Isolation and Characterisation of
Muscle Satellite Cells from Differentiating
Human Embryonic Stem Cells

James Parris

PhD Thesis

A thesis submitted for the degree of Doctor of Philosophy in
the Institute of Human Genetics, Newcastle University



Abstract

Abstract

Muscular dystrophies are a category of diseases in which the muscle fibres degrade over time. At
present there is no known cure, however a great deal of promise exists in cell replacement therapy,
which has been successful in alleviating animal models of muscular dystrophy. Unfortunately,
attempts to use stem cell therapy to cure or treat muscular dystrophies in humans have been
unsuccessful, despite many different approaches to isolating and transplanting potentially myogenic
cells. While skeletal muscle differentiation of embryonic stem cells has previously been reported, a
simple and efficient method for the isolation of myogenic precursors from human ES cells has not
been established. Recently, advances in induced pluripotent stem cell technology have brought the
possibility of patient-specific pluripotent cell lines within reach, though a great deal of work needs to
be done to understand the reprogramming process and the differentiation potential of these cells.

This technology provides another avenue for cell therapy treatment of muscular dystrophies.

Aims: The primary goals of the work described in this thesis were to develop a novel method of
differentiating human embryonic stem cells to muscle satellite cells or comparable myogenic
precursors and to isolate them using fluorescence activated cell sorting based on the expression of

satellite cell-specific genes or surface proteins.

Results: Myoblast conditioned medium was used as the primary means of driving myogenic
differentiation of hES cells, measured by flow cytometry analysis of surface marker expression and
guantitative PCR analysis of myogenic gene expression. During ES cell differentiation, isolation of a
pure, differentiated population of cells can be difficult. A variety of satellite cell surface markers were
examined in human adult and foetal myoblast lines to test potential targets for FACS isolation. In
addition, a reporter construct was developed with the intent of having the PAX7 promoter drive
expression of GFP and a line of hES cells containing this construct was established. The differentiation
strategy developed for hES cells was also tested on a line of iPS cells and a new line of iPS cells were

generated from a patient with Duchenne muscular dystrophy.

Conclusions: Several viable candidates for surface marker selection of satellite cells were identified
including CD56, CD106, and M-cadherin. However, despite trying a number of different approaches
of differentiating hES cells, none resulted in a highly efficient method for generating myogenic
precursors. The small number of myogenic cells produced was confirmed by flow cytometry, qPCR,

and immunostaining analysis.
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Figure 1.1 1

Embryonic Somitogenesis: A schematic showing the location of early myogenesis in the developing
embryo. Somites are formed from paraxial mesoderm on each side of the neural tube and form the
dermomyotome, myotome, and sclerotome. Reproduced from (Buckingham, Bajard et al. 2003).

Figure 1.2 5

Adult Muscle Regeneration: An outline of adult muscle regeneration showing the growth factors
which promote (green) and inhibit (red) satellite cell activation, myoblast proliferation, and
differentiation as well as some of the key genes expressed in each population of cells (green). After
muscle injury (A), satellite cells are activated (B) and begin proliferating. Some of these cells will
reoccupy the satellite cell niche (F) while others will differentiation and fuse (C) forming an early
myofibre with central nuclei (D) before maturing (E). Reproduced from (Charge and Rudnicki 2004).

Figure 1.3 10

Human ES Cell Derivation: Derivation of human embryonic stem cell lines from the ICM of a
blastocyst cultured from a surplus IVF embryo. Modified from (Hasegawa, Pomeroy et al. 2010).

Figure 1.4 12

Lineage development during early mouse embryogenesis: The blastocyst is formed from the late
cleavage stage embryo. As the blastocyst develops, cells of the ICM become specified to either
epiblast (green) or primitive endoderm (yellow) fates while the trophectoderm (red) will become the
trophoblast. The epiblast eventually develops into the embryo proper, the primitive endoderm into
components of the yolk sac, and the trophoblast into the placenta. Reproduced from (Ralston and
Rossant 2010).

Figure 1.5 14

Control of Transcription by Oct4, Sox2, and Nanog: Genes involved in the maintenance of
pluripotency and early differentiation bound by Oct4/Sox2 and Nanog. Reproduced from (Boyer, Lee
et al. 2005).

Figure 1.6 16

Differences in Signaling Pathways between (a) Mouse and (b) Human ES cells: The most notable
differences are the effects of BMP-4, which promotes pluripotency in mouse ES cells but
differentiation in human ES cells, and LIF, which prevents differentiation in mouse but not human ES
cells. Modified from (Hyslop, Armstrong et al. 2005).

Figure 1.7 21

Methods of Reprogramming Cells to a Pluripotent State: Cells can be reprogrammed using (a)
nuclear transfer of a differentiated cell into an enucleated oocyte, (b) by fusing a somatic cell with an
undifferentiated cell (or multiple undifferentiated cells), and (c) by the introduction of exogenous
transcription factors important in establishing and maintaining pluripotency. Reproduced from
(Yamanaka and Blau).
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Figure 2.1 27

Human Embryonic Stem Cell Colonies: A colony of H9 hES cells at (A) 5x and (B) 10x magnification
prior to cleaning. *Undifferentiated H9 cells at the centre of the colony can be seen amongst
**differentiated H9 cells and ***MEFs.

Figure 2.2 30

H9-GFP Cells: A colony of undifferentiated H9-GFP cells at 10x magnification. GFP expression in the
colony is clearly distinguishable from the surrounding MEFs.

Figure 3.1 48

Myoblast Analysis by Flow Cytometry: Flow cytometry analysis of satellite cell surface markers in
myoblast cell lines. There was very little expression of any surface markers in the $31/05 line (A) and
CD34 was absent in all four cell lines. 17/01 cells expressed high levels of CD56 and CD106 and
moderate amounts of M-cadherin (B). The FHM line expressed high levels of CD56 but very few cells
were CD106 or M-cadherin positive (C). Fewer HFM cells were CD56+ than in the previous two lines
and it had a moderate amount of CD106 and M-cadherin expression (D). n=3 for each cell line.

Figure 3.2 49

Myoblast Analysis by Flow Cytometry (Quantification): Co-expression of CD56, CD106, and M-
cadherin in myoblast lines. Both the 17/01 and HFM lines had cells positive for both CD56 and CD106
however only the HFM line had a population of CD106+/CD56- cells (top graph). In the three
myogenic lines, most M-cadherin+ cells were also CD56+ while much fewer were positive for CD106.
The only substantial population of triple positive cells was in the 17/01 line (bottom). Error bars
indicate SEM, n=3 for each cell line.

Figure 3.3 50

Myoblast Analysis by gPCR: qPCR analysis of myogenic genes in myoblast cell lines. Gene expression
results confirm the flow cytometry data suggesting that the S31/05 line has lost its myogenic
character. Of the remaining three lines, PAX7 expression is highest in the foetal lines while MYF5
expression shows the opposite trend. MYOD expression is similar in all three lines suggesting that all
are equally myogenic in nature. 17/01 cells have the highest level of MYOGENIN followed by HFM
and FHM cells. n=3 for each cell line.

Figure 4.1 58

Initial Myogenic Differentiation Medium Analysis by Flow Cytometry: Representative dot plots from
the flow cytometry analysis of the initial differentiation strategy. (A) Unstained cells were used as a
control for autofluorescence in all experiments. (B) Populations of cells stained for CD133, CD56, M-
cadherin, and Pax7 are shown along with the gates used to determine population percentages. Dot
plots are representative of both trials of multiple time points in the differentiation experiment.

Figure 4.2 59

Initial Myogenic Differentiation Medium Analysis by Flow Cytometry: Consistently high levels of
CD56 are seen at all time points. CD133 expression is much lower and more variable between the
two trials and the different time points as is M-cadherin and Pax7 expression. Co-expression of
satellite cell markers suggests that between 1 and 5% of cells may be myogenic. The high degree of
variability was thought to be a product of the fixation and permeabilization procedure, thus only one
repeat was conducted before the staining strategy was modified.
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Figure 4.3 60

Diff:CM Differentiation Analysis by Flow Cytometry: Representative dot plots from the flow
cytometry analysis of the HFM time course differentiation. Plots show populations of cells staining
for CD106 and CD56 (first plot), CD133 (second plot), and M-cadherin (third plot).

Figure 4.4 61

Diff:CM Differentiation Time Course Analysis by Flow Cytometry: Flow cytometry analysis of the
HFM differentiation time-point experiments. (Top Graph) Cultures grown only in Diff medium (no
conditioned medium) showed higher levels of CD56 and CD56/CD133 staining, indicative of
neurogenesis, as compared to the cells grown in conditioned medium. All cultures displayed similar
levels of CD133 (a broadly expressed stem cell marker). Two trials were conducted. (Middle Graph)
Staining for satellite cell markers show similar levels of CD106 between all cultures but a significant
increase of M-cadherin expression in the cells grown with conditioned medium. (Bottom Graph) Co-
expression of CD56/CD106 and M-cad/CD56 are similar among the different differentiation
conditions, however M-cad/CD106 expression is significantly lower in the Diff D12 culture than in the
HFM cultures. Very few triple positive cells were seen in any of the cultures, however the highest
average was in the HFM D12 differentiation. Middle and Bottom Graphs give the average +/- SEM of
three trials.

Figure 4.5 63

Diff:CM Differentiation Analysis by qPCR: The highest level of expression for PAX3 and PAX7
occurred after 12 days of differentiation, after which point expression declined steadily. MEF2
transcript levels were comparable among all three time points of the HFM differentiation, though
significantly lower in the Diff control. Expression of both MYF5 and MYOD peaked at 16 days of
differentiation, though MYOD expression remained high at day 20 while MYF5 had decreased.

Figure 4.6 64

Flow Cytometry Analysis of Conditioned Medium from Various Myoblast Lines: Representative dot
plots from the flow cytometry analysis of the media conditioned using various myoblast lines. A 12
day differentiation in 17/01 conditioned medium is shown, with populations staining for CD56 and
CD106 (first plot), CD133 (second plot), and M-cadherin (third plot).

Figure 4.7 65

Quantification of Flow Cytometry Analysis by Various Conditioned Media: The effect of
conditioning medium with various myoblast cell lines on myogenic differentiation. Two foetal (HFM
and FHM) and two adult (S31/05 and 17/01) cell lines were compared. (Top Graph) There was not a
substantial difference between the cell lines in terms of neurogenesis markers, however HFM
conditioned medium vyielded the highest expression of CD56 in both trials. However, this did not
correlate to a lower level of myogenic markers. (Bottom Graph) All cultures showed comparable
levels of CD106 and M-cadherin, in addition to the co-expression of CD56/CD106 and CD56/M-cad.
Two trials were conducted for this experiment.

Figure 4.8 66

Activin A Medium Differentiation Analysis by Flow Cytometry: Representative dot plots from the
flow cytometry analysis of the Activin A gradient differentiations. The plots show the results from
adding 30 ng/mL of Activin A to the differentiation medium. A significant reduction in the number of
cells stained for CD56 can be seen (first plot), while a large increase in CD133 staining is observed
(second plot).



Table of Figures

Figure 4.9 67

Activin A Medium Differentiation Analysis by Flow Cytometry: Effect of ectopic expression of
Activin A (at concentrations of 10, 30, 50, and 100 ng/mL) on myogenic differentiations. (Top Graph)
Activin A was found to reduce CD56 expression and increase CD133 expression in a dose-dependent
manner when compared to the HFM D12 differentiation. The percent of cells expressing CD56
decreased by roughly two-thirds, while the expression of CD133 increased by between 10-30%, when
Activin A was added to the differentiation medium. (Bottom Graph) Activin A had a much less
noticeable effect on CD106 and M-cadherin expression, however M-cadherin and CD56/M-cad
expression were higher in the HFM D12 than at any concentration of Activin A. Only one trial was
conducted for this experiment.

Figure 4.10 68

H9 Cell GFP Staining during Co-culture Differentiation Experiment: H9-GFP cells differentiating
alongside inactivated myoblasts. At day 2, most GFP-positive cells are found in the hES colony that
settled after plating, with only a few cells beginning to migrate among the myoblasts. By day 7, GFP-
positive cells have further dispersed throughout the myoblast networks and by day 20 the vast
majority of the cells are GFP-positive.

Figure 4.11 69

BMP4 Differentiation Analysis by Flow Cytometry: Representative dot plots from the flow
cytometry analysis of the BMP4 differentiation. Only GFP+ cells were used for analysis and FACS (first
plot). GFP+ cells also stained for CD56, CD106 (second plot), and M-cadherin (third plot). Similar
gates were used when sorting cells.

Figure 4.12 70

BMP4 Differentiation Analysis by Flow Cytometry (Quantified): Expression of GFP in BMP4
differentiation cultures and satellite cell surface markers in GFP+ cells determined by flow cytometry.
GFP was expressed in approximately 80% of the cultures. The expression of CD56 was compared
between GFP+ BMP4 cells and HFM D12 cells. All of the BMP4 cultures expressed higher levels of
CD56 than the HFM D12 cells (Top Graph). The expression of CD106 was comparable between HFM
D12 and BMP4 days 17 and 21, with higher levels seen in BMP4 day 12 and lower levels seen in
BMP4 day 28. M-cadherin expression was consistently low in all of the BMP4 cultures (Middle
Graph). The co-expression of multiple markers was also observed (Bottom Graph). HFM D12 cells
were more likely to expression multiple markers than the BMP4 cultures, with the exception of the
BMP4 day 12 M-cad/CD106+ population which was comparable to the same population in the HFM
D12 culture.

Figure 4.13 71

BMP4 Differentiation Analysis by qPCR: gqPCR analysis from GFP+ cells isolated from the BMP4
differentiations showed an increase in the expression of myogenic genes when compared to the HFM
D12 differentiation. PAX3 and PAX7 were most highly expressed on days 12 and 21 during the BMP4
differentiation, however these genes also showed a high degree of variability between trials. In
contrast, MEF2 was most highly expressed on day 17, gradually decreasing to a minimum on day 20,
with similar results observed of MYOD. MYF5 and MYOGENIN expression peaked at day 12, with
significant levels also seen at day 21.

Figure 4.14 72

BMP4 Differentiation Analysis of Sorted Populations by qPCR: Several different populations of
BMP4 day 21 differentiated cells were sorted and analyzed by gqPCR. They were compared to the
baseline BMP4 results for GFP+ cells. PAX3, PAX7, and MEF2 expression were highest in the GFP+
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population with significant levels also seen in the M-cad+ cells. However, MYOD expression was
highest in the M-cad+ and CD56/106+ populations, with only a very small level seen in the GFP+ and
the CD106+ cells.

Figure 4.15 73

BMP4 Differentiation Immunostaining for Desmin and M-cadherin: Immunostaining of BMP4 day
21 cultures showed GFP-positive cells expressing the intermediate filament marker desmin (top row)
as well as the skeletal muscle-specific transmembrane protein M-cadherin (bottom row). Left panels
show GFP expression in the differentiation cultures, middle panels show desmin and M-cadherin
positive cells stained with AlexaFluor 594 and Rhodamin Red-X secondaries, respectively. The right
panels show the merged image along with DAPI staining.

Figure 4.16 74

BMP4 Differentiation Analysis by Flow Cytometry for MyoD Expression: Flow cytometry analysis of
BMP4 day 21 cells stained for MyoD. Unstained cells are seen on the left while MyoD-stained cells
are on the right. Approximately 0.7% of GFP+ cells were positive for MyoD.

Figure 4.17 78

Surface Marker Expression during Mesoderm Differentiation: A schematic showing the surface
markers expressed during the formation of mesoderm-derived cell types from embryonic stem cells.
Note the interconversion between lateral and paraxial mesoderm cells, the ability of CD73+ cells to
become myogenic, and the lack of a myoblast-specific surface marker. PDGFRo. — platelet derived
growth factor receptor-alpha, VEGFR — vascular endothelial growth factor receptor, Mesen. —
mesenchymal

Figure 5.1 82

Generation of the Pax7P-GFP Construct: (A) Schematic of the PAX7 gene and the region of the
promoter, marked in green, isolated to drive GFP expression in the pEGFP-1 vector. The enzymes Sac
| and Pst | were used to excise the promoter from the purified PCR product. As a comparison, the
region of the promoter used in Syagailo et al. is marked in red (Syagailo, Okladnova et al. 2002). (B)
The region of the PAX7 promoter (green) ligated into the pEGFP-1 vector. The promoter drives eGFP
(orange) expression while an SV40 promoter drives expression of the kanamycin/neomycin
resistance gene (red).

Figure 5.2 83

Sequencing the Pax7P-GFP Construct: Shown is the overlap between the sequencing results from
the forward primer 5’-GCTCACATGTTCTTTCCTGCG-3’ (Fwd) and the reverse compliment of the
reverse primer 5-CATGGCGGACTTGAAGAAGTC-3’ (Rev) aligned with theoretical sequence of the
PAX7 promoter ligated into the pEGFP-1 vector (Pax7P). Highlighted areas show the restriction sites
for Sac | (blue) and Pst | (red) used for the insertion. Sequence overlap on both sides of the insertion
sites demonstrates the successful ligation.

Figure 5.3 84

Pax7P-GFP Construct Validation by Flow Cytometry: GFP expression in non-transfected (left) and
Pax7P-GFP transfected (right) adult human myoblasts analyzed by flow cytometry. Approximately 5%
of the cells are GFP+ in the transfected myoblasts.

Figure 5.4 85

Differentiated Pax7GFP Cells Analyzed by Flow Cytometry: Representative dot plots from flow
cytometry analysis of Pax7-GFP HFM differentiation cultures are shown. Unstained cells were used as
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a control (top row). Cells were analyzed for GFP expression (bottom left) and stained for CD56,
CD106 (bottom middle), and M-cadherin (bottom right). GFP was more widely expressed than
anticipated, while the surface markers showed similar levels of expression as previous HFM
differentiations.

Figure 5.5 86

Expression Dynamics of Differentiated Pax7GFP Cells: For all four time points, the total GFP
expression (top graph) and the expression of CD56, CD106, and M-cadherin as well as their co-
expression with GFP (middle graph) are shown. The bottom graph illustrates the percent of GFP+
cells in each of the populations of CD56+, CD106+, and M-cadherin+ cells. The CD106 population has
the highest percentage of GFP+ cells followed by the CD56 and M-cadherin populations. In all three
populations, GFP expression decreases as the differentiation progressed to 20 days.

Figure 5.6 87

Analysis of Marker Co-expression in Differentiated Pax7GFP Cells: Comparison of different
populations positive for multiple satellite cell markers and GFP (Top and Middle Graphs). Each of the
four time points is shown for a given population and then compared to the same population also
expressing GFP. The populations containing CD106 (CD56/CD106+ and CD106/M-cad+) tended to
have the highest percentage of GFP+ cells (Bottom Graph). GFP expression also decreased in each of
the populations as differentiation progressed.

Figure 5.7 88

Pax7GFP Cell Differentiation Analysis by gPCR: gPCR analysis of the Pax7-GFP HFM differentiations
show that the expression of BRACHYURY peaks at day 6 and is expressed only at very low levels at
other time points and in the undifferentiated H9 control cells. In contrast, myogenic genes such as
PAX3, MYF5, and MYOD are all most highly expressed after 12 days of differentiation and then begin
to decrease until day 20.

Figure 5.8 89

Pax7GFP Cell Differentiation Analysis of Sorted Populations by gPCR: gPCR analysis of sorted
populations for NESTIN, PAX3, MYF5, and MYOD expression. NESTIN is most highly expressed in the
GFP+ population, indicating that it has a significant percent of neurogenic cells. PAX3 and MYF5
expression are also highest in the GFP+ population, suggesting that it also contains myogenic cells,
although no MYOD transcript was detectable. In contrast, the CD56/GFP+ population expresses low
levels of NESTIN but moderate levels of PAX3, MYF5, and MYOD. The CD56/M-cad/GFP+ population
did not contain enough cells to test for PAX3 and MYF5, but it did express the highest level of MYOD
in all four populations.

Figure 5.9 91

Microarray Analysis of Sorted Differentiated Pax7GFP Cells: Microarray results were chosen for
selected genes expressed during myogenesis and neuroectoderm differentiation. A positive sloped
line indicates that the gene is more highly expressed in the CD56/GFP+ population than the Negative
population. Most genes marking myogenic differentiation (MYF5, MYOD, MYOGENIN) or satellite
cells (PAX7, FOXK1, M-CADHERIN) were not more highly expressed in the CD56/GFP+ population
than the Negative control cells (top three rows). PAX3 did show an increase in expression, however,
like PAX6 and many of the other up-regulated genes, it is expressed during neuroectoderm formation
(bottom row).
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Figure 5.10 92

Evaluation of Pax7 Expression in Pax7GFP Cells: (A) FACS analysis of different populations of GFP
negative and positive cells. Left Graph shows the range of GFP expression while the right graph
shows the gates used to sort negative (Blue), moderately positive (Green), and brightly positive
(Purple) cells. (B) gPCR analysis of PAX7 in the sorted populations. GFP-negative cells showed the
highest expression of PAX7 while GFP+ and GFP++ cells expressed similarly low levels.

Figure 6.1 98

iPS Clone IV Cells: A colony of iPS Clone IV cells on MEF feeders at (A) 10x, (B) 20x, and (C) 40x
magnification showing hES cell-like morphology and colony structure.

Figure 6.2 98

Myogenic iPS Differentiation Analysis by Flow Cytometry: Flow cytometry analysis of iPS clone IV
cells differentiated in Diff:CM. Data for day 20 of the differentiation is representative of all time
points. (Top Row) Unstained cells were used as a control for autofluorescence. (Bottom Row) Cells
were stained for CD56 and CD106 (Left Plot) as well as M-cadherin (Right Plot). CD106 expression
was surprisingly high, while expression M-cadherin was significantly lower than hES cell
differentiations.

Figure 6.3 29

Comparison of Flow Cytometry Data after Myogenic Differentiation of iPS and H9 Cells: The iPS
cells showed significantly higher levels of CD56 and CD106 as well as the CD56/CD106 dual positive
population (Top Graph). However, they expressed significantly lower levels of M-cadherin (Bottom
Graph). Other dual and triple positive populations were comparable between the two cell types. Only
one trial was conducted for iPS D16 and D20. All other time points were performed in triplicate.

Figure 6.4 100

iPS Cell Myogenic Differentiation Analysis by qPCR: The gPCR analysis of differentiated iPS cells was
compared to differentiated H9s. PAX3 was more highly expressed in the iPS cultures, while PAX7 did
not show a significant difference in expression. The iPS cultures expressed slightly lower MEF2 but
very low levels of MYF5 (with none detectable at day 16). Considering the large difference in MYF5
expression, it was somewhat surprising that MYOD expression was similar between the two cell

types.

Figure 6.5 101

OSKM Construct Failed to Reprogramme DMD Fibroblasts: Incomplete reprogramming of FO55
fibroblast cells after transduction with the OSKM construct. Cells in large colonies with a very distinct
morphology could were observed after 16 days (A) and 19 days (B) on MEF feeders. After removing
MEFs surrounding colonies, a new type of proliferating cells could be seen 21 days plating (C). Even
as late as 25 days post plating, small colonies of partially reprogrammed cells could be found.
However, no hES cell-like colonies were observed. All pictures were taken at 5x magnification. A 200
mm scale bar can be seen in (C).

Figure 6.6 102
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Chapter 1

Chapter 1: Introduction

1.1 Skeletal Muscle Development

Muscles of the trunk and limbs are originally formed on each side of the embryo from the paraxial
mesoderm positioned next to the neural tube and notochord. The paraxial mesoderm becomes
segmented and develops into the somites, the dorsal portion of which becomes the dermomyotome.
The dermomyotome has both an epaxial region near the neural tube which develops into the back
muscles and a more peripheral hypaxial region which will form the muscle for the rest of the body
and limbs (Figure 1.1). Somites near the limb buds produce migratory myogenic cells to populate the
limbs and develop into muscle. In contrast, head muscles can be formed from prechordal mesoderm
in addition to paraxial mesoderm via the anterior somites (Buckingham, Bajard et al. 2003;

Buckingham 2006).
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Figure 2.1: Embryonic Somitogenesis. A schematic showing the location of early
myogenesis in the developing embryo. Somites are formed from paraxial
mesoderm on each side of the neural tube and form the dermomyotome,
myotome, and sclerotome. Reproduced from (Buckingham, Bajard et al. 2003).

Myogenic development is largely controlled by a family of basic helix-loop-helix genes known as

myogenic regulatory factors (MRFs), most importantly Myf5 and MyoD. These genes are activated by

1
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Wnt and Sonic hedgehog signals from surrounding tissue (Cossu and Biressi 2005). Once myogenic
capacity has been established by Myf5 and MyoD, muscle differentiation is initiated by the presence
of myogenin, MRF4, and MEF2 (Buckingham, Bajard et al. 2003; Chen and Goldhamer 2003).

The first muscle tissue to form is the myotome, located on the ventral face of the dermomyotome.
By 11-12 days post coitum (dpc) in the mouse, primary muscle fibres will have formed by the fusion
of myoblasts derived from the dermomyotome (embryonic myogenesis). While some myoblasts form
primary fibres, others continue to proliferate until around 15-17 dpc when they form secondary
fibres (foetal myogenesis). A basal lamina develops around these secondary fibres and from this time
forward satellite cells can be identified based on their location between the basal lamina and the

muscle fibre (Mauro 1961; Cossu and Biressi 2005).

1.2 The Muscle Satellite Cell and Regeneration

1.2.1  Origin of the Satellite Cell

Until recently, the origin of satellite cells had not been confirmed. Although they were largely
suspected to be derived from somites along with other muscle cells, the ability of cells from other
tissues to regenerate muscle has made people skeptical of the satellite cell origin (Chen and
Goldhamer 2003; Cossu and Biressi 2005). However, several recent studies have eliminated most
doubts and it is now accepted that satellite cells originate in the central portion of the
dermomyotome (Buckingham 2006). Satellite cells are thought to be the progeny of a population of
Pax3/Pax7+ cells first found in the dermomyotome. During myogenesis, as these cells leave the
dermomyotome and begin to express MRFs they lose their Pax3/Pax7 expression. However a small
population of Pax3/Pax7+ cells, some of which do not express MRFs, can still be found in skeletal
muscle masses of the embryo. These cells are thought to be a source of embryonic and foetal
myoblasts during development. As myogenesis progresses, these cells seem to downregulate Pax3
but maintain Pax7 expression and also express Myf5. The Pax7+ cells eventually take up a satellite
cell position residing between the basal lamina and the muscle fibre (Kassar-Duchossoy, Giacone et

al. 2005; Relaix, Rocancourt et al. 2005).

A study by Gros et al. (2005) used quail-chick grafting experiments to trace the fate of cells during
myogenesis. The central region of quail dermomyotome was excised and used to replace the same
region in chick somites. Quail cells were then tracked by staining for the quail cell perinuclear antigen
(QCPN) and, in doing so, any cells and their progeny from the central dermomyotome could be
monitored. They found that 95% of satellite cells in the hatched chimeras stained for QCPN,

demonstrating that the vast majority, if not all, satellite cells originate in the somite (Gros, Manceau
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et al. 2005). While some transplantation studies have shown that cells such as foetal
mesoangioblasts (Minasi, Riminucci et al. 2002; Sampaolesi, Torrente et al. 2003), neonatal bone
marrow, and foetal liver cells (Fukada, Miyagoe-Suzuki et al. 2002) can occupy the satellite cell niche,

this does not appear to occur under normal circumstances.
1.2.2 The Satellite Cell Niche

Satellite cells are defined based on their position between a myofibre and its basal lamina. In this
location, three crucial factors help establish the satellite cell niche: the interaction between a
satellite cell and its host myofibre on its apical side, the interaction between the satellite cell and the
basal lamina on its basal side, and the signals and nutrients received by the microvasculature and
interstitial cells near to the satellite cell. For example, it has been shown that nitric oxide signals from
muscle fibres is important in both the maintenance of pluripotency and the activation of satellite
cells (Wozniak and Anderson 2007). In normal muscle fibres, inhibition of nitric oxide synthase (NOS)
increased satellite cell activation. However, while stretching individual fibres in vitro (to induce
activation), inhibition of NOS reduced activation of satellite cells and promoted quiescence.
Important signals involved in the activation of satellite cells also come from the surrounding ECM.
Hepatocyte growth factor (HGF, scatter factor) is found in the ECM of normal muscle tissue and
upregulated at sites of damage. Its receptor, c-Met is present on quiescent satellite cells. Abolishing
HGF signaling using an anti-HGF antibody prevents satellite cell activation in damaged muscle
(Tatsumi, Anderson et al. 1998). Finally, calcitonin reaches the satellite cell from the circulation and
promotes satellite cell quiescence. Calcitonin receptor (CTR) is only present on quiescent satellite
cells and a CTR agonist, elcatonin, suppresses the activation and migration of satellite cells in in vitro

single myofibre experiments (Fukada, Uezumi et al. 2007).

In regenerating muscle, the satellite cell niche contains heterogeneous Pax7+ cells, most notably
distinguished based on the expression of Myf5 at some point in their lineage. The Pax7+/Myf5- cells
(i.e. cells that have never expressed Myf5 and also have not had ancestors who expressed Myf5) are
thought to represent a population capable of self-renewal and differentiation into the Pax7+/Myf5+
cells. Once Myf5 expression has occurred in a cell, it and its decedents are thought to be committed
to proliferation and differentiation (Kuang, Kuroda et al. 2007).These differences are achieved via
asymmetric cell division governed by the physical properties of the satellite cell niche. Each satellite
cell has a basal side in contact with the basal lamina and an apical side in contact with the host
myofibre. When a satellite cell divides, the daughter cell next to the basal lamina is responsible for
self renewal (Pax7+/Myf-) while the daughter cell in contact with the myofibre (which becomes
Pax7+/Myf+) will undergo transient amplification and differentiation. In addition, BrdU labeling
studies showed that with each satellite cell division the older, “immortal” DNA strands are

segregated into a self-renewal cell, which expresses the stem cell marker Scal, while the newly
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synthesized strands are segregated into the differentiating cell, which expresses desmin (Conboy,

Karasov et al. 2007).
1.2.3  Molecular Signature of Satellite Cells

Because the satellite cell is defined based on its anatomical position relative to a muscle fibre, the
molecular characterisation of these cells is somewhat limited. The most definitive marker of satellite
cells is Pax7, which is present in all satellite cells and expressed in proliferating myoblasts until they
begin to differentiate (Chen and Goldhamer 2003; Dhawan and Rando 2005; Zammit, Partridge et al.
2006). Pax7-/- mice develop muscle normally but lose their satellite population after birth, suggesting
a role for Pax7 in cell maintenance or apoptosis inhibition (Seale, Sabourin et al. 2000; Oustanina,
Hause et al. 2004). Other transcription factors common to quiescent satellite cells include Foxk1
(Garry, Meeson et al. 2000), which is thought to regulate cell cycle progression of myogenic cells
(Hawke, Jiang et al. 2003); Pax3, although it is not present in all muscle tissue (Montarras, Morgan et
al. 2005); and Myf5 (Beauchamp, Heslop et al. 2000). MyoD expression begins once satellite cells
become activated and the presence of myogenin, desmin, and MRF4 (Cornelison and Wold 1997)

indicates a commitment to differentiation. These events are discussed in more detail below.

