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Abstract

The main goal of this thesis is to investigate properties of two types of Differential

Graded Algebras (or DGAs), namely upper triangular matrix DGAs and Gorenstein

DGAs. In doing so we extend a number of corresponding ring theory results to the

more general setting of DGAs and DG modules.

Chapters 2 and 3 contain background material. In chapter 2 we give a brief summary

of some important aspects of homological algebra. Starting with the definition of an

abelian category we give the construction of the derived category and the definition of

derived functors. In chapter 3 we present the basics about Differential Graded Algebras

and Differential Graded Modules in particular extending the definitions of the derived

category and derived functors to the Differential Graded case before providing some

results on Recollement of DGAs, Dualising DG-modules and Gorenstein DGAs.

Chapters 4 and 5 contain the bulk of the work for the Thesis. In chapter 4 we look

at upper triangular matrix DGAs and in particular we generalise a result for upper

triangular matrix rings to the situation of upper triangular matrix differential graded

algebras. An upper triangular matrix DGA has the form[
R M

0 S

]

where R and S are DGAs and M is a DG R-Sop-bimodule. We show that under certain

conditions on the DG-module M , and given the existence of a DG R-module X from

which we can build the derived category D(R), that there exists a derived equivalence

between the upper triangular matrix DGAs[
R M

0 S

]
and

[
S M ′

0 R′

]
,

where the DG-bimodule M ′ is obtained from M and X, and R′ is the endomorphism

differential graded algebra of a K-projective resolution of X.

In chapter 5 we turn our attention to Gorenstein DGAs and generalise some results from

Gorenstein rings to Gorenstein DGAs. We present a number of Gorenstein Theorems

which state, for certain types of DGAs, that being Gorenstein is equivalent to the

bounded and finite versions of the Auslander and Bass classes being maximal. We

also provide a new definition of a Gorenstein morphism for DGAs by considering a

DG bimodule as a generalised morphism of DGAs. We then show that some existing



results for Gorenstein morphism extend to these “Generalised Gorenstein Morphisms”.

We finally conclude with some examples of generalised Gorenstein morphisms for some

well known DGAs.
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Chapter 1

Introduction

Homological algebra as a subject evolved out of algebraic topology and in particular the

study of chain complexes associated with topological spaces. It was found that these

chain complexes could provide some useful invariants associated with properties of the

space. While the origins of homological algebra can be traced back to the beginning

of the 20th century it was not until the 1940s and 50s that it started to develop into

a subject in its own right. This early development culminated in the publication of

Cartan and Eilenberg’s seminal book [5] in 1956.

The principal objects of early homological algebra were chain complexes of modules

over a ring. These chain complexes consist of a sequence of modules together with

morphisms linking them together in a diagram

· · ·Mn+1
dn+1−→ Mn

dn−→Mn−1
dn−1−→ · · ·

with the property that the composition of any two consecutive morphisms is the zero

morphism. The tools of the classical homological algebra presented by Cartan and

Eilenburg included the projective and injective resolutions; these are special complexes

constructed of projective and injective modules respectively. One of the most important

uses of the of these projective and injective resolutions is the construction of the classical

derived functors Ext(−,−) and Tor(−,−) from the functors Hom(−,−) and − ⊗ −.

Since the publication of [5] the subject of homological algebra has blossomed and can

now be found being employed in many areas of mathematics including representation

theory, algebraic topology and algebraic geometry.

While the work of Cartan and Eilenberg codified much of classical homological algebra,

and indeed their book remained the principal text on the subject for many years, other

large advances in the field where being made. Perhaps the most important of these

was the work of Grothendieck and in particular the 1957 publication of his paper “Sur
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Chapter 1. Introduction

quelques points d’algèbre homologique” [15]. Following this the notion of an abelian

category became a central aspect of homological algebra. These are categories with the

exactly those properties needed to perform the basic operations of classical homological

algebra. From this point on homological algebra could be viewed from a generalised

category theory outlook with complexes of objects of an abelian category replacing

complexes of modules or abelian groups and the notions of projective and injective

resolutions and derived functors became the central focus of the subject.

The work of Grothendieck was followed by the notions of triangulated categories and

the derived category. Since their introduction in the thesis of Verdier [31], a student of

Grothendieck, these have become increasingly important tools in the study of homo-

logical algebra throughout the second half of the twentieth century.

The structure of triangulated categories is weaker than that of possessed by abelian

categories, despite this we are still able to carry out some operations of homological

algebra with triangulated categories. The name triangulated category comes from the

fact that the role played by short exact sequences in abelian categories is played by

diagrams of the form

X −→ Y −→ Z −→ ΣX,

called distinguished triangles in triangulated categories. In fact, for many of the prop-

erties associated with short exact sequences in abelian categories there are similar

corresponding properties for distinguished triangles in triangulated categories.

The derived category of an abelian category is an example of a triangulated category.

For an abelian category A we construct the derived category D(A ) by the formal

inversion of the class of morphisms of chain complexes which are quasi-isomorphisms,

by a process of localisation. A quasi-isomorphism is a morphism of chain maps which

induces an isomorphism at the level of homology. This means that the objects of D(A )

are the chain complexes of objects of A however any two such complexes are isomor-

phic in D(A ) if there is a quasi isomorphism between them. Thus the derived category

of an abelian category preserves a number of the homological properties of the abelian

category while allowing for simplifications of some processes that previously could only

be performed by studying complicated spectral sequences, in particular the construc-

tion of the hyper-homological derived functors, generalisations of the classical derived

functors, to functors between complexes rather than objects. Another application of

the derived category is in studying when two objects are derived equivalent, i.e. their

derived categories are equivalent. Since the derived categories preserve a number of

the homological properties this can lead to a greater understanding of one or both of

the objects in question.

Differential graded algebras are objects which can be viewed as straddling both ring

2



Chapter 1. Introduction

theory and homological algebra. A differential graded algebra has the structure of

a graded algebra R = {Rn} together with a differential dR : R → R, an additive

map of degree -1, such that dn−1dn = 0 and which satisfies the Leibniz rule. This

gives differential graded algebras a natural complex structure and makes them ideal

candidates for carrying out homological algebra. On the other hand differential graded

algebras can be viewed as generalisations of rings, this is due to the fact that any ring

may be viewed as a differential graded algebra concentrated in degree zero. Differential

graded modules are the differential graded versions of the modules over a ring. A

differential graded module consists of a graded module M = {Mn} over a differential

graded algebra together with a differential dMn : M →M , a morphism of degree -1, such

that dn−1dn = 0 and which satisfies a Leibniz rule. Thus differential graded modules

have a natural complex structure. In fact the differential graded modules over a ring

A, considered as a differential graded algebra concentrated in degree zero, are precisely

the complexes of A-modules.

The natural complex structures of differential graded modules allow us to apply the

methods of homological algebra to differential graded objects. In particular we can

construct the derived category of a differential graded algebra R from the category of

all differential graded R-modules by a method similar to the one used to construct the

derived category of an abelian category from its complexes of objects. The construction

of derived functors can also be applied to the differential graded case to obtain derived

functors between the derived categories of differential graded algebras. Since differential

graded algebras and their differential graded modules can be viewed as generalisations

of rings and their modules it is also possible to extend some ring theoretical results to

obtain differential graded versions. An example of this used in this thesis is that of

dualising DG-modules which are generalisations of the dualising complexes over rings.

Differential graded algebras occur naturally in mathematics such as in the cases of

endomorphism differential graded algebras of complexes and the Koszul complex.

Chapters 2 and 3 of this thesis consist of the background material and provide a general

overview and recap of some of the major topics in homological algebra. A reader

familiar with the subject area can safely skip these chapters and use them purely as a

reference.

In chapter 2 we give a brief background and summary of some of the main aspects of

classical homological algebra. We approach this from the starting point of the abelian

category and complexes of objects of such categories. We briefly introduce projective

and injective resolutions before utilizing them to obtain the classical derived functors

Ext(−,−) and Tor(−,−), important tools in the study of homological algebra. We

also give the definition of a triangulated category and give a number of results showing
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the similarities of distinguished triangles to short exact exact sequences including a

triangulated version of the 5-lemma. We follow this with the construction of the derived

category by way of localisation at the quasi-isomorphisms of the homotopy category.

We conclude the chapter with the definition of K-injective and K-projective resolutions

and the construction of the “hyper-homological” derived functors and illustrate that

they are generalisations of the classical derived functors.

Chapter 3 is concerned with providing an introduction to differential graded homologi-

cal algebra. We begin with the definitions of differential graded algebras and differential

graded modules and present their basic properties. In particular we define versions of

the adjoint functors −⊗
R
− and HomR(−,−) for differential graded modules over a dif-

ferential graded algebra. Having laid out the basics of differential graded algebras we

then adapt the constructions of the derived category and derived functors from chapter

2 to the differential graded setting. The second part of the chapter presents a number of

special properties which differential graded algebras or differential graded modules may

possess that will be required in the following chapters. This brings together a number

of existing definitions and results which we shall need for the following chapters.

Chapters 4 and 5 contain the original work of the thesis.

In chapter 4 we consider upper triangular matrix differential graded algebras of the

form

Λ =

[
R M

0 S

]
,

where R and S are DGAs and RMS is a DG R-Sop-bimodule. In particular we look at

when two such DGAs are derived equivalent, that is to say that their derived categories

are equivalent.

The question of when two upper triangular matrix rings are derived equivalent was

considered by Ladkani in [20]. By taking the approach developed by Rickard in [28],

of using tilting modules, Ladkani was able to produce criteria under which two upper

triangular matrix rings are derived equivalent. In this chapter we shall extend the result

of Ladkani to the more generalised situation of upper triangular matrix differential

graded algebras.

We begin by introducing the DG Λ-modules

B =

[
R

0

]
and C =

[
M

S

]

4
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which we use to construct a recollement diagram of the form

D(R)
i∗ // D(Λ)

i!

bb

i∗

|| j∗ // D(S)

j∗

bb

j!

||
,

where i∗(RR) ∼= B and j!(SS) ∼= C. From this diagram we are then able to investigate

the properties of the various objects involved.

Equipped with a better understanding of the objects we are working with we turn our

attention to obtaining a generalisation of the main theorem of Ladkani for differential

graded algebras. For this we employ a similar method to that used by Ladkani, by

considering the DG-module T = Σi∗X ⊕ j∗j∗Λ where X is compact and 〈X〉 = D(R).

We can apply Keller’s Theorem to obtain the following theorem.

Theorem. Let RX be a compact DG R-module such that 〈X〉 = D(R). Let RMS be a

DG R-Sop-bimodule which is compact as a DG R-module. Then for the DG Λ-module

T = Σi∗X ⊕ j∗j∗Λ set E = EndΛ(P ), where P is a K-projective resolution of T . Then

E is an DGA with D(Λ) ' D(E op).

We then proceed to investigate the structure of P , the K-projective resolution of T ,

with the aim of constructing the differential graded algebra E = EndΛ(P ) explicitly.

By doing this we are able to prove the following theorem, a differential graded version

of Ladkani’s main theorem, [20, Theorem 4.5].

Theorem. Let X be a DG R-module such that RX is compact and 〈RX〉 = D(R). Let

RMS be compact as a DG R-module and let U and V be K-projective resolutions of X

and M respectively. Then for the upper triangular differential graded algebras

Λ =

[
R M

0 S

]
and Λ̃ =

[
S HomR(V,U)

0 HomR(U,U)op

]

we have that D(Λ) ' D(Λ̃).

The remainder of chapter 4 is concerned with looking at some special cases. We show

that by restricting ourselves to the assumptions of Ladkani and by considering rings

as differential graded algebras concentrated in degree 0 that our differential graded

version of the theorem is in fact a generalisation of the main result of Ladkani. We

also consider the special case where RX = RR. Our final example looks at the case

where our base ring is a field and R is self dual in the sense that Homk(R, k) ∼= R as

DG R-bimodules. This gives us the following corollary.
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Corollary. Let R be a self dual finite dimensional DGA and S be a DGA, both over a

field k. Let RMS be compact as a DG-R-module. Then

Λ =

[
R M

0 S

]
and Λ̃ =

[
S Homk(M,k)

0 R

]

are derived equivalent.

In chapter 5 we consider properties of Gorenstein differential graded algebras and in-

troduce generalised Gorenstein morphisms.

We begin by considering dualising equivalences. By taking the approach of Frankild

and Jørgensen in [11], for R,SM a DG R-S-bimodule, we have that the adjoint pair of

functors

D(Rop)

−
L
⊗
R
M

//
D(S)

RHomS(M,−)
oo

restricts to quasi-inverse equivalences between the associated Auslander and Bass cat-

egories

AM (Rop) = {L ∈ D(Rop) : ηL is an isomorphism}

and

BM (S) = {N ∈ D(S) : εN is an isomorphism}

where ηL and εN denote the unit morphism, ηL : L→ RHomR(M,M
L
⊗
R
L), and counit

morphism, εN : M
L
⊗
R

RHomR(M,L) → L, of the adjunction respectively. We expand

on this by defining the bounded and finite Auslander and Bass classes and show that

the quasi-inverse equivalences between them restrict to quasi-inverse equivalences in

both the bounded and finite cases.

We then turn our attention to obtaining a number of Gorenstein theorems for DGAs.

The definition of a Gorenstein DGA is a generalisation of the definition of a Gorenstein

ring. The definition of a Gorenstein DGA that we use is that of Frankild and Jørgensen

in [12] and is reproduced in Definition 3.2.22. Gorenstein Theorems take the form of

showing that a DGA R being Gorenstien is equivalent to R possessing certain other

properties. In particular we generalise the results for Gorenstein rings given by Chris-

tensen in [6, Theorems 3.1.12 and 3.2.10]. These theorems show that for a local ring R

which admits a dualising complex, R being Gorenstein is equivalent to the Auslander

and Bass classes of R, with respect to the dualising complexes, being maximal. We
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show that for two special types of DGAs that being Gorenstein is equivalent to the

bounded and finite versions of the Auslander and Bass classes being maximal.

In the third section of the chapter we look to extend the ring theory concept of a

Gorenstein morphism to DGAs. A definition of a Gorenstein morphism for DGAs was

given by Frankild and Jørgensen in [12]. However this definition was lacking in some

respects and failed to allow for some results for Gorenstein morphisms in the classical

ring case to be generalised to the DG case. The approach this new definition takes

is to consider DG-bimodules as generalised morphisms of DGAs. This approach of

viewing DG-bimodules as a generalisation of morphisms was used by Keller in [19] and

Pauksztello in [24]. This gives us the following definition.

Definition. The bimodule RMS is a generalised Gorenstein morphism from S to R if

it satisfies the following conditions:

(i) MS is compact in D(Sop).

(ii) There exist dualising DG-modules RDR and SES for R and S respectively such

that there exist isomorphisms

φ : RDR

L
⊗
R
RMS

∼=−→ RMS

L
⊗
S
SES

and

θ : SZR
L
⊗
R
RDR

∼=−→ SES
L
⊗
S
SZR

where Z = RHomSop(RMS , SSS).

(iii) The isomorphisms φ and θ are compatible in the sense that the following diagram

commutes.

Z
L
⊗
R
D

L
⊗
R
M

1⊗φ //

θ⊗1
��

Z
L
⊗
R
M

L
⊗
S
E

τ⊗1 // S
L
⊗
S
E

∼=

��
E

L
⊗
S
Z

L
⊗
R
M

1⊗τ // E
L
⊗
S
S

∼= // E

where τ : Z
L
⊗
R
M → S is the canonical morphism which corresponds to the map

HomSop(U, S)⊗
R
U → S given by µ⊗ u 7→ µ(u)

Having defined when a bimodule is a generalised Gorenstein morphism we then apply

the definition to obtain a DG version of the [3, Proposition 3.7(b)] a base change for

the Auslander class.

7
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Theorem. Let the DG R-Sop-bimodule RMS be a generalised Gorenstein morphism

from R to S. Then

SN ∈ AE(S)⇒ RMS

L
⊗
S
SN ∈ AD(R),

and

N ′S ∈ AE(Sop)⇒ N ′S
L
⊗
S
SZR ∈ AD(Rop),

where RDR and SES are the dualising modules which satisfy conditions (ii) and (iii)

of the definition of a generalised Gorenstein morphism.

Furthermore if the functors M
L
⊗
S
− or −

L
⊗
S
Z reflect isomorphisms then the correspond-

ing reverse implications also hold.

We also obtain a result corresponding to the main result for Gorenstein morphisms of

DGAs from [12], the ascent theorem of Gorenstein DGAs.

Theorem. Let R and S be DGAs. Suppose that there exists a DG R-Sop-bimodule

RMS satisfying the following properties:

(i) RMS is a generalised Gorenstein morphism from R to S,

(ii) The functors M
L
⊗
S
− and −

L
⊗
S
Z reflect isomorphisms,

(iii) SN ∈ Df (S)⇔M
L
⊗
S
N ∈ Df (R) and N ′S ∈ Df (Sop)⇔ N ′

L
⊗
S
Z ∈ Df (Rop)

where Df (R) = {M ∈ D(R) |M is a finite DG R-module}

Then R is a Gorenstein DGA ⇒ S is a Gorenstein DGA.

We conclude the chapter with some examples of generalised Gorenstein morphisms for

well known DGAs including endomorphism DGAs and the Koszul complex.
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Chapter 2

Homological Algebra and the

Derived Category

The aim of this chapter is to give a brief background and summary of some of the main

aspects of classical homological algebra as developed originally by Cartan and Eilenberg

and later expanded on by the work of Grothendieck and Verdier. In particular the

construction of the derived category and the definition of derived functors.

The approach in this chapter is from the generalised category theory viewpoint of

Grothendieck with the starting point being the definition of an abelian category. This

is followed by the basic definitions of complexes of objects of an abelian category and the

homology of such complexes. We then give a brief account of projective and injective

objects and how they are used in the classical definition of the derived functors and in

particular the functors Ext(−,−) and Tor(−,−), the derived functors of Hom(−,−)

and − ⊗ −. More detailed accounts of classical homological algebra can be found in

[17], [32] and [5].

Our attention then turns to the theory of triangulated categories and in particular the

derived category of an abelian category. Triangulated categories are categories which,

while having a weaker structure than abelian categories, do display a number of similar

properties to those of abelian categories. Perhaps the most useful example of a trian-

gulated category is the derived category associated with an abelian category. We give

the definition of a triangulated category and some results obtained from the definition

before describing the construction of the derived category via the construction of the

homotopy category, another example of a triangulated category. The construction of

the derived category from the homotopy category is due to a process of localisation at

a multiplicative system of morphisms which we describe in detail. In the case of the

derived category this multiplicative set is the class of all quasi-isomorphisms between

9



Chapter 2. Homological Algebra and the Derived Category

complexes. These are the morphisms of complexes which are isomorphisms at the level

of homology. The result of this is a category in which the objects are the complexes of

an abelian category while any two complexes with a quasi-isomorphism between will

be isomorphic. The material covered in this section is mostly taken from [16].

One of the principal benefits of working with derived categories is that they provide

a suitable framework for extending the concept of classical derived functors to derived

functors between complexes rather than just between individual objects. For that we

need a tool which performs a similar role for complexes as projective and injective

resolutions do for individual objects. Such a concept is that of K-projective and K-

injective resolutions. Having defined these, we conclude the chapter by presenting the

construction of the derived functors.

2.1 Classical Theory of Homological Algebra

2.1.1 Abelian Categories

An abelian category is a category in which the operations of homological algebra can be

performed. They appear throughout mathematics with the motivating example being

the category of abelian groups. We shall give a brief summary of some basic definitions

and results regarding abelian categories. The main reference for this section, as well

as source for further information on category theory, is [21], from which most of the

definitions in this section are taken. Alternatively, [17, Chapter II] also gives a good

background to the aspects of category theory important to homological algebra.

We begin by recalling the definition of a category and the category theory definitions

of a coproduct and a zero object.

Definition 2.1.1. A category, C , has of the following items (i)-(iii) such that the

axioms (a) and (b) below hold

(i) A class of objects.

(ii) A class of morphisms (or arrows) between the objects, where such a morphism f

has an unique source object A and an unique target object B. We denote such a

morphism by f : A → B and denote the class of all morphisms from A to B by

HomC (A,B).

(iii) A composition of morphisms, i.e. for objects A, B and C in C there exists an op-

eration HomC (A,B)×HomC (B,C)→ HomC (A,C). We denote the composition

of two morphisms f : A→ B and g : B → C by g ◦ f .

10
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The axioms are the following.

(a) For each object A, there exists an identity morphism idA : A→ A with the property

that for any morphism f : A→ B, f ◦ idA = f = idB ◦f .

(b) Associativity of composition of morphisms, that is, for morphisms f : A → B,

g : B → C and h : C → D, h ◦ (g ◦ f) = (h ◦ g) ◦ f .

Definition 2.1.2. Let {Xi} be a family of objects of a category C . Then the coproduct

of the Xi’s is an object, denoted by
∐
Xi, together with morphisms, ιi : Xi →

∐
Xi,

called injections, with the universal property: Given any object, Y , and a family of

morphisms, fi : Xi → Y , then there exists a unique morphism f :
∐
Xi → Y with

fιi = fi.

Definition 2.1.3. For a category C , an object T is terminal in C if, for each object

A in C, there is exactly one morphism A→ T . Similarly an object S is initial in C if

for each object A in C , there is exactly one morphism S → A.

A zero object in C is an object which is both terminal and initial, such an object is

unique up to isomorphism and we denote it by 0.

Definition 2.1.4. For a category C , a morphism f : X → Y in C is called a constant

morphism if for any object W in C and morphisms g, h : W → X we have that fg = fh.

Similarly f is called a coconstant morphism if for any object Z in C and morphisms

g, h : Y → Z we have that gf = hf .

A zero morphism in C is a morphism which is both constant and conconstant.

We now define the additive categories. This is a more general definition than that of

abelian categories and serves as a precursor to the definition of abelian categories.

Definition 2.1.5. A category A is called additive if it has the following properties:

(i) A has a zero object.

(ii) For any pair of objects X and Y of A the set of morphisms HomA (X,Y ) forms

an abelian group.

(iii) For any objects X, Y and Z of A the composition

HomA (X,Y )×HomA (Y,Z)→ HomA (X,Z)

is bilinear.

11
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(iv) For any pair of objects X and Y of A , the coproduct X
∐
Y exists.

Remark 2.1.6. In an additive category A every set of morphisms HomA (X,Y ) is an

abelian group and therefore contains a zero element. These zero elements give us a

family of zero morphisms for A making it a category with zero morphism.

We can look to expand the definition of an additive category to that of an abelian

category. Before we do so we recall the category theory definitions of the kernel,

cokernel and image of a morphism.

Definition 2.1.7. Let C be a category. A morphism f : X → Y in C is called a

monomorphism if for any object Z in C and pair of morphisms g, h : Z → X we have

that fg = fh⇒ g = h. Similarly f is called an epimorphism if for any object W in C

and pair of of morphisms g, h : Y →W we have that gf = hf ⇒ g = h.

Definition 2.1.8. Let C be a category with a zero object and let f : X → Y be a

morphism. The kernel of f , denoted Ker f , is a morphism k : K → X where fk = 0

and for every h : U → X with fh = 0 there exists a unique morphism h′ : U → K such

that h = kh′.

The cokernel of f , denoted Coker f , is a morphism u : Y → C where uf = 0 and for

every v : Y → Z with vf = 0 there exists a unique morphism v′ : C → Z such that

v = v′u.

The image of f , denoted by Im f , is defined as Ker(Coker f).

The coimage of f , denoted by Coim f is defined as Coker(Ker f).

For a given category C and a morphism f : X → Y in that category the kernel and

cokernel of f do not necessarily exist. The existence of kernels and cokernels is one of

the defining aspects of abelian categories as we see below.

Definition 2.1.9. An additive category A is called abelian if it satisfies the following

additional properties:

(i) Every morphism f of A has both a kernel, Ker f , and a cokernel, Coker f .

(ii) Every monomorphism in A is a kernel and every epimorphism in A is a cokernel.

12
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Proposition 2.1.10. Let A be an abelian category. Then every morphism f has a fac-

torisation f = me where m = Ker(Coker f) is a monomorphism and e = Coker(Ker f)

is an epimorphism.

Proof. See [21, Proposition VIII.3.1]

Definition 2.1.11. A functor F : A → B between additive categories is called additive

if for a pair of morphisms f, f ′ : A→ A′ in A we have that F (f + f ′) = F (f) +F (f ′).

Definition 2.1.12. Let C be a category and let A be an object of C .

Two monomorphisms u and v with codomain A are equivalent if u = vθ for some

invertible morphism θ. This gives us an equivalence relation for the monomorphisms

of C with codomain A. We define the subobjects of A to be the equivalence classes of

such monomorphisms.

Dually we have that two epimorphisms r and s with domain A are equivalent if r =

φs for some invertible morphism φ. This gives us an equivalence relation for the

epimorphisms of C with domain A. We define the quotient objects of A to be the

equivalence classes of such epimorphisms.

We now give two well known examples of abelian categories.

Examples 2.1.13. The category of abelian groups, which we denote Ab, whose objects

consist of all abelian groups and whose morphisms are group homomorphisms, is an

abelian category.

For a ring R. The category of left R-modules, Mod(R), whose objects are all left

R-modules and whose morphisms are module homomorphisms, is an abelian category.

Remarks 2.1.14. When working in more concrete settings such as that of the category

of abelian groups we usually consider a kernel Ker f as being the object K rather than

a morphism k : K → X. This is possible since we can view K as being a subobject of

X and the morphism as an inclusion. By taking this outlook the categorical definition

of a kernel coincides with the more familiar algebraic definition.

Similarly, in such settings, we also have that the catgorical definitions of cokernels,

images and coimages can also be though of as taking the form of an object rather than

a morphism and thus also agree with the more familar algebraic definitons.

13
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Likewise, for subobjects and quotient objects we can in most concrete settings, includ-

ing all those considered throughout this document, consider these to be the objects

rather than morphisms. The monomorphisms in the case of subobjects are inclusions

while the epimorphisms in the case of quotient objects are projections. Thus for the

concrete objects we have that the category theory definition of subobjects and quotient

objects also agree with the familiar algebraic definitions.

For every monomorphism in the equivalence class of a subobject we can take the cok-

ernel. These cokernels are all, by definition, epimorphisms and satisfy the equivalence

relation for quotient objects and therefore give us a quotient object associated with

the subobject. When working in more concrete setting, where we can consider subob-

jects and quotient objects as objects rather than equivalence classes of morphisms, we

donote the quotient object associated with a subobject B of an object A by
A

B
. In

these cases this notation agrees with the familiar algebraic notation.

We now conclude this section by considering sequences of objects and morphisms of an

abelian category and in particular when such sequences can be said to be exact.

Let A
f→ B

g→ C be a sequence of objects and morphisms of an abelian category A

such that g ◦f = 0. Then we have the kernel and image morphisms Ker g : K → B and

Im f : I → B which are both monomorphisms with g◦Ker g = 0 and g◦Im f = 0. So, by

the definition of Ker g, we have a canonical map i : I → K such that Ker g ◦ i = Im f

and thus i is a monomorphism. The converse also holds, that is, if there exists a

monomorphism i : I → K such that Ker g ◦ i = Im f then g ◦ f = 0.

Additionally there exists a morphism i′ : K → I if and only if every morphism a : X →
B with ga = 0 factors through I, that is to say that there exists a morphism a′ : X → I

such that a = Im f ◦ a′.

These canonical morphisms allows us to make the following definition of an exact

sequence.

Definitions 2.1.15. A sequence is a diagram

· · · → X−2 f−2

→ X−1 f−1

→ X0 f0→ X1 f1→ X2 → · · ·

which consists of objects and morphisms in an abelian category, A , such that fn ◦
fn−1 = 0.

We say that such a sequence is exact at Xn if the canonical morphism Im fn−1 → Ker fn

is an isomorphism.

It is an exact sequence if it is exact at Xn for all n.

14
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A short exact sequence is an exact sequence of the form:

0→ K
m
↪→ X

e
� C → 0

where m is a monomorphism and the kernel of e, while e is an epimorphism and the

cokernel of m.

2.1.2 Complexes and Homology

Complexes of objects are the basic objects of interest in Homological Algebra. These

complexes consist of a sequence of objects and morphisms (called differentials) of an

abelian category such that the composition of two consecutive morphisms is zero. Com-

plexes originated in algebraic topology where they provided an algebraic representation

of certain properties of spaces. Homological algebra is concerned with the study of var-

ious invariants obtained from these complexes of which one of the most important is

homology.

The following definitions are taken from [17]; other good references for the material in

this section include [32].

Definition 2.1.16. A cochain complex C of objects of an abelian category A is a family

of objects {Cn|n ∈ Z} of A and a family of morphisms {dn : Cn → Cn+1|n ∈ Z}, called

differentials, such that dn+1dn = 0 for all n ∈ Z.

C : · · · → Cn−1 dn−1

→ Cn
dn→ Cn+1 → · · · .

Similarly a chain complex C of objects of an abelian category A is a family of objects

{Cn|n ∈ Z} of A and a family of morphisms {dn : Cn → Cn−1|n ∈ Z} such that

dndn+1 = 0 for all n ∈ Z.

C : · · · → Cn+1
dn+1→ Cn

dn→ Cn1 → · · · .

Example 2.1.17. Note that for an abelian category A we can consider any object A

in A as a complex concentrated in degree 0 i.e. as a complex of the form:

· · · → 0→ 0→ A→ 0→ 0→ · · · .

Now that we have defined (co)chain complexes it is natural to define morphisms between

them.

15
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Definitions 2.1.18. Let C = {C, dC} and D = {D, dD} be cochain complexes of

objects of an abelian category A .

A map φ : C → D is called a homomorphism of degree p, if it consists of a family of

morphisms, {φn : Cn → Dn+p}n∈Z, in A .

A morphism of complexes φ : C → D, is a homomorphism of degree 0 such that

dnD ◦ φn = φn+1 ◦ dnC for all n ∈ Z. That is that the following diagram commutes:

C :

φ
��

· · · // Cn−1
dn−1
C //

φn−1

��

Cn
dnC //

φn

��

Cn+1 //

φn+1

��

· · ·

D : · · · // Dn−1

dn−1
D

// Dn
dnD

// Dn+1 // · · · .

We can obtain corresponding definitions for chain complexes.

The (co)chain complexes of objects of an abelian category A , together with the mor-

phisms of complexes defined above form a new category, that of the complexes of A ,

which we denote by C(A ). This new category is itself an abelian category.

Since the canonical morphism Im dn−1 → Ker dn is a monomorphism we can view

Im dn−1 as a subobject of Ker dn. This allows us to make the following important

definitions of homology and cohomology of a complex.

Definition 2.1.19. Let C be a cochain complex of objects of an abelian category A .

We define the cohomology of C to be the graded object

H∗C = {HnC}, where HnC =
Ker dn

Im dn−1
.

Then HnC is called the nth-cohomology object of C.

Similarly, let C be a chain complex of objects of an abelian category A . We define the

homology of C to be the graded object

H∗C = {HnC}, where HnC =
Ker dn

Im dn+1
.

Then HnC is called the nth-homology object of C.

Definition 2.1.20. A complex for which the (co)homology is 0 is said to be exact.

Remark 2.1.21. Let f : C → D be a morphism of chain complexes of objects of an

abelian category A . This induces a family of morphisms H f = {Hnf} where each

Hnf : HnC → HnD is given by H if(k) = f(k) for k ∈ Ker dn.
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2.1.3 Projective and Injective Objects

Projective objects are objects of an abelian category with the property that any mor-

phism from such an object can be “lifted through a surjection” while Injective objects

are those objects with the dual property that any morphism to such an object can be

“extended through any monomorphism”. These two types of objects perform impor-

tant roles in Homological algebra, not least for the construction of the special complexes

of Projective and Injective resolutions of objects of the abelian category in question.

These complexes are required to calculate the derived functors and thus the existence

of such complexes is a desirable property for an abelian category. As before the def-

initions and results in this section are taken from [17] where further information and

results regarding these objects can be found.

Definition 2.1.22. (i) An object P of an abelian category A is a projective object

if for any epimorphism ε : A → B and any morphism φ : P → B there exists

a morphism µ : P → A such that ε ◦ µ = φ. That is to say that the following

diagram commutes:

P
µ

~~
φ
��

A ε
// // B.

An abelian category, A , is said to have enough projectives if, for every object

X ∈ A , there is an epimorphism P → X, where P is a projective object of A .

(ii) An object I of an abelian category A is an injective object if for any monomor-

phism ι : C → D and any morphism θ : C → I there exists a morphism ν : D → I

such that ν ◦ ι = θ. That is to say that the following diagram commutes:

C �
� ι //

θ
��

D

ν
~~

I

.

An abelian category, A , has enough injectives if, for every object X ∈ A , there

is a monomorphism X → I, where I is an injective object of A .

Our main interest in projective and injective objects is to construct special kinds of

complexes, namely the projective and injective resolutions associated with a given

object in an abelian category.

Definition 2.1.23. Let A be an abelian category.
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(i) A chain complex

C : · · · → Cn → Cn−1 → · · · → C1 → C0 → 0

of objects in A , is called acyclic if Hi(C) = 0 for all i ≥ 1. It is called projective

if each Ci is a projective object in A .

