λ2 ≤ 1
2{3 − λ1 +

√

9− 6λ1 − 3λ21}. Differentiating

leads to a density of c(u, v) = 1 + λ1(1 − 2u)(1 − 2v) + λ2(2u − 3u2)(2v − 3v2) and

Spearman’s Rho can be found via

∫ 1

0

∫ 1

0
CJ,2(u, v)dudv =

1

4
+

1

36
λ1 +

1

144
λ2.

Thus ρθ1,θ2 =
1

3
λ1 +

1

12
λ2. This increases the potential positive correlation which can

be specified using the copula to 0.434 (Huang & Kotz, 1999).

Lin (1987) considered the Johnson and Kotz extension and then proposed a similar

iterated FGM copula built upon this. If we reverse the powers in the summation in

the Johnson and Kotz extension we arrive at the Lin extension:

CL,m(u, v) = uv +
m
∑

i=1

γi(uv)
[ 1
2
i+ 1

2
]{(1− u)(1− v)}[ 12 i]+1.

Setting m = 2 as before gives

Cl,2(u, v) = uv + γ1uv(1− u)(1− v) + γ2uv(1− u)2(1− v)2,

where γ1 and γ2 have the same restrictions as λ1 and λ2. Differentiating gives the

copula density as

cL,2(u, v) = 1 + γ1(1− 2u)(1− 2v) + γ2(1− 4u+ 3u2)(1− 4v + 3v2)
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In terms of the correlation given by Spearman’s Rho

ρθ1,θ2 = 12

∫ 1

0

∫ 1

0
CL,2(u, v)dudv =

1

3
γ1 +

1

12
γ2,

as in the Johnson and Kotz extension. The admissable correlations for the Lin extension

are generally the same as in the Johnson and Kotz extension (Lin, 1987).

2.7.1 Heart attack example

We can view the analysis carried out using the FGM copula for the heart attack example

as a special case of the Johnson and Kotz extension with λ1 = 1 and λ2 = 0. Clearly

when we take the extension there is no longer a unique choice of λ1 and λ2 so that

our prior specifications are those given in Section 2.6.1. We can investigate the effect

of choosing different values of λ1 and λ2. Prior and posterior contour plots for some

alternative values of λ1 and λ2 which maintain our prior specifications are given in

Figure 2.5.
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Figure 2.5: Prior (top panel) and posterior (bottom panel) contour plots for the Johnson and
Kotz extension for different values of λ1 and λ2, heart attack example

In (a) λ1 = λ2 = 0.8. With λ1 being fairly close to its previous value of 1 the prior
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contour plot is similar to that of the standard FGM copula in Figure 2.1. For (b)

values of λ1 = 0.6 and λ2 = 1.6 were used and in (c) λ1 = 0.4 and λ2 = 2.4. Clearly as

we decrease λ1 and increase λ2 the joint prior density is becoming more spread and in

(c) appears to be bimodal. All of the posterior densities are very similar and adhere

extremely closely to that from the FGM copula given in Figure 2.2.

If we now consider the Lin extension we again do not have unique parameter values

γ1 and γ2 to give a prior Spearman’s Rho of 1
3 . Setting γ1 and γ2 to the values used

previously for λ1 and λ2 gives prior and posterior contour plots as in Figure 2.6. We
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Figure 2.6: Prior (top panel) and posterior (bottom panel) contour plots for Lin extension for
different values of γ1 and γ2

see a similar pattern as with the Johnson and Kotz extension. The prior joint density

tends towards bimodality as γ1 decreases and γ2 increases. There appears to be more

density concentrated close to the zero boundaries with the Lin extension however. Once

again all of the posterior densities look very similar as a consequence of the volume of

observations.
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2.8 Discussion

The FGM copula has produced a solution to the problem of two correlated binomial

or Poisson parameters in which such quantites as posterior moments can be found

analytically. However, the approach is not straightforward as posterior quantities are

fairly complicated finite sums and, in the example considered, were calculated in Maple

(TM).

In practice this method is only of very limited use due to the serious restrictions on the

prior specification of the correlation between the two parameters, i.e. between −1/3

and 1/3. In order to overcome this problem two extensions to the FGM copula have

been examined, the Johnson and Kotz extension and the Lin extension. Both extend

the range of possible positive correlation when a single iteration is taken to an absolute

maximum of 0.434.

Clearly this is an improvement, although not a large one. If a greater prior correlation

is required then further iterations could be taken as these could extend the range of

possible correlation further still. This would, however, make the calculation of posterior

quantities more complicated.

An alternative to extending the FGM copula would be to use a different family of cop-

ula functions. Unfortunately other commonly used families of copulas do not have the

simple polynomial form of the FGM copula, although they do allow for stronger corre-

lations to be specified. Thus it would require numerical integration to find quantities

such as posterior moments.

2.9 Mixtures

Consider the beta-binomial and gamma-Poisson setups explored in Section 2.2. In both

situations the joint prior density between θ1 and θ2 is

f0(θ1, θ2) ∝ f01(θ1)f02(θ2)g(θ1, θ2).

One way of specifying g(θ1, θ2) would be such that the resulting density is of the form

f0(θ1, θ2) =
m
∑

j=1

p0jf0j1(θ1)f0j2(θ2),
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where p0j are weights for which
∑m

j=1 p0j = 1. That is, the resulting joint density of

θ1 and θ2 is a mixture of products of beta or gamma densities of the form

f0ji(θi) =
Γ (aji + bji)

Γ (aji)Γ (bji)
θ
aji−1
i (1− θi)

bji−1,

or

f0ji(θi) =
b
aji
ji θ

aji−1
i ebjiθi

Γ (aji)
,

respectively for some parameter values aji and bji.

For the use of finite mixtures in Bayesian statistics see McLachlan & Peel (2000);

Lavine & West (1992). First Bayes is a teaching package which allows, amongst other

things, simple statistical analyses of univariate mixtures to be performed. It is free to

download (http://tonyohagan.co.uk/1b/).

The number of components in such a mixture, m, could be finite or infinite. The

marginal distributions of θ1 and θ2 are no longer simply

θi ∼ beta(ai, bi) and θi ∼ gamma(ai, bi),

as in the case of copulas. Observation of x1 successes in group 1 and x2 successes in

group 2 gives a posterior joint density of

f1(θ1, θ2) =
m
∑

j=1

p1jf1j1(θ1)f1j2(θ2).

The marginal density terms in the above summation are of the form of their prior

counterparts but with each of the sets of parameter values updated to

Aji = aji + xi, Bji = bji + ni − xi,

in the beta-binomial case and

Aji = aji + xi, Bji = bji + 1,

for the gamma-Poisson setup. The mixture weights also change.

We now investigate specification of g(θ1, θ2) to produce such mixtures for both binomial

and Poission distributions. We restrict ourselves to finite mixtures.
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2.10 A two component beta mixture

Clearly there are many possibilities for the density multiplier g(θ1, θ2) which lead to

mixtures. In this section one shall be introduced which was first discussed by Valks

(2005) for the beta-binomial case. The function is given by

g(θ1, θ2) = 1 + kθm1
1 θm2

2 (2.13)

and satisfies the relationships explored in Section 2.9. There are three additional pa-

rameters, k, m1 and m2, as well as the four associated with the beta prior distributions

for θ1 and θ2. The values of these parameters are found in order to satisfy our prior

beliefs. The joint prior density is

f0(θ1, θ2) =
1

C0
f01(θ1)f02(θ2)[1 + kθm1

1 θm2
2 ]

= p01f011(θ1)f012(θ2) + p02f021(θ1)f022(θ2),

where p02 = 1− p01 and, for i = 1, 2, the relevent beta densities are

f01i(θi) =
Γ (ai1 + bi1)

Γ (ai1)Γ (bi1)
θai1−1
i (1− θi)

bi1−1,

and

f02i(θi) =
Γ (ai2 + bi2)

Γ (ai2)Γ (bi2)
θai2−1
i (1− θi)

bi2−1,

for ai1 = ai, bi1 = bi, ai2 = ai +mi and bi2 = bi. We see that this is a two component

mixture distribution. Each component is a product of two beta densities. The weight

term for the first component, p01, is given by

p−1
01 =

∫ 1

0

∫ 1

0
f01(θ1)f02(θ2)[1 + kθm1

1 θm2
2 ]dθ1dθ2

= 1 + k
Γ (a11 + b11)

Γ (a12 + b12)

Γ (a12)

Γ (a11)

Γ (a21 + b21)

Γ (a22 + b22)

Γ (a22)

Γ (a21)
.

Prior expectations and variances for θ1 and θ2, which are necessary in the process of

prior specification, can be found. The prior expectations of θ1, θ2 are

E0(θi) =

∫ 1

0

∫ 1

0
θif0(θ1, θ2)dθ1dθ2

= p01

(

ai1
ai1 + bi1

)

+ p02

(

ai2
ai2 + bi2

)

= p01E01(θi) + p02E02(θi).
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Thus the expectations are weighted sums of the expectations of the components of the

mixture. In order to find prior variances the second moments of each of the parameters

are required. These are

E0(θ
2
i ) =

∫ 1

0

∫ 1

0
θ2i f0(θ1, θ2)dθ1dθ2

= p01
ai1(ai1 + 1)

(ai1 + bi1)(ai1 + bi1 + 1)
+ p02

(ai2)(ai2 + 1)

(ai2 + bi2)(ai2 + bi2 + 1)

= p01E01(θ
2
i ) + p02E02(θ

2
i ).

Finally, the prior covariance between θ1 and θ2 is given by Cov0(θ1, θ2) = E0(θ1θ2) −
E0(θ1)E0(θ2), where

E0(θ1θ2) = p01

(

a11
a11 + b11

)(

a21
a21 + b21

)

+ p02

(

a12
a12 + b12

)(

a22
a22 + b22

)

= p01E01(θ1)E01(θ2) + p02E02(θ1)E02(θ2).

From all of these quantities prior specifications can be made.

Suppose that we update our beliefs by observing x1 successes out of n1 trials in group

1 and x2 successes out of n2 trials in group 2. In this case the posterior joint density

shall be

f1(θ1, θ2) = p11f111(θ1)f112(θ2) + p12f121(θ1)f122(θ2). (2.14)

The posterior mixing probabilities are then

p1j ∝ p0j
Γ (a1j + b1j)

Γ (a1j)Γ (b1j)

Γ (a1j + x1)Γ (b1j + n1 − x1)

Γ (a1j + b1j + n1)

× Γ (a2j + b2j)

Γ (a2j)Γ (b2j)

Γ (a2j + x2)Γ (b2j + n2 − x2)

Γ (a2j + b2j + n2)
,

for j = 1, 2. They are then normalised by dividing by the total.

The posterior marginal densities f11i(θi) and f12i(θi) and moments E1(θ1), E1(θ2),

E1(θ
2
1), E1(θ

2
2) and E1(θ1θ2) are the same as their prior counterparts but using the

posterior mixture probabilities and with a1, b1, a2 and b2 replaced by

A1 = a1 + x1, B1 = b1 + n1 − x1,

A2 = a2 + x2, B2 = b2 + n2 − x2.
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2.10.1 Heart attack example

The model now has 7 hyperparameters; a1, b1, a2, b2, k,m1 and m2. We shall reduce

this to 6 by setting m1 = m2 as we wish to make 5 prior specifications. It is assumed

that the same prior specification is to be made as in the copulas case, that is

E0(θ1) = E0(θ2) = 0.117, (2.15)

Var0(θ1) = 0.0045, Var0(θ2) = 0.0011. (2.16)

A prior correlation of approximately 0.3 will also be specified.

Iteration methods are used to find suitable values for the parameters to represent our

prior beliefs. First approximations for the beta parameters are taken as the specifi-

cations from the copulas model. That is, a1 = 2.59, b1 = 19.55, a2 = 10.72, and

b2 = 80.84. In her thesis Valks (2005) noted that for each m = m1 = m2 increas-

ing k increases the correlation until some maximum value after which the correlation

decreases with increasing k. The correlation also increases as m gets larger.

She then set out some general advice for the sizes of k and m and following this advice

values of k = 20, 000, 000 and m = 4 are chosen. It is necessary to readjust the values

for the beta parameters and these are found to be a1 = 3.01, b1 = 33.8, a2 = 11.6 and

b2 = 98.6 and the prior weighting parameter for the components of the mixture is then

p01 = 0.613. This leads to the values of the means and variances of θ1 and θ2 of

E0(θ1) = E0(θ2) = 0.117,

and

Var0(θ1) = 0.0045, Var0(θ2) = 0.0011.

The prior-moment correlation is 0.30 which is almost identical to that specified in the

copula model.

Figure 2.7 illustrates that the prior density appears to be fairly similar to that using

the FGM copula. The correlation between θ1 and θ2 can be seen clearly in the joint

density.

The posterior density is of the form given in Equation 2.14. The only change from the

prior specifications occurs in the values of the parameters a1, b1, a2 and b2 and the

wieghting parameter p01 which are updated via Bayes Theorem to

A1 = 47.01, A2 = 73.6, B1 = 549.8, B2 = 576.6, p11 = 0.838.
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Figure 2.7: A prior contour plot for g(θ1, θ2) = 1 + kθn
1
θn
2

Figure 2.8 gives a contour plot of the joint posterior density. The dashed line is at

θ1 = θ2 and the fact that almost the entire density is above this line indicates that

there is fairly strong evidence that the new treatment is affecting the survival rate of

patients.

The posterior density indicates that the correlation between the two parameters has

reduced. We can also find the posterior moments of θ1 and θ2. These are given in

Table 2.5.

Group E1(θj) Var1(θj)

1 0.080 1.28×10−4

2 0.114 1.59×10−4

Table 2.5: Posterior moments for the 2 component mixture

Table 2.5 agrees with the posterior contour plot. The posterior expectation for the

probability of death in the group of patients taking sulfinpyrazone is much lower than

for the placebo group. Posterior variances are far lower than prior variances indicating

that most of the uncertainty has been explained upon observation of the data. The

posterior correlation is 0.032, far lower than the prior correlation.
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Figure 2.8: A posterior contour plot for g(θ1, θ2) = 1 + kθn
1
θn
2

2.11 A two component gamma mixture

We can use the density multiplier in Equation 2.13 to define a two component mixture

in the gamma-Poisson model. Doing so will lead to a joint density of the form

f0(θ1, θ2) = p01f011(θ1)f012(θ2) + p02f021(θ1)f022(θ2),

where p02 = 1 − p01, as in the beta-binomial model. The prior densities f01i and f02i

for i = 1, 2 are

f011(θi) =
bai1i1 θ

ai1−1
i e−bi1θi

Γ (ai1)
,

and

f02i(θi) =
bai2i2 θ

ai2−1
i ebi2θi

Γ (ai2)
,

for ai1 = ai, bi1 = bi, ai2 = ai +mi and bi2 = bi. The weight component in this case is

p−1
01 =

∫ ∞

0

∫ ∞

0
f01(θ1)f02(θ2)[1 + kθm1

1 θm2
2 ]dθ1θ2

= 1 + kb−m1
1 b−m2

2

Γ (a12)

Γ (a11)

Γ (a22)

Γ (a21)
.
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From this we can find expressions for the prior moments of θ1 and θ2 in the same way

as the beta-binomial case. The prior expectations, for i = 1, 2, are

E0(θi) = p01E01(θi) + p02E02(θi)

= p01

(

ai1
bi1

)

+ p02

(

ai2
bi2

)

.

In order to find the variance we calculate the second moment of each θi.

E0(θ
2
i ) = p01E01(θ

2
i ) + p02E02(θ

2
i )

= p01

(

ai1(ai1 + 1)

b2i1

)

+ p02

(

ai2(ai2 + 1)

b2i2

)

.

In order to find the prior covariance we need the first mixed moment between θ1 and

θ2. This can be found in the same way so that

E0(θ1θ2) = p01E01(θ1)E01(θ2) + p02E02(θ1)E02(θ2)

= p01

(

a11a21
b11b21

)

+ p02

(

a12a22
b12b22

)

.

From these 5 equations the prior expectations, variances and covariances can be spec-

ified using the parameters in the model.

If we observe x1 successes in group 1 and x2 successes in group 2, over a single time

period in each, then we obtain the joint posterior density by application of Bayes

Theorem. It is

f1(θ1, θ2) = p11f111(θ1)f112(θ2) + p12f121(θ1)f122(θ2), (2.17)

where the weight components are

p1j ∝ p0j
b
a1j
1j

(b1j + 1)a1j+x1

b
a2j
2j

(b2j + 1)a2j+x2

Γ (a1j + x1)

Γ (a1j)

Γ (a2j + x2)

Γ (a2j)
.

The posterior densities f1ji(θi) are gamma as with their prior counterparts. The pa-

rameter values have changed, however, and are Ai = ai + xi and Bi = bi + 1.

2.11.1 Example: piston ring failures

We wish to make the same prior specifications as in Section 2.6.4. This is done itera-

tively using the above equations for moments. The resulting gamma parameter values

are a1 = a2 = 37.75, b1 = b2 = 1.34, m1 = m2 = 8 and p01 = 0.692. We choose to

specify p01 rather than k as setting one fixes the other. This leads to prior expectations
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and variances for θ1 and θ2 of

E0(θi) = 30.0 Var0(θi) = 30.0,

and a prior correlation between θ1 and θ2 of 0.25. The joint density for θ1 and θ2 is

given in the left hand side of Figure 2.9.
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Figure 2.9: Prior and posterior contour plots for the 2 component gamma mixture

We observe 46 piston-ring failures in compressor 1 and 33 piston-ring failures in com-

pressor 2. This leads to a posterior joint density of the form given in Equation 2.17

with p11 = 0.272, A1 = 83.75, B1 = 2.34, A2 = 70.75 and B2 = 2.34. We can plot the

posterior density as in the right hand side of Figure 2.9.

The densities are similar to those found for the copula model. There has been a

reduction in the spread of the density from prior to posterior indicating a reduction in

uncertainty on observing the data. The mode of the joint density has also increased in

both θ1 and θ2, particularly θ1 in which compressor more failures were observed.

The posterior means and variances of θ1 and θ2 are given in Table 2.6. The posterior

Compressor E1(θi) Var1(θi)

1 38.28 18.67
2 32.72 16.30

Table 2.6: Posterior moments for the 2 component mixture in the piston-ring failures example

correlation between θ1 and θ2 is 0.133. We see that both expectations have increased on

observing higher than expected numbers of failures in the two groups. Both posterior

variances are lower than both prior variances indicating the reduction in uncertainty

we observed in the contour plots. This is also seen in the reduction in the correlation.
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2.12 A finite component beta mixture

One way to set up a mixture distribution would be to think of beta priors as though

they represent ‘prior observations’. So using a beta(a, b) prior for a single θ might be

thought of as representing a prior successes and b prior failures.

Thus we can think of a beta mixture prior as representing a distribution of possible

‘prior observations’. For example if f0(θ; a, b) represents the beta(a, b) density for θ

then the mixture density,

f0(θ) = p0f0(θ; a(1), b(1)) + (1− p0)f0(θ; a(2), b(2))

represents probability p0 of having a(1) prior successes and b(1) prior failures and prob-

ability 1− p0 of having a(2) prior successes and b(2) prior failures.

Now suppose we extend this to the to the bivariate θ1, θ2 case. If we wish to make

θ1 and θ2 positively correlated then we have a distribution for the numbers of ‘prior

successes and failures’ we have had, a1, b1, a2, b2, with a1 and a2 positively associated

and b1 and b2 positively associated.

We could then fix

a1 + b1 = N1, a2 + b2 = N2.

so that a1, a2 are negatively associated with b1, b2. Having done this our mixture could

take the form

f0(θ1, θ2) =
m
∑

j=0

p0jf01(θ1; a1 + cj , b1 +N1 − cj)f02(θ2; a2 + cj , b2 +N2 − cj),

where
∑m

j=0 p0j = 1. One way to define p0j and cj would be to give cj a binomial

distribution so that

cj ∼ bin(m, p∗),

with p0j calculated from this as p0j = Pr(cj = j). Similarly, for negative correlation

the mixture could take the form

f0(θ1, θ2) =
m
∑

j=0

p0jf01(θ1; a1 + cj , b1 +N1 − cj)f02(θ2; a2 +N2 − cj , b2 + cj).

We can calculate prior moments for this mixture. The prior expectations of θ1 and θ2
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are

E0(θi) =
m
∑

j=0

p0j

∫ 1

0
θif0i(θi; ai + cj , bi +Ni − cj)dθi

=
m
∑

j=0

p0j
ai + cj

ai + bi +Ni
,

for i = 1, 2. The prior variances are given by Var0(θi) = E0(θ
2
i ) − E0(θi)

2, where the

second moment of θi is

E0(θ
2
i ) =

m
∑

j=0

p0j

∫ 1

0
θ2i f0i(θi; ai + cj , bi +Ni − cj)dθi

=
m
∑

j=0

p0j
(ai + cj)(ai + cj + 1)

(ai + bi +Ni)(ai + bi +Ni + 1)
.

Finally, in order to find the prior covariance between θ1 and θ2, we need E0(θ1θ2). This

is

E0(θ1θ2) =
m
∑

j=0

p0j

∫ 1

0
θ1f01(a1 + cj , b1 +N1 − cj)dθ1

∫ 1

0
θ2f02(a2 + cj , b2 +N2 − cj)dθ2

=
m
∑

j=0

p0j
(a1 + cj)

(a1 + b1 +N1)

(a2 + cj)

(a2 + b2 +N2)
.

The prior covariance is then Cov0(θ1, θ2) = E0(θ1θ2)− E0(θ1)E0(θ2).

Having observed x1 successes in group 1 and x2 successes in group 2 we update via Bayes

theorem using the likelihood in Equation 2.2 and obtain a joint posterior distribution

for θ1 and θ2, in the case of positive correlation, of the form

f1(θ1, θ2) =
m
∑

j=0

p1jf11(θ1;A1 + cj , B1 +N1 − cj)f12(θ2;A2 + cj , B2 +N2 − cj),

with posterior weights proportional to

p̂1k = p0k
Γ (a1 + b1 +N1)

Γ (a1 + ck)Γ (b1 +N1 − ck)

Γ (a1 + ck + x1)Γ (b1 +N1 − ck + n1 − x1)

Γ (a1 + b1 +N1 + n1)

× Γ (a2 + b2 +N2)

Γ (a2 + ck)Γ (b2 +N2 − ck)

Γ (a2 + ck + x2)Γ (b2 +N2 − ck + n2 − x2)

Γ (a2 + b2 +N2 + n2)
.

The weights are then p1k =
p̂1k

∑m
j=0 p1j

.

This is the same form as the prior density but with the parameters updated to A1 =
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a1+x1, B1 = b1+n1−x1, A2 = a2+x2 and B2 = b2+n2−x2. Similarly, the posterior

moments of θ1 and θ2 are of the same form as the prior but using A1, B1, A2 and B2.

2.12.1 Example: Heart attack data

Let us now apply this model to the heart attack data. We have 6 prior parameters

with which to make the 5 prior specifications given in Equations 2.15 and 2.16. We

settle on values of

a1 = 0.88, b1 = 18.7, a2 = 9.8, b2 = 46.5,m = 32, p∗ = 0.12,

so that we have a 33 component beta mixture. This gives prior moments for θ1 and θ2

of

E0(θ1) = 0.117, E0(θ2) = 0.117

Var0(θ1) = 0.0045, Var0(θ2) = 0.0011,

and Corr0(θ1, θ2) = 0.31. We can also produce a prior contour plot for this mixture

and this is given in Figure 2.10. Having updated with the observed numbers of deaths
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Figure 2.10: A prior contour plot for the finite mixture model, heart attacks example

in the two groups, x1 = 44 and x2 = 62, we obtain the joint posterior distribution with

A1 = 44.88, B1 = 534.7, A2 = 71.8, B2 = 524.5,
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and m = 32, p∗ = 0.12 as before. A posterior contour plot is given in Figure 2.11. We
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Figure 2.11: A posterior contour plot for the finite mixture model, heart attacks example

can also calculate posterior moments for θ1 and θ2. These are

E1(θ1) = 0.0803, Var1(θ1) = 1.27× 10−4,

E1(θ2) = 0.114, Var1(θ2) = 1.58× 10−4.

These results are very similar to those achieved in earlier models.

2.13 A finite component gamma mixture

Now suppose we wish to create a finite component gamma mixture prior for Poisson

models. We can do so in a similar way to the beta-binomial setup in the previous

section. If we have a single θ then we can think of observing a events in an interval of

length b. This gives a Poisson likelihood proportional to e−bθθa.

Then a mixture of the form

f0(θ) = p0f0(θ; a(1), b(1)) + (1− p0)f0(θ; a(2), b(2)),

represents probability p0 of observing a(1) prior events in an interval of length b(1) and

probability 1 − p0 of observing a(2) prior events in an interval of length b(2). Here

f0(θ; a, b) is a prior gamma density for θ with parameters a and b.

Considering the two parameter problem, if we wish to specify positive correlation be-
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tween θ1, θ2, then a finite mixture prior could be

f0(θ1, θ2) =

m
∑

j=0

p0jf01(θ1; a1 + cj , b1)f02(θ2; a2 + cj , b2),

for
∑m

j=0 p0j = 1. We can give each cj a binomial distribution as previously so that

cj ∼bin(m, p∗), for some p∗, with the weights being p0j = Pr(cj = j). If, alternatively,

we gave each cj a Poisson distribution this would lead to an infinite mixture.

If we wished to specify a negative prior correlation then the mixture could take the

form

f0(θ1, θ2) =
m
∑

j=0

p0jf01(θ1; a1 + cj , b1)f02(θ2; a2 +m− cj , b2),

where once again p0j = Pr(cj = j) for bin(m, p∗).

From this specification we can find the prior moments. The prior expectations of θ1

and θ2 are

E0(θi) =
m
∑

j=0

p0j

∫ ∞

0
θif0i(θi; ai + cj , bi)dθi

=
m
∑

j=0

p0j
ai + cj
bi

,

for i = 1, 2. To calculate the variances first we find the second moments.

E0(θ
2
i ) =

m
∑

j=0

p0j

∫ ∞

0
θ2i f0i(θi; ai + cj , bi)dθi

=
m
∑

j=0

p0j
(ai + cj)(ai + cj + 1)

b2i
.

Finally, we find the mixed second moment to obtain the prior covariance between θ1

and θ2.

E0(θ1θ2) =
m
∑

j=0

p0j

∫ ∞

0
θ1f01(θ1; a1 + cj , b1)dθ1

∫ ∞

0
θ2f02(θ2; a2 + cj , b2)dθ2

=
m
∑

j=0

p0j
(a1 + cj)

b1

(a2 + cj)

b2
.

If we observe the likelihood in Equation 2.3 then, by Bayes theorem, the posterior joint
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density is

f1(θ1, θ2) =

m
∑

j=0

p1jf11(θ1;A1 + cj , B1)f12(θ2;A2 + cj , B2),

where the posterior weights are proportional to

p̂1k = p0k
ba1+ck
1

(b1 + 1)a1+ck+x1

ba2+ck
2

(b2 + 1)a2+ck+x2

Γ (a1 + ck + x1)

Γ (a1 + ck)

Γ (a2 + ck + x2)

Γ (a2 + ck)
.

The posterior weights are then p1k =
p̂1k

∑m
j=0 p1j

.

The posterior gamma parameters are A1 = a1 + x1, B1 = b1 + 1, A2 = a2 + x2 and

B2 = b2 + 1. Thus posterior moments are as above but using these new parameter

values and weights.

2.13.1 Example: piston ring failures

Suppose we wish to apply this model to the Poisson example involving piston ring

failures. The prior specifications we wish to make are given in Equation 2.12.

Setting the prior parameter values to a1 = a2 = 18.8, b1 = b2 = 1.34, p∗ = 0.37 and

m = 58 leads to a 59 component mixture distribution with prior means and variances

E0(θi) = 30.0,Var0(θi) = 30.0,

and a prior correlation between θ1 and θ2 of 0.251. This gives a prior joint density as

in the left hand side of Figure 2.12. Having observed 46 failures in compressor 1 and
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Figure 2.12: Prior and posterior contour plots for the gamma finite mixture model

33 failures in compressor 2 the posterior parameter values are A1 = 64.8, B1 = 2.34,

A2 = 51.8 and B2 = 1.34 with p∗ and m as before. This leads to a joint posterior
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density as in the right hand side of Figure 2.12.

The posterior means and variances of θ1 and θ2 are

E1(θ1) = 38.02, E1(θ2) = 32.47

Var1(θ1) = 18.21, Var1(θ2) = 15.83,

and the posterior correlation is 0.115. With both observed numbers of failures being

higher than their prior expectations the means of both parameters have increased. Our

uncertainty has been reduced up on observation of the data. The posterior correlation

is lower than its prior counterpart.

2.13.2 Discussion

All of the non-copula density multipliers we have investigated have led to mixture

distributions. The first, g(θ1, θ2) = 1 + kθm1
1 θm2

2 produced a two component mixture

in both the beta-binomial and gamma-Poisson cases. The other, which was related

to probabilities associated with observing different numbers of “prior successes” had a

number of components determined by the parameter m.

Using any of the proposed mixtures prior specification is difficult as the marginal densi-

ties for θ1 and θ2 are not the beta or gamma densities f01(θ1) and f02(θ2). For example,

for the two component mixture the joint density is

f0(θ1, θ2) = p01f011(θ1)f012(θ2) + (1− p01)f021(θ1)f022(θ2),

and so the marginal density of θ1 is

h0(θ1) = p01f011(θ1) + (1− p01)f021(θ1),

This lack of marginality and subsequent difficulty in prior specification would become a

real problem in high dimensions. Some method to overcome this will have to be found

for density multipliers which lead to mixtures to be widely applicable.

Clearly a density multiplier which leads to a two component mixture results in sim-

pler calculations than that which produces a mixture of more than two components.

However, with relatively few components specification of a fairly strong relationship

between θ1 and θ2 can lead to a joint density which is bimodal. This bimodality can

be overcome by increasing the number of components in the mixture.
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2.14 Dirichlet approaches to the binomial case

Let us consider the case of correlated binomial parameters. Thinking about the number

of successes in group j, Xj , they can be separated into nj Bernoulli trials. We will,

without loss of generality, consider the groups to be different treatments. For each such

trial, i = 1, . . . , nj ,

Xij =







1, with probability θij ,

0, with probability 1− θij .

We could then imagine a population of individuals of four types as in Table 2.7.

Outcome
Treatment 1 Treatment 2 Probability

1 1 π11
1 0 π10
0 1 π01
0 0 π00

Table 2.7: Truth table for successes in 2 Bernoulli trials

That is, an individual would record a success under both treatments with probability

π11, a success in treatment 1 and failure in treatment 2 with probability π10, a failure

in treatment 1 and success in treatment 2 with probability π01 and failures in both

treatments with probability π00.

Clearly π11 + π10 + π01 + π00 = 1 and so we can give the four probabilities a Dirichlet

prior distribution,

π ∼ Dir(a),

for some parameter vector a = (a11, a10, a01, a00)
′

, so that their joint density is f0(π) ∝
∏

k,l=0,1 π
akl−1
kl . The probability an individual would record a success under treatment

1 (θ1) and treatment 2 (θ2) are then

θ1 = π11 + π10 1− θ1 = π01 + π00,

θ2 = π11 + π01 1− θ2 = π10 + π00.

Given x1 successes out of n1 trials under treatment 1 and x2 successes out of n2 trials

under treatment 2 the likelihood is

L(θ1, θ2) =

(

n1

x1

)

θx1
1 (1− θ1)

n1−x1

(

n2

x2

)

θx2
2 (1− θ2)

n2−x2 ,
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which becomes

L(π) =

(

n1

x1

)

(π11 + π10)
x1(π01 + π00)

n1−x1

(

n2

x2

)

(π11 + π01)
x2(π10 + π00)

n2−x2 .

(2.18)

Thus the posterior distribution will be a finite mixture of Dirichlet distributions. Un-

fortunately, this model isn’t sufficiently flexible: in the heart attack example we wish to

make five prior specifications and we have just four parameters. In order for a Dirichlet

model to be useful then a more flexible form will need to be found.

2.14.1 Aitchison A-class distributions

The Dirichlet distribution is a special case of the more general Aitchison A-class of

distributions (Aitchison, 1986). The log-density of the Dirichlet distribution is

log [f(π)] ∝
p
∑

i=1

(ai − 1) log πi,

for parameter vector π. The new class is defined to incorporate both the Dirichlet and

logistic-Normal distributional forms. Its probability density function is f(π) where

log [f(π)] ∝
p
∑

i=1

(ai − 1) log πi −
1

2

p
∑

i=1

p
∑

j=i+1

βij(log πi − log πj)
2,

Thus extra parameters βij are introduced. In order for this to be a proper density one

of two conditions must hold (Aitchison, 1986). Either

(i) the quadratic form must be positive definite and a1 + . . .+ ap ≥ 0, or

(ii) the quadratic form must be non-negative definite and ai > 0 for all i = 1, . . . , p.

The class is a conjugate prior to the multinomial distribution but its moments are not

analytically tractable. The density is

f(π) ∝
[

p
∏

i=1

πai−1
i

]

× exp







−1

2

p
∑

i=1

p
∑

j=i+1

βij(log πi − log πj)
2







.

This is not conjugate to the likelihood given in Equation 2.18 and so this class is not

suitable for our needs.
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2.15 Hierarchical modelling

Another possible fully Bayesian approach to the beta-binomial case would be to take

a hierarchical model. If the prior distributions for θ1 and θ2 were

θ1 ∼ beta(a1µ, b1[1− µ]), θ2 ∼ beta(a2µ, b2[1− µ]),

for some parameter µ, then µ could also be given a beta prior distribution so that

µ ∼ beta(aµ, bµ),

for hyperparameters aµ and bµ. The joint density for θ = (θ1, θ2, µ)
′

takes the form

f(θ) =
Γ (aµ + bµ)

Γ (aµ)Γ (bµ)
µaµ−1(1− µ)bµ−1 × Γ (a1µ+ b1[1− µ])

Γ (a1µ)Γ (b1[1− µ])
µa1µ−1(1− µ)b1[1−µ]−1

× Γ (a2µ+ b2[1− µ])

Γ (a2µ)Γ (b2[1− µ])
µa2µ−1(1− µ)b2[1−µ]−1

Thus updates using the likelihood in Equation 2.2 will be conjugate. However, due

to the µ terms inside the gamma functions associated with θ1 and θ2, calculations to

obtain such things as marginal distributions and moments for θ1 and θ2 are analytically

intractable.

We could define a similar sort of structure in the gamma-Poisson case. If we define our

Poisson parameters to be

θ1 = U + E1

θ2 = U + E2,

then we could give each of U,E1, E2 gamma prior distributions. Thus,

U ∼ gamma(aU , b), Ei ∼ gamma(ai, b),

for i = 1, 2. We see that it is necessary to use the same scale parameter b for each of

the distributions, however. This leaves only 4 free parameters in the model which is a

little overly restrictive.

2.16 Conclusions

In this chapter we have investigated fully Bayesian methods for modelling correlated

binomial probabilities or Poisson parameters without the need for intensive numerical
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calculations such as MCMC. Initially we considered copula functions and it became

apparent that the only family suitable to our needs was the FGM family. This copula

family produced a solution to the problem in both the beta-binomial and gamma-

Poisson cases but the usefulness of the FGM copula is limited by the restriction in prior

correlation it is possible to specify. To overcome this two extensions were investigated

which increased the range of possible correlations, if not by much. The marginality

property is also lost in the posterior.

We then considered mixtures. Two mixtures were used to model both the beta-binomial

and gamma-Poisson cases and both produced solutions to the problem in which poste-

rior joint densities were very similar to those produced for the copula model. It was felt

that whilst keeping the number of components low in the mixture distribution would

allow simpler calculations there was an issue with bimodality in joint densities using

mixtures with few components.

Prior specifications could not be made simply in general with density multipliers, copu-

las being the exception, due to a lack of marginality and it is felt that this is something

which would have to be overcome before they could be of practical use in higher di-

mensions.

As a comparison between the two models Tables 2.8 and 2.9 give posterior expectations

and variances for the two parameters using each model for the heart attack and piston

ring examples respectively.

