Sensor Web Geoprocessing
on the Grid

Aengus Robert McCullough BSc. (Hons.)

Thesis Submitted for the Degree of

Doctor of Philosophy

Newcastle
<y Lniversity

School of Civil Engineering & Geosciences

2011

Abstract

Abstract

Recent standardisation initiatives in the fields of grid computing and geospatial
sensor middleware provide an exciting opportunity for the composition of large
scale geospatial monitoring and prediction systems from existing components.
Sensor middleware standards are paving the way for the emerging sensor web
which is envisioned to make millions of geospatial sensors and their data
publicly accessible by providing discovery, task and query functionality over the
internet. In a similar fashion, concurrent development is taking place in the field
of grid computing whereby the virtualisation of computational and data storage
resources using middleware abstraction provides a framework to share
computing resources. Sensor web and grid computing share a common vision
of world-wide connectivity and in their current form they are both realised using
web services as the underlying technological framework. The integration of
sensor web and grid computing middleware using open standards is expected
to facilitate interoperability and scalability in near real-time geoprocessing

systems.

The aim of this thesis is to develop an appropriate conceptual and practical
framework in which open standards in grid computing, sensor web and
geospatial web services can be combined as a technological basis for the
monitoring and prediction of geospatial phenomena in the earth systems
domain, to facilitate real-time decision support. The primary topic of interest is
how real-time sensor data can be processed on a grid computing architecture.
This is addressed by creating a simple typology of real-time geoprocessing
operations with respect to grid computing architectures. A geoprocessing
system exemplar of each geoprocessing operation in the typology is
implemented using contemporary tools and techniques which provides a basis
from which to validate the standards frameworks and highlight issues of

scalability and interoperability.

It was found that it is possible to combine standardised web services from each
of these aforementioned domains despite issues of interoperability resulting

from differences in web service style and security between specifications. A

Abstract

novel integration method for the continuous processing of a sensor observation
stream is suggested in which a perpetual processing job is submitted as a
single continuous compute job. Although this method was found to be
successful two key challenges remain; a mechanism for consistently scheduling
real-time jobs within an acceptable time-frame must be devised and the trade-
off between efficient grid resource utilisation and processing latency must be

balanced.

The lack of actual implementations of distributed geoprocessing systems built
using sensor web and grid computing has hindered the development of
standards, tools and frameworks in this area. This work provides a contribution
to the small number of existing implementations in this field by identifying
potential workflow bottlenecks in such systems and gaps in the existing
specifications. Furthermore it sets out a typology of real-time geoprocessing
operations that are anticipated to facilitate the development of real-time

geoprocessing software.

Acknowledgements

Acknowledgements

I would like to express my gratitude to everyone that has helped and supported
me while undertaking this research. First and foremost, thanks to my
supervisors Philip James and Stuart Barr, for their years of invaluable support
and guidance without which this would not have been possible. Thanks also to
my Geomatics colleagues and countless others in the School that have

provided useful support and advice at one time or another.

| have received a great deal of technical assistance via email that has been
critical to the success of this research and that deserves acknowledgement
here. Alain Roy at University of Wisconsin-Madison has provided invaluable
assistance with Globus Toolkit woes. At the National Grid Service Matteo Turilli
has helped with GridSAM on numerous occasions, and Simon Collins has
provided significant help with the Oracle service. Alex Mckeown at CSIRO
provided much appreciated help debugging an SES filter, thank you. | have
also received significant email support from 52 North developers Christoph
Stasch, Johannes Echterhoff and Thomas Everding. Furthermore, Trevor
Arkless at Newcastle City Council has been very helpful in providing access to

road traffic travel time data.

My family have been extremely tolerant and understanding throughout the
course of this research, particularly my parents Hugh and Kate who have
helped me keep body and soul together during the final stages of this research
period. Paulette thanks for doing an excellent job of distracting me from my
studies when necessary, for buying me motivational cupcakes and for being

there one way or another.

This research was funded by EPSRC and the School of Civil Engineering &

Geosciences at Newcastle University.

Publications from this Research

Publications from this Research

The following publications have been produced from the research presented in

this thesis:

McCullough, A., James, P., Barr, S. L. (2011) ‘A Typology of Real-Time Parallel
Geoprocessing for the Sensor Web Era’ Proceedings of the Workshop on
Integrating Sensor Web and Web-based Geoprocessing, AGILE 2011. Utrecht,
CEUR pp.712-1.

McCullough, A., James, P., Barr, S. L. (2011) ‘A Service Oriented
Geoprocessing System for Real-Time Road Traffic Monitoring’” Transactions in

GIS (in press)

Table of Contents

Table of Contents

Y 013 = Lo PP PPPPPPPPPPPPPP [
ACKNOWIEAGEMENTS ... e e e e e e e e e e e e e e e eeeennnns iii
Publications from this Research ..., v
Table Of CONTENLS ... eeaeaees v
S o) T U X
LISt Of TADIES ...ttt e e e e e e eeeeeeeeees Xiii
LiSt OF COAE LISTINGS . eevvvtiiiiiee ettt e e ettt e e e e e eeennes Xiv
LiSt Of EQUALIONS ..ot XV
Chapter 1 INtrodUCLIONcoovviiiiiiiiiieies et e e e e e e e e e e er e e e eeees 1
R O 0] | (= TP 1
1.2 BaACKGrOUNGuiiiiiiiiiiiiiiie et e e e e 3
121 Service Oriented Architecture (SOA) for GIScccooeeiiiiiiiiiiiiiinnn. 3
1.2.2 Application Specific Frameworks..........ccccvuuiviiiiii e 3
1.2.3 Scalability and Performance in Sensor Web Geoprocessing 4
1.3 Problem Statement.............oiiiiiiiiiii e 5
1.4 Scope Of the ThESIS....ccouiiiiiii e 5
1.5 Organisation Of the ThESIS.......ccciviiiiiiiiiie e 6
Chapter 2 Geoprocessing on the Grid: A Review of St andards, Tools and
TECNNIQUES ...y ettt e e ettt e e e e e e e e e e atbbara e e e e e eeennnan 8
P20 R [01 1o To [1 [1o o PR TRRRR 8
2.2 Characteristics of Geospatial Monitoring & Prediction Applications 9
2.2.1 Real-Time Geohazard Monitoring and Mitigation 9
2.2.2 Real-Time Entity MONITOMNNGooiiiieiiiiiiiiiiiee e 13
2.2.3 Design Traits in Geospatial Monitoring & Prediction Systems.....15

2.2.4 The Motivation for Integrating Grid Computing with Geospatial
Monitoring and Prediction SYStEMSoovuiiiiiiieeeeeeeeecee e 17

2.3 Distributed Computing Architectures and Standards for Real-Time

Geospatial APPICALIONSooviiiiii e 20
2.3.1 Web Service Styles and Standardscccooevieiiiiiiiiiiiiiiiineeee, 20
2.3.2 The Open Grid Services Architecture (OGSA)ccovvvciiieeeeeennn. 26
2.3.3 OpenGIS Web Services (OWS).......cccvviveiiiiiiieeeeeeeeeenee e 28
2.3.4 OpenGIS Web Services (OWS) Test bed ACtiVitycccceeeeeeeeee. 29

Table of Contents

2.3.5 Review of OpenGIS Web Services (OWS) / Grid Integration30
2.3.6 Review of Sensor Web Enablement (SWE) / Grid Integration.....37
2.3.7 Cloud COMPULING ...cceieeieiiiiiee e e e e eeeeeees 46
2.3.8 Summary of Key Issues for OGF and OGC Standards Alignment
48
2.4 Parallel GEeOProCESSING....cooiii ittt 51
2.4.1 Why Process in Parallel?..........ccoooiiiiiii e 51
2.4.2 Parallel Processing and Data Architecturescccccccceeeeeeeeene. 52
2.4.3 Parallel Geoprocessing Strategiescveeveeeeeieveviiiiiiiieeeeeeee, 58
244 Parallel Programming CONSIIUCESccuvuiiiiiieeieieeeiiiiee e 71
2.5 SUMIMATY ..ttt e et e e e et e e e e eaa e e e eenaans 77
2.6 Aim, Objectives and Research QUEeSLIONSccceeveeeieiieiiiiiiiiiieeeeee, 78

Chapter 3 Categorisation of Real-Time Distributed G eoprocessing

PaArAdIgIMS. ... e e et aeeeeanaaa 81
I 200 R 01 1o To (1 T 1) o TP 81
3.2 Review of Existing Geoprocessing Classificationsccccceeeeene.. 82
3.3 Geoprocessing and TIME......ccovviviiiiiiiieee e e 87

3.3.1 SNAP VS SP@N ...ttt e eeaans 87
3.3.2 Real-time Data SOUICESuuiiiiiieiiiiiiiiiie e 89
3.3.3 Invocation of Real-time GeoproCesSIiNg......ccccvveeeeeeveevvvviniiieeeeeennn. 90
3.34 Reliability and Variability of Real-time Data............cccccccceeeeeeen. 91
3.4 A Real-time Geoprocessing TYpologyccoeuuuiiiiiiiiieiiiiiiiiiiiee e 92
3.4.1 Data Stream Geoprocessing (DSG)coevvvviiiiiiiiiiiiiiiiiiieee e 97
3.4.2 Fine-grained Snapshot Geoprocessing (FGSG).........cccceeeeeeeenne. 98
3.4.3 Coarse-grained Snapshot Geoprocessing (CGSG)..........cccc....... 98
3.5 Categorisation of Common Geoprocessing Operations...................... 98
3.51 Data Stream Geoprocessing (DSG) Operations...........ccceeeee..... 102
3.5.2 Fine-grained Snapshot Geoprocessing (FGSG) Operations103
3.5.3 Coarse-grained Snapshot Geoprocessing (CGSG) Operations 103
3.6 Typology Evaluation & CritiQUe.........ccceeeeerieeiiiiiiie e eeeeeeeeiiiee e 104
T A ©7o] o Tod 11 o PSP SRP 106

Chapter 4 Data Stream GEOPIrOCESSINGuvviiiiiees cereereeiiiiiiiaaa e e e eeeeeeeennanns 108
4.1 INTOAUCTION ..o 108
A VLS (=10 0 T = o | o 108

vi

Table of Contents

4.2.1 USEI SCENANO.....cciiiiieieeeeeeee e 108
4.2.2 Design Considerationscoeeeieeiiiiiiiiiiiaee e 110
4.2.3 Software & Tool SeleCtioncooviiiiiiiiiiie s 110
4.2.4 Architectural OVEIVIEW..........uuuuiiiiiiiiiiiiiiiieeeeeiieeieeeeeeeeeeeeeeeeeeeees 112
4.2.5 Review of Map-matching Algorithmscccooevvviiiicciiiee e, 117
4.3 IMPIEMENTALIONoeiiiiiiiiee e 119
4.3.1 Sensor Observation Service (SOS)covvviiiiiiiiiiiiiiiiee e 119
4.3.2 SENSOr EMUIALOTcviiiiiiiiiiiiiiiiiiieeeieeeeeeeeee e 119
4.3.3 Web Feature Service (WFS).......ccooivviiiiiciie e 122
4.3.4 MaP MALCNET ..o 123
4.3.5 Web Processing Service (WPS) ProXy......ccocoeeeviveiiiiiiiinneeeenene. 126
4.3.6 GrdSAM ClIENt.....cooiiiiieiiiee e 130
A4 RESUIS...coo i 131
4.4.1 Functionality TeStiNg.......ccoevuiiiiiiiieeeeeee e 131
4.4.2 Scalability TeStING......ccouuuiiiiiiiie s 135
4.5 DISCUSSION ..o 141
4.6 CONCIUSION....coiiiiiiiii 144
Chapter 5 Fine-Grained Snapshot GeOprocessing..... ..ccceeeeeeeeeveeeivennnnnnns 145
00 R [01 1o To (1 [1 o PRSP 145
5.2 Review of Real-Time Traffic Routing using Floating Car Data.......... 146
5.3 SYSIEM DESION ...coeieeeiiiiiiee et e e 148
5.3.1 USEI SCENAMOuuuieee ettt e e e e e e 148
5.3.2 Software and Tool Selection..............eoiiiiiiiiiiiii s 148
5.3.3 Architectural OVerVIEW..........coooeviiiiiiiiii 151
.. 152
5.4 IMPIEMENTALIONcoiiiiiiiiiee e 153
541 Data Preparation and Loading..........ccouuuvviriiiiiniiiiieiiiiiiiie e 153
5.4.2 Data INput SUDSYSIEMcoiiiiiiiiie e 156
5.4.3 Geoprocessing SUDSYSIEMccovieeeiiiiiiiiiiiii e 160
544 Client User INterface........ccccoeviiiiiiii 164
55 Testing & RESUILSoovviiiiiiiieeee e 166
5.5.1 Amazon Machine Image (AMI) Configuration................c..cccc.... 166

Vii

5.5.2 Estimation of the Probable Route between Non-Adjacent Network
Links 168

Table of Contents

5.5.3 Functional Testing for a Single Vehiclecccccvvviiiiiinneee, 171
554 Functional Testing for Multiple Vehiclesccccviiiiiinnnne. 176
5.5.6 Scalability TeStING.......ccuvuiiiiiiie e 179
5.6 DISCUSSION ... 182
5.7 CONCIUSION .. 184
Chapter 6 Coarse-Grained Snapshot Geoprocessingccccooeeeevvevevviennnnnnn. 186
6.1 INrOAUCTIONo 186
6.2 Background and CONteXt..........ccuuuuiiiiiiieeeieeeeiiie e 186
6.2.1 Elastic MapREAUCE.............oeeviiiie e 186
6.2.3 The Spatial Reclassification Kernel (SPARK) Algorithm............ 188
6.3 Design & Implementation..............uuiiiiiiiiiiiiiiii e 191
6.3.1 Data PartitionNiNgcocoeeeeiieeeiiiee e 193
6.3.2 Hadoop Configuration.............cccoeeeieeiiiieiiiiiiie e 196
6.3.3 The Map and Reduce FUNCLIONSuuviiiiiiiiiiiiiiiiee e 196
6.3.4 OULPUL CONVEISION....cciiiiiiiiiiee e eee ettt e e e e e e eeeeeees 197
6.4 Testing & EValuation............ccooviviiiiiiiiii e 197
6.4.1 TeSESCENANO ..cceeeiiiiiiiiieieee e 197
6.4.2 RESUIES .o 199
R T B 1o U 11 o] [PPSR 206
6.6 CONCIUSION ... 210
Chapter 7 DISCUSSIONccciiiiiiiiiiiiiieeeeeees aevviiiiaa e e e e e e e e e eeart s e e e e aeeeeesaannnes 211
4% R 1 01 1o To [8 T 1o o PRSP 211
7.2 HarmoniSatioN ISSUEBSccoeeiiiiiiiiiiiiie et 211
7.21 OGC-OGF Harmonisationccooeeeeiiiiiiiiieiieeeeeeeeeeeeeeeeeeeee 212
71.2.2 Improvements to SWE Data ServiCesccooeveevvvveeiiiiiiineeeeenn, 213
7.2.3 Improvements to the WPS........ccooo e 214
7.2.4 OGC Services using laaS and PaaS...........ccccevvviiiiiiieeeeeeeenins 215
7.3 Performance Issues in Distributed Monitoring and Prediction 216
4 70 RN o o IR 1o o =T (1] 11 Vo PSS 216
7.3.2 DA O i 218
7.3.3 Data TranSTer........uu e 221
7.4 Methodologies for Real-time Distributed Geoprocessing.................. 223
7.4.1 Data Stream Geoprocessing (DSG)ccvvvvevveeeeeivveeiiiiiiiee e, 223
7.4.2 Fine-grained Snapshot Geoprocessing (FGSG)........ccccoeeeeeeee.. 228

viii

Table of Contents

7.4.3 Coarse-grained Snapshot Geoprocessing (CGSG)................... 230
7.5 CONCIUSION. ...ttt 231
Chapter 8 CONCIUSIONcoiiiiiiiiiiie it et e 233
8.1 ThESIS SUMMAIYceeiiiiiiiie e e e ettt e e e e e e e e e e e e e aae e e eeaes 233
8.2 Interface and Architectural Recommendations..............ccoceeeiiiiinnnnns 235
8.2.1 Improvements to OGC standards.............cceeiieeiiiieiiiiiiiiineeeee, 235
8.2.2 Architectural Recommendations...............ccoeeiieiiiiiiiiiiiiiiineeeeee, 235
8.3 FULUIE WOTK ... 237
8.3 FULUre OULIOOKo 239
APPENAIX A e e e e 242
APPENAIX Bt e e e 248
APPENAIX €.t e e e e e e e e e e 2D0
APPENAIX Do e e e e e ee 00 2D2
APPENAIX E..oeeeee e e ee 0. 2D8
APPENAIX B e e 261
APPENIX G.eitit et et et e e e e e e e e e 264
APPENIX H. oo e e e e e e e e ee 0. 26D
APPENAIX Lo e e 268
APPENAIX Tttt e et e e e e 20D
APPENIX K.ttt e e e e e e e 278
Y 0 01 10 Y2 N B
Chapter 9 RefEIENCESuuuiiieii s ettt aaea s 284

List of Figures

List of Figures

Figure 2.1: Service Oriented ArchiteCturecouvviiiiieieeeeieeeicee e e e, 21
Figure 2.2: The O&M Observation Model (Stasch et al., 2008)]ccceeeeeeee 39
Figure 2.3: Flynn's Taxonomy and MNSP, MNMP, SNMP Architectures.......... 54
Figure 2.4: Parallel Database Architectures [adapted from Dewitt and Gray
(1992)] -eettteeeeeee e ettt et e e e e e e e ettt e e e e e e e e e e nnaeeaeas 56
Figure 2.5: The Task Farm Application Graph Topologyccceeeeeeeeeeerreeennns 60
Figure 2.6: The Divide and Conquer Application Graph Topology.................... 62
Figure 2.7: The Map Reduce Programming Modelcoooviiiiiiiiiniiiiieeennns 64
Figure 2.8: Classification of Spatial Domains [(Armstrong and Densham, 1992)]
.. 67
Figure 2.9: Boundary Exchange for a Convolution Filter..............ccccoooeiiiiiiniinns 68
Figure 2.10: Data Pipelining StruCture ..o 69
Figure 3.1: Types of Sensor System [Langran et al, 1992].........cccccoeeeeiiiiiiiinns 85
Figure 3.2: Static, Snapshot and Stream Data Representations....................... 93
Figure 3.3: The Granularity SPeCIrUMcoooiiiiiiiiiiiiiiee e 95
Figure 3.4: Database and MPI / database styles of fine-grained geoprocessing
.. 96
Figure 3.5: Geoprocessing ParadigmsS.........cccovvvveeiiiiiiiieeeeeeeeeeiiiin e e e e e e eeeeaeens 97
Figure 3.6: A UML2 Sequence Diagram of Data Stream Geoprocessing 97
Figure 3.7: Venn Diagram showing the relationship between classes in the
(o L=To] o] foTot=TSTS] gl 1Y/ oo] (oo | VA 100
Figure 4.1: Interaction Sequence between map-matching system components
.. 115
Figure 4.2: Map-matching message sequence diagramcccceeeeeeeeeeeeennnns 116
Figure 4.3: Map Matching System Component Diagramccceeeeeeeeeeennnns 119

Figure 4.4: Screenshot of the graphical interface to create a virtual sensor ...121

Figure 4.5: Screenshot of the graphical user interface of the Sensor Emulator

Figure 4.6: Diagrammatic representation of the map-matching algorithm
showing the vehicle’s current (X2,Y2) and previous (X1,Y1) positions, the

standard deviation of horizontal position (muB), and the standard deviation of

List of Figures

orientation (muDeltaPhi) in relation to the position and orientation of road sub-
SEOIMENTS L.ttt e e et a e e e e eaa s 125
Figure 4.7: UML Diagram showing Algorithm and Grid extensions to 52 North

LT T EERPP T OUSSUPPRRRPRR 128
Figure 4.8: Map Matching Results for Journey 1............ccccovvvvvviviiiiieeeeeeeeennnnns 133
Figure 4.9: Map Matching Results for Journey 2...........cccoovvvviiiiiiineeeeeeeeeennns 134
Figure 4.10: Many to one relationship between vehicle/map matcher and
SOSIWES ettt e e e e e e e ettt e e e e e e e r e e e e e e e e e annnees 136
Figure 4.11: Graph showing Response Time of SOS and WFS requests....... 137
Figure 4.12: Time-lag results for SOS Server 1.......ccoooovviiiiiiiiiiiiiiiieeeeeeeeeeinnns 140
Figure 4.13: Time-lag results for SOS Server 2.......ccoovviiiiiiiiiiiiiineeeeeeeeeiiens 140

Figure 5.1: A UML2 communication diagram outlining message flow and basic
association between System COMPONENTS..........viieieeeeeeeeiiiiiie e e e e e e 151
Figure 5.2 UML Sequence Diagram of Road Traffic Monitoring System........ 152
Figure 5.3 Component Diagram of Road Traffic Monitoring System............... 153
Figure 5.4: Database schema showing the spatial road network tables and the
input data tables used to generate the road networkcccceeeevvvviiiiinnnnnnn. 156
Figure 5.5: UML class diagram showing the parent child relationship between
ROAD_CHANGE_EVENT and PROCESSED EVENTS tables..................... 162
Figure 5.6: Screenshot of the user interface componentcccceeeeevvivvnnnns 166
Figure 5.7: Diagram showing the four possible path configurations between
road A and road B. Path 1 shows the correct configuration as it represents the

distance travelled between road change event at TO and road change event at

LB 171
Figure 5.8: Sample vehicle route showing GPS observations and map-matched
0= To I {1 0] &SSP 172

Figure 5.9: Map showing the road links assigned a new cost value by the

Figure 5.10: Map showing the road links assigned a travel-time cost and the raw
GPS ODSEIVALIONS ...ttt s 177
Figure 5.11: Map showing the estimated set of road links that should have been
assigned a travel-time cost and the raw GPS observations............c.ccccccoeunnn. 177
Figure 5.12: Response Time of Shortest Path Routing and Nearest Neighbour
WED SEIVICES ... 181

Xi

List of Figures

Figure 6.1 Component Diagram of Elastic Map Reduce..............cccceeeevvvennnnns 188
Figure 6.2: Adjacency Events in a 3x3 Kernel Window [adapted from Barnsley
AN BAIT (1996)]...ceeeeeiitiieee ettt 190
Figure 6.3: Pre and post processing stages in the MapReduce SPARK
WOTKFIOW ... 193
Figure 6.4: Supervised Classification of a SPOT-1 HRV image of South East
(] 7o (0] o NP UPPPPPRPRRTN 198
Figure 6.5: SPARK Re-classified Image of South East London...................... 200

Figure 6.6: Processing Time of the SPARK algorithm for a 4195 x 2995 pixel
image and 9 land-use templates using different Elastic Map Reduce
(o0] 01110 U] =1 i o] IS PRSP 205

Figure 6.7: Graph Showing Cost Performance of Different EC2 Instance Types

.. 206
Figure 7.1 Upstream box sliding: Process B is moved from Processor 2 to
Processor 1 [adapted from Cherniack et al., (2003)].......cccvvveeivrviiiiiiieeeeeeeennnns 225

Figure 7.2 Box Split: Process A is duplicated on Processor 2 and Processor 3,
the filter operator equally allocates incoming observations amongst the three

processors [adapted from Cherniack et al., (2003)]ccevvvviiiierieeeeeieeiiiinnn 226

Xii

List of Tables

List of Tables

Table 3.1: Characteristics of Geoprocessing Paradigmsccccevvvieiineeeeenn.. 94
Table 3.2: Common Geoprocessing OperationsS...........ccceveeeeeeeeeeeeieininaeeeeenn 100
Table 4.1: Percentage of Correct Matches for Journey 1 and Journey 2........ 132

Table 4.2: Time interval between GPS measurement and insertion of

observation into Sensor Observation ServiCecccccovviiiiiiiiiee 133
Table 4.3: WFS and SOS ReSPONSE TIMEcoeeieeieviiiiiiiiiiie e eee et 136
Table 4.4: Profiling results for map matCher ... 138
Table 4.5: Map matcher time expenditure (milliseconds)cccceeeeeeeenee. 138

Table 5.1: Raw Observations and their corresponding Road Change Events
173

Table 5.2: Road link Cost Calculation from Road Change Events.................. 175

Table 5.3: Summary statistics for the absolute difference between interpolated

and real-time travel-time COSES.........uuuuuuiiiiii e 178

Table 5.4: Mean absolute difference between interpolated and real-time travel-

time costs by number of real-time observations...............ccccviiiiiiieii, 178
Table 5.5: Time Delay between Road Change Event and Notification............ 179
Table 6.6: Response Time of Shortest Path Routing and Nearest Neighbour
WED SEIVICES ... 181
Table 6.1: Confusion Matrix for Land-cover Classificationccccceeeeeenee. 199
Table 6.2: Confusion Matrix for Land-Use Reclassification................ccccoeee... 200
Table 6.3: Amazon EC2 Instance Type Specificationsccccevvvvvviiieeeeennn. 202

Table 6.4: Processing Time of the SPARK algorithm on increasing numbers of
processors for a 4195 x 2995 pixel image and 9 land-use templates 203
Table 8.1: Geoprocessing Operations, Architectures and Parallel Strategies.237

Xiii

List of Code Listings

List of Code Listings

Listing 2.1:
Listing 2.2:
Listing 2.3:
Listing 2.4:
Listing 4.1
Listing 4.2:
Listing 4.3:
Listing 4.4:
Listing 4.5:
Listing 5.1:
Listing 5.2:

Listing 5.3:

SOAP WPS Execute ReqUESTc.vviiiiiiiiiiiec e 26
RESTful WPS Execute REQUESE..........coeeeieeeiieiiiiiciee e 26
The Divide and Conquer Strategy (Foster, 1995)cccoeeeeeiivveinnnns 63
The Map and Reduce FUNCLIONS..............uiiiiiiiiiiiiiiicie e 64
Schema of the Observation Tableccoooiiiiiiiiiiiiis 121
Correction to spatial_ref sys table in PostGIScccceeeeee. 123
Map Matching Algorithm using position and orientation................ 125
StOPEXECUtiNg REQUEST ... 129
StOPEXECUtiNg RESPONSEcovvvviiiiieieeeeeeeeiie e e et e e 129
Example WSN Notification produced by SES pusher and sent....157
Trigger procedure to update real-time COST column................... 162
SQL prepared statement to identify nearest neighbour to OSGB36

coordinates <easting><NOMhiNg>...........cccoviiiiiiiiiii e 164

Xiv

List of Equations

List of Equations

EQUAtioN L.....ooveiii e
S — TS +TP
N
T
Tg + I\T
EqQuation 2.
Tall - Tc + maX(Tproc) Tmerge

Equation 3.... ...

3

>z r - |
F(r)= ZWZ(r)— =
=1 Zl/|r—ri &

EqQuation 4.

fll
M = f21 f22 f23
f

Equation 5.

i=1 j=1

EQUAtioN 6.

S, =n’k(x—-n+1)(y-n+1)

EQUAtioN 7.

S, =nyk(x-n+1)

XV

Glossary

Glossary

ACID: Atomicity, Consistency, Isolation, Durability
AMI: Amazon Machine Image

API: Application Programming Interface

BASE: Basically Available, Soft-state, Eventually Consistent
BPEL.: Business Process Execution Language
CA: Cellular Automata

CEP: Complex Event Processing

CFD: Computational Fluid Dynamics

CGSG: Coarse Grained Snapshot Geoprocessing
CSW: Web Catalogue Service

DEM: Digital Elevation Model

DSG: Data Stream Geoprocessing

DSMS: Data Stream Management System

DSP: Data Stream Processing

EOS: Earth Observing System (NASA)

FCD: Floating Car Data

FE: Finite Element

FGSG: Fine Grained Snapshot Geoprocessing
FTP: File Transfer Protocol

GIS: Geographic Information System

GPS: Global Positioning System

HDFS: Hadoop File System

HPC: High Performance Computing

HPF: High Performance Fortran

laaS: Infrastructure as a Service

IDW: Inverse Distance Weighted

INSAR: Interferometric Synthetic Aperture RADAR
ISO: International Standards Organisation

IT: Information Technology

ITN: Integrated Transport Network (Ordnance Survey)
LOD: Load on Demand

MIMD: Multiple Instruction Multiple Data

MISD: Multiple Instruction Single Data

XVi

Glossary

MNMP: Multiple Node Multiple Processors

MNSP: Multiple Node Single Processor

MPI: Message Passing Interface

MPP: Massive Parallel Processing

MPTS: Moving Point Time Series

NCC: Newcastle City Council

NOSQL: Not Only SQL

NOW: Network of Workstations

O&M: Observations and Measurements

OASIS: Organisation for the Advancement of Structured Information Standards

OCCI: Open Cloud Computing Interface

OGC: Open Geospatial Consortium

OGF: Open Grid Forum

OGSA: Open Grid Services Architecture

OGSA-BES: OGSA Basic Execution Service

OGSA-DAI: Open Grid Services Architecture Data Access and Integration

ORCHESTRA: Open Architecture and Spatial Data Infrastructure for Risk
Management

OSWA: Open Sensor Web Architecture

OWS: OpenGIS Web Services

PaaS: Platform as a Service

RAC: Real Application Clusters

REIS: Real-time Earthquake Information System

REST: Representational State Transfer

RM-ODP: Reference Model for Open Distributed Processing

SAAJ: Soap with Attachments API for Java

SaaS: Software as a Service

SensorML: Sensor Model Language

SFTS: Spatial Field of Time Series

SIMD: Single Instruction Multiple Data

SISD: Single Instruction Single Data

SLA: Service Level Agreement

SNMP: Single Node Multiple Processors

SOA: Service Oriented Architecture

XVii

Glossary

SOAP: Simple Object Access Protocol

SOS: Sensor Observation Service

SPARK: Spatial Reclassification Kernel
SQL:Structured Query Language

SWE: Sensor Web Enablement

TFSS: Time Field of Spatial Series

TIN: Triangulated Irregular Network

TML: Transducer Model Language

TOID: Topographic Identifier (Ordnance Survey)
UDDI: Universal Description Discovery and Integration
UML.: Unified Modelling Language

URI: Universal Resource Identifier

VO: Virtual Organisation

WCS: Web Coverage Service

WFS: Web Feature Service

WMS: Web Mapping Service

WMTS: Web Map Tile Service

WPS: Web Processing Service

WSDL: Web Services Description Language
WS-l BP 1.1: WS-I's Basic Profile 1.1

WS-I: Web Services Interoperability

WSN: Web Services Notification

WSRF: Web Services Resource Framework

XViil

Introduction

Chapter 1 Introduction

1.1 Context

Recent technological advancements in the acquisition and distribution of spatial
data are set to have a profound impact on Geographic Information Systems
(GIS). Traditional methods of spatial data acquisition are rapidly being
augmented with a new generation of digital sensors that are capable of
capturing spatial phenomena in real-time and without human intervention.
Furthermore, the widespread proliferation of the internet has created an
opportunity to make this information available to a wider range of users than
ever before. The term ‘sensor web’ has been coined to describe the vision of
numerous inter-connected digital sensors across the globe that can be
discovered and accessed through the internet (Reichardt, 2005). Although this
vision is not yet a reality it has the potential to make a significant impact on the
field of GIS, particularly for applications such as environmental monitoring,
disaster management, climate change prediction, logistics and the management
of utilities. The sensor web vision is probably best exemplified by the European
funded Global Earth Observation System of Systems (GEOSS) project which is
described as a “comprehensive, near real-time information system that will
coordinate present and future observation systems, monitor the entire Earth,
track changes in all of its physical, chemical, and biological systems, and serve
as an essential decision support tool for a vast range of issues and user groups”
(Acache, 2007).

The sensor web vision has coincided with a more general evolution of the GIS
landscape; monolithic software packages are gradually being replaced by
collections of distributed services (Section 1.2.1). Rather than storing and
processing spatial data on a local desktop workstation, data is stored in web
accessible repositories and processed remotely. This client-server approach
has three advantages (Abel et al., 1999); firstly, less investment in hardware
and software is required by end-users as data and processing resources can be
accessed remotely. Secondly, the ability to maintain a central data repository
and access it as a service facilitates the integration of disparate data sources

and allows them to be easily updated. Thirdly, voluminous geospatial data is
1

Introduction

not easily portable and the ability to analyze it remotely is therefore desirable.
Significant work has been undertaken to standardise interfaces to geospatial
services across the industry to promote data sharing and interoperability
between disparate organisations (Lee and Percivall, 2008). This evolution has
provided an opportunity to integrate the sensor web vision and GIS, because in
a distributed architecture sensors and their data can be discovered, described
and accessed through well defined service interfaces in much the same way as

other data sources.

More recently another trend referred to as grid computing has emerged in the
Information Technology (IT) sector that has been hailed as the third information
technology wave (Sun et al., 2005). Grid computing is defined by Foster (2002)
as a computing infrastructure that enables the sharing of heterogeneous
computing resources across organisational boundaries, without centralised
control, using standard, open and general purpose protocols and interfaces. It
provides a framework in which access to heterogeneous computing resources
such as processor cycles and data storage devices can be federated, thus
facilitating geographically dispersed collaboration, permitting inexpensive
access to high end computational capabilities and enabling increased use of
idle computing capacity (Foster and Kesselman, 1999). From a GIS
perspective grid computing presents an exciting opportunity; it provides an
extension to the client-server approach whereby spatial analysis can be
outsourced on a massive scale to a large cluster of computers rather than to a
single server. Furthermore, the ability to task processors on demand is likely to
prove useful for sensor web applications that exhibit temporal variation in the

amount of computational power they require.

Another distributed computing infrastructure known as cloud computing has in
the last few years become popular which shares many similarities with the grid
computing concept. Cloud computing has already had a significant impact on
the mainstream IT market (Armbrust et al., 2009, Buyya et al., 2008) and is
increasingly being used as a platform for geospatial applications (Baranski et
al., 2009, Blunck et al., 2010, Blower, 2010, Chen et al., 2008).

Introduction

1.2 Background

1.2.1 Service Oriented Architecture (SOA) for GIS

GIS and grid computing conform to a distributed software design referred to as
a Service Oriented Architecture (SOA). SOA software is composed of a set of
disparate components referred to as services, each of which encapsulates
some functionality and a description specifying its purpose and how to interact
with it. Web services are a technological implementation of SOA principles that
have become the de-facto communication platform for distributed systems.
Web services are defined by Curbera et al (2002) as a platform neutral, vendor
independent framework based on open XML standards that specifies
communication protocols, service descriptions and service discovery

mechanisms to allow application to application interaction.

Using web services, a number of application specific frameworks have been
defined to facilitate the sharing and availability of resources such as hardware,
software, instruments and data. OpenGIS Web Services (OWS) and Sensor
Web Enablement (SWE) are frameworks defined by the Open Geospatial
Consortium (OGC) which is the leading standards body for geospatial services.
OWS represent a domain specific effort towards making heterogeneous
geospatial datasets and processing functions widely accessible through
standard service interfaces. Likewise, SWE specifications provide an interface
to task heterogeneous sensor collections and retrieve their observations. In
contrast, the Open Grid Services Architecture (OGSA) framework, as originally
proposed by Foster et al. (2002) and managed by the Open Grid Forum (OGF),
represents a broader effort towards sharing resources such as computational
power, data storage and sensors, using a different set of service interfaces
(Chen et al., 2006).

1.2.2 Application Specific Frameworks

The OWS framework fulfils the perceived need for a distinctive set of web
services that enable users to meaningfully interact with spatial data. For
example, the ability to perform spatial queries on data repositories enables

geographic features to be selected based on their spatial relationships such as
3

Introduction

‘distance to’, ‘contains’, ‘within’ and ‘intersects’. This ability to retrieve precisely
the features that are required is necessary in a SOA as it minimises network
communication cost; the alternative being to download an entire dataset and
query it locally (Scharl and Tochtermann, 2007). OWS incorporates the Web
Feature Service (WFS), Web Coverage Service (WCS), Web Mapping Service
(WMS), Web Processing Service (WPS) and Web Catalogue Service (CSW).
WES and WCS define interfaces to deliver vector and raster data respectively,
and the WMS enables both raster and vector data to be combined into a visual
map document. WPS enables geo-processing operations to be published as a
service and CSW defines a registry service that enables other OWS services to
be discovered (Hobona et al., 2007).

The SWE framework has been designed to facilitate the emerging sensor web
and is comprised of a complete and structured set of XML based languages for
describing sensor models, sensors and their observations. It also includes a set
of service interfaces to perform sensor discovery, observation delivery and

dynamic tasking of sensor systems (Botts et al., 2006).

1.2.3 Scalability and Performance in Sensor Web Geoprocessing

The sensor web promises the ability to integrate remote, in-situ, fixed and
mobile sensors of every kind and communicate with them in a uniform manner
via a set of services; this is envisioned to greatly facilitate data fusion and to
enable software applications containing mashups of live environmental data to
be easily created (Botts et al., 2006). However, as noted by Chen et al (2005),
monitoring events and entities and making predictions about their future state
carries a large computational burden. Furthermore, uncertainty in the behaviour
of real world phenomena makes it difficult to predict the timing and the
magnitude of computational power required (Hingne et al., 2003).
Consequently, for applications that only require occasional access to high-end
computational capabilities there is a need for a system that can react to
fluctuations in demand and recruit computational resources as necessary
(Foster and Kesselman, 1998). Grid computing has been proposed as a

potential solution to the sensor web data deluge.

4

Introduction

1.3 Problem Statement

The development of scalable grid and cloud based sensor web geoprocessing
applications is currently a difficult process. Due to the significant variation
exhibited by geoprocessing tasks in their algorithmic and data properties there
IS no single solution to scale an application through gridification as different
tasks are suited to different techniques (Werder and Kriger, 2009). The recent
proliferation of standards in GIS and grid computing provide an important step
towards interoperability. However, industry wide disarray in web service
specifications makes it difficult to leverage grid computing to improve
performance and scalability in sensor web monitoring and prediction
applications. Furthermore, given the diversity that sensor web scenarios and
their associated geoprocessing algorithms exhibit, there is no “one size fits all
solution” to improve the scalability or performance of sensor web processing
applications. A lack of a cohesive framework to relate real-time geoprocessing
operations with parallel processing techniques has hindered the development of
generic software tools and solutions thus far. Consequently there is a
perceived need to consolidate existing parallel geoprocessing techniques, and
to align web service based standards, so that sensor web geoprocessing
applications can easily leverage the scalability and performance advantages of

distributed computing.

1.4 Scope of the Thesis

While there are numerous issues surrounding the integration of grid computing
and sensor web into GIS workflows this thesis focuses only on interoperability,
scalability and performance in relation to monitoring and prediction systems.
This thesis attempts to identify common design patterns in distributed sensor
web geoprocessing systems and attempts to solve the interoperability,
scalability and performance issues that frequently occur in such designs.
Specifically, the suitability of existing and proposed interface and encoding
standards are explored in order to identify areas in which they could be
augmented or improved. Additionally an attempt is made to identify commonly
occurring workflow bottlenecks in these designs and to suggest alternative

approaches. It is anticipated that the outcomes from this research will facilitate

5

Introduction

the development of distributed monitoring and prediction systems using sensor
web and grid computing technology by providing a framework from which
standard development tools can be created.

1.5 Organisation of the Thesis

The remaining Chapters in this thesis are organised as follows:

Chapter Two reviews standards, tools and techniques for geoprocessing on the
grid. Firstly, the suitability of grid computing for geospatial monitoring and
prediction systems is established. Secondly, the current state of the art in
sensor web, grid computing and geospatial web services are set out and
parallel geoprocessing tools and techniques are reviewed. Finally, existing
efforts to integrate grid computing into geospatial workflows are examined and a

research agenda for real-time geoprocessing on the grid is set out.

Chapter Three details existing efforts to classify geoprocessing operations and
explores the effect of introducing real-time data into distributed geoprocessing
workflows. The main content of this Chapter is the presentation of a
prototypical typology of real-time geoprocessing operations and an attempt to
classify common geoprocessing operations in the context of this typology. In
addition, an evaluation and critique of the typology is conducted.

Chapter Four provides details of the design, implementation and testing of a
scalable real-time geoprocessing system that conforms to the Data Stream
Geoprocessing (DSG) category of real-time geoprocessing operation outlined in
Chapter 3. The system in question uses grid computing to perform a map-

matching operation for a fleet of vehicles in near real-time.

Chapter Five details the design, implementation and testing of another
geoprocessing system. In relation to the typology presented in Chapter 3 this
system incorporates elements of Fine-grained Snapshot Geoprocessing
(FGSG) and DSG. This prototypical system performs road traffic monitoring by

using Floating Car Data (FCD) to estimate travel times along different road

6

Introduction

stretches; the information is subsequently used to plan the quickest route

between two locations in a city.

Chapter Six explores the utility of cloud computing by presenting the design,
implementation and testing of a system that conforms to the Coarse-grained
Snapshot Geoprocessing (CGSG) class of geoprocessing operation. Amazon’s
Elastic MapReduce service is used to increase the performance of an image

processing algorithm known as the Spatial Reclassification Kernel (SPARK).

Chapter Seven discusses the main findings of this research and highlights the

overall research contribution of this work.

Chapter Eight concludes the thesis and details the possibilities for future work
in this field.

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

Chapter 2 Geoprocessing on the Grid: A Review of St andards,
Tools and Techniques

2.1 Introduction

Sensor web, grid computing and geospatial web services have been identified
as key technology areas that are well placed to deal with the problems of
scalability and interoperability in real-time geoprocessing systems. In this
Chapter the suitability of these technologies to solve the computational and
architectural challenges inherent in monitoring real-world phenomena and
predicting their future state are reviewed from a geospatial perspective. The

major objectives of this literature review are set out as follows:

1. Identify the design characteristics of geospatial monitoring and
prediction applications and review the case for a distributed approach
to the design of geospatial monitoring and prediction applications.

2. Describe the current state of the art in each of the following key

technology areas: sensor web, grid computing and geospatial web

services.

3. Review contemporary tools and techniques for geoprocessing in
parallel.

4. Examine existing efforts to integrate grid computing into geospatial
workflows.

5. Set out a research agenda for real-time geoprocessing on the grid.

The remainder of this Chapter is divided into three logically distinct sections.
Section 2.2 reviews geospatial monitoring and prediction applications and
examines their suitability for integration with grid computing, thus fulfilling
objective 1 above. Section 2.3 considers the array of web service based
middleware in GIS and grid computing that enables geoprocessing to take place
in a distributed environment, fulfilling objective 2 above. Section 2.4 presents a
review of the parallel geoprocessing strategies and data architectures that are
outlined in the literature, thus fulfilling objectives 3 and 4 above. The key

findings of this review are presented in the summary in Section 2.5 which fulfils

8

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

objective 5 above. The aims, objectives and research questions of this thesis,

are then set out in Section 2.6.

2.2 Characteristics of Geospatial Monitoring & Pred iction Applications

Our ability to remotely measure and record real world phenomena pertaining to
ourselves and our environment has rapidly increased over recent years due to
technological advancements in communication systems (Liang et al., 2005)
wireless sensor networks (Culler et al., 2004, Martinez et al., 2004), satellite
imaging (Plaza et al., 2009) and satellite positioning systems (Liang et al.,
2003). This access to timely information about our environment has enabled us
to make better, more informed decisions and to react to changing
circumstances as they happen (Aloisio, 2003). Notably, fields such as
geohazard monitoring and structure monitoring have allowed us to improve the
safety of our environment. Furthermore, our ability to monitor moving entities
such as people, vehicles and animals has enabled us to improve logistics and
security. The purpose of this Section is to outline the utility and scope of
geospatial monitoring and prediction, and to highlight the compute and data
characteristics of such systems in order to rationalise the case for a sensor web

/ grid computing approach to system design.

2.2.1 Real-Time Geohazard Monitoring and Mitigation

Mitigating the effects of disasters relating to geo-hazards is becoming an
increasingly important priority. There is a rising trend in the number of extreme
weather events and in the cost of such events in terms of lives and economic
damage; trends that are attributed to a changing climate and to increasing
concentrations of the world’s population in vulnerable areas (Freeman et al.,
2003). To highlight the importance placed on geohazard monitoring and
mitigation, and the perceived role of SOA and geospatial web services it is
worth referring to the European funded Open Architecture and Spatial Data
Infrastructure for Risk Management (ORCHESTRA) project. ORCHESTRA has
attempted to improve interoperability between risk management organisations
by defining a common abstract specification framework, the Reference Model

for the ORCHESTRA Architecture, which sets out the building blocks for risk
9

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

management systems based on OGC, ISO, W3C and OASIS standards
(Klopfer and Kanellopoulos, 2008).

According to the International Centre for Geohazards, strategies for mitigating
the effects of geohazards fall into six categories (Solheim et al., 2005); careful
land-use planning, adherence to good construction practice, physical protection
barriers, community preparedness, early warning systems and evacuation
routes. The first three strategies enumerated here are required to be in place
long before the occurrence of a disaster but the latter three could conceivably

benefit from real-time monitoring and observation of real world phenomena.

Technological solutions can often assist communities in preparing for geo-
hazard events by coupling sensor networks with computationally intensive
models. For example, although earthquake early warning systems currently
provide a maximum of seventy seconds warning (Bose et al., 2007), damage
limitation can still be achieved using Real-time Earthquake Information Systems
(REIS) that give rapid notification of earthquake parameters such as time,
location and magnitude (Kanamori, 1997). Such notification enables
emergency services to allocate their resources more effectively in the aftermath
of an earthquake event. Nakamuru et al (2009) describe a REIS in Japan that
utilises an 800 node seismometer network that has been deployed throughout
the country. Observations are taken from each sensor node every second and
transferred to a central processor that maintains three minutes of observation
data for the entire network and is updated every second. The processor scans
the observation data held in shared memory for evidence of an earthquake by
comparing the signal to noise ratio of 1 second and 30 second averages of
ground acceleration and maximum amplitude. If an earthquake is detected the
system ceases scanning and starts attempting to determine the earthquakes
hypocentre (Horiuchi et al., 2005). This real-time system runs on a single dual
core Linux machine (Xeon 2.8 Ghz) with 8GB RAM.

Tralli et al (2004) argue that the widespread deployment of seismometer
networks is not economically viable, and that space based sensing should be

used to augment data collected from the ground. Interferometric Synthetic

10

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

Aperture Radar (INSAR) provides a spatially continuous dataset showing
ground movement. INSAR data can assist in the understanding of earthquake
processes, which is likely to improve forecasting, and is also useful for post-
earthquake damage assessment (Rejaie and Shinozuka, 2004). However, due
to the limited temporal resolution of satellite data, it is unlikely to replace ground

based solutions for seismic monitoring.

Wildfire prediction systems have concentrated on predicting fire pre-cursors
such as lightning risk and fuel loads (Grasso and Singh, 2008). For example de
Groot et al (2006) have developed a global wildfire early warning system that is
based on weather forecast information and local historic data on fire and
weather events. To account for uncertainty in prediction of atmospheric
conditions, the same model is run several times using different parameters to
provide distributions of possible outcomes. Such an approach is ideally suited
to a distributed computing architecture in which each model run can be
executed on a different processor. When a fire does break out, it is now
possible to model its spread and the effect it has on structures due to recent
advances in Computational Fluid Dynamics (CFD) and Finite Element (FE)
analysis (Han et al., 2010). The FireGrid project (Han et al., 2010) has
demonstrated how grid computing, high-performance computing, command and
control systems and wireless sensor networks can be used together to model
the progress of a fire. Heavily instrumented buildings typically equipped with
10,000 sensors providing observations of smoke, carbon dioxide and
temperature every 0.1 seconds feed into CFD fire models and FE structural
models to simulate the fire and its damage to the building. Such models are
enormously complex; to simulate a 15 minute fire for a small hotel room is
estimated to take 6 hours on a single processor with 1GB of RAM (Han et al.,
2010). We can thus infer that a minimum of 24 nodes would be required to
perform this computation in real-time. Parallel computing is clearly necessary to

achieve results in a useful time period.

Cities or regions that are vulnerable to natural disasters or terrorist attacks are
faced with the problem of emergency evacuation route planning. Attempts to

solve this problem have traditionally used one of three possible approaches;

11

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

micro-simulators, meso-simulators and macro-simulators (Southworth, 1991).
Micro-simulators attempt to take into account the movement and behavioural
interactions of individual entities such as people and vehicles (Pidd et al., 1996).
This approach is often based on cellular automata modelling which generally
requires considerable computational resource as the state of each entity must
be individually modelled. The resulting evacuation plan is likely to be realistic
however, as real-life factors can be accounted for easily such as traffic
congestion and vehicle breakdowns. Meso-simulators take a similar approach,
but consider groups of entities rather than individuals in order to reduce
computational complexity (Barcell6 and Grau, 1993); however advances in
computing power have rendered this approach redundant for planning
applications (Pidd et al., 1996). In contrast, macro-simulators do not track the
properties of single vehicles or people, but use equations originating from fluid
flows in networks to estimate the state of congestion in the road network, thus
they produce less realistic evacuation scenarios but require less computational
resource (Pidd et al., 1996).

Lammel et al (2010) designed a microscopic simulator for a scenario in which
the Sihlsee Dam bursts and floods the city of Zurich in Switzerland. The system
is based on CA simulation modelling where 100 iterations of the simulation are
run in which each agent learns to optimize its route from experience gained in
previous iterations. Road capacity is considered through the use of a queuing
simulation, a time-constrained Dijkstra algorithm (Dijkstra, 1959) is used to plan
every evacuee’s route to a single destination. For 165,000 agents in the model
it takes 3 hours 24 minutes to run using a single Linux processor with 2GB
RAM. The utility of such a system is clear for predictable situations such as a
dam-burst for which the plan can be pre-computed. However, given a scenario
such as a hurricane evacuation, in which the source location and spatial extents
of the hazard are unknown until the period immediately preceding the event, the
model will not run quickly enough to produce useful results and thus
precomputing a number of likely scenarios may prove beneficial (Southworth,
1991). Kim et al (2008) argues that the macro-simulator approach is favourable

because it scales well to large network sizes and that the significant runtime

12

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

suffered by micro-simulators restricts their ability to compare alternative

configurations in a timely fashion.

2.2.2 Real-Time Entity Monitoring

Our ability to monitor a range of phenomena in environments that were
previously inaccessible is now possible due to advances in micro-electro-
mechanical systems. Wireless sensor nodes are now small and inexpensive
and so are relatively easy to install both densely and unobtrusively in remote
places (Martinez et al., 2004). Furthermore, the widespread prevalence of
Global Positioning System (GPS) receivers on wireless sensors, in vehicles and
in mobile phones enables us to monitor the location of moving entities such as
people, vehicles and animals. The monitoring of animals is generally performed
for the purpose of scientific research such as studying animal movement
patterns (Moen et al, 1996) but the monitoring of people and vehicles enables

us to improve our transportation infrastructure and surveillance systems.

Efforts to reduce congestion by influencing the route choices of drivers have so
far focussed on the use of GPS equipped vehicles that are able to wirelessly
share traffic flow information. This approach enables congestion to be reduced
collaboratively and in an ad-hoc manner. For example, Dashitenezhad et al.
(2004) designed a system in which traffic information is relayed between
neighbouring vehicles as they pass each other on a road network. A unit is
fitted to each participating vehicle which automatically joins an ad-hoc wireless
network to broadcast and receive traffic information when they come in range of
other similarly fitted vehicles. In this design, on-board routing systems use the
additional traffic flow information to adjust their route, which is computed locally
on-board each vehicle. A more centralised approach to data processing is used
by the satellite navigation system manufacturer Tom-Tom in their system “Tom
Tom One XL HD Traffic’. Location information provided by Vodafone UK is
sourced from mobile phone owners and is aggregated at a central location and
combined with information from in-situ road sensors to estimate traffic flow (Chu
et al., 2008). The traffic information is then published to subscribing in-vehicle
Tom-Tom navigation systems. Google and Yahoo have also implemented

similar systems. Aggregating traffic flow information at a central location

13

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

ensures a large sample size and eliminates the need for on-board processing,
although it does create a potential bottleneck if all users simultaneously request
data from a provider’s single endpoint. Nekovee (2005) suggests the data
collected on-board vehicles could be fed into traffic forecasting models and
traffic light control systems. However, it is noted that a computational grid
would be required to aggregate, store and process the vast data volume
generated by such a system.

Whereas traffic monitoring is concerned with monitoring the state of an entire
road network or sub-network, vehicle tracking is simply concerned with tracking
the state and location of a vehicle or a set of vehicles. The proposed ANGEL
project provides an interesting vehicle guidance scenario in which the protection
of a hazardous cargo is the primary concern. ANGEL forms a part of the Mitra
Project (Planas et al., 2008); its primary objective is the safe, secure,
environmentally-friendly and cost-effective routing, navigation, tracking and
tracing of vehicles. In this context, safe refers to journey planning that
minimises the risk of road traffic accidents, and secure refers to the
minimisation of vulnerability to terrorist hijacking. A multi faceted system is
proposed in which the driver, the cargo and the environment are heavily
instrumented and a number of risk factors are continually assessed. It is
anticipated that the routing system will utilise vehicle mounted sensors to
determine factors such as driver alertness, cargo condition and fuel range, in
combination with external data sources such as live traffic information and real-
time security alerts. This live data is to be combined with static base mapping
data and fed into a continuous risk modelling process. The system would not
only be able to determine efficient and safe routes but would also be capable of
identifying safe places to stop. Such a system is envisioned to carry a heavy
compute burden given the large number of risk factors to be considered.
Furthermore, the size of this compute burden is liable to vary depending on the

current size of the vehicle fleet that is being monitored.

Ghiani et al (2003) present a number of vehicle routing problems that can be
considered variations of the classical travelling salesman problem. Each

problem relates to a real-world routing application such as emergency services,

14

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

taxi services, couriers and fleet management and is concerned with reducing
cost and improving service level. Particular consideration is given to problems
that are dynamic in nature; these are scenarios in which the input data such as
travel times and demands depend explicitly on time and so prevent routes from

being precomputed.

Monitoring people and their whereabouts is routinely carried out by government
agencies for purposes of security. GPS tagging devices are commonly used in
the criminal justice system to enforce bail terms such as curfews, and exclusion
from particular areas (Black and Smith, 2003). Covert location monitoring can
also be achieved by police forces using mobile phone pinging (Shields, 2006).

Furthermore, intelligent closed circuit television systems are also being
prototyped that can identify persons of interest through face-recognition and
searching a database of static images (Peacock et al 2004). It has been found
that face recognition software that uses principal component analysis can
outperform human face recognition (Burton et al.,, 2001). Despite promising
results in the literature there is a long way to go before this technology matures,
as demonstrated by the fact that the most widely used benchmark database
FERET (Phillips et al., 1998) only contains 14,000 images.

2.2.3 Design Traits in Geospatial Monitoring & Prediction Systems

The host of real-time monitoring and prediction applications discussed thus far
vary enormously in purpose and in terms of the ease with which they can be
implemented. Furthermore, these applications differ in their suitability for a grid
computing / sensor web approach to system design; important differences in

system characteristics are discussed below.

Real-time systems can be divided into two major categories based on the
importance of producing a result within a given time limit. Hard systems must
meet a specific deadline to avert a catastrophe whereas information provided by
soft systems is still useful after the deadline has passed (Kopetz, 1999). An

example of a soft application is long term climate change studies as the results

15

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

do not necessitate urgency. On the other hand, hard applications such as early
warning systems, evacuation and post disaster management systems for
geohazards including earthquakes (Kanamori et al., 1997) landslides (Carrara
et al., 2000), wildfire (Goldammer, 2006) and floods (Hughes et al., 2006)
require results within a fixed time-frame. Hard systems are characterised by
demanding response times and their ability to cope with peak-load conditions;
short-term temporal accuracy of data takes precedence over long-term data
integrity. In contrast, soft systems are generally designed to cope with average
load conditions and are capable of extending their response time if they cannot

cope with peak-load (Kopetz, 1999).

A trigger is defined as an event that causes some communication and
processing action to begin (Tisato and de Paoli, 1995). A time-triggered event
Is caused simply by a change in time; for example in Japan’s REIS discussed
by Nakamuru (2009) seismological observations are retrieved and processed
every second for earthquake detection. In contrast, an event-triggered event is
caused by the change in state of some property other than time; in Japan’s
REIS the hypocentre location system is triggered in the event of earthquake
detection. Typically, monitoring systems are time-triggered and prediction
systems are event-triggered; such architectures are also referred to as pull and
push-based systems respectively. Monitoring systems therefore present a
steady but relentless data stream whereas prediction systems present an
irregular data pattern that requires processing on demand.

The length of time a processing operation takes to complete is almost always
related to the size of input data (Worboys and Duckham, 2004). This
relationship between compute time and data input size is referred to as time
complexity and is defined in terms of big-oh notation which gives an
approximate indicator of how a given algorithm will perform. In this notation the
processing time is defined in terms of data input size n. For example O(1)
indicates that an operation will complete in constant time, i.e. is independent of
data input size. Geospatial algorithms rarely execute in constant time, although
some operations on geospatial data such as the insertion of records into a

spatial database can be completed in constant time. O(n) indicates that there is

16

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

a linear relationship between processing time and data input size. For example
the calculation of a polygon’s area has a linear time complexity as the
processing time increases linearly with the number of vertices. O(n") is referred
to as polynomial time and indicates a polynomial relationship; for example
Dijkstra’s shortest path routing algorithm (Dijkstra, 1959) has a polynomial time
complexity. Finally, O(K") is referred to as exponential time and indicates the
problem is intractable, i.e. no optimal solution exists. The travelling salesman
problem (Schrijver, 2005) exemplifies an O(K") geospatial problem with an
exponential time complexity. Although the actual time taken by a given problem
will depend on a variety of factors such as processing hardware and software,
the time complexity gives a useful indication of how an algorithm is expected to

perform in relation to its input data volume.

Resource scalability refers to the ability of a system to gain higher performance
by increasing the size or number of processors (Hwang, 1996). In monitoring
and prediction systems dynamic resource scalability may be required to cope
with greater volumes of input data resulting from an increased spatial precision
of analysis, number of sensors or size of study area. Increasing the size of a
study area may bring an extra cost unrelated to the number of sensors as a
larger volume of map data may need to be processed. Resource scalability
may also be necessary if an increase in the accuracy or precision of output
results is required. Tom Tom’s XL One HD traffic monitoring system (Chu et al.,
2008) is an example of a system that may require the use of an increased
number of processors to carry out observation aggregations as more sensors

come online.

2.2.4 The Motivation for Integrating Grid Computing with Geospatial
Monitoring and Prediction Systems

Successful grid implementations through projects such as EGEE (Gagliardi et
al., 2005), TeraGrid (Catlett, 2002) and CrossGrid (Marco and Marco, 2003)
have shown that grid systems are particularly well suited to applications that
involve significant computational modelling, the collaboration of multiple

organisations or the integration of multiple data sources. In application areas

17

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

such as fluvial flood monitoring and prediction, grid computing has already been
incorporated into a number of systems including the GridStix project (Hughes et
al., 2006), the Data Fusion Grid Infrastructure (Kussul et al., 2008) and the
ANFAS/CrossGrid/K-WF/EGEE Flood Knowledge System (Hluchy et al., 2005).

Besides performance improvements, grid computing also enables sensor based
geoprocessing systems to increase or decrease their scale of analysis, either in
terms of the number of sensor data streams being processed, the geographical
extent of analysis or the precision of analysis. In this regard the computational
grid has often been compared to the electrical power grid in its ability to make
computational power available “on demand” (Foster and Kesselman, 1999).
This property of elasticity is important for applications such as early warning
systems as well as several traffic management and vehicle monitoring
applications. However, the hard real-time requirement of such systems cannot
currently be met by grid computing due to time lags in job scheduling systems
(Padberg and Kiehle, 2009). Geoprocessing operations such as route-finding
algorithms often resort to heuristic methods (Ghiani et al., 2003) to solve
computationally complex problems resulting from large spatial extents, fine
scaled analysis or high multiplicity of observations. However, as the size of the
analysis is increased, computational limits will eventually be reached for
algorithms that have a time complexity exceeding linearity unless a scalable
processing architecture is adopted (Openshaw, 2000). Grid computing offers a
solution as it enables processing power to grow dynamically to meet an

increased demand.

In the period immediately succeeding a natural disaster, both static and real-
time geospatial data is in high demand from rescue organisations and from
those responsible for repairing damaged infrastructure. Grid computing
provides a common platform through which such organisations can collaborate
and share resources (Follino et al., 2010). In addition, the pool of services that
results from the de-coupling of data resources, business logic and visualisation
tools enables higher level geospatial applications to rapidly be created to suit

changing circumstances (Kiehle, 2006).

18

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

Applications that have a large computational requirement such as microscopic
evacuation planning may benefit from accessing high performance computing
resources through the grid. Examples of parallel microscopic traffic simulators
are provided by Cameron and Duncan (1996), Barcello et al (1998), and Nagel
and Rickert (2001). Arguably it would be more convenient and efficient if the
parallel computers used in these cases were located on the grid and accessed
via a service interface. This would enable organisations wishing to run the
traffic simulator to do so without hosting expensive high performance computing
facilities. Furthermore this would enable better utilisation of computing power

as it could be accessed on demand.

The key advantages of integrating grid computing with geospatial monitoring

and prediction systems can be summarised as follows:

1. Access to computing on demand for applications exhibiting temporal
variability in computational load.

2. Ability to scale-out analysis over a larger geographic area or at a finer
spatial scale without hardware restrictions.
Ability to share data and compute resources across organisations.

4. Access to high performance computational capabilities.

Minimal initial hardware investment cost.

Consequently there is a considerable motivation to port the computational
aspect of geospatial monitoring and prediction systems to the grid. From a
technical perspective three major challenges are envisioned in integrating
geoprocessing services and grid computing (Brauner et al., 2009). The first of
these is the architectural challenge of orchestrating services across the
geospatial and the grid computing domains (Section 2.3). The second issue is
the computational challenge of improving geoprocessing performance;
geospatial datasets are characteristically large and geoprocessing operations
are typically computationally intensive thus the use of parallel geoprocessing
techniques is advocated (Section 2.4). The third research challenge is that of
semantic descriptions for geospatial services to facilitate discovery and

reconfigurable chaining; however this falls outside the scope of this thesis.

19

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

2.3 Distributed Computing Architectures and Standar ds for Real-Time
Geospatial Applications

2.3.1 Web Service Styles and Standards

Web services, an implementation of SOA design principles have become the
de-facto platform for distributed computing. SOA is described as “a paradigm
for organising and utilising distributed capabilities that may be under the control
of different ownership domains” (MacKenzie et al., 2006). Parallels can be
drawn between a SOA service and an object in object oriented programming in
that the internal workings are hidden but a standard interface through which to
interact with the object or service is made available (Worboys and Duckham,
2004). Because the service description is kept distinct from the
implementation, SOA components using different technologies can interoperate
through this common interface (Kaye, 2003). When a service is created its
description is published to a searchable registry so clients can find their
required service and bind to it directly (Figure 2.1). This enables clients, either
end users or other applications, to interact with the service without any prior

knowledge of it.

SOA has rapidly gained popularity as a software architecture and older
distributed object systems have become virtually obsolete, largely as a result of
their reliance on proprietary formats and their inherent communicational
inefficiencies (Cook and Barfield, 2007). A critical reason for the success of the
SOA is that it does not rely on sending entire objects around a network, instead
only minimal requests and responses are communicated. Additionally, this
architecture scales well and tolerates systems that cross ownership boundaries
(MacKenzie et al., 2006). Furthermore, the SOA enables existing services to be
used as building blocks for new services that add some value or provide some

original content (Foster, 2005).

20

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

Service
Registry
Find Publish
UDDI WSDL
Requester Bind Provider
SOAP

Figure 2.1: Service Oriented Architecture

Issues of interoperability between web services are the concern of Web
Services Interoperability (WS-I) (http://www.ws-i.org); an open industry
organisation chartered to establish best practices for web services
interoperability for selected groups of web service standards across platforms,
operating systems and programming languages. WS-I define profiles and
implementation guidelines for web services standards. @ The WS-I's Basic
Profile 1.1 (WS-I BP 1.1) sets out Web Service Description Language (WSDL)
version 1.1, Universal Description Discovery and Integration (UDDI) version 2.0
and Simple Object Access Protocol (SOAP) version 1.1 as the core web
services specifications which have been designed to standardise the processes
of publishing, finding and binding to web services (Ballinger et al., 2006).

In conformance with WS-l BP 1.1, service providers publish their services to a
UDDI registry using WSDL. Clients are then able to locate these services by
searching the UDDI registry, thus enabling the requester and provider to bind
directly to each other using SOAP (Gottschalk et al., 2002), a simple XML
based protocol that lets applications exchange information over HTTP (W3C,
1999). This series of interactions is depicted in Figure 2.1. SOAP is a format
for sending messages between applications via the internet and it is commonly
used because it is text based so can easily pass through firewalls (Scribner and

Stiver, 2000), because it is platform, language and vendor independent and

21

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

because it is has been adopted as a W3C standard (Chatterjee and Webber,
2004).

In grid computing, web service technology is used to federate distributed
resources using grid services which are defined as a web service that conforms
to a particular set of conventions (Grimshaw, 2003). One of the major problems
with using web services in grid computing has been that web services are
stateless and many grid applications require the ability to store state, i.e. data
values that persist across, and evolve as a result of web service interactions
(Foster et al., 2004). This difficulty has been overcome by the development of
the Web Services Resource Framework (WSRF), a collection of web services
specifications developed by the Organisation for the Advancement of Structured
Information Standards (OASIS) that allow web services to store state. In the
same way that SOAP based web services presume conformance with WS-I BP
1.1, grid services rely on the OGSA-WSRF Basic Profile v1.0 (OGSA-WSRF BP
1.0), a WS-l profile that extends the WS-I BP 1.1 whilst integrating WSRF
specifications. WSRF web services are bundled with their associated
resources; collectively this package is known as a WS-Resource which is
addressed using an endpoint reference. Standard interfaces are defined to
name and bind to resources, to create and destroy resources and to query
resource properties. WSRF provides a means of describing and controlling the
lifetime of a WS-Resource, of describing and handling faults systematically, of
aggregating information about resources and services and of providing a
notification mechanism to the change in state of resources (Czajkowski et al.,
2004).

Closely tied to the WSRF specifications is another family of OASIS
standardised specifications, Web Services Notification (WSN). WSN
incorporates three standards, WS-BaseNotification (Graham et al., 2006), WS-
BrokeredNotification (Chappell and Liu, 2006) and WS-Topics (Vambenepe et
al., 2006) which collectively define a framework through which web services can
disseminate events (Niblett and Graham, 2005). Under the WSN architecture,
notification producers publish their notifications to a topic which is a notional

endpoint used to categorise notifications. Notification consumers can then

22

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

receive notifications by subscribing to a topic. Through WSN specifications,
web services can be invoked in reaction to events, thus extending the paradigm
of a service-oriented architecture to that of an event driven architecture (Etzion,
2005). An example application of WSN is to notify a client each time a WSRF

resource is modified.

WSRF specifications have largely become obsolete, due to a lack of uptake. A
divide in the web services community became apparent when a competing set
of specifications known as WS-Transfer (Alexander et al.,, 2006) was
introduced. WS-Transfer was championed by Microsoft and submitted to W3C
for standardisation, thus causing uncertainty as to which specification set would
prevail. Essentially, WS-Transfer provides the same functionality as WSRF
though through a create, read, update, delete interface. Furthermore, WS-
Eventing (Box et al., 2006) provides a closely related notification framework to
WS-Transfer, as WSN does to WSRF. A comparison of WSRF and WS-
Transfer is conducted by Humphrey et al. (2005) who note only minor
differences in the specifications but conclude that WS-Transfer is slightly easier
to implement. The industry is now converging on a compromise between
WSRF and WS-Transfer known as Web Services Resource Transfer (Davis et
al., 2009) that combines some features from each specification set. Due to the
slow pace of progress in the standards community, the UK e-Science
programme has ratified a core set of standards to enable current projects to
move forward (Atkinson et al., 2004). These are collectively termed WS-I+ and
encompass WS-I, Business Process Execution Language (BPEL), WS-
ReliableMessaging and WS-Addressing. BPEL is a web service orchestration
language, WS-ReliableMessaging is a specification that is used to ensure the
delivery of SOAP messages and WS-Addressing is a web service standard that
incorporates message source and destination information into the SOAP
envelope. Due to the present state of flux in notification and state
representation standards, these standards were altogether omitted from WS-+
although controversy does remain over the best way to model state in web and
grid services (Foster et al., 2009).

23

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

Foster et al (2009) argue that there are currently four different ways to model
state in web and grid services. Explicit methods to model stateful resources as
XML documents are provided by WSRF and WS-Transfer, each of which
provides a number of common operations to access, update and delete such
resources. Proponents of these explicit methods argue that it is logical to
provide a standard interface for resource creation and management as it
simplifies development, enables code reuse and encourages standard tooling to
be developed. Another school of thought suggests that such conventions are
overly complex and that state should be modelled implicitly through web service
operations that are application specific; proponents of this approach value
simplicity over structure. Finally, HTTP provides another method of coping with
state based on principles that have become known as Representational State
Transfer (REST). REST is an architectural style proposed by Fielding (2000)
which describes a set of principles that outline how resources are defined and
addressed, and provides an alternative to the WS-I based web service design.
In REST terms, a resource is a communication endpoint that is addressed using
a Universal Resource ldentifier (URI) and manipulated through one of the four
HTTP header operations: get, put, post and delete. Like the internet, REST
web services support only these four methods but an infinite number of
resources which are defined using a URI. In contrast, SOAP web services
support a theoretically infinite number of methods, each of which corresponds to
a port type. However, SOAP web services don’'t provide direct access to
resources; access is only provided through web service operations.

REST web services do not just provide a method of modelling state, they
represent a fundamentally different style of web services which has lead to a
long standing debate in the web services community over the relative merits
and shortcomings of both RESTful and SOAP based web services. Those in
favour of RESTful web services argue that the small number of methods ensure
simplicity of design and ease of deployment; requests are self contained and do
not require complicated sessions to be maintained with clients (Muehlen et al.,
2005). Furthermore, SOAP based services have traditionally been weak at
addressing, meaning that it is not always apparent where a message is going,

how to return a response or where to report an error. This weakness has been

24

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

mitigated by the introduction of the WS-Addressing standard (Box et al., 2004)
which incorporates such details in the SOAP header, thus providing a standard
way to route messages over multiple transports, or to direct a response to a
third party. However, the heavy use of one URI as an endpoint through which a
number of different services are accessed has been cited as a criticism of
SOAP based web services (Muehlen et al., 2005). Additionally, the heavy use
of application specific methods that require encoding and decoding by higher
level programming languages adds significantly to the communication overhead
and overall complexity of SOAP based services. Conversely, proponents of the
SOAP approach argue that it is preferable because it is not tied to the internet’s
HTTP transport protocol and it has better support for security features. It is also

more suitable for publishing large complicated applications (Prescod, 2002).

The majority of OWS specifications predate SOAP and WSDL and a custom
interface was therefore developed by the OGC based on the RESTful model.
To improve interoperability with other web services the OGC is currently
refactoring OWS to support SOAP and WSDL.

Listing 2.1 and Listing 2.2 give respective examples of SOAP and RESTful
WPS Execute requests that specify the execution of a buffer operation; this is a
simple geoprocessing operation that creates a new feature of a specified width
around an existing feature. It can be seen that the SOAP wrapper details the
method to execute “ExecuteProcess_GMLBuffer” and provides the input
parameters, the URI of the polygon to buffer and a distance value representing
the width of the buffer. The SOAP request assumes a connection to the WPS
endpoint reference has already been established. If this endpoint reference
offered any other methods, they too could be accessed through the same
connection by specifying a different method name in the SOAP body. In
contrast the RESTful request is made using a HTTP get request that specifies
the address of the service, and the input parameters are provided as key-value
pairs. The Datalnput parameter is a URL reference to the feature to be

buffered, and BufferDistance specifies the width of the buffer to be created.

25

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

Listing 2.1: SOAP WPS Execute Request

<soap:Envelope
xmins:soap="http://schemas.xmlsoap.org/soap/envelop e/l
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instanc e"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<soap:Body>

<ExecuteProcess_GMLBuffer

xmins="http://wpsint.tigris.org/soap/SpatialAnalysi s">
<GmlUrIResource>http://onotta499/gml/polygon_gml.xm I</GmlUrlIResourc
e>

<Distance>10</Distance>
</ExecuteProcess_GMLBuffer>
</soap:Body>

Listing 2.2: RESTful WPS Execute Request

http://foo.bar/foo?request=Execute&service=WPS&vers ion=1.0.0&langua
ge=enCA&ldentifier=Buffer&Datalnputs=Object=@xlink: href=http://foo.
bar/foo;BufferDistance=10& ResponseDocument=Buffere dPolygon

2.3.2 The Open Grid Services Architecture (OGSA)

The OGSA framework specifies an extensible set of services that support the
coordination and sharing of distributed computing resources. The core services
specified by OGSA encompass execution management, data, resource
management, security, self management and information. The role of OGSA is
to facilitate interoperability within and between grid hardware, middleware and
software services. OGSA is still a work in progress and many standards are not
yet in place. Where possible existing web services standards are used or
adapted which makes it easier for organisations that already support key web
services standards to adopt OGSA. The OGSA framework is modular which
enables basic capabilities to be mixed and matched to provide a higher level
capability. This building block approach and the fine-grained nature of OGSA
services ensures that only relevant parts of each specification need to be

implemented.

Unlike the OWS and SWE frameworks a rigorous approach to security has
been adopted in OGSA. A full description of the OGSA security model is

provided by Nagaratnam et al (2002); in summary it addresses three major

26

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

challenges; integration of disparate security systems, interoperability between
distributed system components and the establishment of a trust relationship
across organisational domains. Virtual Organisations (VO) address the trust
relationship issue; VO members are granted access to their organisation’s
resources and each member is authenticated and authorised using their
personal X.509 certificate (Cooper et al., 2005) which is issued by a
Certification Authority (CA). Typically each VO has its own CA and each CA is
itself issued with certificates from a higher level CA. For example, a university
department may have a CA which is issued with certificates by a university wide
CA, which is in turn issued with certificates by a national CA. As every VO
shares the same top level CA, the International Grid Trust Federation
(www.gridpma.org), implicit trust can be assumed between each VO. Users
that violate their trust agreement can have their certificate revoked and
therefore lose access to the grid infrastructure. Security aspects of OGSA are
outlined in the OGSA Basic Security Profile 2.0 (Snelling et al., 2008) (OGSA-
BSP 2.0) which is currently a recommended OGSA standard that extends the
OGSA WSRF BP 1.0 and incorporates both the Secure Addressing Profile 1.0
(Merrill, 2008a) and the Secure Communication Profile 1.0 (Merrill, 2008b).
Collectively these specifications set out a standardised means of overcoming

the challenges specified above.

