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ABSTRACT 

 Recent large flooding events have reinforced the need for prudent flood 

risk management.  The July 2007 floods in Yorkshire and the Midlands and the 

November 2009 floods in the Lake District have highlighted the current 

vulnerability of key infrastructure and the built environment in the UK to flooding.  

This existing flood risk is coupled with concerns over the potential impacts of 

future climate change on flood regimes.  Therefore, there is a need to develop 

tools and methodologies to assess the potential impact of likely climate change 

on flood risk. 

   The link between large rainfall and flow events is first examined, as well 

as an assessment of the seasonality of these events.  This reveals a distinct 

east-west split in the seasonal concentration of flooding.  This work provides a 

basis for the development of a statistical modelling technique which estimates a 

catchment flood record on an event basis.  The model uses estimates of the 

flood generating storm and the antecedent conditions to estimate a flow 

magnitude.  The modelled flood record is then transformed into a flood 

frequency curve using an appropriate statistical method. 

 Extensive testing of the model has assessed its robustness to the length 

of flood record used in fitting and its sensitivity to the input climate data.  

Several case studies using the UKCP weather generator show how the method 

works as well as providing an indication of how future climate changes may 

affect the flood frequency curve. 

 The frequency curve mapping method developed here performs best on 

catchments whose flood regime is driven by rainfall.  The use of a simple 

antecedent rainfall accounting method has been shown to perform as well as a 

quasi-physical soil moisture estimation method. 

  The research undertaken offers several possibilities to develop 

understanding of flood frequency curves in catchments with short gauged 

records.  This new methodology has the potential for further development and 

can be used to explore a wide range of future scenarios.
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 Introduction Chapter 1:

1.0 Flood Risk in the United Kingdom 

In 2008 the Environment Agency calculated that around 5.2 million 

properties were at risk of flooding from coastal, fluvial or surface water sources 

in England (Environment Agency, 2009).  The expected annual damage from 

coastal or fluvial flooding is estimated to be over £1 billion per annum, with the 

assets at risk from fluvial flooding alone valued at 81.7 billion pounds (FREE, 

2010).  In Scotland, the current average annual damage from fluvial flooding is 

estimated at around £20 million, with increases of up to 115% expected by 2080 

(Werritty et al., 2002).  Much of the UK’s important infrastructure is located in 

areas of flood risk, posing more than just financial problems if it were inundated.  

This is perhaps best illustrated by the near flooding of Walham electricity sub-

station during the July 2007 floods.  These floods are estimated to be the most 

expensive floods that occurred anywhere in the world during 2007 (Pitt, 2007).  

While emergency defence work helped prevent any significant power failure, the 

situation highlighted the vulnerability of some of the key infrastructure which the 

UK relies upon.  In 2002, Glasgow suffered from extensive surface water 

flooding, with 200 people evacuated from their homes and 140,000 people 

temporarily unable to access drinking water. In November 2009 severe flooding 

affected many parts of England, Ireland and Wales, with the North-West of 

England being the worst affected.  In this case there were several fatalities and 

high river levels destroyed bridges and left many more unusable. 

However, the problems associated with flooding and flood damage 

cannot be simply reduced to financial cost and economic impact.  Tapsell et al. 

(2002) emphasise the importance of understanding the social dimensions of 

flooding, particularly with regards to the stress that repeated or frequent flooding 

can induce.  In Tapsell’s study, the respondents indicated that the majority of 

them suffered from an increase in psychological health problems due to the 

stress of dealing with flooding and its aftermath.  Other reported health 

problems include illness from contact with contaminated flood waters as well as 

due to living in damp environments (Tapsell et al., 1999).  Due to an increase in 

stress levels flooding can also be responsible for exacerbating pre-existing 

health problems. 
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 Furthermore, as has been alluded to previously, there are clearly risks to 

essential services and utilities during flood events.  It is difficult to put a price on 

services such as electricity, clean water and sewerage, where interruption of 

supply carries a much greater impact on society than the economic impact 

alone.  What this means for flood risk management is that it is clear that 

financial cost and economic impact alone cannot be used to justify the 

development of flood alleviation measures.   

 The impact of flooding in the UK is considerable, both in monetary and 

social terms.  Therefore, the demand for new tools to help to manage flood risk 

is also high.  In reviewing the July 2007 floods, the Pitt review called for the 

development of methods to help deal with the fluvial flood problem.  The 

research project presented in this thesis takes a much more narrow view of 

flood risk than the issues outlined above, it specifically considers flood 

frequency estimation.  This is the starting point for developing more 

sophisticated risk assessments, whether they involve purely financial 

assessments or include social components as well. 

 This PhD research is part of the Natural Environment Research 

Council’s (NERC) Flood Risk from Extreme Events (FREE) programme.  It aims 

to further develop an understanding of flood risk and develop new tools to help 

quantify and forecast flood risk by the development of a science programme 

that integrates meteorological, hydrological, terrestrial and oceanographic 

communities (FREE, 2010).   

 

1.1 Future Management of Flood Risk 

Given the cost of flooding to the UK (where cost can be more than 

financial), there is a clear case for developing longer term management plans.  

These can help prioritise work as well as give an indication of the level of 

spending required for the future.  The Environment Agency’s long-term 

investment strategy states that the investment required to build and maintain 

new and existing flood and coastal defence assets would be in the region of 

£1040 million per annum (plus inflation) by 2035 (Environment Agency, 2009).  

This value excludes any measures to deal with surface and groundwater 

flooding and is an increase of 80 % on 2010/2011 investment levels.  

Exacerbation by climate change as well as societal change may impact further 
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upon these estimates.  Therefore, given the large potential costs associated 

with flooding in the UK, there is a need for models and decision support 

systems that will enable cost-effective management of future flood risk.  This 

recommendation was made by the Pitt review (Pitt, 2007).  Furthermore, there 

is a need to implement management strategies as soon as possible, as some 

evidence suggests that early action will be the better economic option in the 

long run (Stern, 2006). 

Further demand for flood risk assessment comes from the 

implementation of the EU directive on the assessment and management of 

flood risks (European Commission, 2007).  This has been transposed into UK 

law through the Flood Risk Management (Scotland) Act of 2009 and the Flood 

and Water Management Act 2010 covering England and Wales.  This legislation 

formalises the management of flood risk from the national to local level.  It sets 

targets for specific activities such as risk mapping and risk assessments 

designed to harmonise flood risk management between member states of the 

EU.  These activities will require the use of appropriate tools, models and 

expertise for implementation, and it is one further reason why research on flood 

risk management is still active today. 

 

1.2 Why Flood Frequency? 

Many aspects of flood risk assessment start with an understanding of 

flood frequency; that is, relating the magnitude and rarity of particular flows.  

After the publication of the Flood Estimation Handbook (FEH) in 1999 (Reed, 

1999), UK research on the topic gradually declined, apart from sporadic 

updates to the FEH method.  More recently, driven by a concern over climate 

change, new work has developed methods such as the grid to grid model by 

CEH (see Bell et al., 2007a,b).  The development of UK flood estimation 

guidelines are reviewed in more detail elsewhere, but it is informative to provide 

some context for new research here. 

 The main justification for this PhD research comes from the 

inability of existing methods to be consistently applied over many catchments 

while also dealing with aspects of climate change.  While many catchment 

models exist, they are often complicated to run, require high levels of expertise 

and large volumes of data.  Furthermore, as models often differ in their 
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construction and operation it is not clear how results can be reliably compared 

between models. 

The outputs from a flood frequency assessment are often used for further 

assessment of variables that directly affect how much flood damage is caused; 

namely water depths and velocities.  Where only flood frequency estimates are 

required, many existing models complicate the analysis by providing 

unnecessary information.  Therefore, this research focuses on the development 

of a simplified, alternative approach to the traditional modelling methodologies. 

The work contained in this thesis makes use of the term “storm rainfall”, 

where a storm is a flood generating rainfall event.  Rainfall is the preferred term 

over precipitation as this work does not explicitly make use of forms of 

precipitation other than rainfall.  The term “extreme rainfall” is also used; this 

takes its definition from a traditional frequency based approach, where an 

extreme rainfall event is a rare event in frequency terms (such as an Annual 

Maximum or POT1/ 2 series). 

 

1.3 Aims and Objectives 

 

1.3.1 Study Aim 

The aim of this study is to develop a method suitable for reproducing a 

flood frequency curve from storm rainfall and associated information, with 

a view to using it for the assessment of future flood risk. 

 

1.3.2 Study Objectives 

 The objectives of this study are as follows: 

 

-To source appropriate datasets and assess their suitability for use in the 

project. 

 

- To investigate and develop a methodology for the transformation of 

rainfall to flow. 
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-To develop a robust methodology for estimating a flood frequency curve 

based on rainfall data and associated information on a catchment by 

catchment basis. 

 

-To prove the use of this methodology in applications utilising future 

scenarios. 

 

 While not a specific objective, it should perhaps be emphasised that this 

work aims to take an alternative approach to that which is being developed by 

the FRACAS project partners.   

 

1.4 Statement of Scope and Limitations 

The primary geographical focus of this investigation is the mainland UK, 

including England, Wales and Scotland.  It does not include Northern Ireland, as 

flow and rainfall data are not as easily obtainable.   

In terms of flood risk estimation this work is primarily concerned with 

fluvial flooding.  Therefore, while some work considers catchments that have 

other components contributing to their flood behaviour, no explicit methods 

have been developed to take account of these.  Flooding from groundwater, 

snowmelt, coastal flooding and extreme rainfall are present in some extent in 

the flow records however; the approach developed here does not take specific 

account of each variable.  Because these mechanisms of flooding routinely 

interact with fluvial flooding, consideration is given to these other sources at 

several points within the thesis. 

 The method presented in this thesis uses the impact of climate change 

upon flood frequency as its justification.  However, the work presented here 

details the model development as well as providing examples of applications, 

rather than providing a comprehensive climate change analysis of UK 

catchments. 

 

1.5 Thesis Structure 

The thesis begins with a review of the relevant literature (Chapter 2) with 

a view to assessing current methods and studies for aspects which can be 

incorporated into this work.  Chapter three presents work carried out to review 
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suitable datasets, particularly assessing the usefulness of daily data for storm 

estimation.  This work is further developed in chapter four by combining both 

rainfall and flow datasets to assess the seasonality regimes of rainfall and flow 

before assessing the relationship between extreme rainfall and flow events. 

 A simple model for transforming rainfall to flow is presented in chapter 

five, with an exploration of the different methods of model construction.  This 

model is further developed in chapter six, which presents the method whereby 

the flood frequency curve can be estimated from rainfall data and associated 

information.  Chapter seven presents some climate change applications of the 

model, as well as developing the work in chapter six by presenting a validation 

of the model.  Chapter eight presents a discussion of the research presented in 

the thesis, highlighting key issues within current flood frequency research and 

how they relate to this work.  Finally, Chapter 9 presents some conclusions and 

summarises the achievements of this thesis.. 

 Throughout the thesis reference is made to several catchments, often to 

illustrate particular aspects of the approach used.  A full list of catchments 

referred to and their locations can be found in Appendix K.1.  
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 Reviewing the State of the Art in Flood Frequency Chapter 2:

Estimation 

2.1 Introduction to the Review 

This literature review discusses several aspects of current scientific 

research which are relevant to the study as a whole.  This chapter aims to put 

the research project into context by critically considering other relevant work.  

The review further illustrates the need for the research project, as well as 

informing the approach taken.  The review structure aims to answer the 

following questions:   

 

1) What is required from a flood frequency estimate and what current 

guidance exists on the development of an estimate? 

2) What data are available for use in the project? 

3) What methodologies are currently available for peak flow estimation? 

4) What methodologies are currently suitable for fluvial flood frequency 

estimation? 

5) What work has already been carried out to consider future flooding 

impacts on the UK? 

 

Each question will be addressed separately, and will discuss the appropriate 

literature with a view to identifying issues and findings which are relevant to this 

study. 

 

2.2 The Need for Flood Frequency Estimation and Current Guidance 

 In a practical setting, flood frequency estimates are typically a basis for 

further work, such as hydraulic modelling of inundation levels for a flood 

defence scheme design or flood mapping (Shaw et al., 2011).  Flood frequency 

estimation is required not only to estimate peak flows for flood defence design, 

but also to estimate of the rarity of flows of a specific magnitude.  This work is 

important for many applications – particularly the insurance and re-insurance 

industry.  Therefore, flood frequency estimation is particularly concerned with 

the rarity of large flow events; it seeks to quantify these, usually in statistical 
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terms using terminology such as return period or probability of exceedance.  

The return period refers to the average time interval between flows of a specific 

magnitude.  The use of the word ‘average’ is important here, as in reality the 

fifty year flow could occur twice within five years, although the probability of this 

happening may be low. 

  In the United Kingdom there are standards to which fluvial flood 

schemes should be designed.  In assessing risk to development, a framework is 

used which classifies the importance of the development in question and the 

associated acceptable level of flood risk.  For the majority of developments, 

acceptable levels of risk should generally be less than the 1 in 200 year event, 

however for essential civil infrastructure the calculated probability of flooding 

should be less than the 1 in 1000 year event (Scottish Executive, 2010).  

Fluvial flood management responsibilities are different depending upon 

the country of interest, although the recent European Union Floods Directive 

(European Commission, 2007) goes some way towards harmonising 

responsibilities and powers.  In England and Wales, it is the Environment 

Agency’s (EA) responsibility to develop flood defence schemes.  The 

Environment Agency must also be consulted on new developments, in order to 

assess any possible impacts from flooding (Department for Communities and 

Local Government, 2007) as well as develop strategic assessments of flood risk 

such as flood maps.  In Scotland it is currently the responsibility of the local 

authority to promote flood defence schemes.  The Scottish Environmental 

Protection Agency (SEPA) has a responsibility to develop flood warning 

schemes as well as strategic flood risk assessments. 

Current guidance on future changes to flood risk is available from 

DEFRA (2006).  While extensive research into future changes in climate and 

flood risk is still ongoing, the current guidance reflects the needs of practitioners 

for practical and straightforward information to inform flood defence scheme 

design.  This current guidance can be seen in Table 2.1 and provides indicative 

sensitivity ranges to changes in future variables such as extreme rainfall and 

peak river flows. 
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 Table 2.1: Indicative sensitivity ranges for future variables.  DEFRA (2006) 

 

 Clearly the future changes shown in Table 2.1 are a rather broad brush 

approach, as they do not suggest changes based upon geographical location or 

return period.  Guidance on smaller catchments is also non-existent.  In practice 

this could lead to the under-estimation or overestimation of peak flows in a 

specific location with associated cost implications.  Given that new climate 

scenarios such as those of UKCP09 (Murphy et al., 2010) are now available 

there is considerable potential to update the estimates in Table 2.1 to make 

them more relevant to particular locations, as well as using more up to date 

future climate scenarios.   

The need for flood frequency estimates coupled with potential future 

changes in rainfall and flow regimes suggests that there is a clear need for tools 

and analyses which can go some way towards helping those responsible for 

fluvial flood management develop long-term strategies for managing future risk.   

 

2.3 Assessing Flow and Rainfall Data  

  A study such as this, which plans to make considerable use of a variety 

of data sets, requires careful consideration of their attributes.  As such, the work 

reported on here refers only to the information found in the available literature.  

Extensive preliminary analyses were carried out on flow and rainfall data and it 

is felt that this work is worthy of a separate chapter.  This work can be found in 

Chapter 3 ‘Data Sources; Information and Assessment’.   
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2.3.1 Peak Flow Measurement 

It is important to distinguish between measurement error at times of high 

flow, and discharge estimate.  In many catchment flood records, few flow peaks 

have been measured directly, for the most part they are estimated from stage-

discharge relationships.  However, a good stage discharge relationship requires 

good flow estimates. 

The measurement of peak flow is not straightforward.  Access to rivers at 

times of flood can be dangerous and impractical.  Herschy (2002) in his work on 

the worlds maximum observed floods, suggested that peak flow values in the 

catalogue of large observed floods had an uncertainty estimate of around 10-15 

%, with lower uncertainty estimates towards the more recent end of the gauged 

record.  One of the reasons for this may be the development of improved 

measurement technology such as Acoustic Doppler Current Profilers (ADCPs).  

Yorke and Oberg (2002) in assessing ADCP measurements suggest that they 

tend to fall within 8% of more conventional methods such as current metering, 

with the majority of measurements within 5 %.  Any flow measurement is 

subject to some error, this is an inevitable consequence of trying to measure 

variable open channel flow.  Whalley et al. (2001) in a study looking at flow 

measurement error from current meters consider than an error of +-10% of the 

true flow is reasonable.  However, it is difficult to systematically account for 

measurement error where many factors influence the results.  The calibration of 

the flow gauging equipment, the discharge measurement techniques used and 

the equipment operators can all influence the final results. 

Where direct measurement of flow peaks is not possible, the use of a 

stage discharge relationship can be used to estimate the magnitude of peak 

flows.  This usually involves relating spot discharge measurements to river level 

measurements.  This relationship can then be extended to cover peaks not 

directly measured.  This technique is not without uncertainty as it is possible for 

phase shifts to occur in the stage-discharge relationship in areas where no 

discharge measurements have been undertaken (Overleir and Reitan, 2009).  

Furthermore, it is often assumed that stage-discharge relationships are stable 

through time and this may not be the case where distinct seasonal changes, like 
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vegetation growth, occur in river channels.  Parodi and Ferraris (2004) present 

a method for stage-discharge ratings based on hydraulic modelling.  The 

rationale for this work was the seemingly large difference in discharge estimate 

from one year to the next given the same stage.  The stations used in the study 

by Parodi and Ferraris were designed primarily for low flows, and it is because 

of this that their operation at high flows presents problems.   

While it is clear that there are problems with both the measurement and 

estimation of peak flows there is less research on the impact this has on the 

flood frequency curve.  Cong and Xu (1987) suggest that small measurement 

errors do not adversely impact upon the estimation of the flood frequency curve.  

This is only valid if the measurement errors are random, as a consistent bias 

may prove more problematic.  The results from their study used Chinese river 

flow data which required little extrapolation of the stage-discharge relationship 

and so the study results may not be so applicable to areas where considerable 

extrapolation is required.  Overleir and Reitan (2008) show that the main 

problem of rating curve imprecision is to inflate the variability in the flood 

frequency quantile estimates.  This suggests that rating curve imprecision can 

have an effect and that the uncertainty in the flood frequency curve estimates 

may increase when using uncertain rating curves. 

It is difficult to determine the specific quantitative impact of data record 

quality upon the flood frequency curve.  The literature is not conclusive; 

however, it is clear that using good quality data records will reduce the potential 

for measurement error or stage-discharge uncertainty to significantly impact 

upon the flood frequency estimation procedure.  Therefore, the selection of 

good quality data records is of paramount importance. 

  

2.3.2 Peak Flow Data Sources 

In the United Kingdom, most river flow records come from the designated 

responsible gauging authorities.  In England and Wales this is the Environment 

Agency and in Scotland it is the Scottish Environmental Protection Agency.  

Flow data are archived in several locations, including with the responsible 

gauging authorities.  Several daily time-series are hosted by the National River 

Flow Archive (NRFA) and are available for download online (Centre for Ecology 
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and Hydrology, 2010).  Flood peak data are also available online through the 

Hi-Flows project (HiFlows, 2010a).  This is a joint project between UK gauging 

authorities to make flood peak information available online, mainly for expert 

users.   

 The Hi-flows database provides an open, online data download portal.  It 

is maintained and updated to provide current data for those using the Flood 

Estimation Handbook methods for flood frequency estimation in the UK; 

however the format of the data is such that it can be easily used for other 

applications.  The Hiflows project was designed to make more flood data 

available as well as ensuring that this data had been consistently quality 

controlled.  These controls include a consideration of the gauging station 

operation, rating curve suitability and trend analysis.  This aspect of data control 

is important as shown by the work of Shuzeng and Yinbo (1987) and Oberleir 

and Reitan (2008).  Each catchment in the HiFlows database has been split into 

one of three categories giving an indicative suitability of that catchment for use 

either in pooling, for estimating the QMED or for neither.  This is a classification 

used by the Hi-flows project to identify stations that have large gaps in their 

record or where their ratings are known to be poor at the upper end of the 

stage-discharge relationship.  This is often due to either few gauging 

measurements being taken at peak flow periods or the bypassing of the 

gauging station at high flows.  While this classification scheme represents an 

‘indicative suitability’ it should be noted that it is still possible for considerable 

errors to occur in the peak flow records. 

The flow data are available as two different series; AMAX and POT.  

AMAX, or annual maximum are instantaneous peak flows extracted from a 

continuous flow time series.  Only the largest peak in a single year is extracted.  

Therefore a ten year continuous flow record would give an AMAX record with 

ten events.  In the case of the HiFlows data the AMAX are extracted from a 

hydrological year which runs from October to September.  Peaks Over 

Threshold (POT) data represent those peaks which exceed a specific threshold 

of discharge (Shaw et al., 2011, p.256).  The threshold can be set according to 

the number of desired peaks required in the flow series.  In the case of the 

HiFlows POT series, there are on average 5 events per year (HiFlows, 2010a). 
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  Data can be obtained in a format suitable for direct use in the FEH 

software (i.e. .am,.pt and .cd files) or as POT data in .csv files.  The database 

provides a good, easily accessible dataset which is useful to this research 

project. 

 

2.3.3 Rainfall Record Sources 

There are many organisations within the UK that record rainfall, for a 

variety of purposes.  Water utilities require rainfall data for resource estimation 

and allocation, the Environment Agency require rainfall data for water resource 

assessment and flood warning and the Met Office require rainfall data to assess 

the performance of numerical weather prediction models (among many other 

reasons).   

 There is one major source of freely available raw archived rainfall data 

(for research) within the UK.  This is the British Atmospheric Data Centre 

(BADC) and it hosts gauged rainfall information from utilities, regulators and 

organisations such as the Met Office, as well as some private records.  It has 

built in facilities for querying and extracting raw time series and the records it 

holds are considerable. 

For the researcher or scientist interested in analyses using country –wide 

rainfall data, the use of raw BADC data requires careful consideration.  If a large 

number of records are required, the download time and volume can be 

considerable.  After this, a significant amount of data checking and assessment 

of quality is required.  Issues such as the double counting of rain days or mixing 

hourly and daily data require that the raw data are subject to extensive quality 

control procedures.  Finally, there is the issue of gauge location, and how many 

independently extracted records can be used consistently for a study.  

Individual rain gauge measurements are subject to a variety of errors such as 

outsplash (rain entering the gauge after splashing off adjacent ground), wind 

induced under-catch and snowmelt estimation problems.  For a more detailed 

discussion on rain gauge measurement problems see Strangeways (2004).  

These problems tend to be specific to individual gauges.  Regarding the impact 

on this study, it is important to bear these measurement problems in mind, 

however, they are difficult to consistently account for in a quantitative manner. 
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The need for consistent rainfall data for large parts of the country for both 

research and commercial purposes has led to the development of long term 

time series and gridded rainfall data products.  Gridded data for the UK are 

produced mainly by the Met Office and sold as a commercial product to 

companies for application in areas such as agriculture, hydrology, ecology and 

forestry.  Gridded datasets are also increasingly used in research for climate 

model inputs, model validation and trend analysis.   

Perry and Hollis (2005) describe the production of a monthly gridded 

dataset for a range of climatic variables, including precipitation.  Their use of 

techniques such as geographically weighted regression within a GIS allows for 

the interpolation of climatic variables.  For rainfall, there was typically one 

station for every 7 x 7 km grid cell, however cover was not consistent.  Areas 

such as the Scottish Highlands tend to suffer from sparse coverage of rainfall 

collection due to the low levels of habitation there, whereas the South of 

England tends to have better coverage.  This station coverage is reflected in the 

accuracy of the final gridded data product, where areas of low station coverage 

tend to have higher errors in the gridded data set and vice versa for those areas 

of high station coverage.   

The motivation for the development of long-term time series such as that 

of Alexander and Jones (2001) has been rooted in the need to put recent 

climate change into a longer term context.  It also allows for trend analysis on a 

consistent dataset, something which using a series of individual gauges does 

not easily permit.  Alexander and Jones’s work considered both spatial and 

temporal aspects in the data comparison, and they did this by creating time-

series for different regions, identified for England and Wales by Wigley et al. 

(1984) and extended to Scotland by Gregory et al. (1991).  Their focus on using 

the resultant dataset for an analysis of extremes is noteworthy as it provides 

some basis for the use of derived products as opposed to raw data for this type 

of work.  However, as these time-series represent a region, they may not be 

suitable for application over a catchment where the rainfall regime may be 

considerably different.   

The Met. Office has produced a 5 km gridded interpolated daily rainfall 

data set covering the time period 1958-2002 for the UK.  This data set is not 
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freely available and is only licensed for use under certain conditions.  The 

method used to construct this data set has not been explicitly published, 

although Smith (2010) provides some evidence that the method may be similar 

to that used to produce the monthly data as reported by Perry and Hollis (2005).  

Smith also undertook investigations into the use of the 5km gridded data and 

concluded that while concerns may exist over the lack of relevant information on 

its construction, the 5 km data set provides an accurate representation of 

extreme rainfall events.  In Smiths study, the 5 km resolution was considered 

sufficiently small so that individual grid cells could be considered as pseudo-

stations. 

Fowler et al. (2005) use the 5 km gridded dataset in work that assessed 

regional climate model output for its ability to reproduce extremes.  Their 

assessment used the RMED values calculated from the 5 km grid and suggests 

that the gridded data may have potential for use in large scale studies of 

extremes.  There is a considerable advantage in having access to such a 

consistent data set over raw station data as it allows consistent temporal and 

spatial comparisons to be made.  It is for these reasons that this type of gridded 

dataset is particularly useful to a study such as this. 

 

2.3.4 Estimation of Extremes from data: Discretisation Effects 

While the 5 km gridded data set has some considerable advantages to 

its use, there are also some problems.  Daily data record the rainfall ending at 9 

am.  However, storms rarely fit neatly within a rain day.  Where they overlap the 

measurement boundary it can be difficult to know how to estimate the storm 

amount given the daily total.  With hourly data, it is likely that this problem would 

be reduced; however, there is generally limited hourly data available.  The 

problem of how to estimate storm rainfall from daily data can be referred to as a 

data discretisation effect and most research in this area tends to focus on 

methods for correcting fixed window measurements to reflect the true storm 

more accurately. 

 Weiss (1964) presents an analysis of the discretisation problem for the 

United States.  The work presents correction factors in order to correct daily 

rainfall data to better represent their “true” amount.  Weiss found average 
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correction values of around 1.14 and recommended these be incorporated into 

work considering extreme rainfall events. 

In the UK, the discretisation problem is well reviewed by Dwyer and 

Reed (1995) who report on some work undertaken to estimate correction 

factors between hourly and daily data.  Dwyer and Reed (1995) use six sites 

(Eskdalemuir, Leeming, Ringway, Brisbane, Melbourne and Sydney) to 

calculate correction factors for a range of durations and also to produce a 

generalised model suitable for calculating correction factors of any duration.  

Their methodology for this first extracts a series of fixed and sliding maxima.  

Because hourly records at the time were sparse, each hourly record was two 

years long and then chopped into 21 day periods.  For each period, a fixed and 

sliding maximum was extracted.  This approach allowed more storms to be 

analysed however, it does mean there are fewer extreme events.  Once the 

fixed and sliding maxima are extracted, their means are calculated, the 

correction factor being the ratio of these means.  While in application it is 

desirable to convert individual maxima, it is tempting to calculate correction 

factors based on the mean of individual ratios.  According to Dwyer and Reed, 

this is not a satisfactory estimator as it can be biased.  To counteract the 

problem of fewer extreme events, the methodology of Dwyer and Reed gives 

greater weight to the larger events when calculating the correction factor.  There 

is limited literature on the discretisation problem with regards to daily rainfall 

and the above studies represent the majority of the published work.  While both 

studies present correction factors, it should also be emphasised that the length 

of observed record where rainfall was either recorded continuously or in hourly 

intervals was relatively short (2 years in the case of Dwyer and Reed).  

Therefore, in a two year period it is likely that there are few extreme rainfall 

events and so the correction factors need consideration in light of this.  

However, both Weiss (1964) and Dwyer and Reed (1995) provide some basis 

for the correction of rainfall storms estimated from daily data. 

  

2.4 Hydrological Modelling of Peak Flow 

    In hydrology the attempt to transform estimates of rainfall to flow is often 

termed rainfall-runoff modelling.  With all the methodologies that fall under the 
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umbrella of this term, rainfall is transformed to a flow value through varying 

means, and it is these means which make the models unique.  Hydrological 

modelling is a vast area, and it is impossible to review the large amount of 

literature available.  For generic issues surrounding rainfall-runoff modelling the 

reader is directed towards books such as Beven (2008).  For the purposes of 

this review, study is limited to those models and papers that contribute 

significantly to the field of peak flow modelling and which have components that 

are of significant importance to this study. 

 Before discussing the topic of peak flow modelling in more detail, it is 

worth providing a definition to avoid confusion.  This research project is 

primarily concerned with flood frequency estimation.  However, this section of 

the literature review focuses on methods suited to generating flow estimates 

from rainfall.  This is required in the case where no observed data is available 

such as a future scenario or ungauged catchment. 

 

2.4.1 Event Based Models 

Flow estimation models dealt with here fall in to one of two categories.  

The first is event based modelling, popular for peak flow estimation.  Given 

some information on the catchment properties and a rainfall storm, the event 

based model will estimate the peak flow magnitude and in some cases the 

hydrograph.  This approach has been used for several models, and a modified 

event based estimation forms one of the main methods of the Flood Estimation 

Handbook (Kjeldsen, 2007).   

One of the oldest examples of an event based model was that of the 

rational method (ASCE, 1970).  It predicts the peak runoff rate as a proportion 

of the storm rainfall rather than predicting the peak flow magnitude and is 

represented by Equation 2.1.  

CAiQ max     Equation 2.1 

 

Where  C represents the coefficient of runoff, A is the basin area and i 

represents the rainfall intensity.  C is chosen from a list, where different 

coefficients represent different land surfaces.  While one of the main criticisms 

of the rational method is that it does not account for pre-storm ground 
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conditions, it is still in use today as a method for runoff calculation on paved 

surfaces (Shaw et al., 2011, p.464).  Despite the criticism, it is clear that simple 

models such as the rational formula still have a use in practical hydrology. 

 The unit hydrograph, developed by Sherman (1932) takes an 

alternative approach, as it predicts peak flow volume based on the rainfall input.  

It is a flexible model which can predict the flow hydrograph of a storm of any 

given duration and intensity.  Various modifications of this model have occurred 

since its inception, but the fact that it is still in use today is testament to its 

applicability.  Nash (1960) developed an approach that generalised the unit 

hydrograph.  He split runoff into base flow and partitioned the rainfall by using 

several rules.  However, the model estimate of the flow is highly dependent 

upon the assumptions made regarding antecedent conditions.   

Event based models for peak flow estimation exist in a variety of forms, 

from the conceptual ideas of the rational method to more physically based 

models such as LISEM, as described by De Roo et al (1998).  What 

distinguishes event based models from others is that they require initial 

estimates of their catchment antecedent conditions.  Compared to continuous 

simulation models, event based modelling can be thought of as an alternative 

way of integrating across time.  However, as their name suggests, most event 

based models tend to operate across a single event.  More complex models 

such as LISEM require parameterisation and take time to set up.  This makes 

them unsuited to the challenge of estimating a catchment flood record, where 

the model may need to be manually set up for each event and catchment. 

While some forms of event based model assume constant catchment 

conditions, in practice it is now fairly well established that the hydrological 

response of a wet catchment to rain will be considerably different to that of a dry 

catchment.  With regards to event based modelling, the importance of 

estimating these antecedent conditions has led to some significant research on 

the topic (see Berthet et al. 2009; Brocca et al. 2008 and Michele and Salvadori, 

2002 for some examples). 

 

 

 



Chapter 2: Literature Review 

 

19 

 

2.4.2 Antecedent Accounting 

One of the most basic ways of estimating a catchment state prior to 

storm arrival involves the use of antecedent rainfall.  Traditionally one of the 

most common methods is known as the Antecedent Precipitation Index (API), 

first presented by Kohler and Linsley (1951).  This approach weights antecedent 

rainfall using a decay factor, k in order to account for the relative importance of 

antecedent rainfall.  Others have developed the method, such the normalised 

version presented by Heggen (2001), although the use of soil moisture 

estimates tends to be more commonplace in the literature in comparison to 

antecedent precipitation. 

In estimating catchment antecedent conditions, no variable prevails more 

in the literature than soil moisture.  Zehe et al. (2005) investigated the role that 

antecedent soil moisture plays on the resultant flood hydrograph.  The results 

for their region (South-West Germany) suggest that at moderate and dry 

catchment conditions, the resulting hydrographs for the same given storm could 

be considerably different.  However, with wetter soils, the effect on the 

hydrograph diminishes, therefore leading the authors to suggest that the 

processes of preferential and Hortonian overland flow are inherently linked with 

the catchment antecedent conditions.  While this study made use of a relatively 

complex physically based model, the results suggest that threshold behaviour is 

an important aspect the catchment antecedent condition.  Work by Berthet et al. 

(2009) looked at the importance of initial conditions for flood forecasting.  Here 

they found that antecedent rainfall based approaches tended to perform poorly 

compared to continuous simulation methods, though they were comparing 

predictions based on hydrograph simulation rather than simply the peak flow or 

return period estimate.   

The estimation of spatially coherent soil moisture estimates benefits 

many activities such as farming, forestry and flood management.  In the UK, 

generalised estimates for a location were provided by the Met Office Rainfall 

and Evaporation Calculation System (MORECS) for many years.  This was a 

system that provided averaged soil moisture deficit and evaporation data for 40 

km grid squares on a weekly and monthly basis (Hough and Jones, 1997).  This 

system was superseded by the amalgamation of the Met Office’s Nimrod 
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nowcasting system and its Surface Exchanges Scheme (MOSES).  These 

improved upon MORECS by providing real time estimates of soil moisture by 

incorporating remotely sensed data, running on a smaller, 5 km grid (Smith et 

al., 2006).  Both MORECS and the new amalgamated method are capable of 

providing estimates of surface soil moisture suitable for use in hydrological 

modelling.  However, the data are generally expensive to obtain and require 

that the soil moisture model estimates can be reconciled with the hydrological 

model structure. 

 On a smaller scale, several researchers have made attempts at 

developing models to estimate soil moisture, given access to local climate data.  

Brocca et al. (2008) present the development of a soil moisture model for use in 

estimating initial conditions for rainfall-runoff modelling.  Their results again 

highlight the importance of soil moisture in determining the peak discharge, and 

like Berthet et al. (2009) considered that methods based on antecedent 

precipitation did not work so well.  Pan et al. (2003) present an analytical model 

for use in estimating soil moisture directly from rainfall data.  The method is 

interesting from its simplified perspective as many soil moisture models 

incorporate significant numbers of parameters and have considerable data 

requirements.  However, the resulting soil moisture estimates in this study were 

never meant for anything other than testing against spot field measurements so 

again it would require some work to reconcile these estimates with a 

hydrological model structure. 

If it seems that a large proportion of the review has been devoted to 

antecedent conditions estimation then that is because it is perhaps one of the 

biggest criticisms against the use of event based models.  While they have an 

ability to represent antecedent conditions, often through the use of soil moisture 

estimation or antecedent precipitation accounting, they are often considered 

less accurate in this respect than the continuous simulation models (Boughton 

and Droop, 2003).  Therefore, the methods used to estimate the catchment 

antecedent conditions for this project will require some consideration.  This is 

especially challenging as antecedent estimates will be required without 

recourse to continuous simulation type methods. 
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  To this end, CS models are now introduced in order to highlight their 

structure and discuss their advantages and disadvantages.  It is worth stressing 

however, that there is a trade-off between the two approaches, and this is 

considered later on. 

 

2.4.3 Continuous Simulation for flow estimation 

An alternative peak flow modelling approach is that of continuous 

simulation (CS), where discharge is calculated at every time step of the model 

run and flow peaks can then be extracted from the discharge time-series.  The 

benefit of continuous simulation is that it continually updates the model state at 

every time step, thereby allowing for a continual (and generally more accurate) 

accounting of variables such as soil moisture.  There are many continuous 

simulation models in use today; however the method has yet to find widespread 

use in a commercial environment.  This is perhaps due to the expertise required 

to parameterise, run and calibrate these types of models.  They also require a 

considerable amount of time to set up and computational demands can be 

heavy.  Furthermore there is limited guidance available to practitioners on the 

use of continuous simulation models which is probably reflected in the extent of 

their use in this sector. 

Many models exist, and as with event based models it is not possible to 

review them all.  Focusing on the UK, and continuous simulation in particular, 

one of the most widely used models is that of the Probability Distributed Model, 

or PDM for short.  It is a lumped conceptual rainfall-runoff model which 

transforms rainfall and potential evapotranspiration data in to runoff (Moore, 

2007).  As a model, it has been well documented, first developed at the Institute 

of Hydrology, now CEH.  The PDM model is in widespread use today, not only 

as a method for reproducing historical river flows, but also as a model for flood 

forecasting and early warning systems (Cole and Moore, 2008).  Kay et al. 

(2006a, 2006b) apply the PDM in the ungauged situation, where parameter 

values are estimated through the pooling of catchments with similar 

characteristics (as defined by the FEH PCDs).   

While continuous simulation can provide estimates of peak flow 

magnitude, it also provides a lot of information that may be irrelevant if only 
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flood frequency estimates are required.  For example, there is no need to 

estimate the entire hydrograph, only the peak flow magnitude.  One of the 

assumptions made during the development of the aims and objectives of this 

thesis is that simplifications can be made to the modelling procedures currently 

used if only peak flow magnitudes are required.  Continuous simulation is 

reviewed here as it is worthwhile to understand how it works, how well it 

performs and therefore how alternatives can be developed. 

It is worth noting that in a comparison of performance, Loague and 

Freeze (1985) in comparing regression, event and continuous simulation 

models, found that there was little justification for using more complex models 

as they performed no better than the simple methods in a predictive mode.  

Where simple models are capable of carrying out the task in hand it is likely to 

be preferable to use them, as the model structure and assumptions are clearer.  

However, there will always be occasions where continuous simulation models 

are required, particularly where information on more than one event or variable 

is required. 

In the case of flood frequency estimation, the use of models for peak flow 

estimation tends to occur where there is no observational record available.  This 

may be in the ungauged catchment, where estimates of current flood frequency 

are required, or it may be for a gauged catchment where estimates of future 

flood frequency are required.  Developing on the work that has been reported 

on here, the next section of the review considers how a flood frequency 

estimate can be developed, with a consideration of different approaches. 

 

2.5 Approaches to Flood Frequency Estimation 

In general, event based models are well suited to the estimation of peak 

flows in situations where there is little observed data.  However, given the 

existence of a good observed flow record, statistical analysis can be undertaken 

for flood frequency assessment.  This is the general recommended approach of 

the FEH (Robson and Reed, 1999).  Evidently there are no future measured 

flood flows, and so recourse must be made to some kind of modelling if future 

considerations are part of the analysis.   
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While flood risk is a coupled problem between society and nature, most 

analyses tend to focus on statistical and modelling approaches to solving the 

problem.  It could be argued that reducing flood frequency assessment to a 

purely statistical problem neglects the physical processes that govern flood 

generation.  On the other hand, Reed (2002) recognises that a statistical 

approach makes good use of the most relevant observed data. 

In some respects, these arguments generate from single site flood 

studies, where the analyst aims to gather as much information on the problem 

as he or she can.  In a study taking a much broader view of the flood frequency 

problem, recourse to detailed information on catchment flood generation is 

difficult, as it is hard to develop a framework where such information can be 

consistently useful.  This is why the review focuses almost exclusively on the 

mathematical and modelling methods, rather than process based studies of 

flood generation. 

 

2.5.1 Historical Development of Flood Estimation Methodologies in the 

UK 

 Within the United Kingdom, methodologies for flood frequency 

estimation have seen continual development since the 1960s.  The earliest 

work was motivated by dam safety considerations, and the Institute of Civil 

Engineers published an interim report defining the first flood envelope curves for 

the UK in 1933 (ICE, 1933)  It was twenty seven years later that this work was 

updated by Allard et al. (1960).  In 1967, the Institute of Civil Engineers 

published a report recommending a detailed investigation of floods should be 

undertaken and that all aspects of flood hydrology in all regions should be 

examined.  The resulting work was known as the Flood Studies Report (FSR) 

(Institute of Hydrology, 1975).  It provided users with the ability to produce either 

a flow hydrograph or calculate an instantaneous peak flow value.  The 

recommended method was dependent upon the user’s requirements and the 

availability of observed data.  The FSR includes regression equations to 

estimate statistics such as the mean annual flood from catchment 

characteristics.  This was one of the first methodologies that allowed a design 

flood to be estimated from rainfall.  In this respect the FSR can be seen as the 
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fore-runner to the ReFH method currently in use today.  The rainfall-runoff 

method of the FSR was in large part the same method used later in the 

publication of the Flood Estimation Handbook (FEH) (Reed, 1999).  The FSR 

provided the first consistent set of guidelines for practitioners in the flood risk 

management field.  By the early 1990s it was realised that not only was there a 

relatively large amount of observed data available that was not used in the FSR, 

but also that the large number of updates to the original method meant it had 

lost some of its clarity to practitioners.  As a result, the Institute of Hydrology 

(IH) along with partners commissioned a research project to develop new 

guidelines and software for use by those involved in flood estimation. 

  The result of this project was a publication and associated software 

known as the Flood Estimation Handbook (FEH).  The FEH incorporated a 

rainfall-runoff method, largely based on the FSR and a statistical method.  In 

2007 the FEH rainfall runoff method was revised to produce the Revitalised 

Flood Hydrograph (Kjeldsen, 2007).  The two methodologies of the FEH tend to 

still be the main methods for flood frequency investigations in the United 

Kingdom.   