A projective resolution of an object X in A consists of a projective and acyclic

complex

P : · · · → Pn → Pn−1 → · · · → P1 → P0 → 0

and an isomorphism H0(P )
∼=→ X.

(ii) A cochain complex

D : 0→ D0 → D1 → · · · → Dn−1 → Dn → · · ·

of objects in A , is called acyclic if Hi(D) = 0 for all i ≥ 1 and injective if each

Di is an injective object of A .

An injective resolution of an object X in A consists of an injective and acyclic

complex

I : 0→ I0 → I1 → · · · → In−1 → In → · · ·

and an isomorphism X
∼=→ H0(I).

The following proposition shows that we can always construct projective (injective)

resolutions for objects of an abelian category with enough projectives (injectives).

Proposition 2.1.24. Let A be an abelian category and let X be an object of A .

(i) If A has enough projectives then X has a projective resolution.

(ii) If A has enough injectives then X has an injective resolution.

Proof. (i) Let A have enough projectives. Then there exists a short exact sequence

0→ K0 → P0 → X → 0

where P0 is a projective object. Now for K0 there exists a short exact sequence

0→ K1 → P1 → K0 → 0

where P1 is projective. Hence we have an exact complex

0→ K1 → P1 → P0 → X → 0.

18
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By continuing in this way for K1 and beyond we obtain a, possibly infinite, projective

resolution for X.

· · · → P2 → P1 → P0 → X → 0.

The proof for (ii) is similar.

We end with the following simple example of a projective resolution.

Example 2.1.25. Consider the Z-module Z
aZ . There is a short exact sequence

0 −→ Z a−→ Z −→ Z
aZ
−→ 0

where the morphism a denotes multiplication by a. Since Z is a projective Z-module

this gives us the following projective resolution of Z
aZ :

0 −→ Z a−→ Z→ 0.

2.1.4 Classical Derived Functors

In this section we build upon the previous definitions to briefly give a summary of the

classical construction of derived functors and in particular the functors Ext and Tor.

For a more in depth account of this construction see [17, Chapter IV Sections 5-11].

Let A and B be abelian categories such that A has enough projectives and suppose

that F : A → B is an additive covariant functor. Our aim is to define a family of

functors Ln F : A → B. Define a functor P : A → C(A ) which sends each object A

in A to an arbitrarily chosen projective resolution of A

P (A) = · · · → Pn → Pn−1 → · · · → P1 → P0 → 0.

We can apply the functor F to the complex P to obtain the complex

FP (A) = · · · → FPn → FPn−1 → · · · → FP1 → FP0 → 0.

We define LPn F (A) = Hn(FP (A)).

Let P ′ : A → C(A ) be a functor which sends each object A in A to an alternative

arbitrary choice of projective resolution

P ′(A) = · · · → P ′n → P ′n−1 → · · · → P ′1 → P ′0 → 0.

Then LPn F (A) ∼= LP
′

n F (A), for details see [17, Chapter IV Proposition 5.1]. Thus we
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can define Ln F (A) = LPn F (A) where P is any functor which sends objects of A to

one of their projective resolutions. Furthermore, a morphism α : A → A′ induces a

morphism of complexes P (A) → P (A′) which is unique up to homotopy, as detailed

in [17, Chapter IV Section 5 Theorem 4.1]. By applying the functor Hn(F−) to this

morphism of complexes we obtain a morphism α∗ : Ln F (A)→ Ln F (A′). Thus Ln F (−)

is a functor.

Definition 2.1.26. Let F : A → B be an additive covariant functor. If A has enough

projectives, then the family of functors Ln F (−) defined by Ln F (A) = Hn(FP (A)),

where P : A → C(A ) is a functor which sends each object A ∈ A to a projective

resolution of A, are called the (classical) left derived functors of F . If A has enough

injectives, then the family of functors Rn F (−) defined by Rn F (A) = Hn(FI(A)),

where I : A → C(A ) is a functor which sends each object A ∈ A to an injective

resolution of A,, are called the (classical) right derived functors of F .

Similarly, for an additive contravariant functor G : A → B. If A has enough projec-

tives, then the family of functors RnG(−) defined by RnG(A) = Hn(GP (A)), where

P : A → C(A ) is a functor which sends each object A ∈ A to a projective resolution

of A, are called the (classical) right derived functors of G. If A has enough injec-

tives, then the family of functors Ln F (−) defined by LnG(A) = Hn(GI(A)), where

I : A → C(A ) is a functor which sends each object A ∈ A to an injective resolution

of A, are called the (classical) left derived functors of G.

Theorem 2.1.27. Let F : A → B be an additive covariant functor between abelian

categories where A has enough projectives. Suppose 0 → A′
a′→ A

a→ A′′ → 0 is a

right exact sequence in A . Then there exist connecting morphisms ωn : Ln F (A′′) →
Ln−1 F (A′) for all n = 1, 2, ... such that we have the long exact sequence:

· · · → Ln F (A′)
a′∗→ Ln F (A)

a∗→ Ln F (A′′)
ωn→ Ln−1 F (A′)→ · · ·

· · · → L1 F (A′′)
ω1→ L0 F (A′)

a′∗→ L0 F (A)
a∗→ L0 F (A′′)→ 0.

Proof. See [17, Theorem IV.6.1].

We can obtain corresponding theorems for the left derived functor of a contravariant

functor as well as for right derived functors of both covariant and contravariant functors.

Examples 2.1.28. Let R be a ring. Let A be a right R-module and B be a left

R-module. Then the tensor products give the additive covariant functors

A⊗
R
− : Mod(R)→ Ab and −⊗

R
B : Mod(Rop)→ Ab .
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We can therefore define the left derived functors

TorRn (A,−) = Ln(A⊗
R
−) and Tor

R
n (−, B) = Ln(−⊗

R
B).

Since the tensor product −⊗
R
− is a bifunctor we have, for any morphism A → A′ in

Mod(Rop), a natural transformation A⊗
R
− → A′⊗

R
−. This in turn gives us a natural

transformation Ln(A⊗
R
−) → Ln(A′⊗

R
−). So for all B ∈ Mod(R) there is a natural

transformation TorRn (A,B)→ TorRn (A′, B) and thus TorRn (−,−) is a bifunctor.

By a similar argument we also have that Tor
R
n (−,−) is a bifunctor. Furthermore these

bifunctors can be shown to be equivalent, see [17, Proposition 11.1]. This gives us a

bifunctor TorRn (−,−) which can be computed by taking a projective resolution of either

variable.

Similarly for the additive functors HomR(−, B) : Mod(R) → Ab, which is contravari-

ant, and HomR(A,−) : Mod(R) → Ab, which is covariant, we can define the right

derived functors ExtnR(−, B) = Rn HomR(−, B) and Ext
n
R(A,−) = Rn HomR(A,−).

By a similar method to that of the example of TorRn (A,−) above, ExtnR(−,−) and

Ext
n
R(−,−) can be shown to be bifunctors which, by [17, Proposition 8.1], are equiva-

lent.

This gives us a bifunctor ExtnR(−,−) which can be computed by taking a projective

resolution of the first variable or an injective resolution in the second variable.

2.2 Triangulated Categories and the Derived Category

2.2.1 Triangulated Categories

Triangular categories are a type of category which, while having a weaker structure

than abelian categories, share some similar properties. The key aspect of triangulated

categories are diagrams of the form

X
f−→ Y

g−→ Z
h−→ ΣX

called distinguished triangles. These perform a similar function in triangulated cate-

gories to that performed by short exact sequences in abelian categories, and a number

of familiar results for short exact sequences have corresponding versions for distin-

guished triangles. The axioms for triangulated categories given below, together with

the following results, are mostly taken from [16, Chapter I]. Another good reference for

the theory of triangulated categories is in [14].
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Definition 2.2.1. A triangulated category is an additive category T , together with

the following.

• An isomorphism of categories Σ : T → T called the suspension functor.

• A class of diagrams, called distinguished triangles of the form

X
f−→ Y

g−→ Z
h−→ ΣX

where X, Y and Z are objects of T and f : X → Y , g : Y → Z and h : Z → ΣX

are morphisms in T .

A morphism of distinguished triangles is a commutative diagram,

X
f //

α
��

Y
g //

β
��

Z
h //

γ

��

ΣX

Σα
��

X ′
f ′
// Y ′

g′
// Z

h′ // ΣX ′

where each row is a distinguished triangle. If α, β and γ are isomorphisms then

the distinguished triangles are called isomorphic.

These data are subject to the following axioms.

(TR1) Any diagram

X
f−→ Y

g−→ Z
h−→ ΣX

isomorphic to a distinguished triangle is a distinguished triangle.

For any object X ∈ T the diagram

X
idX−→ X −→ 0 −→ ΣX

is a distinguished triangle.

(TR2) For any morphism f : X → Y in T there exists a distinguished triangle

X
f−→ Y −→ Z −→ ΣX.

(TR3) The diagram

X
f−→ Y

g−→ Z
h−→ ΣX

is a distinguished triangle if and only if the diagram

Y
g−→ Z

h−→ ΣX
−Σf−→ ΣY
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is a distinguished triangle.

(TR4) Given two distinguished triangles

X
f−→ Y

g−→ Z
h−→ ΣX

and

X ′
f ′−→ Y ′

g′−→ Z ′
h′−→ ΣX ′,

and a commutative diagram

X
f //

α
��

Y
g //

β
��

Z
h // ΣX

Σα
��

X ′
f ′
// Y ′

g′
// Z ′

h′
// ΣX ′

then there exists a morphism γ : Z → Z ′ which completes the morphism of

distinguished triangles, that is to say that it makes the following diagram com-

mute:

X
f //

α
��

Y
g //

β
��

Z
h //

γ
��

ΣX

Σα
��

X ′
f ′
// Y ′

g′
// Z ′

h′
// ΣX ′.

(TR5) (The octahedral axiom) Consider three distinguished triangles

X
f−→ Y

i−→ Z ′
i′−→ ΣX,

Y
g−→ Z

j−→ X ′
j′−→ ΣY

and

X
g◦f−→ Z

k−→ Y ′
k′−→ ΣX.

Then there exist morphisms u : Z ′ → Y ′ and v : Y ′ → X ′ such that the
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following diagram commutes

X

f
��

X //

g◦f
��

0 //

��

ΣX

Σf
��

Y g
//

i
��

Z
j
//

k
��

X ′
j′
// ΣY

Σi
��

Z ′ u
//

i′

��

Y ′ v
//

k′

��

X ′
Σi◦j′

//

��

ΣZ ′

Σi′
��

ΣX ΣX // 0 // Σ2X

and each row and column is a distinguished triangle.

Definition 2.2.2. Let T and T ′ be triangulated categories. A triangulated functor

consists of a pair (F, α) where F : T → T ′ is an additive functor and α : F ◦ ΣT →
ΣT ′ ◦ F is a natural equivalence such that if X

x→ Y
y→ Z

z→ ΣT X is a distinguished

triangle in T , then FX
Fx→ FY

Fy→ FZ
α◦Fz→ ΣT ′FX is a distinguished triangle in T ′.

Thus a triangulated functor is one which preserves distinguished triangles.

The distinguished triangles perform a similar role for triangulated categories as short

exact sequences do for abelian categories. These similarities are demonstrated by the

following results.

Proposition 2.2.3. The composition of any two consecutive morphisms in a distin-

guished triangle is zero.

Proof. Let X
f−→ Y

g−→ Z
h−→ ΣX be a distinguished triangle. By (TR3) it is

sufficient to show that gf = 0. By (TR1) and (TR2) we have that Z
idZ−→ Z −→ 0 −→

ΣZ and Y
g−→ Z

h−→ ΣX
−Σf−→ ΣY are distinguished triangles. From the diagram

Y
g //

g

��

Z
h //

idZ
��

ΣX
−Σf // ΣY

Σg
��

Z
idZ
// Z // 0 // ΣZ

and (TR4) we can conclude that there exists a map γ : ΣX → 0 so that we have a

morphism of distinguished triangles. Therefore we have that ΣgΣf = 0, or, since Σ is

an automorphism, that gf = 0.

24



Chapter 2. Homological Algebra and the Derived Category

Definition 2.2.4. Let T be a triangulated category and A be an abelian category.

An additive functor G : T → A is called a covariant cohomological functor if for a

distinguished triangle,

X
f−→ Y

g−→ Z
h−→ ΣX,

G induces a long exact sequence

· · · → G(ΣiX)→ G(ΣiY )→ G(ΣiZ)→ G(Σi+1X)→ · · · .

Similarly we call G a contravariant cohomological functor if it induces a long exact

sequence

· · · → G(ΣiZ)→ G(ΣiY )→ G(ΣiX)→ G(Σi−1Z)→ · · · .

If G is a covariant or contravariant cohomological functor, we write Gi(X) = G(ΣiX).

Theorem 2.2.5. Let T be a triangulated category and suppose that X
f−→ Y

g−→
Z

h−→ ΣX, is a distinguished triangle. Then for M an arbitrary object of T we have

that

(i) HomT (M,−) is a covariant cohomological functor, that is to say that there is a

long exact sequence

· · · → HomT (M,ΣiX)→ HomT (M,ΣiY )→ HomT (M,ΣiZ)

→ HomT (M,Σi+1X)→ · · · .

(ii) HomT (−,M) is a contravariant cohomological functor, that is to say that there

is a long exact sequence

· · · → HomT (ΣiZ,M)→ HomT (ΣiY,M)→ HomT (ΣiX,M)

→ HomT (Σi−1Z,M)→ · · · .

Proof. In order to show that HomT (M,−) is a covariant cohomological functor it is

sufficient, by (TR3), to show that the sequence

HomT (M,X)
f∗→ HomT (M,Y )

g∗→ HomT (M,Z)

is exact.

From Proposition 2.2.3 we know that the composition of f and g is zero, so it follows

that Im f∗ ⊆ Ker g∗. Now let u ∈ HomT (M,Y ) such that gu = 0 i.e u ∈ Ker g∗. By
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considering the diagram

Σ−1M //

Σ−1u
��

0 //

��

M
idM //M

u

��
Σ−1Y

−Σ−1g
// Σ−1Z

−Σ−1h
// X

f
// Y

we have from (TR4) that there exists v : M → X such that fv = u, i.e u ∈ Im f∗. So

Ker g∗ = Im f∗ and the sequence above is exact.

The proof that HomT (−,M) is a contravariant cohomological functor is similar.

Finally the following theorem is a version of the 5-lemma for distinguished triangles.

Theorem 2.2.6. Let T be a triangulated category. Given a commutative diagram of

distinguished triangles:

X
f //

α
��

Y
g //

β
��

Z
h //

γ

��

ΣX

Σα
��

X ′
f ′
// Y ′

g′
// Z

h′
// ΣX ′.

Then if α and β are isomorphisms we also have that γ is also an isomorphism.

Proof. Begin by applying the functor HomT (Z ′,−) to the diagram to obtain the com-

mutative diagram of exact sequences:

HomT (Z′,X) //

α∗

��

HomT (Z′,Y ) //

β∗
��

HomT (Z′,Z) //

γ∗

��

HomT (Z′,ΣX) //

(Σα)∗
��

HomT (Z′,ΣY )

(Σβ)∗
��

HomT (Z′,X′) // HomT (Z′,Y ′) // HomT (Z′,Z′) // HomT (Z′,ΣX′) // HomT (Z′,ΣY ′).

Now, since α and β are isomorphisms in T , it follows that α∗, β∗, (Σα)∗ and (Σβ)∗

are isomorphisms of abelian groups. Hence by the five lemma, we have that γ∗ is also

an isomorphism of abelian groups and therefore there exists φ ∈ HomT (Z ′, Z) such

that γ∗(φ) = γ ◦ φ = idZ′ .

Similarly by using the contravariant cohomological functor HomT (−, Z ′) we can con-

clude that there exists ψ ∈ HomT (Z ′, Z) such that ψ ◦ γ = idZ . Hence γ is an

isomorphism.
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2.2.2 The Homotopy Category

The homotopy category serves as both an example of a triangulated category and as

stepping stone towards the derived category. In this section we shall describe how to

construct the the homotopy category from the category of complexes of objects of an

abelian category.

Throughout this section we shall let A denote an abelian category.

Before we can give the definition of the homotopy category we first need to define when

two morphisms of complexes are homotopic.

Definition 2.2.7. Let f, g : X → Y be morphisms of complexes of objects of A .

Then f and g are said to be homotopic if there is a collection of maps h = (hn), where

hn : Xn → Y n−1, such that

fn − gn = dn−1
Y hn + hn+1dnX

for all n ∈ Z. Such a collection of maps h is called a homotopy.

A morphism of complexes f is called null homotopic if it is homotopic to the zero map.

We denote all the null homotopic maps from X to Y by Null(X,Y ).

Definition 2.2.8. The homotopy category of A , denoted by K(A ), is defined as

consisting of objects which are complexes of objects of A and morphisms of the form

HomK(A )(X,Y ) =
HomC(A )(X,Y )

Null(X,Y )
.

The homotopy category K(A ) consists of the same objects as C(A ). The morphisms

are the equivalence classes of the form f + Null(X,Y ), where f ∈ HomC(A )(X,Y ). We

shall denote these equivalence classes by f .

We now want to show that K(A ) is a triangulated category. For this we need to define

what the distinguished triangles in the homotopy category are. To this end we need

the following definition of the mapping cone of a morphism.

Definition 2.2.9. Let f : X → Y be a morphism of complexes of objects of A . The

mapping cone of f , which we shall denote by C(f), is the complex:

· · · → Cn−1 dn−1

→ Cn dn→ Cn+1 → · · ·

where (C(f))n = Xn+1 ⊕ Y n and dnC(f) =

(
−dn+1

X 0

fn+1 dnY

)
.
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Proposition 2.2.10. The mapping cone of the identity map X
idX→ X is homotopic to

0.

Proof. First note that (C(idX))n = Xn+1 ⊕ Xn and dnC(idX) =

(
−dn+1

X 0

idX dnX

)
. Now

define the collection of maps hn : Xn+1⊕Xn → Xn⊕Xn−1 by hn =

(
0 idX

0 0

)
. Then

(dn−1
C(idX)h

n + hn+1dnC(idX)) =

(
−dnX 0

idX dn−1
X

)(
0 idX

0 0

)
+

(
0 idX

0 0

)(
−dn+1

X 0

idX dnX

)

=

(
0 −dnX
0 idX

)
+

(
idX dnX
0 0

)
= idC(idX) .

Therefore idC(idX) is nullhomotopic.

Theorem 2.2.11. The homotopy category K(A ) is a triangulated category.

Proof. For K(A ) to be a triangulated category we require that there exists a suspension

functor and distinguished triangles which satisfy the axioms (TR1-5).

We define the suspension functor, Σ, on K(A ) as the operation of shifting one place

to the left and changing the sign on the differential, thus Σ(X)n = Xn+1 and dnΣX =

−dn+1
X while for a morphism f : X → Y we have that Σ(f) : ΣX → ΣY is given by

(Σf)n = fn+1.

We define distinguished triangles of K(A ) to be the triangles isomorphic in K(A ) to

those of the form

X
f→ Y

i→ C(f)
p→ ΣX

where X and Y are objects of A and f ∈ HomK(A )(X,Y ) while i : Y → C(f) and

p : C(f)→ ΣX denote the obvious injection and projection morphisms.

It is now routine to verify that the axioms hold, for the details see [14, Chapter IV,

Theorem 1.9].

Remark 2.2.12. Let F : A → B be a additive covarient functor between abelian

categories. Then this extends naturally to a functor

FC : C(A )→ C(B)

between the categories of complexes of objects in A and B. This functor is defined on
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objects by sending a complex

A = · · ·An−1 dn−1

−→ An
dn−→ An+1 dn+1

−→ · · ·

in C(A ) to the complex

FC(A) = · · ·F (An−1)
F (dn−1)−→ F (An)

F (dn)−→ F (An+1)
F (dn+1)−→ · · ·

in C(B) and on morphisms by sending a morphism of complexes φ = φn : A → A′ in

C(A ) to the morphism of complexes F (φ) = F (φn) : F (A) → F (A′). We can then

extend this further to a functor

FK : K(A )→ K(B)

between the homotopy categories of A and B. We define FK to act on objects in the

same way as FC and to act on morphisms by sending a morphism f in K(A ) to the

morphism FC(f). It is easy to see that FK(−) defined in this way is well defined.

Similarly, G : A → B an additive contravarient functor between abelian categories

can be extended to the functors

FC : C(B)→ C(A ) and FK : K(B)→ K(A ).

2.2.3 Localisation at a Multiplicative Set

We shall construct the derived category of an abelian category A from the homo-

topy category K(A ) through a localisation process where we formally invert a class of

morphisms. In this section we describe the localisation process in an abstract setting.

We begin by setting out the properties which the class of morphisms we wish to invert

must satisfy.

Definition 2.2.13. For any category C a multiplicative system S is a collection of

morphisms of C which satisfy the following axioms:

(MS1) For f, g ∈ S such that fg exists, then fg ∈ S.

For any X ∈ C we have that idX ∈ S.

(MS2) Given a diagram

Z

s
��

X
u // Y
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with s ∈ S, then there is a commutative diagram

W
v //

t
��

Z

s
��

X
u // Y

with t ∈ S.

The dual statement is also satisfied.

(MS3) If f, g : X → Y are morphisms in C , then the following statements are equiva-

lent:

(i) ∃ s : Y → Y ′ in S such that sf = sg,

(ii) ∃ t : X ′ → X in S such that ft = gt.

In the case where we are dealing with a triangulated category, such as K(A ), it is

desirable that the multiplicative set also satisfies the following properties. These addi-

tional properties ensure that the resulting category is also triangulated, as we shall see

later.

Definition 2.2.14. Let T be a triangulated category and S a multiplicative system

of morphisms of T . Then S is compatible with the triangulation if the following axioms

hold:

(MS4) s ∈ S if and only if Σs ∈ S, where Σ is the suspension functor of T .

(MS5) Given two distinguished triangles

X
f→ Y

g→ Z
h→ ΣX

and

X ′
f ′→ Y ′

g′→ Z ′
h′→ ΣX ′

in T , together with morphisms α : X → X ′ and β : Y → Y ′ in S which form

the commutative diagram below,

X
f //

α
��

Y
g //

β
��

Z
h // ΣX

Σα
��

X ′
f ′ // Y ′

g′ // Z
h′ // ΣX ′
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there exists a morphism γ : Z → Z ′ in S such that the following diagram

commutes

X
f //

α
��

Y
g //

β
��

Z
h //

γ

��

ΣX

Σα
��

X ′
f ′ // Y ′

g′ // Z
h′ // ΣX ′.

We now define the process by which we formally invert a multiplicative system of

morphisms of a category in order to obtain a new category.

Definition 2.2.15. Let C be a category with a multiplicative system S. Then the

localisation of C with respect to S is a category, denoted S−1C , where the objects are

the objects of C whilst the morphisms are defined as follows.

For X,Y ∈ S−1C , HomS−1C (X,Y ) is the class of equivalence classes of diagrams of

the form
Z

a
��

s
��

YX

where s ∈ S. These diagrams are often referred to as roofs.

Two roofs,
Z

a
��

s
��

YX
and

Z ′
b
��

t
��

YX
with s, t ∈ S, are equivalent if and only if

there exists a diagram

Z ′′
g

��
f

��
Z ′

b

��ttt
Y

Z

a
**

s

��
X

which commutes and sf = tg ∈ S.

We denote the set of roofs equivalent to
Z

a
��

s
��

YX
by

[
Z

a
��

s
��

YX

]
.

The composition of two morphisms in S−1C is given by[
W ′

b
��

t
��

ZY

]
.

[
W

a
��

s
��

YX

]
=

[
W ′′

bv
��

su
��

ZX

]

where

W ′′
u
��

v��
W ′

b
��

t
��

Z

W

s��
a
��
YX
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is a commutative diagram with u ∈ S. The existence of this is due to (MS2). It is

straightforward to check that this operation is well defined.

Notation 2.2.16. We shall, in some situations, denote a morphism

[
W ′

a
��

s
��

ZY

]
in

S−1C by the more concise a ◦ s−1.

Remark 2.2.17. There are some potential set theoretical considerations regarding the

existence of the category S−1C . However in the case we are considering here, that of

the derived category of an abelian category we can safely ignore these. For a further

explanation of these issues as well as an explanation as to why in our case we can ignore

them can be found in [32, Remark 10.3.3].

Definition 2.2.18. Let C be a category with a multiplicative system S. Then we

define the quotient functor Q : C → S−1C to be the following functor.

For any object X ∈ C , Q(X) = X ∈ S−1C and for a morphism f : X → Y , in C ,

Q(f), in S−1C is the morphism [
X f
��
YX

]
.

The aim of the localisation process we have described is to formally invert the mor-

phisms of a multiplicative set. The following proposition shows that morphisms of the

this multiplicative set become isomorphisms in the new category we have constructed.

Proposition 2.2.19. Let C be a category with a multiplicative system S. Then, for a

morphism s : X → Y in S we have that Q(s) is an isomorphism in S−1C with inverse[
X

s��
XY

]
.

Proof. This is simply a case of checking that

[
X

s��
XY

]
is in fact the inverse of

Q(s) =

[
X

s
��
YX

]
.

Firstly from the commutative diagram

X

X
s
��
Y.

X

s��
XY
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we have that [
X

s
��

XY

]
·

[
X

s
��
YX

]
=

[
X

s ��s��
YY

]
.

Furthermore

[
X

s
��

s
��

YY

]
=

[
Y

YY

]
= Q(idY ) as we can construct the com-

mutative diagram

X
s

��
Y

Y.

X

s
**

s

��
Y

Similarly, since we have the commutative diagram

X

X

s��
X.

X
s
��
YX

.

we have that [
X

s
��
YX

]
·

[
X

s
��

XY

]
=

[
X

XX

]
= Q(idX).

Thus

[
X

s
��

XY

]
and Q(s) are inverses of each other in S−1C and so they are

isomorphisms.

The category, S−1C together with the quotient functor Q : C → S−1C satisfy the

following universal property.

Proposition 2.2.20. Let C be a category with a multiplicative system S and let Q :

C → S−1C be the quotient functor defined in Definition 2.2.18 above. Then for any

functor F : C → D such that F (s) is an isomorphism for all s ∈ S there exists a unique

functor G : S−1C → D such that GQ = F .

Proof. Clearly since the objects of S−1C are the same as the objects of C we must

have that G(X) = F (X) for all objects X ∈ C .
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Now consider the morphism

[
Z f
��

s
��

YX

]
in S−1C .

G

([
Z f
��

s
��

YX

])
= G

([
Z f
��
YZ

]
◦

[
Z

s
��

ZX

])

= G

([
Z f
��
YZ

])
◦G

([
Z

s
��

ZX

])

= GQ(f) ◦G(Q(s)−1).

However

idF (X) = F (idX) = G(idX) = G(Q(s)◦Q(s)−1) = GQ(s)◦G(Q(s)−1) = F (s)◦G(Q(s)−1)

and

idF (Z) = F (idZ) = G(idZ) = G(Q(s)−1◦Q(s)) = G(Q(s)−1)◦GQ(s) = G(Q(s)−1)◦F (s).

This forces G(Q(s)−1) = F (s)−1 and so G

([
Z f
��

s
��

YX

])
must equal F (f)◦F (s)−1.

This proves the uniqueness of G.

For existence we need to show that G is well defined. To do this let[
Z f
��

s
��

YX

]
=

[
Z ′ f ′

��
s′
��

YX

]
.

Then there exists a commutative diagram

Z ′′

u

��
t

��
Z ′

f ′

��s′tt
Y

Z

f **

s

��
X

with st = s′u ∈ S.

Now consider F (ft) ◦ F (st)−1.

We have that

F (ft) ◦ F (st)−1 = F (f) ◦ F (t) ◦ F (t)−1 ◦ F (s)−1 = F (f) ◦ F (s)−1
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and

F (ft)◦F (st)−1 = F (f ′u)◦F (s′u)−1 = F (f ′)◦F (u)◦F (u)−1◦F (s′)−1 = F (f ′)◦F (s′)−1.

Hence G

([
Z f
��

s
��

YX

])
= F (f) ◦F (s)−1 = F (f ′)◦F (s′)−1 = G

([
Z ′ f ′

��
s′
��

YX

])
.

Thus G is well defined.

Remark 2.2.21. A dual construction, in which the roofs take the form

Z

Y

s__

X

u ??

with s ∈ S, is also possible.

This dual construction also satisfies the universal property given in Proposition 2.2.20

and hence results in an equivalent category. It is therefore possible to construct the

category S−1C by using roofs of either form.

We shall mostly, for the purpose of this document, restrict ourselves to using roofs of

the form
Z f
��

s
��

Y.X

There are some situations in which it is preferable to consider roofs in the form of this

dual construction.

We now complete this section with the following Theorem showing that for a triangu-

lated category with a multiplicative system which is compatible with the triangulation

then the the localisation process preserves the triangulated structure.

Theorem 2.2.22. Let T be a triangulated category with a multiplicative system S

which is compatible with the triangulation. Then S−1T is also a triangulated category.

Proof. Let Σ′ be the suspension functor on T . Then we define the suspension functor

for S−1T , Σ, to be the functor such that Σ(X) = Σ′(X) for all objects X ∈ T and

for any morphism

[
Z

u
��

s
��

YX

]
∈ T ,

Σ

([
Z

u
��

s
��

YX

])
=

[
ΣZ

Σ′u
��

Σ′s
��

ΣYΣX

]
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where Σ′s ∈ S by (MS4). It is straightforward to see that this is well defined.

We define the distinguished triangles of S−1T to be those triangles isomorphic to

triangles of the form

X
Qf−→ Y

Qg−→ Z
Qh−→ ΣX,

where

X
f−→ Y

g−→ Z
h−→ ΣX

is a distinguished triangle in T and Q(−) is the quotient functor introduced in Defini-

tion 2.2.18.

It remains to show that the axioms (TR1)-(TR5) hold.

The axioms (TR1) and (TR3) follow from our definition of a distinguished triangle in

S−1T .

To show that (TR2) holds, let u ◦ s−1 denote the morphism

[
Z

u
��

s
��

YX

]
from X to

Y in S−1T and let Z
u→ Y

v→ W
w→ ΣZ be a distinguished triangle in T containing

u. Then Z
Qu→ Y

Qv→ W
Qw→ ΣZ is a distinguished triangle in S−1T and we have the

following commutative diagram,

Z
Qu //

Qs
��

Y
Qv //W

Qw // ΣZ

ΣQs
��

X
u◦s−1

// Y
Qv
//W

ΣQs◦Qw
// ΣX.

Since Qs is an isomorphism in S−1T this gives us that the triangle

X
u◦s−1

−→ Y
Qv−→W

ΣQs◦Qw−→ ΣX

is isomorphic to the distinguished triangle Z
Qu→ Y

Qv→ W
Qw→ ΣZ and so is itself a dis-

tinguished triangle. Hence any morphism in S−1T can be embedded in a distinguished

triangle.

For (TR4), consider the following diagram of in S−1T

X
Qf //

α
��

Y
Qg //

β
��

Z
Qh // ΣX

Σα
��

X ′
Qf ′
// Y ′

Qg′
// Z ′

Qh′
// ΣX ′
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where both rows are distinguished triangles while

α =

[
A

u��s
��

X ′X

]
and β =

[
B

v��t
��

Y ′Y

]
.

We can now construct, in T , a diagram of the form

X
f // Y

g // Z
h // ΣX

A

s

OO

u
��

B

t

OO

v
��

ΣA

Σs

OO

Σu
��

X ′
f ′
// Y ′

g′
// Z ′

h′
// ΣX ′,

where the top and bottom rows are distinguished triangles in T and Σs ∈ S, by (MS4).

Furthermore, by (MS2) we can choose A in such a way that there exists a morphism

h : A→ B such that the diagram commutes. This morphism can in turn be embedded

into a distinguished triangle A
h→ B

k→ C
l→ ΣA.

By (TR4) and (MS5) there exists a morphism r : C → Z in S and a morphism

w : C → Z ′ such that the following diagram commutes:

X
f // Y

g // Z
h // ΣX

A

s

OO

u
��

h // B

t

OO

v
��

k // C
l //

r

OO

w
��

ΣA

Σs

OO

Σu
��

X ′
f ′
// Y ′

g′
// Z ′

h′
// ΣX ′

.

Hence we have a morphism γ =

[
C

w��
r
��

Z ′Z

]
in S−1T such that the diagram

X
Qf //

α
��

Y
g //

β
��

Z
h //

γ
��

ΣX

Σα
��

X ′
Qf ′
// Y ′

Qg′
// Z ′

Qh′
// ΣX ′,

in S−1T , commutes.
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For (TR5), let f ◦ s−1 =

[
U f
��

s
��

YX

]
and g ◦ t−1 =

[
V g
��

t
��

ZY

]
be morphisms in

S−1T . Then

[
V g
��

t
��

ZY

]
◦

[
U f
��

s
��

YX

]
=

[
W g◦f ′
��

s◦t′
��

ZX

]
where the diagram

W
t′
��

f ′

��
V g
��

t
��

Z

U
s
��

f
��
YX

commutes and t′ ∈ S.