The OGSA data services architecture provides a means of moving data,
running queries and updates, managing data replication and federating data
resources in a grid environment (Foster et al., 2005). The OGSA WS-DAI
specification enables access to and integration, transformation and delivery of
heterogeneous data resources through a web services interface. There are
currently two realisations of this specification; OGSA-DAIX and OGSA-DAIR
which allow access to and provide descriptions of XML and relational databases
respectively (Antonioletti et al., 2006). Using a WS-DAI service it is possible to
perform data centric workflows, for example it is possible to access data from
multiple sources such as relational and XML databases, transform the data and
deliver it to another data repository. Furthermore, OGSA-DQP is an extension
of the OGSA-DAI implementation that enables queries to be executed across

resources federated by OGSA-DAI. Transporting data within a grid architecture

27

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

Is typically achieved using GridFTP (Allcock et al., 2003) which can be
considered an extension to the File Transfer Protocol (FTP) that has been
designed specifically for grid data transport. GridFTP extends FTP with key
features such as parallel and third party data transfers and critically it includes
support for grid security measures. This protocol is best suited to transferring
large files and is capable of scaling to network speeds, 27GB/s has been
achieved on a 30GB/s bandwidth (Allcock et al., 2005).

Basic Execution Service (OGSA-BES) (Foster et al., 2008) is an OGSA
standard for the submission of simple computational jobs; it specifies operations
for the creation, monitoring and control of jobs or activities (Marzolla et al.,
2007). The individual activities or ‘jobs’ performed by OGSA-BES must be
defined in a Job Submission Description Language (JSDL) document
(Anjomshoaa et al., 2005) which is an XML schema that has been adopted as
an OGSA standard. JSDL is used to describe a job or activity in terms of a
unique identifier, an application description, the resources it requires and the

data files it needs.

Whereas the SWE and OWS specifications remain relatively stable, the OGSA
specifications remain in a state of flux. Several of the specifications outlined in
The Open Grid Services Architecture: Version 1.5 (Foster et al., 2006) have
been abandoned by the OGF and new ones have been proposed. It therefore
seems likely that it will be several years until there is a complete set of OGSA
implementation specifications. However various implementations of OGSA
standards exist in the form of grid middleware such as the Globus Toolkit, and
the standards that have been developed thus far are being adopted by the grid

community.

2.3.3 OpenGIS Web Services (OWS)

OpenGIS Web Services (OWS) are a family of web service specifications
defined by the OGC that enable maps, geospatial data and geoprocessing
functionality to be discovered, accessed and visualised through the internet. As

OWS provides a vendor neutral communication format it has rapidly been

28

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

adopted by software and data providers. OWS is comprised of a set of
independent specifications, each of which provides a particular function,
although they each share a common design pattern including data structures,
requests and responses. This common base is outlined in the OGC Web
Services Common specification (Whiteside and Greenwood, 2010), currently in

version 2.0.

OWS includes specifications such as the Web Mapping Service (WMS) that
delivers visual map images in response to simple HTTP GET or POST
requests. The Web Feature Service (WFS) (Panagiotis and Vretanos,
2010)delivers vector data in GML format and the Web Coverage Service (WCS)
(Baumann, 2010) delivers raster data in a variety of common formats such as
GeoTIFF. OWS also includes a catalogue service the Catalogue Service for
Web (CSW) that enables geospatial data and services to be discovered.
Furthermore, the Web Processing Service (WPS) (Schut, 2007)provides an

interface through which geoprocessing functions can be carried out remotely.

All OWS publish a getCapabilities operation that returns a Capabilities
document, an XML encoded description of what the service does and how to
interact with it. The capabilties document is comparable to WSDL, and in the
case of OWS with SOAP bindings, the Capabilities document is encoded as
WSDL.

2.3.4 OpenGIS Web Services (OWS) Test bed Activity

Since 1999 the OGC have been running interoperability programs to design and
develop geospatial web services. In the first initiative known as the Web
Mapping Test bed some of the core OWS standards were developed including
the WMS, WFS, GML, Filter Encoding Specification and the Styled Layer
Descriptor. The next initiative, OWS-2 began in 2004 and introduced WSDL,
SOAP and UDDI in the context of OWS and explored interoperability with these
common web service specifications. Subsequent test bed activity have further
developed and refined OWS. Notable activity of relevance to this thesis

includes the introduction, definition and refinement of SWE, the development of

29

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

an approach to manage OWS workflow chaining using BPEL, and integration of
sensor device standards such as IEEE 1451 with higher level data services. In
OWS-6 an event architecture for OWS and SWE was explored and grid
processing in the context of WPS profiles was identified as a task area

requiring work.

The current test bed OWS-7 is divided into 3 threads, sensor fusion
enablement, feature and decision fusion, and aviation. Sensor fusion
enablement follows on from the geoprocessing workflow and sensor web
enablement threads of OWS-6 and is researching change detection from motion
video using WPS, dynamic sensor tracking and notification, and best practice
for integrating the Common Chemical, Biological, Radiological and Nuclear

Sensor Interface with SWE.

2.3.5 Review of OpenGIS Web Services (OWS) / Grid Integration

Combining OWS that are geared towards the unique nature of geospatial data
with core grid services that are capable of dealing with common distributed
computing challenges such as security, information management and discovery
is expected to provide a number of benefits to the geospatial community.
These benefits include the enhancement of geospatial web services with
security measures (Higgins, 2008) and a reduction in initial hardware acquisition
investment due to increased sharing of computational and data resources
(Padberg and Kiehle, 2009). Furthermore it is expected that integration of grid
services with OWS will facilitate the chaining of geospatial workflows (Fairbairn
et al., 2008) and expedite the execution of large geo-processing operations by
harnessing available processing capability from the grid (Koutroumpas and
Higgins, 2008). Accordingly, there has been significant research activity in this
field.

Particular attention has been drawn to the commonalities between
geoprocessing services and grid computing and to the apparent benefits and
challenges of integration. The principal similarity between OWS and OGSA in
this regard is their common endeavour to define interface standards through

30

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

which to enable open distributed processing. In OWS this is realised through
the WPS and in OGSA through OGSA-BES and related specifications. Of
significance to both frameworks is the ISO Reference Model for Open
Distributed Processing (RM-ODP) that collectively defines a coordinating
framework and methodology for distributed systems (Vallecillo, 2001). The RM-
ODP specifications are subdivided into five viewpoints that each represents a
different abstraction of distributed processing systems; enterprise, information,
technology, computation and engineering. A key benefit of the viewpoint
approach is to address a separation of concerns in the design of distributed
systems. The OGC has adopted the RM-ODP viewpoints in its own OGC
Reference Model (Percivall et al., 2008) although the main focus of their service
interface specifications are on the technology, computational and engineering
viewpoints (Whiteside, 2005).

Fundamental differences in approach between grid services and the WPS in
service description, service interface, security and statefulness present a
considerable challenge in integration (Padberg and Kiehle, 2009, Padberg and
Greve, 2009). Currently OWS suffer from a lack of security measures, as noted
by Woolf and Shaon (2009a). This has prompted service providers to
implement their own security controls at the client level resulting in
interoperability problems in complex service chains. Conversely, grid services
employ a comprehensive security framework based on public key cryptography.
Although the OGC has proposed a security framework for OWS known as
GeoDRM (Vowles, 2007) it has not yet reached maturity; as such there is no
standard method of securing OWS at present. Another deficiency of OWS is
that they are typically stateless and thus have limited ability to perform
asynchronous workflows whereas grid services are capable of maintaining
resource state through frameworks such as WSRF (Section 2.3.1). Various
methods have been suggested to overcome the difficulties described here in

order to integrate OWS and grid services.

According to Kruger and Kolbe (2008) OWS can be adapted to fit the grid
environment, a process termed ‘gridification’ by either high-level or low-level

means. Low-level gridification can be achieved by configuring a typical OWS to

31

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

use the grid as a backend processing or data storage resource whilst
maintaining its service description and interface. Conversely high-level
gridification involves converting the OWS to a stateful grid service so that it can
fully interact with other grid services; however an OWS proxy is required to
ensure the service remains OWS compliant. Baranski (2008) demonstrates the
low-level approach in the development of a grid-enabled WPS. The service
extends the 52-North WPS and enables embarrassingly parallel tasks to be
subdivided and processed in parallel on a back-end Unicore infrastructure after

which the processed features are reassembled before the results are returned.

Further research into low-level gridification has been conducted by Woolf and
Shaon (2009a) who highlight the overlap between the OGC WPS specification
and the OGSA JSDL specification. Both specifications enable computational
jobs and their process inputs and outputs to be described, however WPS lacks
the ability to specify the computational resource requirements whereas JSDL
lacks a web service interface. The specifications do overlap in some areas
such as process description and process input and output. Woolf and Shaon
(2009a) suggest embedding JSDL resource description parameters inside WPS
Execute requests to specify computational resource requirements; three
syntactical options are presented. The first option is to use a JSDL snippet
containing the relevant computational resource requirements, the second option
is to use a URL reference to a full JISDL document and the third option is to use
key value pairs in an XPath style syntax referred to as micro-format style. It is
suggested that interoperability could be improved through the definition of a
WPS-grid profile containing for example the core subset of JSDL job description
and resource description elements that form part of the HPC Basic Profile
(Dillaway et al., 2007), which has already been successful in facilitating

interoperability.

Hobona et al (2007) provides an example of high-level gridification in their work
on incorporating OWS into grid based geo-processing workflows. To solve the
compatibility issues between OGSA and OWS an intermediary proxy web
service was used to serialise and de-serialise SOAP messages to and from

XML to allow OGC services to read them; essentially providing a SOAP

32

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

interface to the OGC services. This approach proved to be problematic in that
encoding the vector and raster payloads in SOAP messages placed a heavy
demand on the Globus container. However, the problem was successfully
addressed by storing the map features in a web server and simply returning the
URL reference to the features inside the SOAP message rather than the
features themselves. Lanig and Zipf (2009b) also describe a high-level
approach to gridification for 3D terrain generalization of LIDAR data using

Globus WSRF services although no results are detailed.

Friis-Christensen et al (2007) recognised inefficiencies in low-level gridification
geoprocessing chains that involve the repeated sending of input data to a
service instance to perform several related operations. The problem is that for
each geoprocess the data is transferred from OWS to the grid for processing
and the results returned to the client, and the process repeated for the next
geoprocess in the chain, causing a great deal of data transfer. This style of
chain is referred to as transparent and it occurs in processing chains based on
the current WPS specification. As an alternative they suggest adapting the
WPS specification to allow an ordered sequence of processes to be performed
in which the output of one process can be used as an input to the next, a style

they term translucent processing.

Kriger and Kolbe (2008) extend the concept of translucent processing to grid
architectures; in addition to high and low level gridification they introduce a third
style which they term transcendent gridification. This style is designed to
reduce the overheads in complex geoprocessing chains resulting from
unnecessary split and merge operations. Firstly a dataset is partitioned and
each partition is allocated to a different processor. Secondly the first operation
in the geoprocessing chain is performed. However, instead of reassembling the
results after the first geoprocessing operation has finished, each set of
processed features are passed directly to the next operation in the workflow.
Finally the results are reassembled once the workflow has been completed.
The advantages of this approach are not only that unnecessary split and merge
operations are avoided, but also that information transfer can take place in

multiple smaller and concurrent streams between services for the entire

33

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

workflow. This style is thus suitable for multi-stage geoprocessing workflows on

large datasets.

The ability to control processes asynchronously has been identified as an
important requirement for efficient geoprocessing. Asynchronous services must
equip each service call with a unique identifier so that results can be retrieved at
a later time (Friis-Christensen et al.,, 2007). Furthermore, asynchronous
geoprocessing services need to provide the capability to check on the status of
pending processes, and to pause or cancel processing jobs at any stage in their
execution. Currently the WPS specification contains some basic functionality to
store process results through the use of a unique job identifier. As yet the
ability to control asynchronous processes is unsupported although pending
change requests (Woolf and Shaon, 2009b, Woolf and Shaon, 2009c) make the
case for additional enhancements to the WPS interface including a mechanism
to check on the status of a pending process and the ability to pause or cancel

processing jobs at any stage in their execution.

Besides these investigations into grid enabling geoprocessing services, other
grid OWS integration work has considered OWS data and discovery services.
Early work in this area was conducted by Di et al (2003) who attempted to
broaden access to NASA’s Earth Observing System (EOS) data repositories by
integrating a pre web-services version of the Globus Toolkit with OWS data and
discovery services. In their system OWS compliant WFS, WMS and WCS were
exposed in addition to a catalogue service; no OWS discovery standard was
available at this time. Requests to the catalogue prompted the search of a
Globus information service that returned a physical file name which could then
be used as a parameter in subsequent data retrieval requests from the OWS
data services. More recently a grid-enabled CSW has been developed in
addition to WCS and WMS portals that expose the typical OGC service
interface at the front end whilst requests are forwarded to a mediator service at
the backend that retrieves the required data from grid storage using a set of
Globus based data services (Di et al., 2008). The work proved to be
successful; large volumes of NASA EOS data were made available to an

extensive user community. However, it was found that the security and

34

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

reliability afforded by the grid services suffered a performance penalty in terms
of response time when compared to their traditional web service based

counterparts.

Rather than exposing OWS to applications at the system’s front-end, Shu et al
(2006) take a different approach whereby grid-enabled OWS at the backend are
federated using OGSA-DAI (Section 2.3.2) in conjunction with a mediator
service to expose the data to applications. Another service OGSA-DQP
schedules, manages and executes distributed queries on the OGSA-DAI
resources, enabling the application layer to easily access all of the underlying
data sources using a standard query interface. This architecture has been
implemented for a case study based on a wildlife sighting database in Australia
called WildNet.

In 2008 the G-OWS working group formed with the aim of integrating the gLite
grid middleware, developed as part of EGEE (http://www.eu-egee.org), with
OWS. Funded through the European projects GENESI-DR, CYCLOPS and
DORII the group has so far developed a gLite enabled WCS and WPS, and
implemented a shibboleth authentication method for gLite OWS. The group
also plans to develop a gLite API for interfacing with OWS and a reference
model containing procedures and guidelines for grid enabling OWS (Mazzetti,
2010).

Ghimire et al (2005) highlight a key problem facing distributed service
architectures, the transfer of large datasets over limited network bandwidth. In
addition to the integration of OWS and grid services, it is suggested that mobile
grid services be developed which they describe as ‘intelligent code wandering
between grid nodes to accomplish certain tasks’. The idea of mobile grid
services is to move the computation to the data rather than vice versa, as this is
envisioned to reduce bandwidth use and thus improve performance. In the
context of the OGC architecture, Friis-Christensen et al (2007) therefore
suggest that data reducing processing operations be performed at the data
source, a style they refer to as tightly-coupled geoprocessing. It is noted that

the WFS specification already provides some basic processing capabilities such

35

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

as coordinate transformation and the ability to clip features by specifying
bounding box extents. Following this approach an extension to the WFS is
suggested, the WFS-P that enables other data reducing operations to be
carried out at source; examples include feature generalization and the

calculation of summary statistics.

Miiller et al (2010) extend the concept of processing data at source using the
technique they refer to as ‘moving code’. In contrast to data driven workflows
whereby data is requested from an OWS data service and sent to a processing
service, the moving code approach sends an algorithm to the data source to
perform the processing. The main idea of the moving code concept is that the

transference of large datasets can be avoided.

Four different moving code scenarios are presented:

1. The sent algorithm is tightly coupled to the data; data is shipped to the
processing service with the code or is already known to the service.

2. The sent algorithm is loosely coupled to the data; data is retrieved
through standard service interfaces at runtime.

3. The algorithm is deployed on the service prior to execution; data is
shipped to the processing service at runtime.

4. The algorithm is deployed on the service prior to execution; the algorithm
is repeatedly executable through a service interface that enables input
data to be passed at runtime.

In the first case data is either already known to the service or is shipped with the
code to the service at runtime, and the code is executed instantaneously but
does not persist after execution. Sending a SQL query to a spatial database is
an example of this scenario. Case 2 is exemplified by the prototypical
transactional WPS that enables algorithms to be dynamically deployed and un-
deployed via a service interface (Schaeffer, 2008). In case 2 data is passed to
the service directly. Similarly case 3 describes a transactional WPS in which
data is retrieved from OWS data services. In the fourth case, sent algorithm is

deployed on the service prior to execution and can then be repeatedly

36

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

executed. The WFS-P described by Friis-Christensen (2007) provides an
example of this style.

The existing OGC architecture is focussed on the data driven approach rather
than the moving code approach discussed here. However a prototypical
implementation of the loosely coupled / permanent deployment scenario was
created as part of the SOKNOS project (soKNOS, 2010) in which two decision
support tools were developed as deployable algorithms; an assessment tool
that determines the effect of an escaped gas on population centres, and a
delineation algorithm that determines inundated areas from a flooding

simulation.

The conclusions drawn from this work were that the moving code scenario is
ideal for frequently changing algorithms or in situations where the same
algorithm has to be deployed to several service instances simultaneously.
Furthermore, moving code rather than data offers a significant performance
improvement as it reduces the amount of data that must be shipped across the
network. Conversely, the data driven approach is suitable for the one off
execution of workflows and when the required simple operators are available at

the data service level.

2.3.6 Review of Sensor Web Enablement (SWE) / Grid Integration

Despite its relative infancy there has already been considerable interest in
integrating SWE with the grid infrastructure. This is unsurprising as sensor web
and grid are both concerned with resource sharing across organisational

boundaries, albeit from different perspectives.

SWE is comprised of a set of encoding languages and web service interface
specifications that collectively define a framework for managing geospatial
sensor data. The principal encoding languages in SWE are Sensor Model
Language (SensorML), TransducerML (TML) and Observations &
Measurements (O&M). As detailed by Botts et al (2007) SensorML is an XML

language to encode sensor metadata that is capable of describing any sensor

37

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

system and any data processing steps associated with the system. As it is an
open and vendor neutral language SensorML eliminates the need for sensor
systems to support multiple proprietary sensor description formats and
facilitates the rapid integration of new sensors. TML (Na, 2007) provides an
alternative sensor description language to SensorML. However, its primary
concern is describing and transporting data close to the source, whereas
SensorML addresses the higher level data processes including how to
represent and display data. Both languages are self contained so that
implementation of either one or the other is possible independent of the wider
SWE framework.

Observations & Measurements (O&M) is an XML based encoding language for
observations from sensor systems (Cox et al., 2006). In contrast to SensorML
that simply describes the sensor system, O&M provides a description of the
actual sensor observations which includes the time and place of observation,
the sensor system used to make the observation and the process chain used to
derive the resulting measurement. It also describes the feature and the
phenomena that is being observed (Cox et al., 2006). Bermudez et al (2009)
note that the Sensor Observation Service (SOS) provides a more robust
interface than the WFS for providing time series data as a result of the O&M
observation model that permits queries by observation, procedure and observed
property as well as temporal and spatial queries. The basic O&M observation
model is depicted as a Unified Modelling Language (UML) object diagram in
Figure 2.2. It can be seen that each observation forms a part of a result, and
includes a single procedure, observed property and feature of interest. The
procedure refers to a description of the process used to generate a result; this is
usually a sensor. The observed property describes the phenomenon being
sensed and the feature of interest is the real world object that is representative
of the objects target (Cox, 2007).

38

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

Observation +reault Any

+ samplingTime: Time 1

+propertyalueProvider
0.*

1
1"-.2'{ +observedPropery

1
+procedure

1
| +featureOfinterest

Procedurs Phenomenon Feature

Figure 2.2: The O&M Observation Model (Stasch et al., 2008)]

The key SWE services are the Sensor Observation Service (SOS) and the
Sensor Planning Service (SPS). SOS is a service by which a client can obtain
observations from one or more sensors/platforms. It essentially provides an
Application Programming Interface (API) for managing deployed sensors and
for retrieving their observations and aims to provide a standard means of
access to all types of sensors and sensor systems, including remote, in-situ,

fixed and mobile sensors.

SPS provides a service to manage sensors and sensor platforms. Given an
instrument platform such as an orbiting satellite, many different user groups are
likely to want to task it towards different areas of interest, and to configure it in
different ways depending on the information they are trying to extract. The SPS
enables the planning, scheduling, tasking, collection, archiving and distribution
of data from sensor systems (Simonis et al., 2007).

In addition to the SOS and the SPS a further SWE service was proposed, the
Sensor Alert Service (SAS). This is an event notification system that is capable
of notifying clients of sensed phenomena according to a specific set of
conditions (Simonis, 2006). However, the SAS has not been formally approved
as a SWE standard and it now seems likely that another candidate
specification, the Sensor Event Service (SES) will supersede it (Everding and
Echterhoff, 2009). The SES (Echterhoff and Everding, 2008) essentially acts as

a notification broker to which sensors can publish their observations and from

39

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

which clients can subscribe to receive observations, thus enabling push-based
access to sensor data. Registered sensors push all of their observations to the
SES, which then filters them according to client subscriptions. This ability to
detect and react to events is considered crucial to the SWE architecture as it

enables processing chains to be automatically invoked.

One of the most complete implementations of SWE is the Open Sensor Web
Architecture (OSWA) which is under development by Melbourne University. It
aims to integrate sensor networks and distributed computing to provide the
ability to push heavy processing of sensor data to computational grids and to
dynamically compose higher level services that incorporate real-time sensor
data (Chu and Buyya, 2007). The proposed OSWA is composed of four layers;
the sensor fabric layer which consists of the actual sensors, the sensor service
layer consisting of services such as those detailed in SWE, a development layer
that provides APIs to facilitate the creation of sensor based applications, and

the application layer which consists of end-user sensor based applications.

Kobialka et al (2007) suggest the use of stateful web services as an
improvement to OSWA in an attempt to enable multiple users to query the SOS
and schedule SPS requests concurrently. Using this approach a new instance
of each service can be created by the web service container for every request.
Stateful web services have been introduced in the latest implementation of
OSWA using Java WS-Core, the Globus implementation of WSRF. OSWA
implements SOS and SPS but also extends SWE to include other services such
as a sensor directory service which acts as a sensor registry. SOAP/WSDL
bindings for each SWE service are provided to enable integration with other grid
and web services. Additionally, other grid services are defined; a sensor data
grid service which maintains replicas of sensor data, and a sensor grid
processing service which collects and processes sensor data using the grid
infrastructure. However, the grid services have yet to be implemented despite
the grid enabled architecture design which includes the adoption of WSRF and
SOAP/WSDL bindings to SWE services.

40

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

Since 2004 NASA has operated an Earth observing sensor web known as EO-1
that is capable of operating without human intervention. The EO1 project has
focussed on monitoring volcanoes, floods, cryosphere, forest fires and clouds.
Chien et al (2007) describe a scenario in which the the sensor web is used as
an automated event detection tool. Low resolution satellite sensors (MODIS
Terra / Aqua) imagery is continuously downloaded and analyzed via OGC web
service interfaces and compared with previously captured time-series data of
the same locations. If a significant change event is detected then higher
resolution satellites are tasked via a SPS request to acquire further data in the
given area. Example use cases that have been trialled for this system include
the monitoring of sea-ice concentrations, the Mt. St. Helens volcano and the Mt.

Erebus volcano.

In the case of the Mt. Erebus volcano automated analysis is also built into the
sensor web routine. When the volcano erupts it is captured by in-situ seismic
sensors. The sensors trigger a request to re-task a MODIS sensor to gain a
better understanding of the eruption. All the data from the eruption is
automatically downloaded at the NASA Jet Propulsion Laboratory where it is fed
into a lava flow model. If the model finds anything unusual in the results then it
requests further imagery of higher resolution from satellite based sensors to
confirm the findings. This project demonstrates the power of sensor web for
large scale environmental monitoring applications in which events that could
otherwise go un-detected are being properly investigated using automated

techniques.

GridCC (McGough and Colling, 2006) is an EGEE project which attempts to
enable sensors as grid resources using the gLite middleware. In addition to
existing computational and storage elements of gLite, GridCC introduces the
instrument element (Frizziero et al., 2006) which consists of a set of services to
configure and control sensors remotely. The project deals with issues of
information and monitoring, security, execution and planning of workflows
related to sensors. GridCC has been designed with scientific instrumentation in
mind and is concerned with providing collaborative access and control of such

instruments to a virtual organisation. For example, it is to be used to control

41

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

instrumentation in the CERN’s Large Hadron Collider project. However, there is
no attempt in GridCC to use OWS or SWE and although the architecture
provides a secure environment for the sharing of sensor resources it doesn’t

consider the domain specific needs of geospatial users.

In comparison, Aloisio et al (2006) consider the information management aspect
of sensor web and grid integration; they present an information service to
monitor and discover sensor resources in a grid environment which uses an
information model abstracted from SensorML. The iGrid monitoring and
discovery service (Aloisio et al., 2005) is loosely based on the Globus
Monitoring and Discovery Service but has adopted a relational data model and
this provides benefits such as the ability to query resources using SQL. Like
the instrument element in the GridCC project, this service plays a pivotal role in
integrating sensors into the grid environment as it enables sensor resources to

be managed and discovered in the same way as other grid resources.

A gridification of the SOS using the Globus Toolkit is carried out by Kussel et al
(2009) using a low level approach. Gridification of the SOS in this manner is
expected to facilitate sensor discovery in a grid environment through the use of
the Globus index service. Additionally the reliable transfer of large datasets can
be achieved using Globus RFT, and security policy implementation can be more
flexibly defined using the Grid Security Infrastructure. However, the authors
were not able to create WSRF Resource Properties from SOS and O&M
schema due to WSDL incompatibilities. Instead, service capabilities and sensor
descriptions were stored as DOM elements which were serialized using custom
bindings, thus enabling the service to return XML documents on request.
However, XML elements could not be properly accessed in an object oriented

manner.

The SensorGrid project (Tham and Buyya, 2005) addresses the specific
shortcomings of coupling live geospatial data resources with high performance
computing resources. Bottlenecks were discovered in the messaging
mechanisms between sensors and applications. Firstly, generating and parsing

XML was found to have a large time overhead. Secondly, HTTP was found to

42

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

be too inefficient for systems requiring high performance and fast responses
due to the request / response overhead and network constraints. As an
alternative to sending XML based SOAP messages over HTTP, Narada
Brokering is suggested; a content distribution infrastructure for voluminous data
streams (Pallickara and Fox, 2003). Narada Brokering presents a novel
messaging solution based on a peer to peer architecture. It enables scalable,
efficient, secure and reliable messaging that is capable of passing through
proxies and firewalls and that supports multiple transport protocols.
Compression and decompression is provided for messages with large payloads
and it is also possible to fragment very large files and re-merge them at the
client side. In the SensorGrid project Narada Brokering is used in conjunction
with a SOS to enable high performance data transfer between sensors and
client applications. Better performance is achieved by eliminating the single
direct connection between the sensor and the client which is a common
bottleneck when dealing with voluminous messages. Instead, Narada
Brokering routes messages via a network of message brokers and is thus

capable of delivering messages at a greater rate.

As part of the NASA AIST ServoGrid project, Fox et al (2008) reached similar
conclusions on the suitability of HTTP and XML as a basis for transportation
and message encoding. The ServoGrid project attempted to use grid
computing to integrate complex scientific applications with large data sets
through a number of systems designed for earthquake simulation and
prediction. Two of these systems, GeoFEST and Virtual California could be
considered traditional parallel computing applications with an external but static
data source, whereas other systems such as Pattern Informatics (Tiampo et al.,
2002) relied on a regularly updated data catalogue. The function of the Pattern
Informatics system is to calculate probable regions of future seismic activity
based on past and current seismic data; it uses a regularly updated WFS as a
data source. Again, HTTP and XML were found to be too inefficient for non-
trivial data transport. In addition to Narada Brokering, another potential solution
is cited that could improve data streaming speed albeit at the expense of
streaming initiation time. The proposed technique suggests two new web

service specifications; WS-StreamNegotiation and WS-FlexibleRepresentation.

43

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

It is suggested that on initiation of a data stream, WS-StreamNegotiation
messages are passed between the data source and sink to agree on the most
efficient encoding and transport protocol that each actor can tolerate. Once
established, the streaming is commenced on a different port using the fastest
available protocols. Neither of these proposed standards have been developed
but the same concept is used in Hand-held Flexible Representation (Oh and
Fox, 2005), a software architecture for mobile devices that enables the source

and sink to negotiate their preferred data representation.

Andrews (2007) observes that XML is generally unsuitable for encoding data;
this is particularly the case for live data streams such as those produced by
sensors. The main concern is that if every observation is wrapped in a set of
tags the data rapidly becomes very voluminous. An additional problem for live
data streams is that XML documents must be closed before they can be parsed
or transported and this cannot occur until the data stream has ended. To some
extent these issues are mitigated in SWE as it is possible to encode a block of
observations in an O&M XML documents as a single element. Additionally,
instead of providing observations inside an XML document it is possible to
provide a reference to a data stream; these are referred to as ‘out of band’
observations (Cox et al.,, 2006). However, the web services community
acknowledge that the transmission of XML over the wire suffers performance
overheads resulting from a large data volume, as well as data conversion and
parsing and this is proving problematic for mobile applications and high
performance parallel computing (Oh et al., 2005).

The efficient encoding of XML data is an active research topic that has been
discussed in detail by Chiu et al (2002) and van Engelen (2003) and is also the
topic of a W3C working group (Goldman and Lenkov, 2005). Binary XML
encodings are considered to be both faster to serialize and parse than their text-
based counterpart and also less voluminous so they can be transported more
efficiently. Binary SOAP attachments are usually encoded using MTOM
(Gudgin et al., 2005a) and XOP (Gudgin et al., 2005b) although newer and
more efficient formats are emerging such as Fast Infoset (Sandoz et al., 2003)

44

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

which is currently undergoing ISO standardisation. Further protocol

specifications for binary data exchange are under discussion by the OGF.

The problems caused by heavy XML payloads are exacerbated by high traffic
volumes at the data service which are likely to delay data delivery further.
Havlick et al (2009) present caching and replication of SOS as a solution. It is
argued that environmental monitoring data is ideally suited to this approach
because archived environmental data doesn’'t change with time and because
propagation is always from the data source to the replica, not vice versa. The
proposed SOS-X service (Havlik et al., 2008) automatically aggregates
observations from one or more SOS thus increasing data availability.
Furthermore, using this approach enables data providers to publish a controlled
subset of data without having to implement complex security restrictions. To
facilitate data replication Havlick et al (2009) recommend the following changes
to the SOS and O&M specifications. Firstly, each observation should have an
explicit and unique identifier so it is possible to differentiate between new and
altered observations. Secondly, observations should contain a timestamp of the
last data change and thirdly a mechanism should be provided to request
deleted data. Finally, the SOS should provide a mechanism to publish the time-
span for which each observation will be available, so the SOS-X can prioritise

its data replication strategy.

As an alternative to channelling all of the data from sensor networks to the grid
to be remotely processed, in-network processing is advocated by Gaynor et al
(2004) using their Hourglass system. Hourglass aggregates data across
geographically diverse sensors in order to obtain a global picture of the
network’s state. This approach is similar to that used by Cornell University in
their COUGAR project (Bonnet and Seshadri, 2000) and is based upon the idea
that in wireless sensor networks communication of data is several times more
costly in energy consumption than computation. Distributed querying enables
computation to be performed at the sensor nodes to return only an aggregation
of observations. Although this approach overcomes the difficulties of high
payload messages it does degrade the temporal resolution of observations

through aggregation.

45

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

The potential of grid / SWE integration for purposes of disaster monitoring has
attracted attention from a number of research projects. Fang et al (2009)
propose a disaster relief system that facilitates a fair distribution of stockpiled
resources amongst affected regions by channelling them to the worst affected
areas. The perceived benefit of using grid computing for this purpose is that of
collaboration between regional authorities as well as the sharing of data and
computational resources. Chen et al (2010) present a wildfire detection system
in which SWE data sources are chained to WPS processing services, using
BPEL workflow orchestration language to detect hot pixels in EO-1 remotely
sensed images. Interoperability, flexibility and re-usability are cited as the key

motivations for using an open distributed architecture.

2.3.7 Cloud Computing

The academic community is beginning to show an interest in cloud computing
as a means of reducing fixed costs for storage and data processing (Dikaiakos
et al., 2009). However, standardisation initiatives for cloud computing are only
just beginning. In an attempt to reach early consensus on best practice the
Open Cloud Consortium (www.opencloudconsortium.org) is championing an
academic cloud test bed, the Open Science Data Cloud (Grossman et al., 2010)
while the OGF has begun work on developing the Open Cloud Computing

Interface (OCCI), a standard API for cloud development.

Cloud service providers have presented several models of utility computing that
each offer different levels of abstraction and resource virtualization (Armbrust et
al.,, 2009). The models can be broadly categorised into three major groups;
Infrastructure as a Service (laaS), Platform as a Service (PaaS) and Software
as a Service (SaaS). SaaS simply enables users to run software from their
computer, on demand, without having to install it locally (Schwiegelshohn et al.,
2010); the SaaS model has been popularised by the widespread adoption of
web services and SOAs. PaaS enables users to deploy their own applications
onto a remote platform comprised of hardware, software and data access

(Wang et al., 2008a). laaS provides a lower level of virtualization that enables

46

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

users to deploy virtual machine instances over which they have almost
complete control at the operating system level. Google App Engine
(http://code.google.com/appengine/) exemplifies PaaS; it offers a limited
software development kit in which to develop web applications that are hosted
and managed by Google, who also handle automatic scaling of service
provision as user demand levels change. The Amazon EC2 service
(http://aws.amazon.com/ec2/) provides an example of laaS in which users can
deploy virtual machines instances into the cloud. Although laaS offers a greater
level of flexibility and control than PaaS it cannot offer indefinite scalability by
continually porting the instance to a more powerful machine, or invoking more
instances unless the application has been well designed for this purpose
(Armbrust et al., 2009). Conversely, PaaS such as Google App Engine provide
a restricted API that forces developers to code in a shared-nothing style which

facilitates elastic scaling (Abadi, 2009).

As noted by Baranski et al (2009) the cloud concept shares many features with
the grid but there are some important distinctions between them. Both terms
refer to a distributed computing system that provides data storage and
computational power in a scalable fashion. However, the main target user
group of grid computing is the scientific community with the purpose of running
large scale simulations, whereas the cloud is targeted at small to medium sized
businesses to enable scalability in web applications. A further distinction is that
the grid infrastructure tends to be owned and funded by governments or
research communities whereas cloud infrastructure is owned and operated by
mainstream IT players such as Google, Amazon and Microsoft. Essential to
grid computing is the concept of sharing computational resources amongst
disparate organisations (Foster et al., 2001). However, cloud systems are
based on a model of utility computing in which service providers make a
seemingly infinite pool of resources available on-demand and charge their users

according to the quantity they consume.

Standards for laaS and PaaS have only recently begun to emerge. A draft of
the OCCI specification was released by the OGF OCCI-WG in December 2010

and is comprised of a RESTful API for managing the lifecycle of virtual machine

47

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

instances. Future work is planned to create aggregators to enable existing
infrastructure providers to adopt the interface. Concurrent work is being carried
out by the Distributed Management Task Force (http://dmtf.org) to define an
Open Virtual Machine Format, an open file format that will enable virtual

machine images to be ported between cloud infrastructure providers.

2.3.8 Summary of Key Issues for OGF and OGC Standards Alignment

Grid computing, sensor web and distributed GIS technologies have reached a
certain level of maturity. Version 2.0 of SWE and OWS standards has recently
been realised and over a decade of development based on these standards has
taken place. A memorandum of understanding between the OGF and the OGC
was signed in 2007 which has resulted in significant collaboration on issues of
interoperability between the grid computing and geospatial communities
(Higgins et al., 2008, Lee and Percivall, 2008). Despite significant headway in
this regard there are several outstanding issues which remain to be addressed.

These are summarised as follows:

1. The architectural challenge of integrating SOAP based and RESTful web
services.

OWS and SWE versions 2.0 have incorporated SOAP/WSDL interfaces and
this is set to facilitate interoperability of geospatial web services with grid
computing services. The use of SOAP/WSDL bindings to OGC services is
exemplified in the work of Hobana (2007), Shu et al (2006), Lanig and Zipf
(2009a) and Kurzbach et al (2009). However, due to the complexity of the OGC
schema, it has been found that the majority of standard web service toolkits
have difficulty in parsing OGC WSDL documents in order to generate client web
service stubs (Sonnet and Savage, 2003). Thus, integrating grid and geospatial

web services into a unified workflow still presents significant difficulties.

2. The inherent lack of security in OWS and SWE

Security in the grid computing domain has traditionally been much stronger than
in the geospatial domain. To this end the OGC GeoDRM working group has
been developing a standard for digital rights management of geospatial data

48

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

(Vowles, 2007). Early work in this area took place under the SEE-GEO project
(Higgins, 2008) that was specifically concerned with providing secure access to
geospatial data on the grid. SEE-GEO addressed the role of Shibboleth, WS-
Security and the Globus Grid Security Infrastructure in enabling secure access
to OWS in a grid environment (Farnhill and McAllister, 2006). SEE-GEO activity
was the foundation for the currently accepted practice of securing geospatial
web services using Shibboleth, an open source software package that facilitates
secure access to web content using a single sign-on
(http://shibboleth.internet2.edu/). Shibboleth operates by redirecting a client to
a shibboleth sign on page when they attempt to access a secured resource. |If
successful the client is then redirected back to the requested resource after

logging on.

Matheus and Higgins (2009) have worked through some of the challenges in
securing geospatial web services using Shibboleth such as the initiation of a
login sequence by a web service client, and the establishment of a secure
session without modifying OWS interfaces. This improvement in security is
expected to significantly increase the availability of geospatial web services, as
organisations will be able to publish data while controlling access to it. Although
there are few implementations of secure geospatial web services to date, it

seems likely that their prevalence will grow in the future.

3. Difficulties in complex service orchestration in SWE

Complex orchestration of OWS in a grid environment has been achieved in the
SAW-GEO project (Fairbairn et al., 2008) using Globus, Geoserver and the
ActiveBPEL workflow engine. However, orchestration of SWE services in a grid
environment is likely to encounter additional challenges. For example, issues
such as how to incorporate relentless streams of data into a workflow must be

addressed. This needs further research.

49

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

4. Messaging inefficiencies using SOAP and XML to encode and transport
geospatial data.

The messaging inefficiencies of using XML and SOAP encodings (Tham and
Buyya, 2005) are a significant obstacle to the coupling of live geospatial data to
higher level applications. In terms of real-time systems this poses a big
challenge, particularly as communication inefficiencies could negate the
benefits of using a high performance grid resource. In-network aggregation
may be a solution for some applications but it does result in the loss of much of
the collected data. Messaging middleware such as Narada Brokering shows
promise for reliable high performance message delivery in large distributed
systems. This approach does however add an extra layer of complexity to
distributed systems and is unlikely to be worthwhile for smaller implementations.
Furthermore it is not yet clear whether this approach will be universally adopted.
Other solutions such as tightly-coupled geoprocessing (Friis-Christensen et al.,
2007) and mobile grid services (Ghimire et al., 2005) present alternatives that
avoids the transfer of large datasets across the network, but for real-time sensor

sources some data transfer is unavoidable.

5. Monitoring, discovery and general management of sensors in a grid
environment.
A question is raised about how sensors should be managed in a grid
environment. The approach taken by the GridCC project (McGough and
Colling, 2006) is to simply consider sensors as grid resources and develop a set
of services to manage them along the lines of other grid resources. Using this
approach, sensors would be managed through standard grid services such as
Globus Monitoring and Discovery Service. An alternative would be to grid
enable the CSW,; this approach would be favoured by the geospatial community
as it provides an accepted interface and enables discovery of resources through

SWE encodings and through spatial queries.

6. Immaturity of OGSA standards
Integration efforts are stalled by the relative immaturity of OGSA standards.
The standards are rapidly emerging but many have not been approved yet; as a

result there are few implementations to date.

50

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

2.4 Parallel Geoprocessing

2.4.1 Why Process in Parallel?

Geoprocessing refers simply to the processing of spatial data (Kiehle et al.,
2006) and is an integral part of most spatial information workflows which
typically follow a three stage pattern of data acquisition, geoprocessing, and
results dissemination (Burrough and McDonnell, 1998). Every operation that
involves the manipulation of spatial data can be considered geoprocessing; it
therefore encompasses a diverse collection of operations that include tasks
from the fields of network analysis, spatial and geostatistics, image-processing,
spatial analysis and generalization in addition to more commonplace tasks such

as spatial and attribute queries and data or format conversions.

Processing spatial data is notoriously time-consuming and it is nhot uncommon
for geoprocessing to present a bottleneck in spatial information workflows (Shi
et al., 2002). For example, Hawick et al (2003) found that interpolating only 100
points onto a 500x500 unit grid using kriging took over 10 minutes on a single
processor. Commonly such processing delays can be attributed to either the
size of the dataset or the complexity of the processing; an increase in either of
these phenomena causes the processor to execute an increased number of
instructions. Spatial data is often voluminous and there is a trend towards
bigger, higher resolution datasets as data measurement, storage and
processing tools continue to improve (Zhu et al., 2009) and as our thirst for
detailed spatial information continues to grow. Furthermore, the demand for
data analysis capability is rising faster than the volume of data itself because
algorithms are becoming more sophisticated and often carries time complexity
above linearity (Gray et al., 2005). As a consequence many geoprocessing

operations are suitable candidates for parallel processing.

Parallel processing is a form of computation in which many calculations are
carried out simultaneously with the goal of reducing the overall execution time
(Almasi and Gottlieb, 1990). The amount of time saved by processing in
parallel is quantified by Amdahl’s law (1967) which defines the metric ‘speed up’

(Equation 1) in terms of the number of processors and the proportion of the task

51

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

that can be executed in parallel. In Equation 1, Sy is the speed-up achieved

with N processors, Ts represents the fraction of sequential operations and T,

the fraction of parallel operations.

— Ts +TP
T,

TS+I\FI’

Sy Equation 1

Unfortunately parallel processing is difficult to implement for a number of
reasons. Firstly, it requires the use of a parallel computer, defined as a set of
processors able to work cooperatively to solve a computational problem (Foster,
1995). Parallel computers take many forms (Section 2.4.2) and usually require
specifically tailored software. This brings us to the second difficulty; parallel
software development is disproportionately labour intensive in comparison to its
serial counterpart (Danelutto et al., 1992). As a result the effort of implementing
parallel code can only be justified under certain circumstances. Healey et al
(1998) have identified three scenarios that justify the use of parallel code;
compute intensive operations (Gittings et al., 1994), operations that have data
volumes so high they cannot be executed in serial (Lehning et al., 2009) and
finally operations that require a real-time response that cannot be met by a
serial system (Xiong and Marble, 1996). Although many geoprocessing
operations can be said to match at least one of these scenarios the ultimate
decision as to whether to invest in parallel code must be made on a case by
case basis. As the remainder of this Section will demonstrate there are a
variety of tools and techniques available to exploit parallelism; different

processing tasks can require dissimilar approaches to achieve a speed up.

2.4.2 Parallel Processing and Data Architectures

Flynn (1966) proposed a four group taxonomy of processing architectures;
Single Instruction Single Data (SISD), Multiple Instruction Multiple Data (MIMD),
Single Instruction Multiple Data (SIMD) and Multiple Instruction Single Data
(MISD). The MIMD element of Flynn’s taxonomy can be subdivided into shared
memory architectures; Single Node Multiple Processors (SNMP), Multiple Node

Multiple Processors (MNMP), and distributed memory architecture referred to

52

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

as Multiple Node Single Processor (MNSP). MNSP can be further subdivided
into high-speed Massive Parallel Processing (MPP) clusters and lower-speed
Network of Workstations (NOW). The dominant architectures to emerge have
been the SISD architecture which is typified by a standalone PC with one
processor, and for distributed applications MIMD which refers to an ability to
asynchronously perform multiple sets of instructions on different sets of data
(Abbas, 2004). Figure 2.3 provides a graphical depiction of how Flynn’s
classification and the common MIMD architectures; MNSP, MNMP and SNMP

are related.

53

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

Flynn’s Classification

SISD SIM
D
MIS MIM
SNMP
D D
Node
SNS | SNM - 5 [CPU][CPU][cPU]
P P
| | |
MNS MNM Shared memory
P P
MNSP /
MNMP
Network Fabric
MPP (high speed) Network Fabric
COW (low speed)
Node Node
Node Node
CPU CPU
[CPU][CPU][CPU] [CPU][CPU][CPU]
Local Local | | | | | |
memory memory Shared memory Shared memory

Figure 2.3: Flynn's Taxonomy and MNSP, MNMP, SNMP A rchitectures

Typical computational tasks are designed to run in serial on SISD architectures,
l.e. they have a single thread of execution that is run on a single processor.
SISD architectures are constrained in terms of scalability by the capacity of their
processor and memory; as a system grows in size the cost of running a
centralised architecture will eventually outstrip the cost of a distributed
architecture. SISD architectures are therefore not suitable for very large or

scalable processing operations.

In SNMP systems many processors share the same memory; this design was
popular in early supercomputers but the shared memory aspect limits the ability
of such systems to scale (Hwang and Xu, 1996). Scalability can be achieved in
these systems by networking several machines together to form a MNMP
system but the expense, lack of uptake and the need for different programming

constructs has resulted in the majority of supercomputers using shared memory

54

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

architectures to be phased out; MNSP architectures now dominate the tables of
the world’s top performing 500 supercomputers, which shared memory systems
haven't entered since 2002 (http://www.top500.0rg).

By far the most common MIMD architecture is MNSP; which can be further
subdivided into MPP and NOW. MPP and NOW are similar in that they are
both affordable as they use commodity microprocessors and they both have
distributed memory and can thus scale to hundreds or thousands of nodes
(Abbas, 2004). The difference lies in that MPP clusters, often referred to as
HPC clusters, are interconnected by high bandwidth low-latency connections.
In addition their network interface connects directly to the memory bus rather
than an input / output bus thus reducing latency further (Hwang and Xu, 1996).
Therefore MPP can quickly exchange messages and thus run parallel programs
whereas NOW is a lower cost alternative that uses standard commodity
connections such as Ethernet (Hwang and Xu, 1996). The scalability,
performance, and cost performance of MNSP have lead to their current
monopolisation of the computing market for both the typical enterprise and

academic market and for the specialised supercomputing market.

Fox et al (2008) make a further distinction between NOW that have high
performance but non-optimised communication networks and distributed or grid
systems. This distinction becomes pertinent when we consider distributing
tasks over a loosely-coupled cluster. For example, in grid systems a cluster
may consist of nodes that are distributed either geographically or amongst a
number of organisations. Communication between these nodes is likely to be
inhibited by network bandwidth and by message envelope overheads. The ‘rule
of the millisecond’ (Fox, 2004) distinguishes these distributed systems from the
aforementioned NOW and MPP systems. Many parallel programming
constructs cannot tolerate latencies of more than a millisecond; typical
messaging latencies in MPP are 20 microseconds, 100-1000 microseconds in
NOW and 100 milliseconds in grid systems (Fox et al., 2008). As a result, new
programming constructs have been developed that enable parallel tasks to be
run on distributed and grid systems; these are reviewed in Section 2.4.4 with

reference to geoprocessing applications.

55

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

The major design goals of parallel processing architectures are also shared by
parallel database systems; these are speed-up and scale-up, i.e. the ability to
carry out processing operations faster and on larger amounts of data than their

serial counterparts.

A simple taxonomy of parallel database architectures has been developed by
Stonebraker (1986) that is comprised of three categories; shared memory,
shared disk and shared nothing (Figure 2.4). Shared memory refers to a
database architecture in which all processors share a common global memory
in addition to their own private memory cache and have access to all the
storage disks. Processors in the shared disk architecture also have access to
all the storage disks but each has their own private memory, whereas
processors in the shared nothing architecture each have their own memory and

their own storage disk which only they can access.

Interconnection network . , ’ . . .
‘ Q ‘ Interconnection network | memory | memOry ‘ ‘ memory ‘

| memary ‘ | memory ‘ ‘ memory ‘ memaory Interconnectlon network
. u E - . B - - H
1. Shared Nothin: 2. Shared Memo
’ "o ® W 3. Shared Disk

Figure 2.4: Parallel Database Architectures [adapte d from Dewitt and Gray
(1992)]

Relational DBMS have been widely used for storing and manipulating
relationally structured data since their conception by Codd (1970) although it
was not until the early 1990s that RDBMS were used to store spatial data
(Adler, 2001). In recent years the massive data volume generated by large
internet companies has prompted them to move away from storing data in
relational DBMS. Google, Amazon and Facebook have each developed their
own non-relational databases to store and analyse their vast quantities of data.

Such databases typically conform to the shared-nothing architecture and

56

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

because many of them do not use Structured Query Language (SQL) they have
collectively become known as Not Only SQL (NOSQL) databases. The key
advantages of such systems over their traditional relational counterparts are
that they can handle non-structured data very efficiently, can easily be scaled

horizontally and can scale write transactions more effectively (Leavitt, 2010).

These gains in scalability are largely achieved by sacrificing consistency. Gray
(1981) set out the rules governing transaction processing which are conformed
to by all major relational DBMS vendors. These rules are referred to by the
acronym ACID which stands for Atomicity, Consistency, Isolation and Durability
(Reuter and Haerder, 1983). Atomicity ensures that all operations in a
transaction will complete, or the entire transaction will be rolled back.
Consistency ensures that the database will be in a consistent state when the
transaction starts and ends by enforcing integrity constraints. Isolation ensures
that each transaction occurs individually without interference from other
transactions, this is typically achieved by locking records for editing. Durability

ensures that once committed a transaction will not be reversed.

Brewer's CAP theorem (Lynch and Gilbert, 2002) states that it is not possible
for a system to simultaneously provide consistency, availability and partition
tolerance; at most two of these properties can be achieved. Availability refers to
the number of simultaneous users that can access the system, whereas
partition tolerance refers to the ability to split the system amongst multiple
nodes. Single-site databases opt for consistency and availability, whereas
distributed databases opt for consistency and tolerance to network partitions.
Brewer suggests the BASE model as an alternative to ACID; it stands for
Basically Available, Soft state, Eventual Consistency. Using the BASE model
an optimistic approach to consistency is taken whereby partial transaction
failures are supported (Pritchett, 2008). Thus if a transaction fails on one
partition of a database, then it is still committed to the other partitions so
maintaining some degree of availability. The transaction is eventually
committed to the failed partition when it becomes available.

57

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

For the majority of spatial applications the commercially available parallel
relational DBMS offers sufficient scalability in terms of data volume and number
of concurrent users (Zhao et al., 2005). However, NOSQL databases may
prove useful for storing and querying massive volumes of spatial data. EXxisting
implementations include key-value, document-based, column-oriented and
graph databases, some of which include explicit support for spatial data types
although with limited functionality. Currently CouchDB
(http://couchdb.apache.org), MongoDB (http://mongodb.org) and Neo4j
(http://neodj.org) have facilities to create spatial indexes and to perform
bounding box queries. However, even relatively simple spatial functionality
such as the ability to compare geometry identities and perform intersection,

distance-to and nearest neighbour have not yet been realised.

In NOSQL databases analytical processing other than simple queries is typically
achieved using MapReduce, Dryad or a similar shared-nothing processing
framework. Thus it seems likely that in the future NOSQL databases will
include basic spatial tools written as MapReduce processes to support spatial

data management.

2.4.3 Parallel Geoprocessing Strategies

Various attempts have been made to classify parallel programming paradigms
in the literature and while a number of common themes are in evidence there
does not appear to be a generally accepted classification. Fox (1989) presents
four classes based on the temporal communication structure of the parallel
program; synchronous, loosely synchronous, asynchronous and embarrassingly
parallel. Synchronous refers a style of computation for which the same
algorithm is run in parallel on a number of machines that share information at
regular time steps. Conversely, asynchronous refers to a style for which
different algorithms are executed on different machines and communication
patterns between these machines is irregular and varies through time. Loosely
synchronous is an intermediate between the two styles, for which machines

synchronise with each other sporadically (Fox et al., 1994) and embarrassingly

58

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

parallel refers to an execution style for which no communication is required

between nodes.

Healey and Desa (1990) present a different classification comprised of three
classes; geometric parallelism, algorithmic parallelism and event parallelism.
Geometric parallelism refers to the decomposition of the spatial domain,
whereas algorithmic parallelism refers to a functional decomposition. Event
parallelism is the simplest class presented here in which a master processor
distributes tasks to a set of slave processors. Wilson (1995) suggests another
classification which is based on decomposition technique, these are geometric,

recursive, iterative or pipeline, functional and speculative.

Wagner and Scott (1995) identify three different decomposition strategies;
control, domain and hybrid. Control decomposition involves decomposing the
processing task into a number of constituent parts, each of which is assigned to
a different processor. Conversely, domain decomposition is achieved by
splitting the dataset up into a number of parts and assigning each part to a
different processor. Hybrid decomposition uses both of these techniques and is
particularly useful when a very fine-grained decomposition is required (Foster,
1995).

A further four classes are presented by Hansen (1993); pipelining, divide and
conquer, master / slave (task farm), and cellular automata. Burkhart et al
(1993) presents a more complex classification that encapsulates the
approaches described thus far; it is based on the properties of the algorithm, its
data and the inter-node communication patterns. Silva and Buyya (1999)
identify the most popular paradigms as task farming, geometric decomposition,
pipelining, divide and conquer and speculative parallelism. In the following text

a review of the most relevant approaches to geoprocessing are presented.

Healey and Desa (1990) present event parallelism as the simplest of parallel
strategies. Adopting this strategy, a master processor distributes tasks to a
number of slave processors and reassembles the results when all the tasks

have been completed. This approach of splitting, executing in parallel and then

59

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

merging is often referred to as a task-farm (Bowler et al., 1987) and the type of
problem to which it is suited is referred to as embarrassingly parallel (Foster,
1995). The task farm application graph topology is outlined in Figure 2.5. As
can be seen in the examples that follow, event parallelism is typically used to
perform the same task on different data and thus its use can be considered a
simple form of domain decomposition. The essential problem characteristic that
permits this style of execution is a simple application graph topology in which

each sub process can execute independently of the other processes.

slave

master slave result

A 4

slave

Figure 2.5: The Task Farm Application Graph Topolog vy

There are a number of examples in the literature of using a task-farm approach
for geoprocessing. Mineter and Dowers (1999) exemplify the use of a task-farm
to process an atmospheric transport model, the Hull Acid Rain Model (Metcalfe
et al.,, 1995). Gong and Xie (2009) use a task-farm approach to extract
drainage networks from large Digital Elevation Models (DEM), in this case the
DEM is decomposed by watershed. Tehranian et al (2006) present a more
complex system that combines event and pipeline parallelism for processing
data from the Image Fourier Transform Spectrometer, a hyperspectral
instrument that is scheduled for deployment on the GOES-R satellite and is
expected to produce data at a rate of 130Mbps. The proposed processing
system uses a task-farm approach to allocate incoming data to worker
pipelines, which are comprised of a series of five processors each of which
performs a stage in the processing of the raw inteferogram. Preliminary results
show an almost linear speed-up. In each of these cases, the same process has
been applied to different datasets in parallel to solve a data intensive problem.

A similar approach known as the Monte Carlo method (Metropolis and Ulam,

1949) is commonly used in simulation to translate uncertainty in a model’s

60

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

inputs, to uncertainty in its output. This is achieved by running the model
several times with different input parameters and thus it fits with the task-farm
paradigm. The Monte Carlo method is commonly applied to geoprocessing
simulations such as estimating the probability of slope failure (Zhou et al.,
2003), estimating error propagation in seismic activity (Emmi and Horton, 1995)

and carrying out flood simulations (Muzik and Chang, 1993).

Task farms can also be used at a finer granularity when dealing with very large
datasets or computationally intensive problems by dividing a data aggregate
into a number of constituent elements. For example, Baranski (2008) uses a
task-farm approach to perform spatial intersection as a demonstration scenario
for his grid enabled WPS in which different elements of the data aggregate are
assigned to different processors. Hong-Chun et al (2009) apply the task-farm
approach to the spatial filtering of a remotely sensed image and Xue et al
(2005) use a task farm to calculate the Normalised Difference Vegetation Index
from a MODIS satellite image. Hawick et al (2003) provide an example of
classifying remotely sensed images in parallel using a task-farm hierarchy that
enables a coarse-grained classification to be performed by assigning different
images from a time-series to different processors, or a finer grained
decomposition can be achieved by geometrically partitioning each image. A
similarly fine-grained partition for image-processing is achieved by Nicolescu
and Jonker (2002) using a task-farm style data decomposition in conjunction

with a functional decomposition.

Equation 2 shows the total processing time of an operation using the task-farm
approach to divide a dataset into as many segments as there are available
processors (Hong-chun et al., 2009). Total processing time is given by Ta, Teut
is the time taken to divide the dataset into as many segments as there are
available processors, max(Tpc) IS the maximum time taken to perform
processing on the data segments and Trerge IS the time taken to reassemble the

data aggregate.

Tall = Tcut + maX(Tproc) +Tmerge Equation 2

61

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

From Equation 2 it can be observed that a significant speed up is possible using
the task-farm approach, with a proviso that the time taken to split and merge the
dataset is not considerable. However, parallel execution using the task-farm
approach is not always viable; Trewin (1998) notes the following limitations of
task farms. Firstly, inefficiencies can result from applications in which the time
taken to compute a subtask can vary and is not known before execution. For
example, if one sub-task takes substantially longer to complete than others,
then several processors will remain idle whilst waiting for the final subtask to
complete; in parallel database terminology this effect is referred to as skew.
Secondly, the initial and final processes of splitting and merging can themselves
present bottlenecks in execution and this prevents task-farms from scaling
indefinitely to larger numbers of processes although in some cases this effect
can be mitigated by using a slightly more complex application graph topology

such as multi-source or multi-sink task-farms.

The divide and conquer strategy (Quinn, 1994) is an alternative approach to the
task-farm that alleviates the load balancing problem described above; the
procedure is outlined in Listing 2.3 and described as follows. The master
processor divides the task into two subtasks which are each assigned to worker
processors. If a subtask is found to be small enough it is solved directly, this is
termed the base case in Listing 2.3. Otherwise it is divided into two and
allocated to two more processors; this process continues recursively, forming a
tree shaped graph topology. When the problem has been solved the results are
passed back up the branch. The application graph topology of the divide and
conguer approach is shown in Figure 2.6.

N slave
» slave
slave | |
master {
slave N slave
» slave

Figure 2.6: The Divide and Conquer Application Grap h Topology
62

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

Listing 2.3: The Divide and Conquer Strategy (Foste r, 1995)

procedure divide_and_conquer
begin
if base case then
solve problem

else
partition problem into subproblems L and R
solve problem L using divide_and_conquer
solve problem R using divide_and_conquer
combine solutions to problems L and R
end if

end

The divide and conquer strategy has been used to parallelise a 3D viewshed
analysis (Katz et al., 1991) and is a recognised technique for generating voronoi
diagrams and performing delaunay triangulation; there are a number of
examples in the literature (Aggarwal et al., 1988, Davy and Dew, 1989, Cole et
al., 1990, Clematis and Puppo, 1993, Cignoni et al., 1993, Ding and Densham,
1994, Wang and Tsin, 1987). To achieve a spatial interpolation on an
irregularly spaced set of points, Wang and Armstrong (2003) exemplify a
quadtree domain decomposition in which the spatial domain is recursively
partitioned into four quadrants until a constant amount of information is held in
each partition. A quadtree is essentially a divide and conquer approach in
which a region is recursively subdivided into four equal sized blocks until each
block is of the desired data volume (Samet, 1984). This approach was found to
be a successful method of achieving an approximately equal load on each
processor. It is noted by Magillo and Puppo (1998) that the divide and conquer

approach is particularly well suited to coarse-grained MIMD architectures.

The MapReduce programming model (Dean and Ghemawat, 2008) can be
considered a special form of event parallelism; in essence it is composed of two
functions, Map and Reduce. The Map function takes a set of key-value pairs as
input and produces a different set of key-value pairs as output. As such the
Map function can be considered conceptually similar to task-farm data
decomposition because in both cases a master processor subdivides a dataset
amongst a set of slave processors. The key distinction is that the Map function

operates strictly on key-value pairs whereas there is no such restriction for task-

63

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

farm decomposition. Once the Map process is complete the resulting key-value
pairs are allocated to Reduce processes which groups values with a common
key, and outputs a list of values. These functions are formally expressed in

Listing 2.4 and a diagram of the process is depicted in Figure 2.7.

Listing 2.4: The Map and Reduce Functions

map(keyl,valuel) - list(key2,value?2)

reduce(key2,list(value2)) - list(value2)
map
Input reduce Output
data R > data
> map
reduce
map

Figure 2.7: The Map Reduce Programming Model

MapReduce is a relatively recent phenomena; it was devised by Google to
simplify the process of parallelising large data processing tasks such as the
indexing of web pages. However, it has since proved popular for a number of
applications including spatial data processing. Cary et al (2009) demonstrate
the use of MapReduce in two spatial scenarios; firstly to bulk construct a set of
R-tree spatial indexes and secondly to calculate quality metrics for aerial
imagery. Chen et al (2008) developed a MapReduce based GIS workflow
system, MrGIS, that is capable of performing raster algebra operations in
parallel. MrGIS is based on the GRASS (http://www.osgeo.org/grass) open-
source GIS software and operates by wrapping tools from the GRASS raster
algebra toolkit as MapReduce jobs. Wu et al (2007) use MapReduce to
determine road network alignment by combining satellite imagery and vector

data.

Image processing algorithms often exhibit data independence and are therefore

particularly well suited to the MapReduce approach. For example, Lv et al.
64

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

(2010) present a parallel implementation of the iterative unsupervised K-Means
classification algorithm. For the K-means algorithm it is assumed that the
number of land cover classes is known in advance but the spectral centre of
these classes in n-dimensional feature space is unknown, where n is the
number of spectral bands in the image. Initially an arbitrary spectral centre is
selected and each pixel is assigned to its nearest centre. Subsequently the
spectral centre of each class is changed to the mean location of all the pixels
assigned to that class. The new spectral centre is used as the starting point for
the next iteration. In the methodology adopted by Lv et al. (2010) a new
MapReduce process is instantiated for each iteration. As the assignment of
each pixel to a spectral centre can be carried out independently of the other
pixels, this process is carried out inside the Map function. In terms of key value
pairs the pixel’s identifier (key) and digital number (value) are mapped to a pixel
(key) and spectral centre (value). Pixels assigned to the same spectral centre
are all sent to the same Reduce process which can then calculate the new

spectral centre by averaging the position of all pixels, for each dimension.

A similar implementation is presented by Li et al. (2010) for the ISODATA
unsupervised classification algorithm. [ISODATA does not require the exact
number of land cover classes to be known in advance and extends K-means by
taking into account the compactness of clusters which is measured using their
standard deviation. This enables clusters with a standard deviation above a
certain threshold to be split, and overlapping clusters to be merged. Li et al.
(2010) use almost identical Map and Reduce functions to Lv et al. (2010), but
extend these with another serially implemented Refine function that performs

cluster splitting and merging.

Another image processing example is described by Chapman et al. (2010) who
use MapReduce to perform geo-correction. The cited example determines the
ground location of each pixel sensed by a thermal infra-red satellite by
implementing a geo-correction function (Map) and then averages the resulting
temperature for each of the measured ground regions (Reduce). Despite the

success of these implementations not all geoprocessing tasks can be easily

65

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

transformed into the MapReduce paradigm, notably operations that involve

relational joins or multi-stage processes (Cary et al., 2009).

Geometric parallelism is another parallel strategy that relies on a specific form
of domain decomposition in which the geographical data space is partitioned
into sub regions, each of which are executed on different processors (Healey
and Desa, 1990). In reference to geometric parallelism, Armstrong and
Densham (1992) suggest that two characteristics of spatial domains, regularity
and homogeneity are important in determining decomposition strategy.
Furthermore, they suggest that domain decompositions fall into one of four
classes, regular and homogeneous, irregular and homogeneous, regular and
inhomogeneous and irregular and inhomogeneous. Regular refers to the
spatial arrangement of data elements; i.e. a geometric partition would result in
an equal number of data elements in each segment. Homogeneous refers to
the data elements being of the same type, and implies that each data segment
will require a similar amount of processing effort. Each of these categories are
depicted in Figure 2.8 where it can be seen that although A and B both exhibit a

regular grid, B contains an inhomogeneous arrangement of nodes.

Irregular domains are characterised by irregular mesh data structures such as
Triangulated Irregular Networks (TIN), vector point, line and polygon data and
vector network data. Using geometric partitioning it is difficult to achieve load
balancing for irregular domains. However, through the use of quadtree

partitioning and the divide and conquer strategy this difficulty can be overcome.

Regular domains are characterised by gridded data structures such as regular
gridded DEMs and raster images. Regular and homogeneous domain
decompositions are preferred because they are easily accomplished (Armstrong
and Densham, 1992). Many geoprocessing tasks make use of such
decompositions, particularly in the field of image processing (Hawick et al.,
2003, Plaza et al., 2009), raster GIS (Wagner and Scott, 1995) and even
tsunami wave modelling (Glimsdal et al., 2004). Regular domain decomposition
is most easily achieved by dividing a data aggregate into a number of segments

comprised of contiguous data elements such as rows, columns, blocks or

66

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

columns. However this is not always the case; Kidner et al (1997) use an
equiangular data decomposition for a 360°line of s ight analysis in which 360/n
degrees of data are assigned to each processor, where n is the number of
available processors. Similarly, it is sometimes advantageous to perform
scattered domain decomposition, particularly for scenarios such as ice sheet
modelling (Mineter and Dowers, 1999) in which the majority of computation lies
in certain spatial regions. Scattered decomposition involves decomposing the
data into many more segments than there are processors and assigning each
processor a number of segments from scattered spatial regions of the data

aggregate (Trewin, 1998).

‘ l I 7 1 L“'
p +—<
4 . $
A. Regular and homogenous B. Regular and inhomogeneous
C. Irregular and homogeneous D. Irregular and inhomogeneous

Figure 2.8: Classification of Spatial Domains [(Arm strong and Densham,
1992)]

Using a geometric parallel strategy in a distributed memory environment
necessitates the exchange between processors of data elements that lie on the

67

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

boundary between neighbouring regions; this procedure is known as halo or
boundary exchange. Lee and Hamdi (1995) present the parallel application of a
convolution filter over an image that has undergone a regular domain
decomposition. To successfully apply the filter to the entire image, pixels on the
division boundary must be exchanged between processes. This is depicted in
Figure 2.9; the image has been divided into nine segments each forming a
separate process. In the figure every process exchanges each cell that forms a
boundary with their neighbour, enough exchange to apply a 2x2 convolution
filter. To apply a 3x3 filter, two rows of data would have to be exchanged.
Other examples of boundary exchange in domain decompositions include the
work of Lanthier et al (2003) on implementing a parallel version of the shortest
path algorithm. The alternative is to use a shared memory architecture in which
each processor already has access to the entire dataset. For example Hickman
et al (1995) achieved an almost linear speed-up of texture based feature
extraction from a remotely sensed image using a regular domain decomposition

on a shared memory architecture.

-
.r’/x
-
1™ "-ﬂn \

RN A
_ YY) .
R AN <y =
=i [F4-%
T

A\l

—

+—51"H4

'11_ - L
S

| / |

Figure 2.9: Boundary Exchange for a Convolution Fil ter

Because of the relative expense of communication in comparison to

computation (Fox et al., 1994), the exchange of data between processes is a

68

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

common bottleneck in parallel programs. As such this style of parallel
programming is best suited to MPP architectures in which dedicated high speed
connections exist between processors, or shared memory in which all
processors can access all the data. Performance can be increased for
operations requiring boundary exchange by positioning neighbouring regions on

adjacent processors (Bowler et al., 1987).

Pipeline parallelism or ‘pipelining’ involves splitting an operation up into
constituent stages, each of which is assigned to a different processor. Once the
first processor has finished processing the first data item, it relinquishes control
of this item to the second processor and begins processing the next data item,
thus increasing overall throughput (Trewin, 1998). This style of parallelism is
depicted in Figure 2.10; data is fed from left to right and an additional
processing step is performed at each stage. Healey and Desa (1990) referred
to this style of processing as ‘algorithmic parallelism’ and noted that whilst the
concept is attractive, it is difficult to implement as each processor requires a
different set of instructions. Furthermore, it is noted that fast interconnects must
exist between machines in the pipeline, and to perform complicated workflows
the dynamic reconfiguration of machine interconnects is a desirable feature.
Another caveat of this approach is that the time taken to process each stage in
the pipeline must be roughly comparable to maximise efficiency and avoid
either idle processing time or the development of a processing backlog (Trewin,
1998). Finally, there is a limit to the scalability of this approach in that the
maximum number of processors that can be employed is limited to the number

of stages in the workflow.

Process Process Process

A 4
A 4

Input —® Step 1 Step 2 Step3 [* Output

Figure 2.10: Data Pipelining Structure

Despite the preference to data decompositions in both the GIS domain (Mineter

and Dowers, 1999) and more generally (Foster, 1995) for the reasons stated

69

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

above, there are a number of scenarios for which pipeline parallelism is
suitable. For example, the use of pipeline parallelism in conjunction with event
parallelism for hyperspectral image processing has already been described
above. Additionally, pipeline processing is commonly used to render large high
resolution images (Bethel et al.,, 2003) although it is noted by Sorokine et al
(2005) that contemporary parallel rendering systems are not yet advanced
enough for the GIS domain. Cited deficiencies include a lack of support for
common geospatial data formats and an inability to render either cartographic
symbology or more than one layer at a time. Kidner et al (1997) successfully
used a 20 processor pipeline to obtain visibility indices from a DEM, achieving a
speed-up of 12 (Equation 1). Koutroumpas and Higgins (2008) make the point
that pipelining is the only valid functional decomposition technique to parallelise
geospatial problems that exhibit flow dependence or anti-dependence. Given
two tasks that are performed in a directed sequence, such as Step 1 and Step 2
in Figure 2.10, flow dependence exists if Step 1 modifies a data item that Step 2
reads. Conversely, anti-dependence exists if Step 2 modifies a data item that
Step 1 reads. Thus in both of these scenarios it is not possible to execute Step
1 and Step 2 for the same data item at the same time, although pipelining can
be used. Koutroumpas and Higgins (2008) describe a pipeline parallel geo-
linking service that streams geographical features from a WFS and attribute
data from a geo-linked data access service using an OGSA-DAI workflow. Data
from each of these sources is combined and the geographic features are
converted to a raster format and delivered to a GridFTP endpoint. Due to a lack
of balance between the processing stages, the processing improvement was
only three times better than a serial execution for this five stage process.
However, this provides a good example of how pipelining can be used to
increase the speed of geoprocessing workflow chains.

Glatard et al (2006) suggests another form of parallelism known as service level
parallelism that achieves a speed-up in a cluster or grid computing environment.
The actual process of submitting a job in a grid environment has a significant
time overhead attached comprising of job submission, scheduling, queuing and
data transfer. Service parallelism enables two or more sequential workflow

tasks to be combined and submitted to the grid as a single task. However,

70

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

service parallelism may negate any time savings if it limits any other form of
parallelism (Glatard, 2008).

2.4.4 Parallel Programming Constructs

According to Foster (1995), there are three major parallel programming models;
message passing, data parallel and shared memory. Associated with each of
these models are a plethora of programming languages, compilers and

standards; this Section provides a brief overview of these constructs.

Parallel programming languages are designed to simplify the process of
developing parallel applications; to date there are several in existence that are
capable of exploiting the parallelisation strategies outlined in Section 2.4.3.
Parallelisation can either be achieved implicitly, using an auto-parallelising
compiler, or explicitly using a parallel programming language (Hwu et al., 2007).

Auto-parallelising compilers have been developed to exploit parallelisms
inherent in sequential programs through automatic restructuring of the code.
Typically this is achieved by searching for loops in the code in which there are
no cross iteration dependencies and dividing them amongst available
processors (Gupta et al., 1999). Power Fortran Accelerator (Hogue and
Graves, 1994) provides an example of a parallelising compiler that enables
Fortran 77 code to run in parallel. Similarly the Sieve C++ compiler (Richards,
2006) enables C++ code to be run in parallel, although this can be considered
semi-explicit as it requires code annotations which point to sections of code to
be parallelised. The major advantages of implicit parallelism are that it enables
legacy code to be implemented in parallel, and that it requires very little
additional development effort. However, it is not as efficient as explicitly defined
code; back in 1996 the NAS benchmark, a set of programs designed by NASA
to evaluate parallel program performance (Bailey et al., 1994) was found to run
two to forty times faster using an explicit approach (Hwang and Xu, 1996).
Recent improvements in parallelising compilers along with higher capacity

hardware that is capable of checking equivalence to serial code has resulted in

71

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

a renewed interest in this approach as a viable alternative to explicit methods
(Hwu et al., 2007).

Data parallel refers to a programming paradigm in which the same operation is
performed on all elements of a data aggregate (Graham et al, 2005); as such it
is suitable for speeding up the processing of large data volumes. Data parallel
languages present an explicit method of developing parallel code for data
aggregates, in which the developer is responsible for specifying the domain
decomposition so the compiler can partition the computation accordingly
(Foster, 1995). Fortran90 and High Performance Fortran (HPF) are both
considered to be data parallel languages; the former is an official International
Standards Organisation (ISO) standard whilst the latter, although more feature
rich and widely supported, has no official status (Healey et al., 1998). Notable
features of HPF include the ability to specify abstract arrays of processors and
the mapping of data array elements to these processors. Using the ALIGN
directive it is possible to allocate specific data array elements to the same
processor, thus if there is much interaction between these elements, inter-
processor communication cost can be minimised. The DISTRIBUTE directive,
enables a data array to be allocated as a BLOCK, i.e. to a single processor, or
in a CYCLIC manner, i.e. consecutive elements in the array are to be mapped
to different processors, thus exemplifying a scattered decomposition (Section
2.4.3). MapReduce can be considered an explicit data parallel approach as the
same operation is applied to each element in a data aggregate at the Map
phase. However, it also incorporates an element of functional decomposition as

a task is split into two consecutive stages, Map and Reduce.

Whilst data parallel languages are useful in many circumstances, they are only
suitable for reasonably simple tasks due to their single thread of control
(Sawyer, 1998). Li et al (2008) exemplify the use of Fortran90 to perform the
point in polygon operation and Douglas-Peucker line simplification. In addition
they present a method of constructing a connectivity matrix between
cartographic objects, as is required for a number of spatial analysis operations.
Mower (1996) compares data parallel and message-passing techniques for

performing line-simplification and concludes that data parallel is generally

72

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

quicker than message passing if all processors are kept active, particularly as
synchronous communication can adversely affect the performance of the
message passing approach. Data parallel constructs have also been used to
perform spatial interpolation on various architectures; Kriging on NOW using
HPF (Hawick et al., 2003, Kerry and Hawick, 1998), Kriging on the CM5
machine which is a MNSP supercomputer using CMFortran, a precursor to HPF
(Hawick et al., 2003, Kerry and Hawick, 1998) and MacDougall's (1984)
interpolation algorithm on the Encore Multimax, an SNMP supercomputer using
Encore Power Fortran (Armstrong and Marciano, 1993). We can conclude that
data parallel constructs are useful for relatively simple forms of parallel
processing where little inter-processor communication is required. In contrast,
the message passing approach presents a more complex solution but one that

enables more difficult application graph topologies to be executed.

Message Passing refers to a programming model in which processing
operations are divided into a series of tasks that interact with each other by
sending messages (Gropp et al., 1999); the concept originated from the work of
Hoare (1978). According to Sawyer (1998) a message passing system must
provide the programmer with four types of operation; point to point
communications, collective communications, process management and
synchronisation primitives. Point to point refers to one processor sending a
message to another, whereas collective refers to communications between the
entire collection of processors such as broadcast operations in which one
processor sends a message to all other processors, or reduction operations in
which each processor contributes a value to an aggregate operation. Process
management is used to commence and terminate processes, and
synchronisation primitives are markers that one process sends to another to let
it know that a certain point in the program has been reached.

