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Abstract

The purpose of secure devices, such as smartcards, is to protect sensitive information
against software and hardware attacks. Implementation of the appropriate protection
techniques often implies non-standard methods that are not supported by the conven-
tional design tools. In the recent decade the designers of secure devices have been work-
ing hard on customising the workflow. The presented research aims at collecting the
up-to-date experiences in this area and create a generic approach to the secure design
flow that can be used as guidance by engineers.

Well-known countermeasures to hardware attacks imply the use of specific signal en-
codings. Therefore, multi-valued logic has been considered as a primary aspect of the
secure design. The choice of radix is crucial for multi-valued logic synthesis. Practical
examples reveal that it is not always possible to find the optimal radix when taking into
account actual physical parameters of multi-valued operations. In other words, each
radix has its advantages and disadvantages. Our proposal is to synthesise logic in differ-
ent radices, so it could benefit from their combination.

With respect to the design opportunities of the existing tools and the possibilities of
developing new tools that would fill the gaps in the flow, two distinct design approaches
have been formed: conversion driven design and pre-synthesis.

The conversion driven design approach takes the outputs of mature and time-proven
electronic design automation (EDA) synthesis tools to generate mixed radix datapath
circuits in an endeavour to investigate the added relative advantages or disadvantages.
An algorithm underpinning the approach is presented and formally described together
with secure gate-level implementations. The obtained results are reported showing an
increase in power consumption, thus giving further motivation for the second approach.

The pre-synthesis approach is aimed at improving the efficiency by using multi-
valued logic synthesis techniques to produce an abstract component-level circuit before
mapping it into technology libary. Reed-Muller expansions over Galois field arithmetic
have been chosen as a theoretical foundation for this approach. In order to enable the
combination of radices at the mathematical level, the multi-valued Reed-Muller expan-
sions have been developed into mixed radix Reed-Muller expansions. The goals of the
work is to estimate the potential of the new approach and to analyse its impact on circuit
parameters down to the level of physical gates. The benchmark results show the ap-
proach extends the search space for optimisation and provides information on how the
implemented functions are related to different radices.

The theory of two-level radix models and corresponding computation methods are
the primary theoretical contribution. It has been implemented in RMMixed tool and
interfaced to the standard EDA tools to form a complete security-aware design flow.
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Chapter 1

Introduction

In the modern world, digital devices take an important part in every aspect of our every

day lives, including such sensitive areas as healthcare and finance. Large amount of

personal and confidential information is stored online, and must be securely transferred

between the client and the server. Financial operations are done “by wire”, and every

bank transaction is performed by some kind of electronic equipment. No doubt, all these

aspects imply a great deal of trust in the devices involved. Ideally, we desire a system

where the confidential information cannot be retrieved by an unauthorised person. In

reality, this requires a huge effort to maintain the acceptable level of protection. Secure

technologies have to continuously move forward chased by the constantly evolving

techniques of the hackers.

Security solutions in the past were predominantly at the software level. The classic

approach to cryptanalysis requires knowledge of ciphertext and, if available, plain-

text. Cryptographic algorithms developed accordingly, minimising the possibility of

getting the secret key by comparing the ciphertext to the plaintext (differential crypt-

analysis [32]). With increasing complexity of the new encryption algorithms, more in-

terest has been shown towards implementing cryptographic functions in hardware [60].

Circuit-level security, appraised for higher performance, has been also considered to be

more secure. However, this has raised new problems as well.

Working entirely at the mathematical level, the traditional cryptography does not take

1



CHAPTER 1. INTRODUCTION

into account possible flaws of the actual implementations. Running on the real hardware,

a cryptosystem dissipates different kind of information that may indirectly disclose the

data being processed. For example, certain bits of a message may take a slightly longer

time to compute or cause variations in the device’s power consumption. The type of

attacks that rely on this data is called side-channel attacks.

The major concern about side-channel attacks starts in 1998 with the discovery of

the power analysis [39]. The idea of simple power analysis (SPA) is to examine device’s

power curve during the normal operation w.r.t. the cryptographic algorithm and the

data being processed. For example, the operation of multiplication normally consumes

more power than addition, hence the RSA algorithm [61, 63] can expose the private key

while branching between these operations. The differential power analysis (DPA) uses

power samples from multiple runs and performs statistical analysis in order to find the

correlation and reveal the key. DPA allows breaking the commonly used algorithms in

relatively short time. For instance, at the mathematical level, DES is perfectly resistant

to differential cryptanalysis and takes exponential time to crack, while DPA requires

only 1000 power samples [40]. The alarming efficiency of this attack drew the attention

of both smartcard vendors and the cryptographic community, and even featured in an

article in the New York Times [74]. The new standard on secure devices has been altered

accordingly [5].

More details on DPA and countermeasures are given in Chapter 2. Among the

number of described countermeasures, the presented work has been focused on power

balancing and asynchronous system design only. The idea of power balancing is to

encode and process the data signal in such a way that the operation over it will produce

data independent power consumption due to the uniform switching of gates. Balanced

encodings also imply more than 2 states of the signal, which leads to the multi-valued

logic synthesis approach. In asynchronous designs the clock is replaced with handshake

signals. Fuzzy circuit timing characteristics makes it difficult to sample power curves

required for DPA.

The conventional industrial electronic design automation (EDA) tools, such as Syn-

2



CHAPTER 1. INTRODUCTION

opsys [7], Cadence [4], Magma [6] are very powerful, but they are targetted towards the

general purpose devices and commonly used technologies. These tools are focusing on

the primary issues of the market in order to deliver high quality solutions to the most of

their customers. As a result, this approach often excludes many other aspects, such as

multi-valued logic synthesis and asynchronous design. Industrial tools can be compared

to an assembly line that can produce thousands of typical items with a push of a button.

However, it’s probably not the best choice if one needs something special.

Consequently, the development of secure devices requires much more design effort

and should employ the methodologies beyond the “casual” electronic design. Some

research has been made in an attempt to adjust the design flow [70, 11], but simple

’tweaks’ do not give the best efficiency. In order to be ahead of the hackers in their

technological pursuit, the designers need a very good tool support. The research

presented in this thesis aims at formulating the unified design flow, filling in the gaps in

the conventional design automation with the aid of the existing tools and development

of the new ones.

1.1 Motivation

Design flows used in industry are generally based on binary logic with a single bit of

data represented as a single wire. This representation of data is called “single-rail”

encoding. Multi-valued logic (MVL) synthesis tools also exist, e.g. MVSIS [27], and they

are typically used to efficiently produce logic from higher-radix specifications, while the

technology is still single-rail and processed using the standard flow and tools. The work

described in the thesis, however, deals with the application areas where a simple binary

encoding of data is either not applicable or gives poor results in terms of the delivered

properties of the implementation.

Important features of certain encodings are exposed when used in connection with

appropriate protocols. For example, single-rail is used with bundled data protocol [68]

for asynchronous system design. From the application perspective, it is convenient

to consideer an encoding-protocol combination as a whole in order to explore their

3



CHAPTER 1. INTRODUCTION

properties and possibilities.

Thus, m-of-n encoding combined with a spacer protocol is beneficial for security [17,

76], but for the price of increased area and power consumption. Chapter 2 outlines the

problem; however, the discussion on the efficiency of certain countermeasures against

the side-channel attacks is out of scope of this thesis. We are mostly interested in the

fact that m-of-n codes imply MVL, which is problematic to design using the standard

techniques.

It is also important that this particular type of encoding is not the only possible

application area of MVL, and therefore the presented research. Possible use cases may

include current-mode [13] or phase encoding [20], or any other protocol displaying the

properties that single-rail does not have. On-chip interconnects [14] and low-power [33]

devices are well-established applications for MVL that use special data representation at

the physical level. The application of MVL may even go beyond microelectronics and,

possibly, enter such areas as biocomputing [10].

When the problem of using an encoding arises, the designers struggle to use the

existing methodologies, while in fact a brand new design flow is warranted. This implies

the need for an “application-driven” design flow. Figure 1.1 illustrates the difference

between the approaches, crucial for understanding the motivation behind our research.

Typically, in a general purpose flow, the intermediate structure of MVL does not

matter, because it produces the gate-level (binary) netlist that can be henceforth fed to a

standard design compiler, where it is compacted and mapped into the certain technology.

In contrast, an application-driven design flow explicitly defines an intermediate synthesis

state known as the component-level netlist – a netlist of abstract arithmetic operations.

The component-level netlist is an important link that carries along the radix information,

which is essential for correct optimisation and data encoding. The consequent technology

mapping does not alter the structure of the circuit; therefore, even if the final circuit is

mapped into binary logic gates, compliance with the protocols is preserved.

The physical implementation of arithmetic components directly depends on the

encoding, thus the radix of signals, and has a strong impact on the characteristics of

4
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Multi-valued specification

Synthesis

Gate-level netlist (generic)

Optimisation and
technology mapping

Gate-level netlist (technology)

Place and route

(a) typical general purpose flow

Multi-valued or binary specification

Synthesis

Component-level netlist

Optimisation and
signal encoding

Gate-level netlist (generic)

Exact
technology mapping

Gate-level netlist (technology)

Place and route

(b) application-driven flow

Figure 1.1: Understanding the difference between general purpose MVL and application-
driven MVL synthesis flows

the circuit. Therefore the right choice of the radix is highly important; however, it is

not always possible to find the globally optimal solution. Lower order radices require

less logic to compute, and higher radices reduce the number of interconnects [45].

Our examples also show that this logic/interconnect trade-off is not evenly distributed

among the arithmetic operations. Certain operations, if implemented with respect to the

application requirements, have better physical characteristics in the lower radix logic,

while other operations are more efficient in the higher radices. Consequently, when all

the operations are combined, a single optimal radix cannot be worked out.

Hence, a methodology to partition the synthesised circuit into areas of different

radices, whilst preserving the integrity and the properties of the original function, would

be of great advantage. The ability to accommodate arithmetic components of different

radices within a single circuit may provide the opportunity to incorporate the benefit

from each, and also provide another dimension in the logic/interconnect trade-off. This

describes a design philosophy where the radix is not a single fundamental idea but just

a “tool” for computation, so the designer can use different “tools” together in order to

achieve the best results.

5
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A straightforward solution to mix radices within a single circuit is to use signal

conversion, as described in Chapter 3. For example, signal conversion logic can split

quaternary signals into pairs of binary signals where appropriate, and vice versa.

Conversion can be performed in a rather sophisticated way [71]. The main interest in

the conversion approach is the possibility to apply it on top of the existing designs with

a minimum computational cost. A major drawback, however, is that the structure of the

circuit previously optimised for a certain radix becomes less efficient when converted to

a different radix.

The problem can be avoided if mixed radices are applied directly at the logic synthesis

stage. The proposal is to develop a mathematical theory for mixing radices in such a

way that the radix conversion is done “by construction”. Reed-Muller expansions over

Galois fields can be chosen as a foundation for the approach. Since most cryptographic

algorithms are based on Galois field arithmetic, we expect these functions to be efficiently

mapped into Reed-Muller expansions.

Among a number of MVL synthesis techniques, Reed-Muller expansions over the

Galois field of radix 4 are of great interest and have been developed for a number of years.

The history of multi-valued Reed-Muller expansions started with evolving functional

binary decision diagrams into the theory of Galois switching functions by applying finite

field algebra [29, 52]. Later on, this approach has been developed into fixed and mixed

polarity quaternary Reed-Muller expansions [28] – acknowledged by MVL research

community due to their efficiency and testability. However, the high computational cost

has prevented this approach from wide-spread and practical use. Thus, the later research

has been focused mostly on optimising the computational algorithms [24, 59, 36, 25] and

logic minimisation [34]. An attempt to implement multi-valued Reed-Muller expansions

in CMOS has been made as well [81].

Conveniently for the application-driven flow, a Reed-Muller expansion is produced in

the form of an arithmetic expression that can be interpreted as a component-level netlist.

The expansion itself is a two level function (sum of products), hence the idea to apply

different radices to different levels gives the opportunity to develop a variety of two-
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radix combinations at the higher level of abstraction.

Green’s method [28] has been chosen as an appropriate computation technique. The

method is described in Chapter 2. Although it is known for its high computational

complexity, it is straightforward and very flexible. At this stage of the research we are

interested in the clarity rather than faster runtime. Optimisations can be applied after the

entire mixed radix approach is proved valuable.

Given the motivation described in this section, the goal of the research can be defined

as follows:

· Implement mixed radix synthesis and conversion approaches as a set of tools.

· Interface these new tools to the existing EDA tools, so together they form a complete

design flow for secure devices.

· Explore radix combinations and analyse their efficiency with respect to the circuit

parameters and security properties.

1.2 Contribution

Analysis of the existing EDA tools with respect to the security system design has been

done prior to the main part of the research. The design flow structure has been proposed

for conversion and synthesis approaches. Chapter 3 presents the proposed flows and

discusses possible bottlenecks while interfacing between tools. The lack of tool support

for encoded MVL synthesis and conversion confirmed the necessity of developing the

new tools for these purposes.

Conversion driven design approach has been elaborated and implemented for binary

to mixed radix circuit conversion. The basic idea behind the conversion design is in the

grouping of binary gates. Two types of gate grouping have been established: bitwise

and operandwise. Corresponding gate grouping algorithms have been developed and

implemented in a tool. The tool supports netlist to netlist conversion; structural Verilog

has been chosen as the input and output format.

7
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For synthesis approach, the theory of multi-valued Reed-Muller expansions over

Galois field arithmetic has been extended to mixed radix Reed-Muller expansions. The

notion of a radix model has been introduced. The developed two-level radix models,

presented in Chapter 4, enable computation of the following mixed radix functions:

· radix pu functions of radix pt arguments, where p is prime and t > u > 1;

· radix pt functions of radix p arguments, where p is prime and t > 1;

· radix pt functions of combined radix p and radix pt arguments, where p is prime

and t > 1;

· radix q functions of binary arguments, where q is any valid Galois field order.

The theory of two-level radix models and corresponding computation methods are the

primary theoretical contribution of the thesis.

In order to apply the new synthesis theory, the libraries of Galois field arithmetic

components have been implemented in compliance with the security requirements and

covering the radices 2, 3 and 4. The implementation has been made using runtime library

cells and using custom design cells.

Reed-Muller based synthesis has been implemented in RMMixed tool [1]. The tool’s

features include:

· computation of uniform radix and mixed radix Reed-Muller expansions in the form

of a coefficient vector;

· basic logic minimisation and mapping into component level netlists;

· mapping from the component level to the gate level using provided library of

components; the produced output is structural Verilog.

In addition, the tool can assist in calculating miscellaneous expressions in Galois field

arithmetic. It can perform basic operations, matrix operations (including inversion), and

operations on polynomials (including division). The tool is implemented in two versions:

command line tool and TCL console.

8
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The technique has been applied to a real life security related benchmarks in order to

provide further motivation for its practical use. Proposed design flow has been tested

down to the level of flat technology mapped netlist. Our theory allowed us to compare

the efficiency of implemented component libraries in terms of energy consumption, area

and delay in a range of radices and radix combinations. We have taken into account that,

since the proposed theory is new, it lacks proper optimisation algorithms in comparison

with well-developed binary synthesis system. Hence, the benchmark results have been

analysed from the perspective of further improvement of the theory.

1.3 Organisation of the thesis

The thesis is organised as follows.

Chapter 1 (Introduction) outlines the motivation and application background of the

presented research.

Chapter 2 (Background):

· provides technical background for the hardware attacks and countermeasures,

outlines the prerequisites for secure design;

· gives the necessary background theory on Galois fields and Reed-Muller expan-

sions over Galois fields. The understanding of this theoretical part is essential for

reading Chapter 4.

Chapter 3 (Baseline Research) proposes the design flow stucture for conversion and

synthesis approaches, gives an overview of the existing tools and outlines the

requirements for the new tool. It also presents the conversion driven design

approach – theoretical part, algorithms and benchmark results – which provides

a baseline and further motivation for the main theoretical part of the thesis.

Chapter 4 (Mixed Radix Reed-Muller Expansions) presents the theory of mixed radix

Reed-Muller expansions used for logic synthesis in the proposed secure design

flow.

9
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1.  Introduction

2.1.  Hardware Attacks

and Countermeasures

3.1.  Secure Design Flow

2.2.  Galois Fields and

Reed-Muller Expansions

4.  Mixed Radix

Reed-Muller Expansions

5.  Use Case and

Experimental Results

6.  Conclusions

Motivation

Background

Baseline

Main contribution

3.2. Conversion Driven

Mixed Radix Design

Figure 1.2: Thesis flowchart
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Chapter 5 (Use Case and Experimental Results) describes in details the Reed-Muller

synthesis-based secure design flow, implemented tool and component libraries and

discusses the benchmark results.

Chapter 6 (Conclusion) concludes the work and outlines the possible future develop-

ment of the research.