However, at the time of writing there is limited potential for using these 

methods to look at how future fluvial flood frequency may change.  Design 

estimates from both the statistical and design event methods can be altered 

using the DEFRA (2006) indicative sensitivities, but this is a reasonably crude 

approach which does not account for differences between individual 

catchments.  A smaller number of applications have seen the use of continuous 

simulation methodologies, although these tend to be more for research 

purposes as opposed to scheme design.   

 

2.5.2 Event Based Methodologies for Flood Frequency Estimation 

  What distinguishes an event based model used for flood frequency 

estimation compared to a generic hydrological model is that the model used for 

flood frequency estimation is used to estimate an event of a particular rarity.  In 

this form, the event in question is often known as a design event.  In essence 

this requires a link between a rainfall event of specific magnitude and rarity (the 

design rainfall) and the flow that the user wishes to estimate.  
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 As previously introduced, the standard model for use in design event 

flood frequency estimation within England and Wales is that of the ReFH model 

(Kjeldsen, 2007).  At the time of writing the ReFH approach has not been 

validated for Scotland.  The ReFH addresses some of the criticisms levelled at 

the original rainfall-runoff method after the publication of the FEH.  The model 

uses a design storm estimated by the FEH Depth-Duration-Frequency (DDF) 

rainfall model.  This is a fitted model which provides return period estimates of 

rainfall for any given duration for a specific location within the UK.  The ReFH 

model itself has accounting for antecedent conditions, a losses and baseflow 

model as well as a more flexible unit hydrograph shape compared to its FEH 

predecessor.  Other improvements include updates to the regression equations 

used to estimate some of the variables such as the time to peak parameter (Tp) 

and the median annual maximum flood equations (QMED).  The ReFH was 

published as a separate report along with a software update (Kjeldsen, 2007). 

 The design event method can be consistently applied at any given 

location, its advantage is that it can be parameterised and transferred to work in 

ungauged catchments.  The method has been developed for the design event; 

hence it generally only estimates one event at a time.  The ReFH method is 

known to perform poorly on permeable catchments and in this situation the 

general recommendation is to use the statistical method of the FEH (Kjeldsen, 

2007).  It is perhaps representative of event based models in general that this is 

the case, as they tend to be reliant on rainfall as the predictor of the flood peak, 

modified by antecedent conditions.   

However, despite the potential pitfalls of event based modelling, several 

aspects of the method have an attractiveness about them which may be helpful 

to this study.  Specifically the handling of antecedent conditions and storm 

estimation are issues which are important to this research project.  However, 

the approach taken by the ReFH to estimating pre-storm catchment conditions 

is still reasonably complex and may not be suitable for consistent application 

over a large number of events.   
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2.5.3 Statistical Methods for Flood Frequency Estimation 

 As previously mentioned, the use of observed flow data is preferable to 

that which is modelled.  Observed flow data contain a wealth of information on 

frequency, and using supporting methodologies can be successfully extended 

to develop flood frequency estimates for engineering design.  Little effort has 

been devoted to developing the kind of links possible between the rainfall and 

flood frequency curves as proposed by this research.  One project that has 

examined these relationships is that of the GRADEX method.  The method 

allows for the extrapolation of the flood frequency curve using the rainfall 

frequency curve (Beran, 1981).  It therefore makes the assumption that at high 

return periods, rainfall is the dominating flood generating factor, with other 

influences much less important.  It has seen some severe criticism from UK 

practitioners (e.g. Reed, 1994) from the choice of the distribution for rainfall 

modelling to the absence of regionalization.  It is clear that extending the flood 

frequency curve is not a trivial issue.   

The Flood Estimation Handbook (Volume 3) contains a considerable 

amount of information on statistical procedures for flood frequency estimation.  

Where observational data are present at a site of interest, these can be fitted to 

an extreme value distribution and flood frequency estimates produced.  This is 

known as a single site estimate.  This tends to not be recommended for many 

practical situations as the resultant return period estimates for rare events (i.e. 

T=100) are not particularly robust. 

Because of the short length of many flow records, the FEH recommends 

pooling as the main method for estimating a flood frequency curve from 

observed data.  This is where data from hydrologically similar catchments are 

pooled to create a longer time series on which to base the flood frequency 

curve.  This approach is generally thought of as being more robust than simply 

using the data from the site of interest.  Generally a pooled record length of five 

times the return period being estimated is suggested.  For example, the ten 

year return period flow would require a record length of around fifty years for its 

accurate estimation.  Once the flow record has been collated, the data is 

standardised by one of several methods.  This standardised data is then fitted 

to an extreme value model, which is then used to estimate the design flood at a 
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specified return period.  Typical models include the Generalised Extreme Value 

(GEV) model, General Logistic (GL) model and Gumbel model which are 

suggested for use with annual maximum data and the Generalised Pareto 

(GPD) model, recommended for working with POT data. 

Further extending the pooling method, several researchers have 

investigated the use of seasonality as a measure for pooling.  Ouarda et al 

(2006) compare several seasonality indices and recommend calculating 

seasonality measures on POT data.  Generally the use of seasonality improves 

the results of pooling compared to the use of traditional catchment descriptors.  

Cunderlik and Burn (2002) report on the use of rainfall seasonality to pool 

similar catchments.  Here, the use of directional statistics was employed to 

describe the rainfall seasonality.  This approach has the advantage that it can 

be applied to catchments which have rainfall, but no flow record.  Where 

catchments have a fairly close linkage between the rainfall and flow regime, this 

approach is considered to be at least as good as that of the FEH pooling 

method.  Archer (1981) makes the case not just for the use of seasonality 

measures, but for a seasonal assessment of flooding.  This suggestion has 

never been fully implemented in products such as the FEH, but it has its uses 

by giving more detailed information on risk at certain times of the year.  This 

may be important to farmers as well for construction projects working in or near 

rivers at risk of flood.   

 When working with the statistical method, it is difficult to assess 

the impact of potential future change on the flood frequency curve.  Because 

the method uses observed data, it is not clear how to perturb these data to 

represent a future time series.  It is also unclear, if catchments undergo 

significant change in the future, how a pooling method might work.  The Flood 

Estimation Handbook, at the time of publication, looked at the problem of non-

stationarity from a climate change perspective (Robson and Reed, 1999).  The 

conclusions reached from this work suggested that climate change was not an 

important issue and that causes of non-stationarity in the observed flow record 

were dominated by short record lengths and changes to gauging structures 

(Robson and Reed, 1999).  It is because of these difficulties in determining the 

precise causes of change to flood frequency curves that the research 
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community have moved towards alternative methods for future flood frequency 

estimation. 

 

2.5.4 Recent Developments 

Currently, the Flood Estimation Handbook represents the standard 

methodology used by practitioners in UK flood estimation.  However, there are 

several limitations to the methods outlined, and as a result, the use of 

continuous simulation is being promoted, although to date it tends to be used 

mainly for research purposes.   

With regards to flood frequency estimation, the continuous simulation 

approach is relatively simple.  Assuming a model has been set up and run, the 

output in the form of a discharge time-series will be available.  From this, the 

flow peaks can be extracted (in either AMAX or POT form) and treated 

statistically as per the statistical method previously described.  However, one of 

the potential advantages over the statistical method as detailed by the FEH is 

that in the CS case, the number of flood peaks can be considerably increased 

by using a long discharge time series.  These are usually generated by the use 

of a synthetic rainfall model, parameterised on observed data.  This approach is 

only valid where the long rainfall time series can adequately capture the 

extremes found in the catchment of interest.   

In terms of flood frequency estimation, continuous simulation has the 

potential advantage of giving an insight into how all the variables affecting the 

flood regime may change.  Therefore the researcher gains an understanding, 

not just of potential future changes in magnitude but also depending upon the 

model, the processes driving these changes.  The disadvantages of CS 

approaches usually centre on the computational time required to carry out a 

simulation as well as associated problems of model parameterisation, both for 

current and future climates.  There is also the question of how the methodology 

can be adapted in order to be consistent across the UK.  This problem is the 

result of the parameterisation required to get the models to produce outputs of a 

satisfactory quality. 

The use of continuous simulation for river flood frequency estimation has 

been demonstrated for the United Kingdom (Calver et al., 2005).  This work was 
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carried out to develop a national method for river flood frequency estimation 

based on using continuous simulation rainfall-runoff models.  Their work makes 

several recommendations; however, at the time of writing there is not currently 

a single standard modelling strategy (such as the FEH) for practitioners.  A 

large amount of preparatory work is required in gathering meteorological input 

data, estimating parameter values and calibrating the model.  It is perhaps a 

further reason that continuous simulation has yet to see significant uptake 

amongst the practitioners of flood frequency estimation. 

In the UK, the Centre for Ecology and Hydrology (CEH) has been central to 

the development of a consistent CS methodology (see Bell et al., 2007a, 

2007b).  Two methods have been developed, both of which allow consistent 

application over UK catchments.  The first approach uses a model known as the 

Probability Distributed Model (PDM) which is run for individual catchments.  

Parameterisation is by reference to the catchment properties, with regression 

analysis linking the two.   

The second approach uses a spatially generalised runoff and routing model 

at a 1 km resolution across the UK.  Current work suggests that it is found that 

groundwater based catchments are particularly hard to represent using this 

approach as the models main control is relief or topography (Bell et al., 2007a).  

Regional Climate Model inputs on a 25km grid cell size were used as the inputs 

for both the control and future scenarios.  This approach is known as grid-to-

grid (G2G) as the model takes gridded meteorological data as the input for the 

gridded hydrological model. 

Continuous simulation is the main focus of the FRACAS project to estimate 

future flood risk.  DEFRA and the Environment Agency (EA) published a 

technical report (Calver et al., 2005) looking at a national river catchment flood 

frequency method using continuous simulation.  The essence of the approach 

behind this report is to calibrate a catchment rainfall-runoff model for a 

representative group of sites with river flow and rainfall time series data.  The 

ability to use continuous simulation in an ungauged catchment is important, but 

is evidently complicated by the lack of calibration flow data.  To parameterise 

rainfall-runoff models, catchment properties must be linked to model 

parameters.  The continuous simulation approach requires good quality, high 
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resolution data to run.  The time step at which continuous simulation models are 

run is also an important consideration.  Using daily data on small catchments 

has problems as these catchments may have too fast a response time to be 

represented by a model which runs on daily data.  The time step at which a 

model is run is likely to be decided by a combination of the available input data 

time step, the size of the catchment under investigation and the available 

computational time. 

 

2.5.5 Comparing Approaches 

Calver et al. (2009) undertook research to investigate different 

approaches to river flood frequency investigation for the current time period.  

FEH methods (both event modelling and statistical) and continuous simulation 

were implemented over a subset of around 100 catchments.  The results 

reinforced the FEH preference for using the statistical method wherever 

possible.  Continuous simulation was considered to show good potential for 

representing flow peaks.  The event based method showed considerable error 

and this reflects its generalised methodology.  The use of design rainfall 

information, as well as design discharge is thought to contribute significantly to 

the errors shown by this technique.  In a more qualitative review, Boughton and 

Droop (2003) assess several continuous simulation models and provide a 

qualitative comparison between them and design event models.  Their 

conclusions highlight the inadequacies of event based models such as the 

subjective nature of streamflow partitioning as well as the need to select a 

design rainfall storm structure.  However, the relative complexity of continuous 

simulation models is also noted.  Boughton and Droop’s review only really 

considers the application of models to single catchments and it may be likely 

that simple models can work just as well as more complex models when 

consistently applied over multiple catchments.  While much is made of the 

potential benefits of the CS approach, there is little quantitative evidence to 

justify the additional complexity of CS models. 
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2.6 The effect of Climatic Change on Future Flood Frequency 

2.6.1 Studies on the Changing Climate 

The case for a changing climate has been made by several authors.  

Palmer and Raisanen (2002) state that increasing atmospheric carbon dioxide 

concentrations will almost certainly lead to changes in the global mean climate.  

What is less well understood is how future extremes may be affected, especially 

at a local scale.  It is evident, that changes in extreme rainfall have the potential 

to severely impact many aspects of society such as flood risk management, 

agriculture and water resources.  One of the most authoritative reviews on 

climate change is that of the Intergovernmental Panel on Climate Change 

(IPCC) who have published a synthesis report of many GCM and RCM studies 

(Christensen et al., 2007) as well as impact assessments.  While this provides a 

considerable amount of background material on the subject, several selected 

references on the UK are presented in order to highlight specific issues.   

Fowler et al. (2005) provide an assessment of the HadRM3H regional 

climate model (RCM) and consider its future projections of extreme rainfall.  

Their conclusions suggest that HadRM3H shows some skill in reproducing 

rainfall extremes up to the 50 year return period across the UK.  In terms of 

future changes, there was a mixed pattern across the UK.  In Scotland and 

parts of England, there are projected increases in the magnitude of long 

duration rainfall events.  However, the absolute figures in this paper must be 

treated with caution, as this study considered only one model (HadRM3H) and 

one emissions scenario.  If decision relevant information is required, there 

needs to be a much wider appreciation of the uncertainty in model formulation, 

natural variability and emissions scenario.  Fowler et al. (2005) use the 

HadRM3H model for two purposes.  The first is to assess the performance of 

RCM data in simulating current rainfall extremes; the second purpose is to 

assess any potential future changes to extremes using future generated time-

series.  The methodology took a two track approach, using both individual grid 

box analysis and the regional frequency analysis methodology as implemented 

by Hosking and Wallis (1997).  Using this RCM the authors concluded that the 

model gave a reasonable interpretation of rainfall extremes up to the 50 year 

return period, though there was a tendency for overestimation in high elevation 
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western areas.  In eastern areas there was an underestimation leading the 

authors to suggest that the east-west rainfall gradient was perhaps 

exaggerated.  Overall, the RCM data was considered to have some skill in 

predicting how rainfall extremes may change.  This assessment was followed 

up by the use of future scenarios as described by the RCMs.  The results are 

described in detail by Ekstrom et al. (2005) and describe the changes to 

different durations and return periods of events. 

Deque et al. (2007) report on work that considered the problem of 

uncertainties in model projections.  By using a combination of RCMs, GCMs 

and emissions scenarios they considered the most important driving forces in 

determining the uncertainty.  Overall, it was considered that the choice of GCM 

introduced the largest source of uncertainty.  In summer, the choice of RCM 

was significant, reflecting the fact that some RCMs currently show a poor ability 

to represent summer rainfall.   

Climate projections are continually being updated as climate models 

change and process understanding and resolution increases.  Major effort has 

recently focused on using climate model outputs for hydrological modelling.  In 

particular this involves developing scenarios suitable for use with hydrological 

models.  The use of these outputs for assessing changes to hydrological 

extremes is still early work, as scenario representation of extremes is limited to 

some extent.  The next section of the review considers climate impact 

assessment studies that have been carried out to consider the effect on 

flooding. 

 

2.6.1 Climate Impact Assessment 

There are some important links between climate change and hydrological 

change.  Understanding the uncertainties and complexities of future climate 

projections are important if an assessment is to be made as to the overall 

robustness of any method claiming to assess changes to future flood frequency.  

For example, in certain geographical locations the annual average rainfall may 

not change significantly, but this may hide important seasonal changes in 

rainfall that has the potential to affect flood risk.  Within this ever changing 

landscape of climate information, practitioners of climate impact assessment 



Chapter 2: Literature Review 

 

33 

 

studies must make some important decisions about how to use climate 

projections and what their limitations are.  Raff et al. (2009) introduce a method 

for the assessment of the impacts of climate change on flood frequency in the 

Western United States.  Their study is insightful, as it provides an assessment 

of some of the problems facing the practitioner.  For example, the issue of 

downscaling GCM outputs for use at a temporal and spatial resolution that is 

appropriate to those modelling peak or flood flows. Raff et al. also consider the 

problem of stationarity and the issue of using the return period as an 

assessment of flood frequency.  In the case of the 100 year return period flood, 

how appropriate, or possible, is it to calculate this value for future time periods 

when our knowledge of how fast the climate will change is uncertain?  Some 

have attempted to solve this by comparing a specific current time period peak 

flow with the same flow in the future and estimating return periods for both.   

 

2.6.2 Overview of Methods and Previous Studies 

Methods for assessing how future flood frequency may change broadly 

fall into two categories.  The first uses the analysis of trends in observed historic 

data; the second approach uses synthetic climate data coupled to a 

hydrological model to simulate a future river discharge scenario. 

 Hannaford and Marsh (2008) used a group of near pristine catchments 

with good flow records in order to examine the trends in peak flows.  Their 

results were mixed, with little compelling evidence for any strong long term 

trends.  They concluded that care was required in flood peak trend analysis, 

particularly with regard to the start of the flow records.  The group of catchments 

considered in Hannaford and Marsh’s study had station start dates during the 

late 1950s and early 1960s.  This was considered by the authors to be a 

relatively quiet hydrological period.  Since then, while there has been a slight 

increasing trend in flood ‘richness’, the authors are cautious about attributing 

this to climate change as there is some correlation with a strengthening North 

Atlantic Oscillation.  This work helps to put the impact of climate change into 

perspective, as the issue of natural variability both in hydrology and climatology 

is an important factor in future flood frequency assessment.  Similar results 

were reported by Robson (2002) and Robson et al. (1998).   
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 Given that there is little trend seen in UK flood data, it is clear that there 

is little room for extrapolation to the future using this method.  It is also 

questionable whether trend analysis can be extended for predictive purposes, 

as future changes may be non-linear.  An alternative approach is to use a 

continuous simulation model in conjunction with current and future generated 

climate scenarios.  The broad methodology used by most researchers is as 

follows.  A hydrological model is set up for a catchment in question, calibrated 

and validated against observed data.  Once this has occurred, one or more 

scenarios of the future are generated and the hydrological model is then re-run.  

The resultant output discharge time series can then be analysed for changes 

compared to the baseline.  One of the advantages of continuous simulation 

results are that the resultant discharge time series can be analysed for a range 

of changes in duration and frequency, rather than simply considering the daily 

maximum flow. 

 Boorman and Sefton (1997) consider the use of two separate rainfall-

runoff models to assess the impacts of future climate change on river flows.  

This work provides a good background to the generic methodology of rainfall 

runoff modelling for flood frequency estimation, particularly with regards to 

recognising the uncertainty in the modelling process.  The uncertainty analysis 

work of this project used climate sensitivity tests as well as two different climate 

scenarios in order to look at how the conceptual models responded.  It was 

found that one of the models gave results that were not appropriate for this 

application.  As with the results of other studies, it was found that the two 

climate scenarios gave contrasting results with regards to future flow regimes. 

 Cameron et al. (1999) report on the use of TOPMODEL applied to the 

Wye catchment in mid-Wales.  This work assessed the usefulness of 

continuous simulation as a method for reproducing the flood frequency curve.  

Using an observed 21 year rainfall record the hydrological model was calibrated 

with a parameter set.  The flood frequency curve was then created by using a 

1000 year synthetic rainfall record.  This work showed the potential of 

continuous simulation as the authors concluded that the method was suitable 

for developing flood frequency estimates.  However, further model 

improvements were considered necessary as the results indicated that flood 
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peak rank and timings were not predicted fully.  In a development of this work, 

Cameron (2000) used the same methodology to investigate how climate change 

may affect flood frequency on the Wye.  The UKCIP98 simulations were used 

for this.  These were generated from the HADCM2 GCM simulations.  While 

there was a subtle shift in the risk of a particular flood peak occurring within a 

distribution, there was little change in the modelled uncertainty bounds.  The 

authors concluded that being able to explicitly account for uncertainty in the 

hydrological modelling was important, as any climate change signal could be 

subtle and may be lost in model noise.  As the development of climate 

scenarios continued, so too did the potential for their incorporation in 

hydrological modelling studies.  Reynard et al. (2001) investigated climate 

change impacts on the Thames and Severn catchments.  For the 2050s climate 

scenarios resulted in increases in frequency and magnitude of flooding events.  

The results were considered to be dependent upon the way the GCM rainfall 

outputs were applied to the hydrological model.  As the GCMs operate on a 

coarse spatial resolution there was a need for them to be downscaled.  While 

daily rainfall data were available, they were not considered to be reliable at that 

time; there was more confidence in the monthly aggregated totals.  This study 

concluded that further work was needed to assess possible seasonal changes 

to climate as well as interactions with land use.   

Pilling and Jones (2002) present an alternative to that of Cameron et al. 

(2000) in investigating the impact of future climate change on the Wye.  This 

study made use of statistical relationships between atmospheric circulation 

variables such as vorticity and catchment daily precipitation and potential 

evapotranspiration.  This work suggests an increased seasonality to the future 

flows, with drier summers.  There is also evidence to suggest that peak flow 

events may increase in frequency.  Cameron (2006) investigated the use of the 

UKCIP02 scenarios on a single catchment, the River Lossie in North-East 

Scotland.  With these updated scenarios there was the choice of emissions 

scenario, and the modelling results suggested that there were no consistent 

changes in magnitude or direction in the flood frequency curves produced.  

Changes tended to be specific to the scenario chosen.  Therefore using a single 

scenario is particularly limiting from a decision making point of view.  Looking at 
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a range of scenarios, especially given an uncertain future, is a key component 

of any climate change impact study. 

 The question of how to use climate model outputs for hydrological 

modelling is a growing research area.  Kay et al. (2006a) report on the 

assessment of RCM data for use in flood frequency estimation.  Their use of a 

spatially generalised hydrological model with few parameters means that some 

site specific performance is sacrificed.  The goal of this project was to allow 

flood frequency assessments on ungauged catchments, so the modelling 

methodology must reflect this.  The study took the approach of using RCM 

derived rainfall for both the current and future time periods.  The RCM data was 

used for the current time-step in order to allow for an assessment of its 

suitability in flood frequency estimation.  This work proved the potential of RCM 

data for hydrological modelling, though it was noted that there was a tendency 

for underestimation of hydrological extremes.  As further development of RCM’s 

continues with improvements in physical process understanding and a reduction 

in the spatial resolution it is likely that RCM data will become more appealing for 

use in flood frequency estimation.  Kay et al. (2006b) report on a further 

development of this method where future RCM runs are used.  In some cases, 

changes are significant, however, as with many other studies the authors 

recommend caution in interpreting the results, as they are based on only a 

single RCM experiment. 

One relatively recent UK development for future flood frequency 

estimation has been the use of grid based data products and models.  This 

setup has been described previously in Section 2.4.4 concerned with 

continuous simulation modelling.  Bell et al. (2007b) report on the use of two 

sets of RCM derived precipitation for the period 2070 to 2100.  Their results 

illustrate the problem of dependence upon only one or two future time series.  

The authors report that one extreme rainfall event has the ability to significantly 

affect the upper tail of the flood frequency curve, and that care is required in 

comparing baseline and future flood frequency curves when using only one or 

two future scenarios.  It is also clear that there is less confidence in changes to 

events of higher return periods, despite the fact that it is these events which are 

of most interest to scientists, engineers and policy makers.  There is an inherent 
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link between the meteorological input data and the resultant flood frequency 

curve.  If (for whatever reason) it is not possible to simulate a long-term rainfall 

time series, then the resultant flood frequency curve is likely to be limited in its 

application. 

  

2.7 Conclusions 

There is a clear need for fluvial flood frequency estimation for activities 

such as flood defence engineering, flood mapping and other risk analyses.  For 

the most part these requirements come from legislative and statutory 

instruments, themselves driven by the extensive damage caused by flooding 

within the UK.   

In comparison to many parts of the world, the UK is blessed with a 

relatively rich spatial and temporal coverage of data.  These data sets have 

been reviewed with the HiFlows database and the Met. Office’s 5km gridded 

datasets having been identified as suitable for future investigation.  The impact 

of peak flow records on the flood frequency estimation process has been 

highlighted as an important aspect with a strong emphasis on the need for good 

quality flow records. 

 Methods for flood peak estimation and flood frequency estimation have 

also been reviewed, with an emphasis on identifying aspects which will be 

important to this research project.  The estimation of antecedent conditions is 

one such area where there is a diverse range of possible approaches.  

Understanding the limits of current methodologies allows for an assessment of 

where improvements might be made over current methods.   

Finally, the need for design flood estimates spans a time period where 

the evolution of the climate is uncertain.  To this end, a consideration of 

possible future climatic changes, along with methods and studies for fluvial 

flood frequency impact assessment has been undertaken.  The need for a 

reliable, simple method for estimating flood frequency curves has been 

highlighted, as many studies either focus on a single catchment or use complex 

hydrological models when looking at future change. 
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 Data Assessment for Flood Frequency Curve Chapter 3:

Estimation 

3.1 Introduction 

  Developing a link between rainfall and flood frequency requires good 

data records.  This study makes use of a considerable amount of data, as it is 

UK wide in scope.  Chapter 2 provides some understanding of how the key 

datasets were collected and processed.  However, further work is required to 

characterise the datasets available for use by assessing where they may hold 

errors, what they can potentially be used for as well as the limitations of their 

use.  The key question answered by this work is whether the chosen datasets 

are reliable enough to help meet the objectives laid out in Chapter 1. 

 

3.2 Statistical Flood Frequency Estimation Methodology 

The quality of observed data is an important aspect of flood frequency 

assessment, as this data can often be used for the estimation of return period 

flows far in excess of anything in the observed record.  It is therefore 

appropriate to introduce some concepts surrounding flood frequency estimation, 

which makes use of observed data as the methods and terminology will be 

continually referred to throughout the thesis.  A statistical methodology for 

carrying our flood frequency estimation is outlined here.  The methodology 

described focuses on the use of AMAX flow series, although the process for 

estimating a flood frequency curve from POT data is similar.   

 

3.2.1 General Overview 

The general purpose of flood frequency estimation is to assess the 

frequency with which discharges of a specific magnitude are exceeded.  This 

exceedance is often known as the annual exceedance probability, or AEP.  The 

return period is also used to describe flood magnitude-rarity relationships and 

can be related to the AEP as: 

 

        
 

 
   Equation 3.1 
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Where AEP is the Annual Exceedance Probability and T is the return period 

(also known as the average recurrence interval).  The cumulative probability F 

(or non-exceedance probability) can be related to both the AEP and T as:  

 

               Equation 3.2 

and 

       
   

 
   Equation 3.3 

 

It is important to note that the return period is an average recurrence 

interval.  Therefore, it is possible for the 50 year event to be exceeded within a 

ten year time period, although the probability of such occurrence is small.  While 

it is easy to convert between terms, to avoid confusion the return period is used 

throughout the rest of this thesis, both within the text and on plots. 

 The general procedure for annual maximum flood frequency estimation 

takes a set of n annual maximum discharges and then fits a statistical model to 

these to allow for consistent estimation of return period magnitudes.  The 

statistical distribution usually takes the form of one of a number of extreme 

value distributions, depending upon the application in question. 

 One common tool used within flood frequency assessment is the flood 

frequency curve which can be plotted graphically.  Figure 3.1 gives an example 

of this.  The plots shows an annual maximum flood frequency curve for the 

Clyde, located in south-west Scotland.  The annual maximum series has been 

fitted to a Gumbel distribution.  The plot shows a reduced variate x-axis, 

allowing the empirical data to be plotted as well as the curve.  The y-axis shows 

the estimated flow magnitude. 
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Figure 3.1  Example of a catchment flood frequency plot.  The catchment is the 

Clyde and is located in south west Scotland. 

 

3.2.2 Distributions and Distribution Fitting for Flood Frequency 

Estimation 

Given a set of n annual maximum discharges for a catchment, a flood 

frequency assessment is typically undertaken by fitting these n discharges to a 

distribution suitable for estimating a desired return period flow magnitude, T.  

There is no single distribution that is consistently recommended in the literature.  

The Flood Estimation Handbook recommends the use of two or three parameter 

distributions, but does not specifically state a single distribution that should be 

used.  It recommends the use of the Generalised Logistic (GL) distribution for 

annual maximum flow data, but also suggests the use of the GEV and Gumbel 

(amongst others).  The Gumbel distribution (also known as EV1) is a special 2 

parameter case of the GEV where the shape parameter is fixed at 1.  The GEV 

is a 3 parameter distribution (also known as EV3) that has some theoretical 

justification for use in flood frequency estimation, but is also commonly used 

(and recommended for use) in rainfall frequency analysis.  Shaw et al. (2011) 

state that as the annual maximum flood series sample size increases, it should 

approach the form of the GEV. 



Chapter 3: Data Sources; Information and Assessment 

 

41 

 

  In practice the distribution used for a single flood study is usually 

determined through an assessment of how well different distributions fit the 

empirical data.  This assessment can be made in many ways, through 

observation of the graphical fit through to tests such as the Kolmogorov-

Smirnov test (Cunnane, 1985). 

Given the number of catchments this research deals with, it was not felt 

practical to select individual distributions for each catchment.  Early work used 

the three parameter GEV distribution.  While this is not always the first choice 

for annual maximum flood data, the reason for choosing it was that it was felt it 

would simplify the overall modelling approach if annual maximum rainfall and 

annual maximum floods could be modelled using the same distribution.  While 

this gave reasonable results, there was concern over the values taken by the 

shape parameter for some catchments when estimating the flood frequency 

curve, resulting in some flood frequency plots that appeared to have visually 

poor graphical fits to the observed data. 

Therefore, the approach taken by this work is to use the simplest 

distribution possible without heavily penalising the resulting flood frequency 

estimates.  To this end, the two parameter Gumbel distribution has been 

adopted.  A description of the Gumbel distribution now follows, with details 

being taken from Hosking (1990).   

 

The Gumbel distribution can be identified as: 

 

    ( )         (     )  Equation 3.4 

(Hosking, 1990) 

The Gumbel distribution has two parameters, ξ is the location and α is the scale. 

In the case of a finite sample, such as an annual maximum flood series, these 

parameters can only be estimated from the moments of the sample data.  In this 

work parameter estimation is carried out using an l-moment routine (Hosking 

and Wallis, 1997).  F(X) is the probability of an annual maximum (Q) <X. 

  

The GEV (EV3) can be identified as: 
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  Equation 3.5 

(Hosking, 1990) 

 

where   is the location, α is the scale and k is the shape (Hosking, 1990).  

Again, these parameters can be estimated from the sample data using the 

method of l-moments. 

L-moment estimation is now a popular choice in hydrology (Robson and Reed, 

1999).  As a method, it is considered to have lower statistical errors than other 

methods, has more robust parameter estimates when outliers are present in the 

data and is generally better for use with short records. 

 L-moments are useful measures for summarising distributions or 

samples as well as estimating parameters from samples.  Comparison with 

distribution parameters can be made.  λ1 (first moment) can be regarded as a 

measure of location, λ2 as a measure of scale, τ3 as a measure of skewness 

and τ4 as a measure of kurtosis.  τ3 and τ4  are analogues of λ3  and λ4 (Hosking, 

1990). 

 For this research, the l-moments were calculated using the R software 

“lmom”, an R routine adapted from the original FORTRAN version of Hosking 

and Wallis’s code (Hosking and Wallis, 1997).  This routine also allows for 

parameter estimation for a selection of distributions.   

 As well as showing the Gumbel flood frequency curve, Figure 3.1 also 

shows the empirical data.  In order to be shown on the flood frequency plot, 

these observed AMAX data must be transformed.  There are several methods 

for estimating plotting positions of empirical data, this study makes use of the 

Gringorten method, recommended by Shaw et al. (2011).  The Gringorten 

formula is defined as: 

 

      ( )  
      

      
   Equation 3.6 

(Shaw et al., 2011, pp.261) 

 

Where r is the rank of X and N is the number of data values. 
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3.2.3 Growth Factors and the Flood Growth Curve  

In certain circumstances it may be desirable to compare catchment flood 

frequency curves.  This is possible by comparing catchment growth curves.  

Growth curves are produced by normalising the annual maximum flood record 

by an index flood or growth factor.  The work presented in this thesis follows the 

convention of the Flood Estimation Handbook and uses the median annual 

maximum flood (QMED) as the growth factor.  By normalising with QMED, the 

annual maximum growth curve will always have a growth factor of 1 for the two 

year return period flood.  Figure 3.2 shows the flood growth curve for the Clyde, 

this can be compared with the annual maximum flood frequency curve in Figure 

3.1. 

 

 

Figure 3.2  The annual maximum growth curve for the Clyde 

 

 For analysing rainfall, the approach is the same, with the growth factor 

referring to the median annual maximum rainfall event (RMED).  The RMED 

value can be calculated for a range of durations such as 1 hour, 1 day, 5 day 

and it will depend upon the rainfall analysis as to which is appropriate. 
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3.2.4 Peaks Over Threshold Flood Frequency Estimation 

While this thesis makes used of both POT and AMAX data sets, the flood 

frequency work deals almost exclusively with AMAX data.  The Peaks Over 

Threshold series makes use of more of the available data, but as the number of 

peaks increases there is more chance that consecutive peaks may be related.  

This may affect the assumption of statistical independence of peaks which is 

necessary for a formal frequency assessment (Shaw et al. 2011).  Peaks Over 

Threshold flood frequency estimation can be undertaken in a similar manner to 

that of the AMAX, with a few alterations.  The recommended distribution for use 

with POT data is the Generalised Pareto (GPO) (Robson and Reed, 1999).  No 

further information on POT frequency analysis is included as it is not carried out 

however, Robson and Reed (1999) contains extensive information on the use of 

POT series for UK flood frequency estimation. 

 

3.3 Flow Data Assessment 

3.3.1 Assessing the Spatial and Temporal Coverage of the Peak Flow 

Data 

Peak flow estimation is rarely straightforward.  Herschy (2002) estimates 

errors in discharge measurements of around 10-15 %.  A key component of this 

error is likely to be attributable to the uncertainty in the stage-discharge 

relationship when extrapolated to high flows.  Nevertheless, this does not mean 

that all high flows are erroneous.  Estimated peak flows are still valuable in 

trying to understand how a river behaves.  Realistically assessing gauging 

station operation and rating curves is impractical for a station set of 500+ 

catchments and therefore any potential error should be borne in mind for future 

work.  However, it is possible to assess data record consistency as well as the 

spatial and temporal coverage of the data.  

 Early work assessing flow record quality concentrated on developing a 

set of catchments suitable for future modelling work.  In order to deal with a 

reasonable number of catchments with records of good quality it was decided to 

initially concentrate on those catchments considered “suitable for pooling”.  This 

did not preclude using catchments with different quality ratings; however, it 
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provided a basis for starting the analysis undertaken throughout the rest of this 

chapter. Using these stations gave an initial subset of just over 500 catchments 

(for the spatial distribution see Figure 3.3).  This subset was considered suitably 

spread to capture a variety of hydrological regimes, containing both surface and 

groundwater dominated catchments.  Summary maps of catchment properties 

can be found in Appendix  A.1. 
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Figure 3.3 The location of the flow gauging stations considered “suitable for 

pooling” by HiFlows 

 

Stations shown in Figure 3.3 have both AMAX and POT records.  Figure’s 3.4 

and 3.5 give two different indications of the spread of record lengths for the 
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AMAX dataset.  Figure 3.2 shows the length of records available for analysis 

when the flow data are cut to fit within the same time period as the gridded 

rainfall (1958-2002).  The rainfall dataset is the MO 5 km gridded daily rainfall 

dataset.  Figure 3.5 shows the total length of record when uncut.  For a few flow 

records it is clear that several years of useful data may be lost, as rainfall data 

are not available to cover their time spans (those flow gauges installed pre 1958 

and gauges still operational after 2003).  However, this problem affects few 

station records and is therefore likely to have little impact on the overall 

analysis.  The UK gauging station network increased rapidly during the 1960s 

and 1970s (NRFA, 2011) and therefore using the above rainfall and flow 

datasets makes good use of the available data.  The mean length of station 

record before the removal of unusable events (due to no rainfall data being 

available) is around 35 years; this drops to 33 years after event removal. 

 

Figure 3.4 The spread of the effective length of station records in the annual 

maximum flow data set. 
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Figure 3.5 The spread of the total length of station records in the annual 

maximum flow data set. 

 

Despite the quality classification by HiFlows, there still remains the 

potential for error in the flow station records.  The use of rating curves, the 

design and operation of the gauging station and the recording and processing of 

raw data all offer potential for errors to be introduced into the final peak flow 

records.  The HiFlows data comes from several sources (FEH dataset, digital, 

written and microfiche records) and rating histories are often complex due to 

changes in channel morphology as well as upstream catchment modifications 

such as abstraction.  Furthermore, there is often uncertainty surrounding the 

behaviour of some stations at high flows, especially when they were originally 

designed to measure low flows. There is a significant issue in how well station 

ratings perform at high flows, for an example of the problem of estimating large 

flood peaks, see Figure 3.6.  This plot shows how the station in question (the 

Darent at Hawley) contains many peaks at around 3 cumecs, but with one peak 

at around 49 cumecs.  This large peak was well documented, as it was 

generated from a storm that affected several catchments in 1968 (Sevenoaks 

District Council, 2008).  In terms of the physical mechanisms responsible for 
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this flood there is a suggestion that soil capping was responsible, therefore 

creating a magnitude of flood that is unusual in the observed record (Sevenoaks 

District Council, 2008).  Soil capping is a reasonably rare mechanism for 

extreme flooding in the UK, but it can occur.  Extended periods of low rainfall 

combined with high temperatures can lead to the soil surface drying out and 

providing an impermeable barrier to heavy rainfall.  The mechanism of flooding 

is therefore similar to that of an urbanised catchment where high rates of 

overland flow are observed.  However, it is questionable as to how accurate the 

peak discharge estimate of 49 cumecs is; as it is unlikely flow gauging would 

have been carried out to measure this peak directly.  A simple extrapolation 

from the original stage-discharge record is likely to show considerable error, as 

there are no other peaks of the same or even similar magnitude to compare this 

extreme event to.  The case of the Darent has been included here only for an 

illustration of the potential problems contained within the peak flow dataset.  

However, the influence of rating curves on the released HiFlows dataset have 

the potential to be considerable.  In terms of the impact on this project, it is 

recognised that rating curves may be an inherent source of error, and therefore 

in future work rating curves should always be considered as a possible error 

source. 
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Figure 3.6 The Annual Maximum Flow time series for the Darent at Hawley. 

 

3.3.2 Error Checking the Peak Flow Data 

While some sources of error, such as rating curve uncertainty, cannot be 

practically assessed, other error sources can.  Errors in the creation of the final 

HiFlows data files can be identified by cross-checking the different file types 

against each other.  The flow data from HiFlows have been produced 

automatically from a variety of sources with some expert user input (HiFlows, 

2010).  However, not all data files have been manually checked.  For this 

reason one of the first checks carried out was to assess the consistency of the 

datasets, and to highlight stations which contained potential errors in their 

records.  Specifically, the following issues were highlighted as suggesting that 

certain stations records might contain errors: 

 Where two different POT file types (.pt and .csv) did not contain matching 

POT series 

 Where AM or POT files contained daily time-series of flow 

 Where AM or POT files contained gaps not identified by Hi –Flows 

As this project was making extensive use of the HiFlows data, any errors or 

potential problems were highlighted to the HiFlows project and/or the 
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responsible gauging authority.  In general, the extensive record checking 

undertaken as part of the HiFlows project has been successful for the most part, 

as few records contained obvious errors.  In all, 5 files contained erroneous 

readings, all in .csv files.   These were dealt with by recourse to the original data 

held by the gauging authorities.  Station 20006 contained continuous flow time 

series for one month which was considered a processing error during the 

original HiFlows cataloguing.  The other gauges had similar problems.  After 

contact with the gauging authorities it was concluded that the .pt files can be 

considered as good records (pers. Comm. Derek Fraser, SEPA, 2009). 

  

3.3.3 Flood peak independence 

 In flood frequency estimation, it is usual for flood events to be included in 

the analysis if they are “independent”.  One of the most important reasons for 

this relates to the use of observed data in flood frequency analysis.  If two non-

independent events are included in the frequency analysis, the resulting flood 

frequency estimates can be biased (Rao and Hamed, 2000).  For use within a 

statistical flood frequency assessment there is a requirement for extreme event 

independence.  Therefore, to ensure independence it is usual for the analyst to 

impose some pre-defined criteria on the flow time series.  The HiFlows dataset 

has been extracted and checked for peak independence according to criteria 

defined by the HiFlows project.  A consistent definition of independence was 

required for all catchments and this is defined as follows: 

“The extraction criteria used are broadly those set out in the FEH Volume 3, 

section 23.5.1 (page 275). The procedure described there is suitable for 

automatic data extraction followed by inspection to remove any remaining 

erroneous peaks.  However, for the entirely automated procedure within 

HiFlows-UK the FEH’s independence criteria of the trough between two peaks 

having to be less than 2/3 of the magnitude of the first of the two peaks was 

modified such that the trough had to be less than 2/3 of the magnitude of both 

peaks.  This was done in order to exclude minor blips on the recession limb 

(such as might occur due to a very small amount of rain at the end of a 

long recession limb).” Definition taken from Hi-Flows (2010b). 
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 This was the definition used in the automated production of the POT 

records. However, the resulting dataset is not completely appropriate for use in 

linking rainfall and flow. 

3.3.4 Flood Peak Independence and the Use of Daily Rainfall Data 

The gridded MO 5 km rainfall dataset is of a daily time resolution.  It was 

evident at the beginning of this project that storm estimation using daily data 

may prove problematic.  In relation to flow data, the use of daily rainfall has 

some particular bearing on how flow events can be analysed.  For example, 

where two POT peaks appear in a 24 hour period this can cause problems 

when using daily rainfall data to estimate the storm associated with a specific 

flow event.   

 There are several assumptions that can be made when linking daily 

rainfall to a flow event.  For a catchment with a fixed time to peak (that is, the 

length of time between the storm centroid and flow peak), it is theoretically 

possible for the same rainfall day to be selected from a record as the storm that 

generated two separate (under the HiFlows UK criteria) flood peaks. 