The message passing model has become extremely popular as it enables
processors in distributed memory architectures to synchronise with each other
and to directly read and write to each other's memory (McBryan, 1994). Like
the data parallel paradigm, processing operations using the message passing

approach can be split up into tasks, each with their associated portion of data.

73

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

However, this approach differs from data parallel in that each task can request
and receive pieces of data from each other at any stage in their execution, thus
enabling significantly more complicated process topologies to be performed
than is possible in the data parallel model, whilst remaining suitable for
execution in a distributed memory environment. This ability of processes to
communicate with each other during execution is known as inter-processor
communication. Parallel tasks are often described in terms of their granularity,
a ratio describing the size of computation that can be performed by a
processing node between communication or synchronisation with other
processing nodes (Wilkinson and Allen, 1999). Coarse-grained tasks can
perform a lot of computation before communication with other nodes is required,;
this is generally desirable due to the relative expense of communication in

comparison to computation (Fox et al., 1994).

A popular single standard has emerged for message passing programs (Booth
et al., 2003) which is known as the Message Passing Interface (MPI). Unlike
the other languages described here, in message passing applications the
communication between processes must be explicitly coded. MPI offers both a
standard communication interface, and an API that enables parallel message
passing programs to be implemented in C, C++ and Fortran with some degree
of platform portability. Messages can be sent both point to point, using the
MPI_SEND command, or collectively using the MPI_BROADCAST command.
However, despite its flexibility, developing message passing programs is
difficult. Firstly, when using blocking communication deadlock is a common
problem; blocking refers to a style of communication in which process B waits
for a message from process A before continuing execution. Thus dead-lock
occurs when processes A and B are both waiting for messages from each other
and neither can progress. Secondly, there is no easy way to debug an
application that is running on several processors at once (Samofalov and
Konovalov, 1996).

Fox’s ‘rule of the millisecond’ (Section 2.4.2) deems MPI applications suitable
only for MPP architectures. However, a number of alternative MPI

implementations have appeared that tolerate greater communication latencies.

74

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

For example, MPICH-G2 (Karonis et al., 2003) and PACX-MPI (Keller et al.,
2003) make it possible to run parallel jobs on distributed grid resources as
though they were a tightly coupled cluster. PACX-MPI has adopted a two-tier
programming model, one for internal intra-cluster communication and one for
inter-cluster communication. MPICH-G2 however appears to the programmer
as a standard MPICH implementation of MPI but it has been developed
specifically for the Globus middleware and can be used in conjunction with

Globus’ security, resource management and job submission services.

Dattilo & Spezzano (2003) provide an example of a message passing
processing operation that demonstrates the increased level of complexity that
the paradigm can withstand. They describe how a problem solving environment
called CAMELOT is used to run a Cellular Automata model that simulates the
debris and mud flow of a landslide. The Cellular Automata approach is useful to
model flow as it captures the collective effect of several locally interacting
components. A Cellular Automata model is comprised of a grid of cells, each
with a state and a set of transition rules that define how the state will change,
based on previous states or the state of neighbouring cells. In this case several
properties of the debris are considered; altitude, thickness, run-up, depth,
mobilisation, outflow direction and water content. The simulation is
implemented in parallel using a high-level language CARPET, which uses an
underlying message passing approach in which every cell is represented as a
process. At each time interval the interactions between cells are managed by

message passing between processes.

Other geoprocessing applications that utilise MPI include parallel image
rendering systems (Sano et al., 2004, Sorokine et al., 2005) and hyperspectral
image processing. Plaza et al (2009) in their work on clustering, classification
and spectral mixture analysis of remotely sensed hyperspectral data use MPI C
extensions to implement their algorithms on both heterogeneous and
homogeneous NOWSs. Conversely Tehranian et al (2006) deemed a generic
MPI1 implementation unsuitable for the constraints of a real-time system in terms
of reliability and availability and thus opted to use a non-standard software

framework to implement their hyperspectral processing system.

75

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

The Shared Memory model uses a different approach to parallelisation; it relies
on a processing architecture in which several processors have access to the
entire dataset (Foster, 1995). Parallelisation is achieved by multiple processors
simultaneously processing different parts of the same dataset and locking
mechanisms are used to ensure conflicting read and write operations are not

imposed on data elements.

Shared Memory programming is commonly realised using OpenMP
(http://www.openmp.org), an open standard for shared memory parallel
programming. OpenMP provides an API that enables developers to easily write
code for multiprocessor shared memory architectures (SNMP and MNMP) in
the Fortran, C and C++ languages. Implementing shared memory code is
easily achieved due to a global address space from which each process can
access all the data. As such sequential code can be parallelised for shared
memory execution with relative ease (Sawyer, 1998). An alternative approach
to shared memory programming is to use a message passing library (Sawyer,

1998) which is also capable of running on a shared memory architecture.

There have been a number of efforts to simplify the use of parallel programming
constructs through high level abstractions. The MPI standard itself contains
some abstraction such as collective communication functions like
BROADCAST; before MPI, CHIMP (Bruce et al., 1993) provided some of this
functionality. In addition there have been domain specific efforts at producing
parallel libraries such as the image processing library described by Seinstra et
al (2002) which attempts to mask parallelism from the user.

As described by Trewin (1998) the Parallel Utilities Library is the most
comprehensive of these libraries; built on the MPI standard it consists of a
number of C and Fortran 77 modules that can be harnessed to perform basic
parallel operations. The modules are categorised into paradigm specific,
domain specific and non-specific. Whilst non-specific modules include generic
tools to perform tasks such as parallel 10, the paradigm specific modules
include tools specific to a parallel strategy such as task-farming (PUL-TF) or

regular domain decomposition (PUL-RD). Finally, domain specific modules are

76

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

targeted at specific applications, for example PUL-SM provides a basis for
decomposing irregular mesh data structures. Mineter and Dowers (1999)
provide an example of using PUL-RD to decompose an image to perform a
moving window noise reduction filter. PUL-RD handles the splitting of data

amongst processors, halo exchange and reassembling of the results.

2.5 Summary

The goals and structure of this literature review were set out in Section 2.1. In
Section 2.2 the key characteristics of Earth systems monitoring and prediction
applications were reviewed in order to establish the computational and data
requirements of such systems and to evaluate the suitability of grid computing
as a processing resource. Five key motivations for integrating grid computing
were identified; the ability to access computing on demand, the ability to scale-
out analysis without hardware restrictions, the ability to share resources across
organisations, the ability to access high performance computing resources and

a minimisation of initial hardware investment costs.

Section 2.3 describes the current status of generic web service standards, and
reviews existing work on integrating web services across the grid computing
and geospatial domains. Middleware standards in OWS, SWE and OGSA are
discussed and incompatibilities between these specifications are considered.
Furthermore, strategies to align these specifications are reviewed and a list of

key issues in the alignment of standards is presented.

In Section 2.4 parallel processing architectures are described and existing work
on parallel geoprocessing is presented. Furthermore, tools and compilers for
parallel processing are also briefly discussed. The key outcome of this Section

is a presentation of geoprocessing strategies.

It can be concluded that grid based geoprocessing is a vast and rapidly
expanding field in which there has been a lot of recent work. Considerable
progress has been made in identifying and overcoming the architectural

challenges of integrating grid and geospatial web services such as OWS and

77

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

SWE although there appears to be a general consensus that more geospatial

grid implementations are required to fully understand the remaining challenges.

A similar research effort has gone into parallel geoprocessing. The majority of
this work was carried out in the 1990s since which time the interest in parallel
geoprocessing, and parallel computing in general has declined due to
advancements in processing hardware and an overall trend away from high
performance computing ‘scale up’ approaches towards a high throughput ‘scale
out’ approach as realised in grid and cloud based systems. However, the
processing strategies remain highly relevant and renewed interest in parallel
geoprocessing from the perspective of real-time processing remains pertinent.

A number of individual real-time geoprocessing systems are described in the
literature that have been developed for specific applications but it appears that
to date there has been a failure to consider real-time geoprocessing from a
more generic perspective. Thus it is the aim of this thesis to fill this research
gap by attempting to identify the broad categories of real-time geoprocessing
operations and determine the relevant strategies for their implementation. The
aims, objectives and major research questions of this thesis are therefore set

out in the following Section.

2.6 Aim, Objectives and Research Questions

Aim:

To develop an appropriate conceptual and implemented framework in which
open standards in grid computing, sensor web and geospatial web services can
be combined as a technological basis for monitoring and prediction of
geospatial phenomena in the Earth systems domain, to facilitate real-time

decision support.

78

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

Objectives:
1. Describe the current and emerging standards in sensor web, grid
computing and geospatial web services that are relevant to the

integration of large scale geospatial processing operations.

2. Investigate the difference in approach to standards development
across the geospatial and distributed computing domains and the
impact these differences have on geospatial workflows. Suggest

areas where such workflows can be improved.

3. Assess the design of existing monitoring and prediction systems reliant
on computationally intensive processing of geospatial data in the Earth

systems domain.

4. Develop an initial prototypical categorisation of geospatial processing

algorithms for both static and real-time data.

5. Design standards-based middleware to seamlessly incorporate real
time sensor data into distributed geospatial processing operations

within a web services environment.

6. Design and develop use cases for a real-time distributed
geoprocessing framework that are exemplar of each algorithm category

specified in objective 4. Test and evaluate each system.

7. Propose frameworks and areas for future research and development
and suggest areas where existing standards need to be augmented or

improved.
By fulfilling the aim of this thesis and addressing the objectives it will be

possible to evaluate several core research questions in relation to this work.

These research questions are listed as follows:

79

Geoprocessing on the Grid: A Review of Standards, Tools and Techniques

To what extent can standards in geospatial web services, sensor web and

distributed computing be integrated within a geoprocessing context?

This is a natural starting point for this project. Further work in this project is
dependent on the extent to which these technologies can be aligned using

existing and emerging open standards.

What are the potential bottlenecks in a distributed real-time monitoring and
prediction system in relation to distributed geoprocessing?

Bottlenecks in data transfer and processing are inherent in real-time monitoring
and prediction systems. It is important to identify the stages in the workflow that
are constraining each system in order to streamline each system and make it fit

for purpose.

Are there any generic methods of distributing real-time geoprocessing

operations?

One of the most interesting outcomes of this research project will be whether a
family of methods can be developed to distribute static or real-time
geoprocessing operations amongst several processors in a grid or cloud

architecture.

80

Categorisation of Real-Time Distributed Geoprocessing Paradigms

Chapter 3 Categorisation of Real-Time Distributed
Geoprocessing Paradigms

3.1 Introduction

A major goal of this thesis is to explore how grid computing can be used in
conjunction with sensor web to assist in the monitoring of spatially complex
systems, processes and activities. It is expected that the primary function of
grid computing in this regard is the provision of a pool of computational
resource that enables geospatial data to be processed in a timely fashion.
However, given the diversity that exists amongst geoprocessing scenarios and
algorithms it is difficult to ascertain the most effective method of integrating grid

computing into geospatial processing workflows.

In the previous Chapter the motivation for integrating grid computing with
geospatial monitoring and prediction systems was asserted and the
technicalities of integrating web service technologies from different domains
were explored. Furthermore the array of tools and techniques for performing
geoprocessing operations in parallel was also evaluated. However, much of
what can be concluded from the technical discussion in Chapter 2 is that
different monitoring and prediction scenarios require very different
geoprocessing techniques and architectural approaches. There is no single
best way to integrate these technologies; it is a complex choice that is
dependant on the nuances of the dataset, the execution environment, the
geoprocessing operation, the network and the encapsulating interfaces
(Padberg and Kiehle, 2009). For example, the processing of a remotely sensed
satellite image for a disaster monitoring scenario may gain a significant
improvement in performance if it is executed in parallel on a grid, but similarly
this performance gain could also be offset by the time spent transferring the
image on to the grid. As such, an important step in the advancement of this
field is to determine which combinations of data type, execution environment

and monitoring / prediction scenario characteristics work well together.

81

Categorisation of Real-Time Distributed Geoprocessing Paradigms

In this Chapter an attempt is made to develop a typology of geoprocessing
operations with respect to distributed processing architectures with a particular
focus on real-time operations. The typology defines geoprocessing operations
in terms of those characteristics that influence the design choices made by
system architects in the development of distributed geospatial processing
systems. This delineation of commonly occurring paradigms in geoprocessing
is intended to facilitate the future development of application specific tools,
frameworks and software development kits for real-time distributed
geoprocessing. Furthermore it is anticipated that the typology will enable
generic methodologies and integration profiles to be developed that suit the
majority of cases and provide a template for geoprocessing application and

system design.

The typology developed in this Chapter provides a framework for the practical
work of this thesis. An exemplar operation from each geoprocessing category
is implemented in Chapters 4-6. This serves to provide a firm foundation for
discussion and a basis for answering the research questions set out in Section
2.6. Within this Chapter Section 3.2 reviews existing efforts at classifying
geoprocessing operations and Section 3.3 provides a thorough examination of
the differences between static and real-time geoprocessing. The main focus of
this Chapter, the typology of geoprocessing operations is detailed in Section
3.4. In Section 3.5 an attempt is made to classify common geoprocessing
operations in the context of this typology and a critique of the typology is
conducted in Section 3.6; the main conclusions of this Chapter are summarised

in Section 3.7.

3.2 Review of Existing Geoprocessing Classification S

The 1SO has defined a classification of geographic processing services, 1ISO
19119 (Percivall, 2002) that essentially groups processing services by the
function that they perform. Four major classes are defined; spatial, thematic,
temporal and metadata. Example operations for each of these classes
respectively, are spatial coordinate conversion, thematic feature generalisation,

temporal sampling and aggregate statistical operations. This functional

82

Categorisation of Real-Time Distributed Geoprocessing Paradigms

classification is useful for defining broad classes of geoprocessing operations
although in terms of RM-ODP (Section 2.3.5) it is biased towards the
informational viewpoint. According to Faroqui et al (1995) it is the
computational and engineering viewpoints that are the most important factors in
determining the design and implementation of distributed systems as these
viewpoints consider issues such as problem partitioning and the matching of
applications to platforms. As such this functional classification is not particularly
helpful in mapping geoprocessing operations to processing methodologies and

architectures.

Di et al (2008) suggest a crude classification of geoprocessing based on the
stage of the geoprocessing operation in the workflow. It is suggested that there
are three stages in the process of converting geospatial data to information.
The first stage, geoquery is the discovery and acquisition of data, the second
stage pre-processing involves assembling the data and converting it to the
required format and the final stage geocomputation is concerned with
conducting analysis and simulations with the data. This classification is more
pertinent to distributed computing architectures as it considers geoprocessing
operations in relation to the workflow. For example, data reducing geoquery
operations and some pre-processing or transformation operations should be
performed close to the data. This is noted by Friis-Christensen (2007) who
suggests that the OGC WFS be augmented with data reducing operations such
as clipping, generalisation and coordinate conversion. While this classification
does not specifically consider processing architectures it introduces the

workflow as an important geoprocessing characteristic.

Wang and Armstrong (2009) explore the decoupling of parallel geoprocessing
solutions from specific high-performance computing architectures through the
use of computational transformations which characterise the computational
intensity of geographical analysis. Four major types of geoprocessing
operations are considered; operation-centric, data-centric, operation and data-
centric, neither operation nor data centric. Data-centric transformations are
considered to be functions that have a high memory or 1/0 requirement such as

large spatial database transactions, whereas operation-centric transformations

83

Categorisation of Real-Time Distributed Geoprocessing Paradigms

have a high computing time requirement. This classification helps to determine
the processing methodology that the operation is most suited to. For example,
operation-centric tasks may seek to exploit a message passing processing
methodology (Section 2.4.4), whereas an operation and data-centric task may
be more suited to a data parallel processing methodology (Section 2.4.4). A
similar typology is defined by Shi et al (2002) who suggest three types of
geoprocessing algorithms that are suitable for parallelisation; algorithms for
which loop constructs in the code can be exploited by explicit or implicit
parallelism (operation-centric), algorithms that can be sub-divisible into smaller
geographical areas (data and operation centric), and algorithms with a large
data volume but modest compute requirement (data-centric). Shi et al (2002)
consider it unnecessary to parallelise operations that are neither data nor

compute intensive.

In the context of real-time systems, geoprocessing operations may also be
classified by the type of sensing system used to collect the data. Beard (2007)
proposes three types of sensing system. The first type is termed a Spatial Field
of Time Series (SFTS) and refers to multiple fixed spatial locations where one
or more attributes are measured at regular intervals resulting in one or more
time series. Therefore, for multiple locations a spatial field of time series is
created. For example, a fixed set of weather observing stations over a given
area would collectively comprise an SFTS. The second type in the
classification is a Time Field of Spatial Series (TFSS) and this refers to a time
ordered set of spatial fields. For example, a set of images collected by an
orbiting satellite over a month would represent a TFSS. The key difference is
that SFTS represents a temporally continuous but spatially fixed data series
whereas the TFSS represents a data series that is spatially continuous. The
final type is a Moving Point Time Series (MPTS) and refers to a sensor that
moves and measures its location at regular intervals. The attribute being
measured is typically the label for the unit carrying the sensor, i.e. a person, an
animal or a vehicle. The MPTS outputs a set of observed positions for the
moving object. The three sensing systems described here are depicted in

Figure 3.1.

84

Categorisation of Real-Time Distributed Geoprocessing Paradigms

HEEEEE
O O O aLDSEEEEEE
i O,
O O O mig| Q
O O O Hig C...9©
1. Spatial Field of 2. Time Field of 3. Moving Point
Time Series Spatial Series Time Series

Figure 3.1: Types of Sensor System [Langran et al, 1992]

The development of Map Algebra (Tomlin, 1991) resulted in the delineation of
four major classes of geoprocessing operation; local, zonal, focal and
incremental. Functions in the local category operate on each individual
location, such as a pixel in a raster image, or a point or feature in a vector
dataset, and produces for each location a new value that is some function of
one or more existing values from that location. Common local operators include
math functions such as maximum, minimum, difference, product, square root,

sin, cosine and tan.

Global functions compute a new value for each location that are a function of
existing values associated with the entire layer. For example, a global
maximum function would set the value of each location to the maximum value
found in the entire layer, whereas a local maximum function would set the value
of each location to the maximum value found at the corresponding location in

each of the specified layers.

Zonal functions compute a new value for each location that are a function of
existing values within the same region in another layer. For example, the
ZonalProduct function multiplies each of the values in one layer by the value of

each zone in another layer.

Focal functions calculate a new value for each location as a function of the

values taken from surrounding although not necessarily adjacent locations.
85

Categorisation of Real-Time Distributed Geoprocessing Paradigms

Common focal functions include high-pass and low-pass frequency filters and
the focal mean that calculates the area weighted average of all values within a
neighbourhood.

In Tomlin’s (1991) classification the incremental class contains functions that
are biased towards hydrological modelling such as aspect, drainage, volume
and linkage. However, a subsequent revision of this classification has
amalgamated the incremental class into the zonal class due to its algorithmic
similarity (DeMers, 2002).

Mennis et al (2005) extend the notion of map algebra from two dimensional
Cartesian data-space to include time as a third dimension. It was found that
this approach enables map-algebra functions to successfully be performed on
time-series data thus enabling phenomena to be modelled in both time and

space.

Nicolescu and Jonker (2002) conform to the notion of global, zonal and focal
operators in their classification of image processing functions. Here they are
referred to as point, neighbourhood and global. Point operators are defined as
those for which each output pixel is dependant only on the corresponding input
pixel such as arithmetic and logical operators on two corresponding images.
Neighbourhood operators however create an output pixel that is dependant on
the value of several input pixels from the surrounding region. Examples include
moving kernel functions such as low/high pass filters and edge detection
algorithms. Global operators are dependant on the entire image; examples
include average, maximum and minimum functions. The dependence of each
operation on other elements in the data aggregate has wide reaching
consequences for data decomposition strategy and architectural considerations.
For example, point operators can be easily parallelised using a task-farm style
decomposition but neighbourhood and global operators are more difficult to
parallelise (Braunl et al., 2001). Similarly, geoprocessing operations involving
global operators are better suited to processing at source to avoid the transfer

of unwieldy datasets across a network.

86

Categorisation of Real-Time Distributed Geoprocessing Paradigms

3.3 Geoprocessing and Time

Introducing real-time data into distributed geoprocessing workflows has a
substantive effect on the relative suitability of different processing architectures
and methodologies. Primarily this effect is due to differences in the volume and
nature of the data and the way in which it is delivered. However, the effect can
also be attributed to the overall context in which geoprocessing is taking place.
Issues such as how the workflow is invoked, for what purpose and with what
degree of immediacy, are crucial to the selection of suitable tools and
techniques.

3.3.1 Snap vs Span

GIS have traditionally taken a simplistic view of the world in which all
phenomena are represented in a static manner (Langran, 1992). Various
attempts have been made to represent the dynamic nature of real world
phenomena within GIS; Worboys and Duckham (2004) outline the following four

stages in this progression:

Static: A single static view of the world.

Snapshot: A view in which dynamic phenomena
are represented as a collection of time-
stamped states.

Object Lifeline: A view in which the lifecycle of objects

including creation and destruction are

recognised.
Events, actions & A view in which continuous and
processes: instantaneous phenomena can be
modelled.

Towards the events, actions and processes end of this spectrum the
complexities inherent in modelling the real-world in time and space become
apparent. Mourelatos (1978) attempted to rationalise the representation of
reality by using a taxonomy in which every situation is comprised of both a state

and an occurrence, and the occurrence could be represented by either an event

87

Categorisation of Real-Time Distributed Geoprocessing Paradigms

or a process. Whereas events occur at a fixed instant in time, processes occur
over a time interval; this disparity between instantaneous and interval
representations of spatial phenomena is formalised by Grenon and Smith
(2004) with their SNAP and SPAN ontology.

In terms of geoprocessing systems, ‘real-time’ implies we are dealing with
temporal representations at the snapshot level or higher in Worboys and
Duckham’s (Worboys and Duckham, 2004) progression. As such, real-time
geoprocessing covers a range of temporal scenarios. At the simplest level an
operation may involve the processing of a fixed snapshot of recently collected
spatial data. An example of this form of snapshot processing is given by the
interpolation of a sea surface temperature map from a series of weather buoys
for a given time instant. Only minor differences exist between this form of
snapshot geoprocessing and classical static geoprocessing. The actual
computation involved is the same but the data may be corrupt or missing due to
less reliable sensor data sources. Furthermore, snapshot geoprocessing on
live sensor data is likely to take place in an environment in which the results are

required immediately.

Conversely, real-time geoprocessing may involve the processing of a series of
observations representing a time interval. Extracting information from an
observation sequence requires a radically different approach to static
geoprocessing and draws on techniques from the field of Data Stream
Processing (DSP). In DSP terms a data stream is a potentially unbounded
sequence of tuple, timestamp pairs; DSP can be considered an alternative to
database technology for coping with streams of data as opposed to persistent
datasets (Babu and Widom, 2001). In contrast to traditional database
management systems, DSP is concerned with performing static queries on
transient data rather than vice versa. Data Stream Management Systems
(DSMS) have emerged as a means of managing data streams, both as
extensions to existing DBMS (Krishnamurthy et al., 2003) and as systems in
their own right (http://esper.codehaus.org). Furthermore, a query language,
Continuous Query Language (Arasu et al., 2006) has emerged as a standard

means of performing queries over data streams. Notable geoprocessing work

88

Categorisation of Real-Time Distributed Geoprocessing Paradigms

in this field includes the GeoStreams project (Hart and Gertz, 2005) on
processing streams of remotely sensed image data and the doctoral thesis of
Rueda-Velasquez (2007) that presents a framework for stream based change

detection in remotely sensed images.

3.3.2 Real-time Data Sources

Madden (2002) in his work on query processing of remote sensors noted that a
major difference between sensor data sources and traditional databases is that
real-time data is generally delivered in streams without being specifically
requested. Sensor network architectures conform to either the warehousing
approach of extracting data from devices in a predefined manner and depositing
it in a database, or the distributed approach in which only specifically requested
data is retrieved directly from the sensors. Clearly the warehousing approach is
similar to a static data source; subsequent processing operations can simply
adopt a polling mechanism to retrieve data from a repository. In the distributed
approach sensor devices form part of the database and processing operations
can request streams of data directly from the devices. As noted by Bonnet et al
(2000) the preferred architecture is dependant on the prevailing type of query.
Historical queries that aggregate data over a long time period are better suited
to the warehousing approach. However, snapshot queries where data for a
given epoch is retrieved on request, and long-running queries that retrieve data
over a given time period are better suited to the distributed approach as it
avoids the unnecessary collection, transfer and storage of large data volumes.
Real-time applications often depend on long running or snapshot queries and
the ability of real-time workflows to handle streams is therefore desirable.

Delivery of data in streams does have certain advantages for real-time
processing. Transferring large static data sets across networks presents a
bottleneck in distributed architectures whereas transferring observations as they
are collected enables pipeline parallelism to be exploited (Section 2.4.3); this
allows actors on the same branch in the workflow to work at the same time on

different parts of the same stream (Rueda et al., 2006).

89

Categorisation of Real-Time Distributed Geoprocessing Paradigms

In the OGC SWE architecture, sensor data is obtained through an SOS or
SAS/SES interface which represents pull and push based access to
observations respectively. Whether these services adopt a distributed or
warehousing approach is unrelated to the service interface, this decision is left
to the service implementer. However, the SOS does support the querying of
historical data and most implementations to date (52North, NASA, Northropp
Grumman) have chosen the warehousing approach. Consequently, in a
distributed architecture, the nature of data delivery is on the whole irrelevant,
unless access to historical observations are required, in which case a

warehousing approach must be used.

3.3.3 Invocation of Real-time Geoprocessing

Coping with continuous data streams introduces a new set of challenges to web
service based GIS workflows. In a number of real-time scenarios new data is
constantly being produced which must be processed. For example, monitoring
applications typically produce observations which must be pre-processed. This
presents a design choice for processing services; either the service can be
invoked every time a new piece of data arrives, or a long-running process can
be established that listens for new observations, and processes each piece of

data as it arrives.

Due to the request-response pattern of web services the former approach is the
simplest; each item of input data can be passed to the processing service as a
parameter in the form of a request, the geoprocessing operation will have a
finite runtime and will return a result on completion. However this approach is
inefficient and particularly so in a grid environment. Firstly, numerous requests
must be formulated by wrapping each data item in a messaging envelope to
send to the processing service. Secondly, each request must be sent over
HTTP thus consuming network bandwidth and suffering from latency. Thirdly
each request must be de-serialized by the processing service and finally, in the
case of a grid based processing service the job must be scheduled and queued

before it is executed. This is likely to result in significant delays between the

90

Categorisation of Real-Time Distributed Geoprocessing Paradigms

data arriving at the source, and the processing results being delivered at the

destination.

The alternative is to invoke a single processing task, and pass it a reference to
the data source as a parameter. The processing service can then poll the data-
source directly and deliver results to the destination as they are processed. The
advantages of this approach are that the client need only make a single request
to start the processing service and that scheduling and queuing delays are only
incurred once when the processing is initiated. Therefore, provided that the
frequency of data arrival doesn’t exceed the time taken to process the data, the
time between the arrival of the data at the source and delivery at the sink is
minimised. There are however some disadvantages to this approach. Firstly
the ability of OWS to maintain state is poor, thus there is no inbuilt mechanism
to provide lifetime management of ongoing processes. As a result, ongoing
processes that are started, using a WPS Execute request, cannot be stopped.
Secondly, each ongoing process is assigned to only a single processor; thus
the processor must be able to keep pace with the incoming data. If this is not
possible then a backlog will occur, causing the time between arrival of data at
source and delivery at destination to steadily increase. Thirdly, this approach
doesn’t represent an efficient use of grid resources. Once an ongoing process
is allocated to a processor, the processor is entirely unavailable to other users,
for the duration of the ongoing process. As already discussed, the process
must be able to keep pace with the incoming data, thus it will spend a
proportion of its time waiting for new data to arrive. It could be argued that
these wasted processor cycles could be better utilised by others, and in a utility
grid scenario in which compute processing time is charged per hour this may

prove to be expensive.

3.3.4 Reliability and Variability of Real-time Data

A major requirement of many real-time geoprocessing systems is full
automation; geoprocessing must be able to take place without any manual
intervention in the workflow. However, such applications are often safety

critical and it is therefore vital that such systems can be relied on (Zerger and

91

Categorisation of Real-Time Distributed Geoprocessing Paradigms

Smith, 2003). Furthermore, it is often the case in hazard monitoring
applications that sensors detect no change for the majority of the time and
therefore require very little processing capacity, but when an event does occur
the need for processing power suddenly increases to cope with the influx of
data (Hingne et al., 2003). Real-time systems must therefore be capable of
dynamically scaling up and down to cope with the processing burden whilst

minimising the usage of processing resources.

3.4 A Real-time Geoprocessing Typology

Following an extensive review above of existing geoprocessing classifications a
new geoprocessing typology is presented in this Section. This new typology
takes into account the data, compute and usage characteristics of
geoprocessing operations as well as considering the real-time scenarios in
which they are employed. The purpose of this typology is to relate the physical
data and compute aspects of geoprocessing to specific styles of monitoring and
prediction problem. It is anticipated that the formalisation of this relationship will
be of benefit to the future development of large scale distributed monitoring and

prediction systems.

Let us consider three temporal representations of geospatial data; static,
snapshot and stream-based. Static data represents a single unchanging view
of reality, snapshot data represents a fixed view of reality at a number of
discrete moments in time and stream-based data represents a dynamic view of
reality over a continuous time interval. These three representations are
depicted in Figure 3.2 in which a two-dimensional data space is extruded

through time in accordance with its temporal representation.

In reality data streams are always comprised of a series of discrete
observations. Therefore snapshot and stream based data representations
could be considered one and the same. However, in terms of data processing
the key difference between stream and snapshot representations is that
processing operations on data streams are invoked regularly and frequently, i.e.

they are time triggered rather than event triggered. Typically data stream

92

Categorisation of Real-Time Distributed Geoprocessing Paradigms

processing involves basic pre-processing or change detection monitoring
whereas snapshot processing typically involves large one-off modelling or

simulation tasks.

A further difference between these two paradigms is that stream processing is
typically confined to processing a single stream of data and this usually implies
a single sensor data source. Conversely snapshot processing may incorporate
data from multiple sources for a given time instant. As a consequence, more
complex operations involving multiple sensors such as simulations and

predictions usually fall into the snapshot processing category.

Static

data

Snapshot

Stream

data /

/&\@

Figure 3.2: Static, Snapshot and Stream Data Repres entations

93

Categorisation of Real-Time Distributed Geoprocessing Paradigms

Two distinct geoprocessing categories have been delineated, stream
geoprocessing and snapshot geoprocessing. The characteristics of each of
these categories are outlined in Table 3.1

Table 3.1: Characteristics of Geoprocessing Paradig ms

Characteristic Stream Snapshot
Regularity of invocation | Regular Regular or irregular
Trigger Time Event

Number of sensors 1 >=1

Temporal Interval Instant
representation

With regards to a distributed processing architecture the above categorisation
facilitates the choice of design. The processing of numerous observation
streams can easily be parallelised by assigning one stream to each processor,
or by using pipeline parallelism as data items are already divided into an
ordered sequence (Section 2.4.3). Alternatively, for stream based processing
operations that carry a high time complexity, data stream partitioning can be
used to divide the workload amongst several processors. Furthermore, the
small but relentless torrent of data associated with the stream paradigm is
easily managed in a distributed network environment whereas larger data files
are more cumbersome to work with as they require longer transfer times and

can often not be read until the transfer is complete.

In processing terms the snapshot paradigm can be co nsidered very
similar to static processing; input and output data are discrete and the
operation has a finite lifetime. The main differen ces are that snapshot
processing is triggered by an event and the tempora lly discrete input data
is obtained from sensor data sources. Furthermore the results are likely
to be required within a certain time frame. The ap propriate parallelisation
technique for processing snapshot data is dependant on the granularity of
the geoprocessing operation, thus requiring snapsho t processing to be

further disaggregated. Granularity can be consider ed a spectrum (

94

Categorisation of Real-Time Distributed Geoprocessing Paradigms

Figure 3.3) with high data volume and low computational intensity operations
such as spatial database transactions at one extreme and low data volume,
high computational intensity operations at the other. The former are termed
‘fine-grained’ operations because the dominant resource constraints are
memory and 1/0O which result from excessive communication. Conversely,
coarse-grained operations utilise virtually no communication but a large amount

of processor cycles, serial tasks fall into this category.

Spatial DB Data Embarrassingly Serial
Operations Centric Parallel

FINE COARSE
GRAINED GRAINED

Figure 3.3: The Granularity Spectrum

Considering these categories it is proposed that the snapshot geoprocessing
category can be further subdivided into fine-grained and coarse-grained
geoprocessing operations. Fine-grained geoprocessing operations are typically
global, i.e. they require the entire data aggregate to compute a result. This
includes simple spatial database operations such as unary and binary selection

as well as complex simulations and predictions that involve machine learning.

Partitioning fine-grained operations is difficult and often unnecessary as the
primary resource constraint is that of memory and /0. Where the partitioning of
computation is unnecessary, fine-grained geoprocessing operations can often
be performed within a spatial database using either standard database queries
(SELECT,JOIN,INSERT,UPDATE) or tightly integrated spatial functions (area,
boundary, buffer, distance_to), i.e. SQL-MM. However, if the partitioning of
computation is necessary then two approaches are possible. Firstly, a parallel
relational DBMS could be used as these are capable of automating the process
of parallelisation using table partitioning (DeWitt and Gray, 1992) and parallel
spatial joins (Zhou et al., 1998). Processing at the database is preferred

95

Categorisation of Real-Time Distributed Geoprocessing Paradigms

because fine-grained operations are best performed in a tightly coupled

manner, i.e. close to the data, as this minimises costly data transfers.

However, in some cases it may be necessary to partition fine-grained
operations that are unsuitable for database processing. Typically complex
models and simulations will fall into this category that involves significant
interaction and manipulation of data which cannot be expressed in SQL, or that
have a very high time complexity. In these situations an MPP architecture
(Figure 2.3) and a message passing programming paradigm (Section 2.4.4) is
likely to be the most suitable combination. Fine-grained operations have a high
degree of data dependence so the MPP / message-passing approach allow
complex interactions between sub-processes to be rapidly exchanged. These

two styles of fine-grained geoprocessing are depicted in Figure 3.4.

Q query

result processing
e

HPC
query
E—

result
-

Figure 3.4: Database and MPI / database styles of f ine-grained

geoprocessing

Coarse-grained operations are easier to partition than their fine-grained
counterparts; less interdependency between sub processes ensures that less
inter-processor communication is required. Consequently coarse-grained
operations are easy to partition using an event parallelism or geometric
approach to decomposition. Coarse-grained geoprocessing operations are
typically point or neighbourhood operations that can be processed as a series of

independent sub-processes.

96

Categorisation of Real-Time Distributed Geoprocessing Paradigms

Thus, three distinct geoprocessing paradigms have been identified, data stream
geoprocessing, coarse-grained snapshot geoprocessing and fine-grained
snapshot geoprocessing. This simple taxonomy of geoprocessing paradigms is

depicted in Figure 3.5 and formally described below.

STREAM Data Stream Geoprocessing

SNAPSHOT Coarse-grained Snapshot Geoprocessing

Fine-grained Snapshot Geoprocessing

Figure 3.5: Geoprocessing Paradigms

3.4.1 Data Stream Geoprocessing (DSG)

Data Stream Geoprocessing (DSG) is carried out in monitoring scenarios for
which a steady stream of incoming geospatial observations must be processed.
DSG data consists of an observation stream that is unbounded in time;
observations are frequently and regularly occurring but typically small in
volume. The corresponding processing operation is thus perpetual. A UML2
sequence diagram (Figure 3.6) outlines the relationship between sensor,

observation and geoprocessor in a DSG environment.

Sensof Geoprocessor

I
J[fcnr each ocbeervation] |

I Observation :

loop

I
I
|
I
|
[
|
I
|
t
|
[

Figure 3.6: A UML2 Sequence Diagram of Data Stream Geoprocessing

97

Categorisation of Real-Time Distributed Geoprocessing Paradigms

3.4.2 Fine-grained Snapshot Geoprocessing (FGSG)

Fine-grained Snapshot Geoprocessing (FGSG) occurs in prediction systems
and simulations. FGSG involves the one-off execution of a geoprocessing
operation on a regularly updated data aggregate. Data dependence is high in
FGSG and operators are typically global. Whereas DSG operates on a stream
of observations over an unbounded time period, FGSG operates on an
observation set at a fixed snapshot in time. FGSG are likely to be triggered by

an alert caused by the change in a real-world condition.

3.4.3 Coarse-grained Snapshot Geoprocessing (CGSG)

Coarse-grained Snapshot Geoprocessing (CGSG), like FGSG involves the one-
off execution of a geoprocessing operation on a fixed snapshot of a regularly
updated data aggregate. However, CGSG operations have lower data
dependence than FGSG. As such they are more likely to involve local or focal
(point or neighbourhood) operators rather than global operators so the
processing operation can be naturally subdivided for parallel processing through
data decomposition. CGSG form the majority of parallel geoprocessing
examples in the literature, encompassing both event parallel and geometric
parallel approaches (Section 2.4.3).

3.5 Categorisation of Common Geoprocessing Operatio ns

In this Section the typology outlined above is considered with reference to a
number of geoprocessing operations that are commonly found in standard GIS
software packages as well as those operations that are commonly used in
monitoring and prediction scenarios. In a number of cases the examples are

taken from studies cited in the previous Chapter (Chapter 2).

Using this typology it is not possible to categorise the geoprocessing operations
commonly found in GIS toolboxes outside of the context in which they are used.
For example, let us consider a simple boolean intersection operation on two
real-time data layers; boolean intersection is a geoprocessing operation in

which two layers of map data are overlaid and only the features that intersect

98

Categorisation of Real-Time Distributed Geoprocessing Paradigms

are retained. Supposing we have a field of 100 temperature sensors and 100
rainfall sensors, each sensing 1m? of a 10m? grid and we are interested in
identifying areas that have had no rainfall in the past hour and that has a
temperature over 15C. The first stage is to conve rt each dataset into binary,
so for the rainfall datast the grid cells that have had no rainfall are assigned a
value of 1, and all other cells are assigned a value of 0. Similarly for the
temperature dataset, cells with a value of 15T or less are assigned a value of O
and cells with a value greater than 15C are assign ed a value of 1. The actual
intersection operation on these two layers simply involves multiplying the value
of corresponding cells in each layer. The resulting layer will show only the dry
cells for which the temperature is greater than 15°C as having a value of 1.
This style of operation is easily sub divisible as each multiplication operation
could be performed as a separate process in which case the operation would be
classed as CGSG.

We could however consider boolean intersection in a different context. Let us
consider a similar scenario in which the rainfall dataset is a static dataset
comprised of yearly average values rather than regularly updated values from
live sensors, but our temperature data is still sourced from a sensor network. In
this case we are interested in identifying cells in which the temperature is
greater than 15C and the yearly rainfall is less than 800cm. Given that our
temperature sensors collect readings every 1 minute we want to update a map
with the areas that meet our criteria, every minute. In this case the operation is
invoked continuously and regularly and has only one sensor input, thus the
same boolean intersection operation would be classified as DSG in this

instance.
There are numerous instances in which some overlap occurs between DSG and

CGSG operations as well as DSG and FGSG operations. However, FGSG and

CGSG operations never overlap. This relationship is depicted in Figure 3.7.

99

Categorisation of Real-Time Distributed Geoprocessing Paradigms

cGSG A

Figure 3.7: Venn Diagram showing the relationship b etween classes in the

geoprocessing typology

In Table 3.2 the granularity of common geoprocessing operations are displayed.
Coarse-grained operations may belong to either the DSG or the CGSG
category depending on context. Similarly fine-grained operations may belong to

either the FGSG or the DSG category.

Table 3.2: Common Geoprocessing Operations

Operation | Description Granu | Explanation

larity

Subset: Subsetting a dataset | Fine | The entire dataset must

Select /| either by clipping it to the be scanned through to

Clip extents of a bounding box select features of interest,
(raster data) or through a l.e. this is a global
select query (vector data) operation. Although

extract operations can be
performed in parallel using
one of several techniques,
the primary constraint is
that of data volume rather
than computational power.

Overlay: The process of taking two | Coars | Overlay can be achieved

Intersect /| layers of map data and | e on a feature by feature

Union overlaying them to form a basis with no knowledge
new layer. The Intersect of other features.
operator (Boolean ‘and’) Therefore this operation
retains only features that can be naturally
exist in both layers, the subdivided using domain
Union operator retains all decomposition.
features (Boolean ‘or’)

Buffer The process of finding the | Coars | Features can be buffered
region within a certain | e on a feature by feature
distance of a feature or basis
featureset

Line The process of simplifying | Coars | Features can be

Simplificati | features to condense a|e generalised on a feature

on dataset. by feature basis.

100

Categorisation of Real-Time Distributed Geoprocessing Paradigms

Create The process of creating a | Fine | The polygon surrounding
theissen polygon dataset from a each point cannot be
polygons | point dataset where each generated without

polygon contains only one knowledge of

point and all locations neighbouring points in the

within the polygon are dataset

closer to its point than its

neighbours
Line of | The process of analysing | Fine Determining where a point
Sight a digital elevation model to is visible from is a global
Analysis determine where features operator as it requires

are visible from analysis of the entire

dataset.

Network The process of analysing | Fine The entire network must
Analysis a spatial network. be considered for every

Common functions network computation.

include:

Calculate network

proximity

Assign point to nearest

point on a network

Calculate the shortest

path between two points
Geostatisti | The process of | Fine Requires knowledge of all
cal interpolating the value of a other values in the
Kriging variable at unsampled dataset.

locations weighted using

spatial dependence
Inverse The process of | Coars | Interpolation at each
Distance interpolating the value of a | e location requires
Weighted | variable at unsampled knowledge of
Interpolati | locations weighted by neighbouring values but
on inverse distance not the whole dataset.
High-pass | The process of applying a | Coars | Requires knowledge only
filter moving window kernel to | e of neighbouring values

an image that increases

the constrast and thus

emphasizes edges and

detail
Low-pass | The process of applying a | Coars | Requires knowledge only
filter moving window kernel to | e of neighbouring values

an image that reduces the

contrast, i.e. has a

smoothing effect
Geometric | The process of resampling | Coars | Depending on the
image a remotely sensed image | e approach taken this
correction | from image coordinates to operation requires

ground coordinates, either knowledge of the

using a mathematical
model or ground control
points

transformation parameters
and in some cases the
values of surrounding

101

Categorisation of Real-Time Distributed Geoprocessing Paradigms

| | | pixels. |

3.5.1 Data Stream Geoprocessing (DSG) Operations

Typical examples of DSG operations include basic transformations such as unit
conversion, data format conversion and coordinate system transformations on
observations from sensor data sources. DSG can also include sub-setting and
filtering operations such as unary and binary selection and this category
therefore fits a variety of real-time change detection applications. Included in
this category are geoprocessing operations that search for specific patterns in
an observation stream; this is termed Event Stream Processing (ESP)
(Luckham and Schulte 2008). ESP is a subtype of Complex Event Processing
(CEP) (Luckham, 2006) that enables higher level information to be extracted
from a stream of observations. Recent interest in ESP has prompted the OGC
to produce a discussion paper on a language for specifying event patterns,
Event Pattern Markup Language (EML) (Everding and Echterhoff, 2008) which
is currently used to specify level 3 filters for the proposed SES specification.
Finally DSG can also include operations that augment observations with
information from other static datasets. For example, the map-matching
operation (Section 4.3.4) relates position observations taken by a moving entity
to a road network dataset.

The face recognition CCTV system described by Peacock et al (2004) (Section
2.2.2) fits the DSG criteria. A stream of CCTV frames are analysed and
compared to a static database of facial images in an attempt to identify persons
of interest. Observations occur frequently, regularly and perpetually and the

only data dependency is on an external static database of facial images.

The ANGEL vehicle monitoring project (Planas et al., 2008) described in
Section 2.2.2 provides another DSG example. Vehicle position data is
continually processed by a risk monitoring system that analyses the vehicle’s

position and identifies safe stopping places.

102

Categorisation of Real-Time Distributed Geoprocessing Paradigms

3.5.2 Fine-grained Snapshot Geoprocessing (FGSG) Operations

FGSG encompasses a wide variety of geoprocessing operations such as spatial
interpolation, geostatistical and spatial statistical operations on a field of
sensors. Additionally network analysis route finding operations such as
Dijkstra’s shortest path (Dijkstra, 1959) and the A* algorithm (Hart et al., 1972)
can be considered to fall into this category if the network cost is updated in real-
time. Furthermore, most geo-hazard prediction and simulation algorithms also
lie in this category as they are global operators based on regularly updated real-
time information. FGSG operations are well suited to a tightly coupled
processing style as they typically require access to a large data aggregate. Due
to the high data dependence inherent in FGSG operations they are not easy to
parallelise. However, parallelisation is possible either using a parallel database
or a message passing approach.

The REIS described by Nakamuru et al (2009) (Section 2.2.1) in which
observations from 800 seismometers are stored in shared memory and updated
every second is an example of a FGSG system. The system calculates 1 and
30 second averages of ground acceleration and maximum amplitude. Although
this operation is carried out regularly and frequently it can be considered
snapshot processing as it combines observations from an array of sensors for a
given snapshot in time. As the entire data aggregate is required to calculate

average values this operation falls into the fine-grained category.

Evacuation planning simulators such as those described in Section 2.2.1 also
fall into the FGSG category; a snapshot of the current situation is used to plan
for several scenarios in which the entire data aggregate is required for

computation.

3.5.3 Coarse-grained Snapshot Geoprocessing (CGSG) Operations

Coarse-grained Snapshot Geoprocessing (CGSG) is another geoprocessing
paradigm that commonly forms part of geoprocessing workflows. Like FGSG,
CGSG involves the one-off execution of a geoprocessing operation on a fixed

snapshot of a regularly updated data aggregate. However, CGSG operations

103

Categorisation of Real-Time Distributed Geoprocessing Paradigms

have lower data dependence and typically involve point or neighbourhood
operators so the geoprocessing operation can be naturally subdivided for
parallel processing through data decomposition. Common examples of CGSG
operations include raster intersection, raster overlay, buffering, generalisation,

frequency filters and geometric image correction.

Examples of CGSG in the literature are chiefly comprised of static
geoprocessing operations although there are some cases in which such
operations form part of a real-time workflow. Hawick et al (2003) describes the
classification of remotely sensed imagery using a CGSG approach, Lee and
Hamdi (1995) describe a CGSG convolution filter over a remotely sensed image
and Wagner and Scott (1995) describe a number of parallel raster cost volume

operations that fits the CGSG category (Section 2.4.3).

3.6 Typology Evaluation & Critique

The typology described in Section 3.4 provides a basis on which to relate
geoprocessing operations to distributed computing architectures. An attempt
has been made in Section 3.5 to consider geoprocessing operations in the
monitoring and prediction domain in the context of this typology which is based
on two broad principles. Firstly, operations that are invoked frequently and
regularly should be treated differently to operations that are invoked on an
occasional basis in a grid computing architecture to avoid cumulative job
submission overheads. Secondly, coarse-grained and fine-grained operations
should be treated differently because coarse-grained operations can easily be
parallelised in a grid computing architecture using domain decomposition or
through an event-parallel approach, whereas fine-grained operations are more
difficult to parallelise because they require a larger degree of inter-processor
communication. Furthermore it is unnecessary in many cases to parallelise

such operations as the computational load is not always constrictive.

Although this typology appears to fit the majority of cases there are a number of
geoprocessing operations that can be considered exceptions, and are

consequently difficult to categorise. Firstly are operations that seemingly fit the

104

Categorisation of Real-Time Distributed Geoprocessing Paradigms

DSG category but that process observations from more than one sensor. One
example of this is the Firegrid project described by Han et al (2010);
observations must be processed continually and regularly but data is arriving
from several sensors. In this case data from a large sensor array is fed into a
model that calculates fire parameters and likely structural building damage in
real-time; the data is fed in at 0.1 second intervals. As numerous sensors are
involved this does not fall into the DSG category. However, nor does it fall
directly into the snapshot category as data from a time-interval is processed. It
could be argued that in these cases the processing operations described are of
a higher taxonomical level because the processing resulting from each time
step forms an FGSG operation in itself, thus the overall process can be

considered an iterative sequence of FGSG operations.

Another situation that could be regarded as an anomaly in the context of this
classification occurs when a geoprocessing workflow is comprised of several
operations, each of which falls into different categories. A common scenario
may involve a DSG operation that performs some pre-processing on a raw data
stream which is subsequently stored as a data aggregate and subject to further
CGSG or FGSG operations. For example, a set of GPS observations from a
moving vehicle may undergo a coordinate conversion as a DSG operation
before being stored in a database. Occasional analysis operations on this
stored data may follow, such as the calculation of the vehicle’s mean position
which would constitute an FGSG operation. Multi-type workflows such as this
are common, particularly in monitoring and prediction systems. As such it is
important to recognise that this typology can only be used to categorise
contextualised geoprocessing operations, not entire monitoring and prediction
systems. This means that a certain operation may fall into one category in one
system and another in a different system, depending on its frequency and

regularity of invocation.

A final noteworthy point is that there appears to be a substantive difference
between fine-grained data intensive operations such as spatial database
transactions and fine-grained compute intensive transactions such as network

analysis yet they appear in the same category in this typology. The key

105

Categorisation of Real-Time Distributed Geoprocessing Paradigms

difference between these two types of operation is that in the former case there
is rarely a need to parallelise the processing operation due to a low time
complexity whereas in the latter case there is often a need to parallelise.
Unless a spatial database can be utilised the parallelisation of either type of
FGSG operation is non-trivial and is likely to require a HPC architecture and a
message passing programming model. Although the parallelisation of complex
FGSG operations is an interesting topic it has already been the subject of
considerable research in the parallel processing and high performance
computing domains and falls outside of the scope of this thesis. As such, the
further sub-division of FGSG operations may be a topic that is worthy of future
research but at this stage all FGSG operations are considered as one broad

category.

3.7 Conclusion

A prototypical typology of geoprocessing operations has been developed in this
Chapter that has attempted to relate geoprocessing to grid computing
architectures and geoprocessing methodologies. The aim of this thesis as set
out in Section 2.6 is to develop an appropriate conceptual and practical
framework in which open standards in grid computing, sensor web and
geospatial web services can be combined. In this regard the typology set out in
this Chapter provides a skeleton for the conceptual framework. An attempt will
be made in subsequent Chapters to build up the practical framework by
providing an implementation of each geoprocessing category described in this

Chapter.

Three classes of geoprocessing operation have been suggested and specific
examples of each operation type have been given. The CGSG and DSG
operations are suited to run on grid type architectures; i.e. geographically
disparate processors that are connected using standard internet connections.
However, FGSG are better suited to execution close to the data source, either

in a spatial database or on tightly coupled HPC clusters.

106

Categorisation of Real-Time Distributed Geoprocessing Paradigms

The snapshot geoprocessing operations, CGSG and FGSG lie within the remit
of the OGC WPS interface. However, this interface may need to be extended
or modified to cope with stream-based geoprocessing operations because in its
current state it does not support the execution of on-going processing
operations such as DSG. Geoprocessing operations are currently invoked via
the WPS interface using the Execute operation but there is no mechanism to
start or stop an ongoing set of operations. Conversely, the OGC SAS and SES
interfaces provide a mechanism to filter streams of geospatial observations, and
in the case of the SES, complex ESP filters can be performed. However, it is

not possible to transform observations through this interface.

CGSG operations appear to be well suited to basic low-level atomic
geoprocessing operations such as might be found in a standard geoprocessing
toolbox. Similarly, a number of FGSG operations such as network analysis and
spatial joins can be considered generic, in that they are widely found in
geoprocessing toolboxes. However the majority of spatial models and
simulations also fall into the FGSG category and these tend to be complex,

high-level operations that do not form a part of standard toolboxes.

Stream-based geoprocessing operations are fundamentally different, they input
and output streams of data rather than discrete data elements or aggregates.
This raises the question as to whether a new geoprocessing toolbox is required
for real-time GIS that provides stream-based processing on geospatial data.

In order to further develop the classification described here and to help answer
some of the remaining research questions in this field, the implementation of an
operation from each category is described in subsequent Chapters. The
systems presented in the following Chapters serve to address specific
questions about the suitability of the proposed design strategies, tools, and
techniques for implementing scalable and interoperable geospatial monitoring

and prediction systems.

107

Data Stream Geoprocessing

Chapter 4 Data Stream Geoprocessing

4.1 Introduction

In this Chapter a practical example of a scalable real-time geoprocessing
system that conforms to current relevant standards in geospatial web services
and grid computing is presented. Specifically, the geoprocessing system is to
belong to the DSG category outlined in Chapter 3 and is to demonstrate how
real-time data from a collection of independent sensors can be processed in

near real-time by running several concurrent processes on the grid.

Two distinguishing features of this system set it aside from previous work in this
field; first is the idea of using grid computing to run continuous open-ended jobs
to process streams of sensor data in near real-time, as opposed to invoking
finite compute jobs to process a portion of a sensor stream (Chen et al., 2010,
Williams et al., 2009). Secondly, is the concept of pre-processing sensor data
as soon as it is collected, and publishing the added value data alongside the
raw data, thus enabling users or higher-level applications to usefully consume

the pre-processed data in a timely fashion.

4.2 System Design

4.2.1 User Scenario

The geoprocessing system in question is designed to facilitate a scenario in
which a fleet of vehicles equipped with onboard GPS receivers require the road
they are positioned on to be identified. This geoprocessing operation is
commonly known as map-matching and is a necessary pre-cursor for vehicle
tracking and vehicle routing systems (Ochieng et al., 2004). From a fleet
management perspective vehicle tracking systems enable better vehicle
utilisation through analysis of trends in historical data (Couillard, 1993).
Furthermore, they are capable of improving response times for emergency jobs
(Ghiani et al., 2003) and for providing a means of accountability to service
recipients by proving that a vehicle was at a particular place at a specific time
(Crainic et al., 2009). In addition to their application as a fleet management

108

Data Stream Geoprocessing

tool, the Floating Car Data (FCD) provided by vehicle tracking systems can also
be usefully applied to traffic monitoring scenarios (Akinci et al., 2003). For
example Torp and Lahrmann (2005) developed a system that utilises FCD for
traffic queue detection that was found to be substantially cheaper than using in-
situ road sensors. Similarly, Wang et al (2008b) developed a navigation system

that used both historic and real-time FCD data to predict road travel speed.

Local government agencies in the UK have been quick to adopt vehicle tracking
systems; this is perhaps unsurprising given their combined interest in both
traffic management and in the operation of a large fleet of maintenance
vehicles. The system described in this Chapter is designed for use by
Newcastle City Council (NCC) which currently operates a fleet of 890 vehicles
(Anderson et al., 2008). This system is not an entire vehicle monitoring,
tracking and navigation solution as offered by a number of commercial
companies; rather it provides only the map-matching aspect which could be
further augmented with more complicated routing and fleet management

functions as required.

A key functional requirement of this system is to correctly identify the road that
each GPS measurement corresponds to, in near real-time. Given that the map-
matched data is to be used for a wide range of fleet management and traffic
monitoring tasks it is important that an acceptable level of map-matching
accuracy is maintained. A trade-off exists between absolute map-matching
accuracy and speed of computation and although a number of very accurate
map-matching algorithms have been developed, the best of these are not
capable of working in real-time (Marchel et al., 2005). This system must be
able to provide matched positions within an acceptable time period so its use in
near real-time navigation systems is not precluded. Consequently, design goals
of this system include the maximisation of map-matching accuracy and the
minimisation of latency. The system must also be capable of scaling to the size
of the entire fleet of NCC, and to provide map-matching for the entire Tyne and
Wear output area.

109

Data Stream Geoprocessing

4.2.2 Design Considerations

The proposed system requires the tracked vehicles to be fitted with GPS
receivers that are capable of wirelessly streaming their observations back to a
web server via a communication protocol such as GSM. To reduce costs a
sensor emulator that publishes historical GPS measurements at regular

intervals is used, mimicking the function of a real on-board GPS receiver.

Grid computing elements and associated services are accessed through the UK
National Grid Service (NGS) (http://www.ngs.ac.uk). The NGS is a
computational and data grid comprised of a number of computing clusters
located at academic institutions throughout the country. The primary goal of the
NGS is to federate access to computational and data resources at four core
sites and a number of other affiliate and partner sites throughout the UK. Itis a

service run for researchers that aims to support a national grid infrastructure.

A flexible agile approach to software development
(http://'www.agilemaninfesto.org) is to be taken as this enables design changes
to be made as new ideas come to light. The system as a whole is to adopt a
SOA and will therefore not be tied to a specific operating system, although

specific components may be subject to platform constraints.

4.2.3 Software & Tool Selection

Where possible, the components used in this system will use or extend existing
open source tools and software. This approach minimises costs, avoids
duplication of effort and provides scope to make a useful contribution to the

open source community.

Spatial databases have become the preferred method of storing spatial data for
a number of applications, largely due to their use of indexes to efficiently
retrieve both spatial and attribute data (Worboys and Duckham, 2004). In this
system, spatial databases are used to store data behind servers, both for the
WES and SOS. For this purpose it has been opted to use PostGIS (version 1.5)

(http://postgis.refractions.net), a spatial extension to PostgreSQL (version 8.3)

110

Data Stream Geoprocessing

(http://www.postgresgl.org) which is a free and open source object-relational
database management system. PostGIS complies with the OGC’s Simple

Features Specification for SQL (Herring, 2006) and most of the Multimedia SQL
standard (Stolze, 2003). Furthermore it is supported by a wide variety of open
source software tools and applications. For example 52 North use PostGIS
databases in their web applications and PostGIS can be configured as a data

source in Geoserver.

52 North (http://www.52north.org) is an international research and development
company that develop and promote open source geospatial software (Kraak et
al., 2005). Notably 52 North have been tracking the OGC standards process
and have developed early implementations of young and proposed
specifications. Currently the initiative is focusing its efforts on geoprocessing,
sensor web and security. The system outlined in this Chapter relies on a 52
North SOS (version 3.0.1) and extends a 52 North WPS (version 2.0). Apache
Tomcat (http://tomcat.apache.org) version 6.0 is used as an application
container for the WPS and the SOS. Tomcat is a reliable servlet container that

is widely used for deploying server-side Java applications.

Geoserver (http://lwww.geoserver.org) is the official reference implementation
of OGC WFS, WMS and WCS. It is written in Java and is capable of serving
spatial data from a variety of sources, including PostGIS databases. Geoserver
(version 2.0.2) is to be used in the proposed system to serve road network data
through a WFS interface.

There are a number of open source Java libraries available for storing and
manipulating spatial data that are designed to facilitate the development of
geospatial software, many of which form a part of the Open Source Geospatial
Foundation (http://www.osgeo.org). Geotools (http://www.geotools.org) is one
of the most comprehensive libraries and it is arranged in modules of
functionality. A core part of Geotools is the Java Topology Suite (version 1.7)
(http://www.vividsolutions.com/jts/jtshome.htm) that provides a useful library for
representing two dimensional geometries in Java. GDAL/OGR

(http://www.gdal.org) provides a comprehensive library for reading and writing

111

Data Stream Geoprocessing

both raster and vector data formats, and also for providing conversions between
formats. PROJ4 (http://trac.0sgeo.org/proj/) (version 1.6.2) provides a similar
function, but for re-projecting and transforming data between coordinate
systems. Whilst PROJ4 is built into PostGIS, OGR is packaged inside a
software kit called FWTools (version 2.4.7) (http://fwtools.maptools.org) that

enables data to be loaded into PostGIS from a variety of formats.

The OMII Campus Grid Toolkit version 2.2 (http://www.omii.ac.uk/wiki/CGT)
forms a part of the OMII-UK software stack and provides a unified interface from
which to access computational and data resources on the grid. In this work the
Campus Grid Toolkit is used as a GridSAM client through which computational
jobs can be submitted to the NGS through one of their published GridSAM
endpoints. GridSAM is a JSDL and OGSA-BES compliant job submission
interface that enables jobs to be submitted to a variety of back end distributed
resource managers such as Globus, Condor and PBS.

Other tools used in the development of the system described in this Chapter
include Apache Maven (http://maven.apache.org) (version 3.0.3) for building
projects and managing dependencies, InterpOSe (http://www.dottedeyes.com/
spatial_data_loading/interpose/) for transforming Ordnance Survey data and the
Eclipse (http://www.eclipse.org) (version Ganymede) and Netbeans
(http://www.netbeans.org) (versions 6.1 - 6.9) software development
environments. Apache JMeter (http://jakarta.apache.org/jmeter/) (version 2.4)

was used in the testing phase to carry out load and performance tests.

4.2.4 Architectural Overview

The proposed system is to be comprised of the components outlined in Figure
4.1; the request / response pattern which describes how the system operates is
described here and outlined as a UML sequence diagram in Figure 4.2.
Example requests and responses are detailed in Appendix D.

Initially, each instrumented vehicle must register with a SOS instance using a

RegisterSensor request (Label 1 in Figure 4.1). This creates a unique identifier

112

Data Stream Geoprocessing

for each vehicle and this identifier is appended as a new procedure element in
the SOS database. Once registered to the SOS each vehicle begins streaming
their position measurements to the SOS using an UpdateSensor request (Label
2 in Figure 4.1). This request updates the SensorML document for each sensor

with a new position and time stamp.

At this stage each vehicle is streaming their position to the SOS; at any point a
client is now able to begin the process of map-matching these positions. Map-
matching is invoked on a per vehicle basis by a client via a WPS Execute
request (Label 3 in Figure 4.1). The Execute request must contain five
parameters, firstly the unique identifier of the vehicle on which to commence
map-matching, secondly the endpoint address of the SOS instance, thirdly the
endpoint address of a WFS that contains road network data and finally the WFS
namespace and typename parameters. These final parameters are used to
identify the road network dataset from the collection of datasets hosted at the
WEFS address.

The WPS translates the Execute request into JSDL and submits the map-
matching task as a new Grid processing job through a GridSAM client (Label 4
in Figure 4.1). Upon submission, GridSAM creates a unique identifier for the
job which is returned by the WPS in the Execute response. The GridSAM
service parses the JSDL document, authenticates the request, retrieves proxy
credentials (Label 5 in Figure 4.1), translates the request into an infrastructure
specific job submission language and submits the job (Label 6 in Figure 4.1).
Authentication and credential retrieval is carried out by contacting the MyProxy
service using MyProxy parameters embedded in the JSDL request. The NGS
production grid to which the GridSAM instance submits jobs is built on the
Globus Toolkit version 2, so in this case the request is translated into Globus
Resource Specification Language which is the native job submission language
of the Globus toolkit. Native Globus services subsequently handle all aspects

of execution management, including job scheduling and submission.

Once the scheduled job reaches the front of the queue it is assigned to a

suitable processor and the executables are staged onto this machine from the

113

Data Stream Geoprocessing

user's home directory on the GridSAM head node. The job is a Java program
that performs the map matching operation and it inherits the arguments
specified in the JSDL document, which in turn were inherited from the WPS
Execute request (Label 7 in Figure 4.1). Initially the program polls the SOS to
obtain positions sampled by the vehicle in the previous 60 seconds. This is
done by making a DescribeSensor time period request that retrieves a

SensorML document detailing the vehicle’s position history.

For each sampled position in the SensorML document the bearing between
observations is derived and a WFS bounding box request geographically
centred on the observation is constructed and submitted to the WFS. Matching
is performed by comparing each sampled position to the feature collection
returned by the WFS to deduce the most probable road to which the
observation belongs. The map matching algorithm is explained in more detail in
Section 4.3.5. Finally, the unique identifier of the matched road is inserted into
the SOS as a new observation, as is the bearing of the vehicle at each sampled

position.

The whole process is repeated every 60 seconds and continues to run until the
client passes a StopExecuting request to the WPS-proxy containing the unique
identifier of the job they wish to stop. The WPS-proxy forwards this request to
GridSAM and cancels the job.

114

Data Stream Geoprocessing

Road
Metwork
Data

=T g ",1 OGSA
s L--~ / service
(@]
gl HEAD-NODE D OGC service
A . Request/
MprQ‘W response
Series of
5 -—» requests/
T responses
WPS-proxy | ———{ GRIDSAM | GRAM
4.
Figure 4.1: Interaction Sequence between map-matchi ng system
components
1. Vehicle sends RegisterSensor request to SOS.
2. Vehicle starts streaming UpdateSensor requests to SOS with latest
position.
3. Client begins map-matching by sending an Execute request to WPS
4. WPS translates Execute request into JSDL and forwards to GridSAM.
5. GridSAM retrieves user credentials from MyProxy service.
6. Executables are staged from head node to a node on the cluster and the
map-matching job is started.
7. The map-matcher retrieves recent position observations from the SOS,

matches them against the road network stored in the WFS and inserts
the matched position back into the SOS. This process continues until a

StopExecuting request is sent by the client to the WPS.

115

Data Stream Geoprocessing

vehicle 8505

T=0

T=1

WPS

dient

GRIDSAM Map Matcher

WF5

RegisterSerson) !

- RegisterSersofesporse]) _“ _

UpdateSensor()

=3

T=1

T=1

- UpdateSensorfesponsel)

auteResponse()
H GridsamSubmit{)

Exeaite()

] s

i DescribeSdnsorTimePeriod])
_ SensorML

getFeat
GML

Figure 4.2: Message Sequence Diagram

T=7 UpdateSensor() i =
- :EB?E&.?EE“ _ _
i - InsamCategoryObservation])
UndateSensor) InsertObsevatignResponse) -
o Update SensorResponse]) H
|m|.l InsertMeasurementbbservation()
i UpdateSensor() InsertObservationR dsponse() -
” UpdateSensorfResponse) StopBxecuting()
T — __)
i GridsamTerminate()
3 UpdateSensor() H mﬂumsmeaﬂmm%umw _H_|'!m35
t :EE?E&.?EE“ _ _

1

Figure 4.2: Map-matching message sequence diagram

116

Data Stream Geoprocessing

4.2.5 Review of Map-matching Algorithms

Map-matching is the process of reconciling the users location with the
underlying map data (White et al., 2000). Here we consider only global map-
matching strategies that are concerned with identifying the most likely road
segment within the network, as opposed to local map-matching that considers

the position of a vehicle within a road segment (Hummel, 2006).

According to Jagadeesh et al (2004) map-matching algorithms can be divided
into three main categories. The simplest category includes algorithms that
consider only the geometric relationship between the road network and the GPS
point, the next category also considers position history and topological
information and the final class also uses probabilistic information to define a
confidence region in which the vehicle is positioned.

The first category of map-matching algorithm can be further subdivided into four
categories (Noh and Kim, 1998). Distance of point to point matching is the
simplest of these techniques but it suffers from poor accuracy (Yang et al.,
2005). Using distance of point to point, matching is carried out by considering
all the points of which the road network is comprised and matching the GPS
measurement to the closest point. Distance of point to curve is a slightly more
complex variation; matches are made by selecting the road with the shortest
distance between any point on the road’s sub-segment and the GPS
measurement, i.e. the minimum distance from the road line to the GPS
measurement. Although an improvement on the previously described
technique, Yang et al (2005) reveal how distance of point to curve often results
in a vehicle jumping from one road to another road running in parallel. The
distance of curve to curve technique uses two GPS points and matches the
road segment that has the shortest distance from the baseline between the two
GPS measurements. Surprisingly, in a study carried out by (White et al., 2000)
it was found that curve to curve matching did not consistently outperform point
to curve matching. The distance of angle to curve method uses two GPS
measurements to calculate the bearing of the vehicle, and the match is made by
finding the road sub-segment whose angle deviates from the bearing of the
vehicle the least.

117

Data Stream Geoprocessing

The second category of algorithm that incorporates historical and topological
information introduces another layer of complexity, examples are provided by
Greenfeld (2002) and White et al (2000). However, such algorithms have been
proven to be fragile because one wrong match can lead to a whole series of

wrong matches (Yang et al., 2005).

The third category of algorithm utilises probabilistic techniques and performs
better than the first category and can recover more quickly from a wrong match
(Jagadeesh et al., 2004). However they tend to suffer from increased
computation time. Hummel (2006) describes an algorithm in this category that
performs extremely well. It was found that only 0.4% of points were
misclassified over a 15000 point sample. A Bayesian statistical method is used
to perform the initial map-match, which relies only on the position and
orientation of the vehicle. Accuracy is improved by using the road network
topology in conjunction with the vehicle’s position history to calculate probability
distributions for each possible transition from one road to the next and the
Viterbi algorithm (Forney, 1973) is used to find the best possible path based on
these transition probabilities.

It has been shown that a wide variety of map-matching algorithms exist that use
an array of available information and techniques. A trade-off clearly exists
between speed of matching and overall accuracy. In this system the Bayesian
statistical matching technique described by Hummel (2006) is used that relies
only on vehicle position and orientation. For the sake of simplicity, position
history and road network topology were not included in this implementation and
it is therefore expected that the resulting matching accuracy will be less than
optimal. Nevertheless, absolute accuracy of the map-matching algorithm is not
the goal of this work; rather it is to demonstrate how real-time data from a
collection of independent sensors can be processed in near real-time by

running several concurrent processes on the grid.

118

Data Stream Geoprocessing

4.3 Implementation

The implementation and deployment details of the map-matching system are
outlined in this section. Figure 4.3 depicts the arrangement of components

which are described in the following sub-sections.

Client Map Matcher
Apache Tomcat
GeoServer Apache Tomcat WPS
Middleware
WES SOS GridSAM
GRAM MyProxy
Road POSTGIS Live GPS National Grid Service
Resource Network Track Compute Cluster
Layer
Sensor Emulator

Figure 4.3: Map Matching System Component Diagram

4.3.1 Sensor Observation Service (SOS)

A 52 North SOS was deployed in a Tomcat container using PostGIS as the
backend database system. The 52 North SOS complies with the version 1.0.0
schema (Na et al., 2007), implementing the core and transactional profiles in
addition to some of the operations in the enhanced profile. Detailed build and

deployment steps are set out in Appendix A.

4.3.2 Sensor Emulator

The type of platform envisioned to be installed on each vehicle is a smart-phone
or personal digital assistant, as these devices are small, portable, internet
accessible and often contain built in GPS receivers. A Java desktop application
was developed to emulate such a device, built using a Java Swing graphical
user interface, PostGIS JDBC drivers and the Java Topology Suite. The
function of this application is to read GPS position and time observations from a
PostGIS database and to translate these into XML based UpdateSensor

requests that conform to the SOS mobile profile (Stasch et al., 2008).

119

Data Stream Geoprocessing

The first stage in developing this application involved loading GPS observations
into a PostGIS database. GPS observations were sourced from a variety of
vehicles travelling around Newcastle upon Tyne. This included data from the
NCC fleet such as road sweeper vehicles, refuse disposal vehicles and work
vans. In addition some of the data collected as part of the MESSAGE project
(Blythe et al., 2006) was used; this is data sourced from ordinary cars travelling
around Gateshead equipped with sensors to measure air quality. The data was
delivered in various comma separated text file formats; a comprehensive
description of the steps followed to load this data into PostGIS is included in
Appendix B.

The purpose of the Sensor Emulator is to enable users to easily emulate a
series of in-vehicle GPS devices in order to test the other components in this
system. It is anticipated that the in-vehicle mobile devices will update the SOS
with their position via web service requests. Therefore the Sensor Emulator
was designed to consecutively read GPS observations from the PostGIS
database, transform them into SOS UpdateSensor requests, and send the
requests to the SOS at regular intervals. The application was designed around
the concept of a virtual sensor which is essentially a one to one mapping
between a table of static GPS observations stored in a database and an SOS
sensor. Virtual sensors can be created by specifying the connection
parameters of the database from which to read observations, and the address
of the SOS at which to publish position measurements. It is assumed that each
observation table will conform to the schema in Listing 4.1. Figure 4.4 depicts a
screenshot of the graphical interface used to create a virtual sensor. Once a
virtual sensor has been created it must be saved; a process that serializes the

mapping to a custom virtual sensor file format.

Figure 4.4 shows a screenshot of the application. To initiate the streaming of
observations from a database to an SOS instance via a set of web service
requests, the user must first select a file system directory containing one or
more virtual sensors. When streaming is initiated by pressing the start button,

observations are read sequentially from the database table of each virtual

120

Data Stream Geoprocessing

sensor in the directory, translated into web service requests and sent to their
respective SOS instance. The time delay between each web service request
can be specified by entering a number of milliseconds in the delay textbox, prior
to starting the application. Additionally it is possible to use the system’s current
time, rather than the timestamp specified in the database observation table by
checking the use current time checkbox. This option enables several vehicle
tracks that were sampled at different times to be simulated together. It is
possible to suspend, resume, stop and reset streaming. There is also an option
to clear all observations from the SOS by connecting to its underlying database

and resetting the data model by executing a SQL script.

Listing 4.1: Schema of the Observation Table

Observations(i d integer, elevation real, time_stamp timestamp(4)
without timezone, the_geom geometry)

B Create New ¥irtual Sensor B - O] =|

Database Conmeckion Skring: jdbe:postgresal: flocalhost: 5432

Database Observation Table:

Database sername:

Database Password:

Sensor 1D

[™ Register Sensar

S05 URL http: /1128, 240.60.1:90900505mobileS) sos

Save Virtual Sensor

Figure 4.4: Screenshot of the graphical interfacet o create a virtual sensor

121

Data Stream Geoprocessing

Bceairmesosrerder =TE

File Help

SOSDE Virtualsensor I

TS Stop I

Yirtusl Sensars: Suspend Resume |

nel-sensor-4.vs
Reset I

testl.vs

¥ Use Current Time

Delay {msy {3000

STARTED
Streaming observations from 2 wirtual sensors

Create Mew Yirtual Sensor |

Edit Virtual Sersor |

‘irbualSensor Direckor:

|tor\My Documentsivirtualsensars

Change Directary

Figure 4.5: Screenshot of the graphical user interf ace of the Sensor

Emulator

4.3.3 Web Feature Service (WFS)

Ordnance Survey MasterMap® Integrated Transport Network™ (ITN) is the
definitive road structure dataset for the UK; it details the current topology of the
UK’s road network. Furthermore, each road link is assigned a unique
Topographic Identifier (TOID) which enables the dataset to be stored in a
spatial database using the TOID as a primary key. Consequently, ITN was
selected to represent the underlying road network in this system. Although ITN
data is a commercial product it is available free of charge from Digimap

(http://www.edina.ac.uk/digimap) for academic purposes.

Geoserver was used in this system to serve road network data in WFS format.
Geoserver is capable of serving spatial data in a number of OWS formats. The
served data can be stored in a variety of file or spatial database formats;
PostGIS was selected to store the ITN data. Initially the tool OGR20GR, part of
the GDAL/OGR translator library, was used to import the road network data into
PostGIS from the GML format (Portele, 2007) in which it is supplied by Digimap.
However, it became apparent that this tool did not preserve the TOID of each
feature, a shortcoming resulting from the way in which data is delivered by
Digimap. Although ITN is a spatially continuous dataset, it is served by Digimap

as a spatial tessellation of tiles. When a feature is requested that straddles a
122

Data Stream Geoprocessing

tile boundary, the feature is served twice, thus destroying the uniqueness of
each feature and preventing the features from being inserted into a database
because Codd’s First Normal Form (Codd, 1972) is not adhered to.