A consequence of this diagram commuting is that

[
U f
��

s
��

YX

]
=

[
W tf ′

��
st′
��

YX

]
.

Now suppose that we have following distinguished triangle in S−1T containing f ◦s−1,

X
f◦s−1

−→ Y −→ Z ′′ −→ ΣX

and that the mapping cone of f ′ in T is

W
f ′−→ V

i−→ Z ′
i′−→ ΣW.

Then we can construct the following commutative diagram S−1T

W
Q(f ′) //

Q(s◦t′)
��

V
Q(i) //

Q(t)
��

Z ′
Q(i′) // ΣW

Q(Σs◦t′)
��

X
f◦s−1

// Y // Z ′′ // ΣX.

where both rows are distinguished triangles, hence by (TR4) and Theorem 2.2.6 the

distinguished triangles are isomorphic.

By similar arguments, the distinguished triangles in S−1T containing g ◦ t−1 and the

composition (g ◦ t−1) ◦ (f ◦ s−1) are isomorphic to the distinguished triangles

V
Qg−→ Z

Qj−→ X ′
Qj′−→ ΣV

and

W
Q(g◦f ′)−→ Z

Qk−→ Y ′
Qk′−→ ΣW

respectively. Here V
g→ Z

j→ X ′
j′→ ΣV and W

g◦f ′→ Z
k→ Y ′

k′→ ΣW are distinguished

triangles in T containing the morphisms g and g ◦ f ′ respectively.

Thus, by relabeling we need only to consider three distinguished triangles in S−1T of
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the form:

X
Qf−→ Y

Qi−→ Z ′
Qi′−→ ΣX,

Y
Qg−→ Z

Qj−→ X ′
Qj′−→ ΣY

and

X
Q(g◦f)−→ Z

Qk−→ Y ′
Qk′−→ ΣX

where X
f→ Y

i→ Z ′
i′→ ΣX, Y

g→ Z
j→ X ′

j′→ ΣY and X
g◦f→ Z

k→ Y ′
k′→ ΣX are

distinguished triangles in T .

By the octahedral axiom for T , there exists morphism u and v in T such that we can

we can construct a commutative diagram

X

f
��

X //

g◦f
��

0 //

��

ΣX

Σf
��

Y g
//

i
��

Z
j
//

k
��

X ′
j′
// ΣY

Σi
��

Z ′ u
//

i′

��

Y ′ v
//

k′

��

X ′
Σi◦j′

//

��

ΣZ ′

Σi′
��

ΣX ΣX // 0 // Σ2X

in T , where each row and column is a distinguished triangle.

Hence we have morphisms Qu and Qv in S−1T such that the diagram

X

Qf
��

X //

Qg◦Qf
��

0 //

��

ΣX

ΣQf
��

Y
Qg

//

Qi
��

Z
j
//

Qk
��

X ′
Qj′
// ΣY

ΣQi
��

Z ′
Qu

//

Qi′

��

Y ′
Qv
//

Qk′

��

X ′
ΣQi◦Qj′

//

��

ΣZ ′

ΣQi′

��
ΣX ΣX // 0 // Σ2X

in S−1T is commutative and each row and column is a distinguished triangle.

Remark 2.2.23. A consequence of how the distinguished triangles in the localisation

of a triangulated category are defined, in the above theorem, is that the quotient functor

Q(−) in this case is a triangulated functor.
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2.2.4 Constructing the Derived Category

We now use the localisation construction from the previous section to obtain the derived

category for an abelian category, A . We do this by formally inverting a multiplicative

set of morphisms of the homotopy category K(A ). The multiplicative set used is the

set of all quasi-isomorphisms. This results in a triangulated category in which the

objects are complexes of objects of A with the property that any two objects with the

same homology are isomorphic.

Definition 2.2.24. A morphism f : X → Y in K(A ) is called a quasi-isomorphism if

it induces an isomorphism on the cohomology. That is if H(f) : H(X) → H(Y ) is an

isomorphism.

Proposition 2.2.25. The collection of all quasi-isomorphisms in K(A ) forms a mul-

tiplicative set which is compatible with triangulation.

Proof. To do this we must show that the axioms (MS1)-(MS5) hold for the collection

of all quasi-isomorphisms.

The axioms (MS1) and (MS4) hold trivially.

For (MS2), consider the diagram

Z

s
��

X
u // Y

where s is a quasi-isomorphism. Then s can be embedded into a distinguished triangle

Z
s→ Y

f→ N
g→ ΣZ. Similarly fu : X → N can be embedded into a distinguished

triangle W
t→ X

fu→ N
h→ ΣW . By (TR4) there exists a morphism v : W → Z which

gives the morphism of distinguished triangles

W
t //

v
��

X
fu //

u
��

N
h //

idN
��

ΣW

Σv
��

Z s
// Y

f
// N

g // ΣZ.

Since sv = ut, it remains to prove that t is a quasi-isomorphism. Applying the covariant

cohomological functor H(−) to the the distinguished triangles gives us the long exact

sequences

· · · → Hi−1(N)→ Hi(Z)
s∗→ Hi(Y )→ Hi(N)→ · · ·
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and

· · · → Hi−1(N)→ Hi(W )
t∗→ Hi(X)→ Hi(N)→ · · · .

Since s is a quasi-isomorphism we have that s∗ is an isomorphism and so from the

first exact sequence H i(N) = 0 for all i. This in turn gives us from the second exact

sequence that t∗ is an isomorphism and so t is a quasi-isomorphism as required.

The proof for the dual condition of (MS2) is similar.

To prove (MS3) let f, g : X → Y be morphisms and set h = f − g. Then it is sufficient

to show that the following are equivalent:

(i) ∃ a quasi-isomorphism s : Y → Y ′ such that sh = 0,

(ii) ∃ a quasi-isomorphism t : X ′ → X such that ht = 0.

Suppose (i) holds, then there exists a distinguished triangle Z
v→ Y

s→ Y ′
u→ ΣZ. The

fact that sh = 0 gives us that the following diagram commutes,

X
0 //

h
��

0
0 //

0
��

ΣX
−Σ idX// ΣX

Σh
��

Y s
// Y ′ u

// ΣZ
−Σv

// ΣY.

Hence by (TR4) there exists a morphism k : X → Z such that h = vk. We can now

embed k into a distinguished triangle X
k→ Z

w→ ΣX ′
−Σt→ ΣX and by (TR2) together

with the commutative diagram

X
k //

h
��

Z
w //

v
��

ΣX ′
−Σt // ΣX

Σh
��

Y
idY
// Y

0
// 0

0
// ΣY

,

we have that ht = 0.

We now need to show that t is a quasi-isomorphism. However since s is a quasi-

isomorphism we have, from the long exact sequence of cohomology for the distinguished

triangle Z
v→ Y

s→ Y ′
u→ ΣZ, that Hi(Z) = 0 for all i. This in turn implies, from the

long exact sequence of cohomology for the distinguished triangle X
g→ Z

w→ X ′
t→ ΣX,

that t is a quasi-isomorphism.

The proof that (ii)⇒(i) is similar.

Finally to show (MS5) let X
f→ Y

g→ Z
h→ ΣX and X ′

f ′→ Y ′
g′→ Z ′

h′→ ΣX ′ be

distinguished triangles and let α : X → X ′ and β : Y → Y ′ be quasi-isomorphisms
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such that we have the commutative diagram

X
f //

α
��

Y
g //

β
��

Z
h // ΣX

Σβ
��

X ′
f ′
// Y

g′
// Z ′

h′
// ΣX ′

.

By applying the covariant cohomological functor, H∗(−), we obtain the following dia-

gram of long exact sequences

· · · // HiX //

α∗
��

Hi Y //

β∗
��

Hi Z // Hi+1X //

α∗
��

Hi+1 Y //

β∗
��

· · ·

· · · // HiX ′ // Hi Y ′ // Hi Z ′ // Hi+1X ′ // Hi+1 Y ′ // · · ·

where α∗ and β∗ are isomorphisms. Hence by the five lemma there exists a morphism

γ : Z → Z ′ which is a quasi-isomorphism.

Now that we have that the collection of all quasi-isomorphisms forms a multiplica-

tive system we can formally invert the quasi-isomorphisms of the homotopy category.

Furthermore, since the multiplicative system of quasi-isomorphisms is compatible with

triangulation we also have by Theorem 2.2.22 that the category obtained is a triangu-

lated category.

Definition 2.2.26. Let A be an abelian category and let S be the multiplicative sys-

tem, compatible with triangulation, which consists of all quasi-isomorphisms in K(A ).

Then the derived category of A , denoted D(A ), is the triangulated category S−1K(A ).

2.3 Derived Functors

2.3.1 K-projective and K-injective Objects

The rest of this chapter is concerned with constructing the (hyper-homological) derived

functors. Before we can do so we need to introduce the concepts of K-projective

and K-injective objects. These objects perform a similar function in calculating the

hyper-homological derived functors to that of projective and injective resolutions in the

classical theory.

Definition 2.3.1. Let C be a category with a multiplicative system S.

(i) An object P of C is called K-projective if, for any morphism s : X → Y in S, the

induced map HomC (P, s) : HomC (P,X)→ HomC (P, Y ) is a bijection.
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Denote by PC the full subcategory of C consisting of the K-projective objects

on C .

(ii) An object I of C is called K-injective if, for any morphism s : X → Y in S, the

induced map HomC (s, I) : HomC (Y, I)→ HomC (X, I) is a bijection.

Denote by IC the full subcategory of C consisting of the K-injective objects of

C .

The following results give a number of useful properties for K-projective objects.

Lemma 2.3.2. Let T be a triangulated category with a multiplicative system S which

is compatible with triangulation. Then for a K-projective object P we have that

Q : HomT (P,X)→ HomS−1T (P,X),

given by f 7→

[
P f
��
XP

]
, is a bijection.

Proof. We simply have to check that Q is both surjective and injective.

To see that it is surjective let

[
Z

u
��

s
��

XP

]
∈ HomS−1T (P,X). Then, since P is

K-projective, we have that there exists t ∈ HomT (P,Z) such that s ◦ t = idP . Hence

we can construct a diagram of the form

P
t

��
Z

u

��s
tt X

P

ut **P

and so

[
Z

u
��

s
��

XP

]
=

[
P

ut
��
XP

]
= Q(ut) and thus Q is surjective.

For injectivity, let Qf = 0, i.e.

[
P f
��
XP

]
=

[
P

0
��
XP

]
. Hence we have a

commutative diagram

P

P
0

��
X

P

f **P

.
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Since the diagram is commutative we have that f = 0, and thus Qf = 0 iff f = 0 and

so Q is injective.

Lemma 2.3.3. Let T be a triangulated category with a multiplictive system S com-

patible with the triangulation. Then for f : X → Y a morphism of K-projective objects

of a T we have that the mapping cone of f is also K-projective.

Proof. Let J
s→ K be in S. By applying the functors HomR(−, J) and HomR(−,K)

to the distinguished triangle X
f→ Y → Z → ΣX, where Z is the mapping cone of f ,

we get the pair of exact sequences

... HomR(X, J)oo

∼=
��

HomR(Y, J)oo

∼=
��

HomR(Z, J)oo

��

...oo

... HomR(X,K)oo HomR(Y,K)oo HomR(Z,K)oo ...oo

.

Since X and Y are K-projective we have that both HomR(X, J) ∼= HomR(X,K) and

HomR(Y, J) ∼= HomR(Y,K) and so HomR(Z, J) ∼= HomR(Z,K) and Z is K-projective.

Proposition 2.3.4. Let T be a triangulated category with a multiplicative system

S which is compatible with triangulation. Then for a K-projective object P and a

morphism P
s→ X in S we have that HomS−1T (X,Y ) ∼= HomT (P, Y )

Proof. This follows from the diagram

HomT (P, Y )
Q−→ HomS−1T (P, Y )

∼=←− HomS−1T (X,Y ).

By Lemma 2.3.2 we have that Q is an isomorphism and the second isomorphism is due

to P and X being isomorphic in S−1T .

Definition 2.3.5. Let C be a category with a multiplicative system S and let X be

an object of C . Then a K-projective resolution of X consists of a K-projective object

P together with a morphism π : P → X in S.

If every object in C has a K-projective resolution then we say that C has enough

K-projectives.

Similarly a K-injective resolution of X consists of a K-injective object I together with

a morphism ι : X → I in S.
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If every object in C has a K-injective resolution then we say that C has enough K-

injectives.

Example 2.3.6. Consider the case where C is the category of complexes of modules

over some ring, R, and let S be the multiplicative system consisting of all quasi-

isomorphisms. Consider the R-module M as the complex

· · · → 0→ 0→M → 0→ 0→ · · ·

then a projective resolution of M

P = · · · → P2 → P1 → P0 → 0→ 0→ · · ·

of M . It is easy to see that there exists a morphism π : P → M which is a quasi-

isomorphism and thus in S. Furthermore the a projective resolution is a K-projective

object in C and thus P is a K-projective resolution of M . For further details see [30,

Example 3.2]

Similarly we also have that a injective resolution of M is also a K-injective resolution.

We therefore have that the category of complexes of modules has enough K-projectives

and K-injectives.

The following theorem, concerning the existence of K-projective and K-injective res-

olutions in the homotopy category of complexes of modules over a ring, is due to

Spaltenstein.

Theorem 2.3.7. Let R be a ring. Then every complex in the homotopy category K(R)

has a K-projective and K-injective resolution.

Proof. See [30, Corollary 3.5 and Proposition 3.11]

Theorem 2.3.8. Let C be a category with a multiplicative system S. Then any mor-

phism s ∈ S between two K-projective objects of C is invertible.

Proof. Let s : P → Q be a morphism in S between two K-projective objects in C .

Then from the definition of K-projective we have the following two bijections

HomC (P, P )
HomC (P,s)−→ HomC (P,Q)
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and

HomC (Q,P )
HomC (Q,s)−→ HomC (Q,Q).

From the second bijection, there exists t ∈ HomC (Q,P ) such that s ◦ t = idQ.

Also t ◦ s ∈ HomC (P, P ) and

HomC (P, s)(t ◦ s) = s ◦ (t ◦ s) = (s ◦ t) ◦ s = idQ ◦s = s = s ◦ idP = HomC (P, s)(idP ).

However HomC (P, s) is a bijection and so t◦s = idP and hence t is the inverse of s.

2.3.2 Derived Functors

We presented earlier in this chapter the classical definition of the derived functors. We

now make use of the derived category in order to define the (hyper homological) derived

functors. These extend the previous theory of derived functors which only allowed for

derived functors between individual objects of an abelian category to allow for derived

functors between complexes of objects. Further information regarding derived functors

can be found in [16, Chapter I Section 5].

Proposition 2.3.9. Let C be a category with a multiplicative system S. Let D be a

full subcategory of C , such that S̃ = S ∩ D is a multiplicative system in D . Assume

one of the following conditions holds.

(i) For any morphism s : X ′ → X in S, with X ∈ D , there exists a morphism

f : X ′′ → X ′ such that X ′′ ∈ D and sf ∈ S.

(ii) For any morphism s : X → X ′ in S, with X ∈ D , there exists a morphism

g : X ′ → X ′′ such that X ′′ ∈ D and gs ∈ S.

Then the natural functor S̃−1D → S−1C is fully faithful.

Proof. Assume that condition (i) is satisfied.

Let A and B be objects in D with

[
Z

u
��

s
��

BA

]
∈ HomS−1C (A,B). Then, since

s : Z → A is in S and A ∈ D , there exists f : X → Z, where X ∈ D and sf ∈ S. Thus

there exists a morphism

[
X uf
��

sf
��

BA

]
∈ HomS̃−1D(A,B) such that

[
X uf
��

sf
��

BA

]
=[

Z
u
��

s
��

BA

]
in S−1C and hence the natural functor is full.
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Now let

[
Z

u
��

s
��

BA

]
and

[
Z ′

v
��

t
��

BA

]
be morphisms in HomS̃−1D(A,B) such that[

Z
u
��

s
��

BA

]
=

[
Z ′

v
��

t
��

BA

]
in S−1C . Then there exists the commutative diagram

Z ′′
g

��
f

��
Z ′

v

��ttt
B

Z

u
**

s

��
A

in C such that sf = tg ∈ S.

However there exists h : X → Z ′′ such that X ∈ D and sfh ∈ S and so we have a

commutative diagram

X
gh

��
fh

��
Z ′

v

��ttt
B

Z

u
**

s

��
A

in D such that sfh = tgh ∈ S and so

[
Z

u
��

s
��

BA

]
=

[
Z ′

v
��

t
��

BA

]
in S̃−1D . Hence

the natural functor is faithful.

The proof when condition (ii) holds is similar, the key difference being that it uses

roofs of the form
Z

B

s__

A

f ??
instead.

Corollary 2.3.10. Let C be a category with a multiplicative system S.

(i) Suppose that C has enough K-projective objects. Then S̃−1PC and S−1C are

equivalent categories.

(ii) Suppose that C has enough K-injective objects. Then Ŝ−1IC and S−1C are

equivalent categories.

Proof. Follows from Proposition 2.3.9 and [21, Theorem 4.4.1].

Let A and B be abelian categories, such that K(A ) has enough K-projectives and let
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F : A → B be a covariant functor. Then, from Remark 2.2.12, we have a functor

FK : K(A )→ K(B).

Let S be a multiplicative system for A , then S̃ = S ∩PA , is a multiplicative system

of PA . From Corollary 2.3.10 we have an equivalence of categories

U : S̃−1PA → D(A ).

Furthermore, from Theorem 2.3.8 we have that the multiplicative system S̃ consists

entirely of isomorphisms and thus the quotient functor

QPA
: PA → S̃−1PA

becomes an equivalence of categories.

We can define a functor

P : D(A )→PA

by P = Q−1
PA
◦ U−1, which sends an object, X, of D(A ) to a K-projective object,

P (X), in K(A ) which is quasi-isomorphic to X.

We can now define a functor

LF : D(A )→ D(B)

by LF (X) = QB ◦ FKP (X).

K(B)
QB // D(B)

K(A )

FK
::

QA // D(A )

LF

99

P

tt
PA

⊆

OO

QPA

// S̃−1PA

U

OO

Likewise for a contravariant functor G : A → B we can obtain a functor

RG : D(A )→ D(B)

where RG(X) = QB ◦GKP (X).

Similarly, if K(A ) has enough K-injectives, we can obtain a functor I : D(A )→ K(A )
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which sends an object, X, of D(A ) to a K-injective object, I(X), in K(A ) which is

quasi-isomorphic to X. We can therefore define the functors

RF : D(A )→ D(B)

and

LG : D(A )→ D(B)

where RF (X) = QB ◦ FKI(X) and LG(X) = QB ◦GKI(X).

Definition 2.3.11. For a covariant functor F : A → B the associated functors

LF : D(A )→ D(B)

and

RF : D(A )→ D(B)

defined above are known as the left and right derived functors of F respectively.

Similarly for a contravariant functor G : A → B the associated functors

LF : D(A )→ D(B)

and

RF : D(A )→ D(B)

are also known as the left and right derived functors of G respectively.

We shall now show the connection between the classical derived functors and the derived

functors defined above.

Let F : A → B be a covariant functor where A and B are abelian categories and A

has enough projectives. Then for an object A ∈ A the classical left derived functor

LiF is given by LiF (A) = Hi F (Q) where

Q = · · · → Q2 → Q1 → Q0 → 0

is a projective resolution of A.

We can consider A as a complex in K(A ) concentrated in degree 0,

A = · · · → 0→ 0→ A→ 0→ · · · .

Then since Q is a projective resolution of the object A we have that it is a K-projective

resolution of the complex A in K(A ) and we can set P (A) = Q. Hence the left derived
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functor LF (A) = QB ◦ FK ◦ P (A) = QB ◦ FK(Q).

However for any object X ∈ K(B) we have that Hi ◦QB(X) = Hi(X), similarly for a

morphism f : X → Y in B we have that

Hi ◦QB(f) = Hi

([
X f
��
YX

])
= Hi(f) ◦Hi(idX) = Hi(f).

Thus Hi ◦QB = Hi. Hence taking the ith-homology of the left derived functor LF (A)

gives us Hi LF (A) = Hi ◦QB ◦FK(Q) = Hi FK(Q) = LiF (A). By a similar arguement

we also have that HiRF (A) = RiF (A).

Similarly for a contavarient functor G : A → B we can show that Hi LG(A) = LiG(A)

and HiRG(A) = RiG(A).

Thus when considering an object as a complex concentrated in degree 0 we can obtain

the classical derived functors by simply taking the homology of the hyper-homological

derived functors.
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Differential Graded Algebras

The aim of this chapter is to give an introduction to differential graded homological

algebra. In this setting we study differential graded algebras and their differential

graded modules rather than the abstract complexes of objects of abelian categorys of

the previous chapter. Differential graded algebras and differential graded modules can

be viewed, in certain situations, as generalisations of rings and modules. They also

have a natural complex structure. It is this natural complex structure which makes

differential graded objects an ideal setting for homological algebra and also allows a

number of the results and techniques of the previous chapter to be easily extended to

the differential graded setting.

In the first part of this chapter we define differential graded algebras and differential

graded modules along with some of their basic properties. In particular we define ver-

sions of the adjoint functors −⊗
R
− and HomR(−,−) for differential graded modules

over a differential graded algebra. We also give two important examples of differen-

tial graded algebras, namely the endomorphism differential graded algebra of a perfect

complex and the Koszul complex. We proceed to show that the construction of the

derived category in the previous chapter can be adapted to the differential graded

setting to obtain the derived category of a differential graded algebra. Similarly we

also show that the construction of the derived functors can be extended to the differ-

ential graded setting and in particular we construct the derived functors −
L
⊗
R
− and

RHomR(−,−) from −⊗
R
− and HomR(−,−) respectively. Alternative introductions to

differential graded algebras can be found in a number of places including in [4, Section

10], [9, Part I Chapter 3] and [1].

In the second part of this chapter we give a selection of special properties which differ-

ential graded algebras or differential graded modules may possess and some results as-

sociated with these properties. The properties covered are compact differential graded
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modules, recollement of differential graded algebras, dualising differential graded mod-

ules and Gorenstein differential graded algebras. All these properties and their associ-

ated results are used extensively in chapters 4 and 5.

3.1 Differential Graded Algebras and Differential Graded

Modules

3.1.1 Differential Graded Algebras

Differential graded algebras (or DGAs) are objects with the structure of a graded

algebra with the addition of a complex structure. This means that DGAs are a natural

generalisation of rings, any ring can be considered as a DGA concentrated in degree

zero, while also providing an environment which is ideally suited to carrying out the

operations of homological algebra.

Definition 3.1.1. A Differential Graded Algebra (DGA) over a commutative base ring,

k, is a Z graded algebra R = ⊕
i∈Z
Ri, over k, together with a differential ∂R, a collection

of k-linear maps ∂i : Ri → Ri−1 such that ∂i ◦ ∂i+1 = 0 and which also satisfy the

Leibniz rule, that is, for r ∈ Ri and s ∈ Rj

∂i+j(rs) = ∂i(r)s+ (−1)ir∂j(s).

It is now natural to define morphisms between DGAs.

Definition 3.1.2. Let R and S be DGAs. We define a morphism of DGAs θ : R→ S as

a morphism of graded algebras, of degree zero, which is compatible with the differential.

Thus θ is a collection of morphisms of k-modules θi : Ri → Si such that:

(i) θi+j(rirj) = θi(ri)θj(rj) for ri ∈ Ri and rj ∈ Rj ,

(ii) θ(1R) = 1S ,

(iii) ∂Si ◦ θi = θi−1 ◦ ∂Ri for all i.

This now allows us to consider the category of DGAs which consists of all DGAs and

the morphism between them.

Definition 3.1.3. We define the forgetful functor on DGAs, (−)\, to be the functor

which sends a DGA, R, to the graded algebra R\ = ⊕
i∈Z
Ri.
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Thus the natural functor sends any DGA to its underlying graded algebra, i.e. it simply

“forgets” about the differential.

A DGA R can be thought of as a complex of k-modules.

R = · · · → R1
∂R1→ R0

∂R0→ R−1 → · · · .

A consequence of this is that we can calculate the homology of a DGA as follows.

For a DGA R, set Zi(R) = Ker ∂Ri and Bi(R) = Im ∂Ri+1. We can define the homology

groups of R in the normal way by Hi(R) = Zi(R)
Bi(R) .

For zi ∈ Zi(R) and zj ∈ Zj(R) we have by the Leibniz rule, that ∂Ri+j(zizj) = 0 and

∂(1R) = 0. Therefore zizj ∈ Zi+j(R) and 1R ∈ Z0(R).

Thus we have that Z(R) = ⊕
i∈Z
Zi(R) is a graded algebra. In fact it is a subalgebra of

R\.

Let zi ∈ Zi(R) and rj ∈ Rj . Then we have, by the Leibniz rule, that zi∂
R
j (rj) =

(−1)i∂Ri+j(zirj) and ∂Rj (rj)zi = ∂Ri+j(rjzi), so ziBj−1(R) and Bj−1(R)zi are contained

in Bi+j−1(R). So B(R) = ⊕
i∈Z
Bi(R) is a graded ideal of Z(R). Thus the homology

groups of R form a graded algebra H(R) = Z(R)
B(R) = ⊕

i∈Z
Hi(R).

Definition 3.1.4. For a DGA R we can define the opposite DGA, denoted Rop. This

consists of the same elements as R. However the product is reversed, thus r · s =

(−1)|r||s|sr, where · denotes multiplication in Rop.

We now define some special types of DGAs which we shall work with.

Definition 3.1.5. A DGA R is said to be commutative if rs = (−1)|r|s|sr, connective

if Hi(R) = 0 for i < 0 and coconnective if Hi(R) = 0 for i > 0.

The following simple examples show that we can consider some familiar classical alge-

braic objects as DGAs.

Examples 3.1.6. (i) Let A be an algebra over a commutative base ring, k, then we

can consider A as a DGA concentrated in degree 0:

· · · → 0→ 0→ A→ 0→ 0→ · · · .
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Furthermore a morphism f : A → A′ between two algebras over k gives a mor-

phism of DGAs

· · · // 0 //

0
��

0 //

0
��

A //

f
��

0 //

0
��

0 //

0
��

· · ·

· · · // 0 // 0 // A′ // 0 // 0 // · · · .

Thus we can think of the category of algebras over k as a subcategory of the

category of DGAs over k.

(ii) Any graded algebra B = ⊕Bi can be turned into a DGA with the addition of a

trivial differential:

B = · · · → B1
0→ B0

0→ B−1 → · · · .

A morphism, g = {gn}, between two graded algebras B and B′ can be thought

of as a morphism of DGAs:

· · · // B−2
//

g−2

��

B−1
//

g−1

��

B0
//

g0
��

B1
//

g1
��

B2
//

g2
��

· · ·

· · · // B′−2
// B′−1

// B′0
// B′1

// B′2
// · · · .

Before we move on it is worth setting out the following terminology and conventions

which we shall adopt throughout this document.

• For any element r belonging to a graded object we shall denote the degree of r

by |r|.

• We shall adhere to the Koszul sign convention; that is to say that whenever two

graded elements of degrees m and n are interchanged we introduce a sign (−1)mn.

• We shall use homological notation, that is, lower indices and differential of degree

-1.

3.1.2 Differential Graded Modules

We now look to give a brief introduction to Differential Graded Modules (or DG-

Modules). These are, unsurprisingly, a generalisation of modules to the differential

graded setting. As with DGAs DG-modules have an underlying complex structure

which makes them ideal for carrying out homological algebra.
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Throughout this section let R and S denote DGAs.

Definition 3.1.7. A Differential Graded left R-module (DG left R-module) is a graded

left R\-module M = ⊕Mi, so Ri.Mj ⊆ Mi+j , together with a a differential ∂M a

collection of maps ∂i : Mi → Mi−1 which satisfy ∂Mi ◦ ∂Mi+1 = 0 and the Leibniz rule,

that is, for r ∈ Ri and m ∈Mj

∂Mi+j(rm) = ∂Ri (r)m+ (−1)ir∂Mj (m).

A DG right R-module is similarly defined from a graded right R-module, N , together

with a differential ∂N a collection of maps ∂i : Ni → Ni−1 with ∂Ni ◦ ∂Ni+1 = 0 and the

Leibniz rule that is, for r ∈ Ri and n ∈ Nj

∂Ni+j(nr) = ∂Nj (n)r + (−1)jn∂Ni (r).

We will often denote a DG left R-module, M , by RM and a DG right R-module, N ,

by NR.

Definition 3.1.8. Let M and N be DG left R-modules. A morphism of DG-modules

θ : M → N is a morphism of graded R-modules compatible with the differential. Thus,

θ is a collection of morphisms of abelian groups θi : Mi → Ni such that:

(i) θi+j(rimj) = riθj(mj) for ri ∈ Ri and mj ∈Mj ,

(ii) ∂Ni ◦ θi = θi−1 ◦ ∂Mi for all i.

Observation 3.1.9. Let NR be a DG right R-module, then N is also a DG left Rop-

modules via r · n = (−1)|r||n|nr. Thus we can identify the DG right R-modules with

the DG left Rop-modules.

From now on when we refer to DG R-modules we shall mean the DG left R-modules

and similarly when we refer to the DG Rop-modules we mean the DG right R-modules.

Definition 3.1.10. We define the category of DG R-modules, denoted DMod(R), as the

category whose objects are DG left R-modules and whose morphisms are the morphisms

of DG left R-modules.

Similarly, we denote the category of DG Rop-modules, denoted DMod(Rop), as the

category whose objects are DG right R-modules (or DG left Rop-modules) and whose

morphisms are the morphisms of DG right R-modules.
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Since a DG module has an underlying graded module structure we can define a natural

functor on DG modules analogous to that which we defined on DGAs.

Definition 3.1.11. We define the forgetful functor on DG R-modules, (−)\, as the

functor which sends a DG R-module to the underlying graded R\-module by forgetting

the differential.

Definition 3.1.12. We define the suspension (or shift) functor of DG R-modules to

be the functor Σ : DMod(R) → DMod(R) which sends a DG R-module, M , to the

DG R-module ΣM with entries (ΣM)i = Mi−1 (i.e. Σ shifts the entries to the left)

together with the differential ∂ΣMi = −∂Mi−1. Thus for a element m ∈Mi we have that

Σm ∈ (ΣM)i−1. The R-action on ΣM is defined by Σ(rm) = (−1)|r|rΣm.

As with a DGAs, a DG R-module RM can be thought of a complex of k-modules

· · · ∂
M

→ M1
∂M→ M0

∂M→ M−1
∂M→ · · ·

and thus a setting for homological algebra.

In particular, as with DGAs, we can define the homology groups of a DG R-module,

M , in the normal way. Set Zi(M) = Ker ∂Mi and Bi(M) = Im ∂Mi+1, then the homology

groups are Hi(M) = Zi(M)
Bi(M) .

For ri ∈ Zi(R) and mj ∈ Zj(M) we have, by the Leibniz rule, that ∂Mi+j(rimj) = 0 so

rimj ∈ Zi+j(R). Thus we have that Z(M) = ⊕
i∈Z
Zi(M) is a graded Z(R)-module.

Let ri ∈ Zi(R) and mj ∈ Mj . Then we have, by the Leibniz rule, that ri∂
M
j (mj) =

(−1)i∂Mi+j(rimj) so riBj−1(M) is contained in Bi+j−1(M). Similarly for ri ∈ Rj and

mj ∈ Zj(M) we have that ∂Ri (ri)mj = ∂Mi+j(rimj) so Bi−1(R)mj is contained in

Bi+j−1(M). Thus for ri ∈ Hi(R) and mj ∈ Hj(M), we have that

ri mj = rimj ∈ Hi+j(M).

Hence H(M) = ⊕
i∈Z
Hi(M) is a graded H(R)-module .

Definition 3.1.13. As with complexes over an abelian group a DG R-module, M ,

with HiM = 0 for all i is said to be exact.

In the theory of modules over rings we can have a bimodule: an object with two different

yet compatible module structures at once. We can extend this concept to DG-modules

to obtain DG-bimodules as detailed in the following definition.
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Definitions 3.1.14. We define a DG left R-right S-module (or DG R-Sop-bimodule),

M , as a DG left R-module and a DG right S-module, such that the DG module

structures are compatible, that is , r(ms) = (rm)s for all r ∈ R, s ∈ S and m ∈ M .

We denote such a DG bimodule by RMS . We refer to DG R-Rop-bimodules simply as

DG R-bimodules.

A DG left R-left S-module (DG R-S-bimodule), M , is a DG left R-module and a DG left

S-module, such that the module structures are compatible, i.e, s(rm) = (−1)|r||s|r(sm).

We denote such a DG bimodule by R,SM . Similarly a DG right R- right S-module (DG

Rop-Sop-bimodule), N , is a DG right R-module and a DG right S-module, such that

the module structures are compatible, i.e, (nr)s = (−1)|r||s|(ns)r. We denote such a

DG bimodule by NR,S .

Definition 3.1.15. A DG R-bimodule RMR over a commutative DGA R is said to be

symmetric if, for r ∈ R and m ∈ M , that rm = (−1)|r||m|mr. In other words, the left

and right structures are determined by each other.