Take, for example, the following two events from station 96004’s POT record: 

Date Time Stage 

Flow 

(cumecs) 

Rating 

Quality Source 

08/09/1995 00:30 2.422 192.47 2a 

Digital 

Archive 

08/09/1995 09:00 2.088 126.77 2a 

Digital 

Archive 

Table 3.1 Two POT flow events occurring within a single hydrological day. 

Using daily rainfall data to estimate the storm that generated these flow 

events would result in the selection of the same storm estimate for both events 

as, based on that catchment’s typical time to peak (TP), the same hydrological 

day’s rainfall would be associated to both flow events.  In the case of this 

catchment, the estimated time to peak is around two hours.  Therefore, for both 

the events listed in Table 3.1, the same hydrological day ending on 08/09/1995 
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would be required to characterise the one day storm contributing to those flow 

peaks.  However, the flow peaks have a difference of around 65 cumecs.  It is 

clear that the use of daily rainfall data in this case, and others, may present 

some difficulty in estimating peak flow. 

In any method that attempts to relate rainfall information to flow, this is 

clearly an undesirable situation.  It should also be noted that this problem is 

almost exclusively related to the use of POT datasets as the selection criteria 

for annual maximum data implicitly reduce the chance of two events in the 

record occurring so close together.  To deal with this, the catchment set was 

analysed to highlight catchments where this problem might exist.  The 

previously identified catchment set was analysed to look for situations where 

the same rainfall day was likely to be associated with two or more flow events.  

Out of the c. 500 catchment set, around 400 catchments were highlighted as 

suffering from this problem to some extent.  

 

Figure 3.7 Histogram Showing the Number of events removed to ensure daily 

peak independence. 
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Where catchments records were identified as containing a problem, events 

were removed.  Where two events occurred within a twenty four hour period, 

the smaller event was removed.  A log was kept of removed events, as it is 

important to understand the effect of removing events from the record on 

subsequent flood frequency analysis.  An altered POT record may produce 

unreliable flood frequency estimates; however, for the purposes of this work it 

was important to have a flow dataset suitable for use with the daily rainfall data.  

The majority of affected catchments tend to have less than 16 events removed 

by the filtering process from a typical POT record of around 250-300 events 

(see Figure 3.7).  Some of the catchments with extremely high numbers of 

events removed are a result of data errors in the HiFlows files: where daily time 

series information has been included in error (as discussed previously in 

Section 3.3.2).  These events have also been removed, but can contribute 

significantly to the total number of events removed.  Despite this, relatively few 

events have been removed when compared to the overall number of events in 

the catchment records (see Figure 3.8) 

 

Figure 3.8 Total Number of events in the catchment POT record before event 

removal. 
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3.4 Storm Analysis  

Any study which purports to link rainfall to flow, must demonstrate that 

the rainfall data sets used are suitable for that purpose.  Therefore, Section 3.3 

uses both hourly and daily data to investigate rainfall characteristics as well as 

develop a conceptual method for linking between rainfall and flow.  The aim to 

show that daily rainfall can be used to estimate flood-generating storms.  This 

involves assessing storm profiles from hourly data and relating this to estimation 

from the daily record. 

 

3.4.1 Rainfall Datasets 

 The primary rainfall dataset identified for use is the MO 5 km 

gridded daily rainfall dataset.  The reasons for this are primarily due to the 

dataset completeness, spatial and temporal coverage and ease of access.  One 

further advantage of this data set is that it provides a consistent method with 

which to estimate catchment averaged rainfall for the large subset of 

catchments selected for this study.  The gridded data were accessed through a 

SQL database as created and used by Smith (2010).  However, recourse was 

made to several hourly records in order to investigate the potential limitations 

and effects of using the daily data.  Figure 3.9 shows the hourly gauges used 

for analysis.  Two hourly records for each of the hydrological regions as defined 

by Wigley et al. (1984) and updated by Gregory et al. (1991) were  also used.  

These records were obtained from the BADC and have already been cleaned 

for use in previous rainfall research work (Smith, 2010). 
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Figure 3.9 The location of the 18 hourly records used in the analysis.  Rainfall 

records in Northern Ireland were analysed as rainfall however flow data from 

that region are not available for analysis in this study.  The black lines show the 

hydrological regions within the United Kingdom as defined by Wigley et al. 

(1984) and Gregory et al. (1991).  Hydrological region codes are highlighted in 

blue. 

 

For use within this research project, catchment averaged time-series 

were developed from the gridded daily data.  Using the catchment boundaries 

supplied in a format suitable for ArcGIS, the relevant 5 km cell ID’s were 

extracted.  These were then used within the SQL database in order to calculate 

the catchment averaged rainfall.  This value was a simple arithmetic average of 

all the cells falling within the catchment boundary.   

The use of daily data carries several potential problems.  Perhaps one of 

the most important issues, was that of how well daily rainfall data would 

estimate a true storm amount and what error in estimation might arise from 
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using daily data compared to hourly.  In order to consider these issues it is 

worth stating some terminology which future investigative work will use. 

 

3.4.2 Terminology 

 This section of the thesis deals primarily with fixed and sliding window 

rainfall maxima.  In reality, there are three terms - fixed, sliding and true.  These 

three terms are explained in order to illustrate some of the issues associated 

with storm estimation from hourly rainfall records.     

A fixed maxima refers to the maximum value recorded from a fixed 

window measurement period.  The fixed maxima used in this work focuses on 

hourly rainfall measured on a 0900 to 0900 basis.  The start and end period of 

the measurement window is fixed at 0900 and the maxima is based upon the 

maximum rainfall amount as taken from one of these 24 hour measurement 

windows.   

A sliding window measurement period shunts along in increments.  For 

this work, the duration of the sliding window period is the same as that of the 

fixed window period (24 hrs) however the start and end times of the sliding 

window period are not fixed at 0900.  This allows the sliding window period to 

move around until it records the maxima over any given period.   

Finally, the true maxima represents the actual amount of rain that fell as 

a result of the storm that we are trying to capture with fixed and sliding window 

measurement periods.  In practice it is difficult to measure this, but the shorter 

the measurement window, the more likely the true storm amount can be 

accurately captured (for a point location).  The fixed and sliding window periods 

are both estimates of the true storm amount.  The sliding window estimate is 

likely to be closer to the true storm amount, but may not exactly represent it as 

in this case the data is still discretised in hourly intervals.  Rainfall recorded in 

one minute intervals would likely produce a closer estimation of the true 

maximum, however recording data at such a high resolution is rarely 

undertaken, not least because of the massive amount of data it would produce 

as well as the known errors that arise from using tipping bucket rain gauges to 

estimate total volumes of rainfall.  Finally, there is the terminology relating to the 

window duration used.  A two day window uses data that have been aggregated 
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from daily data as opposed to a forty eight hour window, which covers the same 

duration however, the data are constructed from hourly values.  

 In addition to the problem of temporal resolution, the estimation of spatial 

rainfall is also a problem.  However, the hourly records are located far away 

from each other, they cannot be combined to look at a single catchment 

averaged rainfall value.  This being the case, it is worth stating that the hourly 

records cannot be used to estimate catchment averaged rainfall and this is not 

the purpose of this piece of work.   

 

3.4.3 Time Series Aggregation  

In order to investigate different aspects of rainfall characteristics, the 

previously introduced hourly records were used.  The first analysis considered 

the duration of storms in the UK.  This was to estimate the proportion of a flood 

generating storm that was likely to be included in an 0900 to 0900 observational 

window.  This is essential in order to understand the potential for error when 

using the daily rainfall dataset, however, in the first instance the error can only 

be assessed by using hourly records.   

For each hourly record, the data were aggregated to produce a twenty 

four hour fixed window time series, starting and ending at 0900.  In order to 

ensure that no partial days were constructed, the original hourly record was cut 

to begin at 1000 on the first day and end at 0900 on the last day.  As the hourly 

reading at 1000 includes the measured rainfall in the hour from 0900-1000 this 

ensures an 0900-0900 time series would be created.  After checking the record 

to ensure that no data was missing it was then possible to aggregate the data to 

the fixed window record.  

The sliding window analysis allowed different information about storm 

characteristics to be extracted.  The sliding window time-series was based on a 

twenty four window where a new sliding window total was calculated every 

hour.  This leaves two time-series, fixed and sliding window.  

 

3.4.4 Fixed Window Storm Duration 

The fixed window records were then ranked by the rainfall amount, and 

the fifty highest windows were extracted.  For each of the fifty windows, 



Chapter 3: Data Sources; Information and Assessment 

 

59 

 

recourse was made to the original hourly record where the twenty four hour 

period of the window plus the twelve hours either side of it were extracted to 

create a forty-eight hour window.  Hourly records were typically between fifteen 

and twenty years long and therefore this gave an average of around two to four 

rainfall events per year.  This approach ensures that only larger rainfall events 

are included in the analysis.  This work was carried out for all of the eighteen 

hourly rainfall records. 

 It was assumed that for most of the high twenty-four hour period 

aggregated values (selected from the ranked twenty-four hour totals), only one 

storm would be likely to contribute to this total.  This assumption allows for 

storms with multiple peaks as long as the storm fits in with pre-defined storm 

criteria.   

The criteria for defining a storm are inherently subjective.  In this case, 

an algorithm was run to identify a storm from the forty eight hour period 

previously extracted as described in Section 3.4.3.  This algorithm defined a 

storm start as a period where rainfall was greater than or equal to one mm for 

two hours and defined a storm end as a two hour dry period.  In the case of the 

algorithm returning two storms from the forty- eight hour period, the storm with 

the highest total amount was retained.  The storm definition was developed 

through visual checking of the extraction criteria against plots of high twenty 

four hour totals. 

Once these storms were extracted, their centroids were found using 

Equation 3.7. 

 



 










Pi

tiPi
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2
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   Equation 3.7 

 

Where tr denotes the rainfall centroid, Pi denotes the rainfall at time i and ∆t 

denotes the discrete time interval used in hours.   

 

In order to investigate storm duration, for each storm, a function was 

used for one hour steps either side of the centroid, and for each step this 
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function determined the percentage that the cumulative window contributed to 

the twenty four hour total previously extracted.  This was repeated for each of 

the fifty storms and the results were then box plotted (see Figures 3.8 and 3.9)  

These plots give an indication of how far out from a storm centroid it is 

necessary to go in order to capture the majority of the storm.  This aids an 

understanding of how storm duration may affect the estimation of a storm total 

from daily data.  The longer the duration of a storm, the more likely it is to cross 

an 0900 measurement boundary.  Because of the added twelve hour period at 

the beginning and end of the twenty four hour fixed period this meant that the 

results can show more than one hundred percent of the observed twenty four 

hour period.  This allows for consideration of how a rainfall event may be 

overestimated if too large a duration is used to characterise an extreme flood-

causing rainfall event.  For many storms, this work shows that the twenty four 

hour period is adequate to characterise the storm rainfall event, however some 

events overlap the 0900 boundary. 

   

3.4.5 Discussion on Storm Duration 

There is inherent variability in meteorological phenomena.  The rainfall 

events that generate flooding are likely to exhibit a wide variety of durations, 

intensities and shapes.  This work has looked at average storm shape and 

duration, examining storms to consider if there are geographical differences in 

the average storm shape.  In order to highlight some differences, the 

contrasting cases of Heathrow (SEE) and Eskdalemuir (SS) are presented.  

Further plots for the other hourly stations can be found in Appendix B.1.  The 

plots shown here are those of the sliding-window analyses.    
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a b 

Figures 3.10a and b Boxplots showing the percentage of the one day storm 

total captured for one hour steps from the storm centroid (calculated using the 

original hourly data).  The thick black line shows the median, with the upper and 

lower ends of the boxes representing the upper and lower quartiles respectively.  

The dashed lines extend to the maximum and minimum values, unless there is 

an outlier.  In this case the outlier is shown as a small circle. 

 

The results of the fixed window analyses showed that typical storm 

durations differ, depending on location. The y axis on Figures 3.10 a and 3.10 b 

show increases of up to 1.5 times the measured storm total. Fixed window daily 

storm totals are defined as the 0900 to 0900 accumulation, however for the 

analysis of individual storms, the centroid was identified and the accumulations 

at hourly intervals were calculated as previously described.  This meant that it 

was possible for more than one hundred percent of the original 0900 to 0900 

window to be included in the hourly analysis.   

 In general, for the Eskdalemuir record, storms required around seven or 

eight hours worth of data either side of the storm centroid in order to capture 

approximately 90 % of the storm when measured on an hourly basis.  For the 

same 90 % value, at Heathrow, a median time of four to five hours either side of 

the centroid is required.  Heathrow tends to have shorter rainfall events with 

clearly defined peaks, whereas Eskdalemuir tends to have longer events, often 

with a less defined peak.  The 50 % value is, on average, achieved within the 
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first hour at Heathrow, whereas three or four hours are required at Eskdalemuir 

for the same value.  Again, this suggests that Eskdalemuir experiences events 

of lower intensity, where each hour of rainfall contains a smaller proportion of 

the total rainfall event (storm) than at Heathrow. 

 Figure 3.10 illustrates some of the different characteristics of storms 

between Heathrow and Eskdalemuir.  Generally, the storms with the highest 24 

hour totals at Heathrow tend to be shorter and more intense than those at 

Eskdalemuir.  This is why the earlier work suggested that for many larger 

storms at Heathrow, a shorter window could be used to estimate the storm total. 

  

a e 

  

b f 



Chapter 3: Data Sources; Information and Assessment 

 

63 

 

  

c g 

  

d h 

Figure 3.11 Panels a to d show typical storms extracted from the Heathrow 

hourly rainfall record.  Figures e to h show typical storms extracted from the 

Eskdalemuir hourly rainfall record. 

 

3.5 Data Discretisation; Impacts on the Estimation of Extremes 

Discretisation considers the effect that data measurement intervals have 

on phenomena of interest.  Often, data are measured at fixed, discrete time 

intervals.  This measurement interval can often affect the estimation of the 

phenomenon of interest, for example rain storms.  Therefore this section 

considers the importance of data discretisation and how it might affect the work 

carried out as part of this research project. 

The recording of rainfall data inevitably involves some discretisation.  

This problem occurs when the phenomena of interest, for example a rain-storm 

straddles two different measurement periods.  If a storm of interest starts at 7 

am and finishes at 11 am, the use of either day’s rainfall will not truly reflect the 
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storm rainfall.  It is likely that using either day’s rainfall would underestimate the 

true maxima.  This is an important issue when estimating storms from recorded 

data.  This is the problem of discretisation, and is illustrated by Figure 3.12.  In 

order to account for the fact that storm rainfall cannot be well characterised by 

daily rainfall, a correction factor is often applied.  This factor tries to correct the 

fixed window observations based on the average fixed-sliding window ratio. 

It should also be noted that if a typical storm at a site arises from a 

relatively few hours of intense rainfall, there is less chance of this event 

overlapping the fixed measurement boundary than at a site that experiences 

 

 

Figure 3.12.  The diagram shows how a sliding window accumulation better 

represents storm rainfall than the fixed accumulation.  A, B and C represent the 

fixed measurement intervals, with the storm shown in blue straddling the two 

fixed periods AB and BC. 

 

longer duration events.  In this case, the correction factors are likely to be lower.  

Dwyer and Reeds (1995) work recommends a correction value of 1.15-1.17 to 

convert observational day rainfall into 24 hour rainfall.  This is recommended as 

replacing the older recommended FSR values of 1.13 to 1.14 (FSR, 1975). 
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The Institute of Hydrology work (Dwyer and Reed) was carried out in 

1995, and with the longer hourly records it was thought prudent to re-consider 

this work.   

 

3.5.1 Investigating the Effect of Discretisation on Storm Estimation 

The methodology broadly followed that of Dwyer and Reed with several 

differences.  For each hourly record, a fixed and sliding window time series was 

created.  The top fifty fixed window accumulations were extracted by ranking 

the fixed window time series.  For the sliding window time series, an algorithm 

was run to extract the top fifty storms from that time series (as per the work 

reported in Section 3.4.6).  Therefore to investigate the difference in the 

estimation of storms, there were fifty fixed and sliding window storms available 

for each site.   

In estimating population ratios from a sample, Barnett (1981) recognises 

that when using a small sample, there is a skew in the distribution of the ratios 

and therefore r (the correction factor, or the fixed to sliding ratio) turns out to be 

biased.  The larger the sample becomes, the more the distribution of individual 

ratios tends towards normality and therefore r is less biased.  Because of this, 

Dwyer and Reed recommend calculating r as the difference between the mean 

fixed and mean sliding window storms.  If, as Barnett recommends, the sample 

size was to increase, it is likely that the proportion of the sample that contains 

those events that are more extreme would decrease, and non-extreme events 

would make up a greater proportion of the sample.  This in turn would likely 

cause the correction factor to be biased towards less extreme events. 

 Because of the longer record lengths and more extreme events used in 

this study, the correction factors were calculated as the mean of the 50 

individual storm ratios.  Tables of individual station correction factors can be 

found in Appendix C.1.  The mean value of all 18 gauges is 1.14, which is 

similar to the recommended value from the Flood Studies Report (1975). 

The mean r correction value is also close to the recommendations of 

Dwyer and Reed (1995).  Their work recommended a correction value of 

somewhere between 1.15 and 1.17.  The differences may be explained by 

several factors.  Firstly, Dywer and Reed (1995) looked at only three records 
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from the UK, whereas this work considers around eighteen.  Secondly, at the 

time of their work, hourly rainfall records were limited and so their methodology 

naturally led to the use of smaller storms in the analysis in order to gather 

enough data.  This work has perhaps improved upon that of Dwyer and Reed 

(1995) as the longer record lengths available for this work have allowed the 

selection of more extreme events. 

 

3.6 Matching Rainfall to Flow 

3.6.1 Implications for Storm Identification and Matching 

 

It is necessary to investigate how useful daily rainfall records are in 

characterising flood producing storm events.  Previous work has looked at 

storm duration; this allows a basic assessment of the percentage of flow events 

that can be characterised from a single daily rainfall measurement.  What 

follows is an example for one catchment, however this reasoning is also 

applicable to the set of catchments suitable for pooling derived from HiFlows. 

 

3.6.2 Time to Peak (Tp) and the storm-flow link 

Time to peak (Tp) describes the length of time from the centroid of a 

storm to the flow peak in a river.  It is a useful indicator of how responsive a 

catchment is to rainfall.  For all the catchments used in this study, time to peak 

has been calculated with a regression equation from Kjeldsen (2007) using 

readily available catchment descriptors (see Equation 3.2). 

 

                             (            )
                 

Equation 3.8 

 

   This links catchment properties to a time to peak value (in hours).  The 

descriptors used in this equation all relate to properties that affect the speed at 

which a flood peak can travel through a catchment.  PROPWET is an indicator 

of average catchment wetness, DPLBAR describes the drainage path length, 

URBEXT indicates the proportion of the catchment covered by urban area and 

DPSBAR is the mean slope of the drainage path.  This is the most consistent 
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and realistic way to estimate the time to peak value for this study.  In the case of 

dealing with hourly data from one or two good catchments, then it would be 

possible to estimate Tp empirically.  However, given the lack of availability of 

data to calculate Tp empirically, recourse to existing regression equations 

seems suitable.  The following description (illustrated by Figure 3.13) provides 

an outline for a conceptual model that could be used to readily link rainfall to 

flow, given the time of the flow event. 

 Here, a nameless catchment is presented purely to illustrate the concept.  

First, assume each hour (1-24) is likely to contain a representative portion of the 

entire flow record.  Therefore each hour is likely to contain 4.16 % of the flow 

record (i.e. 100 % of the record divided by 24 hours leaves 4.16 % of the flow 

record for each hour).  Further assume that the catchment has a fixed time to 

peak (Tp) of around nine hours and that on average around seven hours either 

side of the storm centroid is required to capture around ninety percent of the 

storm (see earlier work on hourly data for justification).  It then follows that for 

the storm to be captured in one observational day, the centroid of the rainfall 

event must occur between the hours of 1600-0200 for the centroid plus seven 

hours either side.  With a fixed time to peak of nine hours, this means that the 

flow peak must occur between the hours of 0100 and 1100 for a single 

observational rain day to be chosen.  Because the window in which ninety 

percent of the storm can be captured in one observational day is ten hours long, 

it follows that around forty two percent of flood events in this catchment could 

be characterised using a single measurement day’s rainfall (i.e. 4.16 % 

multiplied by ten hours gives around 42 %). 
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Figure 3.13  An illustration of how it is possible to link a storm to flow event, 

given that the storm has fallen within one observational rain day. 

 

This model is essentially an adaptation of the ReFH rainfall runoff model, 

made simpler through concentrating only on storm rainfall and ignoring 

baseflow and losses.  However, it provides a framework for connecting the 

storm event to a peak flow event from the HiFlows data set. 

 

The above case makes several assumptions.  Specifically: 

 That peak flows are distributed evenly throughout the 24 hour 

period.  While there is no physical reason for peak flows being 

biased towards certain times of the day, short records are unlikely 

to show a uniform distribution of flow events within each hour. 

 The time to peak (Tp) value is an estimate produced from 

regression equations, it may contain significant error for individual 

catchments and it may also not be fixed for all storms in a single 

catchment. 
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 The average storm duration is simply that.  This figure represents 

the results of analysis of several hourly records, and from this it is 

recommended that most storms can be captured within a 24 hour 

period.  However, it is recognised that this approach cannot 

capture multi-day storms, some of which are responsible for 

extreme flood events. 

 

Using the simplified model linking time to peak and storm duration, the 

model can be changed using different Tp values and different storm durations.  

Where multi-day storms are involved, there is less emphasis on selecting only 

one day of rainfall, and therefore the timings become relatively less important. 

However, from a practical point of view, the potential to implement a 

working method of the above concept is limited due to the fact that timing data 

for peak flows is only known for short periods of record.  Therefore while the 

concept described above provides a working model it cannot be used to its full 

extent in this research. 

 

3.7 Conclusions from the Data Assessment Work 

This first look at the data available to this project helped to develop a 

basis for its future use.  Initial error checking of the flow data files has meant 

that the selected catchment set can be considered relatively error free.  It allows 

some degree of confidence that the flood peak data are as free from error as 

possible and suitable for use in flood frequency estimation.  This early work has 

also allowed the identification of some specific problems with the flow data files 

which has proved useful for this study and, hopefully, the HiFlows project as a 

whole.  A separate flow data set has been created, allowing for a slightly stricter 

definition of what a flood peak is.  This has been necessary due to the use of 

daily rainfall data, where two flood peaks within the same day cannot be 

characterised by the same rain storm.   

The analysis of the rainfall data is perhaps more important, as it provides 

key information on the limitations and uses of daily rainfall.  Initial work has 

shown the potential for error to be introduced when using daily rainfall data to 

estimate a storm value.  Using hourly rainfall records has shown how this error 
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can be corrected with a discretisation factor.  Further analysis of these hourly 

records has shown how the majority of storms can be captured within a 24 hour 

period, thereby proving that daily rainfall data can be used in many cases to 

estimate a storm event.  Some geographical differences in storm shape have 

also been shown.  

The theory of how rain and flow events may be matched with each other 

has also been demonstrated with a generic example.  This is a first attempt, but 

it provides a framework for use in the more advanced work when trying to 

transform between rainfall and flood frequency. 

Overall, this work does not provide a strict methodology for the future use 

of the data sets described.  Rather it seeks to provide examples of what is 

possible as well as examples of what is not.  Future combined use of the rainfall 

and flow data sets largely depends on the evolution of the modelling strategy. 
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 Seasonality and Analysis of Flood and Rainfall Chapter 4:

Regimes 

4.1 Introduction 

Seasonality has been considered an important aspect of flood frequency 

analysis by several authors.  Archer (1981) provides a detailed overview of the 

seasonal hydrology in North-East England with a view to improving the FSR 

methods.  Black and Werritty (1997) study the seasonal flooding patterns of 

POT flow data in order to further understand flood generation.  Castellarin et al. 

(2001) prove the use of seasonality measures in characterising catchment 

hydrological behaviour.  Developing from this, other authors such as Ouarda et 

al. (2006) and Reed et al. (1995) use seasonality indices as a method of 

regionalising catchments for flood frequency estimation.  Seasonal variations in 

flood patterns are significant for flood estimation, as individual methods may not 

perform well on catchments which exhibit two or more seasonal flooding 

regimes.   

In the context of the research work presented in this thesis, seasonal 

assessment of rainfall and flow provides a good assessment of the links 

between the rainfall and flood regimes of individual catchments.  For example, if 

most catchments have the majority of their heaviest rainfall events in October or 

November and their largest flow events in January or February, it is clear that 

something other than heavy rainfall may be playing a part in the generation of 

flood flows.  To that end, the first analysis considers measures to assess the 

seasonality of flood and rainfall regimes separately.  By then comparing these 

statistics between rainfall and flow, a first assessment can be made as to how 

well these match. 

 The second piece of analysis considers the linkage between 

extreme rainfall and flow in a much more direct manner.  It considers the 

proportion of extreme rainfall events responsible for generating extreme flood 

flows.  Two different criteria for matching these events are introduced. 
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4.2 Assessing Seasonality 

 In order to consider seasonality, two different approaches have been 

used.  Graphical approaches, such as polar plots are useful for assessing 

patterns in individual catchments.  However, they are not particularly useful for 

comparing catchments with each other and looking at the UK as a whole.  

Statistical assessments of seasonality are useful both for comparison between 

individual catchments and national scale assessments.  Therefore, both 

approaches have been used. 

 

4.2.1 Graphical Assessments of Seasonality 

 For visual assessment, polar plots of Annual Maximum rainfall and flow 

were produced using the statistical processing software R.  The date of the 

annual maximum event was converted into a Julian day (1 to 365 – 366 in a 

leap year, where 1 is the 1st of January, 365 is the 31st of December), before 

then being converted into an angle using the following equation. 

 

       (      )
  

   
  Equation 4.1 

 

  Where θ is the angle of the annual maximum event on the polar plot, and JD is 

the Julian day.  The modification by 0.5 moves the event to the middle of that 

day for plotting as an angle.  This then allowed each event to be plotted on the 

polar plot.  Magnitude values were scaled by the median annual maximum flow 

value (QMED) for flow and the median annual maximum rainfall value (RMED) 

for rainfall.  An example of a rainfall polar plot can be seen in Figure 4.1.  The 

year is plotted following the arithmetic convention as used by Robson and Reed 

(1999), with successive months plotted in an anticlockwise direction starting 

with January as the eastern most month.  This practice is not followed by all 

authors as both Black and Werritty (1997) and Macdonald et al. (2010) use the 

31st of May as the start date to avoid a discontinuity in the dates of flooding 

when examining event frequencies.  This essentially avoids splitting the 

potential flood year into two, but does not affect the calculation of the MDF.    

This approach was not used within this study, as consistency was required in 
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the extraction of AMAX and POT events for all analysis.  Furthermore, this work 

does not examine the frequency of events on a monthly basis. 

 

Figure 4.1 A polar plot showing the seasonality of POT rainfall for the Tay 

catchment. 

 

4.2.2 Statistical methods of Seasonality 

Graphical methods provide a neat and easily understandable method of 

assessing the flow regime of individual catchments.  However, they are not 

practical for assessing the catchment set of 520.  Statistical methods provide an 

easily comparable alternative way of assessing flow regimes.  Assessing 

statistics like the mean day of flood as well as variance and dispersion 

measures requires the use of more specialist statistics.  When calculating a 

mean from circular data, a simple arithmetic value is not sufficient.  Figure 4.2 

provides an illustration of the problem.   
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Figure 4.2 The problem of using traditional statistics on circular data. 

 

The two red points on Figure 4.2 represent the data of interest.  If we 

wish to calculate a statistic like the mean, then by using traditional statistics we 

would end up with a value of 180°.  Clearly, this is not a good measure of where 

the mean is likely to lie based on these two data points.  In using the arithmetic 

mean it becomes clear that it is more a function of the choice of zero direction 

and sense of rotation, rather than simply assessing the centre of a set of 

observations (Jammalamadaka and SenGupta, 2001).  Circular statistics 

provide an appropriate alternative for assessing calendar data. 

Circular statistics used here follow the approach of Robson and Reed 

(1999).  As with the polar plots, the observed data are each referenced by the 

Julian day on which they occurred.  This is then transformed to an angle using 

the Equation in 4.2.1.  To calculate the mean statistic each observation is 

treated as a vector and they are then summed to give the resultant vector.  The 

centroid of the event dates are represented by the co-ordinates XFLOOD and 

YFLOOD.  

        ̅  
 

 
∑     

 

   

 

            ̅  
 

 
∑      
 
    Equation 4.2 
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 ̅   √ ̅   ̅  

 ̅ represents the length of the resultant vector, and can be considered as a 

measure of the dispersion of events.  The direction of the resultant vector can 

be considered the circular mean direction, defined as 
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  Equation 4.3 

  

 

 In order to relate back to the original flow and rainfall records, the circular 

mean direction can be transformed into the mean Julian day by 

        
 

   
      Equation 4.4 

 

 The value R is a useful measure of how concentrated the data is towards 

its particular mean value.  Where R tends towards n, the data are concentrated 

in the same direction.  Where R tends towards 0, the data are more likely to be 

evenly spread around the circle.  Because n differs between catchments, the R 

value in this case has been normalised by n to allow for inter catchment 

comparison.  Therefore r values are in the range [0,1].   

 

4.3 Seasonality Assessment; Results and Discussion 

 Figures 4.3 through to 4.6 provide two examples of rainfall and flow polar 

plots for catchments within the UK.  These have been plotted for every 

catchment in the set.  The catchments presented here have been chosen 

because they illustrate interesting and useful examples of seasonal rainfall and 

flow characteristics which are discussed further.  In this analysis and the work 

that follows, use has been made of POT data to allow the use of a larger data 

set. 
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a b 

Figure 4.3 POT Rainfall (a) and flow (b) seasonality for the Carron at New 

Kelso.  

  

a b 

Figure 4.4 POT Rainfall (a) and flow (b)seasonality for the Tove at Cappenham. 

 

Seasonality information can reveal interesting behaviour in catchment 

hydrology.  In the case of the Carron, rainfall and flow events tend to be 

concentrated in the Winter months of October through to March.  It is clear that 

most of the Carron’s heavy rainfall events occur during the Winter, therefore it is 

not surprising that the majority of flood events also occur then.  The mechanism 

behind this is likely to be related to catchment conditions.  In Winter, when 

heavy rainfall is more prevalent (as evidenced by Figure 4.3 a) the catchment 

soils tend to be more saturated due to increased rainfall and lower 
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evapotranspiration values.  Therefore heavy rai nfall events produce more 

runoff and higher peak flows in the river (Figure 4.3b).   

In comparison to this, the Tove plots (Figures 4.4 a and 4.4 b) show that 

the seasonality of rainfall and flow events is different.  Rainfall events are more 

spread out throughout the year, whereas flow events tend to still be 

concentrated in the Winter months of November through to March.  Given its 

location in the South of England, it is probable that the Tove has high soil 

moisture deficits in summer thus reducing the likelihood of flooding in this 

season.  It is clear that there is potential for Summer flooding, as large rainfall 

events occur all year round.  However, due to the higher soil moisture deficits in 

Summer there is little chance of these storms becoming effective enough to 

generate a flood.  The exception to this is the relatively rare occurrence of 

heavy monthly rainfall followed by an extreme single day rainfall event that is 

heavy enough to generate a flood.  This was the mechanism behind the 

Summer 2000 floods (Met. Office, 2010).   

From these plots, it is clear that the seasonal rainfall and flood regimes of 

these two catchments are different.  In the case of the Tove it is likely that the 

high soil moisture deficits typically experienced in summer reduce the likelihood 

of flooding during those months, despite the occurrence of large rainfall events.  

The Carron experiences fewer heavy rainfall events in summer; however, it is 

likely that it does not experience soil moisture deficits as high as those on the 

Tove. 

Comparing these plots provides interesting insights into rain and flow 

seasonality.  However, to consider seasonality at larger scales, statistics such 

as those presented in Figures 4.5 and 4.7 provide a more useful basis for 

assessment.    

Figures 4.5 and 4.7 show the pattern of the dispersion and mean day 

statistic for the POT rainfall and flood records for the catchment set.  On these 

maps, values close to 0 represent records that are well distributed throughout 

the year, whereas the higher values represent records that are more 

concentrated towards a particular point on the circle.  In a hypothetical case 

where all events occurred on the same Julian day, the dispersion indice would 

be exactly, 1.  However, given that the data represent natural systems it would 
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be unrealistic to expect such high values.  Mean day statistics represent the 

mean Julian day of flood or rainfall as calculated using Equations 4.2 and 4.3.  

The direction of the arrow on the plot is calculated anticlockwise from the x axis.  

In order to compare and contrast the plotted maps with polar plots, some 

example polar plots along with their dispersion indices are presented along with 

the maps of indices. 
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Figure 4.5 Dispersion and Mean Day of Rain for the POT rainfall 
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a b 

Figures 4.6 Two examples of rainfall polar plots, the Don at Doncaster (27021) 

and the Ewe at Poolewe (94001). 

 

Rainfall dispersion (Figure 4.5) shows some pattern.  The East of the UK 

and Midlands tend to show highly dispersed rainfall regimes.  This is due to the 

higher frequency of heavy rainfall events occurring in summer.  Strong westerly 

weather systems will often track across the UK from west to east, however, the 

same cannot be said for easterly systems which tend to be weaker and occur 

more frequently in summer.  This results in eastern catchments showing a more 

dispersed rainfall regime compared to their western counterparts as they 

experience more variety in the storm systems that cross them.  Areas in the 

West and North of the UK tend to show heavy rainfall events that are more 

concentrated towards specific times of the year.  The polar plots of rainfall in 

Figures 4.6a and 4.6b are further evidence of this.  Figure 4.6a shows a polar 

plot of the POT rainfall for the Don at Doncaster (27021).  Heavy rainfall events 

do not appear to concentrate towards a particular time of year; this is confirmed 

by the low dispersion index (0.13).  In contrast, Figure 4.6b shows the rainfall 

regime for the Ewe at Poolewe (94001) in the North-West of the UK.  Here, 

rainfall appears to be predominant in the Winter.  The dispersion index is also 

higher than for the Don (0.51).  Figure 4.5 also provides an interesting 

illustration of mean day statistics.  In general the West of the UK tends to show 

a mean day of rainfall that is later in the year (around December to January 
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time) whereas further East and South the mean day of rainfall occurs earlier 

(around September/October time).  It is worth stressing that for catchments with 

highly dispersed rainfall and flow regimes, mean day statistics are not 

particularly useful.  However, in this case there is a sufficient geographic spread 

of catchments with higher dispersion indices to warrant the general conclusions 

described above. 
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Figure 4.7 Dispersion and Mean Day of Flood for the POT flood peak data 
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a b 

Figures 4.8 Two examples of Flow polar plots, (a) The Dun @ Hunderford and 

(b) The Stour @ Throop. 

 

Gauge Number and Variable Dispersion Indice 

27021 Rainfall 0.13 

94001 Rainfall 0.51 

39028 Flow 0.04 

43007 Flow 0.68 

Table 4.1 Selected catchments and Dispersion indices 

 

 Flood dispersion shows a similar pattern to rainfall, although not 

as strong (Figure 4.7).  It is likely that the mean day of flood is, in some cases, 

heavily influenced by the mean day of rainfall.  However, catchment 

characteristics may act as a ‘buffer’ to climate, thereby complicating the link 

between rainfall and flood dispersion.  Catchments which are groundwater 

dominated, or typically experience spring snowmelt flooding (such as the Tay) 

may not show a strong link between rainfall and flood dispersion or mean dates.  

Several eastern Scottish catchments and catchments located in north-east 

England may be susceptible to this problem.  This is one of the reasons why 

seasonality is important, and why understanding rainfall and flood seasonality 

can aid an understanding of flood risk.  As with rainfall, individual polar plots 

show evidence of both dispersed and non-dispersed flow regimes (see Figures 
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4.8 a and 4.8 b for example).  It is also the case, that many of the concentrated 

flow polar plots show a higher degree of concentration than the rainfall.  This 

can be seen in Table 4.1, where the flow dispersion indices reach a higher 

value than the rainfall dispersion indices (0.68 compared to 0.51 for rainfall 

dispersion).  Generally, the more clustered catchment records are found in the 

West, with increasingly dispersed records further East.  The most highly 

dispersed catchments are found in the South East of the UK and the Midlands.  

In these areas, as mentioned above, mean day statistics are of little value.  

There are exceptions to this rule.  In the midlands, there are a group of 

catchments exhibiting unusually high dispersion values compared to their 

neighbours.  In this case it is possible that catchment characteristics play a 

much larger role than climate.  The physical mechanism behind this clustering 

of flood dates towards a particular time of year may lie in regional groundwater 

levels, which tend to peak at specific times of year after responding to long 

duration rainfall.  Several other high HOSTBFI catchments along the south 

coast would also tend to suggest that groundwater may play a part in flood 

dispersion.  However, overall, there is a clear pattern in the mean day of flood.  

Western catchments tend to show a mean day of flood in November or 

December.  Further East, catchments tend to show mean days of flood 

occurring in January or later.  While catchment characteristics may play a role in 

this, it is likely that as eastern catchments tend to be drier in general, they take 

longer to ‘wet up’ and therefore their mean day of flood arrives later in the year.  

Western catchments are subject to a high number of heavy rainfall events and 

exhibit high annual rainfall totals which may explain why their mean day of flood 

occurs earlier. 

 Seasonality has held interest for several authors, though there is little 

published work covering rainfall and flow seasonality for the whole of the UK.  

Bayliss and Jones (1993) summarise the Peak over Threshold flood database 

of the time, including summary statistics on seasonality.  Work by Black and 

Werritty (1997) on flow and rainfall has shown similar results for Scotland as 

has been found in this work.  The MDF pattern for Wales shows agreement with 

published work by Macdonald et al. (2010).  Therefore, this analysis provides a 

timely update of previous work, by extending the time period of data used, by 
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extending the analysis to rainfall and also by extending the space coverage to 

the majority of the UK in cases where this has not occurred before. 

 Rainfall seasonality results show an increasing dispersion the further 

East a catchment is located.  Black and Burns (2002) have shown this to be due 

to Eastern areas experiencing higher rainfall event frequencies in the summer 

months compared to Western areas.  Black and Werritty (1997) show how four 

factors (peak rainfall seasonality, soil moisture deficits, catchment size and 

reservoir storage) can generally be used to characterise the flood regime of a 

basin.  Similarily, Macdonald et al. (2010) found that catchment wetness was an 

important determinant in correlating rainfall and flow seasonality.  Robson and 

Reed (1999) present the use of seasonality statistics for pooling.  Their 

approach to statistic calculation was similar to that used here, however, only the 

flood regime was considered.  Results are similar with later mean days of flood 

in the South and East of the country. 

 

4.4 Developing the Seasonality Work; Annual Maximum Matching 

As a first assessment of the linkage between rainfall and flow regimes, 

assessing seasonal statistics can provide some useful insights.  To further 

develop this work, a matching analysis was undertaken.  This involved the use 

of annual maximum rainfall and flow series for each catchment.  The flow 

events were then matched to the annual maximum rainfall events, and a record 

was kept of this matching.  In essence, this work considers to what extent 

annual maximum rainfall events are responsible for the annual maximum flow 

record.  The analysis does not, at this stage, consider the magnitude of the 

events in either record. 

The matching process works by taking the dates of the annual maximum 

flow and rainfall events and then matching them.  The matching aims to 

attribute an annual maximum rainfall event to a flow where it is reasonable to 

assume that the rainfall event generated the flow.  This allows for cases where 

the annual maximum flow and rainfall events do not fall on the same day.  In the 

case of using a hydrological day to record rainfall it is important to remember 

that a hydrological day ending 3/2/2010 may be an annual maximum rainfall 

event that generated an annual maximum flow on 2/2/2010 for example. 
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 Figure 4.9 presents the results of this work, mapped across the UK.  As 

shown, the catchments that exhibit low levels of matching tend to be located in 

the South and East of the country, whereas the catchments that show higher 

levels of matching tend to be located in the North and West, with a few 

exceptions.  This pattern resembles the spatial distributions of catchment 

characteristics quite strongly.  In wet, upland catchments in the North and West, 

typically assumed to have reduced surface permeability, the map shows higher 

levels of percentage matching compared to catchments in the South and East 

which tend to be more groundwater dominated, drier, permeable type 

catchments.  In these groundwater dominated catchments, it is reasonable to 

expect that large rainfall events may not always give rise to large flows, as the 

storage capacity of the catchment has the ability to act as a buffer.  In contrast, 

upland catchments tend to have little storage capacity due to the relatively 

thinner soils.  In these cases, it is reasonable to expect that the larger rainfall 

events are more likely to cause flood flows.  Overall, a large proportion of 

catchments have matching values of around 20 to 50 %, with a smaller number 

of catchments having higher and lower matching values.  This is shown 

graphically in Figure 4.10. 
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Figure 4.9  The results of the annual maximum matching process.  Each circle 

represents a gauging station and the colour refers to the percentage of events 

matched, as shown in the legend. 



Chapter 4: Seasonality and the Analysis of Flood and Rainfall Regimes 

 

88 

 

 

 

Figure 4.10 A Histogram showing the results of the percentage matching 

methodology 

 

4.4.1 Relaxing the Matching Criteria 

The matching methodology described above is a relatively harsh test of a 

catchments flow and rainfall record.  In an ideal situation, there would be a 1:1 

relationship between the two records.  In practice, this is not apparent, as the 

results of the first matching procedure show that no catchments achieve a 100 

% matching record.  Theoretically, it is possible for two heavy rainfall events to 

be of a similar size and yet have strikingly different effects on the flow peak.  