Another data loading tool, InterpOSe was selected to import data into PostGIS.
InterpOSe is supplied by a commercial organisation Dotted Eyes and
automatically discards duplicate features. It contains a wizard based interface
to import data from a GML file into a variety of formats, although PostGIS is not
supported. This tool was therefore used to convert the road network GML file
into ESRI shapefile format. Subsequently OGR20GR was used to import the
shapefile data into a PostGIS database.

Unfortunately the version of PostGIS that was used, version 1.3.5 relies on an
underlying Proj4 library (version < 1.6.2) that contains an error in the British
National Grid record of the spatial ref sys table that results in incorrect
coordinate transformations. This was corrected by executing the SQL
commands stated in Listing 4.2 from the Postgres shell, before importing data
into the database. The entire procedure of loading the ITN data in listed in
Appendix C.

Listing 4.2: Correction to spatial_ref_sys table in PostGIS

UPDATE spatial_ref sys SET projdtext= ‘+proj=tmerc +lat_0=49
+lon_0=-2 +k=0.999601 +x_0=400000 +y_0=-100000 +el Ips=airy
+units=m +no_defs +datum=0SGB36’ WHERE srid=27700;

UPDATE spatial_ref sys SET projdtext = ‘'+proj=longl at
+ellps=airy +datum=0SGB36 +no_defs' WHERE srid=4277 ;

4.3.4 Map Matcher

A Java application was developed to perform the actual map matching
processing operation. Unlike many of the other components in this system, the
map matching program was created as a self contained program rather than a
service because it is designed to be run as a grid processing job. The chosen
algorithm uses Bayesian classification to assign a GPS observation to a road

segment; it is based on the work of Hummel (2006) and is described as follows:

123

Data Stream Geoprocessing

A minimum of two raw observations are required to estimate position on a road
network; 1 (X1,Y1) and 2 (X2,Y2) in order to derive vehicle orientation. We can
assume that position has been observed by a commercial off the shelf GPS
receiver operating in the standalone coarse acquisition mode. As such we can
approximate the standard deviation of horizontal position to be 12.5 metres and
the standard deviation of orientation, as calculated from the whole circle bearing
between X1, Y1 and X2, Y2 to be 15°. Initially, a section of map data is
retrieved centred on the most recent observation X2, Y2 by performing a
bounding box query on a road dataset. We can now derive the road segment
from which the most recent observation was most likely to have been taken
using the algorithm detailed in Listing 4.3. A graphical overview of the
components in this algorithm is given in Figure 4.6.

A simple Java command line program was developed to implement this
algorithm. Furthermore, the program was designed to interact directly with
OGC services, thus it is capable of extracting observation geometry and time
stamp from a SOS and road network geometry from a WFS.

The map matcher program can be initiated with either five or seven parameters.
If the program is initiated with all seven parameters it performs map matching
only for the time period between the start time and the end time, it then exits
normally. However, if the program is executed with only the five mandatory
parameters it runs in real-time mode. In this mode the program performs map
matching for each of the observations taken in the past 60 seconds, i.e.
between the system’s current time and 60 seconds before the system’s current
time. The program then waits until another minute has elapsed and repeats the
operation. It continues to run every 60 seconds until it is forced to exit by user

intervention.

On initialisation the program contacts the SOS and retrieves the observations
for the specified vehicle over the specified time period. This is achieved using
the 52North mobile schema (Stasch et al., 2008) which offers a DescribeSensor

operation which returns a SensorML document detailing the position history of

124

Data Stream Geoprocessing

the sensor. The position observations are then parsed into Java Topology Suite

format and the time into java.util. GregorianCalendar format.

Listing 4.3: Map Matching Algorithm using position and orientation

muB: Standard deviation of horizontal position (m etres)

muDeltaPhi: Standard deviation of orientation (degr ees)

dist: Euclidean distance between vehicle position and

road segment (metres)

deltaPhi: Angular difference between vehicle orien tation and
orientation of the road element (degrees)

iTemp: the cost associated with X2,Y2 belonging to the
current road subsegment

ii: the minimum cost of all road subsegments exam ined

o] far

muB=12.5

muDeltaPhi = 15
dist, deltaPhi=0

i=+ oo

for each road subsegment

(
dist = shortest distance between X2,Y2 and road sub segment
deltaPhi = difference between road subsegment orien tation and
vehicle orientation
iTemp = (dist 2/ muB) + (deltaPhi 2 | muDeltaPhi)
if(iTemp <ii) {
i=iTemp
result = this road subsegment
}
}
A
muDeItaEhi muB
@ vehicle
orientation

-
subgegmgnt B - o‘e’
orientation -~ &
-~ 6@9
B - ob
P)
iy - ‘O‘B
P

road subsegment A

Figure 4.6: Diagrammatic representation of the map- matching algorithm

showing the vehicle’s current (X2,Y2) and previous (X1,Y1) positions, the

125

Data Stream Geoprocessing

standard deviation of horizontal position (muB), an d the standard
deviation of orientation (muDeltaPhi) in relation t o the position and

orientation of road sub-segments

For each observation, the position is converted from WGS84 to OSGB36 and a
WEFS bounding box query is constructed, centred on the observation. The
guery is executed on the WFS using the supplied connection parameters, thus
retrieving a relevant subset of the road network dataset. The program invokes
the map matching algorithm for each observation using the road network data
extracted from the WFS and the GPS observations extracted from the SOS.
Next, SOS requests are constructed to insert the results of the map matching
algorithm, i.e. the road identifier, into the SOS. This is achieved using the
transactional InsertObservation operation; the road identifier is inserted as a
Category Observation (Cox, 2007). As a by product of this operation the
orientation of the vehicle is calculated and this is also inserted as a
Measurement Observation (Cox, 2007), again using the InsertObservation

operation.

4.3.5 Web Processing Service (WPS) Proxy

The WPS provides an OGC compliant interface through which to submit
geoprocessing tasks. As the goal of this system is to forward processing
operations to the grid, the WPS itself does not carry out the processing, it
merely translates the execution request into JSDL (Anjomshoaa et al., 2005)

and submits it to a grid endpoint to be processed remotely and asynchronously.

52 North provide an open source WPS implementation that complies with the
version 1.0.0 specifications. Unfortunately the current specifications have
limited support for asynchronous processing; there are no operations defined to
pause, cancel or restart asynchronous processing tasks. Recently a number of
change requests have been submitted to the OGC to rectify this problem,
namely 09 093 (Woolf and Shaon, 2009b) and 09 109 (Woolf and Shaon,
2009c). However, these are likely to undergo a lengthy discussion and

modification process before they are included in a revised version of the

126

Data Stream Geoprocessing

specification. It was therefore decided to modify the 52 North implementation to
meet our requirements, albeit in a manner that doesn’'t completely conform to

the OGC specifications.

The goals of the modified service are the ability to submit jobs to a grid
infrastructure using the Execute request, and to add a new operation
StopExecuting that enables continuous running jobs, such as the map matcher,
to be terminated. It should be noted that the 52 North implementation already
contains a grid module that enables developers to implement their own task-
farm style processing algorithm and to submit it to a Unicore
(http://'www.unicore.eu) infrastructure. It was opted not to extend this module
but to start afresh for the following reasons. Firstly, the embedded grid module,
although it carries out processing remotely, returns the results in a synchronous
fashion; i.e. embedded in the ExecuteResponse document. In our scenario the
results are automatically inserted into an SOS and therefore we simply require a
reference to our asynchronous job to be returned. Secondly, the embedded
module is designed to execute a task-farm style scenario whereas the
extension we are trying to implement simply executes one long-running
process. Finally, the embedded module is of a flexible design and provides
interfaces to enable any grid infrastructure to be plugged in. For simplicity and
ease of development it was decided to implement our own interfaces, although
it is noted that there would be benefit in streamlining this code for a future
production version to avoid code duplication.

Initially, a GridJobManager interface was created that enables other developers
to plug in their own grid job submission interfaces. Subsequently an
implementing class was coded for the GridSAM web service based job
submission endpoint. GridSAM exposes both a Java API and a command line
API. The Java API initially appeared the most flexible and easy to use; however
in practice it proved difficult to use in a service environment as it requires
different build and runtime classpaths and a number of system properties to be
set. Eventually it was decided to use the command line API through the Java

Runtime.getRuntime.exec method to manage job submission and termination.

127

Data Stream Geoprocessing

52 North provide an abstract class ‘AbstractAlgorithm’ to enable developers to
code their own geoprocessing algorithm. This class was extended by
appending a new field to hold the class reference of the job submission class.
Additionally, get and set methods were appended and the new abstract class
was named ‘AbstractAsynchronousAlgorithm’. The relationship between these

classes and interfaces is shown in Figure 4.6 in UML notation.

-

GridJcbManager Abstractlgorithim
+zetderver URL (ServerURL: String) : wvoid Iilgorithm :Zek;:;;?t,;S:::LngrocessDescrlptanType
+get3erverURL () ¢ 3tring -
+oubmitJob (JSDL:String) @ String +initialisebescription() : ProcessDescriptionType
+terminatedob (ProcessIdentifier:String) @ woid +getDescription() : ProcessDescriptionType
+jobExists (ProcessIdentifier:boolean) : boolean +oetel lIEnowmame ()1 String
+restartdob (ProcessIdentifier: String) @ String +processhescriptionIsWalid() @ boolesan

A +10

1
GridSanMIobManager

+3erverURL: String = gridsam-test.oerc.ox.ac.uk: 15080
+HeadMode: String = ngs.oerc.ox.ac.uk
+CMII HOME: String = Jhome/globus/cgt/campus-grid-toolkit-client

+1{

Abstractfsynchronous Algorithm

1
#GriddobManager: Class<? extends GridJobMNanager:>

+ogetGriddobManager () 1 Class<? extends GridJobManager:>
+secGriddobManager (gr idJobManager : Class<? extends GriddobManagers) : wvoid

’—4

MapMatchingAlgorithm

4+result: HashMap<String, IData:>

+getErrors () : List<String:>

+ecreated3DLDescription(305 URL:String, SENSOR_ID:String,
YFS URL:String, WS TYPENAME:String,
WF3 NAMESPACE:String): String

+ecreated3DLDescription(305 URL:String, SENSOR_ID:String,
YFS URL:String, WS TYPENAME:String,
WFS MAMESPLCE: String,
Start_date:Date,End date:Date,
i String

+getInputbataType (id:5tring) @ class

+ogetOutputbataType (id:5tring) @ class

4+run{inputbata: Map<String,List<Ilats>>): Map<String,

IDatax

Figure 4.7: UML Diagram showing Algorithm and Grid extensions to 52
North WPS

To represent our map matching algorithm, the ‘AbstractAsynchronousAlgorithm’
class was extended with a concrete class ‘MapMatchingAlgorithm’. This class
implements the run method which is invoked when a client calls the Execute
request for the map matching algorithm. The method parses the input

parameters and ensures that they are correct, otherwise an exception is thrown.
128

Data Stream Geoprocessing

It then sets the ‘GridJobManager’ to ‘GridSAMJobManager’ and creates a JSDL
document by passing the input parameters to a CreateJSDL(String[] arguments)
method. The job is submitted using this GridJobManager and the resulting

process identifier is returned.

Immediately after an Execute request is received by the WPS an
ExecuteResponse document is returned. However, this doesn'’t give the WPS a
chance to submit the job to GridSAM and return the unique job identifier created
by GridSAM to the client. Nonetheless the 52 North WPS has a built in
AfterExecute method that is run after the execute operation has completed and
is used to update the ExecuteResponse if the client refreshes their page. A
clause was appended to this method to return the job identifier to the client as a
web accessible reference. This is an inbuilt feature of the WPS specifications
that enables voluminous processing results to be stored at a web accessible
location rather than consuming network bandwidth by delivering them directly.

Due to the real-time and continuous nature of our process, once an Execute
request has been submitted to the service, the process will run eternally. There
is clearly a need then to be able to stop this process. To plug this gap in the
specifications a StopExecuting operation was created. For simplicity this
operation can only be submitted as an HTTP GET request. Listing 4.4 gives an
example stopExecuting GET request for a WPS at http://myWpsServer/wps and
a job with process identifier urn:mygridsamjob:id:123. Listing 4.5 details the
stopExecuting response.

Listing 4.4: StopExecuting Request

http://myWpsServer/wps?request=stopExecuting&servic e=wps&version=1
.0.0& job_id=urn:mygridsamjob:id:123

Listing 4.5: StopExecuting Response

<StopExecutingResponse>
<Response urn="urn:mygridsamjob:id:123"> OK </Respo nse>
</StopExecutingResponse>

129

Data Stream Geoprocessing

This operation was implemented by extending the Request and Response
classes in the 52 North WPS,; it requires a single parameter ‘job_id’ which is the
unique identifier of the job to be terminated. A StopExecuting request calls the
terminateJob method of the GridJobManager's implementing class. |If
successful this will return a very simple StopExecutingResponse document
(Listing 4.5) that confirms that the job has been successfully terminated,
otherwise an exception is thrown. The exact format of the request and
response patterns for such an operation is a matter for the OGC WPS Working
Group; current change requests indicate that the ability to stop an
asynchronous process is more likely to be done using cancel, restart and pause
operations. However, in the absence of official guidelines the StopExecuting

operation provides a temporary solution.

4.3.6 GridSAM Client

GridSAM is an open source job submission and monitoring web service
developed by OMII UK (http://www.omii.ac.uk). It supports JSDL and tracks the
OGSA-BES job submission standard as well as providing a native interface.
GridSAM can be connected to a wide variety of distributed resource managers
such as Globus (http://www.globus.org), Condor (http://www.cs.wisc.edu/
condor/), Unicore (http://www.unicore.eu) or PBS; its role is not to carry out
processing itself but to provide an OGSA compliant endpoint through which to
submit jobs. It is up to the host to connect the service to a distributed resource
manager. GridSAM was chosen as a job submission endpoint, primarily
because it supports JSDL and OGSA-BES, and because it enables jobs to be
submitted to a variety of distributed resource managers without any
reconfiguration at the client end. In addition to its OGSA-BES WSDL interface,
GridSAM also exposes a native job submission interface through both the

command line and through a Java API.

Jobs were submitted to a GridSAM endpoint hosted by the UK NGS at
https://gridsam-test.oerc.ox.ac.uk:18443/gridsam/services/gridsam by the WPS
proxy component, using the native command line interface. There are two

prerequisites for successfully running a job on GridSAM; firstly a valid proxy

130

Data Stream Geoprocessing

must be uploaded to the MyProxy server specified in the JSDL and secondly if
file staging is required then a GSI-SSH connection must be established
between the submission node and the GridSAM head node from which the files
are staged. Grid Security Infrastructure SSH (GSI-SSH) is an extension of
Secure SHell (SSH); a secure connection protocol between two computing
nodes that supports authentication and encryption. The grid enabled version of
this protocol includes support for grid authentication and credential delegation.
The entire sequence of interaction between components is illustrated in Figure
4.2.

4.4 Results

4.4.1 Functionality Testing

Tests were carried out initially to verify that the map-matching system was
working correctly. Two journeys were selected from the available GPS data.
Journey 1 was sampled by a car travelling from Washington into Gateshead
and back on major arterial roads taking readings every 2 seconds. Journey 2
was sampled by another car monitoring air quality in a residential area of
Gateshead taking readings every 5 seconds. It was opted not to test the
system on data from council vehicles due to their atypical behaviour; for

example refuse disposal vehicles are continually stopping and starting.

Figure 4.8 and 4.9 show the results of applying the map-matching algorithm to
Journey 1 and Journey 2 respectively. Sampled GPS observations are
displayed as black dots, and matched roads are displayed as black lines.
Roads that were matched incorrectly, i.e. roads that weren't actually travelled
on are shown in dark grey. In Figure 4.7 the scale box shows the southern part
of the route at an enlarged scale as this contains the majority of the

mismatches.

For each observation the map matching algorithm generates one of three
possible states; a correct match, a mismatch or a null match. Null matches
occur when the algorithm cannot find a road segment that correlates to the GPS

measurement and mismatches occur when a measurement is incorrectly
131

Data Stream Geoprocessing

assigned to a road segment. A correct match occurs when a measurement is
correctly assigned to the road segment from which it was captured. Using only
the GPS measurement data it is difficult to determine whether a match is correct
or not, even if the actual path of the vehicle is well known (White et al., 2000,
Brakatsoulas et al., 2005). For example, at road junctions an observation may
be erroneously matched to the vehicle’s previous or future road and this would
be difficult to detect without validating which road the vehicle was actually on at
the time of measurement. As validation data is not available such errors will be
ignored and all observations matched to a road on which the vehicle actually

travelled are considered correct.

The percentages of correct matches for Journey 1 and Journey 2 are shown in
Table 4.1. Journey 2 is comprised of a large nhumber of measurements taken
from car parks and therefore a considerable amount of null matches resulted.
Because the vehicle was not actually on the road network when these
measurements were taken these null matches cannot be considered to be
erroneous. Therefore an additional row has been appended to Table 4.1

showing correct matches in Journey 2, excluding the car park observations.

To assess the performance of the system, the length of time between the
instant at which the GPS measurement was taken, and the instant at which the
matched road was inserted into the SOS, was measured. These results are
displayed in Table 4.2.

Table 4.1: Percentage of Correct Matches for Journe y 1 and Journey 2

No. Null Mismatches | Correct % correct matches
observations | matches Matches

Journey 1 709 1 43 665 93.7%

Journey 2 1172 184 35 953 81.3%

Journey 2 | 898 42 18 838 93.3%

excluding car

park

observations

132

Data Stream Geoprocessing

Table 4.2: Time interval between GPS measurement an

observation into Sensor Observation Service

d insertion of

Sampling Frequency | Mean Time Interval | Standard Deviation
(seconds) (seconds)

Journey 1 2 54.30 24.96

Journey 2 5 35.57 13.25

563000

562000]

561000

560000

559000

558000

Ordnance Survey MasterM;

® ™
ap Integrated Transport Network

ok
V=
s

4250001

4260008
42700

428000

429000

430000
431000

Figure 4.8: Map Matching Results for Journey 1

133

432000

. GPS observation
*** track

road centreline

correctly
matched
road segment

incorrectly
matched
road segment

T

N2

British National Grid
Map Sheet NZ

Data Stream Geoprocessing

British National Grid Map Sheet
564000]

563000

Z\E -
> 220
P =ik

425000
426000
427000

——— incorrectly
matched
road segment

road centreline

correctly

matched ... GPS observation
road segment - track

Figure 4.9: Map Matching Results for Journey 2

It can be seen from these results that the map-matching algorithm performs
well. In each case the algorithm is matching over 90% of observations
correctly, and the majority of results are inserted into the SOS within 60

seconds.

In many cases the mismatched observations are surprising, from Figure 4.8 and
4.9 it can be seen that the majority of mismatched roads are side-roads with a
very different orientation to the actual path of the vehicle. In each of these
cases the incorporation of position history into the algorithm is likely to correct

these mismatches.

It can also be seen in Table 4.2 that the interval between GPS measurement
and insertion of results is considerably lower for Journey 2. This can be
attributed to the lower sampling rate of Journey 2. The map-matcher extracts

134

Data Stream Geoprocessing

position observations from the SOS for the previous 60 seconds and matches
these before inserting them into the SOS as new observations. The lower
sampling rate of Journey 2 means that only 12 positions must be extracted and
matched each minute, as opposed to Journey 1 for which 30 positions must be

processed.

4.4.2 Scalability Testing

So far it has been demonstrated that the map-matching system meets basic
functional requirements for the operation of a single vehicle. The algorithm
meets basic performance requirements and has been implemented as part of a
service oriented system, thus enabling processing to be executed on a remote
grid cluster and invoked through standards compliant interfaces. However, the
goal of this work is not to evaluate the performance of the map matching
algorithm. Rather it is to demonstrate the applicability of a grid based
processing architecture to the problem of multiple real-time data stream
instances, and to identify any potential bottlenecks. To this end a number of
load tests were conducted to identify weak components and acquire system
capacity information. The system was tested against its ability to process
multiple data streams concurrently.

In this system a new map-matching instance is launched on a remote grid node
every time a vehicle comes online. The scale-out approach adopted in this
design necessitates a one-to-one relationship between the vehicle data stream
and the map-matcher instance; however it is possible for several vehicles to
store their observations in the same SOS repository and for each map-matcher
instance to query the same WFS. This many-to-one relationship between
vehicle/map-matcher and SOS/WFS is depicted in Figure 4.9. While it is
desirable to minimise the number of SOS and WFS instances, there is a finite
limit to the number of concurrent requests each of these components can
handle, imposed by network bandwidth constraints and limited processing

capacity.

135

Data Stream Geoprocessing

vehicle map-matcher
vehicle map-matcher
Tomcat Geoserver
vehicle map-matcher
SOS WFES
vehicle map-matcher

vehicle PostGIS map-matcher PostGIS

Figure 4.10: Many to one relationship between vehic le/map matcher and
SOS/WFS

Tests were carried out to find the maximum number of vehicle data streams that
can be assigned to each SOS and WFS without having an adverse affect on
performance. Load testing was conducted using JMeter to simulate several
concurrent requests to each service and to monitor the response time. In each
case JMeter was used to steadily increase the number of concurrent requests
over a ramp-up period of 60 seconds after which time the number of concurrent
requests was maintained. The results from this test are shown in Table 4.3 and
Figure 4.11; response times are given in milliseconds and are averaged over
1500 requests that were sampled after the ramp-up period. The maximum
number of concurrent requests that could be maintained was found to be 560
for the WFS and 200 for the SOS; above these figures HTTP error codes were
returned. It should be noted that the WFES contained all the road features in the
Tyne and Wear output area; 95803 features in total. Better performance was

observed with smaller database sizes.

Table 4.3: WES and SOS Response Time

Response Time (milliseconds)
Number of | WFS Get SOS SOS InsertCategory SOS Insert
concurrent | Feature Describe Measurement Observation
requests Sensor
1 316 88 93 101
10 386 88 474 551
20 527 88 957 1098
50 3488 98 2332 2910

136

Data Stream Geoprocessing

100 8921 118 4527 5688
200 20710 1391 10190 10867
300 31999 2918 N/A N/A
400 43405 N/A N/A N/A
560 59963 N/A N/A N/A
—o— WFS Get Feature —8— SOS Describe Sensor
—A— SOS InsertCategoryMeasurement —o— SOS InsertObservation
25000
20000 d

Response Time (ms)
= =
o a1
o o
o o
o o

1 10 20 50 100 200

Number of Concurrent Requests

Figure 4.11: Graph showing Response Time of SOS and WFS requests

These response time metrics provide useful information from which to deduce
the most appropriate ratio of SOS / WFS to vehicle data streams. Using a 2
second sampling rate the ratio of describeSensor requests to other requests is
1:30 because each describeSensor request retrieves all the observations
recorded in the previous 60 second cycle whereas the other requests are made

for each observation.

Because this system operates on a single execution thread there is a danger

that time-lag could build in the system. This situation would arise if the entire

map-matching cycle were not to complete within the 60 second time period and

would result in an ever increasing time interval between each observation being
137

Data Stream Geoprocessing

recorded and being processed. To avoid this scenario the map-matcher was
profiled to find the average execution time of each processing stage and these
results were subsequently used to select the ratio of WFS and SOS to data
streams. Profiling was carried out on a single instance of the map-matching
program using Netbeans (http://netbeans.org); results are detailed in Table 4.4.
Response times from both the WFS and SOS services were disregarded during
profiling as each of these services were running locally and so the results are
likely to be unrealistic, however, their response times have already been
established (Table 4.3). Based on the combined results of profiling and SOS /
WES response times it was decided to allocate 20 data streams per WFS and
10 data streams per SOS; the cumulative time expenditure of this configuration

is under the 60 seconds maximum and is summarised in Table 4.5.

Table 4.4: Profiling results for map matcher

Procedure Number of operations | Processing Actual
per minute Time (Ms) Processing Time

(ms)

Generate describeSensor | 1 3 3

request

Parse SensorML 1 29 29

Generate WFS query 30 112 3360

Parse GML and perform | 30 328 9840

match

Generate insertObservation | 30 0 0

and insertCategory

Measurement requests

Total 92 472 13232

Table 4.5: Map matcher time expenditure (millisecon ds)

Processing Time 13232
10 x describeSensor requests 88

10 x 30 x InsertCategoryMeasurement requests 14220
10 x 30 x InsertObservation requests 16530
30 x 20 WFS getFeature requests 15810
Total 59880

138

Data Stream Geoprocessing

This configuration was tested by running the map-matching system over a one
hour period for 20 vehicles concurrently and although this number only
represents a fraction of the Newcastle City Council vehicle fleet it was deemed
sufficient to test this system. This is because the maximum number of data
streams assigned to a single component instance is 20, with the exception of
the WPS and the GridSAM client that were not replicated as they were unlikely
to present a bottleneck because they simply perform job submission. To
capture performance data a minor modification was made to the SOS database
in that a trigger was added that records for each observation the time difference
between insertion into the SOS database and the actual time stamp at which
the position measurement was taken; this difference is termed time-lag. The
test was initiated by sending a series of WPS Execute requests to the WPS. It
was found that the first 13 sensors were scheduled promptly within 2 — 3
minutes. However, due to the NGS scheduling policy, the remaining 7 jobs
were not scheduled for another 25 minutes. Figure 4.12 and Figure 4.13 show
the time-lag results for both SOS servers, each of which was assigned 10 data
streams which are labelled as s1 — s10 and s11-s20 in Figure 4.12 and Figure
4.13 respectively. The mean time-lag for SOS Server 1 was found to be 1
minute 51 seconds with a standard deviation of 2 minutes 31 seconds. For
SOS Server 2 the mean time-lag was 1 minute 3 seconds with a standard
deviation of 1 minute and 4 seconds. The results show that of the initial 20 data
streams, only 12 of these were still being processed after the one hour period; 5
from SOS Server 1 and 7 from SOS Server 2. This was found to be the result
of deadlock occurring in the database due to a large number of concurrent
requests preventing the affected sensors from inserting observations into the
database. The map-matcher processes terminated after polling the SOS and
finding no observations for the latest 60 second time period.

139

Data Stream Geoprocessing

00:22:00 -
i s1
o0:2000 4 4 s2
] —— s3
00:18:00 - s
] s5
o 00:16:00 - o
£ | s7
E 00:14:00 - =
- . T 9
< 00:12:00 A s
b= 1: s10
c_?,’ 00:10:00 -1
[} 11
£ 00:08:00 ¥ I
"] 4]
00:06:00 - g | I l:
{44 |
00:04:00 Xl | llll
18 |
00:02:00 i B :
00:00:00 | L B B S I S E e S e e S o S E B e S B B ' a

00:00:00 00:10:00 00:20:00 00:30:00 00:40:00 00:50:00 01:00:00
Time (hh:mm:ss)

Figure 4.12: Time-lag results for SOS Server 1

I
00:22:00 1 | »
00:20:00 - 12
= . A B s13
00:18:00 - ., R
i [—— — s15
% 00:16:00 - A ———— s16
= ' ' ———— s17
£ 00:14:00 - | o
5 - | $19
£ 00:12:00 -
< - N e $20
> 00:10:00 - — |
©] i i et | LE
£ 00:08:00 - CiE b it
= : Bt iy
00:06:00 - I I | = I
: SR I
00:04:00 - | {': ‘ i
|l l
1 | i *r i o |
00:00:00 ——mM—————— 1 ——— 1 —]

00:00:00 00:10:00 00:20:00 00:30:00 00:40:00 00:50:00 01:00:00
Time (hh:mm:ss)

Figure 4.13: Time-lag results for SOS Server 2

Of the remaining data streams it can be seen from Figure 4.12 and Figure 4.13

that the majority of observations are matched within the required 90 second

time frame. However, the graphs also contain a number of spikes that
140

Data Stream Geoprocessing

represent latency in the processing chain, the most severe of which exhibits a
23 minute delay. These delays can also be attributed to deadlock occurring in
the SOS database caused by too many concurrent requests. However, in each
case it can be seen that the SOS recovers within a matter of minutes and there

is no cumulative effect on time-lag in the medium or long-term.

The graphs also show that the performance of SOS Server 2 is considerably
better than that of SOS Server 1; there are two possible causes for this. Firstly,
SOS Server 1 is located on the same physical server as the WEFS.
Consequently both services share a database instance and the increased load
on the database is likely to reduce its speed. Also, the increased load on
network bandwidth is likely to have a similar effect on the throughput of the SOS
in terms of the number of requests it can serve per second. Secondly, due to
the delay in scheduling the processing jobs SOS Server 2 experienced a
significantly lighter load for the first 25 — 30 minutes of execution as only three

map-matching jobs had been scheduled at this stage.

4.5 Discussion

The design, implementation and testing of a real-time grid-based map-matching
system has been described in this Chapter. The system is capable of
performing map-matching for a fleet of vehicles and can be considered OGC
compliant in that it uses compliant data repositories, WFS and SOS, and can be
accessed through a compliant WPS interface. The system uses the NGS
production grid to carry out processing which is accessed through a GridSAM
web service and authenticated using a MyProxy credential delegation service.

The scalability results are surprising, it was anticipated that each SOS and WFS
would have handled a much larger number of data streams than was found in
testing. The main constraint in this system was found to be an 1/0O bottleneck at
the SOS database that resulted in database deadlock. Marginal increases in
performance could almost certainly have been gained by tuning the SOS and
WFS server parameters such as connection pool size and Java Virtual Machine

settings. Performance could also have been increased by reducing the load on

141

Data Stream Geoprocessing

the SOS either by only inserting the road identifier into it rather than also
including the vehicle’s bearing, or by inserting the results into an altogether
separate SOS from the one containing raw position information. However, it
seems unlikely that the gains in performance brought from these changes would

be sufficient to make the system viable.

To implement the system in its entirety for the Newcastle City Council fleet of
890 vehicles would require a minimum of 89 SOS servers. It could be argued
that this hardware requirement negates the benefit of the distributed approach
adopted here. The primary driver for this approach is the ability of the system to
scale up and down as demand fluctuates whilst minimising the use of
computing resources and therefore maintaining a large server cluster to handle
SOS transactions is unviable. One solution would be to host these SOS
servers in the cloud, which is often cited as a solution to the problem of scaling
web applications on-demand by means of resource virtualisation and dynamic
provisioning (Buyya et al., 2008, Vaquero et al., 2008). However, considering
that the processing cost of the map-matching operation is trivial in comparison
to the communication costs of the system (Table 4.5), if this approach were to
be adopted it may be easier for each cloud node to carry out the map-matching

processing locally rather than porting the computation to a processing grid.

It is anticipated that latency in this system could be reduced through better
program design. For example, a multi-threaded program could continually poll
the SOS for new observations on one thread, perform the processing on

another, and update the SOS with processing results on a third thread.

The concept of using grid computing resources to achieve high throughput
processing of near real-time data is original and these results show that it is
possible. However, there are a number of issues with running this type of
problem on a production grid. Firstly, job scheduling is unpredictable and is
dependant on a number of factors such as the cluster availability, fair usage
policy, user’s priority level and the anticipated size of job. The NGS indicated
that they would be willing to prioritise jobs related to the monitoring and

mitigation of natural disasters, as these are both time and safety critical and for

142

Data Stream Geoprocessing

the greater public good. However, they are not willing to prioritise jobs related
to road traffic monitoring and management and so a dedicated grid cluster
would be required to implement a production version of this system.

The second issue is that this approach could be considered an inefficient use of
resources. The results show that processing is only being performed for a small
percentage of the time that the map-matching job is running; the rest of the time
is spent waiting for new data to arrive. By assigning one data stream to each
processor it is unlikely that the computational load of the data stream will
perfectly match the processors capabilities and therefore it is almost
unavoidable that the processor will either experience a processing backlog or
will spend time idle. In a grid environment resource usage is typically measured
by the number of CPU hours used and so it is advantageous to fully utilise each
processor whilst a job is running, particularly in the pay-per-usage grids we are
likely to see in the future. Thus it can be concluded that the single processor
per data stream approach is inflexible, although this style would be useful for a
particular type of job that require as much processing to be done as possible in
the time available such as iterative convergence problems. An alternative for
more computationally intensive problems would be to perform data stream
partitioning by sending different sections of the data stream to different
processors, although in this case each section would suffer a scheduling delay
and there would be no guarantee that the processing jobs would be executed in
the order they were submitted.

The third issue is that both the OGC WPS interface and most grid job
submission interfaces are not strictly designed to submit open-ended compute
jobs. As such, neither interface explicitly exposes a stopExecuting operation.
However, the OGSA-BES interface does expose operations for managing
asynchronous processes such as ‘pause’ and ‘cancel’ and these are sufficient
for controlling open-ended compute jobs. Support for these operations is

currently being approved by the OGC for inclusion into the WPS specifications.

143

Data Stream Geoprocessing

4.6 Conclusion

Using the grid to process spatial data in near real-time is possible for soft real-
time applications but two challenges must be overcome before this approach
becomes viable. Firstly, a mechanism for consistently scheduling real-time jobs
within an acceptable time-frame must be devised. A potential solution to this
problem would be to search a number of grid information services for under
utilised compute clusters to submit the processing job to. Alternatively the
JSDL language could be extended with an attribute acting as a real-time
identifier, thus real-time jobs could be given priority at certain participating grid
clusters. In future pay-per-usage grids these clusters could offer cheap
processing for non-urgent jobs which could be paused to make way for real-

time jobs.

The second challenge is balancing the trade-off between efficient grid resource
utilisation and processing latency. Because high throughput grid clusters are
designed to process static computationally intensive jobs their scheduling policy
is to allocate one job per machine. As can be seen in the case of real-time
processing, much of the time the job is running is spent idle and thus several
jobs could potentially run on the same processor and a better resource
utilisation could be achieved. Alternatively, for data streams that are too
computationally intensive to be processed in near real-time by a single
processor, data-stream partitioning could be used to allocate different segments

of the data stream to different processors.

Performing continuous near real-time processing of spatial data streams is
problematic in a distributed service environment because 10 bottlenecks occur
on spatial data retrieval. Replicating spatial data sources on the cloud presents

a possible solution that requires further research.

144

Fine-grained Snapshot Geoprocessing

Chapter 5 Fine-Grained Snapshot Geoprocessing

51 Introduction

In this Chapter an exemplar implementation of the FGSG operation as
described in Section 3.5.2 is presented. The key characteristic of FGSG is that
it requires an entire dataset as input and as such the geoprocessing is most
efficiently carried out close to the data to minimise costly network data transfers.
The geoprocessing scenario described in this Chapter involves road traffic
routing in which real-time FCD is used to weight the cost of travelling on road
segments. Furthermore, this real-time data is augmented with traffic travel-time
data collected by NCC for the city of Newcastle upon Tyne. This additional
dataset serves two purposes; firstly it provides a base set of travel times to use
where no real-time data is available, and secondly it provides a means to

validate the accuracy of travel times derived from real-time data.

The concept of using FCD to provide real-time travel-time data for use in routing
applications has already proven successful (Wang et al., 2008b). The novelty
of the work presented in this Chapter is that it incorporates OGC SWE services
to provide and filter the real-time FCD and uses a NGS hosted Oracle grid
database service to store the road network data, pre-process the FCD and
perform routing functions. In conformance with distributed design principles the
spatial data and geoprocessing functionality in this system are to be accessed
through a set of web services. As such, a web-based map interface to this
system is made available that enables end-users to perform shortest path
routing queries based on real-time travel time information derived from FCD

Sensors.

Although a number of studies have previously attempted to make travel-time
predictions from real-time FCD combined with travel-time data (Miwa et al.,
2008, Lee et al., 2009), this presents a number of difficulties; traffic flow
parameters are required to make accurate predictions and such studies are
typically location specific. Thus a rigorous travel-time prediction is beyond the
scope of this study, which concentrates purely on the architectural challenges of

performing near real-time, data-centric geoprocessing operations using a
145

Fine-grained Snapshot Geoprocessing

distributed grid environment in a framework based on open standards. Instead
of predicting future road traffic levels the work outlined in this Chapter is
concerned only with presenting current traffic conditions and making a shortest-
path routing function available based on these current conditions. Although the
prediction of future traffic levels presents an arguably more interesting topic, the
complexity of modelling required to carry out prediction in a rigorous manner is

beyond the scope of this thesis.

The remainder of this Chapter is set out as follows. Section 5.2 provides a basic
review of real-time traffic routing using floating car data. Section 5.3 outlines
the design of a distributed traffic monitoring system using geospatial web
services and a relational database system; the implementation of this system is
described in Section 5.4. Section 5.5 describes how the system was tested for
functionality and scalability and presents the results. A discussion of these
results is presented in Section 5.6 and concluding remarks in Section 5.7.

5.2 Review of Real-Time Traffic Routing using Float ing Car Data

FCD has been identified as a useful source of live traffic data that has a
potential application in real-time traffic routing (Liu and Meng, 2008, Schéafer et
al., 2002, Wang et al., 2008b). In comparison to fixed traffic sensors FCD is
capable of providing a robust overview of current road traffic conditions at
significantly less cost (Lahrmann, 2007). FCD can be used to help motorists
avoid congestion and thus has a clear application for the general public as a
route-planning tool but is also of particular benefit to emergency services
Private companies have been quick to see the benefits of FCD; commercial
systems such as the Tom-Tom XL-HD One (Section 2.2.2) source FCD from
mobile phone and satellite navigation system users and feed this data back into
a real-time traffic repository that can then be accessed through in-car satellite

navigation systems.

Road traffic monitoring systems that use FCD are reliant on a significant
amount of hardware and communication infrastructure. Such systems are

comprised of numerous in-vehicle sensors and a central data repository; as

146

Fine-grained Snapshot Geoprocessing

such they are inherently distributed. The major barrier to the widespread use of
FCD to obtain accurate road-traffic information is that a significant proportion of
vehicles are required to contribute to data collection. For urban areas Cheu et
al (2002) suggest that 4% to 5% of total vehicles are required to achieve
accuracies of 5 kmh™, 95% of the time, while Huber et al (1997) state that 1% to
5% of vehicles are required depending on the level of accuracy required.
However, a significantly lower proportion of vehicles, 0.24% (Brackstone et al.,
2001) are required for freeway travel time estimation because traffic streams do
not suffer interference from traffic control and because there is no interplay
between traffic streams from opposing directions (van Lint, 2004). As a result
of this constraint the majority of pilot studies that have trialled the use of FCD

augment their data with in-situ traffic loop sensors.

Liu and Meng (2008) implemented a system in Shenzhen, China that used 4000
taxis as FCD probe vehicles. This system focussed on obtaining accurate
travel times for each road segment. GPS observations were combined with the
taxi status, i.e. free, waiting or occupied, and the observations were pre-
processed to eliminate irrelevant data. Subsequently the observations were
transmitted at approximately one minute intervals to an Oracle database. A
web mapping client was developed using Java Server Pages that interacted
with the database using ArcSDE and ArcIMS web services. Although not
implemented it was suggested that the data could also be delivered to mobile
clients using ArcIMS web services to enable access to this data from within
vehicles. Wang et al (2008b) implemented a similar system using data
collected from a small volunteer sample augmented with historically collected
in-vehicle FCD. Speed limit data was used to estimate travel-time for road links
where no other data was available. Models were used to predict future traffic
conditions on each link in the short and long-term based on fuzzy inference
systems (Jang and Sun, 1996). Initial results suggest that this approach was
capable of determining reasonable routes based on current traffic conditions.
However the prediction models relied heavily on domain knowledge and could
not be easily transferred to other locations.

147

Fine-grained Snapshot Geoprocessing

5.3 System Design

5.3.1 User Scenario

The purpose of the system set out in this Chapter is to make real-time road
traffic information sourced from FCD usefully available to the public. Such
information would enable motorists to plan their journeys using the latest
available information and would also enable organisations responsible for traffic
management to rapidly identify regions of congestion. City council vehicle fleets
are particularly useful sources of FCD because they are deployed city-wide and
are easy to manage as they fall within a single ownership domain. The system
presented in this Chapter relies on map-matched data from a fleet of city council
vehicles equipped with on-board GPS receivers. In this respect the work
augments that of the previous Chapter which set out a grid-based map
matching system.

A filtering mechanism is to be used in this system to poll the repository of live
map-matched observations and to detect road change events which occur when
a vehicle moves from one road to another. The combined information provided
by the road identifier and the time at which the road change event takes place
provides enough information to deduce the travel time of each vehicle on each
road segment. This data can then be fed into a data repository and be used to
weight road segments based on their average travel time. Subsequently routing
applications can use this information to find the quickest route to their

destination based on the most up to date traffic information.

The major design goal of this work is to provide a scalable system that
exemplifies FGSG on a distributed computing architecture in an open
standards-based framework. The extent to which this system can scale is the
key metric on which the performance of this system will be evaluated; scalability

Is to be measured in terms of the number of vehicles that can be supported.

5.3.2 Software and Tool Selection

As in the previous Chapter, Ordnance Survey MasterMap® ITN is to be used as

the base road network dataset (Section 4.3.3). To evaluate the applicability of
148

Fine-grained Snapshot Geoprocessing

SWE components to real-time FGSG operations a SES (Section 2.3.6) has
been chosen as a notification broker. SES is a proposed OGC standard that
builds on OASIS WSN specifications (Section 2.3.1) to provide publish /
subscribe access to sensor data observations. A prototypical implementation
available from 52 North is to be used which builds on a variety of open source
components such as the Apache Muse framework (http://ws.apache.org/muse/),
the Esper CEP engine (http://esper.codehaus.org/) and the Apache XMLBeans
Java XML binding tool (http://xmlbeans.apache.org/). The SES is to be
deployed in an Apache Tomcat servlet container. Experimentation with
automatic web service code generation tools such as Apache Axis2
(http://axis.apache.org/axis2/java/core/tools/index.html) and the Metro stack
(http://jax-ws.java.net/) failed to parse the SES WSDL document and so a

custom binding was found to be necessary.

To insert the SES notifications into a database they must be captured, parsed
and translated into a SQL insert query. Thus a notification consumer service is
to be developed that uses the J2EE JAX-WS 2.0 and SOAP with Attachments
API for Java (SAAJ) APIs (https://jax-ws.dev.java.net/; https://saaj.dev.java.net/)
to build the service interface and parse the SES SOAP messages.
Furthermore, Oracle (http://www.oracle.com) JDBC drivers are to be used to
interface with the Oracle relational DBMS at the back-end. The notification
consumer service IS to be deployed in a Glassfish
(https://glassfish.dev.java.net/) container, which was selected because it is both

open-source and J2EE compliant.

An Oracle database service hosted by the UK NGS is to be utilised to store and
process the FCD data. The NGS Oracle service is comprised of a cluster of
eight nodes running Oracle Spatial 11g spread over two sites; each node has a
dual CPU 3.06Ghz processor and 4GB RAM. A 2TB Storage Area Network is
attached to each site and the nodes are physically connected via a fast Myrinet
interconnect. Oracle Real Application Clusters (RAC) is used to federate the
nodes using a parallel shared-disk architecture (Section 2.4.2), thus providing
significantly greater performance and scalability than a single instance.

Furthermore, using RAC each node has direct access to the cache on each

149

Fine-grained Snapshot Geoprocessing

other node which facilitates high-availability and the execution of queries in
parallel (Greenwald et al., 2008). Triggers and stored procedures to manage
incoming data are to be coded in Oracle’s procedural query language PL/SQL

(http://www.oracle.com/technology/tech/pl_sql/index.html).

To facilitate access to the road network data, the real-time travel time data and
the associated geoprocessing functionality such as shortest path routing a
number of client facing web services are also to be developed. Road network
data will be published as a WFS and WMS through Geoserver
(http://geoserver.org). To enable web mapping clients to access a visual
representation of the road network data in a timely fashion a Web Map Tile
Service (WMTS) (Maso et al., 2010) will be made available via Geowebcache
(http://geowebcache.org). WMTS are designed to serve cached tile images of
map data at a variety of styles and zoom levels to avoid image processing
bottlenecks at the server.

Shortest path routing will be made available through a JAX-WS web service that
returns an ordered list of road links given the network node identifiers for the
route’s start and end locations. Another JAX-WS service is to be created that
requires a point location as a coordinate pair and returns the closest network
node to this location. This service is designed to help end users graphically

select valid start and end locations using a mapping client.

To demonstrate the back-end services described above, a web mapping client
is also to be developed that enables end users to view the road network data
and to perform shortest path routing queries on this data. The mapping client is
to be developed in Adobe Flex (http://www.adobe.com/products/flex/) and
Actionscript (http://www.adobe.com/devnet/actionscript/) using the OpenScales
(http://openscales.org/) open source mapping API. Flex and ActionScript are
proprietary technologies but have become rapidly adopted in web mapping
applications as they provide a rich end user experience that enables content to
be downloaded asynchronously without the need to reload browser pages
(Fraternali et al., 2010). The draft HTML5 standard (Hickson and Hyatt, 2008)

150

Fine-grained Snapshot Geoprocessing

is likely to supersede existing rich internet application technologies but to date

no standard mapping APIs have been developed for it.

5.3.3 Architectural Overview

The proposed system can be logically divided into three main parts; data input,
geoprocessing and user interface. The data input sub-system is responsible for
filtering map-matched FCD observations from a fleet of vehicles and inserting
the results into a database. The geoprocessing sub-system is responsible for
organising this data and augmenting it with static travel-time data obtained from
NCC and for providing traffic routing functionality based on this static and real-
time travel time data. Finally, the user interface sub-system is to enable clients
to visualise current traffic conditions and find the quickest route to their
destination using a web mapping client. Figure 5.1 shows a UML2
communication diagram that outlines the message flow and the basic
associations between components in the system. A full UML sequence diagram

Is given in Figure 5.2 and a component diagram is given in Figure 5.3.

A: Data Input Subsystem
B: Geoprocessing Subsystem

subscriber
3.*:Subscribe(EML) 3.1:Notify(Observation) 3.2:InsertObservation()
sensor :SES :Ncg:';% . :RoadChangeEvent
. jdbe
S0S | :SESPusher 2.1:Notify(Observation) .
1.*:InsertObservation() 33‘%:5;5:;%;7?'0" 3.4:
. . InsertProcessed
2.*:getObservation() Observation
3.5 Update
. NetworkCost()
C: Client User Interface 5.3:getFeatures(Feature WS idbe :ProcessedEvent
List) = /
jdbc
- WMS)
4load() 4.1 getMap()
5:getRoute() :RoadNetwork
" | WebMap Client | 52—)) Idoo
<> getRoute():FeatureList RouteService -0)

client
jdbe
:NNService £
5.1 getNearestNeighbours()

jdbe
WMTS + F
4.1 getMap()

Figure 5.1: A UML2 communication diagram outlining message flow and

basic association between system components

151

ing

d Snapshot Geoprocess

-graine

Fine

Sensor Client Subscriber S0OS SES Pusher SES NotifConsumer Database WES WMS WMSC NNService WebMapClient || RouteService
; — T T T T T ; ; T T
! insertObservation ! _ ! ! ! I ! W i
L ! ” I I I 1 | ! ! i I
| InsertObservationResponse ! _ ! _ ! A | ! !
K W i etObservation| ! ! ! ! ' i ! !
! ! | I | | | | | ' i I |
| | | | | | | | | | | | |

| |
“ ! ” ObservationCollection _ ! ! ! i | | i
1 | it 1 1
| | | | | | | | | | |
| | ! Wrap as SOAP ' ! | | | | i
' I I Noty() | I 1 I ' i I I
| | | - . | | | | | | |
! i Subscribe() | | | ! ! i i ! !
| | | | | , | | | | !
! ! | m Notify(Observatiq m m | ! ! ” “
|
! l I | ! ! | 1
! m m m InsertObservation _ ! _ | | i
! I I | . | | ! ! I |
! I I | ~ | | ! ! i |
I | I | |
! | | i v Calculate Direction and Duration() | ' ! !
| I I 1 1] | |
! | W | |l i | ! ! ” i
| | | | Launch) | | | | | | |
I
! | ” | i i _ ! GetMap I i
! | I I I I | s — ! !
| | | | | | | [l MepTiesjpg | |
| | | | | | | T Catitap | | |
! . u MapTiles jpg——— [
i " " | CalculateRoute(Start Point, End Point, Hour of Day) i I 4-- ap s _|um|_ ||||||||| Iw, m
| I | 1 | ! ! |
[T T T T T | I
i | ' ' ' . m GetNearestFeature(Start Point,) '
! I I | | | T |
| . | |
! | W i i SQL_getNN() ! ! W i
I | | I t _ 1 1 | I
! | ” | _ PointFeature ! | | PointFeature | |
| | , A S o Lyl Foneatr 2 |
i | | i | ! i GetNearestFeature(End Point,) !
! | | | “ I ! h 1
! m m m _ SQL_getNN() _ ! W "
! 1 i ! h I I
“ m m m “ PointFeature _ Wmu PointFeature M, “
|||||||||||||||||| e i et b !
m " W _ _ “ " getRoute(StartPoint, EndPoint, HourofDay)
! | | | i | ! i
! | | _ |] !
i I | | T T H T
! | ! ' E ! ! FeaturelDs i
H | | e (I | Tt
[W W | i i | [
' | | | i | | '
! | " | | _ | getFeatures(RoadLinkIDs)
" W ” ! \saL _ _
' I I | | !
I | | 1 I
| I I e N L N W I
| | | I
I | | I
! | | i DisplayRoute
_ﬁ | | |
i
I

152

Fine-grained Snapshot Geoprocessing

Web Client

WMS | WMTS | WFS | NNService | RouteService

Oracle Spatial

i nearest
routing road neighbour
networlk
Glassfish
NatificationConsumer

Apache Tomcat
SES

SES Pusher

Map Matching System

Figure 5.3 Component Diagram of Road Traffic Monito ring System
5.4 Implementation

5.4.1 Data Preparation and Loading

The MasterMap ITN road link and road node datasets were loaded into Oracle
Spatial 11g using the SQL Plus and SQL Loader tools. The full procedure for
loading these datasets is detailed in Appendix E. Two tables were generated,;
ROAD_LINK_POLYLINE and ROAD_NODE_POINT which contained the road
link and road node features respectively. Subsequently a spatial network was
generated from this road network data comprising a link table LINK_TABLE, a
node table NODE_TABLE, an empty path table PATH_TABLE and a path link
table PATH_LINK_TABLE used to store the link sequence for each path. For
each link in ROAD_LINK_POLYLINE two road links were created in the spatial
network, one representative of each direction of travel. These tables were
transformed into a spatial network by inserting a network definition into the user

153

Fine-grained Snapshot Geoprocessing

table USER_SDO_NETWORK_METADATA. The procedure used to generate
the spatial network is outlined in Appendix F.

A spatially referenced travel-time dataset was obtained from NCC that contains
the average speed of travel in kmh™ for each direction on major roads in
Newcastle upon Tyne, for each hour of the day from 04:00h until 24:00h. This
travel-time dataset was loaded into Oracle and joined to the road network link
table as columns (HR_4,...,HR_24). Subsequently the average speed of each
road (kmh™) was converted to average travel-time (s) by dividing the length of
each road by its average speed and performing a unit conversion. Twenty
additional columns, (C_4,...,C_24) were appended to LINK_TABLE to store the
average travel time for each road at each hour of the day. The purpose of
performing this join and conversion is to enable shortest path routing
calculations to exploit the NCC provided average speed dataset to weight each
road segment by travel-time. Appendix F details the process of loading, joining
and converting the average travel speed dataset. Figure 5.3 details the
resulting database schema after performing the data loading and manipulation

procedures described here.

Unfortunately the travel-time dataset provided for this work was incomplete and
although it contained travel times for most major roads in Newcastle upon Tyne,
only 19% of road segments within the study area had travel-times attached. In
order to ensure that an entire road travel-time dataset was available for analysis
a spatial interpolation was performed; values were interpolated for each missing
travel-time of each road link. However, in order to avoid spatial extrapolation
the missing values were only calculated for those features that fell within the
bounding box of the features attributed with travel-time values. To this end a
new feature table STUDY_AREA_CLIPPED was created containing a copy of
LINK_TABLE but clipped to contain only the features described above, and
attributed with additional columns (T_4,...,T_24 and HRN_4,...,HRN_24) to
contain the interpolated speed and travel-time values. The resulting
STUDY_AREA CLIPPED table contained 50248 road links of which 9598

contained measured travel times and of which the remaining travel times were

154

Fine-grained Snapshot Geoprocessing

interpolated. Appendix F details the SQL commands to create and populate the
STUDY_AREA_CLIPPED table.

An Inverse Distance Weighted (IDW) interpolation was performed using five
nearest neighbours using the formula given in Equation 3. IDW was selected
for its simplicity, it is an interpolation method used to provide an estimate F of a
variable Z at an un-sampled location r. This is achieved by taking a weighted
average of m values from the surrounding neighbourhood where the inverse of
the distance from the un-sampled location r to each of the surrounding points i,j
Is used to weight their respective contribution (Mitas and Mitasova, 1999). In
this implementation the distance between neighbouring road segments is
calculated using the shortest Euclidean distance. It is noted that the use of
network distance would be a more rigorous approach but considerably more
computationally expensive (Wang and Kockelman, 2009). Furthermore,
existing studies have shown that using Euclidean distance yields satisfactory
results for reasonably small networks (Hoef et al., 2006, Kruvoruchko and
Gribov, 2004). Interpolation was performed for each travel time column inside
the Oracle Spatial database using a PL/SQL procedure that is detailed in
Appendix G.

m iz(ri)”r—ri |2
F(r)=>WZ(r)="= Equation 3

m

=1 dufr=r |
=1

155

Fine-grained Snapshot Geoprocessing

Input Data ROAD_LINK_POLYLINET Slisgreis
PK,FK3 | LINK ID Road Netwaork
Tables PK.FK1 | TOID oaT b? ©
FKz | START_NODE_ID aples
EEDENR GEOMETRY_COLUMN
VERSION BIDIRECTED
VER_DATE LINK_NAME
DESC_GROUP LINK_LENGTH PATH _TABLE]
DESC_TERM cosT
NCC_TRAVEL TIME_DATA1 e HR_4 PKFK2 | PATH ID
=S HR 5
e s PRIMARY HR B START_NODE_ID
= TRUNK HR 7 FKi END_NODE_ID
ROADNATURE S cosT
TOID HR B
DIRECTION LENGTH HR 9 SIMPLE
CODE START_NODE HR1G GEOMETRY_COLUMN
ROAD NAME START_GS HR 11 PATH_NAME
LINK_LENGTH ENB_NODE HR_12 PATH TYPE
TOTAL OBS END_G= HR 13 NODE_ID
LA_CH_DATE
DAILY_SPEED HR_ 14 Fy
) LA_CH_REAS HR 15
HR 5 PROC_DATE HRT16
HR_6 GHOMETRY. HR_17
HR 7 D HR_18
HR B HR_18 PATH_LINK_TABLE1
HR_8 HR_20
HR_10 HR_21 > PK | PATH_ID
HR_11 HR_22 A
HR_12 HR_23 |
Hts ROAD. NODE_POINT1 o LN 1D
HR_14 PK | TOID FK1 END_MODE_|D
HR 15 — PATH_ID
HR_16 LEGEND A
HR_17 VERSION
HR_18 VER_DATE
HR_19 DESC_GROUP
HR_20 REF_TO_TA
HR_21 LA_CH_DATE
HR_22 LA_CH_REAS
HR_23 PROC_DATE h 4
HR_24 'y NODE TABLE
PK.FK1 | NODE ID
GEOMETRY_COLUMN
TOID_LINKID_LOOKUPA
PKFK2 | TOID TOID_NODEID. LODKUP1
PKFKT | LINK_ID
. PK.FK2 | TOID
PK TOID_DIRECTION PKFK1 | NODE ID

Figure 5.4: Database schema showing the spatial roa d network tables and

the input data tables used to generate the road net work

5.4.2 Data Input Subsystem

A simple Java command-line program was developed to poll the SOS for new
map matched observations, to wrap these observations in a SOAP envelope
and to forward them to the SES for filtering. Figure 5.1 shows that this

component provides connectivity between the SES and the SOS.

On invocation the program polls the SOS at a regular time interval using a
DescribeSensor request to retrieve an O&M ObservationCollection. This
ObservationCollection is parsed into a series of single Observations because
the current 52 North SES version cannot yet handle whole

ObservationCollections. Finally, each Observation is wrapped in a SOAP

156

Fine-grained Snapshot Geoprocessing

envelope as a WSN Notification and sent to the SES via HTTP. Listing 5.1

shows an example WSN Notification containing a map-matched Observation.

Listing 5.1: Example WSN Notification produced by S ES pusher and sent
to SES

<env:Envelope xmlins:env="http://www.w3.0rg/2003/05/ soap-envelope”
xmlns:om="http://opengis.net/om/1.0"
xmins:swe="http://www.opengis.net/swe/1.0.1"
xmins:wsa="http://www.w3.0rg/2005/08/addressing"
xmins:wsnt="http://docs.oasis-open.org/wsn/b-2"
xmins:xlink="http://www.w3.0rg/1999/xlink"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instanc e'">
<env:Header>
<wsa:To>http://localhost:8762/ses-main-3.0-
SNAPSHOT_ 2010 _05_07/services/SesPortType</wsa:To>
<wsa:Action>http://docs.oasis-open.org/wsn/bw-
2/NotificationConsumer/Notify</wsa:Action>
<wsa:MessagelD>1259772321843</wsa:MessagelD>
<wsa:From>
<wsa:Address>http://www.w3.0rg/2005/08/addressing/ role/anony
mous</wsa:Address>
</wsa:From>
</env:Header>

<env:Body>
<Notify xmIns="http://docs.oasis-open.org/wsn/b -2">
<NotificationMessage>
<Topic xmlns:sestopic="http://www.opengis.n et/ses/topics"
Dialect="http://docs.oasis-open.org/ wsn/t-
1/TopicExpression/Simple">sestopic:Measurements
</Topic>

<Message>
<om:Observation gml:id="co_1837"
xsi:schemal.ocation="http://www.opengis.ne t/lom/1.0
http://schemas.opengis.net/om/1.0.0/om.xs d
http://www.opengis.net/sampling/1.0
http://schemas.opengis.net/sampling/1.0.0 /sampling.xsd"

xmins:om="http://www.opengis.net/om/1.0"
xmins:gml="http://www.opengis.net/gml"

xmins:xsi="http://www.w3.0rg/2001/XMLSche ma-instance"
xmins:sa="http://www.opengis.net/sampling /1.0"
xmins:xlink="http://www.w3.0rg/1999/xlink ">

</gml:Timelnstant>
</om:samplingTime>
<om:procedure xlink:href="ses5"/>
<om:observedProperty xlink:href=
"urn:ogc:def:phenomenon:0GC:1.0.30
:roadID"/>
<om:featureOfinterest>
<sa:SamplingPoint gml:id="position2">

157

Fine-grained Snapshot Geoprocessing

<om:samplingTime>

<gml:Timelnstantxsi:type="gml:TimelnstantType">

<gml:timePosition>2010-04-13T14:00:08.000+01:00
</gml:timePosition>

<gml:name>position2</gml:name>
<sa:sampledFeature
xlink:href="urn:ogc:roadFeature"/>
<sa:position>
<gml:Point>
<gml:pos srsName="urn:ogc:def.c rs:EPSG:4326">
54.95528 -1.66898
</gml:pos>
</gml:Point>
</sa:position>
</sa:SamplingPoint>
</om:featureOfinterest>
<om:result>4000000008044075</om:result>
</om:Observation>
</Message>
</NotificationMessage>
</Notify>
</env:Body>
</env:Envelope>

A 52 North implementation of the SES was used in this system to filter the map-
matched observations and to notify a consumer whenever a road change event
is detected. The premise of this system is that every time a vehicle moves onto
a new road the SES will detect the change and emit a notification so that the
real-time travel-time cost of the previous road can be updated. The 52 North
SES parses complex spatial filters encoded in EML and uses an Esper CEP
engine to perform the pattern matching. In WSN terms the SES is an OASIS
compliant Notification Broker so input and output messages conform to the WS-
BrokeredNotification specifications; this WSN functionality is provided through
the Apache Muse framework. Both input and output observations are encoded
as a WSN Notification. Filters are applied to the SES by sending a WSN

Subscribe message containing the filter encoding.

An EML filter was created to identify road change events, i.e. to perform a
match every time a vehicle moves from one road, A to the next road B. This
was achieved by creating a set of simple, complex and timer pattern filters that

collectively identify road change events. Initially a simple pattern, every

158

Fine-grained Snapshot Geoprocessing

observation, was created that matches each observation received by the SES.
Subsequent filters odd and even match alternately; i.e. one matches every odd
observation and the other matches every even observation. This enables the
comparison of observation events that occur consecutively. The next two
patterns road change 1 and road change 2 detect adjacent even and odd
events for which the result value, the road’s TOID are not equal; an outcome
that signifies that a road change event has occurred. Although we are only
interested in adjacent odd and even events the EML syntax necessitates the
use of the BEFORE operator, hence there are two road change patterns, one
that matches odd before even and the other that matches even before odd.
Two final patterns remain that are used to ensure that the resulting output
notification contains the correct information, i.e. the same information that was
contained in the input notification. These patterns respectively match when

road changel and road change 2 match and output the initial input observation.

The resulting notification contains the unique identifier of the vehicle, the unique
identifier of road A and the timestamp of the road change event. The EML filter
and associated Subscribe envelope are detailed in Appendix H. This
subscription is sent to an SES instance deployed in an Apache Tomcat

container.

In order to record the aggregate traffic conditions at a centralised location it is
necessary to consolidate the notifications resulting from the SES instances and
insert them into a spatial database. Thus a Notification Consumer service was
developed to receive road change event notifications from the SES, parse them
and insert them into the central database. The JAX-WS API was utilised to
develop a one-way service, i.e. a service that does not send a response but
simply carries out some business logic when it receives a request. In this case
the service listens for notifications from the SES and uses the SAAJ API to
extract the required information from the Notification document. Subsequently
the extracted information such as the observation, road and vehicle identifiers
as well as the event timestamp are added to a prepared SQL statement and

inserted into the central database. Oracle JDBC drivers were used to provide

159

Fine-grained Snapshot Geoprocessing

connectivity to the Oracle instance hosted by the UK NGS. The service was

deployed in the Glassfish container.

5.4.3 Geoprocessing subsystem

Within the Oracle database a trigger was developed in PL/SQL to derive higher
level information such as the direction of travel, the duration and the cost of
travel from the raw notification. The trigger calculates these derived attributes
every time a new observation is inserted into the ROAD_CHANGE_EVENT
table. Initially it is important to determine the direction of travel of the vehicle so
that the resulting cost can be applied to the road link representing the correct
direction of travel. The direction of travel is calculated by comparing the identity
of the node that connects road A and road B. If the connecting node is labelled
as road A’s end node in the network table then the direction of travel along road
A is forwards. Conversely if the connecting node is labelled as road A’s start
node then the direction of travel is backwards. Duration is calculated by
subtracting the timestamp of the previous road change event for the vehicle that
submitted the observation from the current event timestamp. Travel time cost is
calculated by converting this duration from hours, minutes and seconds into
seconds. Finally each of the derived attributes and the original raw observation
are inserted into a new table PROCESSED_EVENTS. Using a new table to
store all the information results in redundancy as each observation is
duplicated. However, this is necessary as it overcomes an Oracle constraint

that prevents a trigger procedure from updating the table that it is operating on.

Once the vehicle’s direction of travel along the road link and the duration it has
spent on the road link has been established the next phase involves updating
the network cost column. To maximise flexibility it was decided that end users
should be able to perform routing queries based on either real-time data or on
the static travel speed datasets recorded by NCC. Therefore a further set of
spatial networks were defined on the STUDY_AREA_CLIPPED table by
inserting new entries into the USER_SDO_NETWORK_METADATA table for
each cost column (C_4,...,C_24) as well as a new cost column named COST to

160

Fine-grained Snapshot Geoprocessing

store the real-time data, for which the trigger is responsible for keeping up to

date.

To obtain useful and valid routes from the spatial network weighted by real-time
cost it is necessary to account for the road links for which no real-time
information is available. It is unlikely that at any given time the limited set of
available probe vehicles will collectively traverse each road segment in the
study area. Therefore it was opted to augment the real-time COST column with
the interpolated travel time dataset for the current time of day, when no real-
time information is available. An additional table COST_SET_TO(id,hour) was
defined with a single tuple to store the hour of day the COST column is currently
set to. Furthermore, an additional column, N_RT_OBS was appended to the
network table STUDY_AREA_CLIPPED to store the number of real-time
observations that have been captured for each road segment. Once derived
duration and direction attributes have been calculated the trigger then attempts
to update the real-time COST column; this is done as follows.

If COST_SET _TO is equal to the current hour of day then only one tuple is
updated in STUDY_AREA CLIPPED, i.e. the road-segment for which new
travel-time information is available. If this is the first real-time observation for
this tuple then the cost is simply set to the calculated duration and N_RT_OBS
is incremented. Otherwise the existing COST value is averaged with the

calculated duration.

However, if COST_SET _TO is not equal to the current hour of day then each of
the tuples must be updated to reflect the current time of day; this will occur for
the first observation to be inserted in each calendar hour. Subsequently, for
each road link that appears in PROCESSED_EVENTS with a timestamp within
the past hour N_RT_OBS is updated to reflect the number of observations in
PROCESSED_EVENTS and COST is calculated by averaging the calculated
durations for these observations. Finally SET_COST_TO is updated to indicate
that the COST column values for which no real-time information is available are

set to the current hour. The part of this trigger responsible for updating the

161

Fine-grained Snapshot Geoprocessing

COST column is listed as pseudo-code in Listing 5.2. The entire PL/SQL trigger

procedure is detailed in Appendix I.

Listing 5.2: Trigger procedure to update real-time COST column

IF COST_SET_TO != CURRENT_HOUR {
UPDATE STUDY_AREA_CLIPPED SET COST = HRN(CURRENT HOUR);
UPDATE STUDY_AREA_CLIPPED SET COST_SET_TO = CURREN_HOUR;
UPDATE STUDY_AREA_CLIPPED SET N_RT_OBS =0;

FOR EACH RECORD IN PROCESSED_EVENTS{
NO_OBS = number of observations in processed events that relate to
the same road_segment as this record

UPDATE STUDY_AREA_CLIPPED SET N_RT_OBS = NO_OBS WHEE TOID =
RECORD.TOID and TOID_DIR = RECORD.TOID_DIR,;

Sum_COST = the sum of RECORD.DURATION for each of N O_OBS;

UPDATE STUDY_AREA_CLIPPED SET COST = sum_COST / NO_ OBS WHERE TOID
= RECORD.TOID AND TOID_DIR = RECORD.TOID_DIR;

}
JELSE{

IF STUDY_AREA_CLIPPED.N_RT_OBS ==0 THEN {

UPDATE STUDY_AREA_CLIPPED SET COST = duration WHERE TOID = toid
AND TOID_DIR = toid_dir;

UPDATE STUDY_AREA_CLIPPED SET N_RT_OBS= 1 WHERE TOD = toid AND
TOID_DIR=toid_dir;

JELSE{
UPDATE STUDY_AREA CLIPPED SET COST = ((COST*N_RT _OBS) +
duration)/N_RT_OBS + 1 WHERE TOID = toid AND TOID_D IR = toid_dir;

UPDATE STUDY_AREA_CLIPPED SET N_RT_OBS= N_RT_OBS +1 WHERE TOID =
toid AND TOID_DIR=toid_dir;
}

ROAD_CHANGE_EVENT1

B[

PK

OBS_ID
TOID

0BS_TIME
PROCEDURE_ID

1

PROCESSED_EVENTS1

PK | ID

0BS_ID
TOID
/TOID_DIRECTION
PROCEDURE_ID
/DURATION
/COST

Figure 5.5: UML class diagram showing the parent ch ild relationship
between ROAD_CHANGE_EVENT and PROCESSED_EVENTS tabl es
162

Fine-grained Snapshot Geoprocessing

Shortest-path routing is carried out using the Oracle Network Analysis Load on
Demand (LOD) Java API. LOD is a recent feature in Oracle Spatial that
enables the analysis of networks that are too large to fit into memory. In order
to use LOD the network must be partitioned into segments that fit into memory.
Oracle contains a built in function to partition network geometry tables
automatically; it performs a spatial partition by recursively bisecting the
geometry tables until each partition is of the desired size (Oracle Wang and
Gong, 2009). Performance can also be further improved by representing each
partition as a BLOB which is defined as a very large data object whose value is
composed of unstructured binary data (Shapiro and Miller, 1999). The full
procedure to generate and partition the spatial network is detailed in Appendix
E.

Network analysis is managed through the LODNetworkManager class in the
Java LOD API. Initially the getCachedNetworklO method must be called to
obtain a handle on the network reader, subsequently analysis can be carried
out using a NetworkAnalyst object. Analysis is achieved by loading the relevant
network partition tables from the database into the user’'s private session
memory as a set of Java objects; each partition is loaded as and when it is
needed (Oracle Wang and Gong, 2009, Kothuri et al.,, 2007). The network
tables are locked for editing during analysis to prevent corruption. Data is
loaded into private session memory inside the Oracle instance from one of the
partitioned network tables at a time on the request of a remote user connected
via JDBC.

In this implementation, shortest path network analysis was carried out from a
web mapping client described in the following Section. The Dijkstra shortest
path algorithm (Dijkstra, 1959) was used to find the least cost route from source
to destination by analysing the relative cost of traversing each link using the
relevant cost column to weight each link, either HRN_4,...,HRN_24 for static

queries or COST for real-time queries.

163

Fine-grained Snapshot Geoprocessing

5.4.4 Client User Interface

A JAX-WS web service was developed to access the routing functionality
described in Section 5.4.3. The service accepts three string arguments
containing the node identifier of the start node and the end node and the cost
column on which to base analysis. It returns an ordered list of link identifiers
representing the shortest route from the start node to the end node using the
selected cost column. Internally the Oracle network analysis LOD API is used
to query the Oracle database via JDBC. The service is deployed in a Glassfish

V2 container.

Another JAX-WS web service was developed to assist users in finding the
nearest node to a particular geographical location. This service accepts an
OSGB36 coordinate pair and returns the identifier of the nearest node.
Internally this service queries the backend Oracle database by sending a
prepared SQL statement via JDBC. The nearest neighbour is identified by
using the built in SDO_NN function in Oracle spatial. The prepared statement
used to extract this information is given in Listing 5.3. The service was

deployed in a Glassfish v2 container.

Listing 5.3: SQL prepared statement to identify nea rest neighbour to
OSGB36 coordinates <easting><northing>

SELECT n.node id AS RESULT from node table n where
sdo_nn(n.geometry column,sdo_geometry(2001,27700,SD O_POINT_TYPE(
<easting>,<northing>,null),null,null),'sdo_num_res= 1)="TRUE™);

A Style Layer Descriptor document was created for each road network cost
column to display categorised views of the road network data based on travel
speed using four categories; 0-30 kmh™, 30-50 kmh™,50-70 kmh™ and >70 kmh
! coloured green, light yellow, dark yellow and red in this order. The Oracle
Geoserver plugin was installed to enable Geoserver to use the Oracle road
network as a data source and styled map layers were created for each of the
cost columns. A Geowebcache instance deployed in a Tomcat container was
used to cache each of these layers at 15 zoom levels.

164

Fine-grained Snapshot Geoprocessing

A WFS was deployed using Geoserver to serve road network features in vector
format. Using this approach web mapping clients using the Route Service and
the Nearest Neighbour Service can request specific features such as road links

and nodes from the WFS and display them on a map.

A user interface component was developed as a front end web page to enable
end users to visualise the average travel speed on the road network at different
times of the day, and to visualise shortest path routes between locations within
the study area. A screenshot of the client is shown in Figure 5.6. Open Street
Map (http://www.openstreetmap.org/) data is used to display base mapping
data, a blue polygon represents the extent of the study area and the WMTS
speed layer is shown as an overlay. There are two major user interaction
components. On the left hand side of the screen is a navigation panel that
enables the user to navigate the map using zoom and pan controls. This panel
also enables users to turn each layer on and off, or change the transparency of
each layer. On the right hand side of the screen is the routing options control
panel. Within this panel is a dropdown menu that enables the user to select the
time of day they want to travel. Selecting a new time of day causes the WMTS
travel speed overlay to update, and changes the cost column that is used to
perform any routing calculations. Alternatively the user can check the ‘use real-
time’ box which causes routing analysis to use the real-time cost column to
weight the cost of travel on each road segment. Checking this box also
changes the WMS speed overlay to only show the road links for which real-time
observations are available, all other road links are displayed in grey, although
routing analysis will weight these segments with their cost value for the current

time of day.

To calculate a route the user has to click on the ‘select start location’ button, this
creates a marker on the map and invokes the Nearest Neighbour service which
finds the closest road node to this point. This road node is then requested from
the WFS and displayed on the map in a different style; the same procedure is
carried out to select the end node. Clicking on ‘get route’ invokes the Route
service which returns the shortest route between the start and end nodes as an

array of road identifiers. This string array is translated into a WFS request

165

Fine-grained Snapshot Geoprocessing

which returns the corresponding road features and these are displayed on the

map. Clicking on reset removes all the markers and routes from the map.

The user interface was developed in Flex 4 and Actionscript 3 using the
OpenScales API. It was packaged as a web application and deployed in a

Tomcat container.

|) | EslectEtariLocation |
L SeiectEnd Logabon |
A =Y
1"’ o)
R |

= &

Mastsmepioae & ¥ CX

[GeiRode | [Resst |
i Salect Tima of Day:

[Wse Reabtime data

% O 100
Markers AV @

Select Time of Dir.
[m400s o5 |=

| =0 100%
| sutyams AVIL

. T 0%
1

[osensteenan [~
a e —C s]

#~* soued = Fhmn
sgeedt » e « Sk
Speed >kl <TRmn

spned » Tkrni

o dats

Figure 5.6: Screenshot of the user interface compon ent

5.5 Testing & Results

A thorough testing and verification process was undertaken to ensure that the
system as a whole functioned correctly. Initially each component was
individually tested to ensure that no logical errors existed in the code and that
the interfaces were correctly defined. Subsequently the system was tested in
its entirety to ensure that the whole web service workflow ran smoothly and
performed the functions required of it; namely to transform a collection of
vehicle GPS observation tracks into road network travel-time weightings. A
series of load tests were also performed on the system to determine its
maximum capacity in terms of number of vehicle sensors and volume of client
traffic.

5.5.1 Amazon Machine Image (AMI) Configuration

A collection of 304 vehicle GPS observation tracks were obtained from NCC.

The data was sourced from GPS data loggers fitted onboard a heterogeneous

166

Fine-grained Snapshot Geoprocessing

fleet of council maintenance vehicles travelling around Newcastle-upon-Tyne.
Observations were recorded throughout the day at one minute intervals on 21%
September 2010. Stop-start vehicles such as refuse disposal wagons were
excluded as their speed of travel does not give an accurate indication of road

traffic conditions.

The track data for all vehicles was provided in a single comma delimited text file
with geographical coordinates encoded using the ETRS89 reference frame.
The data was transformed and loaded into a PostGIS spatial database using a
PL/pgSQL script. The loading procedure incorporated steps to remove
corrupted observations, transform the coordinates into the WGS84 reference
frame and divide the data into a set of tables, each containing a time-ordered
sequence of observations from a single vehicle. The procedure is documented

in Appendix K.