Definition 3.1.16. Let R be a DGA and M an DG-R-module. Then,

(i) M is homologically bounded to the right if Hi(M) = 0 for i� 0.

(ii) M is homologically bounded to the left if Hi(M) = 0 for i� 0.

(iii) M is homologically bounded if it is homologically bounded to both the left and

to the right.

(iv) M is degreewise finite over R if Hi(M) is finitely generated as an H0(R)-module,

for each i.

(v) M is finite over R if it is both degreewise finite and homologically bounded.

The following examples of DG modules build upon the examples of DGAs given in

Examples 3.1.6.

Examples 3.1.17. (i) Consider an algebra A as a DGA concentrated in degree zero.

Then a DG A-module is the same thing as a complex of A-modules in the ordinary

sense.

(ii) Let R = ⊕Ri be a graded k-algebra considered as a DGA with trivial differential.

Then a DG left-R-module consists of a graded R-module M = ⊕Mi together

with a differential ∂M which satisfies the property ∂M (rm) = (−1)|r|r∂M (m).
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3.1.3 Tensor products and homomorphisms

In classical homological algebra the adjoint pair of functors −⊗
R
− and HomR(−,−, )

play very important roles. It is therefore extremely useful to have a corresponding pair

of functors for the DG-modules over DGAs. We give the definition of such functors

below. Throughout this section R and S will denote DGAs over the base ring k.

Definition 3.1.18. Let MR be a DG Rop-module and RN a DG R-module. Then

by applying the forgetful functor we have a graded (R\)op-module M \ and a graded

R\-module N \. We define the graded k-module (M ⊗
R
N)\ by (M ⊗

R
N)\ = M \ ⊗

R\
N \

where

(M \ ⊗
R\
N \)n = {

∑
i+j=n

mi ⊗ nj | mi ∈Mi and nj ∈ Nj}.

We can now use this to define the tensor product, M ⊗
R
N , by defining the differential

∂
M ⊗

R
N

i (m⊗ n) = ∂Mm⊗ n+ (−1)|m|m⊗ ∂Nn.

If M has a DG S-Rop-bimodule structure then the tensor product M ⊗
R
N obtains a DG

S-module structure via the action s(m⊗n) = sm⊗n. Similarly if N has a DG R-Sop-

structure then M ⊗
R
N obtains a DG Sop-structure via the action (m⊗ n)s = m⊗ ns.

Definition 3.1.19. Let M and N be DG R-modules. By applying the forgetful

functor we have graded R\-modules M \ and N \. We define the graded k-module

(HomR(M,N))\ by

(HomR(M,N))\i = {f : M \ → N \ | f R\ linear with f(M \
j ) ⊆ N

\
i+j}.

We can now use this to define HomR(M,N), the complex of DG R-morphisms from M

to N , by defining the differential

∂HomR(M,N)(β) = ∂N ◦ β − (−1)|β|β ◦ ∂M .

If M has a DG R-Sop-bimodule structure then HomR(M,N) obtains the a DG S-

module structure via the action (s.θ)(m) = (−1)|s|(|θ|+|m|)θ(ms). Similarly if N has

a DG R-Sop-structure then HomR(M,N) obtains a DG Sop-structure via the action

(θ.s)(m) = (−1)|m||s|θ(m)s.
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As with modules over rings, the previous two definitions give us a pair of bifunctors:

−⊗
R
− : DMod(Rop)×DMod(R)→ DMod(k)

and

HomR(−,−) : DMod(R)×DMod(R)→ DMod(k).

These bifunctors gain DG-module structures when one or both of the entries is a DG-

bimodule in the following ways: For −⊗
R
− let RMS be a DG R-Sop-bimodule, NR a

DG Rop-module and SL a DG S-module. Then M ⊗
S
L has a DG R-module structure

via the action r(m⊗ n) = rm⊗ n and N ⊗
R
M has a DG Sop-module structure via the

action (n⊗m)s = n⊗ms.

Similarly, for the bifunctor HomR(−,−), let RMS be a DG R-Sop-bimodule and RN

a DG R-module. Then HomR(M,N) has a DG S-module structure via the action

(sθ)(m) = θ(ms) and HomR(N,M) has a DG Sop-module structure via the action

θs(m) = (θ(m))s.

We now conclude this section with some useful standard isomorphisms involving these

bifunctors, for proofs that these are indeed isomorphisms see [6, A.2.7-A.2.11].

Adjointness.

Let RMS be a a DG R-Sop-module. Then the functor M ⊗
S
− is the left adjoint of the

functor HomR(M,−). Hence, for a DG S-module SL and a DG R-module RN we have

an adjunction isomorphism:

HomS(L,HomR(M,N)) ∼= HomR(M ⊗
S
L,N),

described by γ 7→ (m⊗ l 7→ γ(l)(m)) and (l 7→ (m 7→ β(l ⊗m)))←[ β.

Associativity of tensor products.

Let L be a DG Rop-module, M a DG R-Sop-module and N a DG S-module. Then we

have the associativity isomorphism:

L⊗
R

(M ⊗
S
N) ∼= (L⊗

R
M)⊗

S
N , given by l ⊗ (m⊗ n) 7→ (l ⊗m)⊗ n.

Interaction with the suspension functor.

Let L be a DG Rop-module and let M and N be DG R-modules. Then for n ∈ Z we

have the following isomorphisms:

HomR(M,N) ∼= HomR(ΣnM,ΣnN).
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Given by φ 7→ Σnφ, where, for φ ∈ (HomR(M,N))i and m ∈Mj = (ΣnM)j−n. While

Σnφ is given by

(Σnφ)(m) = (−1)inφ(m) ∈ (ΣnN)i+j−n.

HomR(M,ΣnN) ∼= Σn HomR(M,N).

This is in fact an equality. To see this let m ∈Mj . Then

θ ∈ (HomR(M,ΣnN)i ⇔ θ(m) ∈ (ΣnN)i+j = Ni+j−n ⇔ θ ∈ (Σn HomR(M,N))i

so HomR(M \, ΣnN \) = Σn HomR(M \, N \). It is straightforward to check the the

differentials are also equal.

HomR(ΣnM,N) ∼= Σ−n HomR(M,N),

This is essentially the composition of the previous two isomorphisms.

(ΣnL)⊗
R
M ∼= Σn(L⊗

R
M).

This isomorphism is actually an equality.

L⊗
R

(ΣnM) ∼= Σn(L⊗
R
M).

Given by l ⊗m 7→ (−1)|l|nl ⊗m.

Where Σ above denotes the suspension functor for the appropriate categories.

Swap Isomorphism.

Let M be a DG R-module, N a DG Sop-module and L a DG R-Sop-bimodule. Then

we have the swap isomorphism:

HomR(M,HomSop(N,L)) ∼= HomSop(N,HomR(M,L))

where φ 7→ (n 7→ (m 7→ (−1)|m||n|φ(m)(n))).

3.1.4 Examples of DGAs

Two common examples of differential graded algebras are the endomorphism DGAs of

perfect complexes of modules and the Koszul complexes. We now give outlines of the

constructions of both of these examples.

Example 3.1.20 (Endomorphism DGAs). The following paragraphs, which mirror
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those of [12, Setup 4.1], give the definition and some properties of the endomorphism

DGAs of perfect complexes of modules.

Let A be a noetherian local commutative ring and L a bounded complex of finitely

generated projective A-modules with H(L) 6= 0. Consider E = HomA(L,L) as a

complex of A-modules.

We can define multiplication on E by composition: Let ε ∈ Ei. Then ε is a A-linear

map L
ε→ Σ−iL. Also let ε′ ∈ Ej . Then we define the product εε′ as the composition

Σ−j(ε) ◦ ε′. This is an A-linear map L
εε′→ Σ−(i+j)L, hence εε′ ∈ Ei+j . With this

multiplication we have that E is a DGA.

Furthermore the A-complex L becomes a DG left E -module via the scalar multiplication

εl = ε(l) for ε ∈ E and l ∈ L. This E -structure is compatible with the A-structure, so

L is a DG left A-left E -module. Moreover the identification map

E E E
∼=→ HomA(A,EL,A,EL)

is an isomorphism.

Finally, since A is commutative, each element a ∈ A gives a chain map L
a→ L given

by multiplication by a. This chain map is in E0. Hence we can define the morphism of

DGAs,

A
φE−→ E , a 7→ (L

a→ L).

Example 3.1.21 (Koszul Complexes). The following paragraphs give the definition

and some properties of Koszul complexes.

Let A be a noetherian local commutative ring, and a = (a1, . . . , an) be a sequence of

elements of the maximal ideal of A. The Koszul complex, K(a), of a is the DGA which

is the exterior algebra
∧
F on the free module F = Ae1 ⊕ · · · ⊕Aen, together with the

differential

∂
K(a)
j (es1 ∧ · · · ∧ esj ) =

∑
i

(−1)i+1asies1 ∧ · · · ∧ êsi ∧ · · · ∧ esj ,

where the hat indicates that esi is left out of the wedge product.

K(a) is a commutative DGA.

Since the degree zero component of K(a) is A itself we can define a morphism DGAs

A
φK(a)−→ K(a).
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3.1.5 The Derived Category for DGAs

In this section we construct the derived category of a DGA. The results in this section

correspond to the analogous results for the construction of the derived category of an

abelian category. We begin by obtaining the homotopy category for a DGA and show

that it is a triangulated category. We then construct the derived category from the

homotopy category by inverting the multiplicative set of all quasi-isomorphisms.

Throughout this section let R denote a DGA.

Remark 3.1.22. Note that if we consider a DG module as a complex, i.e. if we forget

about the DG module structure, then the following definitions and results match the

results for the construction of the derived category of abelian categories in Chapter 2

Sections 2.2.2 and 2.2.4.

As with morphisms of complexes of abelian groups we can define when two morphisms

of DG-modules are homotopic.

Definition 3.1.23. Let f, g : M → N be morphisms of DG-R-modules. Then f and g

are said to be homotopic if there is a morphisms of graded modules h = (hn) of degree

1, i.e. hn : Mn → Nn+1, such that

fn − gn = dNn+1hn + hn−1d
M
n

for all n ∈ Z. Such a collection of maps h is called a homotopy.

A morphism of DG R-modules f is called null homotopic if it is homotopic to the zero

map. We denote all the null homotopic maps from M to N by Null(M,N).

This allows us to define the homotopy category of a DGA.

Definition 3.1.24. We define the homotopy category of R, denoted K(R), to be the

category whose objects are DG R-modules and whose morphisms are of the form

HomK(R)(M,N) =
HomDMod(R)(M,N)

Null(M,N)
.

So, as with the case of abelian categories, the objects of the homotopy category for a

DGA, R, are simply the DG R-modules and the morphisms are equivalence classes of

the form f+Null(X,Y ) where f ∈ HomDMod(R)(M,N). As before we shall denote these

equivalence classes of morphisms by f and the composition of these classes, g◦f = g ◦ f ,

is well defined.
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As was the case with the homotopy category of an abelian category, the homotopy

category for a DGA is a triangulated category. We show this in an analogous way to

the proof for the abelian category case. We thus need to define the mapping cone for

a morphism of DG-modules.

Definition 3.1.25. Let f : M → N be a morphism of DG-R-modules. The mapping

cone of f , which we shall denote by C(f), is the DG R-module:

· · · → C(f)n+1

d
C(f)
n+1−→ C(f)n

d
C(f)
n−→ C(f)n−1 −→ · · ·

where (C(f))\ = ΣM \ ⊕N \ and d
C(f)
n = (−dMn−1, d

N
n + fn−1).

Theorem 3.1.26. The homotopy category K(R) defined above is a triangulated cate-

gory.

Proof. This is analogous to the proof of 2.2.11. We define distinguished triangles of

K(R) to be those triangles isomorphic in K(R) to triangles of the form

M
f→ N

i→ C(f)
p→ ΣM.

The suspension functor is simply the suspension functor for DG R-Modules as defined

in 3.1.12.

It remains to verify that the axioms for triangulated categories hold. For the details

see [14, Chapter IV, Theorem 1.9].

There is a link between the morphisms of the homotopy category and the bifunctor

HomR(−,−) as the following theorem shows.

Theorem 3.1.27. Let M and N be DG R-modules. Then

H0 HomR(M,N) = HomK(R)(M,N).

Proof. Recall that

H0 HomR(M,N) =
Z0 HomR(M,N)

B0 Hom(M,N)
,

where Z0 HomR(M,N) = Ker ∂
HomR(M,N)
0 and B0 HomR(M,N) = Im ∂

HomR(M,N)
1 .

Ker ∂
HomR(M,N)
0 consists of all R\-homomorphisms M \ → N \ such that

∂HomR(M,N)(µ) = 0,
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i.e. ∂N ◦µ−µ◦∂M = 0 so ∂Nµ = µ∂M . Thus Z0 HomR(M,N) consists of all morphisms

of DG R-modules from M to N .

Im ∂
HomR(M,N)
1 consists of all morphisms µ : M \ → N \ for which

µ = ∂(ρ)

for some ρ : M → ΣN , i.e µ = ∂N ◦ ρ+ ρ ◦ ∂M . Thus B0 HomR(M,N) consists of all

nullhomotopic morphisms from M to N .

Therefore

H0 HomR(M,N) =
HomDMod(R)(M,N)

Null(M,N)
= HomK(R)(M,N).

We now look to build the derived category of a DGA from its homotopy category. We

do this in the same manner as for the the derived category of an abelian category, by

localisation at the multiplicative set of all quasi-isomorphisms.

Definition 3.1.28. A morphism f : M → N in K(R) is called a quasi-isomorphism

if it induces an isomorphism on the cohomology, that is if H(f) : H(M)→ H(N) is an

isomorphism.

Proposition 3.1.29. The collection of all quasi-isomorphisms in K(R) forms a mul-

tiplicative set which is compatible with the triangulation.

Proof. This is essentially the same as the proof of Proposition 2.2.25.

We can now use the process of localisation given in Section 2.2.3 to obtain the definition

of the derived category of a DGA.

Definition 3.1.30. Let S be the multiplicative system of all quasi-isomorphisms in

K(R). Then the derived category of R, denoted D(R), is the triangulated category

S−1K(R).

Remark 3.1.31. The set theoretic issues surrounding the existence of the derived

category mentioned in Remark 2.2.17 are answered for the case of the derived category

of a DGA in [18].
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Definition 3.1.32. We can also define two subcategories of the derived category D(R),

namely the bounded derived category

Db(R) = {M ∈ D(R) |M is a bounded DG R-module}

and the finite derived category

Df (R) = {M ∈ D(R) |M is a finite DG R-module}.

3.1.6 The functors RHomR(−,−) and −
L
⊗R−.

In Section 3.1.3 we defined the bifunctors −⊗
R
− and HomR(−,−) for DG R-modules.

By following the techniques of 2.3.2 we now construct the associated derived functors

−
L
⊗
R
− : D(Rop)×D(R)→ D(k)

and

RHomR(−,−) : D(R)×D(R)→ D(k).

Throughout this section let R and S denote DGAs.

Before we can construct the derived functor we need that −⊗
R
− and HomR(−,−)

extend to bifunctors on the homotopy category.

Proposition 3.1.33. The bifunctors −⊗
R
− and HomR(−,−) preserve homotopies and

hence induce bifunctors

−⊗
R
− : K(Rop)×K(R)→ K(k)

and

HomR(−,−) : K(R)×K(R)→ K(k).

Proof. In the case of the bifunctor −⊗
R
− it suffices to show that the functors L⊗

R
−

and −⊗
R
K send nullhomotopic maps to nullhomotopic maps.

Let f : RM → RN be a nullhomotopic morphism of DG R-modules. Then there exists

a morphism of graded modules h such that fn = ∂Ni+1hi+hi−1∂
M
i . Applying the functor

L⊗
R
− gives a morphism idL⊗

R
f : L⊗

R
M → L⊗

R
N . We now need to show that this

morphism is also nullhomotopic.

Consider the family of morphisms of graded modules idL⊗
R
hi. Then for m ∈ Mp and
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l ∈ Lq with p+ q = i we have that:

(∂i+1 ◦ idL⊗
R
h+ idL⊗

R
h ◦ ∂i)(l ⊗m)

= (∂i+1 ◦ idL⊗
R
h)(l ⊗m) + (idL⊗

R
h ◦ ∂i)(l ⊗m)

= ∂i+1((−1)q(l ⊗ h(m)) + (idL⊗
R
h)(∂q(l)⊗m+ (−1)ql ⊗ ∂p(m))

= (−1)q∂q(l)⊗ h(m) + l ⊗ ∂p+1(h(m)) + (−1)q+1∂q(l)⊗ h(m) + l ⊗ h(∂p(m))

= l ⊗ ∂p+1(h(m)) + l ⊗ h(∂p(m)) = l ⊗ (∂p+1(h(m)) + h(∂p(m)))

= (idL⊗
R
fp)(l ⊗m)

Thus

(idL⊗
R
f)i = (∂

L⊗
R
N

i+1 ◦ idL⊗
R
h+ idL⊗

R
h ◦ ∂

L⊗
R
M

i )

and so L⊗
R
− sends nullhomotopic maps to nullhomotopic maps. We can show that

−⊗
R
K sends nullhomotopic maps to nullhomotopic maps in a similar fashion.

Thus the bifunctor −⊗
R
− preserves homotopies.

The proof for the bifunctor HomR(−,−) is similar.

We can look to apply the methods of section 2.3.2 to obtain the derived functors −
L
⊗
R
−

and RHomR(−,−). We begin by observing that the homotopy category of a DGA has

enough K-projectives and K-injectives.

Proposition 3.1.34. The homotopy category of a DGA R, denoted K(R) has enough

K-projective and K-injective objects.

Proof. For K-projectives see [4, 10.12.2.4 to 10.12.2.6] or [18, Section 3.1] and for K-

injectives see [18, Section 3.2].

The following definition deals with the case where we have DG bimodules.

Definition 3.1.35. Let RMR be a DG R-bimodule. A biprojective resolution of RMR

is a quasi-isomorphism of DG R-bimodules RPR → RMR such that RPR is K-projective

as both a DG R-module and a DG Rop-module.

Similarly a biinjective resolution of RMR is a quasi-isomorphism of DG R-bimodules

RMR → RIR such that RIR is K-injective as both a DG R-module and a DG Rop-

module.
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While K-projective resolutions always exist the same can not be said for biprojective

resolutions, however the following proposition provides some situations in which they

do.

Proposition 3.1.36. Let RMR be a DG R-bimodule. Then RMR has a biprojective

resolution if one of the following conditions hold:

(i) R is commutative and M is symmetric.

(ii) Ri = 0 for i� 0 and R\ is a projective k-module.

(iii) k is a field.

Proof. See [10, Proposition 1.3].

Now define the functors P (−) and I(−) which send a DG R-module to an arbitrary

K-projective resolution and K-injective resolution respectively. We also recall from

Definition 2.2.18 the functor Q : K(R) → D(R) which sends a DG R-module to itself

and a morphism, f : M → N in K(R) to

[
M f
��
NM

]
in D(R).

We can now construct the bifunctor

−
L
⊗
R
− : D(Rop)×D(R)→ D(k).

For a given X ∈ D(Rop) we have a functor

X ⊗
R
− : K(R)→ K(k).

The left derived functor of this is

Q(X ⊗
R
P (−)) : D(R)→ D(k),

where Q(−⊗
R
P (−)) is a bifunctor.

Similarly, for a given Y ∈ D(R) we have a functor

−⊗
R
Y : K(Rop)→ K(k)

. The left derived functor of this is

Q(P (−)⊗
R
Y ) : D(Rop)→ D(k),
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where Q(P (−)⊗
R
−) is also a bifunctor.

For all X ∈ Rop and Y ∈ R we have natural quasi-isomorphisms P (X)
πX−→ X and

P (Y )
πY−→ Y in K(Rop) and K(R) respectively.

This gives us, for all X in D(Rop) and Y in D(R), the following diagram

Q(X ⊗
R
P (Y )) Q(P (X)⊗

R
Y )

Q(P (X)⊗
R
P (Y ))

Q(πX ⊗
R

id)

gg

Q(id⊗
R
πY )
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where Q(−⊗
R
P (−)), Q(P (−)⊗

R
−) and Q(P (−)⊗

R
P (−)) are all bifunctors and the

morphisms are natural.

Furthermore for all X ∈ D(Rop) and Y ∈ D(R) we have that Q(πX ⊗
R
P (Y )) and

Q(P (X)⊗
R
πY ) are isomorphisms and so give rise to natural equivalences of bifunc-

tors. Thus we have that the bifunctors Q(−⊗
R
P (−)) and Q(P (−)⊗

R
−) are naturally

equivalent.

Thus we define the left derived bifunctor −
L
⊗
R
− by

X
L
⊗
R
− = Q(X ⊗

R
P (−))

and

−
L
⊗Y = Q(P (−)⊗

R
Y ).

So we have a bifunctor −
L
⊗
R
− : D(Rop) × D(R) → D(k) which can be calculated by

replacing either the first or second term with its K-projective resolution.

We can by a similar process construct the bifunctor

RHomR(−,−) : D(R)×D(R)→ D(k).

For a given X ∈ D(R) we have a functor

HomR(X,−) : K(R)→ K(k),

with right derived functor

RFX(−) = Q(HomR(X, I(−))) : D(R)→ D(k),
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where Q(HomR(−, I(−))) is a bifunctor. Similarly, for a given Y ∈ D(R) we have a

functor

HomR(−, Y ) : K(R)→ K(k),

with the right derived functor

RGY (−) = Q(HomR(P (−), Y )) : D(R)→ D(k),

where Q(HomR(P (−),−)) is a bifunctor.

For all X ∈ R we have natural quasi-isomorphisms P (X)
πX−→ X and X

ιX−→ I(X) in

K(Rop) and K(R) respectively.

So, for all X and Y in D(R) we have the following diagram:

Q(HomR(X,I(Y )))

Q(HomR(πX,id)) ))

Q(HomR(P (X),Y ))

Q(HomR(id,ιY ))uu
Q(HomR(P (X),I(Y )))

where Q(HomR(X, I(Y ))), Q(HomR(P (X), Y )) and Q(HomR(P (X), I(Y ))) are all bi-

functors and the morphisms are natural.

Furthermore, for all X and Y in D(R) we have that the morphisms Q(HomR(πX , I(Y )))

and Q(HomR(P (X), ιY )) are isomorphisms and so give rise to natural equivalences

of bifunctors. Thus, the bifunctors Q(HomR(−, I(−))) and Q(HomR(P (−),−)) are

naturally equivalent.

Thus we can define the right derived bifunctor RHomR(−,−) by

RHomR(X,−) = Q(HomR(X, I(−)))

and

RHomR(−, Y ) = Q(HomR(P (−), Y )).

Hence we have a bifunctor RHomR(−,−) : D(R)×D(R)→ D(k) which can be calcu-

lated by replacing the first term with a K-projective resolution or the second term by

a K-injective resolution.

We can now use the standard isomorphisms involving HomR(−,−) and −⊗
R
−, given in

Section 3.1.3, to obtain corresponding versions for the derived functors RHomR(−,−)

and −
L
⊗
R
−. Thus we have the following isomorphisms:

Adjointness.

Let RMS be a DG R-Sop-bimodule, SL a DG S-module and RN a DG R-module.
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We know that the functor M ⊗
S
− is the left adjoint of the functor HomR(M,−). Let

P → L be a K-projective resolution of L and N → I be a K-injective resolution of N .

Then we have that

RHomS(L,RHomR(M,N)) ∼= HomS(P,HomR(M, I)) ∼= HomR(M ⊗
S
P, I)

∼= RHomR(M
L
⊗
S
L,N).

So we have a version of the adjointness isomorphism for the derived functors

RHomR(−,−) and −
L
⊗
R
−.

We can use a the same method with the other standard isomorphisms given in section

3.1.3 to obtain the derived versions below.

Associativity of tensor products.

Let LR be a DG Rop-module, RMS a DG R-Sop-module and SN a DG S-module. Then

we have the associativity isomorphism,

L
L
⊗
R

(M
L
⊗
S
N) ∼= (L

L
⊗
R
M)

L
⊗
S
N.

Interaction with the suspension functor.

Let LR be a DG Rop-module and let RM and RN be DG R-module. Then for n ∈ Z
we have the following isomorphisms,

RHomR(M,N) ∼= RHomR(ΣnM,ΣnN),

RHomR(M,ΣnN) ∼= Σn RHomR(M,N),

RHomR(ΣnM,N) ∼= Σ−n RHomR(M,N),

(ΣnL)
L
⊗
R
M ∼= Σn(L

L
⊗
R
M),

L
L
⊗
R

(ΣnM) ∼= Σn(L
L
⊗
R
M).

Where Σ above denotes the suspension functor for the appropriate category.
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Swap Isomorphism.

Let RM be a DG R-module, NS a DG Sop-module and RLS a DG R-Sop-bimodule.

Then we have the swap isomorphism,

RHomR(M,RHomSop(N,L)) ∼= RHomSop(N,RHomR(M,L)).

3.2 Properties of Differential Graded Algebras and Dif-

ferential Graded Modules

3.2.1 Compact Differential Graded Modules

In this section we give the definition of a compact object of an arbitrary triangulated

category and show that in the case of the derived category of a DGA, R, that the

compact objects of D(R) are those objects which are finitely built from R. Having done

this we also give two examples of standard isomorphisms involving compact objects as

well as the statement of Keller’s Theorem which gives some criteria under which two

DGAs are derived equivalent.

Notation 3.2.1. For a triangulated category, T , with set indexed coproducts, and an

object, B, in T we denote by 〈B〉 the triangulated subcategory of T which consists of

the objects built from B using distinguished triangles, suspensions, direct summands

and set indexed coproducts.

Definition 3.2.2. Let T be a triangulated category with set indexed coproducts. An

object A in T is called compact if the functor HomT (A,−) respects set indexed co-

products. That is, for any coproduct,
∐
Xi, of objects in T the canonical isomorphism∐

HomT (A,Xi)→ HomT (A,
∐

Xi).

is a bijection.

An object B in T is called self compact if it is compact in the subcategory 〈B〉, i.e. if

the restricted functor HomT (B,−)|〈B〉 respects set indexed coproducts.

Proposition 3.2.3. Let R be a DGA and A and B be DG R-modules such that A

is a compact object and B a self compact object in D(R). Then the derived functors

RHomR(A,−) and RHomR(B,−)|〈B〉 respect set indexed coproducts.
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Proof. We want to show that RHomR(A,
∐
Xi) ∼=

∐
RHomR(A,Xi) in D(k), i.e that

Hn RHomR(A,
∐
Xi) ∼= Hn

∐
RHomR(A,Xi).

Consider Hn RHomR(A,
∐
Xi), by replacing A with a K-projective resolution P → A,

we get

Hn RHomR(P,
∐

Xi) ∼= Hn HomR(P,
∐

Xi) ∼= H0 HomR(P,
∐

ΣnXi)

∼= HomK(R)(P,
∐

ΣnXi) ∼= HomD(R)(P,
∐

ΣnXi) ∼=
∐

HomD(R)(P,Σ
nXi)

∼=
∐

HomK(R)(P,Σ
nXi) ∼=

∐
H0 HomR(P,ΣnXi) ∼= Hn

∐
HomR(P,Xi)

Hn

∐
RHomR(P,

∐
Xi).

Hence Hn RHomR(A,
∐
Xi) ∼= Hn

∐
RHomR(A,Xi) as required.

The proof for RHomR(B,−)|〈B〉 is essentially the same.

Definition 3.2.4. Let T be a triangulated category with set indexed coproducts.

Then T is called compactly generated if there exists a set, S , of compact objects of

T , for which Hom(S,X) = 0⇒ X = 0 for all S ∈ S .

Definition 3.2.5. Let T be a compactly generated triangulated category, then a set

S of compact objects of T is called a generating set if

(i) HomT (S , X) = 0⇒ X = 0,

(ii) S is closed under suspension, i.e. S ∈ S ⇒ ΣS ∈ S .

Example 3.2.6. For a DGA, R, the derived category D(R) is compactly generated

with generating set {ΣiR | i ∈ Z}. Alternatively, the set of all compact objects in

D(R) is also a generating set.

Definition 3.2.7. Let R be a DGA. A DG R-module M is finitely built from RR

in D(R) if M can be obtained from RR using finitely many distinguished triangles,

suspensions, direct summands and finite coproducts.

Proposition 3.2.8. Let R be a DGA and let M be finitely built from RR in D(R).

Then M is a compact object of D(R).
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Proof. This follows from the fact that R is compact and each of the constructions

preserve compactness.

Theorem 3.2.9. Let R be a DGA. Then a a DG R-module, M , is finitely built from

RR in D(R) if and only if it is a compact object of D(R).

Proof. Let S be the set of all objects which are finitely built from RR. Then by

Proposition 3.2.8, S consists entirely of compact objects in D(R) and is closed under

suspension. We can therefore use Thomason’s localisation theorem [23, Theorem 2.1].

Since S is a generating set for D(R) we have, from [23, Theorem 2.1.2], that the small-

est subcategory of D(R) which contains S that is closed with respect to coproducts

and distinguished triangles is D(R) itself.

Now from [23, Theorem 2.1.3] since S is closed under the formation of triangles and

direct summands we have that S consists of all of the compact objects of D(R).

We can now present two well known isomorphisms.

Tensor Evaluation

Let RM a DG R-module, RNS a DG R-Sop-bimodule and SL a DG S-module.

Then we have a morphism

HomR(RM,RNS)⊗
S
SL→ HomR(RM,RNS ⊗

S
SL)

given by φ⊗ l 7→ (m 7→ (−1)|m||l|φ(m)⊗ l).

This gives a morphism involving the derived version of the functors

RHomR(RM,RNS)
L
⊗
S
SL→ RHomR(RM,RNS

L
⊗
S
SL).

Note that if we set RM to be RR then these morphisms become isomorphisms. Further-

more, since the morphism respects distinguished triangles, suspensions, taking direct

summands and finite coproducts, we have for RM finitely built from R in D(R) the

Tensor Evaluation isomorphism:

RHomR(RM,RNS)
L
⊗
S
SL ∼= RHomR(RM,RNS

L
⊗
S
SL).

Hom Evaluation

Let RM a DG R-module, RNS a DG R-Sop-bimodule and LS a DG Sop-module.
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Then we have a morphism

HomSop(RNS , LS)⊗
R
RM → HomSop(HomR(RM,RNS), LS)

via θ ⊗m 7→ (η 7→ (−1)|η||m|θη(m)).

This gives a morphism involving the derived version of the functors

RHomSop(RNS , LS)
L
⊗
R
RM → RHomSop(RHomR(RM,RNS), LS).

As with the Tensor Evaluation above these morphisms become isomorphisms when we

set RM to be RR and, since the morphism respects distinguished triangles, suspensions,

taking direct summands and finite coproducts, we have for RM finitely built from R

in D(R) the Hom Evaluation isomorphism:

RHomSop(RNS , LS)
L
⊗
R
RM ∼= RHomSop(RHomR(RM,RNS), LS).

The following theorem, due to Keller, gives the conditions under which the derived

categories of two specific DGAs, are equivalent.

Theorem 3.2.10 (Keller’s Theorem). Let A be a DGA and let N be a K-projective DG

A-module which is compact in D(A) such that 〈N〉 = D(A) and let H = EndA(N).

Then D(A) ' D(H op).

Proof. See [18, Theorem 8.2].

3.2.2 Recollement of DGAs

The notion behind recollement is that, in certain situations, we can view a triangulated

category as being “glued together” from two other triangulated categories. In this

section we give the definition of a recollement of triangulated categories followed by a

theorem which gives conditions under which we have a recollement of derived categories

of DGAs. Both the definition and the theorem are taken from [27].

Definition 3.2.11. A recollement of triangulated categories is a diagram

T ′
i∗ // T

i!

]]

i∗

�� j∗ // T ′′

j∗

^^

j!

��
,
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consisting of triangulated categories and triangulated functors, satisfying

(i) (i∗, i∗), (i∗, i
!), (j!, j

∗) and (j∗, j∗) are adjoint pairs.

(ii) j∗i∗ = 0

(iii) i∗, j! and j∗ are full embeddings.

(iv) For every object X ∈ T we have distinguished triangles

(a) i∗i
!X → X → j∗j

∗X → Σi∗i
!X

(b) j!j
∗X → X → i∗i

∗X → Σj!j
∗X

where the arrows to and from X are the counit and unit morphisms respec-

tively.

Before we proceed we need the following piece of notation.

Notation 3.2.12. Let T be a triangulated category and let X be an object of T then

we have a full subcategory

X⊥ = {Y ∈ T |HomT (ΣiX,Y ) = 0 for all i}.

Theorem 3.2.13. Let R be a DGA and let B and C be DG R-modules. Then the

following are equivalent.

(i) There is a recollement

D(S)
i∗ // D(R)

i!

``

i∗

~~ j∗ // D(T )

j∗

``

j!

~~
,

where S and T are DGAs which satisfy i∗(SS) ∼= B and j!(TT ) ∼= C.

(ii) In the derived category D(R), the DG R-modules B and C satisfy the following.