The surface markers of satellite cells are especially important when using a fluorescence activated
cell sorting (FACS)-based isolation strategy. A number of different cell-surface proteins have been
identified, however their expression is not always consistent and many only label a subset of the
satellite cell population (Shi and Garry 2006). The most common marker used to distinguish satellite
cells from surrounding tissue is the hepatic growth factor (HGF) receptor, c-Met (Andermarcher,
Surani et al. 1996). However, because of its broad expression during development it is of limited
usefulness when trying to isolate cells from a heterogeneous mix of differentiated human embryonic
stem (hES) cells. M-cadherin is present in most but not all quiescent satellite cells and upregulated
once they become activated (Donalies, Cramer et al. 1991; Irintchev, Zeschnigk et al. 1994;
Cornelison and Wold 1997). Other markers include CD106 (VCAM-1), CD56 (NCAM), CD34, and
syndecans 3 and 4 (Covault and Sanes 1986; Jesse, LaChance et al. 1998; Beauchamp, Heslop et al.
2000; Cornelison, Filla et al. 2001; Cornelison, Wilcox-Adelman et al. 2004). Satellite cell surface

markers are discussed in more detail in Chapter 3.
1.2.4  Adult Muscle Regeneration

The adult muscle fibre is a multinucleated syncytium grouped into bundles to form skeletal muscle
tissue. When muscle tissue is damaged it undergoes a two-step repair process: first the tissue
becomes necrotic eliciting an inflammatory response and then regeneration begins. Regeneration
requires the proliferation of myogenic cells which then may either fuse with damaged fibres or

create de novo fibres to replace lost muscle (Charge and Rudnicki 2004).
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The first step in regeneration is the activation of normally quiescent muscle satellite cells in response
to signals from damaged muscles. Upon injury, HGF is released from the extracellular matrix of
muscle and causes satellite cells to enter the cell cycle and begin proliferating (Miller, Thaloor et al.
2000; Tatsumi and Allen 2004; Lluis, Perdiguero et al. 2006). This process is complemented by the
release of several fibroblast growth factors (FGFs) which are recognized by any of four FGF receptors
found in satellite cells (Johnson and Allen 1995). Activation also induces the expression of MRFs
responsible for the transition from satellite cells to proliferating myoblasts. Myoblast proliferation is
promoted by additional extracellular signals including insulin-like growth factor (IGF-1), interleukin-6,
and leukaemia inhibitory factor while it is inhibited by transforming growth factor- (Figure 1.2,

(Charge and Rudnicki 2004)).
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Figure 1.2: Adult Muscle Regeneration. An outline of adult muscle regeneration
showing the growth factors which promote (green) and inhibit (red) satellite
cell activation, myoblast proliferation, and differentiation as well as some of
the key genes expressed in each population of cells (green). After muscle injury
(A), satellite cells are activated (B) and begin proliferating. Some of these cells
will reoccupy the satellite cell niche (F) while others will differentiation and fuse
(C) forming an early myofibre with central nuclei (D) before maturing (E).
Reproduced from (Charge and Rudnicki 2004).

At this point there are two possible fates for these cells: terminal differentiation and fusion to form

muscle fibres or replenishment of the satellite cell population. Studies in the rat suggest that roughly
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80% of satellite cells divide rapidly and contributed to myonuclei (and thus underwent differentiation
and fusion) while the other 20% divide relatively slowly and were thought to be the source of
replacement satellite cells (Schultz 1996). It is believed that the decision is made based on the initial
expression of either MyoD or Myf5, although both become expressed as the myogenic pathway
progresses (Cornelison and Wold 1997). Myoblasts in MyoD-/- mice will continue to proliferate and
produce increased levels of IGF-I but muscle regeneration is severely diminished (Megeney, Kablar et
al. 1996). These cells also express lower levels of M-cadherin (Sabourin, Girgis-Gabardo et al. 1999;
Cornelison, Olwin et al. 2000). These data suggest that MyoD is necessary for myoblasts to exit the
proliferative stage, differentiate, and fuse to form muscle fibres. In contrast, Myf5 expression is
thought to promote satellite cell replenishment as there is a natural population of self-renewing
Myf5+/MyoD- cells when satellite cells are forced to differentiate (Baroffio, Hamann et al. 1996).
These cells may then dedifferentiate and reoccupy the satellite cell niche, consistent with the finding

that Myf5 is present in quiescent satellite cells (Beauchamp, Heslop et al. 2000).

The final stage of muscle regeneration is myoblast differentiation and fusion. Differentiation is
marked by the upregulation of myogenin and MRF4 and the continued expression of MyoD and Myf5
(Smith, Janney et al. 1994; Yablonka-Reuveni and Rivera 1994; Cornelison and Wold 1997). This leads
to cell cycle arrest through the activation of p21 and, eventually, expression of muscle-specific
proteins like myosin heavy chain (Charge and Rudnicki 2004). Myoblast fusion is guided by a number
of adhesion and cytoskeletal-reorganization proteins. M-cadherin, which is upregulated as satellite
cells differentiate, is important in forming cytoplasmic complexes found in fusing myogenic cells
(Kuch, Winnekendonk et al. 1997) and ablation of M-cadherin activity by antagonistic peptides or
anti-sense RNA disrupts myotube formation (Zeschnigk, Kozian et al. 1995). The intracellular cysteine
protease m-caplain behaves in a similar manner, being upregulated during myoblast fusion and
preventing fusion when inhibited by calpastatin or anti-sense RNA treatment (Kwak, Chung et al.
1993; Balcerzak, Poussard et al. 1995; Temm-Grove, Wert et al. 1999). Intermediate filament
proteins are also important in the final stages of differentiation. Desmin-/- mice show normal muscle
development but delayed regeneration (Smythe, Davies et al. 2001). The expression patterns of
vimentin and nestin suggest that they also have a role in myoblast fusion, albeit at an earlier time-
point than desmin (Vaittinen, Lukka et al. 2001). Thus, adult muscle regeneration is a multi-step
process that begins with activation of the muscle satellite cell and ends with the formation of a

mature, multinucleated myofibre.
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1.3 Stem Cell-Based Therapeutic Muscle Regeneration

There is a great deal of promise in the use of myogenic stem cells in therapies directed toward
muscular dystrophies. These disorders are characterised by skeletal muscle degeneration often due
to a mutation in one of the structural proteins found in muscle. In extreme forms, like Duchenne
muscular dystrophy (DMD), the muscle degradation will eventually lead to paralysis, cardiac
dysfunction, respiratory failure, and death in the late teens or early twenties (Emery 2002; Negroni,
Butler-Browne et al. 2006). DMD is caused by a mutation in the dystrophin gene found on the X-
chromosome. Functional dystrophin is necessary to properly form the structural network joining the
cytoskeleton of a myofibre to the extracellular matrix. When dystrophin is absent, muscle fibres
degrade over time and eventually will no longer be replaced by normal muscle regeneration as
available satellite cells become exhausted (Blau, Webster et al. 1983; Matsumura and Campbell
1994). Stem cell research offers the possibility of replacing lost myogenic cells with new ones

containing functional dystrophin.
1.3.1 Early Attempts to Alleviate DMD

Transplantation studies in the late 1970s and early 1980s first showed that donor myogenic cells can
contribute to muscle regeneration (Watt, Lambert et al. 1982; Blau, Webster et al. 1983; Morgan,
Watt et al. 1988). Interestingly, the most efficient rates of regeneration were found when whole
muscle fibres containing attached satellite cells were transplanted (Hansen-Smith and Carlson 1979;
Collins, Olsen et al. 2005; Price, Kuroda et al. 2007). One of the most common animal models used to
study DMD is the mdx mouse, which has X chromosome-linked muscular dystrophy and displays a
similar pattern of muscle degeneration and fibre necrosis as in humans. Unlike humans, the mice are
capable of regenerating lost muscle indefinitely without any signs of interstitial fibrosis or adipose
tissue replacement (Tanabe, Esaki et al. 1986). It was not until the late 1980s that myoblast
transplant was first used as a treatment in mdx mice (Partridge, Morgan et al. 1989). After several
more positive studies using both mouse and human myoblasts, the first clinical trials were attempted
to alleviate DMD in humans through cell transplantation (Negroni, Butler-Browne et al. 2006).
Unfortunately, these efforts were largely ineffective. While there were occasional signs of
dystrophin+ muscle fibres, it was later found that these were the result of a rare reversion of the
initial mutation in host cells, not due to the presence of transplanted myoblasts. On the whole, there
were low levels of donor cell incorporation, generally attributed to poor survival of transplanted cells
or a lack of dispersion from the injection site. As a result there was only a minimal improvement in

the recipients (Partridge, Lu et al. 1998; Peault, Rudnicki et al. 2007).
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1.3.2 Transplantation of Isolated Satellite Cells

Due to the difficulty in isolating large numbers of pure satellite cells, their use in transplantation
studies has been limited. More often, a mixed population of muscle derived stem cells is used to
obtain proliferating myoblasts for injection. These myoblasts are either obtained by culturing satellite
cells in vitro or by using collagen-coated flasks to plate mixtures of cells from enzyme-dissociated
muscle. In the latter case, known as the pre-plate method, it was found that various populations of
myogenic cells had different affinities to the flask and could be purified based on that characteristic
(Montarras, Morgan et al. 2005; Peault, Rudnicki et al. 2007). Both of these methods have the
drawback of requiring significant expansion in vitro, which is known to lead to cell senescence

(Decary, Mouly et al. 1996).

These problems have been cleverly avoided in a recent study by Montarras et al. (2005). Using a
mouse strain that contained green fluorescence protein (GFP) under control of the Pax3 gene, they
were able to use a FACS-based strategy to isolate adult satellite cells from mouse muscle without
needing an intermediate step of in vitro cell culture. These cells were capable of both contributing to
new muscle fibres and repopulating the satellite cell pool in mdx mice. Further, they showed that
expanding the cells in culture substantially reduced their regenerative ability. This was partially
attributed to the onset of MyoD expression, which occurred in cultured cells but was largely absent
in freshly sorted cells (Montarras, Morgan et al. 2005). This method shows a great deal of promise
but it is severely limited, especially for use in clinical trials, by the amount of muscle needed to obtain

sufficient numbers of fresh satellite cells.
1.3.3  Alternative Sources of Myogenic Cells

Recently people have begun looking for alternative sources of myogenic cells to use in
transplantation. Muscle side population cells, identifiable based on their exclusion of the nuclear dye
Hoechst 33342, have been found and are distinguishable from resident satellite cells (Asakura, Seale
et al. 2002). These cells are also capable of replacing dystrophin-null fibres when transplanted into
mdx mice. Similar cells isolated from bone marrow (again based on the exclusion of Hoechst 33342)
also have myogenic potential (Gussoni, Soneoka et al. 1999). Both bone marrow- and muscle-derived
side population cells have the desirable characteristic of being able to populate muscle when
injected into the blood stream, thus showing promise for systemic repopulation. Unfortunately these
cells do not seem to contribute to long term muscle regeneration despite taking up a position in the
satellite cell niche (Price, Kuroda et al. 2007). Haematopoietic stem cells from bone marrow
transplantation and stem cells isolated from blood based on AC133 (CD133) expression also show

limited myogenic capacity and regenerative ability (Torrente, Belicchi et al. 2004) although it is
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doubtful that either cell population will be a practical therapeutic tool. Mesenchymal stem cells
isolated from foetal (Chan, O'Donoghue et al. 2006) or adult (Dezawa, Ishikawa et al. 2005) bone
marrow readily differentiate into muscle cells, including Pax7+ cells, with efficiencies of greater than

60% in some culture conditions and are capable of regenerating muscle in vivo.

One novel approach to alleviate DMD involves using blood vessel-derived stem cells called
mesoangioblasts. A recent study by Sampaolesi et al. (2006) explored their potential using the golden
retriever dog model for muscular dystrophy, which contains a mutation in the dystrophin gene
resulting in the complete absence of the protein and a pathological condition very similar to humans
with DMD. Mesoangioblasts were isolated from blood vessels in muscle biopsy outgrowths and, in
the case of autologous transplantation, transduced with a lentivirus containing human
microdystrophin. Donor-derived mesoangioblasts were transplanted both with and without
immunosuppressive drugs. In addition to showing that canine mesoangioblasts could form myotubes
in culture and in SCID (severe combined immunodeficiency)-mdx mice, they reported a remarkable
improvement in dogs that received donor mesoangioblasts with immune suppression (Sampaolesi,
Blot et al. 2006). While promising, their results may be due to the immunosuppressive treatment
more than the cell transplantation. Dogs that did not receive immunosuppressants did not show
much improvement and several studies including a clinical trial suggest that treatment with only
cyclosporine, one of the immunosuppressive drugs used by Sampaolesi et al., is capable of alleviating
some symptoms of DMD (Miller, Sharma et al. 1997; Sampaolesi, Blot et al. 2006; Radley, De Luca et
al. 2007).

1.3.4  Calculation of the Number of Cells Needed for Therapeutic Trials

Clinical trials in DMD patients vary in the extent of muscles injected and the number of myoblasts
that are used. One study injected 110 million cells into the biceps brachii muscle once a month for 6
months (Mendell, Kissel et al. 1995) while another study showed that injections of between 25 and
30 billion myoblasts into multiple muscle sites (20 to 30 total sites per patient) are safe and could
lead to clinical improvement (Law, Goodwin et al. 1997). The latter study showed that 50 billion
myoblasts could be expanded in vitro from a 2-gram muscle biopsy. This represents a very large
number of population doublings from a small number of isolated cells, which should be avoided in

primary cell lines.

The benefit of using ES cells to generate myoblasts is that they do not show the genetic wear-and-
tear upon extensive expansion in vitro that most cell types exhibit. In the work described herein, 10
million differentiated hES cells were obtained for each individual time point in one experiment. This
could be scaled up to 1 billion differentiated hES cells and maintained by a single person without

being prohibitively difficult. Generously assuming that 10% of the differentiated cells could be
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converted to isolatable myoblasts, one experiment could yield 100 million cells capable for direct
injection or subsequent expansion. This number is sufficient for single-muscle clinical trials as

described above, or could be expanded in vitro for multiple injection site studies.

In conclusion, there are a number of alternative sources of cells for muscle regeneration, most of
which have some degree of therapeutic potential but all have significant drawbacks that must be
addressed. The final source for obtaining myogenic stem cells is through the differentiation of either

mouse or human embryonic stem cells, discussed below and in Chapter 4.

1.4 Embryonic Stem Cells

1.4.1  Derivation of Embryonic Stem Cells

The inner cell mass (ICM) of the blastocyst is composed of immortal, pluripotent stem cells capable
of generating non-trophoblast extraembryonic tissues and all the cell types of the developing embryo

proper. Embryonic stem (ES) cells are derived from the ICM (Figure 1.3).

Fertilized egg from in vitro
fertilization (IVF) clinic
Surplus Embryos @

| «Thaw and culture embryo

Blastocyst

l I « Inner Cell Mass (ICM) isolation

Inner Cell Mass (ICM) @

« Culture medium
« Feeder layer/ Extracellular matrix

Expanding ICM @

« Passage and expansion
l « Freeze stock
« Characterization

Human ESC line

Figure 1.3: Human ES Cell Derivation. Derivation of human embryonic stem
cell lines from the ICM of a blastocyst cultured from a surplus IVF embryo.
Modified from (Hasegawa, Pomeroy et al. 2010).
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To qualify as a bona fide pluripotent ES cells several criteria need to be met: they must maintain a
normal karyotype after extensive passaging, they must be capable of differentiating into cells
representative of all three germ layers both in vivo (as teratomas or chimeric mice) and in vitro, and
they must possess both of these qualities after indefinite propagation. The first mouse ES (mES) cell
lines were derived independently by two groups in 1981. Evans and Kaufman isolated delayed
blastocysts from mice that had been impregnated and injected with Depo-Provera (Depot
medroxyprogesterone acetate) to stimulate diapause. The blastocysts were allowed to adhere to
Petri dishes with trophoderm and endodermal cells growing attached to the dish surrounding an egg
cylinder-like structure. This structure was removed, trypsinized, and passaged onto mitotically
inactivated mouse embryonic fibroblasts (MEFs). The cells, termed “EK cells” (as opposed to
embryonal carcinoma, or EC cells) were transplanted into syngeneic mice and found to form
teratocarcinomas (Evans and Kaufman 1981). Similarly, Martin showed that mouse ICMs isolated
from normal blastocysts by immunosurgery could be seeded to form cultures of “embryonic stem
cells” that could be maintained in medium conditioned by undifferentiated EC cells. These ES cells
and subclonal cultures established from single cells were found to form teratocarcinomas in vivo and

to differentiate similarly to EC cells in vitro (Martin 1981).

Human ES cell lines were first derived in 1998 from blastocysts cultured from in vitro fertilization
(IVF) cleavage stage embryos. The ICM of these embryos was isolated by immunosurgery and plated
on MEFs. Outgrowths from the ICM were dissociated into clumps mechanically, enzymatically, or
using EDTA in PBS and replated. These hES cells were cultured in the presence of MEFs and found to
express stage-specific embryonic antigen (SSEA)-3, SSEA-4, TRA-1-60, TRA-1-81, and alkaline
phosphatase similar to human EC cells. They formed teratomas with representative tissues from all
three germ layers when injected into immunocompromised mice and could be passaged repeatedly
without losing their pluripotency or normal karyotype, a characteristic attributed to their high
telomerase activity (Thomson, ltskovitz-Eldor et al. 1998). More recently, ES cell lines have also been
developed from cleavage stage embryos including individual blastomeres, later blastocyst stage

embryos, and parthenogenetic embryos (Yu and Thomson 2008).
1.4.2  Embryonic Stem Cell Pluripotency

ES cell pluripotency is governed primarily by three master regulators: Oct3/4 (also called Pou5f1,
herein referred to as Oct4), Sox2, and Nanog. Oct4 is a POU transcription factor expressed in
blastomeres, pluripotent cells of the early embryo (present in the ICM and epiblast), and germ line
cells in vivo, while it is found in embryonic germ (EG), EC, and ES cells in vitro. Oct4 is thought to act

through transactivation and in a complex with Sox2 to regulate the transcription of genes such as
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FGF4 and Utf-1 (Pesce and Scholer 2001). The importance of Oct4 in the establishment and
maintenance of pluripotent stem cells of the early embryo is well established. Oct4-/- embryos are
capable of developing into a blastocyst, however the cells of the ICM are not pluripotent and are only
able to form trophoblast-derived cells (Nichols, Zevnik et al. 1998). In ES cells, Oct4 expression must
be carefully regulated to prevent differentiation. Even a 50% increase in Oct4 expression will
promote the differentiation of ES cells to primitive endoderm or mesoderm, while a similar decrease

in Oct4 expression leads to the formation of trophectoderm (Figure 1.4, (Niwa, Miyazaki et al. 2000)).

O

Cleavage stages Blastocyst

Trophectoderm

Ectoplacental

Blastocoel

Yolk sac

Figure 1.4: Lineage Development during Early Mouse Embryogenesis. The
blastocyst is formed from the late cleavage stage embryo. As the blastocyst
develops, cells of the ICM become specified to either epiblast (green) or
primitive endoderm (yellow) fates while the trophectoderm (red) will
become the trophoblast. The epiblast eventually develops into the embryo
proper, the primitive endoderm into components of the yolk sac, and the
trophoblast into the placenta. Reproduced from (Ralston and Rossant 2010).

Sox2 is a member of the SRY-related HMG box (Sox) family of transcription factors. It is expressed in
the ICM, extraembryonic ectoderm, neuroectoderm, and in various tissues during development
including the brain, brachial arches, gut endoderm, and germ cells. The importance of Sox2 in the
maintenance of pluripotency was first established when it was identified as the binding partner of
Oct4 on the FGF4 enhancer in EC cells (Yuan, Corbi et al. 1995; Ambrosetti, Basilico et al. 1997). In
Sox2-/- embryos, the blastocyst forms but the epiblast is disrupted. Similar to Oct4-/- embryos, ICM
cells from Sox2-/- blastocysts were found to form trophectoderm; however they also could form
primitive endoderm. It was concluded that Sox2 was necessary for the proper formation of the
epiblast and its derivatives (Avilion, Nicolis et al. 2003). Upregulation of Sox2 in ES cells using a

tetracycline-inducible promoter lead to differentiation and an increase in ectoderm, mesoderm, and
12
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extraembryonic genes. Interestingly, there was no increase extra- or embryonic endoderm genes.
There was also a corresponding decrease in pluripotency-related genes targeted by the Oct4-Sox2

complex such as Oct4, Lefty1, BMP-4, Utf-1, FGF4, Nanog, and Sox2 (Kopp, Ormsbee et al. 2008).

Nanog was first described as an ES cell associated transcript which, when constitutively expressed is
capable of maintaining mES cell pluripotency in the absence of leukaemia inhibitory factor (LIF).
Nanog is largely restricted to pluripotent cell populations: it is expressed in the morula, ICM, epiblast
(but not primitive endoderm), and primordial germ cells in vivo, and expressed in ES, EC, EG cell lines.
ES cells deficient in Nanog were capable of differentiating to extraembryonic endoderm lineages but
not to trophectoderm, mesoderm or neuroectoderm. Similar to Oct4 and Sox2, no epiblast is formed
in Nanog-/- embryos, however, unlike Oct4, Nanog-/- ICMs form parietal endoderm rather than
trophectoderm. Nanog was further found to be unable to maintain pluripotency in the absence of

Oct4, even when overexpressed (Chambers, Colby et al. 2003; Mitsui, Tokuzawa et al. 2003).

While Oct4 and Sox2 had been shown to interact to affect the expression of ES cell-specific genes, it
was only relatively recently that Nanog was examined alongside of them. In a genome wide study of
hES cells, it was found that 50% of Oct4 binding sites were also occupied by Sox2, as expected.
Strikingly, over 90% of the Oct4/Sox2 sites were also occupied by Nanog, often in close proximity.
Individually and as a trio, Oct4, Sox2, and Nanog (OSN) bound both active and inactive genes
relatively equally. Many active genes bound by OSN were important in the maintenance of
pluripotency including Oct4, Sox2, Nanog, Stat3, and components of the transforming growth factor
(TGF)-B and Wnt signaling pathways. Additionally, the inactive genes bound by OSN were often
transcriptions factors with important roles in differentiation and embryonic development (Figure
1.5). It was concluded that Oct4, Sox2, and Nanog compose a central regulatory control of

pluripotency and differentiation in ES cells (Boyer, Lee et al. 2005).
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Figure 1.5: Control of Transcription by Oct4, Sox2, and Nanog. Genes
involved in the maintenance of pluripotency and early differentiation bound
by Oct4/Sox2 and Nanog. Reproduced from (Boyer, Lee et al. 2005).

Two signaling pathways are especially important in maintaining hES cell pluripotency. The TGF-3
pathway is split into two components: TGFf/Activin/Nodal signaling which activates SMAD2/3 via
activin receptor-like kinase (ALK)-4, 5, and 7 and bone morphogenic protein/growth differentiation
factor (BMP/GDF) signaling which activates SMAD1/5 via ALK1-3 and 6. In the undifferentiated state,
the TGFB/Activin/Nodal pathway is active and SMAD2/3 is phosphorylated and localized to the
nucleus. As differentiation occurs, SMAD1/5 becomes phosphorylated and replaces SMAD2/3 in the
nucleus. Chemical inhibition of SMAD2/3 phosphorylation decreased the expression of Oct4 and
Nanog and resulted in differentiation. Similarly, differentiation can be induced by activated SMAD1/5
using BMP-4. Upon BMP-4 treatment, Oct4 levels decreased and changes in hES cell morphology

were observed (James, Levine et al. 2005).

The canonical Wnt pathway is also crucial for the maintenance of ES cell pluripotency. Wnt activation
is characterized by the inactivation of glycogen synthase kinase (GSK)-3 and by the accumulation of
[-catenin in the nucleus, which activates the transcription of Wnt target genes. Wnt signaling in cells
can be activated by treatment with 6-bromoindirubin 3’-oxime (BIO), an inhibitor of GSK-3.

Undifferentiated ES cells express nuclear 3-catenin, which is lost upon differentiation. However,
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under conditions which would normally promote differentiation, cells treated with BIO preserved
undifferentiated cell morphology, showed nuclear B-catenin staining, and maintained expression

levels of Oct4, Nanog, and Rex1, another marker of pluripotency (Sato, Meijer et al. 2004).
1.4.3 Differences between Mouse and Human Embryonic Stem Cells

While the defining characteristics of ES cells derived from mice and humans are shared, a number of
differences exist between the two cell types (Hyslop, Armstrong et al. 2005). When grown on
feeders, hES cells form thinner colonies (2-4 cells thick) than mES cells (4-10 cells thick) and show a
substantially longer doubling time (36-45 hours for hES cells compared to 12 hours for mES cells).
Differences in surface marker expression between mES and hES cells can also be found. For instance,
undifferentiated hES cells, but not mES cells, express SSEA3, SSEA4, TRA-1-60, TRA-1-81, and TRA-2-
54 while undifferentiated mES cells express high levels of SSEA1, PECAM (CD31), and LIF receptor
(Ginis, Luo et al. 2004). In contrast, both hES cells and mES cells show a similar expression pattern of
pluripotency-related genes including Oct4, Nanog, Sox2, Utf1, Rex1, Foxd3, Tert and others (Hyslop,
Armstrong et al. 2005).

There are also significant differences in the signaling pathways responsible for maintaining
pluripotency (Figure 1.6). Most notably, mES cells can be grown in the absence of feeders in medium
supplemented with LIF, which activates the janus-associated tyrosine kinase/signal transducer and
activator of transcription (Jak/Stat3) pathway (Niwa, Burdon et al. 1998). In contrast, attempted
activation of Stat3 in hES cells by LIF or interleukin-6 and soluble IL-6 receptor does not prevent
differentiation. Further, LIF treatment resulted in a much lower increase in Stat-3 activation in hES
cells than in mES cells (Sato, Meijer et al. 2004). As discussed above, in hES cells activation of
SMAD1/5 leads to differentiation while SMAD2/3 activation promotes pluripotency. In mES cells,
however, SMAD1/5 (activated by BMP-4) inhibits neuroectoderm formation and, along with LIF, will
prevent differentiation even in serum-free conditions (Ying, Nichols et al. 2003). Further, mES cells do
not require SMAD2/3 activation to maintain pluripotency when cultured in the presence of LIF or
BIO, though neither factor is capable of preventing hES cell differentiation if SMAD2/3 is inactive

(James, Levine et al. 2005).
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Figure 1.6: Differences in Signaling Pathways between (a) Mouse and (b)
Human ES Cells. The most notable differences are the effects of BMP-4,
which promotes pluripotency in mouse ES cells but differentiation in human
ES cells, and LIF, which prevents differentiation of mouse but not human ES
cells. Modified from (Hyslop, Armstrong et al. 2005).

Interestingly, a recent report describing the derivation of pluripotent cells from the mouse epiblast
(termed EpiSCs) has shed some light on the differences between mouse and human ES cells. It was
observed that hES, but not mES, cell culture conditions supported EpiSC growth and that EpiSCs
formed thin, flat colonies more reminiscent of hES cells than mES cells. Further, epigenetic patterns,
TGF-B pathway signaling, pluripotency regulatory pathways, and differentiation patterns were found
to be more similar between EpiSCs and hES cells than mES cells (Tesar, Chenoweth et al. 2007). This
strongly suggests that hES cells may fundamentally differ from mES cells: hES cells represent a
developmental population more akin to the epiblast while mES cells are more truly correspond to

cells from the early ICM.
1.4.4  Culture and Characterization of Embryonic Stem Cells

Culture techniques for the propagation of undifferentiated hES cells are constantly being developed
to ensure pluripotency, genetic stability, and minimize the presence of xenomaterials (reviewed in

(Draper, Moore et al. 2004; Hasegawa, Pomeroy et al. 2010)). Traditionally, hES cells are grown as
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colonies several cell layers thick plated on MEF feeder cells in medium containing knockout serum
replacement (KOSR, Invitrogen) and 4-10 ng/mL basic fibroblast growth factor (bFGF). Human
feeders, including human foreskin fibroblasts and human foetal fibroblasts, as well as MEF-
conditioned medium can replace the need for MEF co-culture. Additionally, xeno-free serum
replacements are available to replace KOSR. However, in cases where feeder cells are not used
another source of extracellular matrix (ECM) is needed, such as Matrigel (BD Biosciences) or purified
ECM components. Due to the growing understanding of important signaling pathways in
pluripotency (discussed above), recent advances have been made in serum-free, defined media that
do not require feeder cells. Finally, small molecule inhibitors of histone deacetylase, GSK3j3, and
BMP-4 receptor type 1 have been shown to prevent spontaneous differentiation and may be integral
in designing relatively inexpensive defined media. High-throughput screening assays have also been
developed to identify small molecules from chemical libraries that promote hES cell pluripotency and
self-renewal (Desbordes, Placantonakis et al. 2008). This would support the goal of establishing xeno-
free, fully defined culture media and would potentially be much cheaper than the use of

recombinant proteins.

Ludwig et al. 2006 were able to derive two hES cell lines from blastocysts using the non-xenogenic
TeSR1 medium with fully defined human factors (with the exception human serum albumin)
supplemented with bFGF, LiCl, GABA, pipecolic acid, and TGF-B3. The cells were grown on
recombinant collagen IV, fibronectin, laminin, and vitronectin (Ludwig, Levenstein et al. 2006).
Currently there are commercial media available that are xeno-free, serum-free, and allow the growth
of hES cells without feeder cells. For instance, StemPro hESC SFM (Invitrogen) has been shown to be
effective in the growth and maintenance of hES cells when using the defined, xeno-free matrix
CELLstart as a replacement for Matrigel. The medium is supplemented with recombinant bFGF and 2-

mercaptoethanol (Wagner and Vemuri 2010).

In addition to changes in medium, advances are also be made in culture systems. Recently, a novel
system was reported in which hES cells could be derived from embryos and propagated in
suspension (Steiner, Khaner et al. 2010). Cells were grown in Neurobasal medium with Nurtidoma-CS
(a serum replacement) and supplemented with neurotrophic factors (NT-3, NT-4, and brain-derived
neurotrophic factor, BDNF), Activin A, and bFGF along with dissolved ECM components such as
laminin, fibronectin, and gelatin. The cells grew as floating, spheroid aggregates with comparable
rates of proliferation, cell death, and apoptosis as adherent cultures. However, the suspended
cultures had a lower rate of expansion, which was attributed to cell loss during passaging, performed
by trituration of the spheroid aggregates. The cells also showed maintained pluripotency and could

undergo directed differentiation. This method avoided the use of feeder cells (though it did not use
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defined components) and, most significantly, showed a great potential in the ability to effective scale

up hES cell culture.