Given the extent of the scalability issues previously identified with the 52N
implementation of the SOS and the Geoserver WFS (Section 4.4.2) it was clear
that numerous data input server instances would be required to sufficiently
strain the geoprocessing subsystem. Consequently it was decided to deploy
the data-input subsystem in the Amazon cloud wusing EC2
(http://aws.amazon.com). EC2 is Amazon’s laaS product; EC2 virtual machines

can be dynamically provisioned on-demand for a relatively low cost.

An Amazon Machine Image (AMI) was built on top of a 64-bit Windows Server
2008 operating system. Each of the web services in the data input subsystem
was installed on the AMI; the SOS, SES and WFS. Additionally, the sensor
emulator (Section 4.3.2), the SES Pusher (Section 5.4.2), the map-matching
program (Section 4.3.4) and the PostGIS database were installed. It was opted
not to install the Notification Consumer service on the AMI because this
requires JDBC connectivity to the NGS Oracle server which only allows
connections from a set of pre-approved IP addresses. Although EC2 instances
do retain their IP address until they are terminated it was opted to host the
Notification Consumer service off the cloud at a real physical host with a static

IP to avoid constant renegotiations with the NGS.

167

Fine-grained Snapshot Geoprocessing

Based on the findings of the previous Chapter (Section 4.4.2) it was decided to
run a single Geoserver WFES instance and a single 52N SOS on each EC2
node, and to allocate 10 sensors to each node. SES deployment proved to be
problematic because each sensor in this system requires its own SES instance
in order to handle stream based observation filtering. It was found that only one
SES instance could be deployed per Tomcat container and thus 10 Tomcat
containers had to be installed on the AMI, each using a different set of ports. A
Java program was written to bulk create a set of 304 virtual sensors (Section
4.3.2) and to register each of these sensors to the SOS. The set of virtual
sensors were divided into groups of 10 and placed in different directories, one
for each AMI instance. Finally, a Java program was used to create a set of
batch scripts, one for each sensor group, that invokes the data input workflow
chain. For each of the sensors in the group the sensor emulator program is
invoked which streams observations from the database into the SOS.
Subsequently the map-matching program is initiated which performs matching
by retrieving a road network subset from the WFS, after which the SES pusher
Is initiated that pushes map-matched observations from the SOS into one of the
SES instances.

Once the AMI was configured, EC2 nodes could be launched through the
Amazon web management console. It was found that an ‘ml.large’ hardware
configuration was required for each instance; this includes 7.5GB of memory
and 5 EC2 Compute Units (ECU). ECU is a metric used by Amazon to quantify
the compute capacity provided to EC2 instances; 1 ECU roughly corresponds to

a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor (http://aws.amazon.com).

5.5.2 Estimation of the Probable Route between Non-Adjacent Network
Links

This system was designed to process a dense data stream containing an
observation every one or two seconds. Consequently the assumption was
made at the system design stage that each road change event would occur

between two adjacent road links; i.e. links that share a start node or an end

168

Fine-grained Snapshot Geoprocessing

node. However, only GPS observation streams of one minute frequency were
available from NCC and initial trials with this data showed that a very small
proportion of road change events occurred between adjacent road links. The
majority of events occurred between road links that were close but not adjacent
to each other. Thus it was deemed necessary to estimate the route travelled
between each pair of road links in order to correctly determine the actual road
links travelled on, the direction of travel of the vehicle and the length of time

taken to traverse each road link.

The trigger procedure set out in Listing 5.2 was amended to estimate the path
between non-adjacent road links in a road-change event. Each time a road
change event occurs between non-adjacent links A and B a shortest path
computation is performed between the two links, based on physical distance
rather than interpolated travel-time cost. The assumption is made here that the
route taken by each vehicle between A and B will be the route with the shortest
network distance, thus road length is used to weight each link rather than travel
time cost. In order to carry out this localised shortest path computation in an
efficient manner a new road network TEMP_ NETWORK is defined on two new
tables, TEMP_NODES, TEMP_LINKS containing only the road links and nodes
within a 2Km radius of road A. Unless the vehicle is travelling at over 120Kmh™
then the second road link will fall within this radius. Similarly, in all but the most
unusual road network topologies the shortest path between the two nodes will
also lie within this radius. Once the path taken between the two road links has
been established, the time difference between the two observations is divided
amongst each of the links in the path, weighted by link length. In this way an
estimated cost is assigned to each of the links travelled on. The revised trigger
procedure is listed in Appendix I.

There are two major advantages to using this sub-network approach; firstly, to
perform a shortest path computation in Oracle it is necessary to read the entire
road network into private session memory. Using the PL/SQL API this is
impossible for the Newcastle road network as it is too large, although it can be
achieved using the Java load on demand API by reading different parts of the

network as and when they are required. The second advantage to this

169

Fine-grained Snapshot Geoprocessing

approach is that the length of time taken to perform a shortest path computation
is significantly reduced as there are considerably fewer links to scan.
Performance tests were carried out to compare the relative performance of
route calculation on both the mini-network and the full-network using 8 randomly
selected routes of various lengths. The mini-network approach was found to

outperform the full-network on average by a magnitude of 7.

As road links A and B are not adjacent the direction of travel along each link
cannot be determined by simply comparing the identity of their start and end
nodes (Section 5.4.3). The road network is directed so the shortest path
computation selects the correctly directed links between road A and road B.
However, in order to select the correct start node and end node for the shortest
path computation it is necessary to perform two comparisons to obtain the path
that travels along road A but not road B. Figure 5.7 shows the four possible
paths between road A and road B. Path 1 represents the correct configuration
as it includes the road links travelled on between TO and T1, time instants
representing the previous and current road change events respectively. To find
the correct start and end nodes, two comparisons must be performed. The start
node corresponds to the starting node of the longest path, in number of links,
between either of road B’s nodes and each of road A’'s nodes. Conversely the
end node corresponds to the ending node of the shortest path between either of
road A’s nodes and each of road B’s nodes. As travel time costs are calculated
by dividing the time difference between TO and T1 over each of the road links
that lie between road A and road B it is important that this is calculated

correctly.

170

Fine-grained Snapshot Geoprocessing

road B

road A

shortest path between road A and road B

Figure 5.7: Diagram showing the four possible path configurations
between road A and road B. Path 1 shows the correc t configuration as it
represents the distance travelled between road chan ge event at TO and

road change event at T1

5.5.3 Functional Testing for a Single Vehicle

A functional test was carried out to confirm that the system assigns the correct
cost weighting to each road link; initially only one observation stream from a
single vehicle was analysed. A map is provided in Figure 5.8 that shows the
first part of the route travelled by this vehicle which begins its journey on the
West of the map and heads in an Easterly direction. GPS observations are
depicted as grey squares on the map and their corresponding map-matched
road links are depicted as broad dashed black lines and labelled with their
identifying TOID. This observation stream is typical of the data acquired from
NCC; position is observed only at 60 second intervals and thus it can be seen
that no two map-matched roads are adjacent. There are also a small

percentage of observations which have not been map-matched due to

171

Fine-grained Snapshot Geoprocessing

discrepancies between the position and bearing of the vehicle and those of the

surrounding road network.

prﬂghtOrdnar:eSurvey“ p*® Integrated Transport Network™ | j [\ | 1 ! il)|
SRFGESN e L//,j = R\ ——H " GPS Observation
wb> o N - [\ Al N)
564500 |\ VAN L 11 & s al =s- Map-Matched Road Link
' % .| ‘L/ RIS /j | B 1
g G| A/ ‘ =y TOID of Map-Matched Road Link
= - N
SRRV W b= ~
ez - 41\‘\ J4000000007749130 ,LLQ It] T ((0 ;L \m
& s NI s \ -~ [! X . W
564000 A | ' - 5
— N\ R 4000000007749082 \ | B A - A -
7 ml - L [

// — b \i ‘] =< \‘ | \j \;{{?9000(/)!)077’5’3:;61'\ r\f‘@é@

) A . / K L 8 \”\i\:aoo?);)oooonsssu LA o% N F [
N\ N\ aQ - \] /

séz;goo D IDYQ 1 LS, } 34‘—'153518 Q |
X - I ' e Y
C l\y C/ I \ . \ **\‘ ! 4000000007753517
A _— R S ' — X
5N e T8 2B s 8
2 |\ Tk B B B & B 2 % 110000
&Y B g /B g 2 8 L 8 g 110,

Figure 5.8: Sample vehicle route showing GPS observ ations and map-

matched road links

To verify that the system works correctly the road link travel times for the above
route were calculated manually, and then compared to the travel times
produced by the system. Table 5.1 lists the raw observations, the map-
matched roads and the associated road change events as identified by the SES
for the route depicted in Figure 5.8. The duration column denotes the total
travel-time cost between road change events. The data shows that the vehicle
makes a number of stops at road links 4000000007753817,
4000000007753888, 4000000007753513 and 400000000774913. These stops
explain why road change events do not occur at each and every minute interval.
Unfortunately there is no mechanism in this system to account for stationary
parked vehicles and so these observations will cause an over estimation in
travel-time for the road links in question.

172

Fine-grained Snapshot Geoprocessing

Table 5.1: Raw Observations and their corresponding Road Change

Events
Raw Observation Map-matched road Road Change
Event
Position (OSGB36 WKT) Time TOID Time | Duration
hh:mm:ss hh:m | ss
m:ss
POINT(429528.02668635
07:57:00 4000000007753817
563592.364480371)"
"POINT(429528.02668635
07:58:00 4000000007753817
563592.364480371)"
"POINT(429544.97030135
07:59:00 4000000007753817
563579.677950211)"
"POINT(429544.071589793
08:00:00 4000000007753817
563586.535008899)"
"POINT(429535.503444385
08:01:00 4000000007753817
563591.30072277)"
"POINT(429583.836682928 08:02
08:02:00 4000000007753888
563705.871664461)" :04
"POINT(429581.839862056
08:03:00 4000000007753888
563701.221271016)"
"POINT(429571.446909098
08:04:00 4000000007753888
563707.645304683)"
"POINT(429585.017783863 08:05 | 180
08:05:00 4000000007753486
563704.766581186)" :04
"POINT(429566.335565731 08:06 | 60
08:06 4000000007753517
564046.846085716)" :04
"POINT(429164.125716246 08:07 | 61
08:07 4000000007753518
563743.193043373)" :05
"POINT(428702.622021928 08:08 | 60
08:08 4000000007753513
563441.609577328)" :05
"POINT(428347.396768455
08:09 4000000007753513
563471.443775008)"
"POINT(428346.764698489 08:10 | 127
08:10 4000000007749082
563470.141096373)" 112
"POINT(427978.09568244 08:11 | 60
08:11 4000000007749130
563603.415897156)" 112
"POINT(427202.759552821
08:12 null
563882.99326178)"
"POINT(426614.32461212 08:13 | 120
08:13 4000000007749442
564130.234670907)" 12

173

Fine-grained Snapshot Geoprocessing

Figure 5.9 shows the road links that were assigned a new cost value after
insertion of the road change events into the database. It can be seen that the
route estimated between each GPS observation on the basis of shortest
network distance appears to be valid. The calculation of travel-time cost
weighting for these road links is given in Table 5.2 for the first four road change
events. The first column in Table 5.2 shows the identifier of the previous and
the new road links, road A and road B, in addition to the duration between this
and the previous road change event. The second and third columns show the
identifier and length of each road link travelled upon between road A and road
B. In the fourth column the expected proportion of time spent travelling on the
road link is calculated by dividing the length of the road link by the total length of
road travelled between road A and road B. The fifth column shows the
calculated travel-time cost, derived by multiplying the distance proportion by the
duration. Finally the sixth column shows the results produced by the system, it
can be seen that in each case the correct result was produced.

rMap-lntegratgdWansport:?i/ : r}L T\ e

pyright Ordnance Survey Maste|
T AN '

gl

=

s\
;///,, }
HAD), R e =

N
N
O
o
18

Figure 5.9: Map showing the road links assigned a new cost value by the

system

174

Fine-grained Snapshot Geoprocessing

Table 5.2: Road link Cost Calculation from Road Cha nge Events
Road Change | Road links between | Link Proportion | Calculated | Assigned
Event Road A and B Length | of Distance | Cost Cost
(m) between A
and B Duration *
proportion
EXPLANATION The road links | Length | (link length/ | (link length | The cost
comprising the | of the | total link | / total link | weighting
shortest path | road length) * | length)* assigned to
between road A and | link 100 duration the road
road B link by the
system
Road A: | 4000000007753888 | 390.9 48.26% 86.869 86.87
4000000007753888
4000000007753889 | 147.59 | 18.22% 32.799 32.79
Road B: 4000000008046200 | 60.34 | 7.45% 13.41 13.41
4000000007753486 74660000008041716 | 73.37 | 9.06% 16.31 16.31
4000000007753552 | 26.57 3.28% 5.90 5.90
Duration: 4000000007753534 | 37.27 | 4.60% 8.28 8.28
180 seconds 4000000007753520 | 73.93 | 9.13% 16.43 16.43
809.97 | 100% 180 180
Total:
Road A: 4000000007753486 | 318.27 | 46.44% 27.87 27.87
4000000007753486 | 4000000007753533 | 55.31 8.07% 4.84 4.84
Road B: 4000000007753551 | 26.24 3.83% 2.30 2.30
4000000007753517 | 4000000007753550 | 31.24 4.56% 2.74 2.74
Duration: 4000000007753519 | 111.66 | 16.29% 9.77 9.78
60 seconds 4000000007753496 | 142.58 | 20.81% 12.48 12.48
Total: 685.30 | 100% 60 60
Road A: 4000000007753517 | 86.34 23.91% 14.59 14.58
4000000007753517 | 4000000007753516 | 56 15.51% 9.46 9.46
Road B: 4000000007753530 | 51 14.12% 8.62 8.62
4000000007753518 | 4000000007753515 | 60.13 | 16.65% 10.17 10.16
Duration: 4000000007753514 | 107.63 | 29.81% 18.18 18.18
61 seconds 361.1 | 100% 61 61
Total:

175

Fine-grained Snapshot Geoprocessing

5.5.4 Functional Testing for Multiple Vehicles

To ensure that the system is capable of estimating travel-time for more than one
vehicle another test was performed using a sample of 10 vehicles. The GPS
tracks from these vehicles intersect with each other in both time and space;
each of the tracks was recorded between 08:00 and 09:00 on 21% September
2010. In order to gauge the systems performance the state of the road link cost
column was captured every 15 minutes during this one hour period. The
performance of the system can be gauged on two levels; assignment accuracy
and travel-time cost accuracy. Respectively these measures refer to the
system'’s ability to calculate travel-time cost for the correct set of road links, and
the accuracy of the resulting travel-time costs. Unfortunately the true path
taken by each vehicle is unknown, as is the true travel-time cost of each road
link. However, by visually comparing the raw GPS observations with the set of
road links that have been assigned travel-time costs, it is possible to make a
reasonable assessment of assignment accuracy. Likewise, the interpolated
travel-time data acquired from NCC for the 08:00 to 09:00 time period provides
a best estimate of the actual travel-time on these road links and thus by
comparing the observed travel-time values with the interpolated values it is

possible to assess the travel-time cost accuracy.

Figure 5.10 displays the road links that had been assigned cost values after
running the system for one hour, alongside the raw GPS observations fed into
the system during this period. On inspection, it can be seen that a significant
proportion of road links have not been assigned a travel-time cost despite an
obvious path of GPS observations. The clearest example of this in Figure 5.10
is the cluster of observations between grid reference 421000 567500 and
422200 568500. It was found that in the majority of cases these observations
without a corresponding road link occurred during the latter part of the hour
period. By removing the clause in the trigger procedure to reset the real-time
cost column every hour it was found that these road links were eventually
assigned a cost value. Thus it can be concluded that latency in the data input
subsystem is largely responsible for this shortfall in assignment accuracy; this is
discussed further in Section 5.5.5. There are also some cases for which roads
have been assigned a travel-time cost where no vehicles have travelled upon

176

Fine-grained Snapshot Geoprocessing

them. There are two obvious examples of this in Figure 5.10 at 420800 565000
and at 420900 565200. The most likely explanation for this is that the road links
were map-matched incorrectly. Figure 5.11 shows the road links that should
have been assigned a travel-time cost; these links have been derived from

visual analysis of the raw GPS observations.

568000 Copyright Ordnancg M)Ylaster ap® Inteqr@%} Netw}QWﬁg\:W J])jw
= g? =]
5;?\\ L % /]] : o /3 L
& Mo 277 % .
AR N &

— &,
‘ / Road link assigned
5 travel-time cost
e
o

GPS Observation

D)

| I
"”"lﬂll .

[I!!.. T <
‘ S
Ll IS
R b ’,fjlé'l/’/ﬂ/j,_, B

I AT S

) L

{W: | |
4o T

Figure 5.10: Map showing the road links assigned a travel-time cost and

the raw GPS observations

568000 Copyright OrdnancelS y MasterMapﬁ Integr%ﬁ%@% Netw‘gﬁ W @l/ﬁw)jw

- %/J
8
ARSTNS
I8
-

[\,

T

)
156601 U
[
%~» T
/ Road link estimated \?\\ 7
to have been traversed °

= S

® GPS Observation : ; 3 &
Figure 5.11: Map showing the estimated set of road links that should have

been assigned a travel-time cost and the raw GPS ob servations

177

Fine-grained Snapshot Geoprocessing

To assess the accuracy of the resulting real-time travel-time costs, each real-
time cost value was compared to the interpolated travel-time cost value for the
same road link and the same time period of 08:00 to 09:00. For each 15 minute
period the mean and standard deviation of the absolute difference between the
two travel-time costs were calculated; the results are summarised below in
Table 5.3. It can be seen that there is very little change in the accuracy of the
real-time system over the hour period.

Table 5.3: Summary statistics for the absolute diff ~ erence between

interpolated and real-time travel-time costs

Sample Time 08:15 08:30 08:45 09:00
No. of Assigned Roadlinks 75 233 317 401
Mean of the absolute difference between

interpolated and real-time travel time

(seconds) 10.06 9.29 12.96 12.36
Standard Deviation of difference between

interpolated and real-time travel-time

(seconds) 12.36 11.74 17.30 19.57

Each road link’s travel-time cost value is calculated by averaging the travel time
of each vehicle that has travelled along it, thus it is anticipated that the accuracy
of each link will increase proportionally to the number of vehicles that have
travelled on it. Table 5.4 presents the mean absolute difference in travel-time
cost again, but broken down by the number of real-time observations for each
road link. This clearly shows that as more vehicles travel upon a road link the
real-time travel-time cost becomes significantly closer to the interpolated value.

Table 5.4: Mean absolute difference between interpo lated and real-time

travel-time costs by number of real-time observatio ns

No. of real-time | Mean absolute difference in travel-time cost (seconds)
observations 08:15 | 08:30 08:45 09:00

1 8.91 |6.87 9.19 9.96

2 111 | 2.42 3.01 2.12

3 0.58 0.08

4 0.17 0.17

178

Fine-grained Snapshot Geoprocessing

5.5.6 Scalability Testing

The system was subjected to an increased data load and its performance was
monitored. The load was increased by launching new AMI instances, each of
which performs data input for 10 sensors in a shared nothing configuration. As
such the expected points of failure in the system are the Notification Consumer
and the database which must handle all the database insert transactions. The
Notification Consumer was monitored by logging the time delay between each
notification and its associated road change event. Within this time period a
complex processing chain is executed; the observation is map-matched,
inserted into the SOS, pushed to the SES where it is filtered and forwarded to
the Notification Consumer. This portion of the processing chain takes 3 to 4
minutes. Subsequently the Notification Consumer waits for a free connection
and then inserts the observation into the database. Due to database atomicity
constraints (Section 2.3.2) the connection is not released until the database’s
internal trigger procedure has returned; tests show that the average processing
time of each trigger procedure was found to be 45 seconds although this figure
varies significantly depending on whether the implicated road links are adjacent.
It can be seen from the results in Table 5.5 that the delay between observation
and notification increases proportionally to the number of sensors. This
suggests that the database insert and associated trigger procedure is the
source of a bottleneck.

Table 5.5: Time Delay between Road Change Event and Notification

No. of | No. of Road Change Events per | Average time delay between road change
Sensors hour event and notification(mm:ss)

10 67 06:02

20 94 14:40

50 195 18:51

Another aspect of the database design that does not scale well was found to be
the exclusive lock required by each vehicle on the temporary network tables
used to estimate the vehicle’s path between known positions. This is likely to
account for a significant portion of the bottleneck as each vehicle’s path must be
processed sequentially. As a result of this bottleneck another flaw in the

system was observed. It was found that as the number of sensors is increased,
179

Fine-grained Snapshot Geoprocessing

observations from the same sensor are not necessarily inserted into the
database in the same order that their notifications occurred. This is problematic
as the trigger procedure relies on observations being inserted in their correct
order. Travel-time cost is calculated by comparing the time stamp of the latest
observation with that of the previous observation from the same sensor, which
is retrieved from the PROCESSED_EVENTS table. A clause in the trigger
prevents new observations from being inserted if the previous observation from
the same sensor has a timestamp that occurs after the new observation, as this
would result in a negative cost value. Clearly this is unsatisfactory because as
the number of sensors is increased the proportion of inserted travel-time

observations is reduced. Solutions to this problem are discussed in Section 5.6.

Although the scalability of this system from the data input side presents an
interesting problem the major focus of the work in this Chapter is fine-grained
snapshot geoprocessing. In this system, fine-grained snapshot geoprocessing
occurs primarily when an end-user invokes a routing query through the web
mapping client. In the scenario presented in this Chapter it is anticipated that a
high volume of end-users require the use of this real-time routing service. The
focus of this Section is determining how well the nearest neighbour and
shortest-path web services scale cope with an increased workload, rather than

attempting to increase the availability of the client application itself.

For the shortest-path service 100 start and end nodes within the study area
were randomly selected; for each set of nodes a SOAP request to the shortest-
path service was constructed. Using Apache JMeter a large set of users was
simulated using concurrent execution threads; on each thread one of the 100
shortest path requests was randomly selected and sent to the service. For the
nearest neighbour service the same procedure was followed, although
randomly selected coordinates from within the study area were used in place of
start and end nodes. The results are displayed in Table 5.6 and Figure 5.12.
Surprisingly the response time for each of these services is similar, despite the
greater computational complexity of the shortest-path service. These results

are promising and show that the services scale well to a large number of users;

180

Fine-grained Snapshot Geoprocessing

only a 14 second delay is experienced when 500 different requests are made

simultaneously.

Table 5.6: Response Time of Shortest Path Routinga nd Nearest

Neighbour Web Services

No. Threads Shortest Path Response Time | Nearest Neighbour
Response Time
1 544 532
10 569 558
20 609 615
50 1476 1265
100 2758 2306
250 7426 6867
500 12731 14113
16000 -
14000 - A

12000 -

10000 ~

Response Time (ms)
[ee]
o
o
o
Il
>

6000 ~
4000 -
| Y
2000 -
Ll
1 100 199 298 397 496

No. of Threads

‘ —m— Shortest Path Route Service —a— Nearest Neighbour Service ‘

Figure 5.12: Response Time of Shortest Path Routing and Nearest

Neighbour Web Services
No attempt was made to test the scalability of the Geoserver WFS and WMS or

the GeoWebCache WMTS as these services are not anticipated to present a

bottleneck in the system.

181

Fine-grained Snapshot Geoprocessing

5.6 Discussion

In this Chapter a road traffic monitoring system has been designed and
implemented that incorporates elements of data stream geoprocessing and fine-
grained snapshot geoprocessing. The system is composed of geospatial web
services and a parallel relational database hosted by the NGS. Additionally the
Amazon EC2 cloud infrastructure has been utilised to deploy the system on a

large scale.

This system has successfully demonstrated how real-time geospatial sensor
data streams can be filtered and processed using a complex geoprocessing
workflow. A variety of open standards have been incorporated into this system
including SOS and SES elements from Sensor Web Enablement, WMS, WMTS
and WFS elements from OWS and WSN from the OASIS framework.
Furthermore SOAP based and RESTful services have been seamlessly
combined into a unified workflow. It was found that the SES SOAP bindings
and the adherence of the SES interface to WSN specifications presented a
useful alternative to the traditional OGC RESTful interface. The key advantage
of this interface was that the Notification Consumer service could be easily
constructed using the Metro JAX-WS stack (https://jax-ws.dev.java.net/) and a
standard WSDL document published by OASIS. This ease of deployment
provides a good example of the benefits of creating SOAP bindings for OGC

services.

It was observed that integration of the SOS and the SES could be improved. In
this system the SES is made aware of new observations in the SOS through a
bridge program, the SES pusher. This program polls the SOS every two
minutes using a RESTful HTTP request, parses the resulting observations,
encodes them as a WSN notification and sends them to the SES. There are a
number of problems with this approach. Firstly, this process introduces latency
as there may be a delay of up to two minutes before the SES is aware of new
observations at the SOS. Secondly, the process of parsing and reformatting the
observation document is computationally expensive which increases the use of
computational resources and could also introduce a processing bottleneck.
Finally, this approach adds an additional layer of communication which

182

Fine-grained Snapshot Geoprocessing

contributes to latency and which may also produce a bottleneck if observations

are voluminous.

One solution to this problem would be to move the SES forward in the
processing chain; raw observations could be fed directly into the SES which
would forward these observations to both the SOS and the map-matcher
program. The map-matcher program could then output map-matched
observations as notifications to another SES which both archives the
observations in the SOS and forwards road change events to the Notification
Consumer program. Alternatively an integrated service could be developed that
publishes both an SOS and SES interface, thus enabling both push and pull
access to observations from a single data service. An integrated service would
greatly simplify sensor web workflows but is unlikely to be developed unless the

SES is approved as a SWE standard.

The use of a parallel spatial relational database to perform the bulk of
geoprocessing in this system produced mixed results. Road network data
provides a good fit to the relational data model and there is a clear performance
advantage to carrying out fine-grained geoprocessing operations such as
shortest path and nearest neighbour analysis in close proximity to the physical
data store. However, insertion of new observations into the database produced
a bottleneck. In part this was due to the system design that appended a block
of pre-processing to the insert transaction, thus monopolising database
connections for a lengthy period of time. Another contributing factor was that
insertions were being made on an individual basis; aggregating a collection of
new observations and performing a bulk insert is likely to have reduced the
bottleneck although it would have further increased latency.

An interesting question is whether relational databases are a suitable storage
medium for real-time sensor observations. The ACID guarantees (Section
2.4.2) of a relational database ensure that data consistency is maintained but at
the expense of availability (Lynch and Gilbert, 2002). As a result it is difficult to
constantly update a data aggregate stored in a relational database and to query

it concurrently because records are locked while they are being updated.

183

Fine-grained Snapshot Geoprocessing

Furthermore, sensor data is notoriously unreliable and systems need be robust
to corrupt and erroneous observations, which violate ACID constraints. The
new movement of NOSQL databases show promise for storing sensor data as
they have more relaxed consistency rules (Leavitt, 2010). However, to date

such systems are only capable of the most trivial spatial analysis operations.

The concept of sensor-network databases (Madden, 2002, Govindan et al.,
2002) also present an interesting solution to this problem. Sensor-network
databases are capable of running analysis on a network of sensors without
storing the data in a centralised location; queries are processed in-network.
Although these sensor-network database systems have been successfully used
for wireless sensor networks (Gaynor et al., 2004), it would be difficult to
implement for this traffic monitoring system. Our aggregated dataset is not an
aggregation of raw observations; rather it is a derived phenomenon of
approximated road link travel times. As such it would not be possible to retrieve
this information directly from sensors as a pre-processing chain must first be

executed.

Part of the problem with the data input system design was that it relied on
observations being inserted into the database in the order that they occurred. It
was found that this condition did not hold true as the number of input sensors
was increased. A simple solution to this problem would be to add another layer
of abstraction to the SES. In its current state the SES emits a road change
events to the Notification Consumer containing only the timestamp of the event
and the identifier of the current and previous road links. This could be improved
by including the timestamp of the previous road change event, thus providing
enough information for the trigger to calculate travel-time costs for each road
link regardless of the order in which the road change events arrive at the

database.

57 Conclusion

This system has demonstrated how fine-grained snapshot geoprocessing can

be incorporated into an end-to-end monitoring and prediction system. The

184

Fine-grained Snapshot Geoprocessing

system did not scale well to a large number of data input sensors due to a
bottleneck caused by the insertion of processed observations into the database.
Aggregation of observations before insertion into the database presents a
potential solution to this problem. NOSQL databases may also present a
solution as they do not adhere to the strict consistency rules of traditional
relational databases. This technology has not yet reached maturity and has
poor support for spatial data, although it does present an interesting topic for

further research.

No attempt was made to scale this system over a larger geographical area. Itis
anticipated that the shortest-path geoprocessing operation would scale well in
this regard because it operates on a set of partitioned tables and utilises a load-
on-demand approach to processing. However, the problem of scaling over
multiple vehicles would have to be solved before this could function as an
effective system.

185

Coarse-grained Snapshot Geoprocessing

Chapter 6 Coarse-Grained Snapshot Geoprocessing

6.1 Introduction

This Chapter details the design and implementation of a geoprocessing system
that executes a CGSG operation in parallel. The operation is an
implementation of the Spatial Reclassification Kernel (SPARK) image
processing algorithm which has been modified to run on Amazon’s EC2 Elastic

MapReduce service.

Applying the SPARK algorithm to a classified image has been shown to improve
the precision of thematic classification by translating broad land cover classes
such as trees or buildings into more specific land use classes such as
residential housing or industrial wasteland (Barnsley and Barr, 1996). The
SPARK algorithm operates by passing a kernel window over a classified image
and comparing the spatial frequency and arrangement of pixels in each kernel
window to a set of predefined land use templates.

We have found that the SPARK algorithm is a good fit to the MapReduce
programming model and that its execution time can be significantly reduced by
applying the presented MapReduce (Section 2.4.3) approach. A major goal of
this work is to evaluate the effectiveness of the cloud infrastructure at

performing parallel CGSG operations in an efficient and scalable manner.

6.2 Background and Context

6.2.1 Elastic MapReduce

Amazon offers an Elastic MapReduce service (http://aws.amazon.com/
elasticmapreduce/) that enables the elastic deployment of MapReduce jobs on
their EC2 infrastructure using Hadoop (http://hadoop.apache.org), a popular
open-source java implementation of the MapReduce framework. Elastic
MapReduce fits into the PaaS category of distributed system as it encompasses

a software framework, Hadoop MapReduce, as well as hardware resources;

186

Coarse-grained Snapshot Geoprocessing

EC2 and S3. Amazon S3 (http://aws.amazon.com/s3/) is a set of web services
that provide redundant and scalable data storage as a service. MapReduce
jobs are elastically deployed onto EC2 instances using S3 as a back-end data
resource. As such entire workflows can be executed remotely on the Amazon

infrastructure without consuming any local computational or data resources.

Key benefits of MapReduce include the automatic handling of fault-tolerance,
load balancing and data distribution, thus it shields the developer from many of
the complexities of parallelisation. Hence the framework offers a relatively
straightforward way to develop task-farm style distributed applications.
However, MapReduce has attracted criticism on the basis that it is inferior to
parallel relational DBMS for many applications and has even been described as
a ‘major step backwards’ by prominent members of the parallel database
community (Dewitt and Stonebraker, 2008b, DeWitt and Stonebraker, 2008a,
Stonebraker et al., 2010). The main criticisms levelled at the MapReduce
model by Stonebraker et al (2010) are summarised here. Firstly, MapReduce
does not make use of indexes or columns to rapidly access data items of
interest; instead it uses a brute-force approach that requires each data record to
be scanned in its entirety. This has the effect of reducing performance for query
intensive operations on relationally structured data. Secondly, MapReduce
natively operates on text files and thus each record must be parsed before it
can be operated on. Conversely parallel DBMS store typed data and so the
parsing stage can be omitted in each processing workflow. Thirdly, MapReduce
schedules tasks to each worker node at runtime using a fixed data granularity
corresponding to the storage block size. This is considerably less efficient than
the approach taken by parallel DBMS in which tasks are scheduled and
optimised at compile time by means of a distributed query plan. Fourthly,
parallel DBMS use streaming to transport data between nodes whereas
MapReduce writes intermediate data structures to disk between the Map and
Reduce stages, thus introducing another 10 bottleneck into the workflow.

Despite these criticisms, Stonebraker et al (2010) concede that MapReduce
works well for certain types of operation. Notably, MapReduce excels at

Extract, Transform, Load (ETL) operations that extract data from heterogeneous

187

Coarse-grained Snapshot Geoprocessing

data sources, performs a transformation and loads into a database. Additionally
it is considered a useful tool for processing operations on non-structured data.
An overview of MapReduce work in the geospatial domain is provided in
Section 2.4.3.

The work presented in this Chapter fits into the raster processing category but
rather than performing a simple raster algebra operation it attempts to execute
an algorithmic workflow by applying a processing kernel to an image and
comparing the similarity of resulting kernel windows with a set of predefined

land-use templates.

Figure 6.1 outlines a component diagram showing the basic components of

Amazon's Elastic Map Reduce.

Elastic MapReduce API

S3 API
Hadoop EC2 API

Block Storage Compute Cluster

Figure 6.1 Component Diagram of Elastic Map Reduce

6.2.3 The Spatial Reclassification Kernel (SPARK) Algorithm

The remainder of this Chapter describes the implementation of the SPARK
algorithm using MapReduce on the Amazon cloud. Originally developed by
Barnsley and Barr (1996) this algorithm reclassifies satellite sensed imagery to

improve land-use type inference.

Classification algorithms typically do not perform well in urban areas due to the
large number of spectrally distinct land-cover types in close proximity to each

other. Barnsley and Barr (1996) have presented a reclassification algorithm,

188

Coarse-grained Snapshot Geoprocessing

SPARK that translates broad spectral land-cover types such as building, trees,
water, grass and tarmac into more specific land-use categories such as
agricultural, residential and industrial. This is accomplished by passing a kernel
over the classified image in which each kernel window is compared to a set of
pre-defined land-use templates and the central pixel of each kernel window is
reclassified to the most similar land-use type. The similarity between each
kernel window and the set of pre-defined land-use templates is determined
through the examination of frequency and spatial arrangement of pixels in each

window. The SPARK process is described here in 5 steps:

1. Perform an Initial Classification of a Satellite Sensed Image into Land-
cover Types.

Classification is the process of identifying the real-world land-cover type of each
pixel in a remotely sensed image, and assigning the pixel a new value to
indicate this land-cover type. Classification techniques fall into two major
categories referred to as supervised and unsupervised classification
respectively. Supervised classification requires a-priori knowledge of the study
area in the image; training areas in the image exemplar of each land-cover type
must be identified manually. The remaining pixels in the image are grouped
into one of the land-cover types defined by the training areas based on their
spectral similarity. Unsupervised classification algorithms perform a similar
process but without manual user intervention; land-cover types are inferred
based on the spectral separability of pixels in the image. A variety of methods
exist for performing both supervised and unsupervised classification; a full

treatment is given in Mather (2004).

2. Define a set of Land-use Templates

Identify the major land-use types in the study-area using a-priori knowledge,
and for each of these land-use types select a training area on the classified
image that is representative of each land-use type. Define the size of kernel
window to be used in the analysis, and then for each land-use class take a
template for this window size from a random location within the polygon or set

of points that have been recognised as belonging to the given land-use class.

189

Coarse-grained Snapshot Geoprocessing

The random location forms the centre pixel of the template window and the

adjacency events are derived relative to this random location.

3. Calculate Adjacency Matrices

For every given kernel window and land-use template a corresponding
adjacency matrix must be defined. An adjacency matrix is an immutable matrix
with width and height equal to the number of land-cover types defined in the
classified image. Each adjacency matrix contains the frequency and type of
adjacency event that occurs between different land-cover type pixels in a
window. Adjacency events refer simply to a pair of contiguous pixels; for
example if two pixels classified as grass occur next to each other in a window
then it can be said that a grass-grass adjacency event has occurred. Adjacent
edges and adjacent vertices in each window are counted in this way but only
one adjacency event exists for each pair of pixels, thus two adjacent pixels
grass and tree would only result in a single adjacency event grass-tree, not
grass-tree and tree-grass. Figure 6.2 shows the adjacency events in a 3x3
kernel window. Adjacency-events are grouped together in an adjacency matrix
M that stores the frequency f; with which pixels from land-use i and pixels from

land-use | are adjacent (Equation 4).

4
I\ - | A - - N
> « » v
» Vertex
Adjacency
Events
Y ¥ 4 YV ¥ Y v
i > i >
A A A 4
i 4 LS «
i} -
» " » 'y t Edge
v L) Y Adjacency
“ = “ - Events
Y

Figure 6.2: Adjacency Events in a 3x3 Kernel Window [adapted from
Barnsley and Barr (1996)]

190

Coarse-grained Snapshot Geoprocessing

11 f12 f13
f, T Equation 4

<

]
— —h —h

N

31 f 32 f 33

4. Calculate Kernel Window and Template fit

The similarity between a kernel window and a land-use template is measured
by comparing their respective adjacency matrices and normalising the result.
For a given classified image the similarity between an image adjacency matrix
Aj and a template adjacency matrix Tjcan be expressed as an index between 0
and 1. This index is referred to as Ak and can be calculated using Equation 5,
where C is the number of land-use types and N is the total number of adjacency
events in the window, i.e. 20 for a 3x3 kernel or 72 for a 5x5 kernel. The
resulting metric, Ak, represents the degree of coherence between the two
windows and ranges from 0 which indicates no similarity to 1 which indicates an

exact match.

2

1 C C .
Ak =1- Z(NZ)ZZ{A,j(f)—'I'U(f)} Equation 5

i=1 j=1

5. Perform Reclassification

A new output image is defined to represent the reclassified study-area. Each
pre-defined land-use template is mapped to a byte value in the output image;
e.g. industrial O, residential 1, agricultural 2. The location of each pixel in the
reclassified output image corresponds to the central pixel of each kernel window
on the input image. Thus, for each kernel window the corresponding pixel in the
output image is assigned to the byte value of its most similar land-use template;
l.e. the template that has the maximum value of Ak for the corresponding

kernel window.

6.3 Design & Implementation

The SPARK algorithm is suitable for coarse-grained parallelisation because it
involves repetitive computation on independent subsets of the classified image.

The significant portion of computation in this algorithm is the calculation of an

191

Coarse-grained Snapshot Geoprocessing

adjacency matrix and Ak for each kernel window. For example, let us consider
a simple processing scenario involving the reclassification of a 3000 x 5000
pixel image using a 3x3 kernel window and 5 land-use templates. Computation
of an adjacency matrix and Ak must be performed for every pixel except for
those on the outside perimeter of the image due to incomplete kernel window
information; this amounts to (3000 x 5000) — 15996 = 14,984,004 pixels.
Adjacency matrix construction involves 20 comparison operations for each 3x3
kernel, and comparison with each of the 5 land-use templates involves at least
another 10 arithmetic operations. Thus (14,984,004 x 20) + (14,984,004 x 10 x
5) = 1,048,880,280 instructions must be processed even for this simple
example. The work presented here will concentrate on parallelising the
calculation of adjacency matrices and Ak as set out in steps 3 and 4 in Section
6.2.3 with the aim of reducing the overall processing time. An overview of the

workflow described in the following text is outlined in Figure 6.3.

192

Coarse-grained Snapshot Geoprocessing

executables

Raw image
(NetCDF)

l

classify

Classified
image Construct Land-use

(NetCDF) templates templates

Upload to 53 convert Upload to S3

Classified
Image
(Sequence
File)

Upload to S3

Elastic Map Reduce

Reclassified
Image
(Sequence
File)
|

Download from S3

Reclassified
Image
(Sequence
Fille)

convert
¥

Reclassified

Image
(NetCDF)

Figure 6.3: Pre and post processing stages in the MapReduce SPARK

workflow

6.3.1 Data Partitioning

Hadoop automatically divides input data files into chunks referred to as input
splits and allocates these amongst available processors. The size of an input
split typically corresponds to the file block size which defaults to 64MB in the
Hadoop File System (HDFS) although it is possible to customise both the input
split size and the file-block size. Input data can be passed to Hadoop in text or
binary format but must be comprised of key-value pairs that are referred to as

records. Thus data partitioning involves two major elements; selecting an

193

Coarse-grained Snapshot Geoprocessing

appropriate input split and file block size, and selecting the type of data item to

encode in each record.

The input data for the SPARK algorithm is an image of the study area, classified
by land-use. In the first instance it was opted to partition this dataset into kernel
windows. For a given kernel window of dimension n pixels, every pixel P in the
image with the exception of those that are less than (n-1)/2 pixels from the edge
of the image, has a corresponding kernel window W. The kernel window W is
simply a square subset of the image, centred on P with a width and height of n
pixels. A custom java object Window was designed to represent each kernel
window, comprised of a two-dimensional byte array to store the pixel values,
and an IntPair field, comprised of two integer values denoting the Cartesian
coordinates of the window kernel’s central pixel P in relation to the image. The
Window object implements Hadoop’s Writable interface which enables it to be
serialized and deserialized internally by Map and Reduce functions in Hadoop.
The IntPair field implements Hadoop’s WritableComparable interface, an
extension to the Writable interface that enables the results to be sorted. Using
the Unidata NetCDF java library (http://www.unidata.ucar.edu/software/netcdf/)
a java method was written to read a classified image in NetCDF format into an
array of Window objects and to write these objects to a SequencekFile, a binary
encoded file format specified by Hadoop that can be used as input to a
MapReduce job. For each kernel window a record was written to the
SequenceFile containing the kernel window’s image coordinates as an IntPair in

the key field and the serialized Window object in the value field.

This partitioning method was chosen because it prepares the input data for
subsequent processing operations; the calculation of each adjacency matrix
and Ak can easily be performed by the Map function by simply deserializing
each Window object. However, this approach to data partitioning was found to
be extremely inefficient due to the considerable expansion in file size from the
raw image to the SequenceFile. For a 9x9 kernel window the transformation of
a 12MB NetCDF file into SequenceFile format resulted in a SequenceFile over
2GB in size which took over 10 hours to upload to S3 from a standard

broadband internet connection. Consequently an alternative partitioning

194

Coarse-grained Snapshot Geoprocessing

strategy was sought; it was decided to write larger blocks of data to each
SequenceFile record in an attempt to reduce the amount of data redundancy in
the SequenceFile.

A new partitioning method was devised with a lower level of data granularity.
This was found to be considerably more efficient in terms of storage volume and
upload speed; it is described as follows. For a kernel window dimension of 3
pixels, a classified image of width 5000 pixels is subdivided into two-
dimensional blocks of data of 5000 pixels width and 3 pixels height. Each block
is serialized into a java object referred to as a RowSet containing a two
dimensional byte array of 3 x 5000 pixels and a text field indicating the position
in the image of the block’s central row. A SequenceFile record is written for
each RowSet object containing the x coordinate of the central row as the key,
and the serialized RowSet as the value. Using this approach for a 12MB
NetCDF image and a 9x9 kernel window the generated SequenceFile was

reduced to 108MB in size and took only 42 minutes to upload.

The downside of this approach is that each Map function has to convert the
RowSet into an array of Window objects and generate an adjacency matrix and
Ak for each of these kernel windows, thus reducing the data granularity of the
Map task. For an image of width x pixels and height y pixels, Equations 3 and 4
relate the SequenceFile storage volume S, to the image size and the kernel
window dimension n for the Window method (Equation 6) and the RowSet
method (Equation 7) given an arbitrary key size of k. It can be seen that the
RowSet method reduces the storage volume of the resulting SequenceFile by a

factor of n.

S, =n’k(x—-n+1)(y-n+1) Equation 6
Sv = nyk(X —Nn+ 1) Equation 7

As a consequence of this more compact file format the amount of computation
to be performed in each InputSplit is considerably greater, resulting in a lower

data granularity and a reduced ability to exploit as many processors. To
195

Coarse-grained Snapshot Geoprocessing

compensate for this it was decided to reduce the file block size and input split
size from 64MB to 8MB, thus enabling a job with a 108MB input file to be

distributed amongst 14 processors rather than 2.

6.3.2 Hadoop Configuration

Hadoop provides a mechanism referred to as a Distributed Cache that makes a
small set of auxiliary files available to each MapReduce process. This was
used to supply each MapReduce process with a copy of land-use templates
with which to compare each Window. A further set of Window objects were
created to store the land-use templates and these were initialised with the
template’s byte code value in the key field, and a land-cover pixel arrangement
exemplar of the template’s land-use category in the byte array. An additional
mapping file was also distributed to each processor containing a mapping of

each land-use type to its corresponding byte code value in the image.

Each land-use template Window object was serialized and uploaded to an
Amazon S3 storage bucket, as was the SequenceFile and the mapping file. A
java archive file containing the SPARK logic encoded as Hadoop Map and

Reduce processes (Section 6.3.3) was also uploaded to S3.

6.3.3 The Map and Reduce Functions

A custom map function was written to read each record from the SequenceFile
containing RowSet key-value pairs into an array of Window objects, and to
transform these Window objects into a different set of key-value pairs as set out

in the following steps:

1. Calculate the adjacency matrix for the kernel window
2. Calculate the adjacency matrix for each land-use template
3. Compare the window kernel’'s adjacency matrix to the adjacency matrix

of each land-use template to produce a value for AKk.
4. Emit a new key-value pair for each land-use template using the window
kernel's image coordinates as the key and a new key-value pair as the

196

Coarse-grained Snapshot Geoprocessing

value, in which the key is the byte value of the land-use type represented

by the template and the value is Ak.

A custom reduce function was written to combine records with the same key,
and to emit a single key value pair containing the identifier of the window and
the byte value identifier of the land-cover template with the greatest value of
Ak, i.e. the land-cover that is most similar to the kernel window. The map and

reduce processes using the approach described here are detailed in Listing 6.1.

Listing 6.1: SPARK Map and Reduce Functions

map(RowSetldertifier, RowSef) - list(\Windowl dertifier, (Templatel aentifier, Ak)
reducgWindowl dertifier, list(Templatel dentifier, Ak)) — list(Windowl dertifier, Templatel dentifier)

6.3.4 Output Conversion

Hadoop produces an output file for each reducer process and because each
window’s image coordinates are stored as IntPair objects which implement
WritableComparable the results are sorted by image coordinates. A java
method was written to combine the output files and generate a new NetCDF file

containing the re-classified image.

6.4 Testing & Evaluation

6.4.1 Test Scenario

A multispectral (XS) SPOT-1 HRV image of South East London (4195 x 2995
pixels) was selected to test this system. Using ERDAS Imagine software
(http://'www.erdas.com/) the image was geometrically corrected to fit the British
National Grid using a nearest neighbour resampling method. The image was
classified using a Maximum Likelihood supervised classification that identified
six land-cover classes; water, grass, crops, forestry, small buildings and large
buildings. The classified image was converted into NetCDF format using the
GDAL library (http://www.gdal.org/) and the FWTools package
(http://fwtools.maptools.org/). The full pre-processing, classification and format

conversion procedures are detailed in Appendix J. The confusion matrix for this

197

Coarse-grained Snapshot Geoprocessing

land-cover classification is shown in Table 6.1, and the classified image is

shown in Figure 6.4.

. grass
. forest

. large building

W e

small building

. Crops

Figure 6.4: Supervised Classification of a SPOT-1 H RV image of South
East London

198

Coarse-grained Snapshot Geoprocessing

Table 6.1: Confusion Matrix for Land-cover Classifi cation

Land Cover | unclassifie | small large

Type d building building |forest Crops dgrass water
Unclassified 218 0 0 0 0 0 0
small building 0 39 3 2 0 3 1
large building 0 2 6 0 0 1 0
forest 0 3 0 23 10 26 0
crops 0 0 0 4 11 0 0
grass 0 1 1 0 39 0
water 0 0 0 0 0 0 5
Total test pixels | 218 45 10 31 21 69 6

Overall Kappa Statistics = 0.7684

Overall Classification Accuracy = 84.75%

Following the approach set out by Barnsley and Barr (1996), nine land-use
templates were created from the classified image; low-density residential,
medium-density residential, woodland, arable farmland, permanent pasture,
water, commercial/industrial, vacant / fallow land and unclassified. The
templates were sampled at random from large training areas in the image using
a-priori knowledge of the study area gained from large scale Ordnance Survey
mapping; a 9x9 pixel kernel size was used. The land-use templates are

detailed in Appendix K.

A wizard-based Java tool was developed to facilitate the preparation and
uploading of input files and to handle job invocation and monitoring. Using this
tool the job is prepared and invoked over seven stages; definition of land use
templates, definition of mapping file, conversion of input file from NetCDF to
SequenceFile, upload of input files to S3, submission and monitoring of job,
download of result files and conversion back to NetCDF format.

6.4.2 Results

The resulting re-classified image is shown in Figure 6.5. An accuracy

assessment was performed on the image which shows that the reclassification

199

Coarse-grained Snapshot Geoprocessing

was successful. A confusion matrix for the reclassification is given in Table
Table 6.2.

R
- low density residential - woodland
- medium density residential - wasteland

commercial / industrial arable

- water pasture

Figure 6.5: SPARK Re-classified Image of South East London
Table 6.2: Confusion Matrix for Land-Use Reclassifi cation

Uncl | W | Ar | Pas | Woo | Wast | Low Medium Com
Land-Use) i i i
- assif | at |abl |tur |dlan | elan | density density merci
e

P ied er |e e d d residential residential al
Unclassified 188 0 0 0 0 0 0 0
Water 0 3 0 0 0 0 0 0 0
Arable 0 0 9 1 0 0 0 0 0
Pasture 0 0 0 26 0 1 0 0 0
Woodland 0 0 7 13 35 5 0 2 0
Wasteland 1 0 1 4 1 15 1 1 0
Low density

]] 3 0 0 2 0 1 45 20 3

residential
Medium 0
density 0 0 0 1 1 0 6 1
residential
Commercial 0 1 0 0 0 0 2
Total test

) 192 4 17 | 46 37 23 46 29 6
pixels

200

Coarse-grained Snapshot Geoprocessing

Overall Kappa Statistics = 0.7551

Overall Classification Accuracy = 82.25%

The algorithm was computed several times on different processing architectures
in an attempt to measure the performance improvement resulting from
parallelisation. The tested architectures include stand-alone Hadoop running
locally on an Intel Core i-3, 2.13 GHz processor and Hadoop running on
different sized Amazon EC2 instances using Amazon Elastic Map Reduce.
Amazon measure computational power in EC2 compute units, one of which is
approximately equivalent to a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon
processor (http://aws.amazon.com); specifications of the different Amazon
instance types are detailed in Table 6.3. To provide a meaningful indication of
performance the algorithm was also executed on a local standalone processor
as a native java job. Results are detailed in Table 6.4 and Figure 6.6. Note that
the processing time referred to in Table 6.4 includes upload and download

times, not solely execution time.

201

Coarse-grained Snapshot Geoprocessing

Table 6.3: Amazon EC2 Instance Type Specifications

Instance Instance EC2 | Mem | Default Default No. | /O Elastic

Type Name Com | ory No. Concurrent | Performa | MapReduc
pute | (GB) | Concurre | Reduce nce e price per
Units nt Map | Tasks Per hour in EU

Tasks Node / Ireland
Per Node ($USD)

Small ml.small 17 2 1 Moderate | 0.015

Large ml.large 4 7.5 4 2 High 0.06

Extra Large | ml.xlarge 15 8 4 High 0.12

High m2.xlarge 6.5 17.1 | 4 2 Moderate | 0.09

Memory XL

High m2.2xlarge | 13 342 |8 4 High 0.21

Memory

Double XL

High m2.4xlarge | 26 68.4 | 16 8 High 0.42

Memory

Quadruple

XL

High CPU | cl.medium |5 1.7 4 2 Moderate | 0.03

Medium

High CPU | cl.xlarge 20 7 8 4 High 0.12

XL

202

Table 6.4: Processing Time of the SPARK algorithm o

land-use templates

n increasing numbers of processors for a 4195 x 299

5 pixel image and 9

Platform Processing Time

Hadoop /| Processor No. Conversion to | Upload to S3 from | Execution Download from | Conversion to | Total

Native Processors SequenceFile local machine Time S3 NetCDF

Native Intel Core i-3 1 N/A N/A 1:13:20 N/A N/A 1:13:20
2.13Ghz

Hadoop Intel Core i-3 1 00:00:30 N/A 1:37:00 N/A 00:1:20 1:38:50
2.13Ghz

Mr EC2 Medium EC2 1 00:00:30 00:42:00 01:06:00 00:01:55 00:1:20 1:51:45
High-CPU

Mr EC2 Medium EC2 4 00:00:30 00:42:00 00:28:00 00:01:55 00:1:20 1:13:45
High-CPU

Mr EC2 Medium EC2 8 00:00:30 00:42:00 00:14:00 00:01:55 00:1:20 00:59:45
High-CPU

MR EC2 Large EC2 1 00:00:30 00:42:00 00:46:00 00:01:55 00:1:20 01:31:45

MR EC2 Large EC2 2 00:00:30 00:42:00 00:45:00 00:01:55 00:1:20 01:30:45

MR EC2 Large EC2 4 00:00:30 00:42:00 00:20:00 00:01:55 00:1:20 01:05:45

MR EC2 Large EC2 8 00:00:30 00:42:00 00:08:00 00:01:55 00:1:20 00:53:45

MR EC2 X Large EC2 1 00:00:30 00:42:00 00:30:00 00:01:55 00:1:20 01:15:45

MR EC2 X Large EC2 2 00:00:30 00:42:00 00:28:00 00:01:55 00:1:20 01:13:45

MR EC2 X Large EC2 4 00:00:30 00:42:00 00:14:00 00:01:55 00:1:20 00:59:45

MR EC2 Small EC2 1 00:00:30 00:42:00 04:06:00 00:01:55 00:1:20 04:51:45

MR EC2 Small EC2 00:00:30 00:42:00 04:05:00 00:01:55 00:1:20 04:50:45
MR EC2 Small EC2 4 00:00:30 00:42:00 01:28:00 00:01:55 00:1:20 02:13:45
MR EC2 Small EC2 00:00:30 00:42:00 00:46:00 00:01:55 00:1:20 01:31:45
MR EC2 Small EC2 16 00:00:30 00:42:00 00:24:00 00:01:55 00:1:20 01:09:45
MR EC2 Small EC2 20 00:00:30 00:42:00 00:25:00 00:01:55 00:1:20 01:10:45

Coarse-grained Snapshot Geoprocessing

06:00:00

04:48:00 - By
. \ — = EC2Small
= 03:36:00 | \ —— EC2 Medium (High CPU)
=y ' —&— Local Hadoop
2 —¢— Local Native
[] . .
S 02:24:00 _ - EC2 Large
& .--e-- EC2 X Large

01:12:00 -

00:00:00

1 2 4 8 16 20
No. Processors

Figure 6.6: Processing Time of the SPARK algorithm for a 4195 x 2995
pixel image and 9 land-use templates using differen t Elastic Map Reduce

configurations

It can be seen in Figure 6.6 that for each processor type, as the number of
processors increase, the marginal increase in performance diminishes.
Furthermore, when using more than 4 processors, there is very little difference
in processing time for each instance type except for EC2 Small. Consequently,
the deciding factor when selecting the appropriate processing type for a given
job may come down to cost. In Figure 6.7, processing time is plotted against
the total execution cost for the given EC2 processor types. It can be seen that
at the $0.24 price point 8 Medium EC2 High CPU gives the best performance at
14 minutes, compared to 4 Large EC2 ($0.24, 20 minutes) and 2 XL EC2
processors ($0.24 28 minutes). Similarly at the $0.12 price point, 4 Medium
EC2 High CPU computes in a favourable 28 minutes compared to a single XL
EC2 which computes in 30 minutes. It can thus be concluded that the Medium
EC2 High CPU instance type offers the best cost performance, although the
single Large EC2 instance type offers the best value for money at the cheapest
price point of $0.06, and also offers the best overall performance at 8

processors with an overall processing time of 8 minutes.

205

Coarse-grained Snapshot Geoprocessing

04:19:12
03:50:24 +— Medium EC2 High CPU
T —— Large EC2
03:21:36 -4 XL EC2
£ 02:52:48 - — Small EC2
|_
o 02:24:00 -
@ 01:55:12
8 01:26:24 -
o .
00:57:36
00:28:48 - 6%:@_\‘
¢ T
00:00:00 T T T T T
0 0.1 0.2 0.3 0.4 0.5 0.6
Cost (3US)

Figure 6.7: Graph Showing Cost Performance of Diffe rent EC2 Instance

Types

6.5 Discussion

Overall the results show that MapReduce is capable of significantly reducing the
execution time of the SPARK algorithm. The best results were achieved when
the algorithm was run on 8 large Elastic MapReduce nodes which reduced the
execution time to just 8 minutes, compared to 73 minutes using native java
code. In the context of time critical scenarios it is likely that this reduction in

execution time is sufficient to render the algorithm useful in many situations.

To provide a meaningful comparison to local code execution, the total
processing times in Table 4 include data pre-processing, upload, download and
conversion steps. It can be seen that despite reducing the SequenceFile
volume by using a RowSet data partitioning strategy (Section 6.3.1) , the data
upload still occupies a significant portion of total processing time to the extent
that it almost negates the benefit of parallelisation for a job of this size.
However, upload speeds from EC2 instances were found to be several orders
of magnitude quicker than from a local machine; the upload time of 42 minutes
for a 108MB SequenceFile was reduced to 3 minutes when uploaded from an

EC2 instance. Consequently it can be argued that processing data on the

206

Coarse-grained Snapshot Geoprocessing

Amazon cloud is only viable for data that is also stored in the Amazon cloud

when dealing with large datasets.

The results detailed in Figure 6.6 and Table 6.4 show that the processing time
of the SPARK algorithm on a single local processor took only 73 minutes using
native Java code but increased to 97 minutes using a locally executed Hadoop
MapReduce instance. It seems likely that a large portion of this increase in
processing time is the result of automatic fault tolerance measures built into
MapReduce such as the calculation of checksums after each file block read; a
measure that is designed to ensure data integrity. Other Hadoop mechanisms
that could reduce performance include the reading of intermediate files from
disk using a pull based approach (Dewitt and Stonebraker, 2008b) as well as
the performance penalty suffered by running master and slave processes on the

same node.

Figure 6.6 shows that executing the job on small EC2 nodes is considerably
slower than using the more expensive instance types when using a small
number of processors. However, this gap narrows as the number of processors
increases. An out of memory exception prevented the scaling of larger instance
types above 4 processors for x-large, and 8 for medium (high-cpu) and large.
This is a result of Amazon’s cluster configuration parameters that set larger
instances to run a greater number of mappers and reducers concurrently, as
specified in Table 6.3. Additionally, each process runs by default inside its own
Java Virtual Machine and thus consumes a significant amount of memory.
However, no attempt was made to adjust these configuration parameters given
that an acceptable run-time of 8 minutes, on 8 large instances was achieved.
Nonetheless it seems likely that execution time could be reduced further by fine

tuning the cluster and job configuration parameters.

It was possible to translate the SPARK algorithm to the MapReduce paradigm
with relative ease; this can be attributed to a number of factors. Firstly, because
of the coarse-grained nature of the SPARK algorithm, individual subsets of the
data aggregate could be processed independently of each other. This greatly

simplified the task of parallelising the algorithm using MapReduce as individual

207

Coarse-grained Snapshot Geoprocessing

data subsets could easily be mapped to key-value pairs. Secondly, the SPARK
algorithm can broadly be considered as a unary transformation that operates
primarily on one dataset. It should be noted that although a number of auxiliary
datasets were required for the SPARK algorithm in the form of land-use
templates, each of them was small enough to be distributed to each Map
process without generating a significant 10 bottleneck. It would be more difficult
to translate a binary algorithm to the MapReduce paradigm because each Map
process is only capable of processing a single input file. A number of methods
have been suggested to overcome this problem such as the default Hadoop join
which involves combining two datasets into a single input file using a common
key, and the Map-Reduce-merge (Yang et al., 2007) method that involves
combining multiple MapReduce jobs in a workflow chain. These techniques
require considerable effort to code and therefore simple coarse-grained binary
operators such as raster intersection and union may be better achieved using a
different distributed processing environment such as Condor
(http://www.cs.wisc.edu/condor). Thirdly, the SPARK algorithm can neatly be
divided into Map and Reduce processes. The calculation of Ak for each kernel
window corresponds to a simple Map transformation and the process of finding
the template with the maximum value of Ak corresponds to a simple Reduce
operation. Although this feature of SPARK simplifies the coding of the algorithm
in MapReduce it is not strictly required as MapReduce jobs can be defined

without a Reduce stage.

For this work the Amazon cloud infrastructure proved to be suitable;
MapReduce functionality was provided through an easy to use interface and a
respectable speed up was achieved. However, some problems are envisioned
for using both Elastic MapReduce and the cloud in general as a generic
geoprocessing tool. The MapReduce environment is quite restrictive and as
discussed above, it only appears to be suitable for certain types of
computational job. Even for computational jobs that are well suited to this
approach the environment is restrictive; the results outlined in Section 6.4 show
that a considerable proportion of the total processing time was spent uploading
data to cloud storage in the voluminous SequenceFile format as there was no

mechanism to perform the data expanding transformation closer to the data

208

Coarse-grained Snapshot Geoprocessing

source. Due to data locality the transfer times between EC2 nodes and S3
storage is reputedly much quicker than transfers from local machines to S3
(Murty, 2008). Consequently, the concept of co-locating data and processing
capabilities is gaining popularity. There is a current drive in academia, realised
through projects such as the Open Science Data Cloud (Grossman et al.,
2010), to host large scientific datasets in data centres with fast network
connections that are capable of providing both persistent storage and
computational analysis. It seems likely that large geospatial datasets such as
satellite imagery archives will eventually be hosted in such an environment and
this is expected to greatly expedite their processing and analysis (Gray et al.,
2005).

Another issue is that the level of performance achieved in a cloud cluster is
unpredictable and can vary depending on the current workload the cluster is
subject to (Armbrust et al., 2009). This unpredictability of performance may
present a problem for geoprocessing operations that have a hard real-time
deadline. This can clearly be seen in the results set out in Table 6.4; a
MapReduce job assigned 20 processor instances takes one minute longer to
process than the same job assigned only 16 processor instances. Although the
example presented in this Chapter considers the geoprocessing of a static
dataset, there are numerous scenarios in which such datasets are required to
be processed rapidly such as emergency disaster response. A potential
solution to the lack of predictability in performance is to use cloud-aware
scheduling (Schad, 2010) which compensates for poor performance as a result
of an increased overall workload by allocating the given job to either faster

processors or to a larger number of processors.

The third issue with geoprocessing in the cloud is the lack of interface and API
standards in cloud computing models such as SaaS, PaaS and laaS which
could have severe consequences for cloud users in terms of vendor lock-in, a
scenario that could result in an inability to transfer data or software between
providers (Nelson, 2009). Commercial infrastructure providers have little
incentive for standardisation (Buyya et al., 2008) although it does seem likely

that specifications from standards bodies such as the Open Science Grid

209

Coarse-grained Snapshot Geoprocessing

(http://www.opensciencegrid.org), the Open Grid Forum (http://www.ogf.org)
and the Open Cloud Consortium (http://www.opencloudconsortium.org) will
eventually become adopted in scientific and academic systems.

6.6 Conclusion

This chapter has provided a working example of a CGSG system deployed in
the Amazon cloud. The system successfully demonstrated how a unary,
coarse-grained geoprocessing operation could be implemented in the
MapReduce paradigm. However, MapReduce is only a suitable candidate for
certain types of processing operation; namely coarse-grained operations on a
single dataset. Currently, a lack of predictability in performance impedes the
usage of the cloud as a generic geoprocessing platform; this is particularly the
case for applications with a hard real-time requirement. Furthermore, the lack
of standardised web service interfaces provide a barrier to adoption of cloud
technologies as users are unwilling to become tied in to a particular proprietary

system.

210

Discussion

Chapter 7 Discussion

7.1 Introduction

This study set out to develop an appropriate conceptual and implemented
framework in which open standards in grid computing, sensor web and
geospatial web services could be combined, as a technological basis for
monitoring and prediction of geospatial phenomena in the Earth systems
domain. The results show that it is possible to significantly improve the
performance and scalability of geoprocessing tasks in Earth systems monitoring
and prediction using distributed computing. The framework set out in this thesis
has outlined three styles of geoprocessing that occur in monitoring and
prediction systems, and has demonstrated how they can be implemented in a
manner that overcomes the limitations imposed by single processor
architectures through the use of parallelisation techniques. Furthermore, it has
been demonstrated that open web service standards in the geospatial and
distributed computing domains can be integrated despite apparent
incompatibilities in web service policy, style and message semantics. The goal
of this chapter is to draw on the relevance of these findings, to address the

limitations of this study, and to relate this work to other research in the field.

7.2 Harmonisation Issues

It was hypothesised that integrating SWE, OWS and distributed computing
standards could facilitate the development of high performance, scalable and
loosely coupled applications that rely on live sensor data, such as monitoring
and prediction systems. Various methods of integrating near real-time sensor
data into distributed geoprocessing workflows have been considered throughout
this thesis. The three implementations (Chapters 4-6) have highlighted some
important issues relating to standards integration and interoperability. In this
work we have only considered open standards published by the major
standards organisations in each domain; the OWS and SWE frameworks
published by the OGC, the OGSA framework published by the OGF, and the
WS-Notification and WSRF specifications published by OASIS. Currently these
frameworks represent consensus on best practice in industry and academia in
211

Discussion

their respective domains. With regards to cloud services the discussion refers
to Amazon Web Services (EC2 and S3) which, in the absence of formally
recognised standards have become a de-facto industry standard.

7.2.1 OGC-OGF Harmonisation

There has been considerable progress in integrating OGC and OGF standards
in recent years but there is still a long way to go before these frameworks are
fully harmonised. One of the main issues is that full adoption of WS-I by OWS
and SWE has not yet been realised. WS-I standards are of significance
because they provide a common messaging and interface format for both OGC
and OGSA standards.

Compatibility between WS-I tools and OGC schema is another issue that has
yet to be resolved. WS-I tools greatly simplify the process of grid service
development as they enable service and client stubs (service implementation)
to be automatically generated from WSDL documents (service interface). It was
found (Section 5.3.2) that standard web service tools such as Apache Axis2
(http://axis.apache.org/axis2/java/core/tools/index.html) and the Metro stack
(http://jax-ws.java.net/) were unable to parse the SES WSDL document and so
were unable to generate client stubs. This suggests that there is still a certain
level of incompatibility between OGC schema and web service tools. This was
also experienced in the OGC SOAP Interoperability Experiment in which the
same issues were encountered (Sonnet and Savage, 2003). As the SES is not
an official OGC standard its WSDL may not follow specific OGC conventions
but it is expected that the forthcoming SOS version 2.0 specification (Broering
et al., 2010) will provide a more stringent test of compatibility. Several of the
problems encountered in the SOAP Interoperability Experiment could only be
rectified by altering the schema or by combining all the schemas into a single
file. These problems suggest that there is still work to be done on either
improving web service tools or in improving OGC schema compatibility with

such tools.

212

Discussion

Progress has been made in integrating OGSA job execution standards such as
JSDL and OGSA-BES with the WPS. Woolf and Shaon’s (2009a) JSDL-WPS
profile extends the capabilities of WPS job execution in a grid environment by
enabling end users to select their hardware requirements and thus the speed at
which a given task will run. In the map-matching system (Chapter 4) it was
deemed unnecessary to integrate JSDL into WPS because provided that
incoming observations could be processed more quickly than the data arrival
rate there was no performance advantage to be gained from running the task on
a faster machine. Consequently the JSDL was hard wired into the WPS in an
opaque manner. This had the effect of shielding the WPS user from the
unfamiliar JSDL schema, albeit at the expense of flexibility in resource

provisioning.

7.2.2 Improvements to SWE Data Services

With regards to SWE data services it appears that there is considerable scope
for existing and proposed standards to be consolidated. For example, in order
to interface the SES with the SOS in the road traffic monitoring system (Chapter
5) it was necessary to create a bridge program to poll the SOS for new
observations and forward them to the SES as SOAP encapsulated WSN
compliant notifications. Although the adopted approach was relatively
straightforward it is noted that interoperability between these components could
be significantly improved. There is no reason why both the SOS and SES
service interfaces could not be implemented by a single service instance that
provides both push and pull based access to observations. This would have the
potential to greatly simplify the road traffic monitoring system, as three
components, the SOS, SES pusher and SES, could be reduced to one.
Furthermore this would enable overall system latency to be reduced as
observations could be forwarded to consumers as soon as they arrived rather
than waiting for the SOS to be polled. According to the OWS-7 engineering
report (Fairgrieve, 2010) there is currently ongoing discussion within the OGC
as to whether asynchronous filtering and notification should be incorporated into

the SOS specification.

213

Discussion

Certain design features of the SES encourage better performance and
interoperability compared to the SAS design. The incorporation of CEP into the
SES enabled voluminous observations to be condensed into a smaller amount
of relevant information, thus significantly reducing the processing and
messaging overheads further on in the geoprocessing chain. In terms of
interoperability the inclusion of WSN specifications is likely to improve
compatibility with other services in both the web and grid domain, given their

widespread adoption.

7.2.3 Improvements to the WPS

The WPS specification is not designed for running continuous open-ended jobs.
In the map-matching system the WPS interface was modified to enable
continuous jobs to be managed. Although the method of launching a grid
process for each sensor resulted in resource provisioning inefficiency (Section
7.4.1) it did enable real-time observations to be processed relatively quickly as
job scheduling delay was only encountered when starting the job rather than for
every observation. It is suggested that for continuous jobs the Execute
operation be replaced by startExecuting and stopExecuting operations to
provide a clearer management interface for continuous processes (Section
4.3.5).

Rather than providing the WPS with all the input data on invocation, a URL
reference to the SOS repository was provided so the process could dynamically
poll this repository for new observations. A proposed extension to the WPS
(Woolf and Shaon, 2009b, Woolf and Shaon, 2009c¢) to handle asynchronous
jobs includes the ability to pause and cancel processes, which proved to be
useful for controlling long-running processes. For example, the existing
Execute operation could be used to start a long-running job and the proposed
cancel operation could be used to stop the job. In the Sensors Anywhere
discussion paper (Uslander, 2009) this style of execution is referred to as cyclic
and it is suggested that a total duration or total number of cycles be provided as
an Execute input parameter rather than allowing the process to run

continuously. This time-out concept presents an improvement to the approach

214

Discussion

adopted in the map-matching system because it prevents a job from running
eternally in the event of user carelessness or accidental loss of the job’s unique
identifier.

7.2.4 OGC Services using laaS and PaaS

Despite the current lack of standards in the cloud computing domain, it presents
a promising solution to the performance and scalability problems facing OWS
and SWE services. Presently cloud computing is driven by large IT companies
for commercial gain. Many organisations consider this a disincentive to cloud
adoption, preferring instead to use community driven and standards-based grid
infrastructures. By their very nature cloud data centres must be large to benefit
from economies of scale (Buyya et al., 2008). However, cloud infrastructure
does not necessarily have to be operated by corporations and we are likely to
see the cloud model adopted by academia in the future. Current open source
cloud software such as Eucalyptus (http://www.eucalyptus.com) and
OpenNebula (http://www.opennebula.org) present a solution for organisations to
host their own private cloud and it is likely that emerging academic cloud test

beds will be based on these.

Usability is a primary motivation to use cloud technology. Commercial cloud
infrastructures offering laaS and PaaS are significantly easier to use than grid
services. From an end user’s perspective, access to a grid service requires a
valid grid certificate which must be installed correctly and this alone requires
some degree of expertise in grid security. Grid portals and Problem Solving
Environments go some way to alleviate this problem by providing a user friendly
interface to grid applications, but these also add another layer of complexity to
grid application development. From the developer’'s perspective, expertise in
SOAP based web services is mandatory in order to develop and deploy
applications on the grid. Furthermore, almost all grid middleware can only be
deployed on Linux based platforms. In comparison, applications built on laaS
and PaaS do not require distributed computing expertise to use. Additionally,

cloud service providers present easy to use web based management consoles

215

Discussion

to manage the virtual machine lifecycle, as well as providing a set of well

documented RESTful APIs to the developer.

Standardisation in laaS and PaasS is important for cloud users. For example, in
the road-traffic monitoring system the Amazon EC2 laaS was used to scale-out
the data input subsystem by building an AMI containing the required software
and data. It would have been very difficult to port this AMI to a different
infrastructure provider because the AMI file format is not an open standard.
However, the adoption of the proposed Open Virtual Machine Format (Section
2.3.6) would solve this problem. laaS could benefit from standardisation in
three areas; web service lifecycle management interface, virtual machine image
file format, and the adoption of a common security model. Major GIS vendors
are beginning to develop cloud based GIS platforms and this trend is likely to
continue. For example, it is already possible to deploy ESRI's ArcGIS on EC2
instances, and ERDAS Apollo is available as a cloud service for a monthly

subscription.

7.3 Performance Issues in Distributed Monitoring an d Prediction

Monitoring and prediction systems collect vast quantities of data which must
normally undergo some filtering and analysis before it can be used in decision
support scenarios. In the implemented systems job scheduling (Chapter 4),
data I/O (Chapters 4-5) and data transfer (Chapter 6) were found to be the
major bottlenecks. The problems encountered and potential solutions to these

are discussed below.

7.3.1 Job Scheduling

The timely scheduling of grid compute jobs is problematic for on demand
monitoring and prediction applications that have a hard real-time deadline. In
itself job scheduling is an NP-hard problem (Moreno, 2003) in which queued
jobs must be allocated to available resources while minimising some user cost
function. Sufficient resources are not always available and significant
scheduling delays may result. A 28 minute scheduling delay was experienced

in the map-matching system which allowed hundreds of GPS observations to go
216

Discussion

unprocessed because their processing window had ended before the job was
launched. For mission critical monitoring and prediction applications it is often
necessary for all observations to be processed within a short time window
(Kopetz, 1999). The majority of geohazard early warning and post-disaster
management systems fall into this category and for such systems the significant

delay experienced here would be unacceptable.

If there are insufficient available resources to run all the jobs then scheduling
delays are unavoidable. However, grid interoperability has made it possible to
balance a job workload not only within a compute cluster, but also between
clusters and in some cases between grids (Yagoubi and Slimani, 2007).
Recruiting from a wider pool of resources in this way improves the chance of
obtaining an available processor. As yet, resource sharing amongst cloud
providers is not widespread despite the economies of scale it provides. It
seems likely that more cooperative academic clouds will emerge in the future

but this is dependant on the definition and uptake of open standards.

Many scheduling systems enable computing resources to be reserved in
advance for a specific time of day (Xing et al., 2004). This capability is likely to
be of use only for monitoring and prediction applications for which the
computational requirements are known in advance, rather than for event driven
applications. Service Level Agreements (SLA) are a bilateral agreement
between the service provider and consumer (MacLaren et al., 2004) which have
emerged as a more flexible way of negotiating scheduling priorities. The OGF’s
WS-Agreement specification (Andrieux et al., 2007) is used for negotiating
SLAs; one of its goals is to provide assurance to the consumer of the level of
service they can expect. For monitoring and prediction systems SLAs have the
potential to guarantee quality of service in terms of job scheduling delay
(Baranski and Schaffer, 2010).