Therefore if the rainfall event ranked second to the annual maximum is of a 

similar size, it is important to recognise that it may be responsible for the annual 

maximum flow.  The same could be said for a number of rainfall events.  For 

this work it was assumed that this problem was unlikely to extend beyond the 

top three rainfall events in any hydrological year.     
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In order to examine the records further, the matching procedure was 

repeated with a relaxation of the matching criteria.  In this case, the annual 

maximum flow record was allowed to match against any of the top three rainfall 

events for that year. 

 

Figure 4.11 A Histogram showing the results of the relaxed percentage 

matching methodology where the flow event was allowed to match with any of 

the top three rainfall events from that year. 

 

Figure 4.11 provides an assessment of how well the top three matching 

procedure works across the catchment set.  The majority of catchments 

improve their matching values over the annual maximum approach with values 

approaching 90 % being reached.  Using the same colour classification as for 

Figure 4.9, Figure 4.12 shows the percentage matching results for the UK 

plotted as a map.  Again, the general pattern shown previously prevails, with 

Western and higher elevation areas showing higher levels of matching. 
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Figure 4.12 Matched percentages with the top three matching approach. 
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4.4.2 Comparison of Approaches 

While the original matching methodology is a relatively strict test, it does 

provide some information on those catchments where a rainfall-flood frequency 

link might be expected.  In cases with a high matching percentage, it is possible 

that using the rainfall frequency curve as a guide to the flood frequency curve 

may be a good starting point. 

 The top three matching method exhibits much higher matching 

values than the original matching method.  For the majority of catchments, 

around 50 to 80 % of their records are matched; this is evidently higher than for 

the singular annual maximum matching approach.  This is not surprising, as 

generally, floods are caused by large rainfall events.  However, they are not 

always caused by the largest rainfall events.  What this work does not consider, 

is how much those top three rainfall events differ in their magnitude.  A stricter 

test of the top three matching methodology might allow matching on three 

events only where these events are of similar size. 

 

4.5 Conclusions 

 This seasonality analysis is a necessary precursor to the development of 

a model capable of estimating a flood frequency curve.  The use of seasonality 

statistics has shown two different ways of assessing a catchments rainfall and 

flow regime.  Essentially, these can be thought of as useful additions to the 

principal catchment descriptor set available through the FEH.  However, this 

work further develops the published work on rainfall and flow seasonality by 

extending it both temporally and spatially.  Seasonality information can show, 

and has shown some striking geographical differences in flood and rainfall 

regimes.   

 The annual maximum matching work has shown how rainfall and flow 

events can be matched in a simple way.  However, the main insight from this 

work is in being able to assess how common it is for large rainfall events to 

generate large flow events.  This work is important in developing a frequency 

curve matching methodology as it allows for a simple assessment of where 

more sophisticated predictive methods may work. 
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 The consideration of matching has important implications from a 

predictive point of view.  If a large proportion of a catchments annual maximum 

flow record has been generated from its annual maximum rainfall record, then it 

is perhaps indicative of a relationship which can be usefully used in the future.  

Where the annual maximum flow and rainfall regimes are not well aligned, it is 

clear that further work will be required to characterise the rainfall and flow 

relationship. 

 Both pieces of analysis presented here provide a useful basis for the 

development of more advanced work. In the first instance, this involves how to 

consistently estimate a peak flow from rainfall.  This work is presented in the 

next chapter “Event Based Flow Estimation”. 
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 Event Based Flow Estimation Chapter 5:

5.1 Introduction 

The approach to flood frequency curve estimation presented in this 

thesis requires the estimation of flood peaks.  Previous work has considered the 

appropriateness of the data sets selected for use (Chapter 3) as well as 

providing a first look at seasonal and climatic linkages between rainfall and flow 

(Chapter 4).  Chapter 5 now develops a method suitable to the estimation of a 

series of flow peaks, given some information on the climatic conditions that 

generated them. 

 

5.1.1 Modelling Justification and Requirements 

Several researchers have published details of event based models for 

flood frequency estimation.  These have a range of purposes, from the 

commercial flood estimation interests of the ReFH model (Kjeldsen, 2007) to 

answering questions on the use of antecedent information, like the model of 

Brocca et al. (2008).  This being the case, it is worthwhile outlining why a new 

model was developed as part of this project. 

The FRACAS project as a whole is concerned with the problem of how a 

changing climate may affect the flood regime of rivers within the United 

Kingdom.  The approach being taken within this thesis focuses on a simplified 

event rainfall to flood frequency transformation, suitable for use with future 

scenarios.  In order to achieve this, there is a requirement for the estimation of 

flood peaks, before a suitable flood frequency curve estimation procedure can 

be employed. 

While there are many event based models available for peak flow 

estimation, none suit the purposes of this study.  Models such as the unit 

hydrograph require inputs in the form of rainfall hyetographs to produce flood 

hydrographs.  At a sub-daily level, the MO 5 km daily data does not allow for the 

estimation of rainfall hyetographs.  Furthermore, this study does not require the 

flood hydrograph to be estimated, only the peak flow.  Therefore these event 

models are unsuited to this work as they require inputs not easily available and 

produce outputs which, while suitable, are excessive in their detail.  Secondly, 
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an inability to clearly cope with future climate information and a reliance on 

parameters which are unknown in the future also make some event based 

models unsuitable for use in this study.  However, there are some important 

features of existing models that have been incorporated into the research 

presented in this thesis.  Where this occurs, specific reference is given in the 

text.    

To meet the aims and objectives laid out in Chapter 1, the event model 

must be able to transform rainfall into flow on an event basis, but it must do this 

in an automated fashion and without reference to catchment characteristics.  

Given the large number of catchments and events in the study records, it is 

clearly unrealistic to have the model set up to work on an individual event basis.  

To meet the requirements of the research project, the model must therefore be 

simple (otherwise one may simply adopt a CS approach), it must be flexible (to 

deal with several different catchment types) and it must be capable of using 

future scenarios.  Obviously it should also show some skill in estimating the 

catchment flood record. 

 

5.1.2 Modelling Strategy and Initial Concept 

 The event based estimation detailed in this Chapter provides a basis on 

which to assess the potential for catchment rainfall estimates to generate the 

catchment flood record.  The modelling work provides a basis for later use in 

the frequency curve mapping which is presented in Chapter 6. 

The concept behind the model uses a simple transformation of rainfall 

and associated information to estimate a flow value (see Figure 5.1) 
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Figure 5.1 The concept behind the event based model.  ri is the day of the 

storm, ri-1,ri-2 are 1 and 2 days before the storm occurs. 

 

The assumption behind the concept in Figure 5.1 is that the majority of 

peak flow events can be estimated by reference to the storm that generated 

them, with an improvement in estimation by the incorporation of some 

information on the catchment state prior to the storm occurring.  This is unlikely 

to be the case where catchments are subject to alterations such as significant 

water transfers, heavy urbanisation or flood attenuation by reservoirs.   

Antecedent information used within the model can be in one of two 

forms.  Both antecedent rainfall and simple soil moisture estimates are used as 

indicators of pre-storm catchment conditions.  The generic flow estimation 

model is highly flexible.  This is of considerable benefit as it allows the 

investigation of the effects of using different antecedent indicators and their 

influence on the estimation of peak flow.  These different model combinations 

are explored in more detail in later sections. 
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5.1.3 Event Based Modelling Development; Generic Flow Estimation for 

One Catchment 

 In simple terms, a flow estimate is obtained by applying a 

coefficient to the storm rainfall estimate and adding in an estimate of catchment 

antecedent conditions (also modified by a coefficient).  The coefficients are 

determined by optimisation against the observed flow values over the whole 

catchment flood record.  The aim is to minimise an objective function which 

calculates the absolute sum of errors between the observed and modelled 

estimate of the flow.  All values are in growth factors for ease of processing; 

these can be scaled back to their true values using the appropriate RMED (or 

QMED in case of flow).  Growth factors used in this study are median values.  

Therefore the flood growth factor for a particular catchment is the median 

annual maximum flood.  Growth factors standardise the values used within the 

model.  Therefore, where two catchments of significantly different size are 

modeled, the flow values used in processing fall within a reasonably small 

range (compared to using their true values).  This is important as it allows for 

comparison between catchments of different size. Catchment area therefore 

becomes less of a factor affecting the model results as area and QMED are 

related.   Figure 5.2 shows the relationship between these two variables.  The 

difference (or scatter) shown in Figure 5.2 can possibly be explained by 

different climatic conditions found across the country.  For example, the largest 

catchment in the set, the Thames, has an area of 9959 km2, a QMED of 329 

cumecs and a SAAR of 706 mm.  The Tay, which has an area less than half 

that of the Thames (4586 km2) has a QMED value of 963 cumecs, more than 

double the QMED value of the Thames.  However, the SAAR value of the Tay, 

is 1425 mm, which perhaps explains the difference in QMED between these 

catchments.  Therefore, scaling by the QMED allows for a comparison between 

catchments of different sizes, but it does not mean that catchment area can be 

disregarded after scaling has taken place. 
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Figure 5.2  Comparing Catchment Area and QMED for the entire catchment 

set. 

 

One example of how a flow estimate might be obtained is Equation 5.1   

In this case antecedent rainfall is used as the estimator of antecedent 

conditions. 

 

      (    )  (  (         ))    Equation 5.1 

 

Qest is the processed flow growth estimate, a, and b are optimised coefficients, 

ri is the storm rainfall growth factor that contributes to the discharge estimate 

(Qest). ri-1, ri -2 etc represent the rainfall on one and two days before the storm 

respectively.  In practice the above equation could take one of several 

formulations in order to consider how different blocks of rainfall might capture 

antecedent conditions, however; this example is presented only in order to 

illustrate the method.  The above equation is applied to all events in the 

catchment flood record, and the coefficients a and b are modified at each 

iteration of the optimisation. 

The weights are optimised using the function 

 

     ∑   (           )   Equation 5.2 
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This is the sum of the absolute errors between the processed flood estimates 

(Qest) and the true discharge values (Qobs).  The errors are summed for all 

events across a single gauged record.  The aim is to minimise this function. 

This approach is preferred as it uses absolute error values.  This allows 

individual events, which may have large estimation errors, to affect the overall 

error indice.  Other error estimation indices such as the RMSE (Root Mean 

Square Error) use a mean error, which, while still informative, do not allow 

individual events to affect the overall error indice as much.  Normally this would 

not be desirable; however, in this case it is important to account for individual 

events which have large estimation errors, as they may cause problems later on 

in flood frequency assessment. The use of an absolute sum of errors prevents 

positive and negative errors from cancelling each other out.   

The work presented in this chapter uses the Peaks Over Threshold flood 

data taken from the HiFlows database.  These provide a much larger dataset 

than the annual maximum when testing any flow estimation work.  Due to the 

increased number of events over the annual maximum series the POT data 

span a wider range of hydroclimatic variation and so provide a more robust test 

of flow estimation.  The generic method described above can be applied to all of 

the 520 catchments. 

 

5.1.4 Model Formulations 

 Three different model formulations are tested, with different levels of 

complexity in the way they estimate the peak flow.  Table 5.1 summarises these 

formulations.  One model estimates peak flow using only storm rainfall, one 

model estimates peak flow using storm rainfall and antecedent rainfall and the 

third model estimates peak flow using storm rainfall, antecedent rainfall and an 

estimate of the catchment soil moisture deficit. 
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Model 

ID 

Model Formulation Antecedent 

Estimator 

Number of 

Coefficients 

1 Qesti = a x Storm None 1 

2 Qesti= (b x Storm )+ (c x 30 Day Rainfall ) Rainfall 2 

3 Qesti = (a xStorm) + (b x 30 day Rainfall-CMD) Rainfall and 

Soil Moisture 

2 

Table 5.1 Summary of Model Formulations used in Assessment.  The model ID 

is used within the results and discussion to refer to individual models. 

 

The notation is similar to that of Equation 5.1.  Qest is the estimated flow, 

Storm is the estimated storm as a growth factor, 30 Day Rainfall is the growth 

factor of the thirty day rainfall prior to storm arrival and CMD is the catchment 

moisture deficit estimate at the beginning of the 30 day antecedent rainfall 

period.  The assessment and selection of individual model components such as 

the storm and antecedent rainfall is detailed in Section 5.2.   

 

5.1.5 Model Assessment 

A first assessment of the different storm estimation methods uses 

objective error indices (Equations 5.3 and 5.4), combined with graphical plots 

and maps of errors.  Maps are useful in showing the spatial distribution of 

errors, whereas the seasonality plots tend to be more useful for interpreting the 

temporal behaviour of the model for individual catchments.   

As this is an event based model, developed to estimate peak flow values, 

the model is assessed based on its ability to estimate the peak flow from the 

rainfall information.  Errors are expressed in growth factors (standardised by 

QMED) and represent the differences between the observed and modelled 

peak flow.  Hence, for an event with an error of + 0.5, this means that the model 

is underestimating the peak flow by a growth value of 0.5.  From Equation 5.2 it 

should be remembered that this error value is the observed minus the estimated 

growth value.  The growth error can be converted to an absolute discharge error 

by scaling with the QMED value.  However, the use of growth factors is 

preferred as it provides a relatively easy way of comparing errors between 
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catchments whose flow records are composed of significantly different 

magnitudes.   

 As the objective function shows, the optimisation method was carried out 

by using the sum of the absolute differences between observed and estimated 

flow peaks to develop the coefficients.  This error index was used as an 

indicator of overall optimisation performance for each catchment, modified as 

shown in Equation 5.3 in order to compare results between catchments. 

  In order to assess the model between catchments, the error 

indices should be able to be compared against one another.  The objective 

function as specified in Equation 5.2 was used as an estimator of model 

performance for the original fitting.  On its own, this cannot be used to compare 

residual errors between catchments, as it is affected by the number of events 

over which the model is run.  In order to allow a direct comparison, the error 

index as calculated in Equation 5.2 was adjusted to give an average error per 

event (for each catchment).  This can be seen in Equation 5.3 

 

      
∑   (           )

 
   Equation 5.3 

 

Where n is the number of events analysed by the model for each 

catchment.  This method of processing the error index allows for a comparison 

between catchments, where the record length of individual stations does not 

impact upon the overall error magnitude.  Equation 5.3 is used to assess model 

performance between catchments and in order to avoid confusion is termed the 

‘mean error per event’. 

 

     
∑ 

 
    Equation 5.4 

 

 In certain cases it is not practical to look at the distribution of this mean 

error per event value for every single catchment, for every different model run.  

In these cases, the mean of the ‘mean error per event’ can be calculated, to 

give a single value for each model run across the entire catchment set (See 

Equation 5.4).  Equation 5.4 outlines this calculation, where j is the total number 
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of catchments modelled.  F the objective function error from Equation 5.3 for a 

single catchment.  In Equation 5.4 this F value is summed across all 

catchments and then divided by the number of catchments.  This index is 

termed the ‘mean catchment error’ and is represented by G in Equation 5.4.  

While it is recognised as being a reasonably crude approach, it does provide a 

fast and easily understandable way of assessing model performance.  

Throughout the rest of this chapter both indexes are used, as both have 

relevance. 

 

5.2 Model Components 

In order to carry out the flow estimation the raw rainfall and flow data 

require some pre-processing. 

 

5.2.1 Storm Estimation 

Different methods of storm estimation are outlined as methods a to d in 

the following text.  In order to reduce complication, no antecedent term was 

included; therefore the flow estimation model used only the storm to estimate 

the peak flow.  This allows for a better assessment of rainfall storm estimation 

methods.  The method of estimating peak flow is represented by Equation 5.5.  

For each method (a to d) Equation 5.5 was used to estimate the peak flow 

record. 

 

Qest = a x Pi        Equation 5.5 

 

Where Qest is the estimated flow, a is the optimised coefficient and Pi is the 

storm total estimate, expressed as a growth factor. 

 

(a) Using a single day of flood approach 

The simplest method tested used the day of the peak flow, and the 

corresponding day of rainfall as the storm that generated it.  This method 

performed reasonably well, however, it does not take account of measurement 

timing differences and so required modification.  As an example, take a flow 

peak occurring on 2/1/2010.  In most historical cases, the time of the flow peak 
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is not known.  However if it is assumed that the flow peak occurs close to 

midnight on 2/1/2010, then using the rainfall day 3/1/2010 may be more 

appropriate to describe the flood than using 2/1/2010.  If the flow peak occurred 

earlier during the day 2/1/2010 (say around 0900) then it is likely that using the 

rainfall day ending 2/1/2010 is more appropriate. 

 

(b) Modified single day of flood approach 

This method assumes no knowledge of the time of the flood peak.  It ranks 

the days of rainfall either side of (and including) the day of the flood by their 

total.  The day with the highest total is then chosen as the single day of rainfall 

contributing to the generation of the peak flow.  This method was developed to 

try and overcome the problems mentioned in the original single day of flood 

approach.  

 

(c) Developing  a multiple day estimate of a storm 

Methods (a) and (b) make the simplifying assumption that one rain day only 

is responsible for producing a flow peak.  However, it is acknowledged that a 

single day’s rainfall is not always solely responsible for a peak flow value.  Two 

recent flood events (see Table 5.2) make the case for this quite clearly.  

Furthermore the discretisation work and storm assessment work in Chapter 3 

highlighted the problem of the storm crossing a measurement boundary.  

Therefore to develop an estimate of a multi-day storm, the days either side of 

the first estimate of the storm are checked.  If their value is above a certain 

threshold then these days are also included in the storm total.   

Date Location Event 

3-6th August 1997 Somerset 280mm rainfall, properties 

inundated. 

5-10th January 

2005 

Inveruglas, Loch 

Lomond 

120mm rainfall resulting in high 

summer flows. 

Table 5.2 Two examples of documented multi-day rainfall events that have led 

to flooding.  Examples extracted from the Chronology of British Hydrological 

Events (CBHE), accessed online 17/1/2010. 
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The choice of threshold was developed after testing several different storm 

estimation procedures within the optimisation.  What was clear was that 

different thresholds appeared to have little effect on the overall performance of 

the optimisation.  The value of 0.5 RMED (for each individual catchment) was 

chosen as it allows for the different climatological conditions found in the United 

Kingdom.  This is a scaling by the median maximum rainfall for each individual 

catchment, therefore the threshold will vary by catchment depending upon the 

rainfall characteristics.  Initial choices of fixed thresholds using arbitrary values 

such as 5, 10 and 20 mm of rainfall do not reflect the varied climatological 

conditions found if they are applied as a constant over all catchments.  Using a 

value dependent on the rainfall characteristics of the catchment accounts for the 

geographic spread of what might be considered ‘important’ rainfall. 

 

(d) Using Date, Time and Time to Peak to estimate storm 

The rationale and method behind this approach has already been introduced 

in Chapter 3 (see Section 3.6).  This approach was introduced in order to 

provide a framework to make better use of information on the time of 

occurrence of the flow peak.  After several initial runs it was clear that this 

approach was not producing results that were any better than the two simpler 

methods described in (a) and (b) above.  It is perhaps indicative of the number 

of simplifying assumptions that this approach makes which cause it to perform 

so poorly.  In particular the use of a fixed time to peak for all events as well as 

assuming a fixed duration storm and fixed storm shape mean that there is little 

flexibility in the method to deal with variation in storm and catchment 

characteristics. 

All methods introduced (in a to d) were tested.  Three methods – the ‘single 

day of flood’ estimate, the ‘modified single day of flood’ estimate and the 

multiple day estimates were chosen for assessment.  The approach using the 

time of day of flood was discarded, as it was not possible to use this over the 

entire catchment record.  This is due to peak flow timings only being available 

for short periods of record and then only in some catchments.  In order to 

assess the performance of each method in estimating peak flow, Equation 5.5 

was used to estimate peak flow. 



Chapter 5: Event Based Flow Estimation 

 

104 

 

By ignoring antecedent conditions, a true assessment of the different 

methods of estimating a storm could be made.  It is expected that further work 

on antecedent conditions will have less of an impact on the overall model 

performance than getting the estimate of the storm rainfall right. 

The results of running the model (Equation 5.5) for the three storm 

estimation methods are shown in Table 5.2.  The values refer to the objective 

function error from the optimised run (see Equation 5.4).  As previously 

introduced, this is the sum of absolute errors between the observed and 

modelled peak flows divided by the number of peak flow events.  It can 

therefore be thought of as a measure of mean error within the peak flow 

estimation model.  The mean and standard deviation are computed across all 

catchments in the set to give the values in Table 5.3 (as described by Equation 

5.4).  These are proposed as simple, but effective, measures of the validity of 

each storm estimation approach.   

 

Storm Estimation 

Approach 

Mean Error Standard Deviation 

Single Day of Flood 0.48 0.14 

Modified Single Day of 

Flood 0.35 0.14 

Multiple Day Estimate 0.34 0.13 

Table 5.3 Comparing mean catchment error indices for the different storm 

estimation methods.  Errors are in growth factors. 

  

It is clear that timing information is important.  Table 5.3 suggests that by 

assuming that the date of the peak flow occurs on the same day as the storm 

rainfall (i.e. the single day of flood approach), poorer performance is seen in the 

peak flow estimation model.  A slightly more sophisticated method is to use the 

heaviest day’s rainfall (i.e. the modified single day of flood approach).  The 

multiple day method, while a slight improvement over the modified one day 

method, does not significantly improve results.  However, by capturing more of 
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the important contributing rainfall it is clear that it too is capable of 

characterising the storm. 

In terms of future work, using either a multiple day estimate or a modified 

single day estimate of the storm rainfall is suggested as being the best way 

forward.  While neither capture longer duration storms (i.e. 5 day), this problem 

can be dealt with separately by the inclusion of antecedent rainfall estimates.  

This work is necessary to provide a basis for the future development of a more 

complex model incorporating antecedent conditions.  Collier and Hardaker 

(1996) suggest that the majority of the heaviest UK rainfall events fell within 8 

hours, although these are more likely to be associated with convective fronts.  

Depression type systems have the potential to be much longer lasting and 

these provide the main mechanism for multi-day storms within the UK. 

The work carried out as part of the storm estimation process takes an 

alternative approach to that of many studies.  By selecting the storm based on 

the timing of the flood (i.e. using the same or previous day’s rainfall) it can be 

reasonably assumed that the majority of the flood generating storm is captured.  

This may not be the case if an approach was used where storm events are 

selected based on their rainfall characteristics only.  In this case many storms 

might be selected which do not result in a flood event.  In many design event 

based modeling studies, the selection of a design rainfall is often one of the first 

steps in order to develop a flood estimate of a particular magnitude and 

frequency (see Kjeldsen, 2007 for an example).  One of the important aspects 

of the model development presented in this chapter is the link between 

observed flood events and the storms that generated them.  In some respects 

the use of the date of flood to estimate the storm could be seen as a backwards 

step, as evidently any predictive work will not have access to flood dates.  

Predictive work is considered separately later in the thesis, however, for the 

present work the storm estimation procedure is considered to be adequately 

specified for the purposes of this work. 

 

5.2.2 Optimisation Methods 

 As previously explained, the optimisation method used here finds the 

coefficients used to modify the storm rainfall and antecedent rainfall growth 
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factors in order to estimate a flow.  The scientific computing literature on 

optimisation is vast, here, a justification for the approach taken to optimisation is 

presented.  For generic background information on optimisation the reader is 

referred to a book such as Miller (2000). 

 During early formulations of the flow estimation method developed here, 

simple gradient algorithms were involved such as the simplex method (see 

Miller, 2000 p.316 for more detail).  Optimisation routines, as with all other 

processing, were carried out using the R statistical programming language.  In 

the case of the optimisation, one of the early trialled methods was a box-

constrained implementation of the Nelder-Mead algorithm (Zhu et al., 1997).  

Using a flow estimation model with two coefficients, weighting the storm and 30 

day rainfall respectively it was found that the optimisation methods chosen were 

not only slow, but they failed to find the global optimum.  Algorithms such as the 

Nelder-Mead are disadvantaged by the fact that they can end up finding local 

rather than global minima, although this is generally compensated for by a 

faster computational time.  Versions of the Nelder-Mead designed to avoid local 

minima are available, but have not been developed for use within the R 

language as yet. 

Therefore, the optimisation method chosen for the majority of the work 

presented here uses a genetic algorithm (GA) to develop the weights.  The 

specific algorithm used is the Differential Evolution (DE) optimisation algorithm 

(Mullen et al., 2009).  This method is implemented in R through the use of the 

package DEoptim.  This was adopted after trialling several different methods 

such as gradient and line search techniques.  Genetic algorithms tend to be 

better at finding global optima than some other line based search techniques, 

although the computational time can be heavy depending upon the application. 

 

5.2.3 Antecedent Rainfall Estimation 

Several researchers have noted the importance of catchment antecedent 

conditions in altering peak flow volumes (See Beven,1993).  The estimation of 

the optimal antecedent rainfall window length was undertaken by assessing the 

mean catchment error indice against the length of window used in flow 

estimation.  Peak flow estimation was undertaken using model 2 in Table 5.1, 
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varying the length of the antecedent window.  The flow estimation model was 

run several times with different antecedent window sizes in order to estimate 

the optimal window length from Figure 5.3.    At around 30 to 40 days worth of 

antecedent rainfall, there is very little improvement in the model mean error 

relative to extending the antecedent rainfall window. 

 

 

Figure 5.3 Plot showing the relationship between the total length of the 

antecedent window used and the mean error in the growth value for each flow 

event.   

 

5.2.4 Soil Moisture Model Definition and Construction 

The catchment soil moisture deficit was created as a time series from 

which the catchment moisture deficit linked to the flood generating storm could 

be extracted.  The model development has made extensive use of the ReFH 

approach (Kjeldsen, 2007), although it is not as complex as the ReFH model 

itself.  The ReFH design event method uses regression equations to estimate 

the design soil moisture for its event based model (see page 33 of Kjeldsen, 

2007).  These regression equations have been developed from estimates of soil 

moisture time-series, details of which can also be found in Kjeldsen (2007, p 

58).  The soil moisture time-series for the ReFH are more complex, involving 

differential equations to model soil moisture for three different soil zones. 

The relatively simple soil moisture balance model developed as part of this work 
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includes a precipitation, evapotranspiration and a drainage term (k).  Figure 5.4 

provides a conceptual outline of the model.

 

Figure 5.4  Conceptual model of Soil Moisture (after ReFH) 

 

 The soil moisture deficit on any particular day is a result of the preceding 

day’s soil moisture, plus the rainfall, minus the evapotranspiration and a 

drainage component.  Equation 5.6 states the first approximation of the 

Catchment Moisture Deficit (CMD) in mm. 

 

                           Equation 5.6 

 

      is set to 0 at the beginning of the time series, occurring on the 

calendar date of the 1st January.  This will be realistic for most catchments at 

this time of year.     is the precipitation occurring at time step i.      is the actual 

evapotranpiration at time step i.  FC is the Field Capacity and k is the drainage 

coefficient.  The FC is a value in mm designed to approximate the saturated 

water storage in the soil column.  The overall soil moisture balance equation is 

broadly similar in concept to that of Kjeldsen (2007,p.58) however, the solution 
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of this equation is simplified.  Actual Evapotranspiration is dependent upon the 

soil state of the previous days calculation.  AE is considered to be at the 

potential rate down to a specified rooting depth (Kjeldsen, 2007).  Below this, 

AE reduces as follows: 

 

     
    

  
           Equation 5.7 

(From Kjeldsen, 2007, p.17) 

 

Rooting depth (RD) is calculated as a function of field capacity, as taken from 

the ReFH method.  Therefore rooting depth can be calculated as: 

 

                Equation 5.8 

(From Kjeldsen, 2007, p.16) 

 

Where the Field Capacity is calculated as: 

 

FC = 49.9PROPWET-0.51BFIHOST0.23    Equation 5.9 

(From Kjeldsen, 2007, p.16) 

 

Potential Evapotranpiration (   ) is calculated as a catchment average.  For the 

period under study, catchment average potential evapotranspiration on an 

annual average basis has been calculated using the EARWIG software (see 

Kilsby et al., 2007 for details).  To estimate the PE on a specific Julian Day, 

suitable for the time series model presented here, the Annual Average PE 

values have been distributed using a sine function, as recommended in 

Kjeldsen (2007,p.13).  This function is: 

 

     (     (  
    

   
))      Equation 5.10 

 

Where i is the Julian day and i=1 would be the first of January. 

 

In the case where the soil moisture deficit is less than the field capacity: 
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                       Equation 5.11 

 

then the soil moisture can simply be calculated as 

 

                         Equation 5.12 

 

As the solution assumes no free drainage below field capacity, there is no need 

for a drainage term if Equation 5.11 is valid.  Absolute drainage reduces as the 

soil moisture content also reduces when above field capacity.  While the above 

formulation calculates drainage using a multiplication factor (k, range[0,1]), this 

can be thought of as a specified mm of drainage per day, reducing as the soil 

moisture content approaches FC.   

The drainage parameter (k) is calculated by optimising a single drainage 

parameter across the whole time-series.  For all catchments the initial k value at 

the start of the optimisation is set to 1 (this assumes soils at or near saturation 

due to early winter rainfall).  This value is then modified and, at each iteration of 

the optimisation, the indices PROPWET and SMDBAR are calculated for the 

time-series and checked against the catchments corresponding values in the 

FEH catchment descriptors data set. 

PROPWET is the proportion of the time the catchment moisture deficit 

was less than 6mm during the period 1961-1990.  It is an index calculated from 

the MORECS model and it essentially describes, on average, how wet or dry a 

catchment is.  SMDBAR is the mean soil moisture deficit (in mm) for the 

catchment for the same time period. 

The drainage parameter has an important controlling influence on 

drainage when the catchment is wet, as proportionally this is the time when the 

k factor has the largest influence.  Once it gets closer to FC, it removes less 

water due to the lower soil moisture content. 

 

5.2.5 Assessment of the Soil Moisture Estimates 

There are a number of other models/indices that these soil moisture 

indices could be tested against.  For example the soil moisture deficit time-
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series could be directly assessed against a commercially available product such 

as MORECS. However, when testing against other model results it is difficult to 

tell if any mismatch is the result of a true error in the estimate of soil moisture or 

simply a different (but entirely appropriate) model structure.   Because other 

models such as MORECS have not been validated against field data (as this is 

not possible due to the reasons discussed earlier) it cannot be assumed that 

they are entirely accurate.  For the purposes of this model, the test of the soil 

moisture deficit estimates are in how well they estimate the flow and whether 

there is any improvement over the approach using only antecedent rainfall.  It is 

debatable as to how appropriate it is to optimise the drainage parameter against 

the MORECS derived SMDBAR and PROPWET values as well as incorporating 

the FC and RD values from ReFH.  However, given the lack of any large scale 

data sets available for either calibration or validation, using these indices is 

more appropriate than simply developing a model without reference to them at 

all. 

 

Figure 5.5 Histogram of the Cmax values (in mm) from simulation.  Cmax is the 

maximum soil moisture deficit possible in the catchment. 

 

Figure 5.5 shows the Cmax values from simulation.  Cmax is the 

maximum soil moisture deficit possible.  Relative to other methods, such as the 

ReFH the values here would appear to be low.   This is a direct result of the 

model structure, as the FC value more or less defines the range which the soil 
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moisture values take, and the FC values tend to be relatively low.  However, the 

general pattern is similar, with small sets of catchments taking very low and 

high values and the majority of catchments falling in between. 

 

5.2.6 Comparison of Soil Moisture Estimates and Inclusion into the Flow 

Estimation Equation 

The drainage parameters do not alter much, the lowest value being 

around 0.86, with the majority of values around 0.97-0.99.  Therefore there may 

be a case for averaging the drainage term at around 0.9 in the way that the 

ReFH does. 

In creating the soil moisture deficit time-series the optimisation objective 

function aims to reduce the sum of the errors between the FEH and simulated 

PROPWET and normalised SMDBAR values.  Resultant errors are minimal.  It 

is not worth worrying about small errors, considering the possible errors in the 

original model used to derive these properties. 

 Figures 5.6 and 5.7 show indices of PROPWET and SMDBAR as 

calculated from the generated soil moisture time-series.  The values shown 

have been scaled to the range [0,1] for both the FEH and time-series values to 

allow for easier comparison.  The FEH model is formulated in a slightly different 

way, and therefore scaling both outputs to the same range allows a relative 

comparison of results.  Any remaining absolute difference can be dealt with in 

optimisation through the alteration of the coefficients.  As Figures 5.6 and 5.7 

show, indices of PROPWET and SMDBAR as calculated from the generated 

time-series compare reasonably well with the corresponding FEH values.  

These results do not mean that the soil moisture model is accurate, but it goes 

some way to showing that the time-series it produces have characteristics 

similar to other well used models. 
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Figure 5.6 Compares normalised mean soil moisture values from the model to 

FEH estimates (SMDBAR). 

 

 

Figure 5.7 A comparison of PROPWET values from the soil moisture model to 

FEH PROPWET values. 

 

To provide a comparison with the storm + 30 day rainfall only approach 

the soil moisture deficit model formulation followed a similar approach to that of 

model 2 which uses only antecedent rainfall as its antecedent conditions 

estimator.  CMD refers to the Catchment Moisture Deficit estimate, with the 

CMD model referring to the flow estimation model that incorporates the 

antecedent soil moisture deficit estimate.  
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The CMD formulation takes the same blocks of rainfall as that of the 

model using only antecedent rainfall.  However, the estimated antecedent 

moisture deficit at the beginning of the summed blocks (i.e. 30 days prior to 

storm arrival) was subtracted from the 30 day total.  Two coefficients were still 

applied to these blocks, one to the storm estimate and one to the antecedent 

conditions estimate.  It was felt that the inclusion of some measured local 

information on antecedent rainfall would provide benefits over simply using the 

catchment moisture deficit estimate in conjunction with the storm rainfall. 

 

5.3 Peak Flow Model Results 

 The development of the model components is a necessary first step in 

testing different model formulations for peak flow estimation.  These models are 

assessed with regards to their spatial and temporal performance, using both 

plots for visual assessment and simple statistics as a numerical comparison. 

 

5.3.1 Spatial Comparison of Model Results 

 The first assessment of model results compares model performance 

between catchments.  For each of the three models, the mean error per event 

has been calculated and plotted on a map.  These errors are classified by 

colour to allow the identification of any pattern to the spatial distribution of error. 
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Figure 5.8 The Distribution of Peak Flow Model Errors for the Storm only 

Model. 
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Figure 5.9  Colour coded error indices of model performance.  Error values are 

the ‘mean error per event’.  The model formulation incorporates antecedent 

rainfall. 
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Figure 5.10 Error indices from the model run incorporating the catchment 

moisture deficit estimations.  Error values are the ‘mean error per event’. 
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 Figures 5.8 to 5.10 give an overview of how the model performs across 

the whole catchment set for the three different model formulations.  Results are 

colour coded for ease of viewing, with the graduation from green, blue, orange, 

red through to black signifying decreasing model performance.   

In comparing the three maps, there are some similarities which can be 

drawn.  To some extent, the pattern of performance is replicated across the 

three maps, with the worst performing catchments clearly identifiable in the 

south and east of the UK.  This in part reflects the catchment characteristics.  

Catchments in the South and East tend to have higher HOSTBFI values (see 

map of HOSTBFI in Appendix A.2).  This area is also one of the driest in the 

UK, which may contribute to higher soil moisture deficits impairing model 

performance.  There is a clear east-west divide in the ability of the model to 

estimate the catchment peak flow record.  Catchments in the west of the UK 

tend to experience higher rainfall due to prevailing westerly weather systems, 

and also tend to experience lower annual average temperatures compared to 

the east.  Furthermore, western areas tend to have thinner, more impermeable 

soils, with much of the east of the UK having thicker, more permeable soils 

which can exhibit marked differences in runoff response (Boorman et al., 1995).   

The maps are not however, identical.  Figure 5.8, showing the spatial 

distribution of the error for the storm only model appears to show a considerable 

grouping of catchments by error.  This grouping pattern is not replicated to the 

same extent in either of the maps showing models using antecedent conditions 

estimators.  It is likely that the storm only model shows not only where storm 

estimation can estimate flow well, but also it identifies those catchments where 

antecedent conditions play a considerable role in flood generation.  This pattern 

is then not replicated in further plots as the models may have accounted (to 

some extent) for antecedent conditions. 

These patterns tend to suggest that it is possible to understand in which 

areas the peak flow estimation models will perform well compared to areas 

where it will not work.  Furthermore, the areas where the models perform well 

tend to have a particular set of characteristics which can give a guide as to how 

well the peak flow estimation model will work. 



Chapter 5: Event Based Flow Estimation 

 

119 

 

The general pattern is evidently susceptible to exceptions.  As Figure 5.9 

shows, the north-east of England has two catchments which perform particularly 

poorly, and it is not clear why this is the case.  Part of the perception of poor 

performance when looking at the map may be due to the error classification 

boundaries used.  It may be that the two worst catchments in the north-east on 

the map are in fact not particularly far away from the next map colour class.  

While there may be some limitations to what these maps can show, they are 

valuable in order to examine the spatial patterns of extreme rainfall and 

flooding. 

 

5.3.2 Temporal Assessment of Model Performance 

 Assessing the spatial distribution of error indices is useful in gaining an 

understanding of the relative performance of the model across the UK.  

However, the error indices used are reasonably crude, and give little detail as to 

how well the peak flow estimation models perform temporally.  Furthermore, the 

error indices used in the maps are not particularly easy to interpret in an 

absolute sense, and so they are only useful for a relative comparison against 

other catchments.  Therefore, to investigate the model results in more detail, a 

comparison of the three model’s performance throughout time was undertaken. 

To assess the temporal performance of the model, plots of the growth 

error (i.e. observed-modelled growth values) associated with each peak flow 

event and the Julian day on which that event occurred are presented. Due to 

the objective function used, positive errors suggest an underestimation by the 

model, whereas negative errors suggest an overestimation.  These plots help to 

assess whether there are any seasonal patterns to the error signal.  For several 

different catchments, all three model runs are shown; the storm only model 

(model 1), the antecedent rainfall model (model 2) and the soil moisture 

estimation model (model 3).  The error plots show the difference between the 

growth factor of the measured flood peak and the estimated or modelled flood 

peak.  This error is then plotted against the Julian day on which the event in 

question occurred. 
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Figure 5.11 The East Avon @ Upavon (South-West).  From L-R, Shows the 

storm only approach, the storm and antecedent rainfall approach and the storm, 

antecedent rainfall and soil moisture deficit approach. 

   

Figures 5.12  The Derwent (NW-England).  From L-R, Shows the storm only 

approach, the storm and antecedent rainfall approach and the storm, 

antecedent rainfall and soil moisture deficit approach. 

   

Figure 5.13 The Falloch @ Glen Falloch (West Scotland).  From L-R, Shows 

the storm only approach, the storm and antecedent rainfall approach and the 

storm, antecedent rainfall and soil moisture deficit approach. 
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Figure 5.14 The Lune @ Killington (North-west England).  From L-R, Shows the 

storm only approach, the storm and antecedent rainfall approach and the storm, 

antecedent rainfall and soil moisture deficit approach. 

   

Figure 5.15 The Thames@ Days Weir (South England).  From L-R, Shows the 

storm only approach, the storm and antecedent rainfall approach and the storm, 

antecedent rainfall and soil moisture deficit approach. 

   

Figure 5.16 The Allen @ Walford Mill (South-west England)  From L-R, Shows 

the storm only approach, the storm and antecedent rainfall approach and the 

storm, antecedent rainfall and soil moisture deficit approach. 

 

Figures 5.11 to 5.16 give a general impression of how the three different 

model formulations perform.  Y-axis errors are differences in growth factors 
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between the measured and modelled flows.  Generally, models 1 and 3 

demonstrate more scatter in their temporal error distribution compared to model 

2 where the errors are more constrained.  Comparing these plots is illustrative, 

as it shows the benefit of adding information on antecedent rainfall conditions in 

to the model estimation of flow.  If no improvement in the error spread was seen 

between models 1 and 2, then simply using the storm rainfall as an estimate of 

the flow peak would be the best option.  It is also the case that, in general, 

model 3 consistently demonstrates more scatter in error distribution compared 

to the other two modeling formulations.  This suggests that the addition of 

catchment moisture deficit estimates has not significantly improved the model 

estimation of peak flow. 

  The plots give a good indication of how well the flow estimation model 

performs seasonally.  For Figures 5.11, 5.15 and 5.16 there is a pronounced dip 

to the error scatter, occurring in mid to late summer (around Julian Day 250-

300).  This is likely to be caused by antecedent conditions during the summer, 

when rainfall is less effective.  The overestimation of peak flow events during 

the late summer period is likely to be caused by a lack of seasonal information 

within the model structure.  This occurs despite the addition of soil moisture 

deficit estimates which further suggests that these estimates have not 

adequately captured catchment antecedent conditions. 

Figures 5.11 and 5.12 show another seasonal aspect of model 

performance.  The Derwent (Figure 5.12) has a relatively low HOSTBFI value 

(0.437) compared to the Avon (Figure 5.11).  Both the Avon and the Derwent 

show a general constraining of the error scatter for model 2, compared to model 

1 which shows how adding in the antecedent rainfall information to the model 

can help in the estimation of peak flows compared to using the storm only 

model.  However, in the case of the Derwent, it does not appear to suffer from 

the seasonal difference in errors like the Avon.  In terms of flood seasonality in 

the Derwent, winter flooding predominates.  Because of this seasonal shift in 

flood dominance, it is likely that the range of antecedent conditions for flooding 

that the Derwent experiences are limited compared to the Avon.  In terms of 

performance, the Derwent is one of the better performing catchments. Figure 
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5.12 is illustrative of this, where the events occur in winter months and tend to 

be bunched around relatively low model errors. 