(a) B is self compact,

(b) C is compact,

(c) B⊥ ∩ C⊥ = 0 and

(d) B ∈ C⊥.
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Proof. See [27, Theorem 3.3]

Furthermore, from [27, Remark 3.4], if R, B and C in the theorem above are known

we can construct the DGAs S and T . We do this by replacing B and C with K-

projective resolutions and setting E and F to be the endomorphism DGAs of B and

C respectively, then we set S = E op and T = F op.

We can also have that the functors i∗, i
!, j!, j

∗ and j∗, are as follows,

j!(−) = RCT
L
⊗
T
−,

i∗(−) = RBS
L
⊗
S
−, j∗(−) = RHomR(RCT ,−),

i!(−) = RHomR(RBS ,−), j∗(−) = RHomT (TC
∗
R,−)

where TC
∗
R = RHomR(RCT ,RRR).

3.2.3 Dualising DG-Modules

We now introduce the concept of dualising DG-modules. These are DG versions of

the dualising complexes for local noetherian rings and display many of the properties

of dualising complexes. The main reference for this section is [10] from which the

definitions and results are taken.

Before we give the definition of a dualising module it is useful first to have the following

notion.

Definition 3.2.14. Let R be a DGA and RXR a DG R-bimodule. A DG R-module

RM is X-reflexive if the biduality morphism

M −→ RHomRop(RHomR(M,X), X)

is an isomorphism.

Similarly a DG Rop-module NR is X-reflexive if the biduality morphism

N −→ RHomR(RHomRop(N,X), X)

is an isomorphism.

Definition 3.2.15. Let R be a DGA. We say that a DG R-bimodule RDR is dualising

if for any finite DG R-module RM and finite DG Rop-bimodule NR, the following

conditions hold:
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(i) D has both a biprojective and a biinjective resolution.

(ii) The DG R-module RHomR(M,D) and DG Rop-module RHomRop(N,D) are both

finite.

(iii) The DG R-modules M and D
L
⊗
R
M are D-reflexive, as are the DG Rop-modules

N and N
L
⊗
R
D.

(iv) R is D-reflexive as both a DG R-module and a DG Rop-module.

Remarks 3.2.16. It is worth noting that a dualising complex for a commutative

noetherian ring of finite Krull dimension is also a dualising DG-module when considered

in the DG context.

Unlike in the ring theoretical case, where a dualising complex for a commutative noethe-

rian local ring is unique up to the taking of shifts, we do not necessarily have that a

dualising DG-module for a DGA is unique.

The following result ,establishes the existence of dualising modules for a number of

DGAs.

Proposition 3.2.17. Let R be a DGA which is finite over the base ring, k. Let C be

a dualising complex for k and set D = RHomk(R,C). Suppose the following conditions

hold.

(i) D has biprojective and biinjective resolutions.

(ii) For any finite DG R-module RM (respectively finite DG Rop-module NR), the

DG k-module D
L
⊗
R
M (respectively N

L
⊗
R
D) is C-reflexive.

Then D is a dualising module for R.

Proof. See [10, Proposition 2.6].

Proposition 3.2.18. Let R be a connective DGA which is finite over the base ring k

and let C be a dualising complex for k. If either Ri = 0 for i� 0 and R\ is a projective

k-module or R is commutative then the DG R-bimodule RHomk(R,C) is dualising.

Proof. See [10, Proposition 2.7].

Proposition 3.2.19. Let R be a DGA over a field, k, with the following properties
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(i) R is concentrated in non-positive degrees, i.e. Ri = 0 for i > 0.

(ii) R0 = k and H−1(R) = 0

Then the DG R-bimodule Homk(R, k) is dualising.

Proof. See [10, Proposition 5.2].

In particular we have the following two theorems, [10, Theorems 2.1 and 2.4], which

establish the existence of dualising modules for both the Koszul complex and endomor-

phism DGAs.

Theorem 3.2.20. Let k be a commutative noetherian ring and C a dualising complex

for k. Then for K, the Koszul complex on a finite sequence of elements in k, we have

that the DG K-bimodule Homk(K,C) is dualising.

Theorem 3.2.21. Let k be a commutative noetherian ring and C a dualising complex

for k. Let P be a perfect complex of k-modules with H(P ) 6= 0 and E the endomorphism

DGA HomA(P, P ). Then the DG E -bimodule HomA(E , C) is dualising.

3.2.4 Gorenstein Differential Graded Algebras

As with dualising DG modules being a generalisation of the ring theory concept of

dualising complexes, the idea of a Gorenstein DGA is a generalisation of the ring

theoretical concept of a Gorenstein ring.

There have been a number of attempts to define Gorenstein conditions for some spe-

cial cases of augmented DGAs, firstly by Felix, Halperin and Thomas in [8], this was

followed by Avramov and Foxby who in [2] gave Gorenstein conditions for finite com-

mutative local DGAs.

The definition for a Gorenstein DGA given below is due to Frankild and Jørgensen and

was first introduced in [12]. Not only does this definition have the advantage that it

does not require any augmentation on the DGAs; it also does not require us to work

with only chain or cochain DGAs.

Definition 3.2.22. Let R be a DGA such that H0(R) is a noetherian ring. We call R

a Gorenstein DGA if it satisfies the following properties.

(G1) For M ∈ Df (R) and N ∈ Df (Rop) the biduality morphisms

RM → RHomRop(RHomR(RM,RRR),RRR)
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and

NR → RHomR(RHomRop(NR,RRR),RRR)

are isomorphisms.

(G2) The functors RHomR(−,RRR) and RHomRop(−,RRR) send Df (R) to Df (Rop)

and Df (Rop) to Df (R) respectively.

Remark 3.2.23. Note that if a DGA R is a Gorenstein DGA then, when considered

as a DG R-bimodule, R is a dualising DG R-module.

The following results, taken from [10], illustrate that Frankild and Jørgensen’s definition

of a Gorenstein DGA which we give above coincides with the previous definitions of

Gorenstein.

Theorem 3.2.24. Let R be a commutative DGA which satisfies the following condi-

tions.

(i) R is concentrated in non-negative degrees, i.e. Ri = 0 for i < 0.

(ii) R0 is a local ring with residue field k.

(iii) The H0(R)-module H(R) is finitely generated.

Then R is Gorenstein if and only if rankk ExtR(k,R) = 1.

This is [10, Theorem I] and shows that, for the appropriate class of DGAs, Frankild

and Jørgensen’s definition of a Gorenstein DGA coincides with that given by Avramov

and Foxby in [2].

The following result, [10, Theorem 5.3], provides one direction of the corresponding

cochain version.

Theorem 3.2.25. Let R be a DGA over a field, k, with the following properties.

(i) R is concentrated in non-positive degrees, i.e. Ri = 0 for i > 0.

(ii) R0 = k and H−1(R) = 0

(iii) H(R) is commutative.

If rankk ExtR(k,R) = 1 then R is Gorenstein.

79



Chapter 3. Differential Graded Algebras

Additionally this also shows that, again for the appropriate class of DGAs, that a DGA

which satisfies the Gorenstein conditions of Felix, Halperin and Thomas as given in [8]

also satisfies Frankild and Jørgensen’s definition.

The next theorem, [10, Theorem 5.5], gives a partial converse.

Theorem 3.2.26. Let R be a commutative DGA over a field, k, with the following

properties.

(i) R is concentrated in non-positive degrees, i.e. Ri = 0 for i > 0.

(ii) R0 = k and H−1(R) = 0.

If R is Gorenstein then rankk ExtR(k,R) = 1.
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Chapter 4

Derived Equivalence of Upper

Triangular DGAs

The question of when two derived categories of rings are equivalent has been studied

extensively. Morita theory answered the question of when two module categories of

rings are equivalent. In [28], Rickard applied the concept of tilting modules to develop

a version of Morita theory for the derived categories of rings. The question of when the

derived categories of DGAs are derived equivalent was answered by Keller, see Theorem

3.2.10.

The approach of Rickard was applied by Ladkani, in [20], to the situation of derived

equivalences of upper triangular matrix rings. We will extend the main results from

[20] to the more general case of upper triangular matrix DGAs. For this we will

make extensive use of the tool of recollements and in particular Theorem 3.2.13 due to

Jørgensen. The results in this chapter are an expansion on those presented in [22]

We begin in section 4.1 by introducing the upper triangular matrix DGA

Λ =

[
R M

0 S

]
,

where R and S are DGAs and RMS is a DG R-Sop-bimodule. Following from this we

define the DG Λ-modules

B =

[
R

0

]
and C =

[
M

S

]
.
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In Section 4.2, we are able to apply 3.2.13 to construct the recollement of the form

D(R)
i∗ // D(Λ)

i!

bb

i∗

|| j∗ // D(S)

j∗

bb

j!

||
,

where i∗(RR) ∼= B and j!(SS) ∼= C. By studying this recollement construction we

obtain a number of results which we shall utilise in the rest of the chapter.

In section 4.3 we turn our attention to the chapter’s main aim, a generalisation of

the main theorem from Ladkani to DGA’s. To do so we follow a method similar to

that used by Ladkani in the proof of [20, Theorem 4.5], by considering the DG-module

T = Σi∗X ⊕ j∗j
∗Λ where X is compact and 〈X〉 = D(R). We can apply Keller’s

Theorem 3.2.10 to prove the following theorem, our “first attempt” at a generalisation

of [20, Theorem 4.5].

Theorem. Let RX be a compact DG R-module such that 〈X〉 = D(R). Let RMS be a

DG R-Sop-bimodule which is compact as a DG R-module. Then for the DG Λ-module

T = Σi∗X ⊕ j∗j∗Λ set E = EndΛ(P ), where P is a K-projective resolution of T . Then

E is a DGA with D(Λ) ' D(E op).

To improve upon this first attempt we turn our attention to considering the structure

of P , the K-projective resolution of T . By doing this we are able to explicitly calculate

its endomorphism DGA. This leads to our main result, a complete generalisation of

[20, Theorem 4.5] for DGAs.

Theorem. Let X be a DG R-module such that RX is compact and 〈RX〉 = D(R). Let

RMS be compact as a DG R-module and let U and V be K-projective resolutions of X

and M respectively. Then for the upper triangular differential graded algebras

Λ =

[
R M

0 S

]
and Λ̃ =

[
S HomR(V,U)

0 HomR(U,U)op

]

we have that D(Λ) ' D(Λ̃).

A specific advantage of considering the DGA case, rather than the ring case, is that we

can do without a number of constraints required in the case of rings to ensure that the

derived equivalence was between two rings. By working with DGAs rather than rings

we can do away with such artificial restriction.

We conclude the chapter with a look at some special cases. In the first we reconsider

the restriction to the original case considered by Ladkani, involving just rings. We
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show that by making the same assumptions in our general theorem we obtain the same

equivalence as in [20, Theorem 4.5], so we do indeed have a generalisation.

Our second example briefly considers the special case where RX = RR. The final

example looks at DGAs over a field k with R self dual, in the sense that, Homk(R, k) ∼=
R as DG R-bimodules. This gives us the following result.

Corollary. Let R be a self dual finite dimensional DGA and S be a DGA, both over a

field k. Let RMS be compact as a DG R-module. Then

Λ =

[
R M

0 S

]
and Λ̃ =

[
S DM

0 R

]

are derived equivalent.

4.1 Upper Triangular DGAs and their DG Modules

Definition 4.1.1. Let R and S be DGAs and let RMS be a DG R-Sop-bimodule. An

upper triangular matrix DGA, Λ, takes the form

Λ =

[
R M

0 S

]
.

The elements of an upper triangular matrix DGA of degree i have the form[
ri mi

0 si

]
,

where ri ∈ Ri, si ∈ Si and mi ∈ Mi, whilst multiplication and addition are simply

given by the matrix multiplication and addition. Finally the differential is defined by

∂Λ

([
r m

0 s

])
=

[
∂Rr ∂Mm

0 ∂Ss

]
.

Notation 4.1.2. Throughout this chapter, unless specified otherwise, let R and S

be DGAs over a commutative base ring k and let RMS be a DG R-Sop-bimodule for

which there exist a quasi-isomorphism RVS → RMS of DG R-Sop-bimodules where V

is K-projective as a DG R-module.

Furthermore, let Λ denote the upper triangular matrix DGA

[
R M

0 S

]
.
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With regard to the conditions on the DG R-Sop-bimodule RMS , it is worth observing

that when the base ring k is a field we have that any DG-bimodule RMS is quasi-

isomorphic to some DG-bimodule RVS , where V is K-projective as a DG-R-module.

Definition 4.1.3. Let eR =

[
idR 0

0 0

]
and eS =

[
0 0

0 idS

]
. We shall define B and C

to be the DG Λ-Modules generated by eR and eS respectively. Thus,

B = ΛeR ∼=

[
R

0

]
and C = ΛeS ∼=

[
M

S

]
.

Where B has the differential

∂

([
r

0

])
=

([
∂Rr

0

])

and C has the differential

∂

([
m

s

])
=

([
∂Mm

∂Ss

])
.

The aim is to construct a recollement involving these objects. To do this we shall use

Theorem 3.2.13 but before we can do this we need to show that the DG-modules B

and C satisfy the conditions of the theorem.

Lemma 4.1.4. Λ ∼= B ⊕ C in D(Λ) and hence both B and C are K-projective DG

Λ-modules which are compact in D(Λ).

Proof. Define Θ : Λ→ B ⊕ C and Φ : B ⊕ C → Λ by

Θ

([
r m

0 s

])
=

([
r

0

]
,

[
m

s

])

and

Φ

(([
r

0

]
,

[
m

s

]))
=

[
r m

0 s

]
.

It is plain to see that Θ and Φ are inverses of each other so we just need to check that

they are homomorphisms of DG-modules which we can do directly, beginning with Θ.

Addition:

Θ

([
r m

0 s

]
+

[
r′ m′

0 s′

])
= Θ

([
r + r′ m+m′

0 s+ s′

])
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=

([
r + r′

0

]
,

[
m+m′

s+ s′

])

=

([
r

0

]
,

[
m

s

])
+

([
r′

0

]
,

[
m′

s′

])

= Θ

([
r m

0 s

])
+Θ

([
r′ m′

0 s′

])
.

Λ-linearity:

Θ

([
r m

0 s

][
r′ m′

0 s′

])
= Θ

([
rr′ rm′ +ms′

0 ss′

])

=

([
rr′

0

]
,

[
rm′ +ms′

ss′

])
=

[
r m

0 s

]([
r′

0

]
,

[
m′

s

])

=

[
r m

0 s

]
Θ

([
r′ m′

0 s′

])
.

Finally we need to show that Θ commutes with the differentials:

∂B⊕C ◦Θ

([
r m

0 s

])
= ∂B⊕C

([
r

0

]
,

[
m

s

])
=

([
∂Rr

0

]
,

[
∂Mm

∂Ss

])

= Θ

([
∂Rr ∂Mm

0 ∂Ss

])
= Θ ◦ ∂Λ

([
r m

0 s

])
.

Φ can be shown to be a homomorphism in a similar way. Hence both Θ and Φ are

isomorphisms and so Λ ∼= B ⊕ C.

Lemma 4.1.5. B ∈ C⊥ as DG-modules and hence in D(Λ).

Proof. Let C
f→ B be a morphism of DG-modules. It suffices to show that f = 0 and

since

[
0

idS

]
generates C we only need to show that f

([
0

idS

])
= 0.

Let f

([
0

idS

])
=

[
r

0

]
for some r ∈ R. Then

f

([
0

idS

])
= f

(
eS .

[
0

idS

])
= eSf

([
0

idS

])
=

[
0 0

0 idS

][
r

0

]
= 0
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as required, hence f = 0 and so B ∈ C⊥.

Lemma 4.1.6. B⊥ ∩ C⊥ = 0 in D(Λ).

Proof. Let X ∈ B⊥ ∩ C⊥, then HomD(Λ)(Σ
iB,X) = 0 and

HomD(Λ)(Σ
iC,X) = 0 for each i.

H iX ∼= H i HomΛ(Λ,X) ∼= HomK(Λ)(Λ,Σ
iX)

∼= HomD(Λ)(Λ,Σ
iX) ∼= HomD(Λ)(B ⊕ C,ΣiX)

∼= HomD(Λ)(B,Σ
iX)⊕HomD(Λ)(C,Σ

iX)

∼= 0⊕ 0 = 0

for all i. Hence we have that X ∼= 0 in D(Λ) and so B⊥ ∩ C⊥ = 0.

Lemma 4.1.7. Let F = EndΛ(B) and G = EndΛ(C). Then F op ∼= R and G op ∼= S

as Differential Graded Algebras.

Proof. Since

[
idR

0

]
is a generator of B each element of EndΛ(B) depends entirely on

where it sends

[
idR

0

]
. For each r ∈ R define the homomorphism fr as the element of

F which sends

[
idR

0

]
to

[
r

0

]
.

We can now define φ : Rop → F by φ(r) = fr. Since elements of F depend entirely

on where they send

[
idR

0

]
this is obviously a bijection. It remains to show that φ is a

homomorphism.

It is obvious that φ(r + r′) = φ(r) + φ(r′) and

φ(r)φ(r′)

([
idR

0

])
= frfr′

([
idR

0

])
= fr

([
r′

0

])

=

[
r′ 0

0 0

]
fr

([
idR

0

])
=

[
r′ 0

0 0

][
r

0

]
=

[
r′r

0

]

= fr′r

([
idR

0

])
= φ(r′r)(eR) = φ(r.r′)

([
idR

0

])
,
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where . indicates multiplication in Rop.

Furthermore ∂E ◦ φ(r) = ∂E (fr) and for all b ∈ B,

∂E (fr)(b) = ∂Bfr(b)− (−1)|r|fr∂
B(b)

= ∂B((−1)|b||r|br)− (−1)|r|(−1)(|b|−1)|r|∂B(b)r

= (−1)|b||r|(∂B(b)r + (−1)|b|b∂R(r))− (−1)|b||r|∂B(b)r

= (−1)|b|(|r|+1)b∂R(r)

φ ◦ ∂R(r) = f∂Rr and f∂Rr(b) = (−1)|b|(|r|−1)b∂R(r) = ∂F (fr)(b).

So we have ∂F ◦ φ(r) = φ ◦ ∂R(r).

We therefore have that φ is an isomorphism and so Rop ∼= F .

Now let g ∈ G . Since C is generated by

[
0

idS

]
we know that g depends entirely on

where it sends

[
0

idS

]
. Let g

([
0

idS

])
=

[
m

s

]
.

However g

(
eS .

[
0

idS

])
= g

([
0

idS

])
= eSg

([
0

idS

])
= eS

[
m

s

]
=

[
0

s

]
, so m = 0 and

hence g

([
0

idS

])
=

[
0

s

]
. So for each s ∈ S we can define the homomorphism gs ∈ G

as the element of G which sends

[
0

idS

]
to

[
0

s

]
.

So we can define a map θ : Sop → G sending s 7→ gs which is an isomorphism by a

proof similar to that for φ above and therefore Sop ∼= G .

4.2 A Recollement Situation

In the previous section we showed that the DG Λ-modules B and C satisfy the condi-

tions of Theorem 3.2.13. By applying the theorem we obtain the following recollement.

D(R)
i∗ // D(Λ)

i!

bb

i∗

|| j∗ // D(S)

j∗

bb

j!

||
.
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Five of the functors are given by

j!(−) = ΛCS
L
⊗
S
−,

i∗(−) = ΛBR
L
⊗
R
−, j∗(−) = RHomΛ(ΛCS ,−),

i!(−) = RHomΛ(ΛBR,−), j∗(−) = RHomS(SC
∗
Λ,−).

Here SC
∗
Λ = RHomΛ(ΛCS , Λ).

We shall give a number of results, obtained from this recollement, which we will find

to be of great use in the next section.

Remarks 4.2.1. We have from Theorem 3.2.13 that i∗(R) ∼= B and j!(S) ∼= C.

Furthermore it is easy to see that the functor i∗(−) = ΛBR
L
⊗
R
− sends a DG R-module,

X, to the DG Λ-module,

[
X

0

]
.

Proposition 4.2.2. The DG S-Λop-bimodule SC
∗
Λ = RHomΛ(ΛCS , Λ) has the follow-

ing properties.

(i) C∗ ∼=
S

[
0 S

]
Λ

as a DG-left-S-right-Λ-module where
[
0 S

]
has the differential

∂[ 0 S ]
([

0 s
])

=
[
0 ∂Ss

]
.

(ii) SC
∗
Λ is a K-projective object over both S and Λ.

Proof. (i) Note that, since C is K-projective over Λ,

RHomΛ(ΛCS , Λ) ∼= HomΛ(ΛCS , Λ).

Let θ ∈ HomΛ(C,Λ), then θ

([
0

idS

])
=

[
r m

0 s

]
.

Then

θ

([
0

idS

])
= θ

(
eS .

[
0

idS

])
= eS .θ

([
0

idS

])
= eS

[
r m

0 s

]
=

[
0 0

0 s

]
,
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so θ

([
0

idS

])
=

[
0 0

0 s

]
.

Therefore for every s ∈ S we can define θs ∈ HomΛ(C,Λ) to be the element which

sends

[
0

idS

]
to

[
0 0

0 s

]
.

We can now use this to define a map Θ : HomΛ(C,Λ) →
[
0 S

]
given by Θ(θs) =[

0 s
]
. This map is obviously a bijection so we only need to check that it is a homo-

morphism DG S-Λop-bimodules.

Addition:

Θ(θs + θs′) = Θ(θs+s′) =
[
0 s+ s′

]
=
[
0 s

]
+
[
0 s′

]
= Θ(θs) +Θ(θs′).

S-linearity:

(s′θs)

([
0

idS

])
= θs

([
0

idS

]
.s′

)
= θs

([
0

s′

])

= θ

([
0 0

0 s′

][
0

idS

])
=

[
0 0

0 s′

]
θs

([
0

idS

])

=

[
0 0

0 s′

][
0 0

0 s

]
=

[
0 0

0 s′s

]
= θs′s

([
0

idS

])
so s′θs = θs′s, and hence

Θ(s′θs) = Θ(θs′s) =
[
0 s′s

]
= s′

[
0 s

]
= s′Θ(θs).

Λ-linearity: (
θs

[
r m

0 s′

])([
0

idS

])
=

(
θs

([
0

idS

]))[
r m

0 s′

]

=

[
0 0

0 s

][
r m

0 s′

]
=

[
0 0

0 ss′

]
= θss′
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so θs

[
r m

0 s′

]
= θss′ and hence

Θ

(
θs

[
r m

0 s′

])
= Θ(θss′) =

[
0 ss′

]

=
[
0 s

] [r m

0 s′

]
= Θ(θs)

[
r m

0 s′

]
.

Finally we need to show that Θ respects the differentials:

First we observe that

∂HomΛ(C,Λ)(θs)

([
0

idS

])
= (∂Λθs − (−1)|s|θs∂

C)

([
0

idS

])

= ∂Λ

([
0 0

0 s

])
=

[
0 0

0 ∂Ss

]
= θ(∂Ss)

Using this gives us that

Θ ◦ ∂HomΛ(C,Λ)(θs) = Θ(θ(∂Ss)) =
[
0 ∂Ss

]
= ∂[ 0 S ]

([
0 s

])
= ∂[ 0 S ] ◦Θ(θs)

so Θ ◦ ∂HomΛ(C,Λ) = ∂[ 0 S ] ◦Θ(θs) as required.

Hence Θ is an isomorphism of DG S-Λop-bimodules.

(ii) To see that C∗ is K-projective as a DG S-module it suffices to observe that C∗ ∼= S

as DG S-modules. It remains to show now that C∗ is also K-projective over Λ. We do

this by showing that C∗ ∼=
[
0 S

]
is a direct summand of Λ as a DG-right-Λ-module.

First observe that
[
R M

]
is a DG-right-Λ-module with the differential

∂[R M ]
([
r m

])
=
[
∂Rr ∂Mm

]
.

Now define Φ : ΛΛ →
[
R M

]
Λ
⊕
[
0 S

]
Λ

such that

Φ

([
r m

0 s

])
=
([
r m

]
,
[
0 s

])
.
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It is clear that Φ is bijective. It remains to show that it is a homomorphism of DG-

modules.

Addition:

Φ

([
r m

0 s

]
+

[
r′ m′

0 s′

])
= Φ

([
r + r′ m+m′

0 s+ s′

])

=
([
r + r′ m+m′

]
,
[
0 s+ s′

])
=
([
r m

]
,
[
0 s

])
+
([
r′ m′

]
,
[
0 s′

])
= Φ

([
r m

0 s

])
+ Φ

([
r′ m′

0 s′

])
.

Λ-linearity:

Φ

([
r m

0 s

]
.

[
r′ m′

0 s′

])
= Φ

([
rr′ rm′ +ms′

0 ss′

])

=
([
rr′ rm′ +ms′

]
,
[
0 ss′

])
=
([
r m

]
,
[
0 s

])
.

[
r′ m′

0 s′

]

= Φ

([
r m

0 s

])
.

[
r′ m′

0 s′

]
.

So Φ is a homomorphism of DG-modules. Hence Λ ∼=
[
R M

]
⊕
[
0 S

]
as right Λ-

modules. Therefore C∗Λ
∼=
[
0 S

]
Λ

is a direct summand of ΛΛ and thus a K-projective

DG Λop-module.

Lemma 4.2.3. In the set up of the recollement we have that:

(i) j∗(Λ) ∼= SS in D(S),

(ii) j∗(SS) ∼= ΛC

Λ

[
M
0

] in D(Λ).

Proof. (i) j∗(Λ) = RHomΛ(ΛCS , Λ) = SC
∗ ∼= SS.

(ii) Since C∗ is a K-projective DG S-module we have that

j∗(SS) = RHomS(SC
∗
Λ,S S) ∼= HomS(SC

∗
Λ,S S) ∼= HomS

(
S

[
0 S

]
Λ
,S S

)
.
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However, the DG S-module
S

[
0 S

]
is generated by

[
0 idS

]
so, for all s ∈ S, we can

define φs ∈ HomS(SC
∗
Λ, SS) to be the element which sends

[
0 idS

]
to s. We can now

define the map

Φ : HomS(SC
∗
Λ, SS)→ ΛC

Λ

[
M
0

]
given by Φ(φs) =

[
0

s

]
, where

[
0

s

]
denotes the element

[
0

s

]
+

[
M

0

]
in

ΛC

Λ

[
M
0

] . It is

plain that Φ is a bijection so it just remains to show that it is also a homomorphism of

DG Λ-modules.

Addition.

Φ(φs + φs′) = Φ(φs+s′) =

[
0

s+ s′

]

=

[
0

s

]
+

[
0

s′

]
= Φ(φs) + Φ(φs′)

Λ-linearity.

Note that ([
r m

0 s

]
φs′

)([
0 1

])
= φs′

([
0 idS

] [r m

0 s

])

= φs′
([

0 s
])

= sφs′
([

0 idS

])
=
[
0 ss′

]
= φss′

([
0 idS

])
.

Thus

[
r m

0 s

]
φs′ = φss′ and so we have that

Φ

([
r m

0 s

]
φs′

)
= Φ(φss′) =

[
0

ss′

]

=

[
r m

0 s

][
0

s′

]
=

[
r m

0 s

]
Φ(φs′).
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4.3 Derived Equivalences of Upper Triangular DGA’s

We are now almost in the position where we can make a start on what is the main aim

of this paper, to obtain a generalised version of [20, Theorem 4.5] for upper triangular

DGAs. In Theorem 4.3.1, which is the first major step towards our goal, we obtain a

derived equivalence between D(Λ) and D(E ), where E is the endomorphism DGA of

a K-projective resolution of the DG-module T = Σi∗X ⊕ j∗j∗Λ. We then follow this

up by constructing a K-projective resolution for T in proposition 4.3.4 which in turn

is followed by the structure of the endomorphism DGA E in Proposition 4.3.8. The

remainder of this section is involved with the details of computing a quasi-isomorphism

between the DGA E and the upper triangular matrix DGA Λ̃ =

[
S HomR(V,U)

0 HomR(U,U)op

]
with the final result being Theorem 4.3.13, the main result of this chapter which gives

us a derived equivalence between the upper triangular matrix DGAs Λ and Λ̃.

We now make our first attempt at generalising [20, Theorem 4.5] for DGAs. For

this we follow a similar method as Ladkani, by introducing the DG Λ-module T =

Σi∗X ⊕ j∗j∗Λ.

Theorem 4.3.1. Let X be a DG R-module such that RX is compact and 〈RX〉 = D(R).

Let RMS be compact as a DG R-module. Let E = EndΛ(P ), where P is a K-projective

resolution of T = Σi∗X ⊕ j∗j∗Λ. Then E is a DGA with D(Λ) ' D(E op).

Proof. Our aim is to apply Keller’s theorem 3.2.10. To do this we need to show that

T is compact and that 〈T 〉 ∼= D(Λ). We begin with the compactness of T .

Since T is a direct sum it is sufficient to show that both its direct summands i∗X and

j∗j
∗Λ are compact.

To show that i∗X is compact we first note that by adjointness

HomD(Λ)(i∗X,
∐

Ak) ' HomD(R)(X, i
!(
∐

Ak))

and that i!(
∐
Ak) = RHomΛ(B,

∐
Ak). Also, since B is compact it is straightforward

to show that i!(
∐
Ak) ∼=

∐
i!(Ak) in D(Λ).

We therefore have that

HomD(Λ)(i∗X,
∐

Ak) ' HomD(R)(X, i
!(
∐

Ak))

∼= HomD(R)(X,
∐

i!Ak) ∼=
∐

HomD(R)(X, i
!Ak)

'
∐

HomD(Λ)(i∗X,Ak)
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so i∗X is compact as required.

To show that j∗j
∗Λ is compact we observe from Lemma 4.2.3 that j∗j

∗Λ ∼=
C[
M
0

] . We

know that C is compact and since there is a distinguished triangle

[
M

0

]
→ C → C[

M
0

]
in D(Λ) it is sufficient to show that

[
M

0

]
is compact.

Since

[
M

0

]
∼= i∗M = B

L
⊗R M and both B and M are compact we have that

HomD(Λ)(B
L
⊗
R
M,
∐

Ak) ∼= H0 RHomΛ(B
L
⊗
R
M,
∐

Ak)

∼= H0 RHomR(M,RHomΛ(B,
∐

Ak)) ∼= H0 RHomR(M,
∐

RHomΛ(B,Ak))

∼=
∐

H0 RHomR(M,RHomΛ(B,Ak)) ∼=
∐

H0 RHomΛ(B
L
⊗
R
M,Ak)

∼=
∐

HomD(Λ)(i∗M,Ak).

So

[
M

0

]
is compact and since C is also compact we have that j∗j

∗Λ ∼=
C[
M
0

] is compact,

and so T = Σi∗X ⊕ j∗j∗Λ is compact.

It remains to show that 〈T 〉 = D(Λ). Since 〈Λ〉 = D(Λ) it is sufficient to show that

Λ ∈ 〈T 〉.

Since Λ ∼= B ⊕ C we only have to show that both B and C are in 〈T 〉.

To show that B is contained in 〈T 〉 we first observe that the functor i∗(−) respects

the operations of taking distinguished triangles, set indexed coproducts, quotients and

suspensions. This gives us that i∗(〈X〉) ⊆ 〈i∗(X)〉 for all X ∈ D(R). Hence

B = i∗R ∈ i∗(D(R)) = i∗ 〈X〉 ⊆ 〈i∗X〉 ⊆ 〈T 〉 .

To show that C ∈ 〈T 〉 we first observe that
C[
M
0

] ∼= j∗j
∗Λ ∈ 〈T 〉 so if we can show

that

[
M

0

]
∈ 〈T 〉 then C is in 〈T 〉. To show this we first observe that 〈X〉 = D(R) so

RM can be built from X. Since i∗ preserves the possible constructions, we can build[
M

0

]
= i∗M from i∗X ∈ 〈T 〉.

Hence we have that both B and C ∈ 〈T 〉 and therefore that Λ ∈ 〈T 〉 so 〈T 〉 = D(Λ).
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We are now in a position to apply Theorem 3.2.10 to get that D(Λ) ' D(E op).

Our aim now is to find a K-projective resolution of T in the above theorem so that we

can calculate E . For this we first need the following lemmas.

Lemma 4.3.2. Let U be a K-projective resolution of a DG R-module X. Then

[
U

0

]

is a K-projective resolution of the DG Λ-module

[
X

0

]
.

Proof. Let J be an exact DG Λ-module. Then

HomΛ

([
U

0

]
, J

)
∼= HomΛ(B ⊗R U, J) ∼= HomR(U,HomΛ(B, J)).

Since both U and B are K-projective we have that this is exact and hence

[
U

0

]
is

K-projective.

Remark 4.3.3. From definition of RMS we have a quasi-isomorphism RVS
f→ RMS

where V is K-projective over R. Also for the DG R-module RX we can choose a

quasi-isomorphism RU
g→ RX where U is a K-projective resolution.

We can now prove the following proposition about the structure of P , a K-projective

resolution of T .

Proposition 4.3.4. Let T = Σi∗X ⊕ j∗j
∗Λ as defined in Theorem 4.3.1. Then T

has a K-projective resolution P = Σ

[
U

0

]
⊕W over Λ where W is the mapping cone

associated with the morphism

[
V

0

] [
f
0

]
−→

[
M

S

]
.