Method E1(θ1) E1(θ2) Var1(θ1) Var1(θ2)

FGM copula 0.081 0.114 1.26× 10−4 1.56× 10−4

2-component 0.080 0.114 1.28× 10−4 1.59× 10−4

33-component 0.080 0.114 1.27× 10−4 1.58× 10−4

Table 2.8: A comparison of the different fully Bayesian models in the beta-binomial case

In Table 2.8 all of the posterior moments are very similar using the three methods.

This would appear to be due to the large number of observations and relatively weak

correlation.

Method E1(θ1) E1(θ2) Var1(θ1) Var1(θ2)

FGM copula 37.50 30.89 19.83 15.38
2-component 38.28 32.72 18.67 16.30
59-component 38.02 32.47 18.21 15.83

Table 2.9: A comparison of the different fully Bayesian models in the gamma-Poisson case

In contrast in Table 2.9 there are some differences between the posterior moments using
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the three methods. The results for the two mixtures are very similar but generally the

posterior estimates for the two groups are closer together than when using the FGM

copula.
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Bayes linear approaches

3.1 Introduction

In this chapter we apply Bayes linear approaches to the problem of inference for two

correlated binomial or Poisson parameters. Initially we consider a model for the bino-

mial case which takes advantage of properties of second order exchangeability between

Bernoulli trials within a group. We then consider models based upon the idea of Bayes

linear kinematics, a form of Bayes linear analysis in which changes in belief about some

quantities are propagated through to others within a Bayes linear structure. The use

of transformations of the unknown binomial or Poisson parameters is proposed. We

investigate several models involving such transformations and then one in which the

parameter is not transformed to allow for comparisons between models to be made.

3.2 Bayes linear methods

In a traditional Bayesian analysis a full joint prior distribution is specified for all observ-

ables and unknown quantities such as parameters. Prior beliefs are then updated, by

conditioning on the observations and using Bayes theorem, and posterior distributions

are calculated.

A Bayes linear analysis (Goldstein & Wooff, 2007) differs from a full Bayesian analysis

in that only first and second order moments are specified in the prior. Posterior (termed

adjusted) moments are then calculated. For example, for each quantity Q in the analysis

we specify its prior expectation and variance

E0(Q), Var0(Q),
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and for every two quantities Q1 and Q2, a prior covariance

Cov0(Q1, Q2),

is specified. Consider two vector random quantities α = (α1, . . . , αp)
′ and β =

(β1, . . . , βr)
′, where α is a collection of quantities which shall be observed and β is

a collection of quantities about which inferences are to be made. Suppose that a full

second order prior specification has been made for the set A = α ∪ β.

Bayes linear methods (Goldstein & Wooff, 2007) offer a procedure by which beliefs

about β are updated by a process of linear fitting on α. To do this, we minimise the

expected squared loss. That is, we minimise

E0





[

β −
p
∑

i=0

ciαi

]2


 ,

for α = (α1, . . . , αp)
′

with respect to c0, c1, . . . , cp, where α0 = 1. This gives the Bayes

linear updating equations for the adjusted expectation and variance of β given α:

E1(β;α) = E0(β) + Cov0(β,α)Var−1
0 (α)[α− E0(α)]

Var1(β;α) = Var0(β)− Cov0(β,α)Var−1
0 (α)Cov0(α,β),

when Var0(α) is invertible. When this matrix is not invertible a suitable generalised

inverse such as the Moore-Penrose inverse can be used.

In real world problems there are often many quantities, both unknown and observable,

for which it is necessary to make full second order prior specifications. In practice it

is often unrealistic to make all of these specifications individually and so properties of

exchangeability between quantities can be utilised.

Definition. If we have a collection of random quantities (say vectors)Q = (Q1, . . . ,Qk)

then we say that this set is exchangeable if any other ordering of the set would not

alter our beliefs, in the form of the joint density f0(Q), about Q.

This requirement is fairly restricive and so in Bayes linear statistics a weaker form,

second order exchangeability, has been utilised. This second order exchangeability

is often sufficient to reduce the burdens associated with prior specifications whilst

maintaining a representation which is consistent with an expert’s prior beliefs.

Definition. We say that the collection Q is second order exchangeable if its first

and second order belief specifications would not alter under any re-ordering of Q. That
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is, for some constants c1, c2, c3,

E0(Qi) = c1, (3.1)

Var0(Qi) = c2, (3.2)

Cov0(Qi,Qj) = c3, (3.3)

for all i, j ∈ Q, where i 6= j.

Thus in second order exchangeable collections of quantities we assume equal expecta-

tions, variances and covariances for the random quantities in Q.

Now let us suppose we assume a second order exchangeable structure for our vector

of unknown quantities Q. Goldstein (1986) gives a representation theorem, repeated

in the following form in Goldstein & Wooff (2007), which shows how models for such

second-order exchangeable structures can be created.

Theorem 3.1. If Q = Q1,Q2, . . . is an infinite second-order exchangeable sequence of

random vectors, with mean and variance structure given as in Equations 3.1-3.3 then

we may introduce the further random vector M(Q), the population mean vector, and

the infinite sequence R1(Q),R2(Q), . . ., termed the individual residual vectors, which

satisfy the following properties.

(i) For each individual i

Qi = M(Q) +Ri(Q),

where M(Q) has mean E[M(Q)] = c1 and variance Var(M(Q)) = c3.

(ii) The collection R1(Q),R2(Q), . . . is second-order exchangeable with

E[Ri(Q)] = 0, Var(Ri(Q)) = c2 − c3 Cov(Ri(Q),Rj(Q)) = 0,

for i 6= j. Also Cov(Ri(Q),M(Q)) = 0.

3.3 Second order exchangeable model

The methodology in this section follows closely to that used by Coolen et al. (2001) in

their application of Bayes linear methods to software partition testing.

Let us suppose that we have a number of individuals split into 2 groups with n1

individuals in group 1 and n2 in group 2. Each undertakes the same task and a success
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or failure is recorded. So, for individual j in group i,

Xij =







1, with probability pij ,

0, with probability 1− pij ,

for i = 1, 2 where pij is the probability of a success. Thus we have X1j ∼ Bern(p1j)

and X2j ∼ Bern(p2j). Within each group we can count the number of successes, Xi,

so that

Xi =

ni
∑

j=1

Xij .

Now, in order to perform a Bayes linear analysis directly on the Xij ’s, it would be

necessary to specify N = n1 + n2 expectations and N(N+1)
2 variances and covariances.

In practice this would become infeasible for reasonably large N . Thus instead we shall

assume that individuals within a group are second-order exchangeable so that their

prior moments are given by

E0(Xij) = pi,

Var0(Xij) = pi(1− pi),

Cov0(Xij , Xil) = vi,

for l 6= j. Let us further suppose that there is some constant covariance between

individuals in different groups, namely

Cov0(X1j , X2l) = v12.

Now, as we have specified a second-order exchangeable structure for individuals in each

group we can apply the representation theorem, 3.1. Thus, for Xij ,

Xij =Mi + ǫij ,

with mean component Mi and residual component ǫij . Therefore the prior means and

variances of Mi and ǫij are

E0(Mi) = pi, Var0(Mi) = vi,

E0(ǫij) = 0, Var0(ǫij) = pi(1− pi)− vi,

where the residual components are mutually uncorrelated and are uncorrelated with

the mean components so that Cov0(Mi, ǫij) = 0 and Cov0(ǫij , ǫkl) = 0. The mean
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components are related, however, with

Cov0(M1,M2) = Cov0(X1j − ǫ1j , X2l − ǫ2l)

= v12.

We can think of Mi as the unknown population average proportion of successes in

group i and this is the quantity in which we shall be interested. Thus we will choose

to learn about the set M = (M1,M2)
′

.

Given the above setup we can also calculate some other covariances.

Cov0(Mi, Xij) = Cov0(Xil − ǫil, Xij) = vi,

Cov0(Mi, Xkj) = Cov0(Xil − ǫil, Xkj − ǫkj) = v12,

for k 6= i. As a result of the exchangeable structure we have assumed within each

group X1 and X2 are sufficient statistics for all of the information found in the indi-

vidual Bernoulli trials Xij . To see this let us return to the definition of second-order

exchangeability. As all of the Bernoulli trials in a group are second-order exchangeable

this means that a relabelling of the trials would not affect our beliefs up to second order

about them. Thus the order of the trials does not contain any information and so the

only information is to be found in the number of successful trials. We shall prove this

formally below.

Thus we shall use Bayes linear methods to update M = (M1,M2)
′

using X =

(X1, X2)
′

. In order to carry out these updates we shall need prior expectations, vari-

ances and a covariance for X1 and X2. Their expectations are given by

E0(Xi) = E0





ni
∑

j=1

Xij



 =

ni
∑

j=1

E0(Xij) = nipi,

with prior variances,

Var0(Xi) = Var0





ni
∑

j=1

Xij





=

ni
∑

j=1

Var0(Xij) +
∑∑

j 6=k

Cov0(Xij , Xik)

= nipi(1− pi) + 2

(

ni

2

)

vi.
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The necessary covariances can also be calculated. The within-group covariance is

Cov0(Mi, Xi) = Cov0



Mi,

ni
∑

j=1

Xij



 =

ni
∑

j=1

Cov0(Mi, Xij) = nivi,

and the between-group covariance is found to be

Cov0(Mi, Xk) = Cov0



Mi,

nk
∑

j=1

Xkj



 =

nk
∑

j=1

Cov0(Mi, Xkj) = nkv12.

Finally we need the prior covariance between X1 and X2. This is

Cov0(X1, X2) = Cov0





n1
∑

j=1

X1j ,

n2
∑

l=1

X2l



 =

n1
∑

j=1

n2
∑

l=1

Cov0(X1j , X2l) = n1n2v12.

Thus all of the prior specifications for X1 and X2 can be made in terms of the values

already specified for the Xij ’s.

We shall now show the sufficiency more formally. Bayes linear sufficiency is defined in

Goldstein & Wooff (2007).

Definition. If α, β and γ are 3 collections of random quantities then γ is Bayes linear

sufficient for α for adjusting β if E1(β;α ∪ γ) = E1(β;γ).

We can then show the sufficiency of X1 and X2 using the following theorem, also from

Goldstein & Wooff (2007).

Theorem 3.2. If α, β and γ are 3 belief structures then E1(β;α ∪ γ) = E1(β;γ) is

equivalent to

Cov(β,α) = Cov(β,γ)Var−1(γ)Cov(γ,α). (3.4)

We consider, without loss of generality, the case of i = 1. Set

α = X1 = (X11, . . . , X1n1)
′

,

β = M = (M1,M2)
′

,

γ = X1 =
∑n1

j=1X1j .

Then

Cov0(M , X1) =

[

Cov0(M1,
∑

j X1j)

Cov0(M2,
∑

j X1j)

]

=

[

n1v1

n1v12

]

.
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Cov0(M ,X1) is a (2× n1) matrix the [i, j]’th element of which is

Cov0(Mi, X1j) =







v1, if i = 1,

v12, if i = 2.

Cov0(X1,X1) is a (1×n1) vector all of the elements of which are p1(1−p1)+(n1−1)v1.

Thus the right hand side of Equation 3.4 becomes

Cov0(M , X1)Var
−1
0 (X1)Cov0(X1,X1) =

1

k1
Cov0(M , X1)Cov0(X1,X1)

=
k2
k1

Cov0(M ,X1),

where
k2
k1

=
n1p1(1− p1) + n1(n1 − 1)v1
n1p1(1− p1) + 2Cn1

2 v1
= 1. Therefore, by Theorem 3.2, X1 is Bayes

linear sufficient for X1 for adjusting M .

3.3.1 Example: Heart attack data

We are now in a position to apply our Bayes linear modelling approach to the heart

attack data given in Section 2.6.3. Our first task is to specify the prior parameters

pi and vi for i = 1, 2 and v12. We shall make similar specifications to the models in

Chapter 2 for comparability.

We find p1 and p2, the probabilities of patients dying in groups 1 and 2 respectively,

by setting them to the values of their prior expectations in previous models.

E0(Xij) = pi = 0.125 ⇒ Var0(Xij) = pi(1− pi) = 0.109375,

for i = 1, 2. The other prior values can be specified by noting that for binary random

variables Y1 and Y2 their covariance can be expressed as

Cov(Y1, Y2) = Pr(Y2 = 1)Pr(Y1 = 1 | Y2 = 1)− Pr(Y1 = 1)Pr(Y2 = 1)

= Pr(Y2 = 1)[Pr(Y1 = 1 | Y2 = 1)− Pr(Y1 = 1)].

Thus we can assess the 3 remaining covariances by eliciting probabilities in the usual

subjective manner in terms of the fair price of gambles (De Finetti, 1974, 1975). Sup-

pose we do this and in particular we wish to have stronger correlation between variables

within a group than between variables in different groups. Thus, following the elicita-

tion process, it is decided that

Cov0(X1j , X1l) = v1 = 0.003125, Cov(X2j , X2l) = v2 = 0.001875

60



Chapter 3. Bayes linear approaches

and

Cov(X1j , X2l) = v12 = 0.00125.

From these 5 quantities we can calculate the prior moments for M1 and M2. These are

E0(M1) = E0(M2) = 0.125, Var0(M1)=0.003125, Var0(M2)=0.001875 and

Cov0(M1,M2)=0.00125.

To complete our prior specifications we need the prior moments for X1 and X2 and

the strengths of their relationships with M1 and M2. Noting that n1 = 560 and

n2 = 540, they are given by E0(X1) = 70, Var0(X1) = 1039.5, Cov0(M1, X1) = 1.75

and Cov0(M2, X1) = 0.7 forX1 and E0(X2) = 67.5, Var0(X2) = 604.8, Cov0(M1, X2) =

0.675 and Cov0(M2, X2) = 1.0125 for X2. The prior covariance between X1 and X2 is

378.

We are now in a position to carry out a Bayes linear analysis on the heart attack

data. All of the following calculations have been performed in the computer package

designed for carring out Bayes linear analyses [B/D] (Wooff & Goldstein, 2000; Wooff,

2000). Using this software the adjusted expectations of M1 and M2 having observed

X = (X1, X2)
′

are found to be

E1(M1;X) = 0.0017X1 + 0.0001X2 + 0.0037

E1(M2;X) = 0.0001X1 + 0.0016X2 + 0.0097.

The standardised adjusted expectations are then calculated as

E1(M1;X) = 0.0533X∗
1 + 0.0020X∗

2 + 0.125

E1(M2;X) = 0.0027X∗
1 + 0.0399X∗

2 + 0.125,

where X∗
i = Xi−E0(Xi)√

Var0(Xi)
is the standardised quantity of Xi. It can be seen from the

standardised adjusted expectations that we learn most about M1 through X1 and we

learn most about M2 through X2. However the increases in knowledge about M1

through X2 and M2 through X1 though smaller are not insignificant. That is, our

beliefs about the death rate in group 1 are being updated by the data from group 1

and group 2, as are our beliefs about the death rate in group 2.

The adjusted variances can then be found and are given by

Var1(M1;X) = 0.0002

Var1(M2;X) = 0.0002,

leading, through the equation Var0(Mi) =Var1(Mi;X)+RVar1(Mi;X), to resolved
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variances of
RVar1(M1;X) = 0.0029

RVar1(M2;X) = 0.0017,

and resolutions of
R1(M1;X) = 0.9438

R1(M2;X) = 0.9009.

The resolution R1(Mi;X) = RVar1(Mi;X)
Var0(Mi)

and represents the proportion of uncertainty

about Mi which is resolved by observing X. Thus 94.38% of the uncertainty about

M1 and 90.09% of the uncertainty about M2 have been resolved and so a great deal

has been learnt about the efficacy of the new drug. The two canonical directions, the

linear combinations of M1 and M2 which lead to the largest and smallest resolutions,

C1 and C2, for the heart attack data are given by

C1 = 13.8714M1 + 8.0196M2 − 2.7364

C2 = 15.6188M1 − 25.7480M2 + 1.2662,

and their resolutions are
R1(C1;X) = 0.9530

R1(C2;X) = 0.8487.

The canonical directions are automatically rescaled by [B/D] to have mean zero and

unit variance. Hence we can expect to resolve at most 95.3% of the uncertainty about

any linear combination of M1 and M2 and we will always resolve at least 84.87%. That

is, we will always significantly reduce the uncertainty about whichever combination of

M1 and M2 we are interested in.

In our heart attack data 44 patients died out of a total of 560 in group 1 and 62 patients

died out of a total of 540 in group 2. This means that our observations are x1 = 44

and x2 = 62. When we carry out the Bayes linear analysis using these values we see

that our adjusted expectations having observed x = (x1, x2)
′

are

E1(M1;x) = 0.0816

E1(M2;x) = 0.1139.

These are both lower than their corresponding prior expectations of 0.125. The adjusted

expectation for M1 is also quite a lot smaller than the adjusted expectation for M2

implying that there could be a difference between the death rates for the two groups.

We are investigating the heart attack data in order to try and answer the question ‘is

the drug sulfinpyrazone reducing the number of patients dying following heart attacks?’

In order to answer this question it will be useful to look at the difference between the
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two death rates

L =M1 −M2.

As this is a linear combination of M1 and M2 we expect to reduce our uncertainty

about it by between 85% and 95% (our minimum and maximum resolutions).

The prior expectation and variance of L are given by

E0(L) = 0, Var0(L) = 0.0025

and we see that the initial expectation of L is zero. The adjusted expectation of L is

given by

E1(L;X) = 0.00165X1 − 0.0015X2 − 0.06

and the observed adjusted expectation is found to be

E1(L;x) = −0.0323.

That is, we now expect the number of patients dying given the drug to be lower than

the number dying given the placebo. The adjusted variance is then

Var1(L;X) = 0.0003.

We can take intervals of two standard deviations from the adjusted expectation to give

us an idea of where L might reasonably be expected to lie;

E1(L;x)± 2
√

Var1(L;X) = (−0.067, 0.00234).

Zero is in this interval and so on this basis we cannot conclude with any certainty that

sulfinpyrazone is reducing the number of patients dying following heart attacks.

3.3.2 Discussion

We have used the representation theorem for second-order exchangeable quantities to

model the heart attack data via Bayes linear updating. However, with binary (or

binomial) variables, we know the relationship between the mean and the variance. The

variance of a Bernoulli variable with mean p is p(1 − p). We can set up our prior to

respect this relationship, as indeed we have in the above analysis, but the adjusted

means and variances will not satisfy this relationship. The adjusted expectation of Xij

is given by

E1(Xij ;x) = p
′

i,
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where p′i is the adjusted expectation for Mi. The adjusted variance of Xij is then

Var1(Xij ;x) = v
′

i − vi + pi(1− pi)

6= p
′

i(1− p
′

i) (in general),

where v
′

i is the adjusted variance of Mi. One possible way to overcome this would be

to calculate the adjusted means and variances for the Mi’s and calculate the variances

for the unobserved Xij ’s using p′i(1 − p′i), where p′i is the adjusted expectation for

Mi. However this can lead to the case where posterior variances are larger than prior

variances.

While this is possible in the beta-binomial case it only tends to happen when most of

the beta density is close to a boundary. However, the prior expectation of a posterior

variance cannot be greater than the prior variance. We know that, for p as above and

binomially distributed Y | p, a priori,

Var(p) = EY [Var(p | Y )] + VarY [E(p | Y )],

so that the prior expectation of the posterior variance, that is the expectation over the

Y distribution of the conditional variance of p given Y , is

EY [Var(p | Y )] = Var(p)−VarY [E(p | Y )] ≤ Var(p).

Another issue is that, in this case where we know the mean-variance relationship, the

Bayes linear updating is (arguably) not using the information in the most efficient

way. Bayes linear updates have the property that our update of the mean is unaffected

by anything which we learn about the variance. This is not an obviously reasonable

property with Bernoulli or binomial variables where, once we change our expectation

for the mean, we clearly change what we think about the variance and therefore change

what we think about how we adjusted the mean.

Finally, the Bayes linear method is (as the name implies) a linear fitting procedure. This

works very well on quantities defined on (−∞,∞) but arguably less well on quantities

such as probabilities as we have here. It would seem sensible to consider a suitable

transformation of such quantities.
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3.4 Bayes linear kinematics

3.4.1 Probability kinematics

Probability kinematics (Jeffrey, 1965) is a method for updating probabilities of events

when beliefs over elements in a partition change in some way. Let us suppose that we

have a partition A = (A1, A2, . . . , An) and that the Ai’s have probabilities Pr0(Ai) = pi

with
∑n

i=1 pi = 1.

Now, suppose that we receive some information which causes us to update the proba-

bilities of these events to Pr1(A1), . . . ,Pr1(An). We can impose the condition that, for

any future event B,

Pr0(B | Ai) = Pr1(B | Ai), ∀i. (3.5)

The ‘new’ marginal probability of B is found by probability kinematics on

Pr1(A1), . . . ,Pr1(An). It is

Pr1(B) =
n
∑

i=1

Pr0(B | Ai)Pr1(Ai).

Successive probability kinematics are not necessarily commutative, however. A great

deal of work has been carried out to determine conditions for commutativity of proba-

bility kinematics. See, for example, Field (1978), Diaconis & Zabell (1982) and Doring

(1999).

To understand this lack of commutativity consider a simple case where we have two

unknowns (partitions) A,B, each of which can take only two values, 0,1. The initial

joint probability distribution is as follows.

B
0 1

A 0 p00 p01
1 p10 p11

Let A0 be the event that “A = 0” etc. The conditional probabilities for B | A are

Pr(B0 | A0) =
p00

p00 + p01
, Pr(B1 | A0) =

p01
p00 + p01

,

Pr(B0 | A1) =
p10

p10 + p11
, Pr(B1 | A1) =

p11
p10 + p11

.

Now suppose we gain information which causes us to change our marginal probabilities
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for A to Pr(A0) = q0, Pr(A1) = q1. Hence, by probability kinematics, the joint

distribution would become as in Table 3.1.

B
0 1

A 0 q0p00/(p00 + p01) q0p01/(p00 + p01)
1 q1p10/(p10 + p11) q1p11/(p10 + p11)

Table 3.1: Joint distribution of A and B

Now the conditional probabilities for A | B are

Pr(A0 | B0) =

(

q0p00
p00 + p01

)

/

{(

q0p00
p00 + p01

)

+

(

q1p10
p10 + p11

)}

,

Pr(A1 | B0) =

(

q1p10
p10 + p11

)

/

{(

q0p00
p00 + p01

)

+

(

q1p10
p10 + p11

)}

,

Pr(A0 | B1) =

(

q0p01
p00 + p01

)

/

{(

q0p00
p00 + p01

)

+

(

q1p10
p10 + p11

)}

,

Pr(A1 | B1) =

(

q1p11
p10 + p11

)

/

{(

q0p00
p00 + p01

)

+

(

q1p10
p10 + p11

)}

.

Suppose we gain information which causes us to change our marginal probabilities for

B to Pr(B0) = r0, Pr(B1) = r1. Hence, by probability kinematics, Pr(A0, B0) would

become

Pr(A0, B0) = Pr(B0) Pr(A0 | B0)

=

(

r0q0p00
p00 + p01

)

/

{(

q0p00
p00 + p01

)

+

(

q1p10
p10 + p11

)}

=
r0q0p00

q0p00 + q1p10

(

p00 + p01
p10 + p11

) .

If we had received the information in the opposite order (about B then A) we would

have obtained

Pr(A0, B0) =
r0q0p00

r0p00 + r1p01

(

p00 + p10
p01 + p11

) .

Clearly the updates are not commutative.

Papathomas & O’Hagan (2005) utilise probability kinematics (called in their terminol-

ogy Jeffrey’s conditionalization) to update beliefs for binary variables when information

received is of varying quality. The dependence between the variables is represented by

a threshold copula and simulation methods are used to find posterior quantities.
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3.4.2 Bayes linear kinematics

Bayes linear kinematics is the kinematic form of a Bayes linear analysis in which the

effects of changes in belief about some quantities, rather than actual observations on

them, are propagated through to others within a Bayes linear structure. It was devel-

oped in Goldstein & Shaw (2004).

Define the full second-order prior specification for some vector random quantity Q to

be

S0(Q) = [E0(Q),Var0(Q)],

where E0(Q) is a vector of prior expectations and Var0(Q) is a prior variance matrix.

Suppose that, rather than directly observing α in Section 3.2, information Iα is received

which causes our beliefs about α to be updated to S1(α) = [E1(α),Var1(α)] rather

than S0(α).

Then the specification S1(A), for A = (α,β), is a Bayes linear kinematic update

(Goldstein & Shaw, 2004) if it satisfies

E0(β;α) = E1(β;α), Var0(β;α) = Var1(β;α),

where Ei(β;α) and Vari(β;α) are the Bayes linear adjusted expectation and variance

of β by α using Si(A). These are the Bayes linear equivalents of Equation 3.5. This

yields the Bayes linear kinematic updating equations

E1(A) = E0(A) + Cov0(A,α)Var−1
0 (α)[E1(α)− E0(α)], (3.6)

Var1(A) = Var0(A;α) + Cov0(A,α)Var−1
0 (α)Var1(α)Var−1

0 (α)Cov0(α,A)(3.7)

This is also true if A is replaced by β in the above equations. Taking the case of β if

we observe α directly we return to the usual Bayes linear update.

Let us suppose that we wish to make multiple updates. If we initially observe infor-

mation Iα this updates our beliefs about A to S1(A; Iα) using Equations 3.6 and 3.7

as before. If we then observe information Iβ which updates our beliefs about β to

S2(β; Iα, Iβ) we can use Bayes linear kinematics a second time to obtain S2(A; Iα, Iβ).

Now suppose that we observe the 2 pieces of information in the opposite order. Thus

initially we observe Iβ which updates our beliefs about β to S1(β; Iβ) and we perform

Bayes linear kinematics to obtain S1(A; Iβ). We then observe Iα which updates our

beliefs over α to S2(α; Iβ, Iα) and use Equations 3.6 and 3.7 to obtain S2(A; Iβ, Iα).

We wish to know when these two updates are commutative, i.e., when S2(A; Iα, Iβ) =

S2(A; Iβ, Iα). Goldstein & Shaw (2004) give necessay and sufficient conditions for a
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unique, commutative, Bayes linear kinematic update.

They show, in Theorem 5, that there is a unique commutative solution if and only if

any of the following hold.

(i) λmax < 1, where λmax is the largest eigenvalue of Var−1
1 (α;β)Var1(E1(α;β);α),

(ii) Var−1
1 (α; Iα) + Var−1

1 (α; Iβ)−Var−1
0 (α) is positive definite,

(iii) Var−1
1 (β; Iα) + Var−1

1 (β; Iβ)−Var−1
0 (β) is positive definite.

From this a sufficiency condition is derived. Consider (ii) above. Clearly if Var−1
1 (α; Iα)−

Var−1
0 (α) is positive definite then the condition holds. This will be positive definite if

Var0(α)−Var1(α; Iα) is positive definite. This leads directly to Corollory 3 of Goldstein

& Shaw (2004), which says if

Var1(α; Iα) < Var0(α) or Var1(β; Iβ) < Var0(β), (3.8)

then there is a unique commutative Bayes linear kinematic update. Thus, if recieving

information causes the variance of either or both quantities to reduce then there will

be a commutative update. Thus if we find a model in which variances always reduce

on observation of data then we will always be able to use Bayes linear kinematics to

provide a commutative solution.

This would allow us to provide general models in which commutativity does not have

to be considered and which are always applicable in the analysis of related quantities

in two dimensions.

When this unique solution exists it is given by

E(2)(A) = Var(2)(A){Var−1
1 (A; Iα)E1(A; Iα)

+ Var−1
1 (A; Iβ)E1(A; Iβ)−Var−1

0 (A)E0(A)}, (3.9)

and

Var(2)(A) = {Var−1
1 (A; Iα) + Var−1

1 (A; Iβ)−Var−1
0 (A)}−1, (3.10)

where A can be replaced by α or β. The above solution is clearly commutative as

swapping the updates in the equations would not alter the solution. We shall consider

the case of more than two related quantities in Section 4.3.
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Figure 3.1: Bayes linear Bayes graphical model in 2 dimensions

3.5 Bayes linear Bayes structures

So far all of the models we have considered have been either completely full Bayesian or

Bayes linear. It is also possible to combine these two approaches to obtain a structure

in which some unknowns have full Bayesian relationships and some have Bayes linear

relationships. Following Goldstein & Shaw (2004), we call these Bayes linear Bayes

structures.

Suppose that we have unknowns α,β, Iα, Iβ as in the previous section and give a

Bayes linear belief structure to (α,β). We could then give a full Bayesian probability

specification to the pairs (α, Iα) and (β, Iβ).

We impose the condition that given α, Iα is conditionally independent of everything

in (β, Iβ) and given β, Iβ is conditionally independent of everything in (α, Iα). These

three conditions define a Bayes linear Bayes structure.

We can represent situations satisfying the above relationships using a Bayes linear Bayes

graphical model. This is a combination of Bayesian graphical models (Lauritzen, 1996)

and Bayes linear graphical models (Goldstein & Wilkinson, 2000). In such a model

unknowns are represented using nodes and relationships between them using arcs (or

edges).

Full Bayesian relationships take the form of black arcs and Bayes linear relationships red

arcs. In the case of full Bayesian relationships the arc will be directed if the distribution

of one of the quantities is conditional on the other quantity. If the distribution of X1

were conditional on X2 then there would be an arrow on the arc between these two

variables pointing from X1 to X2.

The structure above has the Bayes linear Bayes graphical representation as in Figure

3.1.

We can represent more complex structures using Bayes linear Bayes models than that
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given above. Suppose now we have a set of unknowns given by

B = {Y ,X1, . . . ,Xs,D1, . . . ,Ds}.

Here D1, . . . , Ds are quantities which shall be observed and these will directly update

our beliefs about X1, . . . , Xs.

The conditions for a Bayes linear Bayes structure are now;

• The collection of quantities (Y ,X1, . . . ,Xs) is given a Bayes linear belief struc-

ture.

• A full Bayesian probability specification is given to each (Xi,Di) for i = 1, . . . , s.

• Each Di is conditionally independent of B\{Xi,Di} given Xi.

In such a situation, for s = 3, the Bayes linear Bayes graphical model is as in Figure

3.2.

 

 

D3

X3

X1

D1

X2

D2

Y

Figure 3.2: A second Bayes linear Bayes graphical model
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3.6 Bayes linear kinematics for counts

Consider the two parameter problem from Chapter 2. We have counts X1 and X2 such

that either

Xi | θi ∼ bin(ni, θi), or Xi | θi ∼ Po(θi),

for unknown parameters θi, i = 1, 2. Conditional on the values of θ1, θ2, our counts

X1, X2 are independent. Each θi is given the conjugate prior distribution so that

θi ∼ beta(ai, bi) or θi ∼ gamma(ai, bi),

for binomial and Poisson Xi respectively. We shall embed these fully Bayesian updates

within a Bayes linear Bayes structure and utilise Bayes linear kinematics to solve this

problem.

Observation of xi successes in group i leads to a conjugate fully Bayesian update within

this group. The resulting posterior distributions in the two models are then

θi | xi ∼ beta(ai + xi, bi + ni − xi) or θi | xi ∼ gamma(ai + xi, bi + 1),

respectively. Thus the prior mean and variance of θi in the beta-binomial model are

E0(θi) =
ai

ai + bi
, Var0(θi) =

aibi
(ai + bi)2(ai + bi + 1)

, (3.11)

and the posterior mean and variance are

E1(θi) =
ai + xi

ai + bi + ni
, Var1(θi) =

(ai + xi)(bi + ni − xi)

(ai + bi + ni)2(ai + bi + ni + 1)
. (3.12)

In the gamma-Poisson case the prior mean and variance of θi are

E0(θi) =
ai
bi
, Var0(θi) =

ai
b2i
, (3.13)

and, having observed xi successes, the posterior mean and variance are

E1(θi) =
ai + xi
bi + 1

, Var1(θi) =
ai + xi
(bi + 1)2

. (3.14)

In both cases it would be possible to proceed by linking the parameters θ1, θ2 in a Bayes

linear structure and propagating the within-group updates through to the other group

directly using Bayes linear kinematics. Indeed, this is exactly what Goldstein & Shaw

(2004) do.
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However, we believe that this is not the most effective way to perform such an anal-

ysis. The quantity in the Bayes linear structure, about which we recieve information,

need not be θi itself. It could be some function of θi or even something more loosely

associated with θi.

We propose, rather than choosing to learn about θi directly, we transform θi to a new

quantity ηi on (−∞,∞) and embed this into the Bayes linear structure. We believe

that this will lead to more effective Bayes linear updates and so is the appropriate way

to proceed in this situation. We now discuss the reasons for proposing such transfor-

mations.

3.7 The use of transformations

As we mentioned in the previous section, it would be possible to proceed by linking

the parameters θ1, θ2 in a Bayes linear structure. However there are advantages in

transforming the parameters first. The transformed parameters η1, η2 are then linked

in a Bayes linear structure. The reasons for using the transformation are as follows.

Firstly, the range of θi is bounded to 0 < θi < 1 in the binomial case and 0 < θi <∞ in

the Poisson case. The combination of linear updates with bounded parameter spaces

seems undesirable both in terms of first and second moments. If information leads

to adjustment of the expectation for a quantity towards a boundary, it seems clear

that this adjustment should not continue to be linear as the boundary is approached.

It is to be expected that variances will be affected by the proximity of a boundary

and beliefs, when the mean is close to a boundary, will no longer be symmetric in

the sense that deviations from the mean in either direction would be regarded in the

same way. Similarly there are difficulties with covariances in bounded spaces where the

tendency would be to imagine rather nonlinear relationships between unknowns close

to boundaries. So it is desirable to transform the parameters onto unbounded spaces.

Secondly it is possible for the variances of the untransformed parameters θi to increase

when data are observed. For example, in the beta-binomial case above, when ai =

7, bi = 1, ni = 4 and xi = 2. In the gamma-Poisson case the posterior variance

can be greater than the prior variance if xi is sufficiently large. While Goldstein &

Shaw (2004) (Theorem 5) give conditions for the existence of unique Bayes linear

kinematic updates which allow some such variance increase, the transformations have

the effect of making reductions in variance of the transformed parameters occur when

observations are made, at least in most circumstances, and therefore allow use of the

simpler sufficient condition given in Corollary 3 of Goldstein & Shaw (2004).

Bayes linear kinematics, without transformation, gives a rule for adjusting beliefs about
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θ1, θ2 by Bayes linear updates. Similarly Bayes linear kinematics, with the transfor-

mation, gives a Bayes linear rule for updating beliefs about η1, η2, where there is a 1

- 1 relationship between ηi and θi. Any further use of conjugate Bayesian updating of

beliefs about θj , given observation of Xj , after already adjusting by observation of Xi,

relies on the idea that θj still has a distribution of the required conjugate form, whether

or not a transformation is used. Similarly evaluating predictive distributions for new

observations or credible intervals for θ1, θ2 depends on such an idea. Additionally, when

a transformation is used, this preserved conjugate form is required in order to convert

back from the adjusted moments of ηj to the new distribution for θj .

Clearly, if adjustments were only ever made in one direction, eg. of beliefs about θj

by observing Xi, and this was never reversed to adjust beliefs about θi by observing

Xj , then it could simply be declared that the conditional distribution was the required

conjugate distribution. Such one-way belief adjustment might be appropriate, for ex-

ample, in a time-series forecasting context, as in West et al. (1985). Even in this case,

however, we would be saying that the conjugate distribution holds both when we make

the update and for forecasts to time t+ k.

When commutativity, in the strong sense that conjugate updates of the marginal dis-

tributions of θ1, θ2 are always appropriate, is required then this might be regarded as

a pragmatic approximation which does not correspond exactly to a full Bayesian con-

ditioning analysis. With no transformation, this assumption is made directly on the

distributions of θ1, θ2 under Bayes linear kinematic updates. With transformation, the

assumption applies to the corresponding distributions of η1, η2, in the same way.

3.7.1 The transformed approach

Having decided on the use of transformations of the binomial and Poisson parameters

we represent them using the function g(), where

ηi = g(θi),

for i = 1, 2. The transformation g() is such that for either 0 < θi < 1 in the beta-

binomial case or θi > 0 in the gamma-Poisson model then ηi ∈ (−∞,∞). We then link

η1, η2, rather than θ1, θ2, in a Bayes linear structure.