Appendix A (RMMixed User Manual) contains the user manual for Reed-Muller syn-

thesis tool.

Some chapters present independent approaches, so there is a certain concurrency in the

structure of the thesis. Figure 1.2 illustrates the flow.

11



Chapter 2

Background

The presented research connects two independent aspects: hardware level security and

the theory of multi-valued Reed-Muller expansions. This chapter covers the background

information for both.

2.1 Hardware Attacks and Countermeasures

As has been discussed in Chapter 1, in order to make the device sufficiently protected

against the hardware attacks, certain guidelines must be followed. This section describes

the possible dangers and gives the basic understanding of the protection at the hardware

level using the special type of signal encoding, known as switching balanced codes.

2.1.1 Types of attacks and countermeasures

Cryptanalysis is mainly divided into software attacks and hardware attacks. Figure 2.1

shows different types of attacks grouped by the field of action [60].

Software cryptanalysis is targetted directly at the cryptographic algorithms, acting at

the mathematical level or the level of programming language. This type of attack is not

addressed in thie presented research.

Hardware attacks behave indirectly, using the imperfections of the actual implement-

ations rather than those of the algorithms. These attacks are divided into two major

categories: invasive and non-invasive (side-channel). Based on reverse engineering,
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Cryptanalysis

Software Hardware

Attacks on cryptography 
algorithms.

Attacks on software architecture.

Invasive Non-invasive

Reverse engineering. Power analysis.

Fault analysis.

Timing attacks.

Electromagnetic 
attacks.

Figure 2.1: Types of cryptanalysis

invasive attacks require special laboratory equipment and destroy packaging in the

process while side-channel attacks do not require in-depth knowledge of the technology

and use simple equipment [60]. With respect to the physical parameter used as the

source of information, side-channel attacks are known as power analysis, timing analysis,

electromagnetic analysis and fault analysis.

During the power analysis the hacker monitors data-dependent power consumption

of the device during the normal operation [39]. The method relies on the following

fundamental hypothesis: there exists an intermediate variable that appears during the

computation of the algorithm, such that knowing a few key bits allows the attacker to

decide whether two inputs (respectively two outputs) do or do not give the same value

for this variable [18]. Consequently, splitting such variables and combining them with

random values can protect against power analysis. This method is called masking, and its

major advantage with respect to this work is that it can be implemented using standard

EDA software. However, recent research has discovered a mathematical modification of

power analysis that can break the masking approach [48].

Another countermeasure to the power analysis is to make the device’s power con-

sumption data-independent, it is called power balancing. A number of methods to equalise

the power signatures using specific representation of data signals over physical wires, e.g.

m-of-n codes, were proposed in [17, 46, 67, 43]. M-of-n codes are an encoding scheme in
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which data is represented using n wires and where m of them are set to an active level

(usually high). A protocol separating data using dummy symbols (spacers) is called a

spacer protocol. In this configuration, the number of wires that switch during the cycle is

constant, so is the power consumption. A particular emphasis has so far only been put on

dual-rail (1-of-2) codes for binary radix and 1-of-4 for quaternary logic. As a price for the

improved resistance to power attacks the approach results in an overhead with respect

to the overall power consumption of the system. More details on power balancing using

m-of-n codes is given in Subsection 2.1.2.

Electromagnetic analysis is similar to power analysis but uses data-dependent elec-

tromagnetic emission instead of power consumption [26]. The method of equalising

switching activity of the logic can work in this case as well.

Another way to make the hackers’ life harder is to randomise the timing properties

of the circuits, so it would become difficult to perform correct sampling of physical

parameters during operation. The simplest method is to insert random delays in the

clock cycles. The most reliable countermeasure however is an asynchronous logic design

(i.e. self-timed circuits) [46]. Asynchronously working device modules cause overlays in

power consumption, thus making it practically impossible to distinguish between single

operations. This can help against the timing analysis, which uses the amount of time

required for running non constant cryptographic algorithm to retrieve information about

the data processed [41].

Fault analysis is an attack which uses abnormal environment conditions, e.g. glitches

on power or clock signals, so malfunction of the device can create a window for

vulnerabilities [15]. A known countermeasure for this attack is using fault-tolerant

protocols. M-of-n codes are fault-tolerant as they imply relatively simple fault detection

logic [14].

Since m-of-n codes and clockless design approach appear to be the most universal

countermeasures, the following discussion on the secure design is presented in relation

to these ideas.
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2.1.2 Power balancing using m-of-n codes

Power balancing is one of the countermeasures to power analysis. It’s concept is to

create data-independent power consumption using so-called switching balanced codes

and power balanced implementations of logic gates.

CMOS power

Digital circuits consume power whenever they perform computation. Using a constant

power supply and input signals to execute, logic cells draw current from the supply

and dissipate energy as heat. Power consumption of the circuit is a sum of the power

consumption of the individual logic cells.

The overall power dissipation Ptotal of a static CMOS circuit is composed of

three components: switching power Pswitch, short-circuit power Pshort and leakage

power Pleak;

Ptotal = Pswitch + Pshort + Pleak.

Short-circuit power Pshort is dissipating due to the presence of a direct path between

supply and ground during logical transitions (0 → 1 or 1 → 0). Leakage power

dissipation Pleak, known as static power consumption, comes from different sources:

sub-threshold voltage, tunneling through gate oxide, and through reverse biased di-

odes. Although at the submicron level the leakage power becomes a relevant factor,

short-circuit power and leakage power are considered relatively small compared to the

switching power [47].

Switching power Pswitch, also called dynamic power or dynamic dissipation, is at-

tributed to the charging and discharging of capacitances: gate outputs (load capacitances)

and transistor-to-transistor connections inside gates (intrinsic capacitances) [38];

Pswitch = Pload + Pinternal.

An inverter, shown in Figure 2.2, does not have intrinsic capacitances, hence the

load power is equivalent to the dynamic power. During a 0 → 1 transition, current
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vdd

A A

CL

Iswitch

Figure 2.2: Switching activity in CMOS inverter

flows from the supply charging the load capacitance CL. Half of the energy is stored

in the load capacitor, and the other half is dissipated by the pull-up PMOS network.

During a discharging transition 1 → 0 current flows from the load to ground, and the

energy stored in the load capacitor is dissipated by the pull-down NMOS network; no

energy is drawn from the supply. Each switching cycle takes a fixed amount of energy

equal to CL · V2
dd. The inverter’s average dynamic power consumption over some time

period is the integral of the instantaneous power multiplied by switching frequency f of

0→ 1 transitions.

Other CMOS gates and networks of interconnected gates display switching properties

other than those of a inverter. Furthermore, they exhibit “lazy switching” characteristics

causing a memory effect, where the logical values of outputs are retained from the earlier

computation cycles. This memory effect occurs when a gate output computes to the

same logical value as the existing output; this naturally happens when more than one

set of inputs maps to the same outputs. Similarly, internal nodes exhibit such memory

effects and will discharge or charge deterministically. For example, consider the 2-input

NAND gate shown in Figure 2.3. It has two parallel PMOS transistors and two NMOS

transistors connected in series forming the internal transistor-to-transistor capacitance

Cint. Assume the inputs are either 00 or 01 and Cint is discharged; if in the next cycle

00 or 01 arrives, then the output will retain its existing value and no power will be

consumed. If in the next cycle 10 arrives, the output will retain its value, but Cint will

charge, meaning it can freely discharge at any point in subsequent cycles.

Estimating the power consumption of complex gates and networks requires taking
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Figure 2.3: CMOS NAND gate

into account switching statistics. For instance, from the truth table of the NAND gate the

probability of 0→ 1 transition is 3/16, the probability of 1→ 0 transition is also 3/16, and

the probability that the output will be retained is 10/16. The concept of switching activity

is used to determine the probability of the output switching. For N periods of 0→ 1 and

1→ 0 transitions, the switching activity α determines how many 0→ 1 transitions occur.

Thus,

Pload = αCL · f · V2
dd,

where α is the switching activity, CL is output capacitance, and f is the switching

frequency of 0→ 1 transitions. For the inverter, α = 1 and Pload = CL · f · V2
dd.

Pinternal =

n∑
i=1

αi ·Ci · f · Vi · Vdd,

estimated using switching activity αi, parasitic capacitance Ci and internal voltage Vi for

each node i. However, in most cases CL is considered to be much bigger than the sum of

Ci, so the internal power consumption is often neglected, and the switching power of a

particular cell is determined by its load power Pload.
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Figure 2.4: Dual-rail (1-of-2) protocol

m-of-n codes

Since the main source of power consumption in the CMOS netlist is the switching activity

of gates, the method to equalise it is to produce a symmetric switching. This can be

achieved using switching balanced codes, for example m-of-n codes.

m-of-n codes are an encoding scheme in which data is represented using n wires and

where m of them are set to an active level (usually high).

The simplest example is 1-of-2 code, called dual-rail, which uses a pair of wires per

bit of information d; one wire d1 is used for signaling a logic 1 (or true), and another wire

d0 is used for signaling logic 0 (or false). Traditionally this code is employed to represent

data in self-timed circuits [21]. Viewed together the d1d0 wire pair is a codeword;

d1d0 = 10 and d1d0 = 01 represent “valid data” (logic 0 and logic 1 respectively) and

d1d0 = 00 represents “no data” (“spacer” or NULL). The codeword d1d0 = 11 is not used,

and a transition between valid codewords must be done via the spacer, as illustrated in

Figure 2.4.

In asynchronous circuits, dual-rail protocol is used to create a 4-phase handshake

protocol, which replaces the clock signal. An abstract view of 4-phase handshaking

consist of (1) the sender issues a valid codeword, (2) the receiver absorbs the codeword

and sets acknowledge high, (3) the sender responds by issuing the empty codeword, and

(4) the receiver acknowledges this by taking acknowledge low [68]. Dual-rail handshake

circuit is shown in Figure 2.5.

An important feature of the dual-rail encoding is its balanced power consumption

which facilitates circuit resistance to power analysis attacks. In particular, switching from

a spacer to any code word consumes the same amount of power due to the symmetry

between rails. The same is true for all m-of-n generalised encodings. Apart from dual-

rail we use 1-of-4 to represent quaternary signals and 1-of-3 for ternary. Table 2.1 shows
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2n 2n

Data, Req

Ack

Logic
(dual-rail encoded)

Figure 2.5: 4-phase handshake

Table 2.1: Encoded binary, ternary and quaternary signals.

radix value encoded signal

1-of-2 (dual-rail)
0 01

binary 1 10
NULL 00

1-of-3
0 001

ternary 1 010
2 100

NULL 000
1-of-4
0 0001
1 0010

quaternary 2 or A 0100
3 or B 1000
NULL 0000

how these encodings can be applied.

Cell implementations for balancing

Since the primary attribute of these codes is balanced switching, the components should

also display this feature. Ideally the form and size of the power signature of a component

should be symmetrical with respect to switching from spacer to data and vice versa.

Usually this is achieved by introducing additional dummy-logic paths. For real life ex-

amples an ideal symmetry is impossible, but the components can have certain maximum

balancing allowed by the technology capabilities. Such implementations are henceforth

called fully balanced. In contrast, the notion of relaxed balancing is used when the security
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single-rail dual-rail
x y q = xy x = (x1, x0) y = (y1,y0) q = (q1,q0)

0 0 0 01 01 01
0 1 0 01 10 01
1 0 0 10 01 01
1 1 1 10 10 10
– – – 00 XX 00
– – – XX 00 00

Table 2.2: Dual-rail AND gate truth table and its single-rail equivalence

(a) relaxed balan-
cing

(b) fully balanced

Figure 2.6: RTL implementions of dual-rail encoded AND gate showing different levels
of power balancing.

is slightly compromised for significant power and area gains

To demonstrate the difference between fully balanced components and components

with so-called “relaxed” balancing, consider a binary AND gate. Table 2.2 shows its truth

table. A straightforward dual-rail implementation is shown in Figure 2.6(a). Switching

dual-rail inputs [x = (x1, x0) ,y = (y1,y0)] from the spacer value to ["0", "0"], ["1", "0"] and

["0", "1"] causes the NOR gate to fire. Switching from the spacer to ["1", "1"] fires the

NAND gate. NAND and NOR gates have different switching energy values thus in this

case the component is weakly balanced.

In order to improve the balance we have to add logic paths that make the structure of

the component symmetrical with respect to the switching activity of the gates and input

signals; this is shown in Figure 2.6(b). In the spacer state all inputs are set to low, thus all

the outputs of the 2-input NAND gates in the first layer are set to high, precharging the
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Figure 2.7: Power signatures for different data transitions illustrating the imbalance.
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Figure 2.8: Power signatures (overlayed)
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NAND gates in the second layer. Arrival of a data signal (["0", "0"], ["0", "1"], ["1", "0"], or

["1", "1"]) causes exactly one gate from the first layer to fire. This will produce only one 0

signal to the second layer, switching one of 3-input NANDs. Addition of constant inputs

to one of the gates guarantees that all gates in each layer are the same.

Although there are certain unavoidable aspects of the technology, such as transistor

level asymmetry which introduces some imbalance even to this design, any implement-

ation is acceptable if it fits the requirements of the security standard [5]. For the same

reason, the structure shown in Figure 2.6(a) might also be sufficient, since the difference in

switching energies is not large. Figure 2.7 displays the analogue simulation results for the

components shown in Figure 2.6 along with the non-encoded single-rail implementation.

As discussed above, fully balanced implementation provides maximum security, while

non-encoded circuit is totally unprotected. This is a typical illustration why the standard

design flow and tools cannot be directly applied in this area.

A detailed discussion on secure implementations and power balancing can also be

found in [31].
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2.2 Galois Fields and Reed-Muller Expansions

The section gives a brief yet sufficient background on Galois fields arithmetic, multi-

valued Reed-Muller expansions over Galois fields and Green’s direct method of compu-

tation. The understanding of these theoretical aspects is essential for understanding the

theory of mixed radix Reed-Muller expansions. All the theorems in this section are given

without proofs. The proofs can be found in the referenced literature. For the extended

study of the Galois theory, the reader may refer to [30, 62, 66].

2.2.1 Galois Fields

Rings

Definition 2.1. Let R be a nonempty set on which we have two closed binary operations,

denoted by + and · , i.e. a+ b ∈ R and a · b ∈ R for all a,b ∈ R. Then (R,+, ·) is a ring if

for all a,b, c,∈ R the following conditions are satisfied [30]:

1. Commutative law of + : a+ b = b+ a

2. Associative law of + : a+ (b+ c) = (a+ b) + c

3. There exists a zero element [66] (also called additive identity [30]), denoted as 0 ∈ R,

such that a+ 0 = 0 + a = a for every a in R.

4. For each a ∈ R there is an element b ∈ R with a+ b = b+ a = 0. This element is

called the additive inverse of a and usually denoted as −a.

5. Associative law of · : a · (b · c) = (a · b) · c

6. Distributive law of · over + :

a · (b+ c) = a · b+ a · c

(b+ c) · a = b · a+ c · a

If, in addition, a · b = b · a for all a,b ∈ R then R is called a commutative ring.
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A ring with unity is a ring R containing an element, denoted by 1 and called the unity

or the multiplicative identity, such that for all a ∈ R

1 · a = a · 1 = a

Definition 2.2. An integral domain is a commutative ring with unity R such that the

equation ab = 0 ∈ R implies that either a = 0 or b = 0 [66].

Theorem 2.1. A commutative ring with unity R is an integral domain if and only if it satisfies

the cancellation law: if ra = rb and r 6= 0, then a = b [62].

Definition 2.3. Let R be a ring with unity. If a ∈ R and there exists b ∈ R such that

ab = ba = 1, then b is called a multiplicative inverse of a (usually denoted as a−1) and a

is called a unit of R. The element b is also a unit of R [30].

Definition 2.4. Commutative ring with unity R is called a field if every nonzero element

of R is a unit [30].

Zn rings

The presented research uses finite fields, i.e. fields with finite number of elements. The

simpliest example is Zn rings.

For a fixed positive integer n, define the ring Zn of integers modulo n as follows [62].

Its elements are the subsets of Z

[a] = {m ∈ Z : m ≡ a (mod n)}

= {m ∈ Z : m = a+ kn for some k ∈ Z}

where a ∈ Z ([a] is called the congruence class of amod n). Addition and multiplication

are given by

[a] + [b] = [a+ b]

[a] [b] = [ab]
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and [1] is unity. It is routine to check that addition and miltiplication are well defined

(that is, if a ≡ a ′ (mod n) and b ≡ b ′ (mod n), then a+ b ≡ a ′ + b ′ (mod n) and ab ≡

a ′b ′ (mod n); i.e, [a] + [b] = [a ′] + [b ′] and [a] [b] = [a ′] [b ′]), and that Zn is a ring under

these operations [62].