Job scheduling algorithms often require an estimate of each job’s execution
time in order to optimise scheduling (Malarvizhi and Uthariaraj, 2009). Due to
their continuous style of execution the compute jobs in the map-matching

system would not be able to provide this information, as the length of job is not

217

Discussion

known at the time of job submission. At the NGS, jobs are scheduled using a
fair share policy; those users who have used the least computing resources in
the recent past are given priority. For event driven monitoring and prediction
applications this is likely to pose a problem because the level of access to
computational resources will be restricted after a major computational event has

occurred.

It can be concluded that despite difficulties in job scheduling it is possible to use
grid processing for near real-time geoprocessing applications, provided that a
SLA is in place that guarantees a minimum provision of service. The
standardisation of resource negotiation through the uptake of WS-Agreement is
likely to be of benefit to monitoring and prediction applications as this provides a
mechanism through which they can be assured a particular level of service.
Given that the processing time of a job is often required in advance by
scheduling algorithms it may be concluded that continuous running compute
jobs are not always a satisfactory solution for data streaming applications. This
problem can be circumvented by scheduling numerous finite jobs as opposed to
a continuous job but is likely to suffer a performance penalty due to scheduling
overheads.

7.3.2 Data l/O

According to Szalay and Blakeley (2009) data access is becoming the major
limiting factor in computing systems. This view was reinforced by the scalability
results from both the map-matching and traffic monitoring systems. Poor
performance can be attributed to hardware constraints such as slow disk seek
times and low I/O bandwidth. Such issues are exacerbated when there is a lot
of competition for storage resources, and in database systems this often
manifests in the form of deadlock which impedes performance further.
Database deadlock occurs when two or more transactions are each waiting for
locks to be released that are held by the other (Connolly and Begg, 2005). In
the map-matching system it was found to occur in the SOS database and
caused a 23 minute processing delay. The unpredictable but generally poor

response time observed in the WFS and SOS at an increasing number of user

218

Discussion

requests suggest that bottlenecks are the combined result of database deadlock

and more general I/0O constraints.

Poor availability in non-transactional data stores is commonly alleviated by
replicating the data store amongst several servers and load balancing the
incoming requests in a round-robin fashion (Cardellini et al., 2002). The WFS in
the map-matching system could have been replicated in this way because it is
used in a read-only manner, but it is rarely possible to replicate a transactional
data store because it violates data consistency in accordance with Brewer’s
CAP theorem (Lynch and Gilbert, 2002). Strong data consistency is important
in the map-matching SOS. For example if a describeSensor query were
performed on one data replica before insertObservation requests from another
data replica were made consistent, then many observations would go
unprocessed. An alternative to replicating the data source is to minimise the
number of transactions at the data store. This is achievable in data streaming
applications by filtering out irrelevant observations before committing them, or
by aggregating observations before insertion as this reduces the overall

transaction lock time.

On the other hand, some spatial data services may tolerate eventual
consistency. Cloud services provide an eventually consistent platform from
which high availability spatial data services can be published. For example,
Amazon S3 has adopted the eventual consistency model and the Google App
Engine API provides both strong and eventually consistent data access.
Sensor data services that handle a large volume of incoming observations but
that are only occasionally subjected to batch queries are likely to be well suited
to an eventually consistent data store. A SOS backed by a distributed,
document oriented (NOSQL) CouchDB database (http://couchdb.apache.org)
has recently been developed as part of the GeoCENS project (Liang et al.,
2010). This database has a strongly consistent data model but is still likely to
provide a significant performance advantage over relational databases as it has
a lock-less update model. Lock-less update enables updates to be committed
on a first come first served basis, with transactions either being committed or

failing completely. A performance comparison between the GeoCENS SOS

219

Discussion

and relational SOS such as the 52North implementation would make an
interesting piece of future work. Similarly, the development of an eventually
consistent SOS using cloud services and performance comparison to its
strongly consistent counterparts would also be worthwhile extension to this

thesis.

In the road traffic monitoring system the insertion of new observations into the
database was found to present a bottleneck which was caused by executing a
complex pre-processing trigger on the insertion of each observation. The
trigger determined the direction of each vehicle in relation to the road, the
travel-time spent on each road, and estimated the path taken between non-
adjacent road links. A potential solution to this bottleneck would be to create
multiple read-only replicas of the road network database, and load balance the
pre-processing queries between replicas. In this way the pre-processing
overhead would be separated from the transactional updates to the road

network travel cost.

It was found that the road network dataset used in the traffic monitoring system
was too large to load into main memory and this prevented analysis from being
performed on the road network. This was solved by horizontally partitioning the
road network tables using regular data decomposition, and using the load-on-
demand API provided by Oracle to analyse each network partition sequentially.
A secondary motivator for this approach was to bolster query performance in
the pre-processing trigger. However, it was not possible to compare the
performance of the trigger over partitioned and non-partitioned tables due to the
lack of available dense GPS tracks. As only sparse GPS tracks were available,
the trigger was redesigned to incorporate shortest path analysis to determine
the path between non-adjacent road links, which meant that partitioned road

network tables had to be employed to run the analysis.

It can be concluded that it is difficult to scale-up transactional data sources in a
distributed architecture and that they can often present a considerable
bottleneck. Eventual consistency may be appropriate for some sensor data

applications and an eventually consistent SOS has been suggested as an

220

Discussion

interesting future research topic. Data de-clustering through horizontal
partitioning goes some way towards alleviating data access bottlenecks
(Cruanes et al., 2004) but in the road traffic monitoring application, queries over

the partitioned road network still suffered from poor response times.

7.3.3 Data Transfer

Data transfer is a significant problem in distributed systems because bandwidth
improvements have not kept pace with improvements in storage capacity (Gray
et al., 2005). It is recognised that co-locating data and computation is the
preferred solution for processing large datasets (Skillicorn, 2002). In the
context of sensor geoprocessing this suggests that sensor data repositories
should be hosted in grid or cloud data centres to enable analysis to be
performed in close proximity to the data. The key advantage of geoprocessing
at the data source is that costly network data transfers are minimised, thus
providing a performance advantage over the alternative method of sending data
to a remote geoprocessing service. However, this performance advantage can
only be realised if the operation is data-reducing in nature, i.e. the resulting
feature set is smaller than the original dataset (Friis-Christensen et al., 2007).

The approach taken in the road traffic monitoring system was to co-locate data
and computation in a parallel relational database. The relative merits and
shortcomings of this approach are discussed in detail in Section 7.2.3. An
alternative approach to database geoprocessing is high-level gridification
whereby data and processing services are hosted on the grid. Besides fast
interconnects between storage and computational nodes, GridFTP can be used
to rapidly transfer data between locations using multiple parallel streams
(Allcock et al., 2003), and OGSA-DAI can be used to federate access to
multiple databases. This approach was exemplified in the SEE-GEO project
(http://www.edina.ac.uk/projects/seesaw/seegeo) in which spatial extensions to
OGSA-DAI were developed to provide access to grid-based data services from
a standard web service client. However, this method requires a significant

development effort.

221

Discussion

The same end result of close proximity between data and processing services
can be more easily implemented on the cloud infrastructure as exemplified by
the SPARK MapReduce work (Chapter 6). The main obstacle in this
implementation was the excessive time taken to upload a classified satellite
image to cloud storage. Network bandwidth is not responsible for this
bottleneck, as the observed download speed for the re-classified image was 28
times faster than upload speed. This discrepancy between upload and
download speed is a phenomenon known as asymmetric communication, and in
many cases is artificially introduced by internet service providers to account for
the imbalance between upload and download volume of typical internet users
(Bose et al., 2003).

In this thesis it has largely been assumed that HTTP can be used for the
transportation of data from sensor devices and data services to geoprocessing
services. However, the uploading of data to distributed storage within
reasonable time constraints presents a considerable challenge considering the
asymmetric communication phenomenon. To avoid upload bottlenecks it is
necessary for organisations that carry out computational geoprocessing on
large data sets with a near real-time requirement to migrate the entire workflow
to a data centre, or to host their own data centre in the form of a private cloud or
compute cluster. Gray and Patterson (2003) stated that the cheapest and
fastest solution to upload very large datasets was to send a disk to the data
centre via postal services; this is still the case today and Amazon have began to
offer such a service for uploading data to S3. This method is not viable for near
real-time datasets although it does present a useful alternative for the
occasional transportation of large data archives. Extremely poor transfer time
from a standard web client to S3 was observed in the SPARK MapReduce work
to upload a file representing a single satellite image. For real-time analysis of
satellite imagery it would thus make sense to couple satellite receiving stations
with data centres, either by locating them in the same place, or by creating a

fast network link between them.

For geoprocessing tasks that operate on small data items there is less of a case

for co-locating data and computation. For example, in the map-matching

222

Discussion

architecture the actual algorithm was processed in a computational grid, but
spatial data was retrieved from web components exposing OGC compliant
interfaces. The system was expected to withstand the physical separation of
data and processing components because in each case only small volumes of
data were being transferred. Indeed, data access was found to be the limiting
factor in this system rather than bandwidth constraints. This data access
bottleneck was the result of excessive load being placed on the spatial
databases behind the data services, so locating the data services on the grid in
this case would have had little effect on performance. Instead, addressing the
database bottleneck through techniques such as de-clustering (Section 2.4.2) is

likely to have achieved better results.

7.4 Methodologies for Real-time Distributed Geoproc essing

A review of parallel geoprocessing techniques was conducted in Section 2.3. It
was found that most of the techniques assume a static dataset and that the
introduction of real-time data poses a new set of challenges. In this Section an
evaluation of the typology, and the techniques employed within the
implementation Chapters is conducted in an attempt to highlight generic

methods of distributing real-time geoprocessing operations.

7.4.1 Data Stream Geoprocessing (DSG)

It was hypothesised that processing multiple streams of geospatial data from a
sensor collection could be achieved by allocating one processor to each sensor
data stream. This approach was used to develop a grid based map-matching
system to process multiple streams of vehicle GPS observations concurrently.
The major advantage of this approach was its simplicity; minimal software
development was required to process numerous streams of data concurrently.
Although this technique did prove to be effective it was noted that for sparse
data streams the monopolisation of grid computing resources for long periods
using this configuration was likely to be wasteful. Conversely, for dense data
streams the workload could overburden a single processor and result in the
development of a processing backlog. Thus it can be concluded that the single

223

Discussion

sensor stream per processor approach is valid for some DSG applications but is

likely to be unsatisfactory in the majority of cases due to its lack of flexibility.

The problem of resource provisioning for stream-based processing systems is
often complicated because unpredictability in the rate of data arrival is typical
(Babcock et al., 2002). This difficulty is further compounded when attempting to
perform processing on grid systems because grid resource changes and
failures are common (Kalogeraki et al., 2008). In the Data Stream Management
System (DSMS) literature a variety of methods are suggested to overcome this
problem of resource provisioning such as load shedding and data stream
partitioning.

Load shedding is a commonly used technique in which some of the incoming
observations in a data stream are dropped to ensure that a processing backlog
does not develop. Essentially load shedding sacrifices the quality of
observations in terms of loss ratio or sampling rate to ensure a shorter
processing delay (Tu et al., 2006). Although this trade off may be acceptable
for some applications it is likely to be unacceptable for mission critical
monitoring and prediction systems.

An alternative to load shedding is data stream partitioning, a technique that
parallelises the processing of a data stream using either a functional
decomposition or a data decomposition. Functional decomposition is relatively
easy to achieve using a processing pipeline. Data decomposition is more
difficult, particularly if there are dependencies between the data items in a
stream. In the simplest case, each data item can be processed independently
of each other. In a more complex scenario, the processing of each data item
relies on information from a window of preceding data items. Finally, the most
complex scenario involves the detection of complex events, i.e. events that are
an abstraction of other events (Luckham and Schulte, 2008). These different
levels of dependence are respectively termed atomic transformations, stream-
dependant transformations and event correlations. In the examples
implemented in this thesis, the map-matching algorithm can be considered a

stream-dependant transformation, because the determination of vehicle

224

Discussion

orientation requires both the current and the preceding data item in the stream.
In the traffic monitoring system, road change event detection falls into the event
correlation category because it is impossible to predetermine the number of
data items (map-matched observations) that will occur between road change
events. For example, in a given time window or count window there is no

guarantee that the vehicle will move onto a different road.

Cherniack et al (2003) present two data stream partitioning approaches termed
box sliding and box splitting that are used in the Aurora DSMS. The former
approach uses a functional decomposition whereas the latter uses data
decomposition. Query execution in DSMS is achieved using a processing
pipeline which can be conceptualised as a chain of boxes in which each box
represents a process. In a distributed DSMS the processing pipeline may span
several processors although more than one box may be located on each
processor. Box sliding is the practice of relocating a box from processor 1 to
another processor that sits immediately before or after processor 1 in the
pipeline. Shifting a box upstream is recommended if a data reducing operation
is being performed, whereas shifting a box downstream is useful if the operation
is data expanding in nature. The process of box sliding is a useful method of
balancing the load in a processing pipeline. Box sliding can be applied
regardless of the level of dependency between data items, but the processing
operation must be composed of multiple independent stages. Figure 7.1
demonstrates upstream box sliding.

Processor 1 | Processor 2

—» A | - B = c —= 1 Before Box Slide

Processor1| Processor2

S— _..‘ B ‘ » ¢ |-» 2 AfterBoxSlide

Figure 7.1 Upstream box sliding: Process Bis mov ed from Processor 2

to Processor 1 [adapted from Cherniack et al., (2003)]

225

Discussion

Box splitting is the practice of duplicating a box to another processor and
diverting some of the load from the original box to the newly duplicated box.
Box splitting requires that a new box be placed on each side of the split
process; the upstream box is a filter that divides the data stream amongst the
split processes, and the downstream box merges the results. Box splitting is
depicted in Figure 7.2. It should be noted that to maintain the integrity of the
data stream the order of observations should be preserved, thus the merge

operator is also required to sort the observations into their original order.

1. Normal Pipeline — A |—

A2
/ Processor 2

2, Box Split —»| filter = A1l union ——=
Processor 1

\AS

Figure 7.2 Box Split: Process A is duplicated on Pr ocessor 2 and

Processor 3

Processor 3, the filter operator equally allocates incoming observations

amongst the three processors [adapted from Cherniac k et al., (2003)]

Atomic transformations can easily be processed using the box-splitting method;
the Aurora (Carney et al.,, 2002) and Borealis (Abadi et al., 2005) distributed
DSMS both use this approach. A requirement of this approach however, is that
to achieve a significant speed-up the cost of the computational phase must
outweigh the cost of merging the results (Brito, 2008). Processing stream-
dependent transformations is more difficult because it requires incoming
observations to arrive or to be retrieved in order. Data stream sources can be
unpredictable and thus there is no guarantee that observations will arrive in the
correct order (Tatbul et al., 2003); this is particularly the case when
observations from multiple streams are retrieved from a single endpoint. For
example, in the map-matching system this was experienced when the SOS was
overloaded by incoming observations and deadlock occurred in the database
causing some observations to arrive out of order. Commonly, this problem is

mitigated by buffering the stream before processing (Babcock et al., 2002,

226

Discussion

Abadi et al., 2005) as this allows delayed observations to arrive before they

miss their processing window.

A potential problem with box-splitting is that the procedure of creating a new
instance of the process may incur a significant delay attributed to job
scheduling, dependant on the current level of usage at the grid cluster (Section
7.3.1). In DSG systems observations will continue to accumulate while job
scheduling is taking place so an important requirement is that sufficient storage
is available to ensure observation persistence. Mission critical monitoring and
prediction systems may not be able to tolerate such scheduling delays in which
case a prioritised scheduling policy or a dedicated compute cluster may be
necessitated. On the NGS it is possible to reserve CPU time but this requires
advance knowledge of the amount of resource required, which is not always

possible for streaming applications.

Brito (2008) presents optimistic parallelisation as a technique to accomplish
complex event detection in parallel. The problem with processing such tasks in
parallel is that consecutive observations or events may be processed out of
order resulting in an incorrect solution being computed. In optimistic
parallelisation observations or events are scheduled for processing based on
their timestamp; processing begins as soon as the likelihood of the item being
processed successfully becomes acceptable. Using this method items may be
processed out of order, but the output from the process is not committed until
preceding items have been processed. If a preceding item affects the outcome
of the item that was processed out of order then it is recalculated. Although this
technique wastes some compute cycles it is capable of processing data
streams more quickly than is possible using sequential methods and ensures
that the correct output is generated.

The system presented in Chapter 4 highlighted the inefficiencies of the single
sensor per processor approach. Grid computing was used in the map-matching
system to process numerous data streams in parallel. However, for very dense
data streams, or for computational processing, it may also be necessary to

parallelise the processing of each stream. Possible solutions include load

227

Discussion

shedding, box-splitting, box-sliding and optimistic parallelisation. In this regard,
the DSG category of geoprocessing operation could be further subdivided into
the aforementioned atomic transformations, stream-dependent transformations

and event correlation to better reflect the possible methods of parallelisation.

7.4.2 Fine-grained Snapshot Geoprocessing (FGSG)

Two methods of performing FGSG were suggested in Section 3.4. For fine-
grained geoprocessing operations with a relatively simple computational
complexity it was proposed that a spatial database be used to perform the
computations. However, for more computationally intensive operations the use

of the message passing paradigm was suggested.

The approach taken in the road traffic monitoring system was to position data
storage and processing together in a parallel relational DBMS. The key merit of
this approach is its simplicity to implement. Additionally, the expression of
geoprocessing operations in SQL is advantageous because of its declarative
style; query execution is kept separate from task definition. As a result, process
optimisations can be performed by the query interpreter using indexes, without

altering the query statement.

However, there are also a number of drawbacks to geoprocessing at the
database. Firstly, many geoprocessing tasks operate on raster and coverage
datasets but relational database geoprocessing is biased towards relationally
structured data. Nevertheless this is changing, and support for rasters and
coverages amongst commercial and open source spatial databases is growing.
For example, Oracle Spatial can store raster data and supports a wide variety of
processing operations (Kothuri et al., 2007) and similarly PostGIS 2.0 is set to

include full raster support (Racine, 2010).

Secondly, the expression of particular geoprocessing algorithms in SQL can be
problematic. For example, it is not possible to declare variables, loop through a
feature set, or use exception handling in SQL and this severely restricts its use

as a geoprocessing language. Consequently Simple Features for SQL

228

Discussion

(Herring, 2006) and the SQL/MM (Stolze, 2003) specifications concentrate
primarily on low-level geoprocessing operations. In some cases database
vendors have applied their own extensions to the SQL language to make
complex geoprocessing functionality available. For example, it is possible to
perform nearest neighbour analysis using SQL commands in Oracle Spatial.
Alternative procedural and object oriented database programming APIs provide
a more powerful interface that enable higher level operations to be performed,

but these have not been standardised.

Another problem with database geoprocessing is that certain operations may
need to reference data from sources external to the database, or the database
may simply be unable to handle the memory or computational requirements of a
particular operation. Furthermore, this approach introduces a tight-coupling
between data and processing operations which goes against the principles of
distributed architectures. For example, SQL requires table and column names
of a particular dataset to be hard-coded into the task definition. Recent work by
Gonzalez Cortéz and Leduc (2010) has attempted to overcome this constraint
using Gearscape Geoprocessing Language, a geoprocessing language that
implements spatial SQL. The presented approach decouples the

geoprocessing script from the data using tables and literals as parameters.

Overall the database geoprocessing technique can be considered effective.
Improvements could be made to existing spatial database implementations by
building in more high-level geoprocessing functionality. The nearest neighbour
functionality in Oracle Spatial was found to be extremely useful, and this could
be adopted by other spatial database vendors. Similarly, other fine-grained
operators such as Theissen polygon creation and line-of-sight analysis could be
made available as pre-defined functions. Such extensions would make an
interesting topic for further research, particularly if they were designed to take
advantage of distributed databases by running on several processors
concurrently. Additionally, further investigation into the use of MPI for fine-
grained geoprocessing is required. No attempt was made to use MPI in this
work because of the large amount of development work involved. However, the

development of a standard library of parallel geoprocessing tools that takes

229

Discussion

advantage of MPI is likely to be useful considering that MPP clusters on which
to run such functions are now widely available through grid and cloud

computing interfaces.

7.4.3 Coarse-grained Snapshot Geoprocessing (CGSG)

The parallel geoprocessing of coarse-grained tasks has reached a high level of
maturity. Several tools and frameworks are available to facilitate the execution
of embarrassingly parallel problems on cluster, grid and cloud platforms.
Numerous examples of using such tools to perform coarse-grained
geoprocessing in parallel are presented in the literature and in nearly all cases a

significant speed-up is achieved.

As stated in Section 3.4, snapshot geoprocessing shares many similarities with
static geoprocessing and the main difference is that CGSG operations are
triggered by a real world event, rather than through manual invocation. In the
parallel SPARK implementation (Chapter 6) no attempt was made to define a
scenario, or to implement a service based framework in which the system was
triggered by a real-world event. The main reason for this omission was due to
the amount of manual user input required to prepare the initial classified image

and the predefined land-use templates.

The MapReduce programming model proved to be suitable for CGSG. With
regards to the creation of tools that enable parallel processing operations to be
rapidly developed, a geospatial MapReduce format converter would appear to
be a useful asset. For example, a tool to translate common image file formats
into Hadoop SequenceFile format would reduce the development effort of
writing MapReduce geoprocessing code. The proposed tool could offer a
number of partitioning strategies that roughly follow the approach taken in
Section 6.3.1. For example, partitioning options could include both overlapping
and non-overlapping Windows, RowSets and ColumnSets. A similar tool could
be developed to convert a set of output files back into a recognised image
format. A raster algebra MapReduce tool, MrGIS is currently being developed

by Chen et al (2008) and this is expected to contain some similar functionality.

230

Discussion

Unfortunately MapReduce is not a standardised framework and this is likely to
impede future work on the integration of MapReduce with geoprocessing.
Recently, the MapReduce patent was granted to Google Inc. (Dean and
Ghemawat, 2010) and this potentially puts the future of open source
MapReduce projects such as Hadoop in jeopardy. Although it seems unlikely
that the patent will be vigorously enforced it still presents a significant
disincentive to the use of MapReduce in open geoprocessing systems.

7.5 Conclusion

It can be concluded that interoperability problems in grid based geospatial
monitoring and prediction systems could be mitigated by making recommended
changes to SWE data services and the WPS interface. Furthermore,
compatibility between OGC schema and web service tools needs to be
addressed. laaS and PaaS technologies have the potential to improve
performance and scalability in real-time monitoring and prediction systems but

standard interfaces must be adopted if a long lasting benefit is to be maintained.

Performance constraints in real-time geospatial monitoring and prediction
systems are primarily caused by job scheduling bottlenecks and data transfer
and data access issues. For jobs with a finite runtime scheduling delays can be
mitigated using SLAs. However, continuous running jobs present a problem in
this regard as the job lifetime is not known in advance and therefore cannot be
made available to the scheduling algorithm. Data access bottlenecks
commonly manifest in the form of database deadlocks but can be mitigated by
minimising data access through observation aggregation, or by using an
eventually consistent data store. Data transfer bottlenecks can be avoided by
performing processing close to the data where possible; consequently the use

of data centres to store and process data is increasing.

The monitoring and prediction systems implemented in this work enabled
important interoperability and performance issues to be highlighted. However,
in each implementation the methodology undertaken represents only one of

many possible approaches and unsurprisingly certain deficiencies in the

231

Discussion

implemented systems have been highlighted. It was found that in DSG the
single stream per processor approach is not universally applicable, and in the
FGSG system, no attempt was made to implement or evaluate the effectiveness
of the MPI/ MPP approach. Nonetheless the simple geoprocessing typology set
out in this work has on the whole proven to be an effective means of
determining the appropriate processing architecture and methodology for real-
time geospatial monitoring and prediction applications.

232

Conclusion

Chapter 8 Conclusion

8.1 Thesis Summary

This research has been driven by technological advancements in two fields;
distributed computing and sensor web. The integration of these fields has been
shown to benefit geospatial monitoring and prediction systems by enhancing
their ability to process and analyse observations in real-time. In Chapter 2
background was provided on the key technological components to this work;
namely distributed computing, parallel processing and geospatial web services.
In particular, Chapter 2 focuses on how distributed computing technologies can
be used to solve issues of scalability and performance in real-time
geoprocessing workflows for Earth systems monitoring applications. Within
Chapter 2 objectives 1 — 3 are addressed.

Chapter 3 set out the conceptual foundation for this thesis. Within this chapter
an attempt was made to classify geoprocessing operations in relation to
distributed computing architectures. The classification was intended to facilitate
system architects in the design of geospatial monitoring and prediction tools
and can be considered a first step towards the development of a generic
distributed geoprocessing toolbox. Three distinct classes of geoprocessing
operation were identified; DSG, FGSG and CGSG. DSG involves the
processing of an unbounded stream of input such as a set of observations from
a single sensor through time. Conversely, snapshot geoprocessing refers to the
processing of data from one or more sensors at a given instant in time.
Snapshot geoprocessing is further subdivided in this classification into coarse-
grained and fine-grained operations; coarse-grained operations can be easily
parallelised whereas fine-grained operations cannot. The process of
developing and evaluating a system representative of each operation type has
shown that distributed computing can be integrated with the sensor web and
has also highlighted a number of interesting scalability and interoperability
issues (Section 7.2 and Section 7.3). Objective 4 is addressed within Chapter
3.

233

Conclusion

Chapter 4 presents a scalable map-matching (DSG) system that uses ongoing
grid compute jobs to process a continuous stream of real-time GPS
observations from a fleet of vehicles. This system seamlessly integrates OGC
and OGSA web services into a real-time geoprocessing workflow;
geoprocessing is carried out on grid compute nodes which are interfaced to

OGC services using low-level gridification.

In Chapter 5 a real-time road traffic monitoring system is developed that uses
FCD acquired from a fleet of GPS equipped council vehicles to estimate travel-
time. Through a web mapping interface this system enables clients to query the
fastest route between any two points in the study area based on real-time road
traffic information. This provides an example of a FGSG operation in which a
parallel relational database is used to perform the bulk of the processing and

Amazon EC2 laaS is used to load test the system.

Chapter 6 explores the use of cloud computing and the MapReduce paradigm
to perform a coarse-grained snapshot geoprocessing operation. The operation
Is an image processing algorithm that reclassifies a satellite image on the basis
of the spatial frequency and arrangement of pixels. Collectively Chapters 4-6

address objectives 5 and 6.

Chapter 7 attempts to answer the main research questions of this thesis relating
to performance, interoperability and processing methodologies. An attempt is

also made to relate the content of this thesis to other work in the field.

In this Chapter the thesis is summarised (Section 8.1) and the main
interoperability and architectural recommendations are stated (Section 8.2).
Opportunities for future work are presented (Section 8.3) and in Section 8.4 a
direction is set out for the future in this field. Objective 7 is addressed by both
Chapter 7 and this Chapter.

234

Conclusion

8.2 Interface and Architectural Recommendations

8.2.1 Improvements to OGC standards

Recommendations for improvements to OGC standards resulting from this

thesis are summarised as follows.

1. Extension of WPS specification to accommodate continuous processing
operations.

The WPS specification does not currently enable continuous processing
operations to be performed and it is assumed that every processing operation
has a finite lifespan. In the context of sensor web geoprocessing, the extension
of the WPS specification to allow for the management of open ended
computational tasks is recommended. Specifically, the inclusion of a
StopExecuting operation would enable continuous processing tasks to be

managed through the WPS interface.

2. Integration of OGC push and pull interfaces for sensor data

The current distinction in the OGC specifications between the push interfaces to
sensor data (SAS/SES) and the pull interface (SOS) is unnecessary.
Integrating these two service interfaces into a single unified interface would
significantly improve and simplify sensor based geoprocessing workflows that
conform to these specifications.

3. OGC schema and web service tool compatibility

The lack of interoperability between OGC schema and standard web service
tools presents a major barrier to the integration of geospatial web services with
distributed computing. To make progress in this field, solving this compatibility

problem is crucial.

8.2.2 Architectural Recommendations

The geoprocessing typology developed in this thesis was used to determine the
appropriate architecture for each geoprocessing scenario. To process multiple
independent streams of geospatial data on the grid (DSG), the one sensor per

processor approach was found to be over simplistic. It is recommended that a
235

Conclusion

tool be developed to balance the processing load produced by a sensor array,
such that a single sensor data stream can be partitioned amongst multiple
processors if necessary, and conversely so multiple sensor data streams can
be managed by a single processor as required. In this regard, three distinct sub
categories of DSG operations have been identified; atomic transformations,

stream dependent transformations and event correlation.

To process snapshots of geospatial data that require little or no synchronisation
between sub-processes (CGSG) there are already a plethora of frameworks
available to process in parallel, common examples include Condor and Hadoop
MapReduce. CGSG geoprocessing operations are well suited to the NOW
processing architecture but require data partitioning to be performed which adds
complexity to the workflow. It is suggested that a new language is required to
express how spatial data be partitioned and reassembled. Inclusion of
information on data partitioning and reassembly into WPS specification would
enable existing geoprocessing infrastructure and services to be leveraged in a

standardised fashion.

To process snapshots of geospatial data that require considerable
synchronisation between sub-processes (FGSG) two architectural approaches
are suggested; processing within a spatial database and processing using the
message passing paradigm on an MPP cluster. In this thesis only the spatial
database approach was evaluated. The approach was found to be effective but
not universally applicable as the range of geoprocessing operations that can be
performed at the database is limited, due to restrictions in the type of data that
can be stored in the database, and in the expression of geoprocessing tasks
using SQL. It can thus be concluded that the spatial database approach is
suitable for the majority of simple fine-grained geoprocessing operations, but for
complex modelling it is suggested that the message passing / MPP approach is

more suitable.

A summary of the popular combinations of geoprocessing task, processing
architecture, parallel strategy, partitioning schema and programming model is

displayed in Table 8.1

236

Conclusion

Table 8.1: Geoprocessing Operations, Architectures and Parallel
Strategies
Parent Processing Parallel Strategy | Partitioning Strategy Programming
Category Architecture Model /
MPP Pipeline Functional Any
NOW Sensor per | Data (by sensor) Any
DSG
processor
NOW / DSMS Data stream | Data (by observation) Any
partitioning
CGSG NOW Task farm Data (geometric) Data parallel
NOW Divide & | Data (geometric) Any
Conquer
NOW MapReduce Data + Functional Data parallel
FGSG MPP MPI Data or Functional Message
passing
DBMS De-clustering Data SQL

8.3 Future Work

This research has resulted in many questions and topics that are in need of
further investigation. Firstly, the implementations in Chapters 4-6 served to
highlight some important omissions in the geoprocessing typology developed in
Chapter 3.

categories were not finely divided enough to deduce the most appropriate

It was found that two of the three identified geoprocessing

parallel processing architecture. Limitations of the typology are highlighted in
Section 7.4 and some refinements are proposed; namely that the DSG category
could be further subdivided into atomic transformations, stream-dependent
transformations and event correlation to better reflect the possible methods of

parallelisation.
Implementing a system from each of the suggested sub-categories is

proposed as future work to validate these refinements in the context of the

geoprocessing typology.

237

Conclusion

A major limitation in this study was found to be job scheduling bottlenecks which
prevented sensor data streams from being processed in near real-time. Further
research into SLAs for near real-time processing is likely to be of considerable
benefit to the sensor web geoprocessing community, and to several other

communities that have an interest in on-demand near real-time processing.

The WPS-JSDL profiling work carried out by Woolf and Shaon (2009a) adds
considerable flexibility to the provisioning of computational resources to
geoprocessing tasks. A possible extension to this concept of flexible resource
provisioning would be to enable end-users to specify their target grid
infrastructure. In the map-matching system the WPS was tightly coupled to an
NGS GridSAM endpoint. This tight coupling between the WPS service interface
and the grid endpoint negates one of the benefits of low-level gridification in that
the end-user is unable to choose the infrastructure on which their job runs. A
complete separation between the front end service interface and the back end
processing resource would require two significant changes to the system.
Firstly, the interface would have to be changed to accommodate an endpoint
parameter; for SOAP based WPS this could be achieved by incorporating WS-
Addressing into the WPS request. The second issue is the staging of
executables from the WPS to the target grid. In the map-matching system this
issue was bypassed by storing the executables on a user’'s home directory from
where they could be staged on to the compute node via GridFTP. Were the
user allowed to specify their own grid endpoint then a mechanism would be
required to stage the executables from the WPS to the endpoint. Currently this
presents a problem for low-level gridification as it requires a secure GridFTP
server to be running on the non-gridified WPS. An infrastructure agnostic WPS
would be an important step towards OGC-OGF interoperability and this concept

presents an interesting opportunity for further work.

With regards to OWS and SWE deployment, a further study investigating the
deployment of such services onto the cloud is likely to be of value to the
research community. Cloud technologies circumvent many of the obstacles
presented by gridification as geospatial web services that are deployed on the

cloud can be interfaced by the end user in the same way as normal web

238

Conclusion

services so there is no need to set up a web based proxy. As a result, the
benefits of high-level gridification (Kriger and Kolbe, 2008) can be realised
without the negative aspect of poor interoperability with other geospatial web
services. Furthermore, OGC data services backed by eventually consistent
databases are likely to alleviate the I/O bottleneck experienced at strongly
consistent databases in this systems implemented in thesis. Some work has
been carried out on cloud based OWS (Baranski et al., 2009, Liang et al., 2010)
but a full ecosystem of geospatial web services in the cloud has not been

implemented.

8.3 Future Outlook

The current trends in Earth systems monitoring are being driven by
technological improvements. Sensors monitoring the Earth are becoming
cheaper, smaller and more plentiful. They are also capturing data at resolutions
previously unattainable, resulting in huge amounts of spatial data that must be
filtered and analysed. To a large extent these improvements are driven by
growing concerns about environmental problems such as climate change.
Increasingly complex scientific techniques and Earth systems models now
require extremely detailed data from environmental sensors. If this trend
continues then the role of distributed computing to share, manage and analyse
data will become increasingly important.

At the global and national levels, research in this area is being carried out
through Spatial Data Infrastructure (SDI) projects. An SDI is defined as an
internet-based mechanism for the coordinated production, discovery, and use of
geospatial information in a digital environment (Budhathoki et al., 2008).
European funded SDI projects such as GDI-GRID, ORCHESTRA, GEOSS,
INSPIRE and GMES are attempting to put in place a set of core services to
facilitate Earth systems monitoring. Higher level applications can be rapidly and
dynamically composed from these core services for all kinds of purposes. As
these projects operate at the global and national level, a large amount of data is

involved as well as a potentially huge numbers of users. Consequently,

239

Conclusion

distributed computing is an important element that is required to ensure the

success of these projects.

As we have seen in the work carried out in this thesis, distributed computing is
also necessary for Earth systems monitoring at the regional level. Traffic
monitoring applications and remotely sensed image processing can benefit from
distributed computing to improve processing time performance, and scalability

in terms of the amount of data that can be processed by a given system.

To achieve large scale Earth systems monitoring it seems that there are few
alternatives to using distributed computing for geoprocessing. Reducing the
scale or depth of analysis, or running compute jobs for long time periods are not
sustainable solutions. Supercomputing is a valid alternative to distributed
computing for large-scale geoprocessing, but it cannot compete in terms of cost
performance (Abbas, 2004). Additionally, supercomputing can in many cases
be accessed via distributed systems. For example, grid infrastructures such as
the NGS offer supercomputing services, and cloud platforms such as AWS offer
a platform from which MPI jobs can be run. Consequently, improving the ease
with which parallel geoprocessing can be interfaced is required, if our Earth

systems monitoring programmes are to be sustained in the long term.

Barriers to integration of geospatial web services with distributed computing are
beginning to diminish as research into standards harmonisation continues. The
work presented in this thesis has made a contribution to the field by defining a
categorisation of real-time geoprocessing, and showing how these different
types of geoprocessing can be achieved in a distributed computing
environment, through a set of real world examples. In the future it seems likely
that the cloud architecture will see widespread adoption in the geospatial field.
Unlike the grid, which has been driven by academia, the cloud model is driven
by commercially driven IT companies. Consequently software providers are
likely to turn to this infrastructure because it is well supported and relatively
simple to use. Cloud computing is a combination of grid computing, utility
computing and virtualisation technology. It therefore incorporates the

advantages of grid computing, but it also provides a model that enables

240

Conclusion

infrastructure providers and service providers to benefit from economies of
scale, which is likely to prove successful in the commercial environment, as well

as in academia.

241

Appendix A

Appendix A Sensor Observation Service (SOS) Build &

Deployment Steps

Prerequisites

1)

2)

3)

4)

5)

Java Development Kit (JDK) version 1.5 or higher

http://java.sun.com/javase/downloads

Working installation of Apache Maven

http://maven.apache.org/ (v2.2.1)

Working installation of PostgreSQL database management system
http://www.postgresql.org/ (v8.3)

PostGIS spatial extension to PostgreSQL
http://postgis.refractions.net/ (v1.5)

Working installation of Apache Tomcat (v6.0)
http://tomcat.apache.org/

6) Subversion client, e.g. TortoiseSVN

http://tortoisesvn.tigris.org/

Procedure

The following steps were followed to build, configure and deploy the 52 North

SOS. Note: This procedure assumes a windows platform although this is not

strictly required

1) Create a Spatial Database
a. Open the PostgreSQL PgAdmin console
b. Click on the local database server in the right hand pane and connect.
c. Right click on the server and select ‘new database’
d. Name the database ‘SOS’ and select ‘template_postgis’ from the

template dropdown box.

2) Configure Maven

242

Appendix A

a. Open the conf folder in the Maven install directory and edit the
settings.xml file

b. Under the profile tag insert the following profile:

<profile>
<id>52n-start</id>
<repositories>

<repository>
<id>n52-releases</id>
<name>52n Releases</name>
<url>http://52north.org/maven/repo/releases</url>
<releases>

<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>

</snapshots>

</repository>

<repository>
<id>geotools</id>
<name>Geotools repository</name>
<url>http://maven.geotools.fr/repository</url>

</repository>

<repository>
<id>Refractions</id>
<name>Refractions repository</name>
<url>http://lists.refractions.net/m2</url>

</repository>

<repository>
<id>Apache</id>
<name>Apache repository</name>
<url>http://repol.maven.org/maven2</url>

</repository>

</repositories>
</profile>

c. After the profiles section insert the following active profile:

<activeProfiles>
<activeProfile>52n-start</activeProfile>
</activeProfiles>

3) Checkout the project from SVN:
a. Create a windows folder in which to install the sources
b. Right click in this folder and select SVN Checkout from the popup menu
c. Checkout the project by filling out the SVN URL
http://52north.org/svn/swe/main/SOS/service/trunk/SOS and the destination

directory for the source code.

243

Appendix A

x

~ Repaositary
LRL of repository:

! Er| itbps: f(S2north, orgfsyn)swemaing 305 Service trunk 50552 0-
Zheckout dirgckory
I D:\Docurments and Settings)Administrakorisost52n-so0s |

~ Checkout Depth
IFuIIw;.-' reCUrsive ;‘

™ omit externals

—Revision
% HEAD revision

" Revision Sham log

oK Cancel Help

4) Configure the Maven project object model: pom.xml
Once the sources have finished downloading open the pom.xml in a text editor and
make the following changes:
a. The name of your SOS webapp

<conf.sos.name>52nSOSv3</conf.sos.name>

b. The public IP of your SOS webapp
<deploy.target.host>128.240.60.30</deploy.target.host>

c. The port
<deploy.target.port>9090</deploy.target.port>

d. Your tomcat manager connection settings
<!I-- Tomcat Manager username *HAS TO BE CHANGED**-->
<deploy.tomcat.manager.username>admin</deploy.tomcat.manager.username>
<!-- Tomcat Manager password **HAS TO BE CHANGED**-->
<deploy.tomcat.manager.password>******</deploy.tomcat.manager.password>
<!--installation directory of the tomcat servlet engine *HAS TO BE CHANGED, IF
NECESSARY**-->
<deploy.tomcat.home>C:/Programme/Apache Software Foundation/Tomcat

6.0</deploy.tomcat.home>

e. The connection settings for the database created in Step 1.

<!--connectionstring to the DB *HAS TO BE CHANGED** -->
244

Appendix A

<conf.sos.ds.connectionstring>
jdbc:postgresql://localhost:5432/SOS
</conf.sos.ds.connectionstring>
<!I-- your DB-username *HAS TO BE CHANGED** -->
<conf.sos.ds.user>aengus</conf.sos.ds.user>
<!-- your DB-password **HAS TO BE CHANGED** -->
<conf.sos.ds.password>a4131673</conf.sos.ds.password>

The request decoders

<conf.sos.postRequestDecoder>
org.n52.sos.decode.impl.HttpPostRequestDecoderMobile

</conf.sos.postRequestDecoder>

<conf.sos.getRequestDecoder>
org.n52.sos.decode.impl.HttpGetRequestDecoderMobile

</conf.sos.getRequestDecoder>

Mobile enabled

<conf.sos.mobileEnabled>true</conf.sos.mobileEnabled>

Capabilities settings
<conf.sos.capabilities.provider.name>
Newcastle University
</conf.sos.capabilities.provider.name>
<conf.sos.capabilities.provider.site>
http://ceg.ncl.ac.uk
</conf.sos.capabilities.provider.site>

<conf.sos.capabilities.provider.individual.name>

Mr Aengus McCullough </conf.sos.capabilities.provider.individual.name>

<conf.sos.capabilities.provider.position.name>
PhD Student
</conf.sos.capabilities.provider.position.name>
<conf.sos.capabilities.provider.phone>
+44(0)7T77777777
</conf.sos.capabilities.provider.phone>
<conf.sos.capabilities.provider.address>
Cassie Building, Claremont Rd
</conf.sos.capabilities.provider.address>
<conf.sos.capabilities.provider.city>
Newcastle upon Tyne
</conf.sos.capabilities.provider.city>
<conf.sos.capabilities.provider.zip>
NE17RU
</conf.sos.capabilities.provider.zip>

<conf.sos.capabilities.provider.state>

245

Appendix A

Tyne and Wear
</conf.sos.capabilities.provider.state>
<conf.sos.capabilities.provider.country>
UK
</conf.sos.capabilities.provider.country>
<conf.sos.capabilities.provider.email>aengus.mccullough@ncl.ac.uk</conf.sos.capabiliti

es.provider.email>

I. URL of the web application

<conf.sos.service.url>
http://128.240.60.30:9090/${conf.sos.name}

</conf.sos.service.url>

5) Populate the SOS database with the SOS data structure
a. Open PgAdmin and the SOS database and select the toolbar button
‘execute SQL query’.
b. Open the SQL file located in the SOS
sourcedir/db/datamodel_postgres83.sq|l
c. Execute the SQL and exit PgAdmin

6) Adjust the capabilities skeleton mobile and the SensorML skeleton
a. Browse to the /52n-sos-service/src/main/webapp/WEB-INF/conf/ folder
and modify the /capabilities/capabilities_skeleton_mobile file to describe
the SOS capabilities.
b. Next, for each vehicle in the fleet insert a SensorML description of the
sensor into the /sensors folder, named sensor-name.xml where sensor-

name is the name given to the sensor in the SensorML file.

7) Start Tomcat
a. If Tomcat is installed as a service then open the services manager as
follows:
i. Click on Start >> Run and type services.msc
ii. Select the Tomcat Service and right click start service

Otherwise browse to the Tomcat installation folder and select /bin/startup.bat

8) Build and deploy the SOS
a. Open awindows command prompt Start >>Run and type cmd
b. Browseto the root source directory of the SOS project that was checked

out and type mvn —Pwith-deploy install

246

Appendix A

9) Restart Tomcat, the SOS should now be available at the path specified as URL
of web application (Step 4).

10) Consult the 52 North SOS documentation for troubleshooting advice.

247

Appendix B

Appendix B Loading GPS Observations into PostGIS

Prerequisites

1) A working installation of PostgreSQL database management system
http://www.postgresqgl.org/ (v8.2) with the PostGIS spatial extension
http://postgis.refractions.net/ (v1.4.2)

2) Microsoft Excel 2003

Procedure

Note: This procedure assumes a windows platform although this is not strictly

required

11) Create a Spatial Database
a. Open the PostgreSQL PgAdmin console
b. Click on the local database server in the right hand pane and connect.
c. Right click on the server and select ‘new database’
d. Name the database ‘SOS’ and select ‘template_postgis’ from the

template dropdown box.

12) Write SQL:

CREATE TABLE observations(id INTEGER, time TIMESTAM PTZ,
elevation FLOAT(5), geometry VARCHAR(50));
SET Datestyle = ‘DMY’;

13)Prepare GPS observation file
Open the text file containing the observations in Microsoft Excel and
ensure that the order of columns returned by the database query:
SELECT * FROM observations matches the column order in the text
file. If there is a header row then remove it. Save as a tab delimited text

file with a .txt extension.

14)Fix bug in Proj4 library
If using Proj4 library < 1.6.2 (postgis 1.4.2) then need to fix a bug in the
‘spatial_ref_sys’ table. If the query '‘SELECT projdtext FROM
spatial_ref_sys WHERE srid=27700’ returns: ‘+proj=tmerc
+lat_0=49 +lon_0=-2 +k=0.999601 +x_0=400000 +y_0=-

248

Appendix B

5)

100000 +ellps=airy +units=m +no_defs’ then it is necessary

to append ‘datum=0SGB36 to the string to ensure correct reprojections.

UPDATE spatial_ref sys SET projdtext= ‘+proj=tmerc +lat_0=49
+lon_0=-2 +k=0.999601 +x_0=400000 +y_0=-100000 +el Ips=airy
+units=m +no_defs +datum=0SGB36’ WHERE srid=27700;

UPDATE spatial_ref sys SET projdtext = '+proj=longl at

+ellps=airy +datum=0SGB36 +no_defs' WHERE srid=4277 ;

It is now possible to correctly transform the coordinate system from
wgs84(EPSG:4326) to osgh36 (EPSG:27700)

UPDATE observations SET osgb_geom = transform(wgs_g eom,27700);

249

Appendix C

Appendix C Publishing Ordnance Survey MasterMap
Integrated Transport Network (ITN) data with
Geoserver

Prerequisites

1) A Java Development Kit (JDK) version 1.5 or higher

http://java.sun.com/javase/downloads

2) A working installation of Geoserver

http://geoserver.org/ (v2.0)

3) A working installation of PostgreSQL
http://www.postgresql.org/ (v8.2)

4) The PostGIS spatial extension
http://postgis.refractions.net/ (v1.4.2)

5) An InterpOSe installation

http://www.dottedeyes.com/spatial_data_loading/interpose/

Procedure

Note: This procedure assumes a windows platform although this is not strictly

required

1) Download Master-Map ITN Data from http://www.edina.ac.uk/digimap
a. Ordnance Survey Collection >> Data Download Service>> MasterMap
Download>>ITN layer (road network)
b. Select GZip GML download format

2) Load GML data into PostGIS database

a. Create a database to store the data. From the postgres shell type the
command: createdb —T template_postgis <yourDBname> and enter your
password. If using PostGIS version <1.5 then follow Step 4 in Appendix B
to correct the proj4 library.

b. Open InterpOSe and follow the wizard based instructions to convert the
downloaded Mastermap data in GML format, to ESRI Shapefile format.
Note that although it is possible to load GML directly into PostGIS using
OGR20GR this method does not preserve the unique TOID identifier of

250

Appendix C

each feature, thus it is necessary to first convert it to shapefile using the
interpose tool.

c. Use the PostGIS shp2pgsql tool to load the data in ESRI shapefile format
into PostGIS. From the postgres shell type the following for each shapefile
layer, i.e. roadlink_polyline and roadnode_point. Substitute in the

parameters for the database created above:

d:\Program Files\postgresql\8.2\bin>shp2pgsql -s 27 700 -d -g
the_geom d:\data\ITN\Road_Link_polyline public.road Link |
psql -h localhost -d itn_test -U Administrator

d. Ensure the data has loaded correctly. From the postgres shell, connect to
the db: psgl <myDBName> and check it has tables: show columns

from table \d

3) Publish the data as a WFS using Geoserver
a. Start GeoServer and point browser at http://localhost:8080/geoserver
Click on config >> Data >>Namespace>> New and type osgb as the prefix and
http://www.ordnancesurvey.co.uk/xml/namespaces/osgb as the URI.

b. Click on Data >> DataStores >>New and select Postgis from the Feature
Data Set Description. Type MasterMap_ITN as the feature dataset ID and
click New.

c. Select osgb as the namespace and fill out the connection details for
<yourDBname>. Click on submit and in the left hand panel click Apply >>
Save>> Load.

d. Click on Data >> FeatureTypes >> New and select from the
Feature_Type_Name drop down <yourDBname>..roadlink and click New.

e. From the following page select a display style that is appropriate to the
geometry, ‘simple_roads’ for example. Click on ‘Lookup SRS’ and
‘Generate Bounding Box’, check ‘Enable caching’ and click submit and
Apply >> Save>> Load.

f. Once a feature type has been created it should be possible to view the data
by clickihg on Welcome >> Demo >> Map Preview >>
<yourFeatureTypeName> The layer should be visible.

g. Send a test GetCapabilities request to the WEFS:
http://localhost:8080/geoserver/wfs?request=getCapabilities&service=WFS
&version=1.0.0

h. Finally, the WFS can be ported to a publicly accessible server once it is

successfully running locally.
251

Appendix D

Appendix D Example Requests and Responses

SOS RegisterSensor Request

<?xml version="1.0" encoding="utf-§" 7>
<RegisterSensor service="S505" wverzion="1.0.0" mobileEnsbled="true"
xmlns="http: f fwnr. opengis .net feosf1.0"
wmlns: http: [. opengis . net fswef1.0.1"
http: /e . opengeospatial.netjows"
wmlns:xlink="http:J wvwr.w3.orgf1999 /1link"
wmlns:gml="http: [fwwnr. opengis.net fgml"
wmlns:oge="http: S fwwnr. opengis .net fogo"
Xmlns: ttp://wnnr.opengis.net fomf1.0"
http:/f/wew.opengis.netfsensorMLf1.0.1"
http:ffwew.w3.orgf2001 /XML 5chema-instance"
xsi:schemalocation="http://wew.opengis.netfsosf1.0">
<3ensorlescription>
<swl:SensorML version="1.0.1">
<swlimenber s>

Hlns:

xmlns:
xmlns:xsi=

<sml:Svatem xmwlns:xsi="http:/flnmw. w3, org/2001 /%ML Schema-instance" >
<swl:identifications
<sml:IdentifierLiscs>"
<sml:identifiers
<sml:Term definition="urn:ogc:def:identifier:06C:unigquelID" >

<aml:ivalue>URH:0GC: sensorId</aml:valuex
</sml: Term:>
</sml:identifier></sml:IdentifierList>
</sml:identifications
<l—— sml:capabilities element has to contain status and mobility information --»
<smli:capshilitiess
<zwe:Simplelatafecord:>
<l-— ztatus indicates, whether sen=or is collecting data at the moment (Crue) or not (false) —->
<swe:field nawe="status">
<swe:Boolean>
<swevaluertrues/swevalues
</swe:Boolean:
</swe:fields
<!-— status indicates, whether sensor is mobile (true)] or fixed (false) —->

<swe:field name="mobile" >
<swe:Boolean>
<swervaluertrue</sweivalue:
</swe:Booleans
<fswerfield:>
</ swe:SimplebataRecords
</sml:icapabilities>
<!—— last measured position of sensor —->
<sml:position name="sensorPosition":>
<swe:Position referenceFrame="urn:ogc:def:crs:EPSG:4326" >
<swe:location>
<zwe:Vector gml:id="VEHICLE LOCATION":>
<swe:coordinate name="easting":>
<swe:fuantity axisID="x">
<swe:uom code="degree" />
<swe:value>8.86667</sveivalue:
</swe:rQuantity>
</gweicoordinater
<swe:coordinate name="northing" >
<swe:fuantity axisID="¥">
<swe:uom code="degree" />
<swervalue>51.883906</ svevalue:
</swe:rQuantity>
<fswe:icoordinates
<swe:coordinate name="altitude'":>
<swe:fuantity axisID="z">
<swe:uom code="m" />
<swervaluex52.0</sweivalue:>
</swe:rQuantity>
</swe:icoordinates>
<fswe:Vector:
<fswe:location:
<fswe:Position:
</sml:position>
<sml:inputs>

252

Appendix D

<sml:InputLists>
<sml:input name="pseudorange" >
<swe:ChservableProperty definition="urn:ogc:def:phenomenon:0GC:1.0.30:pseudorange" />
</sml:input>
</sml:InputList>
</sml:inputs>
<sml:outputs:
<sml:iutputList>
<sml:output name="hearing">
<swe:Juantity definition="urn:ogc:def:phenomenon:06C:1.0.30:bearing" >
<gmlimetabataPropertys
<offering>
<id>BEARING-/ id>
<name>Whole Circle Bearing</name:>
</offering>
</fomlimetalbataPropercys
<swe:iuom code="rad" />
</swe:rQuantity>
</=ml:outputs
<sml:output nsme="RoadID":>
<swe:Text definition="urn:ogc:def:phenomenon:0G6C:1.0.30: roadID" >
<gmlimetabataPropertys
“offerings
<idrroadID</ id>
<nzme>TOID of road section</name:
</offering>
</cmlimetabataProperty>
<fswe: Text:>
</=ml:outputs
<fsml:outputLiscs
</sml:ioutpucs>
</sml:Systems>
</ smlimenber >
</=sml:ZensorML>

</Zensorbescriptions>
<ChservationTemplate:>

<om: Heasurement>
<om:samwplingTime />
<om:procedure />
<om:obzervedProperty />
<om: feature0fInterests</om: featuredfInterests
<om:result uom="">< om:result>
</ om: Measurement -
</ChservationTemplates>
<ChservationTemplate:>
<om: Categorylhservations
<om:samplingTime />
<om:procedure />
<om:obzervedProperty />
<om: featuredfInterest></om: featuredfInterests
<om:resultx</omiresults
</om: CategoryChservat ions
</ChservationTemplates>
<domainFeatures>
<GenerichomainFeature ol:id="HewcastleRoadHetwork":>
<gml:description>Hewcastle</gml:descriptions>
<gml:name>City of Hewcastle</gml:nsmes
<grol: locations
<gml:Polygon srsWame="27700" xsi:type="gml:PolygonType" >
<gml:exterior:>
<gml:LinearRing xsi:type="gml:LinearRingType" >
<gml:coordinates>415000 569999,.998, 435000
569999.998, 435000 560000, 415000 560000, 415000
569999 .998</gml:coordinates:
</gml:LinearRing>
</oml:exteriors>
</oml:Polygons
</ogml: locations
</GenerichomainFeature:
</domainFeature:

</Registeriensor>

SOS RegisterSensor Response

<zos:RegisterSensorResponse xsi:schemalocation="http:/fiwnr.opengis.netfsosf1.0 http:ff=schemas.opengis.netfsos/1.0.0fs0sA11. xsd" >
<zoz:AssignedSensor Id>URN: 0GC : gensorId</sos: Assignediensor Id>
</sos:RegisterSensorResponses

253

Appendix D

SOS UpdateSensor Request

<UpdateSensor service="S08"

<?xml version="1.0"

encoding="utf-8" 2>
wversion="1.0.0"

xmlns="http: fjwww.opengis.netfsosf1.0"

xmlns

xwlns:
xmlns:
xmlns:
xwlns:

xmlns

rows="http:
gml="http
ogo="http:

:xsi="http:
sos="http:

iswe="http

£ e

2 f fanr

£ forerer
£ e
£ o

2 f Foere

mobhileEnabled="

.opengeospatial.net fows"

.opengis.net fgml"
.opengis.net foge"

w3.orgf2001 /XML Schema-instance"

.opengis.netfsos/1.0"

.opengis.netfswe/1.0.1"

true"

xsi:schemalocation="http: f fwwwr.opengis.netf=osf1.0 http: f/mars.uni-muenster.de/S0Smobile/trunkfsos/f1.0.0fsosUpdateSensor . .xsd" >

<Zensor ID>URN:0GC: sensorId</SensorID>
<time3tamp:>

<gml:tiwmePosition>2010-02-04T09:34:27</gmul:timePositions
</rimeStamps
<posgition referenceFrame="urn:ogc:def:crs:EPSG:4326">

<swe: locations

<swe:Vectors

<gwe:icoordinate name="longitude" >
<swe:Quant ity

<swervaluer-1.60</sweivaluer
</swe:Quantity:
</swe:coordinate>

<swe:coordinate name="latitude">
<awWeiQuantitys
<swe:value>54.54</swe:value>

</fswe:Quantitys
</sweicoordinates

<fswe:Vectors
</swe: locations>
</position>
<domainFeatures>

<GenerichomainFeature gml:id="HewcastleRoadHetwork":»
<gml:description>Hewcastle</gml:descriptions
<ol :name>City of Hewcastle</gml: name>
<gml:locations

</ UpdateSensor>

<gml:Polygon sralMame="27700"

<gml:exteriors
<gml:LinearRing xsi:type="gml:LinearRingType" >
<gml:coordinates>415000 569999.998, 435000
569999.998, 435000 560000,
569999, 998/ gml:coordinates:
</gml:LinearBings
<fomliexteriors
</oml:Polygons
</fomwl: locations
</GenericDomainFeatures
</domainFeature:
<isMobilextrue</isMobile:
<iskotivertrue</isictives

415000 560000,

SOS UpdateSensor Response

Hziitype="gml:PolygonType" >

415000

<sos:UpdateSensorResponse xsi:schemalocation="http://www.opengis.netfsosf1.0 http:/fschemas.openyis.net/sosf1.0.0/s0sA11.xsd">

<sos:statusrsensorUpdated</sos:statuss>

</ s0s:UpdateSensorResponses

254

Appendix D

SOS InsertCategoryObservation Request

<?xml wersion="1.0" encoding="utf-8" >
<InsertChservation xmlns="http://wnnr. opengis.netfsosf1.0"
wmwlns:ows="http: f/fwnr.opengis.netfowsf1.1"
xmlns:ogo="http: ffwww.opengis.netfogo"
xmlns:om="http: ffwww.opengis.netfom/1.0"
wmlns:sos="http: ffwnr. opengis.netfsosf1.0"
xlns:sa="http: ffwww.opengis.netfsampling/1.0"
mlns:nSz="http:f fwnr.52north.orgs1.0"
#tlns:gml="http: ffwww.opengis.net fgml"
xmlns:swe="http:ffwww.opengis.netfswef1.0.1"
wmlns:xlink="http: ffwar.w3d. orgf1999 /xlink"
#mlns:xsi="http: ffwww.w3.org/ 2001 /XML Schema-instance"

¥Zi:schemalocation="http:f/www.opengis.netfsosf1.0 http://schemas.opengis.netfsos/1.0.0/s0sInsert . xsd

http: f/fwww.opengis.netfsampling/1.0 http:/f/schemas.opengis.net/sampling/1.0.0/sampling.xsd

http:/fwww.opengis.netfom/1.0 http:/fschemas.opengis.net/om/1.0.0/extensions/observationSpecialization override.xsd"

service="508" version="1.0.0">
<Assignediensor Ids>
urn:ogc:object:feature:Sensor:HCL:ncl-sensor-1</ hssignediensor Id>
<om: CategoryChservation:>
<om: SamplingTime>
<ol :Time Instant>2007-05-16T19:44:1940000</ gml: Time Instant>
</ om: samp lingTimes
<om:procedure xlink:href="urn:ogc:object:feature:Sensor:HCL:ncl-sensor-1" />
<om: ohservedProperty xlink:href="urn:ogc:def:phenomenon:0GC:1.0.30: roadID" />
<om: featuredfInteresty>
<!—-— & sampling feature is needed to insert Categorylbserwvations —->
<saiBamplingPoint cml:id="Position2":>
<grol :name>Position2</ gml:names
<zarsampledFeature xlink:href="" /=
<sa:position>
<gml:Point>
<gmlipos srsMeame="urn:ogo:def:crs:EPSG:4326">54.98709
-1.59405</ gl poss
</gml:Point>
</sa:ipositions
</sa:SamplingPoint>
</om: feature0fInterest:
<omiresultritn 10 features.13472</om:iresults
</ om: CategoryObhservations
</ InsertChservations

SOS InsertObservation Response

<z0s: InsertChaervationFesponse xmlns:sos="http: f/wwnw.opengis.netfsosf1.0">
<303 Assigneddbservat iDnId}D_—214?433643<.-"SDS thssigneddbservationIds
</303: InsertdhservationResponses

SOS InsertMeasurement Request

<InsertCbhservation

service=4 "S0SY"

wersion=4"1.0.0%"

mobileEnabled=4"truel"

xmlns=\ "http:ffwnr. opengis.net/sosf1.0%"

xmlns:ows=Y "http: fwnr. opengis.net fows/1. 14"
xmlns:ogoe=ty "hitp: ffwr . opengis.net fogol"

xmlns:omw=4 "http: ffwwr. opengis.net/om/1. 04"

xmlns:zsos=h "http: f/wmnr. opengis.netfsos/1. 04"
xmlns:=sa=4Y"http: [/ fwvwwr. opengis.net/sampling/1. 04"
xmlns:gml=Yy "http: ffwer. opengis.net fgmly"

xmlns: "hittp: ffwrw.opengis.netfswef1.0.1%"
xmlns:xlink=Y"http:ffwmnr.w3. org/1999/x1ink\"
xmlns:xsi=hy "http: ffwew . w3 . org/2001 /XML Schema-instance"
xsiirschemalocation=Y"http: //www.opengis.netfsos/f1.0
http: f/mars.uni-muenster.defsosmobileftrunk/so=sf1.0.0fs0sInsert .xsd

http: ffwww.opengis.netfsampling/1.0

http: ffschemas.opengis.net/samplingf1.0.0/sampling.xsd

http: f fwww.opengis.netfomf1.0

|http: f/schemas.opengis.netfomf1.0.0/extensions/observationSpecialization override.xsd\" >

255

Appendix D

<hkssignedSensor Id>urn:ogce:object:feature :Sensor:HCL:ncl-sensor-7</ issignedSensor Id>
“om: Measurement>
<om: SamwplingTime:>
<gtol : TimeInstant>
<gulitimePosition>2008-04-01T17:44:15+00</gml: cimePositions>
</fgml: Time Instants
</om:3amp lingTime>
<om:procedure xlink:href=}'urn:oge:object:feature:Sensor:HCL:ncl-sensor-1Y" />
<om:observedProperty xlink:href=\"urn:ogc:def:phenomenon:06C:1.0.30:hearingy"/>

<om:dowainFeatures>
<GenericDowainFeature cpul:id=' "HewcastleRoadHetwork\">

<gml:descriprtion>Newcastle</cml:descriprion>
<gml:name>City of Hewcastle</oml:name:
<gml:location>
<gml:Polygon sraMeme=Y"43261" xsi:type=\'gml:PolygonTypel'>
«“cmliexteriors
<gml:LinearRing xsi:type=\"gml:LinearRingType\">
<gml:coordinates>8.76667 51.7167, 8.76667 52.7167, 9.76667 52.7167, 9.76667 51.7167, 8.76667 51.7167</gml:coordinates>
</gml:LinearRing>
</gml:exterior>
«/crol:Polygons
</gml:locations
<fGenerichomainFeatures
</om:domainFeatures>
<om: feature0fInterest:

<sa:SamplingPoint oml:id=% "Positionly"s
<gpul:name>FOL_EINS</cul:name>
<sa:sampledFeature xlink:href=\"Y"/>
<sa:position>
<gml:Point>
<gml:pos srolame=h'"urn:oge:def:crs:EPSG: 43261 >8.86667 51.883906</gml : pos>
</crul:Poinc>
</za:positions
</sa:SawplingFoint:>
</om:feature0fInterest>
<om:result uom=%"'rady">2.0</om:result>
</ om: Neasurement>
</ Insertobservations

SOS DescribeSensorTimePeriod Request

<2xml wversion="1.0" encoding="UTF-&" 2>
<DescribeSensor version="1.0.0" sService="505" mobileEnsbled="true" xwlns="http:/jwmmw.opengis.netfsosf1.0"
wmlns:gml="http:ffwww. opengis.net/gml"
wmlns:oge="http: f fwww. openygis.net fogo"
umlns:xsi="http: ffwww.w3.org/2001 /XML Schema-instance" xsi:schewmalocation="http:/fwnwr.opengis.netfsosf1.0
http://schemas.opengis.net/sos/f1.0.0/s0sDescribeSensor . xsd" outputFormac="text/xml :subtype=" ;sensorML/1.0.1" ;">
<procedurertestgpsobs3</procedure:
<timex
<ogo: TH During>
<ogc: Propertylfame: om: samplingTime </ ogc : Propertylame:
<gml:TimePer iod>
<gml:beginPosition>2010-02-11T14:03:354+00</ gl :beginPosition>
<gml:endPosition>2010-02-11T14:04:35+00</gml:endPosition>
</crol: TimePeriods
</oge:TH Durings
<4 £ imes
</DescribeSensors

WFS GetFeature Request

<wfz:GetFeature service="WFS" wversion="1.1.0"
xmlns:osgh="http: ffwww.ordnancesurvey.co.uk/xml fnamespaces"
xmlns:wis="http:f fwnr.opengis.net fwts"
xmlns:ogo="http:f fvnr.opengis.netfogc"
xmlnz:gml="http: ffwww.opengis.net fgml"
xmlnz:xsi="http:ffwwwr.w3.org/2001 /M. Schema-instance"
x2i:achemalocation="http: ffwvww.opengis.netfwfs
http:ffschemas.opengis.netfwfs/f1.1.0/wfs.xsd" >
<wfs:Query typelNawe="topp:states":>
<wfs:Propertyllawerosgb: roadlink</wEs: Propert yllames
<ogziFilter:>
<ogc i BEOH:>
<Dgc:PerEEtyNamE>the_geum<fUgc:PerErtyNamE>
<gml:Envelope srsName="http:[ffwww.opengis.netfgmlfsrsfepsyg. aml#f4326" >
<gml:lowerCorner>—75.102613 40.212597</gml: loverCorners
<gml:upperCorner>—72.361859 41.512517</gml: upperCorners>
</ml:Envelopes
</ oge:BEOX:
</ogo:iFilters
</wfs:Querys
</wfz:GetFeature:

256

Appendix D

WPS Execute (HTTP GET) Request

http://localhost:8080/wps/WebProcessingService?requ est=execute&Datalnp
uts=SOS_URL=http://128.240.60.1:9091/52nSOSv3/s0s;S ENSOR_ID=gpsobs3;WF
S_URL=http://128.240.60.30:8762/geoserver/wfs;WFS_N S=0sgb;WFS_TN=roadl
ink&version=1.0&ldentifier=org.n52.wps.server.algor ithm.mmproxy1l.MMPro
xyAlgorithm

WPS Execute Response

<ns:ExecuteResponse xsi:schemalocation=http://wuww.opengis.net/vpa/1.0.0
http://geoserver.ite.nl: 8080/ vps/schewas/wps/1.0.0/vpsExecute_response.xsd
ServiceInstance=http://localhost: 8761/ wps220709,/ WebProcessingService ?SERVICE=GetCapabilities&SERVICE=UPS
Hol: lang="en-U3" service=*WP3" verszion=*1.0.0">
<ns:Process ns:processVersion="2":>
<nsl:Identifiers
org.ni2.wps.server.algorithm.mmproxyl .MMProxyAlgorithm
</nsl :Identifiers
<ows :Title:MapMatching</ows :Titlex
</ns:Process:
<ns:ftatus creationTime=~2Z010-03-31T14:22:32.8582+01:00">
<N3:Process3ucceeded:>The service successfully processed the request</ns:ProceasSucceeded:s
</ns:istatus:>
<ns:Frocessdutpucss
“nsg:output>

<nsl:Title xml:lang="URN of Asynchronous Process®/>

<nzl:ibstract>URH of asynchronous process</nsl:ilbhstract:>

<n=:Reference href=*urn:gridsam:23581fcc5254548580127b46408aclbatf” />
</ns:output>
</nz:Processfutputss
<ns:Processiutputss>
<ns:ExecuteResponses

WPS StopExecuting (HTTP GET) Request

http://128.240.60.1/wps?request=stopExecuting&servi ce=wps&version=1.0.
0& job_id=urn:mygridsamjob:id:123

WPS StopExecuting Response

<3topExecutingResponse xsi:schemalocation=http:ffwww.opengis.netfups/1.0.0
http: f/myschemafwpsf1.0.0/wpsStopExecutingResponse . xsd>

<Response urn="urn:mygridssmiob:id: 123> 0K </Response>
-</8topExecutingResponser

257

Appendix E

Appendix E Loading Ordnance Survey MasterMap ITN da ta
into Oracle Spatial 11g

Prerequisites

1) Working installation of Oracle Client (not the Instant Client)

2) Mastermap ITN dataset in ESRI shapefile format. See Appendix C for

details on converting MasterMap GML into shapefile format.

3) Connection parameters and write access to an Oracle Spatial 11g database
instance
4) Install of Oracle’s shp2sdo tool
Procedure

The following steps were followed to load the Ordnance Survey Mastermap ITN

network dataset into Oracle 119 spatial database.

1) Set up Connection to Oracle
Create a text file named ‘tnsnames.ora’ containing the following text and
save it into the bin subdirectory of Oracle Client’s install directory:

sand =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP)(HOST =
oracle.vidar.ngs.manchester.ac.uk)(PORT = 1521))
(CONNECT_DATA =
(SERVER = DEDICATED)
(SERVICE_NAME = sand)

)
)

2) Set Environment
Set an environment variable hamed TNS_ADMIN to point to the aforementioned bin

subdirectory of the Oracle Client install directory.

3) Convert shapefile to Oracle Input File
Run the shp2sdo utility by browsing to the shp2sdo install directory and

the subdirectory that reflects the operating system you are using; i.e.

258

Appendix E

shp2sdo_nt for windows users. Both the road_link and road_node
shapefiles must be converted.

The following syntax is used to run shp2sdo which converts ESRI
shapefiles into Oracle input files:

-g = the desired name of the geometry column in the resulting feature
table

-X, -y = the maximum and minimum bounding box extents of the data. If
not known this can be determined by opening the shapefile in a data
browsing tool such as ArcCatalog (http://www.esri.com) or UDig
(http://udig.refractions.net).

-t = tolerance

-s = SRID, i.e 27700 for OSGB36

shp2sdo path-to-shapefile-shapefilename-noextension —g
nameofgeomcolumn —x(-180,180) —y(-90,90) —t 0.0001 -5 27700

For example:

D:\documents and settings\administrator\my
documents\downloads\shp2sdo\shp2sdo_nt>
shp2sdo d:\data\itn\road_link_polyline —g geom. —x
(422785,434334) -y (556566,566761) —s 27700

This procedure should create three new files in your working directory
with the same name as the shapefile, but with three different extensions,
.sql, .dat and .ctl. Respectively these files are used to create the table
structure in Oracle, store the data and define how the data is to be
inserted into the tables.

4) Create Table Structure in Oracle

Run sqlplus from the Oracle Client/bin directory using the following command :

D:\Oracle_client\product\11.1.0\client_2\BIN>sqlplu S
username/password @database-instancename

This command will refer to the thsnames.ora file to connnect to the Oracle instance.

To create the table structure run the SQL file created in the previous step :

@ road_link_polyline.sql
Finally exit sqlplus by typing :

Exit
259

Appendix E

5) Load Data
Edit the .ctl file INFILE value to point to path of .dat file (put in single
quotes, eg INFILE='D:/TEMP/MYFILE.DAT

Set up the environment to run sqlldr:

set ORACLE_BASE=C:\oracle\product\11.2.0
set ORACLE_HOME-=c:\oracle\product\11.2.0\dbhome_1
set PATH=$PATH:$ORACLE_HOME/hin

From the Oracle client/bin directory run sqlldr using the following command:

Sqlldr username/password@database-instancename
CONTROL= d:\data\itn\road_link_polyline.ctl

6) Validate Data
To ensure the data has loaded successfully connect to the database

through SQLPLUS once more and run the following commands.

create table validation(sdo_rowid rowid, status var char2(2000));
execute

SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT('road_link_pol yline','geom’
,'validation");

SELECT * FROM VALIDATION;
If successful the value ‘TRUE’ should appear as result.