Passaging of hES cells is generally done mechanically or by enzymatic dissociation using collagenase
IV or dispase (discussed in Chapter 2 Materials and Methods). Complete dissociation into single cells
generally results in very low survival and is thought to accelerate the formation of chromosomal
abnormalities. hES cells are characterized based on their morphology and expression of specific
surface markers (such as SSEA3/4, TRA-1-60/81), pluripotency-related proteins (OCT4, NANOG,
SOX2), and other enzymes (alkaline phosphatase, telomerase) using assays, immunofluorescence,
flow cytometry, and quantitative PCR (qPCR). Additionally, their differentiation potential must be
demonstrated in vitro, often by the formation of differentiating embryoid bodies (EBs) containing
markers from each germ layer, and in vivo, based on the formation of teratomas in

immunocompromised mice (Draper, Moore et al. 2004; Hasegawa, Pomeroy et al. 2010).
1.4.5 Differentiation of Embryonic Stem Cells to Skeletal Muscle

The early experiments involving ES cell differentiation towards the muscle lineage showed that the
pattern of myogenic gene activation during EB culture mimics that of in vivo myogenesis. EBs are
spherical aggregates of ES cells that resemble the early embryo and are commonly used to study
differentiation during early development. When EBs are plated and allowed to produce outgrowths,
some cells naturally differentiate into muscle fibres. In the mouse ES cell line BLC6, the genes Myf5,
myogenin, MyoD, and Myf6 are all activated in the order seen during early muscle formation in vitro.
Further, myocytes derived from these cells were also shown to express functional nicotinic
acetylcholine receptors and have Ca®* currents that mirror normal skeletal muscle cells (Rohwedel,
Maltsev et al. 1994). Thus, in vitro ES cell-derived myocytes are physiologically indistinguishable from

normal muscle cells.

Subsequent work, also in mouse ES cell lines, was able to decipher the role of various MRF genes
during myogenesis without needing to produce knockout mice that may not survive early
development or may express complicated phenotypes. Myf5 is the first myogenic gene expressed in
differentiating EBs (Rohwedel, Maltsev et al. 1994). Myf5-/- ES cells were found to still produce
skeletal muscles after being differentiated as EBs for 5-7 days and plated at low density for 3-5 days.
However, closer examination showed that while control ES cells produced both MyoD+ and MyoD-
cells, Myf5-/- ES cells only produced MyoD+ muscle cells and began to express MyoD earlier than
their wildtype counterparts (Braun and Arnold 1994). This suggests that MyoD is capable of
compensating for a lack of Myf5 expression during myogenic development. Conversely, ES cells that
are homozygous null for the desmin gene showed a total inhibition in skeletal and smooth muscle

formation (but not cardiac muscle formation) after EB differentiation for 4.5 days and subsequent

18



Chapter 1

plating. ES cells heterozygous for the desmin gene showed an increase in the number of myocytes
but a dramatic decrease in secondary myotube formation indicative of the important role of desmin
in myocyte fusion (Weitzer, Milner et al. 1995). Similarly, myogenin-/- ES cells failed to produce
skeletal muscles when differentiated for 5 days as EBs. Their ability to form muscle was restored
when myogenin was constitutively expressed in the cells by transfecting them with a myogenin-
expression plasmid. This was not the case when myogenin-/- cells were transfected with a MyoD-
expression plasmid, which led to an increase in myoblast formation but only a marginal increase in
mature myocytes (Myer, Olson et al. 2001). This confirms results found in developing myogenin-/-
mice which show proper myoblast migration and commitment but not fusion to form myofibres
(Hasty, Bradley et al. 1993; Nabeshima, Hanaoka et al. 1993). Thus myogenin and MyoD have distinct
roles in the differentiation of myoblasts and the final formation of myofibres. The same group later
goes to show that unlike MyoD, constitutive MRF4 expression in myogenin-/- ES cells will rescue
proper myotube formation, suggesting that the roles of MRF4 and myogenin are closely related

(Sumariwalla and Klein 2001).

The effects of genes outside the MRF family have also been studied in relation to ES cell myogenesis.
Knockout embryos lacking the 1 integrin subunit die just after implantation occurs, making it
difficult to assess the function of 31 in development (Fassler and Meyer 1995; Stephens, Sutherland
et al. 1995). However, ES cells lacking B1 can form EBs which, after being grown and plated to allow
outgrowths, show a delay in myogenic differentiation and myofibre organization. Reverse
transcriptase (RT)-PCR analysis shows a slower onset of transcript expression in MRF genes of f1-null
cells compared to wildtype or heterozygous controls. B1-null outgrowths from EBs also tended to
form myoblasts but were less likely to fuse into myofibres (Rohwedel, Guan et al. 1998). A delay in
myogenesis has also been shown when the basic helix-loop-helix protein M-twist is overexpressed in
ES cells. EBs overexpressing M-twist were grown for 5 days and plated for both morphological and
RT-PCR analysis. Myocyte and myotube formation occurred approximately 3 days later than in
wildtype cells and the expression of several MRFs and M-cadherin were delayed anywhere from 1 to

4 days relative to control cells (Rohwedel, Horak et al. 1995).

Other genes have been found to enhance myogenic differentiation of ES cells. IGF-1l is known to
induce differentiation in myoblasts by promoting myogenin expression (Stewart, James et al. 1996;
Stewart and Rotwein 1996). Overexpression of IGF-1l in ES cells accelerates and enhances myogenic
differentiation in 7 day cultured EBs. After the EBs were plated and cultured for 7 days,
immunostaining for M-cadherin and several myotube-specific proteins showed an increased number
of myocytes which had matured more quickly in IGF-ll-overexpressing cells compared to control cells.
RT-PCR analysis showed an increase in Myf5, myogenin, and MyoD mRNA in the IGF-Il cultures

(Prelle, Wobus et al. 2000). Similarly, overexpression of an activated mutant of the high mobility
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group type A-2 (HMGA?2) protein increases myogenic differentiation of ES cells. After EB formation
and approximately 21 days in culture, differentiated HMGAZ2 cells showed more than a five-fold
increase in myotubes than control cells. Teratocarcinomas from these cells also contained large areas
of muscle fibres unlike control tumours. Interestingly, this increase was not accompanied by a
corresponding increase in the levels of Myf5, MyoD, or myogenin mRNA, as determined by RT-PCR or
northern blot analysis. These data led the authors to conclude that HMGA?2 acted through an
unknown myogenic differentiation mechanism most likely to be involved in the later stages of muscle

differentiation (Caron, Bost et al. 2005).

While there has been a good deal of work studying the differentiation of ES cells to muscle, most of
the effort has focused on illuminating the roles of various genes in the early decisions leading to
myogenesis. Relatively little time has been devoted to the therapeutic aspect of ES cells in regards to
muscular dystrophy. Several reports, discussed in Chapter 4, describe the derivation of cells with

myogenic potential from ES cells.

1.5 Induced Pluripotent Stem Cells

1.5.1 A Brief History of Reprogramming

Differentiated cells (or nuclei) can be reprogrammed to pluripotency through several methods. These
include nuclear transfer (or cloning), cell fusion, and transcription factor transduction (Figure 1.7,
(Yamanaka and Blau)). Nuclear transfer is the transfer of a somatic cell nucleus into an enucleated
oocyte or zygote and was the earliest means of reprogramming. The first experiments involved the
transfer of nuclei from frog blastocysts into oocytes, resulting in clones that could be grown to the
tadpole stage (Briggs and King 1952) and, later, into adult frogs. These experiments were then
successfully repeated with more differentiated tadpole intestinal cells (Gurdon 1962). Crucially, this
work showed that differentiation did not require irreversible genetic changes in cells. The work was
later extended to mammals when a mammary cell was fused with an unfertilized enucleated oocyte
resulting in the first cloned mammal, Dolly the sheep (Wilmut, Schnieke et al. 1997). Shortly

thereafter the first mice were successfully cloned (Wakayama, Perry et al. 1998).
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Cell fusion is another route towards reprogramming. Early experiments had shown that genes, in this
case responsible for pigmentation, expressed in differentiated cells such as hamster melanoma cells
could be turned off by fusion with mouse fibroblasts (Davidson, Ephrussi et al. 1966). Subsequent
studies went on to show that malignancy in transformed cells could be suppressed by fusion with
normal cells expressing tumour repressors (Harris, Miller et al. 1969). However, the most important
early studies that demonstrated the activation of silenced genes used heterokaryons, multinucleate,
non-dividing products of cell fusion. Human muscle proteins were observed when human amniotic
cells were fused to mouse muscle fibres (Blau, Chiu et al. 1983). Studies with heterokaryons also

demonstrated the importance of epigenetics in reprogramming, as mitosis did not occur.

In order to achieve nuclear reprogramming and the expression of pluripotency markers by cell fusion,
pluripotent cells must be used. This was first demonstrated when mouse EG cells were fused with
adult thymocytes. The resultant cells showed significant epigenetic reprogramming including wide-

spread DNA demethylation and were capable of contributing to all three germ layers in chimeric
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embryos (Tada, Tada et al. 1997). Similar results were found when mES cells were fused to
thymocytes. In this case, the thymocytes contained a GFP construct driven by the Oct4 promoter,

and GFP expression was observed in fused cells (Tada, Takahama et al. 2001).

The use of exogenously expressed transcription factors to achieve reprogramming was preceded by
experiments showing that the overexpression of certain genes in D. melanogaster larvae could alter
the fate of specific tissues or structures in the adult. In one study, Antennapedia overexpression was
capable of replacing antennae with legs from the second thoracic segment (Schneuwly, Klemenz et
al. 1987), while in another experiment, ectopic expression of Pax6 was found to induce eye
formation on the legs, wings, and antennae (Gehring 1996). Similarly, the MyoD gene in mice was the
first “master regulator” found in mammals capable of converting one cell type to another. Several
transcripts expressed in fibroblasts which had been converted to myoblasts using 5-azacytidine were
used to generate cDNAs. The transfection of one of these, representing the MyoD gene, was capable
of converting fibroblasts to myoblasts (3690668). These findings led to the work by Yamanaka et al.
which showed that the expression of only four factors (Oct4, Sox2, KIf4, and c-Myc) was sufficient to
reprogram differentiated cells to undifferentiated “induced pluripotent stem” (iPS) cells similar in

nature to ES cells (Takahashi and Yamanaka 2006). This work is discussed in detail in Chapter 6.
1.5.2 The Events of iPS Cell Reprogramming

The series of events culminating in pluripotency of reprogrammed cells is incompletely understood.
However, several studies in mouse fibroblast reprogramming have started to outline the sequence of
molecular and epigenetic changes which take place. Using doxycycline-inducible promoters driving
expression of Oct4, Sox2, KIf4, and c-Myc in MEFs, Bambrink et al. showed that alkaline phosphatase
was the first mES cell-specific marker to be expressed, followed by SSEAL. It was not until
significantly later in the reprogramming process that the classic pluripotency factors Oct4 and Nanog
were first expressed. They further demonstrated that reprogramming efficiency increased the longer
the reprogramming factors were expressed, but expression of the four factors prevented proper
differentiation of iPS cells (Brambrink, Foreman et al. 2008). A similar set of experiments by Stadtfeld
et al. confirmed that the induction of SSEA1 expression occurred early in the process, while
expression of mTert and Sox2 as well as X chromosome reactivation are later steps in
reprogramming. Another characteristic of ES cells, the ability to silence viral genes, was also
examined. They found that viral genes were progressively silenced as reprogramming occurred and
that this process corresponded to the gradual increase in expression of genes important in epigenetic

silencing such as DNA methyltransferase 3b (Dnmt3b) and TRIM28 (Stadtfeld, Maherali et al. 2008).

A more in depth study of changes in gene expression revealed that as reprogramming occurs MEF-

specific genes (Snail/2) are downregulated while genes involved in DNA replication and cell cycle
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progression were upregulated, consistent with the observed increase in proliferation and with c-Myc
expression. However, an increase in anti-proliferative genes was also observed, attributed to KIf4
expression and deregulated c-Myc expression. Genes involved in lineage-specific functions such as
axon guidance or glomerular proteins were also observed during the reprogramming process,
suggesting that the introduction of the four transcription factor has broad effects on gene expression
beyond the induction of pluripotency. ES cells are characterized by a very specialized epigenetic
landscape such as a broad enrichment of H3K4me3 (indicating gene activation) on high-CpG
promoters, a subset of which is also enriched with H3K27me3 (indicating gene repression). These
“bivalent” domains are usually associated with the repression of genes involved in early
development. The epigenetic patterning was largely replicated in fully reprogrammed iPS cells. In
contrast, partially reprogrammed cells will express genes conducive to self-renewal and proliferation
but not pluripotency. The number of bivalent domains in partially reprogrammed cells is somewhere
between that seen in iPS cells or MEFs and most pluripotency genes were found to be

hypermethylated, indicating gene repression (Mikkelsen, Hanna et al. 2008).

These reports suggest that reprogramming is largely a stochastic process of epigenetic
rearrangement. There are general trends in gene activation which have been observed, for instance,
SSEA1 will be expressed early in the transition while pluripotency genes are not expressed until much
later, but reprogramming does not seem to occur in a consistent, step-wise manner between or even
within cell lines. As a result, the vast majority of cells exposed to the exogenous factors do not
complete reprogramming: many halt along the way or revert back to a fibroblast-like cell type.
Further work is needed to elucidate the important steps in this process. Much of the work to date
has focused on the method of gene delivery, the flexibility in which pluripotency genes are used, and
applying the technique to disease models. These aspects of iPS cell technology are discussed in more

detail in Chapter 6.
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1.6 Project Aims

The lack of suitable treatments for muscular dystrophies may be addressed through the
differentiation of human embryonic stem cells to muscle satellite cells or similar myogenic
precursors. However, an efficient and simple protocol for the differentiation and isolation of skeletal
muscle tissue from hES cells has not been reported. Further, the recent advancement of
reprogramming through transcription factor transduction provides an avenue for the generation of
patient-specific pluripotent cell lines. With these considerations in mind, the goals of this project

were to:

1. Develop a simple and efficient method for the differentiation of hES cells to muscle satellite
cells.

2. Develop a method to isolate myogenic cells from differentiated hES cells using fluorescence
activated cell sorting based on myogenic-specific protein expression.

3. Confirm the myogenic nature of differentiated and isolated cells using protein and gene
expression analysis.

4. Test the ability of iPS cells to undergo myogenic differentiation.

5. Generate a line of iPS cells from patients with Duchenne muscular dystrophy.
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Chapter 2: Materials and Methods

2.1 Cell Culture

2.1.1 Adult and Foetal Myoblast Culture

Adult and foetal human myoblast cells were used to examine the gene and surface marker
expression of myogenic cells, for conditioning medium for hES cell differentiation, and for co-culture
differentiations. The foetal myoblast line, HFM, was obtained from Dr Jennifer Morgan at the Centre
for Neuromuscular Diseases at University College, London. The adult myoblast lines, $31/05 and
17/01, and the foetal myoblast line, FHM, were obtained from Dr Steve Laval at the Institute of

Human Genetics at Newcastle University.

Cells were grown in T25, T75, or T150 culture flasks (Iwaki) at 37°C and 5% CO, using a recipe for
Myogenic medium provided by Dr Morgan. The medium consisted of Dulbecco’s modified Eagle’s
medium:F12 (DMEM:F12) with glutamine (PAA) with 20% foetal bovine serum (FBS, Bioclear),
penicillin-streptomycin (100 units/mL of penicillin and 100 pg/mL streptomycin, Gibco), 0.4 pug/mL
dexamethasone (Sigma), 10 pg/mL recombinant human insulin (Sigma), 10 ng/mL recombinant
human epidermal growth factor (EGF, Sigma), and 1 ng/mL recombinant human bFGF (Invitrogen).
All medium was sterile filtered and stored in filter bottles (Nalgene) prior to use. Medium was
changed every two days. Cells were passaged 1:2 or 1:3 when they reached 80-90% confluency,
generally after 2-3 days. To passage cells, the medium (5 mL/T25, 15 mL/T75, and 30 mL/T150) was
aspirated and the flask was washed with an equal volume of phosphate buffered saline (PBS, PAA).
Approximately 0.15 volumes of Trypsin-EDTA (0.5 g/L Trypsin and 0.2 g/L EDTA, Gibco) were added
and the flask was incubated at 37°C for 4-5 minutes. The cells were then washed and resuspended
with at least 0.5 volumes of Myogenic medium to dislodge adherent cells and neutralize the trypsin.
The cell suspension was transferred to a 15 mL Falcon tube (BD Falcon), centrifuged for 4 minutes at
900 rpm in a tabletop centrifuge (Eppendorf), the supernatant was aspirated and the pellet was
resuspended in 0.5-1 mL of medium per flask seeded. To freeze cells for cryopreservation, the pellet
was resuspended in 0.5 mL of cold cryopreservation medium containing 90% FBS and 10% dimethyl
sulfoxide (DMSO, Sigma), transferred to a cryovial (Nunc) and frozen slowly at -80°C in a 5100 Cryo
1°C Freezing Container (“Mr. Frosty,” Nalgene). Cells could be stored at -80°C for several months
before being transferred to liquid N,. Cells were thawed by warming the cryovial in a 37°C water bath
until the suspension was completely liquid then transferring it drop-wise into 8 mL of pre-warmed
Myogenic medium in a 15 mL Falcon tube. The suspension was then centrifuged and seeded as
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described above. Cells were seeded onto the same sized flask that they were frozen down from and

allowed to adhere overnight at 37°C and 5% CO,.
2.1.2  hES Cell Culture

The human embryonic stem cell line, H9 (WiCell), was used between passages 30 and 70 for all

experiments.
2.1.2.1 Feeder Preparation

H9 cells were grown on either human or mouse embryonic fibroblast (H/MEF) cells. MEFs were
cultured in T150 or T300 flasks at 37°C and 5% CO, using high glucose DMEM (PAA) containing 10%
FBS (Bioclear), 1:100 non-essential amino acids (NEAA, Gibco), 1:100 Glutamax (Gibco), and Penstrep
(Gibco). Feeders were passaged up to five times after being harvested and generally seeded at a 1:3
or 1:4 dilution. The protocol for passaging and freezing/thawing cells is described above. To prepare
MEFs for use as feeders, non-confluent cells in a T300 flask containing 50 mL of medium were
inactivated by adding 500 pL of 1 mg/mL mitomycin C (Sigma) in Knockout (KO) DMEM (Gibco) and
incubating at 37°C for 2.5 hours. The medium was removed, the cells were rinsed three times with
PBS and then trypsinized by adding 8 mL of Trypsin-EDTA and incubating at 37°C for 4-5 minutes. The
cells were resuspended in 25 mL of medium, transferred to a 50 mL Falcon tube, and centrifuged at
900 rpm for 3 minutes. The supernatant was aspirated and cells were suspended in 20 mL of medium
before being counted using a hemocytometer. Cells were seeded onto 6-well plates at 120-140,000
cells/well in 2 mL of medium and allowed to settle overnight. Plates had been treated with 0.1%

Gelatin in distilled water (1 mL per well) for at least one hour and then aspirated prior to cell seeding.
2.1.2.2 hES Cell Maintenance and Passaging

H9 cells were grown at 37°C and 5% CO, using hES medium consisting of KO DMEM (Gibco) with 20%
KO Serum Replacement (KOSR, Gibco), 8 ng/mL bFGF (Invitrogen), Glutamax, NEAA, and Penstrep.
Cells grew as adherent colonies alongside MEFs and required cleaning approximately every other
day. To clean cells, they were transferred to an IVF workstation (K systems) and examined under a
dissection microscope (Nikon SMZ800). Differentiated cells were removed from colonies (Figure 2.1)
using a 200 L pipette tip and medium was changed after cleaning or whenever it began to appear
yellowish in colour. Every 4-7 days the cells were passaged either mechanically, using a 1000 pL
pipette tip to divide and remove colonies, or by collagenase treatment. For the latter, the medium is
aspirated, replaced with 1 mg/mL collagenase, type IV (Gibco) in KO DMEM and incubated at 37°C for
15-20 minutes. The collagenase solution is then carefully aspirated to avoid removing adherent
colonies and replaced with 3 mL/well of hES medium. The cells are incubated at 37°C for 10-15
minutes and then removed by gently pipetting up and down with approximately 300 pL of medium in

a 1000 pL pipette to dislodge and break apart the colonies. Once the colonies are divided and
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floating, the medium can be transferred to 6-well plates containing fresh MEFs and new hES
medium. Cells are usually seeded 1:3 when passaged mechanically or 1:4 or higher when passaged
with collagenase. The colony pieces are allowed to settle for 2-3 days without medium changes or

cleaning.

Figure 2.1: Human Embryonic Stem Cell Colonies. A colony of H9 hES cells at
(A) 5x and (B) 10x magnification prior to cleaning. *Undifferentiated H9 cells
at the centre of the colony can be seen amongst **differentiated H9 cells
and ***MEFs.

hES cells were frozen in cryovials. When freezing down cells, colonies were treated with collagenase
and removed as if passaging, however the colonies were generally kept as larger pieces. The cells
were then transferred to a 15 mL Falcon tube and centrifuged at 300 rpm for 1 minute. The
supernatant was carefully aspirated (as the pellet was very loose) and the cells were resuspended in
1 mL hES medium per 6-well plate. An equal volume of hES cryopreservation medium (60% KOSR,
20% DMSO, 20% hES medium) was added drop-wise to the falcon tube while gently mixing and 1 mL
of the mixed solution was transferred to a cryovial for overnight freezing at -80°C in a “Mr. Frosty”

(Nalgene).

Cells were thawed by incubating the cryovials in a 37°C water bath until the medium was completely
liquid. The cryovial was then mixed gently to suspend the colonies and the medium was added drop-
wise to a 15 mL Falcon tube containing 8 mL of pre-warmed high-bFGF (16-24 ng/mL) hES medium.
The colonies were allowed to settle at the bottom of the tube and the medium was gently aspirated,
replaced with another 3 mL of hES medium, and centrifuged at 300 rpm for 1 minute. Again, the
medium was aspirated and 1.5 mL of hES medium was added to resuspend the colonies and transfer
them to a 6-well plate. 0.5 mL of the suspension was added to each of three wells in a 6-well
containing 1.5 mL of pre-incubated high-bFGF hES medium. Colonies were allowed to settle for at
least two days before changing medium and grown in high-bFGF hES medium for at least one

passage.
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2.1.2.3 hES Cell Monolayer Differentiation

A number of hES cell differentiations were set up with the intention of promoting skeletal
myogenesis primarily using combinations of differentiation medium and myoblast conditioned

medium for various lengths of time. They are summarized in Table 2.1 and described in detail below.

Table 2.1 Monolayer Differentiations of hES and iPS Cells

Differentiation Medium Used Cells Time Points \
Diff 20% Horse Serum, then Diff: 3, 5, 7 days
DX)cm(Y) HFM Conditioned Medium HOs CM: 7, 10 days
1:1 Diff(20% FBS):CM H9s, H9 Pax7-
HFM (Diff:CM) GFP, iPS cells | O 1% 16:20days
. Diff:CM with 10, 30, 50, 100 ng/mL 10 days with Act. A,
Activin A Act. A, then Diff:CM HOs 6 days without
Myoblast Diff:CM with conditioned medium HOs 12 davs
media from 17/01, $31/05, and FHM lines Y
BMP-4 Co- SFM* with BMP-4, then SFM, then HO-GFP 12,17, 21, 28 days
culture increasing concentrations of Diff:CM
H9s, HI9 Pax7-
. 0, ’
Control Diff (20% FBS) GFP, DMD iPS 12 days

*SFM — Serum-free medium
For the monolayer differentiation strategies, hES cells were seeded on tissue culture treated 6-well
plates as described above. The medium was changed to the various types of differentiation medium

prior to colony removal. Cultures were grown in incubators at 37°C and 5% CO,.

In the initial differentiation strategy, hES cells were seeded at a 1:3 dilution and the differentiation
medium contained KO DMEM with 20% Horse Serum, Glutamax, NEAA, and Penstrep (as above). The
conditioned medium was simply myogenic medium (described above) which had been filtered after
it was conditioned by HFM cells for 2 days. Conditioned medium was stored in the dark because of
the presence of light-sensitive dexamethasone. The cells were grown in differentiation medium for 3,
5, or 7 days before being switched to conditioned medium for 7 or 10 days (each time point was thus
named D3CM7, D5CM10, etc.). The day the hES cells were plated was considered day 0. Early in the
differentiation, 2 mL of medium per well was used, increasing to 3 mL/well after 12 to 14 days.

Medium was changed every two days until the cells were harvested for staining and flow cytometry.

Subsequent differentiations used hES cells seeded at a 1:6 dilution and used a 1:1 ratio of Diff
medium (KO DMEM with 20% FBS, Glutamax, NEAA, and Penstrep) and conditioned medium (called
Diff:CM) from the HFM, FHM, 17/01, or $S31/05 myoblast line. HFM cells were used to condition the
medium unless otherwise noted. Diff:CM medium was added from day 0 of the differentiation and
changed every two days until the cells were harvested. For the set of experiments using Activin A,

cells were differentiated in Diff:CM containing either 10, 30, 50, or 100 ng/mL Activin A (PeproTech)
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for 10 days, followed by 6 days in Diff:CM without Activin A. For H9 Pax7-GFP cells (described below),

the differentiation medium contained 100 pug/mL neomycin.
2.1.2.4 hES Cell Co-culture Differentiation

To further promote myogenesis, a new differentiation method was designed using BMP-4 to induce
mesoderm formation early in the differentiation (Zhang, Li et al. 2008) and myoblast co-culture and

conditioned medium to stimulate myogenesis.

In order to prepare plates for co-culture differentiations, an optimal seeding density for
differentiating FHM cells had to be determined. Densities of 20, 40, 80, and 120,000 cells per well in
6-well plates were tested. Myoblasts were differentiated in KO DMEM with 2% horse serum,
Penstrep, and 10 ng/mL insulin for up to 12 days. Lower densities resulted in sparsely populated cells
that did not proliferate, elongate, or form networks of myofibres while higher densities prevented
cells from differentiating. Thus, for the hES differentiation experiments, FHM cells were seeded at
60-70,000 cells per well and differentiated for 7 to 10 days. However, upon re-exposure to myogenic
(growth) medium, residual myoblasts in the differentiated cultures would begin proliferating. It was
therefore necessary to mitotically inactivate cells using mitomycin C or X-ray irradiation. Mitomycin C
treatment for 2:45 hours was found to effectively prevent myoblast proliferation while cultures
which underwent X-ray irradiation (120 kV; 4.0 mA; 12.5 minutes, Faxitron X-ray) eventually began
growing again. After mitomycin-C treatment, cells were washed 3 times in PBS and incubated in hES

medium.

A line of H9 hES cells containing a pCAG CMV-GFP(Puro) construct (H9-GFP), which constitutively
express GFP, was used to distinguish differentiating hES cells from the myoblast feeder cells (Figure
2.2). On Day 0 of the differentiation, H9-GFP cells were plated onto the inactivated, differentiated
myoblast cultures at a 1:12 dilution in hES medium for 24 hours, followed by serum free medium
(SFM, RPMI with 1% insulin transferrin selectin (ITS), Glutamax, NEAA, Penstrep) with 25 ng/mL BMP-
4 (PeproTech) for 24 hours, and then SFM without BMP-4 for 48 hours. At this point, the medium
was changed to increasing concentrations of HFM conditioned medium in DMEM with Glutamax,
NEAA, and Penstrep (Diff- medium). Cells were grown in 7:1, 3:1, then 1:1 Diff-/CM for four days
each or until the time point had been reached. Differentiations were stopped after 12, 17, 21, and 28

days.
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GFP

Brightfield

Figure 2.2: H9-GFP Cells. A colony of undifferentiated H9-GFP cells at 10x
maghnification. GFP expression in the colony is clearly distinguishable from
the surrounding MEFs.

2.1.3  Culture and Differentiation of iPS Clone IV Cells

The iPS clone IV cells were generated by transducing adult human dermal fibroblasts with NANOG,
OCT4, SOX2, KLF4, and MYC in retroviral particles (Armstrong, Tilgner et al. 2010). iPS cells were
grown and passaged using the same conditions as hES cells. However, it generally took 1-2 days

longer than hES cells for iPS cells to grow to the point of passaging.

To differentiate, iPS cells were plated onto new plates without MEF feeders and grown in Diff:CM for

12 (three trials), 16 (one trial), or 20 days (one trial).
2.1.4  Culture of DMD Fibroblast Cells

Fibroblasts from two patients with Duchenne muscular dystrophy were obtained from the Newcastle
Biobank. The first sample (F029) came from an 8 year old male patient with a mutation in exon 53 of
the DYSTROPHIN gene. The second sample (FO55) came from a 5 year old male patient with a
mutation in exon 68 of the DYSTROPHIN gene. Both samples were passage one. Cells were cultured
in T25 flasks (Iwaki) in MEF medium and usually passaged every 3-4 days. For passaging,

freezing/thawing, and counting, cells were handled using the same protocols described for MEFs.

2.2 Generation of the Pax7P-GFP Construct

In order to detect PAX7 gene activity for the purpose of using PAX7 expression to sort differentiating
hES cells, a 1.5 kilobase (kb) region of the PAX7 promoter (Pax7P) was cloned into the pEGFP-1 vector

(Clontech) so that GFP would be expressed when the gene was active.

2.2.1 PCRIsolation of the PAX7 Promoter
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PCR was used to isolate the fragment of the PAX7 promoter from human genomic DNA. Using the
primers 5’-CTGACTCCTGATCATTCAGTTGGG-3’ and 5’-GCGATCTCTTTCTTTCCGTCTTCT-3" a 1.6 kb
portion of the promoter was amplified using the following 50 uL reaction mixture: 29.25 ulL H,0, 10
uL 5x GoTAQ Buffer (Promega), 2.5 uL dimethyl sulfoxide (DMSO, Finnzyme), 1 ulL of 100 ng/uL
human genomic DNA, 1 uL of each primer (100 uM), 5 uL of 2 mM dNTPs (New England Biolabs), and
0.25 uL of GoTAQ DNA polymerase (Promega). The reaction was run in a Mastercycler gradient
thermocycler (eppendorf) with the following cycle steps: 2 minute initial denaturation at 94°C;
followed by 30 cycles of a 30 second denaturation step at 94°C, 30 second annealing step at 61°C,
and 2 minute elongation step at 72°C; and ending with a 10 minute final elongation step at 72°C
before being kept at 4°C until analyzed by gel electrophoresis. The PCR product was then run on a 1%
agarose gel containing 0.5 ug/mL ethidium bromide (Sigma) in 1x Tris-Acetate-EDTA (TAE) buffer.
DNA was stained by the ethidium bromide and the gel was visualized using a Gel Doc XR imaging
system (Bio-Rad) and QuantityOne software. The band corresponding to the PAX7 promoter was cut
out of the gel with a scalpel and purified using a Gel Purification Kit (Qiagen) following the

manufacturer’s instructions.
2.2.2 Cloning of the PAX7 Promoter into the pCR 2.1-TOPO and pEGFP-1 Vectors

The purified PAX7 promoter was cloned into the pCR 2.1-TOPO vector (Invitrogen) following the
manufacturer’s instructions. Briefly, 4 pL of the product from the gel extraction was added to 1 plL of
Salt Solution and 1 pL of the TOPO vector. The reaction was gently mixed and kept at room
temperature for 30 minutes before being used to transform TOP 10 E. coli cells (Invitrogen). 5 ulL of
the TOPO reaction was added to one vial of bacteria and incubated for 30 minutes on ice. The vials
were then submerged in a 42°C water bath for 30 seconds, 250 plL of S.0.C. Medium (Invitrogen) was
added, and the tube was incubated in a 37°C shaker for one hour before being plated on LB Agar
plates containing 30 ug/mL kanamycin (Sigma). Plates were incubated for 12-14 hours to allow
colonies to grow. Individual colonies were removed from the plate with a pipette and cultures were
grown overnight in 5-10 mL LB Broth containing 30 pug/mL kanamycin. Glycerol stocks were made
from the bacteria cultures by adding 200 uL of culture to 200 pL of glycerol and stored at -80°C. The
remaining bacteria were centrifuged at 8,000 rpm for 8 minutes to form a pellet and the plasmid
DNA was isolated using a QlAprep Spin Miniprep Kit (Qiagen) following the manufacturer’s

instructions.