It is a common practice, when working with Zn, to eliminate brackets from the

notation. In Z3, for example, it is correct to write 2 + 2 = 1.

Theorem 2.2. Zn is an integral domain if and only if n is prime [62].

Theorem 2.3. If p is a prime, then Zp is a field [62].

Polynomial rings over fields

Definition 2.5. Let R be a ring. The ring of polynomials in the transcendental (indetermin-

ate [30]) variable x, with the coefficients in R, is denoted by R [x] and consists of the set of all

formal expressions of the form

f (x) = anx
n + an−1x

n−1 + . . . + a1x+ a0

with each ai ∈ R [66]. The element at ∈ R is called the coefficient of xt in f (x) and two

polynomials are considered to be equal if and only if, for each t, their nonzero coefficients

of xt are equal. The zero polynomial has every coefficient equal to zero and is abbreviated

to 0.

The degree of f (x) is the largest n such that the coefficient of xn is nonzero and is

denoted by deg (f (x)). Hence deg (0) = 0, deg (a0) = 0 and deg (ax+ b) = 1.

If g (x) = bmx
m + bm−1x

m−1 + . . . + b0 we define the sum, f (x) + g (x), to be the

polynomial whose coefficient of xt is at + bt, and we define the product, f (x)g (x), to be

the polynomial whose coefficient of xt is

atb0 + at−1b1 + . . . + a1bt−1 + a0bt

Corollary 1. Let R [x] be a polynomial ring.
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1. If R is commutative, then R [x] is commutative.

2. If R is a ring with unity, then R [x] is a ring with unity.

3. R [x] is an integral domain if and only if R is an integral domain [30].

Irreducible polymonials: finite fields

We now wish to construct finite fields other than those of type (Zp,+, ·), where p is a

prime. The construction will use the following special polynomials.

Definition 2.6. Let f (x) ∈ F [x], with F a field and deg (f (x)) > 2. We call f (x) reducible

(over F) if there exists g (x) ,h (x) ∈ F [x], where f (x) = g (x)h (x)and each of g (x), h (x)

has degree > 1. If f (x) is not reducible it is called irreducible, or prime [30].

Theorem 2.4. Let s (x) ∈ F [x], s (x) 6= 0. Define relation R on F [x] by f (x)Rg (x) if f (x) −

g (x) = t (x) s (x), for some t (x) ∈ F [x] — that is, s (x) divides f (x) − g (x) [30]. Then R is an

equivalence relation on F [x].

When the situation described in Theorem 2.4 occurs, we say that f (x) is congruent

to g (x) modulo s (x) and write f (x) ≡ g (x) (mod s (x)). The relation R is referred as

congruence modulo s (x).

Let us examine the equivalence classes of one such relation. Let s (x) = x2 + x+ 1 ∈

Z2 [x]. Then

[0] =
[
x2 + x+ 1

]
=
{

0, x2 + x+ 1, x
(
x2 + x+ 1

)
, (x+ 1)

(
x2 + x+ 1

)
, . . .
}

=
{
t (x)

(
x2 + x+ 1

)
|t (x) ∈ Z2 [x]

}
[1] =

{
1, x2 + x, x

(
x2 + x+ 1

)
+ 1, (x+ 1)

(
x2 + x+ 1

)
+ 1, . . .

}
=
{
t (x)

(
x2 + x+ 1

)
+ 1|t (x) ∈ Z2 [x]

}
[x] =

{
x, x2 + 1, x

(
x2 + x+ 1

)
+ x, (x+ 1)

(
x2 + x+ 1

)
+ x, . . .

}
=
{
t (x)

(
x2 + x+ 1

)
+ x|t (x) ∈ Z2 [x]

}
[x+ 1] =

{
x+ 1, x2, x

(
x2 + x+ 1

)
+ (x+ 1) , (x+ 1)

(
x2 + x+ 1

)
+ (x+ 1) , . . .

}
=
{
t (x)

(
x2 + x+ 1

)
+ (x+ 1) |t (x) ∈ Z2 [x]

}
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+ 0 1 x x+ 1
0 0 1 x x+ 1
1 1 0 x+ 1 x

x x x+ 1 0 1
x+ 1 x+ 1 x 1 0

· 0 1 x x+ 1
0 0 0 0 0
1 0 1 x x+ 1
x 0 x x+ 1 1

x+ 1 0 x+ 1 1 x

Figure 2.9: Addition and multiplication of {[0] , [1] , [x] , [x+ 1]}

We now place a ring structure on these equivalence classes [30]. Recalling how this

was accomplished in Subsection 2.2.1 for Zn, we define addition by [f (x)] + [g (x)] =

[f (x) + g (x)]. Since deg (f (x) + g (x)) 6 max {deg (f (x)) , deg (g (x))}, we can always find

the equivalence class for [f (x) + g (x)]. Here, for example, [x] + [x+ 1] = [x+ (x+ 1)] =

[2x+ 1] = [1] because 2 = 0 in Z2.

Defining the multiplication of these equivalence classes is a bit more tricky. For

instance, what is [x] [x]? If, in general, we define [f (x)] [g (x)] = [f (x)g (x)], it is

possible that deg (f (x)g (x)) > deg (s (x)), so we may not readily find [f (x)g (x)] in

the list of equivalence classes. However, if deg (f (x)g (x)) > deg (s (x)), then using

the division algorithm, we can write f (x)g (x) = q (x) s (x) + r (x), where r (x) = 0 or

deg (r (x)) < deg (s (x)). With f (x)g (x) = q (x) s (x) + r (x) it follows that f (x)g (x) ≡

r (x) (mod s (x)), and we define [f (x)g (x)] = [r (x)], where r (x) does occur in the list of

equivalence classes.

From these observations we construct tables, shown in Figure 2.9, for the addition

and multiplication of {[0] , [1] , [x] , [x+ 1]}. In these tables we write a for [a].

Theorem 2.5. Let s (x) be a nonzero polynomial in F [x].

1. The equivalence classes of F [x] for the relation of congruence modulo s (x) form a commut-

ative ring with unity under the closed binary operations

[f (x) + g (x)] = [f (x)] + [g (x)]

[f (x)] [g (x)] = [f (x)g (x)] = [r (x)]

where r (x) is the remainder obtained upon dividing f (x)g (x) by s (x). This ring is denoted

by F [x] / (s (x)).
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2. If s (x) is irreducible in F [x], then F [x] / (s (x)) is a field.

3. If |F| = q and deg (s (x)) = n, then F [x] / (s (x)) contains qn elements [30].

Definition 2.7. Let (R,+, ·) be a ring. If there is a least positive integer n such that nr =

r+ . . . + r (ntimes) = 0 ∈ R for all r ∈ R, then we say that R has characteristic n and write

char (R) = n. When no such integer exists, R said to have characteristic 0.

Theorem 2.6. Let (F,+, ·) be a field. If char (F) > 0, then char (F) must be prime.

Theorem 2.7. A finite field F has order pt, where p is a prime and t ∈ Z+.

Theorem 2.8. (Galois) For every prime p and every positive integer t, there exists a field having

exactly pt elements [62].

Corollary 2. (E.H. Moore) Any two finite fields of order pt are isomorphic [62].

These fields were discovered by the French mathematician Evariste Galois (1811–

1832) in his work on the nonexistence of formulas for solving general polynomial

equations of degree > 5 over Q. As a result, a finite field of order pt is denoted by

GF
(
pt
)
, where the letters GF stand for Galois field.

Definition 2.8. If E is a field and F is a subset which, under the operations of E, is itself

a field then F is called a subfield of E and E is an extension of F [66]. GF(p) is a subfield of

GF(pt) for any prime p and t > 1.

Definition 2.9. A homomorphism ψ : F→ F ′ of fields is a ring map

(ψ (a+ b) = ψ (a) +ψ (b) ,ψ (ab) = ψ (a)ψ (b))

such that ψ (1) = 1. If ψ is one-to-one and onto, it is an isomorphism (an automorphism if

F = F ′). [66].

If the fields F and F ′ are homomorphic only with respect to one of the operations, i.e.

either ψ (a+ b) = ψ (a) +ψ (b) or ψ (ab) = ψ (a)ψ (b) is true for ψ : F → F ′, the field F

is called a subgroup of F ′ under the operation of addition (multiplication).

The next subsection summarises the properties of Galois fields used in the definition

and the computation of Reed-Muller expansions.
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Galois field properties overview

For any q = pt, where p is a prime number and integer t > 1, a Galois field GF(q) is

defined as an algebraic structure consisting of:

1. q elements;

2. closed binary operations + and · called addition and multiplication respectively, i.e.

a+ b ∈ GF(q) and a · b ∈ GF(q) for all a,b ∈ GF(q);

3. elements 0 and 1 such that a+ 0 = a and a · 1 = a for all x ∈ GF(q).

4. Operations of addition and multiplication have the property of commutativity,

transitivity, and the operation of multiplication is distributive over addition.

For every a ∈ GF(q), there exists −a ∈ GF(q) such that a+ (−a) = 0 [52]. Similarly, for

every nonzero b ∈ GF(q), there exists b−1 ∈ GF(q) such that b · b−1 = 1.

Another important property of the Galois fields is that for every a ∈ GF(q), aq = a

and for a 6= 0, aq−1 = 1 [52]. Hence the number of possible powers of a in GF(q) is

limited to q.

The elements of prime Galois fields are denoted as integer numbers. In the case of

GF(pt), first p elements are denoted as integers, as they are the elements of the prime

subfield GF(p), and the rest of the elements assign consequent uppercase latin letters:

A,B, . . .. For example the elements of GF(4) are: 0, 1,A,B.

Arithmetic operations for some Galois fields used in the further examples are shown

in Figure 2.10.

Matrix operations over Galois fields

The presented research extensively uses matrix operations over Galois fields. Due to the

properties of Galois fields, the matrix operations are defined in the same way as in regular

algebra. The elements of matrices are the elements of some field GF(q).

Matrix addition is defined as

[X+ Y]i,j = Xi,j + Yi,j,
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GF(2):
+ 0 1
0 0 1
1 1 0

× 0 1
0 0 0
1 0 1

GF(3):

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

× 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

GF(4):

+ 0 1 A B

0 0 1 A B

1 1 0 B A

A A B 0 1
B B A 1 0

× 0 1 A B

0 0 0 0 0
1 0 1 A B

A 0 A B 1
B 0 B 1 A

Figure 2.10: Addition and multiplication over some finite fields

where X, Y arem-by-nmatrices, 1 6 i 6 m, 1 6 j 6 n.

If X is anm-by-nmatrix and Y is n-by-pmatrix, then their matrix product XY is them-

by-p matrix whose entries are given by dot-product of the corresponding row of X and

the corresponding column of Y:

[XY]i,j =

n∑
r=1

Xi,rYr,j,

where 1 6 i 6 m and 1 6 j 6 p. Matrix multiplication satisfies the rules (XY)Z = X (YZ)

(associativity), and (X+ Y)Z = XZ+ YZ as well as Z (X+ Y) = ZX+ ZY (left and right

distributivity), whenever the size of the matrices X, Y,Z is such that the various products

are defined.

In linear algebra an n-by-n (square) matrix X is called invertible, if there exists an n-

by-nmatrix Y such that

XY = YX = In

where In denotes the n-by-n identity matrix and the multiplication used is ordinary

matrix multiplication. If this is the case, then the matrix Y is uniquely determined by

X and is called the inverse of X, denoted by X−1. Non-square matrices (m-by-n matrices

for whichm 6= n) do not have an inverse.

Definition 2.10. If X is an m-by-n matrix and Y is a p-by-q matrix, then the Kronecker

30



CHAPTER 2. BACKGROUND

product [23] is themp-by-nq block matrix

X⊗ Y =


x1,1Y · · · x1,nY

...
. . .

...

xm,1Y · · · xm,nY


Kronecker product is not commutative, but it is associative: (X⊗ Y)⊗Z = X⊗ (Y ⊗Z)

for matrices X, Y,Z. One of the properties of Kronecker product used in the presented

theory is that for any invertible matrices X and Y, (X⊗ Y)−1 = X−1 ⊗ Y−1; (X⊗ Y) is

invertible only if X and Y are invertible.

2.2.2 Multi-valued Reed-Muller expansions

Binary and multi-valued functions can be represented using XOR sum of products. One

particular case is Reed-Muller (RM) expansions. In the multi-valued case, Reed-Muller

expansions have the form of sum of products computed over GF(q).

The following simplified definition of literal is used in this thesis; it is sufficient for

understanding the theory at the required level. For classic definition of literal and literal

form of Reed-Muller expansions, refer to [35, 34].

Definition 2.11. Literal x̃ of the q-valued variable x is one of q possible polarity forms

(x+ c); c is an element of GF(q) denoting the literal.

Definition 2.12. For an n-variable q-valued function polarity number k is defined as an

integer representation of a q-nary tuple 〈kn . . . k1〉q = k where ki ∈ GF(q) denotes the

polarity of literal x̃i, i = 1 . . .n. For example, the polarity number k = 2 = 〈0A〉4 for

2-variable quaternary function means that x̃2 = x2 and x̃1 = x1 +A.

Definition 2.13. A general canonical Reed-Muller (RM) expansion for ann-variable q-valued

function in polarity k is defined as follows:

f (x̃1, . . . , x̃n) =
qn−1∑
i=0

ai

 n∏
j=1

x̃
ij
j

 over GF(q) (2.1)
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where ij is a single digit of a q-nary tuple 〈in . . . i1〉q = i. Vector a =

[
a0 . . . aqn−1

]t
is a coefficient vector. In a fixed polarity RM expansion each variable must be represented

by the same literal throughout the expansion.

Following from Definition 2.10 of the Kronecker product, (2.1) can be rewritten in

matrix form. Let X̃j =

[
1 x̃j . . . x̃

q−1
j

]
is the vector of all possible powers of the

literal x̃j, then

f (x̃1, . . . , x̃n) =
(
X̃n ⊗ . . .⊗ X̃1

)
· a over GF(q) (2.2)

where a is a coefficient vector as in Definition 2.13. Equation (2.2), as well as (2.1),

represents the sum of all possible products of all possible powers of the input variables

multiplied by coefficients from a.

Reed-Muller expansion of zero polarity for a quaternary function of one variable takes

the form:

f (x) = a0 + a1x+ a2x
2 + a3x

3 over GF(4) (2.3)

As an example, a 2-variable quaternary function of the polarity k = 2 = 〈0A〉4 gives

the following RM form:

f (x1, x2) = a0 + a1ẍ1 + a2ẍ
2
1 + a3ẍ

3
1 +

a4x2 + a5ẍ1x2 + a6ẍ
2
1x2 + a7ẍ

3
1x2 +

a8x
2
2 + a9ẍ1x

2
2 + a10ẍ

2
1x

2
2 + a11ẍ

3
1x

2
2 +

a12x
3
2 + a13ẍ1x

3
2 + a14ẍ

2
1x

3
2 + a15ẍ

3
1x

3
2

computed over GF(4); ẍ1 = x1 +A.

2.2.3 Green’s direct method

The computation of an RM expansion corresponds directly to the computation of the

coefficient vector a. The following method of computation has been proposed in [28] for

quaternary RM expansions and is known as Green’s direct method.

Let d =

[
d0 . . . d3

]t
, d0 . . .d3 ∈ GF(4) be the truth vector of the zero polarity
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quaternary function f (x) shown in (2.3). Then,

d0 = f (0) = a0

d1 = f (1) = a0 + a1 + a2 + a3

d2 = f (A) = a0 +Aa1 +Ba2 + a3

d3 = f (B) = a0 +Ba1 +Aa2 + a3

(2.4)

This set of linear equations can be solved in matrix form:

d =



1 0 0 0

1 1 1 1

1 A B 1

1 B A 1


· a = S0a over GF(4) (2.5)

a = S−1
0 d =W0d over GF(4) (2.6)

W0 =



1 0 0 0

0 1 B A

0 1 A B

1 1 1 1


Hence a coefficient vector a can be derived from the truth vector of a function.

For non-zero polarity forms (k = 1 . . . 3) of a 1-variable quaternary function the same
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approach can be applied, and corresponding matricesW1,W2,W3 can be found:

S1 =



1 1 1 1

1 0 0 0

1 B A 1

1 A B 1


, W1 = S−1

1 =



0 1 0 0

1 0 A B

1 0 B A

1 1 1 1


;

S2 =



1 A B 1

1 B A 1

1 0 0 0

1 1 1 1


, W2 = S−1

2 =



0 0 1 0

B A 0 1

A B 0 1

1 1 1 1


;

S3 =



1 B A 1

1 A B 1

1 1 1 1

1 0 0 0


, W3 = S−1

3 =



0 0 0 1

A B 1 0

B A 1 0

1 1 1 1


.