Figures 5.15 (Thames) and 5.16 (Allen) show two cases where the 

implementation of the three model formulations shows a seasonal signal to the 

error distribution throughout the year.  Both catchments have a low annual 

rainfall (c.700-850 mm/year) and a high HOSTBFI (c. 0.65-0.8).  It is suggested 

that within these catchments, antecedent rainfall and antecedent soil moisture is 

not capable of adequately representing the catchment conditions prior to storm 

arrival.  The reason for this is suspected to be due to antecedent conditions not 

being adequately characterized by the soil moisture deficit or antecedent 

rainfall.  In these catchments it is suggested that groundwater levels may have 

a significant effect on flood generation. 

In order to understand how individual catchment plots (such as those 

shown in Figures 5.11 to 5.16) relate to the wider performance of the model, the 

results for individual catchments are summarised in Table 5.4. 

 

Gauge ID Catchment Error Colour Code 

43014 East Avon 0.17 Green 

75002 Derwent 0.12 Green 

39002 Thames 0.34 Red 

43018 Allen 0.27 Orange 

85003 Falloch 0.16 Green 

72005 Lune 0.13 Green 

Table 5.4 Mean error per event values and colour codes relating the temporal 

plots in Figures 5.11 to 5.16 to the map of spatial errors in Figure 5.9.  This is 

for model 2 only, the model incorporating antecedent rainfall. 

 

5.3.3 Statistical Comparison of Model Performance 

Table 5.5 summarises the three key model formulations used within this 

chapter along with average error statistics.  They include flow estimation models 

using the storm only, a model incorporating antecedent rainfall and a model 

incorporating antecedent rainfall and the catchment moisture deficit estimates.   
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Model Run 

Mean 

Catchment 

Error 

Standard 

Deviation 

Single Day of Flood Model 0.227 0.069 

Antecedent Rainfall Model 0.179 0.043 

CMD Model 0.219 0.061 

Table 5.5   The results of using different model formulations to estimate flow.  

Error statistics are calculated across all catchments in the set (mean catchment 

error).   

 

These summary statistics again highlight that the incorporation of 

estimates of antecedent soil moisture have not had the desired effect of 

reducing the objective error.  In comparison to the model run using only 

antecedent rainfall, the run incorporating soil moisture information appears to 

show poorer results.  The general pattern of performance across the UK is the 

same, with the higher HOSTBFI catchments showing an increase in error 

between the two runs. 

Figure 5.17 shows the errors presented in Figure 5.9, as a histogram.  

This shows the statistical distribution of errors, and provides a good basis for 

assessing the performance of different methods by the shape of their 

histograms.  Simple statistics such as the mean and standard deviation, 

computed as a single value across all catchments, may not always give the 

most informative view of how different methods perform.  Mean values can stay 

the same, yet a significant change in the distribution of error can occur.  It is for 

this reason that assessing the distribution of error is worthwhile. 

 

 

 

 



Chapter 5: Event Based Flow Estimation 

 

125 

 

 

Figure 5.17 The distribution of mean errors per event across the whole 

catchment set using the three different model formulations.   

 

5.3.4 Explaining Model Performance 

From the work shown in previous sections, there is little improvement in 

the flow estimation model error statistic when using the soil moisture deficit 

model formulation.  It is possible that capturing antecedent conditions in flashy 

upland catchments is easier.  However, the CMD model does not capture the 

complex regime of flooding that occurs in groundwater based catchments, 

where groundwater (in addition to soil moisture) plays a large role in flood 

generation.  This limits the possible improvement that can be made to peak flow 

estimation with the use of the current antecedent estimates. 

Figure 5.18 shows how mean error statistics can take high values in 

catchments with a high HOSTBFI.  Figure 5.18 also illustrates the generally 

poor relationship between individual PCDs and model performance.  While it 

may be possible to estimate which catchments perform the worst, it is difficult to 

separate the rest of the catchment set based on a single indicator such as 

HOSTBFI.  This is perhaps due to the complex interplay between many 

catchment physical features and flood generation which are difficult to represent 

using PCDs. 
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Figure 5.18  The relationship between the mean error per event for model 2 

(incorporating antecedent rainfall) and the catchment type.  This plot suggests 

that the antecedent rainfall model does not adequately represent the processes 

governing flooding in higher base flow index catchments. (i.e. >0.8). 

 

Figure 5.19 shows the mean error for each catchment and the SAAR 

value for each catchment plotted against each other for all the catchments in 

the set.  As antecedent conditions become better accounted for, there is likely 

to be less structure in the error.  Nonetheless, it is clear that there is still some 

structure to the error as Figure 5.19 shows, with the higher errors found in 

catchments with lower SAAR values.  In comparison to Figure 5.18, there 

appears to be more relationship between SAAR and model error than HOSTBFI 

and model error.  This would suggest that rainfall (or catchment wetness) is 

more important than HOSTBFI in determining how well the model works.  It may 

be that HOSTBFI provides an additional complicating factor, with ‘dry’, high 

HOSTBFI catchment performing much worse than ‘wet’ high HOSTBFI 

catchments. 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70

H
O

ST
B

FI
 

Mean error per event 



Chapter 5: Event Based Flow Estimation 

 

127 

 

 

Figure 5.19 Plotting SAAR against the mean error per event value 

 

 Figure 5.20 shows the error scatter compared against catchment area.  

There is little distinguishable pattern to the error, although it is noteworthy that 

the largest errors are in the smaller catchments.  Kjeldsen (2007) notes that the 

application of the event based ReFH model in larger catchments is suspect due 

to the simplifying assumption of a single storm affecting large catchments.  The 

relatively good performance of the antecedent rainfall model in larger 

catchments does not mean that this assumption can be ignored.  However, the 

fact that larger catchment errors compare well with smaller catchments 

suggests that catchment AREA is not a significant limiting factor in determining 

model performance.  At larger catchment scales there can be complex 

interactions between sub catchments and the issue of dependency between 

these sub catchments becomes apparent. It is beyond the scope of this study to 

quantify statistical spatial dependence within the catchment set.  This area is an 

emerging topic of interest within flood frequency estimation.  Keef et al. (2009) 

present a model which quantifies the level of dependence between catchments 

for flood and rainfall events of different return periods.  They show how 

dependence levels between catchments tend to drop in areas of diverse 

catchment characteristics. 
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Figure 5.20 Plotting the results of the objective function mean error against the 

catchment AREA. 

 

 The catchment indicators used within this work are relatively crude, 

having been generated automatically through the use of large scale digital 

datasets.  One of the questions that remains a considerable research challenge 

is just how well these indicators represent catchment hydrology.  The catchment 

descriptors used in this study form the main method of classifying catchments in 

commercial flood frequency estimation software such as the FEH (Reed et al., 

1999).  However, in some work carried out to compare model behaviour with 

catchment descriptors, Oudin et al. (2010) suggested that for a significant 

number of catchments, the PCDs did not adequately capture catchment 

hydrological behaviour.  They suggest that this is due to some catchments 

having quite specific hydrological behaviour as well as underground catchment 

properties not being adequately described by the available indicators such as 

HOSTBFI.  This may go some way towards explaining why there is not a good 

relationship between catchment descriptors and model performance.  However, 

the PCDs used within this study are the only readily available descriptors of 

catchment hydrological behaviour over a wide area, and therefore were the 

most appropriate to use. 
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5.4 Discussion of the Event Based Modelling Approach and Results 

 Perrin et al. (2001) suggest that in many cases there is little to be gained 

by increasing the complexity of rainfall-runoff models.  Further to this, they also 

highlight a method whereby models should be assessed based not only on their 

performance, but also on their complexity.  The three different models detailed 

within Chapter 5 use varying levels of complexity in their estimation of peak 

flow.  This complexity is not weighted when assessing model performance, 

therefore, it is perhaps not surprising that the storm only model does not 

perform as well as the model incorporating antecedent rainfall.  The poor 

performance of the catchment moisture deficit estimation model is more 

surprising.  All three models make some simplifying assumptions and this 

discussion is devoted to a consideration of different model aspects and their 

influence on the peak flow estimation procedure. 

Estimating peak flows using only storm rainfall should perhaps be viewed 

with caution, given the large amount of literature that promotes the role of 

antecedent conditions in determining peak flow.  The main purpose for doing so 

here is to develop a consistent and reliable way of estimating a storm.  

However, in certain situations, antecedent conditions may play less of a role in 

defining the magnitude of peak flows.  In particular, highly impervious 

catchments such as urbanized catchments and potentially some small, steep, 

upland catchments may not require much in the way of antecedent conditions 

estimation.  That simple models such as the rational method are still used in 

practical hydrology suggests that in certain cases, runoff estimation can still be 

characterised in a simple way.   

While relating model performance to catchment characteristics is difficult, 

the temporal error scatter plots of Figures 5.11 to 5.16 suggest that there is 

some benefit to including antecedent rainfall within the peak flow estimation 

model.  The use of a rainfall block to estimate antecedent rainfall is a simple 

way of estimating antecedent conditions compared to more traditional methods 

such as the Antecedent Precipitation Index (API), described and used by many 

authors such as Heggen (2001).  The API usually utilizes a decay function in 

order to estimate the importance of antecedent rainfall on a particular day prior 

to storm arrival.  However, according to Heggen it is most often used to 
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highlight a qualitative hydrological condition, rather than being used for 

hydrological prediction.  This is one of the reasons why it was not employed 

within this model.  Furthermore, the estimation of the decay coefficient is 

specific to season and watershed.  This then involves a complexity which does 

not lend itself well to automation, and would not have been easy to implement 

over the catchment set. 

While it is clear that adding antecedent rainfall has some benefit, it is less 

clear as to why this is.  Antecedent conditions generally refer to the condition of 

the catchment surface prior to storm arrival.  One of the specific physical 

processes governing the state of the antecedent condition is the infiltration 

capacity.  Where there is a high soil moisture deficit the infiltration capacity is 

increased and therefore any storm rainfall that falls will be less effective.  The 

current antecedent rainfall model definition uses the 30 day antecedent rainfall 

period as the estimator of antecedent conditions (and is therefore also a proxy 

for soil moisture).  This model formulation uses a coefficient (c) that can be 

optimized along with an indicator of catchment antecedent conditions (the 30 

day rainfall) to improve the flow estimation.  Given the improvements seen in 

adding antecedent rainfall in to the flow estimation equation, it is clear that 

antecedent rainfall can go some way towards being a reasonable estimator of 

the antecedent condition.  One of the major assumptions that this model 

formulation makes is that it assumes that the coefficient can be fixed across all 

flood events, with the variation in the 30 day rainfall total representing the 

different antecedent conditions.  What this does not allow for is any other factor 

influencing the antecedent conditions.  In particular any seasonal change to soil 

moisture caused by another variable such as PET would not be represented in 

an antecedent conditions estimator that uses only rainfall. 

 The incorporation of estimates of antecedent soil moisture have 

not had the desired effect of reducing the objective error.  In comparison to the 

model run using only antecedent rainfall, the run incorporating soil moisture 

information appears to show poorer results.  The general pattern of 

performance across the UK is the same, with the drier catchments/higher 

HOSTBFI catchments showing an increase in error between the two runs. 
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 There are several possible reasons why the soil moisture estimates have 

not had the desired effect.  There are potentially two stages where errors may 

be introduced, firstly in the creation of the soil moisture time-series and 

secondly in the incorporation of those estimates in to the flow estimation.   

 This work made use of catchment properties such as PROPWET and 

SMDBAR, themselves derived from models checked against available 

measurements.  While the soil moisture models developed as part of this work 

compared well against these properties it should be emphasised that 

PROPWET and SMDBAR are averages.  Therefore, it is quite possible for this 

soil moisture model to represent averages well, but perhaps not capture the 

extremes.  This is important for flood estimation, as floods tend not be 

generated from ‘average’ conditions, they are often the result of periods where 

ground conditions are exceedingly wet and where evapotranspiration is perhaps 

low. 

 One of the suggested reasons why the soil moisture model does not 

perhaps represent the extreme conditions well is that it uses generalised PET 

estimates.  These are not likely to reflect periods when evapotranspiration was 

low in reality, and so may overestimate the amount of water removed from the 

soil.  Unfortunately, at the time this work was undertaken, there were no 

available data products representing historical PET over the space and time 

required by this study. 

 Regarding the incorporation of the CMD estimates into the flow 

estimation equation, it is likely that this is also a potential source of error.  The 

reason for this is that the flow estimation equation is flexible, and the 

coefficients can vary according to the variables over which they operate.  So 

while different formulations of the flow estimation equation can vary slightly, in 

general the coefficients can vary according to different model set-ups.  It is 

thought that the larger source of error is likely to be in the inconsistent 

estimation of the soil moisture.  In this case there is little the optimisation 

process can do to alter the results. 

 The approach taken throughout this chapter to estimate peak flow has 

been referred to as an event based model.  However, the operation, structure, 

inputs and outputs of the model bear little resemblance to other traditional event 
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based models such as the unit hydrograph.  The flow estimation model 

presented in this chapter allows for the consistent estimation of a flow record, 

rather than single events.  Similarly, it does not simulate an entire flood event, it 

only estimates the peak.  However, the work carried out within this chapter is 

still referred to as an event based model because the method is still centred 

around peak flow events, albeit multiples of them. 

 

5.5 Conclusions  

This work has provided a basis for developing a flood frequency curve 

estimation model.  The consistent transformation of rainfall to flow was outlined 

as one of the requirements of the modelling exercise, and a method for doing so 

has been tested on a variety of catchments within the UK.  Several approaches 

have been identified with differing levels of complexity in the estimation of 

antecedent conditions. 

 Three different methods of estimating peak flow records have been 

detailed; a model using only storm rainfall, a model using storm rainfall and 

antecedent rainfall and a model using storm rainfall, antecedent rainfall and an 

estimate of the catchment moisture deficit.  Through testing different storm 

estimation methods, timing has shown to be a key factor.   

The overall results show that the addition of some antecedent 

information into the flow estimation equation is beneficial.  The storm, 5 day 

rainfall and 30 day rainfall model appears to give the best results.  The reasons 

for the poor improvement shown by the catchment moisture deficit approach are 

suggested as being due to the number of simplifying assumptions that the soil 

moisture model makes.  The poor performance of the event based model when 

applied to permeable catchments is not unique to the approach developed 

within this chapter.  Kjeldsen (2007) notes the relatively poor performance of the 

ReFH method in these circumstances, with recommendations that a statistical 

approach to flood frequency estimation is used. 

Whatever model is used for peak flood estimation, there is a clear 

geographical pattern in the ability of the model to replicate peak flow estimates.  

Some of the structure in the error can be related to annual rainfall and 

HOSTBFI, whereas some of the error appears to be random.  It is also likely 
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that issues such as measurement error, the spatial variation in rainfall, routing 

time and artificial effects influence the performance of the models presented.  

However, it is difficult to account for these factors in a systematic way.  

Therefore, it is suggested that they are factors that should be borne in mind 

when assessing model performance. 

Despite the issues mentioned above, the antecedent rainfall model has 

an ability to replicate peak flows to a reasonable level, as shown by the 

temporal error plots in Section 5.3.4.  Therefore, the next stage in the research 

can use the antecedent rainfall model structure investigated here to work 

towards the generation of flood frequency curves.  This work is now presented 

in “Chapter 6: Frequency Curve Estimation” 
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 Frequency Curve Mapping Chapter 6:

6.1 Introducing the Frequency Curve Mapping Work 

 Flood Frequency curves are traditionally developed using observed data.  

Usually this data comes from gauged river records, although some studies such 

as McEwen (1987) and MacDonald et al. (2006) have successfully used 

historical data in addition to more modern instrumental sources.  More recently, 

continuous simulation has successfully been used for flood frequency 

assessment on both an individual catchment (Cameron, 2006) and national 

scale assessment (Bell et al. 2007; Kay et al. 2006a).  This usually involves the 

simulation of a flow time-series from which peak flow events can be extracted 

and used in a statistical flood frequency assessment.   

 This study takes an alternative approach.  First, by simulating a 

catchment flood record (Chapter 5) and then using this flood record in a 

traditional flood frequency assessment, as if it were a gauged record.  

Therefore, one of the key differences compared to that of continuous simulation 

methods is that only the flood record is estimated, rather than the whole flow 

time-series.   

  

6.1.1 Development of the Event Based Model For Flood Frequency Curve 

Estimation 

As described in Chapter 5, the event based model was developed to 

consistently estimate flow peaks from rainfall.  Here, the focus is on estimating 

a flood frequency curve, rather than a set of discharge estimates for individual 

events.  Given a generic flow estimation model formula such as that presented 

in Chapter 5: 

 

Qest = (b x storm) + (c x thirty day rainfall)  Equation 6.1 

 

Where b and c are the optimised coefficients and the storm and thirty day 

rainfall are growth factors, the outputs will be in the form of a set of discharges 

Qest1, Qest2, …., Qestn  where n is the number of events evaluated. 
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 These discharges can then be used in a standard statistical flood 

frequency analysis, such as that introduced in Chapter 3 in order to estimate 

specific return period magnitudes from a flood frequency curve. 

 One of the main differences with this work compared to the previous 

event based work is that, apart from developing flood frequency estimates, the 

performance of the model is assessed on its ability to reproduce the flood 

frequency curve.  In this case, the new set of discharges are assessed on the 

criterion of how well they estimate the observed flood frequency curve; here by 

calculating the RMSE of selected return period estimates between the observed 

and modelled flood frequency curve (see Equation 6.2). 

 The use of an alternative performance measure is justified by the 

objective of the new method.  Previously, the sum of the errors represented an 

appropriate measure of how well the flow estimation methodology estimated the 

magnitude of certain events.  However, to reflect the new emphasis on 

frequency curve estimation there was a need to develop a more appropriate 

measure of model performance.  Assessing the model based on it’s ability to 

replicate specific magnitude-rarity relationships better reflects the objectives of 

this piece of work as a whole. 

 

     √∑(         )
 

 
  Equation 6.2 

 

Where obsQ and modQ are the observed and modelled return period estimates 

calculated from the fitted distribution and n is the number of return period 

estimates calculated (in this case 4). 

   The RMSE calculation, however, estimates specific return period events 

based on the observed and modelled distributions and then calculates the sum 

of the root of the mean squared error (RMSE) between them.  As previously 

mentioned, estimating higher return periods robustly is likely to be difficult given 

the length of flow records available.  Therefore the RMS error is currently 

calculated as a single measure over the 2, 5 10 and 15 year return period 

estimates only.   
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The estimated flood discharges are developed as before, using the same 

objective function as in Chapter 5.  It evaluates the sum of the errors between 

observed and modelled flow values. 

 

6.1.2 Flood Frequency Curve Estimation Procedures and Error 

Assessment 

 As outlined in Chapter 3, the procedure used to estimate the flood 

frequency curve was broadly the same as that of the FEH volume 3 (Robson 

and Reed, 1999).  The flow estimates created from the rain storm and 

antecedent data were treated as peak flows in a statistical flood frequency 

estimation procedure.  As the flow estimates were known to estimate annual 

maxima (as they were estimated based on the date of the AM flood) they could 

be used directly within the flood frequency estimation procedure already 

outlined.   

 The flow estimation models developed flow estimates as growth factors, 

therefore to treat them as peak flows they required scaling by the catchment 

QMED value before any further work was carried out.  The procedure for the 

estimation of a flood frequency curve is summarised by the flowchart in 

Appendix D.1. 

 

6.2 Model Formulations and Frequency Curve Estimates 

 Initially two different model formulations were trialled with a view to 

establishing a single model for further use.  The different model formulations 

used rainfall and PET as inputs to different model setups, with the use of two 

different distributions for flood frequency assessment also considered.  The 

earlier work that considered the rainfall blocks was also helpful in developing 

these model formulations. 

 The models can be clearly split- one using only antecedent rainfall and 

one using antecedent rainfall and potential evapotranspiration (PET) data.  As 

PET data has not been previously introduced, this model is explained in slightly 

more detail in Section 6.2.2.   
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6.2.1 Antecedent Rainfall Model 

A rainfall only model has been used previously in Chapter 5, and so 

requires less introduction.  The antecedent rainfall model used here takes a 

similar structure to that identified in Chapter 5.  There are two coefficients for 

optimisation.  One coefficient (b) weights the storm estimate and one (c) 

weights the antecedent estimate.  The notation is retained from Chapter 5 in 

order to avoid confusion with the earlier event based work that used a single 

coefficient (a) to weight a storm only. 

Therefore the model formulation to estimate flow is: 

 

Q(est) = b x storm + c x 30 day rainfall    Equation 6.3 

 

This model is optimised using the same routine as described in Chapter 5, 

leaving each catchment with a pair of coefficients and a set of peak flows.  From 

this, an appropriate distribution can be fitted and the flood frequency curve can 

be estimated. 

 

6.2.2 Antecedent Rainfall and PET Model 

  In Chapter 5, attempts to use soil moisture were not justified as there 

was little return on the considerable computational and model complexity of 

adding a soil moisture estimation component.  However, justification for the new 

approach outlined here is that historically derived estimates of PET on a 5 km 

grid for the UK were made available, and as such it was felt that these might 

represent a significant improvement over the generalised estimates used in the 

earlier work.  The full complexity of a soil moisture model was still not felt to be 

worthwhile due to the numerous assumptions that need to be made; however, 

potential evapotranspiration on its own may be able to provide some significant 

benefits to the modelling of the flood frequency curve. 

 As a single variable, PET does not directly affect runoff.  However, over a 

longer period of time, potential evapotranspiration can cause considerable 

differences in soil moisture deficits.  These soil moisture deficits then have the 

potential to moderate the flood behaviour of a catchment.  The interplay 
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between rainfall and PET is a subtle, but important, process in flood generation 

and this is why some time is given to considering its role here. 

 The Potential Evapotranspiration data were calculated on a 5km grid 

over the UK and stored in a SQL database.  Using gridded, observed 

temperature, humidity and windspeed data, the Penman-Montieth equation was 

used for the calculation of PET (Leathard, unpublished).  The gridded variables 

were available for the time period covering 1961 to 2002.  The potential benefit 

of using these PET data is felt to outweigh the negative aspect of using a 

shorter record (as rainfall data start in 1958). 

As with previous work, the relevant catchment boundaries were defined 

in ArcMap, then the relevant 5 km grid cells from within these catchments were 

extracted from the SQL database.  The catchment averaged values were then 

simply calculated using an arithmetic average of all grid squares within the 

catchment boundary.  These time-series could then be used within the flow 

estimation model. 

 PET tends to affect soil moisture over longer timescales than rainfall.  

Rainfall can wet up a catchment in a matter of hours whereas PET tends to be 

significant only over weeks and months.  As with rainfall, the PET values are 

simply estimates and so their incorporation into the flow estimation model still 

requires some flexibility in the form of a modifying coefficient. 

 For these reasons a longer block of PET was used, when compared to 

that used to describe the antecedent rainfall conditions in the previously 

presented rainfall-only model.  An index of the thirty days prior to the flow/storm 

event was used.  This sum of the thirty day PET prior to the storm was then 

divided by the median annual maximum PET for the whole of the UK.  A single 

standardisation value has the benefit of slightly modifying the PET index 

dependent upon location of an individual catchment. 

 For example, the South of the UK is generally warmer and can expect 

higher PET values in Summer and it may be that PET is more important in this 

location for the flood frequency curve compared to an area further north.  By 

using a single standardisation figure, the PET index can better reflect the 

importance of the PET value to an individual catchment. 
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 The second reason for using an index of PET, rather than the raw values 

is that the range of values taken by the index fits in better with the other 

variables in the flow estimation equation.  This therefore allows the use of the 

PET indice in the flow equation. 

 

     (         )  (    (                                  ) 

Equation 6.4 

 

 In terms of incorporation of the PET index, a similar approach was taken 

to that of the soil moisture modelling approach tried earlier.  A model 

formulation using two coefficients (See Equation 6.4) was used.  One 

coefficient, b, modifies the storm rainfall component of the model, as per usual.  

The second coefficient, c, modifies a block of antecedent rainfall minus the PET 

index, created to represent catchment antecedent conditions.  This block uses a 

growth factor value of the 30 day rainfall modified by subtracting the thirty day 

PET index.  This allows for a direct comparison between the frequency curve 

estimation model using only antecedent rainfall and the frequency curve 

estimation model using antecedent rainfall and antecedent PET. 

 

6.2.3 Model implementation  

The process for the estimation of the flood frequency curve has already 

been described in previous sections, however, the full method is re-iterated 

here for completeness.   

The catchment peak flow record is estimated using one of the two model 

flow formulations shown in Equations 6.3 and 6.4  This peak flow record is then 

treated as the catchment AMAX record and an appropriate statistical flood 

frequency analysis is then employed.  This involves the estimation of an 

extreme value distributions parameters through an l-moments routine.  This 

then allows a flood frequency curve to be plotted.  The observed flood 

frequency curve can also be treated in the same way to allow for a comparison 

between modelled and observed flood frequency curves. 
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Error assessment uses the RMSE as shown in Equation 6.2.  The return 

period estimates are calculated using equation 6.5 shown below (for the 

Gumbel distribution) before being used within the RMSE calculation. 

 

      (     (    ( ))     Equation 6.5 

 

 Where QT is the estimated flow magnitude at the specific return period 

(T).  ξ is the gumbel distribution location and α is the scale.  f is the non-

exceedance probability.  For the RMSE calculations, the return periods for the 

2, 5, 10 and 15 year return period events were calculated, the non exceedance 

probabilities for these events are 0.5, 0.8, 0.9 and 0.93 (approx.). 

This process allows for the production of graphical plots for visual 

assessment of the estimation of the flood frequency curve as well as a 

numerical assessment using the RMSE value.  The process is summarised 

diagrammatically in Appendix D.1. 

 

6.2.4 Spatial Assessment of Model Performance 

The distribution of the RMSE values for the rainfall only model across the 

UK can be seen in Figure 6.5 which uses a similar colour coding scheme 

developed during the earlier work in Chapter 5.  This uses the colours green, 

blue, orange, red and black to indicate decreasing model performance.  The 

categories used in Chapter 6 are different to previous work as they use the 

RMSE value for error analysis.  The specific colours and RMSE values can be 

found in the key of Figure 6.5.  Summary statistics from each model run can be 

found in Table 6.2. 

 Results presented here use the Gumbel distribution when calculating the 

RMS errors, as the Gumbel distribution is recommended for use with UK annual 

maximum data (Robson and Reed, 1999). 

 The results show a similar geographical distribution to the event 

estimation work presented in Chapter 5 (see Figure 5.9 for comparison).  

Southern areas contain the catchments with the highest RMSE values while 

western and northern areas contain catchments with lower RMSE values. 



Chapter 6: Frequency Curve Mapping 

 

141 

 

In order to assess how these mapped values relate to return period 

estimation performance, Section 6.3.3 now looks at some specific examples of 

modelled and observed flood frequency curves and explains how these relate to 

the colour coding scheme shown in Figure 6.5. 
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Figure 6.1  The spatial distribution of RMS error for UK catchments as 

calculated for the rainfall only model using a Gumbel fit for the flood frequency 

estimation. 
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Figure 6.2  The spatial distribution of the RMS error.  Model run includes PET 

as a variable and RMS errors are calculated from the Gumbel distribution. 
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Figure 6.2 shows a map of the rainfall and PET model spatial 

performance for individual UK catchments using the same colour classification 

scheme as the model using only rainfall.  The distribution of results is similar to 

that of the rainfall only model (see Figure 6.1 for comparison). 

 

6.2.5 Performance By Catchment 

Figure 6.3a shows a good example of a model reproduction of a flood 

frequency curve by the rainfall only model.  In this plot, the solid red line 

represents a flood frequency curve estimated from observed flood peak data (in 

this case the annual maximum flood series).  The red circles are the empirical 

data.  The dashed blue line represents the modelled flood frequency curve, 

which has been fitted to the model estimates of annual maximum data.  This 

colour coding of flood frequency plots has been adopted throughout the rest of 

this thesis. 

 This particular gauge has an RMSE value of 0.037 and according to the 

coloured classification scheme shown in Figure 6.5; this would give it a green 

coding.  The RMSE value is calculated over the 2,5,10 and 15 year return 

period estimates.  Therefore, if the observed and modelled flood frequency 

curves show significant divergence above the 15 year return period, this will not 

be reflected in the RMSE value.  The reason for this is that given the length of 

flow and rainfall records available for use, the observed flood frequency curve is 

still likely to be sensitive to outlier events above the 15 year return period 

estimate and so comparing it to the modelled curve is unrealistic above this 

level. 
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a b 

Figure 6.3   Flood frequency curve estimation for the Almond at 

Almondbank (located in south-east Scotland).  (a) shows the modelled flood 

frequency curve estimate from the antecedent rainfall model, (b) shows the 

modelled flood frequency curve estimate from the antecedent rainfall and 

PET model. 

 

 In the case of the Almond, the modelled flood frequency curve is able to 

estimate the observed flood frequency curve reasonably well, however, there is 

some divergence at higher return periods.  This can be explained by the way 

the model is fitted using only return periods up to and including 15 years. To 

some extent the use of the Gumbel distribution resolves this problem. 

  

a b 

Figure 6.4 Blue category.  Catchment is the Canons Brook, located in SE 

England.  (a) shows the antecedent rainfall model estimates of the flood 

frequency curve, (b) shows the antecedent rainfall and PET model estimates.   
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a b 

Figure 6.5 Orange category.  Catchment is the Ouse, located in the south of 

England. 

  

a b 

Figure 6.6  Red category.  Catchment is the Tywi, located in SW Wales. 
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a b 

Figure 6.7 Black category.  Catchment is the Camel, located in SW England. 

 

 Figures 6.3 through to 6.7 show how the RMSE performance measure 

relates the estimated flood frequency curve to the observed flood frequency 

curve and the maps of spatial performance in Figures 6.1 and 5.2.  The flood 

frequency plots give an example of a catchment flood frequency curve 

associated with a particular colour classification on the map of spatial 

performance.  They are ordered by decreasing performance in terms of RMSE 

(or green through to black).  In general the plots show an ever widening 

disparity between the observed and modelled flood frequency curves as the 

RSME value increases.  The RMSE values and the location of the stations 

associated with each of the plots can be found in Table 6.1. 
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Gauge Station RMSE 

(Gumbel) 

Colour Number of Catchments 

in Category 

15013 Almond 0.037 Green 197 

38007 Canons Brook 0.170 Blue 123 

41005 Ouse 0.173 Orange 67 

60010 Tywi 0.274 Red 32 

49001 Camel 0.603 Black 12 

Table 6.1 Summary of model performance for Figures 6.6 to 6.10 along with an 

overall categorisation of the performance measure.  431 Catchments were used 

in the model run, their performance can be judged by assessing the number of 

catchments in each colour category on the right hand side of the table. 

 

 In terms of overall model performance, almost three quarters of the 

catchments are contained in the first two categories (green and blue – RMSE of 

less than 0.17).  The choice of categorisation evidently affects how the results 

are perceived.  While the worst category (black) contains only twelve stations it 

covers a large range (RMSE of 0.443 to 0.734) when compared to the blue 

category (RMSE of 0.092 to 0.170).  Using the categorisation in this way 

suggests that there are a small subset of catchments that tend to perform very 

poorly compared to the majority when using the RMSE as an indicator of model 

performance. 

 From the map of the spatial distribution of the error it can be seen that 

most of the worst performing catchments tend to be located in the South and 

East of the country, with a smaller number located in the South-West.  These 

values are revealing, as when they are compared to the green category, there 

are some significant differences.  The green category of catchments has a 

group mean Base Flow Index (HOSTBFI) of 0.47 and group mean Annual 

Rainfall (SAAR) value of 1155 mm and group mean PROPWET value of 0.51.  

In contrast, the worst performing group of catchments has a mean HOSTBFI 

value of 0.62, a mean SAAR value of 859 mm and a mean PROPWET value of 

0.35. 
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These summary catchment statistics suggest that to some extent, that 

the worst performing catchments tend to be groundwater based and are often 

reasonably dry throughout the year (as evidenced by the PROPWET and SAAR 

values).  Therefore, similar to the event based model, it is likely that it is the 

models handling of the antecedent condition which is causing the poor 

performance in flood frequency curve estimation. 

 

6.2.6 GEV vs. Gumbel Distribution 

 As has been previously discussed, the choice of statistical distribution for 

use in flood frequency estimation is not straightforward.  In some cases, where 

record lengths are reasonably short, when using the GEV distribution, the 

shape parameter has the tendency to take some rather extreme values which 

are unlikely to represent a real-world situation. 

  

a b 

  

c d 

Figure 6.8 Two examples of GEV distribution fits (plots a and c) and Gumbel 

fits (plots b and d). 
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This issue is highlighted in Figure 6.8 (a and c) where modelled flood frequency 

curves using the GEV distribution, while having reasonably good RMS errors, 

evidently have problems with the shape of the flood frequency curve, most 

notably at higher return periods.  This is perhaps due to the shape parameter 

being unbounded in the GEV fitting procedure, although determining valid 

bounds for this parameter is difficult (as this may depend on catchment type as 

well as the dominant rainfall type in the catchment – convective or frontal).  It is 

likely that using a statistical distribution with a fixed shape parameter (i.e. the 

Gumbel) will partly alleviate these problems.   

 It is for this reason that the Gumbel distribution was adopted for use in 

this study across all catchments.  For the rest of this thesis, all reference to 

RMS errors and flood frequency plots will use the Gumbel distribution as their 

basis. 

 

6.2.7 Comparing the Two Frequency Curve Model Formulations 

 Summary statistics between the two different model runs are presented 

in Table 6.1.  These statistics are computed across the whole catchment set.  

Figure 6.9 shows the distribution of error for the two model runs. 

 

Model Run Mean RMS Error St. Dev. RMS Error 

Rainfall 0.136 0.116 

Rainfall and PET 0.128 0.106 

Table 6.2 RMSE Summary Statistics from the two different model runs. 
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Figure 6.9 The distribution of the RMS error for two different model 

formulations.  Blue represents the rain only mode, red represents the model 

including PET 

 

 Along with maps of the spatial distribution of error, these results suggest 

that adding antecedent PET into the estimation of the flood frequency curve 

does not significantly alter the model performance over the larger catchment 

set.  However, unlike the soil moisture modelling approach of Chapter 5, model 

performance does not significantly decrease when the PET estimates are used.  

One of the main justifications for using PET as an antecedent indicator is that it 

may change under future conditions, and so must be accounted for in current 

flow estimation in order to be included in a future case.  This work does not test 

how influential the PET is in the model formulation and this is important if it is to 

be used as an antecedent indicator in the future.  Therefore further work is 

carried out to test the sensitivity of the model to changes in the input climate in 

order to further understand how the models operate.  This work is reported on in 

Section 6.5. 
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6.3 Linking Coefficients to Catchment Type 

Several authors have considered the problem of linking catchment model 

parameters to catchment characteristics.  The spatially generalised PDM model 

of Kay et al. (2006a) links the PDM model parameters to the FEH catchment 

descriptor set through regression equations.  Model performance showed mixed 

results, with groundwater based catchment performing worse than their surface 

water counterparts (Kay et al. 2006a).  However, Oudin et al. (2010) suggest 

that physically similar catchments (as defined by simple catchment descriptors) 

may not be hydrologically similar.  This then poses a problem for parameter 

estimation using simple catchment descriptors. 

While it may be beyond the scope of this work to develop a 

comprehensive framework for model coefficient estimation from catchment 

descriptors, the simplistic structure of the frequency curve model allows for an 

investigation of the coefficients, particularly whether they show any pattern with 

regards to the catchment type. 

To this end, analysis considered whether links could be made between 

the coefficients and the catchment type.  The catchments were subset into 

groups based on catchment descriptors such as AREA (threshold 500 km2), 

SAAR (threshold 1100 mm), PROPWET (threshold 0.47) and HOSTBFI 

(threshold 0.49) in order to see if their flood frequency estimation model 

coefficients showed any tendency to group based on these categories.  The 

thresholds for splitting use the median value of the catchment descriptor as 

calculated across the whole catchment set. 

 Figure 6.10 shows these results.  While no significant grouping occurs, it 

is clear that wetter catchments tend to take a much narrower range of values 

compared to dry catchments (as shown by the considerable scatter of 

coefficient values for dry catchments compared to wet).  The plots split by 

SAAR and PROPWET both appear to show this.  HOSTBFI shows little 

grouping.  AREA perhaps shows some, but not enough for any justification to 

allow the estimation of the coefficient based upon the AREA value.     
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a b 

  

c d 

Figure 6.10 Scatter plots of the b and c coefficients subset into groups based 

on pcds.  From top left clockwise, split by (a) SAAR, (b) HOSTBFI, (c) 

PROPWET and (d) AREA. 

 

As previously explained, it may not be valid to use the optimised model 

coefficients under a future climate.  Therefore part of this work looking at the 

coefficient values was developed in order to understand how model 

performance may be impacted by using estimated coefficients for the future 

case.  While coefficients cannot be estimated through regression equations to 

the PCDs (as there is too poor a relationship for this to work), it is possible to 

narrow the range that coefficients could take for a specific type of catchment 

given some basic information on its physical and climatological conditions. 
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6.4 Poorly Performing Catchments 

6.4.1 Case study of a poorly performing catchment 

 It has previously been explained that the model performs poorly in 

reproducing the flood frequency curve for high base flow index catchments 

when modelled with either of the model formulations presented in this chapter.  

Here, a case study of one such catchment is provided to try and explain why 

this is the case.  This also helps understand how the models work and the 

situations in which they can be applied.  For clarity, the model formulation 

incorporating antecedent rainfall and antecedent PET is used. 

 The catchment which will be presented is the Slea @ Leasingham Mill.  It 

is a reasonably small catchment located in south-east England, covering an 

area of around 50 km2, has a SAAR of 601 mm, a PROPWET value of 0.23 and 

a BFIHOST value of 0.809.  From the Hi-Flows gauging notes it suggests that 

this is a predominantly limestone catchment, which does not respond to rainfall. 

 Figure 6.11 presents the original fit.  There is a clear underestimation in 

the modelled flood frequency curve.  It is suggested that the reason for this is 

because storm rainfall is not the primary mechanism for generating a flood flow.  

Therefore, because the model has little knowledge of the antecedent channel 

water level it cannot estimate peak flows from rainfall storms alone.   

 

Figure 6.11 The observed and modelled flood frequency curve for the Slea 

using optimised coefficients for the modelled version. 

 



Chapter 6: Frequency Curve Mapping 

 

155 

 

Therefore, the current model structure for this catchment evidently neglects 

some aspect of the catchments flood generation process.  Further evidence for 

this catchments behaviour can be found in Figure 6.12, a histogram of the 

rainfall totals associated with the annual maximum flow events used in fitting the 

flood frequency curve. 

  

a b 

Figure 6.12 A Histogram of storm totals (a) and five day antecedent rainfall 

totals (b) associated with the annual maximum flow events for the Slea. 

 

Out of the 26 annual maximum flow events, over half had a storm total of 

less than 5 mm.  Similarly, over half had a five day rainfall total of less than 10 

mm. 

 It is suggested that due to the evidence presented above, as well as the 

information provided in the station gauging notes, that catchments’ with 

properties similar to the Slea are inherently unsuited to the modelling method 

developed here.  In particular, because of their hydrogeology it is likely that 

groundwater levels play a large part in flooding in these catchments.  With 

regards to hydrogeology, catchment boundaries often do not follow surface 

watershed boundaries, and this makes the process of modelling them difficult.  

Regional groundwater levels are often responsible for flooding in these types of 

catchment, combined with occasional preferential flow along lines of weakness 

(Finch et al., 2004).  Furthermore, these catchments are also dry, as they 

experience relatively low annual rainfall compared to the rest of the UK.  This in 
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turn makes them more susceptible to experiencing a wide range of antecedent 

conditions which are harder to model. 

 What this means for the method presented here, is that where 

catchments are unresponsive to rainfall, and where antecedent conditions 

estimation is challenging, a method which uses storm and antecedent 

rainfall/PET will inevitably fail to work.  Discussion on how these catchments 

could be modelled in a similar way, but using different information is included in 

the discussion and conclusions in Chapter 8.   

 

6.4.2 Identifying Poorly Performing Catchments 

 The case of the Slea shows how the current frequency curve estimation 

model structure cannot deal with flooding generated from sources other than 

extreme rainfall.  The model coefficients are essentially a function of both the 

catchment physical characteristics and the hydroclimate of the catchment in 

question.  Therefore, it is important to test if a catchment’s estimated 

coefficients can still be used if its hydroclimate changes in the future.  In this 

section, the FEH catchment descriptor PROPWET is used to identify poorly 

performing catchments.  Further to this, a method whereby PROPWET can be 

estimated for the future is also introduced, therefore allowing for application of 

the model to future climates. 

 Previous work has suggested that there are limits to how well catchment 

characteristics can be related to model performance.  However, as Figure 6.13 

shows, PROPWET can be used in this case to highlight the worst performing 

catchments.  Linear relationships between catchment characteristics and model 

performance are perhaps optimistic, as in reality there is a considerable 

interaction between catchment physical characteristics, resulting in a degree of 

complexity not suitably represented by a single characteristic. 
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Figure 6.13 Comparing Model RMS Error and PROPWET 

 

 Figure 6.13 uses the FEH PROPWET index to highlight catchments that 

perform particularly badly.  In this case, catchments with a low PROPWET 

value tend to show the highest errors, although for any particular low value of 

PROPWET (i.e. <0.4), the model error could span a wide range.  In practice this 

could lead to discarding some catchments where the model performs well, 

where they cannot be identified as such. 

 The identification of this subset of poorly performing catchments is 

useful, as it provides a basis for estimating whether or not a catchment can be 

considered suitable for frequency curve estimation.  Under a future climate, the 

PROPWET index may change; therefore there is a requirement for the 

estimation of this index under a future climate.  In this way, the poorly 

performing catchments can be identified. 