In order to perform Bayes linear kinematics we shall need the prior means and variances
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of η1, η2. In the beta-binomial model they are

E0(ηi) =

∫ 1

0
g(θi)f0i(θi)dθi,

Var0(ηi) =

∫ 1

0
[g(θi)]

2f0i(θi)dθi − [E0(θi)]
2,

where f0i(θi) is the prior beta density for θi. After the conjugate updates the expres-

sions for the mean and variance, E1(ηi) and Var1(ηi), remain of the same form but with

ai and bi replaced by ai + xi and bi + ni − xi respectively.

In the gamma-Poisson model the prior means and variances of each ηi are

E0(ηi) =

∫ ∞

0
g(θi)f0i(θi)dθi,

Var0(ηi) =

∫ ∞

0
[g(θi)]

2f0i(θi)dθi − [E0(θi)]
2,

where now f0i(θi) is the gamma density associated with θi. Having observed xi, E1(ηi)

and Var1(ηi) are obtained in the same form but using the new parameter values ai+xi

and bi + 1.

We can propagate these changes in belief through to the other group via the Bayes

linear kinematic updating equations.

E1(ηj ;xi) = E0(ηj) +
Cov0(ηi, ηj)

Var0(ηi)
[E1(ηi)− E0(ηi)] , (3.15)

Var1(ηj ;xi) = Var0(ηj)−
Cov0(ηi, ηj)

2

Var0(ηi)

[

1− Var1(ηi)

Var0(ηi)

]

, (3.16)

for i 6= j. We wish to know when a unique, commutative Bayes linear kinematic

solution exists. A sufficient condition for uniqueness, using Equation 3.8 is

Var1(ηi) < Var0(ηi) (3.17)

for i = 1 or 2 or both. If this condition holds then the Bayes linear kinematic adjusted

expectation and variance of ηi are given by

E(2)(ηi;xi, xj) = Var(2)(ηi;xi, xj)[Var
−1
1 (ηi)E1(ηi)

+ Var−1
1 (ηi;xj)E1(ηi;xj)−Var−1

0 (ηi)E0(ηi)], (3.18)

and

Var(2)(ηi;xi, xj) =
[

Var−1
1 (ηi) + Var−1

1 (ηi;xj)−Var−1
0 (ηi)

]−1
. (3.19)
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In the notation above E(2)(ηi;xi, xj) and Var(2)(ηi;xi, xj) represent the Bayes linear

kinematic commutative expectation and variance (Equations 3.9 and 3.10) of ηi having

made 2 observations (given in brackets in the subscript). The quantities after the semi-

colon indicate that these are the adjusted expectation and variance having observed xi

and xj .

3.7.2 Predictive distributions

Suppose now we have p ≥ 2 groups X1, . . . , Xp where each is a binomial or Poisson

count. Imagine we have performed a Bayes linear kinematic update of the form in the

previous section on X1, . . . , Xp and obtained adjusted expectations and variances for

η = (η1, . . . , ηp)
′

.

Now suppose we imagine updating by X1, . . . , Xp−1. The ηp, Xp structure has to be

such that we would get the “correct” update by X1, . . . , Xp. This means that it has to

be the conjugate beta-binomial or gamma-Poisson structure.

Therefore, to be consistent with potential future updates, predictive distributions are

calculated on the basis of the same structure.

3.8 Logistic transformation

3.8.1 Expectation and variance

Clearly with a beta-binomial setup several transformations are possible, being those

used as link functions in generalised linear models. Those commonly chosen are the

logit, ηi = log(θi/[1 − θi]), probit, ηi = Φ−1(θi), and complementary log-log, ηi =

log(− log(1− θi)), link functions.

Initially we consider the logistic transformation so that

η1 = log

(

θ1
1− θ1

)

, η2 = log

(

θ2
1− θ2

)

.

We see that θi ∈ (0, 1) ⇒ ηi ∈ (−∞,∞) and so ηi is unbounded. We can then give

η1 and η2 a Bayes linear relationship. The prior expectations and variances of θ1 and

θ2 are given in Equation 3.11. Having made within-group updates, the moments of θ1

and θ2 are found from Equation 3.12.

In order to perform Bayes linear kinematics we require the prior and posterior expec-
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tations and variances of η1 and η2. The prior expectation and variance of ηi are

E0(ηi) = ψ(ai)− ψ(bi), Var0(ηi) = ψ1(ai) + ψ1(bi),

where ψ(x) = d
dx log(Γ (x)) is the digamma function and ψ1(x) = d

dxψ(x) is the

trigamma function.

Proof. The beta function is defined as

β(ai, bi) =

∫ 1

0
zai−1(1− z)bi−1dz.

Differentiating this successively with respect to ai and bi gives

∂s+t

∂asi∂b
t
i

β(ai, bi) =

∫ 1

0
(log z)s(log(1− z))tzai−1(1− z)bi−1dz

= β(ai, bi)E0[(log θi)
s(log(1− θi))

t].

The beta function can be expressed as β(ai, bi) = Γ (ai)Γ (bi)/Γ (ai+bi). Differentiating

this with respect to ai gives

∂

∂ai
β(ai, bi) = Γ (bi)

{

Γ
′

(ai)

Γ (ai + bi)
− Γ

′

(ai + bi)Γ (ai)

Γ (ai + bi)2

}

=
Γ (ai)Γ (bi)

Γ (ai + bi)

{

Γ
′

(ai)

Γ (ai)
− Γ

′

(ai + bi)

Γ (ai + bi)

}

= β(ai, bi)[ψ(ai)− ψ(ai + bi)],

as ψ(x) = d
dx log(Γ (x)) = 1

Γ (x)
d
dxΓ (x). We can use a property of the beta function,

β(ai, bi) = β(bi, ai), to see that ∂
∂bi
β(ai, bi) = β(ai, bi)[ψ(bi) − ψ(ai + bi)]. Thus the

prior expectation of ηi is

E0(ηi) = E0[log θi]− E0[log(1− θi)]

= ψ(ai)− ψ(ai + bi)− ψ(bi) + ψ(ai + bi)

= ψ(ai)− ψ(bi).

In order to find the variance of ηi we shall require

E0[η
2
i ] = E0

{

[

log

(

θi
1− θi

)]2
}

= E0[(log θi)
2]−2E0[log θi log(1−θi)]+E0[(log(1−θi))2].
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To calculate these quantities we need the three partial second derivatives, which are

∂2

∂a2i
β(ai, bi) =

∂

∂ai
{β(ai, bi)[ψ(ai)− ψ(ai + bi)]}

= β(ai, bi){[ψ(ai)− ψ(ai + bi)]
2 + ψ1(ai)− ψ1(ai + bi)}.

Similarly ∂2

∂b2i
β(ai, bi) = β(ai, bi){[ψ(bi) − ψ(ai + bi)]

2 + ψ1(bi) − ψ1(ai + bi)} and the

cross derivative is

∂2

∂ai∂bi
β(ai, bi) =

∂

∂bi
β(ai, bi)[ψ(ai)− ψ(ai + bi)]

= β(ai, bi){[ψ(bi)− ψ(ai + bi)][ψ(ai)− ψ(ai + bi)]− ψ1(ai + bi)}.

Thus, after cancellation, the required expectation is

E0[η
2
i ] = [ψ(ai)− ψ(bi)]

2 + ψ1(ai) + ψ1(bi).

The prior variance of ηi is therefore

Var0(ηi) = E0[η
2
i ]− E0[ηi]

2

= ψ1(ai) + ψ1(bi).

The expectation and variance of ηi having observed xi successes out of ni trials in group

i are of the same form but with new parameter values Ai = ai+xi and Bi = bi+ni−xi
so that

E1(η1) = ψ(A1)− ψ(B1), E1(η2) = ψ(A2)− ψ(B2),

Var1(η1) = ψ1(A1) + ψ1(B1), Var1(η2) = ψ1(A2) + ψ1(B2).

We can propagate these changes in belief through to the other group using Bayes

linear kinematic updating Equations, 3.15 and 3.16, to obtain E1(η1;x2), Var1(η1;x2),

E1(η2;x1) and Var1(η2;x1).

We must now find out whether a unique, commutative solution exists. The sufficient

condition for uniqueness, Equation 3.17, in this case is

ψ1(Ai) + ψ1(Bi) < ψ1(ai) + ψ1(bi).

As long as we observe at least one Bernoulli trial Ai > ai or Bi > bi or both. This means

that ψ1(Ai) ≤ ψ1(ai) and ψ1(Bi) ≤ ψ1(bi) with at least one of them strictly increasing
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as the trigamma function is monotonically decreasing on R
+. We can see this property

in Figure 3.3. Hence the uniqueness condition always holds when we observe data and

so there is always a unique commutative solution when this transformation is taken.

5 10 15 20

0.
0

0.
5

1.
0

1.
5

x

ψ
1(x

)

Figure 3.3: The trigamma function

This solution is given in Equations 3.18 and 3.19 and gives us our posterior expectations

and variances; E(2)(η1;x1, x2), E(2)(η2;x1, x2), Var(2)(η1;x1, x2) and Var(2)(η2;x1, x2).

If our assumption of beta marginals for θ1 and θ2 still holds then we can return to

quantities involving θ1 and θ2 by solving the following 2 equations numerically for the

posterior parameter values a∗i and b∗i .

E(2)(ηi;x1, x2) = ψ(a∗i )− ψ(b∗i ),

Var(2)(ηi;x1, x2) = ψ1(a
∗
i ) + ψ1(b

∗
i ).

Thus the posterior distributions for θ1 and θ2 are θi;x1, x2 ∼beta(a∗i , b
∗
i ) and their

posterior expectations and variances are

E(2)(θi;x1, x2) =
a∗i

a∗i + b∗i
, Var(2)(θi;x1, x2) =

a∗i b
∗
i

(a∗i + b∗i )
2(a∗i + b∗i + 1)

.

3.8.2 Example: Heart attack data

Let us now perform all of the above calculations for the heart attack data. First we

must make some prior specifications. We shall use the same values of a1, a2, b1 and b2

as in the other method that preserved the marginal beta distributions in the prior, the

78



Chapter 3. Bayes linear approaches

copula model of Section 2.4. These are

a1 = 2.59, b1 = 19.55, a2 = 10.72, b2 = 80.84,

and this results in prior expectations and variances for η1 and η2 of E0(η1) = −2.201,

Var0(η1) = 0.5225, E0(η2) = −2.062 and Var0(η2) = 0.1102. We also need to define a

covariance between η1 and η2. We shall use a correlation of ρ0(η1, η2) = 0.3, and so

Cov0(η1, η2) = ρ0(η1, η2)
√

Var0(η1)Var0(η2)

= 0.07199.

We are now in a position to update our beliefs. Let us first consider group 1 in which

we observed 44 deaths out of 560 patients. Thus we have that

A1 = a1 + 44 = 46.59

B1 = b1 + 560− 44 = 535.55

and the updated expectation and variance of η1 are E1(η1) = −2.452, Var1(η1) =

0.02356. We now perform the Bayes linear kinematic update to obtain the expectation

and variance of η2 given x1. These turn out to be

E1(η2;x1) = −2.096, Var1(η2;x1) = 0.1007.

In group 2 we observed 62 patients dying out of 540. Thus we can update a2 and b2 to

A2 = 72.72 and B2 = 558.84 and the expectation and variance of η2 become

E1(η2) = ψ(72.72)− ψ(558.84)

= −2.045,

Var1(η2) = ψ1(72.72) + ψ1(558.84)

= 0.0156.

When we use these values in the Bayes linear kinematic updating equations we see that

E1(η1;x2) = −2.190, Var1(η1;x2) = 0.482.

From the values of a1, b1, a2 and b2 at each stage we can calculate the expectations

and variances of θ1 and θ2. The expectations are given in Table 3.2. The variances can

also be given in tabular form, as in Table 3.3. From the variance table we can see that

we reduce our uncertainty about θ1 and θ2 at each step.

We can combine all of the expectations and variances of η1 and η2 at each stage,
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θi E0(θi) E1(θi) E1(θi;xj)
xi
ni

1 0.1170 0.0800 0.1168 0.0786
2 0.1171 0.1151 0.1132 0.1148

Table 3.2: Expectations of θ1 and θ2 at each stage

θi Var0(θi) Var1(θi) Var1(θi;xj)

1 0.00446 0.000126 0.00412
2 0.00111 0.000161 0.00157

Table 3.3: Variances of θ1 and θ2 at each stage

using Equations 3.18 and 3.19 to give the unique commutative Bayes linear kinematic

expectations and variances. These are E(2)(η1;x1, x2) = −2.450, Var(2)(η1;x1, x2) =

0.02348, E(2)(η2;x1, x2) = −2.051 and Var(2)(η2;x1, x2) = 0.01543. We can now convert

back to moments involving our success probabilities. To do this we find our values for

a∗i and b∗i ;

a∗1 = 46.77, b∗1 = 536.85, a∗2 = 73.64, b∗2 = 569.06.

We can then calculate our posterior expectations and variances for θ1 and θ2 and these

turn out to be

E(2)(θ1;x1, x2) = 0.08014 E(2)(θ2;x1, x2) = 0.1146

Var(2)(θ1;x1, x2) = 0.000126 Var(2)(θ1;x1, x2) = 0.000158.

3.8.3 Mode and log-curvature

As we commented earlier, the quantity about which we learn on receipt of information

need not be θi. It need not even be a direct function of θi as in the previous section.

We could simply define a quantity which is updated when data are observed and this

update is used as a guide to updating θi. This is known as a guide relationship (West

et al., 1985).

For example, considering the logistic transformation, we could define the quantity µi

as

µi = log

(

θi
1− θi

)

.

Rather than updating beliefs about the mean and variance of µi directly we could use a

related quantity, ηi, with mean and variance given by the mode of µi and the curvature
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at the mode of the log density of µi. Thus our guide relationship (denoted ≈) is

ηi ≈ µi = log

(

θi
1− θi

)

.

So, we are proposing quantities ηi associated with θi in such a way that the mean

of ηi is equal to the mode of log(θi/[1 − θi]) and the variance is the curvature of the

log-density at this quantity. Observing xi causes us to change our beliefs about ηi in

the way this would imply.

The density of θi is

fθi(θi) =
Γ (ai + bi)

Γ (ai)Γ (bi)
θai−1
i (1− θi)

bi−1,

and, in terms of µi, θi is

θi =
eµi

1 + eµi
.

To obtain the density of µi, first we must differentiate the density of θi to obtain the

Jacobian. The derivative is

dθi
dµi

=
(1 + eµi)eµi − e2µi

(1 + eµi)2
=

(

eµi

1 + eµi

)(

1

1 + eµi

)

= θi(1− θi)

and so dθi = θi(1− θi)dµi. Hence the density of µi is

fµi
(µi) =

Γ (ai + bi)

Γ (ai)Γ (bi)
θai(1− θi)

bi .

If we take logs,

li(µi) = log{fµi
(µi)} = (const) + ai log(θi) + bi log(1− θi).

Differentiating this a single time and then setting the derivative equal to zero gives us

the mode of µi. The derivative is

d

dµi
[li(µi)] =

(

ai
θi

− bi
1− θi

)

θi(1− θi) = ai(1− θi)− biθi. (3.20)

We now set Equation 3.20 equal to zero to find the mode. Let mi be the mode of µi.

Then let

m∗
i =

emi

1 + emi
.
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This gives ai(1−m∗
i ) = bim

∗
i so m∗

i =
ai

ai+bi
and the mode of µi is

mi = log

(

ai
bi

)

.

To find the curvature we must differentiate Equation 3.20 a further time. The second

derivative is given by
d2

dµ2i
[li(µi)] = −(ai + bi)θi(1− θi).

At the mode θi = ai/(ai + bi) so, substituting this into the above equation,

[

d2li(µi)

dµ2i

]

mi

= − aibi
ai + bi

.

Therefore our required prior variance for ηi is

Var0(ηi) = −
[

d2li(µi)

dµ2i

]−1

mi

=
1

ai
+

1

bi
.

Hence, our two prior moments can be expressed solely in terms of the prior beta

parameters. They are

E0(ηi) = log

(

ai
bi

)

, Var0(ηi) =
1

ai
+

1

bi
. (3.21)

Observing x1 successes out of n1 trials in group 1 and x2 successes out of n2 trials in

group 2 will lead to posterior expectations and variances of

E1(ηi) = log

(

Ai

Bi

)

, Var1(ηi) =
1

Ai
+

1

Bi
,

where Ai = ai+xi and Bi = bi+ni−xi. These changes in belief can then be propagated

through to the other group via Bayes linear kinematics using Equation 3.15.

The uniqueness condition, Equation 3.17, is satisfied as long as the variance decreases

from prior to posterior. Clearly the variance will decrease if we increase either ai or

bi which shall happen if we observe anything. Therefore our sufficient condition for a

unique commutative solution shall always be satisfied and a unique commutative Bayes

linear kinematic solution does exist. It is given in Equations 3.18 and 3.19.

Having found the adjusted expectations and variances E(2)(ηi;xi, xj) = m̄i and

Var(2)(ηi;xi, xj) = vi for i = 1, 2, we wish to convert back to quantities involving θ1

and θ2. If we assume the relationship in Equation 3.21 still holds then the posterior
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parameter values a∗i and b∗i are

a∗i =
1 + em̄i

vi
, b∗i =

1 + em̄i

viem̄i
. (3.22)

This gives Bayes linear kinematic adjusted beta distributions for θ1 and θ2 of

θi;xi, xj ∼beta(a∗i , b
∗
i ). Thus we can find, via the standard formulae for beta random

variables, the mean and variance of θ1 and θ2.

3.8.4 Example: Heart attack data

We can apply this approach to the heart attack data. Given our prior specifications

for ai and bi, i = 1, 2, the prior moments of η1 and η2 are

E0(η1) = −2.021, E0(η2) = −2.020,

Var0(η1) = 0.4373, Var0(η2) = 0.1057.

This gives a prior covariance between η1 and η2, for a prior correlation of 0.3, of

Cov0(η1, η2) = 0.06448. Having observed X1 = 44 and X2 = 62 we make the fully

Bayesian conjugate updates within each group which translates to η1 and η2 as

E1(η1) = −2.442, E1(η2) = −2.039,

Var1(η1) = 0.02333, Var1(η2) = 0.01554.

We then propagate theses changes using Bayes linear kinematics and calculate the

unique commutative Bayes linear kinematic solution. This is

E(2)(η1;x1, x2) = −2.441, E(2)(η2;x1, x2) = −2.049,

Var(2)(η1;x1, x2) = 0.02323, Var(2)(η2;x1, x2) = 0.01533.

We can now convert back to quantities involving θ1 and θ2. First we find the posterior

parameter values using Equation 3.22. They are a∗1 = 46.80, a∗2 = 73.64, b∗1 = 537.34

and b∗2 = 571.32. We can use these to find the posterior moments of θ1 and θ2. They

are

E(2)(θ1;x1, x2) = 0.08012, E(2)(θ2;x1, x2) = 0.1142,

Var(2)(θ1;x1, x2) = 0.0001260, Var(2)(θ2;x1, x2) = 0.0001566.

These values are very similar to those found using the mean and variance of ηi directly.
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3.9 Complementary log-log transformation

An alternative in the beta-binomial case to the logistic transformation discussed in

the previous section is the complementary log-log transformation. When taking this

transformation the expectations and variances of the transformed quantities are not

straightforward to calculate and so we propose using our guide relationship again.

Thus the mean and variance of ηi, i = 1, 2, are found as the mode of µi and the

curvature at the mode of the log-density of µi, where

µi = g(θi) = log[− log(1− θi)]. (3.23)

If θi ∼beta(ai, bi), with density

fθi(θi) =
Γ (ai + bi)

Γ (ai)Γ (bi)
θai−1
i (1− θi)

bi−1

and µi = log[− log(1− θi)] then θi = 1− exp[−eµi ]. Differentiating this with respect to

µi gives
dθi
dµi

= exp[−eµi ]eµi = exp[µi − eµi ] = − log(1− θi)(1− θi),

and so dθi = − log(1− θi)(1− θi)dµi = eµi exp[eµi ]dµi. Hence the density of µi is

fµi
(µi) = fθi(θi)

dθi
dµi

=
Γ (ai + bi)

Γ (ai)Γ (bi)
eµi exp[−eµi ]θai−1

i (1− θi)
bi−1.

Taking logs gives the log-density of µi,

li(µi) = log{fµi
(µi)} = ki + µi − eµi + (ai − 1) log(θi) + (bi − 1) log(1− θi)

where ki is a constant. To find the mode, mi, of µi, we differentiate the log-density

and then set the derivative equal to zero. Thus the mode is the solution mi satisfying

(

dli(µi)

dµi

)

mi

= 1− emi +

[

(ai − 1)

θm,i
− (bi − 1)

1− θm,i

]

emi exp[−emi ] = 0, (3.24)

where θm,i = 1−exp[−emi ], and is found numerically, for example by Newton’s method.

The second derivative is

d2li(µi)

dµ2i
= −eµi −

[

(ai − 1)

θ2i
+

(bi − 1)

(1− θi)2

]

e2µi exp[−2eµi ]

+

[

(ai − 1)

θi
− (bi − 1)

1− θi

]

eµi(1− eµi) exp[−eµi ]. (3.25)
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The mean and variance of ηi can then be found as

E0(ηi) = mi, Var0(ηi) = −
[

d2li(µi)

dµ2i

]−1

mi

.

Having made the conjugate updates, the same procedure can be applied but using Ai =

ai+xi and Bi = bi+ni−xi in place of ai and bi in the density and subsequent derivatives.

Defining a Bayes linear structure for η1, η2, allows the updates to be propagated to ηj ,

j 6= i via Equation 3.15.

From Equation 3.17 there is a unique commutative solution to the problem using Bayes

linear kinematics if

Var1(ηi) < Var0(ηi)

for i = 1 or 2 or both. An analytic proof that this condition always holds is not

yet available. However this has been investigated numerically. It is only necessary to

consider the effect of a single observation xi = 1 with ni = 1. This is because this is

equivalent to the observation xi = 0 with ni = 1 with ai and bi exchanged and any

observation with larger ni has the cumulative effect of a sequence of observations with

ni = 1. The increase in the precision of ηi given an observation xi = 1 with ni = 1 was

investigated over a rectangular grid of values of (ai, bi) with −1 ≤ log(ai) ≤ 12 and

−1 ≤ log(bi) ≤ 12 in steps of 0.1 and every value was positive.

Following the numerical investigation we have empirical evidence suggesting that a

unique commutative Bayes linear kinematic solution will exist, at least over a very

large range of ai and bi. It is given by Equations 3.18 and 3.19. Note that, once

an adjusted mean and precision for ηi are found, Equations 3.24 and 3.25 provide

simultaneous linear equations in a∗i and b
∗
i , the new values of ai and bi, which are easily

solved.

3.9.1 Example: Heart attack data

Let us now apply this complementary log-log model to the heart attack data. Taking

the usual values for the prior beta parameters gives prior moments for η1 and η2 of

E0(η1) = −2.060, E0(η2) = −2.078,

Var0(η1) = 0.3864, Var0(η2) = 0.09339.

We wish to specify a prior correlation between η1 and η2 of 0.3. This leads to a prior

covariance of Cov0(η1, η2) = 0.3 ×
√
0.3864× 0.09339 = 0.05699. Having observed 44

success out of 560 trials in group 1 and 62 successes out of 540 trials in group 2 the
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expectations and variances of η1 and η2 are updated to

E1(η1) = −2.483, E1(η2) = −2.100,

Var1(η1) = 0.02148, Var1(η2) = 0.01377.

We then apply Bayes linear kinematics and can find the unique commutative Bayes

linear kinematic solution. This is

E(2)(η1;x1, x2) = −2.482, E(2)(η2;x1, x2) = −2.110,

Var(2)(η1;x1, x2) = 0.02138, Var(2)(η2;x1, x2) = 0.01358.

Working out the posterior beta parameter values, based upon the assumption of beta

marginals holding, requires Newton’s method. Generally convergence is effectively

achieved within 10 iterations. The posterior parameter values are a∗1 = 46.81, b∗1 =

537.40, a∗2 = 73.71 and b∗2 = 572.27. This leads, through the usual formulae for the

beta distribution, to the posterior means and variances for θ1 and θ2 of

E(2)(θ1;x1, x2) = 0.0801, E(2)(θ2;x1, x2) = 0.114,

Var(2)(θ1;x1, x2) = 0.0001260, Var(2)(θ2;x1, x2) = 0.0001562.

These results are very similar to those achieved in the logistic transformation model.

3.10 The probit transformation

The third common link function for binomial parameters is the probit function. This

is

ηi = Φ−1(θi),

where Φ−1() denotes the inverse cumulative distribution function of the standard Nor-

mal distribution.

With our priors for the binomial parameters being θi ∼beta(ai, bi) neither the direct

approach to specifying means and variance or the approach utilising the guide relation-

ship will give equations for the mean and variance of ηi which are solvable equations

of ai and bi as they did in the logit and complementary log-log transformations.

This is because the cumulative distribution function for a Normal random variable

cannot be written down in a simple closed form and so quantities for it can only be

calculated numerically.

Thus we shall not consider the probit transformation further.
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3.11 Pseudo mean and variance

We have been considering the beta-binomial case and looking at transforming θi to

ηi = g(θi) where g(·) is some suitable function, such as logit. Suppose that we do not

actually specify this function g(·) at all but simply say that

Ê0(ηi) =
ai

ai + bi
and V̂ar0(ηi) =

1

ai + bi
, (3.26)

where Ê(·) and V̂ar(·) are pseudo expectations and variances respectively. More gen-

erally,

Ê0(ηi) = g1

(

ai
ai + bi

)

and V̂ar0(ηi) = g2

(

1

ai + bi

)

, (3.27)

where g1(·) and g2(·) are suitable monotonic functions. The advantage of this is that

the variance does not depend on the mean. In fact, if we make ni observations in group

i we will replace

V̂ar0(ηi) =
1

ai + bi
with V̂ar1(ηi) =

1

ai + bi + ni
,

so, at least if we use the identity function for g2(·), as in Equation 3.26, the variance

changes in a very simple and obvious way as we observe data.

The updates of the expectations are also simple and, having observed xi successes in

ni trials, would be

Ê1(ηi) =
ai + xi

ai + bi + ni
.

The disadvantage of Equation 3.26 is that the mean has to be restricted to (0, 1). This

is awkward in a Bayes linear structure. It would be better to work on (−∞,∞). So let

us use a suitable transformation g1(·). For example

g1(y) = log

(

y

1− y

)

.

In this case the pseudo-expectation of ηi is

Ê0(ηi) = g1

(

ai
ai + bi

)

= log

(

ai/(ai + bi)

1− ai/(ai + bi)

)

= log

(

ai
bi

)

,

as in Equation 3.21 where the variance, however, is
1

ai
+

1

bi
. Now if we observe xi

successes in group i the expectation and variance of ηi become

Ê1(ηi) = log

(

ai + xi
bi + ni − xi

)

, V̂ar1(ηi) =
1

ai + bi + ni
. (3.28)
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We can propagate these changes in belief about ηi through to ηj , j 6= i, via Equation

3.15. In order to convert our changes in belief about ηi back to quantities involving θi

we shall need to be able to calculate ai and bi in terms of the mean mi and variance vi

of ηi. Thus

ai =
emi

vi[1 + emi ]
, bi =

1

vi[1 + emi ]
. (3.29)

Having found ai and bi the expectation and variance of θi can be calculated from the

standard formulae for a beta distribution, Equation 3.11. We wish to know when a

unique commutative solution exists for this model. Our uniqueness condition, Equation

3.17, in this case is
1

ai + bi + ni
<

1

ai + bi
.

Clearly this condition shall always hold and so a commutative Bayes linear kinematic

update shall always exist. This solution is given by Equations 3.18 and 3.19.

3.11.1 Example: Heart attack data

We make prior specifications, as in previous sections, of a1 = 2.59, b1 = 19.55, a2 =

10.72, and b2 = 80.84. This results in prior pseudo-expectations and variances for η1

and η2 of

Ê0(η1) = −2.021, Ê0(η2) = −2.020,

V̂ar0(η1) = 0.04517, V̂ar0(η2) = 0.01092.

Having observed x1 = 44 successes in group 1 and x2 = 62 successes in group 2 the

expectations and variances of η1 and η2 become

Ê1(η1) = −2.442, Ê1(η2) = −2.039,

V̂ar1(η1) = 0.001718, V̂ar1(η2) = 0.001583.

We can then propagate these changes in belief using Bayes linear kinematics via Equa-

tion 3.15. We know that a commutative solution exists as the uniqueness condition

shall always hold. Thus we can use Equations 3.18 and 3.19 to find this solution. It is

Ê(2)(η1;x1, x2) = −2.441, Ê(2)(η2;x1, x2) = −2.049,

V̂ar(2)(η1;x1, x2) = 0.00171, V̂ar(2)(η2;x1, x2) = 0.00156.
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The posterior values for ai and bi (i = 1, 2) are a∗1 = 46.77, b∗1 = 537.21, a∗2 = 73.10

and b∗2 = 567.13. This leads to posterior moments for θ1 and θ2 of

E(2)(θ1;x1, x2) = 0.0801, E(2)(θ2;x1, x2) = 0.114,

Var(2)(θ1;x1, x2) = 0.000126, Var(2)(θ2;x1, x2) = 0.000158.

3.12 Discussion

We have now seen four transformations for the beta-binomial model. In each case the

posterior moments for the parameters in the heart attack example were very similar.

In this section we shall compare the four methods more comprehensively and, in par-

ticular, provide some justification for the pseudo-moments method using a numerical

investigation.

Clearly , if we just think about a single θ, then there is no problem with the pseudo-

moment method as there is a 1-1 transformation between (a, b) and the mean and

variance of θ. Interest therefore centres on the relationship between beliefs about θ1

and θ2.

We shall investigate how the mean and variance of θ2 change as we make observations

on group 1. We shall do this for some different example values of (a1, a2, b1, b2) and

consider observations of the form np successes and n(1− p) failures for some p.

A plot of the posterior expectations and variances of θ2 under the four different models

is given in Figure 3.4.

Here n is given on the x-axes and the posterior expectations and variances on the y-

axes. The parameter values chosen were (a1, a2, b1, b2) = (2, 2, 3, 3) for the top two plots,

(a1, a2, b1, b2) = (5, 5, 3, 3) for the middle two plots and (a1, a2, b1, b2) = (10, 5, 5, 3) for

the two bottom plots. The parameter p was 0.8 in all three cases. The black line shows

the result of the conjugate update to θ1. The other lines show the effect on beliefs

about θ2 under four different methods as follows.

• red: direct mean and variance under the logistic transformation,

• green: mode and curvature for the logistic transformation,

• dark blue: pseudo-moment method, and

• light blue: complementary log-log transformation.

We see that under all combinations of parameter values the posterior variances of θ2

behave similarly in all models. There is more variation in the expectations. Generally
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Figure 3.4: A plot of posterior expectations and variances of θ2 after observations on group 1.
Also included is the posterior expectation or variance of θ1 in black.

the two methods employing the logistic transformation behave similarly. The pseudo-

moment method is very close to these using the initial parameter values then behaves

similarly to the complementary log-log model for the other two sets of parameter values.

Overall there do not seem to be too many large differences between any of the methods.

3.13 The log transformation

3.13.1 Expectation and variance

In the case of Poisson random variables just one link function is commonly used. This

is the natural logarithm and takes the form

ηi = log(θi),

for i = 1, 2. Clearly since θi ∈ [0,∞) ⇒ ηi ∈ (−∞,∞) and so ηi is unbounded. We

link η1 and η2 into a Bayes linear structure. The prior and posterior expectations and

variances of θ1, θ2 having made within-group updates are given in Equations 3.11 and
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3.12.

We can find the prior expectations and variances of each ηi. They are

E0(ηi) = ψ(ai)− log bi, Var0(ηi) = ψ1(ai),

where ψ(·) is the digamma function and ψ1(·) is the trigamma function.

Proof. In order to find the expectation and variance of ηi in terms of the parameters

of the marginal gamma distributions consider the gamma function

Γ (y) =

∫ ∞

0
zy−1e−zdz.

Differentiating with respect to y gives

d

dy
Γ (y) =

∫ ∞

0
log(z)× zy−1e−zdz.

Each subsequent derivative simply multiplies the right hand side by a further log(z)

inside the integration. Therefore, since biθi ∼gamma(ai, 1), if z = biθi then

1

Γ (ai)

dn

dani
Γ (ai) = E0[(log biθi)

n].

Thus the expectation of each ηi can be found as

E0[ηi] = E0[log θi]

= E0[log biθi]− log bi

=
1

Γ (ai)

d

dai
Γ (ai)− log bi

= ψ(ai)− log bi,

where ψ(x) = d
dx log[Γ (x)] is the digamma function. The variance is then found from

d2

da2i
Γ (ai) =

d

dai
Γ (ai)ψ(ai)

= Γ (ai)ψ1(ai) + Γ (ai)ψ(ai)
2,
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where ψ1(x) =
d
dxψ(x) is the trigamma function. Thus

Var0(ηi) = Var0(log biθi)

= E0[(log biθi)
2]− E0[log biθi]

2

= ψ1(ai) + ψ(ai)
2 − ψ(ai)

2

= ψ1(ai).

The expectation and variance of ηi having observed xi successes in group i are

E0(ηi) = ψ(Ai)− logBi, Var0(ηi) = ψ1(Ai),

which are the same form as in the prior but with ai and bi replaced by Ai = ai + xi

and Bi = bi + 1.

We propagate these changes in belief through to the other group using Equations 3.15

and 3.16. This gives E1(η1;x2), Var1(η1;x2), E1(η2;x1) and Var1(η2;x1).

We consider the sufficient condition for a unique commutative solution using Bayes

linear kinematics. In this case it is

ψ1(ai + xi) < ψ1(ai),

for some i. Thus, as long as we make a non-zero observation in either group Ai > ai and

ψ1(Ai) < ψ1(ai) as the trigamma function is monotonically decreasing on R
+. Thus,

as long as we make a non-zero observation there will always be a unique commutative

solution.

If x1 = x2 = 0 then clearly the sufficient condition does not hold. However, if we refer

back to the conditions from Theorem 5 of Goldstein & Shaw (2004) as given in Section

3.4.2, then, using conditions (ii) and (iii), there is a unique commutative solution if

Var−1
1 (η1;x1) + Var−1

1 (η1;x2)−Var−1
0 (η1) > 0,

or Var−1
1 (η2;x1) + Var−1

1 (η2;x2)−Var−1
0 (η2) > 0.

If x1 = x2 = 0 then Var1(η1;x1) = Var0(η1). Thus, taking condition (ii),

Var−1
1 (η1;x1) + Var−1

1 (η1;x2)−Var−1
0 (η1) = Var−1

1 (η1;x2) > 0.

We can show condition (iii) holds using the same reasoning. Therefore, in the case of

x1 = x2 = 0, there is still a unique, commutative Bayes linear kinematic solution.
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This solution is given in Equations 3.18 and 3.19 and provides posterior expectations

E(2)(ηi;x1, x2) and variances Var(2)(ηi;x1, x2).

Assuming θ1 and θ2 still have marginal gamma distributions (see Section 3.7.2), we

find the parameter values of these distributions by solving

E(2)(ηi;x1, x2) = ψ(a∗i )− log(b∗i ), Var(2)(ηi;x1, x2) = log(b∗i ),

for a∗i and b∗i . Then θi;x1, x2 ∼gamma(a∗i , b
∗
i ) and the posterior moments of θi are

E(2)(θi;x1, x2) =
a∗i
b∗i
, Var(2)(θi;x1, x2) =

a∗i
b∗2i

.

3.13.2 Example: piston ring failures

We wish to provide a Bayes linear Bayes solution to the problem of related numbers

of piston ring failures presented in Section 2.6.4. For comparability we use the same

prior specifications for the prior gamma distributions of θ1 and θ2 used in the copula

methodology. That is a1 = a2 = 30 and b1 = b2 = 1. We specify a prior correlation

between η1 and η2 of 0.25. This leads to prior specifications for each ηi of

E0(η1) = E0(η2) = 3.384, Var0(η1) = Var0(η2) = 0.0339.