Generally, for any n-variable quaternary function defined by its truth vector d, a

coefficient vector a of k-polarity RM expansion can be found from the following equation:

d = (Skn ⊗ . . .⊗ Sk1) · a over GF(4)

derived from (2.2), where 〈k〉10 = 〈kn . . . k1〉4 as in Definition 2.12. Using the properties

of the Kronecker product, this equation can be solved as follows:

a = (Skn ⊗ . . .⊗ Sk1)
−1 · d over GF(4) (2.7)

(Skn ⊗ . . .⊗ Sk1)
−1 = S−1

kn
⊗ . . .⊗ S−1

k1

= Wkn ⊗ . . .⊗Wk1

According to Definition 2.12, n-variable q-nary function can have qn fixed polarity

forms. During the synthesis process RM expansions are computed for all polarity forms
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in order to find the optimal solution. More computationally efficient algorithms than the

direct method exist [59, 36, 25]. They exploit certain properties of GF(4) while Green’s

method is based on a general principle that can be extended to other radices. Denoting

the truth vector of a one-variable q-nary function f (x) as d =

[
d0 . . . dq−1

]t
,

d0 . . .dq−1 ∈ GF(q), one can create a matrix equation similarly to the steps (2.4)—(2.6):

a = S−1
k d

where the polarity number k = 0 . . .q− 1. As far as the matrices S0 . . .Sq−1 are invertible

in GF(q), corresponding matrices W0 . . .Wq−1 can be found and then used to compute

n-variable RM expansions of radix q using (2.7).

For example, in binary case the matricesW0 andW1 can be found as follows.

Binary RM expansion of one-variable function takes the form:

f (x̃) = a0 + a1x̃ over GF(2)

Let the truth vector be defined as d =

[
d0 d1

]
. For zero polarity case x̃ = x, hence:

d0 = f (0) = a0

d1 = f (1) = a0 + a1

a =

 1 0

1 1


−1

· d =

 1 0

1 1

 · d over GF(2) (2.8)

For polarity 1 we have x̃ = x+ 1, so the set of equations is changed correspondingly:

d0 = f(0 + 1) = f (1) = a0 + a1

d1 = f(1 + 1) = f (0) = a0

a =

 1 1

1 0


−1

· d =

 0 1

1 1

 · d over GF(2) (2.9)
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From (2.8) and (2.9) we have:

W0 =

 1 0

1 1

 W1 =

 0 1

1 1


The following example illustrates how Green’s method can be used to obtain a binary

circuit from a set of truth vectors.

Example 2.1. Let binary functions F0 (y0,y1,y2) and F1 (y0,y1,y2) be defined by truth

vectors d0 and d1 respectively.

d0 = [11001110]t

d1 = [11111101]t

Binary case matrices W0 and W1 shown above can be used to compute the RM

expansions. For polarity k = 0 = 〈000〉2, the coefficient vector for F0 can be found as

follows:

a = (W0 ⊗W0 ⊗W0) · d0 over GF(2),

a =

 1 0

1 1

⊗
 1 0

1 1

⊗
 1 0

1 1

 · d0

=



1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1



·



1

1

0

0

1

1

1

0



=



1

0

1

0

0

0

1

1



.

Computing F1 for the polarity number k = 1 = 〈001〉2:

a = (W0 ⊗W0 ⊗W1) · d1 = [10000001]t
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Figure 2.11: Binary RM expansion, component-level schematic.

The functions can be expressed using the computed coefficient vectors as follows.

F0 (y0,y1,y2) = 1 + y1 + y1y2 + y0y1y2

F1 (y0,y1,y2) = 1 + y0y1y2

The corresponding component-level circuit is shown in Figure 2.11. The circuit has

clearly observed “layers”: a layer of sums (marked as Σ), a layer of products (Π) and a

layer of polarities (x̃). The number of components has been also optimised by reusing the

results of some operations. For example, the term y1y2 is reused three times.

Example 2.2. Let two-variable quaternary function be defined by the truth vector d =

[BBAABB1ABBAABB1A]t.

Quaternary RM expansion gives

a = (W0 ⊗W2) · d over GF(4),
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Figure 2.12: Component-level schematic for uniform radix (quaternary) RM expansion.

a =





1 0 0 0

0 1 B A

0 1 A B

1 1 1 1


⊗



0 0 1 0

B A 0 1

A B 0 1

1 1 1 1




· d

=



0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

B A 0 1 0 0 0 0 0 0 0 0 0 0 0 0

A B 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 B 0 0 0 A 0

0 0 0 0 B A 0 1 A 1 0 B 1 B 0 A

0 0 0 0 A B 0 1 1 A 0 B B 1 0 A

0 0 0 0 1 1 1 1 B B B B A A A A

0 0 0 0 0 0 1 0 0 0 A 0 0 0 B 0

0 0 0 0 B A 0 1 1 B 0 A A 1 0 B

0 0 0 0 A B 0 1 B 1 0 A 1 A 0 B

0 0 0 0 1 1 1 1 A A A A B B B B

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

B A 0 1 B A 0 1 B A 0 1 B A 0 1

A B 0 1 A B 0 1 A B 0 1 A B 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



·



B

B

A

A

B

B

1

A

B

B

A

A

B

B

1

A



=



A

1

1

0

A

0

0

A

1

0

0

1

0

0

0

0
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,

for polarity k = 2 = 〈0A〉4, and the function can be expressed as follows:

F (x0, x1) = A+ ẍ0 + ẍ0
2 +Ax1 +Aẍ0

3x1 + x
2
1 + ẍ0

3x2
1,

where ẍ0 = x0 +A.
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The circuit is shown in Figure 2.12. The layered structure of a quaternary circuit

includes a layer of coefficients (a) and a layer of powers (xn).

2.3 Summary

The chapter has given the brief explanation of the hardware attacks and countermeas-

ures. Power balancing has been selected among the listed countermeasures to the side-

channel hardware attacks as the most universal one. The basic principle of power

balancing is to make a circuit that consumes the same amount of power regardless of

what data is being processed. One of the possible ways to make the circuit power

balanced is to encode it using m-of-n codes. The logic components working with encoded

signals also must preserve the property of power balancing – they must have data-

independent switching activity and power. However, it is also reasonable to allow

slightly compromised (relaxed) balancing in order to reduce component costs.

The second part has presented the theory of Galois fields, described the properties

of the fields and operations over them. Reed-Muller expansions have been introduced,

and a direct method of computation has been defined. The theory is a foundation for the

research presented in the following chapters.
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Baseline Research

The purpose of this chapter is to provide an application-specific foundation for the

research. More specificly, it addresses to the following tasks:

· to give an overview of the possible MVL design solutions w.r.t. the security

application;

· to present an alternative approach, so the main theory can be tested against it;

· to define the range of benchmarks.

3.1 Secure Design Flow

Considering the trends in countermeasure methodology described in Chapter 2, one can

conclude that security requirements affect the design flow as follows.

· Data signal representations other than traditional binary (single-rail) signals are re-

quired, this may include multi-valued signals. This requirement implies advanced

logic synthesis and affects the data path.

· Control path has to be synthesised using asynchronous system design techniques.

For asynchronous designs it is possible to develop the data path and the control

path concurrently since in general the control path does not rely on the timing

properties of the combinational logic.
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· Physical layout may also have an impact on the security properties, since (i) it

affects wire capacitance and consequently power balancing and (ii) floor-planning

defines electromagnetic emission patterns.

Independent consideration of the latter approaches allows more efficient combinations

of countermeasures to be used. The whole design environment can be split into three

parts: data path synthesis, control path synthesis and layout. Traditionally design

environments consist of multiple tools, each is used for a different task. Thus partitioning

the flow should not be a problem. However certain compatibility issues take place, so

it is often not possible to create direct connection between tools from different design

environments.

The conversion driven design (CDD) approach is also considered. It suggests

conversion of existing insecure circuits applying security features on top of the previously

designed netlists. In this case the design environment structure uses conversion tools

instead of synthesis tools. This may include tools for desynchronising clocked circuits

and tools for converting signal representation in existing binary (single-rail) data paths.

This section presents the discussion on the possibilities of security applied design

with respect to both synthesis and conversion. The data path and control path tools are

discussed independently and analysed from the perspective of interfacing between them

in order to create a solid secure design flow.

3.1.1 Data path synthesis

The only signal representation supported by the industrial logic synthesis tools is the

traditional binary encoding, which is also called single-rail since one wire represents one

bit of data. Consequently, this lack of support often discourages designers from using

power balanced protocols. In order to make the proposed design flow more attractive to

engineers we suggest using RTL-implemented power-balanced logic components.

As it was mentioned bfore, there are two possible ways of obtaining the security-

aware encoded data path: the secure data path can be obtained by transforming the

existing insecure data path (conversion) or it can be synthesised from the specification
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with respect to the application requirements (synthesis).

Conversion approach is believed to be more convenient for industrial development

as it requires minimal modification to the design environment. The simplest way to

apply power balancing is to map previously synthesised binary logic directly into power-

balanced dual-rail components. This can be done using Verimap tool [67].

A significant drawback of dual-rail versus other m-of-n codes is the increased

power consumption. An efficient solution to this problem is to use multi-valued logic

(MVL) instead of binary. Due to the properties of m-of-n codes, and especially 1-of-n

codes, higher radix signals produce less switching activity of wires reducing the power

consumption. An attempt to use the conversion approach for MVL synthesis has been

made in Section 3.2.

In terms of the design flow, as can be observed from Figure 3.1, the approach has

a number of drawbacks. First, a design compiler has to be used twice: to synthesise

the original circuit and to merge the converted data path with the control path. This

complication may negatively impact on the testability of the design, since it is very

difficult to reflect possible errors back to the original high-level description. Second, since

conversion at this stage is applied only to the data path, there should be some method to

extract it from the flat gate-level netlist. Normally this is done by a conversion tool, but

the very idea is rather weak.

All these bottlenecks can be avoided if MVL is applied not at the post-synthesis stage,

but at the pre-synthesis stage. Certain modules in the initial HDL description can be

replaced with the modules preprocessed (synthesised) using special tools. The paradigm

of accommodating different radices within a circuit has been evolved in the work presen-

ted in Chapter 4, which uses Reed-Muller expansions based on Galois field arithmetic.

Since it considers the notion of mixed radices from the highest level of mathematical

representation, the synthesised logic does not require internal signal conversion and

shows significant improvement in power and area. A detailed description of the tool

and its features is given in Chapter 5. In terms of the design flow, the tool allows the

designer to choose which modules to synthesise using Reed-Muller approach, i.e. to use
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design compiler
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?Split data path from control path

Figure 3.1: CDD-based design flow
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power balancing locally if needed. It can be emerged into the flow as shown in Figure 3.2,

the rest of the tools used in the illustrated flow are described further in Subsection 3.1.2.

Both flows are application driven. They have an explicit component level netlist at

some point of the design process. Any circuit optimisation must be applied at that stage;

the following run of the design compiler is supposed to be an exact mapping.

3.1.2 Control path synthesis

The flexibility of the secure design flow implies an “unconstrained” choice of the security

countermeasures, so they can be used in different combinations if needed. It is important

to take into consideration the case of power balanced but synchronous designs that may

be sufficient for achieving certain level of security. Most of the custom logic synthesis

tools can output Verilog format, thus customised combinational logic can be merged

with the control path using standard EDA tools. However, as the proposed design flow

implies security at all levels of the design, asynchronous methods should be used instead.

Desynchronised circuits A conversion method for the control path has been described

in [19]. The principal idea is to replace clocked registers in synchronous designs with

handshake registers. Elastix tool [72] implements this approach. The input of the tool

is a finalised synchronous design. Hence the step of merging customised combinational

logic with a clocked control path is to be done before the stage of desynchronisation.

The possibility to achieve the required secure properties without redesigning the whole

system “from scratch” motivates designers to use the desynchronisation approach.

However, with respect to the conversion flow shown in Figure 3.1, the drawbacks of

the data path conversion approach may impair the benefits of the Elastix flow.

Handshake-based asynchronous circuits Asynchronous circuits use the request-

acknowledge interaction between components to control the system. This way of

signalling is called handshake protocol, and it can be implemented in different ways. The

tools for asynchronous control path synthesis use netlists of handshake components as

an intermediate state of the design.
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The most widely known toolkits for the asynchronous development are Balsa

toolkit [22] and TiDE [2].

Balsa-based environment uses balsa-c compiler, which compiles a Balsa description

into the netlist of handshake components, and balsa-netlist gate-level mapper. The major

drawback of this environment with respect to the secure design flow is that it uses a

predefined set of components, so it is impossible to use custom data representations in

its standard workflow. The only solution is to build the control path in a separate module

and then merge modules using third-party software [49, 50].

The TiDE design environment, developed by Handshake Solutions, is based on the

Haste description language and uses htcomp compiler to synthesise handshake compon-

ent netlists; htmap substitutes abstract handshake components with gate-level modules;

htlink is used to merge the control path with presynthesised (custom) combinational logic

provided in a form of gate-level netlist.

At the moment TiDE appears to be the most flexible and industry-aware asynchron-

ous design environment, and it has already been used in security applications. Figure 3.2

illustrates how the data path synthesis can be interfaced into TiDE.

Unfortunately, in terms of power balancing there is a conflict that has to be resolved.

It is known that an asynchronous system can be designed using a single-rail bundled data

protocol or m-of-n encoded spacer protocol [68]. In terms of security, the spacer protocol

is essential for power balancing as it guarantees equal number of wires switching per

period. Indeed, since an m-of-n encoded signal implies m wires to be set to 1, exactly m

wires switch from 0 to 1 when the data arrives and reset back to 0 on spacer. Equalised

switching of wires is fundamental for power balanced circuits, and exclusion of the

spacer from the protocol also removes this property.

Based on the single-rail data format, TiDE uses bundled data protocol and cannot

be directly used for m-of-n encoded power balanced designs. However, in systems

which employ bundled data protocol the spacer may be emulated (enforced) by explicitly

alternating data and spacers at the inputs. Simple for pipelined systems, this approach

becomes rather difficult for the systems with loops in the structure. However the known

46



CHAPTER 3. BASELINE RESEARCH

solution is to use master-slave registers [67, 69], so one stores spacer, while another stores

data and vice versa. This kind of behaviour can be described in the high-level code, but

this requires in-depth knowledge of asynchronous design technology.

In contrast, the presented research attempts to minimise the designer’s effort and

automate the process. Our proposal is to adjust the final bundled data asynchronous

circuits by directly replacing memory cells with custom registers that inject spacers into

existing paths. For example, the principle of “wagging” registers [73] implements spacer

and data alternation using two flip-flops connected in parallel via multiplexer (in contrast

to sequentially connected master-slave registers).

3.1.3 Physical design

Layout issue is highly important for power balancing since it defines the capacitance

of wires and global electromagnetic emission patterns. In m-of-n codes, considering

that each data signal is transferred using a set of wires, balanced switching activity

makes sense only if the switching energies of wires in each bus are equal. Consequently

the secure design flow should guarantee equalised wire lengths and fanout, i.e. the

parameters affecting the switching energy of gates.

In general this can be done using advanced scripting in standard industrial layout

tools. However the best way to implement power balanced layout is to route buses

as parallel sets of wires, which is not supported by common tools. Pulsic software [3]

specialising in the layout for custom designs can perform such routing of wires, so it is

advised for security applications.
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3.2 Conversion Driven Mixed Radix Design

This section presents the design approach based on reusing the existing insecure designs

in order to produce secure higher radix circuits. The goal of this approach is to achieve a

tight integration with the conventional EDA flows with low algorithmic complexity. Our

justification and reasoning stems from the following facts:

· Moving away from the RTL design flow is frequently frowned upon by industry;

· Existing EDA tools are mature, known and time-proven;

· MVL synthesis methods employ computationally expensive algorithms instead of

reusing the computational power of existing tools.

3.2.1 Conversion basics

The problem addressed in this section can be characterised as follows. The original

binary datapath is given as a structural HDL netlist, where datapath is defined as logic

gates without registers or combinational loops. The goal of the conversion is to produce

an equivalent higher radix circuit, e.g. radix q > 2. Since at this stage the actual

encoding or technology is not considered, q-nary circuit is represented by a netlist of

q-nary components.

The set of available components can be defined in many ways, however the conveni-

ent way for the conversion approach is to obtain q-nary components by grouping binary

gates together. Formally, for radix q = 2n and given binary-to-q-nary radix mapping

r : {0, 1}n → {0, . . . , 2n − 1}, q-nary function fq can represent a group ofn binary functions

f2,1, . . . , f2,n as

fq (y) = fq (r (x1, . . . , xn)) = r (f2,1 (x1, . . . , xn) , . . . , f2,n (x1, . . . , xn))

for any y ∈ {0, . . . , 2n − 1}, x1, . . . , xn ∈ {0, 1} and y = r (x1, . . . , xn).