7) Create a spatial index on the table

create index roads_index on road_link_polyline(geom) indextype
is mdsys.SPATIAL_INDEX;

260

Appendix F

Appendix F Generation of a Spatial Road Network in Oracle

1) Create LINK_TABLE

CREATE TABLE link tahle

{link id NUMBER,

toid HUMBER,

toid direction CHAR(1}),

start_node_id HUMBER,

end_node_id HUMBER,

geometry column 30O GEOMETRY,

hidirected CHAR{ 1),

link name VARCHAR2{ Y.

link length WUMBER,

cost HUMBER

hr_4 HUMBER, hr 5 HUMBER, hr ¢ HUMBER, hr 7 HUMBER, hr & WUMBER, hr S NUMBER, hr_ 10 WUMBER, hr 11 NUMBER,
hr 12 HUMBER, hr 13 HUMBER, hr 14 WUMBER, hr_ 15 HUMBER, hr 16 WUMBER, hr 17 HUMBER, hr_ 15 HUMBER, hr 15 HUMEER,
hr 20 HUMBER, hr Z1 HUMBER, hr 22 WUMBER, hr 23 HUMBER, hr 24 HUMBER) :

2) Create and Populate TOID_LINKID_LOOKUP

CREATE TABLE toid linkid lookup
[{1link_id HUMBER,

toid HUMBER,

toid direction CHAR{1}}):

CREATE

SEQUEHCE "AENGUS™."LINKID SEQUENCE" MINWVALUE MAXWALUE INCREMENT BY

FTART WITH CACHE NOORDER MNOCYCLE

IHSERT

UPDATE

UPDATE

IHSERT

UPDATE
UPDATE

INTO toid linkid lookup {(toid) SELECT TO WUMBER({toid) FROM road link polyline;
toid linkid lookup SET toid direstion='F';
toid linkid lookup SET link id = LINKID SEQUENCE.nextval;

INTO toid linkid lookup {(toid) SELECT TO WUMBER({toid) FROM road link polyline;
toid linkid lookup SET toid direction='E' where toid direction IS HULL:
toid linkid lookup SET link id = LINKID SEQUENCE.nextval WHERE link id IS HULL:

3) Join and Populate LINK_TABLE

INSERT INTO link table
{link id, toid,toid direction,start_node_id,end node_id, geometry columwn,bidirected,link name,link length,hr_2,hr 5, hr &,
hr_7,hr_8,hr_S,hr_10,hr_11,hr_12,hr_13,hr_14,hr_15,hr_16,hr_17,hr_18,hr_19,hr 20,hr_21,hr_22,hr_23,hr_24)

SELECT

l.link id,r.toid,'F',r.start_node, r.end node,r.geowetry,'l', r.road name,a.linklength,a.hr 4,a.hr 5,a.hr 6,a.hr 7.a.hr §,
a.hr 9,a.hr_10,a.hr_11,a.hr 1Z,a.hr_13,a.hr 14,a.hr 15,a.hr_16,a.hr 17,a.hr 18,a.hr 19,a.hr Z0,a.hr 21,a.hr ZZ,a.hr 2Z3,a.hr 24
FROM road link polyline r LEFT OUTER JOIN ncc_travel time data a ON r.toidea.toid and a.direction='F'

JOIN toid linkid lockup 1 on r.toid=l.toid AHD 'F' = l.toid direction;

INSERT INTO link table

{link id,toid,toid direction,start_node_id,end node_id,geometry_column,bidirected,link_name,link_ length, hr_4,hr 5,hr 6,

hr_7,hr 8, hr_S,hr_10,hr_11,hr_12,hr_13,hr_14,hr_15,hr_16,hr_17,hr 18, hr_19,hr_20,hr_21,hr_22,hr_23,hr_24)

SELECT 1.link_id, r.toid,'E',r.end node,r.start_node,r.geometry, 'I' ,r.road name,a.linklength,a.hr_4,a.hr S,a.hr_6&,a.hr 7,

a.hr_8,a.hr_%,a.hr_10,a.hr_11,a.hr_1Z,a.hr_ 13,a.hr_14,a.hr_15,a.hr_16,a.hr_17,a.hr_ 18,a.hr_19,a.hr 20,a.hr_21,a.hr_22,

a.hr_23,a.hr_2z4

FROM road link polyline r LEFT OUTER JOIN apriori speed & OW r.toid=a.toid and a.direction='E' JOIN toid linkid lookup 1
OF r.toid = l.toid AHD 'E'=l.toid direction;

CREATE TABLE temp table (link id number, toid number, toid direction char{1l), start_node id number, end node_id nmumber,

geometry_column sdo_geometry, bidirected char{l), link name VARCHARZ(¥, link_length , COsSt s hr_4 .
hr_5 » hr_6 s hr_7 . hr_ 8 r hr 8 . hr_10 » hr_11 . hr_12 . hr_13 .
hr_14 NUMBER, hr_15 , hr_1s , hr_17 , hr_18 , hr_13 , hr_zo , hr_z1 , hr_zz .

hr_23 NUMBER, hr_24 NUMBER, start_n HUMBER, end_n HUMBER) :

IHNSERT INTO temp_table(link id,toid,toid direction,start_node_id,

end node_id, geowetry_column,bidirected,link_nawme,link length,cosc,hr_4, hr 5, hr_6,hr_7,hr 8, hr_9,hr 10,hr_11,hr_12,hr_ 13,
hr_14,hr_15,hr_16,hr_17, hr_18, hr_15, hr_20,hr_21,hr 22 ,hr_23,hr_24)

SELECT 1l.link id,l.toid,l.toid direction,t.nodeid,p.nodeid, l.geometry column, l.bidirected,l.link name,l.link length,l.cost,
l.hr 4, L.hr 5,1.hr 6,1.hr 7, l.hr 8,1.he 9, l.he 10, l.he 11,l.hr 12,1.he 13, l.hr 14,1.he 15,1.he 16, l.he 17,l.hr 18,1.he 19,
l.he 20,1.hr 21,l.hr 22, l.he 23,1.hr 24

FROM link tshle 1 JO0IN toid_nodeid lookup t OW l.start_node_id = t.node_toid JO0IN toid_nodeid lookup p ON p.node_toid =

l.end node id;

DROP TABLE link table;

REHAME temp_table TO link table:

ALTER TABLE link table add{link level number} :
UPDATE link table SET link level=1;

261

Appendix F

4) Create, Validate and Partition the Network

IHSERT IHTO user sdo network metadata{network,network Category,geometry type,

no_of_hierarchy_levels,no_of partitions,link direction,node_takle_name,

node_geom column, node cost_column, link table name, link _geom column,

link wost_column,path_table nawe,path geow_coluwwn,path link table name})

VALUES{'ROLD NETWORE','SPATIAL','SDO GEOMETRY' .1, ,'DIRECTED' ,'NODE_TAELE','GECHETRY_ COLUMM' ,HWULL,'LINE TAELE',
'GEOMETRY COLUMN',

'COST' ,'PATH_TAELE',

' GEOMETRY_COLUMN' ,'PATH LINE_TAELE') :

BEGIH

gdo_net.insert geom metadata(ROLD NETWORK' ,3DO_DIM ARRAY(SDO DIM ELENMENT{('E', 0O, +1),5D0 DIM ELEMENT

(L0, 1YY, Y

EHD :

——VALIDATE METWORE

SELECT 5DO NET.VALIDATE _NETWORK('ROAD NETWORE') FROM DUAL;

——FARTITION WETWORK

EXEC sdo_net.spatial partition{'ROLD NETWORE', 'ROLD NETWORE PARTE', , "RENGUS_LOGE',
'road_network _part.log', 'a'):

UPDATE user =do network metadats SET no of partitions=({SELECT COUNT{DISTINCT partition_id)

FROM road network partd)

—— GEMERATE PARTITICN ELOEZ
EXEC sdo_net.generate_partition blobs({'ROLD _NETWORE', s ROAD_NET[-JORK_PBLOBS ', true, true,
'RENGUS_LOGS', 'ROAD NETWORK. log', '&'}:

——-CREALATE SPATIAL INDEXES
CREATE IHDEX link_index ON link tableZ{geometry_column) indextype IE mdsys.spatial index;

—— RE-VALIDATE
SELECT 5DO NET.VALIDATE _NETWORK('ROAD MNETWORE') FROM DUAL;

5) Add Travel Time Column

|ALTER TABLE link table ADD{c_4 DOUBLE PRECISION, c_5 DOUBLE PRECISION, c_& DOUBLE PRECISION, c_7

DOVBLE PRECISION, c_& DOUBLE PRECISION, c_ S5 DOUBLE PRECISION, c_10 DOUELE PRECISION, c_11 DOUBLE PRECISION,
c_l2 DOUBLE PRECISION, c_13 DOUBLE PRECISTIONH, c_14 DOUBLE PRECISIOH, c 15 DOUBLE PRECISION, c_16
DOUELE PRECISION, c_ 17 DOUBLE PRECISION, c_15 DOUBLE FRECISION, c_ 15 DOUBLE PRECISION, ¢ 20 DOUBLE PRECISION,
c_ 21 DOUBLE PRECISION, c ZZ DOUBLE PRECISION, c 23 DOUELE PRECISION, c Z4 DOUBLE PRECISION) :

UPDATE link table 1 SET l.z_ 4 = l.link length / (l.hr_4%(1f }) WHERE 1l.hr 4 IS5 HOT HULL and 1l.hr_ 4 !=0;
UPDATE link_tahle 1 SET l.z_ 5 = 1.link length f (1.hr_S*(1f }) WHERE 1.hr 5 IS HOT HULL and l.hr 5 ! :
UPDATE link table 1 SET l.c 6 = l.link length f {l.hr e*{1f }) WHERE 1.hr & IS HOT HULL and l.hr & H
UPDATE link table 1 SET l.z_ 7 = l.link length / {(l.hr_7%({1f }) WHERE 1l.hr 7 IS5 HOT HULL and l.hr 7 ! H
UPDATE link_tahle 1 SET l.m_ 8 = 1.link length f (1.hr_S*(1f }) WHERE 1.hr & IS HOT HULL and l.hr 5 !
UPDATE link table 1 SET l.c_9 = l.link length f {l.hr S*{1f }) WHERE 1.hr 5 IS HOT HULL and 1l.hr 9 I=0;
UPDATE link table 1 SET l.c_10 = l.link length f {(l.hr_10%{1/ }) WHERE 1.hr 10 IS HOT HULL and 1.hr_10 !=0;
UPDATE link table 1 SET l.e 11 = l.link length f {(l.hr_11%{1J }) WHERE 1.hr 11 IS HOT HULL and 1.hr_ 11 H
UPDATE link table 1 SET l.c_12 = l.link length f (l.hr_12*{1/ }) WHERE 1.hr_ 12 IS HOT HULL and l.hr 12 ;
UPDATE link table 1 SET l.c_13 = l.link length f {l.hr_13%{1f }) WHERE 1l.hr 13 IS HOT HULL and 1l.hr 13 ! H
UPDATE link table 1 SET l.c 14 = 1.link length f {(l.hr_14%{1/ }) WHERE 1.hr 14 IS HOT HULL and 1.hr_ 14 I=0;
UPDATE link table 1 SET l.c_15 = l.link length f (l.hr_15%{1f ¥}y WHERE 1.hr_ 15 IS HOT HULL and 1l.hr 15 I=0;
UPDATE link table 1 SET l.c_16 = l.link length f {l.hr_16%{1f }) WHERE 1.hr 16 IS HOT HULL and 1l.hr_ 16 H
UPDATE link table 1 SET l.z 17 = l.link length f {(l.hr_17%{1/ }) WHERE 1.hr 17 IS HOT HULL and 1.hr_ 17 ;
UPDATE link table 1 SET l.c_18 = 1.link length f (l.hr_18%{1/ }) WHERE 1.hr 15 IS HOT HULL and l.hr 18 ! H
UPDATE link table 1 SET l.c 15 = l.link length f {(l.hr_19%{1f }) WHERE 1.hr 15 IS HOT HULL and 1.hr 15 !=0;
UPDATE link table 1 SET l.c 20 = l.link length f {(l.hr_20%{1/ }) WHERE 1l.hr 20 IS HOT HULL and 1.hr_ 20 !=0;
UPDATE link table 1 SET l.c_21 = l.link length f (l.hr_21%{1J ¥}y WHERE 1.hr 21 IS HOT HULL and 1l.hr 21 H
UPDATE link table 1 SET l.c 22 = l.link length Jf (l.hr 2z*{1/ }) WHERE 1.hr 22 IS HOT HULL and l.hr 22 ;
UPDATE link table 1 SET l.z 23 = l.link length [{(l.hr_23%{1/ }) WHERE 1l.hr 23 IS HOT HULL and l.hr 23 ! ;
UPDATE link_tahle 1 SET l.z_ 24 = 1.link length f (1l.hr_24%{1J }) WHERE 1.hr_ 24 IS HOT HULL and 1.hr_ 24 I=0;

6) Create and Populate STUDY_AREA_CLIPPED

262

Appendix F

CREATE TABLE study_area_clipped as {select * from LINK TAELE WHERE sdo_relate{geometry column,(select
sdo_aggr_wbr{geometry column) from LINE _TAELE WHERE hr_4 is not null), 'mask=anyinceract')='TRUE'):
insert inte user_ sdo_geomw metadata values{ 'study area clipped','GEOMETRY COLUMN' .

5D DIN ARRAV(SDO DIM ELEMENT('E', : . } 30O _DIM ELEMENT

LR . . i, ¥

CREATE index study_areac_index on study_area clipped{geowetry_coluwn} indextype is mdsys.spatial_index:
alter TABLE study area clipped add constraint scudyareac_pk primary key(link id, coid_direction):

CALL 3D0O GEOM.VALIDATE_LAYER_WITH_CONTEXT{'study area clipped','geowetry column' ,'WVAL RESULTS');

select * from val_results;

ALTER TABLE link TAELE add{c_4 DOUBLE PRECISION, =_5 DOUELE PRECISION, c_& DOUBLE PRECISION, c_7

DOUBLE PRECISION, c_35 DOUBLE PRECISIONH, c_5 DOUBLE PRECISION, c_10 DOUBLE PRECISION, c_11 DOUBLE PRECISION,
©_1Z DOUBLE PRECISION, _13 DOUBLE PRECISION, ©_14 DOUBLE PRECISIOH, c_15 DOUBLE PRECISIOH, c_1¢6

DOUBLE PRECISION, c_17 DOUBLE PRECISION, c_15 DOUBLE PRECISION, c_15 DOUBLE PRECISION, =_z0 DOUBLE PRECISIONH,
© Z1 DOUVBELE PRECISION, c 2z DOUBLE PRECISION, c 23 DOUBLE PRECISION,

c_24 DOUBLE PRECISION) ;

ALTER TABLE link TABLE add{HRN_ 4 DOUBLE PRECISION, HRN 5 DOUBLE PRECISION, HEN & DOUBLE PRECISION, HRN 7
DOUBLE PRECISION, HFN_S DOUELE PRECISION, HEN_ S DOUBLE PRECISION, HEN_ 10 DOUBLE PRECISIOH, HEM 11

DOUBLE PRECISION, HRIN_ 12 DOUBLE PRECISION, HRN_13 DOUBLE PRECISION, HFN_14 DOUBLE PRECISION, HEN_15

DOUBLE PRECISION, HFN 16 DOUBLE PRECISION, HEN 17 DOUBLE PRECISION, HRM 15 DOUELE PRECISION, HEN 19

DOUBLE PRECISION, HEN 20 DOUBLE PRECISIOH, HRN 21 DOUBLE PRECISION, HEMW 22 DOUBLE PRECISION, HEN_ 23 DOUELE PRECISION,
HREN_2z4 DOUBLE PRECISION) :

UPDATE link TABLE 1 SET l.c_4 = 1.link length f (1l.hr_4%({1f3.5)) WHERE l.hr_4 is not null and l.hr_4 !'=0;
UPDATE link TABLE 1 SET l.c_5 = 1.link length f (1.hr_S*(1f3.0)) WHERE l.hr_5 is not null and l.hr_5 !'=0:
UPDATE link TABLE 1 SET l.c_6 = 1.link length f (l.hr 6%(1/3.5)) WHERE l.hr 6 is not null and l.hr_&

UPDATE link TABLE 1 SET l.c_7 = 1.link length f (1.hr_7*{1f3.5}) WHERE l.hr_7 is not null and l.hr_7

UPDATE link TABLE 1 SET l.c_8 = 1. length / (l.hr_&%(1/3.6)) WHERE l.hr & is not null and l.hr_& !=0;

UPDATE link TABLE 1 SET l.c 9 = 1.link length f (1l.hr 9%({1f3.5)) WHERE l.hr 9 is not null and l.hr 9 !=0;
UPDATE link TABLE 1 SET l.c_10 = l.link length f (l.hr_10%({1/3.6)) WHERE l.hr_10 is mot null and l.hc_ 10 :
UPDATE link TABLE 1 SET 1.c_11 = l.link length / (Ll.hr_11%(1/3.6)) WHERE l.hr_11 is mot null and l.hr_11 1=0;
UPDATE link TABLE 1 SET l.c_12 = l.link lemgth f {(l.hr_12*{1f3.6)) WHERE l.hr_1Z is mot null and l.hr 12 1=0;

UPDATE link TAELE 1 SET l.c_13 = l.link length f {(l.hr_ 13%{1f)Y WHERE l.hr 13 is not null and l.hr_13

UPDATE link TABLE 1 SET l.c 14 = l.link length f {l.hr_ 1a%{1f }) WHERE 1l.hr 14 is not null and l.hr 14
UPDATE link TABLE 1 SET l.c_15 = l.link length f {(l.hr_15%(1f ¥} WHERE l.hr_ 15 is mot null and l.hr 15 !=0;
UPDATE 11nk:TABLE 1 SET 1.::16 = l.link:lengt.h / (l.hr:lﬁ*(£)} WHERE l.hr:lﬁ is not null and l.hr:lﬁ =0
UPDATE link TAELE 1 SET l.c_17 = l.link length f {(l.hr 17%{1f }J) WHERE 1.hr 17 is not null and 1.hr 17
UPDATE link TAELE 1 SET l.c_18 = l.link length f {l.hr 18%(1f }) WHERE 1l.hr_ 15 is not null and l.hr_ 15
VUPDATE link TABLE 1 SET l.c_19 = l.link length f {l.hr 159%{1f }) WHERE 1l.hr_ 15 is not null and l.hr 19
UPDATE link TAELE 1 SET l.c 20 = l.link length f {l.hr 20%({1f)}y WHERE 1.hr 20 is not null and l.hr 20
UPDATE link TAELE 1 SET l.c 21 = l.link length f {l.hr 21%{1f) WHERE 1l.hr 21 is not null and 1l.hr 21
VPDATE link TAELE 1 SET l.c 22 = l.link length f {(l.hr Za¥({lf }J) WHERE 1l.hr ZZ is not null and l.hr 2z
UPDATE link TAELE 1 SET l.c_23 = l.link length f {l.hr 23%(1f)}y WHERE 1l.hr 23 is not null and l.hr 23 !
UPDATE link TAELE 1 SET l.c 24 = l.link length f {l.hr 24%{1f }) WHERE l.hr 24 is not null and l.hr 24 !=0;

263

Appendix G

Appendix G PL/SQL Interpolation Procedure

|BEGIH

v_result:=0;

——for each road in the clipped study area...

JFOR my_link id in (SELECT link_id from study_area clipped) LOOP

—-populate the v link geom variable

select geometry column into v_link geom from study area clipped where link id=my_link id.link id;
—- populate the neighbours table

select * bulk collect into neighbours from

J{select /*+ INDEX(l link sidx] */ link_id, sdo_nn distance{l) dist,c_10 from study_area clipped 1

where sdo_nn{l.geomectry column, v_link geom,1l) = 'TEUE' and rownum <=5 and l.c_10 is not null order by dist asc);
v_sumlistance:=0;
v_sumiValue:i=0;
1 FOR i IH LoopP

neighbours{i}.distance:= {neighbours{i).distance +1};

neighbours{i}).distance := {ifneighbours{i}).distance}) ;

neighbours{i) .wval:= neighbours{i).distance * neighbours{i).val:

v_sumDistance:= v_sumDistance + neighbours{i).distance:

v_sumiValue:= v_sumWalue + neighbours{i}).val:

END LOOF:

v_result:= (v_sunValue r v_sumDistance) ;
update study area clipped set hrn 10 = v_result where study area clipped.link id=wy link id.link id:
‘END LOOP:
EXCEPTIOH

WHEN ZERC DIVIDE THEH

dbms_output.put_line{'divide by zero error'});

WHEN MO DATA FOUND THEH
dbms_output.put_line{'no data found');

WHEH OTHERS THEH
dbms_output.put_line{'soms kind of exception has occurred!');
dbms_output.put_line{sglcode || ' ' || sglerrm};

‘END INTERPOLATE 9;

264

Appendix H

Appendix H Event Pattern Markup Language (EML) Filt er
Subscribe Request

<?xml version="1.0" encoding="utf-8" 7>
<zoap:Envelope wxmlns:scap="http:/jfwnmr.wi.org/2003/05/s0ap-envelope" xmlns:h="http:f/docs.ocasis-open. orgfwsnfh-2"
®mlns:add="http: ffwwr.w3.org/2005/08faddressing" xmlns:ses="http:/fwww.opengis.netfsesf1.0.0"
"http: ffwwer.opengis.netfemlf0.0.1">
<z0ap:Header:>
<add: Torhttp:f/128.240.60.30:9090/ses-main-3.0-SHAPSHOT_2010 05 07/services/SesPortType</add: Toxr
<add: Aecionrhttp: ffdocs. oasis-open.orgfwsn/bw-2 fHotificationProducer/SubscribeRequest</add: iction>
<add:MessageIl>uuid: 4e595160-185a-9bh30-3eh6-592c705b0c?h </ add: Hessage ID>
<add;: From:-
<add: hddress>xhttp: ff128.240.60.30: 8761 fHotificationConsumer fConsumerServrice</ add: Addres=s>
</fadd:From>x
</ soap: Header>
<z0ap:Body>
<h:Jubscribes
<b:ConsumerReferences
<add: Address-http: ff128.240.60.30: 8761 fHotificationConsumer/ConsumerSerrice</add: Address>
</b:ConsumerReferencesr
<h:Filter:>
<b:MessageContent Dialect="http:/fwww.opengis.net/sesffilterflevrel3" >
<eml:EML xmlns:ses="http:fffwww.opengis.net/sesf1.0.0"
xmlnsieml="http: f fuww.opengis.netfemlf0.0.1
xsi:schemalocation="http://vyw.openyis.net/enl/0.0.1 http://opengis.net/enl/OGC-ENL-0_0_l-emlPatterns.xsd"
xmlns:xsi="http: ffuvww. w3 org/2001 /XML Schema-instance" xmlns:oge="http://nnr. opengis.netffesf2.0"
®¥mlns:sve="http: ffwww.opengis.netfswefl.0.1" >
<eml:3implePatterns>
< l——every obhaervation —-->
<eml:SimplePattern inputMame="input" patternID="everyDbservationPattern":>
<etml:SelectFunctionss

mlns:eml=

<emliZelectFunction newEventName="everyObservation":>
<eml:3electEvent eventlamwe="input" />
</eml:SelectFunctions
<feml:ZelectFunctions:
<eml:Views
<eml:LengthView:

<eml:EventCount»1</eml : EventCount >
</eml:LengthViews
</ eml:Views
<eml:PropertyRestrictions />
</eml:SimplePatterns
</eml:SimplePatternss
<!-- odd observation —--»
<eml:ComplexPatterns>
<eml:ComplexPattern patternlID="oddlbhservationPattern":>
<eml:SelectFunctions>
<eml:SelectFunction newEventMName="oddObhserration":>
<eml:3electProperty propertyllame="everyObservation/double¥alue" />
</eml:SelectFunctions
</feml:SelectFunctions:
<eml:3tructuralCperator>
<eml:BEFORE />
</feml:3tructuraldperator:>
<eml:FirscPattern:>
<eml:PatternReferencerevenlhserrationPattern</eml:PatternReferences
<eml:SelectFunctionfmber>0</eml: SelectFunctioniumbers>
</eml:FirstPatterns
<eml:SecondPatterns
<eml:PatternReferencereverylhservationPattern</eml: PatternReferences
<eml:ZelectFunctionifunber>0</eml : 3electFunct ionNunber:>
</eml:IecondPattern>
</eml:ComplexPatterns>
<!—=— road change pattern 1 -->
<eml:ComplexPattern patternlID="roadChangelPattern" >
<eml:SelectFunctionss
<eml:electFunction newEventMName="roadChangel" >
<eml:ZelectEvent eventlame="odd0Ohservation" />
</eml:ZelectFunctions
</eml:ZelectFunctions:>
<eml : Guard:>

<nrm A lhers

265

Appendix H

<ogo:Not>
<ogo:PropertyIsEqualTox
<oge:ValueReferencerodd0bservation/doubleValue</oge: ValueReferences
<oge:ValueReferencereven0bservation/doubleValue</ogo:ValueReference:
</ogo:PropertyIsEqualTox
</oge i Not>
</ogo:Filters
</feml:Guards:>
<eml:3tructuraldperators>
<eml:BEFORE />
</eml:3tructuralOperator>
<eml:FirstPattern>
<eml:PatternReferencesevendbservationPattern</eml:FatternReferences
<eml:ZelectFunctionfumber:0</eml: SelectFunct ionfuber >
<feml:FirstPattern:
<emwl:ZecondPattern>
<eml:Patternfeferences-odd0bservationPattern</eml:PatternReferences
<eml:ZelectFunctionMumber>0</eml: 3electFunctionNurber >
</feml:3econdPatterns
</eml:ComplexFPattern>
<!—road change 2 pattern ?
<eml:ComplexPattern patternlD="roadChangeZPattern™:>
<eml:3electFunctionss
<eml:ZelectFunction newEventlName="roadChange2" >
<eml:3electEvent eventMName="evenObservation" />
<feml:3electFunction:
<feml:3electFunctions:
<eml:Guard:
<ogo:Filters
<ogo:Not>
<ogo:PropertyIsEqualTox
<oge:ValueReferencereven0bservation/doubleValue</ogo:ValueReference:
<oge:ValueReferencerodd0bserrvationfdoubleValue</ ogo: ValueReferences
</ogo:PropertyIsEqualTox
</oge i Not>
</foge:Filters

<feml:Guards:
<eml:3cructuraldperators>
<eml:BEFORE />
</eml:3tructuralOperators
<eml:FirstPattern>
<eml:PatternReference:oddObservationPattern</eml:PatternReferences
<eml:SelectFunctionfuber>0</eml: SelectFunct ionfuber:
</eml:FirstPattern>
<eml:ZecondPatterns
<eml:PatternReferencesevendhservationPattern</enl:PatternReferences
<eml:SelectFunctionfuber>0</eml: SelectFunct ionfuber:
</eml:ZecondPatterns
</feml:ComplexPatterns>
<!—-— output pattern 1-->
<eml:ComplexPattern patternID="outputPatternl":>
<eml:3electFunctionss>
Zeml:3electFunction newEventMName="outputPatternlEvent" createCauszality="true" outputMName="output":>
<eml:SelectEvent eventlame="everyDbservation" />
</eml:SelectFunctions
</feml:SelectFunctions:
<eml:Logicaloperator>
<eml: AND/ >
</eml:Logicaloperators
<eml:FirstPattern>
<eml:PatternReferencereveryDbservationPattern</eml:PatternReferences
<eml:SelectFunctionfuber>0</eml: SelectFunct ionfuber:
</eml:FirstPatterns
<eml:ZecondPatterns
<eml:PatternReference>roadChangelPattern</eml: PatternReferences
<eml:SelectFunctionfuber>0</eml: SelectFunct ionfuber:

266

Appendix H

</emliFirstPattern>
<eml:SecondPatterns
<eml:Patternkeference>roadChangelPatternc/eml: Pacternkeference>
<eml:ZelectFunctionfunbers0</eml: S lectFunct ionumber >
</eml:SecondPatterns
<feml:ConplexPatterns
<!-— oputput pattern I --3
<ewml:ComplexPattern patternlD="outputPattern2":
<eml:3electFunctions:
<eml:ZelectFunction newEventMName="outputPattern2Event" createCausality="true" outputMame="output':>
<eml:3electEvent eventMame="everyObserration"/>
</eml:SelectFunctions
</emliZelectFunctionas
<eml:Logicaloperacors>
<eml: ANDS >
</eml:Logicaloperator:
<eml:FirstFatterns
<eml:Patternkeference>everybhservationPattern</eml:FatternReferences
<eml:SelectFunctionMNumber>0</eml: SelectFunct ioniuier
</emliFirstPattern>
<eml:SecondPattern>
<eml:PatternReferencerroadChangePattern?</eml: PatternReferences
<eml:IelectFunctionMNumber>0</eml: SelectFunct ionudier >
</eml: SecondPatterns
</eml:ComplexPatterns>
</eml:ComplexPatterns:
<eml: TimerPatterns />
<ewml:RepetitivePatternas>
<!—-even chservation -->
<eml:RepetitivePattern patternlID="ervenDhservationPattern" >
<eml:ZelectFunctions:
<eml:FelectFunccion newEventlName="evenldhservation' >
<eml:3electProperty propertylame="everyDhserration/doubleValue" />
</eml:SelectFunctions
</eml:SelectFunctions:
<eml:EventCount>2</eml: Event.Count. >

<eml:PatternToRepeats
<eml:PatternReferencereverylbzervrationPatterns/eml: PatternReferences
<eml:SelectFunctioniurber>0</eml : SelectFunct ionNumber >
</eml:PatternToRepeat>
</eml:RepetitivePatterns
</eml:RepetitivePatternss
</eml:EML>
</b:Messagefontent>
</biFilters
</bi3ubscribes
</soap:Body>
</soap:Enveloper

267

Appendix |

Appendix | PL/SQL Derived Attribute and COST Column
Calculation Trigger

create or replace
TRIGGER PRE_PROCESS AFTER
INSERT ON ROAD CHAWNGE EVENT REFEREHCING HEW AS HEW
FOR EACH row
DECLARE +_ckbsTime PROCEZSED _EVENTS.cobs_timesTYPE!
w_duration PROCESSED EVENTS.DURATICN®TYPE
v_journey PROCEZISED EVENTS%ROWTYPE
CURSOR 1 IS
SELECT * FROM PROCESSED EVENTZ WHERE procedure_id= :WEW.PROCEDURE ID:

v_previtartNode LINK TAELEZ.start node idstype:
v_prevEndNode LINE TABLE:Z.end node id%type:
v_newitartlode LINE TAELEZ.start node id%type:
v_nevEndMNode LINE TAELEZ.end node id%type:;
v_previousToid FPROCEISIED EVENTS.toid%type;
v_dir VARCHARZ(1}:;
--v_length road link polyline.length¥type;
——v_lengt,hnu.m DOUBELE PREECISICH;
——v_speed DOUBLE FPRECISICHN:
v_seconds INTEGER:
-——v_1 INTEGER;
V_LINE_ID WUMBER:
vwprev_ link id HUMBER:;
v_toid VARCHAR2{:0) ;

——update rt costs declarations...

v_cost3etTo COST_SET To.HOUR%type:

v_systemHour HUMBER:

v _NowMinusOneHour timestamp TIMESTAMP:= sysdate - To DITNTERVAL('O O1:00:00'");

va b VARCHARZ2(1) = 'BE';
va £ VARCHAR2(1) = 'F';
v_NoObhs INTEGER =0;
v_zero IHTEGER =0y
v_sSum cost DOUBLE PRECISIOH{ 10} = ;

—— LoCAL SHORTEST PATH VARIAELES
tewmp_net VARCHAR2(SO):='TEMP MNETWORE' ;
start node id HUMBER:

end node_id HUMBER:
link array SDO_NUMBER_ARRALY:

TYPE LINE CO3T TYPE IS TABLE OF HUMEER THDEX BY PLS INTEGER:
link seost LINE COST TYPE:

l2_row PLS IHTEGER:

total cost HUMBER:

n_ links HUMBER;

path HUMBER:

pathZz HUMBER:

n_links_z HUMBER ;

valid net WARCHARZ(C)
TYPE =p_link type IS RECORD{tcoid processed events.toldi%type,
toid dir processed events.toid direction%type,
obs_id processed_events.obs_id%type
;0bs_time processed events.obs_timektype
;procedure_id processed events.procedure id%type
;, duration processed events.durationtype
JproportionCfiur number
;, cost processed events.costitype)

sp_link sp_link_type:

—-— 13_row PL3_INTEGER;

Sp_toid HUMBER:

sp toid dir VARCHRR2({1}):

w_woost HUMBER:

v_pathZ CHAR;

wv_p CHAR;

w_dir s char{l}:

w_dir e char{l}:;

268

Appendix |

—-—ALL PROCEZZED EVENTS WITHIN CURRENT HOURS TIMESTAMP
CURSOR processed events tuple IS
SELECT DISTINCT toid, toid direction FROM processed events WHERE OE3 TIME -
v_NowMinusOneHour timestamp ORDER BY toid, toid_direction:

TYPE toid and direction type IS RECORD toid processed events.toiditype,
toid dir processed events.told direction%type):
TYPE cbs_table_type IS TABLE OF processed events.cost%type INDEX BY PLS_INTEGER:
V_proc_cost processed events.costitype:
1 _row PLS IHTEGER:
toid record toid and direction type:
ch=s_telble obs_tsble type:
v_prevlength HUMBER;
v_mostoflast HUMBER:
v_endcheck HUMBER ;
v_endcheckZ HUMBER;
loop_ length WUMBER:
v_regtime timestamp;

BEGIH

v_regtime:= systimestamp:

——CHECE THAT THE MNEW OBIERVATICN I3 VALID (TOID MUST NOT EE NULL)

IF :HEW.TCID IS HULL OB :HEW.TCID = 'null' THEH

dbms_output.put_line('toid not null');
RETURH ;
EHD IF:

——IF IO PREVIOUZ OBSERVATICNS FOR THIS VEHICLE THEN DON'T CALCULATE DIRECTICIH OR DURLTICI.
——populate with the first record...
OPEH cl1:
FETCH cl1 INTO +_journey;
CLOSE c1;
—=IF thi=s i= a new rather than an existing procedure ([=ensor] then sSimply copy known values across
as impossibkle to calo. duration and directcion
IF v_journey.id IS HULL THEHW
dbms_output.put_line('first obs from this sensor');
——a. ensure that referential integrity is mwaintained by deleting any records with the samwe id

DELETE FROM PROCESSED EVENTS WHERE PROCESSED EVENTS.OBS_ID = :HEW.OES ID:

--b. copy the known values of the new record into processed events

IHSERT INTO PROCESSED EVENTS { ohs_id, procedure_id, toid,
obs_time,insertion time,request_time)

VALUES { (HEW . OBS_ID, :HEW.PROCEDURE id, :HEW.TOID,

:HEW.OBS TIME,systimestamp,v_regtime ¥:

RETURH :

——EL3E if this is an existing procedure(sensor) then start calculating direction and duration
ELSE
dbms_output.put_line{'previous chservations found for this sensor'):
--find the timestawp of the most recent observation for this sensor and copy it into v_ChsTime varishle

SELECT cbs_time INTO +_oChsTime FROM {SELECT DISTIHCT ID, OBS_TINE,
row _number{) over {(order by obs_time DESC} AS rn
FROM FPROCEZSED _EVENTS WHERE PROCEDURE ID=:HEW.PROCEDURE ID } WHERE rn=1:;

——if no ohservation time then zero duration and speed wvalues...
——similarly if old ohs time > new obs time - can happen due to 3E3 DELAYS..
IF +_chstime IS HULL OR v _obstime > :HEW.obs_time THEW
dbms_output.put_line('timestawp is null'}):
v_duration := to_dsinterval{'0 00:00:00'");
IHNSERT INHTO PROCESSED EVENTZ({obs_id,procedure_id,toid,chs_time, duration,insertion time,request_time}
VALUES{ :WEW.OB3_ID,:HEW.PROCEDURE ID,:HEW.TOID,:WEW.OES TIME,v duration,systimestamp,v_regtime);

RETURH ;
ELSE
——otherwise calculate duration as the timestamwp of this observation mwinus the timestamp of the previous
ocbhservation
v_duration:= :HEW.obs_time - v_obstime;

——convert duration to integer sSeconds
v_seconds:= intervaltoseconds(v_duration};

—-- lookup the link id corresponding to the TOID present in this chservation and copy it into v_link id
--this is potentially troublesome because unknown toids will throw a no_dats found exception...
SELECT link_id INTD +_link id FROM {(SELECT DISTINCT link_id FROM toid linkid lookup 1 WHERE l.toid
= to_number(:HEW.TOID) AND l.toid direction='F' ¥
—-- lookup the length of the aforementioned link and copy it into v_length

--this is potentially troublesome because unknown toids will throw & no_data found exception...

SELECT link id IHTO v link id FROM (SELECT DISTINCT link id FROM toid linkid lookup 1 WHERE l.toid

= to_number(:HEW.TOID) AWND l.toid direction='F' Y

269

Appendix |

—-calculate direction
--find the toid of this sensor's previous record in processed events and copy into v_previousTOID

SELECT toid INTO v_previousTOID FROM {SELECT DISTIHCT TOID
FROM {SELECT ID, TOID, row_number{) over (order by ID DESC) AS rn
FROM PROCESSED_EVENTSH WHERE PROCEDURE_ID=:HEW.PROCEDURE ID] WHERE rn = ¥
—-find linkid of previous toid
SELECT link id INTO wvprev link id FROM {SELECT DISTINCT link id
FROM toid linkid lookup 1 WHERE 1.toid = to_mumber{v_previousTOID}
AND 1.toid direction='T!' ¥
——lookup the start node of this sensor's current link
SELECT DISTINCT start_nodes_ID INTO v_newStartMNode FROM
(SELECT start_node ID FROM LINK TAELEZ WHERE LINK ID = v_link id):
——lookup the end node of this sensor's current link
SELECT DISTINCT end node ID IHNTO +_newEndiods FROM {SELECT end node_ID FROM
LINK_TABLEZ WHERE LINK ID = v_link_id y:
—-lookup the start node of this sensor's previous link
SELECT DISTIHCT start_node_ ID INTO w_previtartlode FROM {SELECT LINET.start_node_ID
FROM LINE_TABLEZ LINET JOIN TOID LINKID LOOKUP LOCKUR O LINKET.LINE ID =
LOOKUP.LINE_ID WHERE LOOEUF.TOID = TO_HUMBER(v_previousToOID) AND lookup.told direction='T'

)i

——lookup the end node of this sensor's previous link

SELECT DISTIHCT end node ID INTO v _prevEndNods FROM {SELECT LINET.end node ID
FROM LINE TAELEZ LINKT JOIN TOID_LINKID LOOKUF LOOEUP OH LINKT.LINE_ID = LOOKUP.LINE ID
WHERE LOOKUP.TOID =T0_HUMBER{v_previousTOID}) AND loockup.toid direction='F' y:
——determine direction by comparing the identity of the start and end nodes of current and previous links..
IF wv_previtartlode = v_newdtartNode THEH
v_dir t='E';
ELSIF v_previtartNode = v_newEndNode THEH
v_dir ='E';
ELSIF v_prevEndNode = v_new3tarthode THEW
v_dir ='F';
ELSIF v_prevEndNode = v_nevEndlode THEH
v_dir ='E';
EHD IF:

270

Appendix |

--if direction could not he determined (i.e. if this and previous links are not adjscent) then guess the path
—--taken between the two links,
—-and insert the resulting cost directly into study area clipped
IF v_dir IS HULL THEW
dbms_output.put_line('direction could not be determined, links may not be adjacent');
—-1. CEEATE NETWCRE
IF v_seconds IS HOT HULL and v_seconds > THEH
delete from temp network links:
delete from temp network nodes;
dbms_output.put_line(' creacing necwork')y
insert into temp network links{SELECT * FROM LINE TABLEZ LT WHERE SDO WITHIN DISTANCE(LT.GEOMETRY COLUMN,
{SELECT LT.GEOMETRY COLUMN FROM LINE TAELEZ LT WHERE LT.LINE ID=v link id),'DISTALNCE=2000 UNIT=M'} =
VTRITE!' Y ;
insert into temp_ network nodes{select geometry colwmn, node_id from node_tsble nt where nt.node_id in
{select distinct nt.node_id from node_table nt join temp_network_links tl on nt.node id =
tl.start_node_id or nt.node_id = tl.end node_id)}:
IHSERT IHTO user sdo_network metadata{network,network category,deometry Lype,
no of hierarchy lewvels,no of partitions,link direction,node table name,
node_geom colwen, node cost_column,link table name,link geom coluwn,
link_cost_column,path table name,path geom coluwmn,path link table nsme)
VALUES(' TEMP_NETWORE' ,'SPATIAL','SD0 GEOMETRY',1,1,'DIRECTED','temp network nodes','GEOMETRY COLUMN',
HULL,'temp network links','GEOMETRY COLUMN','link length','PATH TLELE',
' GEOMETRY COLUMM','PATH LINE TAELE'}:
dbms_output.put_line('creaced necwork');

sdo_net.insert_geom metadatal' TEMP NETWORE' ,3DO DIM ARRAY{SDO_DIM ELEMENT{'E'.0, PR
300 DIM ELEMENT{'N',0, FRS 3 ¥
dbms_cutput.put_line{'validating necwork....'};

SELECT sdo_net.VALIDATE NETWORE('TEMF MNETWORE') INTO wvalid net FROM DUAL;

IF walid net='FLLZSE' THEW
dbms_cutput.put_line{' network invalid...'};
EHD IF;
dbms_outpuc.put_line{'ok');
——&. PERFORM SHORTEST PATH QUERY
sdo_net_mem.network manager.read network(' TEMP MNETWORE' ' TRUE') ;
path:= 3D0O NET MEM.NETWORE MANAGER.SHORTEST PATH(temp_net,to_number(v_previcartNode),to_mumber(v_newStarcNode) HULL}) :
n_links:=sdo_net mem.path.get _no of links{tewp net,path);
pathz:= 30O NET_MEM.NETWORE_MANAGER.SHORTEST PATH({tewmp_net,to mumber{v_prevEndNode) ,to_mmber{wv_newitartlode} HULL} ;
n_links_z2:=sdo_net_wem.path.get_no of_links{tewmp_net,path};
if n_links < n_links_2Z then
start_node_id:= to_number{v_previtartNode):
v_dir s:='F';
else
start_node_id:=to_mumber({v_prevEndNode) ;
v_dir s:='E':
end if;

path:=3D0_NET_MEM.NETWORKE MANAGER.SHORTEST_PATH{temp_net,start_node_id,to number{v_NewitartNode) ,HULL} ;
n_links:=sdo_net_mem.path.gec_no_of links({temp_net ,path):
pathi:=3D0 NET MEM.NETWORE MANAGER.SHORTEST PATH{temp net,start node id,to mumber (v newEndNode) HULL) ;
n_links_2:=sdo_net_wem.path.get_no_of_links{tewmp_net,path2});
if n_links < n_links_2 then
to_number(v_Newdtartlode)

else

end_node_id:=to_mumber(v_NewEndNode) ;
v_dir_e:='F';
end if:

path:=3D0_NET_ MEM.NETWORE MANAGER.SHORTEST_PATH{temp_net,start_node_id,end node_id HULL}) ;
n_links:=sdo_net_mem.path.get_no_of_ links{tewp_net,path):
link_array:= 3DO NET MEM.PATH.GET_LINE_ ID3{temp_net ,path):
v_ecostoflast:=sdo_net _mem. link.get cost{temp het,link array(n_links)}):
SELECT distinct link length into v_prevlength from study area_clipped where toid=v_previousTOID:
total_cost:= sdo_net_mwewm.path.get_cost{temp_net,path);
total cost:= total cost + v_prevlength:

FOR i IH link array.FIRST..link array.LAST LOOP

271

Appendix |

SELECT TOID INTO sp_link.told FROM TCID LINKID LOOKUP WHERE link id = link array(i):

SELECT TOID _DIRECTION IHTO sp link.toid dir FROM TOID_LINKID LOOKUP tll WHERE tll.link id=link array{i}:
sp_link.proportionOfbur:= {({sdo_net_mem.link.get_cost{tewp_net,link array(i}))ltotal_:ast) B

SELECT NUMTODSINTERVAL({v_seconds*sp_link.proportionCfDur),'SECOND') INTO =p_link.duration FROM dual;
tHEW.obs_id:

SHEW . ols_tiwe;

Sp_link.costi= sp_link.proportion0fDur*y_seconds;

UPDATE STUDY AREAL CLIPPED SiC SET COST = (({sSac.cost * sac.n rt obs) + sSp_link.cost) Fi (saz.n_rt_obs + 1))
where toid = sp_link.toid and toid_direction = sp_link.toid dir:

Sp_link.obs_id:=

sp_link.ohs_time:

update study area clipped set n rt_obhs = n rt_obs+l where study_area clipped.toid=sp_link.toid and
study_area clipped.toid direction = sp_link.toid dir:
INSERT IHTO PROCESSED_EVENTS{chs_id,procedure id,toid,chs_time,duration,cost,toid_direction,insertion_time,
request_time)
VALUES{sp_ link.obs_id, :HEW.PROCEDURE_ID,sp link.toid,sp_link.obs_time,sp_ link.duration,sp link.cost,
sp_link.toid_dir,systimestawp,v_reqtime);

EHD LOOP;
dbms_output.put_line{'cocal cost' || total cost):

UPDATE STUDY AREAL CLIFPED 3AC SET CO3T= ({{sac.cost * sac.n rt_ochs) + ((v_prEVLEngthjt,ut,al_cust,)"v_seccmds))
j(sez.nirtinh?r)} where toid = v _previousTOID and toid direction = v_dir s:
UPDATE study area clipped set n rt_obhs = {n_rt_chs+l) where study area clipped.toid=v_previousTOID and
study_area_clipped.toid direction = v_dir_s;
THSERT INTO PROCESSED EVENTS(obs_id,procedure id,toid,obs_time,insertion time,request_time) VALUES(:WEW.OBS_ID,
:HEW.PROCEDURE _ID, :HEW.TOID, :HEW.OBS_TINE, systimestamp,v_reqtime);

--3. CLEAN UP

SDO NET MEM.NETWORK MANAGER.DROP MWETWORK('TEMPF METWORE') 2

delete from user_S5SDO NETWORE METADATAL WHERE NETWORE='TENF NETUWORE' ;

RETURH ;
ELSE
chbms_output.put_line{'doing nothing - wduration is <0 or null');
INSERT INTOD PROCESSED_EVENTH { ohs_id, procedure_id, toid,
ahs_time, duration, cost,insertion time,request_time) VALUES
{ ‘HEW.OBS_ID, :HEW.PROCEDURE _ID, :HEW.TOID, ‘HEW.OBS_TINE, v duration, v_seconds |, systimestamp,v regtime);
EHD IF;

ELSE
dibms_output.put_line('direction caled');
dbms_output.put_line{wv_previousTOID});
——otherwise insert direction,duration and cost...

IHSERT INTO0 PROCESSED _EVENTS | ohs_id, procedure_id, toid, obs_time, duration,
TOID_DIRECTION,cOSt,insertion time,request_time) VALUES { :HEW . OBS_ID, :HEW, PROCEDURE_ID, :HEW.TOID,
:HEW.OBES_TINE, wv_duration, wv_dir, v_seconds,systimestamp,v_regtime ¥
EHD IF:
END IF:

EHD IF:;

—-hegin updste rt cost trigger

SELECT HOUR

INTO v_costietTo

FROM COST _SET_TO

WHERE ID=1:

SELECT EXTRACT (hour FROM systimestawmp)+l IHTD v_systembHour FROM dual:
--IF(v_cost3etTo != v_systemlour] THEN

—-dbms_output.put_line('costset to != system hour'):
CASE v_systemiour
WHEH THEH

UPDATE study_area clipped SET COST = HREN_5;
WHEH THEH

UPDATE =study_ area clipped SET COST = HRN 6;
WHEH THEH

UPDATE study_area clipped SET COST = HEN 7;
WHEH THEH

UPDATE study_area_clipped SET COST = HRN S;
WHEH THEH

UPDATE study_area clipped SET COST = HRN 9;
WHEH THEH

UPDATE study_ area clipped SET COST = HRN 10;

272

Appendix |

WHEH THEH
UPDATE =tudy_area clipped SET COST = HRW_ 11;
WHEH THEH

UPDATE study_ares clipped SET COST = HRN_1Z2:
WHEH THEH
UPDATE study_area clipped SET COST = HBN_13:

WHEH THEH
UPDATE study area clipped SET COST = HRN 14;
WHEH THEH
UPDATE study_area clipped SET COST = HEN_15:
WHEH THEH
UPDATE =tudy_area clipped SET COST = HRN_16;
WHEH THEH
UPDATE study_ares clipped SET COST = HRN_17:
WHEH THEH
UPDATE study_area clipped SET COST = HRN_18;
WHEH THEHN
UPDATE study area clipped SET COST = HRN 139;
WHEH THEH
UPDATE study_area clipped SET COST = HEN_z0:
WHEH THEH
UPDATE study_area clipped SET COST = HRW_z1:
WHEH THEH
UPDATE study area_clipped SET COST = HRN 22;
WHEH THEN
UPDATE study_ares clipped SET CO3T = HRN_23;
WHEH THEH
UPDATE study area clipped SET COST = HRN 24;
ELSE
UPDATE study_area_clipped SET COST = HREN 4:
EHD CASE;
UPDATE COST_SET_TO SET HOUR = v_systemHour WHERE id =1;
UPDATE 3TUDY AREL CLIPPED SET n rt ohs = 0

—-now loop through all the processed events observed within the current hour..

FOR r_processed_events_tuple IN processed_events_tuple

|LuopP

populate toid record with toid and direction

toid record.toid

= r_processed events_tuple.toid;

toid record.toid _dir i= r_processed_events_tuple.toid direction;

——check obz is directed...
IF toid record.toid dir = va_b OR toid record.told dir=va £ THENW

—-find no. of obs for this toid..

SELECT COUHT{*) IHTO0 v NoChs FROM processed events WHERE obs_time

AND toid record.toid =processed events.toid

AND toid record.toid dir=processed_events.toid direction;
update sac with n-rt-ohs

UPDATE study_srea clipped sac

SET n_rt_ochs = v_lolbs

WHERE sac.toid = toid record.toid

AWD sac.toid direction = toid record.toid dir;

--now feed the obs into & record tsbhle, swuw thew and update sac..

——feed
FOR i IH v_NoChs
LoopP
SELECT cost INTO v_proc_cost FROM {SELECT cost FROM
{SELECT rownum r, cost FROM processed events
WHERE chs_time > v_nowminusonehour timestamp
AND toid_record.toid =processed events.toid

AND toid_record.toid dir=processed events.toid direction)
WHERE r=i }:

obs_table(i)i=v_proc_cost:
EHD LOOP:
1 _row:=chs_table.FIRST:
——sum
WHILE({1l row IS HOT WULL)
LoOP

V_Sum_cost:= v_sSum cost + obs_table(l_row);

1 _row i=ohs_table .NEXT(1_row);
EHD LOOF;
—-—update
UPDATE study_area_o.lpped Sac
SET cost = v_sum costfv_NoOhs
WHERE sac.toid =toid record.toid
AND sac.toid direction = toid record.toid dir:
V_Sum cost:
v_NaoChs

END IF:;

EHD

—-HOUR I3 UP TO DATE ALREADY...JUST UPDATE THIS LATEST CESERVATICHN

ELSE

LOOP ;

273

> v_nowlinusOneHOUR TIMESTAMP

Appendix |

dbms_output.put_line{'wveostc. . ' || v_seconds) ;
gelect {({{(=ac.cosc * sac.nﬁrciahswvisecands)f(sac.nirtiobs +1)) into v_vecost from study ares clipped sac
gac.toid=:HEW.toid and sac.toid direction = v_dir:

dbms_output.put_line('wvocost' || v_wvoost):

UPDATE study_area clipped sac SET cost = {{{sac.cost * sac.n_rt_chs} + v_seconds) I
{sac.n_rt_ohs + 1)}

WHERE sac.toid = :HEW.toid AND sac.toid direction = v_dir;

update study area clipped set n rt_obs = n_rt_obs+l where study area_clipped.toid=:HEW.toid and
study_area_ clipped.toid direction = v_dir;

EHD TIF:
UPDATE TESTING SET TEST = v_systewmHour WHERE ID=1;
EXCEPTION
WHEH NO DATA FOUND THEH
dbms_output.put_line{'unidentifisble toid...'};

SDO_NET MEM.NETWORE_MANAGER.DROF MNETWORK(' TEMF_MNETWORE'});
delete from user 35DO METWORK METADATA WHERE NETWORE='TENF NETWORK'
WHEN INVALID NUMEER THER
dbms_putput.put_line{'invalid nuwber');
SD0 NET_MEM.NETWORK_MANAGER.DROP_NETWORE(' TEMP_METWORK') ;
delete from user SDO NETWORK METADATA WHERE NETWORE='TENF MNETWORK' ;
WHEH ZERC DIVIDE THEHW
dbms_output.put_line{'div by O0');
3DO_NET MEM.NETWORK MANAGER.DROP_NETWORE(' TEMF _NETWORK')
delete from user 35DO METWORK METADATA WHERE NETWORE='TENF NETWORK'
WHEN OTHERS THEH
dbms_putput.put_line{'somes kind of exception was caught'}):
SDO_NET_MEN.NETWORE MANAGER.DROP _NETWORE(' TEMP_NETHWCORE') :
delete from user_SDO NETWORK METADATA WHERE NETWORE='TENP METWORK' ;
END ;

274

where

Appendix J

Appendix J PL/pgSQL GPS Vehicle Track Data Loading

Procedure

This procedure details the process of transforming a comma separated text file

containing GPS observations from several vehicles, into a number of PostGIS
database tables, one for each vehicle. The input format of the .CSV file is

detailed as follows:

Input File Format

DateTime,vehicle,vehicletype,eventid,fix,latitude,| ongitude,bearing,sp
eed,inputs,geofence,status

21/09/2010 06:56:46,CS3675,COMPACT SWEEPER,240,0,54 .9728883333333,-
1.57299666666667,0,0,8,0,2

21/09/2010 06:57:02,CS3675,COMPACT SWEEPER,16,0,54. 9728883333333,-

1.57299666666667,0,0,8,128,2

Prerequisites

1)
2)

Microsoft Excel (2003)
PostGIS database (PostgreSQL 8.3 / PostGIS 1.5.1)

Procedure

1)

2)

3)

Open the .CSV file in Microsoft Excel and remove the header row. Save it as a
tab delimited text file: ‘observations.txt’. Note that due to file size limits in
Microsoft Excel, this will only save the first 64536 records. Thus it is necessary
to open the original file again, delete the first 64536 records and the header
row, and save the remaining records as another tab delimited text file:

‘Oobservations_part2.txt’

Create a PostGIS database by typing the following command from the

PostgreSQL shell:
C:\postgresqg\8.3\bin> createdb —T template_postgis all_gps

Login to the database from he PostgreSQL shell and create an observation
table:
C:\postgresql\8.3\bin> psql all_gps

275

Appendix J

4)

5)

6)

7)

8)

9)

all_gps=# create table observations(dateTime timest amptz,
vehicle varchar(30), vehicleType varchar(50), event id integer,

fix integer, latitude varchar(50), longitude varcha r(50),
bearing integer, speed integer, inputs integer, geo fence

integer, status integer);

Load observations into the table:

all_gps=# \copy observations from ‘<path to observa tions.txt’
all_gps=# \copy observations from ‘<path to
observations_part2.txt’

Create a Primary Key:
all_gps=# ALTER TABLE observations ADD fid serial p rimary key;

Add columns for geometry

all_gps=# ALTER TABLE observation ADD numlat double precision;
all_gps=# ALTER TABLE observation ADD numlong doubl e precision;
all_gps=# ALTER TABLE observation ADD etrs_ geom dou ble
precision;

all_gps=# ALTER TABLE observation ADD wgs_geom doub le precision;

Cast Latitude / Longitude to numeric type

UPDATE observations SET numlat = cast(latitude as d ouble
precision);
UPDATE observations SET numlong = cast(longitude as double
precision);

Convert to Geometry and transform

UPDATE OBSERVATIONS SET etrs_geom =
st_setsrid(st_point(numlong,numlat),4258);

UPDATE observations SET wgs_geom = transform(etrs_g eom,4326);

Remove erroneous observations
DELETE FROM observations WHERE numlat < 53 or numla t > 56;
DELETE FROM observations WHERE numlong < -3 or num long > 0;

10) Register the geometry column

INSERT INTO geometry columns(f_table catalog, f tab le_schema,
f table_name, f_geometry_column, coord_dimension, s rid, "type")
SELECT '‘public’, 'observations’, 'wgs_geom’,
ST_CoordDim(wgs_geom), ST_SRID(wgs_geom), GeometryT ype(wgs_geom)

FROM public.observations LIMIT 1;
276

Appendix J

11) Rename tubples that have a whitespace in vehicle name
SELECT DISTINCT VEHICLE FROM OBSERVATIONS WHERE VEHCLE LIKE
‘% %’;
UPDATE OBSERVATIONS SET VEHICLE = <name without spa ce> WHERE
VEHICLE=<result of previous query>;

12) From PgAdmin console open and run the following script to create a function

CREATE OR REPLACE FUHCTION wvehicleFerTable() RETURHS varchar{i() as SPROCSl
DECLARE

V_wvehicle RECORD:

V_observation RECORD:

V_record RECORD:

BEGIH

DROP TABLE IF EXISTS wvehicles;
CREATE TABLE wvehicles{id serial primary key, vehicle warchar{S0}));:

—-3. for each distinct wehicle, create a new table and insert
——ohgervations, ordered by time
RAISE NOTICE ' INZERTING DATL';
FOR V_wvehicle IN SELECT DISTIHCT vehicle FROM ocbservations LOOP
EXECUTE 'INZERT INTO wehicles(vehicle) WALUES(''T ' || V_wvehicle.vehiclel]'''):':
EXECUTE 'DROP TAELE IF EXISTS T ' |IV_wehicle.vehiclel]':':
EXECUTE 'creste tsbhle T ' || V_wvehicle.vehicle ||'{id serial primary key, time timestamp, latitude warchar (20),
longitude warchar (20), speed int, bearing int, etrs_geom JeomeELry, Wys geom geometry) ;'
FOR V_ohservation IN SELECT datetime,etrs_geom,wys_geowm FROM observations WHERE vehicle=V_wvehicle.wehicle ORDER BY
datetime LOOP
EXECUTE ' INZERT INTO T_ ' ||¥_wehicle.vehicle||' (Cime, etrs gecm, WS geom)
walues |
YU IV _observation.datetime] |

NN
i

| lcast{V_chservation.etrs_geom AS text) ||
EEUEER

’
Ilcast{V_chservation.wgs_geom as text) ||

iy

EHD LOOP:
———————— add a reference in the geometry columns
EXECUTE 'INSERT INTO geometry columns(f_table catalog, £ table schema, T _rtable nams, £ geometry_column,
coord_dimension, srid, "type™

SELECT '' '' , !'public'',''T_'||V_wehicle.vehicle||''', ' 'wgs_geom'',st_coorddimiwvgs_geom) ,
st_sridi{vgs_geom) , geOmeLryLype (Wgs_geom)
FROM public.T ' ||V_vehicle.vehicle]|' LIMIT 1:';
——————— create & spatial index
EXECUTE 'CREATE INDEX gist_icx_etrs'||V_wehicle.wvehicle||' CN T_'||V_wehicle.wehicle||' UISING GIST(strs_geom):';
EXECUTE 'CRELTE INDEX gist idw wgs'||V_wehiele.wvehicle||' ©N T '||V_vehiele.wvehicle||' USING GIST (wgs_geom):':
EHD LOOF:

RAISE NOTICE 'DONE' :

RETURH ' ol ;
EHD ;
$PROCS LAWGUAGE plpgsel:

13) Run the function
all_gps=# SELECT vehiclePerTable();

14) Finished
The PostGIS database ‘all_gps’ should now contain all the GPS observations in
separate tables, one per vehicle. The observations are all time ordered. Each

vehicle is also listed in table ‘vehicles’.

277

Appendix K

Appendix K

Prerequisites

Supervised Classification of a multispec tral
(XS) SPOT-1 HRV image of South East London

1) ERDAS Imagine v9.3

http://www.erdas.com

2) Multispectral image to be classified

3) Background mapping of the area represented in the image

(http://edina.ac.uk/digimap)

4) GDAL library (FWTools)
http://fwtools.maptools.org/

Procedure

1) Geometric Correction

a.

Download Ordnance Survey 1:25000 raster mapping in GeoTIFF format
from www.edina.ac.uk/digimap for the entire area covered by the image.
Load the image to be processed in Erdas Imagine in one viewer, and
load each of the Ordnance Survey tiles in another viewer

From the Imagine toolbar select Dataprep >> Geometric Image
Correction

Follow the prompts to select the viewer containing the classified image
Select POLYNOMIAL from the model properties dialogue box and then
close the box.

Select Existing viewer when prompted for where to select reference
control points from and click in the viewer containing the Ordnance
Survey Data.

Select at least 12 ground control points from the map data and identify
the corresponding location on the image. Ideally the points should be
spread both around the edges of the image and in the centre.

Click on Display Model Properties and change the polynomial order to 2.
Click Resample Image and select Nearest Neighbour from the following

dialogue box

278

Appendix K

j- Open the corrected image in the same viewer as the map data and use
the Utility >> Blend tool to ensure that it is a good fit. If necessary

repeat this process until a good fit has been achieved.

2) Classification
a. Define Land-cover Classes
It was opted to use six land-cover classes in this study that represent the
major spectral classes in the image. These are listed as follows:
water

crops

a.
b

C. forest
d grass
e small buildings
f. large buildings

b. Select Training Areas
Open the geometrically corrected image in Erdas Imagine and use the
Area of Interest (AOI) tool and the Signature Editor to manually select
training areas corresponding to each of the land-cover classes defined
in step 1. This is achieved by cross referencing features on the image
with features on an Ordnance Survey base map of the area. The size of
each training area should be at least 30p pixels per class where p is the
number of spectral bands. It should be noted that for this image the
blue band was stripped out as it was of a poor quality, so only the green,

red and near-infrared bands were used.

c. Perform Classification
Select the Supervised Classification tool from the Classification menu in
Erdas and specify the image to be classified, the signature file
containing the training area samples and an output location for the
classified image. Ensure ‘Maximum Likelihood’ is selected in the
Parametric Rule box and, ‘None’ is selected in the Non Parametric Rule
box and click OK to start the classification.
d. Accuracy Assessment

An assessment of classification accuracy must be performed to ensure
that the resulting classification is valid. The following procedure details

how to use the Imagine Accuracy Assessment tool:

279

Appendix K

Vi)

From the Imagine toolbar click on Classifier and then Accuracy
Assessment.

Click on File >> Open and select the classified and geometrically
corrected image.

Click on Edit >> Add/generate random points

Open the Ordnance Survey map data in a new viewer and from the
accuracy assessment window select View >> Select Viewer and
click on the viewer containing the map data.

Click View >> Show All to display all of the random points on the
map data viewer. Now click Edit >> Show class values to show the
class each random point is assigned to.

Now from the map data viewer select Utility >> Enquire Box and for
each random point copy the coordinates into the enquire box to find
the random test point on the map. Enter the code corresponding to

the land-cover class actually found at the location of each test point.

vii) When complete click on Report >> Accuracy Report to generate a

confusion matrix and calculate the Kappa co-efficient.

3) Format Conversion

The GDAL open-source raster translation library was used to convert the image

from ERDAS Imagine proprietary format (.img) to NetCDF format. During this

conversion some of the empty grid surrounding the image was also stripped out

to reduce the amount of redundant processing required. It was opted to convert
into a CF convention NetCDF file. Although GMT (http://gmt.soest.hawaii.edu/)
compatible NetCDF is better supported by GDAL than NetCDF, reading and

writing such files using the Java API proved to be more problematic. Thus the

following translation command was used:

gdal_translate

—ot Byte -—of NetCDF -—srcwin 0 0 4200 3000
c:\temp\geo_corrected.img c:\temp\geo_corrected.nc

280

Appendix L

Appendix L Land-use Templates
Key: L large building S small building

G grass C crops

w water F forest
L(L|S|S|S|L|L|L|S FIF|F|S|S|S|S|S|S
L{L|L|S|L|L|L|S]|S S|F|F|S|S|S|S|S |G
L(L|{S|S|L|L|L|[S]|S S|S|F|S|S|S|S|S |G
S|S|S|S|S|S|L|S|L S|S|S|S|S|S|S|S|S
L{S|S|S|L |L|L|L|L S|S|S|S|S|S|S|S|S
S|S|L|S|L|L|L|L|L S|S|S|S|S|S|S|S|L
S|S|S|S|L|S|L |L|L S|S|S|G|S|S|S|S|S
S|S|S|L|S|S|S|S|S S|S|G|G|S|L|S|S|S
S|S|S|S|S|L|S|S|S S|G|G|S|L|L|S|S|S

1. Commercial / Industrial 2. Low Density Residential

281

Appendix L

c|c|jc|jc|jcjc|yc|c|c

C|/F|C|jCc|Cc|Cc|C|C|C

FIF|IF|]C|C|C|C|C|C

FIF|C|C|C|C|C|F |C

c|c|jc|jcjcc|c|c|cG

c|c|jc|jc|jc|c|c|C|F

F|C|Cc|Cc|Cc|CcC|C|C|C

c|c|jc|jc|jcjc|yc|c|c

c|c|jc|jc|jcjc|yc|c|c

L

L

S|S|S|S|S|S|S|S|S

S|S|S|S|S|S|S|S|S

S|S|S|S|S|G|L|L |S

S|S|S|S|S|S|S|S|S

S|S|S|S|L|L |L|L

S|S|S|L|L|L|S|S|L

S|S|L|S|S|S|L|L

S|S|G|S|L|L|L|S|L

S|L|S|S|S|S|S|S|L

4. Arable

Medium Density Residential

3.

WIWW W W W W W W

WIWWWIW W W W W

WIWWWIW W W W W

WIWW W W W W W W

WIWW W W W W W W

WIWW W W W W W W

WIWW W W W W W W

WIWW W W W W W W

WIWW W W W W W W

6. Water

FIF[F]F|C]G[C[F[F

C|C|G|G|G|IG|G|G |G

G|G|G|G|G|IG|IG|G |G

G|G|G|G|G|IG|G|G |G

G|G|G|G|G|G|G|G|S

G|G|G|G|G|G|G|G|F

G|G|G|F|G|G|C|C|C

G|IG|G|G|G|G|F |F |G

G|IG|G|G|G|G|F |F |G

5. Pasture

FIF[F|F[F[F|F[G[F

282

Appendix L

7. Woodland Wasteland

283

References

Chapter 9 References

Abadi, D. J. (2009) 'Data Management in the Cloud: Limitations and
Opportunities’, Data Engineering, 32, (1), pp. 3-12.

Abadi, D. J., Ahmed, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang,
J., Lindner, W., Maskey, A., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y.
and Zdonik, S. (2005) 'The Design of the Borealis Stream Processing
Engine'.2nd Conference on Innovative Data Systems Research
(CIDR'05). Asilomar, California, USA:ACM.

Abbas, A. (2004) Grid Computing: A Practical Guide to Technology and
Applications. Charles River Media: London.

Abel, D. J., Volker, J. G., Taylor, K. L. and Xiaofang, Z. (1999) 'SMART:
Towards Spatial Internet Marketplaces', Geoinformatica, 3, (2), pp. 141-
164.

Acache, J. (2007) The Full Picture. Group on Earth Observations [Online].
Available at: http://www.earthobservations.org/documents
/the_full_picture.pdf (04/05/2009).

Adler, D. W. (2001) 'IBM DB2 Spatial Extender - Spatial data within the
RDBMS'.27th VLDB Conference. Roma, Italy,

Aggarwal, A., Chazelle, B., Guibas, L., O'Dunlaing, C. and Yap, C. (1988)
'‘Parallel computational geometry’, Algorithmica, 3, pp. 293-327.

Akinci, B., Hendrickson, C. and Karaesmen, |. (2003) 'Exploiting Motor Vehicle
Information and Communications Technology for Transportation
Engineering’, Journal of Transportation Engineering 129, (5).

Alexander, J., Box, D. and Cabrerra, L. F. (2006) Web Services Transfer (WS-
Transfer). W3C (http://www.w3.0rg/TR/2011/CR-ws-transfer-2011042).

Allcock, W., Bester, J., Bresnahan, J., Meder, S., Plaszczak, P. and Tuecke, S.
(2003) GridFTP: Protocol Extensions to FTP for the Grid. Open Grid
Forum (GFD.20).

Allcock, W., Bresnahan, J., Kettimuthu, R., Link, M., Dumitrescu, C., Raica, I.
and Foster, I. (2005) 'The globus striped GridFTP framework and
server'.Supercomputing, SC05. Seattle, WA, USA:ACM.

Almasi, G. S. and Goittlieb, A. (1990) 'Review of Highly parallel computing’, IBM
Systems Journal, 29, (1), pp. 165-166.

284

References

Aloisio, G., Cafaro, M., Epicoco, I., Fiore, R., Lezzi, D., Mirto, M. and Mocavero,
S. (2005) 'iGrid, A Novel Grid Information Service ".First European Grid
Conference.

Aloisio, G., Conte, D., Elefante, C., Epicoco, I., Marra, P. G., Mastrantonio, G.
and Quarta, G. (2006) 'SensorML for Grid Sensor Networks', 2006
International Conference on Grid Computing Applications. Las Vegas,
Nevada, USA, SensorML for Grid Sensor Networks: CSREA Press, pp.
141-146.

Amdahl, G. (1967) 'The validity of the single processor approach to achieving
large scale computing capabilities’, AFIPS / Spring Joint Computer
Conference. The validity of the single processor approach to achieving
large scale computing capabilities: pp. 483-485.

Anderson, J., Ahmed, R., Bourn, H. and McGraffin, R. (2008) Tyne & Wear Air
Quality Delivery Plan. Newcastle wupon Tyne: Planning and
Transportation Dept, Newcastle City Council

Andrews, C. J. (2007) Emerging Technology: AJAX and GeoJSON. Available
at: http://www.directionsmag.com/article.php?article_id=2550&trv=1
(Accessed: 29/10/2007).

Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T.,
Pruyne, J., Rofrano, J., Tuecke, S. and Xu, M. (2007) Web Services
Agreement Specification (WS-Agreement). Open Grid Forum (GFD-R-
P.107).

Anjomshoaa, A., Brisard, F., Drescher, M., Fellows, D., Ly, A., McGough, A.,
Pulsipher, D. and Sawva, A. (2005) Job Submission Description
Language (JSDL) Specification, Version 1.0. Open Grid Forum (GFD-
R.056).

Antonioletti, M., Collins, B., Krause, A., Laws, S., Magowan, J., Malaika, S. and
Paton, N. (2006) Web Services Data Access and Integration. Open Grid
Forum (GFD 75, GFD 76).

Arasu, A., Babu, S. and Widom, J. (2006) 'The CQL continuous query language:
semantic foundations and query execution’, The VLDB Journal, 15, (2),
pp. 121-142.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, |. and Zaharia, M. (2009) Above the

285

References

Clouds: A Berkeley View of Cloud Computing. Berkeley, USA: University
of California at Berkeley (Technical Report No. UCB/EECS-2009-28).

Armstrong, M. P. and Densham, P. J. (1992) 'Domain Decomposition for
Parallel Processing of Spatial Problems’, Computers, Environment and
Urban Systems, 16, pp. 497-513.

Armstrong, M. P. and Marciano, R. (1993) 'Parallel Spatial Interpolation’, Auto-
Carto 11. Bethesda, MD, USA, Parallel Spatial Interpolation: ASPRS and
ACSM, pp. 414-423.

Atkinson, M., DeRoure, D., Dunlop, A., Fox, G., Henderson, P., Hey, T., Paton,
N., Newhouse, S., Parastatidis, S., Trefethen, A., Watson, P. and
Webber, J. (2004) 'Web Service Grids: An Evolutionary Approach’,
Concurrency & Computation: Practice and Experience, 17, pp. 377-389.

Babcock, B., Babu, S., Datar, M., Motwani, R. and Widom, J. (2002) '‘Models
and Issues in Data Stream Systems', 21st Symposium on Principles of
Database Systems. Madison, Wisconsin, USA, Models and Issues in
Data Stream Systems: ACM SIGACT-SIGMOD-SIGART, pp. 1-16.

Babu, S. and Widom, J. (2001) 'Continuous Queries over Data Streams', ACM
SIGMOD Record, 30, (3), pp. 109-120.

Bailey, D., Barszcz, E., Barton, J., Browning, D., Carter, R., Dagum, L., Fatoohi,
R., Fineberg, S., Frederiskson, P., Lasinski, T., Schreiber, R., Simon, H.,
Venkatakrishnan, V., Weeratunga, S. and (1994) The NAS Parallel
Benchmarks, . NASA (RNR-94-007).

Ballinger, K., Ehnebuske, D., Ferris, C., Gudgin, M., Liu, C., Nottingham, M. and
Yendluri, P. (2006) Basic Profile Version 1.1. Web Services
Interoperability Organization (http://www.ws-i.org/Profiles/BasicProfile-
1.1-2006-04-10.html).

Baranski, B. (2008) 'Grid Computing Enabled Web Processing Service', 6th
Geographic Information Days (Gl-Days 2008). Institut fur Geoinformatik,
Munster, Grid Computing Enabled Web Processing Service: IfGlprints

Baranski, B. and Schéffer, B. (2010) "Towards Service Level Agreements in

Spatial Data Infrastructures'.GSDI 12 World Conference. Singapore,

Baranski, B., Schéaffer, B. and Redweik, R. (2009) 'Geoprocessing in the
Clouds', Free and Open Source Software for Geospatial. Sydney,

Australia, Geoprocessing in the Clouds

286

References

Barcello, J., Ferrer, J., Garcia, D., Florian, M. and Le Saux, E. (1998)
'Parallelization of microscopic traffic simulation for ATT systems', in
Marcotte, P. and Nguyen, S.(eds) Equilibrium and Advanced
Transportation Modelling. Kluwer Academic Publishers: Dordrecht, pp. 1-
26.

Barcelld, J. and Grau, R. (1993) 'PACKSIM: An experience in using traffic
simulation in a demand responsive traffic control system’, XIII World
Conference on Operations Research. Lisbon, Portugal, PACKSIM: An
experience in using traffic simulation in a demand responsive traffic
control system

Barnsley, M. J. and Barr, S. L. (1996) 'Inferring Urban Land Use from Satellite
Sensor Images Using Kernel-Based Spatial Reclassification’,
Photogrammetric Engineering & Remote Sensing, 62, (8), pp. 949-958.

Baumann, P. (2010) OGC WCS 2.0 Interface Standard - Core. Open Geospatial
Consortium Inc. (09-110r3).

Beard, K. (2007) 'Modelling Change in Space & Time: An event based
approach’, in Drummond, J.(ed), Dynamic and Mobile GIS: Investigating
Changes in Space and Time.

Bermudez, L., Bogden, P., Bridger, E., Cook, T., Galvarino, C., Creager, G.,
Forrest, D. and Graybeal, J. (2009) 'Web Feature Service (WFS) and
Sensor Observation Service (SOS) comparison to publish time series
data’, International Symposium on Collaborative Technologies and
Systems. Web Feature Service (WFS) and Sensor Observation Service
(SOS) comparison to publish time series data: Baltimore, Maryland, USA

Bethel, E. W., Humphreys, G., Paul, B. and Brederson, J. D. (2003) 'Sort-first,
distributed memory parallel visualization and rendering’, IEEE
Symposium on Parallel and Large-Data Visualization and Graphics, pp.
41-50.

Black, M. and Smith, R. G. (2003) 'Electronic monitoring in the criminal justice
system’, Trends and Issues in Crime and Justice, 254, pp. 241-260.
Blower, J. D. (2010) 'GIS in the cloud: implementing a Web Map Service on
Google App Engine'’, COM.Geo. Washington D. C, USA, GIS in the

cloud: implementing a Web Map Service on Google App Engine: ACM

287

References

Blunck, H., Godsk, T., Gronbaek, K., Kjaergaard, M. B., Jensen, J. L.,
Scharling, T., Toftkjaer, T. and Schougaard, K. R. (2010) 'PerPos: A
Platgorm Providing Cloud Services for Pervasive Positioning’, COM.
Geo. Washington D. C., USA, PerPos: A Platgorm Providing Cloud
Services for Pervasive Positioning: ACM

Blythe, P. T., Bell, M. C., Sharif, B. and Watson, P. (2006) 'Pervasive
Environmental Monitoring using Smartdust: The MESSAGE Project’. The
Institute of Engineering & Technology Seminar on RFID and Electronic
Vehicle Identification. Newcastle, UK:IEEE.

Bonnet, P., Gehrke, J. E. and Seshadri, P. (2000) 'Querying the Physical
World', IEEE Personal Communication, 7, (5), pp. 10-15.

Bonnet, P. and Seshadri, P. (2000) 'Device Database Systems'.16th
International Conference on Data Engineering. San Diego, California,
USA,

Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C. and
Orchard, D. (2003) Web Services Architecture: working draft. W3C

Bdse, M., Erdik, M. and Wenzel, F. (2007) 'A New Approach to Earthquake
Early Warning', in Gasparini, P., Manfredi, G. and Zschau, J.(eds)
Earthquake Early Warning Systems. Springer Berlin Heidelburg.

Bose, P., Krizanc, D., Langerman, S. and Morin, P. (2003) 'Asymmetric
Communication Protocols via Hotlink Assignments', Theory of Computing
Systems, 36, pp. 655-661.

Botts, M., Percivall, G., Reed, C. and Davidson, J. (2006) OGC Sensor Web
Enablement. Overview and High Level Architecture. Open Geospatial
Consortium (OGC 06-050R2).

Botts, M. and Robin, A. (2007) OpenGIS Sensor Model Language (SensorML)
Implementation Specification. Open Geospatial Consortium (OGC-05-
086).

Bowler, K. C., Bruce, A. D., Kenway, R. D., Pawley, G. S. and Wallace, D. J.
(1987) 'Exploiting Highly Concurrent Computers for Physics', Physics
Today, 40, (10), pp. 40-48.