When we observe x1 = 44 piston ring failures in group 1 and x2 = 33 failures in group

2 then the resulting posterior expectations and variances of η1, η2 are

E1(η1) = 3.631, E1(η2) = 3.442,

Var1(η1) = 0.0132, Var1(η2) = 0.0160.

Thus there has been a fairly large reduction in the uncertainty on observation of the

data. We can propagate these changes through to the other group using Bayes linear

kinematics. A unique commutative solution exists as we have observed some failures.

It is

E(2)(η1;x1, x2) = 3.633, E(2)(η2;x1, x2) = 3.471,

Var(2)(η1;x1, x2) = 0.0131, Var(2)(η2;x1, x2) = 0.0157.

We use these values to calculate the posterior parameter values for θ1 and θ2 under

the continued assumption of gamma marginal distributions. They are a∗1 = 77.01, b∗1 =

2.02, a∗2 = 64.17 and b∗2 = 1.98. From these we calculate the posterior expectations and
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variances of the Poisson parameters.

E(2)(θ1;x1, x2) = 38.0918, E(2)(θ2;x1, x2) = 32.4102,

Var(2)(θ1;x1, x2) = 18.8423, Var(2)(θ2;x1, x2) = 16.3699.

3.13.3 Mode and curvature

Just as with the beta-binomial model we can utilise a guide relationship in the gamma-

Poisson setup. This time we shall define our guide relationship as

ηi ≈ µi = log(θi).

Thus, rather than using the mean and variance of µi directly, as we did in the previous

section, we use a related quantity, ηi, with mean and variance given by the mode of

µi and curvature at the mode of the log-density of µi as we did in the beta-binomial

model.

The density of θi is

fθi(θi) =
baii θ

ai−1
i e−biθi

Γ (ai)
,

and, in terms of µi, θi = eµi . To obtain the density of µi, first we must differentiate

the density of θi to find the Jacobian. The derivative is

dθi
dµi

= eµi = θi,

and so dθi = θidµi. Hence the density of µi is

fµi
(µi) =

baii θ
ai
i e

−biθi

Γ (ai)
.

If we take logs,

li(µi) = ai log bi + ai log θi − biθi − logΓ (ai).

Differentiating this and setting the derivative equal to zero gives us the mode of µi.

The derivative is
d

dµi
[li(µi)] =

(

ai
θi

− bi

)

θi = ai − biθi. (3.30)

Setting this equal to zero we find the mode. Let mi be the mode of µi. Then let

m∗
i = emi .
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This gives ai − bim
∗
i = 0 so m∗

i = ai/bi, and the mode of µi is

mi = log

(

ai
bi

)

.

To find the curvature we must differentiate Equation 3.30 a further time. The second

derivative is given by
d2

dµ2i
[li(µi)] = −biθi.

At the mode θi = ai/bi so, substituting this into the above equation,

[

d2li(µi)

dµ2i

]

mi

= −bi
ai
bi

= −ai.

Therefore the required prior variance is

Var0(ηi) = −
[

d2li(µi)

dµ2i

]−1

mi

=
1

ai
.

Hence, our two prior moments can be expressed solely in terms of the prior gamma

parameters. They are

E0(ηi) = log

(

ai
bi

)

, Var0(ηi) =
1

ai
.

Having made the conjugate updates, the moments take the same form but using Ai =

ai+xi and Bi = bi+1 in place of ai and bi. Defining a Bayes linear structure for η1, η2,

allows the updates to be propagated to ηj , j 6= i via Equation 3.15.

From Equation 3.17 there is a unique commutative solution to the problem using Bayes

linear kinematics if

Var1(ηi) < Var0(ηi)

for i = 1 or 2 or both. This condition will clearly hold whenever we make a non-zero

observation in either of the groups. Thus a unique commutative solution will virtually

always exist. In fact we showed in the previous section that a commutative solution

shall exist even if both observations are zero.

Having ascertained that a unique commutative Bayes linear kinematic solution exists

it is given by Equations 3.18 and 3.19. Note that, once an adjusted mean and precision

for ηi are found, the parameter values of the posterior gamma distributions are found,

from posterior mean m̄i and variance vi, as

a∗i =
1

vi
, b∗i =

1

vi
e−m̄i .
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These can then be used to find posterior means and variances of θ1, θ2.

3.13.4 Example: piston ring failures

If we take the same prior values as in the previous example for the gamma distribution

parameters and prior correlation then the resulting prior expectations and variances

for η1, η2 are

E0(η1) = E0(η2) = 3.401, Var0(η1) = Var0(η2) = 0.033.

When we observe 46 failures in compressor 1 and 33 failures in compressor 2 then,

having made full Bayesian updates within each group, the expectations and variances

become

E1(η1) = 3.638, E1(η2) = 3.500,

Var1(η1) = 0.0132, Var1(η2) = 0.0159.

We can now use Bayes linear kinematics to update our beliefs in both groups as a result

of these mean and variance changes. This gives E1(ηi;xj) and Var1(ηi;xj) where j 6= i

for each i. A commutative solution is available, using the sufficient condition, as we

observe some piston ring failures. It is

E(2)(η1;x1, x2) = 3.639, E(2)(η2;x1, x2) = 3.478,

Var(2)(η1;x1, x2) = 0.0130, Var(2)(η2;x1, x2) = 0.0156.

Solving for the posterior parameter values gives a∗1 = 77.02, b∗1 = 2.02, a∗2 = 64.18 and

b∗2 = 1.98. Converting back to the expected numbers of piston ring failures results in

posterior expectations and variances of

E(2)(θ1;x1, x2) = 38.0683, E(2)(θ2;x1, x2) = 32.3884,

Var(2)(θ1;x1, x2) = 18.8170, Var(2)(θ2;x1, x2) = 16.3450.

3.14 Direct updating

Of course, in spite of the justifications of transforming θ1 and θ2 given in Section 3.7,

we can apply Bayes linear kinematics directly upon θ1 and θ2. We have the usual setup.

That is

θi ∼ beta(ai, bi), or θi ∼ gamma(ai, bi),
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where Xi | θi ∼bin(ni, θi) and Xi | θi ∼Po(θi) respectively. The prior expectations and

variances of θi for i = 1, 2 are given in Equation 3.11 in the beta-binomial case and

Equation 3.13 in the Poisson-gamma case. Having observed xi successes in group i, the

expectations and variances of θi are given by Equations 3.12 and 3.14. As the update

is conjugate we have

θi | xi ∼ beta(ai + xi, bi + ni − xi) or θi | xi ∼ gamma(ai + xi, bi + 1).

We propagate these changes through to θj , j 6= i, using Bayes linear kinematics:

E1(θj ;xi) = E0(θj) +
Cov0(θi, θj)

Var0(θi)
{E1(θi)− E0(θi)} (3.31)

Var1(θj ;xi) = Var0(θj)−
Cov0(θi, θj)

2

Var0(θi)

{

1− Var1(θi)

Var0(θi)

}

. (3.32)

We now wish to know whether a unique commutative Bayes linear kinematic solution

exists. Our sufficient condition for a commutative solution to exist is, in this case,

given by

Var1(θi) < Var0(θi), (3.33)

for at least one of i = 1 or i = 2. Unlike when we have taken transformations this

condition shall not always hold in this direct updating situation. This is because, as

we saw in Section 3.7, variances can increase from prior to posterior for both beta and

gamma distributed random variables. Thus when we update directly we must check

that there is a commutative update each time individually. If such a solution does exist

it is given by

E(2)(θi;xi, xj) = Var(2)(θi;xi, xj)[Var
−1
1 (θi)E1(θi)

+ Var−1
1 (θj ;xi)E1(θj ;xi)−Var−1

0 (θi)E0(θi)],

and

Var(2)(θi;xi, xj) =
[

Var−1
1 (θi) + Var−1

1 (θi;xj)−Var−1
0 (θi)

]−1
.

3.14.1 Example: Heart attack data

We shall now apply this direct Bayes linear kinematic modelling approach to the heart

attack data. First we must make some prior specifications. Those we wish to make,

taken directly from the copulas model, are

θ1 ∼ beta(2.59, 19.55), θ2 ∼ beta(10.72, 80.84)
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which lead to prior expectations of θ1 and θ2 of

E0(θ1) = 0.117, E0(θ2) = 0.117,

with variances of

Var0(θ1) = 0.0045, Var0(θ2) = 0.0011,

and a covariance between them (given a correlation of 0.3) of

Cov(θ1, θ2) = 0.3×
√
0.0011× 0.0045

= 0.0006675.

Once again we shall update these prior specifications with 44 successes (deaths) out of

560 binomial trials in group 1 and 62 successes out of 540 binomial trials in group 2.

This gives the expectations and variances, found from θ1 | X1 = 44 ∼beta(46.59, 535.55)

and θ2 | X2 = 62 ∼beta(72.72, 558.84), as

E1(θ1) = 0.0800, E1(θ2) = 0.115

Var1(θ1) = 0.000126, Var1(θ2) = 0.000161.

These changes are propagated by Bayes linear kinematics using Equation 3.31. We can

see that there will be a commutative Bayes linear kinematic solution in this case as

Var1(θ1) < Var0(θ1) and Var1(θ2) < Var0(θ2) and so the sufficient condition, Equation

3.33 holds. This solution is then given by

E(2)(θ1;x1, x2) = 0.08002, E(2)(θ2;x1, x2) = 0.1143,

Var(2)(θ1;x1, x2) = 0.000126, Var(2)(θ2;x1, x2) = 0.000159.

3.15 Conclusions

In this chapter we have investigated Bayes linear approaches to the problem of cor-

related sets of Bernoulli trials or binomial or Poisson parameters. The first model

considered Bernoulli trials and utilised a second-order exchangeable structure within

each group. The result was that the sums of all of the successful Bernoulli trials

were sufficient statistics for the trials themselves and reduced the computational bur-

den associated with the updates significantly. However, the adjusted expectations and

variances resulting from this model did not satisfy the mean-variance relationship of

Bernoulli random variables.

We then investigated models which used Bayes linear kinematics for both the binomial
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and Poisson cases. We found that within-group updating was conjugate and that

changes in belief within a group could be propagated through to other groups using

Bayes linear kinematic updates. We preferred to transform the binomial probabilities

or Poisson parameters first onto an unrestricted scale as we felt that Bayes linear

updates would then be more effective and commutative solutions easier to find. Several

transformations were proposed in both cases. For the heart attack example Table 3.4

gives a comparison of the results under the different transformations.

Method E(2)(θ1;x1, x2) E(2)(θ2;x1, x2) Var(2)(θ1;x1, x2) Var(2)(θ2;x1, x2)

logit mean 0.08014 0.1146 1.26× 10−4 1.58× 10−4

logit mode 0.08012 0.1142 1.26× 10−4 1.57× 10−4

log-log 0.08013 0.1141 1.26× 10−4 1.56× 10−4

pseudo 0.08010 0.1142 1.26× 10−4 1.58× 10−4

direct 0.08002 0.1143 1.26× 10−4 1.59× 10−4

Table 3.4: A comparison of the different transformations in the beta-binomial case

The first thing we notice when we consider Table 3.4 is that the results for all of the

methods are very similar. This could be due to the large number of observations in

both groups and the relatively weak association assumed between them. The main

difference would appear to be that the adjusted expectation for θ1 under the direct

method is lower than those of all of the other methods, which are virtually identical.

This could indicate that the transformations are having an effect.

The direct method involves linear updates which are unaffected by the proximity of

the lower bound at θ1 = 0. The methods using transformations show the effect of

approaching this lower bound.

We can also compare the posterior expectations and variances for the Poisson example

using each of the transformations. These are given in Table 3.5.

Method E(2)(θ1;x1, x2) E(2)(θ2;x1, x2) Var(2)(θ1;x1, x2) Var(2)(θ2;x1, x2)

log mean 38.0918 32.4102 18.8423 16.3699
log mode 38.0683 32.3884 18.8170 16.3450
direct 38.0880 32.5433 18.6388 15.5584

Table 3.5: A comparison of the different transformations in the gamma-Poisson case

Again the most telling thing from the table is the similarity of the results from all of the

methods. Both of the variances are lower for the direct case than for the other methods

(with transformations). The effect of transformations in this case would appear to be

on the variances rather than the means.
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We also investigated the similarities between the different methods for the beta-binomial

model numerically in Section 3.12. We saw that while there were not large differences

between any of the methods the two logistic transformations produced very similar re-

sults and the pseudo-moment method and complementary log-log transformation were

similar.
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Correlated binomials in many

dimensions

4.1 Introduction

In this chapter we investigate the problem of correlated binomial probabilities in more

than two dimensions. To do this we utilise the Bayes linear kinematic approach in-

troduced in the previous chapter. Again we transform the binomial parameters using

a suitable link function before linking them in a Bayes linear structure. Of course

there are several possible transformations for the binomial probabilities and these were

considered in the previous chapter. Here we consider the logit link function. We find

that when using this method there will always be a unique commutative Bayes linear

kinematic solution to the problem.

We investigate an example involving data on health and smoking. For a problem with

a much larger number of correlated binomials prior specification becomes an important

issue. We approach this task in two stages; initially specifying the parameters of

the marginal beta distributions via eliciting quantiles and then specifying a coherent

covariance structure between the transformed quantities.

4.2 Elicitation of prior information

4.2.1 The beta-binomial model

Specific elicitation techniques have been developed for a range of different models. One

such case is the beta-binomial model in which a number of successes X is to be observed
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out of a total number of n trials. Then X can be given a binomial distribution,

X | θ ∼ bin(n, θ)

and the true probability of success, θ, can be represented using a conjugate beta prior

distribution with parameters a and b,

θ ∼ beta(a, b).

Chaloner & Duncan (1983) proposed a method of eliciting the parameters of the beta

distribution in this model. They termed the method the predictive mode (PM) method.

The PM method uses an iterative scheme based on the predictive distribution of the

binomial random variable X.

The expert first estimates their prior modem for the predictive distribution for a chosen

number of n trials. The probability that the binomial variable takes some value x is

f(x) =

∫ 1

0
f(x | θ)f(θ)dθ

=
Γ (n+ 1)

Γ (x+ 1)Γ (n− x+ 1)

Γ (a+ b)

Γ (a+ b+ n)

Γ (a+ x)

Γ (a)

Γ (b+ n− x)

Γ (b)
. (4.1)

Next the ratios of this probability at m− 1 and m+ 1 to the probability at the mode

m can be calculated in terms of a and b. These are

r+1 =
f(m+ 1)

f(m)
=

(n−m)(m− a)

(m+ 1)(n−m+ b− 1)
,

r−1 =
f(m− 1)

f(m)
=

m(n−m+ b)

(n−m+ 1)(m+ a− 1)
.

Once r+1 and r−1 are specified then a and b can be found. The mode is fixed from

this. The spread of the distribution is estimated using an iteration scheme involving

50% prediction intervals. Once the expert is satisfied with the prediction interval the

final values of a and b are calculated.

Gavaskar (1988) developed an alternative approach in which, as in the Chaloner &

Duncan (1983) method, the mode m of the predictive distribution is estimated by

the expert given n trials. The expert is then asked for a new mode mi for ni trials

when presented with a fictitious sample of ti trials in which there were si successes

i = 1, . . . , k.

The hyperparameters are chosen using the modes of the predictive distribution. The

beta-binomial distribution may have one or two modes. They are given, for the beta-
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binomial distribution in Equation 4.1, by all of the integers in

[

n(a− 1)− (b− 1)

a+ b− 2
,
(n+ 1)(a− 1)

a+ b− 2

]

,

an interval of length 1 (Gavaskar, 1988). Thus the modes are the closest integers to

(n+ 1)(a− 1)

a+ b− 2
− 1

2
.

Then a and b can be found to minimise

D =
k
∑

i=1

(

mi −
[

(ni + 1)(a+ si − 1)

a+ b+ ti − 2
− 1

2

])2

.

Garthwaite et al. (2005) comment on both of these methods and indicate that they

are essentially applications of the four main elicitation techniques for beta parameters,

though usually methods estimate θ directly in some way. The four main methods of

elicitation in the beta-binomial case, based upon Winkler (1967), are

• the quantile method,

• the hypothetical future sample method,

• the equivalent prior sample method,

• and the probability density function method.

The quantile method consists of;

1. The expert specifies his/her prior estimate of m, the median of θ.

2. He/she then estimates q1, . . . , qk, k different quantiles of θ. Usually k is small

(often k = 2).

3. These estimates are compared to beta(a, b) for various a and b and suitable values

are chosen.

The steps of the hypothetical future samples method are;

1. The expert specifies θ∗, a ‘prior’ estimate for θ.

2. He/she is then presented with hypothetical sample data of s = (s1, . . . , sk) success

from t = (t1, . . . , tk) trials.

3. For each pair (si, ti) he/she estimates a ‘posterior’ θ∗i | si.
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4. Each θ∗i | si is combined with θ∗ and ai and bi are calculated.

5. The ai and bi’s are averaged to find a and b.

The method of Gavaskar (1988) is in essence a hypothetical future samples method.

The equivalent sample method is implemented as;

1. The expert expresses his/her prior beliefs about θ in the form of a hypothetical

sample, specifying an estimated number of successes s0 out of a hypothetical

number of trials t0.

2. The prior distribution is then θ ∼beta(s0, t0 − s0).

Finally, the probability density method, of which the iteration scheme of Chaloner &

Duncan (1983) is a variant, takes the form

1. The expert specifies θ̂, his/her most likely value of θ.

2. Estimates of θ̂−1/2 and θ̂+1/2 are also elicited, the values of θ judged to be half

as likely as θ̂.

3. The values of the hyperparameters, a and b are found from these via the beta

probability density function.

All of these methods have been found to elicit a beta prior distribution which is ‘over

confident’. That is, the variance is underestimated by each of the four methods (Win-

kler, 1967; Schaefer & Borcherding, 1973; Garthwaite et al., 2005). In their review of

elicitation methods in the beta-binomial case Garthwaite et al. (2005) conclude that

the quantile method, of the four, minimises this over confidence.

4.3 Multiple updates using Bayes linear kinematics

Consider the situation in which there are p collections of random quantities U1, . . . ,Up

where

Uk = (Uk1, . . . , Uknk
)′

for k = 1, . . . , p. Suppose that a full second order prior specification has been made

for U = U1 ∪ . . . ∪Up of the form S0(U) = [E0(U),Var0(U)] and that data informa-

tion Ik is received which causes the beliefs about Uk to be updated to S1(Uk; Ik) =

[E1(Uk),Var1(Uk)]. Then, as in Equations 3.6 and 3.7, the Bayes linear kinematic

update for U is

E1(U ; Ik) = E0(U) + Cov0(U ,Uk)Var
−1
0 (Uk)[E1(Uk)− E0(Uk)], (4.2)
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Var1(U ; Ik) = Var0(U ; Ik) + Cov0(U ,Uk)Var
−1
0 (Uk)

Var1(Uk)Var
−1
0 (Uk)Cov0(Uk,U). (4.3)

Now suppose that data are observed and beliefs updated once for each of k = 1, . . . , p.

A Bayes linear kinematic update can be made for U each time.

As we saw in Chapter 3, successive Bayes linear kinematic updates are not necessarily

commutative. However, Goldstein & Shaw (2004) give conditions under which the

requirement of commutativity leads to a unique Bayes linear kinematic update. In the

analyses in this chapter each Uk is always a scalar Uk and a sufficient condition for a

unique commutative update is

Var−1
0 (Uk)Var1(Uk) < 1, (4.4)

for all k = 1, . . . , p. This solution, when it exists, is given by

Ep(U ; I) = Varp(U ; I)

[

p
∑

k=1

Var−1
1 (U ; Ik)E1(U ; Ik)− (p− 1)Var−1

0 (U)E0(U)

]

(4.5)

Varp(U ; I) =

[

p
∑

k=1

Var−1
1 (U ; Ik)− (p− 1)Var−1

0 (U)

]−1

, (4.6)

where I = (I1, . . . , Ip)
′

.

4.4 Bayes linear kinematics for correlated binomials

Suppose we have p groups, which could be different machines or time periods, with

p > 2. In each group we shall observe a number of successes out of a total number of

trials so that Xi for i = 1, . . . , p, has a binomial distribution

Xi | θi ∼ bin(ni, θi),

where θi is the unknown probability of observing a success and ni is the known number

of trials. We assume that, given θi and θj , Xi and Xj (i 6= j) are uncorrelated. Further

suppose that each θi is given a conjugate beta prior distribution. Thus

θi ∼ beta(ai, bi),
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for some parameter values ai and bi. The prior expectation and variance of θi are

E0(θi) =
ai

ai + bi
, Var0(θi) =

aibi
(ai + bi)2(ai + bi + 1)

.

Having observed Xi = xi successes out of ni trials in group i the distribution of θi is

updated to θi | xi ∼beta(ai + xi, bi + ni − xi) giving a posterior mean and variance of

E1(θi) =
ai + xi

ai + bi + ni
, Var1(θi) =

(ai + xi)(bi + ni − xi)

(ai + bi + ni)2(ai + bi + ni + 1)
.

We wish to propagate these changes in belief within a group to the other p− 1 groups.

To do this first we shall transform the θi’s. Clearly we have, as we had in chapter 3,

many options of which transformation to take in the case of the beta-binomial model.

We shall consider the logistic transformation

ηi = log

(

θi
1− θi

)

so that for θi ∈ [0, 1] we have ηi ∈ (−∞,∞). Thus we perform Bayes linear updating

on the η’s, a more suitable scale for linear fitting to take place. We discussed this in

Section 3.7. To do this we must initially make a full second-order prior specification

for η = (η1, . . . , ηp)
′

. That is we specify S0(η) = [E0(η),Var0(η)], where E0(η) is a

vector of prior expectations and Var0(η) is a prior variance matrix.

To do this we need to find the expectations and variances of ηi. We showed how to do

this in Section 3.8.1 and, in terms of the parameters of the marginal beta distributions,

they are

E0(ηi) = ψ(ai)− ψ(bi)

Var0(ηi) = ψ1(ai) + ψ1(bi),

where ψ(y) is the digamma function and ψ1(y) is the trigamma function. Having

observed xi we can update within each group to obtain E(ηi | xi) and Var(ηi | xi) using
full Bayesian conjugate updating. Then

E(ηi | xi) = ψ(ai + xi)− ψ(bi + ni − xi),

Var(ηi | xi) = ψ1(ai + yi) + ψ1(bi + ni − yi).

These changes are propagated through to the other groups using Bayes linear kinemat-

ics, Equations 4.2 and 4.3. This gives

E1(η;xi) = E0(η) + Cov0(η, ηi)Var
−1
0 (ηi) [E(ηi | xi)− E0(ηi)]
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and

Var1(η;xi) = Var0(η)− Cov0(η, ηi)Var
−1
0 (ηi)Cov0(ηi,η)

+ Cov0(η, ηi)Var
−1
0 (ηi)Var(ηi | xi)Var−1

0 (ηi)Cov0(ηi,η).

From the sufficient condition in Equation 4.4 we have a unique commutative solution

if

Var−1
0 (ηi)Var(ηi | xi) < 1

for all i. We showed in Section 3.8.1 that a variance decrease will always result from

observing data using this transformation and so the uniqueness condition shall always

be satisfied. The Bayes linear kinematic commutative solution, having observed x =

(x1, . . . , xp)
′

, is

Ep(η;x) = Varp(η;x)

[

p
∑

i=1

Var−1
1 (η;xi)E1(η;xi)− (p− 1)Var−1

0 (η)E0(η)

]

Varp(η;x) =

[

p
∑

i=1

Var−1
1 (η;xi)− (p− 1)Var−1

0 (η)

]−1

.

We can also calculate adjusted quantities in terms of the θi’s under the assumption

that they still follow a beta distribution. Initially we solve the following two equations

for posterior parameter values a∗i and b∗i .

Ep(ηi;x) = ψ(a∗i )− ψ(b∗i ),

Varp(ηi;x) = ψ1(a
∗
i ) + ψ1(b

∗
i ).

This gives a distribution for θi of θi;x ∼beta(a∗i , b
∗
i ) and adjusted mean and variance

of

Ep(θi;x) =
a∗i

a∗i + b∗i
, Varp(θi;x) =

a∗i b
∗
i

(a∗i + b∗i )
2(a∗i + b∗i + 1)

.

4.5 Illustrative Example: Smoking and health

We are given data on males in Canada (Table 4.1). The data are concerned with the

effects of smoking on health. They were first published by Best & Walker (1964) and

reproduced in Hand et al. (1994). The subjects are split into four groups depending

on their smoking habits;

• non-smokers
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• cigarette smokers

• other (e.g. pipe, cigar, etc.)

• cigarette and other.

After 6 years the number of deaths of subjects in each group is recorded. The subjects

are also grouped into five year age bands. There are 9 different age bands, beginning

at age 40, and so in total we have 36 groups of patients. A plot of the data is given

Age Non-smoker Died Cigarette Died Other Died Both Died

40-44 656 18 3410 124 145 2 4531 149
45-49 359 22 2239 140 104 4 3030 169
50-54 249 19 1851 187 98 3 2267 193
55-59 632 55 3270 514 372 38 4682 576
60-64 1067 117 3791 778 846 113 6052 1001
65-69 897 170 2421 689 949 173 3880 901
70-74 668 179 1195 432 824 212 2033 613
75-80 361 120 436 214 667 243 871 337
>80 274 120 113 63 537 253 345 189

Table 4.1: Death rates amongst subjects classified by smoking habits and age

in Figure 4.1. If we denote the number of deaths in category i and age band j as Xij
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Figure 4.1: A plot of death proportions in the 4 groups

then

Xij | θij ∼ bin(nij , θij)

108



Chapter 4. Correlated binomials in many dimensions

for i = 1, . . . , 4 and j = 1, . . . , 9, where θij is the probability of death for a subject in

category i of age j. The total number of subjects in group ij is nij . All of the Xij ’s

are independent conditional on the θij ’s. We can give each θij a conjugate beta prior

distribution

θij ∼ beta(aij , bij).

It seems reasonable to assume that θij is not independent of θkl for i 6= k or j 6= l as

learning about the death rate with one combination of smoking habits and age would

affect our beliefs about the death rates elsewhere. A parametric regression might be

used in this situation but in our analysis we prefer not to assume a particular functional

form for the relationship of death rate to age.

4.5.1 Elicitation of prior means and variances

Following the advice of Garthwaite et al. (2005) we shall use the quantile method in

order to find the prior parameters, a and b, of the marginal beta distributions for

each group. If we elicit values z1 and z2 which correspond to the (100 × q1)% and

(100 × q2)% quantiles of the beta distribution then there are exact values of a and b

which correspond to these assessments.

The method we use to solve for a and b utilises two simple interval halving algorithms.

The first calculates the value of b for a given a. It proceeds as follows:

1. Specify a range in which b is known to lie; b ∈ (bα, bγ), bα < bγ .

2. Specify a value for a and elicit z1, the (100× q1)% quantile of the distribution of

θ.

3. Find Fθ(z1; a, bα) and Fθ(z1; a, bγ), the values of the distribution function of θ at

z1 for bα and bγ .

4. Calculate

d(b)α = Fθ (z1; a, bα)− q1

d(b)γ = Fθ (z1; a, bγ)− q1,

the difference between the distribution function at z1 found using a with bα and

bγ and its elicited value.

5. Find b1 =
bα+bγ

2 and use this to calculate d
(b)
1 .

6. If d
(b)
1 has the same sign as d

(b)
α then replace bα with b1, if not replace bγ with b1.
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7. Repeat steps 3-6 until the value of b is found.

The second algorithm calculates both a and b, using the previous algorithm in order

to do this. It is

1. Specify a range in which a is known to lie; a ∈ (aα, aγ), aα < aγ and then elicit

the (100× q2)% quantile, z2, of the distribution of θ.

2. For aα and aγ find bα and bγ using the algorithm above.

3. Calculate Fθ(z2; aα, bα) and Fθ(z2; aγ , bγ), the values of the distribution function

of θ at z2 using (aα, bα) and (aγ , bγ).

4. Find

d(a)α = Fθ (z2; aα, bα)− q2

d(a)γ = Fθ (z2; aγ , bγ)− q2,

the difference between the distribution function at z2 using (aα, bα) and (aγ , bγ)

and its elicited value.

5. Calculate a1 =
aα+aγ

2 and use this to calculate d
(a)
1 .

6. If d
(a)
1 has the same sign as d

(a)
α then replace aα with a1, if not replace aγ with

a1.

7. Repeat steps 2-6 until the value of a is found.

When implementing these algorithms it is found that 5-15 iterations of each is generally

sufficient to calculate the values of a and b accurately to at least four decimal places.

Of course, alternative methods could be used to calculate the parameter values. Exam-

ples include the Newton-Raphson method, the secant method and Broydon’s method.

Convergence would generally be quicker than when using simple interval halving but,

in many such alternative methods, convergence to the correct answer is not guaran-

teed. Also, when using the Newton-Raphson and Broydon methods amongst others,

it is necessary to calculate derivatives for the functions of interest. Such derivatives

would be far from straighforward to find in our problem.

We feel that, since the interval halving method converges quickly in the problem con-

sidered here, a more complex method is not necessary.

Returning to the data, for each i and j, we shall specify a measure of location and a

measure of spread. In terms of location the prior median for θij , mij , shall be elicited.
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That is, mij , such that
∫ mij

0
f0(θij)dθij = 0.5, (4.7)

where f0(θij) is the prior marginal beta density of θij .

As our measure of spread we shall elicit two quantiles of f0(θij). If we are to elicit the

100× q1% and 100× q2% quantiles with q1 < q2, and their values are given by y
(−)
ij and

y
(+)
ij respectively, then we have the relation

∫ y
(+)
ij

y
(−)
ij

f0(θij)dθij = q2 − q1. (4.8)

Equations 4.7 and 4.8 are solved using the interval halving method to give suitable

values of aij and bij . On the advice of Garthwaite & O’Hagan (2000) we shall choose

to elicit tertiles and so q1 = 0.33 and q2 = 0.67.

To elicit these quantities questions can be put to the expert in terms of the average

proportion of deaths that would be observed in that group over a large number of

experiments. As 3 quantiles are being elicited to calculate 2 values (aij and bij) there

is no exact solution in general. However we can find exact values of the beta parameters

for each combination of 2 of the 3 quantiles;

(

y
(−)
ij ,mij

)

⇒ (a1ij , b1ij)
(

mij , y
(+)
ij

)

⇒ (a2ij , b2ij)
(

y
(−)
ij , y

(+)
ij

)

⇒ (a3ij , b3ij).

We can then use our transformations again. We find prior means and variances from

each set of parameter values above on the unrestricted scale via

m̄kij = ψ(akij)− ψ(bkij), vkij = ψ1(akij) + ψ1(bkij),

for k = 1, 2, 3. We can then calculate the prior mean and variance of ηij as a weighted

average of the expectations and variances from each pair of estimates as

m̄ij = w1ijm̄1ij + w2ijm̄2ij + w3ijm̄3ij

vij =
1

wij

(

w2
1ijv1ij + w2

2ijv2ij + w2
3ijv3ij

)

,

for some weights w1ij , w2ij , w3ij where wij = w2
1ij+w

2
2ij+w

2
3ij . This gives two equations

in aij and bij which can be solved. The weights can be chosen to represent the relative

confidence of the expert in their quantile specifications. Often a sensible choice would
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appear to be w1ij = w2ij = w3ij = 1/3.

The prior parameter values are then found from these. To see whether this is a sensible

method for specifying prior distributions let us consider two groups, the first being

cigarette smokers aged 45-49. Suppose that for this group the three quantiles elicited

were (y(−),m, y(+)) = (0.048, 0.065, 0.084). Then, using the above method with w1 =

w2 = w3 = 1/3 gives Figure 4.2.
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Figure 4.2: A plot of the prior beta distribution for cigarette smokers aged 45-49

The red curves are the beta distributions taken from the three sets of two quantiles. The

overall beta prior distribution which results using the method above is given in black.

We see that the black curve appears to be a sensible combination of the information

from the three red curves.

The second group we shall consider is category “both, age group 55-59”. Suppose the

three quantiles elicited for this group were (y(−),m, y(+)) = (0.124, 0.167, 0.219). Then,

using the same weights as before, the equivalent plot is in Figure 4.3.

The three constituent curves are very similar in this case. The overall black line still

goes right through them (so much so it can hardly be seen) and so this method seems

to be working well in the example.

Let us suppose that non-smokers will have lower death rates than smokers and this

difference will become larger with increasing age. Further suppose that cigarettes are

more harmful than other forms of smoking such as pipes. From this process the values

of a and b chosen for each of the four groups as well as the lower and upper tertiles

they correspond to are given in Tables 4.2 and 4.3.
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Figure 4.3: A plot of the prior beta distribution for category both aged 55-59

4.5.2 Elicitation of prior covariances

To complete the second-order prior specification covariances for η must be specified.

This can be achieved by eliciting quantities involving the θij ’s. For each pair θij and

θkl with (i, j) 6= (k, l) a prior covariance Cov0(θij , θkl) is required. This covariance can

be elicited by asking the expert to imagine they know the ‘true’ value of θij from a

very large experiment and it left the median unchanged at mij . New tertiles, y
(−)′

ij and

y
(+)′

ij , are then elicited for θij having learned θkl.

From these the parameters a
′

ij and b
′

ij of the beta distribution can be found as when

making the prior specifications. Thus

θij | θkl ∼ beta(a
′

ij , b
′

ij).

If the expert judges that θij and θkl are unrelated then y
(−)′

ij = y
(−)
ij and y

(+)′

ij = y
(+)
ij ,

i.e., the elicited tertiles would remain unchanged as nothing has been learned about θij

by learning θkl. If the expert judges that there is a relation between θij and θkl then

y
(−)′

ij > y
(−)
ij and y

(+)′

ij < y
(+)
ij , i.e., the elicited tertiles will have moved closer together

indicating a reduction in uncertainty about θij having observed θkl. The closer together

the tertiles become the stronger the association between the two quantities.

Transforming back to ηij gives Var(ηij | ηkl) = ψ1(a
′

ij) + ψ1(b
′

ij) and since

Var(ηij | ηkl)
Var0(ηij)

= 1− Cov20(ηij , ηkl)

Var0(ηij)Var0(ηkl)
,
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Non-smokers Cigarettes

Age y(−) m y(+) a b y(−) m y(+) a b

40-44 0.013 0.016 0.020 3.876 216.6 0.011 0.014 0.018 2.726 167.8
45-49 0.047 0.059 0.074 3.579 51.89 0.048 0.065 0.084 2.540 32.40
50-54 0.074 0.095 0.119 3.319 28.85 0.082 0.110 0.144 2.354 16.75
55-59 0.111 0.143 0.179 3.060 16.72 0.124 0.167 0.219 2.169 9.517
60-64 0.146 0.190 0.239 2.763 10.74 0.160 0.220 0.290 1.909 5.954
65-69 0.184 0.241 0.306 2.429 6.956 0.213 0.296 0.390 1.687 3.579
70-74 0.219 0.293 0.374 2.095 4.618 0.251 0.358 0.476 1.427 2.317
75-80 0.245 0.337 0.438 1.724 3.097 0.291 0.427 0.573 1.167 1.464
>80 0.277 0.393 0.519 1.390 1.983 0.329 0.494 0.660 1.001 1.019

Table 4.2: The prior values of the beta parameters for non-smokers and cigarette smokers

Other Both

Age y(−) m y(+) a b y(−) m y(+) a b

40-44 0.011 0.014 0.018 2.985 187.8 0.011 0.014 0.018 2.726 167.8
45-49 0.043 0.057 0.073 2.763 40.67 0.048 0.065 0.084 2.540 32.40
50-54 0.078 0.104 0.134 2.577 19.80 0.082 0.110 0.144 2.354 16.75
55-59 0.119 0.159 0.206 2.354 11.04 0.124 0.167 0.219 2.169 9.517
60-64 0.156 0.211 0.275 2.095 6.956 0.160 0.220 0.290 1.909 5.954
65-69 0.168 0.236 0.314 1.761 4.989 0.213 0.296 0.390 1.687 3.579
70-74 0.221 0.314 0.419 1.501 2.911 0.251 0.358 0.476 1.427 2.317
75-80 0.251 0.369 0.499 1.241 1.909 0.291 0.427 0.573 1.167 1.464
>80 0.294 0.444 0.604 1.019 1.204 0.329 0.494 0.660 1.001 1.019

Table 4.3: The prior values of the beta parameters for other and both

the modulus of the prior covariance between ηij and ηkl is given by

|Cov0(ηij , ηkl)| =
√

Var0(ηkl)[Var0(ηij)−Var(ηij | ηkl)].