Proof. By lemma 4.3.2 we have that

[
U

0

]
is a K-projective resolution of i∗X =

[
X

0

]

and that

[
V

0

]
is a K-projective resolution of

[
M

0

]
over Λ.

95



Chapter 4. Derived Equivalence of Upper Triangular DGAs

We now wish to find a K-projective resolution of j∗j
∗Λ. To do this we first recall that

j∗j
∗Λ =

C[
M
0

] .
We now consider the morphism [

V

0

] [
f
0

]
−→

[
M

S

]

of DG Λ-modules. We can use this to obtain a distinguished triangle[
V

0

] [
f
0

]
−→

[
M

S

]
−→W −→ Σ

[
V

0

]

in D(Λ).

We can now use this to obtain the diagram[
M

0

]
// C // C/

[
M
0

]
// Σ

[
M

0

]

[
V

0

]'

OO

// C //W

∃

OO

// Σ

[
V

0

]'

OO

of distinguished triangles in D(Λ) so there exists a quasi-isomorphism W → C/
[
M
0

]
.

By Lemma 2.3.3 we also have that W is K-projective and hence a K-projective resolu-

tion of C/
[
M
0

] ∼= j∗j
∗Λ.

We now have K-projective resolutions for both direct summands of T and hence T has

the K-projective resolution, P = Σ

[
U

0

]
⊕W .

Now that we have a K-projective resolution for T in Theorem 4.3.1 we can try to

calculate the endomorphism DGA, E = EndΛ(T ). However before we do so we need to

take a closer look at the mapping cone W .

Remark 4.3.5. W is the mapping cone of

[
V

0

] [
f
0

]
−→

[
M

S

]
so

W \ =

[
M

S

]\
⊕Σ

[
V

0

]\
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i.e any element w ∈W \ is of the form w =

[
[ms ]

[ v0 ]

]
. In addition W is equipped with the

differential

∂W =

∂C
[
f 0
0 0

]
0 −∂

[
V
0

]
 .

and the quasi-isomorphism W → C/
[
M
0

]
in the proof of proposition 4.3.4 is given by

[
[ms ]

[ v0 ]

]
7→

[
0

s

]
.

Lemma 4.3.6. The mapping cone W is isomorphic, in K(Λ), to

[
Z

S

]
where Z is exact

and the mapping cone of f .

Proof. Since Z is the mapping cone of f we have a distinguished triangle in of the form

V
f−→M

h−→ Z
k−→ ΣV.

We can use this to construct the following distinguished triangle in K(Λ)

[
V

0

] [
f
0

]
−→

[
M

S

] [
h
1

]
−→

[
Z

S

] [
k
0

]
−→ Σ

[
V

0

]
.

Which in turn we can use to obtain the diagram of distinguished triangles in K(R):

[
V

0

] [
f
0

]
//

[
M

S

] [
h
1

]
//

[
Z

S

] [
k
0

]
//

∃

��

Σ

[
V

0

]

[
V

0

] [
f
0

]
//

[
M

S

]
//W // Σ

[
V

0

]
.

Hence there exists an isomorphism

[
Z

S

]
→W .

Finally since Z is the mapping cone of a quasi-isomorphism it is exact.
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Lemma 4.3.7. Let A and B be DG R-modules. Then

HomR(A,B) ∼= HomΛ

([
A

0

]
,

[
B

0

])

as complexes of abelian groups.

Furthermore EndR(A) ∼= EndΛ

([
A

0

])
as DGA’s.

Proof. Define Θ : HomR(A,B)→ HomΛ

([
A

0

]
,

[
B

0

])
by Θ(φ) =

[
φ 0

0 0

]
.

It is easy to see that Θ is an isomorphism of complexes of abelian groups. In addition

for the case B = A, Θ becomes an isomorphism of DGA’s.

The following proposition gives the structure of E which by Theorem 4.3.1 is derived

equivalent to the upper triangular matrix DGA Λ.

Proposition 4.3.8. Let X be a DG R-module such that RX is compact and 〈RX〉 =

D(R). Let RMS be compact as a DG R-module. Let E = EndΛ(P ), where P is a

K-projective resolution of T = Σi∗X ⊕ j∗j∗Λ. Then

E ∼=

[
HomR(U,U) HomΛ(W,Σ

[
U
0

]
)

HomΛ(Σ
[
U
0

]
,W ) HomΛ(W,W )

]
.

Where U is a K-projective resolution of X and W is the mapping cone of the morphism[
V

0

] [
f
0

]
−→

[
M

S

]
where RVS is a K-projective resolution of RMS over R.

Proof. Since P = ΣU ⊕W consists of a direct sum we have that

E = HomΛ(P, P ) =

[
HomΛ(Σ

[
U
0

]
, Σ
[
U
0

]
) HomΛ(W,Σ

[
U
0

]
)

HomΛ(Σ
[
U
0

]
,W ) HomΛ(W,W )

]
.

Furthermore from Lemma 4.3.7 above we have that

HomΛ

(
Σ

[
U

0

]
, Σ

[
U

0

])
∼= HomΛ

([
U

0

]
,

[
U

0

])
∼= HomR(U,U).

Our attention now turns to obtaining a quasi-isomorphism between the entries of E op
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and the corresponding entries of Λ̃ =

[
S HomR(V,U)

0 HomR(U,U)op

]
. This will allow us to

construct an isomorphism between the two DGAs.

Lemma 4.3.9. The complex of abelian groups HomΛ

(
Σ

[
U

0

]
,W

)
is exact.

Proof. For all i we have that

Hi HomΛ

(
Σ

[
U

0

]
,W

)
∼= H0 HomΛ

([
U

0

]
, Σi−1W

)

∼= HomK(Λ)

([
U

0

]
, Σi−1W

)
∼= HomK(Λ)

([
U

0

]
, Σi−1

[
Z

S

])
.

However, for θ ∈ HomΛ

([
U

0

]
, Σi−1

[
Z

S

])
such that θ

([
u

0

])
=

[
z

s

]
for some u ∈

U, z ∈ Z and s ∈ S, we have[
z

s

]
= θ

([
u

0

])
= θ

([
1 0

0 0

][
u

0

])
=

[
1 0

0 0

]
θ

([
u

0

])

=

[
1 0

0 0

][
z

s

]
=

[
z

0

]
.

So s = 0 and so θ

([
u

0

])
=

[
z

0

]
.

Hence HomΛ

(
Σ

[
U

0

]
, Σi−1

[
Z

S

])
∼= HomΛ

(
Σ

[
U

0

]
, Σi−1

[
Z

0

])
and by Lemma 4.3.7

this is isomorphic to HomR(ΣU,Σi−1Z).

Taking this together with U being K-projective and the exactness of Z gives us that

HomK(Λ)

([
U

0

]
, Σi−1

[
Z

S

])
∼= HomK(Λ)

(
U,Σi−1Z

)
∼= HomD(Λ)

(
U,Σi−1Z

) ∼= 0.

Hence Hi HomΛ

(
Σ

[
U

0

]
,W

)
∼= 0 for all i and so HomΛ

(
Σ

[
U

0

]
,W

)
is exact.
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Lemma 4.3.10. There is a quasi-isomorphism of DGAs

α : Sop → HomΛ(W,W ).

Proof. Define α : Sop → HomΛ(W,W ) by α(s̃) =

[
gs̃ 0

0 ls̃

]
where gs̃

([
m

s

])
=

(−1)|s̃||s|

[
ms̃

ss̃

]
and ls̃

([
v

0

])
= (−1)|s̃|(|v|+1)

[
vs̃

0

]
.

We first want to show that α is a homomorphism of Differential Graded Algebras.

It is straightforward to check that α respects the operations of addition and multipli-

cation. So it remains to check that α is compatible with the differential,

∂HomΛ(W,W )(α(s̃)) = ∂HomΛ(W,W )

([
gs̃ 0

0 ls̃

])

= ∂W

[
gs̃ 0

0 ls̃

]
− (−1)|s̃|

[
gs̃ 0

0 ls̃

]
∂W

=

∂C
[
f 0
0 0

]
0 −∂

[
V
0

]
[gs̃ 0

0 ls̃

]
− (−1)|s̃|

[
gs̃ 0

0 ls̃

]∂C
[
f 0
0 0

]
0 −∂

[
V
0

]


=

∂Cgs̃
[
f 0
0 0

]
ls̃

0 −∂
[
V
0

]
ls̃

− (−1)|s̃|

gs̃∂C gs̃
[
f 0
0 0

]
0 −ls̃∂

[
V
0

]


=

∂Cgs̃ − (−1)|s̃|gs̃∂
C

[
f 0
0 0

]
ls̃ − (−1)|s̃|gs̃

[
f 0
0 0

]
0 −∂

[
V
0

]
ls̃ + (−1)|s̃|ls̃∂

[
V
0

]
 .

Considering each of the terms in this matrix separately, starting with the upper left

term, we get (
∂Cgs̃ − (−1)|s̃|gs̃∂

C
)([m

s

])

= ∂C

(
(−1)|s̃||s|

[
ms̃

ss̃

])
− (−1)|s̃|gs̃

([
∂M (m)

∂S(s)

])

= (−1)|s̃||s|

[
∂M (ms̃)

∂S(ss̃)

]
− (−1)|s̃|(−1)|s̃|(|s|−1)

[
∂M (m)s̃

∂S(s)s̃

]

= (−1)|s̃||s|

[
∂M (m)s̃+ (−1)|s|m∂S(s̃)

∂S(s)s̃+ (−1)|s|s∂S(s̃)

]
− (−1)|s̃||s|

[
∂M (m)s̃

∂S(s)s̃

]
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= (−1)|s̃||s|

[
(−1)|s|m∂S(s̃)

(−1)|s|s∂S(s̃)

]
= (−1)|∂

S(s̃)||s|

[
m∂S(s̃)

s∂S(s̃)

]

= g∂S(s̃)

([
m

s

])
,

So ∂Cgs̃ − (−1)|s̃|gs̃∂
C = g∂S(s̃).

By a similar argument we also have for the lower right entry that

−∂
[
V
0

]
ls̃ + (−1)|s̃|ls̃∂

[
V
0

]
= l∂S(s̃).

Finally for the upper right entry we have([
f 0

0 0

]
ls̃ − (−1)|s̃|gs̃

[
f 0

0 0

])([
v

0

])

=

[
f 0

0 0

](
(−1)|s̃|(|v|+1)

[
vs̃

0

])
− (−1)|s̃|gs̃

([
f(v)

0

])

(−1)|s̃|(|v|+1)

[
f(vs̃)

0

]
− (−1)|s̃|(−1)|s̃||v|

[
f(v)s̃

0

]

(−1)|s̃|(|v|+1)

[
f(v)s̃

0

]
− (−1)|s̃|(|v|+1)

[
f(v)s̃

0

]
= 0.

Substituting these values back into the matrix gives us that

∂HomΛ(W,W )(α(s̃)) =

[
g∂S(s̃) 0

0 l∂S(s̃)

]
= α(∂S(s̃)).

Hence we have that α is a homomorphism of Differential Graded Algebras. It remains

to show that it is also a quasi-isomorphism.

Let θ ∈ HomΛ

(
W,C/

[
M
0

])
such that θ

([
[ms ]

[ v0 ]

])
=

[
0

s

]
.

This quasi-isomorphism gives us the homomorphism of complexes of abelian groups

HomΛ(W, θ) : HomΛ(W,W )→ HomΛ

(
W,C/

[
M
0

])
.

Define β = HomΛ(W, θ) ◦ α : Sop → HomΛ

(
W,C/

[
M
0

])
. Then β is a homomorphism
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of complexes of abelian groups with

β(s̃)

([
[ms ]

[ v0 ]

])
= θ

(
(−1)|s||s̃|

[[
ms̃
ss̃

]
[ v0 ]

])
= (−1)|s||s̃|

[
0

ss̃

]
.

Now let ψ ∈ HomΛ

(
W,C/

[
M
0

])
. Then for any m ∈M, s ∈ S and v ∈ V we have that

ψ

([
[ms ]

[ v0 ]

])
=

[
0

s̃

]
for some s̃ ∈ S. Hence we have

ψ

([
[ms ]

[ v0 ]

])
=

[
0

s̃

]
=

[
0 0

0 1

][
0

s̃

]
=

[
0 0

0 1

]
ψ

([
[ms ]

[ v0 ]

])
= ψ

([
[ 0
s ]

[ 0
0 ]

])
.

Furthermore

ψ

([
[ms ]

[ v0 ]

])
= ψ

([
[ 0
s ]

[ 0
0 ]

])
=

[
0 0

0 s

]
ψ

([
[ 0

1 ]

[ 0
0 ]

])
.

So each element of HomΛ

(
W,C/

[
M
0

])
depends entirely on where it sends

[
[ 0

1 ]

[ 0
0 ]

]
.

Therefore, for every s ∈ S we have that β(s) is the element of HomΛ

(
W,C/

[
M
0

])
which sends

[
[ 0

1 ]

[ 0
0 ]

]
to

[
0

s

]
.

Since elements of HomΛ

(
W,C/

[
M
0

])
depend entirely on where they send

[
[ 0

1 ]

[ 0
0 ]

]
and

since

[
0

s

]
6=

[
0

s′

]
for all s, s′ ∈ S with s 6= s′ we have that β is a bijection and so an

isomorphism of complexes of abelian groups.

Furthermore, since W is K-projective and θ is a quasi-isomorphism we have that

HomΛ(W, θ) is a quasi-isomorphism and therefore since β is an isomorphism we have

that α must also be a quasi-isomorphism.

Lemma 4.3.11. There exists a quasi-isomorphism of complexes of abelian groups

Ψ : HomR(V,U)→ HomΛ

(
W,Σ

[
U

0

])
,

such that

Ψ(θ)

([
[ms ]

[ v0 ]

])
= (−1)|θ|

[
θ(v)

0

]
.
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Proof. Consider the distinguished triangle[
V

0

] [
f
0

]
→

[
M

S

]
ι→W

π→ Σ

[
V

0

]

in K(Λ).

Since W is the mapping cone of

[
f

0

]
we have that π is given by π

([
[ms ]

[ v0 ]

])
=

[
v

0

]
.

By applying the functor HomΛ

(
−, Σ

[
U

0

])
we get a distinguished triangle

← HomΛ

([
M

S

]
, Σ

[
U

0

])
← HomΛ

(
W,Σ

[
U

0

])

π∗← HomΛ

(
Σ

[
V

0

]
, Σ

[
U

0

])
← HomΛ

(
Σ

[
M

S

]
, Σ

[
U

0

])
in K(Ab).

Now let θ ∈ HomΛ

([
M

S

]
, Σi

[
U

0

])
. Then, since

[
M

S

]
is generated by

[
0

idS

]
as a

DG-Λ-module, we have that θ depends entirely upon where it sends

[
0

idS

]
.

Let θ

([
0

idS

])
=

[
u

0

]
. Then

[
u

0

]
= θ

([
0

idS

])
= θ

([
0 0

0 idS

][
0

idS

])
=

[
0 0

0 idS

]
θ

([
0

idS

])
=

[
0 0

0 idS

][
u

0

]
= 0,

so θ = 0 and hence HomΛ

([
M

S

]
, Σi

[
U

0

])
= 0 for all i.

Hence the distinguished triangle above shows that

π∗ : HomΛ

(
Σ

[
V

0

]
, Σ

[
U

0

])
→ HomΛ

(
W,Σ

[
U

0

])

is a quasi-isomorphism.

We can now use this along with the suspension Σ and the isomorphism Θ defined in
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the proof of Lemma 4.3.7 to obtain the diagram

HomR(V,U)
Θ−→ HomΛ

([
V

0

]
,

[
U

0

])
Σ(−)−→

HomΛ

(
Σ

[
V

0

]
, Σ

[
U

0

])
π∗−→ HomΛ

(
W,Σ

[
U

0

])
.

Since each of the maps in the diagram is a quasi-isomorphism we can use them to define

the quasi-isomorphism Ψ : HomR(V,U)→ HomΛ

(
W,Σ

[
U

0

])
by the composition

Ψ = π∗ ◦Σ(−) ◦Θ.

Finally for θ ∈ HomR(V,U) we have that

Ψ(θ) = π∗ ◦Σ ◦Θ(θ)

= π∗Σ

([
θ 0

0 0

])

= π∗

(
(−1)|θ|

[
θ 0

0 0

])

= (−1)|θ|

[
θ 0

0 0

]
◦ π.

So for

[
[ms ]

[ v0 ]

]
∈W , we have that

Ψ(θ)

([
[ms ]

[ v0 ]

])
= (−1)|θ|

[
θ 0

0 0

]
◦ π

([
[ms ]

[ v0 ]

])

= (−1)|θ|

[
θ 0

0 0

]([
v

0

])
= (−1)|θ|

[
θ(v)

0

]
.

Remark 4.3.12. The right DG S-module structure on V gives us a left DG S-module

structure on HomR(V,U). In addition HomR(V,U) is a left DG-HomR(U,U)-module.

Hence we have that

[
S HomR(V,U)

0 HomR(U,U)op

]
is a DGA.

104



Chapter 4. Derived Equivalence of Upper Triangular DGAs

We can now combine the previous lemmas to obtain the principle result of this chapter,

a version of [20, Theorem 4.5] for DGAs.

Theorem 4.3.13. Let X be a DG R-module such that RX is compact with 〈RX〉 =

D(R) and let RMS be compact as a DG R-module.

Then for the upper triangular differential graded algebras

Λ =

[
R M

0 S

]
and Λ̃ =

[
S HomR(V,U)

0 HomR(U,U)op

]

where U is a K-projective resolution of X and RVS is a K-projective resolution over R

of RMS. We have that D(Λ) ' D(Λ̃).

Proof. From Theorem 4.3.1 and Proposition 4.3.8 we have that D(Λ) ' D(E op) where

E =

[
HomR(U,U) HomΛ(W,Σ

[
U
0

]
)

HomR(Σ
[
U
0

]
,W ) HomΛ(W,W )

]
.

We therefore only need to show that there is a quasi-isomorphism of DGA’s from Λ̃op

to E .

From Lemma 4.3.10 we have that there exists a quasi-isomorphism

α : Sop → HomΛ(W,W ).

Hence we can define the map

Φ :

[
HomR(U,U) HomR(V,U)

0 Sop

]
→

[
HomR(U,U) HomΛ(W,Σ

[
U
0

]
)

HomR(Σ
[
U
0

]
,W ) HomΛ(W,W )

]
,

by Φ

([
φ θ

0 s

])
=

([
φ (−1)|θ|Ψ(θ)

0 α(s)

])

where Ψ : HomR(V,U) → HomΛ

(
W,Σ

[
U

0

])
is the quasi-isomorphism from Lemma

4.3.11.

We now need to show that Φ is a morphism of DGA’s.

Both addition and compatibility with the differential follow from the fact that α is a

morphism of differential graded algebras.
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Let . denote multiplication in Sop. Let

[
φ θ

0 s

]
∈ Λ̃i and

[
φ′ θ′

0 s′

]
∈ Λ̃j ; then we have

Φ

([
φ θ

0 s

])
Φ

([
φ′ θ′

0 s′

])
=

[
φ (−1)iΨ(θ)

0 α(s)

][
φ′ (−1)jΨ(θ′)

0 α(s′)

]

=

[
φφ′ (−1)jφΨ(θ′) + (−1)iΨ(θ)α(s′)

0 α(s)α(s′)

]

=

[
φφ′ (−1)jφΨ(θ′) + (−1)iΨ(θ)α(s′)

0 α(s.s′)

]
and

Φ

([
φ θ

0 s

][
φ′ θ′

0 s′

])
= Φ

([
φφ′ φθ + θ.s′

0 s.s′

])

=

[
φφ′ (−1)(i+j)Ψ(φθ′ + (−1)ijs′θ)

0 α(s.s′)

]
.

However

(−1)(i+j)Ψ((φθ′ + (−1)ijs′θ))

([
[ms ]

[ v0 ]

])

= (−1)(i+j)Ψ(φθ′)

([
[ms ]

[ v0 ]

])
+ (−1)(i+j)(−1)ijΨ(s′θ)

([
[ms ]

[ v0 ]

])

= (−1)(i+j)(−1)(i+j)

[
φθ′(v)

0

]
+ (−1)(i+j)(−1)ij(−1)(i+j)

([
(s′θ)(v)

0

])

= φ

[
θ′(v)

0

]
+ (−1)ij(−1)j(i+(i+1))

[
θ(vs′)

0

]

= φ

[
θ′(v)

0

]
+ (−1)j(i+1)

[
θ(vs′)

0

]

= (−1)jφΨ(θ′)

([
[ms ]

[ v0 ]

])
+ (−1)j(i+1)(−1)iΨ(θ)

([[
ms′

ss′

][
vs′
0

]])

= ((−1)jφΨ(θ′) + (−1)iΨ(θ)α(s′))

([
[ms ]

[ v0 ]

])
.
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So (−1)jφΨ(θ′) + (−1)iΨ(θ)α(s′) = (−1)(i+j)Ψ((φθ′ + (−1)ijs′θ)) and therefore

Φ

([
φ θ

0 s

])
Φ

([
φ′ θ′

0 s′

])
= Φ

([
φ θ

0 s

][
φ′ θ′

0 s′

])
.

We therefore have that Φ is a morphism of Differential Graded Algebras. Furthermore,

from lemma 4.3.9, we have that HomΛ

(
Σ

[
U

0

]
,W

)
is exact, and so the map

0→ HomΛ

(
Σ

[
U

0

]
,W

)

is a quasi-isomorphism.

Taking these together with the fact that α : Sop → HomΛ(W,W ) is a quasi-isomorphism

we have that Φ is a quasi-isomorphism.

Hence E ' Λ̃op and so

D(Λ) ' D(E op) ' D(Λ̃).

4.4 Examples

We shall conclude with some examples. In the first example we will show that by taking

R and S to be k-algebras and making the same assumptions as in [20], we obtain what

is in essence the same result.

Definition 4.4.1. An R-module X is called rigid if ExtiR(X,X) = 0 for all i 6= 0.

Theorem 4.4.2. Let R and S be rings and RMS a R-S-bimodule such that RM is

compact in D(R). Assume that when R and S are considered as DGAs then the DG-

bimodule RMS is quasi-isomorphic to RVS, which is a K-projective DG R-module. Let

RX be a compact and rigid R-module with 〈X〉 = D(R) and ExtnR(RM,RX) = 0 for

all n 6= 0. Then the triangular matrix rings

Λ =

[
R M

0 S

]
and Λ̃ =

[
S HomR(M,X)

0 EndR(X)op

]

are derived equivalent.
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Proof. By considering the rings R and S and modules M and X to be DGA’s and

DG-modules respectively we can apply Theorem 4.3.13 to get that the DGA’s[
R M

0 S

]
and

[
S HomR(V,U)

0 HomR(U,U)op

]

are derived equivalent, where U is a K-projective resolution of X.

Since HomR(U,U) = RHomR(X,X) we have that

H i HomR(U,U) = H i RHomR(X,X) = ExtiR(X,X) = 0,

for all i 6= 0, since X is rigid, and

H0 HomR(U,U) = H0 RHomR(X,X) = EndR(X).

Similarly, since HomR(V,U) = RHomR(M,X), we have that

H i HomR(V,U) = H i RHomR(M,X) = ExtiR(M,X) = 0,

for all i 6= 0, and

H0 HomR(V,U) = H0 RHomR(M,X) = HomR(M,X).

Hence we have that H i

[
S HomR(V,U)

0 HomR(U,U)op

]
= 0 for all i 6= 0 and

H0

[
S HomR(V,U)

0 HomR(U,U)op

]
=

[
S HomR(M,X)

0 EndR(X)op

]
.

We therefore have that the matrix ring

[
S HomR(M,X)

0 EndR(X)op

]
is derived equivalent to the

DGA

[
S HomR(V,U)

0 HomR(U,U)op

]
, and so derived equivalent to the matrix ring

[
R M

0 S

]
.

Our next example considers the special case obtained when we take RX = RR.

Corollary 4.4.3. Let RMS be compact as a DG R-module. Then the triangular matrix
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DGAs

Λ =

[
R M

0 S

]
and Λ̃ =

[
S HomR(V,R)

0 R

]
where V is K-projective over R and is quasi-isomorphic to RMS, are derived equivalent.

For the next example we require the idea of the duality on DModR which we define

next.

Definition 4.4.4. Let R be a finite dimensional DGA over a field k. Then we can define

the duality on DModR by D : DModR→ DModRop where D(−) = Homk(−, k).

The final example below considers the case where the DGA’s R and S are over some

field k and R is self dual in the sense of the above definition.

Theorem 4.4.5. Let R be a finite dimensional and self dual in the sense that DR ∼= R

in the derived category of DG-bi-R-modules and let RMS be compact as a DG R-module.

Then

Λ =

[
R M

0 S

]
and Λ̃ =

[
S DM

0 R

]
are derived equivalent.

Proof. From Corollary 4.4.3 we have that[
R M

0 S

]
and

[
S HomR(V,R)

0 R

]

are derived equivalent, where RVS is quasi-isomorphic to RMS and RV is K-projective.

Since R is self dual we have that

HomR(V,R) ∼= HomR(V,DR) = HomR(V,Homk(R, k))

∼= Homk(R⊗R V, k) ∼= Homk(V, k) = DV.

Furthermore, applying the functor D(−) to the quasi-isomorphism V →M gives us the

quasi-isomorphism DM → DV . This in turn allows us to define a quasi-isomorphism[
S DM

0 R

]
→

[
S DV

0 R

]
.
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Thus

[
S DM

0 R

]
and

[
S DV

0 R

]
are derived equivalent and hence

[
R M

0 S

]
and

[
S DM

0 R

]

are derived equivalent.
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Chapter 5

Gorenstein DGAs and

Generalised Gorenstein

Morphisms

In [29], Sharp showed that for a Cohen-Macaulay local ring, A, with a dualising module,

Ω, there are quasi-inverse equivalences

P(A)

Ω⊗
A
−

//
I (A)

HomA(Ω,−)
oo

where I (A) is the category of finitely generated A-modules of finite injective dimension

and P(A) is the category of finitely generated A-modules of finite projective dimension.

This was then greatly expanded upon in the work of Avramov and Foxby in [3], with

their theory of dualising (or Foxby) equivalence. They showed that for a local ring R

with a dualising complex D the adjoint functors

D(R)

D
L
⊗
R
−

//
D(R)

RHomR(D,−)
oo

restrict to give quasi-inverse equivalences between the Auslander and Bass classes:

A (R) = {M ∈ Db(R) : D
L
⊗
R
M ∈ Db(R) and the unit morphism

ηM : M → RHomR(D,D
L
⊗
R
M) is an isomorphism }

and
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B(R) = {M ∈ Db(R) : RHomR(D,M) ∈ Db(R) and the counit morphism

εM : D
L
⊗
R

RHomR(D,M)→M is an isomorphism }.

They also showed that this restricts further to an equivalence between the subcategories

of bounded complexes of flat modules and bounded complexes of injective modules.

Frankild and Jørgensen, in [11], considered dualising equivalences in a generalised set-

ting, in which they define the Auslander and Bass classes in such a way as to ensure

that there is a quasi-inverse equivalence of categories between them. By taking this

approach they are then able to apply it to DGAs R and S and a DG-bimodule R,SM .

Then the adjoint pair of functors

D(Rop)

−
L
⊗
R
M

//
D(S)

RHomS(M,−)
oo

restricts to quasi-inverse equivalences between the associated Auslander and Bass cat-

egories:

AM (Rop) = {L ∈ D(Rop) : ηL is an isomorphism}

and

BM (S) = {N ∈ D(S) : εN is an isomorphism}

where ηL and εN denote the unit morphism, ηL : L→ RHomR(M,M
L
⊗
R
L), and counit

morphism, εN : M
L
⊗
R

RHomR(M,L)→ L, of the adjunction respectively.

In the first section of this chapter we follow the approach of Frankild and Jørgensen

to obtain, for a DGA, R, and a dualising DG-R-module, D, the associated Auslander

and Bass classes AD(R) and BD(R). Then we introduce bounded and finite versions,

the bounded versions being the closest equivalent for DGAs to the Auslander and

Bass classes for rings as given by Avramov and Foxby. We show that, as well as the

quasi-inverse equivalence of categories between AD(R) and BD(R), we also have quasi-

inverse equivalences between the bounded and finite versions of the Auslander and Bass

classes. In the rest of the section we introduce two types of DGA, which are referred

to as the connective and coconnective cases. A number of the results in this chapter

will be for these two types of DGA. We conclude the section by extending some results

of Avramov and Foxby to both the connective and coconnective cases of DGAs.

In the second section we turn our attention to obtaining a number of Gorenstein the-

orems for DGAs. In ring theory there exist a number of Gorenstein Theorems which
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generally take the form of showing for a given type of ring, R, that R being Gorenstein

is equivalent to certain other properties of R. In [6] Christensen gives a number of

these Gorenstein theorems for rings. We are particularly interested in [6, Theorems

3.1.12 and 3.2.10]; these theorems tell us that for a local ring R which admits a dualis-

ing complex, R being Gorenstein is equivalent to the Auslander and Bass classes of R

being maximal. In the second section we generalise these results to DGAs. We show

that, in both the connective and coconnective cases, for a DGA R to be Gorenstein is

equivalent to the bounded and finite versions of the Auslander and Bass classes being

maximal.

In the third section we look to extend the ring theory concept of a Gorenstein morphism.

A definition of a Gorenstein morphism for DGAs was given by Frankild and Jørgensen

in [12]. Unfortunately this definition does not appear to allow some useful ring theory

results to be extended to the general situation of DGAs, in particular base change for

the Auslander class. The definition of a Gorenstein morphism that we present here is

also a further generalisation in that we shall work in the situation of DG-bimodules

considered as generalised morphisms of DGAs. This approach was used by Keller in

[19] and Pauksztello in [24]. For DGAs R and S we consider a DG-bimodule SMR to

be a generalised morphism from S to R via the functor

D(R)
SMR

L
⊗
R
−
// D(S) .

Once we have given our definition of a generalised Gorenstein morphism we then show

that this definition allows the base change for the Auslander class to be generalised to

DGAs and also that the main result for Gorenstein morphisms of DGAs from [12], the

ascent theorem of Gorenstein DGAs, still holds with our new definition. The section

concludes by looking at the case where we have a homomorphism of DGAs, ρ : R→ S,

and giving conditions under which the DG-bimodule SSR is a generalised Gorenstein

homomorphism.

The fourth and final section gives some examples of generalised Gorenstein morphisms.

In the first example we consider the almost trivial case of a commutative DGA R with a

symmetric bimodule RMR and a symmetric dualising module RDR and show that if M

is a compact DG-module then it is a generalised Gorenstein morphism from R to itself.

The second example considers the case of the endomorphism DGA, E , of a perfect

complex of A-modules, where A is a noetherian local commutative ring. We show that

the DG-bimodule AEE is a generalised Gorenstein morphism from A to E . We also

apply the ascent theorem to recover the known result that when A is a Gorenstein ring,

E is a Gorenstein DGA. The third example deals with the Koszul complex K(a) over
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a noetherian local commutative ring. Again we show that the DG A-K(a)-bimodule,

AK(a)K(a), is a generalised Gorenstein morphism from A to K(a) and also apply the

ascent theorem to recover the result of Avramov and Foxby that A is a Gorenstein ring

⇒ K(a) is a Gorenstein DGA. The fourth and final example looks at the case where

Λ is a finite dimensional algebra over a field k and E is the endomorphism DGA of L,

a bounded complex of finitely generated projective Λ-modules. We show that Λ,EL is

a generalised Gorenstein morphism from E to Λop.

Convention. Throughout this chapter we shall, unless specified otherwise, assume

that all DGAs are over a commutative Notherian base ring k, which has a dualising

complex.

5.1 The Auslander and Bass Classes

In this section we shall consider some properties of the Auslander and Bass classes

of DGAs. In particular we shall consider the idea of Foxby equivalence between the

Auslander and Bass classes of a DGA. This was developed for the classical case of

noetherian, local commutative rings by Avramov and Foxby in [3] and generalised to

derived categories of DGAs by Frankild and Jørgensen in [11].

We shall follow the method of [11] to define the Auslander and Bass classes for a DGA,

R, with respect to a dualising DG-R-module, D. We then define the respective bounded

and finite subcategories. This is followed by showing that Foxby equivalence for DGAs

restricts further to give quasi-inverse equivalences between both the bounded and finite

Auslander and Bass categories.

We conclude the section by generalising some further results of [3] to two types of

DGAs.

Let R be a DGA and let RDR be a dualising DG-module for R. Then the canonical

morphism ρ : R→ RHomR(D,D) is an isomorphism.

There is an adjoint pair of functors between homotopy categories of DG-modules:

K(R)

D⊗
R
−

//
K(R)

HomR(D,−)
oo

with the unit morphism

idK(R)(M)
ηM // HomR(D,D⊗

R
M) ,
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ηM (m) = (−1)|m||d|(d 7→ d⊗m).

and counit morphism

D⊗
R

HomR(D,M)
εM // idK(R)(M) ,

εM (d⊗ µ) = (−1)|d||µ|µ(d).