Similar problem adressed to programmable logic arrays (PLA’s) has been solved

in [64]. For the case of the gate-level netlist, we looked into the possibilities of simple
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Figure 3.3: Example of a binary circuit that cannot be efficiently converted into a higher
radix circuit.

structural transformations of the circuit. Subsection 3.2.2 gives more details on the

subject.

The major challenge of the conversion approach is the fact that grouping of gates (and

corresponding signals) is not always possible. The example in Figure 3.3 illustrates the

case. Assuming that the target radix is 4, grouping of gates Q0 and Q1 implies grouping

of inputs {A0, A1}, {A1, A2}, and grouping of the remaining gates Q2 and Q3 requires {A2,

A3} and {A3, A0} to be grouped too. But the signals A0 and A2 are already used. The

same happens if one attempts grouping any other combination of gates in this example.

The original structure usually causes reshuffling and splitting of higher radix data,

hence grouping of all gates in the circuit cannot be globally efficient. The circuit becomes

partially binary and partially multi-valued, i.e. mixed radix. The result of conversion is

shown in Figure 3.4 and consists of binary and quaternary blocks connected through a set

of signal converters. We distinguish two types of signal converters: splitters, which split

higher radix signals into lower radix signals, and mixers, which mix lower radix signals

into a higher radix signals. After the circuit is technology mapped and encoded, signal

converters ensure the link between different data representations.

Conversion is also possible for radices other than 2n; in this case certain overhead

is introduces by radix mapping with its non-matching cardinality of domain and co-

domain. This chapter explores the simplest case of radix conversion: binary to quatern-

ary conversion, which implies grouping of binary gates by two.

A generic outline for the proposed conversion technology can be described as follows.

The algorithm starts by “transferring” gates from the binary part of the circuit to the
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binary inputs q-nary inputs

binary outputs q-nary outputs

Figure 3.4: Mixed radix circuit as a result of binary-to-q-nary conversion.

quaternary part, initially empty, by grouping them into pairs. During this phase the

conversion uses technology independent (abstract) binary and quaternary components,

thus adding a component level of abstraction to the design flow. After all possible

grouping is done the circuit can be mapped into a gate-level netlist replacing components

with real cells using specific encoding and library.

The way the gates are grouped determines the efficiency of the conversion, therefore

the conversion problem corresponds directly to the gate grouping problem described in

the following subsections.

3.2.2 Types of gate grouping

For 2n-bit binary circuits there is an intuition to group higher and lower bits of each

signal pair, as shown in Figure 3.5(a), to form a n-signal quaternary circuit. Certain gates

which violate bitwise regularity of the original circuit will remain ungrouped forming a

binary part of the resultant mixed radix circuit.

Although the intuition behind the bitwise approach is straightforward, automatically

distinguishing even and odd bit parts of the given netlist is computationally complex or,

in certain cases, infeasible. For example, S-box circuits [9, 8] tend to reshuffle input data,

thus input signals have no bitwise meaning. Natural for the synthesis from functional

specification, bitwise grouping is not suitable for structural netlist transformations,

especially when the original structure requires data “shifting” between bitwise parts of

the circuit. This necessitates finding a more efficient way of gate grouping with respect
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(a) bitwise (b) operandwise

Figure 3.5: Types of gate groupings (considering the same original circuit).

Table 3.1: Bitwise and operandwise quaternary operations example

x y bitwise AND operandwise AND-AND
0 0 0 ∧ 0 = 0 〈0 ∧ 0, 0 ∧ 0〉4 = 〈0, 0〉4 = 0
0 1 0 ∧ 1 = 0 〈0 ∧ 0, 0 ∧ 1〉4 = 〈0, 0〉4 = 0
0 2 0 ∧ 2 = 0 〈0 ∧ 0, 1 ∧ 0〉4 = 〈0, 0〉4 = 0
0 3 0 ∧ 3 = 0 〈0 ∧ 0, 1 ∧ 1〉4 = 〈0, 1〉4 = 1
1 0 1 ∧ 0 = 0 〈0 ∧ 1, 0 ∧ 0〉4 = 〈0, 0〉4 = 0
1 1 1 ∧ 1 = 1 〈0 ∧ 1, 0 ∧ 1〉4 = 〈0, 0〉4 = 0
1 2 1 ∧ 2 = 0 〈0 ∧ 1, 1 ∧ 0〉4 = 〈0, 0〉4 = 0
1 3 1 ∧ 3 = 1 〈0 ∧ 1, 1 ∧ 1〉4 = 〈0, 1〉4 = 1
... ... ... ...
3 0 3 ∧ 0 = 0 〈1 ∧ 1, 0 ∧ 0〉4 = 〈1, 0〉4 = 2
3 1 3 ∧ 1 = 1 〈1 ∧ 1, 0 ∧ 1〉4 = 〈1, 0〉4 = 2
3 2 3 ∧ 2 = 2 〈1 ∧ 1, 1 ∧ 0〉4 = 〈1, 0〉4 = 2
3 3 3 ∧ 3 = 3 〈1 ∧ 1, 1 ∧ 1〉4 = 〈1, 1〉4 = 3

to the CDD approach.

Asuming that the original circuit consists of two-input standard cells (AND, OR, XOR

gates) and inverters, it is possible to group inputs of any gate into one quaternary signal.

Outputs of a given pair of gates can also be grouped into a quaternary signal. This

produces an operandwise grouping of gates illustrated in Figure 3.5(b).

Due to the nature of operandwise grouping, any quaternary signal x can be rewritten

as a pair of its original signals, x = 〈s1, s0〉4. For two quaternary signals x = 〈s1, s0〉4 and

y = 〈t1, t0〉4, two binary functions A and B can form a quaternary operandwise operation

〈A, B〉4 shown in (3.1) and clarified in Table 3.1.

QAB (x,y) = 〈A (s1, s0) , B (t1, t0)〉4 (3.1)

In a case when the output of a quaternary gate has to be split again into binary signals
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(a) Q/B gate as an incomplete oper-
andwise group

(b) structural decomposition

Figure 3.6: Understanding Q/B gates.
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Figure 3.7: Mixed radix circuit using Q/B gates

an insertion of a splitter can be avoided using incomplete operandwise grouping, i.e.

a grouping when gate inputs are grouped, but the output remains binary as shown in

Figure 3.6(a). A Q/B gate or 4 → 2 gate is a gate with one quaternary input and one

binary output. Due to their semantical meaning clarified in Figure 3.6(b), Q/B gates can

eliminate unnecessary splitters during the conversion, as shown in Figure 3.7.

3.2.3 Grouping based on bitwise regularity

Consider a binary circuit, which perform calculations on 2-bit values. Assuming that

separate calculations of both bits are relatively similar, one can determine for any gate

in the lower bit part its equivalent in the higher bit part. A distinguished pair of such

relative gates can form a quaternary gate. For n-bit binary circuits, if n > 2, gates can be

grouped in similar way but merging even and odd bit parts of the circuit. Parts of the

circuit that cannot be distributed between certain bit parts remain binary.

Although the intuition behind the bitwise approach is straight-forward, automatically

distinguishing even and odd bit parts of the given netlist is computationally complex

or, in certain cases, infeasible. For example, S-box circuits [9, 8] tend to reshuffle input
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Algorithm 1 Grouping based on bitwise regularity
all ports are assumed to be already grouped

repeat:

υmax = 0
N = size of G

for i = 0 to N− 2:

for j = i+ 1 to N− 1:

if gi ∈ I(gj) or gj ∈ I(gi): skip this pair

υ = regularity ratio for group
{
gi,gj

}
if υ > υmax:

υmax = υ

pmax =
{
gi,gj

}
end if

end for

end for

if υmax > 0:

add pmaxto P

remove gates in pmax from G

end if

until there are no more pairs with υ > 0

data, thus input signals have no bitwise meaning. However, circuits displaying bitwise

regularity can be converted using this approach if the information on the bitwise meaning

of the input and output signals of the datapath is supplied, i.e. input and output ports

are initially grouped into pairs. It is possible to automate port grouping using a naming

convention.

The algorithm shown in Algorithm 1 implies bitwise gate grouping using given

netlist and port grouping information. Here G is defined as a set of binary gates;

initially it contains all gates of the original circuit. Each gate g ∈ G has a preset

I (g) = {i0 (g) , . . . , in−1 (g)}, i.e. other gates or circuit ports connected to the inputs of

g; n is the number of inputs of g. P is a set of grouped gates or circuit ports (pairs). Since

port grouping specification is given, P initially contains paired circuit ports. Please note

that the order of items in a bitwise pair is important.

Definition 3.1. Bitwise regularity ratio (BRR) υ for the given group of gates is a character-

istic showing how many quaternary links the group can form w.r.t. current state of P. In

other words, for a bitwise group p = {g1,g2} BRR can be calculated as follows:
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υ (p) =

υout +
n∑
j=1
υj

1 +n

where n is a number of gate inputs, n = n (g1) = n (g2), and

υout =


1, if there exist such k and {e1, e2} ∈ P that g1 = ik (e1) ,g2 = ik (e2)

0, otherwise

υj =


1, if there exist such {e1, e2} ∈ P that e1 = ij (g1) , e2 = ij (g2)

0, otherwise

In these equations we assume that gates g1 and g2 are similar, i.e. they represent the

same function and have equal number of inputs n. Considering similarity of bitwise

circuit parts the gates corresponding to the same operation are also supposed to be

similar. However, this constraint is not essential if we have a methodology of grouping

non-similar gates.

BRR is used as an estimation criterion in breadth-first search. As each iteration

of outer loop in Algorithm 1 adds new pair in P, BRRs of gate pairs change over

time. If the search reveals several maximum regular pairs, the algorithm uses the first

encountered one instead of searching through all possible varieties; this feature is treated

as disadvantage which in certain cases can lead to inefficient results.

The described algorithm has polynomial complexity O
(
N3
)

not considering calcula-

tions of BRR, whereN is the number of binary gates in the initial circuit. BRR calculation

for one pair has a complexity O (nM+nM), where n is an average number of gate

inputs and M is a size of P at the moment. For n = 2 and linearly growing P we

have total algorithmic complexity O
(
N4
)
. In terms of CDD this computational cost is

rather expensive; VLSI design presumably requires conversion of datapath blocks with

N > 500.

Example 3.1. Consider a 2-bit full adder shown in Figure 3.8. Initially P consists of pairs
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Figure 3.8: Example original single-rail circuit: 2-bit adder.

{A0, A1}, {B0, B1}, {Q0, Q1} due to the bitwise meaning of port signals. Ports C and CC

have no pairs and remain dual-rail. Conversion using Algorithm 1 can be done in the

following steps:

Iteration 0 maximum regular pair is {g00, g01} – all inputs can form quaternary links

with input ports.

Iteration 1 maximum regular pair is {g10, g11} – the same reason.

Iteration 2 {g20, g21} – it can form a quaternary connections with {g00, g01} and with

output port {Q0, Q1}.

Iteration 3 {g30, g31} – it can form a quaternary connection with {g00, g01}.

Iteration 4 {g40, g41} – it can form a quaternary connection with {g10, g11}.

There are no unpaired gates remaining. Please note that each iteration here is the iteration

of outer loop, which in its turn searches through 4N log2
2N iterations. Resultant circuit

after insertion of signal converters is shown in Figure 3.9.

The described example demonstrates another drawback of the bitwise approach: it

can form combinational loops in the resultant circuit. Without special consideration and

additional completion detection RTZ-aware components [80] cause a spacer deadlock in

these loops. Consider the mixer in Figure 3.9. Assume that the whole circuit is initially
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Figure 3.9: 2-bit adder converted using bitwise regularity approach; gates are shown as
“black boxes”.

reset to spacer value. Incoming data from the port C cannot pass through the mixer

because a spacer from the looped wire (an internal carry) blocks it. On the other hand, if

the mixer uses a protocol allowing the data to propagate regardless to spacers, the circuit

will produce invalid data output because a valid result is available only after the second

iteration.

In spite of a number disadvantages revealed in the approach, the grouping based on

bitwise regularity shows several positive features:

· Port bits are not reshuffled with respect to bitwise meaning of input and output

signals, which is useful from the large scale design view.

· Resultant circuits have a structure similar to the original, which allows using

placement suggestions from the single-rail equivalent.

3.2.4 Grouping based on binary trees

The operandwise grouping suggests a binary trees approach considering gates of the

circuit to be tree-nodes and their inputs to be child branches. As it was mentioned before,

the given datapath circuit contains no loops. However, a pure tree-like structure can

be blocked by gates with multiple fanout. The tree size can be reduced by recursive

operandwise grouping of child nodes for each gate in binary trees within the circuit.

This grouping causes all signals in tree-like structures to become 1-of-4 encoded, but

“blocked” parts of the circuit remain binary and go to dual-rail.

Formally, a circuit is considered to be a set of entities E; each entity has a type of input,
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output, or gate. Input and output entities are circuit ports. Each non-input entity e ∈ E

has a preset I (e) = {i0 (e) , . . . , in−1 (e)}, i.e. entities connected to the inputs of e. Due to

declared constraints n = 2 for gates, and n = 1 for outputs. Set P is a set of gate groups

(pairs). It represents 1-of-4 encoded part of the circuit. In addition there is a parameter

θe that stands for encoding of entity e ∈ E and can be either dual-rail or 1-of-4. It is used

for automated insertion of signal converters (splitters and mixers) into the final circuit.

The proposed algorithm contains three phases as shown in Algorithm 2. To avoid

recursion the grouping is done in two search passes through E (phase 1 and 2). The

first phase ignores gate fanouts and groups all signals considering the whole circuit as

a binary tree. This leads to duplication of certain gates. The second phase analyses the

duplicates and discards the groups which lead to duplication. The last phase reconstructs

correctness of links between gates by inserting signal converters where appropriate.

Splitters are reduced to Q/B gates.

There is no simple solution to estimate optimal grouping of outputs but to search

through all possibilities. However, due to the nature of binary trees approach the

grouping of outputs has minor influence to the structure comparing with the whole

circuit. Therefore a suggestion to group any pair of outputs is accepted.

The computational complexity of the algorithm is O
(
N2
)
, where N is the size of E.

The algorithm is highly modular; one can add more passes to the algorithm to increase

efficiency of the conversion. However it can produce significant “fractioning” of dual-rail

and 1-of-4 parts of the circuit increasing the number of signal converters required.

Example 3.2. Consider a 2-bit adder shown in Figure 3.8. Preset gates of the gate g40

can form the group {g30, g10}; similarly ports A0 and B0 are grouped as inputs to g00

or g10. Considering all gates we can make the following grouping: {A0, B0}, {A1, B1},

{g30, g10}, {g31, g11}, {g40, g01}. Preset of gates g20 and g30 cannot be grouped because

of the different entity types (input C cannot be grouped with the gate g00). The second

phase should cancel signal duplicating gate groups, but in this case nothing is to be

cancelled. Indeed, in spite of the fact that some gates and ports have fanout > 1, they

are not shared between different groups and do not lead to signal duplication. Finally,
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Algorithm 2 Conversion based on binary trees
Phase 1: group all gate inputs.

for each gate g in E:

if i0 (g) and i1 (g) are of the same type:

group {i0 (g) , i1 (g)} and add to P

end for

Phase 2: discard groups containing gates with fanout > 1.

for each non-output entity e in E:

u = how many groups share e

if u > 1: remove groups containing e

else if u = 1: set θe to 1-of-4

else set θe to dual-rail

end if

if e is gate and group {i0 (e) , i1 (e)} /∈ P:
remove all groups containing i0 (e) or i1 (e)

end for

Phase 3: insert mixers and Q/B gates.

for each gate g in E:

if θi(g) is 1-of-4 and θg is dual-rail:

set type of g to Q/B gate

else if θi(g) is dual-rail and θg is 1-of-4:

insert mixer before g

end for
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Figure 3.10: 2-bit adder converted using binary trees approach; gates are shown as “black
boxes”.

randomly selected output grouping {Q0, Q1} leads to the grouping {g20, g21}. Resultant

circuit is shown in Figure 3.10. Gates g00 and g41 are Q/B gates.

3.2.5 Component implementation

Moving from abstract binary and quaternary signals to specific encodings, dual-rail and

1-of-4 correspondingly, CDD requires proper definition of mixed radix components.

The resultant circuit should be consistent with RTZ protocol, i.e. its components

should satisfy the spacer condition, which means that the output of a component must

go to a spacer value (NULL) if any of arguments have spacer value.

In this section we use the following definition of polarity.

Definition 3.2. For a binary function F (x), its polarity representation is F〈k〉 (x), such that

F〈k〉 (x) = F (x) for k = 0, and F〈k〉 (x) = F (x) for k = 1.

From (3.1) for each wire qi of 1-of-4 encoded QAB = {q3, . . . ,q0} w.r.t. spacer

condition we have:

qi =


0, if x = NULL or y = NULL

A〈i1〉 (x) · B〈i0〉 (y) , otherwise
(3.2)

Here i0 and i1 are the bits of binary representation of integer i, in other words i10 =

〈i1, i0〉2.