The sign can be determined by asking whether the expert’s expectation for ηij would

increase or decrease upon learning that ηkl was greater than expected.

4.5.3 Elicitation of a prior covariance structure

Clearly for the smoking and health example eliciting each covariance individually, using

the method described in Section 4.5.2, would be completely impractical. It may also be

difficult to avoid accidental incoherence in the resulting covariance matrix. We shall,

therefore, adopt a more structural approach, taking advantage of ideas from Farrow
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(2003). Thus we represent ηij as

ηij − E0(ηij) = c1ijU1j + . . .+ cpijUpj + Fij ,

where E0(ηij) is the prior expectation of ηij , Ukj is a common uncertainty factor (in

at least two groups), ckij is a coefficient to be chosen and Fij is a specific uncertainty

factor for group ij.

These uncertainty factors are defined so that they have zero mean and Ukj and Ulj are

independent for k 6= l. Specific uncertainty factors are also independent of one another

and all common uncertainty factors.

The specific uncertainty factor F represents uncertainty within a certain group and U

represents shared uncertainty between two or more groups. We give each ckij the value

1 or 0 as observing a higher proportion of deaths in one group than we expected would

lead us to revise upwards our beliefs about the probability of death in other groups.

Specifically, the uncertainty factors shall take the form

η1j − E0(η1j) = U0j + U3j + F1j

η2j − E0(η2j) = U0j + U1j + U2j + F2j

η3j − E0(η3j) = U0j + U1j + U3j + F3j

η4j − E0(η4j) = U0j + U1j + U2j + F4j ,

where U0j represents uncertainty common to all groups, U1j represents uncertainty

associated with smoking, U2j represents uncertainty associated with cigarettes and U3j

represents uncertainty associated with not smoking cigarettes.

We shall now consider age. It seems reasonable that Ukj and Ukj
′ will be related for

j 6= j
′

. First we express our uncertainty factors in terms of the following uncorrelated

components

Ukj = M
(U)
k +A

(U)
kj

Fij = M
(F )
i +A

(F )
ij ,

for i = 1, . . . , 4, j = 1, . . . , 9, and k = 0, . . . , 3. Here M represents the overall un-

certainty level of a factor and A shall represent the uncertainty relationship between

different ages within each factor. We can link different ages within a first-order autore-

gression so that

A
(U)
kj = φ

(U)
k A

(U)
kj−1 + ǫ

(U)
kj

A
(F )
ij = φ

(F )
i A

(F )
ij−1 + ǫ

(F )
ij
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where E(ǫ
(U)
kj ) = E(ǫ

(F )
ij ) = 0, E(ǫ

(U)2
kj ) = E(ǫ

(F )2
ij ) = 0 and all of the ǫ’s have zero

covariances between them.

Depending on our beliefs about the relationships between uncertainties at different ages

we could use a stationary or non-stationary autoregressive process.

Stationary process

Let us suppose that ǫ
(U)
kj and ǫ

(F )
ij have the variances

Var(ǫ
(U)
kj ) = v(U)

ǫk

Var(ǫ
(F )
ij ) = v(F )

ǫi .

If we set the initial variances of A
(U)
kj and A

(F )
ij to be

Var(A
(U)
k1 ) =

v
(U)
ǫk

1− φ
2(U)
k

, Var(A
(F )
i1 ) =

v
(F )
ǫi

1− φ
2(F )
i

then the prior variances of A
(U)
kj and A

(F )
ij for j = 2, . . . , 9 remain at these stationary

values. For a proof of this see Box & Jenkins (1970).

If we denote by Hi the set of all common uncertainty factors in ηij then the prior

variance of ηij is

Var0(ηij) = ViM +
∑

q∈Hi

v
(U)
ǫq

1− φ
(U)2
q

+
v
(F )
ǫi

1− φ
(F )2
i

where ViM =
∑

q∈Hi
Var0(M

(U)
q ) + Var0(M

(F )
i ). Thus, as the model is stationary,

the variance remains constant for different ages within a group. The within group

covariances are

Cov0(ηij , ηil) = ViM +
∑

q∈Hi

φ(U)|l−j|
q

v
(U)
ǫq

1− φ
(U)2
q

+ φ
(F )|l−j|
i

v
(F )
ǫi

1− φ
(F )2
i

.

Thus the closer together the two age groups are the higher the covariance between

them. The between group covariances are

Cov0(ηij , ηkl) = VikM +
∑

q∈Hik

φ(U)|l−j|
q

v
(U)
ǫq

1− φ
(U)2
q

,

where VikM =
∑

q∈Hik
Var0(M

(U)
q ) and Hik = Hi ∩Hk.
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Non-stationary process

We can also define a non-stationary process. This allows more flexibility in the variances

and covariances between the ηij ’s; allowing them to increase or decrease with age within

a group.

One way to achieve this is to give the ǫ’s variances of

Var(ǫ
(U)
kj ) = h

(U)2
k Var(ǫ

(U)
kj−1)

Var(ǫ
(F )
ij ) = h

(F )2
i Var(ǫ

(F )
ij−1).

We can set A
(U)
k1 = A

(F )
i1 = 0, so that all of the uncertainty associated with patients

aged 40 comes through the overall uncertainty levels of the factors.

We initialise the variances of the ǫ’s at the values

Var(ǫ
(U)
k1 ) = v(U)

ǫk1
Var(ǫ

(F )
i1 ) = v

(F )
ǫi1 .

In order to calculate the covariances between the θij ’s we require equations for them

in terms of the covariance structure we have defined. We give the following theorem.

Theorem 4.1. For two random variables ηij and ηkl defined in terms of the non-

stationary process above their covariance is

Cov0(ηij , ηkl) =
∑

q∈H

(

Var(M (β)
q ) + g(q)jlVar(ǫ

(β)
q1 )
)

, (4.9)

where H is the set of uncertainty factors common to both ηij and ηkl, β is U or F

depending on whether these are common or individual uncertainty factors and

g(q)jl =

min(j,l)−1
∑

r=1

φ(β)j+l−2(r+1)
q h(β)2rq .

Proof. The quantities ηij and ηkl take the form

ηij − E0(ηij) =
∑

s∈Hi

Usj + Fij ,

ηkl − E0(ηkl) =
∑

t∈Hk

Utl + Fkl,

where Hi and Hk are the sets of common uncertainty factors in ηij and ηkl respectively.

117



Chapter 4. Correlated binomials in many dimensions

The covariance between them is

Cov0(ηij , ηkl) = Cov0





∑

s∈Hi

Usj + Fij ,
∑

t∈Hk

Utl + Fkl





=
∑

q∈H

Cov0(βqj , βql),

as common uncertainty factors are independent of one another except when s = t and

individual uncertainty factors are independent of all other uncertainty factors.

For each q ∈ H the uncertainty factor is defined as βqj = M
(β)
q + A

(β)
qj with A

(β)
qj

following an AR(1) process. Thus

A
(β)
qj = φ(β)q A

(β)
qj−1 + ǫ

(β)
qj

= φ(β)2q A
(β)
qj−2 + φ(β)q ǫ

(β)
qj−1 + ǫ

(β)
qj

=

j−1
∑

v=1

φ(β)j−v−1
q ǫ

(β)
qv+1 + φ(β)j−1

q A
(β)
q1

=

j−1
∑

v=1

φ(β)j−v−1
q ǫ

(β)
qv+1,

as A
(β)
q1 = 0. If we perform the same steps for A

(β)
ql we see that

Cov(A
(β)
qj , A

(β)
ql ) = Cov

(

j−1
∑

v=1

φ(β)j−v−1
q ǫ

(β)
qv+1,

l−1
∑

w=1

φ(β)l−w−1
q ǫ

(β)
qw+1

)

.

Now, the ǫ’s at different ages are independent of one another, and so if j ≥ l

Cov(A
(β)
qj , A

(β)
ql ) =

l−1
∑

r=1

φ(β)j−r−1
q φ(β)l−r−1

q Var(ǫ
(β)
qr+1)

=
l−1
∑

r=1

φ(β)j+l−2(r+1)
q h(β)2rq Var(ǫ

(β)
q1 ),

by recursive use of Var(ǫ
(β)
qr ) = h

(β)2
q Var(ǫ

β)
qr−1). Similarly, for l ≥ j the covariance is of

the same form but with labels l and j swapped. Thus

Cov(A
(β)
qj , A

(β)
ql ) =

min(j,l)−1
∑

r=1

φ(β)j+l−2(r+1)
q h(β)2rq Var(ǫ

(β)
q1 ).
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We now return to the covariances between the common uncertainty factors.

Cov(βqj , βql) = Cov(M (β)
q +A

(β)
qj ,M

(β)
q +A

(β)
ql )

= Var(M (β)
q ) + Cov(A

(β)
qj , A

(β)
ql )

= Var(M (β)
q ) +

min(j,l)−1
∑

r=1

φ(β)j+l−2(r+1)
q h(β)2rq Var(ǫ

(β)
q1 ),

and so

Cov0(ηij , ηkl) =
∑

q∈H

Cov(βqj , βql)

=
∑

q∈H

(

Var(M (β)
q ) + g(q)jlVar(ǫ

(β)
q1 )
)

,

where g(q)jl =
∑min(j,l)−1

r=1 φ
(β)j+l−2(r+1)
q h

(β)2r
q .

We can use Theorem 4.1 to calculate the covariances between η’s within the same

group. These are given in the following corollary.

Corollary 4.1. For ηij and ηil defined as above with j ≤ l, the variance of ηij is

Var0(ηij) =
∑

q∈Hi

(

Var(M (β)
q ) + cqjVar(ǫ

(β)
q1 )
)

, (4.10)

where cqj =
∑j−1

r=1 φ
(β)2(j−r−1)
q h

(β)2r
q . The covariance between ηij and ηil is

Cov0(ηij , ηil) =
∑

q∈Hi

(

Var(M (β)
q ) + d(q)jlVar(ǫ

(β)
q1 )
)

, (4.11)

where d(q)jl =
∑j−1

r=1 φ
(β)j+l−2(r+1)
q h

(β)2r
q .

Proof. (i) Equation 4.10: Var0(ηij) = Cov0(ηij , ηij). By Theorem 4.1

Cov0(ηij , ηij) =
∑

q∈H

(

Var(M (β)
q ) + g(q)jjVar(ǫ

(β)
q1 )
)

.

Now, H is the set of uncertainty factors common to ηij and ηij i.e. Hi. Also,

g(q)jj =

min(j,j)−1
∑

r=1

φ(β)j+j−2r−2
q h(β)2rq =

j−1
∑

r=1

φ(β)2(j−r−1)
q h(β)2rq = cqj .
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(ii) Equation 4.11: By Theorem 4.1

Cov0(ηij , ηil) =
∑

q∈H

(

Var(M (β)
q ) + d(q)jlVar(ǫ

(β)
q1 )
)

.

Now, ηij and ηil share the same uncertainty factors and so H = Hi. Also,

g(q)jl =

min(j,l)−1
∑

r=1

φ(β)j+l−2r−2
q h(β)2rq =

j−1
∑

r=1

φ(β)j+l−2(r+1)
q h(β)2rq = d(q)jl,

as j ≤ l.

Let us suppose that we believe as age increases there is more uncertainty associated with

the death rates amongst patients. This belief is based on the notion that older patients

are more susceptible to many different health related factors apart from smoking, for

example severity of winter. Thus we shall use a non-stationary process.

Theorem 4.1 and Corollary 4.1 can be used to find all of the necessary variances and

covariances for the elicitation process. For example, from the corollary we see that

Var(η13) = V1M + (φ
(U)2
0 h

(U)2
0 + h

(U)4
0 )Var(ǫ

(U)
01 )

+ (φ
(U)2
3 h

(U)2
3 + h

(U)4
3 )Var(ǫ

(U)
31 ) + (φ

(F )2
1 h

(F )2
1 + h

(F )4
1 )Var(ǫ

(F )
11 ),

with

Cov(η13, η15) = V1M + (φ
(U)4
0 h

(U)2
0 + φ

(U)2
0 h

(U)4
0 )Var(ǫ

(U)
01 )

+ (φ
(U)4
3 h

(U)2
3 + φ

(U)2
3 h

(U)4
3 )Var(ǫ

(U)
31 ) + (φ

(F )4
1 h

(F )2
1 + φ

(F )2
1 h

(F )4
1 )Var(ǫ

(F )
11 ),

where V1M = Var(M
(U)
0 ) + Var(M

(U)
3 ) + Var(M

(F )
1 ) and

Cov(η14, η35) = Var(M
(U)
0 ) + Var(M

(U)
3 ) + (φ

(U)5
0 h

(U)2
0 + φ

(U)3
0 h

(U)4
0

+ φ
(U)
0 h

(U)6
0 )Var(ǫ

(U)
01 ) + (φ

(U)5
3 h

(U)2
3 + φ

(U)3
3 h

(U)4
3 + φ

(U)
3 h

(U)6
3 )Var(ǫ

(U)
31 ).

We can then use these quantities to aid us in defining a covariance structure. For

the health and smoking data the chosen values of the parameters and initial variances

are given in Table 4.4. These values were chosen to represent our beliefs about the

strengths of the relationships between different death rates.
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i φ
(U)
k φ

(F )
i h

(U)
k h

(F )
i Var(ǫ

(U)
k1 ) Var(ǫ

(F )
i1 ) Var(M

(U)
k ) Var(M

(F )
i )

1 0.8 0.95 1.1 1.282 0.01 0.01 0.1 0.10
2 0.8 0.95 1.3 1.302 0.01 0.01 0.1 0.15
3 0.8 0.95 1.2 1.280 0.01 0.01 0.1 0.10
4 0.8 0.95 1.1 1.302 0.01 0.01 0.1 0.15

Table 4.4: Table of initial parameter values and variances, k = i− 1

Having set these values, the variance matrix for η1 = (η11, . . . , η19)
′

, for example, is

Var0(η1) =





































0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300

− 0.341 0.335 0.330 0.326 0.323 0.321 0.318 0.317

− − 0.387 0.376 0.366 0.359 0.352 0.347 0.342

− − − 0.446 0.429 0.415 0.403 0.393 0.385

− − − − 0.531 0.507 0.486 0.469 0.454

− − − − − 0.658 0.625 0.596 0.571

− − − − − − 0.855 0.808 0.767

− − − − − − − 1.167 1.100

− − − − − − − − 1.665





































Thus it can be seen that the prior correlation between η12 and η13 is 0.923 whereas the

correlation between η12 and η19 is 0.420. It is felt that this represents a good balance

of covariances between close and distant age groups.

Discussion

Our prior elicitation for the health and smoking example takes two stages; a marginal

elicitation involving the beta distributions in order to find the prior parameters aij and

bij and the specification of a prior covariance structure. Of course this second step is

likely to lead to an iterative adjustment of aij and bij .

We feel, however, that such a pragmatic process is likely to lead to better assessments

overall.

4.5.4 Results

We perform all updates in R following the methodology in Section 4.4. Having done

this we can produce various plots.

Figure 4.4 shows the adjusted expectations of the ηij ’s (red) in each of the four cate-

gories. Also included in the plots are ±2 standard deviation limits (blue) for each age
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Figure 4.4: Adjusted means and confidence bounds for ηij in each of the four categories of
smoker.

group within each category. These were calculated as

(

E36(ηij ;x)− 2×
√

Var36(ηij ;x),E36(ηij ;x) + 2×
√

Var36(ηij ;x)

)

.

From these plots we can see that we have the least uncertainty in our adjusted expecta-

tions in categories ‘Cigarette’ and ‘Both’. This is unsurprising as these are the groups

with the largest numbers of participants. In both of these categories there appears to

be a fairly linear increase in the logit of the probability of death with increasing age.

In Figure 4.5 we have plotted the same quantities as in Figure 4.4 for the category

Other as well as the ‘data values’ for this group. These were calculated as

log

(

θ̂ij

1− θ̂ij

)

,

where θ̂ij =
xij
nij

is the observed proportion of deaths in group ij. We can see from

this plot that the adjusted expectations of the ηij ’s are very close to their observed

counterparts, especially in the older age groups where we have a large quantity of data.
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Figure 4.5: Adjusted means, ±2 standard deviation limits and observed values for ηij in cate-
gory Other.

At age 52 the logit of proportion of deaths is slightly lower than would be expected

following the trend in the rest of the plot. This is a result of the observed value for this

age category being lower than for the previous age category. The fact that the adjusted

expectation is still following the general pattern of the rest of the group would appear

to be a result of the high covariances we have specified between different age groups.

In Figure 4.6 we have plotted prior expectations, ‘data values’ and adjusted expecta-

tions for the ηij ’s in the category Other. This time, however, we have updated using

only the data from categories 1, 2 and 4 (Non-smokers, Cigarettes and Both).

We can see that in many of the age groups the adjusted expectation of ηij is closer

to the corresponding data point for that age group than the prior expectation is, even

though we have not included these data in the model. This would appear to indicate

that the covariance structure we imposed is representative of the relationships between

variables and that this model may be useful.
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Figure 4.6: Adjusted means versus data for ηij in category Other after partial update.

4.6 Conclusions

In this chapter we have investigated modelling correlated binomial probabilities in more

than two dimensions. To do this we have applied Bayes linear kinematics as introduced

in Chapter 3. As in that chapter we preferred to transform the binomial parameter

first. The transformation we used was logit. There are good reasons for this. One is

that the expectation and variance of the transformed quantity are simple to calculate.

We also showed that the resulting updates shall always be commutative.

We applied our Bayes linear kinematic methodology to an example involving data on

the association between health and smoking. To apply the method it was necessary

to specify 36 prior expectations and 36 × (36 + 1)/2 = 666 variances and covariances.

In terms of the marginal elicitation we preferred to 3 elicit quantiles for each of the

unknown death probabilities and use these to fix the values of the parameters of the

marginal beta distributions.

We then specified the covariances between the parameters by adopting a structure

based on a non-stationary first-order autoregression over age for common and individual

uncertainty factors between the parameters.
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Chapter 5

Reliability and survival analysis

5.1 Introduction

In this chapter we consider models for count data in reliability and survival analysis.

Within the sphere of reliability models we consider the analysis of failure rates and fail-

ure time distributions in the form of life tables. This work can also be found in Wilson

& Farrow (2010). We utilise the methodology, developed in Chapter 3, of transforming

binomial and Poisson parameters in order to perform Bayes linear kinematic updating

most effectively. We consider two examples, one involving Poisson counts of failures

and the other binomial counts in an analysis of failure times. In both, particular at-

tention is paid to the elicitation of prior information and methods utilising quantiles

are proposed.

The survival model we consider is a piecewise constant hazards model in which haz-

ards for different individuals are considered proportional. Within each time period

individual observations are Poisson and, if hazards are given conjugate gamma prior

distributions, fully Bayesian updates can be made simply within groups. We show

that these changes in belief can be propagated via Bayes linear kinematics to achieve

a commutative solution. This is in contrast to a similar model in Gamerman (1991).

We illustrate the approach with an example concerning Coronary Artery Bypass Graft

surgery.
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5.2 Bayes linear Bayes analysis for Poisson data in more

than two dimensions

Let us suppose that we have Poisson counts

Xi | θi ∼ Poisson(θi),

where θi is the expected number of successes, i = 1, . . . , p. The natural conjugate prior

distribution is a gamma distribution,

θi ∼ gamma(ai, bi).

Given an observation Xi = xi, the posterior distribution is gamma(ai + xi, bi + 1).

More generally a known scale factor si, perhaps the time at risk, could be included. In

this case

Xi | θi ∼ Poisson(siθi),

and the posterior distribution is

θi | xi ∼ gamma(ai + xi, bi + si),

with si = 1 as a special case. The prior mean and variance are

E0(θi) =
ai
bi
, Var0(θi) =

ai
b2i

(5.1)

and the posterior mean and variance are

E1(θi) =
ai + xi
bi + si

, Var1(θi) =
ai + xi

(bi + si)2
.

Notice that the posterior variance can be greater than the prior variance if xi is suffi-

ciently large.

We wish to perform Bayes linear updating. Thus it is desirable to work with variables

on an unrestricted scale. In the Poisson case the transformation

ηi = log(θi)

is used to map from θi ∈ [0,∞) to ηi ∈ (−∞,∞). This is the natural link function for

the Poisson distribution in generalised linear modelling. It is necessary to work with

moments for both θi for the conjugate updates and ηi for the Bayes linear kinematic

updates. The expectation and variance of θi are found using Equation 5.1.
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In Chapter 3 we found the expectation and variance of ηi in terms of the parameters

of the marginal gamma distributions associated with θi. They are

E0(ηi) = ψ(ai)− log bi, Var0(ηi) = ψ1(ai),

where ψ(·) is the digamma function and ψ1(·) is the trigamma function.

Suppose that the scale factor si = 1. In generalised linear models log si is known as an

offset. Thus here we are setting the offset equal to zero. After the conjugate updates

the expectations and variances of both θi and ηi remain of the same form but with ai

and bi replaced with ai + xi and bi + 1 respectively. Thus for ηi they are

E(ηi | xi) = ψ(ai + xi)− log(bi + 1) (5.2)

Var(ηi | xi) = ψ1(ai + xi). (5.3)

Suppose that a full second order prior specification has been made for η = (η1, . . . , ηp)
′

of the form S0(η) = (E0(η),Var0(η)). Observing Xi = xi leads to the Bayes linear

kinematic adjusted expectation and variance for η of

E1(η;xi) = E0(η) + Cov0(η, ηi)Var
−1
0 (ηi) [E(ηi | xi)− E0(ηi)] , (5.4)

and

Var1(η;xi) = Var0(η)− Cov0(η, ηi)Var
−1
0 (ηi)Cov0(ηi,η)

+ Cov0(η, ηi)Var
−1
0 (ηi)Var0(ηi | xi)Var−1

0 (ηi)Cov0(ηi,η). (5.5)

which depend only on the prior specifications and fully Bayesian conjugate updates

which have already been calculated. Here, for example, E1(η;xi) denotes the adjusted

expectation after 1 observation has been made and the observation is given after the

semicolon.

Now consider whether, having observed x = (x1, . . . , xp)
′, there is a unique commuta-

tive Bayes linear kinematic update for η. From Goldstein & Shaw (2004) a sufficient

condition for a unique commutative solution is

Var−1
0 (ηi)Var(ηi | xi) < 1

for all i. The variances are Var0(ηi) = ψ1(ai) and Var(ηi | xi) = ψ1(ai + xi). Each xi

must be a nonnegative integer. The trigamma function is monotonically decreasing on

R+ and ψ1(x) → 0 as x → ∞ so, as long as xi > 0 for each i, Var(ηi | xi) < Var0(ηi)

for all i and the uniqueness condition is met. If this is the case then the Bayes linear
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kinematic unique commutative solution is

Ep(η;x) = Varp(η;x)

×
[

p
∑

i=1

Var−1
1 (η;xi)E1(η;xi)− (p− 1)Var−1

0 (η)E0(η)

]

, (5.6)

Varp(η;x) =

[

p
∑

i=1

Var−1
1 (η;xi)− (p− 1)Var−1

0 (η)

]−1

. (5.7)

In fact, we can see that these equations define a commutative update even if xi = 0 for

some i and this case satisfies the more general conditions in Theorem 5 of Goldstein &

Shaw (2004).

Suppose that we have a commutative Bayes linear kinematic solution for η at stage i−1

and it is given by Ei−1(ηi;xi−1) and Vari−1(ηi;xi−1) for ηi where xi−1 = (x1, . . . , xi−1)
′

.

Now suppose we observe xi. From Theorem 5 of Goldstein & Shaw (2004) we have a

commutative update if

Var−1(ηi | xi) + Var−1
i−1(ηi;xi−1)−Var−1

0 (ηi) > 0. (5.8)

Now, the Bayes linear kinematic commutative variance can be broken down sequentially

as

Var−1
i−1(ηi;xi−1) = Var−1

1 (ηi;xi−1) + Var−1
i−2(ηi;xi−2)−Var−1

0 (ηi),

and so Equation 5.8 becomes

Var−1(ηi | xi) +
i−1
∑

j=1

Var−1
1 (ηi;xj)− (i− 1)Var−1

0 (ηi) > 0. (5.9)

Thus, if Equation 5.9 holds for all i then we have a unique commutative solution.

Now consider the gamma-Poisson case. If xj = 0 then Var(ηj | xj) = Var0(ηj) and

if xj ≥ 1 then Var(ηj | xj) < Var0(ηj). This means that the adjusted variance of ηi,

Var1(ηi;xj) ≤ Var0(ηi) and so Var−1
1 (ηi;xj)−Var−1

0 (ηi) ≥ 0. Thus, from Equation 5.9,

our uniqueness condition is

Var−1(ηi | xi) +
∑i−1

j=1Var
−1
1 (ηi;xj)− (i− 1)Var−1

0 (ηi)

≥ Var−1(ηi | xi) + (i− 1)Var−1
0 (ηi)− (i− 1)Var−1

0 (ηi)

= Var−1(ηi | xi)
> 0.
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Hence the commutative update always exists in the gamma-Poisson case.

Having found the revised expectations and variances of every ηi, the means and vari-

ances of θi can be found by first solving the following equations for a∗i and b∗i .

Ep(ηi;x) = ψ(a∗i )− log(b∗i )

Varp(ηi;x) = ψ1(a
∗
i ).

The revised mean and variance of θi are then

Ep(θi;x) =
a∗i
b∗i
, Varp(θi;x) =

a∗i
b∗2i

.

5.2.1 Comparing the gamma and log-Normal distributions

We can investigate the similarity between the log-Normal and gamma distributions as

priors for Poisson parameters under our Bayes-Bayes linear-Bayes models. If the log-

Normal and gamma distributions were exactly the same then our Bayes linear updates

would be exactly the same as fully Bayesian updates.

If X ∼Po(θ) and either

θ ∼ gamma(a, b), θ ∼ log-N(µ, σ2),

where µ and σ2 are the mean and variance of η = log θ, the corresponding Normal

distribution, then we can match the means and variances of the unrestricted parameters

in each case and plot the resulting densities.

If we use the direct mean and variance approach then the mean and variance of η are

µ = ψ(a)− log b,

σ2 = ψ1(a).

If we use the mode and curvature approach the parameters of the log-Normal distribu-

tion are

µ = log
a

b
,

σ2 =
1

a
.

We set b = 1 as it is simply a scaling parameter and plot the resulting densities of both

distributions for a = 2, 10, 50, 100 in Figure 5.1 for the direct method and Figure 5.2

for the mode and curvature approach.
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Figure 5.1: A plot comparing the gamma and log-Normal distributions using the direct method

The gamma densities are given in black and the log-Normal densities in red. We see

that, in both cases, although the densities don’t appear too similar for small a, as a

increases the two distributions become more and more similar. It appears that it is the

mode and curvature approach which most closely matches the log-Normal distribution

for large a.

5.3 Bayes linear kinematics for failure rates

5.3.1 Example: failure rates of piston-rings

Data are presented in Davies & Goldsmith (1972), reproduced in Hand et al. (1994), on

the numbers of failures of piston-rings in four steam driven compressors over a number

of years. Within each compressor there are three legs: north (i = 1), centre (i = 2)

and south (i = 3). The south leg of each compressor is adjacent to the drive.

The numbers of failures Xij in each leg i of each compressor j are given in Table 5.1.

Questions of interest for these data are

1. whether the rate of piston-ring failures varies between compressors

2. whether the rate of piston-ring failures varies between legs

3. whether the pattern of the location of failures is different for different compressors.
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Figure 5.2: A plot comparing the gamma and log-Normal distributions using the mode and
curvature approach

Leg
Compressor North Centre South Total

1 17 17 12 46
2 11 9 13 33
3 11 8 19 38
4 14 7 28 49

Total 53 41 72 166

Table 5.1: Piston-ring failures

We have

Xij | θij ∼ Poisson(θij).

Let ηij = log(θij). Giving each θij a conjugate gamma prior distribution allows us to

utilise the methodology in Section 5.2 There are twelve conjugate updates to perform,

one for each element of X = (X11, . . . , X14, X21, . . . , X24, . . . , X34)
′.

5.3.2 Elicitation of prior beliefs

Now let us consider the process of specification of the expert’s prior beliefs. The

elicitation process consists of finding the parameters aij , bij of the marginal gamma

distributions and eliciting prior covariances between the ηij ’s.
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Elicitation of prior expectations and variances

To find aij and bij , quantiles can be elicited for the gamma prior distribution of θij

and, following Garthwaite & O’Hagan (2000), the median qij [1/2] and lower and upper

tertiles qij [1/3] and qij [2/3] are chosen. To perform these elicitations, questions are put

to the expert in terms of the average number of failures per unit time over a very long

period.

The compressors are identically designed and are all oriented the same way. Sup-

pose that, a priori, there is no reason to believe any leg of any compressor would

be more prone to failures than any other. Thus the marginal elicitation process re-

duces to eliciting a single median q[1/2] and a single lower and upper tertile q[1/3]

and q[2/3] for the failure rate θ in any leg of any compressor. Since three elicitations

(q[1/3], q[1/2], q[2/3]) are made to determine two parameters a, b, in general there is

no exact solution.

Indeed, Pratt et al. (1995) propose an approximate solution. However, in the case of

the gamma distribution, an exact solution can be found by considering

F0(q[2/3]) = 0.67 ⇒ q[2/3] = F−1
0 (0.67)

F0(q[1/3]) = 0.33 ⇒ q[1/3] = F−1
0 (0.33),

where F0 is the prior distribution function of θ and F−1
0 is its inverse. Whilst q[2/3]

and q[1/3] depend on b their ratio does not. Thus a can be found from the quantity

q[2/3]

q[1/3]
=
F−1
0 (0.67)

F−1
0 (0.33)

.

The elicited median q[1/2] can then be used to find b.

An interval halving algorithm can be used to solve for a as follows;

1. Specify a range in which a is believed to lie; a ∈ (aα, aβ), aα < aβ . Elicit values for

q[2/3] and q[1/3], the upper and lower tertiles of the distribution of θ respectively.

2. Set b = 1 (arbitrary). Calculate

Rα =
F−1
0α (0.67)

F−1
0α (0.33)

, Rβ =
F−1
0β (0.67)

F−1
0β (0.33)

,

the ratios of the upper tertile to the lower tertile for θ ∼gamma(aα, 1) and

θ ∼gamma(aβ , 1) respectively.

3. Find the differences between the ratio of upper tertile to lower tertile using aα

132



Chapter 5. Reliability and survival analysis

and aβ and its elicited value,

dα = Rα − q[2/3]

q[1/3]
dβ = Rβ − q[2/3]

q[1/3]

If dαdβ > 0 half aα, double aβ and return to 2. If not, proceed to 4.

4. Calculate a1 =
aα+aβ

2 and use this to find R1 and d1 as above. If d1dα > 0 replace

aα with a1. If not replace aβ with a1.

5. Iterate through steps 2-4 until a sufficiently accurate value for a is found

To find b, given a, calculate t where

Pr(θ < t) = 0.5, for θ ∼ gamma(a, 1).

Then b is such that t
b = q[1/2] as increasing the scale parameter by b reduces the value

of any quantile by b. Thus b = t
q[1/2] .

Elicitation of prior covariances

To complete the second order prior specification, covariances for η must be specified.

This is achieved by eliciting quantities involving the θij ’s. For each pair θij and θkl

with (i, j) 6= (k, l), a prior covariance Cov0(ηij , ηkl) is required. This covariance is

elicited by asking the expert to suppose that the value of θkl, the population average

number of piston-ring failures per unit of time over a very long period, is now known

and indicating that this has left the median for θij unchanged at qij(1/2). New tertiles,

q′ij(1/3) and q
′
ij(2/3), are then elicited for θij having learned θkl.

From these the parameters a′ij , b
′
ij of the gamma distribution can be found as when

making the marginal prior specifications. Thus

θij | θkl ∼ gamma(a
′

ij , b
′

ij).

If the expert judges that θij and θkl are unrelated then q′ij(1/3) = qij(1/3) and

q′ij(2/3) = q′ij(2/3) i.e., the elicited tertiles would remain unchanged as nothing has

been learned about θij by learning θkl. If the expert judges that there is a relation

between θij and θkl then q′ij(1/3) > qij(1/3) and q′ij(2/3) < qij(2/3) i.e., the elicited

tertiles will have moved closer together indicating a reduction in uncertainty about θij

having learned θkl. The closer together the tertiles become, the stronger the association

between the two quantities.
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Transforming back to ηij gives

Var(ηij | ηkl) = ψ1(a
′

ij)

which can be combined with the prior variances to give a prior covariance via

Var(ηij | ηkl)
Var0(ηij)

= 1− Cov20(ηij , ηkl)

Var0(ηij)Var0(ηkl)
.

Thus the modulus of the prior covariance between ηij and ηkl is

|Cov0(ηij , ηkl)| =
√

Var0(ηkl)[Var0(ηij)−Var(ηij | ηkl)].

The sign of the covariance is determined by asking whether the expert’s expectation

for θij would increase or decrease upon learning that θkl was greater than expected.

This method is based on that which was used in the projects described in Spiropoulos

(1995); Goldstein et al. (1993); Farrow (2003).

5.3.3 Results

Suppose that the expert settles on values of q(1/3) = 11 and q(2/3) = 20 for the lower

and upper tertiles following the elicitation process. This leads to a = 2.441. If the

expert also gives a median q(1/2) = 15, b is found to be 0.1411. If the four compressors

are judged to be exchangable and the legs within each compressor are also regarded as

exchangable (which, of course, might not be the case), the elicitation of a covariance

structure can be reduced to the specification of three different covariances:

Cov0(ηij , ηkl) =



















c1, when i = k, j 6= l,

c2, when i 6= k, j = l,

c3, when i 6= k, j 6= l.

That is, a covariance for the same leg in different compressors, a covariance for different

legs in the same compressor and a covariance for different legs in different compressors.

Table 5.2 shows an example of elicited adjusted tertiles in the above three cases and

the resulting adjusted gamma parameter values and covariances and correlations of ηij .

Using these prior specifications we can perform fully conjugate updates to obtain the

expectations and variances in Equations 5.2 and 5.3. These updates are propagated

via Bayes linear kinematics using Equations 5.4 and 5.5. A unique commutative Bayes

linear kinematic solution can be found in this example as at least one piston ring failed
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Case (h) q[1/3]
′

q[2/3]
′

a′ b′ ch ρh
1 12 18.5 4.412 0.2722 0.356 0.704
2 11.75 18.75 3.824 0.2331 0.322 0.639
3 11.25 19.25 2.960 0.1756 0.229 0.453

Table 5.2: Elicitation of covariances ch and correlations ρh in cases h = 1, 2, 3.

in each group, satisfying the sufficient condition. It is given in Equations 5.6 and 5.7.

For this solution the adjusted values of the gamma parameters are calculated. Figure
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Figure 5.3: A plot of E12(θij ;X = x) and 95% symmetric credible intervals

5.3 shows the adjusted expectations of the θij ’s and adjusted 95% symmetric credible

intervals for each of the 12 legs. The dashed line on the plot is the observed mean

number of piston-ring failures in the time period, 166/12.

The first four locations correspond to the north leg, the next four to the centre leg and

the final four to the south leg. A full list of locations along with posterior moments are

given in Table 5.3. It appears that location 12, the south leg of compressor 4, has an

unusually high rate of piston-ring failures.

In this example, a unique commutative Bayes linear kinematic adjustment also exists

if the transformation is not used as the variance of each θi decreases on observation

of the number of failures in that group. The bracketed figures in Table 5.3 show the

results. The prior specification was derived from the same elicited tertiles as in the

analysis with the transformation. The results are similar but generally a little lower.