The concentration of purified DNA was measured on a Nanodrop spectrophotometer (LabTech) and
the Pax7P-TOPO construct was digested with the restriction enzymes Sac | and Pst | (Fermentas)
using the following reaction mixture: 37 plL of H,0, 5 pL of 10x Tango Buffer (Fermentas), 3.5 pL of

300 ng/uL DNA (to give a total of 1 ug of DNA), and 2 uL of each enzyme. The digestion reaction was
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allowed to proceed for 4 hours at 37°C. The product was run on a 1% agarose gel as described above.
Digestion with Sac I-Pst | gives a 1.5 kb product that was purified using a Gel Purification Kit (Qiagen).
The pEGFP-1 vector was previously cloned into E. coli (R. Stewart and L. Lako, unpublished data) and
cultured, isolated, and digested with Sac | and Pst | as described. The digested portion of the PAX7
promoter was ligated to the digested pEGFP-1 vector using T4 DNA Ligase (Promega). The reaction
was set up with 4.5 ulL of the promoter, 4.5 L of vector, 1 puL of 10x Ligase Buffer (Promega), and
0.33 ulL of T4 DNA Ligase and allowed to run for 3 hours at room temperature. The Pax7P-pEGFP
construct was then used to transform TOP 10 E. coli cells which were plated, allowed to form
colonies, and grown in culture before extracting the DNA using an EndoFree Plasmid Maxi Kit

(Qiagen) following the manufacturer’s instructions.

To confirm that the Pax7P insert was properly ligated into the pEGFP-1 vector, the purified plasmid
was analyzed by PCR using the primer pair 5’-GCTCACATGTTCTTTCCTGCG-3’ and 5'-
CATGGCGGACTTGAAGAAGTC-3’ which flanks the insert in the vector as well as 5’-
GCACAACTTACCCAGCTGATC-3’ and 5’-CATGGCGGACTTGAAGAAGTC-3" where the forward primer
falls within the Pax7P insert. Proper insertion yielded a band at roughly 1.8 kb using the first pair of
primers and 880 base pairs (bp) using the second primer pair. This was then confirmed by sequencing
the construct using the first set of the above primers. Sequencing was performed by MWG after

being provided with 100 ng/uL of purified plasmid in 15 pL of dH,0 and the above primers.
2.2.3  Nucleofection of the Pax7P-GFP Construct into Adult Human Myoblasts

Prior to nucleofection, the construct was linearized by restriction enzyme digestion. The enzyme Xho
| was used to prevent the separation of the promoter and GFP gene, with the following reaction
mixture: 22.25 pL H,0, 3 uL 10x Buffer R (Fermentas), 2 uL DNA (2.77 pg/uL), and 2.75 uL Xho | (10
units/uL, Fermentas). The mixture was incubated at 37°C for 4 hours followed directly by
phenol:chloroform purification. For DNA purification, an equal volume of Tris EDTA-saturated
phenol:chloroform:isoamyl alcohol (Sigma) was added to the aqueous mixture containing the
linearized construct and mixed thoroughly. It was then centrifuged at 2,000 rpm for 5 minutes at
room temperature in a tabletop microcentrifuge to separate the aqueous and non-aqueous layers.
The top (aqueous) layer was removed to a new tube while care was taken to avoid the interface
between layers. To precipitate the DNA, 0.1 volumes of 3 M sodium acetate (pH 5.5) and then 2
volumes of absolute ethanol were added to the separated aqueous layer followed by overnight
incubation at -20°C. The DNA was recovered by centrifugation at 10,000 rpm for 15 minutes. The
ethanol was removed without disturbing the DNA pellet, and the pellet was washed with 70%
ethanol and centrifuged at 10,000 rpm for 5 minutes. The ethanol was removed and the pellet was

dried in a sterile tissue culture hood. The construct was resuspended in a small volume of H,0.
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Adult human myoblasts were nucleofected using the NHDF-Adult Nucleofector Kit (Amaxa). A 6-well
plate coated with Matrigel (BD Biosciences) was prepared 2 hours prior to nucleofection. Matrigel
was kept in 0.5 mL aliquots containing 1:1 Matrigel:KO DMEM. In order to prevent the Matrigel from
solidifying, all steps were carried out on ice using chilled pipettes. One aliquot was thawed on ice and
added to 5.5 mL of ice cold DMEM, mixed quickly, and used to coat a 6-well plate (with 1 mL of
Matrigel solution per well). The 6-well plate was kept at room temperature for several hours to allow
for coating before the Matrigel solution was aspirated. The nucleofection solution was prepared by
adding 22.2 ulL of Supplemental Solution to 100 plL of Solution and allowing it to warm to room
temperature. In the meantime, a T25 flask of cells was trypsinized with 0.75 mL Trypsin-EDTA for 4-5
minutes, neutralized with 3-4 mL of medium, centrifuged at 800 rpm for 3 minutes, and washed with
3-4 mL of PBS before being centrifuged a second time. During the second centrifugation, 2 uL of 3.2
ug/uL of DNA (construct) was added to 8 uL of the prepared nucleofection solution. The PBS was
aspirated from the cell pellet and the cells were resuspended in 100 uL of nucleofection solution, to
which the 10 pL of solution containing the construct was added and mixed by pipetting up and down
3 times. The cell suspension with the construct was then transferred to a cuvette. The cuvette was
placed in the Nucleofector machine (Amaxa) and run on program A-024. A white precipitate forms at
the top of the cuvette above the cell suspension. The cell suspension was transferred with as little
precipitate as possible using a nucleofection pipette from the cuvette to pre-warmed medium in two
wells of the 6-well plate. The cells were allowed to settle for 48 hours before being switched to
myogenic medium containing 300 ug/mL neomycin. After several days, cells were analyzed for GFP

expression using a FACS Caliber flow cytometer (BD Biosciences).
2.2.4  Nucleofection of the Pax7P-GFP Construct into H9 Cells

The initial method for nucleofecting hES cells required that one 6-well plate worth of colonies were
removed in pieces as if passaging. The pieces were allowed to settle in a 15 mL Falcon tube while
22.2 pL of Supplemental Solution was added to 100 pL of Solution using the mES Cell Nucleofector
Kit (Amaxa). The medium was then aspirated from the Falcon tube and the hES colony pieces were
washed once, briefly, with PBS and centrifuged at 600 rpm for 2 minutes. During this centrifugation,
3 ulL of 3.2 pug/ulL of DNA (linearized Pax7-GFP construct) was added to 7 pL of the prepared
nucleofection solution. The PBS was aspirated, the colony pieces were resuspended in 100 pL of
nucleofection solution, and the DNA solution was added and mixed by pipetting up and down 3
times. The suspension was then transferred to a cuvette, placed in the Nucleofector machine, and
run on program A-023. The colony pieces were then resuspended in two wells of a 6-well plate
containing pre-warmed medium. Colonies were allowed to adhere for 48-72 hours in normal hES

medium before being switched to medium containing 100 ug/mL neomycin. This method did not
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yield enough undifferentiated, transfected cells to generate a cell line and a new approach was

sought.

The new nucleofection protocol was modified from a recently established procedure for hES cell
nucleofection (Hohenstein, Pyle et al. 2008). Two 6-well plates of H9 hES cells were washed twice
with PBS and incubated in Trypsin-EDTA (0.5 mL per well) for 5 minutes at 37°C. Cells were then
triturated with a 5 mL pipette, 2 mL per well of hES medium was added, and cells were filtered using
a 40 um filter (BD Falcon). The cells were then centrifuged at 800 rpm for 3 minutes, resuspended in
100 L of prepared nucleofection solution (mES Cell Nucleofector Kit), and incubated at 370C for 5
minutes. Meanwhile, 1 pL of 3.2 ug/uL DNA was added to 9 plL of nucleofection solution and this was
added to the cell suspension following the 5 minute incubation. The cell suspension was then
transferred to a cuvette and run on program A-023. After nucleofection, the cells were transferred to
500 pL of pre-warmed RPMI medium and incubated for 5 minutes at 370C. This was then split
between two wells of a 6-well plate containing 2.75 mL hES medium with 30 uL of 1 mM ROCKi
(Sigma) for a final concentration of 10 uM and inactive MEF feeder cells. The ROCKi was added to the
hES medium on MEF cells one hour prior to seeding with nucleofected H9s and kept in the medium

at 10 uM until neomycin was added.

Neomycin was first added at 25 pug/mL 96 hours post-nucleofection, increased to 50 ug/mL at one
week post-nucleofection, and finally to 100 pug/mL at 10 days post transfection. At this point, one of
the two wells was taken off neomycin and passaged. The cells had reached a confluent monolayer
covering the entire well, so strips of cells were removed with a 100 plL pipette tip and transferred to
a new plate containing fresh feeders. When healthy new colonies could be detected, the remaining
well was also passaged. At this point, the H9 Pax7-GFP cells could be passaged and maintained like
normal hES cells (described above). It was found that the most effective way to maintain cell viability
and prevent differentiation while on neomycin was to gradually increase the concentration after
passaging, but to keep low levels of neomycin on newly passaged cells. Immediately prior to the act
of passaging, medium lacking neomycin was added to the cells. When the cells were plated onto new
feeders, a ratio of 2:1 hES medium to selection medium (hES medium with 25 ng/mL bFGF and 100
ug/mL neomycin) was used. As the cells grew, the first medium change used 1:1 hES to selection

medium and the second medium change (and any subsequent ones) used 100% selection medium.
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2.3 Generation and Culture of DMD Induced Pluripotent Stem Cells

2.3.1 Preparation of hES Conditioned Medium

Conditioned medium was prepared and used to grow reprogramming fibroblasts generated by the
multi-gene OSKM construct (described below). Immortalized MEFs were grown in T150 flasks. When
the cells had reached confluence or near-confluence, they were irradiated according to the following
conditions: 120 kV, 4.0 mA, 6 minutes (Faxitron X-ray). The day after irradiation, MEF medium was
replaced with hES medium (50 mL per T150) for 24 hours and then collected and replaced with fresh
hES medium for up to one week. The collected medium was filtered and the supplemented with 1

pg/uL ITS (final concentration) and 0.4 pg/uL bFGF.

2.3.2 Attempted Generation of DMD iPS Lines using Multi-gene OCT4/SOX2/KLF4/MYC (OSKM)

Construct

Human embryonic kidney (HEK) 293FT cells (Invitrogen) were cultured in T75 tissue culture flasks
(lwaki) with MEF medium containing Penstrep (Gibco) and 500 pig/mL neomycin (Geneticin). They
were passaged similarly to MEFs at 70-80% confluence every 2-3 days. The cells were loosely
attached so medium was changed with extreme care and cells were only trypsinized for 2 minutes
when passaging. On Day 1 of the reprogramming procedure, 5x10° cells were plated on a 10 cm Lenti
Dish (lwaki) in MEF medium without antibiotics. The next day, the medium was changed to OptiMEM
I (5 mL per dish, Gibco) with 25 uM Chloroquine (Sigma) two hours prior to transfection. Next, 9 pug
of ViraPower packaging mix (1 ug/uL stock, Invitrogen) was added to 3 ug of the pLenti OSKM
expression plasmid and 1.5 mL of OptiMEM | pre-warmed to 37°C in a 1.5 mL Eppendorf tube. In
another tube, 36 pL of Lipofectamine 2000 (Invitrogen) was added to 1.5 mL of OptiMEM I. Both
were incubated for 5 minutes at room temperature before being combined and incubated for
another 20 minutes at room temperature. The mixture was then added to the cells and incubated
overnight at 37°C. After 16 hours the medium was removed and replaced with MEF medium for 48

hours.

On Day 4, 50,000 F029 or FO55 fibroblasts were plated in one well of a 6-well plate. The next day, the
medium on the fibroblasts was changed to MEF medium with 6 pig/mL polybrene (Sigma). The
medium containing the viral particles with the OSKM plasmid was collected from the HEK 293FT cells
(approximately 10 mL per 10 cm dish) and centrifuged at 3000 rpm for 15 minutes at 4°C. The
supernatant was filtered with 0.45 um syringe filter (Nalgene). Fresh MEF medium was added to the

HEK cells. The medium on the fibroblasts was replaced with the filtered supernatant containing 6
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ug/mL polybrene. In different experiments, either 4.5 mL of supernatant, 1 mL of supernatant and 1
mL of MEF medium (with 6 ug/mL polybrene), or 2 mL of supernatant and 1 mL of MEF medium was
used and the cells were incubated overnight. On Day 6 the medium was collected from the HEK cells,
filtered and either stored at -80°C or added to the fibroblasts. The fibroblasts were examined and if
most of the cells had died (from 4.5 mL of supernatant), the medium was changed to MEF medium. If
the cells looked healthy (1:1 or 2:1 supernatant:MEF medium), the medium was replaced with new
supernatant. On Day 7, healthy looking cells were plated onto MEF feeders in 6-well plates at 8,000
cells per well and grown in hES conditioned medium containing 40 ng/mL bFGF. RNA was also
collected from a titre well (extra cells were transduced to determine the viral titre) and a
lipofectamine control well (all steps were followed as normal, except no OSKM plasmid was added).
Transduced fibroblasts were grown for several weeks on MEFs in hES conditioned medium with high
bFGF. Cultures were observed regularly to monitor colony formation and track reprogramming,

however no hES cell-like colonies were identified.

2.3.3  Generation of DMD iPS Cells from Stemgent OCT4/SOX2/LIN28/NANOG (OSLN)

Reprogramming Lentivirus Set

DMD fibroblasts were reprogrammed using a Stemgent kit with four factors: hOct4-lentivirus, hSox2-
lentivirus, hLin28-lentivirus, and hNanog-lentivirus. 1x10° F029 or FO55 fibroblasts were plated into
one well of a 6-well plate and cultured overnight in MEF medium. The next day, the medium was
replaced with 1.35 mL of MEF medium containing 6 pg/mL polybrene. 500 pL of hOct4-lentivirus and
50 pL of hSox2-, hLin28-, and hNanog-lentivirus were added. The cells were incubated overnight to
allow for transduction. 24 hours post-transduction, the cells were replated onto MEF feeders in 6-
well plates at 8,000 cells per well and grown in MEF medium. 24 hours after re-plating, medium was
changed to hES cell medium and replaced each day for 7 days. Cells were subsequently grown in hES
medium containing high bFGF and monitored for colony formation and reprogramming. After several
weeks, partially reprogrammed colonies were mechanically passaged and plated onto fresh feeders
until hES cell-like colonies appeared among the transduced FO55 cells (no fully reprogrammed
colonies were detected in the F029 cells). The hES-like colony was transferred into one well of a 4-

well plate (Nunc) containing MEF feeder cells.

When the colony had grown, it was partially passaged by removing one half to two thirds of the
colony to a new well. Once the newly passaged pieces adhered and began to expand they were
checked for hES cell morphology. If they appeared not to have differentiated, the remaining portion
of the original colony would be divided and passaged. Colonies generally would not be grown on the
same MEF feeders for more than 6-7 days. After plating, a new colony was allowed to adhere and
grow for 4-5 days before being partially passaged and then grown for another two days before the

remaining cells were transferred to new feeders. This was done to ensure that there was always a
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source of undifferentiated iPS cells while expansion was occurring. At this stage, collagenase was not
used; all passaging was done mechanically with a 200 L pipette tip. Once several 4-well plates with

healthy, undifferentiated colonies were obtained, cells were transferred to a 6-well plate (usually an
entire 4-well plate would be passaged to one well of a 6-well plate). As the FO55 iPS clone was being

expanded, colonies would be used for immunostaining, gPCR analysis, or subjected to differentiation.
2.3.4  Freezing Down and Thawing FO55 iPS Cells

Because of the very small number of colonies, cells were frozen down using open straw vitrification
rather than cryovials. The procedure took place inside an IVF hood with all components warmed to
37°C. In a 4-well plate, the first well contained 0.5 mL of ES-HEPES solution (1.56 mL KO DMEM, 400
uL FBS, and 40 uL 1M HEPES (Gibco)), the second well contained 0.5 mL 10% vitrification solution (2
mL ES-HEPES, 250 mL Ethylene Glycol (Sigma), and 250 mL DMSQ), and the third well contained 0.5
mL 20% vitrification solution (750 puL ES-HEPES, 750 pL 1M sucrose stock, 500 ulL Ethylene Glycol, and
500 pL DMSO). The fourth well was not used. The 1M sucrose stock solution contained 3.42g of
sucrose (VWR) in 14 mL of ES-HEPES and 2 mL FBS. The lid of the 4-well plate was removed and a 20

pL drop of 20% vitrification solution was placed on its underside.

iPS colonies were mechanically separated as if for passaging. In as small of a volume as possible, 4-6
pieces were collected and transferred to the first well of the 4-well plate above. The cells were
incubated for 1 minute before being transferred to the second well for 1 minute. At each transfer,
care was taken to ensure that the smallest possible volume was used to gather the colony pieces.
The pieces were transferred to the third well for 25 seconds and then into the 20 pL drop. From
there, the pieces were collected and pipetted into another, smaller drop (only several pL) on the
underside of the 4-well plate lid. A vitrification straw was used to suck up the drop containing the
pieces via capillary action and immediately placed inside a 15 or 50 mL Falcon tube submersed in
liquid nitrogen. The process was repeated for several straws which were then transferred to a

nitrogen storage canister.

To thaw cells, a straw was removed from liquid nitrogen and the solution thawed almost
immediately. In a 4-well plate pre-heated to 37°C, one well contained 0.2M sucrose solution (4 mL
ES-HEPES and 1 mL 1M sucrose stock) and the second contained 0.1M sucrose solution (4.5 mL ES-
HEPES and 0.5 mL 1M sucrose stock). The straw was placed into the first well and the colonies either
flowed out freely or were pushed out using a pipette stuck into the opposite end of the straw. They
were incubated for 1 minute then transferred to the second well for 1 minute, being careful to use as
little volume as possible to transfer. The pieces were then transferred to a new 4-well plate
containing MEF feeder cells and grown in hES medium with high bFGF. Usually 2-3 pieces were plated

in each well and allowed to settle for at least 48 hours before the medium was changed.
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2.3.5 Differentiation of FO55 iPS Cells

FO55 iPS cells were differentiated in 4-well plates for 7-14 days in Diff medium. Once cells had
differentiated, they were either isolated for gPCR analysis or fixed and permeabilized for intracellular

staining of differentiation markers.

2.4 Flow Cvtometry and Fluorescence Activated Cell Sorting (FACS

2.4.1 Staining and Flow Cytometry of Myoblasts

Myoblasts were harvested by trypsinization as described above for myoblast culture. Once pelleted,
the supernatant was aspirated and the cells were resuspended in PBS. Cells were counted using a Vi-
Cell Cell Viability Analyzer (Beckman Coulter) and 0.5-1.0 x 10° cells were washed again using a FACS
LyseWash (BD Bioscience) which concentrates the cells into 300 uL of PBS. Depending on cell number
and viability (which was almost always greater than 90%), 10-15 L of conjugated mouse anti-human
antibodies (BD Pharmingen) against CD56 (PE), CD106 (APC), and CD34 (PerCP-Cy5.5) were added to
each sample. Meanwhile, 5 pL per sample of mouse anti-human M-cadherin (abcam) was added to 5
uL of Zenon700 staining reagent (Invitrogen) and incubated in the dark for 5 minutes, followed by 5
pL of blocking reagent and another incubation for 2-3 minutes in the dark. All 15 ulL are then added
to the cell suspension containing the other antibodies and left at room temperature in the dark for
45-60 minutes, with periodic gentle mixing. The cells were again washed using a FACS LyseWash and
analyzed on an LSR Il flow cytometer (BD Bioscience) using BD FACSDiva software. The forward
versus side scatter of the cells were analyzed to remove debris and dead cells (though the staining
procedure generally resulted in greater than 90% viability) while side scatter (height) and side scatter
(area) were plotted to eliminate doublets from analysis. Unstained cells were used as a control for
autofluorescence. At least 10,000 events were recorded for each sample. Filters used were: M-
cadherin 638/730/45, CD106 638/670/14, CD56 535/585/42, and CD34 488/710/50. The results were

analyzed using FACSDiva software (BD Bioscience).
2.4.2 Staining and Flow Cytometry of Differentiated hES Cell Cultures

To harvest differentiated hES cells for staining, wells were washed with PBS once and incubated with
1 mL TVP-trypsin (0.025% Trypsin, 1% chicken serum, 1 mM disodium EDTA in PBS) for 3 to 5 minutes
until the cells began to dissociate. To assist this process, the TVP-trypsin was pipetted up and down

gently using a 1 mL pipette tip. When most of the cells had dissociated (waiting until all cells had fully
dissociated resulted in a high amount of cell death), 3 mL of Diff medium (containing FBS) was added

to neutralize the trypsin, and the cells were transferred to a 50 mL Falcon tube through a 50 um filter
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(BD Biosciences). The cell suspension was centrifuged at 800 rpm for 4 minutes, the supernatant was

aspirated, and the cells were resuspended in PBS and counted using a Vi-Cell Cell Viability Analyzer.

For the initial differentiations, approximately 1x10° cells were washed again using a FACS LyseWash,
suspending the cells in 300 uL of PBS. Surface antibodies were added as described above, with the
APC conjugated mouse anti-human CD133 (BD Pharmingen) in place of the CD106 antibody.
However, cells were only incubated for 20-30 minutes before an equal volume of Caltag Fix & Perm
Kit (Invitrogen) Reagent A (the fixative) was added. Cells were incubated in the dark for an additional
15 minutes, washed with 5 mL Wash Solution (PBS with 5% FBS and 0.1%NaN3), and centrifuged at
320 RCF for 5 minutes. The supernatant was removed and the cells were resuspended in 100 plL of
Reagent B (the permeabilization solution) and incubated for 20 minutes in the dark before being
washed with Wash Solution and centrifuged as described. The supernatant was removed and the
cells were resuspended in PBS for the intracellular primary antibody incubation. 10-15 L of
monoclonal mouse anti-human Pax7 antibody (R&D Systems) was added to the sample and
incubated in the dark at room temperature for 30 minutes. The cells were then washed using the
FACS LyseWash and 1 ulL of anti-mouse 1gG;-FITC secondary antibody (Sigma) was added. After a 20-
30 minute incubation in the dark at room temperature, the cells were washed again and analyzed on

an LSR Il flow cytometer. The filter used for Pax7 was 407/450/50.

Subsequent stainings using live cells followed the protocol described for myoblasts above, except
cells were dissociated with TVP-Trypsin. For two trials of the HFM time course, the conditioned
media differentiations, and for the Activin A differentiations, CD133 was used in addition to CD106.
Because both antibodies were APC conjugated, samples were split prior to staining, with one half
receiving CD133 and CD56 antibodies and the other receiving CD56, CD106, and M-cadherin
antibodies. The differentiations testing various types of conditioned media and the BMP4 time
course were all stained only with CD56, CD106, and M-cadherin antibodies. The BMP4 time course
used a line of H9 hES cells which constitutively expressed GFP, which was also recorded by the flow
cytometer. All differentiations were analyzed using an LSR |l flow cytometer with the exception of
the BMP4 time course, which used a FACSAria Cell Sorter (BD Biosciences). The filter used for GFP
was 488/520/20. The same filter was used for CD133 as for CD106 described above. The results were

analyzed using FACSDiva software.
2.4.3  FACS of BMP-4 Co-culture and H9 Pax7-GFP Differentiations

Prior to sorting, cells were stained as described above, however usually 7-10x10° cells were used for
sorting and the staining procedure was scaled up accordingly. Cells were analyzed and sorted using a
FACSAria Cell Sorter at 20 psi with a 100 um nozzle. The populations for the BMP-4 Co-culture
differentiations included GFP+, M-cadherin+, CD106/CD56+, and CD106+ (CD56-) cells. For the H9
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Pax7-GFP differentiations, four populations were obtained: negative cells, GFP+ cells, CD56/GFP+
cells, and CD56/M-cad/GFP+ cells. For the microarray analysis of differentiated H9 Pax7-GFP
populations, only negative cells and CD56/GFP+ cells were obtained. Unstained cells were used to
obtain the GFP+ populations. Cells were sorted into 1.5 mL eppendorf tubes and centrifuged at 1200
rpm for 5 minutes in a tabletop microcentrifuge (eppendorf). All but 250 pL of the supernatant was

removed and the cells were used for qPCR as described below.
2.4.4  Flow Analysis of MyoD Expression in the BMP4 D21 Differentiation

Cells were harvested using TVP-Trypsin as described above. The same general staining procedure
given for the initial differentiation flow cytometry staining was used here. No surface markers were
added, the cells were just fixed and permeabilized using the Caltag Fix & Perm Kit (Invitrogen) before
adding 5 plL of the mouse anti-human MyoD antibody (1 mg/mL, abcam) and then the Cy5-
conjugated goat anti-mouse IgG2a secondary (1:500, Jackson ImmunoResearch). Cells were analyzed

on an LSR Il Flow Cytometer. The filter used for the Cy5 secondary was 638/670/14.

2.5 Quantitative Polvmerase Chain Reaction Analysis

2.5.1 RNA Isolation and cDNA Preparation

Dissociated cells (myoblasts by trypsinization, differentiated hES cells by TVP-trypsinization, or sorted
cells) were washed once with PBS were centrifuged at 1,800 rpm for 5 minutes on a tabletop
microcentrifuge (Eppendorf). 0.5-1.0 x 10° cells from myoblasts or differentiated cultures or as many
sorted cells as possible (usually between 30-300,000) were then resuspended with 250 uL of PBSin a
1.5 mL eppendorf tube, 750 pL of Trizol LS (Sigma) were added and the mixture was vigorously
pipetted until homogeneous. The sample was incubated at room temperature for 5 minutes to
ensure complete cell lysis. 200 pL of chloroform were added to each tube, followed by vigorous
shaking for 15 seconds before the layers were allowed to separate for 2-3 minutes at room
temperature. The samples were then centrifuged at 12,000 rpm for 15 minutes at 4°C. The top,
aqueous layer (roughly 500 uL), was removed to a new tube and an equal volume of isopropanol was
added to precipitate the RNA, mixed gently by inversion, and incubated at room temperature for 10
minutes. The sample was then centrifuged at 12,000 rpm for 15-30 minutes at 4°C to pellet the RNA.
The supernatant was then carefully removed and the small, white pellet was washed with 500 ulL of
70% ethanol, followed by centrifugation at 12,000 rpm for 5 minutes at 4°C. All ethanol was removed
and the pellet was allowed to air dry at room temperature until it became translucent, at which point

it was resuspended in 12-20 uL of distilled H,0 (dH,0) and stored at -80°C.
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The concentration of RNA samples was measured on a spectrophotometer (Nanodrop) immediately
prior to cDNA preparation. Samples were treated with DNase to ensure no contamination of genomic
DNA during the PCR reaction. 1 ug of total RNA in 1-8 uL of dH,0 was added to 1 pL of 10x DNase
buffer and 1 pL of DNase (Ambion). The solution was brought to 10 plL total with dH,0 and incubated
at 37°C for 20-30 minutes. 1 uL of inactivation solution (Ambion) was added and allowed to incubate
at room temperature for 5 minutes with periodic gentle mixing. The samples were centrifuged in 0.5
mL eppendorf tubes at 10,000g for 1.5 minutes and the supernatant containing the RNA was
removed to a new tube. 1 pL of random oligonucleotide 15-mers (Sigma) and 1.5 uL of dH,0 were
added and the sample was incubated at 70°C for 5 minutes then snap frozen on ice for 2-3 minutes.
The following was then added to each sample: 5 ulL of 5x Superscript Ill reaction buffer (Invitrogen), 5
uL of 10 mM dNTPs (Promega), 0.5 pL of RNase inhibitors (Invitrogen), and 1 pL of Superscript IlI
Reverse Transcriptase (Invitrogen) to a total reaction volume of 25 uL. The samples were mixed
gently and incubated at 37°C for one hour to allow reverse transcription to occur, followed by a 5
minute incubation at 95°C to destroy the reverse transcriptase. Samples were diluted to 100-150 pL

with dH,0 and stored at -20°C.
2.5.2 Quantitative Polymerase Chain Reaction (qPCR)

The gPCR reactions were set up using a master mix containing the following: 5 puL SYBR green
(Sigma), 0.5 uL forward primers, 0.5 ulL reverse primers, and 2 uL dH,0 (per sample). Each sample
was run in triplicate. 8 pL of the master mix for each gene was added to each well of a 384-well plate
(Applied Biosystems) followed by 2 uL of cDNA. A blank sample containing water instead of cDNA
was run in triplicate for each gene. Each plate was sealed with adhesive film (Applied Biosystems)
and then centrifuged at 4000 rpm for 5 minutes. The reactions were carried out in a 7900HT Fast
Real-Time PCR System (Applied Biosystems) using melting temperatures determined by a
temperature gradient run for each primer pair. The reaction was run with the following cycle steps:
1.5 minute initial denaturation at 95°C; followed by 39 cycles of a 30 second denaturation step at
95°C, 30 second annealing step at 52-65°C depending on the primers being used, a 30 second
elongation step at 72°C, and a 10 second melting step at 77-88°C depending on the primers; and
ending with a 10 minute final elongation step at 75°C followed by 10 minutes at 95°C. The data were
recorded using Sequence Detection System (SDS 2.3) software and were analyzed using qBase
software. Primer pairs with annealing and melting temperatures within 1°C of each other were run
simultaneously. Primers for each gene are given in Table 4.2. GAPDH and RPL13A were used as

reference genes.
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Table 2.2 Primers Used for Quantitative PCR

Forward Primer

Reverse Primer

AT/MT*

Amplicon

(°C)

Length

Pluripotency Genes
GDF3 AAATGTTTGTGTTGCGGTCA TCTGGCACAGGTGTCTTCAG 65/81 179
KLF4 CCCAATTACCCATCCTTCCT CGTCCCAGTCACAGTGGTAA 65/86 70
LIN28 TGCACCAGAGTAAGCTGCAC CTCCTTTTGATCTGCGCTTC 59/84 189
LIN28 ENDO AGAAATCCACAGCCCTACCC TGCACCCTATTCCCACTTTC 65/81 125
mMyc GAAACTTTGCCCATAGCAGC GTGAAGCTAACGTTGAGGGG 65/85 237
NANOG GATTTGTGGGCCTGAAGAAA AAGTGGGTTGTTTGCCTTTG 65/81 75
NANOG ENDO | CCAAATTCTCCTGCCAGTGAC CACGTGGTTTGGAAACAAGAAA 65/83 260
OCT4 GAGGAGTCCCAGGACATCAA CATCGGCCTGTGTATATCCC 65/80 100
OCT4 ENDO AAGCCCTCATTTCACCAGG CTTGGAAGCTTAGCCAGGTC 65/87 165
REX1 AACGGGCAAAGACAAGACAC GCTGACAGGTTCTATTTCCGC 52/83 113
Sox2 CAAGATGCACAACTCGGAGA TCTCCGTCTCCGACAAAAGT 65/80 68
SOX2 ENDO TCACATGTCCCAGCACTACC CCCATTTCCCTCGTTTTTCT 65/85 181
TERT GCGTTTGGTGGATGATTTCT GGCATAGCTGGAGTAGTCGC 65/86 259
Early Differentiation Genes
AFP CTTTGGGCTGCTCGCTATGA ATGGCTTGGAAAGTTCGGGTC 54/78 176
BRACHYURY TCAGCAAAGTCAAGCTCACCA CCCCAACTCTCACTATGTGGATT 65/80 102
MIXL1 GCTCGAGAATTTGGAACGAG GTAACCCTCGTCACTCCCAA 65/82 265
NESTIN CAGGAGAAACAGGGCCTACA TGGGAGCAAAGATCCAAGAC 61/88 243
PAX6 GTCCATCTTTGCTTGGGAAA TAGCCAGGTTGCGAAGAACT 52/80 110
Myogenic Genes
MEF2 CAGGCCGGTAGACTTGGTTCCACCA | CTGCCCGCTTCACAGTTCCAGCTAT 58/79 120
MYF5 ATGCCCGAATGTAACAGTCCT GTGATCCGGTCCACTATGTTG 65/78 146
MYOD GGCCGGACAGGAGAGGGAGG GGTCCTGGCTTCGCCCAACC 65/77 139
MYOGENIN ATGCAGCTCTCACAGCGCCT CTGTGATGCTGTCCACGA 65/85 146
PAX3 CACCAGGCATGGATTTTCCAGCT TTGGTCAGGAGTCCCATTACCTGAG 57/82 109
PAX7 GAACCTGACCTCCCACTGAA CCTCTGTCAGCTTGGTCCTC 65/80 154
Reference Genes
GAPDH TGCACCACCAACTGCTTAGC GGCATGGACTGTGGTCATGAG 53/81 86
RPL13A CCTGGAGGAGAAGAGGAAAGAGA | TTGAGGACCTCTGTGTATTTGTCAA 65/80 126