Let
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f
〈k〉
F (x) =


0, if x = NULL

F〈k〉 (x) , otherwise
(3.3)

then (3.2) becomes:

qi = f
〈i1〉
A (x) · f〈i0〉

B (y) (3.4)

According to Table 2.1, binary signals s1, s0 can be expressed using certain wires

x3, . . . , x0 of 1-of-4 encoded quaternary x = 〈s0, s1〉4 as follows:

s0 = x3 + x1 s0 = x2 + x0

s1 = x3 + x2 s1 = x1 + x0

(3.5)

Applying (3.5) and the spacer condition (w.r.t. 1-of-4 code) to (3.3) we have:

f
〈k〉
F (x3, . . . , x0) = F〈k〉 (x3, . . . , x0) (x3 + . . . + x0)

Total set of functions f<k>F (x) for the standard functions F = {AND, OR, XOR}:

f
〈0〉
AND (x) = x0 + x1 + x2 f

〈1〉
AND (x) = x3

f
〈0〉
OR (x) = x0 f

〈1〉
OR (x) = x1 + x2 + x3

f
〈0〉
XOR (x) = x0 + x3 f

〈1〉
XOR (x) = x1 + x2

(3.6)

For security application the circuit components should have balanced switching to

guarantee data independent power consumption. This can be done using identical gates

with certain inputs connected to the ground. Thus f〈k〉F (x) should be symmetric with

regard to k, and representations f〈0〉
OR (x) = x0 + 0 + 0 and f〈1〉

AND (x) = x3 + 0 + 0 should be

used instead.

Example 3.1. From (3.4) and (3.6), considering balanced switching, one can derive a set

of equations (3.7) defining an operandwise 1-of-4 AND-XOR group.
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q0 = (x0 + x1 + x2) (y0 + y3)

q1 = (x0 + x1 + x2) (y1 + y2)

q2 = (x3 + 0 + 0) (y0 + y3)

q3 = (x3 + 0 + 0) (y1 + y2)

(3.7)

A Q/B gate of a function F can be implemented as (3.8) where f〈k〉F (x) is an equation

from (3.6) and x is 1-of-4 argument.

q0 = f
〈0〉
F (x)

q1 = f
〈1〉
F (x)

(3.8)

Equations (3.4) and (3.8) in their turn imply a function for a mixer component (3.9)

for two dual-rail signals a = {a1,a0} and b = {b1,b0}.

qi = ai1 · bi0 (3.9)

Mixers and splitters have a rather straight-forward positive logic implementations

derived from (3.9) and (3.5) respectively. The splitter is the only component having two

switching output wires.

Dual-rail gates also use positive logic decomposition. Negative logic optimisations [67]

potentially can be performed, but require more sophisticated analysis of the circuit

structure and are not considered within this article.

It is known that inversion in dual-rail can be done using “wire-crossing” [67], and

inverters do not affect complexity of the conversion result. Inversion in 1-of-4 is similar,

but mutual independence of operandwise signals requires separate inversions for each

of them. Half inversions, when only one bit of a pair is inverted, should be defined as

shown in Table 3.2.

As can be seen from the specification, described mixed radix components exhibit early

propagation [80], i.e. are weakly indicating. Since m-of-n codes imply input complete

gates, a completion detection mechanism is required [65, 37]. However, completion

detection in heterogeneous circuits is a different issue. We restrict ourselves with early
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Table 3.2: Inversion in 1-of-4

full inversion half inversion
lower bit higher bit

x0 = x3 x1 x2
x1 = x2 x0 x3
x2 = x1 x3 x0
x3 = x0 x2 x1

propagation gates leaving other forms of speed independent solutions outside the scope

of the article.

The full set of library items contains all possible 1-of-4 operandwise groupings (9

components), dual-rail and Q/B gates for basic binary functions and signal converters.

3.2.6 Benchmark results

The presented grouping algorithms have been implemented as a plug-in for Workcraft

visualisation and verification environment [51, 49].

To date as far as the authors are aware no security based circuits have been proposed

which use an encoding other than dual-rail, thus making them the logical choice for

benchmarks. A number of arithmetic based examples were added to give a wider range

for comparison. A component implementation is still a subject of improvement, therefore

these tests were made for the purpose of estimation of the approach, and they do not

represent final results. Since during a test we compare two circuits designed using the

same library, the choice of the library doesn’t make a big difference. AMS 0.35µm library

was applied because of the availability of technical information.

Verilog simulation Converted circuits were compared with pure dual-rail equi-

valents using gate level Verilog simulation in synchronous mode. Initial circuits were

mapped using complex gates as specified in (3.7). The results are shown in Table 3.3.

Switching activity was measured per RTZ protocol period. In order to discover data de-

pendent variations as a result of imperfect balancing the switching energy was calculated

separately for each gate output as a sum of documented values; a standard deviation of

switching energy values was calculated for each benchmark circuit.
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Table 3.3: Single rail circuits converted to dual-rail

Dual-rail
Circuit Cells by radix Switching Sw. en.,

2 wires pJ

2-bit adder 10 20 11.13
16-bit ripple carry adder 80 160 86.31
4-bit multiplier* 28 56 30.08
Kasumi S-box 7 125 250 139.13
Kasumi S-box 9 128 256 146.51
Kasumi S-box 9* 150 300 169.56
AES S-box* 797 1594 818.56

* original single-rail circuits were optimised in Synopsys.

Table 3.4: Mixed radix conversion results

1-of-4 and dual-rail mixed
Circuit Cells by radix Switching Sw. en.,

4 2 4→ 2 conv. wires pJ

2-bit adder 4 0 2 1 14 10.66
16-bit ripple carry adder 39 0 2 1 84 75.72
4-bit multiplier* 10 4 4 11 58 38.72
Kasumi S-box 7 39 44 4 45 264 144.98
Kasumi S-box 9 34 59 1 38 264 137.12
Kasumi S-box 9* 44 53 9 57 326 187.96
AES S-box* 252 274 19 275 1640 1116.03

* original single-rail circuits were optimised in Synopsys.

The 16-bit full adder was ideally converted (78 of 80 gates are grouped into 1-of-4) but

still has only 12% power savings due to the implementation of 1-of-4 gates. From (3.4),

(3.8) and (3.9) one can conclude that in fact any operandwise quaternary group consists

of two Q/B gates and a mixer, and there are always two switching wires inside a 1-of-4

gate. On the other hand, Kasumi S-boxes [8] have more switching activity in 1-of-4 than

in dual-rail, but consume approximately the same power. The reason is that the AMS

implementation of 1-of-4 XOR-XOR component uses OA22 complex gate, when dual-rail

XOR uses AO22 which consumes more power.

Original single-rail circuits for 4-bit multiplier and two S-boxes were synthesised

using the complete design flow from Synopsys toolkit; in particular area and power

optimisations were applied leading to negative logic decomposition. The results show
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these optimisations cause worse conversion results and should be taken into account

when developing a design flow.

However, the switching energy of gates has minor impact on the total energy

consumption of the circuits, thus the number of switching wires is of greater importance.

Consequently the most significant reason of extra power cost is a large number of mixers

in the converted circuits that in certain cases exceeds the number of quaternary gates.

SPICE simulation AES S-box [9] implementations in single-rail, dual-rail and

mixed radix were simulated in Synopsys. During the test the circuits were fed with

random data inputs producing variations in the supply current over time shown in

Figure 3.11. The secure implementations show immense power overheads, so the power

balancing must add significant level of protection in order to justify this. The proper

analysis of secure properties can be done [76]. However, as it is stated in Chapter 1,

the presented work is not intended to analyse this kind of properties and refers to the

previous research. From the simple visual analysis of the graphs, one can observe similar

shapes of the current peaks for the dual-rail and mixed radix circuits, as they are power

balanced unlike the single-rail one.

3.3 Summary

Two design flow approaches has been proposed: conversion driven design (CDD) and

pre-synthesis. The first approach is based on reusing the previously made insecure

designs to produce secure circuits; the flow uses Elastix tool for desynchronisation.

The second approach suggests using MVL synthesis to produce encoded data path and

then merge it with asynchronous control path, concurrently designed using TiDE design

environment.

The method of conversion of a raw binary netlist into higher radix has been described

for the case of binary to quaternary conversion. Since there are cases where the perfect

conversion is impossible, the mixed radix approach is applied, and the final netlist

becomes partially binary and partially quaternary. For the proposed algorithm and
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(a) single-rail

(b) dual-rail

(c) 1-of-4

Figure 3.11: SPICE simulation results for AES S-box showing supply current, mA.

65



CHAPTER 3. BASELINE RESEARCH

developed library a number of benchmarks were tested. The tests revealed power

and area overheads due to the highly partitioned radix “parts” connected by signal

conversion logic.

The encountered inefficiency of the CDD approach is related to a premature op-

timisation done by the design compiler on the netlist, before it has been passed to the

conversion tool. This gives us further motivation for the synthesis approach. As in the

latter approach the higher radix is taken into account at all stages of the synthesis flow,

the multi-valued logic is more likely to be properly optimised and technology mapped.

The following chapters are dedicated to the synthesis-based MVL design flow, which is

considered as the main contribution of the presented work.

The benchmarks presented in this chapter will give the baseline for comparison

between the approaches.

This chapter is based on the previously published papers [57, 55, 54].
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Chapter 4

Mixed Radix Reed-Muller

Expansions

Chapter 2 introduced uniform radix Reed-Muller expansions, i.e. the expansions com-

puted entirely in one radix. This chapter presents a method of using the properties of field

homomorphism, including the homomorphism under certain operations, to produce

Reed-Muller expansions that can be mapped into mixed radix circuits.

4.1 Two-level mixed radix model

Reed-Muller expansions produce well-structured circuits, as seen in Fig-

ures 2.11 and 2.12.This gives the opportunity to do a better analysis of radix efficiency.

At the component level we cannot choose the globally efficient radix. Consider

a simple example. Let quaternary values x,y, f be represented as pairs of binary

values:〈x〉4 = 〈xH, xL〉2, 〈y〉4 = 〈yH,yL〉2, and 〈f〉4 = 〈fH, fL〉2. For the function

f (x,y) = x · y over GF(4),
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the binary representation will give

fL (xH, xL,yH,yL) = xLyL + xHyH

fH (xH, xL,yH,yL) = xHyL + xLyH + xHyH

over GF(2).

Hence, one quaternary operation will be mapped into 8 binary. However, two binary

functions
fL (xH, xL,yH,yL) = xLyL

fH (xH, xL,yH,yL) = xHyH

over GF(2)

will map into the following quaternary expression:

f (x,y) = Bx2y+Bxy2 + x2y2 over GF(4)

giving 2 quaternary additions and 5 quaternary multiplications.

The above example shows that the radix efficiency is different for different functions.

It is also highly possible that the optimal solution might imply a combination of radices

rather than a uniform radix representation. Applying the mixed radix approach at the

synthesis stage will greatly extend the possibility space and the possibility of finding bet-

ter solutions. The drawback of extending the search space is the increased computation

time. It would be convenient to have a method to cogitatively narrow down the search

space while still working with mixed radices.

Another problem related to the radix choice is in the technology level component

parameters. For example, the following quaternary function

f = x+ y over GF(4)

in the binary will give

fL = xL + yL

fH = xH + yH

over GF(2).

Quaternary representation has one operation instead of two. But as we know from the

previous chapters, quaternary components can be larger than binary, so it is not clear
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which of the above functions is more efficient.

At the technology level, the main reason for using different radices within a circuit

is the different component costs. With respect to the GF arithmetic this means that the

multiplication can be more efficient in lower radices than in higher while the addition is

better in high radix implementation (or vice versa). Based on the component implement-

ation parameters, one could use only two radices to achieve the optimal efficiency: one

radix is applied to the operations of addition, another is applied to multiplication. Unlike

in the conversion driven design, the synthesis implies the choice of the radix to be made

beforehand. With respect to the mixed radix approach this leads to the choice of the radix

model, i.e. the schema of applying radices at the level of mathematical representation.

For sum of product, the two-radix approach becomes a two-level radix model, denoted

as q1 → q2. The radix model is chosen before the synthesis stage, and the circuit is

produced with respect to the radix model from the very beginning. At the level of

mathematical representation, an n-variable function that complies to the two-level radix

model is

f : GFn(q1)→ GF(q2).

Such a function is also called radix q2 function of radix q1 arguments (or q1-nary-to-q2-nary

function) and denoted as fq1→q2 (x̃1, . . . , x̃n).

Uniform radix functions are further denoted as fq→q (x̃1, . . . , x̃n).

Radix models presented in the following sections include:

· Radix reduction model q1 → q2 for q1 > q2 has been developed for the case pt →

pu, where p is prime and t > u. The model is described in Section 4.2.

· Radix extension model q1 → q2 for q1 < q2 has been developed for the cases

p→ pt and 2→ q, where p is prime, t > 1 and q is any valid GF order. The models

are described in Sections 4.3 and 4.5 respectively.

We have also taken into consideration that two-level radix model might be less efficient

than local per-component radix application, like in the conversion driven approach.

Hence the model with mixed radix domain has been developed in order to investigate

69



CHAPTER 4. MIXED RADIX REED-MULLER EXPANSIONS

q

q

p

p
q1 q2

q1-nary inputs

q1→q2

q2-nary outputs

Figure 4.1: Mixed radix circuit based on q1 → q2 two-level radix model.

this assumption. This model is developed from p → pt model and allows combination

of radix p and radix pt input variables within one Reed-Muller expansion. It is denoted

as
{
p,pt

}
→ pt, where p is prime and t > 1, and presented in Section 4.4.

The understanding of the circuit synthesised using two-radix model approach is

shown in Figure 4.1. Connection between the radices is possible without the use of signal

converters due to the cross-radix arithmetic operations. In different radix models these

operations are different. For example, in p → pt radix model, multiplication of p-nary

values by radix pt coefficients will give the result of radix pt.

4.2 Radix reduction: pt → pu, t > u Reed-Muller expansions

Radix reduction model is targeted at higher radix multiplications and lower radix

additions in the circuit. But before we define this type of RM expansions, consider a

quaternary-to-binary example using the signal conversion approach.

Considering a quaternary value x ∈ GF(4) as a pair of binary “bits” and having

defined functions rH (x) , rL (x) ∈ GF(2) extracting the higher and the lower bits of x

respectively, any quaternary function f4→4 (x̃1, . . . , x̃n) = a0 +a1x̃1 + . . .+a4n−1x̃
3
1 · . . . · x̃3

n

can be replaced with a pair of quaternary-to-binary functions:

fH,4→2 (x̃1, . . . , x̃n) = rH (a0) + rH (a1x̃1) + . . . + rH
(
a4n−1x̃

3
1 · . . . · x̃3

n

)
fL,4→2 (x̃1, . . . , x̃n) = rL (a0) + rL (a1x̃1) + . . . + rL

(
a4n−1x̃

3
1 · . . . · x̃3

n

)
computed over GF(2). Here functions rH and rL split the quaternary terms and the sum is
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computed over GF(2) arithmetic. In this case the total number of operations is increased:

two binary additions replace each quaternary.

Example 4.1. Considering the quaternary function from Example 2.2, we can split it using

the above method into the following quaternary-to-binary functions:

FH,4→2 (x0, x1) = rH (ẍ0) + rH
(
ẍ0

2)+ rH (Ax1) + rH
(
Aẍ0

3x1
)
+ rH

(
x2

1
)
+ rH

(
ẍ0

3x2
1
)

FL,4→2 (x0, x1) = rL (ẍ0) + rL
(
ẍ0

2)+ rL (Ax1) + rL
(
Aẍ0

3x1
)
+ rL

(
x2

1
)
+ rL

(
ẍ0

3x2
1
)

where ẍ0 = x0 +A.

As it is not well-defined how rH and rL are related, we cannot optimise the sum part

of the functions. Thus the circuit shown in Figure 2.12 can be converted into a quaternary-

to-binary having 20 components not considering the signal conversion logic.

Using the synthesis approach the number of operations can be optimised. However,

in order to reduce radix in the middle of (2.1) we still need to introduce an explicit radix

mapping defined as follows.

Definition 4.1. For some prime p and t > u > 1, pt → pu radix mapping is a function

rpu : GF(pt) → GF(pu) defined in the algebra of polynomials in the transcendental

variable α as (4.1). (In Chapter 2 the transcendental variable is denoted as x. To avoid

confusion with function variables, in this section we denote it as α.)

rpu
(
at−1α

t−1 + . . . + auαu + au−1α
u−1 + . . . + a1α+ a0

)
=

αu−1x
u−1 + . . . + a1α+ a0 over GF(p) (4.1)

We also use radix mapping rpu in matrix notation: rpu (X) = Y for some n1-by-n2

matrices X, Y means that yi,j = rpu
(
xi,j
)
, where 1 6 i 6 n1, 1 6 j 6 n2.