It seems that the effect of the observations which are less than the prior mean may be
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Compressor
Location and leg Posterior mean 95% interval

1 1 North 16.033 (15.541) 10.347 (9.809) 22.944 (22.569)
2 2 North 11.544 (11.537) 6.914 (6.658) 17.342 (17.733)
3 3 North 12.133 (12.007) 7.278 (7.094) 18.208 (18.191)
4 4 North 14.632 (14.349) 9.145 (8.964) 21.389 (20.979)
5 1 Centre 14.474 (13.997) 9.309 (8.365) 20.761 (21.055)
6 2 Centre 9.472 (9.347) 5.464 (4.883) 14.566 (15.236)
7 3 Centre 9.655 (9.246) 5.477 (4.918) 14.997 (14.919)
8 4 Centre 10.494 (9.390) 5.854 (5.186) 16.466 (14.821)
9 1 South 16.062 (14.961) 9.831 (9.745) 23.798 (21.278)
10 2 South 14.252 (14.072) 8.793 (8.806) 21.007 (20.553)
11 3 South 17.664 (17.082) 11.603 (11.111) 24.979 (24.315)
12 4 South 23.898 (20.927) 16.701 (14.184) 32.365 (28.961)

Table 5.3: E12(θij ;x) and 95% symmetric credible intervals for the 12 locations. The figures
in brackets refer to an analysis without using transformations.

greater when no tansformation is used. While such an analysis without transformations

is possible in this example, in general it is not.

In Figure 5.4 we have plotted the prior marginal gamma densities for all of the θij ’s in

red along with the corresponding marginal densities of θij | xij in blue and the posterior

marginal densities of θij ;x in green. The four north legs are in the top row, the four

centre legs in the middle row and the four south legs in the bottom row of the plot.

The reduction in uncertainty when observing data from within the group is clear from

the plot, as indicated in the reduced spread in the blue curve from the red curve. A

larger reduction in uncertainty appears to occur when incorporating the data from the

other groups emphasised by the reduction in spread between the blue curve to the green

curve for most of the 12 groups.

5.4 Survival analysis for survival times and failure times

Survival analysis is concerned with modelling the amount of time taken until some event

occurs. In terms of the applications in this chapter this corresponds to the amount of

time until an item fails from some startpoint for that item or the amount of time after

surgery until a certain symptom is observed. The time taken until the event occurs is

referred to as the failure time or survival time respectively.

The failure/survival time t of a component can be regarded as the value of a random

136



Chapter 5. Reliability and survival analysis

0 20 40

0.
00

0.
10

0.
20

θ

D
en

si
ty

0 20 40

0.
00

0.
10

0.
20

θ

D
en

si
ty

0 20 40

0.
00

0.
10

0.
20

θ

D
en

si
ty

0 20 40

0.
00

0.
10

0.
20

θ

D
en

si
ty

0 20 40

0.
00

0.
10

0.
20

θ

D
en

si
ty

0 20 40

0.
00

0.
10

0.
20

θ

D
en

si
ty

0 20 40

0.
00

0.
10

0.
20

θ
D

en
si

ty

0 20 40

0.
00

0.
10

0.
20

θ

D
en

si
ty

0 20 40

0.
00

0.
10

0.
20

θ

D
en

si
ty

0 20 40

0.
00

0.
10

0.
20

θ

D
en

si
ty

0 20 40

0.
00

0.
10

0.
20

θ

D
en

si
ty

0 20 40
0.

00
0.

10
0.

20

θ

D
en

si
ty

Figure 5.4: Marginal gamma distributions at different stages of the update

variable T . Associated with T is the reliability

R(t) = Pr(T ≥ t)

which is the probability that an item has not failed by time t. In survival analysis this

is known as the survivor function S(t). Also associated with T is a hazard function

h(t) which is the instantaneous rate of failure at t or the following limit;

h(t) = lim
δt→0

Pr(fail in [t, t+ δt) | not failed by t)

δt
.

Censoring occurs when the exact failure/survival time is not known for some reason.

Right censoring is the most common type in which all that is known is that the fail-

ure/survival time t > c for some value c. Right censoring occurs when an item has

not failed or a patient not suffered the onset of symptoms by the end of the study.

Censoring can be both informative and non-informative. Non-informative censoring

occurs when the failure/survival time T is independent of the mechanism which causes
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an observation to be censored at c.

Information on Bayesian survival analysis can be found in Klein & Moeschberger (1997)

and Ibrahim et al (2001).

5.5 Bayes linear kinematics for failure time distributions

5.5.1 Applying Bayes linear kinematics to life table data

Initially we consider the case where failure times are grouped into intervals as in a life

table.

Suppose that time is split into intervals so that the i’th interval is [τi, τi+1) for i =

0, . . . , p with τ0 = 0 and τp = ∞. Represent the number of failures of items in interval

i by xi and the number of items which have not failed by the start of interval i by Ni.

Suppose initially that there is no censoring so an interval is recorded for the failure

time of every item. Then

Ni = Ni−1 − xi−1.

The number of failures of items in each interval follows a binomial distribution

Xi | θi ∼ bin(Ni, θi),

where θi is the unknown population probability that an item fails in the i’th interval

given that it has not failed by time τi. Each θi ∈ (0, 1) and so can be given a marginal

beta distribution, θi ∼beta(ai, bi). The beta distribution is conjugate to the binomial

distribution and so observation of xi failures in interval i leads to a within interval

update of

θi | Xi ∼ beta(Ai, Bi),

where Ai = ai + xi and Bi = bi +Ni − xi. The prior expectation and variance of θi are

given by the standard formulae for the beta distribution;

E0(θi) =
ai

ai + bi
Var0(θi) =

aibi
(ai + bi)2(ai + bi + 1)

,

with the posterior counterparts E(θi | xi) and Var(θi | xi) the same but using Ai and

Bi. The next step is to transform to an unrestricted scale so that Bayes linear kinematic

updating is most effective.

We have seen that in the beta-binomial case many different transformations are pos-

sible. For the failure-time application the complementary log-log transformation is

chosen as it is more convenient for computation of the reliability R(t) = Pr(T ≥ t),
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where T is a lifetime. Hence

µi = g(θi) = log[− log(1− θi)]. (5.10)

However, as we have seen, the moments of µi are generally not straightforward so we

return to our “guide relationship” where we take a related quantity ηi, which has mean

and variance found from the mode of µi and the curvature at the mode of the log

density of µi.

The prior mean and variance of ηi are

E0(ηi) = mi, Var0(ηi) = −
[

d2li(µi)

dµ2i

]−1

mi

,

where li(µi) is the log-density of µi and mi is the mode of µi or the solution of

(

dli(µi)

dµi

)

mi

= 1− emi +

[

(ai − 1)

θm,i
− (bi − 1)

1− θm,i

]

emi exp[−emi ] = 0, (5.11)

where θm,i = 1− exp[−emi ]. The required second derivative is

d2li(µi)

dµ2i
= −eµi −

[

(ai − 1)

θ2i
+

(bi − 1)

(1− θi)2

]

e2µi exp[−2eµi ]

+

[

(ai − 1)

θi
− (bi − 1)

1− θi

]

eµi(1− eµi) exp[−eµi ]. (5.12)

This solution was derived in Section 3.9.

Having made the conjugate updates, the same procedure can be applied but using

Ai = ai + xi and Bi = bi + Ni − xi in place of ai and bi in the density and subse-

quent derivatives. Defining a Bayes linear structure for η1, . . . , ηp, i.e., specification of

Cov0(η), allows the updates to be propagated to the other quantities in η via Equa-

tions 4.2 and 4.3. Note that, once an adjusted mean and precision for ηi are found,

Equations 5.11 and 5.12 provide simultaneous linear equations in a∗i and b∗i , the new

values of ai and bi, which are easily solved.

From Equation 4.4 a sufficient condition for a unique commutative solution to the

problem using Bayes linear kinematics is

Var−1
0 (ηi)Var(ηi | xi) < 1, ∀i.

Referring back to our numerical investigation of this condition given in Section 3.9

we conclude that, at least over a large range of parameter values, this condition shall
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always hold. When a unique commutative solution does exist it is given by

Ep(η;x) = Varp(η;x)

[

p
∑

i=1

Var−1
1 (η;xi)E1(η;xi)− (p− 1)Var−1

0 (η)E0(η)

]

,

Varp(η;x) =

[

p
∑

i=1

Var−1
1 (η;xi)− (p− 1)Var−1

0 (η)

]−1

The aim is to make inference for the reliability function. This can be expressed at each

of the interval boundaries in terms of the conditional probabilities of failure up to that

interval. That is

R(τi) = Pr(T ≥ τi)

=
i
∏

j=1

(1− θj).

As the reliability is a product of i− 1 correlated terms, means and variances for it are

not straightforward to calculate. The log of the reliability, however, is given by the

sum of i− 1 correlated terms, in particular

log(R(τi)) =
i
∑

j=1

log(1− θj).

Using the complementary log-log link function gives

log[R(τi)] = −
i
∑

j=1

exp(µj).

To see what might reasonably be concluded about this quantity, the guide relationship

(5.10) can again be considered. After observing data it might be reasonable to suppose

that the result of such a nonlinear transformation is approximated by what happens if

η has a multivariate normal distribution and log(1− θi) = − exp(ηi). Thus

η | x ∼ MVNp(M , V ),

where M = E(η | x) and V = Var(η | x). Now exp(µ) | x can be regarded as having

approximately the moments of a multivariate lognormal distribution.

If E(ηi) = Mi, Var(ηi) = Vii and Cov(ηi, ηj) = Vij then, following this guideline and

writing wi = − log[1− θi] = exp(ηi),

E(wi) ≈ eMi+Vii/2, Var(wi) ≈ e2Mi+Vii(eVii − 1),
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Cov(wi, wj) ≈ eMi+Mj+(Vii+Vjj)/2(eVii+Vjj+2Vij − 1).

Returning to the log reliability the posterior expectation can now be found at each τi

as

E[log(R(τi))] = −
i
∑

j=1

wj (5.13)

≈ −
i
∑

j=1

eMj+Vjj/2

and the posterior variances can also be calculated as

Var(log[R(τi)]) =
i
∑

j=1

i
∑

k=1

Cov(wj , wk) (5.14)

≈
i
∑

j=1

i
∑

k=1

eMj+Mjk+(Vjj+Vkk)/2(eVjj+Vkk+2Vjk − 1).

5.5.2 Right Censoring

If an observation is right censored during interval i, that is at time t with τi < t < τi+1,

then its contribution to the likelihood is

i
∏

j=0

(1− θj)
xj ,

where xj = 1 for j < i and

xi =
t− τi

τi+1 − τi
.

5.5.3 Example: Centrifuge cloths

Data are given in Lawless (1982) on the failure times of sugar centrifuge cloths. In all

there are 229 cloths and all fail within 78 weeks. There is no censoring in the data.

The data are presented in Table 5.4.

As for the piston-rings example, the elicitation process contains two stages: elicitation

of the median and tertiles for the marginal beta distributions and elicitation of a coher-

ent covariance structure for η. The marginal elicitation process is very similar to that

for the piston-rings example from earlier in the chapter and the smoking and health

example from Section 4.5. The parameters ai, bi of the marginal beta distributions are

found from the elicited median and tertiles.
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i Weeks Ni xi i Weeks Ni xi i Weeks Ni xi
1 [0,2) 229 24 14 [26,28) 34 4 27 [52,54) 2 0
2 [2,4) 205 36 15 [28,30) 30 1 28 [54,56) 2 0
3 [4,6) 169 27 16 [30,32) 29 4 29 [56,58) 2 1
4 [6,8) 142 23 17 [32,34) 25 4 30 [58,60) 1 0
5 [8,10) 119 15 18 [34,36) 21 5 31 [60,62) 1 0
6 [10,12) 104 9 19 [36,38) 16 2 32 [62,64) 1 0
7 [12,14) 95 12 20 [38,40) 14 2 33 [64,66) 1 0
8 [14,16) 83 11 21 [40,42) 12 2 34 [66,68) 1 0
9 [16,18) 72 13 22 [42,44) 10 2 35 [68,70) 1 0
10 [18,20) 59 4 23 [44,46) 8 2 36 [70,72) 1 0
11 [20,22) 55 12 24 [46,48) 6 0 37 [72,74) 1 0
12 [22,24) 43 5 25 [48,50) 6 0 38 [74,76) 1 0
13 [24,26) 38 4 26 [50,52) 6 4 39 [76,78) 1 1

Table 5.4: The failure times of centrifuge cloths

The prior values for the ai’s and the bi’s resulting from the elicitation process are given

in Table 5.5.

i ai bi i ai bi i ai bi
1 2.206 23.530 14 2.208 11.797 27 2.217 5.843
2 2.206 22.356 15 2.209 11.160 28 2.218 5.664
3 2.206 21.229 16 2.209 10.552 29 2.219 5.485
4 2.206 20.152 17 2.210 9.943 30 2.220 5.143
5 2.207 19.128 18 2.210 9.422 31 2.220 5.101
6 2.207 18.153 19 2.211 8.894 32 2.220 5.056
7 2.207 17.214 20 2.211 8.395 33 2.220 5.011
8 2.207 16.329 21 2.212 7.916 34 2.221 4.996
9 2.207 15.481 22 2.213 7.459 35 2.221 4.951
10 2.207 14.671 23 2.214 7.025 36 4.901 4.901
11 2.207 13.901 24 2.215 6.613 37 2.221 4.888
12 2.208 13.167 25 2.215 6.415 38 2.221 4.836
13 2.208 12.463 26 2.216 6.218 39 2.222 4.817

Table 5.5: Prior marginal parameter values for centrifuge cloths

Covariances between different elements of η can be elicited using a method similar to

that used in the piston-rings example. The expert can be asked to imagine knowing

the value of θj , from a very large experiment, and provide revised tertiles for θi given

that the “true” value of θj was found to be equal to its prior median. As in the Poisson

case, this leads to a calculation of the reduction in variance of ηi given knowledge of ηj

and hence to the covariance of ηi and ηj .
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However, with a large number of intervals it may be unappealing to consider all of the

covariances individually. It may also be difficult to avoid accidental incoherence in the

resulting covariance matrix. In any case it may well give more satisfactory results to

adopt a more structured approach. Therefore ideas from Farrow (2003) are used to

give Var0(η) a more structured form.

For example, bearing in mind the ordering of the time intervals, uncertainties about η

might well be represented by a stationary process. Let Fi = ηi − E0(ηi) so that Fi is a

zero expectation quantity which depends on time. Then F1, . . . , Fp can be linked via a

stationary process such as a first order autoregression, in which case

Fi = φFi−1 + εi, (i = 2, . . . , p)

where φ < 1, E(εi) = 0, E(ε2i ) = vε and E(εiεj) = 0 for i 6= j. For stationarity the

initial variance of F1 is set at the stationary value

Var0(F1) =
vε

1− φ2
= vF .

The covariances between η1, . . . , ηp are now given by Cov0(ηi, ηj) = φ|j−i|vF . Thus

covariances are weaker for intervals which are further apart. If a small number of

covariances are elicited directly, the parameters can then be adjusted until the expert

is happy with the result. Note that using a stationary process in this way implies that

all of the variances of η1, . . . , ηp are equal and this is likely to require a process of

iterative adjustment of the assessed values of ai and bi. It is felt, however, that such a

process is likely to lead to better prior assessments overall.

For the example the values vF = 0.453, φ = 0.97 were adopted and therefore vε =

0.0268.

The conjugate updates take place using Ai = ai+xi and Bi = bi+Ni−xi in place of ai

and bi in Equations 5.11 and 5.12 to calculate E(ηi | xi) and Var(ηi | xi) respectively.
These are then used in Equations 4.2 and 4.3 to calculate the Bayes linear kinematic

update for η at each stage: E1(η; xi) and Var1(η; xi). The unique commutative Bayes

linear kinematic solution is then given by

Var(39)(η) =

(

39
∑

i=1

Var−1
1 (η; xi)− 38Var−1

0 (η)

)−1

E(39)(η) = Var(39)(η)

(

39
∑

i=1

Var−1(η; xi)E1(η; di)− 38Var−1
0 (η)E0(η)

)

.

Having performed the updates, posterior parameter values are found and are given in

143



Chapter 5. Reliability and survival analysis

Table 5.6. It is clear that there has been a significant reduction in uncertainty upon

observation of the data.

i a∗i b∗i i a∗i b∗i i a∗i b∗i
1 46.802 329.558 14 23.947 158.264 27 9.844 31.960
2 70.360 407.096 15 21.846 143.812 28 8.699 28.626
3 66.560 379.147 16 22.658 137.701 29 7.942 25.952
4 59.693 350.579 17 22.745 126.533 30 7.059 22.748
5 49.318 319.843 18 22.128 113.915 31 6.415 21.351
6 42.224 293.478 19 19.589 98.948 32 5.932 20.151
7 42.425 283.729 20 18.010 87.220 33 5.560 19.388
8 41.357 263.071 21 16.769 76.599 34 5.274 18.186
9 40.274 241.228 22 15.552 66.492 35 5.050 17.203
10 33.790 208.987 23 14.168 56.826 36 4.877 16.218
11 35.298 203.808 24 12.517 47.813 37 4.744 15.342
12 29.492 183.741 25 11.770 42.383 38 4.647 14.339
13 26.092 170.223 26 11.657 37.861 39 4.581 13.416

Table 5.6: Posterior marginal parameter values for centrifuge cloths

We can plot the prior and posterior means of the ηi’s as in Figure 5.5. The posterior

means are in red, the prior means are blue and the green lines represent ±2 standard

deviation intervals.

We see that our prior means may have been a bit low early on and a bit high in

later intervals. There is more uncertainty at later times due to the smaller number of

observations.

From the posterior means and variances we can calculate the posterior means and

variances of the log reliability at each of the interval boundaries as in Equations 5.14

and 5.15. The posterior means and a credible region for the log reliability are plotted

in Figure 5.6.

In order to calculate the credible region we initially transformed using logs. If we set

Zi = − log[R(τi)] then the expectation and variance of logZi are approximately

mi = E[logZi] ≈ log(E[Zi]),

vi = Var(logZi) ≈ 1

E[Zi]2
Var(Zi).

A sensible interval where the log reliability may lie is then

(− exp{mi + 2
√
vi},− exp{mi − 2

√
vi}) .

We see that the log-reliability is monotonically decreasing as it should be. The variance
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Figure 5.5: A plot of prior and posterior means and ±2 standard deviation intervals for each ηi

is clearly increasing with increasing time. There are far fewer centrifuge cloths which

have not failed by the start of later intervals and so fewer data within each interval.

This could perhaps explain this increase in variance. We are also accumulating variance

as we go along since this is a cumulative sum.

5.6 A dynamic Bayes linear piecewise constant hazards

model for survival analysis

5.6.1 Piecewise constant hazards model

Suppose we have individuals i = 1, . . . , p and individual i has covariates xi = (xi1, . . . , xiq).

Associated with each individual is a hazard function hi(t) for the random variable T

at time t. If we assume a proportional hazards model (Cox, 1972) then the hazard

functions of individuals are related via

hi(t) = φih0(t),

where φi is a constant with respect to time and h0(t) is the baseline hazard function.

We can relate an individual’s hazard function to their covariates by setting

φi = exp(x
′

iβ), (5.15)
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Figure 5.6: A plot of the posterior mean log-reliability as well as posterior credible regions for
the centrifuge cloth example

for some parameter vector β = (β1, . . . , βq). In the case of no censoring we observe the

values of the covariates and the death times t1, . . . , tp (which may not be deaths but

time until some event) of each of the individuals.

In the above setup we assumed that the values of the parameters β remained constant

over time. That is, the effect of the covariates for an individual remained constant

over time. In reality this may not be the case. Therefore we shall instead consider a

dynamic model

φi(t) = exp(x
′

iβ(t)), (5.16)

so that we can model changes in the effects of the covariates over time. The static

model in Equation 5.15 is just a special case of this more general model.

The piecewise constant hazards model (Ibrahim et al., 2001) comes about by taking

some fixed time points τ0, τ1, . . . , τr such that τ0 = 0 and τr is greater than the largest

death time. This splits time up into intervals. The j’th interval is defined as Ij =

[τj−1, τj). Then, for τj−1 ≤ t < τj , the baseline hazard is

h0(t) = λ0j ,

and the hazard function for individual i is

hi(t) = λij = φijλ0j .
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That is, the hazard for each individual remains constant through each of the time

intervals. The integrated hazard is then

Hi(t) =

∫ t

0
hi(u)du

=

j−1
∑

k=1

λik(τk − τk−1) + λij(t− τj−1),

From this we can calculate the survival function for individual i,

Si(t) = exp{−Hi(t)}

= exp

{

−
[

j−1
∑

k=1

λik(τk − τk−1) + λij(t− τj−1)

]}

.

We can use the hazard function and the survival function in order to find the probability

density function of t.

fi(t) = hi(t)Si(t)

= λij exp

{

−
[

j−1
∑

k=1

λik(τk − τk−1) + λij(t− τj−1)

]}

=

j−1
∏

k=1

exp{−λik(τk − τk−1)} × λij exp{−λij(t− τj−1)}.

If we condition on our random variable T ≥ τj then we obtain the conditional survival

function and conditional probability density function for individual i at time t. These

are

fi(t | T ≥ τj−1) = λij exp{−λij(t− τj−1)}, (5.17)

and

Si(t | T ≥ τj−1) = exp{−λij(t− τj−1)}. (5.18)

Thus the conditional density takes the form of a shifted exponential distribution.

5.6.2 The Gamerman model

Gamerman (1991) proposed a dynamic piecewise constant hazards model for survival

data of the form given above. This was not the first time such a model had been

suggested (Kalbfleisch, 1978) but Gamerman’s paper considered dependence between

the hazard increments. It was based very closely on the Dynamic Generalized Linear

Models of West et al. (1985).
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His analysis took the form of an observational model with three elements;

• a conjugate prior,

• an evolving system vector, as in a dynamic linear model. The joint distribution

of the system vector was not specified at times τ0, . . . , τr, just the first and second

order moments,

• and a guide relationship between the parameters of the conjugate prior and the

corresponding elements of the system vector.

Due to the partial specification Bayes linear updating was used to update the system

vector.

More specifically, the parameters in the linear predictor didn’t take a full distributional

form but were given instead a second-order specification, i.e., a mean vector mj and

variance matrix Cj for each interval j. The covariances between intervals were specified

using the system evolution as in a dynamic linear model.

The evolution step then used a system evolution matrix and innovation to move time

on a step and give a prior mean vector aj+1 and variance matrix Pj+1 for the next

interval.

Gamerman utilised a guide relationship in which a quantity, ηij , was introduced for

each constant hazard λij . The idea of the guide relationship was that the ηij were

updated within an interval and these changes in belief were propagated, through the

guide relationship

ηij ≈ log(λij) = x
′

iβj

to log(λij) and hence the parameter vector βj .The guide relationship, here, is denoted

by ≈.

The updating of each ηij within a time interval, was achieved via a mixture of fully

Bayesian and Bayes linear methods. Each λij was given a gamma prior distribution

which was conjugate to the conditional likelihood for that individual in that interval.

Thus updating of individual ηij ’s was straightforward. These changes in belief were

then propagated through to the parameter vector βj individually using Bayes linear

methods. This gave the posterior mean vector mj and variance matrix Cj within an

interval.

Gamerman found, however, that the final answer depended on the order in which data

were included. ‘The dependence on the order that the observations are processed is of

concern...The results, however, do not differ by much’. The commutative updates of

Bayes linear kinematics offer a solution to this problem.
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Another important point about the Gamerman model is that naturally it is a filtering

procedure, with the parameter vector βj only updated by information up to and in-

cluding interval j. Gamerman, however, proposed a smoothing step at the end of the

analysis.

5.6.3 System evolution

We are going to assume a dynamic model similar to that developed by Gamerman

(1991) based upon the dynamic generalised linear models of West et al. (1985). In fact

the relationships we exploit to make prior specifications for our parameter vector shall

take the form of the system evolution in each of the above papers.

That is, we represent the parameter vector in interval Ij in terms of that in the previous

interval. Specifically,

βj = Gj(bj)βj−1 + ǫj ,

where Gj(bj) is the system evolution matrix for Ij , bj is the length of Ij and ǫj is the

cumulative innovation over Ij which has mean zero and variance matrix Ej . Usually

Ej = bjĒj , where Ēj is the unit covariance matrix in Ij (Gamerman, 1991).

The parameter vector βj−1 is not given a full distributional form but is simply specified

in terms of its mean vector and variance matrix. Thus if our prior beliefs for the

parameter vector at time zero, β0 = (β01, . . . , β0q), are given by

β0 ∼ [m0, C0],

then we can calculate the prior specification for the parameters in interval Ij as

βj ∼ [mj , Cj ],

where the mean vector is

mj = E[Gj(bj)βj−1 + ǫj ]

= Gj(bj)E[βj−1] + E[ǫj ]

= Gj(bj)mj−1,

and the variance matrix is

Cj = Var(Gj(bj)βj−1 + ǫj)

= Gj(bj)Var(βj−1)G
′

j(bj) + Var(ǫj)

= Gj(bj)Cj−1G
′

j(bj) + Ej ,
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as βj−1 and ǫj are independent. We can also calculate the covariance matrix between

parameter vectors in different intervals. This is given by

Cov(βj ,βj+l) = Cj

j+l
∏

m=j+1

Gm(bm) = Cj,j+l.

For example the covariance matrix of βj−1 and βj is

Cov(βj−1,βj) = Cov(βj−1, Gj(bj)βj−1 + ǫj)

= Var(βj−1)Gj(bj)

= Cj−1Gj(bj).

5.6.4 Guide relationship

We use a guide relationship proposed by West et al. (1985) of the form

ηij ≈ log(λij) = x
′

iβj + log λ0j ,

where ≈ represents the guide relationship. Thus updating of the quantities ηij can be

seen as a guide to update the parameters in the model. The prior expectation and

variance of log λij are

fij = E0[log λij ] = x
′

imj + log λ0j ,

qij = Var0(log λij) = x
′

iCjxi.

We shall also need covariances between each of the transformed quantities. These are

q(ik)j = Cov0(log λij , log λkj) = x
′

iCjxk,

qi(jl) = Cov0(log λij , log λil) = x
′

iCj,lxi,

q(ik)(jl) = Cov0(log λij , log λkl) = x
′

iCj,lxk.

Finally we need the covariances between the transformed quantities and the parameter

values. These are
sij = Cov0(log λij ,βj) = x

′

iCj ,

si(jl) = Cov0(log λij ,βl) = x
′

iCj,l.

We wish to find a commutative Bayes linear kinematic solution to the problem. To

do this we wish to update all of the parameter values for all time points for each

observation. Thus Bayes linear kinematics will provide a natural smoothed solution

which contrasts with the filtering method of Gamerman (1991).

We define H = (η,β)
′

, where η = (η11, η21, . . . , ηp1, . . . , ηr1, . . . , ηprr)
′

and
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β = (β11, . . . , βq1, . . . , β1r, . . . , βqr)
′

to be the set of all quantities of interest.

Prior specifications for this set are given by E0(H) = l and

Var0(H) =

[

Var0(η) Cov0(η,β)

Cov0(β,η) Var0(β)

]

= Z,

and each of the components of the matrix can be calculated in terms of the quantities

found above.

5.6.5 Bayes linear kinematics

In each interval Ij we can give each of the λij gamma prior distributions so that they

are conjugate to the conditional density and survival functions given in Equations 5.17

and 5.18. If individual i is alive at time τj−1 then their prior hazard for interval Ij is

[λij ]0 ∼ gamma(αij , θij).

The prior expectation and variance of ηij , using our guide relationship, are

E0(ηij) = g1(αij , θij) = fij ,

and

Var0(ηij) = g2(αij , θij) = qij ,

for some functions g1() and g2(). We can then solve these two equations simultaneously

for αij and θij given fij and qij . The likelihood contribution from individual i in interval

Ij is then

(λij)
δij exp{−λij(tij − τij)},

where

δij =







1, if individual i dies in Ij ,

0, if individual i survives Ij ,

and

tij =







ti, if individual i dies in Ij ,

τj , if individual i survives Ij .

Thus the update for λij is conjugate and so

[λij ]1 ∼ gamma(αij + δij , θij + tij − τj−1).
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This gives a posterior mean and variance for ηij of

E1(ηij) = g1(αij + δij , θij + tij − τj−1) = kij ,

and

Var1(ηij) = g2(αij + δij , θij + tij − τj−1) = rij .

We can propagate these changes in belief about individuals through to the other in-

dividuals, other intervals and model parameters using Bayes linear kinematics. This

gives an adjusted expectation and variance for H of

E1(ij)(H) = l+Cov0(H, ηij)
[kij − fij ]

qij
,

and

Var1(ij)(H) = Z − Cov0(H, ηij)Cov0(ηij ,H)

[1− rij
qij

]

qij
.

We need to check whether a unique commutative solution exists. Using the uniqueness

condition we have a unique solution if

rij
qij

< 1, (5.19)

for some combination of i, j. When it exists the adjusted expectation and variance are

Varp∗(H) =





r
∑

j=1

pj
∑

i=1

Var−1
1(ij)(H)− (p∗ − 1)Var0(H)





−1

and

Ep∗(H) = Varp∗(H)





r
∑

j=1

pj
∑

i=1

Var−1
1(ij)(H)E1(ij)(H)− (p∗ − 1)Var0(H)E0(H)



 ,

where p∗ = p +
∑r

j=2 pj . From these we obtain the posterior means and variances of

the parameters as the final q elements of the expectation vector and the final q diagonal

elements of the variance matrix.

5.6.6 Right Censoring

We can introduce non-informative right censoring into this model in the following way.

Let us suppose that, for individual i, rather than observing a death time we observe

a time of censoring denoted t∗i . Then the likelihood contribution for individual i in
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interval Ij becomes

(λij)
δij exp{−λij(tij − τj−1)},

where

δij =







1, if individual i dies in Ij ,

0, if individual i survives or is censored in Ij ,

and

tij =



















ti, if individual i dies in Ij ,

τj , if individual i survives Ij ,

t∗i , if individual i is censored in Ij .

5.6.7 Expectation and variance of ηij

As λij and ηij are linked using a guide relationship we have some freedom with regards

to how we specify the mean and variance of ηij . We considered two possibilities in

Section 3.13; direct calculation from the mean and variance of log λij and use of the

mode and the curvature at the mode of the log density of log λij .

In this chapter we favour the mode and curvature approach as, with many updates to

perform, it is preferable not to have to use a numerical method with each update in

calculation of the gamma distribution parameters.

Thus we shall set

µij = log(λij).

Thus our guide relationship is between µij and ηij . Rather than use the mean and

variance of µij directly we shall say that ηij is such that it has mean given by the mode

and variance given by the curvature at the mode of the log density of µij .

Thus the prior mean and variance of ηij are

fij = mij , qij = −
[

d2lij(µij)

dµ2
ij

]−1

mij

,

where mij is the mode and lij(µij) is the log-density of µij . We found these quantities

in Section 3.13 giving the prior expectation and variance of ηij as

fij = log

(

αij

θij

)

, qij =
1

αij
.
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Given these specifications we can solve for αij and θij directly. We see that

αij =
1

qij
, θij =

1

qij
e−fij .

Having observed the outcome for individual i in interval Ij the posterior mean and

variance are

kij = log

(

αij + δij
θij + tij − τj−1

)

, rij =
1

αij + δij
.

Thus, from the uniqueness condition, we have a unique Bayes linear kinematic update

if
1

αij + δij
<

1

αij
.

That is, if we observe at least one death as in the direct case.

5.6.8 Example: CABG data

We shall concern ourselves with 2 studies into morbidity and risk factors after coronary

artery bypass graft (CABG) surgery. Both studies took place at the Freeman hospital

in Newcastle, the first between January 1980 and June 1987 and the second between

June 1987 and December 1992 (Posner et al., 1995, 1996).

All of the participants in the studies were male. The aim was to look for associations

between risk factors and outcomes. Three different surgical techniques were used for

the CABG surgery and they were;

• Venous graft

• Single mammary artery graft

• Bilateral mammary artery graft

Data collection was carried out either by questionnaires given to the patients by their

GP or by visits to the patients. 575 patients are considered.

The model

Although in the original dataset there were 7 response variables we shall consider just

one. This is the time in months after surgery until the onset of angina and shall be

denoted by the random variable T .

We shall use a selection of what were found (Posner et al., 1995, 1996) to be the most

useful covariates in the model.
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• x1: age in years at the time of operation.

• x2, x3: change in activity since operation. This is a factor with three levels. No

change shall be regarded as the baseline level and then x2 shall represent increase

and x3 decrease.

• x4: Total kg of tobacco smoked before the operation.

• x5: Total kg of tobacco smoked since the operation.

As well as these 5 covariates we are also interested in operation type.

Elicitation of prior information

We wish to elicit prior information. In particular, for the CABG example, this means

eliciting the prior means, variances and covariances for the parameter vector at time

zero β0 = (β00, β01, . . . ,β05). Note that we include an extra parameter in the vector,

β00. This will take the place of the baseline hazard (xi0 = 1 always) in all time

intervals. The other quantities necessary in the model specification are the system

evolution matrices Gj(bj) and the variance matrices for ǫj , Ej .

In order to specify the prior parameters we utilise the proportional hazards assumption.

If individuals i and k have hazards hi(t) and hk(t) respectively then their ratio is

hi(t)

hk(t)
= exp{β1(xi1 − xk1)} exp{β2(xi2 − xk2)} · · · exp{β5(xi5 − xk5)}.

Thus, if all explanatory variables between individuals i and k were equal except for

variable 2, the ratio would only depend on β2. So we can specify quantities for the

parameters by eliciting information about ratios of hazards between individuals.

To do this, on the advice of Revie et al. (2010), we shall use the Pearson and Tukey

method (Pearson & Tukey, 1965; Keefer & Bodily, 1983). This proceeds by eliciting 5%,

50% and 95% quantiles, denoted QZ(0.05), QZ(0.5) and QZ(0.95), for some variable Z.

The mean and variance are then given by

E(Z) = 0.63QZ(0.5) + 0.185[QZ(0.05) +QZ(0.95)],

Var(Z) =

(

QZ(0.95)−QZ(0.05)

3.29− 0.1C

)

,

where

C = (QZ(0.95) +QZ(0.05)− 2QZ(0.5))

(

3.25

QZ(0.95) +QZ(0.05)

)2

.

155



Chapter 5. Reliability and survival analysis

Qβ0l
(0.05) Qβ0l

(0.5) Qβ0l
(0.95) E0(β0l) Var0(β0l)

β02 -0.69 -0.22 -0.01 -0.268 0.0312
β03 0.049 0.182 0.693 0.252 0.0630
β04 0.0018 0.0041 0.041 0.0055 1.79× 10−7

β05 0.018 0.069 0.139 0.073 0.00239

Table 5.7: Elicited quantiles and resulting expectations and variances for the parameters

If we consider β01 then this is associated with the variable for age of individual. Ages

in the investigation range from 29 to 78 and so we can consider that lower age would

imply lower risk of quick relapse of angina. We elicit the mean and variance of β01

by supposing that patient i is 10 years older than patient k. Then the ratio of hazard

functions for the two patients is

hi(t)

hk(t)
= exp{10β01},

as long as individuals i and k have identical remaining covariates. We elicit 5%, 50%

and 95% quantiles for the increase in risk associated with this increase in age. These

are 1.2, 2 and 4 respectively. Taking logs and dividing by 10 gives prior quantiles for

β01 of 0.018, 0.069 and 0.139. Using the Pearson and Tukey formulae this gives a prior

mean and variance for β01 of

E0(β01) = 0.073, Var0(β01) = 0.00239.

We can perform this process for β02, . . . , β05. The results are given in Table 5.7. In

terms of the system evolution matrices we shall set

Gj(bj) = I6,

for all j. That is, the prior parameter values for different intervals are linked by a

simple random walk (Gamerman, 1991). Initially we shall choose Ej as

Ej =
1

bj
I6,

so that it too has a simple form. Each of our time intervals shall be a year in length

up to a maximum time of 12 years (the length of the study). Thus we have specified a

decreasing innovation variance as we believe that over the long term the effects of the

covariates will settle to some equilibrium value.