*AT: Annealing Temperature, MT: Melting Temperature

Samples of differentiated cells were analyzed in triplicate (a given differentiation was repeated twice

and three separate 10 pL reactions were set up for each trial). Values are presented as the average

with standard error bars. For DMD iPS cell characterization, three different stages of undifferentiated

iPS cells were used and compared to three different samples of undifferentiated H9 cells. In order to

monitor gene expression as the line became established and expanded, the results were not

averaged. Error bars in these graphs give the standard error from the average of each well analyzed

for a given sample. The iPS samples are numbered in the order that they were obtained, with iPS1

being the earliest passage while iPS3 was the latest passage. FHM cells were used as a negative

control for pluripotency markers. Differentiated iPS cells were compared to each of the

undifferentiated iPS cultures and the undifferentiated H9 cultures.
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2.6 _ Cell Staining Procedures

2.6.1 Immunostaining of Differentiated hES Cells

Differentiated cultures of BMP4 D21 cells were fixed in 4% paraformaldehyde (Sigma) in PBS (pH 7.4)
for 15 minutes at room temperature and then washed twice in cold PBS. Cells were then incubated
with PBS containing 0.25% Triton X-100 (Sigma) for 10 minutes and then washed three times in PBS
for 5 minutes each. The cells were blocked in 1% bovine serum albumin (BSA) in PBST (PBS with 0.1%
v/v Tween 20) for 30 minutes to prevent unspecific binding of the antibodies. The rabbit anti-human
desmin antibody (abcam) was incubated at 1:200 or 1 ug/mL and the mouse anti-human M-cadherin
antibody (abcam) was incubated at 1:25 or 4 ug/mL in PBST with 1% BSA for one hour at room
temperature. The solution was decanted and cells were washed three times in PBS for 5 minutes
each before being incubated with secondary antibodies at a 1:500 dilution in PBS with 1% BSA for
one hour in the dark at room temperature. An AlexaFluor 594 goat anti-rabbit IgG (H+L) (Invitrogen)
was used for the desmin staining and a Rhodamin Red-X goat anti-mouse IgG (H+L) (Invitrogen) was
used for the M-cadherin staining. Nuclei were stained with 4’,6-diamidino-2-phenylindole (DAPI) at a
final concentration of 0.5 pug/mL for 3-5 minutes at room temperature before being washed twice

with PBS and imaged using a Zeiss Axiovert 200M and AxioVision software (Zeiss).
2.6.2 Immunostaining of Undifferentiated and Differentiated FO55 iPS Cells

Staining procedures were carried out in the 4-well plates the cells were cultured in. The fixation,
permeabilization, and antibody incubation steps are described above. For undifferentiated cells,
mouse anti-human antibodies against Oct4 (1gG1, Millipore), Nanog (lgG,, BD Pharmingen), SSEA-4
(IgGs, BD Pharmingen), Tra-1-60 (IgM, BD Pharmingen), and Tra-1-81 (IgM, BD Pharmingen) were
used along with FITC-conjugated sheep anti-mouse IgG (whole molecule, Sigma) and Texas Red-
conjugated goat anti-mouse IgM (Sigma) secondary antibodies. All primary antibodies were diluted
1:100 with the exception of Nanog, which was diluted 1:50. Secondary antibodies were diluted
1:500. Differentiated cells were stained with mouse anti-human primary antibodies against AFP
(18G,a, Sigma), B3-tubulin (1gG,a, Covance), and Nkx-2.5 (IgG;, R&D Systems). AFP and Nkx-2.5 were
diluted 1:50 prior to staining while B3-tubulin was diluted 1:200. The FITC-conjugated sheep anti-
mouse IgG (whole molecule, Sigma) secondary antibody was used at 1:500. Nuclei were stained with

DAPI.
2.6.3 Alkaline Phosphatase Staining of Undifferentiated FO55 iPS Cells

Alkaline phosphatase was stained for using the Alkaline Phosphatase Detection Kit (Millipore) on iPS
colonies in one well of a 4-well plate. Cells were fixed with 4% paraformaldehyde for 2 minutes and
then washed in PBST. During the wash, the Fast Red Violet (FRV) and Naphthol AS-BI phosphate
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solutions were mixed with water in a 2:1:1 ratio (FRV:Naphthol:water). 0.5 mL of the staining mixture
was then added to the cells in the 4-well plate and it was left to incubate in the dark at room
temperature for 15 minutes. After staining the cells were washed again with PBST and the covered
with PBS prior to imaging. Images were taken on a Zeiss microscope and analyzed with AxioVision

software.

2.7 _Microarray Analysis of Differentiated H9 Pax7-GFP Cells

After isolating RNA from the two sorted populations of differentiated H9 Pax7-GFP cells (negative
and CD56/GFP+), the microarray was performed by an in-house technician at the Institute for Human
Genetics. The quality of the RNA was analyzed using an Agilent 2100 Bioanalyzer (Agilent
Technologies). The RNA was added to wells in a gel of RNA 6000 Nano gel matrix containing RNA
6000 Nano dye on an RNA Nanochip (Agilent) and then underwent electrophoretic separation and
was detected by laser induced fluorescence in the Bioanalyzer. The RNA was determined to have a
high enough quality and concentration to proceed with the microarray. cDNA was prepared using an
Affymetrix two step process: reverse transcription to synthesize First-Strand cDNA followed by
Second-Strand cDNA synthesis to convert single-stranded cDNA into a double stranded cDNA
template for transcription. The double stranded cDNA then underwent in vitro transcription to
generate amplified biotin-modified cRNA, which was subsequently fragmented into pieces between

30 and 400 base pairs to prepare for microarray hybridization.

The cRNA was incubated in Hybridization Master Mix while an Affymetrix HG-U133 Plus 2 chip was
pre-hybridized with Hybridization Buffer. The buffer was removed and the master mix containing the
cRNA was added to the chip to incubate for 16 hours. After incubation, the chip was placed inside the
Affymetrix fluidics station for several rounds of washing and staining with streptavidin and the
corresponding antibodies. The probe array was then scanned using an Agilent GeneArray Scanner,
generating a .dat image which was then analyzed for probe intensity with the Affymetrix Microarray
Suite software. The probe intensities were exported as a .CEL file and analyzed using the GeneSpring

GX10 software (Agilent).
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Chapter 3: Expression of Myogenic Genes and
Cell Surface Markers in Adult and Foetal
Myoblast Lines

3.1 Introduction

It was crucial to establish a repertoire of satellite cell markers in order to measure the effectiveness
of hES cell differentiation and as a method to isolate putative satellite cells from differentiated
cultures using FACS. To do this, human adult (17/01 and S31/05) and foetal (FHM and HFM) myoblast
lines were obtained and stained for a number of surface markers expressed on satellite cells. It is
important to note that the proteins used were not specific to satellite cells, so a combination of
different markers would be necessary to ensure a pure population upon sorting. It was also
important to gain as much information as possible regarding the myogenic nature of cells labeled by
different combinations of proteins. To this end, the different cell lines used were analyzed by qPCR to

assess the level of several myogenic genes.

CD56 (NCAM-1, MSK39) is a well established marker of satellite cells and has been used for the
immunomagnetic and FACS isolation of satellite cells from muscle tissue (Sinanan, Hunt et al. 2004;
Capkovic, Stevenson et al. 2008). It has also been show to be expressed on myoblasts and myotubes
during muscle differentiation, denervation, and is thought to be involved in myoblast fusion (llla,
Leon-Monzon et al. 1992; Charlton, Mohler et al. 2000; Ishido, Uda et al. 2006). Unfortunately, CD56
is also expressed in many other cell types including neurons, neural stem cells, natural killer cells, and
certain populations of T-cells (llla, Leon-Monzon et al. 1992; Mechtersheimer, Staudter et al. 1992;
Ronn, Hartz et al. 1998). Because of the strong preference of ES cells for differentiating along the
ectoderm lineage, it was important to include markers which would exclude this population,
especially given the general use of CD56 to assess neuronal differentiation of hES cell cultures

(Pruszak, Sonntag et al. 2007).

Initial hES cell differentiations leading to this study looked for CD56 in combination with CD34 and M-
cadherin. CD34 has been shown to be indicative of quiescent satellite cells in mice (Beauchamp,
Heslop et al. 2000); however, it is a poor marker for human satellite cells, which was confirmed by
flow cytometry analysis in all four myoblasts lines (see below). In contrast, M-cadherin is a highly
specific marker for muscle tissue during development and is expressed in adult satellite cells (Moore

and Walsh 1993; Irintchev, Zeschnigk et al. 1994). The only other reported site of expression of M-
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cadherin is in the granule cell layer of the cerebellum (Rose, Grund et al. 1995). It is expressed during
satellite cell activation, becomes up-regulated as differentiation progresses, and is subsequently
down-regulated after fusion during myotube maturation (Zeschnigk, Kozian et al. 1995; Kuch,

Winnekendonk et al. 1997; Kaufmann, Kirsch et al. 1999).

The combination of CD56 and M-cadherin provided a good foundation for assessing the myogenic
character of hES cell differentiation strategies, but as a pair the proteins would label proliferating and
differentiating myoblasts in addition to satellite cells. To address this, the surface marker CD106
(VCAM-1) was later included in the staining protocol. CD106 had been shown to be important to
secondary myogenesis during embryonic development of the mouse but down-regulated after birth.
In adult mice it is only found on satellite cells where it is thought to be involved in recruiting
leukocytes to muscle tissue after injury (Jesse, LaChance et al. 1998) and upregulated in quiescent

but not proliferating satellite cells (Fukada, Uezumi et al. 2007).

The myoblast lines were also characterized by qPCR to determine the expression levels of the PAX7,
MYF5, MYOD, and MYOGENIN genes. The most definitive marker of satellite cells is Pax7, which is
present in all satellite cells and expressed in proliferating myoblasts until they begin to differentiate
(Kassar-Duchossoy, Giacone et al. 2005; Olguin, Yang et al. 2007). Myf5 is expressed in a subset of
satellite cells and indicates an early step in the progression of myogenic differentiation (Fukada,
Uezumi et al. 2007). MyoD becomes important as proliferating myoblasts begin to differentiate and
both MyoD and Myf5 are expressed as differentiation progresses. Finally, myogenin is upregulated
once the commitment to differentiate has been made (Smith, Janney et al. 1994; Yablonka-Reuveni
and Rivera 1994). These four genes were chosen because they provide a continuous spectrum of
myoblast differentiation, from the quiescent satellite cell to the onset and progression of terminal

differentiation.

In adult myoblast cultures, overexpression of Pax7 has been shown to down-regulate MyoD and
prevent myogenin expression. Pax7 is thought to be important to maintaining satellite cell
quiescence by causing proliferating myoblasts to exit the cell cycle (Olguin and Olwin 2004). MyoD
activates myogenin expression to signal myogenic commitment. Once this up-regulation of myogenin
occurs, Pax7 expression is significantly reduced and differentiating myoblasts withdraw from the cell
cycle (Olguin, Yang et al. 2007). During this process, a small percentage of the population of
proliferating myoblasts does not commit to differentiation. Instead, they return to quiescence and
reoccupy the satellite cell niche. Continued expression of Myf5, but not MyoD is thought to promote

this process (Baroffio, Hamann et al. 1996).
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Chapter 3 Aims:

To select suitable myoblast cell surface markers for FACS isolation of differentiating hES cells

To compare the expression of cell surface markers amongst different myoblast lines to determine if

the surface markers expressed related to the degree of differentiation in the cell lines

3.2 Results

3.2.1 Flow Cytometry Analysis of Myoblast Surface Markers

Each of the adult (17/01 and S31/05) and foetal (FHM and HFM) myoblast lines were stained
simultaneously for CD56, CD106, M-cadherin, and CD34 and analyzed by flow cytometry (Figure 3.1).
The $31/05 cell line seemed to have lost its myogenic character as all four markers were nearly
absent in all cells (Figure 3.1A). In the other three lines, CD56 was the most widely expressed marker
(Figure 3.1B-D). It was found in greater than 40% of HFM cells and greater than 70% of 17/01 and
FHM cells. CD106 was also present in a large percentage of the 17/01 cells (36.4%) of which almost
all were also positive for CD56. But it was only found in 11% of the HFM cell line and less than 2% of
FHM cells (Figure 3.2). This was surprising considering that CD106 is highly expressed during
secondary myogenesis in embryonic development but only found on quiescent satellite cells of the

adult. Interestingly, the HFM line had the only significant population of CD106+/CD56- cells.
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Figure 3.1: Myoblast Analysis by Flow Cytometry. Flow cytometry analysis of satellite cell surface
markers in myoblast cell lines. There was very little expression of any surface markers in the
$31/05 line (A) and CD34 was absent in all four cell lines. 17/01 cells expressed high levels of CD56
and CD106 and moderate amounts of M-cadherin (B). The FHM line expressed high levels of CD56
but very few cells were CD106 or M-cadherin positive (C). Fewer HFM cells were CD56+ than in the
previous two lines and it had a moderate amount of CD106 and M-cadherin expression (D). n=3 for

each cell line.
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M-cadherin levels were lower than would be expected given its broad expression during myogenic

differentiation. It was present in only 15% of 17/01 cells, 4% of FHM cells, and 8% of HFM cells. The

majority of M-cadherin+ cells (an average 83% for all three cell lines) were also positive for CD56. In

contrast, in the foetal cell lines less than one quarter of M-cadherin+ cells were CD106+, whereas

51% of M-cadherin+ 17/01 cells also expressed CD106. These 17/01 cells also represented the only

significant triple positive (CD56+/CD106+/M-cadherin+) population in any of the myoblast lines

(Figure 3.2). CD34 was not expressed at a significant level in any of the cell lines.
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Figure 3.2: Myoblast Analysis by Flow Cytometry (Quantification). Co-expression of CD56, CD106,

and M-cadherin in myoblast lines. Both the 17/01 and HFM lines had cells positive for both CD56
and CD106 however only the HFM line had a population of CD106+/CD56- cells (top graph). In the
three myogenic lines, most M-cadherin+ cells were also CD56+ while much fewer were positive for

CD106. The only substantial population of triple positive cells was in the 17/01 line (bottom). Error
bars indicate SEM, n=3 for each cell line.
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3.2.2 qPCR Analysis of Myoblast Lines for Myogenic Gene Expression

Further analysis of the myoblasts lines using gPCR confirmed that $31/05 had lost its myogenic
character as it expressed extremely low levels of PAX7, MYF5, MYOD, and MYOGENIN (Figure 3.3).
The two foetal lines expressed significantly higher PAX7 than 17/01. This may be due to the
importance of Pax7 in embryonic muscle development while its expression in the adult is limited to
satellite cells and down-regulated as differentiation progresses. Unfortunately PAX7 expression did
not directly correlate with the expression of any of the surface markers examined by flow cytometry
as none of the surface markers had higher levels of expression in both foetal lines than in the 17/01
cells. In contrast to PAX7, the expression of MYF5 was highest in the 17/01 line and was similar in the
FHM and HFM cells.
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Figure 3.3: Myoblast Analysis by gPCR. qPCR analysis of myogenic genes in myoblast cell
lines. Gene expression results confirm the flow cytometry data suggesting that the $31/05
line has lost its myogenic character. Of the remaining three lines, PAX7 expression is
highest in the foetal lines while MYF5 expression shows the opposite trend. MYOD
expression is similar in all three lines suggesting that all are equally myogenic in nature.
17/01 cells have the highest level of MYOGENIN followed by HFM and FHM cells. n=3 for
each cell line.

MYOD expression was not statistically different between the 17/01, FHM, and HFM cells. This
indicates that all three cell lines were comparably myogenic in nature, and that any differences in
relative gene (or surface marker) expression are due to differences within the myogenic

compartment rather than the loss of myogenic character in a cell line (such as the $31/05 line).
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MYOGENIN expression was higher in 17/01 and HFM cells and lower in the FHM line. In this respect it
seemed to correlate most strongly with the expression of M-cadherin. Both are known to be

important during the later phases of myogenic differentiation.

3.3 Discussion

The expression of potential satellite cell surface markers CD56, CD106, and M-cadherin was
examined in four different lines of human myoblasts. The expression of different genes important
during myogenesis was also examined. One of the four cell lines, $31/05, was found to have lost its
myogenic nature. Of the remaining three, all expressed high levels of CD56, while levels of CD106
and M-cadherin varied between cell lines. The three cell lines also showed consistent levels of MYOD

expression, while PAX7, MYF5, and MYOGENIN gene expression was more variable.

A large difference was seen in the level of the three surface markers among each of the cell lines.
While CD56 was always the most highly expressed, it varied from being present in just 45% of HFM
cells to 75% of 17/01 and FHM cells. Studies have shown that the level of CD56 expression can
change based on the age of the tissue collected as well as variations in myoblast culture conditions
(Andersson, Olsen et al. 1993; Lyles, Amin et al. 1993). A high percentage of CD56+ cells were
expected as CD56 is present in satellite cells as well as during myoblast differentiation and myocyte
fusion. It did not seem to directly correlate with any of the genes examined by gPCR or either of the
other surface markers. This may be explained by its ubiquity during myogenesis; most of the other

genes and proteins tested are expressed in a stage-specific manner.

Similarly, CD106 levels varied greatly between cell lines with decreasing amounts found in 17/01,
HFM, and FHM cells. In the 17/01 and FHM lines (which expressed the highest levels of CD56), nearly
all CD106+ cells were CD56+. In the adult, all satellite cells should be CD56+ while only a subset will
express CD106, which turns off as satellite cell activation occurs (Fukada, Uezumi et al. 2007). Indeed,
it has been observed that all cells which stained positive for CD106 also expressed CD56 (Rosen,
Sanes et al. 1992). Similarly, during foetal development, the splice variants of CD56 are known to be
expressed in the myotome, on the surface of primary myocytes, and during secondary myogenesis
on myoblasts and myotubes (Covault and Sanes 1986; Moore, Thompson et al. 1987; Lyons, Moore
et al. 1992) while CD106 is expressed on secondary myoblasts and possibly on secondary myotubes
lying alongside primary myotubes (Rosen, Sanes et al. 1992). Based on these expression patterns, it is
expected that nearly all CD106+ cells in both adult and foetal lines would also express CD56. Contrary
to what previous research suggests, HFM cells showed a decrease in the CD56+ population and had a
significant percentage of CD106+/CD56- cells. While one study has shown that CD106 expression

decreases when CD56 is overexpressed, most likely due to an increased rate of myoblast fusion
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(Fazeli, Wells et al. 1996), there is no evidence of a CD106+/CD56- population of cells during muscle
development. It is tempting to speculate that this population has arisen as a result of culture

conditions rather than being a novel expression profile of foetal myoblasts.

Given that M-cadherin is expressed in satellite cells and upregulated as they differentiate and fuse, it
was surprising that there was so little seen in the three myoblast cultures. This may have been due to
the protocol used to culture the cells, which was designed to promote proliferation but not
differentiation. A close examination of M-cadherin expression in adult mouse muscle showed that it
was found in quiescent satellite cells (M-cadherin+ cells did not incorporate bromodeoxyuridine)
from normal muscle and that it was most strongly expressed along the satellite cell-muscle fibre
border. After injury, it became localized to myoblasts, and was subsequently down-regulated after
myoblast fusion (Irintchev, Zeschnigk et al. 1994). If M-cadherin expression is most strongly activated
by the presence of a muscle fibre border (in satellite cells) or during differentiation of myoblasts,
then the 17/01, FHM, and HFM cultures would not be expected to express high levels of M-cadherin
as they do not contain mature muscle fibres and are not actively differentiating. The majority of M-
cadherin+ cells also expressed CD56, which was expected given their overlapping roles during muscle
regeneration and the prominence of CD56 in the myoblast cell lines. A much smaller percentage of
M-cadherin+ cells co-expressed CD106. In the adult, both M-cadherin and CD106 are known to be
expressed on quiescent satellite cells (Irintchev, Zeschnigk et al. 1994; Fukada, Uezumi et al. 2007)
and the largest M-cadherin+/CD106+ population is found in the 17/01 line (these cells are also
CD56+). While M-cadherin has been observed during embryonic muscle development, its role has
not been well characterized. It is thought to indicate a commitment to terminal differentiation of
foetal myoblasts (Rose, Rohwedel et al. 1994). The two foetal lines showed a much smaller overlap
between M-cadherin and CD106 than the 17/01 line, suggesting that the two proteins are involved in

fundamentally different processes.

During muscle development, Pax7 is first expressed in the dermomyotome, followed by the
myotome, where nearly 90% of cells are Pax7+ (the vast majority of which co-express Pax3). This
population contains most of the proliferating cells during early muscle development and persists
until late in development when they take up positions under the basil lamina of muscle fibres,
reminiscent of adult satellite cells (Relaix, Rocancourt et al. 2005). It is therefore expected that the
two foetal myoblast lines express high levels of PAX7 mRNA, while the adult line expresses
significantly less. The Pax7+/Pax3+ population for the most part does not express myogenic
determination markers such as Myf5, MyoD, or desmin. Myf5 is important during the onset of
embryonic myogenesis. The appearance of myotomal cells is delayed by several days in Myf5-null
embryos (Braun, Rudnicki et al. 1992). However, Myf5 expression in mice begins to decline starting

around 11.5 dpc as other myogenic factors such as myogenin and MyoD are turned on (Ott, Bober et
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al. 1991). This explains the low level of MYF5 expression in the FHM and HFM cell lines compared to
the 17/01 line. During adult regeneration Myf5 is important for the initial proliferation of satellite
cells and the establishment of a pool of myoblasts capable of differentiation (Gayraud-Morel,
Chretien et al. 2007; Ustanina, Carvajal et al. 2007). Thus it is not surprising that it is expressed at

relatively high levels in 17/01 myoblasts grown in conditions to promote proliferation.

Like Myf5, MyoD is important in myoblast determination. In fact, in the absence of either of these
proteins, the other seems capable of filling in and allowing myoblast formation and differentiation to
occur resulting in apparently normal skeletal muscle (Braun, Rudnicki et al. 1992; Rudnicki, Braun et
al. 1992). All three cell lines expressed similar levels of MYOD. The relative increase in foetal
myoblast MYOD expression (compared to MYF5 expression across all three lines) is most likely due to
the fact that MyoD is expressed later in development than Myf5. It was also important to assess the
progression of differentiation in the various myoblast cultures and determine if there was a direct
relationship with the expression of any surface markers. While Myf5 and MyoD are important in
myoblast determination, myogenin is crucial for their differentiation (Brunetti and Goldfine 1990).
Knockout studies have shown that myogenin-null mouse embryos contain myoblasts but severely
lack differentiated, properly structured muscle fibres (Nabeshima, Hanaoka et al. 1993). MYOGENIN
expression was highest in the 17/01 and HFM lines and lowest in the FHM line. Different mouse
myoblast lines show variable myogenin expression in growth medium but all lines show an increase
in myogenin once cultures are switched to differentiation medium (Miller 1990). Thus the differences
seen between the three human lines tested may be a result of normal variations or due to errant
differentiation in the cultures expressing higher levels of myogenin. High MYOGENIN in 17/01 and
HFM cultures along with high levels of MYF5 in the former and PAX7 in the latter suggest that they
contain a broad spectrum of cells along the spectrum of myogenic commitment while the FHM line,

containing high PAX7 but low MYOGENIN seems to represent a less mature myogenic population.

PAX7, MYF5, MYOD, and MYOGENIN were chosen because they provided the opportunity to look at
different points along the spectrum of myogenic differentiation, from the quiescent satellite cell to
the fusing myoblast. The original purpose of this study was to determine the best compilation of
surface markers to identify muscle satellite cells. In the adult, this would correlate most strongly to
Pax7 and Myf5 expression, and can be excluded by myogenin expression. In the embryo it is more
complicated, but Pax7+ progenitors represent proliferative cells with myogenic potential which, for
the purposes of transplantation research, are worth studying. These progenitors are also believed to
give rise to bona fide satellite cells in adult tissue. Unfortunately, none of the surface markers tested
showed a positive correlation with PAX7 expression. In this regard, CD106 expression was the most
surprising. Because it is thought to be expressed strongly in quiescent satellite cells and, unlike CD56

and M-cadherin, does not have a role in myoblast fusion, it was expected to be a good marker for
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Pax7 expression and myoblast immaturity. In fact, it displayed a general negative correlation with
PAX7 expression and was most highly expressed in 17/01 cells, which seemed the most differentiated
based on gene expression data. Despite this, the combination of CD56, CD106, and M-cadherin
should provide a method of identifying and isolating myogenic cells from differentiating hES cultures,
as the co-expression of at least two of these proteins ought to be specific to cells in the myogenic

lineage.

It would be interesting to further explore the different populations found in the myoblast lines by
gPCR analysis and culture characteristics of FACS-separated cells. Specifically, examining how the
CD56+/M-cadherin- population differs from the CD56+/M-cadherin+ cells and studying the
CD106+/CD56- cells in the HFM line could provide novel insight into the role of these proteins in

myogenic differentiation.
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Chapter 4: Myogenic Differentiation of hES
Cells

4.1 Introduction

There is a therapeutic need for a source of muscle progenitors or muscles satellite cells in order to
treat conditions like DMD. Unfortunately, progress using differentiated embryonic stem cells to
produce these cells has been limited. Early studies showed that mouse ES cells could differentiate
into skeletal muscle cells which were physiologically indistinguishable from normal myocytes
(Rohwedel, Maltsev et al. 1994). Additional studies also helped elucidate the role of different genes

during myogenic development (discussed in Chapter 1).

More recently, some progress has been made in producing muscle progenitors from mouse
embryonic stem cells. In a study by Bhagavati and Xu, mES cells were differentiated for 7 days as EBs
and then plated onto cultures of mdx mouse muscle for an addition 4 days before being injected into
mdx mice. Their strategy required cell-cell contact between mES and adult muscle derived cells in
order for the mES cells to gain myogenic capacity. While they showed that mES cells can form
dystrophin+ fibres, the mice were not traced long enough to see if teratomas were formed. Control
mES EB cultures using the C2C12 myoblast cell line failed to produce similar results (Bhagavati and Xu
2005). Another group showed that mES cells transfected with human IGF Il readily differentiated into
cultures containing skeletal muscle cells expressing myoD, myogenin, MRF4, myf5 and dystrophin.
However, they did not assess the purity of these myogenic cultures beyond showing that they no
longer expressed membrane alkaline phosphatase. Upon transplantation, the cultures were capable
of improving muscle regeneration in injured mice (Kamochi, Kurokawa et al. 2006). These studies
demonstrated the myogenic and therapeutic capacity of mES cells, but lacked the important step up
purifying derived myoblasts in order to eliminate residual undifferentiated cells capable of forming
teratomas. This shortcoming was addressed by Darabi et al. However, instead of using a co-culture
system to induce mES cell myogenesis, they found it necessary to use a doxycycline-inducible
construct to drive Pax3 expression during EB differentiation. Direct injection of these cells into mice
resulted in teratoma formation after one month. To remove undifferentiated cells, they were sorted
to obtain a platelet derived growth factor receptor-alpha (PDGFR-a)+/Flk-1- population thought to
be specific to paraxial mesoderm. These cells were highly myogenic, readily engrafted into damaged
muscle and improved contractile function (Darabi, Gehlbach et al. 2008; Darabi, Baik et al. 2009).
While these studies require the genetic manipulation of transplanted cells in order to promote
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myogenesis, Sakurai et al. showed that a PDGFR-a+ population could be purified using FACS after
differentiating mES cells as a monolayer for 4 days. This population did not express any early markers
of myogenesis (such as Pax3, Pax7, Myf5, or MyoD) but was capable of engraftment when injected
into injured muscle and gave rise to putative satellite cells (in addition to non-myogenic cells).
However, a PDGFR-a-/VEGFR2+ population, characterized as lateral mesoderm, also showed
engraftment albeit at a lower efficiency (Sakurai, Okawa et al. 2008). The main flaw in these studies
is that they stop in vitro differentiation prior to the formation of actual myogenic cells and rely on

further differentiation in vivo.

Perhaps the most therapeutically useful approach to isolate muscle progenitor cells from
differentiating mES cells has been by Chang et al. They used the monoclonal SM/C-2.6 antibody that
specifically recognizes mouse satellite cells (Fukada, Higuchi et al. 2004). With this antibody they
were able to obtain an enriched population of muscle progenitors directly from mES cells without
needing to genetically modify the cell. mES cells were differentiated as EBs for 6 days before being
plated for an additional 14 days at which point Pax3, Pax7, Myf5, MyoD, and myogenin staining were
all observed. Sorting these cultures based on the expression of the SM/C-2.6 antigen substantially
enriched the percentage of Pax7+ and M-cadherin+ cells, and the sorted population was capable of
forming muscle fibres in vitro (although non-myogenic cells were also present). When transplanted
into injured mouse muscle, the SM/C-2.6+ population contributed to long-term engraftment and

multiple rounds of muscle regeneration (Chang, Yoshimoto et al. 2009).