 PROPWET is the proportion of the period 1961-1990 where the 

catchment soil moisture deficit was below 6 mm (Bayliss, 1999).  Therefore wet 

catchments tend to have high PROPWET values and dry catchments tend to 

have low PROPWET values.  For the future case, PROPWET has been 

estimated through regression, using the current relationship between annual 

PET and SAAR.  Figure 6.14 compares the estimated PROPWET through 

regression with the FEH values. 
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Figure 6.14 Comparing FEH and estimated PROPWET values.   

 

The regression equation for the estimation of PROPWET is: 

 

PROPWET = 1.07 – 0.00144 PET + 0.000148 SAAR  Equation 6.6 

 

 The regression has an R-squared value of 0.83.  This equation only uses 

PET and SAAR as they are readily available estimates of future climate.  The 

comparison of estimated and observed PROPWET values shows a reasonable 

agreement, suitable for the purposes outlined at the beginning of this section.  

This allows the estimation of a catchment’s PROPWET index for now or a future 

climate, given some information on its climate. 

 

6.4.3 Catchments which are unsuited to modelling 

This leads on to a consideration of defining the catchments for which the 

flood frequency curve cannot be reliably estimated using the models presented 

in this thesis.  The catchment descriptor which is most apt with regards to the 

work presented above is the PROPWET characteristic.  The PROPWET value 

represents the average proportion of time during which the catchments soil 

moisture deficit is less than 6 mm.  Therefore the higher the value, the wetter 

the catchment generally is.  Catchments whose flow regimes tend to be 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
R

O
P

W
ET

 f
ro

m
 R

e
gr

e
ss

io
n

 

PROPWET from FEH 



Chapter 6: Frequency Curve Mapping 

 

159 

 

dominated by groundwater inputs are likely to show low PROPWET values, due 

to their permeability (as seen in Figure 6.15).  However, dry catchments (those 

with a low PROPWET value) do not always show high HOSTBFI values.  The 

relationship shown in Figure 6.15 is reflected in the maps of catchment 

properties in Appendix A.  HOSTBFI as an indicator of the groundwater 

component in a catchment, is not singly responsible for determining the 

wetness/dryness of a catchment.  The east-west rainfall gradient across the 

country combined with the spatial variation in PET is also likely to play a part. 

 

 

Figure 6.15 Comparing Catchment HOSTBFI and PROPWET values 

 

  It is not particularly easy to define at what point a catchments PROPWET 

value is likely to make it unsuited to modelling; however, it is suggested that a 

value of 0.45 be used as an initial threshold.  Clearly this is a somewhat 

arbitrary approach; however, Figure 6.13 provides some basis for the choice of 

threshold.  Were this flood frequency curve estimation method developed 

further it is likely that a threshold could be set in order to achieve a minimum 

level of model performance.  This would evidently depend on the end user and 

application. 

 Figure 6.16 shows the distribution of catchments after those with low 

PROPWET values are removed. 
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Figure 6.16 Catchments with PROPWET values of 0.45 or above which can be 

modelled using the approach contained within this thesis. 
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 Overall, the removal of catchments with low PROPWET values reduces 

the size of the catchment set available for analysis by 84, leaving a set of 347 

catchments.  As Figure 6.16 highlights, the most noticeable gap in geographical 

catchment distribution exists in the south of England.   

 Because certain types of catchments are not suited to modelling using 

the method presented in this thesis, these catchments will not be used in further 

work.  However, consideration will be given to how it may be possible to work 

with other catchment types in the discussion. 

 

6.4.4 Case Study Catchments 

 In order to illustrate some results, six catchments have been selected as 

case studies.  These catchments are used throughout the rest of this chapter, 

not only to illustrate various tests of the model, but also as examples of future 

applications.  This smaller set of catchments is used primarily because of the 

time required to generate the synthetic climate records.  These catchments are 

listed in Table 6.3.  A map detailing the location of each catchment can be 

found in Appendix E.1. 

Station 

ID 

Length of 

Record 

(yrs) 

Station 

Name 

AREA 

 (km2) 

HOSTBFI SAAR  

(mm) 

PROPWET 1 Day 

RMED 

16003 43 Ruchill 

Water 98.58 0.428 1901 0.59 52.5 

25001 47 Tees 815.69 0.355 1140 0.58 40 

25005 46 Leven 193.57 0.381 726 0.34 33.3 

53005 41 Midford 

Brook 147.4 0.625 965 0.36 37.9 

71001 43 Ribble 1146.1 0.371 1350 0.56 43.9 

84003 47 Clyde 1093.2 0.45 1165 0.6 37.5 

Table 6.3 A list of the catchments used as case studies in this chapter and 

some of their key attributes. 
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 Catchments were chosen primarily based upon their record length, with 

the selected catchments having the longest flow records out of the larger 

catchment set.  Within the small group of case study catchments detailed in 

Table 7.1 there is a mix of both catchment size and SAAR.  One catchment has 

a slightly higher HOSTBFI value than the rest, however, catchments with higher 

HOSTBFI values were generally disregarded. 

 

6.5 Model Sensitivity 

6.5.1 Model Sensitivity to Input Data 

 Hashemi et al. (2000) highlighted the role of soil moisture in modifying 

the flood frequency curve.  Elsewhere in this thesis, the importance of 

antecedent conditions has already been referred to.  Therefore, a consideration 

of model sensitivity to antecedent conditions and storm magnitude is 

informative.  This provides a useful check on the model concept and allows for 

an assessment of how well the modelling theory is reflected in practice.  As has 

been previously explained, the antecedent estimates used here are reasonably 

crude – certainly no recourse has been made to soil moisture estimates in the 

case of the flood frequency curve estimation model.  However, if the model 

setup is more sensitive to small changes in the antecedent conditions than to 

the storm rainfall it may be a problem, particularly as the antecedent estimates 

in this case are reasonably rough.  Here, consideration is given to how sensitive 

the model is to PET, as well as the antecedent rainfall and storm rainfall.  In 

general it would be expected that the current model setup is most sensitive to 

the storm rainfall and that any change in this variable would have a more 

significant effect on the flood frequency curve than changes to the antecedent 

PET or rainfall inputs. 

  The sensitivity testing of input data modifies the three variables 

(storm rainfall, antecedent rainfall and antecedent PET) in five percent 

increments from minus thirty percent to plus thirty percent.  Only one variable is 

modified at a time.  For each percentage modification of the input climate, the 

frequency curve estimation model is run as per normal, using optimised 

coefficients.  The flow estimation equation used is the same as that detailed 

earlier in Chapter 6 and can be seen in Equation 6.7.  From each run, the 
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QMED value is calculated from the estimated flood frequency curve and then 

plotted against the modification percentage of the input variable.  These plots 

are presented in Figure 6.17(a-f).   

 

Qest = b x storm + c x (30 day rainfall – 30 day PET)  Equation 6.7 

 

  

a b 

  

c d 
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e f 

Figure 6.17.  Plots indicating model sensitivity for the six case-study 

catchments.  The y-axis shows the estimated QMED, the x-axis shows the 

percentage change in the model input variable. 

 

 The model appears most sensitive to changes in the storm rainfall, 

followed by antecedent rainfall and then PET.  This is to be expected as it is 

partly a reflection on the model coefficients, where the coefficient applied to the 

storm tends to be higher than that applied to the antecedent block (average 

storm coefficient is 0.867 compared to 0.67 on the antecedent block).  This is 

partly a reflection of reality in surface water driven catchments where 

antecedent conditions may modify a flood frequency curve, but it is principally 

determined through the storm rainfall amount, intensity and duration.   

Station 25005 (Tees) is an exception to this; it is more sensitive to the 

antecedent rainfall (see Figure 6.16 (c)).  It is located in the East of England and 

has reasonably low rainfall (SAAR of around 726 mm).  It might be expected 

that in certain catchments, the antecedent conditions play a more important role 

than in others and therefore during model optimisation the objective function 

increases the weight on the antecedent conditions more than on the storm 

rainfall.  However, the optimisation function evidently has no direct knowledge 

of catchment physical characteristics.  The method assumes that catchment 

physical characteristics will influence the rainfall-flow transformation and 

therefore influence the optimised coefficients.  It is also possible that in some 
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circumstances the coefficients reached their final values because their 

respective storm and antecedent estimate sets took specific values which made 

it easier to minimise the objective function by increasing the weight on the 

antecedent condition coefficient.  This, in itself, does not mean that antecedent 

conditions are more important in a catchment, it is merely the result of the 

mathematics involved in optimisation.  This problem is considered later in the 

thesis where the optimised coefficients are tested in order to see how stable 

they are. 

In terms of future changes to flood frequency curves, a simple change in 

one variable would produce a change in the flood frequency curve.  However, 

changes to future climate may be more complex, possibly involving changing 

seasonality of PET and rainfall as well as changes to magnitudes of all three 

variables used as model inputs.  In this case, the corresponding change in the 

flood frequency curve will not be so easy to determine and it is because of this 

that a model, such as the one outlined in this thesis can help to provide 

predictions of future behaviour.  Before the model can be used for future 

projections, it is necessary to look at the assumptions built into the modelling 

structure as well as the model performance.  These are now considered in more 

detail.  

 

6.5.2 Model Sensitivity to Record Length 

 The current model setup uses the derived coefficients (b and c) from the 

optimisation process for use in the predictive mode of the model.  Gaining an 

understanding of how reliable these coefficients are is important, as their 

usefulness may be limited if they vary considerably between different model 

runs when using the same input data.  Similarly, it is also useful to know what 

length of flow record is required in order for the coefficients to be considered 

stable.   

To test the robustness of coefficient estimation, a bootstrap assessment 

of the coefficient estimation was undertaken.  Bootstrapping is a re-sampling 

method that calculates the accuracy of a value when estimated from a specific 

set of data.  Four catchments with long flow records were selected for the 

bootstrap assessment.  For five different record lengths (5,10,15,20 and 25 
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years) the assessment estimated the optimised model coefficients from 100 

bootstrap samples of AMAX flow events.  The flow estimation model used PET 

and antecedent rainfall for coefficient estimation; however, the choice of model 

does not make a significant impact upon the results; rather it is the length of the 

record which determines how robust the coefficient is.  These results are 

equally applicable to the flow estimation model using only rainfall as its 

antecedent indicator.  From the coefficient estimates, a standard error was 

calculated (as per Equation 6.8).  The results are shown in Figure 6.18. 

 

    
 

√ 
    Equation 6.8 

 

 Where S represents the sample standard deviation and n represents the 

number of observations in the sample.  Based on the results shown in Figure 

6.18, a record length of less than fifteen years should be considered unsuitable 

for use in coefficient estimation using the model developed in this thesis.  For 

the four stations shown in Figure 6.18 a station record that is less than fifteen 

years tends to show a steady increase in the error as the record length is 

shortened.  Record lengths greater than 15 years show a much more gentle 

increase in error up to this point.  However, the error increases for all 

catchments as the record length is shortened. 

This assessment demonstrates that the minimum record length suitable 

for use within the coefficient optimisation method demonstrated in this thesis is 

15 years.  However, it should also be stressed that, with regards to a flood 

frequency assessment, a record length of fifteen years is generally considered 

to be short, as only low return period flows can be estimated with any 

confidence 
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Figure 6.18 Relationship between the length of record over which the 

coefficients were estimated and the standard error estimate for each catchment.  

The standard error calculation was carried out for four catchments, identified by 

their gauge ID’s. 

 

6.6 Discussion  

6.6.1 Assessing Performance 

 The spatial distribution of results as shown in Figures 6.1 and 6.2 are 

similar to those of the event based model shown in Chapter 5.  The distribution 

of results is also similar to other national scale modelling work such as the g2g 

modelling of Bell et al. (2007a).  The g2g model performs best on catchments 

whose hydrological regime is dominated by topography and so it performs 

relatively poorly on catchments which have a strong groundwater component.  

This seems to suggest that modelling groundwater based catchments requires 

an alternative approach to both the frequency curve mapping work carried out 

here as well as the g2g method.   

 Section 6.4.2 highlighted how the catchment descriptor PROPWET could 

be used to identify poorly performing catchments.  PROPWET is not a direct 

indicator of the groundwater component present in a catchment, it is a more 

general description of catchment wetness.  On its own, HOSTBFI does not 

show any particularly good relationship with model performance, yet PROPWET 

can clearly identify the poorly performing catchments.  It may be that certain 
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high HOSTBFI catchments do not suffer so much from low groundwater levels 

and so the frequency curve estimation model performs better in these 

catchments.  Yet other high HOSTBFI catchments do not perform well using 

any frequency curve estimation method.  From the distribution of high HOSTBFI 

catchments as shown in Appendix A.2, it is the eastern catchments which show 

higher errors.  This may be because of their tendency to experience lower 

rainfall and higher PET than their western counterparts.  This would tend to 

agree with work showing poorer model performance in the lower PROPWET 

catchments.  This was one of the reasons why PROPWET was chosen as the 

indicator which could be used to identify poorly performing catchments.  The 

second reason is that as shown, it can be reasonably estimated from simple 

climate data, allowing for its use in future projection studies.  Estimating 

HOSTBFI may require a more complex approach and on its own it does not 

particularly highlight the poorly performing catchments. 

 

6.6.2 Antecedent Conditions Estimation 

 Chapter 5 showed how the complexity of the catchment moisture deficit 

model did not improve flow estimation compared to the model using only 

antecedent rainfall.  Therefore, the work presented in this chapter concerning 

frequency curve mapping made no use of the catchment moisture deficit 

estimates.  It did however introduce the use of a new source of PET data.  

Justification for the testing of a frequency curve model which includes PET lies 

in both the source of the data as well as the future requirements of the model.  

The PET data were calculated from observed, gridded datasets and so it likely 

that these PET estimates are more locally representative of actual conditions 

than the generalised PET estimates used in Chapter 5.  These calculated PET 

estimates from gridded data were only available later on during the research 

project which is why they were never used in the original soil moisture 

estimation model.  Nevertheless, they are still reasonably rough estimates and 

do not estimate actual evapotranspiration.   

 Irrespective of the impact that PET has on the model, accounting for 

antecedent conditions is clearly important.  Future climate changes may be 

complex, involving changing seasonality of both rainfall and PET.  If the flood 
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frequency curve estimation model cannot account for these future changes then 

any future predictions of change are likely to be flawed.  While antecedent PET 

does not significantly improve the performance measures of the frequency 

curve estimation model, the sensitivity testing work has shown that the models 

are sensitive to it as an input variable. 

To some extent antecedent conditions have already been included within 

the modelling procedure for the rainfall-only model, as the use of antecedent 

rainfall blocks in the flow estimation formula gives an indication of how wet the 

weather has been over the catchment before the storm event (and therefore an 

indication of how wet the catchment may be).  Over a longer period however, 

potential evapotranspiration (PET) can play a significant role in controlling soil 

moisture, and therefore it was felt necessary to include this within the model 

formulation. 

Hashemi et al. (2000) and Franchini et al. (2000) have shown the 

importance of antecedent conditions through simulation.  In particular, they 

emphasise how soil moisture variability at the time of arrival of a flood 

generating storm can affect the shape of the flood frequency curve.  In another 

simulation study, Zehe et al. (2005) suggest that given different realisations of 

initial soil moisture, intermediate and dry catchment soil moisture states can 

produce strongly different hydrographs, whereas the effect from a wet 

catchment is much less noticeable.  The physical explanation for this may lie in 

thresholding behaviour, particularly where overland flow generation is present. 

 

6.7 Conclusions and Implications. 

 The work presented in Chapter 6 shows how the modelled annual 

maximum time-series can be used to estimate the catchment flood frequency 

curve.  However, a good estimation of the flood frequency curve does not on its 

own show that the model can reliably estimate the flood frequency curve nor be 

suitable to work with future projections.  Therefore the work presented within 

this chapter only shows how the rainfall to flood frequency transformation can 

take place; it does not prove that it is reliable for use with future projections.  In 

order to show this, more extensive testing of the model is required and this work 

is presented in Chapter 7. 
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 Validation and Application Chapter 7:

7.1 Introduction 

  The flood frequency curve estimation model has been developed 

with future scenarios in mind, evidently a situation where no validation of the 

model output can take place, as there is no observed flow data for the future.  

Furthermore, as available climate model outputs produce scenarios of change, 

the frequency curve mapping model can only be used to make projections of 

future impact upon flood frequency rather than making specific predictions.  

Determining a specific definition of model validation is difficult, as there is 

little agreement on what it constitutes (Hassanizadah and Carrera, 1992).  It is 

an undeniable fact that earth systems models can never be proven right, but 

they can be proven wrong (Oreskes et al., 1994).  Therefore, even exhaustive 

testing of a model still leaves some uncertainty in its ability to make predictions.  

Despite this fact, testing models on data and situations outside those on which 

they were developed can provide some significant insights into the limitations of 

model operation as well as patterns of model performance.  Chapter 7 builds on 

the previous model development of Chapter 6 by developing specific tests of 

the flood frequency curve estimation model, designed to assess the model 

behaviour under different criteria. 

As the flood frequency curve estimation model has previously been shown 

not to work well on catchments with a high HOSTBFI value, the work presented 

in this chapter uses a smaller subset of catchments (removing those with high 

BFIHOST values from the analysis) when compared to the work presented in 

previous chapters.  In certain circumstances the amount of work required for the 

analysis prohibits application across a large catchment set, and in these 

circumstances only a few catchments have been selected for assessment. 

A single model formulation is tested in this Chapter.  This formulation can be 

seen in Equation 7.1.  It includes PET and antecedent rainfall as the antecedent 

conditions estimator.  Due to the potential for PET to alter in the future, it is an 

important variable to include in the model formulation. 
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     (         )  (    (                                  )  

Equation 7.1 

 

7.2 Model Validation 

 Hassanizadah and Carrera (1992) suggest full model validation is 

impossible, and therefore models can only be referred to as partially validated 

or semi-validated.  Despite this they note several common reasons why model 

validation is undertaken, namely; establishing the ability of the model to make 

predictions, comparing model predictions to measurements and quantifying 

uncertainty and inaccuracies.  Konikow and Bredehoeft (1992) suggest that 

validation demonstrates the ability of a site specific model to represent cause 

and effect relations at a particular field area.  Oreskes et al. (1994) argue that 

the primary value of models is heuristic and that because of the impossibility of 

validation, predictive modelling is less important.  Philosophical arguments 

surrounding validation are abundant and it is difficult to develop an overarching 

definition of what it is.  Even if this were possible, the practical problem of how 

to meet that definition still remains.  Here, validation testing of the frequency 

curve estimation model uses the reasons (stated earlier) of Hassanizadah and 

Carrera (1992) as a guide in order to develop some specific tests of the flood 

frequency curve estimation model. Three tests of the model are used as a basis 

for validation.  The tests have been designed specifically for this modelling 

approach.  This is important as the model structure and operation is different to 

that of many other catchment models.  The tests examine different aspects of 

the models predictive behaviour, but on their own they do not show that the 

model can be reliably used with future projections.  This work is considered 

separately in Section 7.3.   

 

7.2.1 Testing on Unused Data 

 The first test involves assessing how well the model can estimate flood 

frequency with data that was not used in the fitting process.  Peaks over 

Threshold (POT) data is used in order to test how well the model is able to 

transform rainfall inputs into flows using the previously optimised coefficients 

from the model fitting in Chapter 6.  The model structure is of particular 
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importance, as any assumptions may invalidate the model in an alternative 

situation.  Therefore, this test assesses the models ability to work with data on 

which it was not fitted. 

 The coefficients have previously been optimised against the observed 

AMAX flow and rainfall data.  They are therefore, to some extent, a product of 

catchment physical characteristics as well as the catchment hydroclimatology 

represented through the AMAX series.  Under a future climate scenario, it may 

be valid to assume that catchment physical characteristics will remain 

reasonably unchanged, but, if the coefficients are a product of the catchment’s 

hydroclimatology, it may not be valid to use them for future scenarios where the 

climate is significantly altered.  By using a separate set of flow data, that spans 

a wider range of hydroclimatic variability, the usefulness of the coefficients for 

predictive use can be assessed.  This is a check to ensure that the model fitted 

using the AMAX data was not simply an optimised model which would only work 

well on that data; it needs to have applicability to any combination of large 

rainfall and flow events.   

 The process for testing is as follows.  First, the HiFlows POT flow records 

are filtered by removing the AMAX data.  This process ensures that the test is 

being conducted on independent data compared to the model fitting, and that 

the AMAX do not influence the results on any testing.  The test of the flood 

frequency curve models predictive ability then takes the filtered POT flow data 

and for each event estimates a storm using the date of the event by utilising the 

storm estimation procedures already developed.  Antecedent rainfall and PET 

are estimated as previously also using the date of the POT flood event.  From 

this, the previously derived coefficient sets (from Chapter 6) are used to 

transform the storm and antecedent estimates into flows, leaving a set of POT 

flows.  Finally, an observed and modelled flood frequency curve can be 

constructed using the observed and modelled POT flood series.  In this case a 

distribution was not used, and so results are plotted as empirical frequency 

plots only.   

 Traditionally, a POT based flood frequency assessment would utilise the 

Generalised Pareto Distribution (GPD) (Robson and Reed, 1999).  However, 

fitting a distribution to a POT series requires considerable work, with 
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recommendations that the use of the specific threshold needs careful testing in 

conjunction with a GPD distribution (Coles, 2001).  Therefore, to remove any 

ambiguity about the influence of the choice of distribution and method of fitting, 

observed and modelled data are presented as empirical frequency plots only.  

Therefore, performance can only be assessed graphically and subjectively.  The 

above process has been carried out for the selected catchment set introduced 

in Section 7.1.1 and the results are presented in Figure 7.1. 

  

a b 

  

c d 
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Figure 7.1  Plots of observed (red) and modelled (blue) POT data using 

the model developed in Chapter 6.  Plots show empirical frequency on a 

Gumbel reduced variate scale. 

 The model appears reasonably capable of estimating the observed 

empirical frequency curve for most catchments.  However, for catchments 

Ruchill Water (16003) and Tees (25001) there is an overestimation of the 

empirical flood frequency curve.  Figure 7.2 shows the original comparison 

between observed and modelled flood frequency for the coefficient fitting as 

undertaken in Chapter 6.  Both catchments show good agreement with the 

observed flood frequency curve. 

  

Figure 7.2 Comparing observed (red) and modelled (blue) flood frequency 

curves from the original fitting in Chapter 6.  The catchments are Ruchill Water 

(16003) and the Leven (25001).  The model uses PET and antecedent rainfall.   
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 What is not clear is why these catchments do not perform well under the 

POT test.  The problem is more than one of a few rogue events, or extreme 

cases, as Figures 7.1a and 7.1b show a consistent overestimation.  This 

suggests that a good fit from the flood frequency curve estimation work carried 

out in Chapter 6 is not on its own indicative of a model which is suitable for use 

in future projection work.  This test suggests that in order to use the flood 

frequency curve estimation model in the future, it must first be fitted (as in 

Chapter 6) and then tested on some unseen data (as carried out here).  Only if 

this is successful can work using future climate scenarios be considered.  As 

the POT modelling work was carried out over all catchments, further examples 

of comparative plots between model fitting and application to the POT data can 

be found in Appendix F.1. 

The results give some confidence in the estimation of flow peaks and 

hence the estimated flood frequency curve.  While the model developed in this 

thesis was fitted to the AMAX series, the validation of its predictive ability using 

the POT series (with the AMAX data removed) suggests that the model has 

some predictive power.  In relation to the purposes of validation stated by 

Hassanizadah and Carrera (1992) this test is one of how the model performs 

when tested on a set of unseen data.  The work has shown that the optimised 

coefficients can be used on a wider set of data than that to which they were 

originally fitted.  This gives some confidence in the ability of the model to 

estimate a series of flow peaks which were not used when fitting the model.   

 

7.2.2 Testing Predictive Ability 

 The second test of the model involves predicting the flood frequency 

curve from rainfall without recourse to the flow record for storm estimation.  This 

is important, as when used for future projection work the model will have no 

knowledge of the date of occurrence of any flood.  As a validation test, this aims 

to assess one aspect of the predictive power of them model.  The process of 

estimating the catchment flood frequency curve without reference to the date of 

flood is as follows. 

 1) A POT rainfall series is extracted from the observed rainfall record.  This 

POT series averages five events per year over the length of the record.   
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2) The POT rainfall series are converted to flow.  This step uses Equation 7.1 to 

estimate flows, and antecedent information calculated based on the date of the 

POT rainfall event.  The coefficients for flow estimation are those estimated 

through optimisation during the model fitting phase. Once completed, this 

leaves a series of estimated flow peaks (with retained dates).  

3) From the flow series in step 2, the AMAX flow values can be extracted.   

4) Flood frequency curves of observed and estimated AMAX data are then 

produced and assessed on their RMS error as for previous work.  These flood 

frequency curves can also be compared to those produced during the fitting 

phase in order to assess any change in model performance between fitting and 

the test of predictive power. 

 This process recognises that the AMAX rainfall event is not always 

responsible for generating the AMAX flow event (and that the extent to which 

this is the case differs between catchments).  Chapter 4 provided extensive 

evidence of this.  Therefore, it would not be appropriate to simply extract the 

AMAX rainfall series and convert it to flow.   

Figure 7.3 shows observed flood frequency curves (red) along with the 

modelled curves (blue) for the 6 case-study catchments. For each catchment, 

the blue curve in the left panel shows the original model fit, and the blue curve 

in the right panel shows the validation test estimate of the flood frequency 

curve.  In this case the modelled curves have been estimated through the 

validation procedure as described above, with the coefficients b and c taking the 

optimised values. 
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Original Fit Validation 

 
 

g h 

  

i j 

  

k l 

Figure 7.3 Fitting (left) and validation (right) flood frequency curves created 

using optimised coefficients.  Solid red lines represent the observed  frequency 

curve; dashed blue lines represent the modelled frequency curve.  
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 There is a general degradation in model performance between fitting and 

validation steps, although some stations show little change.  Ruchill Water 

(16003) and the Tees (25001) show the most degradation between fitting and 

validation; the reason for this is unclear as they are both considered relatively 

wet catchments with a low HOSTBFI.  These catchments also performed poorly 

in the first test using POT data.  It is difficult to know why Ruchill Water and the 

Tees do not work well in either validation test, however, these results re-inforce 

the need for fitting the model and then testing it before predictive use.  The 

poorer performance shown by the two catchments mentioned above is further 

evidence of the poor link between catchment type and model performance. 

  Figure 7.4 provides a more general understanding of how the RMS 

error changes between fitting and validation, this time across the larger 

catchment set.  As expected, there is a general increase in the higher RMS 

errors in the validation test model compared to the original fit, although few 

catchments show particularly high RMS errors at the validation stage.  As the 

change in distribution of the RMS errors is reasonably small, there is some 

confidence in the ability of the model to estimate the AMAX flood frequency 

curve when timing information on flooding is not available. 

 

 

Figure 7.4 A comparison of the RMS error for between fitting and validation. 
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 An alternative assessment of error calculates the percentage difference 

between specific return periods for the observed and modelled flood frequency 

curves.  This assessment gives a direct and easily understandable 

quantification of the error between the modelled and the observed flood 

frequency curves in terms of the model’s predictive ability.  A negative error 

represents an underestimation by the model whereas a positive error suggests 

an overestimation by the model.  The percentage errors for the validation plots 

in Figure 7.3 are presented in Table 7.1.  This shows the percentage error 

between the observed and modelled flood frequency curve at the ten year 

return period.  These values tend to reflect what the visual assessment of 

Figure 7.3 shows.  However, even for some of the poorly modelled catchments, 

the percentage errors are still encouraging, given that the potential for errors in 

the measurement of high flows can be around 10-15 % (Herschy, 2002).  

Ruchill Water and the Tees appear to show such low percentage error because 

of the shape of the modelled flood frequency curves which tend to agree more 

with the observed flood frequency curves at higher return periods.  This 

explains why the percentage error cannot be used on its own to assess model 

performance as it could be prone to give misleading results. 

 

Gauge Percentage Error 

16003 -9.9 

25001 -11.2 

25005 -21.1 

53005 -1.3 

71001 -0.9 

83005 0.1 

Table 7.1 Percentage errors between the magnitude of the ten year return 

period event as calculated using an observed AMAX flood frequency curve and 

the model validation flood frequency curve from Figure 7.3. 
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Figure 7.5 The percentage error between the estimated magnitude of a ten 

year return period event, as calculated using an observed AMAX flood 

frequency curve and the model validation flood frequency curve estimated using 

observed rainfall data for the whole catchment set (excluding low PROPWET 

catchments). 

 

 Figure 7.5 provides evidence of the distribution of percentage error for 

the estimated magnitude of the ten year return period event between the 

observed and modelled flood frequency curves across the catchment set (low 

PROPWET catchments excluded).  The majority of catchments have a low 

percentage error of between -5 % and 20 % and this gives some confidence in 

the ability of the model to estimate return period values.  There is, however, a 

slight tendency for overestimation.  The selection of a single return period is 

intentional, as it provides a more understandable assessment of model 

performance than the RMSE value used previously.   

From the individual catchments plots in Figure 7.3 the change in 

percentage error can be assessed against the change in return period visually.  

For the majority of catchments, the difference is minimal at different return 

periods.  However, for the Leven there is a significant change in the percentage 
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error with return period due to the poor estimation of the modelled flood 

frequency curve. 

Figure 7.6 shows the spatial distribution of the percentage error.  The 

pattern of error is similar to that of previous model fitting errors, with western 

catchments showing the lowest percentage error estimation (typically +-10 %).  

The low PROPWET catchments have been included here in order to illustrate 

their high percentage error values at the ten year return period.  In a few cases 

these percentage errors are upwards of 50 % and reinforce why flood frequency 

estimation in these catchments is not appropriate given the current model 

setup.  It is however, encouraging that the general spatial pattern of percentage 

error is similar to the earlier work, reflecting consistency in the model 

performance when applied in different circumstances.  Furthermore, there is a 

reasonable distribution of catchments with errors of +-10 % for use in a large 

scale flood frequency assessment. 
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Figure 7.6 The percentage difference between the magnitudes of the 10 year 

RP event estimated from observed and modelled flood frequency curves.  The 

flow estimation model uses PET and antecedent rainfall.  Note that the scale 

can take positive and negative values reflecting over and underestimation of the 

RP value by the model. 
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 The second validation test has shown how the model can estimate the 

catchment AMAX flood frequency curve from POT rainfall.  The relatively small 

change in RMS error distribution between the fitting and validation test is 

encouraging.  Furthermore, the use of a percentage error provides a more 

understandable way of assessing model performance compared to the RMS 

error and gives confidence in the model ability to estimate the flood frequency 

curve. 

 

7.2.3 Testing Transferability of the Model Coefficients 

 The third test of the frequency curve estimation model involves 

estimating the model coefficients for a target catchment by transferring the 

coefficients from another catchment with similar physical characteristics to that 

of the target.  This is a test of the transferability of model coefficients, and, as 

such is not strictly necessary for model operation.  However, it provides 

interesting insights in to the ability of the model to work with estimated, rather 

than optimised coefficients. 

 The use of a donor catchment is tested.  This assumes that no coefficient 

set is available for the catchment of interest.  Therefore, the method chooses a 

coefficient set from another ‘similar’ catchment.  This could be thought of as 

addressing the ungauged catchment problem.  Depending upon performance, 

this method may be the most suitable for selecting catchment coefficients under 

a radically different climate.  

 The ‘similar’ catchment is chosen as being the closest to the target 

catchment in Euclidean space in terms of three catchment descriptors from the 

FEH, through the use of the following equation: 

 

  √(
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)
 

  Equation 7.3 

 

Where tg is the target flow gauge (for coefficient estimation) and g is the 

potential donor gauge.  D represents the distance in catchment descriptor 

space between the target and potential donor.  Evidently, the smaller the 

distance, the more representative the potential donor is of the target.  This 
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assumes that the coefficient sets are related to the catchment characteristics 

selected within the equation.  However, the relationship between FEH 

catchment descriptors and model coefficients is not straightforward as has 

previously been shown.  It also assumes that the selected catchment 

characteristics can adequately characterise catchment hydrology, and this may 

not be the case.   

Donor catchments were chosen based on their hydrological and 

climatological characteristics, rather than through a geographical proximity 

method.  This is the approach taken by the FEH in pooling catchments.  The 

FEH catchment descriptors or characteristics chosen for catchment estimation 

are HOSTBFI, AREA and SAAR.  While other characteristics like PROPWET 

and RMED could also have been used, these tend to show a close agreement 

with properties like SAAR and therefore including them would only replicate 

these properties. 

 The estimated coefficients are then used within the frequency curve 

estimation model as detailed in Chapter 6.  This uses the observed peak flow 

data to estimate the storm and antecedent conditions.  The estimation model is 

stated in Equation 7.1 at the beginning of this chapter.  This allows for direct 

comparison against the fitting procedure, but not against the second validation 

test of predictive performance. 

Figure 7.7 outlines the distribution of results for the donor coefficient 

estimation method as well as the optimised coefficient method.  In general, the 

model using the optimised coefficient set performs best, however; this is 

perhaps to be expected.  The donor catchment method appears to contain more 

catchments on the upper tail of the error distribution in Figure 7.7.   
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Figure 7.7 RMS errors for model runs using different coefficient sets 

 

The error distribution results suggest that a higher overall error could be 

expected if a set of donor coefficients was used compared to an optimised set.  

However, some catchments, when used with donor coefficients, still show a 

reasonably small RMS error, suggesting that in some catchments a donor 

estimation method may prove acceptable. 

The summary statistics for each model run are presented in Table 7.2.  

Summary statistics are computed across all the catchments used for analysis 

(does not include low PROPWET catchments).  It appears that estimating 

catchment coefficients using optimisation is the better performing method for 

estimation of the flood frequency curve.  The donor method has a larger spread 

of results and this is reflected in the higher mean error statistics in Table 7.2.  

Examples of catchment plots provide further evidence of the relatively poor 

performance of the donor method relative to optimisation; these can be found in 

Appendix G.1. 
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Model Run Mean 

Standard 

Deviation 

 

Max Min 

INDIV_OPTIM 0.169 0.126 0.897 0.007 

DONOR 0.232 0.190 1.396 0.003 

Table 7.2 Summary of Statistics for model runs using different coefficient sets.  

Summary statistics refer to RMS error, here calculated as a mean across the 

catchment set. 

 

 The work suggests that using coefficients from a hydrologically similar 

catchment (where hydrologically similar is defined by HOSTBFI, AREA and 

SAAR) is not better than an optimised coefficient.  The relatively poor 

performance of the donor estimation method compared to optimised coefficients 

is perhaps not surprising given previous work trying to link model performance 

with catchment characteristics.  What is not clear is whether this is a result of 

the donor catchment being insufficiently identified or because there is a poor 

relationship between coefficients and catchment types.  There are many other 

factors that may affect coefficient optimisation, such as rainfall and flow 

seasonality in the catchment, artificial influences such as urbanisation and 

reservoirs, geographical location and altitude amongst others. 

This work plays an important part in understanding the limitations of the 

model.  The predictive capability can be thought of as a trade-off.  Individually 

optimised coefficients can clearly give better estimates of the current flood 

frequency curve compared to donor coefficients.  Therefore, in choosing a 

model it is a trade-off between increased accuracy and reduced validity.  

However, the use of optimised coefficients has already been partially validated 

by the first test using the Peaks Over Threshold data.  A consideration of how to 

develop the ungauged catchment problem further will be given in the 

discussion. 

 

7.3 Method Validation 

 The validation work carried out here is considered distinct from the 

previous work.  Section 7.2 tests different aspects of model predictive 

behaviour, one at time.  The validation work presented in this section tests the 
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ability of the method to work with future projections, building upon the validation 

tests already undertaken.  Previous model validation tests have shown how the 

model can work in a predictive sense, but only using the observed data, some 

of which was used in fitting.  Because of this, the frequency curve estimation 

method needs to be tested on an alternative dataset in order to show that it can 

be reliably used in future projection studies. 

 For this validation, a single test is carried out.  This involves the use of 

simulated climate data.  It will assess how well the model and its coefficient sets 

can reproduce a flood frequency curve, given a different input climate data set.  

The test is similar to that of Section 7.2, where there is no knowledge of flood 

dates.  The synthetic climate data represent the climate at a particular location 

for a specific time period; they do not aim to reproduce historical weather events 

or time-series.  Therefore, no dates or timing information of observed peak 

flows would be of use.  Instead, the test aims to show that a simulated climate 

record is sufficiently representative of the observed climate that generates an 

observed flood frequency curve.    

Two sources of climate data have been identified for further investigation 

of model performance.  The first source is the UK Climate Impacts Programme 

(UKCP) weather generator.  Weather generators can be used to downscale 

RCM estimates to make them suitable for use at a local scale.  The UKCP 

weather generator produces probabilistic estimates of future climate scenarios 

from a combination of model runs.  Murphy et al. (2009) provide a 

comprehensive overview of the development of the UKCP probabilistic 

projections.  Jones et al. (2010) detail the construction and use of the weather 

generator. 

The UKCP weather generator allows for the estimation of selected 

climate variables for a particular location within the UK.  The user can select a 

location based upon a 5 km grid, select the temporal resolution of the data, the 

emissions scenario and the time-slice.  As part of the climate generation 

process, the weather generator also produces a baseline climate.  It is worth 

emphasising that while the climate projections are labelled as probabilistic, 

when assessed in impact studies they do not provide predictive probabilities of 

change, as this is dependent upon the emissions scenario used.  Currently, 
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there are no probabilities attached to emission scenarios, reflecting the 

uncertainty in the evolution of future emissions.  The probabilistic element can 

be thought of as giving an estimate of uncertainty in the modelled impacts for a 

given scenario (Shaw et al., 2011, pp. 497). 

In previous validations, only a single thirty year period of rainfall data has 

been available.  This is unlikely to represent the full range of variability seen in 

the climate.  By using simulated data with a wider variability, the uncertainty in 

the flood frequency curve can be estimated better.  In order to investigate the 

issue of climatic variability, 100 thirty year time-series were generated in each 

case for the baseline climate (1961-1990).  This then allowed the estimation of 

multiple possible flood frequency curves for the same catchment.  This is an 

additional benefit to the assessment of the model estimation of flood frequency 

curves using an alternative data source. 

For each case study catchment introduced in Section 7.1.1, a 

representative 5km grid cell at the catchment centroid was identified.  Rainfall 

and PET were then generated for this grid cell using the UKCP weather 

generator and assumed to be reasonably representative of the catchment in 

question.  This may not be so valid for larger catchments, and were these to be 

studied a catchment averaged time-series might need to be generated.  

Because the time-series generation was carried out manually using the weather 

generator, only the case studies introduced in Section 7.1.1 have been 

considered.  In order to investigate the issue of climatic variability, 100 thirty 

year time-series were generated in each case for the baseline climate (1961-

1990).  This then allowed the estimation of multiple possible flood frequency 

curves for the same catchment.   

The second source of climate data used was an eleven-member 

ensemble of Regional Climate Model (RCM) runs from the Met Office 

HadRM3H model which were used to construct the UKCP09 scenarios.  These 

runs provide a more limited insight into uncertainty compared to the probabilistic 

projections provided by the UKCP weather generator.  The RCM’s dynamically 

downscale GCM outputs, however, they are run on a grid that is coarser than 

both the MO observed gridded dataset and the weather generator (5 km 

resolution in both cases).  The RCM’s operate over a 25 km grid resolution and 
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the outputs are available from the BADC through the ClimateLink project (Met. 

Office, Hadley Centre, 2010).  The eleven RCM outputs are provided in addition 

to the main UKCP products and the data outputs exists in a raw form.  Rainfall 

data were sourced from the model outputs directly.  For each case study the 

grid cell which covered the catchment centroid was chosen.  This inevitably 

involved some subjectivity due to the larger grid resolution of the RCM.  Details 

on the 11 member ensemble are available in Chapter 5 of Murphy et al. (2009). 

 

7.3.1 Areal Reduction Factors 

 As the rainfall time series from the UKCP weather generator (WG) 

(http://ukclimateprojections.defra.gov.uk/) estimates are representative of point 

rainfall, they require some modification before they can be compared with the 

observed 5 km series and also before they can be used in the frequency curve 

estimation model.  The 5 km observed time series used in model fitting 

(Chapters 5 and 6) were calculated as a catchment average.  The weather 

generator data was not calculated as a catchment average due to the difficulty 

in using the weather generator to extract catchment averaged values when 

using the online user interface.  Therefore, the storms extracted from the 

weather generator runs were altered with an Areal Reduction Factor (ARF).  

This is standard practice when transforming point rainfall to areal rainfall and is 

recommended by the FEH.  An ARF essentially represents a ratio between the 

catchment averaged rainfall and the point rainfall within that catchment.  ARF’s 

are specific to both catchment area and rainfall duration. 

The ARF values were estimated using the FSR areal reduction factors.  

These are still recommended as being the most appropriate reduction factors 

for use today (Kjeldsen et al., 2005).  The generalised method for estimating an 

ARF can be seen in Equation 7.5.  The equation coefficients are displayed in 

Appendix H.1. 

ARF = 1-bD-a      Equation 7.5 

 

Where D represents the rainfall duration in hours.  b and a are set coefficients, 

and are dependent upon catchment area.  The resulting Areal Reduction Factor 

is a value between 0 and 1, applied to the storm amount in order to better 

http://ukclimateprojections.defra.gov.uk/
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estimate the catchment averaged storm.  The ARF is not applied to the entire 

rainfall time-series, only to the storm. 

 

7.3.2 Assessment of Rainfall Reproduction 

 Before the weather generator or RCM data can be used within the flood 

frequency curve estimation model, an assessment is required as to how well 

they represent the benchmark climate.  It is assumed that the MO 5 km gridded 

daily rainfall dataset introduced in Chapter 3 is a reasonable representation of 

the current climate, as it has been generated from observed rainfall data.  