156



Chapter 5. Reliability and survival analysis

5.6.9 Results

Having updated the 5 parameters of interest for each of the 3 different methods of

surgery using the data we can plot the effects of the 5 covariates over time. All cal-

culations used the mode and log curvature model for expectations and variances. The

posterior means for the effect of increased and decreased activity for bilateral mammary

artery graft surgery is seen in Figure 5.7.
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−
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−
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Figure 5.7: The effect of increased activity and decreased activity on the onset of angina after
bilateral mammary artery graft surgery

The effect of increased activity is shown in red and decreased activity in green. The pa-

rameter means are plotted at the mid-point of each interval but would remain constant

within that interval (year). Also plotted are posterior ±2 standard deviation intervals.

The effect of the two covariates, compared to the baseline of no change in activity

since surgery, is marked. Almost all of the posterior means for increased activity are

negative, suggesting that this may decrease the hazard for the recurrence of angina.

Decreased activity seems to have the opposite effect.

It would appear that our dynamic model could be appropriate as the effects of both

covariates appears to change a little over time. As a result of the variance structure

assumed the parameter values settle down as time increases.

We wish to know how much of an effect the prior means for the effects of these pa-

rameters are having on the posterior means. We can compare the posterior means for

increased and decreased activity to their posterior means if they were given prior means
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Posterior means
Interval E0(βjl) = 0.252 E0(βjl) = 0.000

1 0.5677157 0.3069310
2 0.5964486 0.3282760
3 0.5577411 0.3060185
4 0.5648023 0.3144519
5 0.7496526 0.4647165
6 0.4031519 0.1732290
7 0.5654184 0.3092419
8 0.5689720 0.3120885
9 0.5691358 0.3121256
10 0.5684579 0.3117424
11 0.5707288 0.3133976
12 0.5744478 0.3166212

Table 5.8: Posterior means for the effect of decreased activity under different prior means

of zero under bilateral artery graft surgery. The posterior means for decreased activity

in both cases are given in Table 5.8.

We see that the posterior means are larger when a positive prior expectation is specified.

However, even with a prior expectation of zero all of the posterior means for the effect

of decreased activity are positive. This suggests that decreased activity increases the

hazard.

5.7 Conclusions

In this chapter two applications of Bayes linear kinematics have been investigated for

reliability analysis, the first being the modelling of related Poisson distributions and

the second in the analysis of life table data. In both cases taking transformations which

mapped parameters onto an unrestricted scale allowed for more effective Bayes linear

kinematic updates to be made by working on a scale in which linear fitting is more

appropriate. Further, they allowed general comments to be made about when a unique

commutative Bayes linear kinematic solution exists.

In the life table model a complementary log-log transformation was used as this allowed

for a fairly straightforward calculation of the reliability function. Of course with the

binomial distribution several transformations are possible and these have been investi-

gated in earlier chapters. We showed, in both applications, that Bayes linear kinematics

offers an alternative approach to fully Bayesian methods in which all calculations are

tractable and computationally intensive numerical methods are not necessary.
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In both reliability applications the Bayes linear kinematic approach makes careful as-

sessment of genuine beliefs about relationships between quantities a practical proposi-

tion without the imposition of artificial distributional assumptions. Additional assump-

tions or approximations are required to interpret the results in terms of observable

quantities or their untransformed moments but these are comparable to approxima-

tions which are traditionally used, for example, for confidence intervals for parameters

of lifetime distributions.

The application to survival analysis considered was the piecewise constant hazards

model with dependent increments. In particular, a method similar in flavour to that of

Gamerman (1991) was developed which, by utilising Bayes linear kinematics, allowed

development of a commutative solution in a situation in which one had previously not

been available.
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Chapter 6

The design of experiments

6.1 Introduction

In this chapter we consider the application of the Bayes linear kinematic approach to

correlated counts within the context of experimental design. We show that the approach

is not prey to the major obstacle in Bayesian design of experiments, the computational

burden of having to perform large numbers of maximisations and integrations using

numerical techniques (usually MCMC) or simulations.

We consider two applications within experimental design; usability testing and bioas-

say. We provide solutions in both cases by maximising expected utility. Within the

usability testing application there are two probabilities of interest and, if a single test

is performed, just one observation is made. Therefore a Bayes linear kinematic solution

to the problem is possible without considering the issue of commutativity.

For the bioassay application we provide a solution which considers the sample size

and design point problems simultaneously. A new utility function, the Bayes linear

kinematic utility, is proposed. The application is illustrated with an example concerned

with the effects of eutrophication on fish.

6.2 Bayesian experimental design

The choice of the design of an experiment can be viewed as a decision problem. There

are trade offs between the costs of performing the experiment and the benefits derived

from it. The benefits can be thought of in terms of gains in knowledge. There are

two ways to do this. One is to think directly in terms of the value of the additional

knowledge gained and the other is to consider the payoff associated with some decision

to be made after the experiment which is known as the terminal decision. Benefits must
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then be balanced against the costs, for example financial and ethical, of performing the

experiment.

The optimal design of an experiment would be the best possible choice of design, found

in a decision theoretic way. For guidance on statistical decision theory see Raiffa &

Schlaifer (1961) and Smith (1992) or, for multi-attribute utilities, Keeney & Raiffa

(1993).

Design of experiments problems can be represented using influence diagrams (Smith,

1992). An influence diagram presents a schematic representation of the decision prob-

lem in which rectangular nodes are used to represent decisions, round nodes, known

as chance nodes, represent uncertain outcomes and a diamond node represents the re-

sulting payoff. Dependence is represented using directed arcs so that a → b means b

is dependent on a. In particular, arcs into a chance node mean that the conditional

distribution specified for the variable at that node involves conditioning on the values

of the variables at the direct predecessors. In the case of a decision node, the arcs into

it show the information available when the decision is to be made.

As Farrow & Goldstein (2006) comment, in Bayesian experimental design there is also

the issue of prior knowledge which is hard to quantify for complicated design problems.

The typical form of a Bayesian experimental design problem can be illustrated using

the influence diagram in Figure 6.1.

d1 X

θ

d2

P

Figure 6.1: Influence diagram showing the process of Bayesian experimental design

In the figure d1 ∈ D1 represents the initial decision to be made, that of the choice of the

design of the experiment. Performing the experiment will result in data, x ∈ X, being

obtained. The data will depend on the choice of experiment, d1, and some underlying

parameters θ ∈ Θ. For example, if the experiment was being conducted to test the

effectiveness of certain types of fertiliser then θ could be the actual effectiveness of each

of the fertilisers. It is never possible to observe θ.
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Having performed the experiment and observed the outcome, there is a further decision

to be made, the terminal decision d2. In the fertilisers example this might be which

fertiliser to release onto the market. The terminal decision having been made, a payoff P

will ensue. Preferences among different probability distributions for P are described by

a utility function U(P ). This utility function expresses the decision maker’s preferences

over uncertain outcomes. The objective of a Bayesian experimental design problem is

to maximise the prior expectation of the utility function E{U(P )}.

Lindley (1972) considered the optimisation problem and gave a description of it, re-

peated in Valks (2005), as consisting of two parts;

• a prescription of the experiment to be performed (d1), and

• a decision rule prescribing the optimal terminal decision d2 for every outcome x

of the chosen d1.

Chaloner & Verdinelli (1995) discuss the procedure for a general utility function of the

form U(d1, d2, θ, x). For any initial decision d1, the expected utility of the best decision

is given by

U(d1) =

∫

X
max
d2∈D2

∫

Θ
U(d1, d2, θ, x)f(θ|x, d1)f(x|d1)dθdx,

where f represents the relevant probability density function. The Bayesian solution to

the experimental design problem is then provided by the design d∗1 which maximises

this equation, i.e.,

U(d∗1) = max
d1∈D1

∫

X
max
d2∈D2

∫

Θ
U(d1, d2, θ, x)f(θ|x, d1)f(x|d1)dθdx. (6.1)

This approach was first introduced by Lindley (1972).

We see that the theory of Bayesian experimental design is fairly straightforward. How-

ever, a full Bayesian analysis tends to be computationally difficult. Müller (1999)

comments that except in special cases neither the maximisation nor the the integration

can be solved analytically and approximation or simulation based methods or both are

needed.

With the relatively recent advances in the area of numerical integration more compli-

cated problems can now be solved, usually via MCMC methods. Examples of where

such design problems are solved in a Bayesian context include Lindley (1997), Gittens

& Pezeshk (2000) and Farrow & Goldstein (2006).

There have also been several papers utilising simulation methods in the recent lit-

erature. Müller (1999) reviews four different simulation strategies; prior simulation,
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smoothing of Monte Carlo simulations, a Markov chain Monte Carlo simulation strat-

egy and a simulated annealing type approach. Kuo et al. (1999) use simulation to

find the optimal design in a quantal bioassay context. They utilise a nonparametric

Bayesian approach to do this and assume a Dirichlet process prior.

Walker (2003) also proposes a nonparametric approach to the problem of sample size

determination, utilising simulation methods to do so. Müller (2004) considers the

problem of finding the optimal sample size in the context of multiple testing. His

illustration is the choice of the number of microarray experiments but his approach

is more widely applicable to situations where marginal and posterior distributions are

efficient to sample from.

M’Lan et al. (2008) consider finding the optimal sample size in a Bayesian context

for binomial proportions. They give an overview of the area and discuss several sim-

ulation and numerical approaches including Monte Carlo simulation and curve fitting

techniques.

Thus we see that solution of this problem is still typically extremely computationally

intensive and tends to require many complex integrals to be computed numerically or

using simulation.

6.2.1 Utility

In order to solve a decision problem such as those found in experimental design we

need to specify a utility function. But what is a utility function? We shall answer this

question following the explanations in Smith (1992), Wilkinson (1998) and French &

Insua (2000).

Suppose that when we make a decision we receive a reward. We wish to make the

decision which gets us the ‘best’ reward. For example the rewards could be to be given

tickets to a Sunderland football match or a hot air balloon ride (a tough choice!). Any

person given the decision to make would choose the reward that they prefer out of the

two.

Not all decisions lead to certain rewards, however. It could be the case that we have

the decision of whether to take a reward of £50 with certainty or receive either £0 or

£100, each with probability a half. This second type of reward is known as a gamble

or lottery. More formally, a gamble

G = α1R1 + α2R2 + . . .+ αkRk

returns reward Ri with probability αi. Gambles are also known as distributions of
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rewards.

We now impose some (reasonable) conditions on gambles (or rewards) in order to

formulate utility. The first gives a rule for preference orderings.

If we have 2 gambles G1 and G2 then you either prefer G1 to G2 denoted G1
∗
> G2,

prefer G2 to G1 (G1
∗
< G2) or find G1 and G2 equally preferable (G1

∗
= G2).

So in the choice between gambles above you would either prefer to take £50 with

certainty, prefer £0 or £100 each with probability a half or be indifferent between the

two.

For a coherent individual preferences over gambles must also be transitive. That is, for

gambles G1, G2 and G3, if

G1
∗
< G2 and G2

∗
< G3 then G1

∗
< G3

G1
∗
< G2 and G2

∗
= G3 then G1

∗
< G3

G1
∗
= G2 and G2

∗
< G3 then G1

∗
< G3

G1
∗
= G2 and G2

∗
= G3 then G1

∗
= G3

It follows from this that for gambles G1, . . . , Gr there is a preference ordering given by

G1

∗
≤ G2

∗
≤ . . .

∗
≤ Gr,

where Gi

∗
≤ Gj means that either gamble Gj is preferred to Gi or the two gambles are

equally preferred.

Gambles must also satisfy an independence condition. That is, for all 0 < α < 1, where

α is a probability,

G1
∗
< G2 ⇔ αG1 + (1− α)G3

∗
< αG2 + (1− α)G3.

The final condition concerns the continuity of gambles. It says that if G1
∗
< G2

∗
< G3

then there exist probabilities α and β such that

G2
∗
< αG1 + (1− α)G3 and G2

∗
> βG1 + (1− β)G3.

If your preferences satisfy these conditions then there exists a utility function U such

that

U(Gi) < U(Gj) whenever Gi
∗
< Gj .

See, for example, Smith (1992). An alternative but equivalent definition (French &

Insua, 2000) is as follows.

Definition. A utility function U on gambles G assigns a real number U(G) to each
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gamble subject to the following 2 conditions;

• If G1
∗
< G2 then U(G1) < U(G2) and if G1

∗
= G2 then U(G1) = U(G2).

• For any α ∈ [0, 1] and gambles G1 and G2

U(αG1 + (1− α)G2) = αU(G1) + (1− α)U(G2).

Thus utility can be thought of as a measure of our attitude towards gambles. The

larger the utility, the stronger our preference is for the gamble.

If we consider the utility function of a gamble U(G) = α1U(R1) + . . .+ αkU(Rk) then

it is clear that

U(G) = E[U(G)]. (6.2)

This is a very important result as it indicates that the utility of a gamble is equal to

its expectation in the case of a single attribute. Thus we can solve a decision problem

for a decision maker’s optimal decision by finding the maximum expected utility as

this corresponds to their highest utility. Another important property of utility is that

it is unique up to linear transformations. However, it can be shown (DeGroot, 1970),

that the utility function resulting from such a linear transformation is equivalent to the

original utility function.

In fact, it is easily seen that preferences implied by U are the same as those implied by

U∗ = a+ bU,

for constants a, b where b > 0. So U and U∗ are strategically equivalent.

Often utility functions are defined in terms of monetary values (e.g. profits to be made

or costs to be incurred). A risk neutral individual’s utility would increase linearly with

money. A risk averse individual would have a concave utility function and a risk prone

individual’s utility function would be convex. It follows from this that

Risk aversion ⇒ U
′′

(g) < 0, ∀g,
Risk neutrality ⇒ U

′′

(g) = 0, ∀g,
Risk proneness ⇒ U

′′

(g) > 0, ∀g,

Risk aversion can also be measured (French & Insua (2000)) by

r(g) = −U
′′

(g)

U ′(g)
,

where r(g) > 0 for a risk averse individual, r(g) = 0 for a risk neutral individual and
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r(g) < 0 for a risk prone individual.

6.2.2 Multi-attribute utility

So far we have considered utility functions in terms of gambles on just a single type of

reward, for example money. But what if you have multiple attributes in your decision

problem?

For illustration consider a medical experiment. One attribute in the problem could

be the financial cost of performing the experiment. There are also ethical costs to

take into account, which could include harm or discomfort to experimental subjects,

and benefits, perhaps in terms of gain in knowledge or information. Thus there would

be three attributes to consider in the utility function. How do we construct a utility

function which combines each of these attributes?

We have the following definitions from Keeney & Raiffa (1993).

Definition: Attributes A1 = (A11, . . . , A1m) and A2 = (A21, . . . , A2l) are utility inde-

pendent if conditional preferences over lotteries on A1 given A2 = a2 do not depend

on the value of a2.

Definition: Attributes A = (A1, . . . , An) are mutually utility independent if every

subset of A is utility independent of its complement.

If all A can be assumed to be mutually utility independent then we have the result

(Keeney & Raiffa, 1993) that the overall utility function has to take one of two forms;

Additive U(A) =
∑n

i=1 ciUi(Ai),

Multiplicative (1 + kU(A)) =
∏n

i=1(1 + kciUi(Ai),

where Ui(Ai) is the marginal utility for Ai. The additive form is the special case of the

multiplicative form with k = 0 since we can rearrange the multiplicative form into

U(A) =
n
∑

i=1

ciUi(Ai) + k
∑

i 6=j

∑

cicjUi(Ai)Uj(Aj)

+ k2
∑

i 6=j

∑

i 6=k

∑

cicjckUi(Ai)Uj(Aj)Uk(Ak) + . . .

Equation 6.2 still holds in the case of more than one attribute. However, we can not nec-

essarily combine marginal utilities for attributes by combining their expectations over

lotteries. So U(G) = E(U(G)) and U(A) = U1(A1)U2(A2), assuming A = (A1, A2),

but

U(G) = E(U(G)) 6= E(U1(G))E(U2(G)).
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However, if F1 and F2 are two probability distributions over A then probability distri-

bution F1 is at least as desirable as F2 (Keeney & Raiffa, 1976) if and only if

EF1 [U(A)] ≥ EF2 [U(A)],

where EFi
is the expectation with respect to Fi. Thus, in the multi-attribute case,

maximising expected utility is still an appropriate procedure.

In order to combine utility functions like this they must first be on a common scale.

The scale generally chosen is [0, 1] with a utility of one representing the best possible

outcome and zero the worst. It is important that neither marginal utility changes sign.

If there are just two attributes, A1 and A2, the two cases reduce to a single binary form

for the utility function

U(A1, A2) = c1U1(A1) + c2U2(A2) + c3U1(A1)U2(A2),

where 0 < ci < 1, −ci ≤ c3 < 1 − ci for i = 1, 2 and c1 + c2 + c3 = 1. For an additive

utility function c3 = 0. We can classify attributes A1 and A2 using c3. If

c3 > 0 ⇒ attributes are complementary,

c3 < 0 ⇒ attributes are substitutes,

c3 = 0 ⇒ attributes are preference unrelated.

We can think about how we might specify c1, c2 and c3 (Keeney & Raiffa, 1976). We

define ai as the best possible value of attribute i and ai as the worst possible value.

Then c1 is the probability under which you are indifferent between (a1, a2) and a gamble

on (a1, a2) and (a1, a2), i.e.,

(a1, a2)
∗
= (1− c1)(a1, a2) + c1(a1, a2).

Similarly c2 is the probability such that

(a1, a2)
∗
= (1− c2)(a1, a2) + c2(a1, a2).

We can then find c3 as 1− c1 − c2.

In order to construct complex multi-attribute utility functions it can be useful to con-

sider utility hierarchies (Keeney & Raiffa, 1976, 1993). We can represent such a hi-

erarchy in graphical form. The overall utility is separated into the marginal utilities

of its individual attributes, each of which is represented by a node. Arrows from each

of the attributes into the overall utility node indicate that this is the ‘child’ node for
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each of the ‘parent’ attribute nodes. Each of the attributes can then be separated into

sub-attributes as necessary. The sub-attributes are then the parent nodes of the child

node for the corresponding attribute.

If, for each child node, the parent nodes are all mutually utility independent, we call

the resulting hierarchy a mutually utility independent hierarchy (Farrow & Goldstein,

2006). We can construct a utility function given such a hierarchy in the following way.

• For each parent set of sub-attributes at the lowest level of the hierarchy construct

an additive or a multiplicative utility function for the child.

• Repeat this step for each node at the next level up in the hierarchy and continue

this process until the overall utility is obtained.

6.3 Usability experiment

Let us now concern ourselves with usability testing (Dumas & Redish, 1999) prior to

software going on sale or the launch of a new website. One important aspect of this is

to see whether the product is ‘user-friendly’. This is generally done by taking a sample

of users and asking each to perform a number of tasks. From the results of these

tasks usability problems with the software are identified and the software can either

be launched as it is or rewritten. To find the optimal design for such an experiment

a Bayesian decision theoretic approach can be adopted. This has been considered by

Valks (2005) in the context of finding the optimal sample size and this is what we shall

concern ourselves with here. Valks, however, considered a fully Bayesian approach to

the problem.

The decision tree relating to such an approach for a single task takes the form of Figure

6.2. For simplicity, only one branch for n and one branch for x are shown.

In the user experiment there are two decisions to be made. The first is that of the

sample size; how many users to include in the experiment. Having performed the

experiment there is then the decision of whether to launch or rewrite. This will be

based on how many of the users successfully completed the task in the experiment.

This is the terminal decision. Zero users is a special case of the sample size in which

the optimal decision is deemed to be not to perform a usability experiment but simply

to launch or rewrite the software immediately.

The user problem outlined above can be solved in a Bayesian context using expected

utility theory. To do this we maximise the expected utility beginning with the terminal

decision and then fold the decision tree backwards to the optimal sample size deter-

mination. We shall now outline the solution to this problem in the case of a single
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Sample size

n

outcome

Terminal decision

X = x

launch rewrite

Figure 6.2: Decision tree for the user problem

task.

6.3.1 The Bayes linear kinematic solution

If n users are asked to perform a single task then the number of users who successfully

complete that task, X, follows a binomial distribution

X | θl ∼ bin(n, θl),

where θl is the probability that a user successfully completes the task if the product

were simply to be launched. We make an exchangeability assumption here; that users

in the experiment and users who buy the product in the future are exchangeable. We

are also interested in a second probability, θr, that of a user successfully completing the

task after rewrite. The two probabilities can be given conjugate prior beta distributions

θl ∼ beta(al, bl), θr | ar, br ∼ beta(ar, br).

Clearly θl and θr will not in general be independent in our prior beliefs. If the decision

maker learned that the true probability of a user completing the task after launch was

higher than their expectation then this would likely lead to a revision upwards of the

expected probability of success after rewrite. To incorporate this dependence we shall

first transform the probabilities using the canonical link function for binomial data, the
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logit link,

ηl = log

(

θl
1− θl

)

, ηr = log

(

θr
1− θr

)

,

so that ηl and ηr are on an unrestricted scale. We then link ηl and ηr in a Bayes linear

structure. Prior beliefs in terms of θl and θr can be converted to those in terms of ηl

and ηr, as seen in Chapter 3, via

E0(θk) =
ak

ak + bk
⇒ E0(ηk) = h1(ak, bk),

Var0(θk) =
akbk

(ak + bk)2(ak + bk + 1)
⇒ Var0(ηk) = h2(ak, bk),

for k = l, r where h1 and h2 are functions to be specified. To make Bayes linear updates

a prior covariance between ηl and ηr, Cov0(ηl, ηr) must also be given.

Now, when X = x successes are observed θl is updated to

θl | X = x ∼ beta(a∗l , b
∗
l ),

where a∗l = al + x and b∗l = bl + n − x as the beta distribution is conjugate to the

binomial distribution. This leads to posterior moments for ηl of

E(ηl | X = x) = h1(al + x, bl + n− x),

Var(ηl | X = x) = h2(al + x, bl + n− x).

These updates can be propagated through to ηr via the Bayes linear kinematic updating

equations;

E(ηr | X = x) = E0(ηr) +
Cov0(ηr, ηl)

Var0(ηl)
[E(ηl | X = x)− E0(ηl)] ,

Var(ηr | X = x) = Var0(ηr)−
Cov20(ηr, ηl)

Var0(ηl)

[

1− Var(ηl | X = x)

Var0(ηl)

]

.

With a single observation only a single update is made and so it is not necessary to

consider any commutativity or uniqueness criteria here. The parameters of the posterior

beta distribution for θr can then be found by solving the following equations for a∗r and

b∗r ;

E(ηr | X = x) = h1(a
∗
r , b

∗
r), Var(ηr | X = x) = h2(a

∗
r , b

∗
r).

Thus the posterior beta distribution for θr is θr | X = x ∼beta(a∗r , b
∗
r). We now have

f0(θl), f0(θr), f(θr | X = x) and f(θr | X = x) which we shall need when solving the
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decision problem. All are of the standard beta density form

f(θ) =
Γ (a+ b)

Γ (a)Γ (b)
θa−1(1− θ)b−1.

Consider Y , the number of customers who complete the task after the software has

been released. This also follows a binomial distribution

Y ∼ bin(N, θk | X = x),

where N is the number of customers who have bought the software and k = l, r depends

on whether the terminal decision was to launch or rewrite. Thus

f(Y | X = x, θk) =

(

N

y

)

θyk(1− θk)
N−y.

In order to perform a decision analysis the final thing we shall need is a utility func-

tion. Following Valks (2005) a bivariate utility function shall be chosen. This can

be represented diagramatically (Farrow & Goldstein, 2006) as in the mutually utility

independent hierarchy given in Figure 6.3.

Design

Benefits Costs

No. successes RewriteExperiment

Fixed Per subject

Figure 6.3: Decomposition of the utility function for the user problem

Thus we have two different utility functions to combine into our overall utility function;

one for financial costs Uf (Ck) which will depend on whether the software is rewritten

or launched and one for benefits in terms of the number of successes in the task of

future customers Us(Y ). The costs are given by the cost of performing the experiment,
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both fixed and per subject, and the cost of rewrite.

If we assume mutual utility independence (Keeney & Raiffa, 1993) there are two general

types of bivariate utility function; additive and multiplicative. Since the former is a

special case of the latter we shall consider a multiplicative utility function which takes

the form

U = p1Uf (Ck) + p2Us(Y ) + p3Uf (C)Us(Y ),

where p3 = 1− p1 − p2. If p3 = 0 then we have an additive utility function.

In order to formulate a solution to the decision problem let us define some quantities.

Let sn be the decision to use a sample size of n and let tk be the terminal decision, i.e.,

k = l for launch and k = r for rewrite. Let us also define the joint prior distribution of

θl and θr to be f0(θl, θr) and their joint posterior distribution, having performed the

experiment, to be f(θl, θr | X = x).

The solution to Equation 6.1 can then be found by maximising the expected utility for

the terminal decision to launch or rewrite given a sample size. This is

E[U(topt | X = x)] = max{E[U(tl | X = x)],E[U(tr | X = x)]},

where

E[U(tk | X = x)] =
N
∑

y=0

∫ 1

0

∫ 1

0
U(sn, tk, Y, Ck)f(Y = y | X = x, θk)f(θl, θr | X = x)dθldθr,

for k = l, r. Having done this the optimal sample size can be calculated as that

corresponding to the maximum expected utility. This is

E[U(sopt)] = max{E[U(sn)]}, n ∈ N,

where the expected utility for the sample size n is

E[U(sn)] =
n
∑

x=0

f(x)E[U(topt | X = x)]. (6.3)

The probability that X = x, f(x), is given by

f(x) =

∫ 1

0
f(x | θl)f0(θl)dθl =

(

n

x

)

Γ (al + bl)

Γ (al + bl + n)

Γ (al + x)

Γ (al)

Γ (bl + n− x)

Γ (bl)
.

Now, having made the update X = x the overall utility function U(sn, tk, Y, Ck) de-

pends only upon the chosen θ. Therefore one of the posterior beta distributions will

always be sufficient to find the expected utilities. Thus the terminal decision is the
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solution of

E[U(topt | X = x)] = max{E[U(tl | X = x)],E[U(tr | X = x)]},

where

E[U(tk | X = x)] =
N
∑

y=0

∫ 1

0
U(sn, tk, Y, Ck)f(Y = y | X = x, θk)f(θk | X = x)dθk,

for k = l, r. The optimal sample size is then calculated exactly as above. We can

substitute f(Y = y | X = x, θk) and f(θk | X = x) into the above expected utility to

give

E[U(tk | X = x)] =
N
∑

y=0

∫ 1

0

(

N

y

)

θyk(1− θk)
N−y

× Γ (a∗k + b∗k)

Γ (a∗k)Γ (b
∗
k)
θ
a∗
k
−1

k (1− θk)
b∗
k
−1dθkU(sn, tk, Y, Ck)

=
N
∑

y=0

(

N

y

)

Γ (a∗k + b∗k)

Γ (a∗k + b∗k +N)

Γ (a∗k + y)

Γ (a∗k)

Γ (b∗k +N − y)

Γ (b∗k)
U(sn, tk, Y, Ck). (6.4)

Having performed the analysis as above the solution to the decision problem is the

optimal sample size sopt and the optimal terminal decision given the sample size and

the data topt.

6.3.2 Expectation and Variance of ηk

Method 1: direct calculation

If we calculate the mean and variance of ηk directly we see that

E0(ηk) = h1(ak, bk) = ψ(ak)− ψ(bk), Var0(ηk) = h2(ak, bk) = ψ1(ak) + ψ1(bk),

where ψ(x) = d
dx log(Γ (x)) is the digamma function and ψ1(x) = d

dxψ(x) is the

trigamma function. A proof is given in Chapter 3.

Method 2: mode and curvature

Suppose that our transformation is now given by

µk = log

(

θk
1− θk

)

.
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Rather than use the mean and variance of µk directly we return to our guide relation-

ship, so that ηk has mean and variance given by the mode of µk and the curvature at

the mode of the log density of µk.

Hence the required mean and variance, again derived in Chapter 3, are

E0(ηk) = h1(ak, bk) = log

(

ak
bk

)

, Var0(ηk) = h2(ak, bk) =
1

ak
+

1

bk
.

Clearly the variance decreases if we increase either ak or bk which shall happen if we

observe anything. Knowledge of the mean E(ηk) = m̄k and variance Var(ηk) = vk of

ηk gives parameter values

ak =
1 + em̄k

vk
, bk =

1 + em̄k

vkem̄k
.

6.3.3 Example

For comparability we shall use all of the same prior specifications as Valks (2005)

Example 6.7.2, in which she represents the joint density between θl and θr using a

copula function. The prior specifications she uses and hence we will use are al =

3, bl = 2, ar = 6, and br = 2 and these lead to prior moments of

E0(θl) = 0.6, Var0(θl) = 0.040

E0(θr) = 0.75, Var0(θr) = 0.021.

We require the corresponding moments of ηl and ηr in order to make a Bayes linear

kinematic update. For the direct method (method 1) and using the mode and curvature

at the mode (method 2) these values are given in Table 6.1.

E0(ηl) Var0(ηl) E0(ηr) Var0(ηr) Cov0(ηl, ηr)

Method 1 0.50 1.04 1.28 0.83 0.377
Method 2 0.41 0.83 1.10 0.67 0.387

Table 6.1: Prior moments for ηl and ηr

The prior covariance between ηl and ηr for each of the two methods was calculated

from Corr0(θl, θr) = 0.6. This was achieved (approximately) via a Taylor expansion in
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2-dimensions leading to

Cov0(ηl, ηr) ≈ g(ml,mr) +
1

2
[Var0(θl)

∂2

∂θ2l
g(ml,mr)

+ 2Cov0(θl, θr)
∂2

∂θl∂θr
g(ml,mr) + Var0(θr)

∂2

∂θ2r
g(ml,mr)],

where ml = E0(θl), mr = E0(θr), g(ml,mr) =[logit(ml) − E0(ηl)][logit(mr) − E0(ηr)]

and the required derivatives are found from this.

To see this consider

Cov(ηl, ηr) = Cov

(

log

[

θl
1− θl

]

, log

[

θr
1− θr

])

= E [g(θl, θr)]

where η̄k is the prior mean of ηk and

g(θl, θr) =

(

log

(

θl
1− θl

)

− η̄l

)(

log

(

θr
1− θr

)

− η̄r

)

.

The integrals necessary to perform this calculation are intractable and so an approxi-

mation must be found.

Suppose we have a vectorX = (X1, . . . , Xn)
T which has a mean vector µ = (µ1, . . . , µn)

T .

We can find the value of an infinitely differentiable function F (X) as a matrix form

Taylor expansion on X. To second order terms this is given by

f(X) ≈ f(µ) +∇f(µ)(X − µ) +
1

2!
(X − µ)T∇2f(µ)(X − µ),

where ∇ =
(

∂
∂X1

, . . . , ∂
∂Xn

)

and so ∇f(µ) is the gradiant of f at µ and ∇2f(µ) is the

Hessian matrix.

We shall perform the expansion on g(θl, θr) around the point (θ̄l, θ̄r), the prior means

of θl and θr respectively. Thus, the 2-dimensional Taylor expansion of g(θl, θr) is given

by

g(θl, θr) ≈ g(θ̄l, θ̄r) + (θl − θ̄l)gθl + (θr − θ̄r)gθr

+
1

2

[

(θl − θ̄l)
2gθlθl + 2(θl − θ̄l)(θr − θ̄r)gθlθr + (θr − θ̄r)

2gθrθr
]

,

where gθl = ∂g
∂θl

is the partial derivative of g with respect to θl, gθlθl = ∂2g
∂θ2

l

is the

second partial derivative and gθlθr = ∂2g
∂θlθr

is the mixed partial derivative. All of these

derivatives are to be evaluated at (θ̄l, θ̄r).
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Taking expectations we see that

E[g(θl, θr)] ≈ g(θ̄l, θ̄r) + (E[θl]− θ̄l)gθl + (E[θr]− θ̄r)gθr

+
1

2

[

E[(θl − θ̄l)
2]gθlθl + 2E[(θl − θ̄l)(θr − θ̄r)]gθlθr + E[(θr − θ̄r)

2]gθrθr
]

≈ g(θ̄l, θ̄r) +
1

2
[Var(θl)gθlθl + 2Cov(θl, θr)gθlθr +Var(θr)gθrθr ]

We shall use this as our assessment of the covariance between ηl and ηr. We specified

both of the variances and the covariance in terms of θl, θr earlier and so now we must

calculate the derivatives above. If we set

f(x) = log

(

x

1− x

)

− c

then the first derivative of f is

f (1)(x) =
1− x

x
×
(

x

(1− x)2
+

1

1− x

)

=
1

x(1− x)

The other derivatives are found similarly.

Now, if we consider the bivariate utility function from Figure 6.3, we require a benefit

utility based on the number of successes of future users. Following Valks (2005) we

define this as

Us(y) =
1− exp(− y

10
)

1 + 100 exp(− y

10
)
.

A discussion on the suitability of this utility and that of costs used by Valks (2005) is

given in Section 6.3.4.

A plot of this for different values of Y = y is given in Figure 6.4. From the plot we

can see that for either a very small number or very large number of successes of future

customers in the task an increase in the number of successes leads to a small increase

in utility whereas if the number of successes is somewhere in the middle of the range a

small increase in the number of successes leads to a much larger increase in the utility

for that number of successes.

The utility for cost, again following Valks (2005), shall be

Uf (Ck) = 1− κ log

(

1 +
2Ck

Cmax

)

,
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Figure 6.4: A plot of Us(Y ), the utility function for the number of successes of future customers

where κ = log−1(3) to constrain the utility, as with that of Us(Y ), to [0, 1]. Here Ck

represents the total costs incurred with k = l, r for launch or rewrite and Cmax is the

maximum amount of money the company is willing to pay. This time the function is

becoming steeper with decreasing cost and so the less money we spend the more keen

we are to spend even less. This suggests that the decision maker is risk seeking with

respect to costs. This seems unlikely. The suitability of this utility function is discussed

in Section 6.3.4. A plot of this utility function for Cmax =£200, 000 is given in Figure

6.5.

The two utilities can now be combined into the overall utility function as

U(sn, tk, Y, Ck) = p1Uf (Ck) + p2Us(Y ) + p3Uf (Ck)Us(Y ).

In order to carry out the analysis we take numerical values for all of these quantities.

The maximum costs the company is prepared to incur are Cmax =£200, 000 as above

and the cost of a rewrite of the software is Cw =£50, 000. There is a fixed cost

of performing an experiment of Co =£5, 000 and an additional cost per user in the

experiment of Cu =£500. Thus the total costs if the product is launched are

Cl = C0 + Cun = 5000 + 500n,
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Figure 6.5: A plot of Uf (C), the utility function for the costs involved

and if the product is rewritten the total costs are

Cr = Co + Cun+ Cw = 55000 + 500n.

We shall take p1 = 1
6 , p2 = 4

6 and p3 = 1
6 and, initially, N = 100. In order to justify

these values for the trade off parameters we shall consider some utilities over different

costs and benefits. If we take a total cost of £10,000, N = 100, a sample size of n = 15

and the number of future successes y = 50 the utility for launch is 0.6381. If the cost of

the experiment is increased to £100000 then this reduces the utility. In order to achieve

a utility of 0.6381 it is necessary to raise the number of future successes to y = 60. If

we double the cost again to £200000 then in order to achieve the same utility a y of

78 is required. It is felt that this represents a sensible utility function.

The solution to the problem is found by first calculating the expected utility of launch

and rewrite for each possible sample size using Equation 6.4. For each sample size the

optimum value is determined and then the expected utility is averaged over the prior

predictive distribution of outcomes. This is given in Equation 6.3. A plot of these

quantities is given in the left hand side of Figure 6.6 for method 1 and Figure 6.7 for

method 2.

The colours in these plots indicate the change in how many users it takes to be successful

before the optimal decision is to launch. If two adjacent points are the same colour

then the critical number of successes is the same for the two sample sizes in question.

If they are different colours then the critical numbers of successes are different. It is
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Figure 6.6: Plots of E[U(sn)] and the difference between the expected utilities of launch and
rewrite for each number of observed successes given 11 users, method 1

this change in how many successes it takes for the optimal decision to be to launch

which is the reason a smooth curve is not obtained.