From Definition 4.1 also follows that for any x ∈GF(pt), ru (x) ∈GF(pu) and also

ru (x) ∈GF(pt).

For example, for quaternary-to-binary radix mapping, t = 2,u = 1, and in the algebra
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of polynomials in the transcendental α,

r2 (a1α+ a0) = a0 over GF(2),

which can be implemented as

r2 (x) = x
3 (x+A)3 = Ax2 +Bx over GF(4). (4.2)

Radix mapping ensures that for each element of GF(pu) there is at least one corres-

ponding element from GF(pt), i.e. for any x ∈GF(pu) there exist y ∈GF(pt), such that

rpu (y) = x.

Corollary 3. For x,y ∈GF(pt) such that x = rpu (y), the statement rpu (x) = rpu (y) is also

true.

Theorem 4.1. For some pt → pu radix mapping defined as in Definition 4.1, rpu (x+ y) =

rpu (x) + rpu (y) for all x,y ∈ GF(pt).

Proof. As elements of GF(pt), variables x and y are congruent to polynomials of degree

t− 1 over GF(p), i.e. x = at−1α
t−1 + . . . + a1α+ a0 and y = bt−1α

t−1 + . . . + b1α+ b0

respectively. Then

x+ y = (at−1 + bt−1)α
t−1 + . . . + (a1 + b1)α+ (a0 + b0) ,

and therefore

rpu (x+ y) = (au−1 + bu−1)α
u−1 + . . . + (a1 + b1)α+ (a0 + b0)

=
(
au−1α

u−1 + . . . + a1α+ a0
)
+
(
bu−1α

u−1 + . . . + b1α+ b0
)

= rpu (x) + rpu (y) .
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Thus for (4.2),

r2 (x+ y) = A (x+ y)2 +B (x+ y)

= Ax2 +Ay2 +Bx+By

=
(
Ax2 +Bx

)
+
(
Ay2 +By

)
= r2 (x) + r2 (y) ,

computed over GF(4).

We define pt → pu RM expansion as a RM expansion over GF(pt) where each term

is mapped into GF(pu) using radix mapping rpu , so the expansion takes the form (4.3).

fpt→pu (x̃1, . . . , x̃n) =
(pt)

n
−1∑

i=0

rpu

bi n∏
j=1

x̃
ij
j

 (4.3)

where ij is a single digit of a radix pt tuple 〈in . . . i1〉pt = i. The argument of rpu is

computed over GF(pt) and the rest of the expression is computed over GF(pu). The

coefficients b0, . . . ,b(pt)n−1 ∈ GF(pt).

From Theorem 4.1, the whole expression mapped to the radix pu is equivalent to the

expression with each term mapped to pu, i.e. (4.3) is equivalent to the following:

fpt→pu (x̃1, . . . , x̃n) = rpu

(pt)
n
−1∑

i=0

bi

n∏
j=1

x̃
ij
j

 ,

which is in matrix form:

fpt→pu (x̃1, . . . , x̃n) = rpu
((
X̃n ⊗ . . .⊗ X̃1

)
· b
)

over GF(pt), (4.4)

where X̃j =
[

1 x̃j . . . x̃
(pt)

n
−1

j

]
and b =

[
b0 . . . b(pt)n−1

]t
.

Having specified the truth vector d =

[
d0 . . . d(pt)n−1

]t
and mapping it into
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radix pu, d ′ = rpu (d), we can write

rpu
((
X̃n ⊗ . . .⊗ X̃1

)
· b
)
= rpu (d) = d

′.

If we find such b ′ that

(
X̃n ⊗ . . .⊗ X̃1

)
· b ′ = d ′ over GF(pt), (4.5)

then according to Corollary 3:

rpu
((
X̃n ⊗ . . .⊗ X̃1

)
· b ′
)
= d ′ = rpu

((
X̃n ⊗ . . .⊗ X̃1

)
· b
)

.

Since rpu is not one-to-one function, the above expression is true even if b 6= b ′.

Therefore, pt → pu RM expansion can have more than one solution, and b ′ is one of

them.

Following from d is constant, d ′ = rpu (d) is constant too. Thus b ′ can be found from

(4.5) using Green’s direct method for radix pt:

b ′ = (Skn ⊗ . . .⊗ Sk1)
−1 · d ′ =

(
S−1
kn
⊗ . . .⊗ S−1

k1

)
· d ′ over GF(pt), (4.6)

where the matrices S0, . . . ,Spt−1 are defined for uniform radix pt expansions as described

in Section 2.2.3, and k is a polarity number.

Mapping rpu is a signal conversion function that requires logic to implement, i.e. it

has nonzero cost at the physical level. Having rpu in front of each of
(
pt
)n terms in (4.3)

gives concerns about this radix model in general. However, instead of making rpu (x)

a separate component, the mapping can be merged with the consequent operation of

addition into a special macro-component rpu (x) + rpu (y), which has simpler truth table,

e.g the one shown in Figure 4.2. It has radix pt inputs and radix pu and behaves similarly

to Q/B gates from conversion driven design (Chapter 3) consuming signal conversion

components in the circuit.

Example 4.2. In order to make the quaternary-to-binary equivalent of the function from
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GF(4):

x r2 (x)

0 0
1 1
A 0
B 1

r2 (x) + r2 (y) 0 1 A B
0 0 1 0 1
1 1 0 1 0
A 0 1 0 1
B 1 0 1 0

Figure 4.2: r2 (x) + r2 (y) component specification for quaternary-to-binary case

2

= r (x) + r (y)
2 2

A

x0
4

x2

x3

x1
4

2

4

4

x2

A

B

A

B

2

2

4

4

4

4

1

F0
2

F1
2

x~ Π Σx
n

a

Figure 4.3: Component-level schematic for quaternary-to-binary RM expansion.

the Example 2.2, quaternary truth vector d can be split into two binary truth vectors

d0,4→2 and d1,4→2 in a way that each element of d is represented as a pair of respective

elements from d0,4→2 and d1,4→2, i.e. 〈di〉4 = 〈d1,4→2,i,d0,4→2,i〉2 for i = 0 . . . 15.

d0,4→2 = [1100111011001110]t

d1,4→2 = [1111110111111101]t

Hence the circuit will implement two quaternary-to-binary functions F0,4→2 and

F1,4→2. Let polarity k = 2 = 〈0A〉4. Using Green’s matrices W0 and W2 as defined for

quaternary RM expansions, we have:

b ′
0 = (W0 ⊗W2) · d0,4→2 over GF(4),
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b ′
0 =





1 0 0 0

0 1 B A

0 1 A B

1 1 1 1


⊗



0 0 1 0

B A 0 1

A B 0 1

1 1 1 1




· d0,4→2 =

=



0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

B A 0 1 0 0 0 0 0 0 0 0 0 0 0 0

A B 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 B 0 0 0 A 0

0 0 0 0 B A 0 1 A 1 0 B 1 B 0 A

0 0 0 0 A B 0 1 1 A 0 B B 1 0 A

0 0 0 0 1 1 1 1 B B B B A A A A

0 0 0 0 0 0 1 0 0 0 A 0 0 0 B 0

0 0 0 0 B A 0 1 1 B 0 A A 1 0 B

0 0 0 0 A B 0 1 B 1 0 A 1 A 0 B

0 0 0 0 1 1 1 1 A A A A B B B B

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

B A 0 1 B A 0 1 B A 0 1 B A 0 1

A B 0 1 A B 0 1 A B 0 1 A B 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



·



1

1

0

0

1

1

1

0

1

1

0

0

1

1

1

0



=



0

1

1

0

B

0

0

B

A

0

0

A

0

0

0

0



.

Similarly for F0,4→2, we have b ′
1 = (W0 ⊗W2) · d1,4→2 = [1000B00BA00A0000]t. Hence

the functions take the following form:

F0,4→2 (x0, x1) = r2 (ẍ0) + r2
(
ẍ0

2)+ r2 (Bx1) + r2
(
Bx3

0x1
)
+ r2

(
Ax2

1
)
+ r2

(
Ax3

0x
2
1
)

F1,4→2 (x0, x1) = 1 + r2 (Bx1) + r2
(
Bx3

0x1
)
+ r2

(
Ax2

1
)
+ r2

(
Ax3

0x
2
1
)

,

where ẍ0 = x0 +A.

Although the functions have many operations, most of the terms are shared, so the

final circuit is reduced in size. Figure 4.3 shows the schematic of the circuit using r2 (x) +

r2 (y) components.

Comparing the mixed radix examples with Example 2.1 and 2.2, one could conclude

that mixed radix circuits give better area and possibly reduce power consumption,
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however this is not necessarily true. Component-level examples illustrate the potential of

the approach regardless of the implementation, while at the physical level the arithmetic

operations have different costs in different radices depending on the representation of

multi-valued signals. Unfortunately, most of the theoretical papers do not cover this

fact. In our work we have considered a specific application area and esimated the real

characteristics presented in Chapter 5.

4.3 Radix extension: p→ pt Reed-Muller expansions

From Definition 2.8, GF(p) is a subfield of GF(pt). Hence, the elements of GF(p) are a

subset of GF(pt), and the operations over these elements are equivalent in both fields:

x+ y over GF(p) = x+ y over GF(pt)

x · y over GF(p) = x · y over GF(pt)

for all x,y ∈GF(p).

We define p → pt expansion as a Reed-Muller expansion f (x̃1, . . . , x̃n) over GF(pt)

with arguments constrained to the elements of GF(p), i.e x̃j ∈GF(p) and xj ∈GF(p) for

j = 1 . . .n. Let us find its generalised form and prove that all operations in the product

part can be computed over GF(p) while the sum part is computed over GF(pt).

Since there is a constraint on variables x1 . . . xn and their literals x̃1 . . . x̃n, there are

only p polarity forms allowed: x̃j = xj + c, j = 1 . . .n, where xj, c ∈GF(p). The operation

of addition here is respectively computed over GF(p).

Consider one-variable RM expansion, which for radix pt function f (x) takes the form:

fpt→pt (x̃) = a0 + a1x̃+ . . . + apt−1x̃
pt−1 over GF(pt) (4.7)

Constraining variable x and literal x̃ to the values of GF(p), we have x̃ = x̃p, x ∈GF(p),

x̃ ∈GF(p). Following from the basic Galois theory, the number of different power forms
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is reduced to p, and the result is also in GF(p) [52]:

x̃p = x̃

x̃p · x̃ = x̃2

· · ·

x̃p
t−1 = x̃p−1

Or generally,

x̃i = x̃ψ(i) over GF(pt)

for i = 0 . . .
(
pt − 1

)
, where

ψ (i) =


0 if i = 0

[(i− 1) mod (p− 1)] + 1 if i > 0

The function ψ looks convoluted, but it describes a rather simple pattern. For example,

in case of GF(32 = 9), we have ψ (0) = 0,ψ (1) = ψ (3) = . . . = 1,ψ (2) = ψ (4) = . . . = 2,

and the powers of x̃will be:

x̃0 x̃ x̃2 x̃3 x̃4 x̃5 x̃6 x̃7 x̃8

1 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1

1 2 1 2 1 2 1 2 1

And in the case of p = 2, the function ψ becomes trivial:

ψ (i) =


0 if i = 0

1 if i > 0

Therefore (4.7) can be rewritten as (4.8) giving us the form of one-variable p→ pt RM
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expansion.

fp→pt (x̃) = a0 +
(
a1 + ap + . . . + apt−p+1

)
x̃+ . . . +

(
ap−1 + . . . + apt−1

)
x̃p−1

= b0 + b1x̃+ . . . + bp−1x̃
p−1 over GF(pt) (4.8)

b0 = a0

b1 = a1 + ap + . . . + apt−p+1

· · ·

bp−1 = ap−1 + . . . + apt−1

Radix pt expansion of n-variable function, according to (2.1), is expressed as follows.

fpt→pt (x̃1, . . . , x̃n) =
(pt)

n
−1∑

i=0

ai

 n∏
j=1

x̃
ij
j

 over GF(pt), (4.9)

where ij is a single digit of a radix pt tuple 〈in . . . i1〉pt = i. Vector a =[
a0 . . . a(pt)n−1

]t
is a radix pt coefficient vector.

For an n-variable case the same idea can be used since x̃j = x̃
p
j is true for all literals

x̃j ∈GF(p), j = 1 . . .n; thus each term in (4.9) is transformed as follows.

aix̃
i1
1 . . . x̃inn = aix̃

ψ(i1)
1 . . . x̃ψ(in)

n

For example, in the binary-to-quaternary RM expansion (p = 2, pt = 4), a quaternary

term a19x̃
3
1x̃3 will become a19x̃1x̃3, and the term a36x̃1x̃

2
3 will also give a36x̃1x̃3. As

the reader may notice, the multiple terms now have common multipliers. Using

factorisation,
(
pt
)n terms of (4.9) (n variables, each having pt different power forms)

is reduced to pn as we now have only p possible powers.

Finally, the fixed polarity Reed-Muller expansion over GF(pt) of the radix pt function

f (x1, . . . , xn) takes the form (4.10) if each of the variables xj ∈GF(p) and x̃j ∈GF(p);
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GF(p) ⊂ GF(pt).

fp→pt (x̃1, . . . , x̃n) =
pn−1∑
i=0

bi

 n∏
j=1

x̃
ij
j

 over GF(pt) (4.10)

where i is an integer representation of a p-nary tuple 〈in . . . i1〉p = i, and vector b =[
b0 . . . bpn−1

]t
is a coefficient vector, which can be derived from coefficient vector

a as follows:

bi =

(pt)
n
−1∑

m=0

ωi,mam, i = 0 . . .pn − 1

ωi,m =


1 if there exists such lthat il = ψ (ml)

0 otherwise

〈i〉10 = 〈in . . . i1〉p

〈m〉10 = 〈mn . . .m1〉pt

Here the factor ωi,m is used to select coefficients from the terms with common multipli-

ers; bi ∈GF(pt) because am ∈GF(pt).

The difference between (4.10) and (4.9) is that the p→ pt expansion has pn terms and

a p-nary representation of 〈i〉10 = 〈in . . . i1〉p, i.e. it has a form of a radix p RM expansion

computed over GF(pt). It is also important that, despite the entire expression is being

computed over GF(pt), the computation of the product part remains within GF(p).

Finding coefficient vector b from the coefficients a0 . . .aqn−1 described above is given

as a proof of the fact that mixed radix p→ pt expansions can be derived from the uniform

radix, but it has no practical use, as the coefficient vector a is usually unknown. Instead,

the coefficient vector b can be found from the truth vector in a similar manner as Green’s

direct method described in Section 2.2.3.

Since each literal x̃j ∈GF(p) has only p power forms, we have X̃j =[
1 x̃j . . . x̃

p−1
j

]
similar to the radix p case of RM expansions; j = 1 . . .n. The matrix
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form of (4.10) is:

fp→pt (x̃1, . . . , x̃n) =
(
X̃n ⊗ . . .⊗ X̃1

)
· b over GF(pt). (4.11)

Let d =

[
d0 d1 . . . dp−1

]t
be the truth vector of the 1-variable p → pt RM

expansion (4.8); d0,d1, . . . ,dp−1 ∈ GF(pt). Then, for some polarity number k, from (4.11)

follows:

d = Skb over GF(pt),

where Sk is p-by-p matrix as defined for p-nary RM expansions. Having Wk = S−1
k , the

equation can be solved giving the coefficient vector b:

b = Wkd over GF(pt).

The elements of matrixWk have radix p. The multiplication with the radix pt truth vector

d produces coefficient vector b of radix pt as required.

In general n-variable case, for radix pt truth vector d, radix p matrices S0, . . . ,Sp−1

andW0 = S−1
0 , . . . ,Wp−1 = S−1

p−1, the truth vector b can be found as follows:

b = (Skn ⊗ . . .⊗ Sk1)
−1 · d over GF(4)

(Skn ⊗ . . .⊗ Sk1)
−1 = S−1

kn
⊗ . . .⊗ S−1

k1

= Wkn ⊗ . . .⊗Wk1 .

The equation has a solution if the matrices S0, . . . ,Sp−1 are invertible over GF(p), which

means that if Green’s method can be applied to some radix p, the radix model p → pt is

also valid for this p and can be solved using the presented method.

Example 4.3. In the binary-to-quaternary case, the truth vectors d0 and d1 from the

Example 2.1 can be merged into quaternary d2→4 = [BBAABB1A]t.