Therefore the assessment of the simulated data uses the 5 km gridded dataset 

as a benchmark.  Because of the importance of rainfall estimates to the model, 

the simulated rainfall data is assessed with regards to both the frequency of 

heavy rainfall events and the mean monthly rainfall.  The assessment of 

frequency uses the AMAX rainfall estimates, fitted to a GEV distribution.  This is 

considered the most suitable distribution for use in conjunction with annual 

maximum rainfall (Robson and Reed, 1999).  In Figure 7.8 (see overleaf) the 

dashed blue lines show the calculated 10th and 90th percentile estimates of 

annual maximum rainfall at specific return periods (2,5,10,15,25 and 50).  This 

should be compared to the red line which shows the rainfall frequency curve 

estimated from the MO 5 km observed rainfall dataset.  The left panels show 

the results for the WG, whereas the right panels show the same results for the 

direct RCM outputs.   
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Figure 7.8 Rainfall Frequency Curves comparing the MO 5 km gridded AMAX 

(red line) with simulated data for the 6 case study catchments.  Plots (a-f) show 

UKCP WG estimates, plots (g-l) show UKCP RCM estimates.  Dashed blue 

lines show 10th and 90th percentile estimates from the modelled data.  Solid 

blue lines show the median estimates from the modelled data. 
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 The weather generator (plots a to f in Figure 7.8) values for AMAX show 

a reasonable agreement with the observed values.  In all catchments the 

weather generator 10th and 90th percentile estimates bound the observed, and 

for all return periods.  It should be noted that the MO 5 km gridded data is used 

as a catchment average, whereas the weather generator data is a single cell, 

which according to Murphy et al. (2009) can be used as point estimate, 

although this has been adjusted by an ARF as detailed above.  Figure 7.8 

shows that the weather generator gives a good estimate of heavy rainfall events 

in the case study catchments in comparison to observations. 

 The RCM estimates do not look as good.  For four out of the six 

catchments, the observed rainfall frequency curve lies outside the RCM 10th 

and 90th percentile estimates.  There appears to be no clear bias, as the RCMs 

underestimate the observed rainfall frequency curve for two catchments and 

overestimate this for two catchments.  The RCM works on a coarser grid 

compared to the weather generator (25 km compared to 5 km) and so it 

inevitably does not resolve detail as well.  It  might be argued that it does not 

operate on a level suitable for rainfall estimation in small-medium sized 

catchments.  The two catchments which show the best RCM agreement with 

the observed also happen to be the largest (71001 and 84003). 

 Irrespective of the resolution over which they are run, it is clear that there 

are several differences between the final products.  It is acknowledged that the 

RCM runs have some bias and have had no error correction (Jenkins et al., 

2010).  Figure 7.9 shows similar results, comparing mean monthly rainfall 

between the UKCP weather generator, RCM runs and the MO 5 km observed 

data. 
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Figure 7.9 Comparing Mean Monthly Rainfall from the UKCP Weather 

Generator (left) and the RCM runs (right).  The red line is the MO 5 km 

observed data, blue dashed lines represent the 10th and 90th percentiles 

respectively.  The solid blue line represents the median modelled estimate. 
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 The comparison of mean rainfall shows similar results to the heavy 

rainfall analysis presented previously.  In general, the weather generator results 

show a good agreement with the MO 5 km data and this is much better than for 

the RCM runs.  While the 10th and 90th percentile bounds do not always 

encompass the MO gridded data, the seasonality of rainfall is well represented. 

 The RCM runs show generally poor agreement with the MO gridded data 

and for most catchments do not adequately represent the seasonality.  This is 

most pronounced in (but not limited to) the wetter catchments.  The poor 

representation of the observed mean rainfall climatology by the RCMs gives a 

reason for the poor performance in representing heavy rainfall shown in Figure 

7.8.    

 

7.3.3 Assessment of PET reproduction 

A similar analysis has also been undertaken for the PET estimation, and 

these results can be seen in Figure 7.10.  PET is assessed with regards to the 

mean monthly values only, the dashed lines also represent the 10th and 90th 

percentile estimates.  PET is only used over longer time periods in the flow 

estimation model (currently a 30 day index) and so there is no need to assess 

PET extremes.   Because of the poor representation of rainfall by the eleven 

member RCM ensemble, no attempt has been made to consider the estimation 

of PET by these models. 
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Figure 7.10 A comparison of PET between the UKCP weather generator and 

the calculated observed data used in this study.  The solid red line represents 

the mean monthly PET calculated from observed climate variables, the blue 

dashed lines represent the 10 and 90th percentiles from the UKCP weather 

generator respectively. 

 

 PET is strongly driven by temperature, which, as a climate variable, is 

much less temporally and spatially variable than rainfall.  Therefore, the 

modelled estimates of PET from the weather generator tend to show a 

reasonably good agreement with the PET estimates calculated from the 

observed climate variables.  Because PET is used over long periods in the 

frequency curve estimation model it is more appropriate to consider mean 

values than extremes for this climate variable. 
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 The analysis of the simulated climate data suggests that the weather 

generator can be used with some confidence to construct a flood frequency 

curve.  The RCM data is less useful and there is no clear benefit to running poor 

RCM estimates through the flood frequency curve estimation model.  The 

continuous simulation approach to flood frequency curve estimation taken by 

the FRACAS partners has utilised the RCM model runs and this was the main 

reason for using it in an assessment here.  However, the RCM data will not be 

used further in this thesis.  

 

7.4 Application of Simulated Climate Data to the Flood Frequency 

Model 

 Given that the simulated weather generator baseline climate data for 

1961-1990 is reasonably representative of the observed data used for model 

fitting, it can be used to assess how well the flood frequency curve estimation 

model performs.  While it is important to assess how well the climate is 

reproduced by the UKCP weather generator and RCM models, good 

representation on its own does not necessarily mean that the data is useful for 

frequency curve estimation.  Until now, climate variables have been assessed 

individually.  However, the frequency curve estimation model uses a summation 

of storm rainfall, antecedent rainfall and antecedent PET. 

 The method of frequency curve estimation used in this section is similar 

to that introduced in the second validation test of Section 7.2.2.  However, the 

method is restated here for completeness.  First, a Peaks Over Threshold rain 

storm extraction is applied to the time series of daily rainfall data from the 

weather generator runs.  Using the previously derived optimised coefficients 

along with the antecedent rainfall and PET estimates from the weather 

generator runs, these POT storms are transformed into flow events, retaining 

the date of the POT event.  From the estimated flow series, an AMAX series 

can be extracted fitted to an extreme value distribution (the Gumbel) and a flood 

frequency curve constructed. 

 In the case of the simulated WG data, the process described above was 

followed.  However, one hundred 30 year climate time-series were produced 

from the weather generator.  Therefore this allowed the generation of one 



Chapter 7: Validation, Predictive Capability and Application 

 

200 

 

hundred AMAX flood frequency curves.  To show all of these on a plot would be 

uninformative; therefore for the one hundred time series, the 10th and 90th 

percentile estimates were calculated at specific return period intervals (2, 5, 10, 

15, 25 and 50 years).  These RP values were then plotted on a flood frequency 

plot for comparison against the observed flood frequency curve (see Figure 

7.11). 

 It is important to emphasise that the dashed lines in Figure 7.11 do not 

represent a flood frequency curve.  They represent the percentile estimates at 

that return period from all 100 simulated flood frequency curves.  These 

percentile estimates are then joined for convenience, but like a single site flood 

frequency curve they should not be extrapolated. 

 

  

a b 
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Figure 7.11 The results of running the baseline UKCP WG scenarios through 

the flood frequency estimation model for the six case study catchments. The 

observed flood frequency curve is shown in red.  The dashed blue lines 

represent the 10th and 90th percentile estimates.  Solid blue lines represent the 

median estimates from the WG runs. 

 

 Figure 7.11 plots a to f (weather generator runs) show the observed 

AMAX flood frequency curves  compared to the simulated flood frequency 

curves (10th, 90th and 50th percentiles) from the WG runs.  Because the flood 

frequency estimation model uses storm rainfall, antecedent rainfall and 

antecedent PET, there is the potential for significant variability between weather 

generator runs.  Therefore the flood frequency curves plotted here can be 

thought of as multiple realisations of the flood frequency curves that could be 

created by the current climate.  They represent multiple combinations of the 

three flow estimation variables which would not be found in a single observed 

record.  Therefore, if it was assumed that the climate is stationary, and another 

thirty years of annual maximum peak flow data were recorded, it is likely that 

the new curve would fit within the percentile bounds plotted in Figure 7.11. 

 Overall, for the weather generator runs, the results are encouraging.  In 

five out of six cases the observed flood frequency curve is bounded by the 10th 

and 90th  percentile estimates for the RPs calculated from the one hundred 

weather generator runs, although one station, Ruchill Water, has the percentile 

bounds on the edge of the observed flood frequency curves.  This flood 
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frequency curve estimation model for this catchment overestimated the flood 

frequency curve in the first two validation tests reported on in Section 7.2 and 

such is less reliable for future projection work. 

 

7.5 Climate Change Applications 

 It is not intended that this thesis should present a full blown climate 

change analysis over the whole of the UK.  Rather it has sought to prove the 

use of the modelling method through case studies.  The source of the future 

scenarios has already been introduced in Section 7.6.1 which seeks to assess 

baseline data for 1961-1990 between the observed and modelled climate.  It is 

not intended that the models structures, forcings, parameterisations, validity of 

future projections or specific projections of future change will be considered in 

any great detail.  While an important aspect of climate change impact 

assessment, this is a significant task in its own right and therefore is not 

particularly feasible to undertake given the timescale available for this research.  

Because of this, less emphasis is placed on the specific magnitudes of change 

shown by the models in the climate change applications.  Instead, the use of 

these data sources is considered in light of the potential for future model 

development.  The case studies introduced in Section 7.1.1 are used to outline 

the method for future climate.  A medium emissions scenario has been used for 

the example future cases shown here.  This is a 30 year window centred over 

the 2050s and as with the baseline work, 100 time-series have been generated 

for each example catchment.  The work required to extend this analysis to the 

full catchment set is considerable, and has already been discussed previously 

as the main reason for not doing so. 

 

7.5.1 PROPWET Estimation 

 Chapter 6 introduced the idea of using the PROPWET indicator to 

highlight catchments which were unsuited to flood frequency curve estimation.  

Section 6.4.2 also introduced a method whereby PROPWET could be estimated 

through regression using the catchment SAAR and annual PET values.  

Therefore, before any future flood frequency curves are presented, the future 
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PROPWET values are estimated.  From Section 6.4.2 (Equation 6.6) the 

PROPWET estimation equation is: 

 

PROPWET = 1.07-0.00144 PET+0.000148 SAAR  Equation 6.6 

  

To estimate a single PROPWET value for the future, the mean SAAR 

and annual PET for all future weather generator runs for each catchment were 

calculated.  This was also carried out for the baseline period 1961-1990, in 

order to compare whether the WG is able to provide a good estimate of 

PROPWET for the baseline climate when compared to the FEH PROPWET 

values.  The baseline SAAR and PET values are displayed in Table 7.3 along 

with baseline estimated PROPWET values and the original PROPWET values 

from FEH.  Table 7.4 contains the same variables for the future values (minus 

the FEH values). 

 

GAUGE SAAR Annual PET Estimated 

PROPWET 

FEH 

PROPWET 

Ruchill 1734.9 529.9 0.56 0.59 

Tees 1186.2 445.3 0.60 0.58 

Leven 660.7 540.1 0.39 0.34 

Midford 930.6 587.7 0.36 0.36 

Ribble 1163.4 541.9 0.46 0.56 

Clyde 990.6 464.2 0.55 0.6 

Table 7.3 Comparing PROPWET values estimated from regression and the 

FEH values.  Both represent the baseline time period (i.e. 1961-1990).  SAAR 

and Annual PET values are also shown for comparison. 

 

 The FEH and estimated PROPWET values displayed in Table 7.3 show 

a reasonable agreement.  The Ribble shows the largest error in PROPWET 

estimation.  While the original PROPWET regression in Section 6.4.2 used the 

observed 5km data, here the PROPWET estimation uses the weather generator 

data.  It was unfeasible to generate climate scenarios for every catchment with 
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the WG, hence why the original PROPWET regression was undertaken using 

the larger observed MO 5 km data set.  Despite this, the estimated PROPWET 

values provide some confidence in the use of the regression with the weather 

generator data. 

 

GAUGE SAAR Annual PET Estimated 

PROPWET 

Ruchill 1818.5 606.3 0.47 

Tees 1169.9 574.1 0.42 

Leven 655.93 623.4 0.27 

Midford 939.5 684.1 0.22 

Ribble 1157.2 650.6 0.30 

Clyde 1021.8 551.43 0.43 

Table 7.4 Estimating future PROPWET values through regression.  The climate 

data are centred over the 2050s for a medium emission scenario. 

 

 For all catchments, the future estimated PROPWET values decrease 

(see Table 7.4).  This can be explained by a general increase in the annual 

PET.  Rainfall totals do not follow such a simple pattern.  As previously outlined 

in Section 7.5.2, catchments with a PROPWET value of less than 0.4 tend to be 

susceptible to higher errors.  This being the case, the Leven, Midford and 

Ribble might be considered unsuited to the future frequency curve estimation 

method outlined here.  However, from Table 7.3, it should be remembered that 

the Ribble PROPWET value was underestimated by about 0.1 for the current 

time period. If the assumption is made that the same happens in the future, it 

may be possible to use the method for this catchment.  The Leven and Midford 

had low PROPWET values from the FEH, and therefore there is a higher level 

of uncertainty surrounding their flood frequency curve estimation for the 

baseline time period.  However, because observed data is available it is 

possible to assess how well the Leven and Midford perform based on these.  

Current fits appear reasonable, and so this puts them within the subset of 

catchments that have a low PROPWET value, but also have a low error. 
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7.5.2 Future Flood Frequency Curve Estimation 

 Figure 7.12 shows the results of applying the future WG scenarios to the 

frequency curve estimation model.  The procedure for doing so is identical to 

that outlined for the baseline climate and so is not repeated here.  The plots use 

an alternative colour scheme in order to make them distinct from the baseline 

case.   
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Figure 7.12 The result of applying a medium emissions climate scenario to the 

flood frequency curve estimation model for the 2050s for the six case-study 

catchments.  The solid red line is the observed ffc, the dashed green lines 

represent the 10th and 90th percentile estimates and the solid green line 

represents the median estimate of the ffc using WG data. 

 

  The process of using the future climate change scenarios with the model 

is reasonably simple; however, in order for the results to be meaningful; some 

care may be required in the interpretation of the results.  In all cases, median 

and other percentile estimates of the frequency curves increase.  While stations 

such as Ruchill Water show a fairly large change in the modelled curves 

compared to the observed, it should be remembered that the original fit using 

the baseline weather generator runs was not perfect and therefore caution is 

advised in interpreting the future changes.   
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Station Percentile 

10 50 90 

Ruchill 2.0 6.0 13.5 

Tees 1.9 2.7 9.5 

Leven 4.2 6.0 8.7 

Midford Brook 4.7 6.1 17.5 

Ribble 1.3 5.5 13.9 

Clyde 0.8 6.8 9.5 

Table 7.5 Percentage changes between percentile values as calculated from 

the baseline estimated flood frequency curves and the future estimated flood 

frequency curves for the 10 year return period flow.  All values are positive and 

therefore show future increases. 

 

Table 7.6 shows the percentage changes between baseline and future 

runs for the ten year return period flow.  The raw values used to calculate these 

changes are tabulated in Appendix I.1.  There is a tendency for the lower 

percentile estimates to increase only slightly, whereas upper percentile values 

show much larger increases.  The analysis carried out here is not extensive 

enough to infer anything about spatial patterns of flooding under projected 

future climate change.   

 The percentage changes shown in Table 7.6 should be considered as 

relative changes.  Earlier work in Section 7.2.2 showed the percentage error in 

the estimation of the ten year return period event by comparing modelled and 

observed flows.  In several cases the models overestimated the flood frequency 

curve compared to the observed and in some cases the percentage errors 

exceed any projected future difference under climate change as shown by 

Table 7.6.  The uncertainty in estimating rare events can be considerable.  

Given that most of the observed flow records average 30 years of data there is 

still a considerable uncertainty in the estimation of the observed ten year return 

period event.  Despite this, the relative percentage changes can still give some 

useful projections of how fluvial flood frequency may change in the future.   
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7.6 Discussion of Validation and Application Work 

7.6.1 Test results and Model Structure 

 One of the main limitations highlighted within this chapter concerns the 

use of a donor catchment for flood frequency curve estimation at an ungauged 

site.  This work was carried out as the Flood Estimation Handbook uses a 

similar approach to the estimation of QMED at a target site and therefore it was 

felt worthwhile to test a similar approach to the estimation of the flood frequency 

model coefficients.  The relatively poor result obtained from this test partly 

reflects the reasonably weak links between model coefficients and catchment 

characteristics, as described at the end of Chapter 6.  Were an alternative 

approach to be taken, whereby model coefficients were determined principally 

through catchment characteristics (and not through optimisation), then the 

estimation of donor catchment coefficients would perhaps be more 

straightforward.  On the other hand, this may lead to greater modelling errors.  

Model parameterisation from PCDs is the approach taken by the parameter-

generalised PDM model of Kay et al. (2006a) which has been successfully used 

to estimate flood frequency at ungauged sites.  However, designing a 

framework for estimating model coefficients from PCDs requires some care, not 

least because some of the PCDs are themselves a product of the climate and 

therefore subject to change under an altered climate.  Assuming time-invariant 

model parameters has the potential to increase the uncertainty in model 

projections of future flood frequency.  Merz et al. (2011) highlight this problem 

through a modelling study for a future case that shows increasing uncertainty 

above that which would normally be expected from a hydrological simulation.  

Two approaches to deal with this problem exist.  The first involves a calibration 

procedure which estimates time-stable parameters.  The second approach 

involves developing a framework for estimating time-varying parameters, so that 

given any future scenario, model parameters can then be estimated.  With this 

second option, no calibration occurs, as parameters are estimated directly.  As 

no calibration takes place there is an increase in the possibility of model bias 

with this option (Merz et al. (2011).  Section 7.5 has shown how the PCD 

PROPWET can be estimated for future cases from simple climate data.  This 

shows that if PCDs are to be used for estimating model coefficients or 
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parameters, then they can be estimated for both current and future cases.  

Within this work, the PROPWET value is mainly used to highlight poorly 

performing catchments, but the same regression could also be used if 

PROPWET was more directly involved in coefficient estimation.  The use of a 

donor catchment has only been tested on the flood frequency curve model 

using rainfall and PET.  Earlier work on event based peak flow estimation 

suggested that catchments tended to be grouped by performance when using a 

storm only model, as this highlights groups of catchments where antecedent 

conditions play similar roles in flood generation.  Therefore, if donor estimation 

was a key requirement, using a storm only model for flood frequency curve 

estimation may be more useful.  This is evidently offset by reduced model 

performance as antecedent conditions are not accounted for.  The limitation of 

the flood frequency curve estimation model being unreliable for donor 

catchment transfer is not crucial to the method described in this thesis, but it 

does provide some interesting insights into the model structure and 

performance.   

 While the donor transfer method does not perform particularly well, the 

other tests of the model and method are encouraging.  The first model test, 

involving POT flow data was a useful check in assessing the model against data 

on which it was not fitted.  The removal of the AMAX data from the POT series 

was important to avoid the AMAX data influencing the results too much.  

However, the removal of large events poses another problem; that of 

extrapolation.  The use of POT data does not test the extrapolation ability of the 

model.  Specifically it does not test whether model estimates of flood frequency 

curves are reliable if the frequency curves have been estimated from events 

which are larger than those on which the model was fitted.  With rainfall 

extremes in some areas increasing, and predicted to increase further (see 

Fowler and Kilsby (2003) and Buonomo et al. (2007) for examples), it could be 

argued that the validation testing does not go far enough in this respect.  The 

current model takes a simplified view of the mechanisms of flood generation.  It 

assumes that the same processes are responsible for flood generation over the 

entire flow record, whether that is AMAX or POT.  This is perhaps unlikely to be 

representative of real life conditions where large flood peaks and small flood 
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peaks may have been generated through different physical processes.  

Modelling of earth systems in general always involves some simplifying 

assumptions in order to develop a suitable model.  The frequency curve 

estimation model was originally fitted to the whole AMAX record in order for it to 

be able to estimate a similar curve in the future.  It is acknowledged that the 

validation work does not test the extrapolation ability of the model.  One of the 

problems with testing this is the limited number of extreme events available for 

assessment.  Furthermore, it is possible that modelled floods events that are 

larger than those in the observed record are generated from processes which 

are radically different to those processes responsible for generating the peak 

flows in the observed record.  Kusumastuti et al. (2007) provide some evidence 

for the importance of thresholds on controlling flood frequency and magnitude.  

This means that it is difficult to design an extrapolation test which can give 

confidence in the models ability to estimate the flood frequency curve from 

events which are considerably larger than those in the observed record.  This 

problem is not unique to the model developed in this thesis.  It affects any 

model where assumptions are made surrounding process conceptualisation, 

especially where there are limited data to do so.   

 The method validation has been considered clearly distinct from that of 

model validation.  The test of method validation applied the model to a set of 

simulated climate time-series, generated specifically for the catchments of 

interest.  The relatively poor performance of the RCM data compared to the WG 

estimates was the main reason for not using it any further as little can be gained 

from using a model with poor input data.  Using RCM data is a raw, uncorrected 

form is generally discouraged, and so were any modelling work to use it, some 

form of downscaling or correction would be necessary.  The UKCP weather 

generator is one method of downscaling from RCMs with the raw eleven 

member UKCP ensemble RCMs also contributing to the weather generator 

output.  Other methods include the use of bias correction, change factors and 

statistical downscaling methods (Chen et al., 2011).  All involve the use of 

observed data in some way to develop relationships between locally observed 

climate and simulated climate.  While the RCM data was considered poor, it 

was assessed against specific criteria for this study.  It may be that RCM rainfall 
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is more suited to modelling large catchments as the RCM rainfall better 

represented the observed rainfall in the larger case study catchments used in 

this study.  RCM rainfall has been used directly in modelling studies such as 

that of Kay et al. (2006) where it has driven a spatially generalised version of 

the PDM model.  Their approach linked residual modelling errors to the 

representation of rainfall by the RCMs and therefore provides some confidence 

in the ability of RCMs to be used directly in modelling studies as they improve 

their ability to capture rainfall characteristics. 

 Chen et al. (2011) caution on the use of only a single downscaling 

method in climate impact studies.  This research has made use of only a single 

source; the UKCP weather generator.  However, the aim of the work was not to 

determine magnitudes or directions of hydrological change, rather it was to 

prove the use of the frequency curve mapping methodology with data sets other 

than that on which it was fitted.  The use of the weather generator showed that 

this was possible.  The use of the baseline WG time-series provided some 

interesting insights into flood frequency variability.  The use of a number of time 

series (100) allowed for an assessment of some of the uncertainty in a single 

site observed flood record.  By increasing the variability in the baseline climate, 

a more robust estimate of the flood frequency curve can be made.  This 

approach is similar to that of continuous simulation, where long time series are 

often used to represent climate variability at the site of interest.  Shaw et al. 

(2011) recommend the use of confidence limits with a single site approach 

using short observed records and this can be considered similar to the use of a 

large number of time-series to estimate bounds on return period magnitudes.  

The ability of the frequency curve mapping methodology to be able to deal with 

large numbers of time-series is one of its benefits over single site approaches 

using observed data, as it can deal with climatic variability in an explicit way.  

While the original aim of the research project was to develop a methodology 

suited to the estimation of future flood frequency curves, the current model, 

when used properly, can give useful insights into current flood variability.  This 

approach of estimating variability within a single time-slice assumes that flood 

frequency is stationary, and this may not be the case.   The ability of the 

frequency curve estimation model allows it to work with other data products 
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developed to produce future projections of climate.  Median estimates of future 

changes to the ten year return period floods all show increases in the range two 

to seven percent compared to the baseline.  Current design guidelines for 

estimating future changes to peak flows use an indicative sensitivity of 

somewhere between ten and twenty percent (DEFRA, 2006), although this is 

acknowledged as being a precautionary upper envelope (Shaw et al., 2011).  

These estimates are applicable to all areas of Britain, reflecting a lack of 

knowledge at the time of any spatial pattern of change.  However, Kay et al. 

(2006) found changes of between -7 percent and +32 percent for the 10 year 

return period flood across the UK for the period 2071-2100.  This shows a much 

larger range of change than either the results shown in Section 7.5 or the 

DEFRA recommendations.  Direct comparison is not possible due to the small 

set of catchments used in the frequency curve estimation model as well as the 

different time-slice used for analysis (2050 compared to 2070-2100).  It should 

be emphasised that agreement with other recommendations is not evidence of 

a definite change, but to some extent it can give confidence in the ability of the 

frequency curve mapping methodology to be used for more extensive future 

flood frequency assessments.  

 

7.6.2 Implications for a National Flood Frequency Assessment 

 While this work has not undertaken a national flood frequency 

assessment will be made for the future, it is worth considering what the 

validation work has shown and how this can be used to design an extension of 

the work already carried out.  Validation work has shown that the frequency 

curve estimation model must be fitted and tested before it can be used for future 

projection work, as a good fit in optimisation is no guarantee of predictive ability.  

In order for a future study to be of use, a good geographical distribution of 

catchments should be available where the model can be reliably used.  In some 

respects, the poor relationship between PCDs and model performance is useful 

here.  PCDs show distinctive geographical patterns to their distribution (see 

Appendix A), therefore should the model not work particularly well for a certain 

subset of a single PCD, it is likely that a specific geographical area would not be 

able to be modelled.  Whilst in general, the model does not work well in low 
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PROPWET/high HOSTBFI catchments, there is still a reasonable geographic 

spread of catchments in areas with these characteristics (see Figure 6.16). 

 A good geographic spread of catchments is clearly useful to be able to 

infer any pattern to future change.  However, the models used for this must also 

show good predictive power.  The estimates of the percentage error in the 

modelled flood frequency curves give some confidence in the model’s ability to 

estimate a rare flood event magnitude and the percentage errors compare well 

with other work such as that of Kay et al., (2006).  However, the first validation 

test using POT data still requires visual assessment in order to gain an 

understanding of how suitable a catchment is to modelling work in the future.  

Extrapolation from the six case studies in this chapter is difficult, as they were 

presented to give a good representation of catchment characteristics rather 

than model performance.  The further examples shown in Appendix F.1 suggest 

that out of the ten catchments with good original fits, (i.e. RMS error of < or 

below) seven of them show reasonable results when used with POT data.  

Further work is required to characterise this over the larger catchments set, 

however, these results are encouraging as they would allow application of the 

method over a larger number of catchments. 

 

7.7 Chapter Conclusions 

 Chapter 7 has developed further understanding of the model presented 

in Chapter 6, designed to estimate the flood frequency curve.   

 Model validation has shown that the frequency curve estimation model 

has some predictive power, as it can be successfully used on data to which it 

was not fitted.  For the six catchments chosen, the derived model structure 

appears to be capable of reproducing the empirical POT frequency curve well in 

four catchments, with two catchments performing poorly in both model 

validation tests. 

 The second model validation test outlined a method whereby future 

annual maximum flood frequency curves can be estimated.  As has already 

been shown, the use of annual maximum rainfall for this purpose is fraught with 

complication.  Therefore, a method using POT rainfall has been introduced and 
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has been shown to adequately estimate the annual maximum flood frequency 

curve without reference to timing information on floods. 

 The coefficient transfer test was not so successful and this has been 

attributed to the relatively poor relationship between coefficients and catchment 

types.  Further improvements to this method are discussed in Chapter 8. 

 Finally, the model has been shown to work with outputs from a weather 

generator, another key consideration if the use of the model to explore the 

potential impacts of future climate change on the flood frequency curve is 

desired.  It is suggested that RCM data on their own are not capable of 

adequately representing the baseline rainfall climatology in the catchments of 

interest and for this reason the raw RCM outputs have not been used for 

baseline or future assessment.  The results from Chapter 7 are taken forward in 

the discussion by critically considering how the problem of developing 

projections of future climate impacts on flooding can be achieved, given the 

work that has been carried out. 

 As with all the work undertaken in this thesis, there are alternative 

approaches and other methods that may be suited to the work carried out here.  

Therefore, Chapter 8 also presents an exploration of the work presented in this 

thesis by critically considering what has been achieved as well as developing 

ideas for future work. 
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 Discussion and Suggestions for Further Work Chapter 8:

 

8.1 Introduction 

 A catchment does not “have” a flood frequency curve.  In its simplest 

form a flood frequency curve can be considered as a tool for extracting useful 

information from observed data regarding the flood regime of a catchment.  

Therefore, the flood frequency curve is more a function of the data that creates 

it as opposed to being an attribute of the catchment itself.  This point might 

seem obvious, however, it is often easy to overlook the influence that a data 

record may have on the catchment flood frequency curve.  Similarly, the 

importance of the underlying data to the modelling work presented in this thesis 

should not be underestimated.  It is therefore appropriate that a discussion of 

the approach and performance of the flood frequency curve estimation model 

takes place.   

Chapter 8 provides a discussion on the work carried out and presented in 

this thesis, as well as considering issues not explicitly dealt with elsewhere in 

the text.  Principally, it will consider to what extent the work carried out meet the 

aims and objectives laid out in Chapter 1.  It will consider various aspects of the 

approach taken with reference to other work and consider the implications of 

the findings detailed in the previous chapters.  Finally, some consideration will 

be given to the future development of this work. 

 

8.2 Summary of Research and Key Findings 

 This thesis has presented work that has been carried out to develop a 

method of estimating a flood frequency curve from rainfall and potential 

evapotranspiration inputs.  Early work assessed the datasets available for use.  

This work highlighted the importance of good flow datasets as well as showing 

that stricter independence criteria are required when using flow data in 

conjunction with daily rainfall.  This work was developed by assessing how well 

peak flow and daily rainfall datasets could be used together.  This provided an 

interesting look at UK hydrological behaviour, revealing geographical patterns 
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on the links between extreme rainfall events and floods in a variety of 

catchments.  This work was considered as a useful first step in assessing 

frequency relationships between rainfall and flow. 

 Initial modelling work considered how to estimate a flow peak only.  

While the proposed model may be simple, extensive work was required to 

characterise the performance and identify sources (and structures) of error.  

This work showed the importance of timing with regards to storm estimation, as 

using the date of flood can be misleading.  The model results show a temporal 

structure to the error pattern in some catchments, with the suggestion that the 

model’s ability to replicate seasonal antecedent conditions was at fault.  This 

prompted the development of soil moisture deficit estimates, however in terms 

of flow estimation, the model results showed little improvement.   

 The event based work allowed the subsequent development of a model 

to estimate an annual maximum flood frequency curve.  In order to be suitable 

for future work, this model incorporates PET.  The flood frequency estimation 

model has been tested in order to determine how robust it is, as well as how it 

may be used with alternative input meteorological data.  The results of this work 

provide clear limits to the applicability of the model, with the indicator 

PROPWET used to highlight those catchments where the flood frequency curve 

estimation model does not work.  

 Finally, while this thesis does not attempt to provide an extensive climate 

change impact assessment of the UK, several catchments have been selected 

in order to prove the use of the model in developing projections of future flood 

frequency curves.  The use of the UKCP weather generator allows multiple 

future projections of climate to be used within the frequency curve estimation 

model.  The rest of this chapter considers some aspects of the work in more 

detail, particularly with regards to how well the objectives stated in Chapter 1 

are met. 

 

8.3 Sourcing and Assessing Appropriate Datasets 

 Based on the approach that this study has taken to the problem of flood 

frequency estimation, significant amounts of data have been used.  Initial work 

involved sourcing and assessing these data for use in the study.  Quite clearly, 
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the use of environmental data requires some consideration, as the potential for 

errors introduced during collection and processing is significant.  The HiFlows 

data, while containing some known problems, are considered the most suitable 

flow data for this type of work.   

 Within the UK, there are few alternatives suited to the demands of this 

project.  The National River Flow Archive (NRFA) hosts mean daily flow series.  

It is conceivable that the modelling approach presented in this thesis could be 

used on mean daily data.  It is not clear how useful mean daily data are to flood 

frequency estimation, as they do not represent flow peaks well, although the 

G2G model has made use of this type of data.  Similarly, the use of continuous 

river flow time-series could be considered.  This would give considerable 

information on antecedent conditions and may provide further insights into how 

different catchments perform in frequency curve estimation.  However, 

continuous river flow time-series may not be particularly suited to a predictive 

model, as evidently no time series would be available for the future. 

 Rainfall data are also prone to some potential measurement error.  The 

spatial extent of data required for this project is considerable.  This led to the 

use of gridded data, in this case the MO 5 km daily dataset.  While there may 

be some concerns about the lack of published information on the dataset 

construction, others have shown the dataset to give reasonable representation 

of extremes (Smith, 2010). 

 The use of alternative rainfall datasets may be worthy of consideration.  

The current model takes advantage of the gridded daily rainfall data because it 

is widely available and requires very little pre-processing.  However, in the 

future, or for a small group of catchments, it is conceivable that sub-daily rainfall 

information may be utilised.  This may bring benefits in frequency curve 

estimation in smaller catchments, where daily data mask the intricacies of 

rainfall hyetographs and catchments respond quickly.  With regards to this 

study, hourly data was never used as available records tend to be short and do 

not cover the spatial extent required for the national scale study.  One of the 

advantages of the flood frequency curve estimation model is that it has the 

ability to be adapted to different datasets depending upon requirements.  This is 

essential if the model is to be used for future prediction.  
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The first objective of this study was to consider appropriate datasets for 

use within the modelling methodology.  Chapters 2 and 3 form the main bulk of 

this work, with Chapter 4 also giving some summary information on dataset 

characteristics.  It is considered that this objective has been met, as the 

datasets used within the rest of this work (namely the gridded MO 5 km daily 

rainfall data and the HiFlows peak flow data) are considered the most 

appropriate for the task in hand.  While this first objective may seem a simple 

one to achieve, it is crucial that it is adequately addressed as the rest of the 

study relies upon good rainfall and flow datasets.  

 

8.4 Developing an event based peak flow estimation methodology 

 The development of the event based model for peak flow estimation 

began in Chapter 4, with an initial assessment of the seasonality and links 

between the rainfall and flood regimes of catchments.  While seasonality 

analysis of UK catchments has been reported on in parts elsewhere (see Black 

and Werritty, 1997; Robson and Reed, 1999; Archer, 1981, Macdonald et al., 

2010), there is little published work which considers the whole of the UK 

comparing both rainfall and flow.  Seasonality as an indicator of a catchment 

flood regime is not typically used in flood frequency assessment, although some 

have called for its inclusion (Reed, 2002; Cunderlik and Ourda, 2009).  In 

Chapter 4, the seasonality analysis provided a reasonably rough method for 

assessing where later work might be appropriate. Circular statistics can be used 

to highlight where there is a disparity between catchment rainfall and flow 

regimes.  The results from the seasonality work were primarily responsible for 

the subsequent approach taken of only including one or two days’ worth of 

storm rainfall.  The AMAX and POT matching work suggested that this 

approach could be adopted due to the high levels of matching between one day 

storms and AMAX floods.  The use of a one day storm is not justified entirely by 

this matching work; further investigations were undertaken as part of the peak 

flow modelling work in Chapter 5. 
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8.4.1 Catchment Moisture Deficit Estimates 

 With regards to the results contained in Chapter 5, it is interesting to note 

the relatively poor performance of incorporating the catchment soil moisture 

deficit estimates.  In general, literature on antecedent conditions estimation 

tends to suggest that soil moisture is preferred as an indicator of antecedent 

conditions over antecedent precipitation (e.g. Brocca et al., 2008).  The primary 

reason for this is because antecedent precipitation on its own gives no 

indication as to the effectiveness of a rain storm.  In the case of the modelling 

carried out in Chapter 5, it is clear that the formulation of the soil moisture time-

series is not suited to flow estimation.  It is highly likely that the generalised soil 

moisture model cannot capture antecedent catchment conditions well enough to 

improve flow estimation.  This problem may be a combination of (1) the model 

not capturing local infiltration characteristics and (2) the model not adequately 

capturing the groundwater regime where flooding can be generated from 

relatively little rainfall.  The soil moisture model drainage coefficient k was 

allowed to vary in order to represent local conditions.  It may be that this does 

not go far enough in capturing the wide variety of soil characteristics necessary 

for accurate soil moisture simulation.  The use of generalised PET within the 

soil moisture model as well as generalised regression equations from the ReFH 

may also contribute further to the problems associated with this approach. 

 Whatever the source of the error in the soil moisture modelling, there is 

one further characteristic of this approach that makes it undesirable.  The 

modelling strategy was designed to take an alternative approach to that of CS, 

as this is being developed elsewhere.  Therefore the creation of a soil moisture 

time-series, that updates itself at every time step is perhaps not in the spirit of 

what was originally envisaged for this project.  Furthermore, the creation of the 

soil moisture time-series used variables that may change in the future (such as 

the Field Capacity) and it is not clear how these can be reasonably adjusted to 

account for future change.  To that end, the further development and use of the 

soil moisture deficit model was reasonably discontinued at this stage. 

 Chapter 5 presented an outline model for the estimation of peak flows, as 

this was felt to be an important first step in frequency curve construction.  For 

the majority of catchments, the model can reasonably be considered to estimate 
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a catchment flow record, albeit with some catchments performing better than 

others.  With the soil moisture time-series not improving flow estimation, some 

catchments still suffer from a distinctly seasonal signal to their temporal error 

plots.  While this could be due to the poor construction of the soil moisture 

model, it is also likely that other effects such as groundwater storage and 

possibly snowmelt affect the results. 

 

8.4.2 Snowmelt Influences 

 The issue of snowmelt has not been dealt with specifically in the 

modelling process.  The development of a snowmelt component to the model is 

recommended as further work however, it would require the sourcing and 

processing of additional datasets. This has not been carried out due to time 

constraints.  Appendix J.1 highlights those catchments which are likely to be 

prone to snowmelt floods.  By definition these are high altitude catchments, 

primarily, but not exclusively, in the North and East of the UK (Watson et al., 

1994).  While this study does not deal with the problem of snowmelt flood 

estimation, it does highlight catchments where snowmelt floods may be a 

problem.  This would allow any flood frequency assessment to be more 

sympathetic to the issues in the specific catchment under investigation. 

 Guidance on snowmelt flood estimation is limited.  This probably reflects 

the fact that the problem only affects a small number of catchments.  However, 

it is not clear how snowmelt influences may impact upon a flood frequency 

estimate.  Because snowmelt influences are not accounted for in any of the 

FEH PCDs, care may be needed when forming pooling groups for a target 

catchment that is prone to snowmelt generated floods.  In terms of estimating 

potential melt values, Hough and Hollis (1998) provides a useful basis for 

snowmelt estimation however, to be of use to this work it is likely that a joint 

probability approach would be required between melt rates and storm rainfall. 

 

8.4.3 Urbanisation Effects 

 The physical processes behind urbanisation effects on hydrology are well 

documented (see Hollis and Lucket, 1976 and Packman, 1980 for two 

examples).  Impervious ground such as paving and concrete can lead to high 
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rates of runoff, thereby exacerbating the effects of flooding.  But while the local 

scale effects are reasonably well understood, it is less clear what effect 

urbanisation has at larger catchment scales. 

 The FEH includes the variable URBEXT as a descriptor which 

characterises the extent of urbanisation in a catchment.  For the majority of 

catchments in this study, URBEXT values are low.  However, there are a small 

number of catchments which have significantly higher URBEXT values (up to 

around 0.4). 

   Typically, the effects of urbanisation cause faster runoff, higher volumes 

of runoff and a reduced sensitivity to antecedent conditions (Robson and Reed, 

1999).  These effects can manifest themselves in a catchments flood record, as 

typically urbanised catchment’s are prone to year round flooding compared to a 

seasonal partitioning of flooding in their counterparts.  This is mainly because 

rainfall effectiveness varies less over an urbanised catchment (or rainfall has 

the same effectiveness all year round).  Figure 8.1 shows two polar plots which 

compare a heavily urbanised catchment and a catchment with very little 

urbanisation.  The catchments are similar in all other respects such as AREA, 

HOSTBFI, PROPWET, SAAR and FARL.  In addition they are also located 

close to each other.  The change in flow seasonality, with flood events spread 

throughout the year in the more urbanised catchment can be clearly seen. 
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a b 

Figure 8.1  Two examples of Polar plots of POT flow seasonality. (a) shows a 

catchment with a high URBEXT value, (b) shows a similar catchment nearby 

with a low URBEXT value. 

 

 With regards to the event based modelling work, the influence of urban 

extent on the residual peak flow model error is likely to be small.  Because the 

coefficients are optimised, it is likely that they can deal with urbanisation effects.  

However, the model coefficients do not vary through time.  Therefore, a 

catchment with a gradually expanding urban area may require some adjustment 

or re-fitting of coefficients in the future. 

With regards to the current model structure, it is not specifically tuned to 

urbanised catchments.  However, highly urbanised catchments are likely to 

experience an almost direct transformation of rainfall to flow, and therefore 

would be well suited to an event based modelling approach with a crude 

estimation of antecedent conditions as developed in this thesis.  Developing a 

specific model for use on a set of these catchments may be a worthwhile 

exercise, as current commercial flood estimation work is heavily focused on 

urban areas to assess the risks to new and existing urban developments.  

However, the current urbanised catchment set is too small to be able to reliably 

infer anything about a suitable model structure for urbanised catchments. 
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8.4.4 Event Based Model Structure 

 The structure of the event based model (either with or without the soil 

moisture estimates) is a simple one, albeit with some complexity in the work 

required to prove its worth.  There are several advantages to keeping the model 

this way, not least because its simplicity allows for a greater understanding of 

how the model works and its performance over a large number of catchments.  