The optimal sample size is the value which maximises this plot and is n = 11, giving

an expected utility of 0.8174 using method 1 and at n = 7 giving 0.8065 using method

2. Thus the experiment should be performed with 11 users and 7 users respectively.

Using these sample sizes and the fixed, per user and rewrite costs on the previous page

we can calculate the overall costs incurred for the optimal solutions under the two

methods. These are £10, 500 if the product is launced and £60, 500 if the product is

rewritten taking 11 users (method 1) and £8500 and £58, 500 respectively taking 7

users (method 2).

Although these two optimal sample sizes do not appear too similar there is no sharp

maximum in either case.

Having performed the experiment the terminal decision is then made based on the

number of successes of users in the task. The expected utility of launch and rewrite

given each number of possible successes X = x can be calculated from Equation 6.4

and then the difference between these

E[U(tl | X = x)]− E[U(tr | X = x)]

can be plotted as in the right hand side of Figure 6.6 for method 1 and Figure 6.7 for

method 2.

If this difference is positive then the optimal terminal decision is to launch and if it
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Figure 6.7: Plots of E[U(sn)] and the difference between the expected utilities of launch and
rewrite for each number of observed successes given 7 users, method 2

is negative the optimal terminal decision is to rewrite. From the right hand side of

Figure 6.6 we can see that if 6 or fewer users complete the task successfully we should

rewrite and if 7 or more are successful we should launch using method 1. Using method

2 (Figure 6.7) we rewrite if 4 or fewer users are successful and launch if there are 5 or

more successes.

Valks (2005) Chapter 6 used a joint density for θ1, θ2 formed using the Cook-Johnson

copula, which was introduced in Chapter 2, to perform the analysis and numerical

methods to compute the integrals. Thus her methodology was fully Bayesian. All

of the prior specifications and the utility function used were identical to those in our

analysis. As such her analysis could be thought of as the fully Bayesian ‘exact’ solution

which we are ‘approximating’ with our Bayes-Bayes linear-Bayes analysis.

She found that the optimal sample size was 10, the expected utility for 10 users was

0.851 and the critical value between launch and rewrite was 7 successes. These results

are consistent with ours above using the direct expectation and variance. Thus, in

this example, method 1 provides a good ‘approximation’ to the ‘exact’ solution. The

solution using method 2 is not particularly close to the direct method or full Bayesian

solution. However, the optimal number of users using the fully Bayesian method,

n = 10, has the third highest expected utility for method 2 and in fact the difference

between it and the expected utility for the optimal sample size of 10 is just 9.78×10−5.

We have plotted the adjusted expectations and variances of θr, E(θr | X = x) and

Var(θr | X = x), for n = 10 with the prior parameter values used in the example in
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Figure 6.8 for the three different methods considered as well as a model which assumes

a logit-Normal prior distribution for θl, θr. The number of observed successes, x, is

given on the x-axis.
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Figure 6.8: A plot of the adjusted expectations and variances of θr for n = 10

We see that the adjusted expectations and variances using methods 1 and 2 are fairly

similar and are also quite similar to those of the logit-Normal model. They are both

a little way from the copula based method of Valks (2005). The largest difference is

between the posterior variances for the two fully Bayesian solutions.

6.3.4 Discussion

In the usability example we have followed closely the prior specifications, in terms of

the parameters θl and θr and the utility functions, of Valks (2005). This has allowed

us to compare her fully Bayesian approach using a copula function to our Bayes linear

kinematic approach. There are certain improvements which we believe could be made

to the model, however.

The first is in terms of the number of hypothetical future customers, N . We have

assumed that this is fixed but how in practice would we go about choosing N in this

case? In our example N = 100 and we could perhaps justify this by saying that the

first 100 customers who buy a product shape its reputation and so are the people to
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consider in the utility function. Alternatively we could specify a utility in terms of

A =

∞
∑

i=1

kisi,

where ki decreases as i increases and si = 0/1 according to whether customer i records

a success. Another possibility would be

A =
∞
∑

i=1

ki−1si,

with 0 < k < 1. In this case

E(A | θ) = θ

1− k
, Var(A | θ) = θ(1− θ)

1− k2
.

Both of the above approaches would have the effect of giving successes of earlier cus-

tomers more weight than later customers in the utility. We could also give N some

distributional form.

Consider the plot of the benefit utility given in Figure 6.4. It is convex initially,

approximately linear in the middle section and concave for large numbers of successes.

It would seem likely that a utility function for the number of successes would be concave.

Thus a more suitable benefit utility would appear to be

Us(y) = 1−
(

y −N

N

)2

, (6.5)

for some N . Similarly, the utility for cost suggests a risk seeking individual. People

tend to be risk averse when it comes to money and so a more suitable utility function

could be

Uf (Ck) = 1−
(

Ck

Cmax

)2

.

A second possibility would be

Uf (Ck) = κ log

[

1 +
Cmax − Ck

Cmax

]

, (6.6)

where κ−1 = log 2.

If we perform the analysis using the utility functions in Equations 6.5 and 6.6 and a

fixed value of N = 100 we obtain an optimal sample size of n = 10 and an expected

utility of 0.9147 for method 1. Thus, using this method, the optimal sample size

remains very similar.

182



Chapter 6. The design of experiments

6.4 Bioassay experiments

Bioassay techniques are used in many different fields in order to measure the effect

of varying doses of some chemical upon living things. Typically a number p of doses,

d1, . . . , dp, are chosen and at each dose di a number of organisms ni are given that

dose. We shall regard the doses as predetermined but it can be the case that part of

the design process is to search for optimal design points. See, for example, Haines et al.

(2003). Let us suppose that for each organism we measure whether or not a specified

response is achieved. Thus for organism j taking dose i

Xij =







1, if response achieved,

0, if response not achieved.

Then, if we regard organisms taking the same dose to be independent, we can think of

the number of responses at dose i, Xi =
∑

j Xij , as a binomial random variable

Xi | θi ∼ bin(ni, θi),

where θi is the probability of response for dose i. We shall also define n = (n1, . . . , np)
′

,

X = (X1, . . . , Xp)
′

and θ = (θ1, . . . , θp)
′

. In terms of designing a bioassay experiment

interest lies in the answers to two questions;

(i) How many organisms should be included in the experiment?

(ii) What proportion of the organisms should be given each dose?

These are known as the sample size and design point problems respectively. Farrow &

Goldstein (2006) Section 1 discusses previous Bayesian approaches to both problems.

6.4.1 Bayes linear kinematic solution

We shall answer these questions by solving the problem in a Bayesian context, max-

imising expected utility. We give each θi a conjugate beta prior distribution

θi ∼ beta(ai, bi).

To incorporate dependence between the θi’s we shall first transform them to ηi’s on the

(−∞,∞) scale and link the ηi’s in a Bayes linear structure. Thus

ηi = g(θi),
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where g(θi) is one of the suitable link functions for the binomial distribution. The prior

expectation and variance of θi are

E0(θi) =
ai

ai + bi
, Var0(θi) =

aibi
(ai + bi)2(ai + bi + 1)

,

and we can convert expectations and variances in one set of variables into those of the

other via the standard formulae

E0(ηi) =

∫ 1

0
g(θi)f0(θi)dθi,

Var0(ηi) =

∫ 1

0
g2(θi)f0(θi)dθi − E0(θi)

2,

where f0(θi) is the prior density of θi. Defining η = (η1, . . . , ηp)
′

, Bayes linear updates

can be made as soon as a prior covariance matrix for η has been specified. When

Xi = xi responses are observed out of ni organisms for dose i, θi is updated to

θi | xi ∼ beta(Ai, Bi),

where Ai = ai + xi and Bi = bi + ni − xi as the beta and binomial distributions are

conjugate. This will lead to E(ηi | xi) and Var(ηi | xi) which will be of the form of

their prior counterparts but using Ai and Bi.

These updates are then propagated through to η via the Bayes linear kinematic up-

dating equations, numbered (3.6) and (3.7).

E1(η;xi) = E0(η) +
Cov0(η, ηi)

Var0(ηi)
[E(ηi | xi)− E0(ηi)], (6.7)

Var1(η;xi) = Var0(η)−
(

1

Var0(ηi)
− Var(ηi | xi)

Var20(ηi)

)

Cov0(η, ηi)Cov0(ηi,η)(6.8)

One such Bayes linear kinematic update is made for each i. From Equation 4.4 a

sufficient condition for a unique commutative update to exist is

Var(ηi | xi)
Var0(ηi)

< 1

for all i. When this solution exists it is given, as we have seen previously, by

Ep(η;x) = Varp(η;x)

[

p
∑

i=1

Var−1
1 (η;xi)E1(η;xi)− (p− 1)Var−1

0 (η)E0(η)

]

(6.9)

Varp(η;x) =

[

p
∑

i=1

Var−1
1 (η;xi)− (p− 1)Var−1

0 (η)

]−1

. (6.10)
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If we consider the design problem its solution is found by maximising the expected

utility to give optimal sample size and allocation, using Equation 6.1. This solution is

denoted n∗ = (n∗1, . . . , n
∗
p)

′

where

E[U(sn∗)] = max(E[U(sn)]),

for n ∈ N
p where sn is the decision to perform the experiment with n = (n1, . . . , np)

′

organisms at each of the doses. The expected utility for sample allocation n is given

by

E[U(sn)] =
∑

x∈X

f(x)×max
t∈T

∫

Θ
fp(θ;x)× U(sn, t,θ,x) dθ, (6.11)

where t is the (possibly notional) terminal decision, f(x) is the probability of observing

x and U(sn, t,θ,x) is the utility function.

6.4.2 Utility function

We now consider the utility function. Following Farrow & Goldstein (2006) we can

represent the utility function in terms of the hierarchy given in Figure 6.9.

Design

Benefits Costs

Information gain EthicalFinancial

Fixed Per organism High dose

Figure 6.9: Decomposition of the utility function for a bioassay experiment

Thus the overall utility function, generally, can be broken down into utilities for benefit

and cost. Benefit shall be measured in terms of the the gain in knowledge that results

from performing the experiment. There are two general types of cost which may be

relevent to a bioassay experiment; financial costs and ethical costs. Financial costs can

185



Chapter 6. The design of experiments

be broken down into the fixed cost of performing an experiment and the additional

cost for each organism (which could depend on dose). Ethical costs can be thought of

in terms of the adverse effect of giving an organism too high a dose.

If costs and benefits are assumed to be mutually utility independent then the overall

utility U(sn, d,θ,x) = U can be represented by a binary node in terms of the utility

of costs UC and that of benefits UB.

U = r1UB + r2UC + r3UBUC ,

where r1, r2 > 0, −ri ≤ r3 < 1− ri for i = 1, 2 and r3 = 1− r1 − r2. If r3 = 0 we have

an additive node. Further, if financial and ethical costs can be assumed to be mutually

utility independent then the utility for costs can also be represented by a binary node

in terms of the utility for ethical costs UE and the utility for financial costs UF .

UC = q1UE + q2UF + q3UEUF ,

where q1, q2 > 0, −qi ≤ q3 < 1 − qi for i = 1, 2 and q3 = 1 − q1 + q2. Thus there are

three utilities to specify in the analysis; UB, UE and UF . All shall be defined on the

standard [0, 1] scale with a utility of 1 being assigned to the best possible outcome and

0 to the worst.

Benefit utility

One way to consider the benefit of performing an experiment is in terms of the gain

in knowledge or information which results from the experiment. Much work has been

done in this context on both the sample size problem and the design point problem

(see Chaloner & Verdinelli (1995), Lindley (1997) and Farrow & Goldstein (2006)).

Farrow & Goldstein (2006) define the Bayes linear utility for information gain which is

based upon the reduction in uncertainty between the prior and Bayes linear adjusted

variance. They show that this can be calculated as

U(β) = 1− 1

k
trace

{

Var−1
0 (β)Varα(β)

}

,

where α is a collection of quantities which are observed, β is a collection of quantities

about which we wish to make inferences and k is the number of elements in the vector

β. They then define the mixed Bayes linear utility which allows for gains in knowledge

about certain linear combinations of the elements of β to be each given a Bayes linear

utility.
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We define the Bayes linear kinematic utility. This is

U(η) = 1− 1

p
trace

{

Var−1
0 (η)Varp(η;x)

}

. (6.12)

Justification for this choice of benefit utility can be found by considering the prior

precision matrix Var−1
0 (η). This is a symmetric, positive definite matrix and so there

exists a lower triangular matrix W such that

Var−1
0 (η) =WW T .

This is the Choleski decomposition. It also follows that

Var0(η) = (W T )−1W−1.

We can define d(η) = η −Ep(η;x), a measure of discrepency between η and its Bayes

linear kinematic adjusted expectation. Now consider the quantityW Td(η). Its variance

is

Var0
(

W Td(η)
)

= W TVar0 (d(η))W

= W TVar0(η)W

= W T (W T )−1W−1W

= I.

So, a priori, the elements of W Td(η) are uncorrelated and each has variance one.

This means that they are proportional to the principal components of d(η). The fact

that they are uncorrelated and have the same variance also suggests that adding the

expected reductions in variances might be appropriate.

We now need to find a way of measuring the reduction in variance of a multivariate

vector. The principal components of d(η) are MTd(η) where M is a matrix, the rows

of which are the eigenvectors of Var0(η), such that MTM = I. So

Var0(M
Td(η)) = MTVar0(η)M

= Λ,

a diagonal matrix. Now,

Λ−1 = (M)−1Var−1
0 (η)(MT )−1

= MTVar−1
0 (η)M,
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asM is an orthogonal matrix. So, if the principal components of d(η) are c1(η), . . . , cp(η),

then

p
∑

i=1

c2i (η)

Var0(ci(η))
= (MTd(η))TΛ−1MTd(η)

= dT (η)MMTV ar−1
0 (η)MMTd(η)

= dT (η)Var−1
0 (η)d(η).

Thus, equivalent to Equation 6 in Farrow & Goldstein (2006) we have

U(η) = 1− E

[

1

p
dT (η)Var−1

0 (η)d(η)

]

.

To get from this to Equation 6.12 we shall need the two following properties of matrices;

(i) If y is a vector then yTy = trace(yyT ).

(ii) If A and B are square matrices then trace(AB) =trace(BA).

Now, if we apply the Choleski decomposition to Var−1
0 (η) we see that, for some lower

triangular matrix W ,

dT (η)Var−1
0 (η)d(η) = dT (η)WW Td(η)

= trace(W Td(η)dT (η)W ) by (i)

= trace(WW Td(η)dT (η)) by (ii)

= trace(Var−1
0 (η)d(η)dT (η)).

If we take the expectation of this

E
[

dT (η)Var−1
0 (η)d(η)

]

= trace
(

Var−1
0 (η)E[d(η)dT (η)]

)

= trace
(

Var−1
0 (η)Varp(η;x)

)

,

and so

U(η) = 1− 1

p
trace{Var−1

0 (η)Varp(η;x)}.

It is also possible to construct a mixed Bayes linear kinematic utility in the same way

that Farrow & Goldstein (2006) construct a mixed Bayes linear utility. This would

allow us to weight information gain about different factors differently.
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Utilities for Cost

Generally people are risk averse when it comes to financial cost. Therefore a linear

utility for cost is not appropriate. Instead we shall use a quadratic utility function for

financial cost as this reflects a risk averse individual. Thus our utility for financial cost

is

UF (C) = 1− C2

C2
max

,

where C is the cost of performing the experiment and Cmax is the maximum amount

the decision maker is willing to pay. The financial cost of performing the experiment

is given by

C = C0 +

p
∑

i=1

Cini,

where C0 is the fixed cost associated with performing an experiment and Ci is the

additional cost associated with an organism being given dose i.

We also need a utility for ethical costs. Assuming that our decision maker’s ethical

cost utility is linear with respect to dose, the ethical utility function takes the form

UE(d) = 1− d

dmax
,

where d =
∑p

i=1 dini and dmax is the maximum value d can take. We could perhaps

think about this as max{N}dp where N =
∑p

i=1 ni.

6.4.3 Possible Link Functions

There are, as we have previously seen, different possible functional forms for g(θi). In

this section we consider the logit link and a link function which leads to a pseudo-

expectation and variance.

The logit link

This takes the form

ηi = log

(

θi
1− θi

)

.

The prior mean and variance of ηi are

E0(ηi) = ψ(ai)− ψ(bi), Var0(ηi) = ψ1(ai) + ψ1(bi).

The updated mean and variance, having observed xi, are of the same form but using
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Ai and Bi. The trigamma function is monotonically decreasing on R
+ and so

Var(ηi | xi)
Var0(ηi)

< 1

for i = 1, . . . , p. Thus a unique commutative solution shall always exist. However,

as the posterior variance Varp(η;x) depends upon x in a non-trivial way it will be

necessary to evaluate f(x) and then sum over x ∈ X in Equation 6.11 to solve the

decision problem. Thus, as we have no explicit form of f(x) in our analysis, we shall

need an alternative variance if we are to provide a solution.

Use of the mode and curvature of the log-density as in Section 6.3.2 is also unsuitable

for this reason.

A second link function

We return to the idea of a pseudo-expectation and variance first explored in Section

3.11. We do not specify the link function explicitly but simply say that it is defined as

ηi = g(θi) such that the prior ‘pseudo-mean’ and ‘pseudo-variance’ are given by

Ê0(ηi) = g1

(

ai
ai + bi

)

, V̂ar0(ηi) = g2

(

1

ai + bi

)

,

where g1() and g2() are suitable monotonic functions. Specifically we take the logit

function for g1 and the identity function for g2 so that

Ê0(ηi) = log

(

ai
bi

)

, V̂ar0(ηi) =
1

ai + bi
.

If we observe xi responses at dose i then the expectation and variance of ηi are updated

to

Ê(ηi | xi) = log

(

ai + xi
bi + ni − xi

)

, V̂ar(ηi | xi) =
1

ai + bi + ni
,

and so we see that our uncertainty is reduced by the number of observations we make

and not by what those observations are.

A Bayes linear kinematic update for η can be made each time data are observed using

Equations 6.7 and 6.8. Clearly

V̂ar(ηi | xi) < V̂ar0(ηi)

for all i as observing data will lead to positive ni. This decreases the variance. Thus

a unique commutative solution always exists for this choice of link function and it is

given by Equations 6.9 and 6.10.
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Also, as V̂ar(ηi | xi) depends on the data only through ni, V̂arp(η;x) will not depend

explicitly on x. Thus the design problem can be solved without full knowledge of f(x).

But is the pseudo-approach updating our parameters in a sensible way? To answer

this we can return to the plot of E(θr | X = x) for n = 10 in the usability experiment,

Figure 6.8. We can also plot this adjusted expectation for the pseudo-moment method

and compare it to those for the other four methods. A plot of this is given in Figure

6.10.
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Figure 6.10: A plot of the adjusted expectations of θr including the pseudo approach for n = 10

We see that the pseudo-moment approach is updating the expectation of θr in a very

similar way to the direct approach (method 1), the mode and curvature approach

(method 2) and the fully Bayesian solution using a logit-Normal prior. Thus, it appears

that the pseudo-moment approach is adjusting the parameters in a sensible manner.

6.4.4 Example: Testing the effects of fertilisers on fish

Fertilisers are used worldwide to increase agricultural productivity in both developed

and developing nations. They can, however, have an adverse effect on water quality

and ultimately lead to the death of aquatic organisms such as fish. This is known as

eutrophication.

Chukwu et al (2009) investigated the effect of two fertilisers, NPK 20:10:10 and NPK

12:12:17, and mixtures of these, upon the young (fingerlings) of Oreochromis nitolicus,

a fish farmed throughout Africa, South America and South-Eastern Asia. They selected
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appropriate doses of each fertiliser and then performed quantal bioassay experiments

with the response being the number of fish to die within 4 days of the start of the

experiment.

In each experiment at each dose 10 fish were used. For each fertiliser 5 doses were

selected:

1ml/L, 2ml/L, 4ml/L, 6ml/L and 8ml/L.

Thus 50 fish were used in each experiment. We shall now illustrate our Bayes linear

kinematic experimental design procedure.

Suppose that we wish to perform a single experiment with a single fertiliser NPK

20:10:10 and a large experiment contains 50 fish as in Chukwu et al (2009). How many

fish should we use and how many should be exposed to each dose?

Prior Elicitation

The elicitation process consists of specifying the prior means and variances of η =

(η1, . . . , η5)
′

and a prior variance matrix Var0(η). The marginal specifications can be

achieved by finding values for each ai and bi from elicited quantiles.

Initially elicit 3 quantiles for each θi, for example the median mi and upper and lower

tertiles t2i and t1i. To do this, questions can be put to the expert in terms of the aver-

age proportion of deaths that would be observed over a large number of experiments.

As 3 quantiles are being elicited to calculate 2 values (ai and bi) there is no exact

solution in general. However, we can apply the method of Section 4.5.1 to find suitable

parameter values. That is, initially we find exact values of the beta parameters for

each combination of 2 of the 3 quantiles;

(t1i,mi) ⇒ (a1i, b1i)

(mi, t2i) ⇒ (a2i, b2i)

(t1i, t2i) ⇒ (a3i, b3i).

We then find prior means and variances from these on the unrestricted scale via

mki = log

(

aki
bki

)

, vki =
1

aki + bki
,

192



Chapter 6. The design of experiments

for k = 1, 2, 3. The prior mean and variance of ηi can then be given as

mi = w1im1i + w2im2i + w3im3i

vi =
w2
1i

w2
i

v1i +
w2
2i

w2
i

v2i +
w2
3i

w2
i

v3i,

for some weights w1i, w2i, w3i where w
2
i = w2

1i +w2
2i +w2

3i. The prior parameter values

are found as

ai =
emi

vi(1 + emi)
, bi =

1

vi(1 + emi)
.

In order to elicit covariances between the ηi’s we ask the expert to suppose that the

value of θl is now known for some l 6= i and this has left the value of θi unchanged at

mi. New tertiles are then elicited for θi in the light of this new information and these

are used to find new values a
′

i and b
′

i, where

θi | θl ∼ beta(a
′

i, b
′

i).

In terms of ηi and ηl this implies that

Var(ηl | ηi) =
1

a
′

i + b
′

i

and this gives the prior covariance between ηi and ηl via

Var(ηi | ηl)
Var0(ηi)

= 1− Corr20(ηi, ηl).

Thus

Cov0(ηi, ηl) = ±
√

Var0(ηl)[Var0(ηi)−Var(ηi | ηl)],

with the sign given by whether the expert believes their expectation of ηi would increase

or decrease upon observation of a higher than expected ηl. This procedure is similar

to those developed in Chapter 4 and used in Chapter 5.

However, if we elicit all covariances directly it may be difficult to avoid accidental

incoherence as well as prove extremely time consuming. Therefore it may be beneficial

to use the following more structured approach. Define

ηi − E0(ηi) = Fi,

so that Fi is a zero expectation quantity which depends upon dose. We could link these

in a first order autoregression

Fi = φFi−1 + ǫi,
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with E(ǫi) = 0, Var(ǫi) = vǫ and Cov(ǫi, ǫl) = 0 for i 6= l. We could then set the initial

variance to

Var0(Fi) =
vǫ

1− φ2
= vF ,

so that the process is stationary. This gives prior covariances

Cov0(Fi, Fj) = Cov0(ηi, ηj) = φ|j−i|vF .

Results

Suppose that initially the expert settles on values for the median, upper tertile and

lower tertile for each dose as in Table 6.2. This gives values of the beta parameters

also given in the table. We use the weights w1 = w2 = w3 = 1
3 to do this. In order to

Dose in ml/L
1 2 4 6 8

m 0.2 0.5 0.65 0.75 0.9
t1 0.09 0.37 0.53 0.62 0.73
t2 0.34 0.64 0.79 0.88 0.97
a 1.970 5.819 6.583 6.122 4.879
b 6.388 6.317 4.184 2.880 1.418

Table 6.2: Initial elicited quantiles and resulting parameter values

find the covariances we set φ = 0.93 and use a stationary variance of vF = 0.12. This

necessitates an iterative adjustment of the beta distribution parameter values. New

values of ai and bi are given in Table 6.3.

Dose in ml/L
1 2 4 6 8

a 1.964 3.996 5.095 5.667 6.457
b 6.369 4.338 3.238 2.666 1.877

Table 6.3: Parameter values adjusted for stationarity of variance

Other values used are the overall cost of an experiment of £20, 000, additional costs for

each fish at doses 1, . . . , 5 of 500, 600, 700, 800, 900 and 1000 (£) respectively, Cmax =£70, 000

and dmax = 400. In terms of the trade off parameters for cost they were given values

q1 = q2 = q3 =
1
3 .

Initially we considered an additive node for the overall utility function with r1 = 0.8,

r2 = 0.2 and r3 = 0. This gave an optimal sample allocation of n∗ = (21, 8, 4, 3, 5) and

hence a sample size of N = 41.
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Taking a binary node with r1 = 0.6, r2 = 0.2 and r3 = 0.2 produced an optimal

sample allocation of n∗ = (19, 6, 3, 2, 3) and so an optimal sample size of N = 33. It is

interesting that in both of these cases, when a maximum sample size of 50 was used,

the optimal sample allocation contained fewer then 50 fish. It can be seen that the

extra cost of higher doses, both ethical and financial, is resulting in an optimal sample

allocation with far fewer fish being given higher doses.

If we use an arbitrary terminal decision of t =‘report the adjusted expectations of

θ’ we can see what happens if we observe a certain number of deaths at each dose.

For example if, using the additive node and its optimal allocation from above, we

observed x = (3, 5, 3, 3, 5) then E5(θ;x) = (0.23, 0.52, 0.68, 0.76, 0.85). If we consider

the binary node then observing x = (3, 3, 2, 1, 3) deaths in the optimal allocation would

result in E5(θ;x) = (0.20, 0.45, 0.60, 0.68, 0.78). We can compare each of these adjusted

expectations with the prior expectation of θ, E0(θ) = (0.24, 0.48, 0.61, 0.68, 0.77).

6.5 Conclusions

In this chapter we investigated the application of the Bayes linear kinematic approach

to the design of experiments. Bayesian experimental design has been severely hampered

by the necessity, in most realistic models, of approximation, numerical or simulation

methods within the maximisations and integrations used to maximise the expected

utility and hence solve the design problem. Since, in practice, a large number of such

integrations are necessary this has led to severe restrictions in the design problems

Bayesian analyes can currently tackle.

The approach developed in this thesis, applied to the design of two types of experiment

in this chapter, does not require such numerical integrations or simulation based meth-

ods. By giving conjugate prior distributions to the parameters of interest and linking

these parameters in a Bayes linear structure all updates have been performed exactly

either by fully Bayesian conjugate updating or Bayes linear kinematics.

The two specific applications considered in this chapter were both concerned with

binomial counts in which the success probabilities in different groups were considered

to be correlated. In the initial usability application there were two probabilities of

interest and based on these a decision would be made as to whether to launch or

rewrite the product. With just a single observation the Bayes linear kinematic update

was straightforward as it was not necessary to check for a commutative update.

A fully Bayesian approach to this problem was adopted by Valks (2005). She used nu-

merical methods to compute the necessary integrals in the calculation of the expected

utilities. Our method used no such approximations. The results obtained in our anal-
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ysis, the optimal sample size and critical number of successes, were similar to those of

Valks (2005). If our method was considered to be an ‘approximation’ to the ‘exact’

fully Bayesian solution then, in this analysis at least, the two methods showed good

agreement.

In the second application, bioassay, updates over many groups were considered. As our

method does not suffer from the computational burdens associated with fully Bayesian

approaches we were able to solve both the sample size and design point problems

simultaneously. Whereas the benefit utility in the usability application was developed

specifically for that problem, in the bioassay application we defined a benefit utility

based on information gain. This utility is far more general and could be used in a wide

range of applications.
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Conclusions

7.1 Project summary

In this thesis we have concerned ourselves with approaches to Bayesian inference for

such things as collections of related binomial and Poisson distributions. Initially, in

Chapter 2, we investigated fully Bayesian solutions to the problem in two dimensions,

mainly in the form of density multipliers. Two specific types of density multiplier

were considered, copula functions and mixtures. We found that the copula family

which allowed tractable calculations of posterior distributions to be made, the Farlie-

Gumbel-Morgenstern family, had severe restrictions on the prior correlations it was

possible to specify. The copula models did, however, preserve marginal distributions

allowing prior specifications to be made easily. Using mixtures it was possible to

specify any prior correlation between parameters. However, due to the more complex

structure of marginal distributions, prior specification was no longer simple even in the

two parameter case.

We considered Bayes linear approaches to the two parameter problem in Chapter 3.

Initially we considered a model which took advantage of properties of second order

exchangeability between Bernoulli trials within a group. We found that this did not

fully overcome the problems associated with the known mean-variance relationship in

binomial and Poisson distributions. We then applied a modelling approach based on

the idea of Bayes linear kinematics, a form of Bayes linear analysis in which changes

in belief about some quantities are propagated through to others within a Bayes linear

structure. As this is a linear fitting procedure we proposed transforming the binomial

and Poisson parameters onto an unrestricted scale before performing the updates. Sev-

eral transformations were used and the important idea of guide relationships (West

et al., 1985) was utilised. It was felt that the transformations led to more effective
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updates.

In Chapter 4 we extended the problem to more than two parameters and considered

the binomial case. The methodology adopted was the Bayes linear kinematic approach

utilising the transformations of the binomial parameters. Conditions for a unique

commutative solution to exist were explored and it was found, using the logistic trans-

formation and exact calculation of moments, that a unique commutative solution shall

always exist. This is not the case if transformations are not used. We applied the

approach to an example in 36 dimensions concerned with the effects of smoking on

health. With so many covariances to specify it was found to be useful to utilise ideas

from Farrow (2003) to impose a prior covariance structure.

We considered two applications of the transformed Bayes linear kinematic approach to

related binomial and Poisson distributions in Chapters 5 and 6. Reliability and sur-

vival analysis were the focus of Chapter 5. The two applications to reliability analysis

considered were the analyses of failure rates and failure time distributions. The failure

rates example was essentially a correlated Poisson distributions problem in more than

two parameters. We found that, using a log transformation and exact means and vari-

ances for the transformed parameters, a unique commutative Bayes linear kinematic

solution exists as long as at least one failure is observed in one of the groups. The

other reliability application considered grouped failure times in the form of binomial

counts. It was found that taking the complementary log-log transformation is useful in

this case for calculation of the reliability. The survival model considered was a piece-

wise constant hazards model which utilised ideas of system evolution from West et al.

(1985) for prior specifications. A unique commutative Bayes linear kinematic solution

was found in contrast to the non-commutative solution of Gamerman (1991).

Finally, in Chapter 6, we applied our transformed Bayes linear kinematic approach to

two problems in the design of experiments; usability testing and bioassay. We solved

both problems by maximising expected utility. In the usability testing application

we provided a Bayes linear kinematic solution using the same prior specifications and

utility functions of Valks (2005) who gave a fully Bayesian solution. We found that our

optimal sample size and critical number of users were in close agreement with hers. In

the bioassay application we provided a solution to the design problem which answered

both of the questions generally considered in Bayesian experimental design; the sample

size and design point problems. To do this we introduced the Bayes linear kinematic

utility. This requires an adjusted variance which does not explicitly depend on the

number of successes observed in the binomial trials.
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7.2 Review of objectives

At the start of the thesis the stated aims were to find a methodology for related binomial

and Poisson distributions in which

(i) intensive numerical or simulation based methods are not required in the calcula-

tion of posterior quantities,

(ii) a careful assessment of genuine prior beliefs can be made for the unknowns in the

analysis, and

(iii) realistically complex problems can be solved within a reasonable time frame in

the area of Bayesian experimental design.

Both of the fully Bayesian approaches considered, FGM copulas and extensions of these

and mixtures, violated condition (ii). In the case of copulas it was not possible to specify

strong correlations between parameters which, in general, is a severe restriction. In the

case of mixtures, because the marginal distributions for parameters were not in a simple

form, finding parameter values which give the prior specifications required would not

be a trivial task in non-trivial problems. For mixtures to be widely applicable in this

context a general method for prior specification would have to be found.

All of the Bayes linear approaches considered satisfy the first two criteria set out above.

In a Bayes linear analysis updating is done by way of a linear fitting procedure. The

expectation vector and variance matrix of the quantities of interest are adjusted us-

ing standard rules each time anything is observed. Therefore intensive numerical or

simulation methods are never necessary and all calculations are tractable.

In a Bayes linear analysis a full second order prior specification is made. That is, for

all unknown quantites, expectations, variances and covariances are specified. Thus the

Bayes linear approach makes careful assessment of genuine beliefs about relationships

between quantities a practical proposition without the imposition of artificial distri-

butional assumptions. Using the Bayes linear kinematic approach unknowns are given

conjugate marginal distributions. This allows for quantiles to be elicited and used to

set the values of the parameters of the prior distributions. This satisfies condition (ii).

The approach we chose to develop for the remainder of the thesis was Bayes linear

kinematics performed on the transformed parameters of the binomial and Poisson dis-

tributions. As well as satisfying the first two criteria this approach allowed a Bayes

linear analysis to be performed without violating the mean-variance relationship which

exists in both the binomial and Poisson distributions. The more standard Bayes linear

analysis which took advantage of properties of second order exchangeability did violate

these relationships.
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Of course we could have chosen to extend the Bayes linear kinematic approach with-

out transformations. We felt, however, that there were two main advantages of the

transformed approach. The first was that Bayes linear methods offer a linear fitting

procedure. Therefore, as with the case of linear regression, they are most effective when

performed on an unrestricted scale. Also, under transformations, we were able to find

a unique commutative solution no matter what the observations (or at least almost all

of the time) by considering the sufficient condition of Goldstein & Shaw (2004). This

was not true in the untransformed case.

Having extended this chosen approach to more dimensions we applied it in several

contexts. One such application was the design of experiments and within this bioassay.

In this analysis we allocated up to 50 subjects (fish) to 5 different doses and found the

expected utility associated with each combination. The Bayes linear kinematic model

was able to find the utilities for each of these combinations and find the optimal sample

size and allocation. This satisfies condition (iii).

7.3 Future work

This thesis has attempted to provide answers to certain questions. In doing so more

have come to light. One involves density multipliers, and in particular mixtures. The

theory of mixtures is fairly straightforward and the conjugacy of the joint densities is

a very useful property. The problem, as we have already discussed, is the difficulty of

prior specification. An area for further work would therefore be to investigate ways to

specify prior information in these models. If a general methodology could be put in

place to do this then mixtures would provide a tractable fully Bayesian approach to

modelling related binomial and Poisson distributions.

An important remaining issue with the Bayes linear kinematic approach is the question

of predictive distributions. We have supposed that, after adjustment, we can still use

the beta-binomial or gamma-Poisson distribution to find the predictive distribution.

Some justification of this is given in Section 3.7.2 but a more formal investigation of

predictive distributions for this kind of structure would be informative.

We have examined a Bayes linear kinematic approach to survival analysis for a piecewise

constant hazards model. It would be useful to be able to apply our method to a Cox-

type proportional hazards model. To do this we could think of each patient at each

death time as a Poisson observation Yi with yi = 0 for all of the patients who do not

die at that death time and yi = 1 for the patient who dies. If we give gamma prior

distributions to each of the Poisson parameters then we could perform a Bayes linear

kinematic analysis.
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There are several possible areas of further work in the design of experiments chapter.

Within the context of the usability experiment we considered only a single task. This

could be extended to multiple tasks with the probability of success in each of the tasks

correlated with one another. Having performed the task, the terminal decision was to

rewrite or launch the software. Following the rewrite a second usability test could be

performed to assess the success of the rewrite. This could be incorporated into the

model.

The Taylor expansion approach to specification of the prior covariance for the two dif-

ferent methods is perhaps not the most suitable way to specify the covariance. An

alternative method, possibly based on finding the covariance of the transformed pa-

rameters which gives a specified rank correlation of the untransformed parameters may

be more suitable.

Within the bioassay application we defined the Bayes linear kinematic benefit utility for

information gain. This took a similar form to the Bayes linear utility for information

gain given by Farrow & Goldstein (2006) who also proposed a mixed Bayes linear

benefit utility. We could extend the Bayes linear kinematic benefit utility to create a

mixed utility in a similar way.
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