Unfortunately human ES cells seem less inclined to form skeletal muscle while differentiating. As a
result, less progress has been made towards the isolation of transplantable myogenic precursors.
Using a mouse OP9 stromal cell co-culture, Barberi et al. were able to obtain mesenchymal stem cells
from differentiating hES cells by sorting for CD73 expression. In a C2C12 co-culture, the CD73+
population was able to form myotubes and expressed MyoD and myogenin (Barberi, Willis et al.
2005). This approach had the major drawback of requiring co-culture with non-human cells in order
to promote both the initial differentiation of mesenchymal stem cells and the subsequent myogenic
differentiation. In a more direct approach, Zheng et al. attempted to promote myogenic
differentiation of hES cells using EBs grown in media varying in the percentage of foetal bovine or
horse serum as well as dexamethasone. They also used 5-azacytidine in order to initiate myogenic
differentiation. They were able to produce a population of c-Met+ cells that sparsely expressed
MyoD (but no Pax7). 5-azacytidine treatment decreased c-Met expression, suggesting that it did not
enrich for satellite cells (which are c-Met+) despite increasing Pax7 expression. The cells were
negative for other satellite markers, including M-cadherin, NCAM, and Myf5 suggesting that they
were largely non-myogenic in nature. However, when injected into injured mouse muscle, they were

able to undergo myogenic differentiation and form new myotubes as well as fuse with existing ones
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(zheng, Wang et al. 2006). Barberi et al. later modified their initial strategy to remove any mouse co-
culture during the differentiation. hES cells were initially differentiated in serum-free medium at low
density to establish a population of CD73+ mesenchymal stem cells isolated using FACS. These CD73+
cells showed a low percentage of skeletal muscle markers but could be further sorted based on the
presence of CD56. MyoD was expressed in an average of 60-80% of cell from the CD73+/CD56+
population suggesting it is a largely, if not entirely, myogenic population. These cells showed stable
engraftment in injured mouse muscle for up to six months (Barberi, Bradbury et al. 2007). While this
strategy generates a population of engraftable myogenic precursors, it requires multiple rounds of

FACS sorting and a total of 7-8 weeks of differentiation.

It has been shown that both mouse and human embryonic stem cells will differentiate to skeletal
muscle tissue. However, a protocol for the direct, efficient differentiation of muscle satellite cells has

not been established in humans.

Chapter 4 Aims:

To develop a strategy of culturing differentiating hES cell that would optimally favour the formation

of muscle satellite cells
To analyze and isolate these using flow cytometry and FACS

To demonstrate the myogenic nature of differentiated cells using gPCR and immunostaining for

muscle-specific markers

4.2 Results

4.2.1 Monolayer Differentiation using Horse Serum and Conditioned Medium

Cells were initially grown in differentiation medium containing horse serum (see materials and
methods) for several days and then switched to 100% conditioned medium from the HFM line of
human foetal myoblasts (Differentiation medium for 3 days followed by Conditioned Medium for 7
days was represented as D3CM7). In order to assess the expression of Pax7, a reliable marker of
satellite cells, differentiated cells were fixed and permeabilized during the staining process. Cells
were also stained for the surface markers CD56, CD133, and M-cadherin (Figure 4.1). CD106 had not
yet been added to the staining repertoire and CD133 was used in conjunction with CD56 to assess

neuronal differentiation (Coskun, Wu et al. 2008).
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Figure 4.1: Initial Myogenic Differentiation Medium Analysis by Flow Cytometry.
Representative dot plots from the flow cytometry analysis of the initial differentiation
strategy. (A) Unstained cells were used as a control for autofluorescence in all experiments.
(B) Populations of cells stained for CD133, CD56, M-cadherin, and Pax7 are shown along
with the gates used to determine population percentages. Dot plots are representative of
both trials of multiple time points in the differentiation experiment.

The need to fix and permeabilize cells was a significant drawback in our strategy. While Pax7 is an
important marker of satellite cells, no subsequent genetic analysis or culture of sorted cells would be
possible once it had been stained for. It was also possible that the fix/perm procedure was having an
adverse effect on the surface marker staining. While CD56 showed relatively constant expression
between trials, the other markers showed a much greater degree of variability (Figure 4.2). Among
all the time points of both trials, there were significantly higher levels of CD56 (70% +/- 9.6%) than
CD133 (16% +/- 9.8%), M-cadherin (2.1% +/- 1.5%), and Pax7 (2.1% +/- 1.7%). The standard deviation

was greater than 60% of the mean percent of live cells for CD133, M-cadherin, and Pax7.
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Figure 4.2: Initial Myogenic Differentiation Medium Analysis by Flow Cytometry
(Quantification). Consistently high levels of CD56 are seen at all time points. CD133
expression is much lower and more variable between the two trials and the different time
points as is M-cadherin and Pax7 expression. Co-expression of satellite cell markers
suggests that between 1 and 5% of cells may be myogenic. The high degree of variability
was thought to be a product of the fixation and permeabilization procedure, thus only one
repeat was conducted before the staining strategy was modified.
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4.2.2 Modified Conditioned Medium Differentiation

In an attempt to address these inconsistencies, Pax7 was excluded from subsequent flow cytometry
analysis and live cells were stained directly for surface markers without fixation or permeabilization.
Instead of switching from Differentiation medium to conditioned medium, cells were grown in 1:1
Diff:CM medium (Differentiation medium containing FBS instead of horse serum and HFM
conditioned medium) during the entire experiment. Three different time points were tested: 12, 16,
and 20 days. As a control, cells were also grown in 100% Differentiation medium for 12 days. Cells

were stained with antibodies against CD56, CD133, CD106, and M-cadherin (Figure 4.3).
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Figure 4.3: Diff:CM Differentiation Analysis by Flow Cytometry. Representative dot
plots from the flow cytometry analysis of the HFM time course differentiation. Plots
show populations of cells staining for CD106 and CD56 (first plot), CD133 (second plot),
and M-cadherin (third plot).

Initial experiments showed that the Diff control cultures had the highest percentages of CD56+ and
CD56+/CD133+ cells (Figure 4.4), suggesting that the HFM medium decreased the extent of
neurogenesis. In order to assess myogenic differentiation, CD106 and M-cadherin were added to the
staining protocol and CD133 was removed. CD56 expression remained significantly higher in Diff
control cultures than in the HFM cultures and among HFM cultures, it generally decreased as
differentiation continued. CD106 levels were similarly low (only 2-5% of cells were positive) in all
HFM time points and the Diff control. However, M-cadherin levels were significantly higher in the
HFM cultures (around 8% of cells were M-cad+) than in the Diff control (around 4% were M-cad+).
There was not a significant difference seen in the CD56+/CD106+ or the M-cad+/CD56+ population
between any of the cultures (including the control), however there were more M-cad+/CD106+ cells
in the HFM cultures than in the Diff control culture. Triple-positive cells (M-cad+/CD56+/CD106+)
were found in all four cultures with the highest average being 0.93% in the HFM day 12

differentiation.
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Figure 4.4: Diff:CM Differentiation Time Course Analysis by Flow Cytometry (Quantification).
(Top Graph) Cultures grown only in Diff medium (no conditioned medium) showed higher
levels of CD56 and CD56/CD133 staining, indicative of neurogenesis, as compared to the cells
grown in conditioned medium. All cultures displayed similar levels of CD133 (a broadly
expressed stem cell marker). Two trials were conducted. (Middle Graph) Staining for satellite
cell markers show similar levels of CD106 between all cultures but a significant increase of M-
cadherin expression in the cells grown with conditioned medium. (Bottom Graph) Co-
expression of CD56/CD106 and M-cad/CD56 are similar among the different differentiation
conditions, however M-cad/CD106 expression is significantly lower in the Diff D12 culture than
in the HFM cultures. Very few triple positive cells were seen in any of the cultures, however the
highest average was in the HFM D12 differentiation. Middle and Bottom Graphs give the
average +/- SEM of three trials.

gPCR was used to analyze the expression of genes involved in myogenesis (Figure 4.5). PAX3 and
PAX7 were most highly expressed in HFM day 12 cultures and decreased as the differentiation length
increased. However, PAX7 expression was highly variable, especially in the HFM day 12 samples.
MEF2 expression did not differ substantially between the three time points; however it was
significantly lower in the Diff control. MYF5 expression increased from 12 to 16 days, but decreased
by 20 days of differentiation. It was not detected in the Diff control. In contrast, MYOD expression
was similar between the Diff control and HFM day 12 cultures. Like MYF5, expression peaked after 16

days of differentiation, but with only a slight drop after 20 days.
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Figure 4.5: Diff:CM Differentiation Analysis by gPCR. The highest level of expression for PAX3
and PAX7 occurred after 12 days of differentiation, after which point expression declined
steadily. MEF2 transcript levels were comparable among all three time points of the HFM
differentiation, though significantly lower in the Diff control. Expression of both MYF5 and
MYOD peaked at 16 days of differentiation, though MYOD expression remained high at day 20
while MYF5 had decreased.

4.2.3 Conditioned Medium from Various Myoblast Lines

Several attempts were made to improve the efficiency of myogenic differentiation in the conditioned
medium cultures. In addition to using the HFM cell line to condition medium, the FHM, $31/05 and
17/01 cell lines were used as well. Media conditioned from these other cells lines did not seem to
have a significant effect on the differentiation (Figures 4.6 and 4.7). While HFM medium seemed to
cause slightly higher CD56 expression in both trials, it did not show an increase in CD133+ cells or in
the CD56/CD133+ population suggesting that HFM medium did not increase neurogenesis relative to
the other conditioned media. None of the media substantially increased the expression of CD106 or

M-cadherin. All four media yielded substantially larger populations of CD56+/M-cad+ cells than
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CD56+/CD106+ cells. This was most likely due to the higher than normal expression of M-cadherin,

especially in the second trial.
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Figure 4.6: Flow Cytometry Analysis of Conditioned Medium from Various Myoblast Lines.
Representative dot plots from the flow cytometry analysis of the media conditioned using
various myoblast lines. A 12 day differentiation in 17/01 conditioned medium is shown, with
populations staining for CD56 and CD106 (first plot), CD133 (second plot), and M-cadherin
(third plot).
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Figure 4.7: Quantification of Flow Cytometry Analysis of Various Conditioned Media. The
effect of conditioning medium with various myoblast cell lines on myogenic differentiation.
Two foetal (HFM and FHM) and two adult (S31/05 and 17/01) cell lines were compared. (Top
Graph) There was not a substantial difference between the cell lines in terms of
neurogenesis markers, however HFM conditioned medium yielded the highest expression of
CD56 in both trials. However, this did not correlate to a lower level of myogenic markers.
(Bottom Graph) All cultures showed comparable levels of CD106 and M-cadherin, in addition
to the co-expression of CD56/CD106 and CD56/M-cad. Two trials were conducted for this
experiment.

4.2.4 Differentiation with Activin A and Conditioned Medium

Activin A, which had been shown to inhibit ectoderm formation in differentiating ES cell cultures
(19279133), was also added to the HFM conditioned medium in order to improve myogenic
differentiation. Concentrations of 10, 30, 50, and 100 ng/mL Activin A were found to decrease the

percent of cells expressing CD56 in a dose-dependent manner (Figures 4.8 and 4.9). However, it
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should be noted that only one trial was conducted for the concentrations of 10, 50, and 100 ng/mlL,
while a second trial for 30 ng/mL showed similar results (data not shown). In addition, increasing
levels of Activin A resulted in increased expression of CD133 (but a decrease in the CD56+/CD133+
population). Unfortunately, the presence of Activin A at any concentration did not produce an
increase in the expression of CD106 or M-cadherin. As a reference, cultures differentiated in HFM
conditioned medium without Activin A had higher levels of M-cadherin and the CD56+/M-cad+

population.
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Figure 4.8: Activin A Medium Differentiation Analysis by Flow Cytometry. Representative
dot plots from the flow cytometry analysis of the Activin A gradient differentiations. The
plots show the results from adding 30 ng/mL of Activin A to the differentiation medium. A
significant reduction in the number of cells stained for CD56 can be seen (first plot), while a
large increase in CD133 staining is observed (second plot).
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Figure 4.9: Activin A Medium Differentiation Analysis by Flow Cytometry (Quantification).
Effect of ectopic expression of Activin A (at concentrations of 10, 30, 50, and 100 ng/mL) on
myogenic differentiations. (Top Graph) Activin A was found to reduce CD56 expression and
increase CD133 expression in a dose-dependent manner when compared to the HFM D12
differentiation. The percent of cells expressing CD56 decreased by roughly two-thirds, while
the expression of CD133 increased by between 10-30%, when Activin A was added to the
differentiation medium. (Bottom Graph) Activin A had a much less noticeable effect on
CD106 and M-cadherin expression, however M-cadherin and CD56/M-cad expression were
higher in the HFM D12 than at any concentration of Activin A. Only one trial was conducted
for this experiment.

4.2.5 Mpyoblast Co-culture and BMP-4 Treatment

A recent study has shown that differentiating hES cells for a short time in serum free medium (SFM)
with 25 ng/mL BMP-4 enhances mesoderm formation, though primarily haematopoietic and cardiac

differentiation (Zhang, Li et al. 2008). To promote skeletal muscle differentiation using this strategy,
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hES cells were grown on a feeder layer of differentiated, mitomycin-C inactivated FHM cells. To
distinguish differentiating hES cells from feeder myoblasts, a line of H9 cells constitutively expressing
GFP (H9-GFP) was used. Differentiating hES cells were initially plated on myoblasts in hES medium,
then SFM, followed by increasing concentrations of conditioned medium with FBS. At all time points,
GFP+ cells could be distinguished from the inactivated myoblasts however by day 20 almost all the
cells observed were GFP+ (Figure 4.10). Four time points were tested: 12 days, 17 days, 21 days, and
28 days after plating. Cells were stained for CD56, M-cadherin, and CD106. Only GFP+ cells
(approximately 80% of the cultures) were considered when analyzing the flow cytometry data (Figure

4.11). These data were compared to the 12 day HFM differentiation.

Brightfield

Figure 4.10: H9 Cell GFP Staining during BMP4 Differentiation Experiment. H9-GFP cells
differentiating alongside inactivated myoblasts. At day 2, most GFP-positive cells are found
in the hES colony that settled after plating, with only a few cells beginning to migrate among
the myoblasts. By day 7, GFP-positive cells have further dispersed throughout the myoblast
networks and by day 20 the vast majority of the cells are GFP-positive.
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Figure 4.11: BMP4 Differentiation Analysis by Flow Cytometry. Representative dot plots
from the flow cytometry analysis of the BMP4 differentiation. Only GFP+ cells were used for
analysis and FACS (first plot). GFP+ cells also stained for CD56, CD106 (second plot), and M-
cadherin (third plot). Similar gates were used when sorting cells.

CD56 expression varied a good deal between time points, with the highest expression found at day
17 and the lowest at days 12 and 21 (Figure 4.12). Surprisingly, all time points expressed significantly
more CD56 than HFM D12. CD106 expression was by far the highest in the BMP4 D12 differentiation,
however a large degree of variability was observed for that time point: in each of the four trials it
was found that 1%, 5.6%, 27.9%, and 28% of the cells expressed CD106. Despite the abnormally high
percent of CD106 cells in the last two trials, the other markers tested on those days were not
significantly different from other trials or time points. Both the BMP4 D17 and D21 time points had a
similar level of CD106 expression as HFM D12, but the BMP4 D28 had significantly less. HFM D12 had
the highest level of M-cadherin, around 8%, compared to around 2% for all of the BMP4
differentiations. The co-expression of myogenic markers was also lower among the BMP4
differentiations: rarely more than 1% of the cells were positive for more than one marker, compared
to 1 to 3% for HFM D12. The exception was M-cad/CD106 expression in BMP4 D12 cultures, where

1.7% of the cells expressed both markers, very similar to what was seen for HFM D12.
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Figure 4.12: BMP4 Differentiation Analysis by Flow Cytometry (Quantification). Expression of GFP
in BMP4 differentiation cultures and satellite cell surface markers in GFP+ cells determined by
flow cytometry. GFP was expressed in approximately 80% of the cultures. The expression of
CD56 was compared between GFP+ BMP4 cells and HFM D12 cells. All of the BMP4 cultures
expressed higher levels of CD56 than the HFM D12 cells (Top Graph). The expression of CD106
was comparable between HFM D12 and BMP4 days 17 and 21, with higher levels seen in BMP4
day 12 and lower levels seen in BMP4 day 28. M-cadherin expression was consistently low in all
of the BMP4 cultures (Middle Graph). The co-expression of multiple markers was also observed
(Bottom Graph). HFM D12 cells were more likely to expression multiple markers than the BMP4
cultures, with the exception of the BMP4 day 12 M-cad/CD106+ population which was
comparable to the same population in the HFM D12 culture.
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Figure 4.13: BMP4 Differentiation Analysis by qPCR. qPCR analysis from GFP+ cells isolated
from the BMP4 differentiations showed an increase in the expression of myogenic genes
when compared to the HFM D12 differentiation. PAX3 and PAX7 were most highly expressed
on days 12 and 21 during the BMP4 differentiation, however these genes also showed a high
degree of variability between trials. In contrast, MEF2 was most highly expressed on day 17,
gradually decreasing to a minimum on day 20, with similar results observed of MYOD. MYF5
and MYOGENIN expression peaked at day 12, with significant levels also seen at day 21.

Flow cytometry analysis suggested that the HFM D12 differentiation was better at promoting
myogenesis than the BMP4 differentiations, but gPCR analysis suggested otherwise. GFP+ cells (only
those derived from the H9 GFP line) were isolated using FACS and tested for various myogenic genes
(Figure 4.13). While the results varied significantly at certain time points, both PAX3 and PAX7 were
more highly expressed in BMP4 cultures than the HFM culture. The two genes followed a similar
pattern during the BMP4 time course: days 12 and 21 expressed, on average, higher levels while days
17 and 28 expressed lower levels. However, due to the high degree of variability between repeats of
the same time point, the differences in expression were generally not statistically significant. MEF2

was more highly expressed in days 12, 17, and 21 of the BMP4 differentiation than in the HFM D12
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culture, with the highest expression occurring at day 17 and then decreasing until day 28. MYOD
expression was greatest on days 12 and 17 of the BMP4 differentiation, with lower levels seen on day
21 and in the HFM D12 culture. MYF5 expression was somewhat erratic during the BMP4 time
course, with the highest expression on day 12, the lowest on days 17 and 28, and a moderate level

on day 21.
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Figure 4.14: BMP4 Differentiation Analysis of Sorted Populations by qPCR. Several different
populations of BMP4 day 21 differentiated cells were sorted and analyzed by qPCR. They
were compared to the baseline BMP4 results for GFP+ cells. PAX3, PAX7, and MEF2
expression were highest in the GFP+ population with significant levels also seen in the M-
cad+ cells. However, MYOD expression was highest in the M-cad+ and CD56/106+
populations, with only a very small level seen in the GFP+ and the CD106+ cells.

In order to study isolated populations of putative muscle precursors after 21 days of differentiation,
cells which were positive for M-cadherin, CD106 (but CD56 negative), and CD56/CD106 were also
obtained using FACS and analyzed by qPCR. However, because of the low number of cells in each of
these populations, only two trials for each group were tested for the expression of myogenic genes
(Figure 4.14). MYOGENIN and MYF5 were excluded because not enough RNA was obtained from the
collected cells for reliable qPCR results. The different populations were compared to the average
expression obtained for the BMP4 D21 culture (GFP+). All three populations had lower levels of PAX3
and PAX7 expression than the GFP+ control. M-cad+ cells had the highest level of PAX3 expression
among the three populations sorted for myoblast markers. Similarly, the GFP+ population had the
highest expression of MEF2, with the second highest being the M-cad+ cells. However, MYOD was
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most highly expressed in M-cad+ cells and the CD56/CD106+ population, suggesting that both consist
of largely myogenic cells. The CD106+ population expressed low levels of all the genes tested,

confirming the need to include other markers (such as CD56) to isolate putative satellite cells.
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Figure 4.15: BMP4 Differentiation Immunostaining for Desmin _and M-Cadherin.
Immunostaining of BMP4 day 21 cultures showed GFP-positive cells expressing the
intermediate filament marker desmin (top row) as well as the skeletal muscle-specific
transmembrane protein M-cadherin (bottom row). Left panels show GFP expression in the
differentiation cultures, middle panels show desmin and M-cadherin positive cells stained
with AlexaFluor 594 and Rhodamin Red-X secondaries, respectively. The right panels show
the merged image along with DAPI staining.

BMP4 Day 21 Differentiation

Immunostaining was performed to confirm the presence of myogenic cells in the BMP4 D21 culture
(Figure 4.15). Cultures were stained for desmin, a marker of skeletal, cardiac, and smooth muscle
cells as well as M-cadherin, which is specific to skeletal muscle. GFP+ cells stained positively for both
markers, indicating that the cells originated from differentiated hES cells rather than from the
myoblast feeder layer. Desmin was expressed much more widely than M-cadherin, most likely due to
its presence in non-skeletal muscle cells (such as cardiac and smooth muscle). To further determine
the extent of myogenic differentiation, cells were fixed, permeabilized, and stained for MyoD before
being analyzed by flow cytometry (Figure 4.16). Of the GFP+ cells, it was found that approximately

0.7 % expressed MyoD.
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Figure 4.16: BMP4 Differentiation Analysis by Flow Cytometry for MyoD
Expression. Flow cytometry analysis of BMP4 day 21 cells stained for
MyoD. Unstained cells are seen on the left while MyoD-stained cells are
on the right. Approximately 0.7% of GFP+ cells were positive for MyoD.

4.3 Discussion

The initial experiments for this project involved differentiating hES cells as EBs, then disaggregating
and plating them for expansion. This route did not seem likely generate useable amounts of
myogenic cells and required a great deal of time and effort. To address these shortcomings, a
monolayer method of differentiation was designed which proved to be much more expandable than
using EBs. However, when allowed to differentiate without external forces, hES cells will
predominantly go down the ectoderm lineage. This tendency can be countered by the application of
appropriate growth factors, but these approaches can often be expensive and yield only marginally
more control of hES cell differentiation. As an alternative, this study primarily used medium

conditioned by human foetal myoblasts to promote differentiation of skeletal muscle.

A number of different approaches to isolating satellite cells from differentiating hES cells are
described above and summarized in Table 4. One consistent problem was finding a reliable surface
marker specific to satellite cells (or muscle progenitors) that can be used in FACS. In mice this has
been solved by using the SM/C-2.6 antibody. In humans, excellent antibodies are available for CD56
and CD106, two known markers of satellite cells; unfortunately these proteins are also expressed on
a number of other cell types produced during hES cell differentiation. In contrast, M-cadherin is
specific to the skeletal muscle lineage (though it is expressed throughout myoblast differentiation
and fusion), but an effective antibody for flow cytometry has not been produced. Instead, an M-
cadherin antibody was used in tandem with a labeling kit that was considerably less reliable than
antibodies developed directly for flow cytometry. Direct staining for intracellular markers, specifically
Pax7, also had significant drawbacks. The staining was much more variable on cells that had been
fixed and permeabilized compared to live cells, and the cells stained for Pax7 could not be used for

further analysis such as qPCR. A solution to this problem is discussed in Chapter 5.
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The initial differentiation used horse serum which, based on the high expression of CD56, was
unsuccessful in promoting mesoderm formation despite its use in several of the studies hoping to
generate skeletal muscle from ES cells. hES cells have a natural tendency to differentiate down the
ectoderm/neuronal lineage generating a large percentage of CD56+ cells. To determine the extent of
neuronal differentiation, either total CD56 expression or CD56/CD133 co-expression was examined.
It was assumed that the majority of CD56+ cells were neuronal, however CD133+ cells could be from
a non-ectoderm lineage, so as a marker of neural differentiation it was used in tandem with CD56
(Mizrak, Brittan et al. 2008). The initial differentiation strategy also switched to 100% conditioned
medium after 3, 5, or 7 days. Inspection of the differentiating cultures revealed a large number of

dead, floating cells which were attributed to the use of nutrient-poor conditioned medium.

Table 4: Summary of hES Cell Myogenic Differentiations

Differentiation Medium Duration Results
Components
es Diff medium 3, 5, or 7 days in Diff; Lots of cell death, very
Initial . . .
followed by CM then 7 or 10 days in CM inconsistent
Combination of 1:1 Some increase in the
HFM Diff:CM Diff:CM from HFM 12, 16, or 20 days expression of myogenic
cells markers, consistent
1:1 Diff:CM from a No significant difference
Myoblast . . . . o
. variety of different 12 days in medium conditioned
Diff:CM . . .
myoblast lines from different cell lines

1:1 Dif:CMwith 10 days in Diff:CM with No improvement in

Activin A i k
;itf'f‘_nch either 10, 30, 50, or Act A then 6 days in ZZ;rgees:ilgr:n\:;Leenr
) 1 LActA Diff:CM with Act A . .
00 ng/ml Act Iff:CM without Act compared to just Diff:CM
SFM w/ BMP4, SFM 1 day in SFM w/ BMP4; 2 Some improvement in
BMP4 Co- w/out BMP4, days in SFM w/out BMP4; myogenic gene
culture increasing conc. of 12, 17, 21, or 28 days inc. transcription over

HFM CM conc. of HFM CM Diff:CM

Abbreviations: CM — conditioned medium, HFM — human foetal myoblast, SFM — serum-free medium

When the cultures were grown using only 1:1 Diff:CM, cell viability and myogenic differentiation
improved. Adding the conditioned medium immediately upon beginning a differentiation was more
effective in reducing neurogenesis when compared to using non-conditioned medium containing
horse serum. In these experiments, the highest levels of CD56 were seen in the cultures grown only
in Diff medium, suggesting that the conditioned medium was positively affecting differentiation.
Further, all three HFM time points showed significantly higher expression of M-cadherin compared to
the Diff control, which averaged less than 4% of M-cad+ cells in the control culture compared to
greater than 8% for the HFM cultures. gPCR analysis further demonstrated the myogenic nature of
the differentiated cells. PAX3 and PAX7 are both expressed during the earliest stages of myogenesis

and were found to be expressed most highly after 12 days of differentiation. After these genes are
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expressed in the dermomyotome, the myogenic regulatory factors are turned on and myogenesis
proceeds. As expected, MYF5 and MYOD expression peaked after by day 16 when PAX3/7 was
decreasing. Furthermore, MYOD expression continued at high levels through day 20 while MYF5
expression decreased, similar to what is seen during embryonic development. One of the primary
advantages of this differentiation is its simplicity: it does not require numerous expensive growth
factors or a complicated, lengthy differentiation scheme in order to promote myogenesis. However,
the extent of myogenesis was not particularly high. In an attempt to improve this, several changes

were made to the differentiation strategy.

Several different myoblast cell lines were used to condition medium for differentiation. It was
originally hypothesized that if one line produced substantially more effective medium than another,
then it might be possible to isolate the factors which were important in promoting myogenic
differentiation. Unfortunately there were not significant differences between the different
conditioned media used. While HFM CM showed the highest level of CD56+ cells, the other three

media failed to increase the percentage of cells expressing myogenic markers.

Activin A is necessary for the formation of mesoderm (or, more specifically, mesendoderm) during ES
cell differentiation (Tada, Era et al. 2005; Sumi, Tsuneyoshi et al. 2008). It has also been shown to
help maintain ES cell pluripotency by controlling Nanog expression and thereby preventing
neuroectoderm formation (Vallier, Mendjan et al. 2009). While Activin A is generally used in
differentiation strategies to promote definitive endoderm formation (D'Amour, Agulnick et al. 2005;
Hashemi-Tabar, Orazizadeh et al. 2009), in hES cells this pathway was found to be dependent on the
suppression of phosphatidylinositol 3-kinase (McLean, D'Amour et al. 2007). It was therefore
hypothesized that Activin A treatment along with exposure to myoblast conditioned medium might
promote mesendoderm formation prior to mesoderm and skeletal muscle progenitor cell

differentiation.

When Activin A was added to the medium, a dramatic decrease in CD56 expression was observed,
consistent with reports that Activin A inhibits ectoderm differentiation. But once again, the decrease
in CD56 expression did not correspond to an increase in the expression of myoblast markers.
Interestingly, Activin A substantially increased the expression of CD133, a marker of many types of
stem cells including haematopoietic, neural, hepatic, prostate, and renal stem cells as well as
secretory and epithelial cells (Wu and Wu 2009). Because most studies using Activin A in the
differentiation medium are attempting to derive endoderm, it is tempting to speculate that the

increase in CD133 expression is the result of hepatic stem cell formation.

BMP-4 is widely used in ES cell differentiation strategies, predominantly to obtain mesoderm-derived

tissues and occasionally ectoderm derivatives. After the conversion of ES cells to mesendoderm,
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BMP-4 seems necessary for the subsequent production of mesoderm (Sumi, Tsuneyoshi et al. 2008).
It has been used to derive cardiomyocytes (Zhang, Li et al. 2008; Takei, Ichikawa et al. 2009),
endothelial lineage cells and vascular networks (Boyd, Dhara et al. 2007; Goldman, Feraud et al.
2009), haematopoietic cells (Wang, Cerdan et al. 2006; Zhang, Li et al. 2008), and paraxial mesoderm
derivatives (both chondrogenic and myogenic cells, (Nakayama, Duryea et al. 2003; Sakurai, Inami et
al. 2009)). It is also used to promote the differentiation of epidermal ectoderm (Yocum, Gratsch et al.
2008), keratinocytes (Coraux, Hilmi et al. 2003), and neural crest cells (Chiba, Kurokawa et al. 2005).
Finally, it has been shown that it does not prevent neuroepithelium formation during the initial
stages of ES cell differentiation (LaVaute, Yoo et al. 2009). Because of the expansive role BMP-4 has
in development, where in many cases subtle differences in concentration produce entirely different

tissues, it was important to include additional drivers of myogenic differentiation.

Using BMP-4 to promote mesoderm formation in addition to co-culture with FHM myoblasts and
myoblast conditioned medium produced conflicting results. Flow analysis of the myogenic markers
suggested that it did not improve myogenic differentiation. HFM D12 produced higher levels of M-
cadherin, lower overall levels of CD56, but higher levels of CD56/M-cad and CD56/CD106. However,
it should be noted that CD56 is also expressed in the developing chick somite (Duband, Dufour et al.
1987), which may explain why gPCR analysis of myogenic genes showed that most time points during
the BMP4 differentiations expressed higher levels of PAX3, PAX7, MYOD, MYF5, and MEF2 than the
HFM D12 differentiation. This disparity highlights the difficulty of finding good surface markers to use
for flow analysis and FACS.

After cells were sorted for M-cadherin, CD106, and CD56/CD106 expression and compared to GFP+
cells, it was evident that none of the surface markers consistently enriched all populations of
myogenic progenitors. While MYOD expression was increased in M-cad+ and CD56/CD106
populations, PAX3, PAX7, and MEF2 were higher in the GFP+ population. It is worth noting, however,
that the three genes expressed more highly in the GFP+ population have the broadest expression
during embryonic development: none are specific to skeletal myogenesis. The low level of MYOD
expression in the GFP+ population suggests that a substantial percent of the PAX3 and PAX7

expression may come from non-myogenic cell types.