All DG-modules have K-projective and K-injective resolutions and this induces an

adjoint pair of functors between derived categories of DG-modules

D(R)

D
L
⊗
R
−

//
D(R)

RHomR(D,−)
oo .

We can now give the definition of the Auslander and Bass classes for DGAs.

Definition 5.1.1. The Auslander class for a dualising DG R-module D is defined as

AD(R) ={M ∈ D(R) | ηM is an isomorphism}.

The Bass class for a dualising DG R-module D is defined as

BD(R) ={M ∈ D(R) | εM is an isomorphism}.

Remark 5.1.2. Note that in the case of commutative noetherian local rings the unique-

ness of dualising complexes means that the Auslander and Bass classes associated with

a ring are unique. In the DGA situation where it is possible to have more than one

dualising DG-module we do not necessarily have a single Auslander or Bass class.

We can also define the bounded and finite Auslander and Bass classes by imposing the

appropriate restrictions on the DG-modules involved.

Definition 5.1.3. For a dualising DG R-module, D, we define

(i) The bounded Auslander class

A b
D(R) ={M ∈ D(R) | ηM is an isomorphism; M and D

L
⊗
R
M are homologically

bounded},
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(ii) The bounded Bass class

Bb
D(R) ={M ∈ D(R) | εM is an isomorphism; M and RHomR(D,M) are

homologically bounded},

(iii) The finite Auslander class

A f
D(R) ={M ∈ D(R) | ηM is an isomorphism; M,D

L
⊗
R
M ∈ Df (R)},

(iv) The finite Bass class

Bf
D(R) ={M ∈ D(R) | εM is an isomorphism; M,RHomR(D,M) ∈ Df (R)}.

It is the bounded Auslander and Bass classes which most closely mirror the Auslan-

der and Bass categories which Avramov and Foxby used in their theory of dualising

equivalence for rings and the larger Auslander and Bass categories can be though of

as a generalisation of the bounded case. As such some of the results later in the chap-

ter which generalise to DGAs for the bounded and finite cases do not for the ‘larger’

unbounded case, in particular the Gorenstein theorems of the next section.

From the Generalised Foxby equivalence in [11] we already know that there are quasi-

inverse equivalences of categories between the Auslander and Bass categories of a DGA.

The next proposition restates that result and extends it to show that, as expected,

there are also quasi-equivalences between both the bounded and finite versions of the

Auslander and Bass classes.

Theorem 5.1.4. Let R be a DGA and D a dualising DG R-module. Then the adjoint

pair of functors

D(R)

F=D
L
⊗
R
−
//
D(R)

G=RHomR(D,−)
oo

restrict to the following quasi-inverse equivalences,

(i) AD(R)
F //

BD(R)
G

oo ,

(ii) A b
D(R)

F //
Bb
D(R)

G
oo ,

(iii) A f
D(R)

F //
Bf
D(R)

G
oo .
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Proof. (i) Let M ∈ AD(R). Then

M
ηM−→ GFM

is an isomorphism.

Now consider the diagram:

FM
F (ηM ) //

1FM ((

FGFM

εFM
��

FM

.

Since the diagram commutes we have that εFM is an isomorphism ⇔ F (ηM ) is an iso-

morphism. However since ηM is an isomorphism we have that F (ηM ) is an isomorphism

and so εFM is an isomorphism. This gives us that FM ∈ BD(R). So F restricts to a

functor

AD(R)
F−→ BD(R).

Now let N ∈ BD(R). Then

FGN
εN−→ N

is an isomorphism.

Now consider the diagram

GN
ηGN //

1GN ((

GFGN

G(εN )
��

GN.

Since the diagram commutes we have that ηGN is an isomorphism ⇔ G(εN ) is an iso-

morphism. However since εN is an isomorphism we have that G(εN ) is an isomorphism

and hence ηGN is an isomorphism. This gives us that GN ∈ AD(R). So G restricts to

a functor

AD(R)
G←− BD(R).

Finally the fact that F and G are quasi-inverse equivalent follows from the definitions

of AD(R) and BD(R).

(ii) Let M ∈ A b
D(R). Then since A b

D(R) ⊆ AD(R) we have that FM ∈ BD(R).

Furthermore FM = D
L
⊗
R
M ∈ Db(R) and since M

ηM→ GFM is an isomorphism we

have that GFM = RHomR(D,FM) ∈ Db(R). This gives us that FM ∈ Bb
D(R) and
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so F restricts to a functor

A b
D(R)

F−→ Bb
D(R).

Now let N ∈ Bb
D(R). Then since N ∈ Bb

D(R) ⊆ BD(R) we have that GM ∈ AD(R).

Furthermore GN = RHomR(D,N) ∈ Db(R) and since FGN
εN→ N is an isomorphism

we have that FGN = D
L
⊗
R
GN ∈ Db(R). This gives us that GN ∈ A b

D(R) and so G

restricts to a functor

Bb
D(R)

G−→ A b
D(R).

Finally the fact that F and G are quasi-inverse equivalent follows from the definitions

of A b
D(R) and Bb

D(R).

(iii) Let M ∈ A f
D(R). Then since A f

D(R) ⊆ AD(R) we have that FM ∈ BD(R).

Furthermore FM = D
L
⊗
R
M ∈ Df (R) and since M

ηM→ GFM is an isomorphism we

have that GFM = RHomR(D,FM) ∈ Df (R). This gives us that FM ∈ Bf
D(R) and

so F restricts to a functor

A f
D(R)

F−→ Bf
D(R).

Now let N ∈ Bf
D(R). Then since N ∈ Bf

D(R) ⊆ BD(R) we have that GM ∈ AD(R).

Furthermore GN = RHomR(D,N) ∈ Df (R) and since FGN
εN→ N is an isomorphism

we have that FGN = D
L
⊗
R
GN ∈ Df (R). This gives us that GN ∈ A f

D(R) and so G

restricts to a functor

Bf
D(R)

G−→ A f
D(R).

Finally the fact that F and G are quasi-inverse equivalent follows from the definitions

of A f
D(R) and Bf

D(R).

From now on a number of results will be given in two versions which will correspond to

one of the two types of DGA that we shall mostly be dealing with. Namely the cases

where:

(i) R is a connective and degreewise finite DG k-algebra, with H0(R) local.

(ii) R is a coconnective and degreewise finite DG k-algebra, where k is field, such

that H0(R) = k and H−1(R) = 0.

These will frequently be referred to as the connective and coconnective cases respec-

tively. The reason for our interest in these two types of DGA is due to them having a

number of useful properties as the next few lemmas demonstrate.
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The following two lemmas, which mirror [10, Facts 1.5 and 1.6], are well know facts for

the connective and coconnective cases. The proofs make use of the Eilenberg-Moore

spectral sequence. More information on spectral sequences can be found in [32, Chapter

5].

Lemma 5.1.5. Let R be connective and degreewise finite over k. Let LR be a DG

Rop-module and let RM be a DG R-module. If L and M are degreewise finite and

homologically bounded to the right, then the complex of k-modules L
L
⊗
R
M is also de-

greewise finite and homologically bounded to the right.

Proof. Since L is right homologically bounded we have that HiL = 0 for all i < i0, for

some i0. Similarly since M is also right homologically bounded HjM = 0 for j < j0,

for some j0.

Since R is connective we have that there is a graded free resolution, F , of HL over HR

such that each Fi is finitely generated non zero only in degrees ≥ io.

Now TorHR
p (HL,HM)q = Hp(F ⊗

HR
HN)q and so each TorHR

p (HL,HM)q is finitely gen-

erated over k. Moreover,

TorHR
p (HL,HM)q = 0 for q < i0 + j0 = q0.

Furthermore TorHR
p (HL,HM)q = 0 when p < 0.

Now consider the Eilenberg-Moore spectral sequence

E2
pq = TorHR

p (HL,HM)q ⇒ Hp+q(L
L
⊗
R
M).

From above we have that each entry of E2
pq is finitely generated over k and also E2

pq = 0

whenever either p < 0 or q < q0. The same properties follow for E∞pq .

Since the Eipq’s converge to Hp+q(L
L
⊗
R
M) we have that each Hp+q(L

L
⊗
R
M) has a finite

filtration with E∞pq
∼= Fp Hp+q /Fp−1 Hp+q.

When n = p + q < q0 then Fp Hn /Fp−1 Hn = E∞pq = 0 and this in turn gives us

that Hn(L
L
⊗
R
M) = 0. Hence L

L
⊗
R
M is right homologically bounded. Furthermore for

p+ q > q0 each finite filtration consists of entirely of finitely generated k-modules and

so Hp+q(L
L
⊗RN) is finitely generated. Therefore L

L
⊗
R
M is degreewise finite.

Lemma 5.1.6. Let R be coconnective and degreewise finite over a field k with H0(R) =

k and H−1(R) = 0. Let LR be a DG Rop-module and let RM be a DG R-module. If L
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and M are degreewise finite and homologically bounded to the left, then the complex of

k-modules L
L
⊗
R
M is also degreewise finite and homologically bounded to the left.

Proof. Since HL is left bounded it is only non-zero in degrees ≤ i. Similarly HM

is left bounded and so is only non-zero in degrees ≤ j. Since HR is noetherian we

can construct a graded free resolution F of HL in such a way that each Fn is finitely

generated and is only non-zero in degrees ≤ i− 2n.

Hence TorHA
p (HL,HM) = Hp(F ⊗

HR
HN) is only non-zero in degrees ≤ i + j − 2p and

each TorHA
p (HL,HM)q is finitely generated over k.

Thus E2
pq is non-zero only in the wedge where p ≥ 0 and q ≤ i+ j − 2p. Furthermore

each entry is finitely generated. Hence E∞pq is also non-zero only within the same wedge

and each entry is finitely generated over k.

Since the Eipq’s converge to Hp+q(L
L
⊗RN) we have that each Hp+q(L

L
⊗RN) has a finite

filtration with E∞pq
∼= Fp Hp+q /Fp−1 Hp+q. For p+ q > i+ j each entry of this filtration

is 0 so Hp+q(L
L
⊗RN), we therefore have that L

L
⊗
R
M is homologically bounded to the

left. Furthermore for p + q ≤ i + j each finite filtration consists of entirely of finitely

generated k-modules and so Hp+q(L
L
⊗RN) is finitely generated, therefore L

L
⊗
R
M is

degreewise finite.

Lemma 5.1.7. Let R be connective and degreewise finite over k with H0(R) local and

let D be a right homologically bounded and degreewise finite dualising DG-module for

R. Then for C ∈ Df (R) if C 6∼= 0 then D
L
⊗
R
C 6∼= 0.

Proof. Since C 6∼= 0, we have H(C) 6= 0. Also, since R ∼= RHomR(D,D) we have

that D 6∼= 0 and so H(D) 6= 0. Thus, by [25, Lemma 2.3], H(D
L
⊗
R
C) 6= 0 and so

D
L
⊗
R
C 6∼= 0.

Lemma 5.1.8. Let R be connective and degreewise finite over k with H0(R) local and

let D be a right homologically bounded and degreewise finite dualising DG-module for

R. Then if C ∈ Df (R) with C 6∼= 0 we have that RHomR(D,C) 6∼= 0.

Proof. Since C ∈ Df (R) we have that it is D-reflexive so

C ∼= RHomRop(RHomR(C,D), D).
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Therefore

RHomR(D,C) ∼= RHomR(D,RHomRop(RHomR(C,D), D))

∼= RHomRop(RHomR(C,D)
L
⊗
R
D,D)

by adjointness. Since C 6∼= 0 we have RHomR(C,D) 6∼= 0 as otherwise we would have

that C ∼= RHomRop(RHomR(C,D), D) ∼= 0. Moreover, RHomR(C,D) ∈ Df (R).

Lemma 5.1.7 gives us that

RHomR(C,D)
L
⊗
R
D 6∼= 0.

Finally since RHomR(C,D) is finite we have that RHomR(C,D)
L
⊗RD is D-reflexive

and thus RHomRop(RHomR(C,D)
L
⊗
R
D,D) 6∼= 0.

The next two lemmas give coconnective versions of the previous two lemmas.

Lemma 5.1.9. Let R be coconnective and degreewise finite over a field k with H0(R) =

k and H−1(R) = 0 and let D be a left homologically bounded and degreewise finite

dualising DG-module for R. Then for C ∈ Df (R) if C 6∼= 0 then D
L
⊗
R
C 6∼= 0.

Proof. The proof is essentially the same as for 5.1.7, the single exception being that we

use [13, Proposition 1.5], rather that [25, Lemma 2.3].

Lemma 5.1.10. Let R be coconnective and degreewise finite over the field k with

H0(R) = k and H−1(R) = 0 and let D be a left homologically bounded and degreewise

finite dualising DG-module for R. Then if C ∈ Df (R) with C 6∼= 0 we have that

RHomR(D,C) 6∼= 0.

Proof. Again this is essentially the same as the proof for 5.1.8. The only difference is

that we have to use Lemma 5.1.9 rather than 5.1.7.

We end this section with the following two theorems, generalisations of [3, Theorem

3.2(a) and (b)] to the connective and coconnective DGA cases.

Theorem 5.1.11. Let R be a DG k-algebra which is connective and degreewise fi-

nite over k with H0(R) local. Then for a dualising DG-R-module, D, which is right

homologically bounded and degreewise finite,
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(i) If M ∈ Df (R) with D
L
⊗
R
M ∈ Bf

D(R), then M ∈ A f
D(R).

(ii) If M ∈ Df (R) with RHomR(D,M) ∈ A f
D(R), then M ∈ Bf

D(R).

Proof. (i) Let M ∈ Df (R) and let F and G be the functors D
L
⊗
R
− and RHomR(D,−)

respectively.

First note that FM = D
L
⊗RM ∈ Bf

D(R) ⊆ Df (R).

It remains to show that ηM is an isomorphism.

We have the commutative diagram:

FM
F (ηM )//

1FM %%

FGFM

εFM
��

FM

where εFM is a isomorphism, since FM ∈ Bf
D(R). Therefore since the diagram com-

mutes F (ηM ) is an isomorphism.

Now consider the distinguished triangle:

M
ηM−→ GFM −→ C −→ ΣM

where C is the mapping cone of ηM .

Applying the functor F to this gives the distinguished triangle:

FM
F (ηM )−→ FGFM −→ FC −→ ΣFM.

As F (ηM ) is an isomorphism we have that FC = D
L
⊗
R
C ∼= 0.

We have M ∈ Df (R) and since FM = D
L
⊗
R
M ∈ Bf

D(R) we have that GFM =

RHomR(D,D
L
⊗
R
M) ∈ Df (R). This gives us that the mapping cone C ∈ Df (R).

But now D
L
⊗
R
C ∼= 0 implies C ∼= 0 by Lemma 5.1.7, so ηM is an isomorphism.

(ii) Let M ∈ Df (R).

First note that GM = RHomR(D,M) ∈ A f
D(R) ⊆ Df (R).

It remains to show that εM is an isomorphism.
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We have the commutative diagram

GM
ηGM//

1GM %%

GFGM

G(εM )
��

GM

where ηGM is a isomorphism, since GM ∈ A f
D(R). Therefore since the diagram com-

mutes G(εM ) is an isomorphism.

Now consider the distinguished triangle:

FGM
εM−→M −→ C −→ ΣFGM

where C is the mapping cone of εM .

Applying the functor G to this gives the distinguished triangle:

GFGM
G(εM )−→ GM −→ GC −→ ΣGFGM,

As G(εM ) is an isomorphism we have that GC = RHomR(D,C) ∼= 0.

We have M ∈ Df (R) and, since GM = RHomR(D,M) ∈ A f
D(R),

FGM = D
L
⊗R RHomR(D,M) ∈ Df (R).

This gives us that the mapping cone C ∈ Df (R).

But now RHomR(D,C) ∼= 0 implies C ∼= 0 by Lemma 5.1.8, so εM is an isomorphism.

Theorem 5.1.12. Let k be a field and let R be a degreewise finite coconnective DG-k-

algebra such that H0(R) = k and H−1(R) = 0. Then for a dualising DG R-module, D,

that is left homologically bounded and degreewise finite,

(i) If M ∈ Df (R) with D
L
⊗RM ∈ Bf

D(R), then M ∈ A f
D(R).

(ii) If M ∈ Df (R) with RHomR(D,M) ∈ A f
D(R), then M ∈ Bf

D(R).

Proof. This is essentially the same as the proof for the above theorem with the exception

that we use the coconnective versions of the required lemmas.
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5.2 Gorenstein Theorems

We now turn our attention to developing a number of Gorenstein theorems involving the

bounded and finite Auslander classes for DGAs of both the connective and coconnective

cases. In these we shall again generalise results from ring theory to show that a DGA

being Gorenstein is equivalent to the existence of maximal bounded and finite Auslander

and Bass classes.

We begin with the following proposition which gives a condition under which a DG

R-module is R-reflexive.

Proposition 5.2.1. For M ∈ Df (R), we have that M ∈ AD(R)⇔ The double duality

morphism

M → RHomRop(RHomR(M,R), R)

is an isomorphism.

Proof. Since R ∼= RHomR(D,D) we can replace R in the double duality map with

RHomR(D,D). This allows us to construct the following diagram

M
δ //

η

��

RHomRop (RHomR(M,RHomR(D,D)),RHomR(D,D))

σ

��
RHomR(D,RHomRop (RHomR(M,RHomR(D,D)),D))

RHomR(D,D
L
⊗
R
M)

RHomR(D,δ)// RHomR(D,RHomRop (RHomR(D
L
⊗
R
M,D),D))

RHomR(D,RHomRop (α,D))

OO

where δ is the double duality morphism, σ is the swap isomorphism and α is the

adjointness isomorphism.

Since RDR is a dualising DG-module it has a biprojective resolution, RPR, and a biinjec-

tive resolution, RIR. Hence we have RHomR(D,D) ∼= HomR(P, I) where HomR(P, I) is

a K-injective DG R-module. We can now, in the diagram above, replace RHomR(D,D)

by Hom(P, I) and D by either P or I as appropriate to give us the diagram

M
δ //

η

��

HomRop (HomR(M,HomR(P,I)),HomR(P,I))

σ

��
HomR(P,HomRop (HomR(M,HomR(P,I)),I))

HomR(P,P ⊗
R
M)

δ′∗ // HomR(P,HomRop (HomR(P ⊗
R
M,I),I))

(α∗)∗

OO
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where δ and δ′, are the double duality morphisms, given by

δ(m)(µ) = (−1)|m||µ|µ(m)

and

δ′(p⊗
R
m)(ξ) = (−1)(|p|+|m|)|ξ|ξ(p⊗

R
m)

where m ∈M , p ∈ P , µ ∈ Hom(M,HomR(P, I)) and ξ ∈ HomR(P ⊗
R
M, I),

σ, the swap isomorphism, is given by

σ(θ)(p)(µ) = (−1)|µ||p|θ(µ)(p)

where θ ∈ HomRop(HomR(M,HomR(P, I)),HomR(P, I)), p ∈ P and

µ ∈ Hom(M,HomR(P, I)),

α : HomR(M,HomR(P, I)) → HomR(P ⊗
R
M, I), the adjointness isomorphism, is given

by

α(µ)(p⊗m) = (−1)|p||m|µ(m)(p)

where m ∈M , p ∈ P and µ ∈ Hom(M,HomR(P, I)),

and finally η is given by

η(m)(p) = (−1)|m||p|p⊗m

where m ∈M and p ∈ P .

So

[σ ◦ δ](m)(p)(µ) = (−1)|µ||p|δ(m)(µ)(p) = (−1)|µ|(|p|+|m|)µ(m)(p)

and

[(α∗)
∗ ◦ δ′∗ ◦ η(m)](p)(µ) = (δ′∗ ◦ η(m))(p)(α(µ)) = δ′(η(m)(p))(α(µ))

= (−1)|p||m|δ(p⊗m)(α(µ)) = (−1)|p||m|+|µ|(|p|+|m|)α(µ)(p⊗m)

= (−1)|µ|(|p|+|m|)µ(m)(p).

Hence the diagram commutes. Furthermore α and σ are isomorphisms and since M

is finite we have that δ∗ is an isomorphism by 3.2.15. We therefore have that the

double duality map δ is an isomorphism iff η is an isomorphism which is the same as

M ∈ AD(R).

An immediate consequence of this proposition is that if Df (R) is contained in AD(R)

then condition [G1] of the definition of a Gorenstein DGA (Definition 3.2.22) is satisfied.

Conversely if, for a DGA R, a finite DG R-module is R-reflexive then we have that it
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is contained in every possible Auslander class of R.

We can now look at obtaining the various Gorenstein Theorems. We shall start with

the connective case and the following lemma.

Lemma 5.2.2. Let R be a DG k-algebra which is connective and degreewise finite over

k. If there exists a right homologically bounded and degreewise finite dualising DG-R-

module, D, such that Df (R) ⊆ A b
D(R) and Df (Rop) ⊆ A b

D(Rop) then R is Gorenstein.

Proof. We need to show that R satisfies the properties [G1] and [G2] of Definition

3.2.22.

Firstly for [G1], let M ∈ Df (R) and N ∈ Df (Rop). Since Df (R) ⊆ A b
D(R) ⊆ AD(R)

and Df (Rop) ⊆ A b
D(Rop) we have by Proposition 5.2.1 that the double duality mor-

phisms

M → RHomRop(RHomR(M,R), R)

and

N → RHomR(RHomRop(N,R), R)

are isomorphisms.

Secondly for [G2], let M ∈ Df (R). We consider the DG Rop-module RHomR(M,R),

this is isomorphic to RHomR(D
L
⊗
R
M,D) via the isomorphism R ∼= RHomR(D,D) and

adjointness. Since both D and M are degreewise finite and homologically bounded to

the right, we have, by 5.1.5, that D
L
⊗
R
M is degreewise finite over k and homologically

bounded to the right. Also since M ∈ Df (R) ⊆ A b
D(R) we have that D

L
⊗
R
M is

homologically bounded and since H0(R) is finitely generated over k we have that D
L
⊗
R
M

is degreewise finite as an DG R-module. Hence D
L
⊗
R
M ∈ Df (R). Finally since D

is a dualising DG R-module we have that RHomR(−, D) sends Df (R) to Df (Rop),

Hence RHomR(D
L
⊗
R
M,D) ∈ Df (Rop). We can similarly show for N ∈ Df (Rop) that

RHomRop(N,R) ∈ Df (R)

We are now able to present our first Gorenstein Theorem which deals with the case of

the bounded Auslander class.

Theorem 5.2.3. Let R be a DG k-algebra which is connective and degreewise finite over

k. Then R is Gorenstein⇔ ∃ a dualising DG R-module D which is degreewise finite and

homologically bounded to the right such that A b
R(R) = Db(R) and A b

R(Rop) = Db(Rop).

126



Chapter 5. Gorenstein DGAs and Generalised Gorenstein Morphisms

Proof. (⇒) Let R be Gorenstein, then R is a dualising DG R-module. Furthermore

since R is connective and degreewise finite over k, we have that it is right homologically

bounded and degreewise finite over itself. Finally it has the bounded Auslander class

A b
R(R) = {M ∈ D(R) | ηM is an isomorphism, M is bounded}.

However in this case ηM is the identity isomorphism for all M . Hence A b
D(R) = Db(R).

Similarly we also have that A b
D(Rop) = Db(Rop)

(⇐) This follows from Lemma 5.2.2, as Df (R) ⊆ Db(R) = A b
D(R) and Df (Rop) ⊆

Db(Rop) = A b
D(Rop).

Before we can produce our second Gorenstein Theorem which deals with the bounded

Bass class we first need to prove some technical results.

Lemma 5.2.4. Let R be a DG k-algebra which is connective and degreewise finite

over k. Let D be a right homologically bounded and degreewise finite dualising DG

R-module with Bb
D(R) = Db(R) and Bb

D(Rop) = Db(Rop). Then, for RM ∈ Df (R)

and NR ∈ Df (Rop) we have the following:

(i) RHomR(D,M) ∈ Df (R) and RHomRop(D,N) ∈ Df (Rop).

(ii) RHomR(M,R) ∈ Df (Rop) and RHomRop(N,R) ∈ Df (R).

(iii) D
L
⊗
R
M ∈ Df (R) and N

L
⊗
R
D ∈ Df (Rop).

Proof. (i) Let C be a dualising k-module then, since M is finite, we have that

RM ∼= RHomk(RHomk(RM,C), C),

and hence

RHomR(D,M) ∼= RHomR(D,RHomk(RHomk(M,C), C))

∼= RHomk(RHomk(M,C)
L
⊗
R
D,C) = (∗).

Now since RM is finite we have that RHomk(RM,C) is a finite DG-right-R-module

and so, by 5.1.5, we have that

RHomk(M,C)
L
⊗
R
D

is right homologically bounded and degreewise finite.
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Hence (∗) is degreewise finite by [16, Page 257].

Furthermore, since Df (R) ⊆ Db(R) = Bb
D(R) we have that

M ∈ Bb
D(R).

Therefore

RHomR(D,M) ∈ A b
D(R) ⊆ Db(R).

Thus RHomR(D,M) ∈ Df (Rop).

The proof that RHomRop(D,N) ∈ Df (Rop) is similar.

(ii) By the swap isomorphism we have that

RHomR(M,R) ∼= RHomR(M,RHomR(D,D))

∼= RHomR(D,RHomR(M,D)).

Since D is a dualising module and M ∈ Df (R) then RHomR(M,D) ∈ Df (Rop).

Hence, by (i), we have that RHomR(D,RHomR(M,D)) ∈ Df (Rop)

The proof that RHomRop(N,R) ∈ Df (R) is similar.

(iii) Since M is finite we have that D
L
⊗
R
M is D-reflexive, i.e

D
L
⊗
R
M ∼= RHomRop(RHomR(D

L
⊗
R
M,D), D)

∼= RHomRop(RHomR(M,RHomR(D,D)), D)

∼= RHomRop(RHomR(M,R), D).

By (ii) we have that RHomR(M,R) ∈ Df (Rop) and so, since D is a dualising DG-R-

module, we have that D
L
⊗RM ∈ Df (R) .

Again the proof that N
L
⊗
R
D ∈ Df (Rop) is similar.

Lemma 5.2.5. Let R be a DG k-algebra which is connective and degreewise finite over

k. Let D be a right homologically bounded and degreewise finite dualising DG R-module

with Bb
D(R) = Db(R) and Bb

D(Rop) = Db(Rop). Then for M ∈ Df (R) we have, for

the unit morphism ηM , that F (ηM ) is an isomorphism.

Proof. Let M ∈ Df (R) ⊆ Db(R) = Bb
D(R).
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We have the commutative diagram:

FM
F (ηM ) //

1FM ((

FGFM

εFM
��

FM

.

Since M ∈ Df (R) we have by Lemma 5.2.4(iii) that

FM = D
L
⊗
R
M ∈ Df (R) ⊆ Bb

D(R)

and so εFM is an isomorphism.

Since the diagram above commutes this then gives us that F (ηM ) is an isomorphism.

We can now prove our Gorenstein Theorem for the bounded Bass class.

Theorem 5.2.6. Let R be a DG k-algebra which is connective and degreewise finite

over k with H0(R) local. Then R is Gorenstein ⇔ ∃ a dualising DG R-module D which

is degreewise finite and homologically bounded to the right such that Bb
D(R) = Db(R)

and Bb
D(Rop) = Db(Rop).

Proof. (⇒) Let R be Gorenstein. Then R is a dualising DG R-module. Furthermore

since R is connective and degreewise finite over k, we have that it is right homologically

bounded and degreewise finite over itself. Finally it has the bounded Bass classes

Bb
D(R) = {M ∈ D(R) | εM is an isomorphism, M is bounded} and Bb

D(Rop) = {N ∈
D(Rop) | εN is an isomorphism, N is bounded}.

However, in this case εM and εN are the identity isomorphisms for all M and N

respectively. Hence Bb
D(R) = Db(R) and Bb

D(Rop) = Db(Rop).

(⇐) Let M ∈ Df (R).

Consider the distinguished triangle:

M
ηM−→ GFM −→ C −→ ΣM

where C is the mapping cone of ηM .

Applying the functor F to this gives the distinguished triangle:

FM
F (ηM )−→ FGFM −→ FC −→ ΣFM.
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From Lemma 5.2.5 we have that F (ηM ) is an isomorphism and so FC = D
L
⊗
R
C ∼= 0.

Since M ∈ Df (R) we have that GFM = RHomR(D,D
L
⊗RM) is finite, by Lemma

5.2.4(i) and (iii). This in turn gives us that the mapping cone C is finite.

Since D
L
⊗
R
C ∼= 0, Lemma 5.1.7 gives C ∼= 0 and hence ηM is an isomorphism.

Hence M ∈ A b
D(R) and so Df (R) ⊆ A b

D(R).

We can similarly show that for N ∈ Df (Rop) that N ∈ A b
D(Rop) and so Df (Rop) ⊆

A b
D(Rop).

Therefore by Lemma 5.2.2 we have that R is Gorenstein.

As with the bounded Auslander and Bass classes we can also produce Gorenstein

theorems which deal with the cases of the finite Auslander and Bass classes.

Theorem 5.2.7. Let R be a DG k-algebra which is connective and degreewise finite over

k. Then R is Gorenstein⇔ ∃ a dualising DG R-module D which is degreewise finite and

homologically bounded to the right such that A f
D(R) = Df (R) and A f

D(Rop) = Df (Rop).

Proof. (⇒) Let R be Gorenstein, then R is a dualising DG R-module. Furthermore

since R is connective and degreewise finite over k, we have that it is right homologically

bounded and degreewise finite over itself. Finally it has the finite Auslander class

A f
D(R) = {M ∈ D(R) | ηM is an isomorphism, M is finite}.

However in this case ηM is the identity isomorphism for all M . Hence A f
D(R) = Df (R).

The proof that A f
D(Rop) = Df (Rop) is very similar.

(⇐) This follows from Lemma 5.2.2, as Df (R) = A f
D(R) ⊆ A b

D(R) and Df (Rop) =

A f
D(Rop) ⊆ A b

D(Rop).

Theorem 5.2.8. Let R be a DG k-algebra which is connective and degreewise finite

over k with H0(R) local. Then R is Gorenstein ⇔ ∃ a dualising DG R-module D which

is degreewise finite and homologically bounded to the right such that Bf
D(R) = Df (R)

and Bf
D(Rop) = Df (Rop).

Proof. (⇒) Let R be Gorenstein, then R is a dualising DG R-module. Furthermore

since R is connective and degreewise finite over k, we have that it is right homologically

bounded and degreewise finite over itself. Finally it has the finite Bass class

130



Chapter 5. Gorenstein DGAs and Generalised Gorenstein Morphisms

Bf
D(R) = {M ∈ D(R) | εM is an isomorphism, M is finite}

However in this case εM is the identity isomorphism for all M . Hence Bf
D(R) = Df (R).

The proof that Bf
D(Rop) = Df (Rop) is similar.

(⇐) Let M ∈ Df (R). First note that since M ∈ Df (R) = Bf
D(R) we have that

D
L
⊗RM ∈ Df (R).

Now consider the distinguished triangle:

M
ηM−→ GFM −→ C −→ ΣM

where C is the mapping cone of ηM .

Applying the functor F to this gives the distinguished triangle:

FM
F (ηM )−→ FGFM −→ FC −→ ΣFM.

From Lemma 5.2.5 we have that F (ηM ) is an isomorphism and so FC = D
L
⊗
R
C ∼= 0.

Since D
L
⊗RM ∈ Df (R) = Bf

D(R) we have that

GFM = RHomR(D,D
L
⊗RM) ∈ A f

D(R) ⊆ Df (R).

This in turn gives us that the mapping cone C is finite.

But D
L
⊗
R
C 6∼= 0. so by Lemma 5.1.7 C ∼= 0 and hence ηM is an isomorphism.

Hence M ∈ A f
D(R) ⊆ A b

D(R) and so Df (R) ⊆ A b
D(R). Also we can similarly show that

Df (Rop) ⊆ A b
D(Rop). Therefore by Lemma 5.2.2 we have that R is Gorenstein.

We can also, by using the same methods as above in the results for the case of connective

DGAs, obtain the corresponding results for the case of coconnective DGAs by replacing

the connective versions of previous results with the corresponding coconnective results.

We begin again with the bounded Auslander class and first a lemma for the coconnective

case which corresponds to Lemma 5.2.2 in the connective case.

Lemma 5.2.9. Let k be a field and let R be a degreewise finite coconnective DG k-

algebra such that H0(R) = k and H−1(R) = 0. If there exists a left homologically

bounded and degreewise finite dualising DG-R-module, D, such that Df (R) ⊆ A b
D(R)

and Df (Rop) ⊆ A b
D(Rop) then R is Gorenstein.
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Proof. This essentially the same as the proof of Lemma 5.2.2 above with the exception

that we use 5.1.6 rather than 5.1.5.

This in turn leads to the coconnective version of the Gorenstein Theorem for the

bounded Auslander class.

Theorem 5.2.10. Let k be a field and let R be a degreewise finite coconnective DG

k-algebra such that H0(R) = k and H−1(R) = 0. Then R is Gorenstein⇔ ∃ a dualising

DG R-module D which is degreewise finite and homologically bounded to the left such

that A b
D(R) = Db(R) and A b

D(Rop) = Db(Rop).