Furthermore, as the model contains few coefficients, it is simple to use for the 

future case, as there are fewer ambiguities about how to alter model 

parameters to represent a future climate.  Perrin et al. (2001) have shown that, 

in many cases, simple models with few parameters can perform as well as, and 

in some cases better than, more complex models with many parameters.  In 

practice, certain models will always perform better under specific sets of 

conditions and using certain model assessment indices and so it is unlikely that 

any single model can ever be considered as the best model to use in any given 

situation.   

 One of the major findings during the development of the event based 

model was that the inclusion of the catchment moisture deficit estimates could 

not be justified due to the relatively poor performance of these indices.  

However, from the error plots contained in Section 5.3.2 there is a clear need to 

try and account for seasonally effective rainfall.  An alternative model structure 

might use a seasonally varying coefficient to modify the antecedent rainfall.  It is 

currently unclear how well a generalised seasonal coefficient would work 

though the seasonal error signal to the plots shown in Chapter 5 provides some 

evidence that a seasonal correction might be suitable.  If a seasonal correction 

was implemented statistically, then there would evidently be a requirement that 

this correction can be altered in the future should the seasonality of rainfall 

(and/or PET) change. 

 The second objective introduced in Section 1.3.1 was to develop a 

methodology for the estimation of peak flow from rainfall.  This work has been 

reported on in Chapters 4 and 5.  While many flow estimation methods currently 

exist, the event based method outlined in Chapter 5 allows for the estimation of 

peak flows in the entire flow record.  This was necessary in order to allow for 

the estimation of the catchment flood frequency curve.  The methodology used 
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is reasonably flexible and allows for a different model specification depending 

upon the available data.  It is acknowledged that some catchments still have 

remaining errors, and therefore further work might be required in order for this 

second objective to have been considered to be fully met for all UK catchments. 

 

8.5 Developing a methodology for the reproduction of catchment flood 

frequency curves 

 This thesis uses the title ‘The Estimation of Flood Frequency Curves by 

Mapping from Rainfall Frequency Curves’.  In practice, the flood frequency 

curve estimation model does this using rainfall frequency data and supporting 

information.  It is a rapid statistical method which can use estimates of rainfall 

from different sources and which with care, can be used to examine future 

projections of change. 
Objective three in Section 1.3.1 was to develop a method suitable for the 

estimation of flood frequency curves.  Chapters 6 and 7 report on the 

development and testing of the flood frequency curve estimation model.   

 

8.5.1  Model Formulation and Structure 

 The frequency curve estimation model formulation follows a similar 

structure to that of the event based model.  The estimation of flow peaks was 

seen as an important first step, prior to the estimation of the flood frequency 

curve.  The use of observed data allows for interesting insights into the rainfall 

to flood transformation and this was partly the reason for choosing this 

approach over other possible methods. 

 An alternative approach could have been to take a rainfall frequency 

curve, and then directly estimate the flood frequency curve through an analysis 

of the extreme value distribution parameters.  As a method, this is simple and is 

conceptually appealing due to the direct frequency curve transformation.  

However, a simple mathematical transformation of distribution parameters may 

hide the intricate details such as the influence of antecedent conditions or the 

problems of flood estimation in groundwater based catchments.  Chapter 2 

highlighted a similar method, known as GRADEX (Beran, 1981) which extends 

the flood frequency curve based on the rainfall frequency curve.  However, the 
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underlying assumptions regarding appropriate distributions may not be valid, 

and the method is not particularly suited to future climate applications. 

 The modelling approach which this research has developed can be 

described as relatively non-complex.  In both the event based estimation and 

the estimation of the flood frequency curve there are only ever a maximum of 

two coefficients in use.  Both the event based model and the frequency curve 

estimation model use a maximum of three terms and this simplified approach 

has been intentional throughout.  However, in any environmental modelling 

approach there is a balance to be struck between the complexity of the model 

and the aim of the modelling project.  Highly parameterised physically based 

models used for flow and flood frequency estimation such as SHETRAN (Ewen 

et al., 2000) can represent a wide variety of conditions and processes, but this 

is at the expense of the complex parameterisation which is often non-trivial to 

implement.  On the other hand, simple models require far less parameterisation 

but often sacrifice site-specific performance in order to do this (Kay et al., 2006). 

 

8.5.2 Robustness and Applicability of Return Period Estimates 

 The estimation of the flood frequency curve in Chapter 6 allows for the 

calculation of selected return period magnitudes.  However, as the flood 

frequency curve estimation method generally uses short records to estimate the 

flood frequency curve for a single site, the ability of the method to estimate high 

return period events is limited. 

 To some extent, the frequency curve estimation method is limited by the 

rainfall records that drive it.  If the estimation of extremes in the rainfall records 

is poor, then the flood frequency curve model cannot be expected to reproduce 

higher return period events with any accuracy.  On the other hand, where the 

fitting of the flood frequency model is poor, it does not matter how good the 

rainfall estimates are. 

 The FEH recommends that to estimate a target return period magnitude, 

the data record used for estimation should be at least five times as long as the 

return period desired (Robson and Reed, 1999).  In the case of the records 

used for the fitting in this study, most are around 30-40 years long.  Using the 
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FEH guidelines, this would allow the estimation of only the 6-8 year return 

period event from a single observed rainfall record.   

 If used in a predictive mode, the flood frequency curve estimation model 

developed in Chapters 6 and 7 can be used to estimate frequency curves when 

used with synthetic rainfall data.  The flood frequency plots shown in Section 

7.6.2 illustrate the uncertainty in the single site flood frequency curve.  However, 

the use of multiple synthetic rainfall time-series for frequency curve estimation 

allows for a more robust estimate of the frequency curve and its associated 

uncertainty, similar to the advantage gained from the use of continuous 

simulation models.  Therefore the estimation of a target return period can be 

extended beyond the 5x record length rule of the FEH, as multiple realisations 

of the flood frequency curve are produced which to some extent reduce the 

uncertainty in the flood frequency estimate. 

 Flood frequency estimation for floods in excess of the 100 year return 

period is challenging (Macdonald et al., 2006).  Even if the most rigorous 

approach is taken, all relevant data is collected and the analysis is appropriate, 

there is still a significant amount of uncertainty involved.  The estimation of a 

design event for which there is no comparable entry in the observed record is 

evidently problematic and will inevitably involve some degree of uncertainty. 

 This being the case, it is clear that the flood frequency estimates 

developed here will not be immune to this uncertainty.  The results from the 

catchments selected for a future flood frequency assessment (see Section 7.7) 

all tend to show an increase in the median, 10th and 90th percentile bounds 

under the future case compared to the current and all show increases in the 

modelled flood frequency curves.  Furthermore, the distance between the 10th 

and 90th percentile bounds increases under the future scenario.  This is in 

agreement with other published work such as that of Arnell (2003) which found 

that streamflow values under future conditions could take on an increased 

range and that the climate change signal was not always easy to distinguish 

from decadal variability. 

 Generally, the results from Section 7.7 compare well with other published 

work.  Reynard et al. (2001) considered future changes to the Thames and 

Severn around the 2050s.  Their results suggested increases in the peak daily 
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discharge of between 2 and 45 percent for all return periods up to 50 years.  

Similar results were found by Kay et al. (2006b) when looking at a larger 

catchment set, although interestingly in some locations (notably the South east 

of England) flood magnitudes for specific return periods decreased.  It should 

be noted that agreement with other published research on its own is not an 

indication that the future change identified is probable.  The changes identified 

can be considered as best estimates, and need to be considered in light of the 

stated uncertainties. 

 In terms of quantifying the error associated with the modelled estimates, 

Chapter 7 provided the results of assessing the percentage difference between 

the observed and modelled flood frequency curve.  This gives a reasonable 

indication of how well the model can estimate one selected return period.  This 

index was chosen as it is reasonably easy to interpret its implications, unlike the 

RMS error which is calculated over several return periods and normalised by 

QMED.  While it might seem desirable for this percentage error to be minimised 

there is a danger of model over fitting if the optimisation is too tight.  

Specifically, it should be remembered from Chapter 2 that the potential error in 

the observed discharge record could be as much as ten to fifteen percent.  

Therefore an error of this magnitude between the observed and modelled return 

period estimates is not significant.  From a practical perspective, there are 

clearly catchments that are unsuited to frequency curve estimation using the 

method developed in this thesis due to the size of the errors between their 

observed and modelled return period estimates.  For the rest of the catchment 

set, the acceptable error between observed and modelled estimates will likely 

depend on the user and the application. 

 One further aspect of uncertainty within flood frequency estimation which 

should not be overlooked is that of stationarity.  For a traditional statistical flood 

frequency assessment, it is assumed that the observed series are stationary, 

that is, they are stable throughout time.  It is recommended that non-stationary 

series are not used within traditional statistical analyses.  This problem is 

significant within flood frequency analysis as while practitioners may wish to use 

long time series for robust return period estimation, the longer the time series, 

the greater the chance that that it is non-stationary.  Recently, it has been noted 
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that in several areas, stationarity is no longer a viable assumption to make with 

regards to some environmental records (Milly et al., 2008).  For the frequency 

curve estimation model developed as part of this work, stationarity has been 

assumed, mainly to make the frequency curve estimation process as simple as 

possible.  However, it likely that this assumption is not viable in all catchments 

and therefore the work may require further development in order for robust 

frequency curve estimation to be ahcieved.  Villarina et al. (2009) recognise 

land use change as a cause of non-stationarity in observed AMAX records and 

propose a method to model time-series under non-stationary conditions.  

Cunderlik and Burn (2003) and Leclerc and Ourda (2007) both advocate the 

use of time-dependent distribution parameters for flood quantile estimation.  

This recognises the change in distribution parameterisation throughout time 

and, as an approach, could reasonably be used with the flood frequency curve 

estimation model developed as part of this work.   

 

8.5.3 Improving Frequency Curve Estimates 

 One potential way of improving flood frequency curve estimates is by the 

inclusion of historical estimates of extreme floods.  While there are several uses 

for this type of work, there could be significant benefits to a frequency analysis 

by including historic data.  In using historic data, care needs to be taken with 

frequency analysis as it may be that not all significant floods are reported.  

However, where instrumental records are short, there are clear benefits to 

improving frequency analysis by adding data obtained from other sources. 

 McEwen (1987) investigated the use of historic rainfall data to help 

extend the flood record of the upper Dee in Aberdeenshire.  The complication in 

this work is in trying to develop a link between the recurrence interval of rainfall 

and the flow that it generates.  Historical flood evidence can come in many 

forms, such as estate and community records, bridge marks and documentary 

evidence.  However, the incorporation of historic floods peaks into a modern 

flood frequency assessment is difficult and should not be undertaken lightly.  

The frequency analysis procedure that includes historic data should be seen as 

augmenting the modern approach which uses instrumental records.  However, 

the benefits can be significant and in the UK guidance on the use of historic 
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flood data was published by Bayliss and Reed (2001).  MacDonald et al. (2006) 

recommend the use of historic data where return period estimates in excess of 

100 years are to be assessed.  The incorporation of historic data within the 

flood frequency curve estimation model is only worth considering if rainfall is 

available as well.  Given that rainfall records tend to be more extensive than 

flow records, there is some potential for more direct use of the frequency curve 

estimation model in extending the flow series.   

 

8.5.4 Model Use and Limitations 

 While the flood frequency curve estimation model has been developed 

with future applications in mind, it can provide a useful way of looking at current 

variability within the flood frequency curve.  The ability to work with synthetic 

rainfall time-series means that, where the observed flood frequency curve can 

be adequately estimated, it is possible to develop more robust estimates of 

current flood frequency.  This advantage is similar to that provided by 

continuous simulation (CS), where long climate time series can be used to 

develop more robust estimates of flood frequency.  The advantage of the 

frequency curve simulation model is that it does not require the extensive 

parameterisation and computational complexity and time of CS modelling, as it 

focuses on developing estimates of instantaneous flood peaks rather than the 

whole flow series. 

 With regards to the approach detailed in this thesis, the flood frequency 

estimation method clearly has some limitations.  Catchment types not suited to 

the approach have been clearly identified; these tend to be permeable 

catchments, where the response to rainfall is severely dampened.  In particular 

this affects the South of England, where chalk and limestone geology is 

abundant.  Furthermore, it is clear that dry catchments do not perform 

particularly well, as shown by the relationship between model performance and 

the PROPWET catchment descriptor.  However, most other approaches, 

including CS, are poor in representing flood peaks in these types of catchments 

so this is not a problem unique to this approach. 
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8.5.5 Using Principal Catchment Descriptors (PCDs) to assess 

Performance 

 One of the more difficult issues that this thesis has approached is that of 

how model performance may relate to catchment characteristics, as well as how 

the coefficient structure may relate to catchment characteristics.  Ideally, 

coefficient values would relate to catchment physical characteristics and model 

performance would also be related to catchment type.  However, this is not the 

case.  The reasons for this may vary.  Firstly, it is perhaps unrealistic to expect 

that any single catchment descriptor would control model performance, where 

many interacting factors may be responsible for the flood regime.  In terms of 

identifying these factors this is perhaps further complicated as their relative 

importance may change between catchments.  Furthermore, physically similar 

catchments may not prove to be hydrologically similar.  The PCDs used in this 

study provide a limited description of the catchment hydrology.  Oudin et al 

(2010) describe how PCD’s often do not adequately characterise the 

underground catchment properties and therefore do not fully represent 

catchment hydrological behaviour.  Their study compared catchment physical 

descriptors with catchment behaviour from hydrological modelling, and only in 

60% of the catchments studied did the two approaches agree with each other.  

This suggests that there may be limits to how well PCDs can be used to 

characterise catchment hydrology.  In work comparing different methods of 

regionalisation, Merz and Bloschl (2005) suggest that spatial proximity is a 

significantly better predictor of regional flood frequency than catchment 

attributes.  While their study was carried out on Austrian catchments, the results 

suggest that an alternative coefficient estimation method based on spatial 

proximity may be useful to the model developed within this thesis. 

 The third objective set out in Section 1.3.1 was to develop a method 

suitable for the estimation of the flood frequency curve.  This work builds 

considerably on that reported on in Chapters 1 to 5 and is presented in 

Chapters 6 and 7.  It is acknowledged that there are some weaknesses in the 

developed method, and these are stated within the chapters mentioned.  

Therefore, it is considered that this third objective has been partially met, 

despite the inability of the model to deal with certain situations. 
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8.6 Using the Method for Future Flood Frequency Estimation 

 The question of how fluvial flood frequency may alter in the future is a 

difficult one to address.  There is considerable uncertainty in how the climate 

will evolve (Prudhomme et al., 2003).  There is uncertainty in how catchments 

might change, therefore affecting the physical processes that govern runoff and 

ultimately affect the flood frequency curve.   

 The current frequency curve estimation model requires little in the way of 

alteration for use under a future environment; this is the main attraction of using 

the method.  However, care must be exercised in the use of the model under 

certain futures, where it may not be appropriate to use the optimised 

coefficients under a radically different climate.   

 

8.6.1 Climate Scenarios For Flood Frequency Estimation 

 This work has made use of a single source of future climate data; the 

UKCP weather generator.  This product was chosen mainly because of its 

availability, but also because of its good representation of the current climate.  

In contrast, the raw RCM data shows a reasonably poor representation of the 

current climate in its control climate.  This being the case, it is clear that little 

can be gained by using poor climate estimates and so the RCM data was not 

used in any flood frequency curve estimation work.  In practice, the direct use of 

raw RCM data for catchment modelling is generally discouraged without some 

sort of bias-correction.  Kay et al. (2006) demonstrate a simple method to 

estimate catchment averaged rainfall using the ratio between RCM grid rainfall 

and SAAR on a 1km grid.  Were the RCM rainfall assessed in this study to be 

used any further it is likely that an approach similar to that of Kay et al. (2006) 

could be used.   However, the UKCP user guide acknowledges that the RCM 

data contains some model bias with respect to historical observations and it is 

provided with caveats attached (UKCP, 2011).  

 In terms of processing the RCM data to make it more suitable for use, 

one of a number of methods could be used.  One of the simplest methods is 

that of bias correction.  With this technique, a correction factor is calculated 

between some observed dataset and the RCM output, usually on a month by 

month basis.  This same correction factor would normally then be applied to the 
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RCM output in the future (Hay et al., 2002).  This approach makes the 

assumption that in order to apply the bias corrections in the future the RCM 

error structure will essentially be the same and this may not be true.   

 An alternative and slightly more sophisticated approach is called quantile 

correction, where the aim is to shift the distribution of the RCM output to match 

with the distribution of the observed.  Again, this still suffers from the problem of 

how valid any corrections might be in the future (Wood et al., 2004).  

 

8.6.2 Predictive Ability of the Model when working with future scenarios 

 Future scenarios of climate used within this thesis can be considered as 

multiple realisations of how the climate may evolve in the future.  The climate 

scenarios used in Chapter 7 do not encompass all of the potential climate 

model and emissions variability possible in the future.  Nevertheless, it is useful 

to consider how well the modelling strategy developed in Chapters 4 to 7 is able 

to provide future estimates of the flood frequency curve. 

 The question of how flood frequency may change in the future is an 

inherently difficult one to answer, mainly because it is not possible to assess 

projected future changes in flood behaviour against any observed data.  Many 

studies tend to focus on the uncertainty in climate scenarios (e.g. Fowler and 

Wilby, 2010; Bell et al., 2007b).  It is clear that if there is an important link 

between climate and flood frequency, then any error associated with the 

projected climate will be propagated into future projections of flood frequency.  

Estimates of future climates are continually evolving, therefore it is highly likely 

that the best estimates of today will be superseded as models are run at higher 

resolutions and process understanding improves.  As an example, all current 

RCMs exhibit poor skill in reproducing extreme summer rainfall; this has been 

attributed to their poor representation of convective rainfall events (Fowler et al., 

2005) as these convective systems tend to have a smaller footprint than the 

RCMs current resolution (~25-50 km).  Therefore, the impact on any flood 

frequency assessment is that the results need to be interpreted with caution, 

especially where flooding occurs during the summer. 

 While many studies look at the effect of the future climate estimates on 

an impact assessment, fewer studies compare the uncertainties in the 
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hydrological model itself.  Traditional methodologies for assessing future 

hydrological change often use a rainfall-runoff model calibrated for a baseline 

period against some observed flow data.  This same model can then be used 

with a future climate to assess future projected changes.  However, this method 

assumes that the model parameterisation stays the same between the baseline 

and future periods.  Where any calibration takes place, it is clear that the 

resulting parameter set is then influenced by the hydroclimatology.  The 

question then arises as to how these parameters can be used in the future if the 

hydroclimatology changes?  This problem is common to many modelling 

studies, including the work carried out here.  The work in Chapter 7 attempted 

to address this issue by applying the coefficient sets estimated through 

optimisation in Chapter 6 to a set of unused data spanning a wider range of 

hydroclimatological variability.  This work highlighted the clear need to do this 

before a catchment can be used with the future scenarios and modelling 

method outlined in the thesis.  In two cases, where original fits were good, there 

was a considerable overestimation of the empirical frequency curve when the 

frequency curve estimation models were used with the POT data.  The reasons 

for this are unclear.  Merz et al. (2011) look at the problem of assuming time 

invariant parameters when modelling baseline and future hydrology.  They 

found trends in parameter time-series when estimated from consecutive short 

baseline records.  With regards to the plots in Figure 7.3 of this thesis 

concerning the use of the POT data, it could be that there was a lack of 

variability in the original flood records and this then led to the overestimation of 

the empirical frequency curves in two cases when using the POT data.  

Whatever, the reason for the mismatch between the fitting and validation of the 

frequency curve estimation model, one clear message from the work is that a 

second assessment (in this case the assessment on unseen POT data) is 

important if any confidence is to be placed in the future projection work.  

Understanding how the model behaves on different sets of data as well as 

understanding coefficient stability gives confidence in the modelling procedure; 

these tests are recommended by Wilby (2005) in a study looking at model 

parameter stability for water resources.  
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 The development of the flood frequency curve estimation model was 

specifically focused on providing a rapid means of assessing changes to future 

flood frequency based on changes to future climate.  While this work has not 

carried out in depth analyses of country-wide changes to future flood frequency, 

it has provided a model structure and method for doing so.  The last objective 

set out in Chapter 1 was to develop a method suitable for developing 

projections of future change.  It is considered that this objective has also been 

partly met, as there are circumstances where the current modelling 

methodology will not work.   

 

8.7 Suggestions for Further Development of this Work 

 The development of this model has thrown up several interesting 

avenues for future research.  Here, some selected possibilities are presented.  

These have been chosen specifically because it is felt they would enhance the 

practical application of the flood frequency curve estimation method. 

 

8.7.1  Extending Frequency Curve Estimates to Higher Return 

Periods 

 The design of many engineering structures for flood risk management 

requires estimates of flood frequency typically in excess of the 100 year return 

period.  It is acknowledged that the frequency curve estimation method 

presented in this thesis does not achieve this, as it currently estimates a single 

site frequency curve. 

 With this in mind, the development of a method suitable for estimating 

high return period events would seem a worthwhile piece of work.  Within 

traditional methodologies such as the FEH statistical method, the pooling of 

hydrologically similar catchments is used to develop an extended flood 

frequency curve.  Pooling allows the creation of a time-series longer than the 

original target site which is better suited to the robust estimation of higher return 

period events. 

 With regards to the frequency curve estimation method outlined in this 

thesis, further work would need to identify how catchments could be pooled.  

While the hydrological similarity of catchments has been identified as a suitable 
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method for pooling it would need to be shown that this was compatible with the 

flow estimation coefficients that are used in the frequency curve estimation 

model.  To further develop this, it may be appropriate to identify groups of 

catchments with similar hydrological characteristics and similar coefficient 

values.  This may allow the use of a single set of coefficients for a small group 

of catchments.  Therefore, if this was found to be the case, it might be possible 

to develop a long flow series using a set of catchments. 

 This approach may only develop the method for estimating current return 

period values.  Pooling is often used for short records because short records do 

not exhibit the full range of hydrological variability necessary for robust 

frequency estimation.  An alternative approach to the estimation of high-return 

period events might be to use long-term synthetic rainfall records which can 

then be run through the frequency curve estimation model.  In essence this 

approach would be similar to CS, albeit without continual accounting of river 

flow and soil moisture etc.  Evidently the ability of the future climate scenarios to 

represent extreme rainfall is still a constraint on how well high return period 

flood events can be modelled.   

 The study is primarily forward looking in its use of data.  While 

considerable use of instrumental records is made, the work is designed to try 

and develop a method which predicts future flood frequency curves.  However, 

an alternative method might be to use the method and data in a historical 

analysis.  There are several possibilities with regards to this idea.  Several 

authors recognise the benefit of including historical data in flood frequency 

analysis (for example see McEwen (1987) and Black and Fadipe (2009)).  It can 

give insights into flood clustering as well as improve frequency estimates 

through the inclusion of a greater number of large flow peaks.  With information 

on longer term rainfall it would be possible to include these historic flood data in 

an analysis such as the one which has been carried out as part of this work.  

The use of historic flood data to improve flood frequency estimates is discussed 

further in Section 8.5.3. 

Assuming that a method for peak flow estimation has been developed for 

a catchment, it might be possible to reconstruct the peak flow magnitude, given 

some information on the storm that generated it.  This could be used either as 
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an estimate of the peak flow, or as a check on estimates developed from other 

documentary sources.  It may also be possible to reverse the method to take a 

discharge measurement and then estimate the magnitude of the rainfall event 

that caused it.  Given that rainfall data tend to be more abundant than flow data, 

there is a significant potential for the use of the model in this respect. 

 

8.7.2 Developing the Method for Ungauged Catchment Use 

 To some extent, this problem is linked to the work described in Section 

8.8.1 on the estimation of higher return period events.  A pooling approach 

allows the estimation of flow in ungauged catchments as long as the pooling 

group and the target catchment can be considered homogenous.  As previously 

described, the problem with applying a pooling method to the modelling 

approach here is that flow estimation coefficients can vary between 

hydrologically similar catchments. 

 Therefore, the estimation of flood frequency curves in the ungauged 

catchment requires some development to work with the modelling method 

presented here.  In particular it would be desirable to relate model coefficients 

to catchment characteristics.  This is the approach that the parameter 

generalised g2g model takes (Kay et al., 2006).  However, with regards to this 

work it is clear from the work on donor coefficient estimation in Section 7.4.2 

that there would be a loss of performance in the model with the current 

coefficient estimation strategy.  Suggested further work could take one of two 

approaches.  The first would be to re-visit the optimisation procedure in order to 

force the coefficients to be better linked to catchment characteristics.  If the 

current optimisation routine finds many local optima then this approach may 

prove to be useful.  Secondly, further work could be done on the estimation of 

the donor coefficient.  This work might consider a much wider range of variables 

that characterise catchment hydrological functioning.  Variables such as 

seasonality statistics, matching percentages and other non-traditional measures 

of hydrological functioning may prove useful. 

 

 



Chapter 8: Discussion and Suggestions for Further Work 

 

237 

 

8.7.3 Improving Frequency Curve Estimation in High HOSTBFI 

Catchments 

 The current flood frequency curve estimation method does not work 

particularly well on dry catchments, as well as those with high HOSTBFI values.  

The reasons for this and an assessment of the impact on the method can be 

found in Section 6.4.2.  Groundwater flooding as a phenomenon has physical 

causes which are considerably different from typical fluvial flooding in surface 

water driven catchments.  Therefore to adequately characterise the problem of 

groundwater flooding it is likely that there would be a need for an alternative 

approach to that which is taken for the work presented in this thesis. 

 As a suggested method, it may be useful to characterise rainfall on much 

longer time-scales than the method currently uses.  An initial analysis of flow 

and rainfall regimes may help identify these time-scales with more confidence 

but it may be in the region of 3 to 6 months (or longer) of rainfall which is 

required.  Furthermore, from the work carried out here it is clear that storm 

rainfall has considerably less influence on flood generation in groundwater 

catchments compared to their surface water counterparts.  Therefore it is also 

likely that new flow estimation formula would be required compared to the 

current method. 

 While continuous simulation methods are often presented as the most 

appropriate method for dealing with groundwater flooding, there is no reason 

why an appropriately specified event-based model cannot deal with the 

problem.  Compared to CS, event based models deal with time-varying 

hydrology in a different way however, as long as this method is appropriate it 

should be possible to characterise groundwater flooding.  The use of 

seasonality information may prove to be of considerable use in this approach. 

 

8.7.4 Extension of the Climate Change Impact Assessment Work 

 This thesis has primarily dealt with developing and testing a model that 

could be used to estimate the flood frequency curve.  The work considering 

future applications proves the use of the model, but it does not provide an in 

depth analysis of climate change in the UK.  Reasons for not doing so are 

primarily due to time constraints. 
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 Future work in this area would benefit from looking at a much wider 

selection of catchments.  It would be sensible to select these catchments based 

upon performance measures already outlined in this thesis.  A group of around 

150-200 catchments with a good geographical distribution could reasonably be 

selected.  In conjunction, the use of future climate scenarios would need to 

consider a wider range of emissions scenarios, as only medium emissions have 

been considered as part of this work.  If these two additional bits of work can be 

completed, then it would be possible to develop a climate impact assessment of 

the UK which can deal with some of the uncertainty currently inherent in the use 

of climate scenarios.  On a practical level, this work could also be compared 

with that of the g2g model outputs. 

 

8.7.5 Extension of the Method to Other Areas 

 In some respects the geographical area covered by the model has 

benefitted its development.  The UK exhibits a reasonably wide variety of 

climatic conditions and hydrological characteristics.  Therefore, in terms of 

understanding how this model works, the variability over the country has 

provided some interesting insights. 

 However, this variability perhaps makes the modelling task harder, 

particularly when only one model formulation is applied to catchments with 

widely varying hydrological conditions.  If the modelling technique applied here 

was transferred to an area that exhibits homogenous hydrological conditions, 

then it may be that the modelling process would be simpler and more 

successful.  This would likely require a different specification of model which 

better represents catchment response to the climate.  It is inevitable that a 

single model will not perform as well as several different models which have 

been better specified for a particular set of circumstances.  This has been 

recognised by the authors of comparative model studies such as Perrin et al. 

(2001). 

 Were the modelling technique developed in this thesis applied 

elsewhere, it would require reasonable records for fitting and assessment.  The 

UK is blessed with reasonably good rainfall and flow records, therefore this type 

of approach can be implemented with relative ease.  It would not be easily 
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applied in cases where only short flow records exist (or none at all) and in cases 

where only short flow records exist it may be more suited to the use of CS 

approaches which could be calibrated on reasonably short flow time series 

compared to this method. 

 However, given an understanding of the hydrology and catchment 

functioning, it would be possible to prescribe an event based model that 

adequately captures the catchment response.  The difficulty in using this for 

extremes lies in the uncertainty of the estimates due to limited model 

assessment. 
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 Conclusions Chapter 9:

9.1 Summary of key findings 

The key findings resulting from the research are listed below, with elaboration of 

these points in the following sections of this chapter: 

 Modelling of peak flows using daily data requires strict 

independence criteria in the selection of the modelled flows 

 

 There is a clear east-west distinction in rainfall and flow seasonality 

 

 Simple antecedent rainfall accounting has shown to be as useful as 

quasi-process based soil moisture modelling. 

 

 Multiple weather generator outputs can be used for flood frequency 

assessment. 

 

 The value of the flood frequency curve estimation model lies in its 

simplicity, allowing for a rapid assessment of future flood 

frequency. 

 

9.2 Modelling peak flows using daily data requires strict independence 

criteria in the selection of the modelled flows. 

The selection of peak flows is an essential early step in the flood 

frequency assessment process.  Certain AMAX series (especially in lowland, 

groundwater dominated catchments) may contain non-flood events due to the 

typical temporal distribution of peak flows.  These AMAX series then need to be 

scrutinised for non-flood events.  Similarly, in POT series there is a need to 

ensure independence between flood events.   

The early peak flow modelling work (detailed in Chapter 5) required a link 

between a Peak Over Threshold flow event and its generating rainfall event.  

This link was identified in Chapter 3 as being essential and Sections 3.3.3 and 

3.3.4 introduce the concept of independence criteria for flood frequency 

estimation and the peak flow modelling work detailed in this thesis. 
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The work detailed in Chapter 3 provided a key finding that was to be 

incorporated throughout the peak flow modelling work.  This was that strict 

independence criteria are required when modelling peak flow data using daily 

rainfall. 

This independence criterion requires that only one peak flow can be 

modelled in any single day.  If two events were modelled in a single day, using 

daily storm rainfall would require that the same day’s storm rainfall is 

attributable to both flow events (which may be of considerably different 

magnitude).  This then creates a problem for peak flow modelling using rainfall 

data as the primary factor in flow generation.  This problem only exists with POT 

series, as AMAX series implicitly remove the chance of two events occurring on 

the same day due to the criteria that an AMAX selection imposes. 

The investigations into independence criteria recommended that where 

two peak flow events occurred on the same day, that only the larger of the two 

are used in peak flow modelling.  This led to the removal of several events from 

the original POT series, detailed in Section 3.3.4.  

 

9.3 There is a clear east-west distinction in rainfall and flow seasonality 

Chapter 4 detailed work undertaken to consider the seasonality of 

extreme rainfall and flow events across the United Kingdom.  Whilst this work 

has been considered by others such as Macdonald et al. (2010) and Black and 

Werritty (1997), little work has been published on rainfall and flow seasonality 

across the whole of the UK. 

The seasonality work detailed within this thesis not only confirmed the 

general findings of the previously mentioned studies, but it also provided a 

timely updated (both spatially and temporally) to previous work. 

Both the dispersion and mean day statistics of rainfall and flow were 

assessed, alongside polar plots of individual catchments.  Rainfall statistics 

highlighted the increasing dispersion of extreme rainfall events as the analyses 

moved from west to east across the UK.  This increasing dispersion has been 

attributed to the higher rainfall event frequencies observed in eastern 

catchments in summer compared to their western counterparts (Black and 

Werritty, 1997). 
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The analysis of flood statistics revealed a mixed pattern compared to 

rainfall.  To some extent, rainfall and flow seasonality statistics are linked.  

However, there are several complicating factors, mainly attributable to 

catchment characteristics.  Generally speaking, western catchments tend to 

show low levels of dispersion due to the predominantly westerly weather 

systems that cross them combined with generally wet, upland catchment 

characteristics.  However, some groupings of eastern catchments also show 

low levels of dispersion due to the flooding mechanisms that operate within 

them.  An example of this are the low levels of dispersion found in several east 

Anglian catchments as groundwater flooding tends to cluster in time due to 

water table influences.  

 

9.4 Simple antecedent rainfall accounting has shown to be as useful as 

quasi-process based soil moisture modelling. 

The estimation of antecedent conditions for peak flow modelling has 

been a challenging aspect of the research presented within this thesis.  

Antecedent condition estimation were highlighted as being important early on, 

and there is a large body of research on various aspects of antecedence 

ranging from hydrological modelling to more detailed soil moisture modelling 

studies. 

The approach taken within this thesis uses a simple soil moisture 

accounting model.  It is suggested that this modelling approach can be thought 

of as a quasi-process based model, as it attempts to model physical processes 

in a simple way.  The model uses physical descriptors such as rooting depth 

and field capacity, but estimates these from empiricial equations so they are not 

truly physically realistic estimates at point of interest.   

The soil moisture accounting model used within this thesis represents 

different soil types by varying statistics such as field capacity and rooting depth.  

These statistics do not fully represent soil conditions and along with the 

generalised estimates of PET are the suggested reasons for why the soil 

moisture model estimates do no better in peak flow estimation than the simple 

antecedent rainfall accounting method.   



Chapter 9: Conclusions 

 

243 

 

In order to better model the soil column, details such saturated hydraulic 

conductivity values, soil column types and depths and more detailed climatic 

data would likely be of use.  These are typically used in more detailed soil 

moisture models which attempt to model soil moisture through the use of more 

direct physical equations.  However, gaining the data and physical lithographic 

information to do this is not straightforward and is one reason why this approach 

was never utilised as a method for antecedent accounting.   

 

9.5 Multiple weather generator outputs can be used for flood frequency 

assessment. 

To develop scenarios of future flood frequency first requires some estimates of 

future climate.  This study has made extensive use of the United Kingdom 

Climate Impacts Programme (UKCP) weather generator. 

Typical future scenario inputs for hydrological modelling use either RCM or WG 

outputs.  This research has shown the benefit of using the probabilistic nature of 

the WG output to develop multiple estimates of the flood frequency curve; 

thereby giving a greater understanding of flood frequency under a stationary 

climate (the weather generator does not consider any observed trends in 

outputs). 

Many other studies make use of only one or two climate scenarios.  However, 

from a practical perspective it is important to consider all possible future 

scenarios, especially if it is not possible to attach a probability to a specific 

scenario.  In practice, this allows decision makers to have a fuller understanding 

of the possible range of scenarios which could happen, rather than presenting 

them with only one or two scenarios which give a misleading interpretation of 

future possibilities. 

The use of the weather generator has been key in this respect, as it is simple to 

operate and can rapidly output many different scenarios.  Extending the 

analysis to a wider range of catchments using weather generator outputs has 

been identified as a key piece of future work. 
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9.6 The value of the flood frequency curve estimation model lies in its 

simplicity, allowing for a rapid estimation of future flood frequency 

curves. 

It is difficult to categorise the type of approach which has been detailed within 

this thesis in relation to typical flood estimation methodologies.  It is a rapid 

statistical method which employs aspects of event based simulation and 

statistical flood frequency estimation to arrive at a final estimate of the flood 

frequency curve. 

The value of the method lies in its simplicity.  The number of transfer 

coefficients used is kept to a minimum and the estimation of peak flow uses a 

small number of variables. 

Not only does this mean that the method has relatively low computational 

demands, it also allows it to be applied to different WG or climate model outputs 

in the future.  The current simplistic nature of the method provides a robust 

basis for the future development of other model aspects such as snowmelt 

flooding or flooding from groundwater, two areas identified as being important in 

flood generation in some parts of the UK. 

 

9.7 Overview of Thesis Achievements 

This thesis has considered several aspects of contemporary flood hydrology.  

While advances in technology and knowledge have helped develop modelling 

techniques, the use of flood peak data is still a challenging issue and therefore 

this issue forms the basis for developing the work within this thesis. 

 Seasonality is an aspect of flood estimation that does not receive as 

much attention as it may be due.  As some current climate change predictions 

suggest an alteration to the seasonality of rainfall, it may be just as important to 

understand how flood seasonality may alter, particularly with regards to 

agricultural and construction activities.  This thesis has provided a basis for 

developing an understanding of the seasonal aspects of flooding. 

 The frequency curve model developed within the thesis is as much a 

demonstration of the link between rainfall and flooding as it is a practical tool.  

The ability to link rainfall and flood frequency opens many possibilities for 
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practical applications and the frequency curve model specified within this thesis 

can be adapted to suit a wide range of circumstances. 

 Finally, one of the key concerns within society in general, is that of how 

climate change may impact upon the way in which we live.  Through extensive 

testing, this thesis has shown the possibilities for using the frequency curve 

estimation model with future scenarios of climate. 

 

9.8 Summary 

The use of rainfall as a tool in assessing flood frequency curves has 

been shown to be of value and offers considerable possibilities in areas where 

gauging station data are limited. 
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Appendix A.1 Summary Maps of Catchment Properties  

 

The distribution of annual average rainfall across the UK as calculated from the 

MO 5km gridded dataset. 
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Appendix A.2 Summary Maps of Catchment Properties  

 

Catchment HOSTBFI values as taken from the FEH catchment descriptor set. 
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Appendix A.3 Summary Maps of Catchment Properties-PROPWET 

 

Catchment PROPWET values as taken from the FEH catchment descriptor set. 
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Appendix B.1 Boxplots of Hourly Stations 
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Boxplots showing the percentage of a storm captured during a specific window.  

Eskadalemuir and Heathrow are shown as examples in Chapter 3.  The 

boxplots show the smallest observation (lower bar), lower quartile (bottom of 

box), median (line through box), upper quartile (top of box) and largest 

observation (upper bar).  Outliers are points that fall more than 1.5 times the 

interquartile range above the third quartile or below the first quartile and are 

indicated individually. 
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Appendix C.1 Individual Station Discretisation Values 

 

Site Factor 

Abbotsinch 1.15 

Aldergrove 1.14 

Carlisle 1.14 

Dyce 1.14 

Elmdon 1.15 

Eskdalemuir 1.12 

Heathrow 1.13 

Hemsby 1.16 

Hillsborough 1.14 

Leeming 1.13 

Leuchars 1.20 

Manston 1.19 

Mawgan 1.10 

Ringway 1.10 

Stornoway 1.16 

Tulloch 1.16 

Turnhouse  1.16 

Yeovilton 1.10 

 

The 18 hourly gauges used in the rainfall study and their associated mean 

correction factors. 
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Appendix D.1 Schematic Of Model Fitting 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This schematic of model fitting outlines the process used to derive the modelled 

flood frequency curve.  The process is described in more detail in Chapter 6. 
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Appendix E.1 Location of Selected Catchments Used for the Analysis in 

Chapter 6 and Chapter 7 

 

The location of selected catchments used to illustrate the validation work in 

Chapter 7 and the model sensitivity work in Chapter 6. 

 

16003 

84003 

53005 

71001 

25005 

25001 

16003 Ruchill Water 

25001 Tees 

25005 Leven 

53005 Midford 

71001 Ribble 

84003 Clyde 
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Appendix F.1  Further Examples of Comparative plots between the model 

fitting work and POT assessment work carried out in Section  

  

  

  



Appendices 

 

277 

 

  

  

  



Appendices 

 

278 

 

  

  

Further examples of comparative plots between the model fitting carried out in 

Chapter 6 (left) and the POT testing in Chapter 7 (right).  In both cases red 

represents the observed data, blue represents the modelled data.  Distributions 

are not fitted to the POT data for reasons outlined in Chapter 7. 
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Appendix G.1 Comparative Catchment Plots for the Donor Estimation 

Method 
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Comparative plots between the donor estimation method (left) and the original 

fit from Chapter 6 (right).  Red represents the observed data and fitted flood 

frequency curve.  Blue represents the modeled data and flood frequency curve. 

 

 

 



Appendices 

 

281 

 

Appendix H.1  ARF Relationship Coefficients  

 

Area A (km2) a B 

A≤20 0.40-0.0208 ln (4.6-ln(A)) 0.0394 A0.364 

20 < A < 100 0.40-0.00382(4.6-ln(A))2 0.0394 A0.364 

100 ≤ A <500 0.40-0.00382(4.6-ln(A))2 0.0627 A0.254 

500 ≤ A <1000 0.40-0.0208 ln(ln(A)-4.6) 0.0627 A0.254 

1000 ≤ A 0.40-0.0208 ln(ln(A)-4.6) 0.1050 A0.180 

 

A and B coefficient estimation for the ARF estimation.  These values are taken 

from the FEH Volume 2, ‘Rainfall Frequency Analysis’. 
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Appendix I.1 Raw Values for future changes 

 Current Future 

Station 10 50 90 10 50 90 

Ruchill Water 201 219 237 205 233 274 

Tees 561 614 656 572 631 725 

Leven 68 78 94 71 83 103 

Midford Brook 41 46 52 43 49 63 

Ribble 691 758 839 700 802 975 

Clyde 357 385 431 360 413 476 

Percentile Values for the 10 year AMAX flood as calculated from Baseline and 

Future Estimated Flood Frequency Curves.  Percentile values are the same as 

for the individual plots (10th, 50th and 90th percentiles) and have been rounded 

to the nearest cumec.  
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Appendix J.1 Snowmelt Flood Prone Catchments 

 

Snowmelt flood prone catchments within the UK.  These catchments have been 

selected based on their characteristics and criteria discussed in Chapter 8. 
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Appendix K.1: Catchments referred to within this Thesis 

 

Selected catchments referred to within this Thesis.  Catchments are referenced 

by their Gauge ID. 

 