The differentiation of ES cells towards mesoderm can be seen as a stepwise process of surface

marker expression (Figure 4.17). Mesendoderm readily forms in the presence of Activin A or Nodal.
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E-cadherin 1’ PDGFRa

E-cadherin

Figure 4.17: Surface Marker Expression during Mesoderm Differentiation. A schematic
showing the surface markers expressed during the formation of mesoderm-derived cell
types from embryonic stem cells. Note the interconversion between lateral and paraxial
mesoderm cells, the ability of CD73+ cells to become myogenic, and the lack of a
myoblast-specific surface marker. PDGFRo. — platelet derived growth factor receptor-
alpha, VEGFR - vascular endothelial growth factor receptor, Mesen. — mesenchymal

These cells are positive for the surface markers E-cadherin (E-cad) and PDGFRa. (Tada, Era et al.
2005). This population can then differentiate into definitive endoderm (E-cad+/PDGFRa-) in the
presence of Activin A and low serum or mesoderm (E-cad-/PDGFRa+) in the presence of BMP-4
(Sumi, Tsuneyoshi et al. 2008). Further, an unspecified mesoderm population has been described,
expressing vascular endothelial growth factor receptor (VEGFR, KDR) and PDGFRa.. From this
population, both VEGFR-/PDGFRo+ and VEGFR+/PDGFRa- cells can be formed and interconvert. They
are thought to represent paraxial and lateral plate mesoderm, respectively (Sakurai, Era et al. 2006).
Paraxial mesoderm then gives rise to the somites, which go on to form the sclerotome (mesenchymal
tissue), myotome, and dermatome. At this point, it has been shown in chick somite explants that high
concentrations of BMP-4 act to inhibit the expression of myogenic genes such as MYF5 and MYOD,
while Noggin (as a BMP-4 antagonist) has been shown to increase MYOD expression but reduce PAX3
expression. BMP-4 was also shown to increase the lateral plate mesoderm marker GATA4, important
for myocardial differentiation (Reshef, Maroto et al. 1998). Despite the inhibitory role of BMP-4 on
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myogenic differentiation, it remains important for the proper morphogenesis during early
myogenesis (Kahane, Ben-Yair et al. 2007). This is somewhat unexpected given the findings that
BMP-4 actively promotes paraxial mesoderm formation and the differentiation of chondrogenic and
myogenic precursor cells (Nakayama, Duryea et al. 2003; Sakurai, Inami et al. 2009). However, it
suggests that myogenic differentiation might be improved by adding Noggin after BMP-4, although

this technique has been shown to also increase production of cardiomyocytes (Zhang, Li et al. 2008).

Efficiently generating myogenic cells from a direct differentiation of hES cells has proven to be
difficult. While it is possible to conduct a step-wise process from pluripotent cells to mesendoderm
(using Activin A) and then to mesoderm (using BMP-4), the specification of paraxial mesoderm and
then myogenic cells has remained elusive. At best, some differentiation strategies can produce
myogenic cells as by-products in a heterogeneous population. For instance, it is likely that the CD73+
population isolated by Barberi et al. (Barberi, Willis et al. 2005; Barberi, Bradbury et al. 2007)
represents cells from the sclerotome, given their expression of mesenchymal markers and their
differentiation capacity. While they show that these cells can become myogenic under certain
culture conditions, ideally a similar strategy could isolate putative myotomal cells from the same
stage in development. However, because so much of early embryonic development depends on
subtle concentration gradients of growth factors from numerous sources in a three dimensional
embryo, more research is needed before controlled differentiation is proven to be an effective way

to derive myogenic stem cells.
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Chapter 5: Isolation of Differentiated hES Cells
Using a Pax7-GFP Reporter Construct

5.1 Introduction

Pax7 is expressed during the development of both the nervous and muscular systems. The first study
describing its expression pattern showed that it is found in the dorsal part of the neural tube; the
developing brain, specifically the mesencephalon; and the olfactory epithelium. It is also expressed in
the dermomyotome and later the myotome and developing skeletal muscle of the trunk and limbs.
However, Pax7 was absent from dermatome-derived tissues as well as cardiac and smooth muscle
(Jostes, Walther et al. 1990). More specifically, Pax7 is expressed in the central region of the
dermomyotome, while Pax3 is expressed in the epaxial and hypaxial regions. Pax3 is also expressed
in the cells migrating from the somites to establish limb musculature, while Pax7 is not expressed in
the limb until muscles have began to form. Pax7 is expressed in the branchial arches, though Pax3 is
not, and later in the facial muscles. However, muscles from the developing limb and face do not

seem to be affected when Pax7 is absent (Relaix, Rocancourt et al. 2004).

Initial studies of Pax7-/- mice reported that while muscle organization and development were
unaffected, postnatal growth of skeletal muscle was severely restricted. This was attributed to the
complete absence of satellite cells in null mice. Additionally, side population stem cells isolated from
Pax7-/- muscle were more inclined to form haematopoietic colonies than those from wildtype
muscle, suggesting that Pax7 is important in adult muscle determination (Seale, Sabourin et al. 2000).
However, later reports claim that Pax7-/- mice do not have an obvious muscle phenotype beyond a
significantly reduced bodyweight. The small percentage of pups which survived to adulthood was
further examined, and it was found that muscle stem cells were still active in two month old mice.
However, while satellite cells could be identified in Pax7-/- mice, it was at a much lower number than
heterozygous littermates. The number of satellite cells was drastically reduced as the mice aged and,
compared to heterozygous cells, isolated satellite cells from null mice also produced fewer MyoD+
and desmin+ cells when cultured. Pax7-/- mice also showed a reduced capacity to regenerate

damaged muscle in vivo (Oustanina, Hause et al. 2004).

More recently, Lepper et al. have further examined the role of Pax7 during adult muscle regeneration
using conditional gene inactivation in transgenic mice. In adult mice, inactivation of the Pax7 gene
did not cause a reduction in satellite cell number or a decrease in expression of typical surface

markers such as M-cadherin. Upon muscle injury, these Pax7-/- satellite cells were capable of
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normally contributing to muscle regeneration as well as proliferating and reoccupying the satellite
cell niche. In doing so, they did not lose their myogenic capacity. Thus, in the adult, Pax7 is not
necessary for satellite cell survival, proliferation, differentiation, or return to quiescence. In contrast,
in juvenile mice (7-21 days old), Pax7 inactivation did noticeably decrease regeneration and
prevented the normal return of satellite cells to a quiescent state in the satellite cell niche. It was
concluded that during early post-natal development, satellite cells undergo a fundamental change
whereby Pax7 is no longer necessary for their maintenance and that embryonic myoblasts have

fundamentally different genetic requirements than adult satellite cells (Lepper, Conway et al. 2009).

Pax7 is found in the vast majority of satellite cells, defined by their anatomical position (Reimann,
Brimah et al. 2004). Quiescent satellite cells express Pax7 but not markers such as MyoD or
myogenin. However, when satellite cells are activated and begin to proliferate, the vast majority of
cells co-expression Pax7 and MyoD. Transcriptional activity of Pax7 is observed in these activated
cells. As myoblasts begin to differentiate and fuse, Pax7 is down-regulated and myogenin begins to
be expressed. However, a population of Pax7+/MyoD- cells arises from the population of
Pax7+/MyoD+ myoblasts. These cells become quiescent and associate with newly formed myofibres

(zammit, Golding et al. 2004; Zammit, Relaix et al. 2006).

Pax7 is ideally suited to be a satellite cell marker because of its ubiquity and specificity: it is
expressed in nearly all satellite cells and is down-regulated once myoblasts begin to differentiate.
Consequently, Pax7 is often used to identify satellite cells in muscle tissue (Allouh, Yablonka-Reuveni
et al. 2008; Kirkpatrick, Allouh et al. 2008) and has recently been employed to isolate satellite cells by
FACS (Bosnakovski, Xu et al. 2008). However, for the purpose of isolating putative satellite cells from
differentiating hES cells, it should be noted that Pax7 is not a perfect marker. Most adult studies
focus on dissected muscle tissue with relatively few non-myogenic cells. Unfortunately, Pax7 is more
widely expressed during embryonic development than in the adult, allowing for contamination of
additional cell types if other markers are not used. Despite the fact that Pax7 expression in
differentiating cultures of hES cells does not guarantee the presence of myogenic tissue, it remains

one of the most selective markers of satellite cells.

Chapter 5 Aims:

To develop a genetic construct which, when transfected into hES cells, would express GFP under the
control of the PAX7 gene promoter

To test the Pax7P-GFP construct in myoblasts known to express PAX7

To develop a refined protocol for the efficient transfection of the Pax7P-GFP construct into
undifferentiated hES cells using Nucleofection technology
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To sort cells differentiated using the strategies discussed in Chapter 4 based on their expression of

GFP and to analyze these cells using gPCR

5.2 Results

5.2.1 Creation of the Pax7P-GFP Construct

A 1.5 kilobase region of the PAX7 promoter (called Pax7P) was isolated by PCR and cloned into the
pPEGFP-1 vector (Figure 5.1).

PAX7

Pax7P
B

Pax7P-pEGFP-1 eGFP

Figure 5.1: Generation of the Pax7P-GFP Construct. (A) Schematic of the PAX7 gene and
the region of the promoter, marked in green, isolated to drive GFP expression in the
PEGFP-1 vector. The enzymes Sac | and Pst | were used to excise the promoter from the
purified PCR product. As a comparison, the region of the promoter used in Syagailo et al.
is marked in red (Syagailo, Okladnova et al. 2002). (B) The region of the PAX7 promoter
(green) ligated into the pEGFP-1 vector. The promoter drives eGFP (orange) expression
while an SV40 promoter drives expression of the kanamycin/neomycin resistance gene
(red).

In a previous attempt to generate such a construct, the region of the promoter used in Syagailo et al.

was found not to drive GFP expression in differentiating hES cells. As a result, for this study, a
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broader region was selected. While many constructs have a high likelihood of being epigenetically

silenced once transfected into hES cells (Stewart, Yang et al. 2008), previous experience had shown

that the pEGFP-1 vector was somewhat resistant to this tendency, thus it was chosen as the vector to

enable GFP expression. Once the construct was generated, it was sequenced around the insertion

site to ensure the proper position of the PAX7 promoter in the vector (Figure 5.2). It was found that

the regions sequenced both before and after the insertion correctly corresponded to the theoretical

sequence determined using the vector sequence and that of the PAX7 promoter.

Figure 5.2: Sequencing the Pax7P-GFP_ Construct. Overlap between the sequencing
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results from the forward primer 5’-GCTCACATGTTCTTTCCTGCG-3’ (Fwd) and the reverse
compliment of the reverse primer 5’-CATGGCGGACTTGAAGAAGTC-3’ (Rev) aligned with
theoretical sequence of the PAX7 promoter ligated into the pEGFP-1 vector (Pax7P).
Highlighted areas show the restriction sites for Sac | (blue) and Pst | (red) used for the
insertion. Sequence overlap on both sides of the insertion sites demonstrates the
successful ligation.

In order to test the vector’s ability to drive GFP expression when the PAX7 gene is active, the Pax7P-

GFP construct was nucleofected into adult human myoblasts. After several days on antibiotic

selection, the cells were harvested and analyzed by flow cytometry (Figure 5.3). Approximately 5% of

the cells showed substantial GFP expression, consistent with Pax7 immunostaining results for the

same cell line (J. Morgan, unpublished). This strongly suggested that GFP expression faithfully

represented PAX7 gene activity.
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Figure 5.3: Pax7P-GFP Construct Validation by Flow Cytometry. GFP expression in non-
transfected (left) and Pax7P-GFP transfected (right) adult human myoblasts analyzed by
flow cytometry. Approximately 5% of the cells are GFP+ in the transfected myoblasts.

5.2.2 Generation of the H9 Pax7-GFP Cell Line

A new protocol was developed for the nucleofection of H9 hES cells with the Pax7P-GFP construct
based on the method described by Hohenstein et al. The detailed protocol is described in Chapter 2
Materials and Methods. Briefly, single cells were harvested by trypsinization and resuspended in a
small amount of mES nucleofection solution, incubated for 5 minutes at 37°C, and 3 ug of the
linearized construct was added. The cells were electroporated in a Nucleofector and plated at very
high density (one 6-well dish of hES cells were harvested and plated into one well of a 6-well dish)
onto MEFs with hES medium containing 10 uM ROCK inhibitor (ROCKi, Y-27632). ROCKi was kept in
the medium for 96 hours post-transfection, at which point increasing concentrations of neomycin
were added over the following 6 days. The cells were then maintained by passaging normally, with
increasing levels of neomycin added after each passage to ensure that only cells that had accepted

the Pax7P-GFP construct survived.
5.2.3 Differentiation of H9 Pax7-GFP Cells

H9 Pax7-GFP cells were differentiated in HFM conditioned medium (Diff:CM) for 6, 12, 16, and 20
days to ensure that the new cell line generated comparable results after myogenic differentiation
when compared to non-genetically modified H9s. An earlier (6 day) time point was included to better
monitor the time at which Pax7 expression was highest. Once again, cells were stained for myogenic

surface markers and analyzed by flow cytometry (Figure 5.4).

84



Chapter 5

Pax7-GFP HFM D16 Pax7-GFP HFM D16 Pax7-GFP HFM D16

<% L% <%
7 = s

@'z e @2
@ o~ ]

8”:: g‘”a 8”0
- g > -
%NG 8“1: ENG
> Jae o~ X =

w0t w0 w0t 10® w0 w0® w0t 10® w0 1w0® ot 10®
GFP 1-488/520/20-A CD106 4-638/670/14-A CD34 1-488/710/50-A
Pax?-GFP HFM D16 Pax7-GFP HFM D16 Pax7-GFP HFM D16 _

<%Bq - I <%
W S CDS6 |  cpseicD10p ©

%vc gvc 3 y %vc
Be g a B
[u ] 0

8% B, Ber,
- T 8 i - 7
Eﬂa BNQ Euc
=~ 8= A

w0 w0t 1w0®

0> w0 w0t 1w
GFP 1-488/520/20-A CD106 4-638/670/14-A CD34 1-488/710/50-A

Figure 5.4: Differentiated Pax7GFP Cells Analyzed by Flow Cytometry. Representative
dot plots from the flow cytometry analysis of Pax7-GFP HFM differentiation cultures are
shown. Unstained cells were used as a control (top row). Cells were analyzed for GFP
expression (bottom left) and stained for CD56, CD106 (bottom middle), and M-cadherin
(bottom right). GFP was more widely expressed than anticipated, while the surface
markers showed similar levels of expression as previous HFM differentiations.

GFP was much more highly expressed than anticipated. As the differentiation progressed, GFP
expression decreased from around 80% of the total live cell population at day 6 to 55% at day 20
(Figure 5.5). In addition, the normal expression of the myogenic markers (CD56, CD106, and M-
cadherin) was examined alone and with GFP to determine which populations expressed the highest
levels of Pax7. Surprisingly, GFP was most highly expressed in CD106+ cells, with on average 86% +/-
5% of the cells (at all time points) positive for both markers. In contrast, only 54% +/- 10% of CD56+
cells also expressed GFP, with co-expression decreasing from 68% at day 6 to 44% at day 20. M-
cadherin+ cells showed the lowest percent of GFP co-expression (30% +/- 19%), again with co-
expression decreasing as differentiation time increased. The Pax7-GFP line was comparable to
normal H9 cells when differentiated in HFM CM, although with a slightly higher level of CD106 and

slightly lower levels of CD56 and M-cadherin expression.
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Figure 5.5: Expression Dynamics of Differentiated Pax7GFP Cells. For all four time points,
the total GFP expression (top graph) and the expression of CD56, CD106, and M-
cadherin as well as their co-expression with GFP (middle graph) are shown. The bottom
graph illustrates the percent of GFP+ cells in each of the populations of CD56+, CD106+,
and M-cadherin+ cells. The CD106 population has the highest percentage of GFP+ cells
followed by the CD56 and M-cadherin populations. In all three populations, GFP
expression decreases as the differentiation progressed to 20 days.
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The co-expression of satellite cell markers with and without GFP expression was also recorded
(Figure 5.6). The CD56/CD106 population had the highest percentage of GFP+ cells (65% +/- 17%)
followed by the CD106/M-cad population (56% +/- 11%). As noted above, the relative expression of

GFP in these populations tended to decrease as differentiation continued.
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Figure 5.6: Analysis of Marker Co-expression in Differentiated Pax7GFP Cells. Comparison of
different populations positive for multiple satellite cell markers and GFP (Top and Middle
Graphs). Each of the four time points is shown for a given population and then compared to
the same population also expressing GFP. The populations containing CD106 (CD56/CD106+
and CD106/M-cad+) tended to have the highest percentage of GFP+ cells (Bottom Graph). GFP
expression also decreased in each of the populations as differentiation progressed.
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In addition to flow cytometry analysis, differentiation of the H9 Pax7-GFP line was also analyzed by
gPCR (Figure 5.7). Because it had previously been shown that using conditioned medium enhanced
myogenic differentiation when compared to generic differentiation medium, in this experiment
undifferentiated H9 cells were used as a control. gPCR analysis of differentiated cultures showed that
BRACHYURY expression was highest at day 6, with only very low levels expressed at any other time
point. PAX3, MYF5, and MYOD expression all peaked at day 12 and then began to drop steadily from
days 16 to 20, with unexpectedly low levels of all three markers at day 20. These data strongly
suggested that the number of myogenic cells was highest around day 12, thus it was the day used for
sorting specific populations of potential satellite cells. However, this is somewhat different from
previous qPCR results from HFM differentiations which showed that MYOD and MYF5 expression was
highest at day 16.
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Figure 5.7: Pax7GFP Cell Differentiation Analysis by gPCR. qPCR analysis of the Pax7-GFP
HFM differentiations show that the expression of BRACHYURY peaks at day 6 and is
expressed only at very low levels at other time points and in the undifferentiated H9
control cells. In contrast, myogenic genes such as PAX3, MYF5, and MYOD are all most
highly expressed after 12 days of differentiation and then begin to decrease until day 20.

5.2.4  FACS of Differentiated H9 Pax7-GFP Cells

Several of the populations were sorted to determine if the Pax7-GFP construct improved the
isolation of myogenic cells. Cells which were negative for GFP and all surface markers were used as a
control and a general population of GFP+ cells was also sorted, regardless of their surface marker

expression. Finally, two potential myoblast populations, the CD56/GFP dual positive and CD56/M-
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cad/GFP triple positive cells, were isolated. The numbers of cells sorted for each population are given
in Table 3. The expression of four genes was examined by qPCR (Figure 5.8): NESTIN, indicating
neurogenic cells, PAX3 (expressed during both neurogenesis and myogenesis), MYF5, and MYOD.
Unfortunately, the very small number of CD56/M-cad/GFP cells prevented a complete qPCR analysis
and only NESTIN and MYOD were tested. Negative cells expressed relatively low levels of all four
genes, with no detectable MYF5 expression. GFP+ cells expressed the highest levels of PAX3 and
MYF5, but also NESTIN, suggesting that while it contained myogenic cells, it was a mixed population
with a substantial amount of neuronal cells, which may also be contributing to the high expression of
PAX3. MYOD was undetectable in this population. In contrast, the CD56/GFP cells expressed low
levels of NESTIN, but moderate levels of PAX3, MYF5, and MYOD indicating a substantially enriched
myogenic population. The highest expression of MYOD was seen in the CD56/M-cad/GFP population,
which also had a very low level of NESTIN. However, because of the limited number of cells that

could be obtained by FACS, this population seems unpromising as a source of potential satellite cells.
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Figure 5.8: Pax7GPF Cell Differentiation Analysis of Sorted Populations by gPCR. qPCR
analysis of sorted populations for NESTIN, PAX3, MYF5, and MYOD expression. NESTIN is
most highly expressed in the GFP+ population, indicating that it has a significant percent
of neurogenic cells. PAX3 and MYF5 expression are also highest in the GFP+ population,
suggesting that it also contains myogenic cells, although no MYOD transcript was
detectable. In contrast, the CD56/GFP+ population expresses low levels of NESTIN but
moderate levels of PAX3, MYF5, and MYOD. The CD56/M-cad/GFP+ population did not
contain enough cells to test for PAX3 and MYF5, but it did express the highest level of
MYOD in all four populations.
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Two populations were sorted for Affymetrix microarray analysis: negatives cells as a control and the
CD56/GFP positive cells. The results are presented as the extent of up- or down-regulation of various
genes in the positive (CD56+/GFP+) population as compared to the negative (CD56-/GFP-) cells
(Figure 5.9). Surprisingly, very few myogenic genes were found to be up-regulated in the CD56/GFP
cells: MYF5, FOXK1, MYOD, MYOGENIN, M-CADHERIN, and PAX7 all had comparable levels of
expression between the two populations. Two genes expressed in myogenic cells were up-regulated
in the CD56/GFP population: CD56 and PAX3. However, both of these are also expressed during
neurogenesis, as well as other genes found to be at least 10-fold up-regulated such as PAX6, ENCI,
LIX1, LGI1, CDH6, MAP2, and NOGGIN. These genes were also found to be at least 5-fold up-
regulated when the CD56+/GFP+ population was compared to microarray results from
undifferentiated H9 cells (obtained from S. Yung, unpublished data). Most significantly, the fact that
GFP+ cells did not show an increase in PAX7 expression when compared to GFP- cells implied that

there was a fundamental flaw in the H9 Pax7-GFP cell line.
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Figure 5.9: Microarray Analysis of Sorted Differentiated Pax7GFP Cells. Microarray
results were chosen for selected genes expressed during myogenesis and
neuroectoderm differentiation. A positive sloped line indicates that the gene is
more highly expressed in the CD56/GFP+ population than the Negative population.
Most genes marking myogenic differentiation (MYF5, MYOD, MYOGENIN) or
satellite cells (PAX7, FOXK1, M-CADHERIN) were not more highly expressed in the
CD56/GFP+ population than the Negative control cells (top three rows). PAX3 did
show an increase in expression, however, like PAX6 and many of the other up-
regulated genes, it is expressed during neuroectoderm formation (bottom row).
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To address the inconsistency found between Pax7 expression and GFP expression, differentiated
Pax7-GFP cells were sorted into three populations: GFP-negative cells, GFP-positive cells, and GFP-
highly positive cells (Figure 5.10). The populations were then analyzed by gPCR for PAX7 gene
expression. Ironically, the GFP-negative population displayed the highest relative expression of PAX7.
The GFP+ and GFP++ cells showed only 50-60% of the level of expression of GFP-negative cells. This

further confirmed that the Pax7-GFP construct was not accurately representing PAX7 gene activity.
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Figure 5.10: Evaluation of Pax7 Expression in Pax7GFP Cells. (A) FACS analysis
of different populations of GFP negative and positive cells. Left Graph shows
the range of GFP expression while the right graph shows the gates used to sort
negative (Blue), moderately positive (Green), and brightly positive (Purple)
cells. (B) gPCR analysis of PAX7 in the sorted populations. GFP-negative cells
showed the highest expression of PAX7 while GFP+ and GFP++ cells expressed
similarly low levels.

5.3 Discussion

In order to assess PAX7 gene activity by flow cytometry of live cells, a genetic construct was created
where GFP expression was driven by the PAX7 promoter. This construct was then nucleofected into
hES cells which, after selection, underwent the myogenic differentiation scheme described in
Chapter 4. Differentiated cells were analyzed and sorted based on their expression of GFP, CD56, and
M-cadherin. Unfortunately, it was ultimately found that the construct did not accurately reflect PAX7

expression.
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The first several attempts to generate the H9 Pax7-GFP line used an earlier protocol and were
unsuccessful, largely due to the lack of colony survival after nucleofection. However, the first attempt
at the new method generated colonies that were robust enough to survive continued selection under
neomycin and a subsequent trial confirmed these results. The new protocol was more efficient both
in terms of the number of cells which up-took the construct and in improved survivability and
recovery of the cells after nucleofection and under selection. The procedure did not seem to have an
adverse effect on the cells’ ability to differentiate, as the Pax7-GFP line showed similar surface

marker expression as normal H9s when subjected to the myogenic differentiation strategy.

GFP expression in myoblasts seemed to validate the construct, as the percentage of GFP+ cells was
very close to what was predicted from Pax7 immunostaining. The first warning that GFP expression
did not correlate to Pax7 expression was the high number of GFP+ cells observed during the initial
flow cytometry analysis. While it seemed unlikely that Pax7 would be present in 80% of the cells at
day 6 of the differentiation, it was not entirely improbable because Pax7 is expressed during neural
development in addition to somitogenesis and myogenesis. It was also surprising that the CD106+
population expressed the highest percentage of GFP+ cells. CD106 also labels endothelial cells,
smooth muscle cells, and certain types of stem cells, none of which should express Pax7. Thus the
only subset of cells within the CD106+ population that should co-express Pax7 is satellite cells. In
contrast, all M-cadherin+ cells ought to be myogenic, yet a much smaller proportion of this
population co-expressed Pax7. Additionally, the populations of cells which co-expressed multiple
markers would be expected to express higher levels of Pax7 because they are more likely to contain

bona fide satellite cells. However, none of these expressed more GFP than the CD106+ population.

Despite the evidence suggesting the Pax7-GFP construct may not have been faithfully representing
PAX7 gene activity, it was crucial to examine isolated populations obtained by FACS. While CD106
showed a higher percentage of GFP+ cells, a sorted CD106+ population from BMP4 differentiated
cells only expressed very low levels of myogenic transcripts (discussed in Chapter 4). Further, CD56
was found to be more highly expressed in foetal myoblasts (discussed in Chapter 3) and was thought
to have a more reliable antibody for sorting. It is also expressed in both quiescent and activated
satellite cells, unlike CD106 (Fukada, Uezumi et al. 2007). Thus the initial populations sorted included
negative cells, GFP+ (CD56-/M-cad-) cells, CD56+/GFP+ cells, and CD56+/M-cad+/GFP+ cells. The
gPCR analysis generated substantially different results from the microarray. When analyzed by gPCR,
myogenic genes such as PAX3, MYF5, and MYOD were found to be more highly expressed in the
CD56/GFP population than the negative population but of these, only PAX3 was similarly upregulated
in the microarray. The microarray results suggested that the CD56/GFP population was largely
ectodermal and essentially devoid of any increase in myogenic gene expression when compared to

negative or hES cells. This was partially supported by the presence of NESTIN transcript in the

93



Chapter 5

CD56/GFP population analyzed by gPCR, but the difference in myogenic gene expression between
the two methods of comparison remains irreconcilable. The neurogenic nature of the CD56/GFP
population highlights the importance of including additional surface markers such as CD106 or M-
cadherin when isolating potential satellite cells and, correspondingly, the need for more efficient

methods of myogenic differentiation.

One significant restraint during the generation of the H9 Pax7-GFP cell line was the persistent
inability to find PAX7 primers that worked with the qPCR conditions used in these experiments.
Working primers were only generated after the microarray had been performed, when it became
clearer that GFP expression did not correspond to PAX7 activity. With these, it was possible to
conclusively show the non-specificity of the Pax7-GFP construct. Unfortunately, the nature of the
construct’s expression remained elusive. The primary problem when introducing constructs into hES
cells by transfection is their eventual silencing, whereas the Pax7-GFP construct was overactive.
However, it is difficult to attribute this activity to general “leakiness,” primarily because the construct
was not consistently expressed among different populations of differentiated cells (for instance,
CD106+ cells were much more likely to express GFP than M-cadherin+ cells). It is also worth noting
that the insertion was random and varied since the Pax7-GFP cell line was not generated by selecting
clones but by continued antibiotic selection. Therefore anomalies in GFP expression should not be
attributed to the construct insertion site. It is therefore tempting to speculate that the region of the
PAX7 promoter cloned into the vector acted as a functional promoter, but not in the same manner as
the endogenous PAX7 promoter and, by chance, was significantly more active in CD106+ cells than in
the other populations examined. This could also explain the observation that GFP expression tended
to decrease over time. One possible reason for the decreased expression could be that the construct
was lost from dividing cells; however constant antibiotic selection during differentiation should have
prevented this. Another possibility is that as cells differentiated they began to silence the promoter
in the construct, with the notable exception of CD106+ cells, which continued to express high levels

of GFP even after 20 days of differentiation.
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Chapter 6: Myogenic Differentiation of iPS
Cells and Generation of a DMD iPS Cell Line

6.1 Introduction

The induction of pluripotency in differentiated cells by the introduction of a small set of genes
expressed in ES cells was first achieved by Takahashi and Yamanaka in 2006. They initially tested 24
factors believed to be important in maintaining pluripotency by transducing them into MEFs
containing a neomycin resistance gene knocked into one of the exons of the mES cell-specific gene
Fbx15. Any cells that began to reprogram (and express Fbx15) would become resistant to neomycin.
Individually, none of the factors were enough to generate resistant clones, however when all 24
factors were transduced neomycin-resistant colonies appeared, some of which exhibited mES cell-
like morphology and expressed ES cell markers. After testing which of the 24 factors could be
excluded without affecting neomycin-resistant colony formation, four factors were found to be
sufficient for the generation of induced pluripotent stem (iPS) cells: Oct4, Sox2, c-Myc, and Klf4. The
cells were found to be capable of producing teratomas containing cells from all three germ layers
when injected into immunocompromised mice and could generate chimeric embryos after being
introduced to blastocysts by microinjection, demonstrating their pluripotency (Takahashi and

Yamanaka 2006).

The same four factors were later proven to be capable of generating iPS cells from adult human
dermal fibroblasts by retroviral transduction. The iPS cells were tested by immunocytochemistry and
found to express hES cell surface markers (SSEA3/4, TRA-1-60/81) and NANOG. Western blot and
gPCR analysis showed they expressed OCT4, SOX2, NANOG, REX1, TERT, KLF4, and MYC among other
ES cell markers. The iPS cells were also capable of differentiating into cells from all three germ layers
in vitro and in teratomas (Takahashi, Tanabe et al. 2007). Similar results were obtained when human
foetal and foreskin fibroblasts were transduced using lentiviral vectors with OCT4, LIN28, NANOG,
and SOX2 (Yu, Vodyanik et al. 2007), demonstrating a degree of flexibility in the viral vector, genes,
and cell types transduced. Due to the high therapeutic relevance of iPS cell generation, a great deal
of effort was spent exploring clinically acceptable methods of reprogramming. One of the main
concerns was the stable integration of viral constructs containing oncogenes such as Myc. Indeed, in
a study comparing tumorigenesis in chimeric mice containing iPS cells generated with and without
Myc, those with Myc had a much higher incidence of tumour-associated death (Nakagawa, Koyanagi

et al. 2008). Since the initial efforts to generate and characterize iPS cells with integrating retro- and
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lentivirus vectors, other studies have also achieved reprogramming using inducible lentivirus vectors
(Stadtfeld, Maherali et al. 2008), non-integrating adenovirus vectors (Stadtfeld, Nagaya et al. 2008),
transient transfection (Okita, Nakagawa et al. 2008), non-integrating episomal vectors (Yu, Hu et al.
2009), transposon-based systems (Yusa, Rad et al. 2009), and ectopic recombinant protein treatment

(Zhou, Wu et al. 2009) among others.

Perhaps the most promising and advantageous feature of iPS cell technology is the ability to
generate what are, in effect, patient-specific ES cell lines. In the relatively short time since the first
iPS cells were generated by Takahashi and Yamanaka, a number of studies have sought to capitalize
on the possible therapeutic uses of iPS cells. In 2007, Hanna et al. generated several iPS lines from
mice and showed that the reprogrammed cells were as capable of haematopoietic differentiation as
mES cells and could achieve haematopoietic reconstitution of irradiated mice. They then repeated
this work using cells from a mouse model of sickle cell anemia. Once iPS cells had been generated,
they corrected the sickle cell mutation using a gene-targeting construct containing the wild-type
allele and were able to treat the sickle cell defect in affected mice (Hanna, Wernig et al. 2007).
Wernig et al. showed that iPS cells were capable of neuronal differentiation and, more specifically,
could form dopamine neurons under the same conditions used to differentiate mES cells. Neural
precursors derived from iPS cells were transplanted into developing mouse embryos and could
migrate extensively and differentiate into functional neurons in vivo. More significantly,
improvements were seen in a rat model of Parkinson’s disease when iPS-derived dopamine neurons

were injected into the midbrain (Wernig, Zhao et al. 2008).