Box, D., Cabrerra, L. F., Critchley, C., Curbera, F., Ferguson, D., Graham, S.,
Hull, D., Kakivaya, G., Lewis, A., Lovering, B., Niblett, P., Orchard, D.,

Samdarshi, S., Schlimmer, J., Sedukhin, |., Shewchuk, J., Weerawarana,

288

References

S. and Wortendyke, D. (2006) Web Services Eventing (WS-Eventing).
wW3C (http:/mvww.w3.0rg/Submission/2006/SUBM-WS-Eventing-
20060315/).

Box, D., Christensen, E., Curbera, F., Ferguson, D., Frey, J., Hadley, M., Kaler,
C., Langworthy, D., Leymann, F., Lovering, B., Lucco, S., Millet, S.,
Mukhi, N., Nottingham, M., Orchard, D., Shewchuk, J., Sindambiwe, E.,
Storey, T., Weerawarana, S. and Winkler, S. (2004) Web Services
Addressing (WS-Addressing). wW3C
(http://www.w3.0org/Submission/2004/SUBM-ws-addressing-20040810/).

Brackstone, M., Fisher, G. and McDonald, M. (2001) 'The use of probe vehicles
on motorways, some emperical observations'World Congress on
Intelligent Transport Systems. Sydney, Australia,

Brakatsoulas, S., Pfoser, D., Salas, R. and Wenk, C. (2005) 'On Map-Matching
Vehicle Tracking Data'.31st Very Large Data Bases (VLDB) Conference.
Trondheim, Norway,

Brauner, J., Foerster, T., Schaeffer, B. and Baranski, B. (2009) 'Towards a
Research Agenda for Geoprocessing Services'.12th AGILE Conference
on Geographic Information Science. Leibniz Universitat, Hannover,
Germany,

Braunl, T., Feyrer, S., Reinhardt, M. and Wolfgang, R. (2001) Parallel Image
Processing. Springer: Berlin.

Brito, A. (2008) 'Optimistic Parallelization Support for Event Stream Processing
Systems', Middleware Doctoral Symposium 2008 Leuven, Belgium,
Optimistic Parallelization Support for Event Stream Processing Systems:
ACM, pp. 7-12.

Broering, A., Stasch, C. and Echterhoff, J. (2010) OGC SOS 2.0 Interface
Standard. Open Geospatial Consortium Inc. (OGC 10-037).

Bruce, R. A. A., Chapple, S. R., MacDonald, N. B. and Trew, A. S. (1993)
'CHIMP and PUL: Support for Portable Parallel Computing'.4th Annual
Conference of the Meiko User Society. Southampton,UK,

Budhathoki, N. R., Bruce, B. and Nedovic-Budie, Z. (2008) 'Reconceptualizing
the role of the user of spatial data infrastructure’, GeoJournal, 72, pp.
149-160.

289

References

Burkhart, H., Korn, C. F., Gutzwiller, S., Ohnacker, P. and Waser, S. (1993)
BACS: Basel Algorithm Classification Scheme. Basel, Switzerland:
University of Basel, Switzerland (Technical Report 93-03).

Burrough, P. A. and McDonnell, R. (1998) Principles of Geographic Information
Systems. Oxford University Press, UK.

Burton, A. M., Miller, P., Bruce, V., Hancock, P. J. B. and Henderson, Z. (2001)
'Human and automatic face recognition: a comparison across image
formats', Vision Research, 41, pp. 3185-3195.

Buyya, R., Yeo, C. S. and Venugopal, S. (2008) 'Market-oriented cloud
computing: Vision, hype and reality for delivering IT services as
computing utilities’, 10th IEEE International Conference on High
Performance Computing and Communications. Dalian, China, Market-
oriented cloud computing: Vision, hype and reality for delivering IT
services as computing utilities: IEEE, pp. 5-16.

Cameron, G. D. B. and Duncan, C. I. D. (1996) 'PARAMICS - parallel
microscopic simulation of road traffic', Journal of Supercomputing, 10,
(1), pp. 25.

Cardellini, V., Colajanni, M. and Yu, P. S. (2002) 'Dynamic load balancing on
web-server systems’, IEEE Internet Computing, 3, (3), pp. 28-39.

Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G.,
Stonebraker, M., Tatbul, N. and Zdonik, S. (2002) 'Monitoring Streams -
A New Class of Data Management Applications'.28th International
Conference on Very Large Databases (VLDB'02). Hong Kong, China,

Carrara, A., Guzzetti, F., Cardinala, M. and Reichenbach, P. (2000) 'Use of GIS
Technology in the Prediction and Monitoring of Landslide Hazard',
Natural Hazards, (20), pp. 117-135.

Cary, A., Sun, Z., Hristidis, V. and Rishe, N. (2009) 'Experiences on Processing
Spatial Data with MapReduce', Lecture Notes in Computer Science,
5566, pp. 302-319.

Catlett, C. (2002) 'The Philosophy of TeraGrid: Building an Open, Extensible,
Distributed TeraScale Facility’, 2nd IEEE International Symposium on
Cluster Computing and the Grid. Berlin, Germany, The Philosophy of
TeraGrid: Building an Open, Extensible, Distributed TeraScale Facility:

pp. 8.
290

References

Chapman, D., Joshi, K. P., Yesha, Y., Halem, M., Yesha, Y. and Nguyen, P.
(2010) 'Scientific Services on the Cloud’, in Furht, B. and Escalante,
A.(eds) Handbook of Cloud Computing. Springer: New York, pp. 379-
406.

Chappell, D. and Liu, L. (2006) Web Services Brokered Notification 1.3 (WS-
BrokeredNotification). OASIS (wsn-ws_brokered_notification-1.3-spec-
0S).

Chatterjee, S. and Webber, J. (2004) Developing Enterprise Web Services: An
architects guide. Prentice Hall PTR.

Chen, A., Di, L., Wei, Y., Bai, Y. and Liu, Y. (2006) 'An Optimised Grid Based,
OGC Standards Compliant Collaborative Software System for Serving
NASA Geospatial Data'.30th Annual IEEE/NASA Software Engineering
Workshop.

Chen, N., Di, L., Yu, G. and Gong, J. (2010) 'Geo-processing workflow driven
wildfire hot pixel detection under sensor web environment’, Computers &
Geosciences, 36, pp. 362-372.

Chen, Q., Wang, L. and Shang, Z. (2008) 'MRGIS: A MapReduce-Enabled High
Performance Workflow System for GIS'.Fourth IEEE Conference on
eScience. Indiana, Indianapolis, USA,

Cherniack, M., Balakrishnan, H., Balazinska, M., Carney, D., Cetintemel, U.,
Xing, Y. and Zdonik, S. (2003) 'Scalable Distributed Stream
Processing'.First Biennial Conference on Innovative Data Systems
Research. Pacific Grove, California, USA,

Cheu, R. L., Xie, C. and Lee, D. H. (2002) 'Freeway traffic prediction using
neural networks', Computer-Aided Civil and Infrastructure Engineering,
17, (1), pp. 53-60.

Chien, S., Tran, D., Davies, A., Johnston, M., Doubleday, J., Castano, R.,
Scharenbroich, L., Rabideau, G., Cichy, B., Kedar, S., Mandl, D., Frye,
S., Song, W., Kyle, P., LaHusen, R. and Cappaelare, P. (2007) 'Lights
Out Autonomous Operation of an Earth Observing
Sensorweb'.International Symposium on Reducing the Cost of
Spacecraft Ground Systems and Operations (RCSGSO). Moscow,

Russia,

291

References

Chiu, K., Govindaraju, M. and Bramley, R. (2002) 'Investigating the Limits of
SOAP Performance for Scientific Computing’, 11th International
Symposium on High Performance Distributed Computing Edinburgh, UK,
Investigating the Limits of SOAP Performance for Scientific Computing:
pp. 246.

Chu, K., Brewer, R. and Joseph, S. (2008) Traffic and navigation support
through an automobile head up display. Manoa, Hawaii: University of
Hawaii, USA (ICS-2008-05-02).

Chu, X. and Buyya, R. (2007) 'Service Oriented Sensor Web', in Mahalik, N.
P.(ed), Sensor Network and Configuration: Fundamentals, Standards,
Platforms, and Applications. Springer-Verlag,: Germany, pp. 51-74.

Cignoni, P., Montani, C., Perego, R. and Scopigno, R. (1993) 'Parallel 3D
Delauney triangulation'.Computer Graphics Forum.Blackwell Publishers.

Clematis, A. and Puppo, E. (1993) 'Effective parallel processing of irregular
geometric structures - an experience with the Delaunay triangulation’,
AICA - International Section: Parallel and Distributed Architectures and
Algorithms. Effective parallel processing of irregular geometric structures
- an experience with the Delaunay triangulation: pp. 235-251.

Codd, E. F. (1970) 'A Relational Model of Data for Large Shared Data Banks',
Communications of the ACM, 13, (6), pp. 377-387.

Codd, E. F. (1972) 'Further normalization of the data base relational model’, in
Rustin, R.(ed), Data Base Systems. Prentice-Hall: Englewood Cliffs, NJ,
USA.

Cole, R., Goodrich, M. T. and O'Dunlaing, C. (1990) 'Merging free trees in
parallel for efficient Voronoi diagram construction’, in Lecture notes in
computer science. Vol. 443 Springer-Verlag: Berlin, pp. 432-445.

Connolly, T. and Begg, C. (2005) Database Systems: A practical approach to
design, implementation, and management. Pearson Education Ltd.

Cook, W. R. and Barfield, J. (2007) 'Web Service versus Distributed Objects: A
Case Study of Performance and Interface Design', International Journal
of Web Services Research, 4, (3), pp. 49-64.

Cooper, M., Dzambasow, Y., Hesse, P., Joseph, S. and Nicholas, R. (2005)
Internet X.509 Public Key Infrastructure: Certification Path Building.
Available at: http://tools.ietf.org/html/rfc4158.html (Accessed:

292

References

Couillard, J. (1993) 'A decision support system for vehicle fleet planning’,
Decision Support Systems, 9, (2), pp. 149-159.

Cox, S. (2007) Observations and Measurements Open Geospatial Consortium,
Inc (07-022r1, 07-002r3).

Cox, S., Botts, M., Robin, A., Davidson, J. and Falke, S. (2006) Observations &
Measurements. Open Geospatial Consortium Inc. (OGC® 05-087r4).

Crainic, T. G., Gendreau, M. and Potvin, J.-Y. (2009) 'Intelligent freight-transport
systems: Assessment and the contribution of operations research’,
Transportation Research Part C: Emerging Technologies, 17, (6), pp.
541-557.

Cruanes, T., Dageville, B. and Ghosh, B. (2004) 'Parallel SQL execution in
Oracle 10g.2004 ACM SIGMOD international conference on
Management of data.

Culler, D., Estrin, D. and Srivastava, M. (2004) 'Guest Editors' Introduction:
Overview of Sensor Networks', Computer, 37, (8), pp. 41-49.

Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N. and Weerawarana, S.
(2002) 'Unraveling the Web services web: an introduction to SOAP,
WSDL, and UDDI', Internet Computing, IEEE, 6, (2), pp. 86-93.

Czajkowski, K., Ferguson, D., Foster, I., Frey, J., Graham, S., Sedukhin, I.,
Snelling, D., Tuecke, S. and Vambenepe, W. (2004) The WS-Resource
Framework. Available at: http://www-106.ibm.com/developerworks/
library/ws-resource/ws-wsrf.pdf (Accessed:

Danelutto, M., Di Meglio, R., Orlando, S., Pelagatti, S. and Vanneschi, M.
(1992) 'A methodology for the development and the support of massively
parallel programs’, Future Generation Computer Systems, 8, (1-3), pp.
205-220.

Dashitenezhad, S., Nadeem, T., Dorohonceanu, B., Borcea, C., Kang, P. and
Iftode, L. (2004) 'TrafficView: a driver assistant device for traffic
monitoring based on car-to-car communication’, IEEE 59th Vehicular
Technology Conference 2004. 19th May 2004. TrafficView: a driver
assistant device for traffic monitoring based on car-to-car
communication: IEEE, pp. 2946-2950.

293

References

Dattilo, G. and Spezzano, G. (2003) 'Simulation of a cellular landslide model
with CAMELOT on high performance computers', Parallel Computing, 29,
(10), pp. 1403-1418.

Davis, D., Malhotra, A., Warr, K. and Chou, W. (2009) Web Services Resource
Transfer (WS-RT). W3C (http://www.w3.0rg/TR/2009/WD-ws-resource-
transfer-20090317).

Davy, J. R. and Dew, P. M. (1989) 'A note on improving the performance of
Delaunay triangulation’, in Patrikalakis, N. M.(ed), Scientific Visualization
of Physical Phenomena. Springer-Verlag: Hong Kong, pp. 209-226.

de Groot, W., Goldammer, J. G., Keenan, T., Brady, M., Lynham, T., Csiszar, I.
A., Justice, C. O. and O'Loughlin, K. (2006) 'Developing a global early
warning system for wildland fire'.VV International Conference on Forest
Fire Research.

Dean, J. and Ghemawat, S. (2008) 'MapReduce: Simplified Data Processing on
Large Clusters', Communications of the ACM, 51, (1), pp. 107-113.

Dean, J. and Ghemawat, S. Google Inc. (2010) System and method for efficient
large-scale data processing. 7650331.

DeMers, M. N. (2002) GIS modelling in raster. John Wiley & Sons: Chichester,
UK.

DeWitt, D. and Gray, J. (1992) 'Parallel database systems: the future of high
performance database systems', Communications of the ACM, 35, (6),
pp. 85-98.

DeWitt, D. and Stonebraker, M. (2008a) 'MapReduce II', Database Column,
[Online]. Available at: http://databasecolumn.vertica.com/database-
innovation/mapreduce-ii/ (Accessed: 15/09/2010).

Dewitt, D. and Stonebraker, M. (2008b) 'MapReduce: A major step backwards',
Database Column, [Online]. Available at:
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-
major-step-backwards/ (Accessed: 15th September 2010).

Di, L., Chen, A., Yang, W., Liu, Y., Wei, Y., Mehrotra, P., Hu, C. and Williams,
D. (2008) 'The development of a geospatial data Grid by integrating OGC
Web services with Globus-based Grid technology’, Concurrency &

Computation: Practice and Experience, 20, (14), pp. 1617 - 1635.

294

References

Di, L., Chen, A., Yang, W. and Zhao, P. (2003) 'The Integration of Grid
Technology with OGC Web Services in NWGISS for NASA EOS
Data'.Global Grid Forum 8 / HPDC12. Seattle, USA,

Dijkstra, E. W. (1959) 'A Note on Two Problems in Connexion with Graphs',
Numerische Mathematik, 1, (269-271).

Dikaiakos, M. D., Katsaros, D., Mehra, P., Pallis, G. and Vakali, A. (2009)
‘Distributed internet computing for IT and scientific research’, IEEE
Internet Computing, 13, (5), pp. 10-13.

Dillaway, B., Humphrey, M., Smith, C., Theimer, M. and Wasson, G. (2007)
HPC Basic Profile Version 1.0. Open Grid Forum (GFD-R-P.114).

Ding, Y. and Densham, P. J. (1994) 'A dynamic and recursive parallel algorithm
for constructing Delaunay triangulations.', 6th International Symposium
on Spatial Data Handling. Edinburgh, A dynamic and recursive parallel
algorithm for constructing Delaunay triangulations.: pp. 682-696.

Echterhoff, J. and Everding, T. (2008) OpenGIS Sensor Event Service Interface
Specification (proposed). Open Geospatial Consortium, Inc. (08-133).

Emmi, P. C. and Horton, C. A. (1995) 'A Monte Carlo simulation of error
propogation in a GIS based assessment of seismic risk’, International
Journal of Geographical Information Science (1JGIS), 9, (4), pp. 447-461.

Etzion, O. (2005) 'Towards an Event-Driven Architecture: An Infrastructure for
Event Processing Position Paper’, in Rules and Rule Markup Languages
for the Semantic Web. Vol. 3791/2005 Springer Berlin / Heidelberg, pp.
1-7.

Everding, T. and Echterhoff, J. (2008) Event Pattern Markup Language (EML).
Open Geospatial Consortium, Inc. (08-132).

Everding, T. and Echterhoff, J. (2009) OGC OWS-6 SWE Event Architecture
Engineering Report. Open Geospatial Consortium, Inc. (09-032).

Fairbairn, D., James, P., Hobona, G. and Watson, P. (2008) SAW-GEO.
Available at: http://edina.ac.uk/projects/seesaw/index.html (Accessed:
23/11/2008).

Fairgrieve, S. (2010) OWS-7 CCSI-SWE Best Practices Engineering Report.
Open Geospatial Consortium Inc. (10-073rl).

295

References

Fang, Y., Lee, B., Chou, T., Lin, Y. and Lien, J. (2009) 'The implementation of
SOA within grid structure for disaster monitoring’, Expert Systems with
Applications, 36, pp. 5784-5792.

Farnhill, J. and McAllister, A. (2006) Grid and Open Geospatial Consortium
Collision. JISC (JISC Circular 02/2006 Full Text).

Farooqui, K., Logrippo, L. and Meer, J. d. (1995) 'The ISO Reference Model for
Open Distributed Processing: an introduction’, Computer Networks and
ISDN Systems 27, pp. 1215-1229.

Fielding, R. (2000) Architectural Styles and the Design of Network-based
Software Architectures. PhD thesis. University of California.

Flynn, M. (1966) 'Very High Speed Computing Systems', Proceedings of IEEE,
54, pp. 1901-19009.

Follino, G., Forestiero A., Papuzzo, G. and Spezzano, G. (2010) 'A Grid Portal
for Solving Geoscience Problems using Distributed Knowledge Discovery
Service', Future Generation Computer Systems, 26, (1), pp. 87-96.

Forney, G. D. (1973) 'The Viterbi Algorithm', Proceedings of the IEEE, 61, (3),
pp. 268-278.

Foster, I. (1995) Designing and Building Parallel Programs: Concepts and Tools
for Parallel Software Engineering. Addison Wesley.

Foster, I. (2002) 'What is the Grid? A Three Point Checklist', Grid Today, 1, 6,

Foster, I. (2005) 'Service-Oriented Science', Science, 308, (5723), pp. 814-817.

Foster, 1., Frey, J., Graham, S., Tuecke, S., Czajkowski, K., Ferguson, D.,
Leymann, F., Nally, M., Sedukhin, 1., Snelling, D., Storey, T.,
Vambenepe, W. and Weerawarana, S. (2004) Modeling Stateful
Resources with Web Services: Version 1.1.

Foster, I., Grimshaw, A., Lane, P., Lee, W., Morgan, M., Newhouse, S., Pickles,
S., Pulsipher, D., Smith, C. and Theimer, M. (2008) OGSA Basic
Execution Service Version 1.0. Open Grid Forum

Foster, I. and Kesselman, C. (1998) 'Computational Grids', CERN European
Organization for Nuclear Research 8, pp. 87-114.

Foster, I. and Kesselman, C. (1999) 'Computational Grids', in Foster, I.(ed),
The GRID: Blueprint for a New Computing Infrastructure. Morgan

Kaufmann Publishers Inc.

296

References

Foster, I., Kesselman, C., Nick, J. M. and Tuecke, S. (2002) 'The Physiology of
the Grid: An Open Grid Services Architecture for Distributed Systems
Integration'.

Foster, 1., Kesselman, C. and Tuecke, S. (2001) 'The Anatomy of the Grid:
Enabling Scalable Virtual Organisations’, International Journal of High
Performance Computing Applications, 15, (3), pp. 200-222.

Foster, I., Kishimoto, H., Savva, A., Berry, D., Djaoui, A., Grimshaw, A., Horn,
B., Maciel, F., Siebenlist, F., Subramaniam, R., Treadwell, J. and Von
Reich, J. (2005) The Open Grid Services Architecture, Version 1.0. GGF

Foster, I., Kishimoto, H., Savva, A., Berry, D., Djaoui, A., Grimshaw, A., Horn,
B., Maciel, F., Siebenlist, F., Subramaniam, R., Treadwell, J. and Von
Reich, J. (2006) The Open Grid Services Architecture Version 1.5. Open
Grid Forum

Foster, |., Parastatidis, S., Watson, P. and McKeown, M. (2009) 'How Do |
Model State? Let Me Count the Ways', Queue, 7, (2), pp. 54-55.

Fox, G. (1989) 'Parallel Computing Comes of Age: Supercomputer Level
Parallel Computations at Caltech’, Concurrency & Computation: Practice
and Experience, 1, (1), pp. 63-103.

Fox, G. (2004) 'Software Development Around a Millisecond', Computers in
Science and Engineering (CISE Magazine), March/April, p.93-96.

Fox, G., Aktas, M., Aydin, G., H, G., Pallickara, S., Pierce, M. and Sayar, A.
(2008) ‘Algorithms and the Grid', Computing and Visualization in
Science, 12, (3), pp. 115-124.

Fox, G., Williams, D. and Messina, P. (1994) Parallel Computing Works.
Morgan Kaufmann Publishers Inc.

Fraternali, P., Rossi, G. and Sanchez-Figueroa. (2010) 'Rich Internet
Applications', IEEE Internet Computing, 14, 3, p.9-12.

Freeman, P. K., Keen, M. and Mani, M. (2003) Dealing with Increased Risk of
Natural Disasters: Challenges and Options. International Monetary Fund
(WP/03/197).

Friis-Christensen, A., Lutz, M., Ostlander, N. and Bernard, L. (2007) 'Designing
Service Architectures for Distributed Geoprocessing: Challenges and
Future Directions', Transactions in GIS, 11, (6), pp. 799-816.

297

References

Frizziero, E., Gulmini, M., Lelli, F., Maron, G., Oh, A., Orlando, S., Petrucci, A.,
Squizzato, S. and Traldi, S. (2006) 'Instrument Element: A New Grid
component that enables the control of remote instrumentation’,
International Conference on Cluster Computing and Grid. Singapore,
Instrument Element: A New Grid component that enables the control of
remote instrumentation

Gagliardi, F., Jones, B., Grey, F., Begin, M. and Heikkurinen, M. (2005)
'‘Building an infrastructure for scientific Grid computing: status and goals
of the EGEE project’, Philosophical transactions of the Royal Society,
363, (1833), pp. 1729-1742.

Gaynor, M., Moulton, S. L., Welsh, M., LaCombe, E., Rowan, A. and Wynne, J.
(2004) 'Integrating Wireless Sensor Networks with the GRID', IEEE
Internet Computing, 8, 4, July-August 2004, p.32-39.

Ghiani, G., Guerrriero, F., Laporte, G. and Musmanno, R. (2003) 'Real-time
vehicle routing: Solution concepts, algorithms and parallel computing
strategies', European Journal of Operational Research, 151, pp. 1-11.

Ghimire, D. R., Simonis, |. and Wytzisk, A. (2005) ‘Integration of GRID
Approaches into the Geographic Web Service Domain', FIG Working
Week and GSDI-8. Cairo, Egypt, Integration of GRID Approaches into
the Geographic Web Service Domain

Gittings, B. M., Sloan, T. M., Healey, R. G., Dowers, S. and Waugh, T. C.
(1994) 'Meeting expectations: a review of GIS performance issues’, in
Mether, P. M.(ed), Geographical Information Handling - Research and
Applications. Wiley, pp. 33-45.

Glatard, T. (2008) 'A Service Oriented Architecture enabling dynamic service
grouping for optimizing distributed workflow execution’, Future
Generation Computer Systems (In Press).

Glatard, T., Montagnat, J. and Pennec, X. (2006) 'Efficient services composition
for grid-enabled data-intensive applications'.International Symposium on
High Performance Distributed computing (HPDC'06). Paris, France IEEE.

Glimsdal, S., Pedersen, G. K. and Langtangen, H. P. (2004) 'An investigation of
overlapping domain decomposition methods for one-dimensional
dispersive long wave equations', Advances in Water Resources, 27, pp.
1111-1133.

298

References

Goldammer, J. G. (2006) 'Global Early Warning System for Wildland Fire', 3rd
International Conference on Early Warning. Bonn, Germany, Global
Early Warning System for Wildland Fire

Goldman, O. and Lenkov, D. (2005) XML Binary Characterization. W3C

Gong, J. and Xie, J. (2009) 'Extraction of drainage networks from large terrain
datasets using high throughput computing’, Computers & Geosciences,
35, pp. 337-346.

Gonzalez Cortéz, F. and Leduc, T. (2010) 'GGL: A geo-processing definition
language that enhance spatial SQL with paramaterization'.13th AGILE
International Conference on Geographic Information Science.
Guimaraes, Portugal,

Gottschalk, K., Graham, S., Kreger, H. and Snell, J. (2002) 'Introduction to Web
Services Architecture', IBM Systems Journal, 41, (2).

Govindan, R., Hong, W., Madden, S., Franklin, M. J. and Shenker, S. (2002)
The Sensor Network as a Database. University of Southern California
(TR02-02-771).

Graham, S., Hull, D. and Murray, B. (2006) Web Services Base Notification 1.3
(WS-BaseNoaotification). Organisation for Advancement of Structured
Information Standards (OASIS) (wsn-ws_base_notification-1.3-spec-0s).

Grasso, V. F. and Singh, A. (2008) 'Global Environment Alert Service',
Advances in Space Research, 41, (11), pp. 1836-1852.

Gray, J. (1981) 'The Transaction Conept: Virtues and Limitations'.7th
International Conference on Very Large Databases (VLDB). Cannes,
France,

Gray, J., Liu, D., Nieto-Santisteban, M., Szalay, A. and Heber, G. (2005)
'Scientific data management in the coming decade’, ACM SIGMOD
Record, 34, (4), pp. 34-41.

Gray, J. and Patterson, D. (2003) 'A conversation with Jim Gray', ACM Queue,
1, (4), pp. 8-17.

Greenfeld, J. S. (2002) 'Matching GPS observations to locations on a digital
map'.81st Annual Meeting of the Transportation Research Board.
Washington, D. C.,

Greenwald, R., Stackowiak, R. and Stern, J. (2008) Oracle Essentials: Oracle
Database 11g. O'Reilly.

299

References

Grenon, P. and Smith, B. (2004) 'SNAP and SPAN: Towards Dynamic Spatial
Ontology', Spatial Cognition and Computation, 5, (1), pp. 69-104.

Grimshaw, A. (2003) 'Grid Services extend Web Services', SOA Web Services
Journal, 506.

Gropp, W., Lusk, E. and Skjellum, A. (1999) Using MPI: Portable Parallel
Programming with the Message-passing Interface. MIT Press.

Grossman, R. L., Gu, Y., Mambretti, J., Sabala, M., Szalay, A. and White, K.
(2010) 'An overview of the Open Science Data Cloud', 19th ACM
International Symposium on High Performance Distributed Computing.
Chicago, lllinois, An overview of the Open Science Data Cloud: ACM, pp.
377-384.

Gudgin, M., Mendelsohn, N., Nottingham, M. and Ruellan, H. (2005a) SOAP
Message Transmission Optimization Mechanism. W3C

Gudgin, M., Mendelsohn, N., Nottingham, M. and Ruellan, H. (2005b) XML-
binary Optimized Packaging. W3C

Gupta, R., Pande, S., Kleanthis, P. and Sarkar, V. (1999) '‘Compilation
techniques for parallel systems', Parallel Computing, 25, pp. 1741-1783.

Han, L., Potter, S., Beckett, G., Pringle, G., Sung-Han, K., Upadhyay, R.,
Wickler, G., Berry, D., Welch, S., Usmani, A., Torero, J. and Tate, A.
(2010) 'Firegrid: An e-infrastructure for the next-generation emergency
response support’, Journal of Parallel and Distributed Computing, 70,
(11), pp. 1128-11441.

Hansen, P. B. (1993) 'Model Programs for Computational Science: A
Programming Methodology for Multicomputers', Concurrency &
Computation: Practice and Experience, 5, (5), pp. 407-423.

Hart, P. E., Nilsson, N. J. and Raphael, B. (1972) 'Correction to "A Formal Basis
for the Heuristic Determination of Minimum cost Paths™, SIGART
Newsletter, 37, pp. 28-29.

Hart, Q. and Gertz, M. (2005) 'Querying streaming geospatial image data: The
GeoStreams project'.17th International Conference on Scientific and
Statistical Database Management. University of California, Santa

Barbara,

300

References

Havlik, D., Schimak, G. and Barta, R. (2008) 'Advanced Cascading Sensor
Observation Service'.International Congress on Environmental Modelling
and Software. Barcelona, Spain,

Havlik, D., Schimak, G. and Bleier, T. (2009) 'Cascading and replicating the
OGC Sensor Observation Service'.18th World IMACS/MODSIM
Congress. Cairns, Australia,

Hawick, K. A., Coddington, P. D. and James, H. A. (2003) 'Distributed
frameworks and parallel algorithms for processing large-scale
geographic data', Parallel Computing, 29, pp. 1297-1333.

Healey, R. and Desa, G. B. (1990) 'Transputer-Based Parallel Processing for
GIS Analysis: Problems and Potentialities'.Auto-Carto 9. Baltimore,
Maryland, USA,

Healey, R., Dowers, S., Gittings, B. M. and Mineter, M. J. (1998) Parallel
Processing Algorithms for GIS. Taylor & Francis.

Herring, J. R. (2006) OpenGIS Implementation Specification for Geographic
information - Simple feature access - Part 2: SQL option. Open
Geospatial Consortium Inc. (06-104r3).

Hickman, B. L., Bishop, M. P. and Rescigno, M. V. (1995) 'Advanced
Computational Methods for Spatial Information Extraction’, Computers &
Geosciences, 21, (1), pp. 153-173.

Hickson, I. and Hyatt, D. (2008) HTML 5. W3C

Higgins, C. (2008) SEE-GEO. Available at: http://edina.ac.uk/projects/
seesaw/index.html (Accessed: 18/11/2008).

Higgins, C., Lee, C. A. and Sekiguchi, S. (2008) 'OGC-OGF Collaboration
Workshop Final Report, OGF-22. Cambridge, MA, USA, OGC-OGF
Collaboration Workshop Final Report.

Hingne, V., Joshi, A., Houstis, E. and Michopoulos, J. (2003) 'On the grid and
sensor networks', Grid Computing, 2003. Proceedings. Fourth
International Workshop on. On the grid and sensor networks: pp. 166-
173.

Hluchy, L., Habala, O., Tran, V., Gatial, E., Maliska, M., Simo, B. and Slizik, P.
(2005) 'Collaborative Environment For Grid-Based Flood Prediction’,
Computing & Informatics, 24, pp. 1001-1022.

301

References

Hoare, C. A. R. (1978) 'Communicating sequential processes', ACM, 21 (8), pp.
666-677.

Hobona, G., Fairbairn, D. and James, P. (2007) 'Workflow Enactment of Grid-
Enabled Geospatial Web Services'.UK e-Science All Hands Meeting.
Nottingham,

Hoef, J., Peterson, E. and Theobald, D. (2006) 'Spatial Statistical Models that
Use Flow and Stream Distance’, Environmental and Ecologial Statistics,
16, pp. 449-464.

Hogue, C. and Graves, D. (1994) Power Fortran Accelerator User's Guide.
Silicon Graphics Inc.

Hong-chun, Z., Hai-ying, L., Tao, J. and Ji-zian, Z. (2009) 'Research on Remote
sensing data processing strategy and application based on grid
operation', Procedia Earth and Planetary Science, 1, pp. 1180-1185.

Horiuchi, S., Negishi, K., Abe, A., Kamimura, A. and Fujinawa, Y. (2005) 'An
automatic processing system for broadcasting earthquake alarms’,
Bulletin of the Seismological Society of America, 95, pp. 708-718.

Huber, W., Ladke, M. and Ogger, R. (1997) 'Extended floating car data for the
acquisition of traffic information'.4th World Congress on Intelligent
Transport Systems. Berlin, Germany,

Hughes, D., Greenwood, P., Coulson, G., Blair, G., Pappenberger, F., Smith, P.
and Beven, K. (2006) 'An Intelligent and Adaptable Flood Monitoring and
Warning System', UK E-Science All Hands Meeting 2006.

Hummel, B. (2006) 'Map Matching for Vehicle Guidance', in Drummond, J.(ed),
Dynamic and Mobile GIS: Investigating Changes in Space and Time.

Humphrey, M., Wasson, G., Kiryakov, Y., Park, S.-M., Del Vecchio, D.,
Beekwilder, N. and Gray, J. (2005) 'Alternative Software Stacks for
OGSA-based Grids"ACM/IEEE Supercomputing. Seattle, WA,
USAIEEE.

Hwang, K. and Xu, Z. (1996) 'Scalable Parallel Computers for Real-Time Signal
Processing', IEEE Signal Processing Magazine, 30, (4), pp. 50-56.

Hwu, W., Ryoo, S., Sain-Zee, U., Kelm, J. H., Gelado, I., Stone, S. S., Kidd, R.
E., Baghsorkhi, S., S., Ageel, A. M., Tsao, S. C., Navarro, N., Lumetta, S.
S., Frank, M. I. and Patel, S. J. (2007) 'Implicitly Parallel Programming

302

References

Models for Thousand-Core Microprocessors'.44th Annual Design
Automation Conference. San Diego, California, USA:ACM.

Jagadeesh, G. R., Srikanthan, T. and Zhan, X. D. (2004) 'A Map Matching
Method for GPS Based Real-Time Vehicle Location', The Journal of
Navigation, 57, pp. 429-440.

Jang, J. S. R. and Sun, C. T. (1996) Neuro-fuzzy and soft computing: a
computational approach to learning and machine intelligence. Prentice-
Hall Inc.: Upper Saddle River, NJ, USA.

Kalogeraki, V., Gunopulos, D., Sandhu, R. and Thuraisingham, B. (2008) 'QoS
Aware Dependable Distributed Stream Processing.11th IEEE
Symposium on Object Oriented Real-Time Distributed Computing
(ISORC). Orlando, Florida, USA:IEEE.

Kanamori, H., Hauksson, E. and Heaton, T. (1997) 'Real-time seismology and
earthquake hazard mitigation’, Nature: International Weekly Journal of
Science, (390), pp. 461-464.

Karonis, N., Toonen, B. and Foster, I. (2003) 'MPICH-G2: A Grid-Enabled
Implementation of the Message Passing Interface’, Journal of Parallel
and Distributed Computing 63, (5), pp. 551-563.

Katz, M. J., Overmars, M. H. and Sharir, M. (1991) 'Efficient hidden surface
removal for objects with small union size', 7th International Symposium
on Computational Geometry. Efficient hidden surface removal for objects
with small union size: pp. 31-40.

Kaye, D. (2003) Loosely Coupled: The Missing Pieces of Web Services. RDS
Strategies LLC: USA.

Keller, R., Krammer, B., Mueller, M., Resch, M. and Gabriel, E. (2003) 'MPI
Development Tools and Applications for the Grid’, Workshop on Grid
Application and Programming Tools: GGF8 Meetings. Seattle, WA, USA,
MPI Development Tools and Applications for the Grid.

Kerry, K. E. and Hawick, K. A. (1998) 'Kriging Interpolation on High-
Performance Computers', Lecture Notes in Computer Science, 1401, pp.
429-438.

Kidner, D. B., Rallings, P. J. and Ware, A., J. (1997) 'Parallel processing for
Terrain Analysis in GIS: Visibility as a Case Study', Geoinformatica, 1,
(2), pp. 183-207.

303

References

Kiehle, C., Greve, K. and Heier, C. (2006) 'Standarized Geoprocessing - Taking
Spatial Data Infrastructures one Step Further', 9th AGILE Conference on
Geographic Information Science. Visegrad, Hungary, Standarized
Geoprocessing - Taking Spatial Data Infrastructures one Step Further.

Kim, S., Shekhar, S. and Min, M. (2008) 'Contraflow Transportation Network
Reconfiguration for Evacuation Route Planning’, IEEE Transactions on
Knowledge and Data Engineering, 20, (8).

Klopfer, M. and Kanellopoulos, I. (eds.) (2008) Orchestra: An open service
architecture for risk management. The Orchestra Consortium.

Kobialka, T., Buyya, R., Leckie, C. and Kotagiri, R. (2007) 'A Sensor Web
Middleware with Stateful Services for Heterogeneous Sensor
Networks'.3rd International Conference on Intelligent Sensors, Sensor
Networks and Information. ISSNIP 2007.

Kopetz, H. (1999) Real-Time Systems: Design Principles for Distributed
Embedded Applications. Kluwer Academic Publishers.

Kothuri, R., Godfrind, A. and Beinat, E. (2007) Pro Oracle Spatial for Oracle
Database 11g. Apress.

Koutroumpas, M. and Higgins, C. (2008) 'A Pipeline Processing Approach to
GIS'.11th AGILE International Conference on Geographic Information
Science. University of Girona, Spain,

Kraak, M. J., Sliwinski, A. and Wytzisk, A. (2005) 'What happens at 52N? An
Open source approach to education and research'.Joint Commissions
Seminar "Internet-Based Cartographic Teaching and Learning: Atlases,
Map Use and Visual Analytics. Madrid,

Krishnamurthy, S., Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin,
M. J., Hellerstein, J., Wei, H., Madden, S., Raman, V., Reiss, F. and
Shah, M., A. (2003) 'TelegraphCQ: An Architectural Status Report', IEEE
Data Engineering Bulletin, 26, (1).

Kruger, A. and Kolbe, T. (2008) 'Mapping Spatial Data Infrastructures to a Grid
Environment for Optimised Processing of Large Amounts of Spatial
Data’, XXXVII ISPRS Congress: Special Session: Spatial Data
Infrastructure (SDI) and Spatial Information Grid (SIG). Beijing, China,
Mapping Spatial Data Infrastructures to a Grid Environment for

Optimised Processing of Large Amounts of Spatial Data: pp. 1559.
304

References

Kruvoruchko, K. and Gribov, A. (2004) 'Geostatistical Interpolation and
Simulation with Non-Euclidean Distances'.GeoENV 1V: International
Conference on Geostatistics for Environmental Applications. Neuchatel,
Switzerland:Kluwer Academic Publishers.

Kurzbach, S., Pasche, E., Lanig, S. and Zipf, A. (2009) 'Benefits of Grid
Computing for Flood Modeling In Service-Oriented Spatial Data
Infrastructures’, GIS Science, 3, pp. 89-97.

Kussul, N., Shelestov, A. and Skakun, S. (2009) 'Grid and sensor web
technologies for environmental monitoring', Earth Science Informatics, 2,
pp. 37-51.

Kussul, N., Shelestov, A., Skakun, S. and Kravchenko, O. (2008) 'Data
Assimilation Technique for Flood Monitoring & Prediction’, International
Journal 'Information Theories & Applications', 15, pp. 76-83.

Lahrmann, H. (2007) 'Floating Car Data for Traffic Monitoring'.i2TERN Aalborg,
Denmark,

Lammel, L., Rieser, M. and Nagel, K. (2010) 'Large Scale Microscopic
Evacuation Simulation ', Pedestrian & Evacuation Dynamics 2008, 2, pp.
547-553.

Langran, G. (1992) Time in Geographic Information Systems. Taylor & Francis:
London, UK.

Lanig, S. and Zipf, A. (2009a) 'Interoperable processing of digital elevation
models in grid infrastructures’, Earth Science Informatics, 2, pp. 107-116.

Lanig, S. and Zipf, A. (2009b) "Towards Generalization Processes of LIDAR
Data based on Grid and OGC Web Processing Services'.Geoinformatik.
Osnabruck, Germany,

Lanthier, M., Nussbaum, D. and Jorg-Rudiger, S. (2003) ‘Parallel
implementation of geometric shortest path algorithms', Parallel
Computing, 29, pp. 1443-1479.

Leavitt, N. (2010) 'Will NoSQL Databases Live Up to Their Promise?’,
Computer, 43, 2, p.12-14.

Lee, C. and Hamdi, M. (1995) 'Parallel image processing of applications on a
network of workstations', Parallel Computing, 21, pp. 137-160.

Lee, C. and Percivall, G. (2008) 'Standards-Based Computing Capabilities for
Distributed Geospatial Applications', Computer, 41, (11), pp. 50-57.

305

References

Lee, W.-H., Tseng, S.-S. and Tsai, S.-H. (2009) 'A knowledge based real-time
travel time prediction system for urban network’, Expert Systems with
Applications, 36, pp. 4329-4247.

Lehning, M., Dawes, N., Bavay, M., Parlange, M., Nath, S. and Zhao, F. (2009)
‘Instrumenting the Earth: Next-Generation Sensor Networks and
Environmental Science’, in Hey, T., Tansley, S. and Tolle, K.(eds) The
Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft
Research.

Li, B., Zhao, H. and Lv, Z. (2010) 'Parallel ISODATA Clustering of Remote
Sensing Images on MapReduce’, International Conference on Cyber-
Enabled Distributed Computing and Knowledge Discovery. Huangshan,
China, Parallel ISODATA Clustering of Remote Sensing Images on
MapReduce: IEEE, pp. 380-383.

Li, X., Plale, B., Vijayakumar, N., Ramachandran, R., Graves, S. and Conover,
H. (2008) 'Real-time Storm Detection and Weather Forecast Activation
through Data Mining and Events Processing', Earth Science Informatics,
1, (2), pp. 49-57.

Liang, S. H. L., Chen, S., Huang, C. Y., Li, R. Y., Chang, D. Y. C., Badger, J.
and Rezel, R. (2010) 'GeoCENS: Geospatial Cyberinfrastructure for
Environmental Sensing', GIScience 2010. Zurich, Switzerland,
GeoCENS: Geospatial Cyberinfrastructure for Environmental Sensing.

Liang, S. H. L., Croitoru, A. and Tao, C. V. (2005) 'A Distributed Geospatial
Infrastructure for Sensor Web', Computers & Geosciences, 31, (2), pp.
221-231.

Liang, S. H. L., Tao, C. V. and Croitoru, A. (2003) 'The design and prototype of
a distributed geospatial infrastructure for smart sensor webs'.6th AGILE
Conference on Geographic Information Science. Lyon, France, 24th-26th
April 2003.Presses Polytechniques et Universitaires Romandes.

Liu, C. and Meng, X. (2008) 'Determination of Routing Velocity with GPS
Floating Car Data and WebGIS-Based Instantaneous Traffic Information
Dissemination’, The Journal of Navigation, 61, pp. 337-353.

Luckham, D. (2006) What's the Difference Between ESP and CEP? Available
at: http://complexevents.com/?p=103 (Accessed: 25/01/2010).

306

References

Luckham, D. and Schulte, R. (2008) Event Processing Glossary - Version 1.1.
Available at: http://www.ep-
ts.com/component/option,com_docman/task,doc_download/qgid,66/Itemid
,84/ (Accessed: 25/01/2010).

Lv, Z., Hu, Y., Zhong, H., Wu, J., Li, B. and Zhao, H. (2010) 'Parallel K-Means
Clustering of Remote Sensing Images Based on Map-Reduce’, Lecture
Notes in Computer Science, 6318, pp. 162-170.

Lynch, N. and Gilbert, S. (2002) 'Brewer's conjecture and the feasibility of
consistent, available, partition-tolerant web services', ACM SIGACT
News, 33, (2), pp. 51-59.

MacDougall, E. B. (1984) 'Surface mapping with weighted averages in a
microcomputer’, in Spatial Algorithms for Processing Land Data with a
Microcomputer: Lincoln Institute Monograph #84-2. Lincoln Institute of
Land Policy: Cambridge, MA, USA.

MacKenzie, M., McCabe, F., Brown, P., Metz, R. and Hamilton, B. A. (2006)
Reference Model for Service Oriented Architecture. OASIS (wd-soa-rm-
cdl).

MacLaren, J., Sakellariou, R., Krishnakumar, K. T., Garibaldi, J. and Ouelhadj,
D. (2004) 'Towards Service Level Agreement Based Scheduling on the
Grid'.Workshop on Planning and Scheduling for Web and Grid Services
(in conjunction with ICAPS-04). Whistler, BC, Canada,

Madden, S. (2002) Query Processing for Streaming Sensor Data. PhD
Qualifying Exam Proposal thesis. Computer Science Division, University
of Berkeley, California, USA.

Magillo, P. and Puppo, E. (1998) 'Algorithms for Parallel Terrain Modelling and
Visualisation', in Healey, R., Dowers, S., Gittings, B. M. and Mineter, M.
J.(eds) Parallel Processing Algorithms for GIS. Taylor & Francis: London,
UK.

Malarvizhi, N. and Uthariaraj, V. R. (2009) 'A New Mechanism for Job
Scheduling in Computational Grid Network Environments', Lecture Notes
in Computer Science, 5820, pp. 490-500.

Marchel, F., Hackney, J. and Axhausen, K. W. (2005) 'Efficient Map Matching of

Large Global Positioning System Data Sets: Tests on Speed-Monitoring

307

References

Experiment in Zurich', Transportation Research Record, 1935, pp. 93-
100.

Marco, J. and Marco, R. (2003) 'First Prototype of the CrossGrid Testbed'.1st
European AcrossGrids Conference. Santiago de Compostella, Spain,

Martinez, K., Hart, J. K. and Ong, R. (2004) 'Environmental sensor networks',
Computer, 37, (8), pp. 50-56.

Marzolla, M., Andreetto, P., Venturi, V., Ferraro, A., Memon, S., Twedell, B.,
Riedel, M., Mallmann, D., Streit, A., van de Berghe, S., Li, V., Snelling,
D., Stamou, K., Shah, Z. A. and Hedman, F. (2007) 'Open Standards-
Based Interoperability of Job Submission and Management Interfaces
across the Grid Middleware Platforms gLite and UNICORE', e-Science
and Grid Computing, IEEE International Conference on. Open
Standards-Based Interoperability of Job Submission and Management
Interfaces across the Grid Middleware Platforms gLite and UNICORE:
pp. 592-601.

Maso, J., Pomakis, K. and Julia, N. (2010) OpenGIS Web Map Tile Service
Implementation Standard. Open Geospatial Consortium Inc. (OGC 07-
057r7).

Mather, P. M. (2004) Computer Processing of Remotely-Sensed Images. John
Wiley and Sons Ltd.: Chichester, UK.

Matheus, A. and Higgins, C. (2009) 'A Shibboleth Service Provider for OGC
Web Map Services'.16th ACM Conference on Computer and
Communications Security (CCS '09). Chicago, IL, USA:ACM.

Mazzetti, P. (2010) 'Grid Enablement of OpenGeospatial Web Services: the G-
OWS Working Group'.Geophysical Research Abstracts. Vienna,
Austria:European Geosciences Union.

McBryan, O. A. (1994) 'An overview of message passing environments', Parallel
Computing, 20, (4), pp. 415-678.

McGough, A. and Colling, D. (2006) 'The GRIDCC Project: the GRIDCC
Collaboration'.First International Conference on Communication System
Software and Middleware.lEEE.

Mennis, J., Viger, R. and Tomlin, C. D. (2005) 'Cubic Map Algebra Functions for
Spatio-Temporal Analysis', Cartography and Geographic Information
Science, 32, (1), pp. 17-32.

308

References

Merrill, D. (2008a) Secure Addressing Profile 1.0. Open Grid Forum (GFD-R-
P.131).

Merrill, D. (2008b) Secure Communication Profile 1.0. Open Grid Forum (GFD-
R-P.132).

Metcalfe, S. E., Whyatt, J. D. and Derwent, R. G. (1995) 'A comparison of
model and observed network estimates of sulphur decomposition across
Great Britain for 1990 and its likely source attribution’, Quarterly Journal
of the Royal Meteorological Society, 121, pp. 1387-1411.

Metropolis, N. and Ulam, S. (1949) The Monte Carlo Method', Journal of the
American Statistical Association, 44, (247), pp. 335-341.

Mineter, M. J. and Dowers, S. (1999) 'Parallel processing for geographical
applications: A layered approach’, Journal of Geographical Systems, 1,
pp. 61-74.

Mitas, L. and Mitasova, H. (1999) 'Spatial Interpolation’, in Longley, P., Good-
child, M., Maguire, D. and Rhind, D.(eds) Geographical Informations
Systems: Principles, Techniques, Management and Applications. Vol. 1
Wiley: London, pp. 481-492.

Miwa, T., Sakai, T. and Morikawa, T. (2008) 'Route ldentification and Travel
Time Prediction Using Probe-Car Data’, International Journal of ITS
Research, 2, (1), pp. 21-28.

Mourelatos, A. P. (1978) 'Events, processes, and states', Linguistics and
Philosophy, 2, (3).

Mower, J. E. (1996) 'Developing parallel procedures for line simplification’,
International Journal of Geographical Information Science (I1JGIS), 10,
(6), pp. 699-712.

Muehlen, M., Nickerson, J. and Swenson, K. (2005) 'Developing web services
choreography standards - the case of REST vs SOAP', Decision Support
Systems, 40, pp. 9 -29.

Mdller, M., Bernard, L. and Brauner, J. (2010) 'Moving Code in Spatial Data
Infrastructures - Web Service Based Deployment of Geoprocessing
Algorithms', Transactions in GIS, 14, (S1), pp. 101-118.

Murty, J. (2008) Programming Amazon Web Services: S3, EC2, SQS, FPS and
SimpleDB. O'Reilly: Sebastopol, CA, USA.

309

References

Muzik, I. and Chang, C. (1993) 'Flood Simulation assisted by a GIS', HydroGIS:
Application of Geographic Information Systems in Hydrology and Water
Resources. Vienna, Austria, Flood Simulation assisted by a GIS: IAHS
Press, pp. 531 - 540.

Na, A. (2007) SensorML and TransducerML, personal communication list, S. m.

Na, A., Priest, M., Cox, S., Botts, M., Robin, A., Walkowski, A., Simonis, 1.,
Echterhoff, J., Liang, S., Davidson, J. and Niedzwiadek, H. (2007)
Sensor Observation Service. Open Geospatial Consortium Inc. (OGC 06-
009r6).

Nagaratnam, N., Janson, P., Dayka, J., Nadalin, A., Siebenlist, F., Welch, V.,
Foster, I. and Tuecke, S. (2002) The security architecture for open grid
services. The Globus Project

Nagel, K. and Rickert, M. (2001) 'Parallel implementation of the TRANSIMS
micro-simulation’, Parallel Computing, 27, (12), pp. 1611-1639.

Nakamura, H., Horiuchi, S., Wu, C., Yamamoto, S. and Rydelek, P. (2009)
‘Evaluation of the real-time earthquake information system in Japan’,
Geophysical Research Letters, 36, pp. LOOBO1.

Nekovee, M. (2005) 'The promise and challenges of vehicular ad hoc networks',
Workshop of Ubiquitous Computing and e-Research. Edinburgh, UK,
The promise and challenges of vehicular ad hoc networks

Nelson, M. R. (2009) 'Building an Open Cloud', Science Magazine, 324, (5935),
pp. 1656-1657.

Niblett, P. and Graham, S. (2005) 'Events and service-oriented architecture:
The OASIS Web Services Notification specification’, IBM Systems
Journal, 44, (4).

Nicolescu, C. and Jonker, P. (2002) 'A data and task parallel image processing
environment’, Parallel Computing, 28, pp. 945-965.

Noh, S. H. and Kim, T. J. (1998) 'A comprehensive analysis of map matching
algorithms for ITS', Hongik Journal of Science and Technology 9, pp.
303-313.

Ochieng, W. Y., Quddus, M. A. and Noland, R. B. (2004) 'Map Matching in
Complex Urban Road Networks', Revista Brasileira de Cartografia

(Brazilian Journal of Cartography), 55, (2), pp. 1-18.

310

References

Oh, S., Bulut, H., Uyar, A, Wu, W. and Fox, G. (2005) 'Optimised
Communication using the SOAP Infoset For Mobile Multimedia
Collaboration Applications'.International Symposium on Collaborative
Technologies and Systems. Saint Louis, Missouri, USA,

Oh, S. and Fox, G. (2005) 'HHFR: A new architecture for Mobile Web Services
Principles and Implementations’, in Comm. Grids Technical Paper.
Openshaw, S. (2000) 'Geocomputation’, in Openshaw, S. and Abrahart, R.

J.(eds) Geocomputation. Taylor & Francis: New York.

Padberg, A. and Greve, K. (2009) 'Gridification of OGC Web Services:
Challenges and Potential’, GIS.Science: Die Zeitschrift fur Geoinformatik,
3, p.77-81.

Padberg, A. and Kiehle, C. (2009) 'Towards a grid-enabled SDI: Matching the
paradigms of OGC Web Services and Grid Computing', article under
review for the International Journal of Spatial Data Infrastructures
Research, Special Issue GSDI-11.

Pallickara, S. and Fox, G. (2003) 'A Distributed Middleware Framework and
Architecture for Enabling Durable Peer-to-Peer Grids', Middleware 2003.
Rio de Janeiro, Brazil, A Distributed Middleware Framework and
Architecture for Enabling Durable Peer-to-Peer Grids: pp. 41-60.

Panagiotis, P. and Vretanos, A. (2010) OpenGIS Web Feature Service 2.0
Interface Standard. Open Geospatial Consortium Inc. (OGC 09-025r1).

Peacock, C., Goode, A. and Brett, A. (2004) 'Automatic forensic face
recognition from digital images', Science & Justice, 44, (1), pp. 145-155.

Percivall, G. (2002) 1SO19119 and OGC Service Architecture. NASA / Global
Science and Technology, Inc.

Percivall, G., Reed, C., Leinenweber, L., Tucker, C. and Cary, T. (2008) OGC
Reference Model. Open Geospatial Consortium Inc. (08-062r4).

Phillips, P. J., Wechsler, H., Huang, J. and Rauss, P. J. (1998) The FERET
database and evaluation procedure for face-recognition algorithms',
Image and Vision Computing, 16, pp. 295-306.

Pidd, M., de Silva, F. N. and Eglese, R. W. (1996) 'A simulation model for
emergency evacuation', European Journal of Operational Research, 90,
pp. 413-419.

311

References

Planas, E., Pastor, E., Presutto, F. and Tixier, J. (2008) 'Results of the MITRA
project: Monitoring and intervention for the transportation of dangerous
goods', Journal of Hazardous Materials, 2008, (152), pp. 516-526.

Plaza, A., Benediktsson, J. A., Boardman, J. W., J., B., Bruzzone, L., Camps-
Valls, G., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A,
Marconcini, M., Tilton, J. C. and Trianni, G. (2009) 'Recent advances in
techniques for hyperspectral image processing’, Remote Sensing of
Environment, 113, pp. 5110-5122.

Portele, C. (2007) OpenGIS Geography Markup Language (GML) Encoding
Standard version 3.2.1. Open Geospatial Consortium Inc. (07-036).
Prescod, P. (2002) Second Generation Web Services. Available at:

http://mww.xml.com/Ipt/a/915 (Accessed: 27/4/2008).

Pritchett, D. (2008) 'BASE: An ACID Alternative', Queue, 6, (3).

Quinn, M. (1994) Parallel Computing: Theory and Practice. New York, NY,
USA.

Racine, P. (2010) 'Introducing PostGIS WKT Raster: Seamless Raster/Vector
Operations in a Spatial Database', FOSS4G. Barcelona, Spain,
Introducing PostGIS WKT Raster: Seamless Raster/Vector Operations in
a Spatial Database.

Reichardt, M. (2005) Sensor Web Enablement: An OGC White Paper. Open
Geospatial Consortium (OGC 07-165).

Rejaie, A. and Shinozuka, M. (2004) 'Reconnaissance of Golcuk 1999
earthquake damage using satellites’, Journal of Aerospace Engineering,
17, (1), pp. 20-25.

Reuter, A. and Haerder, T. (1983) 'Principles of Transaction-Oriented Database
Recovery', Computing Surveys, 15 (4), pp. 287-317.

Richards, A. (2006) The Codeplay Sieve C++ Parallel Programming System.

Rueda-Velasquez, C. A. (2007) Geospatial Image Stream Processing: Models,
Techniques and Applications in Remote Sensing Change Detection. PhD
thesis. University of California, Davis.

Rueda, C., Gertz, M., Ludascher, B. and Hamann, B. (2006) 'An extensible
infrastructure for processing distributed geospatial data streams', 18th

International Confererence on Scientific and Statistical Database

312

References

Management (SSDBM). An extensible infrastructure for processing
distributed geospatial data streams: pp. 285-290.

Samet, H. (1984) 'The Quadtree and related hierarchical data structures', ACM
Computing Surveys (CSUR), 16, (2), pp. 187-260.

Samofalov, V. V. and Konovalov, A. V. (1996) 'Technology of debugging
programs for computers with mass parallelism’, Mathematical modeling
of physical processes, (4), pp. 52-56.

Sandoz, P., Pericas-Geertsen, S., Kawaguchi, K., Hadley, M. and Pelegri-
Llopart, E. (2003) Fast Web Services. Available at:
http://java.sun.com/developer/technicalArticles/WebServices/fastWS
(Accessed: 3/8/2009).

Sano, K., Kobayashi, Y. and Nakamura, T. (2004) 'Differential coding scheme
for efficient parallel image composition on a PC cluster system', Parallel
Computing, 30, pp. 285-299.

Sawyer, M. (1998) 'The Software Environment and Standardisation Initiatives',
in Healey, R., Dowers, S., Gittings, B. M. and Mineter, M. J.(eds)
Parallel Processing algorithms for GIS. Taylor & Francis: London.

Schad, J. (2010) 'Flying Yellow Elephant: Predictable and Efficient MapReduce
in the Cloud.VLDB 2010: 36th International Conference on Very Large
Databases, PhD workshop. Singapore,

Schaeffer, B. (2008) "Towards a Transactional Web Processing Service (WPS-
T)'.GI Days. Munster, Germany,

Schafer, R. P., Thiessenhusen, K. U. and Wagner, P. (2002) 'A Traffic
Information System by Means of Real-time Floating-car Data'.ITS World
Congress. Chicago, USA,

Scharl, A. and Tochtermann, K. (2007) The GeoSpatial Web: How
Geobrowsers, social software and the web 2.0 are shaping the network
society. Springer: London, UK.

Schrijver, A. (2005) 'On the history of combinatorial optimisation (till 1960)', in
Aardal, K., Nemhauser, G. L. and Weismantel, R.(eds) Discrete
Optimization. Vol. 12.

Schut, P. (2007) OpenGIS Web Processing Service version 1.0.0. Open
Geospatial Consortium (OGC 05-007r7).

313

References

Schwiegelshohn, U., Badia, R. M., Bubak, M., Danelutto, M., Dustdar, S.,
Gagliardi, F., Geiger, A., Hluchy, L., Kranzmuller, D., Laure, E., Priol, T.,
Reinefeld, A., Resch, M., Reuter, A., Rienhoff, O., Ruter, T., Sloot, P.,
Talia, D., Ullmann, K., Yahyapour, R. and Voigt, v. G. (2010)
'Perspectives on Grid computing', Future Generation Computer Systems,
26, pp. 1104-1115.

Scribner, K. and Stiver, M. (2000) Understanding SOAP: The Authorative
Solution. SAMS: New York.

Seinstra, F. J., Koelma, D. and Geusebroek, J. M. (2002) 'A software
architecture for user transparent parallel image processing', Parallel
Computing, 28, pp. 967-993.

Shapiro, M. and Miller, E. (1999) 'Managing Databases with Binary Large
Objects', 16th IEEE Mass Storage Systems Symposium. San Diego,
California, Managing Databases with Binary Large Objects: pp. 185-193.

Shi, Y., Shortridge, A. and Bartholic, J. (2002) 'Grid Computing for Real Time
Distributed Collaborative Geoprocessing', Geospatial Theory, Processing
and Applications (ISPRS Technical Commission IV Symposium). Grid
Computing for Real Time Distributed Collaborative Geoprocessing:
ISPRS, pp. 197-208.

Shields, P. (2006) 'Electronic Networks, Enhanced State Surveillance and the
Ironies of Control', Journal of Creative Communications, 1, (1), pp. 19.

Shu, Y., Zhang, J. and Zhou, X. (2006) 'A Grid-Enabled Architecture for
Geospatial Data Sharing', Services Computing, 2006. APSCC '06. IEEE
Asia-Pacific Conference on. A Grid-Enabled Architecture for Geospatial
Data Sharing: pp. 369-375.

Silva, L. E. and Buyya, R. (1999) 'Parallel Programming Models and
Paradigms', in Buyya, R.(ed), High Performance Cluster Computing:
Programming and Applications. Vol. 2 Prentice Hall: NJ, USA, pp. 4-27.

Simonis, 1. (2006) OGC Sensor Alert Service Candidate Implementation
Specification. Open Geospatial Consortium Inc. (06-028r3).

Simonis, 1., Dibner, P. C., Walkowski, A., Robin, A., Lansing, J., Greenwood, J.,
Echterhoff, J., Davidson, J., Priest, M., Botts, M. and Cox, S. (2007)
OpenGIS Sensor Planning Service Implementation Specification. Open

Geospatial Consortium Inc. (07-014r3).
314

References

Skillicorn, D. (2002) 'The Case for Datacentric Grids'.International Parallel and
Distributed Processing Symposium (IPDPS). Fort Lauderdale, Florida,
USA,

Snelling, D., Merrill, D. and Savva, A. (2008) OGSA Basic Security Profile 2.0.
Open Grid Forum (GFD-R-P.138).

soKNOS (2010) Service-orientierte ArchiteKturen zur Unterstutzung von
Netzwerken im Rahmen Oeffentlicher Sicherheit (Service-oriented
Architectures Supporting Networks of Public Security). Available at:
http://www.soknos.de (Accessed: September 2010).

Solheim, A., Bhasin, R., De Blasio, F. V., Blikra, L. H., Boyle, S., Braathen, A.,
Dehls, J., Elverhoi, A., AEtzelmuller, B., Glimsdal, S., Harbitz, C.,
Heyerdahl, H., Hoydal, O. A., Ilwe, H., Karlsrud, K., Lacasse, S.,
Lecomte, I., Lindholm, C., Longva, O., Lovholt, F., Nadim, F., Nordal, S.,
Romstad, B., Roed, J. K. and Strout, J. M. (2005) 'International Centre
for Geohazards (ICG): Assessment, prevention and mitigation of
geohazards', Norwegian Journal of Geology, 85, (1 + 2), pp. 45 - 62.

Sonnet, J. and Savage, C. (2003) OWS 1.2 SOAP Experiment Report.
OpenGIS Consortium Inc (OGC 03-014).

Sorokine, A., Daniel, J. and Liu, C. (2005) 'Parallel visualization for GIS
applications'.GeoComputation 2005. Ann Arbor, MI, USA,

Southworth, F. (1991) Regional Evacuation Modelling: A state of the art review.
Centre for Transportation Analysis: Oak Ridge National Laboratory, USA

Stasch, C., Broring, A. and Walkowski, A. (2008) 'Providing Mobile Sensor Data
in a Standardized Way - The SOSmobile Web Service Interface'.11th
AGILE International Conference on Geographic Information Science.
Girona, Spain,

Stolze, K. (2003) 'SQL/MM Spatial: The Standard to Manage Spatial Data in
Relational Database Systems'.10th BTW (Business, Web and
Technology) Leipzig, Germany,

Stonebraker, M. (1986) 'The Case for Shared Nothing', Database Engineering,
9, (2).

Stonebraker, M., Abadi, D. J., DeWitt, D., Madden, S., Paulson, E., Pavlo, A.
and Rasin, A. (2010) '‘MapReduce and Parallel DBMSs: Friends or Foes',
Communications of the ACM, 53, (1), pp. 64 - 71.

315

References

Sun, Q., Chi, T., Wang, X. and Zhong, D. (2005) 'Design of Middleware based
Grid GIS', IEEE International Geoscience and Remote Sensing
Symposium IGARSS. Seoul, S. Korea, Design of Middleware based Grid
GIS: IEEE, pp. 4.

Szalay, A. and Blakeley, J. A. (2009) 'Gray's Law: Database-centric computing
in science', in Hey, T., Tansley, S. and Tolle, K.(eds) The Fourth
Paradigm: Data-Intensive Scientific Discovery. Microsoft Research.

Tatbul, N., Cetintemel, U., Zdonik, S., Cherniack, M. and Stonebraker, M.
(2003) 'Load Shedding in a Data Stream Manager'.29th International
Conference on Very Large Databases (VLDB'03). Berlin,
Germany:Morgan Kaufmann.

Tehranian, S., Zhao, Y., Harvey, T., Swaroop, A. and Mckenzie, K. (2006) 'A
robust framework for real-time distributed processing of satellite data’,
Journal of Parallel and Distributed Computing, 66, pp. 403-418.

Tham, C. and Buyya, R. (2005) SensorGrid: Integrating Sensor Networks and
Grid Computing. Melbourne, Australia: Grid Computing and Distributed
Systems Laboratory, University of Melbourne

Tiampo, K. F., Rundle, J. B., McGinnis, S. A. and Klein, W. (2002) 'Pattern
dynamics and forecast methods in seismically active regions', Pure
Applied Geophysics, 159, pp. 2429-2467.

Tisato, F. and de Paoli, F. (1995) 'On the Duality between Event-Driven and
Time Driven Models'.13th IFAC DCCS. Toulouse, France,

Tomlin, C. D. (1991) 'Cartographic Modelling’, in Geographic Information
Systems: Principles and Applications. Longman Scientific and Technical:
Essex, UK., pp. 361-74.

Torp, K. and Lahrmann, H. (2005) 'Floating car data for traffic monitoring’, 5th
European Congress and exhibition of intelligent transport systems and
services. Hannover, Germany, Floating car data for traffic monitoring.

Tralli, D. M., Blom, R. G., Zlotnicki, V., Donnellan, A. and Evans, D. L. (2004)
‘Satellite remote sensing of earthquake, volcano, flood, landslide and
coastal inundation hazards', ISPRS Journal of Photogrammetry and
Remote Sensing, 59, (4), pp. 185-198.

316

References

Trewin, S. M. (1998) 'High-Level Support for Parallel Programming’, in Healey,
R., Dowers, S., Gittings, B. M. and Mineter, M. J.(eds) Parallel
Processing Algorithms for GIS. Taylor & Francis.

Tu, Y., Liu, S., Prabhakar, S. and Yao, B. (2006) 'Load Shedding in Stream
Databases: A Control-Based Approach'.32nd International Conference
on Very Large Databases. Seoul, Korea:ACM.

Uslander, T. (2009) Specification of the Sensor Service Architecture
(SensorSA). Open Geospatial Consortium Inc. (OGC 09-132r1).

Vallecillo, A. (2001) 'RM-ODP: The ISO Reference Model for Open Distributed
Processing’', DINTEL Edition on Software Engineering, 3, pp. 66-99.

Vambenepe, W., Graham, S. and Niblett, P. (2006) Web Services Topics 1.3.
OASIS (wsn-ws_topics-1.3-spec-0S).

van Engelen, R. (2003) 'Pushing the SOAP envelope with Web services for
scientific computing'.International Conference on Web Services (ICWS).
Las Vegas, USA,

van Lint, J. W. C. (2004) Reliable Travel Time Prediction for Freeways, Bridging
Artificial Neural Networks and Traffic Flow Theory. Ph.D. thesis. Delft
University of Technology.

Vaquero, L. M., Rodero-Merino, L., Caceres, J. and Lindner, M. (2008) 'A break
in the clouds: towards a cloud definition’, ACM SIGCOMM Computer
Communication Review, 39, (1), pp. 50-55.

Vowles, G. (2007) Geospatial Digital Rights Management Reference Model
(GeoDRM RM). Open Geospatial Consortium Inc. (06-004r4).

W3C (1999) Introduction to WSDL. Available at: http://www.w3c.org (Accessed:
27/11/2007).

Wagner, D. F. and Scott, M. S. (1995) 'Improving the Performance of Raster
GIS: A comparison of Approaches to Parallelization of Cost Volume
Algorithms'.AutoCarto Charlotte, North Carolina, USA:American Society
for Photogrammetry and Remote Sensing.

Wang, C. A. and Tsin, Y. H. (1987) 'An O(log n) time parallel algorithm for
triangulating a set of points in the place’, Information Processing Letters,
25, pp. 55-60.

Wang, J. and Gong, H. (2009) A Load-On-Demand Approach to Handling Large
Networks in the Oracle Spatial Network Data Model. Oracle Corporation

317

References

Wang, L., Tao, J., Kunze, M., Kramer, D., Karl, W. and Castellanos, A. C.
(2008a) 'Scientific Cloud Computing: Early Definition and Experience’,
10th IEEE International Conference on High Performance Computing
and Communications. Dalian, China, Scientific Cloud Computing: Early
Definition and Experience: IEEE, pp. 825-830.

Wang, S. and Armstrong, M. P. (2003) 'A quadtree approach to domain
decomposition for spatial interpolation in Grid computing environments',
Parallel Computing, 29, (10), pp. 1481-1504.

Wang, S. and Armstrong, M. P. (2009) 'A theoretical approach to the use of
cyberinfrastructure in geographical analysis', International Journal of
Geographical Information Science (1JGIS), 23, (2), pp. 169-193.

Wang, X. and Kockelman, K. M. (2009) 'Forecasting Network Data: Spatial
Interpolation of Traffic Counts Using Texas Data', Transportation
Research Record: Journal of the Transportation Research Board, 2105,
pp. 100-108.

Wang, Y., Beullens, P., Liu, H., Brown, D., Thornton, T. and Proud, R. (2008b)
‘A Practical Intelligent Navigation System based on Travel Speed
Prediction'.11th International IEEE Conference on Intelligent
Transportation Systems. Beijing, China, 12-15 October 2008.1EEE.

Werder, S. and Kriger, A. (2009) 'Parallelizing Geospatial tasks in Grid
Computing', GIS Science: Die Zeitschrift fur Geoinformatik, 3, pp. 71.

White, C. E., Bernstein, D. and Kornhauser, A. L. (2000) 'Some map matching
algorithms for personal navigation assistants', Transportation Research
Part C, 8, pp. 91-108.

Whiteside, A. (2005) OpenGIS Web Services Architecture Description. Open
Geospatial Consortium Inc. (05-042r2).

Whiteside, A. and Greenwood, J. (2010) OGC Web Service Common Standard.
Open Geospatial Consortium Inc. (06-121-r9).

Wilkinson, B. and Allen, M. (1999) Parallel Programming: Techniques and
Applications using Networked Workstations & Parallel Computers.
Prentice Hall: Upper Saddle River, New Jersey, USA.

Williams, M., Cornford, D., Bastin, L., Jones, R. and Parker, S. (2009)
'‘Automatic processing, quality assurance and serving of real-time

weather data over lightweight protocols'.StatGIS 2009. Milos, Greece,

318

References

Wilson, G. (1995) Parallel Programming for Scientists and Engineers. MIT
Press: Cambridge, MA, USA.

Woolf, A. and Shaon, A. (2009a) 'An approach to encapsulation of Grid
Processing within an OGC Web Processing Service', GIS.Science: Die
Zeitschrift fur Geoinformatik 3, p.82-88.

Woolf, A. and Shaon, A. (2009b) Web Processing Service Change Request —
method for controlling asynchronous process. Available at:
(https://portal.opengeospatial.org/files/?artifact_id=34550 (Accessed:
07/12/2009).

Woolf, A. and Shaon, A. (2009c) Web Processing Service Change Request —
methods for controlling, and checking the status of asynchronous
process. Available at:
https://portal.opengeospatial.org/files/?artifact_id=35070 (Accessed:
07/12/2009).

Worboys, M. and Duckham, M. (eds.) (2004) GIS: A Computing Perspective.
CRC Press.

Wu, X., Carceroni, R., Fang, H., Zelinka, S. and Kirmse, A. (2007) 'Automatic
alignment of large-scale aerial rasters to road-maps'.15th annual ACM
international symposium on Advances in geographic information
systems.

Xing, J., Wu, C., Tao, M., Wu, L. and Zhang, H. (2004) 'Flexible Advance
Reservation for Grid Computing’, Lecture Notes in Computer Science,
3251, pp. 241-248.

Xiong, D. and Marble, D. F. (1996) 'Strategies for real-time spatial analysis
using massively parallel SIMD computers: an application to urban traffic
flow analysis', International Journal of Geographical Information Science
(1JGIS), 10, (6), pp. 769-789.

Xue, Y., Wang, Y., Wang, J., Luo, Y., Hu, Y., Zhong, S., Tang, J., Cai, G. and
Guan, Y. (2005) 'High Throughput computing for Spatial Information
Processing (HIT-SIP) System on Grid Platform’, in Advances in Grid
Computing EGC 2005. Springer Berlin / Heidelberg, pp. 40-49.

Yagoubi, B. and Slimani, Y. (2007) 'Task Load Balancing Strategy for Grid
Computing', Journal of Computer Science, 3, (3), pp. 186-194.

319

References

Yang, H., Dasdan, A., Hsiao, R.-L. and Stott Parker, D. (2007) ‘Map-reduce-
merge: simplified relational data processing on large clusters'.2007 ACM
SIGMOD International Conference on Management of Data. Beijing,
China:ACM.

Yang, J., Kang, S. and Chon, K. (2005) 'The map matching algorithm of gps
data with relatively long polling time intervals', Journal of the Eastern
Asia Society for Transportation Studies, 6, pp. 2561-2573.

Zerger, A. and Smith, D. I. (2003) 'Impediments to using GIS for real-time
disaster decision support', Computers, Environment and Urban Systems,
27, pp. 123-141.

Zhao, C., Zhao, Y., Meng, L. and Deng, S. (2005) 'The Key Techologic Issues
of Parallel Spatial Database Management System for Parallel
GIS'.XXXVI ISPRS International Symposium on Spatio-temporal
Modeling, Spatial Reasoning, Analysis, Data Mining and Data Fusion.
Peking University, China:ISPRS.

Zhou, G., Esaki, T., Mitani, Y., Xie, M. and Mori, J. (2003) 'Spatial probabilistic
modeling of slope failure using an integrated GIS Monte Carlo simulation
approach’, Engineering Geology, 68, (3-4), pp. 373-386.

Zhou, X., Abel, D. J. and Truffet, D. (1998) 'Data Partitioning for Parallel Spatial
Join Processing', Geoinformatica, 2, (2), pp. 175-204.

Zhu, H., Liu, H., Jiang, T. and Zhang, J. (2009) 'Research on remote sensing
data processing strategy and application based on grid operation’,
Procedia Earth and Planetary Science, 1, pp. 1180-1185.

320

SWE_
work reaqired o op

process aviy
current u links
spseifioabione r i

. id
inberface new prov e_
Web ma2’3w3“@:}"‘83fzhtgimplemenl:al:,iun SGCEIOI-‘
covelopment e, | e WICHIN <t G
resullis | s

r USing pretiction

HOWGVGT s communicaliien

inpub Operabionsgeospabial

change decomposision Havel

rocessing -

memory cleveloped Services m Event

sensor ieorsons GETTIE
jobs ﬁpabiai ?lgg::bormg OGEe fikely

BhUS model sbreams g
ac:::z gMapﬁwuca SerVIce observabion
TR = diffi 17
arge - ObSErvabions o
owWs Geoprocessing Proesss sbream ?%%%%EM%%Q%%%

ralusis

possible SQS roa informabion Gps

Furghermore

vehicles perfermance_ also ara“ei Chap&ef single
ressarch Graffic Gperablon archibecbure SES g vehicle perform

geoprocessing—

level Service

processed image computing compubabional

standards wep o,

exampleApSQSbemS a! seb

resource l;iranvesi--lﬁi'mea
jobused approach A =wews
applicabions processor = number

S Sbem distribubed 2%,
U M plgoribhm resources
processors mey F" gure provides

enables
— sbandard
one

nebwork %Egbﬁﬁﬁ

WES requests
alchough =s

THE END