Proof. This is essentially the same as the proof of Theorem 5.2.3 above, the main

difference is that it uses Lemma 5.2.9 instead of Lemma 5.2.2.

The following two Lemmas provide coconnective versions of Lemmas 5.2.4 and 5.2.5.

Lemma 5.2.11. Let k be a field and let R be a degreewise finite coconnective DG k-

algebra such that H0(R) = k and H−1(R) = 0. Let D be a left homologically bounded

and degreewise finite dualising DG R-module with Bb
D(R) = Db(R) and Bb

D(Rop) =

Db(Rop). Then for RM ∈ Df (R) and NR ∈ Df (Rop) we have that

(i) RHomR(D,M) ∈ Df (R) and RHomRop(D,N) ∈ Df (Rop).

(ii) RHomR(M,R) ∈ Df (Rop) and RHomRop(N,R) ∈ Df (R).

(iii) D
L
⊗
R
M ∈ Df (R) and N

L
⊗
R
D ∈ Df (Rop)

Proof. This proof is essentially identical to that of Lemma 5.2.4 with the sole exception

that we use Lemma 5.1.6 in the proof of part (i) in place of Lemma 5.1.5.

Lemma 5.2.12. Let k be a field and let R be a degreewise finite coconnective DG k-

algebra such that H0(R) = k and H−1(R) = 0. Let D be a left homologically bounded

and degreewise finite dualising DG R-module with Df (R) ⊆ Bb
D(R). Then for M ∈

Df (R) we have that F (ηM ) is an isomorphism.

With the above two Lemmas we can now prove a coconnective version of the Gorenstein

theorem for the bounded Bass class.
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Theorem 5.2.13. Let k be a field and let R be a degreewise finite coconnective DG

k-algebra such that H0(R) = k and H−1(R) = 0. Then R is Gorenstein⇔ ∃ a dualising

DG R-module D which is degreewise finite and homologically bounded to the left such

that Bb
D(R) = Db(R) and Bb

D(Rop) = Db(Rop).

Proof. The proof is essentially the same as that of Theorem 5.2.6 with the main dif-

ference being that it makes use of the coconnective versions of various Lemmas in-

volved.

As one would expect it is also possible to produce for the coconnective case Gorenstein

theorems for the finite Auslander and Bass classes.

Theorem 5.2.14. Let k be a field and let R be a degreewise finite coconnective DG

k-algebra such that H0(R) = k and H−1(R) = 0. Then R is Gorenstein⇔ ∃ a dualising

DG R-module D which is degreewise finite and homologically bounded to the left such

that A b
D(R) = Db(R) and A b

D(Rop) = Db(Rop).

Proof. This is essentially the same as the proof of Theorem 5.2.7 above, the main

difference is that it uses Lemma 5.2.9 instead of Lemma 5.2.2.

Theorem 5.2.15. Let k be a field and let R be a degreewise finite coconnective DG-k-

algebra such that H0(R) = k and H−1(R) = 0. Then R is Gorenstein ⇔ ∃ a dualising

DG R-module D which is degreewise finite and homologically bounded to the left such

that Bf
D(R) = Df (R) and Bf

D(Rop) = Df (Rop).

Proof. Again this is essentially the same as in the connective case.

5.3 Generalised Gorenstein Morphisms

We now look to extend the ring theory concept of a Gorenstein morphism to the DG

case. A previous attempt at this was made by Frankild and Jørgensen in [12], however

here we shall work in a more general setting by considering DG-bimodules as generalised

morphisms of DGAs.

Given two DGAs R and S and a morphism R
ρ→ S of DGAs we can obtain a DG

R-module structure on S via r.s = ρ(r)s. This in turn leads to the the functor

RSS
L
⊗
S
− : D(S)→ D(R).
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We can replace RSS in the above functor with any DG R-Sop-bimodule RMS to give a

functor

RMS

L
⊗
S
− : D(S)→ D(R).

Thus we can view DG-bimodules, in this setting, as being generalised morphisms of

DGAs. This approach has been adopted by Keller in [19] and Pauksztello in [24].

Our aim now is to give a definition for a DG version of a Gorenstein morphism for

a DG-bimodule considered as a generalised morphism of DGA. We will then use this

definition to extend the ring theory result that a Gorenstein morphism allows a base

change for the Auslander class and also give a new version of Frankild and Jørgensen’s

ascent theorem for Gorenstein morphisms, [12, Theorem 3.6].

Notation 5.3.1. Throughout this section unless specified otherwise R and S will

denote DGAs over a Noetherian commutative ring k. In addition RMS will denote

a DG R-Sop-bimodule, which is compact in D(Sop). Also we let RUS
'→ RMS be a

K-projective resolution in both D(R) and D(Sop). Finally

SZR = RHomSop(RMS , SSS)

will denote the dual of RMS over S.

Note that U is also a K-projective object in both D(R) and D(Sop).

Lemma 5.3.2. Let the DG-bimodule RMS be compact in D(Sop). Then

(i) HomSop(RUS , SSS) is a K-projective resolution of SZR in both D(S) and D(Rop).

(ii) We have the following pair of relations:

(a) RMS

L
⊗
S
− ∼= RHomS(SZR,−),

(b) −
L
⊗
S
SZR ∼= RHomSop(RMS ,−).

Proof. (i) Since RMS is compact in D(Sop) we have that

RHomS(RHomSop(RMS , SSS),−) ∼= RMS

L
⊗
S

RHomS(SSS ,−) ∼= RMS

L
⊗
S
−.

By replacing RMS with the K-projective resolution RUS we obtain that

HomS(HomSop(RUS , SSS),−) ∼= RUS ⊗
S
−.
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Since RUS is K-projective the functor RUS ⊗
S
− preserves quasi-isomorphisms, there-

fore the functor HomS(HomSop(RUS , SSS),−) also preserves quasi-isomorphisms and

so HomSop(RUS , SSS) is K-projective in D(S). For (ii) See [24, Remark 2.2] and [27,

Setup 2.1].

Notation 5.3.3. We shall denote by τ the canonical map

Z
L
⊗
R
M

τ→ S

which corresponds to the map HomSop(U, S)⊗
R
U → S given by µ⊗ u 7→ µ(u).

We now give our definition of a generalised Gorenstein morphism for a DG-bimodule.

Definition 5.3.4. The bimodule RMS is a generalised Gorenstein morphism from S

to R if it satisfies the following conditions:

(i) MS is compact in D(Sop).

(ii) There exist dualising DG-modules RDR and SES for R and S respectively such

that there exist isomorphisms

φ : RDR

L
⊗
R
RMS

∼=−→ RMS

L
⊗
S
SES

and

θ : SZR
L
⊗
R
RDR

∼=−→ SES
L
⊗
S
SZR.

(iii) The isomorphisms φ and θ are compatible in the sense that the following diagram

commutes

Z
L
⊗
R
D

L
⊗
R
M

1⊗φ //

θ⊗1
��

Z
L
⊗
R
M

L
⊗
S
E

τ⊗1 // S
L
⊗
S
E

∼=

��
E

L
⊗
S
Z

L
⊗
R
M

1⊗τ // E
L
⊗
S
S

∼= // E.

Remark 5.3.5. There is a symmetry between M and Z in the above definition. Com-

bining this with the fact that RHomS(SZR, SSS) ∼= RMS gives us that when RMS is a

generalised gorenstein morphism from S to R we also have that SZR is a generalised

gorenstein morphism from Sop to Rop.
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Remark 5.3.6. Let RMS be a generalised Gorenstein morphism from R to S. If we

replace RMS with RUS and RDR and SES with the biprojective resolutions RPR and

SQS respectively, then the diagram in the definition above becomes:

HomSop(U, S)⊗
R
P ⊗

R
U

1⊗φ //

θ⊗1

��

HomSop(U, S)⊗
R
U ⊗

S
Q

τ⊗1 // S⊗
S
Q

��
Q⊗

S
HomSop(U, S)⊗

R
U

1⊗τ // Q⊗
S
S // Q

.

We can make use of this definition to obtain a DG version of [3, Proposition 3.7(b)], a

base change for the Auslander class.

Theorem 5.3.7. Let the DG R-Sop-bimodule RMS be a generalised Gorenstein mor-

phism from R to S. Then

SN ∈ AE(S)⇒ RMS

L
⊗
S
SN ∈ AD(R),

and

N ′S ∈ AE(Sop)⇒ N ′S
L
⊗
S
SZR ∈ AD(Rop),

where RDR and SES are the dualising modules which satisfy conditions (ii) and (iii)

in Definition 5.3.4.

Furthermore if the functors M
L
⊗
S
− or −

L
⊗
S
Z reflect isomorphisms then the appropriate

reverse implication also holds.

Proof. Since SN ∈ AE(S) we have that the unit morphism

SN
ψN−→ RHomS(SES , SES

L
⊗
S
SN)

is an isomorphism. In order to show that RMS

L
⊗
S
SN ∈ AD(R) we need to show that

the unit morphism

M
L
⊗
S
N

σ−→ RHomR(D,D
L
⊗
R
M

L
⊗
S
N)

is an isomorphism.

Since RMS is a generalised Gorenstein morphism from R to S we have that MS is

compact in D(Sop) so by Lemma 5.3.2 we have the following isomorphisms:
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SES
L
⊗
S
SZR

γ−→ RHomSop(RMS , SES)

and

RMS

L
⊗
S
SES

L
⊗
S
SN

δ−→ RHomS(SZR, SES
L
⊗
S
SN).

The compactness of MS also gives the following isomorphism:

RMS

L
⊗
S

RHomS(SES , SES
L
⊗
S
SN)

β−→ RHomS(RHomSop(RMS , SES), SES
L
⊗
S
SN).

Taking these maps together with the the maps θ and φ, M being a generalised Goren-

stein morphism from R to S, and the adjointness map α allows us to construct the

following diagram:

M
L
⊗
S
N

σ //

1M
L
⊗
S
ψ

��

RHomR(D,D
L
⊗
R
M

L
⊗
S
N)

(φ
L
⊗
S

1N )∗
��

M
L
⊗
S

RHomS(E,E
L
⊗
S
N)

β

��

RHomR(D,M
L
⊗
S
E

L
⊗
S
N)

δ∗
��

RHomS(RHomSop (M,E),E
L
⊗
S
N)

γ∗

��

RHomR(D,RHomS(Z,E
L
⊗
S
N))

α

��

RHomS(E
L
⊗
S
Z,E

L
⊗
S
N)

θ∗ // RHomS(Z
L
⊗
R
D,E

L
⊗
S
N)

.

Hence in order to show that σ is an isomorphism it is enough to show that this diagram

commutes.

To do this we begin by replacing D and E with the biprojective resolutions P and Q

respectively, RMS with RUS a K-projective resolution of M over S and Z with the

corresponding K-projective resolution HomSop(U, S). Hence the diagram becomes:
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U ⊗
S
N

σ //

1⊗ψ
��

HomR(P,P ⊗
R
U ⊗

S
N)

(φ⊗1)∗

��
U ⊗

S
HomS(Q,Q⊗

S
N)

β

��

HomR(P,U ⊗
S
Q⊗

S
N)

δ∗

��
HomS(HomSop (U,Q),Q⊗

S
N)

γ∗

��

HomR(P,HomS(HomSop (U,S),Q⊗
S
N))

α

��
HomS(Q⊗

S
HomSop (U,S),Q⊗

S
N)

θ∗ // HomS(HomSop (U,S)⊗
R
P,Q⊗

S
N)

where the morphisms ψ and σ are defined as:

ψ(n)(q) = (−1)|n||q|q ⊗ n and σ(u⊗ n)(p) = (−1)|p|(|u|+|n|)p⊗ u⊗ n.

The isomorphisms β, γ and δ are given by:

β(u⊗ ψ)(ξ) = (−1)|u|(|ψ|+|ξ|)ψ(ξ(u)),

γ(q ⊗ µ)(u) = qµ(u)

and

δ(u⊗ q ⊗ n)(µ) = (−1)|µ|(|u|+|q|+|n|)µ(u)q ⊗ n.

The adjointness isomorphism α is given by:

α(ν)(µ⊗ p) = (−1)|µ||p|ν(p)(µ)

while for µ ∈ HomSop(U,Q), u ∈ U and p ∈ P , let

θ(µ⊗ p) = q̃ ⊗ µ̃

and

φ(p⊗ u) = û⊗ q̂,

for some û ∈ U , µ̃ ∈ HomSop(U,Q) and q̂, q̃ ∈ Q.

We can now check the commutativity:

θ∗(γ∗(β(1⊗ ψ(u⊗ n))))(µ⊗ p)

= β(u⊗ ψ(n))(γ(θ(µ⊗ p))) = β(u⊗ ψN (n))(γ(q̃ ⊗ µ̃))
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= (−1)|u|(|n|+|q̃|+|m̃u|)ψ(n)(γ(q̃ ⊗ µ̃))(u) = (−1)|u|(|n|+|q̃|+|m̃u|)ψ(n)(q̃µ̃(u))

= (−1)|u|(|n|+|q̃|+|m̃u|)(−1)|n|(|q̃|+|µ̃|)q̃µ̃(u)⊗ n

= (−1)(|u|+|n|)(|q̃|+|µ̃|)q̃µ̃(u)⊗ n.

Whilst in the other direction we get:

α(δ∗((φ⊗ 1)∗(σ(u⊗ n))))(µ⊗ p)

= (−1)|µ||p|δ∗((φ⊗ 1)∗(σ(u⊗ n)))(p)(µ)

= (−1)|µ||p|δ((φ⊗ 1)(σ(u⊗ n)(p)))(µ)

= (−1)|µ||p|(−1)|p|(|u|+|n|)δ((φ⊗ 1)(p⊗ u⊗ n))(µ)

= (−1)|p|(|µ|+|u|+|n|)δ(û⊗ q̂ ⊗ n)(µ)

= (−1)|p|(|µ|+|u|+|n|)(−1)|µ|(|n|+|q̂|+|û|)µ(û)q̂ ⊗ n

= (−1)|p|(|µ|+|u|+|n|)+|µ|(|n|+|q̂|+|û|)µ(û)q̂ ⊗ n.

However |q̂| + |û| = |u| + |p| and |q̃| + |µ̃| = |p| + |µ| since φ(p ⊗ u) = û ⊗ q̂ and

θ(µ⊗ p) = q̃ ⊗ µ̃ so

(−1)|p|(|µ|+|u|+|n|)+|µ|(|n|+|q̂|+|û|) = (−1)|p|(|µ|+|u|+|n|)+|µ|(|n|+|u|+|p|)

= (−1)(|p|+|µ|)(|n|+|u|) = (−1)(|q̃|+|µ̃|)(|n|+|u|).

Also from Remark 5.3.6 we know that µ(û)q̂ ∼= q̃µ̃(u).

Therefore

α(δ∗((φ⊗ 1)∗(σ(u⊗ n))))(µ⊗ p) ∼= (−1)(|u|+|n|)(|q̃|+|µ̃|)q̃µ̃(u)⊗ n.

So the diagram commutes and we have that σ is an isomorphism and hence M
L
⊗S N ∈

AD(R).

Similarly, for the reverse implication, when M
L
⊗S N ∈ AD(R) we have that σ is an

isomorphism and therefore since the diagram commutes we have that 1M
L
⊗ψ is an iso-

morphism. So when M
L
⊗
S
− reflects isomorphisms this gives us that ψ is an isomorphism

and therefore N ∈ AE(S).

The proof for the right sided version is essentially the same with SZR used in place of

RMS .
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We now turn our attention to constructing a theorem analogous to the ascent theorem

of Frankild and Jørgensen, [12, Theorem 3.6].

Lemma 5.3.8. Let R be a Gorenstein DGA. Then for any dualising DG R-module,

RDR, and RM ∈ Df (R) we have that RDR

L
⊗
R
RM ∈ Df (R).

Proof. Let RM ∈ Df (R) and let RDR be a dualising DG-R-module. Then D
L
⊗
R
M is

D-reflexive, i.e.

D
L
⊗
R
M ∼= RHomRop(RHomR(D

L
⊗
R
M,D), D)

∼= RHomRop(RHomR(M,RHomR(D,D)), D)

∼= RHomRop(RHomR(M,R), D).

Since R is Gorenstein, RRR is a dualising DG-R-module. Hence

RHomR(M,R) ∈ Df (Rop)

and therefore, since D is dualising, D
L
⊗
R
M ∈ Df (R).

Theorem 5.3.9. (Ascent) Let R and S be DGAs. Suppose that there exists a DG

R-Sop-bimodule RMS satisfying the following properties:

(i) RMS is a generalised Gorenstein morphism from R to S,

(ii) The functors M
L
⊗
S
− and −

L
⊗
S
Z reflects isomorphisms,

(iii) SN ∈ Df (S)⇔M
L
⊗
S
N ∈ Df (R) and N ′S ∈ Df (Sop)⇔ N ′

L
⊗
S
Z ∈ Df (Rop).

Then R is a Gorenstein DGA ⇒ S is a Gorenstein DGA.

Proof. Let SN ∈ Df (S). We want to show that the conditions [G1] and [G2] of the

definition of a Gorenstein DGA are satisfied.

For condition [G1] we need to show that SN is S-reflexive.

By our assumptions we have that RMS

L
⊗
S
SN ∈ Df (R). Then since R is Gorenstein we

have that RMS

L
⊗
S
SN is R-reflexive and hence by Prop. 5.2.1 that RMS

L
⊗
S
SN ∈ AD(R)

for any dualising DG R-module, D.
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Since RMS

L
⊗
S
− reflects isomorphisms we have from Theorem 5.3.7 that SN ∈ AE(S).

Thus, since SN ∈ Df (S), we have from Prop. 5.2.1 that SN is S-reflexive as required.

The right sided part of [G1] is proved in a similar way, except that we use SZR rather

than RMS .

Now to show condition [G2] we need that RHomS(N,S) ∈ Df (Sop).

To do this we first note that since SES is a dualising DG S-module we have that

RHomS(N,S) ∼= RHomS(N,RHomS(E,E))
adj.∼= RHomS(E

L
⊗
S
N,E).

Therefore, as SES is dualising, it is sufficient to show that SES
L
⊗
S
SN ∈ Df (S).

By our assumptions we have that

E
L
⊗
S
N ∈ Df (S) iff M

L
⊗
S
E

L
⊗
S
N ∈ Df (R).

However, M being a generalised Gorenstein morphism gives us that,

M
L
⊗
S
E

L
⊗
S
N ∼= D

L
⊗
R
M

L
⊗
S
N.

Since M
L
⊗
S
N ∈ Df (R) we have by Lemma 5.3.8 that D

L
⊗
R
M

L
⊗
S
N ∈ Df (R), so

M
L
⊗
S
E

L
⊗
S
N ∈ Df (R) and hence E

L
⊗
S
N ∈ Df (R) as required.

Again the prove of the right sided condition of [G2] is similar.

We now end this section with the following theorem which deals with the special case

where we have a morphism ρ : R −→ S of DGAs and gives a situation where the DG-

bimodule RSS , obtained from the morphism, is a generalised Gorenstein morphism

from R to S. The related corollary deals with the yet more specific case in which we

have a morphism of DGAs from a commutative base ring, A, to a DG A-algebra, S,

and lays out criteria under which the DG-bimodule ASS is a generalised Gorenstein

morphism from A to S.

Theorem 5.3.10. Let R and S be DGAs with R commutative. Let ρ : R → S be a

morphism of DGAs such that the image of ρ is in the centre of S. If there exists a
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symmetric dualising DG R-module RDR and a dualising DG S-module SES such that

there exists an isomorphism:

Φ : SSS,R
L
⊗
R
RD −→ SES

of DG S-bimodules, then the bimodule RSS is a generalised Gorenstein morphism from

R to S.

Proof. Let π : SPR → SSR be K-projective resolution for S when considered as DG

R-module and let RQR be a symmetric biprojective resolution for RDR.

Since R is commutative we have that there exist isomorphisms:

υ : SSR
L
⊗
R
RDR −→ (SSS,R

L
⊗
R
RD)

L
⊗
S
SSR

and

ν : RDR

L
⊗
R
RSS −→ RSS

L
⊗
S

(SSS,R
L
⊗
R
RD).

These correspond to the isomorphisms:

υ : SPR⊗
R
RQR −→ (SSS,R⊗

R
RQ)⊗

S
SSR

and

ν : RQR⊗
R
RPS −→ RSS ⊗

S
(SSS,R⊗

R
RQ),

given by υ(p⊗ q) = π(p)⊗ q ⊗ 1S and ν(q ⊗ p) = (−1)|p||q|1S ⊗ π(p)⊗ q.

These together with the isomorphism Φ allow us to construct the following two isomor-

phisms:

θ = (Φ⊗ 1) ◦ υ : SSS
L
⊗
R
RDR −→ SES

L
⊗
S
SSR

and

φ = (1⊗ Φ) ◦ ν : RDR

L
⊗
R
RSS −→ RSS

L
⊗
S
SES .
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It now remains to check the commutativity of the diagram:

SSR
L
⊗
R
RDR

L
⊗
R
RSS

1⊗φ //

θ⊗1
��

SSR
L
⊗
R
RSS

L
⊗
S
SES

τ⊗1 //
SSS

L
⊗
S
SES

��
SES

L
⊗
S
SSR

L
⊗
R
RSS

1⊗τ //
SES

L
⊗
S
SSS //

SES .

.

Replacing the appropriate Modules with their K-projective resolutions gives us follow-

ing corresponding diagram:

SPR⊗
R
RQR⊗

R
RPS

1⊗φ //

θ⊗1

��

SPR⊗
R
RSS ⊗

S
SES

τ⊗1 //
SSS ⊗

S
SES

��
SES ⊗

S
SSR⊗

R
RPS

1⊗τ //
SES ⊗

S
SSS //

SES .

Going from the top left to the bottom right in one direction gives us:

(τ ⊗ 1) ◦ (1⊗ φ)(p⊗ q ⊗ p̃) = (−1)|p̃||q|(τ ⊗ 1)(p⊗ 1S ⊗ Φ(π(p̃)⊗ q))

= (−1)|p̃||q|π(p)⊗ Φ(π(p̃)⊗ q) ∼= (−1)|p̃||q|π(p)Φ(π(p̃)⊗ q)

= π(p)Φ(1S ⊗ q)π(p̃).

Whilst in the other direction we get that

(1⊗ τ) ◦ (θ ⊗ 1)(p⊗ q ⊗ p̃) = Φ(π(p)⊗ d)⊗ 1S ⊗ p̃

= Φ(π(p)⊗ d)⊗ π(p̃) = Φ(π(p)⊗ d)π(p̃)

= π(p)Φ(1S ⊗ d)π(p̃).

Hence the diagram commutes and therefore RSS is a generalised Gorenstein morphism

from R to S.

Corollary 5.3.11. Let A be a commutative ring and let S be a DG A-algebra such

that there exists a morphism A
ρ−→ S, which satisfy the following properties:

(i) AS is compact as a DG A-module.
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(ii) There exists, D, a symmetric dualising complex for A such that RHomA(S,D) is

a dualising DG S-module.

(iii) The image of ρ is contained inside the centre of S.

(iv) There is an isomorphism of DG S-bimodules,

SSS −→ RHomA(SSS , Σ
nA).

Then the DG-bimodule ASS is a generalised Gorenstein morphism from R to S.

Proof. We begin by noting that as RHomA(S,D) is a dualising DG S-module, we also

have that Σn RHomA(S,D) is a dualising DG-S-module as well.

Also

SSS,A
L
⊗
A
AD

(a)∼= RHomA(SSS , Σ
nA)

L
⊗
A
AD

(b)∼= RHomA(SSS , Σ
nA

L
⊗
A
AD) ∼= Σn RHomA(SSS , D),

where (a) is due to the isomorphism SSS → RHomA(SSS , Σ
nA) and (b) is due to the

compactness of AS.

We therefore have by Theorem 5.3.10 that ASS is a generalised Gorenstein morphism

from R to S.

5.4 Examples of Generalised Gorenstein Morphisms

Our first example of a generalised gorenstein morphism below is the almost trivial case

of a generalised gorenstein morphism from a commutative DGA R to itself.

Theorem 5.4.1. Let R be a commutative DGA with a symmetric bimodule RMR and a

symmetric dualising module RDR. If M is a compact R module then M is a generalised

gorenstein morphism from R to itself.

Proof. We want to show that when M is compact it satisfies the conditions of definition

5.3.4 with R = S.

Condition (i) holds by assumption.
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For condition (ii), since R = S we can set D = E and since both M and D are

symmetric we have that the morphisms

φ : RDR

L
⊗
R
RMR

∼=−→ RMR

L
⊗
S
RDR

and

θ : RZR
L
⊗
R
RDR

∼=−→ RDR

L
⊗
S
RZR.

Finally for condition (iii), we need to show that the diagram below commutes,

Z
L
⊗
R
D

L
⊗
R
M

1⊗φ //

θ⊗1
��

Z
L
⊗
R
M

L
⊗
R
D

τ⊗1 // R
L
⊗
R
D

∼=

��
D

L
⊗
R
Z

L
⊗
R
M

1⊗τ // D
L
⊗
R
R

∼= // D.

Let z ∈ Z, d ∈ D and m ∈M then

(τ ⊗ 1) ◦ (1⊗ φ)(z ⊗ d⊗m) = z(m)⊗ d = z(m).d

while

(1⊗ τ) ◦ (θ ⊗ 1) = d⊗ z(m) = d.z(m),

However since D and M are symmetric we have that z(m).d = d.z(m) and the diagram

commutes as required.

The next example involves The Endomorphism DGA from example 3.1.20 and the

notation used in the results below is the same as that used in the example.

Theorem 5.4.2. The DG-bimodule A E E is a generalised Gorenstein morphism from

A to E .

Proof. To do this, it suffices to show that, for the DGAs A and E and the morphism

φE , the the conditions of Corollary 5.3.11 are satisfied.

Since E is a bounded complex of finitely generated projective A-modules we have that

E is compact in D(A).

By 3.2.21 we have that for a dualising complex C of A that RHomA(E , C) is a dualising

module for E .
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The image of φE in contained in the centre of E , since for an element e ∈ E i we have

that

(φE (a)e)(l) = (Σ−i(φE (a)) ◦ e)(l) = ae(l)

= e(al) = (e ◦ φE (a))(l) = (eφE (a))(l).

Finally we need to show that there is an isomorphism

E E E → RHomA(E E E , Σ
nA).

Since E is K-projective over A we have that RHomA(E E E , Σ
nA) ∼= HomA(E E E , Σ

nA)

and by the compactness of A E we have that all the morphisms in the diagram,

E E E
∼= // HomA(A,EL,A,EL)

∼=
��

HomA(A,EL,A⊗
A
A,EL)

HomA(A,EL,A)⊗
A
A,EL

∼=

OO

∼=
��

HomA(HomA(A,EL,A,EL), A)
∼= // HomA(E E E , A)

,

are isomorphisms

Hence we have an isomorphism, E E E → RHomA(E E E , Σ
nA), as required.

Finally we can apply the ascent theorem to this example.

Theorem 5.4.3. A is a Gorenstein ring ⇒ E is a Gorenstein DGA.

Proof. By [12, proposition 2.5] we have that A when viewed as a DGA concentrated in

degree 0 is a Gorenstein DGA. We can now use Theorem 5.3.9 with RMS = A E E . We

have shown in Theorem 5.4.2 above that A E E is a Gorenstein morphism from A to E

thus satisfying condition (i).

Conditions (ii) and (iii) hold since A being the base ring.

The following example involves The Koszul complex as defined in example 3.1.21, yet

again the notation used in the results below is the same as that used in the example.
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Theorem 5.4.4. The DG A-K(a)-bimodule K(a) is a generalised Gorenstein mor-

phism from A to K(a).

Proof. To do this, it suffices to show that the conditions of Corollary 5.3.11 are satisfied.

Since K(a) is a bounded complex of finitely generated projective A-modules we have

that K(a) is compact in D(A).

By 3.2.20 we have that for a dualising complex C of A that RHomA(K(a), C) is a

dualising module for K(a).

The morphism φK(a) has image in the centre of K(a), since, as K(a) is commutative,

the centre is all of K(a).

Finally it remains to show that there is an isomorphism K(a) −→ RHomA(K(a), ΣnA).

The degree n component of K(a) is A itself the projection of K(a) onto its degree n

component is of the form K(a)
π−→ ΣnA. We can now define an isomorphism

K(a)
∼=−→ HomA(K(a), ΣnA),

given by k 7→ (l 7→ π(k ∧ l)).

Since K(a) is K-projective over A we have that

RHomA(K(a), ΣnA) ∼= HomA(K(a), ΣnA)

and hence we have an isomorphism

K(a) −→ RHomA(K(a), ΣnA).

We can now apply our ascent theorem to this situation.

Theorem 5.4.5. A is a Gorenstein ring ⇒ K(a) is a Gorenstein DGA.

Proof. This is almost identical to the proof of Theorem 5.4.3, We have from Theorem

5.4.4 above that condition (i) of Theorem 5.3.9 holds. Again conditions (ii) and (iii)

hold due to the fact that A is the base ring.

The final example again involves endomorphism DGAs with the following setup.

Setup 5.4.6. Let k be a field and let Λ be a finite dimensional k-algebra. Let ΛL be

a complex of finitely generated projective Λ-modules. Define the Endomorphism DGA

E = HomΛ(L,L).
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Lemma 5.4.7. ΛΛΛ is a dualising Λ-module.

Proof. Since k is a field we have that it is a dualising complex over itself, so by 3.2.18

we have that RHomk(Λ, k) is a dualising Λ-module. However since Λ is symmetric we

have that Λ ∼= RHomk(Λ, k) so Λ is itself a dualising Λ-module.

Lemma 5.4.8. E E E is a dualising E -module.

Proof. By [10, Prop 2.6] we have that RHomk(E , k) is a dualising E -module. Since E

is K-projective over k we have that

RHomk(E , k) ∼= Homk(E , k)

and

Homk(E , k) ∼= Homk(HomΛ(L,L), k)
(a)∼= Homk(L, k)

L
⊗
Λ
L

(b)∼= HomΛ(L,Λ)
L
⊗
Λ
L

(c)∼= HomΛ(L,L) ∼= E ,

where (a) and (c) are due to L being a bounded complex of projective modules and (b)

is from

Homk(L,Λ) ∼= Hom(L,Homk(Λ, k))
adj∼= Homk(L, k).

Hence E is a dualising E -module.

Theorem 5.4.9. Λ,EL is a generalised Gorenstein morphism from E to Λop.

Proof. We do this by showing directly that Λ,EL satisfies the conditions of Definition

5.3.4, with R = E and S = Λop.

For condition (i), since ΛL is a bounded complex of projective modules it is compact

in D(Λ).

For conditions (ii) and (iii), by Lemmas 5.4.7 and 5.4.8 we can take ΛΛΛ and E E E

to be the dualising modules for Λop and E , the isomorphisms φ and θ are then the

identity isomorphisms and the commutativity of the diagram in condition (iii) becomes

trivial.
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(1957), no. 3, 119–221.

[16] R. Hartshorn, Residues and Duality, Lecture Notes in Mathematics, no. 20,

Springer-Verlag, Berlin, 1971.

[17] P. J. Hilton and U. Stammbach, A Course in Homological Algebra, Graduate Texts

in Mathematics, no. 4, Springer-Verlag, New York, 1971.

[18] B. Keller, Deriving DG Categories, Ann. Sci. cole Norm. Sup. 27 (1994), no. 4,

63–102.

[19] , Invariance and Localization for Cyclic Homology of DG Algebras, J. Pure

Appl. Algebra 123 (1998), 223–273.

[20] S. Ladkani, Derived Equivalences of Triangular Matrix Rings Arising From Ex-

tensions of Tilting Modules, Algebr. Represent. Theory, in press.

[21] S. Mac Lane, Categories for the Working Mathematican, Graduate Texts in Math-

ematics, no. 5, Springer-Verlag, New York, 1971.

[22] Daniel Maycock, Derived Equivalences of Upper Triangular Differential Graded

Algebras, Communications in Algebra 39 (2011), no. 7, 2367–2387.

[23] A. Neeman, The Grothendieck Duality Theorem Via Bousfield’s Techniques and

Brown Representabilty, J. Amer. Math. Soc. 9 (1996), no. 1, 205–236.

[24] D. Pauksztello, Homological Epimorphisms of Differential Graded Algebras,

Comm. Algebra, in press.

[25] P. Jørgensen, Amplitude Inequalities for Differential Graded Modules, Forum

Math., in press.

[26] , Auslander-Reiten Theory Over Topological Spaces, Comment. Math. Helv.

79 (2004), 160–182.

150



Bibliography

[27] , Recollement for Differential Graded Algebras, J. Algebra 299 (2006), 589–

601.

[28] J. Rikard, Morita Theory for Dervived Categories, J. London Math. Soc. 39 (1989),

436–456.

[29] R. Y. Sharp, Finitely Generated Modules of Finite Injective Dimension Over Cer-

tain Cohen-Macauley Rings, Proc. London Math. Soc. 25 (1972), no. 3, 303–328.

[30] N. Spaltenstein, Resolutions of Unbounded Complexes, Compositio Mathematica

65 (1988), 121–154.
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