While these studies are promising, there was some question as to whether iPS cells could be
efficiently generated from elderly human patients with various diseases. Dimos et al. showed that
dermal fibroblasts from a skin biopsy of an 82 year old patient with amyotrophic lateral sclerosis
(ALS) could be reprogrammed using retroviral transduction of OCT4, SOX2, KLF4, and MYC. They
went on to show that these cells could differentiate into motor neurons and glia, two cells types
affected by and important to the progression of ALS (Dimos, Rodolfa et al. 2008). In addition to the
direct therapeutic relevance of iPS cell generation, the possibility of modeling the pathology of
certain diseases in vitro also exists. Ebert et al. were able to obtain iPS cells from a young patient
with spinal muscular atrophy (SMA), a disease which leads to the degeneration of certain motor
neurons. While animal models of SMA exist, they lack one of the genes thought to be important in
disease progression. Using the iPS cells generated from an SMA patient, this study showed that they
could be differentiated to motor neurons that were phenotypically different than wild-type cells and
responded to drugs designed to treat SMA (Ebert, Yu et al. 2009). Further along these lines, Park et
al. developed iPS cells from a number of patients with various diseases including adenosine

deaminase deficiency-related severe combined immunodeficiency (ADA-SCID), Shwachman-Bodian-
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Diamond syndrome, Gaucher disease type Ill, Duchenne and Becker muscular dystrophy, Parkinson’s
disease, Huntington’s disease, juvenile-onset type 1 diabetes mellitus, Down syndrome, and a carrier

of Lesch-Nyhan syndrome (Park, Arora et al. 2008).

The next step in the progression towards therapeutically relevant iPS cells is to generate cells from a
patient with a genetic defect and then correct the mutation. Fanconi anemia (FA) is the most
common of the inherited bone marrow failures and is characterized by a decline in haematopoietic
stem cells and limited production of peripheral blood cells. Fibroblasts from FA patients were
obtained and their mutation was corrected. The cells were then used to generate iPS cells that were
capable of normal haematopoietic differentiation and appeared to be disease free when compared
to differentiated wild-type iPS or hES cells and healthy mononuclear bone marrow cells (Raya,
Rodriguez-Piza et al. 2009). Very recently, a similar approach was taken to generate corrected iPS
cells from a DMD patient. The genetic defect (a deletion of exons 4-43 of the DYSTROPHIN gene) was
corrected by transferring a human artificial chromosome (HAC) containing the full length
DYSTROPHIN gene into the fibroblasts using microcell-mediated chromosome transfer. The
fibroblasts were then reprogrammed and injected into SCID mice to test for teratoma formation.
Muscle tissue expressing human dystrophin was detected in the teratomas, demonstrating that the
HAC was capable of restoring dystrophin expression and that the iPS cells were capable of myogenic

differentiation (Kazuki, Hiratsuka et al. 2010).

While this work proves that mutated genes in cells from patients with DMD can be corrected prior to
iPS generation, much more work remains to be done. DMD iPS cells need to be subjected to
myogenic differentiation (as opposed to incidental muscle tissue formation from teratomas) and
studied both in vitro and in transplantation models in vivo. Their behavior should also be compared

to non-disease iPS cells and hES cells.

Chapter 6 Aims:

To test the strategy for myogenic differentiation developed in Chapter 4 using previously generated
iPS cells and compare them with differentiated hES cells

To generate a line of iPS cells using fibroblasts obtained from a patient with Duchenne muscular
dystrophy
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6.2 _Results

6.2.1 Myogenic Differentiation of iPS Cells

In order to test the ability of the previously established iPS cell line (iPS clone IV, Figure 6.1) to

undergo myogenic differentiation, iPS cells were differentiated in HFM Diff:CM for 12, 16, and 20

days and compared to H9 cells differentiated under the same conditions described in Chapter 4.

Figure 6.1: iPS Clone IV Cells. A colony of iPS Clone IV cells on MEF feeders at (A) 10x, (B) 20x,

and (C) 40x magnification showing hES cell-like morphology and colony structure.
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Figure 6.2: Myogenic iPS Differentiation Analysis by Flow Cytometry. Flow cytometry

analysis of iPS clone IV cells differentiated in Diff:CM. Data for day 20 of the
differentiation is representative of all time points. (Top Row) Unstained cells were
used as a control for autofluorescence. (Bottom Row) Cells were stained for CD56 and
CD106 (Left Plot) as well as M-cadherin (Right Plot). CD106 expression was surprisingly
high, while expression M-cadherin was significantly lower than hES cell

differentiations.
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The cells were then analyzed by flow cytometry for the expression of CD56, CD106, and M-cadherin

(Figure 6.2). Three trials were conducted for the 12 day time point, however, only one trial was

conducted for days 16 and 20. Differentiated iPS cells showed substantially higher levels of CD106

expression than hES cells (38.2 +/- 7.5% compared to 4.8 +/- 2.1%, p = 0.02) as well as higher

CD56/CD106 co-expression (20.1 +/- 6.3% compared to 2.5 +/- 0.6%, p = 0.04) when differentiated

under the same conditions for 12 days (Figure 6.3). The expression of CD56 was approximately 2 to 3

times greater in the iPS cells and a nearly 4-fold increase in CD106+ cells was seen. However, M-

cadherin expression in the iPS cells was only half the level or less than that seen in differentiated hES

cell cultures. Most of the populations of cells co-expressing multiple markers (excluding

CD56/CD106+ cells) were comparable between the two cell types.
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Figure 6.3: Comparison of Flow Cytometry Data after Myogenic Differentiation of iPS

and H9 Cells. The iPS cells showed significantly higher levels of CD56 and CD106 as well
as the CD56/CD106 dual positive population (Top Graph). However, they expressed
significantly lower levels of M-cadherin (Bottom Graph). Other dual and triple positive
populations were comparable between the two cell types. Only one trial was

conducted for iPS D16 and D20. All other time points were performed in triplicate.
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The expression of several myogenic genes in differentiated iPS cells was analyzed by qPCR at each

time point and compared to differentiated H9 cells (Figure 6.4). At each time point, PAX3 expression

was higher in the iPS cultures than in the hES cultures, while PAX7 expression was similar between

the two. In contrast, MEF2 expression was generally higher in the hES cultures than in the iPS

differentiations. Only low levels of MYF5 were expressed in any of the iPS time points, with no

transcript being detectable at day 16. While this might suggest that the cells were predominantly

non-myogenic, the differentiated iPS cultures expressed comparable levels of MYOD to the hES

cultures.
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Figure 6.4: iPS Cell Myogenic Differentiation Analysis by qPCR. The gPCR analysis of

differentiated iPS cells was compared to differentiated H9s. PAX3 was more highly
expressed in the iPS cultures, while PAX7 did not show a significant difference in
expression. The iPS cultures expressed slightly lower MEF2 but very low levels of
MYF5 (with none detectable at day 16). Considering the large difference in MYF5
expression, it was somewhat surprising that MYOD expression was similar between
the two cell types.
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6.2.2 Generation of a DMD iPS Cell Line

Fibroblast cells were obtained from two male patients, aged 5 (FO55) and 8 years (F029), with
Duchenne muscular dystrophy. The cells were expanded and, as early as possible, subjected to viral
transduction to initiate reprogramming. Early attempts used a single pLenti expression plasmid
containing OCT4, SOX2, KLF4, and MYC. The expression plasmid was transfected into HEK 293FT cells
for virus production, the viral supernatant was collected and applied to cultures of the DMD
fibroblasts. The transduced cells were then plated at low density (approximately 8,000 cells per well
of a 6-well plate) onto MEFs to allow for colony formation. Unfortunately, this protocol did not result

in complete reprogramming (Figure 6.5).

Figure 6.5: OSKM Construct Failed to Reprogramme DMD Fibroblasts. Only incomplete

reprogramming of FO55 fibroblast cells was observed after transduction with the OSKM
construct. Cells in large colonies with a very distinct morphology could were observed
after 16 days (A) and 19 days (B) on MEF feeders. After removing MEFs surrounding
colonies, a new type of proliferating cells could be seen 21 days plating (C). Even as late
as 25 days post plating, small colonies of partially reprogrammed cells could be found.
However, no hES cell-like colonies were observed. All pictures were taken at 5x
maghnification. A 200 mm scale bar can be seen in (C).
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Subsequent attempts used the Stemgent Reprogramming Lentivirus Set containing human OCT4,
LIN28, NANOG, and SOX2. Twenty-four hours after viral transduction, cells were replated and
cultured on MEF feeder cells for several weeks during which time some of the cells underwent
morphological changes and began to form colonies (Figure 6.6). Eventually a small, hES cell-like
colony appeared among the transduced FO55 cells. The colony was passaged onto fresh feeders
(Figure 6.7) and expanded to test for the expression of pluripotency genes and differentiation

potential.

FO55 OLNS FO29 OLNS

Day 6

Day 9

Day 16

Figure 6.6: Reprogramming DMD Fibroblasts after Transduction with OCT4, LIN28, NANOG, and
SOX2. Images were taken 6, 9, and 16 days after plating on MEF feeders. The left column shows
transduced FO055 fibroblasts while the right column shows F029 fibroblasts. Early colonies can be
seen by day 6 (top row) and continue to expand through day 16 (bottom rule). Morphological
changes, predominantly a decrease in cell size, can been seen as the colonies expand. Pictures
were taken at 5x magnification.
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Figure 6.7: FO55 iPS Cell Colony. An early colony of fully reprogrammed cells from

transduced FO055 fibroblasts showing hES cell morphology at 5x (A) and 10x (B)
maghnification. Round cells can be seen with a large, central nucleolus and a small
cytoplasm surrounded by differentiated cells and MEF feeders.

Undifferentiated colonies were stained for the expression of OCT4, NANOG, SSEA4, TRA-1-60, TRA-1-
81, and alkaline phosphatase (Figure 6.8). The cells were positive for all of the pluripotency markers

tested, while feeder cells and differentiated cells were negative.

103



Chapter 6

104

FITC/Texas Red

Brightfield

Pv3ss 18-1-Vdl 'SOYyd AV



Chapter 6

Figure 6.8: Immunostaining of FO55 iPS Cells. Colonies of FO55 iPS cells were stained for markers of
pluripotency. The left column shows brightfield images of the colonies, the middle column shows
the cells stained for each protein, and the right column shows the merged image of the marker and
DAPI. The colonies showed strong expression of the pluripotency genes OCT4 and NANOG as well
as the surface markers SSEA4, TRA-1-60, and TRA-1-81. Cells also stained positive for alkaline
phosphatase activity (bottom row).

To further establish their pluripotency, FO55 iPS cells from three time points during their expansion
were analyzed by gPCR and compared to H9 cells (as a positive control) and FHM cells (as a negative
control) for NANOG, OCT4, LIN28, SOX2, TERT, MYC, GDF3, KLF4, and REX1 (Figure 6.9). With the
exception of REX1, the FO55 iPS cells expressed either similar or higher levels (OCT4, NANOG, and
KLF4) than the H9 cells.
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Figure 6.9: Analysis of FO55 iPS Cell Pluripotency by gPCR. The expression of pluripotency-related
genes was analyzed by qPCR and compared between three different samples of FO55 iPS cells and
H9s. FHM cells were used as a negative control. NANOG, OCT4, KLF4, and GDF3 transcripts were all
more highly expressed in the iPS cells than the H9s. Similar levels of LIN28, SOX2, TERT, and MYC
were seen in both cell types. However, REX1 was much more highly expressed in H9s than the iPS
line.
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Figure 6.10: Endogenous Transcript Analysis of FO55 iPS Cells by qPCR. In order to
distinguish between total mRNA expression and endogenous expression, primers were
designed to amplify only endogenous transcript for LIN28, NANOG, SOX2, and OCT4.
Expression levels of LIN28, NANOG, and SOX2 were comparable between the F055 iPS
line and H9 cells, however OCT4 levels were lower in the iPS cells. Endogenous
expression of each gene was also found to be higher in the iPS3 sample (the latest
sample tested) than in earlier iPS samples.

In order to control for exogenous expression from the viral transgenes, cells were also analyzed for
OCT4 Endo, LIN28 Endo, NANOG Endo, and SOX2 Endo using additional primers designed to only
amplify endogenous transcripts (Figure 6.10). FO55 iPS cells expressed similar levels of endogenous
LIN28, NANOG, and SOX2 and only slightly lower levels of endogenous OCT4 than the H9 controls.
Consistent with previous experience, as the cells were expanded over time (from iPS1 to iPS3), levels
of the endogenous genes generally increased. Because of intellectual property concerns, primers
specific to the exogenous genes could not be obtained. A comparison of pluripotency marker

expression between the FO55 iPS line and H9 cells can be found in Table 6.
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Table 6: Pluripotency Marker Expression in FO55 iPS and H9 Cells

Marker FO55iPS Cells  H9 Cells |
Immunostaining
OoCT4 +++ NT*
NANOG ++ NT
SSEA4 +++ NT
TRA-1-60 +++ NT
TRA-1-81 +++ NT
ALK. PHOS. ++ NT
qPCR
OCT4 (Endo) +++ (++) ++ (+++)
NANOG (Endo) +++ (+++) + (+++)
SOX2 (Endo) +++ (++4) +++ (+++)
LIN28 (Endo) +++ (++4) +++ (+++)
TERT +++ 4+
MYC +++ +++
GDF3 +++ +++
KLF4 +++ ++
REX1 + Tt

*NT: not tested

6.2.3 Differentiation Potential of FO55 iPS Cells

After having demonstrated the expression of key pluripotency markers, it was necessary to establish

the ability of the FO55 iPS cell line to differentiate down all three germ layers. To do this, cells were

differentiated in Diff Medium (described in Chapter 2) containing 20% FBS for 7-14 days and stained

for a-fetoprotein (AFP, endoderm), B3-tubulin (ectoderm), and Nkx-2.5 (mesoderm, Figure 6.11). In

differentiated cultures, cells staining for each of the markers could be found, demonstrating the

ability of the FO55 iPS cell line to differentiate down all three germ layers.
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Brightfield FITC Mer]ed

Figure 6.11: Immunostaining of Differentiated FO055 iPS Cells. FO55 iPS cells were
differentiated and stained for markers of each germ layer to test for pluripotency. Cells were
positive for AFP (top row, endoderm), B3-TUBULIN (middle row, ectoderm), and weakly
positive for NKX-2.5 (bottom row, mesoderm). Brightfield images of the differentiated cells
are shown at 10x magnification (left column). The three proteins were stained green (middle
column) while nuclei were stained with DAPI (merged, right column).

AFP

33-TUBULIN

NKX-2.5

To further establish the cells ability to differentiate, lineage-specific genes were analyzed by gPCR
(Figure 6.12). Differentiated cultures were tested for NESTIN and PAX6 (predominantly ectoderm),
AFP (endoderm), and BRACHYURY and MIXL1 (mesendoderm/mesoderm). As a comparison, gene
expression in undifferentiated FO55 iPS cells and undifferentiated H9 cells was also examined.
NESTIN and PAX6 were slightly more highly expressed in the differentiated cells than the
undifferentiated iPS cells. However, undifferentiated H9 cells expressed higher levels of these genes
than the differentiated culture, suggesting that in the H9 cultures some unintended differentiation
had occurred. In contrast, AFP and BRACHYURY were much more highly expressed in the
differentiated cells than any of the undifferentiated cultures. MIXL1 was also substantially up-

regulated in the differentiated cells.
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Figure 6.12: FO55 iPS Cell Differentiation Analysis by gPCR. Differentiated F055 iPS cultures
(Diff) were also analyzed by gPCR for genes involved in early lineage formation and
compared to undifferentiated F055 iPS cells and H9 cells. Both ectoderm markers (NESTIN
and PAX6) were expressed at higher levels in some of the H9 samples than the differentiated
iPS cells, however the Diff sample expressed higher levels of PAX6 than the undifferentiated
iPS cells. AFP and BRACHYURY were expressed much more highly in the differentiated
cultures than any other samples and MIXL1 expression was significantly increased.

6.3 Discussion

In order to establish the myogenic nature of iPS cells, non-DMD iPS cells were differentiated using

myoblast conditioned medium as described in Chapter 4 and compared to differentiated H9 cells. In

addition, a line of iPS cells from a DMD patient was also generated by lentiviral transduction of OCT4,

LIN28, NANOG, and SOX2 and tested for pluripotency-related genes and the ability to differentiate

down all three germ layers.
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The iPS line used in the myogenic differentiations had previously been shown to be capable of
pluripotent differentiation (Armstrong, Tilgner et al. 2010). However, its ability to undergo myogenic
differentiation had not been tested. When differentiated under the conditions used to derive muscle
satellite cells, the iPS line behaved quite differently from H9 cells. Differentiated iPS cells expressed
higher levels of both CD56 (generally indicating neuroectoderm differentiation) and CD106
(predominantly an endothelial cell marker) than H9 cells at similar time points. The high percentage
of CD56/CD106+ cells suggests a substantial number of myogenic precursors among the iPS cultures,

unfortunately the relatively low M-cadherin expression somewhat contradicts this.

gPCR data showed that differentiated H9 cells expressed much higher levels of MYF5 than the iPS
cultures, though MYOD expression was similar between the two cell types. While these two genes
are not necessarily co-expressed during myogenesis, it was surprising that such a disparity existed
between the expression levels of MYF5 and MYOD in iPS cells. While the iPS cells showed substantial
differences in myogenic gene and surface cell marker expression compared to H9 cells, they appear
to be similar in their ability to undergo myogenic differentiation. It is possible that each favors a
different type of myogenic precursor, CD56/CD106+ cells from the iPS differentiation and M-
cadherin+ cells from the H9 cultures, and that these separate populations account for the differences
in gene expression. It is also likely that there are some differences in the genetic background of H9
cells compared to the iPS cells or it is possible that the iPS cells had not undergone complete
reprogramming, either of which could result in some of the differences seen in myogenic

populations.

Developing an iPS cell line from patients with DMD and subjecting them to myogenic differentiation
would allow an in vitro study of a diseased model of early myogenesis. It would also make it possible
to test possible therapeutic interventions centering on correcting the mutated DYSTROPHIN gene
and generating transplantable myogenic precursors. To these ends, the FO55 iPS cell line was created
by transducing fibroblasts from a patient with DMD with OCT4, LIN28, NANOG, and SOX2 and tested
to ensure that it represented a truly pluripotent cell type. The International Stem Cell Initiative
established some of the defining molecular characteristics of hES cells, including the expression of
surface markers SSEA4, TRA-1-60, and TRA-1-80, alkaline phosphatase, and NANOG, OCT4, and GDF3
(Adewumi, Aflatoonian et al. 2007). Immunostaining of FO55 iPS cells confirmed the expression of all
the markers listed except GDF3, while qPCR analysis verified the expression of NANOG, OCT4, and

GDF3 among many other pluripotency-related genes.

KLF4 is important in maintaining pluripotency and is a common factor used to reprogram cells for the

generation of iPS cell lines. Inhibition of KLF4 by siRNA was found to promote ES cell differentiation.
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It is believed to be a regulator of NANOG expression and has been shown to bind to the NANOG
promoter (Adewumi, Aflatoonian et al. 2007). KLF4 was more highly expressed in the FO55 iPS cells
than in the H9 controls. GDF3 is a member of the TGFf superfamily that has distinct roles during
mouse and human ES cell differentiation which are thought to be related to its inhibition of BMPs. In
humans, GDF3 treatment maintains expression of other pluripotency genes even under
differentiating conditions (Levine and Brivanlou 2006). As discussed above, it is an important marker
of hES cells and is strongly expressed in undifferentiated FO55 iPS cells. Other genes were tested that
have important roles in ES cell biology that extend beyond the maintenance of pluripotency. MYC
and TERT are both expressed in undifferentiated ES cells and are thought to have dual functions in
preventing the commitment to differentiation (Cartwright, McLean et al. 2005; Yang, Przyborski et al.
2008) and helping establish cell immortality, where MYC is capable of inducing TERT expression
(Wang, Xie et al. 1998). Knockdown of either of the proteins results in increased differentiation.
LIN28 is thought to act at the level of mRNA translation as an important regulator of differentiation.
However, unlike MYC and TERT, knockdown studies showed that LIN28 is dispensable for the
maintenance of pluripotency while overexpression actually increases differentiation at low cell
densities and (Darr and Benvenisty 2009). All three of these genes show similar levels of expression

between the FO55 iPS cells and the undifferentiated H9s.

One of the genes examined had a much lower level of expression in the FO55 iPS cells than in the H9
control: REX1. REX1 is often considered one of the basic markers of undifferentiated pluripotent hES
cells (Brivanlou, Gage et al. 2003), although mouse ES cells cultures are heterogeneous for Rex1
expression and Rex1+ and Rex1- cells can interconvert (Toyooka, Shimosato et al. 2008). It was
subsequently hypothesized that Rex1+ cells were related to the ICM while Rex1- cells were related to
the epiblast and primitive ectoderm, all of which were found in normal mES cultures. Additional
studies of Rex1-knockout cell lines demonstrated that Rex1 was not necessary for self-renewal of ES
cells and did not alter the expression of pluripotency factors such as Oct4, Nanog, and Sox2.
However, Rex1-/- cells were found to differentiate more readily when exposed to retinoic acid than
wildtype controls (Scotland, Chen et al. 2009). A recent study has suggested that bona fide iPS cells
will express TRA-1-60 and SSEA4 while reprogramming, while cells that do not complete the
reprogramming process may still express genes such as OCT4, SOX2, NANOG, and GDF3, but are
unable to differentiate down all three germ layers and show a decreased cellularity (Chan,
Ratanasirintrawoot et al. 2009). The study also identified REX1 as an important marker of a truly
pluripotent iPS cell line. However, the ability of the FO55 iPS cell line to expand and differentiate

down all three germ layers strongly indicates that it is a legitimate iPS cell line.

To ensure that the expression levels of OCT4, LIN28, NANOG, and SOX2 were from endogenous gene

expression and not from the viral vectors, new primers were designed to exclusively amplify
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endogenous transcript as opposed to total mRNA. It has previously been reported that as iPS cells are
cultured they start to silence viral genes and increase the expression of endogenous genes
(Yamanaka and Blau). This trend can be seen in the DMD iPS line as earlier passages (iPS1, Figure
6.10) generally express lower levels of the endogenous genes than later passages (iPS3). Both LIN28
and SOX2 showed very similar results for the endogenous-only mRNA expression and the total mRNA
expression, indicating that the viral genes had been silenced in the FO55 iPS cells and the endogenous
genes were being expressed at normal levels. Interestingly, while both OCT4 and NANOG total mRNA
expression was higher in the iPS cells than the H9 cells, when the endogenous-only expression was
tested iPS cells expressed similar levels of NANOG to H9 cells but somewhat lower levels of OCT4.
This suggests that some OCT4 and NANOG transcripts are still coming from the viral vector and that
while endogenous NANOG expression has been fully activated in the iPS cells, endogenous OCT4

expression may not be.

After determining that the FO55 iPS cells expressed the expected pluripotency markers, it was
important to show that they behaved as pluripotent stem cells and differentiated down all three
germ layers. The gold standard to test this is to inject cells into immunocompromised mice and
examine the resultant teratomas for cells from each lineage. Unfortunately time and the small
number of cells available did not permit this, so instead cells were differentiated in vitro and stained
for markers indicative of one germ layer. AFP is expressed in the visceral endoderm early in
development and the foetal liver (Dziadek and Adamson 1978; Dziadek and Andrews 1983). Because
of its exclusive expression in endoderm-derived tissues it is commonly used to establish the
differentiation of pluripotent cells to endoderm (Zeng, Miura et al. 2004). The FO55 iPS line stained
strongly for AFP and showed a very high increase in mRNA expression upon differentiation. The
genes MIXL1 and BRACHYURY are often used as mesoderm markers, though they are actually present
in mesendoderm and are important during early endoderm/mesoderm specification (Hart, Hartley et
al. 2002; Izumi, Era et al. 2007). The FO55 iPS cells show a strong up-regulation of BRACHYURY and a
moderate up-regulation of MIXL1 upon differentiation. This, along with the strong expression of AFP,
suggests that the FO55 iPS cells may have a strong tendency to differentiation towards mesendoderm

rather than ectoderm.

Differentiated cells also stained for NKX-2.5, a transcription factor important in specifying the
cardiogenic field and indicative of mesoderm formation (Sadler 2003).Two genes were used to
determine ectoderm formation: PAX6, which is important during eye development, and NESTIN, a
common marker of neural progenitor cells, though it is expressed in many other cells (Tsonis and
Fuentes 2006; Jin, Liu et al. 2009). Unsurprisingly, when the expression of PAX6 and NESTIN was
examined by qPCR, only a slight increase in expression could be seen upon differentiation. In fact, in

both cases the genes were more highly expressed in one of the undifferentiated H9 controls than in
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the differentiated FO55 iPS culture. However, positive staining for 33-tubulin confirmed that the FO55

iPS cells could differentiate to lineages derived from ectoderm (Zeng, Miura et al. 2004).

Further experiments are needed to fully characterize the FO55 iPS cell line. Most notably, cells must
be injected into immunocompromised mice to test for teratoma formation (and to ensure that all
three germ layers are represented). They should also be analyzed to ensure a normal karyotype,
express DNA methylation patterns and histone modifications similar to ES cells, and further
expanded to ensure their long term self-renewal. For therapeutic purposes, the mutated
DYSTROPHIN gene could then be corrected (or replaced with a working version) and the cells could
be subjected to myogenic differentiation to be tested for their ability to form functional myofibres in

vitro and in vivo using animal models of muscle regeneration or muscular dystrophy.
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Chapter 7: Conclusions

Several methods for the directed differentiation of hES cells towards myogenic progenitor or satellite
cells have been presented. The chief driving force in these experiments has been the use of medium
conditioned by human myoblasts in the differentiating cultures. In addition, cell signaling molecules
Activin A and BMP-4 were used in attempts to promote the early formation of mesoderm from
undifferentiated cells. Initial plating densities of differentiating hES cells were also varied, and in one
experiment, differentiating cells were co-cultured with inactivated foetal myoblasts. Gene expression
analysis for myogenic markers such as PAX7, PAX3, MYOD, MYF5, and MYOGENIN was performed by
gPCR and suggested that the use of conditioned medium moderately increased the number of

myogenic cells in differentiated cultures.

The next important step in this work is the culture and further characterisation of isolated myogenic
cells. It would be important to establish their ability to undergo in vitro myogenesis resulting in
multinucleated myofibres. The cells could also be stained for intracellular markers of satellite cells
and myoblasts such as PAX7, MYOD, MYF5, and MYOGENIN and for markers of differentiated skeletal
muscle fibres. If used for animal transplant experiments, culture conditions that promoted expansion
but prevented differentiation would need to be developed. Initial transplantation studies could be
carried out in SCID mice using a model of muscle injury to demonstrate the ability of isolated satellite

cells to regenerate damaged muscle in vivo.

Finding signaling molecules that promote the formation of skeletal muscle tissue via paraxial
mesoderm remains an important area for future research. While the conditioned medium used in
the described experiments proved more effective than standard differentiation protocols, the
percent of total cells in differentiated culture that unambiguously expressed myogenic markers
remained low. To improve upon this, the use of additional growth factors could be employed. For
instance, as discussed in Chapter 4, Activin A could be used to promote mesendoderm formation,
followed by BMP-4 to promote paraxial mesoderm development with Noggin used to subsequently
antagonize BMP-4 and induce myogenesis. Wnts and Sonic hedge hog are also known to activate
myogenic regulatory factor expression during development (Cossu and Biressi 2005) and have also
been shown to be important during adult muscle regeneration (Polesskaya, Seale et al. 2003). These
factors provide a number of alternative approaches to the directed differentiation of myogenic cells.
However, the use of multiple signaling proteins quickly becomes expensive when compared to the

use of conditioned medium.
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The selection of cell-surface markers to label and isolate putative satellite cells was an equally
important component of this project. Without a well-validated repertoire of surface markers,
myogenic cells in differentiated cultures could not be purified and used for cell-replacement therapy.
Several human adult and foetal myoblast cell lines were analyzed by flow cytometry to determine
which proteins should be employed: it was found that CD56, CD106, and M-cadherin were
consistently expressed in a subset of cells in three out of the four myoblast lines, the fourth line
having been determined by qPCR to have lost its myogenic nature. A substantial literature precedent

also supported the use of these proteins as markers of satellite cells.

Ideally, a single marker could be used to isolate satellite cells such as the mouse SM/C-2.6 antibody.
Unfortunately, such an antibody for human satellite cells has not been identified. As satellite cells
become more thoroughly characterised, it is possible that a highly selective, highly specific marker
will be found. Unfortunately both CD56 and CD106 have low specificity (other cell types also express
them) while M-cadherin is not particularly selective (reports vary as to whether or not all satellite
cells, especially quiescent ones, express M-cadherin). These issues can also be resolved by improving
the percent of the differentiating cells which become myogenic, thereby reducing possible sources of
contamination from other cell types. It would also be feasible to add an earlier round of cell sorting,
similar to Barberi et al. 2005, who sorted for CD73 expression and then subsequently sorted for CD56
expression to obtain a population of myogenic cells. An early sort with PDGFR-E would select for a
variety of mesendoderm or mesoderm populations, eliminating definitive endoderm and ectoderm
cells, and a population of PDGFR-E+/VEGFR- cells could specifically isolate paraxial mesoderm. These
cells might then be further cultured in myogenic conditioned medium. This approach was used by
Sakurai et al. 2008 in differentiating mouse ES cells. They directly injected the PDGFR-E+ cells and
found that the cells contributed to muscle regeneration. The drawback to this sort of approach is
that it would substantially complicate the protocol and still does not guarantee full conversion to

myogenic cells.

Even with an improvement in the percentage of myogenic cells that can be obtained from
differentiating hES cells, a substantial scale-up of hES cell culture would be required in order to use
this approach therapeutically in patients with DMD. While the culture techniques described in this
work might be sufficient for a single muscle site injection (assuming an improvement in the efficiency
of myogenic differentiation), they would be insufficient for a therapeutic regimen that required
multiple site injections. For this, it might be necessary to explore the use of novel undifferentiated
hES cell culture methods, such as the work described by Steiner et al. 2010 where hES cell colonies
were grown and propagated in suspension cultures. In addition, the early steps of hES cell
differentiation might be carried out in suspension cultures. There is a long precedent for

differentiating mouse and human ES cells as EBs both in the presence and absence of signhaling
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molecules to promote the development of a given lineage. These methods could be used for the
early establishment of mesoderm followed by plating and expansion in pro-myogenic medium until a
substantial number of satellite cells were obtained. Unfortunately any large scale growth and
directed differentiation of hES cells will be quite expensive, especially if multiple recombinant
signaling molecules are needed during differentiation. The same concern exists for differentiation
procedures that require multiple rounds of FACS: large quantities of expensive antibodies will be

needed to purify cells for each round, substantially increases the cost of such experiments.

Finally, the myogenic differentiation strategy was tested in iPS cells and compared with H9 cells. Not
surprisingly, a difference was seen between the two lines, highlighting the importance of studying iPS
cells along side of hES cells. In addition, a new iPS cell line was generated using fibroblasts from a
patient with DMD. Both qPCR analysis and immunostaining strongly suggested that the DMD iPS cells
were a pluripotent cell line, showing both a broad array of pluripotency markers and the ability to
differentiate down all three germ lines. However, further culture is still needed to prove the
immortality of these cells and they must be tested for teratoma formation in mice. Studying
myogenic differentiation in these cells would allow for proof-of-concept experiments where the
mutated DYSTROPHIN gene could be repaired and the cells subsequently differentiated into satellite
cells. Transplanting these cells in animal models would be important to both establish their myogenic
potential and ensure that they remain differentiated, despite having gone through viral

reprogramming.
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