For k = 1 = 〈001〉2 and using binary case matrices W0 and W1, we can find the
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Figure 4.4: Component-level schematic for mixed radix binary-to-quaternary RM expan-
sion.

coefficient vector b:

b = (W0 ⊗W0 ⊗W1) · d2→4 over GF(4),

b =

 1 0

1 1

⊗
 1 0

1 1

⊗
 0 1

1 1

 · d2→4

=



0 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0

0 1 0 1 0 0 0 0

1 1 1 1 0 0 0 0

0 1 0 0 0 1 0 0

1 1 0 0 1 1 0 0

0 1 0 1 0 1 0 1

1 1 1 1 1 1 1 1



·



B

B

A

A

B

B

1

A



=



B

0

1

0

0

0

0

B



.

Hence, the 3-variable binary-to-quaternary function takes the following form:

F2→4 (y0,y1,y2) = B+ y1 +By0y1y2

where y0 = y0 + 1 .

The schematics are shown in Figure 4.4 displaying how the radix changes from layer

to layer.
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4.4 Mixed radix domain: {p,pt}→ pt Reed-Muller expansions

Uniform radix pt expansions and radix pt expansions of p-nary arguments are the

extremes the of more general mixed radix domain expansions
{
p,pt

}
→ pt allowing

input from both radices within a single circuit.

Consider a 2-variable quaternary RM expansion

f (x̃1, x̃2) =
(
X̃2 ⊗ X̃1

)
· a over GF(4),

where X̃i =

[
1 xi x2

i x3
i

]
, i ∈ {1, 2}, and a 4-variable binary-to-quaternary RM

expansion

f (ỹ10, ỹ11, ỹ20, ỹ21) =
(
Ỹ21 ⊗ Ỹ20 ⊗ Ỹ11 ⊗ Ỹ10

)
· b over GF(4),

where Ỹij =

[
1 yi

]
, i ∈ {1, 2}, j ∈ {0, 1}. Denoting Ỹi = Ỹi1 ⊗ Ỹi0 =[

1 yi0 yi1 yi0yi1

]
, we can write

f (ỹ10, ỹ11, ỹ20, ỹ21) =
((
Ỹ21 ⊗ Ỹ20

)
⊗
(
Ỹ11 ⊗ Ỹ10

))
· b =

(
Ỹ2 ⊗ Ỹ1

)
· b over GF(4).

In a similar manner we can deduce the following constructs:

f (ỹ10, ỹ11, x̃2) =
(
X̃2 ⊗

(
Ỹ11 ⊗ Ỹ10

))
· e1 =

(
X̃2 ⊗ Ỹ1

)
· e1 over GF(4),

f (x̃1, ỹ20, ỹ21) =
((
Ỹ21 ⊗ Ỹ20

)
⊗ X̃1

)
· e2 =

(
Ỹ2 ⊗ X̃1

)
· e2 over GF(4),

which will give us the notion of mixed radix domain functions (e1 and e2 are some

coefficient vectors).

Mixed radix domain
{
p,pt

}
→ pt Reed-Muller expansion is defined as a radix pt

function f (z̃1, . . . , z̃n), where each literal z̃j can be either the radix pt variable x̃j or a

p-nary tuple
〈
ỹj,t−1, . . . , ỹj,0

〉
p

representing x̃j, j = 1 . . .n. Such t-tuple can express the

coefficients of the corresponding polynomial of transcendental variable α, so we can say
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that xj = yj,t−1α
t−1 + . . . + yj,1α+ yj,0 over GF(p). By Definition 2.11, literal x̃j = xj + c.

Let c be expressed with a p-nary tuple as well, i.e. c = 〈ct−1, . . . , c0〉p, then

x̃j = xj + c =
(
yj,t−1α

t−1 + . . . + yj,1α+ yj,0
)
+
(
ct−1α

t−1 + . . . + c1α+ e0
)

=
(
yj,t−1 + ct−1

)
αt−1 + . . . +

(
yj,1 + c1

)
α+

(
yj,0 + c0

)
=

〈
yj,t−1 + ct−1, . . . ,yj,0 + c0

〉
p
=
〈
ỹj,t−1, . . . , ỹj,0

〉
p

,

where ỹj,i = yj,i + ci, i = 0 . . . t − 1. As literal x̃j is determined by a single digit kj

of a polarity number 〈k〉10 = 〈kn . . . k1〉pt , in order to preserve the consistency between

the literals x̃j and ỹj,t−1, . . . , ỹj,0, the same polarity number can be expressed as a p-nary

tuple, i.e. for each j = 1 . . .nwe have
〈
kj
〉
pt

=
〈
kj,t−1 . . . kj,0

〉
p

.

Definition 4.2. Argument radix number r of a mixed radix domain RM expansion

f (z̃1, . . . , z̃n) is an integer representation of a binary tuple 〈rn . . . r1〉2 = r where rj is 0

if z̃j = x̃j, or 1 if z̃j =
〈
ỹj,t−1, . . . , ỹj,0

〉
p

; j = 1 . . .n. For uniform radix expansions r = 0;

for radix pt expansions of all p-nary arguments r = 2n − 1.

For some radix number 〈r〉10 = 〈rn . . . r1〉2, mixed radix domain
{
p,pt

}
→ pt Reed-

Muller expansion of n-variable radix pt function takes the following form:

f (z̃1, . . . , z̃n) =
(
Z̃n ⊗ . . .⊗ Z̃1

)
· er over GF(pt),

where

Z̃j =


X̃j if rj = 0

Ỹj = Ỹj,t−1 ⊗ . . .⊗ Ỹj,0 if rj = 1

j = 1 . . .n

considering that X̃j =
[

1 x̃j . . . x̃
pt−1
j

]
and Ỹj =

[
1 ỹj . . . ỹ

p−1
j

]
.

The computation of the coefficient vector er is derived from the Green’s direct

method. Let the truth vector be defined as d =

[
d0 . . . d(pt)n−1

]t
, d0 . . .d(pt)n−1 ∈

GF(pt). Denoting radix p matrices as Sp−1, . . . ,S0and Wp−1, . . . ,W0, and radix pt
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matrices as S ′
pt−1, . . . ,S0and W ′

pt−1, . . . ,W ′
0, we can compute mixed radix domain RM

expansion as follows:

d = (Tkn ⊗ . . .⊗ Tk1) · er over GF(pt),

Tkj =


S ′kj if rj = 0

Skj,t−1 ⊗ . . .⊗ Skj,0 if rj = 1

j = 1 . . .n.

Hence,

er =
(
T−1
kn
⊗ . . .⊗ T−1

k1

)
· d over GF(pt),

T−1
kj

=


W ′
kj

if rj = 0

Wkj,t−1 ⊗ . . .⊗Wkj,0 if rj = 1

j = 1 . . .n.

Exhaustive search through 2n argument radix numbers and computing for each of the

4n fixed polarity expansions is a high complexity task. Benchmark results presented in

Section ?? show that in most cases it is unnecessary to search through all radix numbers

as the optimal solution trend to either all radix p arguments or all radix pt depending on

the properties of arithmetic components and the function.

Example 4.4. Using the truth vector d = [BBAABB1ABBAABB1A]t of the two-variable

quaternary function from Example 2.2.

For r = 1 = 〈01〉2, which gives z̃0 = (y01,y00) and z̃1 = x̃1, and for k = 1 = 〈0, 〈01〉2〉4,

the coefficient vector e1 can be found as follows.

e1 =
(
W ′

0 ⊗ (W0 ⊗W1)
)
· d over GF(4)
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e1 =





1 0 0 0

0 1 B A

0 1 A B

1 1 1 1


⊗

 1 0

1 1

⊗
 0 1

1 1



· d

=



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 B 0 0 0 A 0 0

0 0 0 0 1 1 0 0 B B 0 0 A A 0 0

0 0 0 0 0 1 0 1 0 B 0 B 0 A 0 A

0 0 0 0 1 1 1 1 B B B B A A A A

0 0 0 0 0 1 0 0 0 A 0 0 0 B 0 0

0 0 0 0 1 1 0 0 A A 0 0 B B 0 0

0 0 0 0 0 1 0 1 0 A 0 A 0 B 0 B

0 0 0 0 1 1 1 1 A A A A B B B B

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



·



B

B

A

A

B

B

1

A

B

B

A

A

B

B

1

A



=



B

0

1

0

0

0

0

A

0

0

0

1

0

0

0

0



.

Hence the mixed radix domain function F{2,4}→4 for radix number r = 1 takes the form:

F{2,4}→4 (x1,y01,y00) = B+ y01 +Ax1y01 + x
2
1y00y01,

where y00 = y00 + 1. The component level schematic is shown in Figure 4.5(a).

For r = 2 = 〈02〉2, which gives z̃0 = x̃0 and z̃1 = (y11,y10), and for k = 2 = 〈〈00〉2A〉4,

the coefficient vector e2 can be found as follows.

e2 =
(
(W0 ⊗W0)⊗W ′

2
)
· d over GF(4)
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e2 =


 1 0

1 1

⊗
 1 0

1 1

⊗


0 0 1 0

B A 0 1

A B 0 1

1 1 1 1




· d

=



0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

B A 0 1 0 0 0 0 0 0 0 0 0 0 0 0

A B 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0

B A 0 1 B A 0 1 0 0 0 0 0 0 0 0

A B 0 1 A B 0 1 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

B A 0 1 0 0 0 0 B A 0 1 0 0 0 0

A B 0 1 0 0 0 0 A B 0 1 0 0 0 0

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

B A 0 1 B A 0 1 B A 0 1 B A 0 1

A B 0 1 A B 0 1 A B 0 1 A B 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



·



B

B

A

A

B

B

1

A

B

B

A

A

B

B

1

A



=



A

1

1

0

B

0

0

B

0

0

0

0

0

0

0

0



.

Hence the mixed radix domain function F{2,4}→4 for radix number r = 2 takes the form:

F{2,4}→4 (y11,y10, x0) = A+ ẍ0 + ẍ
2
0 +By10 +By10ẍ

3
0,

where ẍ0 = ẍ0 +A. The component level schematic is shown in Figure 4.5(b). The circuit

does not have y11 input because the function does not actually depend on it, which can

be observed from its truth vector.

4.5 Binary-to-q-nary Reed-Muller Expansions

Radix extension model described in Section 4.3 is based on the homomorphism property

of field extensions. However, as we compute only the product part in the lower radix, we

do not actually need the fields to be homomorphic under the operation of addition.
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y01
2

y00
2

1

B

2 4

x2

x1
4

2

2

A

4

4

F
4

x~ Π Σxn a

(a) r = 1

x0
4

A

x2

x3

A

y10
2

B

2 4

B

2 4

F
4

x~ Π Σxn a

(b) r = 2

Figure 4.5: Component-level schematic for mixed-to-quaternary RM expansions.

Since all felds contain zero element 0 and unity element 1, and also 0 · 0 = 0, 0 · 1 =

1 · 0 = 0 and 1 · 1 = 1 in all fields, we can say that GF(2) is homomorphic to any other

Galois field under the operation of multiplication.

Function f (x̃1, . . . , x̃n) is binary-to-q-nary if f (x̃1, . . . , x̃n) ∈ GF(q), variables

x1, . . . , xn ∈ {0, 1} and their polarity forms x̃1, . . . , x̃n ∈ {0, 1}; {0, 1} ⊂ GF(q). Such a

function is also called q-nary function of binary arguments and denoted as f2→q (x̃1, . . . , x̃n).

For q = 2m, condition x̃j ∈ {0, 1}, j = 1 . . .n is true for 0 and 1 polarity forms, i.e.

x̃j = xj + cj; xj, cj ∈ {0, 1}. However, for other q this condition is not true, so for binary-

to-q-nary case we have to alter Definition 2.11 as follows.

Definition 4.3. Literal x̃j, j = 1 . . .n of the variable xj ∈ {0, 1} w.r.t. the binary-to-q-nary

function f2→q (x̃1, . . . , x̃n) is the one of two possible polarity forms:

xj = xj + 0

xj = (−1) xj + 1
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where 0, 1, xj and (−1) are elements of GF(q). The polarity forms are denoted as 0-

polarity and 1-polarity respectively.

For example, in GF(3) (−1) = 2 giving xj = 2xj + 1. If xj = 0, xj = 2 · 0 + 1 = 1; if

xj = 1, xj = 2 · 1 + 1 = 0. Hence, xj ∈ {0, 1} if xj ∈ {0, 1}.

In order to find the generalised form of a binary-to-q-nary RM expansion, consider

one-variable case first. According to Definition 2.13, one-variable RM expansion for q-

nary function f (x) takes the form:

fq→q (x̃) = a0 + a1x̃+ . . . + ap−1x̃
q−1 over GF(q) (4.12)

Constraining variable x and literal x̃ to the values 0 and 1, we have x̃ = x̃2 = . . . =

x̃q−1, x ∈ {0, 1} , x̃ ∈ {0, 1}. In other words, x̃m = x̃ for any nonzerom. Hence (4.12) can be

rewritten as (4.13) giving us the form of one-variable binary-to-q-nary RM expansion.

f2→q (x̃) = a0 +
(
a1 + . . . + aq−1

)
x̃

= b0 + b1x̃ over GF(q) (4.13)

b0 = a0

b1 = a1 + . . . + aq−1

Similarly to p → pt case, we can use factorisation1 to reduce the number of terms to

2n. Since x̃j = x̃j
2 = . . . = x̃j

q−1 is true for all literals x̃j ∈ {0, 1}, j = 1 . . .n; thus each term

in (2.1) is transformed as follows.

aix̃1
i1 . . . x̃n

in = aix̃1
ψ(i1) . . . x̃n

ψ(in)

ψ
(
ij
)
=


0 if ij = 0

1 if ij > 0

Finally, the fixed polarity Reed-Muller expansion over GF(q) of the q-nary function

1In general, factorisation may change the polarity, for example, x+ xy = x (1 + y) = xy. However, this is
not the case in factorisation we use.
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f (x1, . . . , xn) takes the form (4.14) if each of the variables xj ∈ {0, 1} and x̃j ∈ {0, 1}; {0, 1} ⊂

GF(q).

f2→q (x̃1, . . . , x̃n) =
2n−1∑
i=0

bi

 n∏
j=1

x̃
ij
j

 over GF(q) (4.14)

where i is an integer representation of a binary tuple 〈in . . . i1〉2 = i, and vector b =[
b0 . . . b2n−1

]t
is a coefficient vector, which can be derived from coefficient vector a

as follows:

bi =

qn−1∑
m=0

ωi,mam, i = 0 . . . 2n − 1

ωi,m =


1 if there exists such lthat il = ψ (ml)

0 otherwise

〈i〉10 = 〈in . . . i1〉2

〈m〉10 = 〈mn . . .m1〉q

Indeed, in the case of (4.13) for n = 1:

bi = αi,0a0 + . . . +αi,q−1aq−1, i ∈ {0, 1}

α0,0 = 1 α1,0 = 0

α0,1 = 0 α1,1 = 1

· · · · · ·

α0,q−1 = 0 α1,q−1 = 1

Hence, the binary-to-q-nary expansion has a form of a binary RM expansion com-

puted over GF(q), and the coefficient vector b can be found from the truth vector using a

modified direct method as described below.

Let d =

[
d0 d1

]t
be the truth vector of the binary-to-q-nary RM expansion (4.13);
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d0,d1 ∈ GF(q). Then, for 0-polarity x̃ = x and:

d0 = f2→q (0) = b0

d1 = f2→q (1) = b0 + b1

over GF(q)

By solving this simple set of equations, b0 and b1 are found as follows:

b0 = d0

b1 = (−1)d0 + d1

over GF(q)

or in matrix form:

b = Q0d

Q0 =

 1 0

(−1) 1


where 0, 1 and (−1) are elements of GF(q); (−1) + 1 = 0.

For 1-polarity, x̃ = (−1) x+ 1, and:

d0 = f2→q ((−1) · 0 + 1) = f2→q (1) = b0 + b1

d1 = f2→q ((−1) · 1 + 1) = f2→q (0) = b0

b0 = d1

b1 = d0 + (−1)d1

b = Q1d

Q1 =

 0 1

1 (−1)


Matrices Q0 and Q1 can be henceforth used to compute n-variable binary-to-q-nary

RM expansions. In matrix form (4.14) can be expressed as follows:

f2→q (x̃1, . . . , x̃n) =
(
X̃n ⊗ . . .⊗ X̃1

)
· b over GF(q)
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where X̃j =
[

1 x̃j

]
is the vector of all possible powers (0 and 1) of the literal x̃j since

xj ∈ {0, 1} and x̃j ∈ {0, 1}; {0, 1} ⊂ GF(q).

From the properties of the Kronecker product, since the whole expression is com-

puted over GF(q) preserving the algebraic properties, coefficient vector b can be found

using the following equation.

b =
(
Qkn ⊗Qkn−1 ⊗ . . .⊗Qk1

)
· d over GF(q)

where the polarity number k refers to binary literals, i.e. 〈k〉10 = 〈kn,kn−1, . . . ,k1〉2.

This research is not aimed at optimising the computational complexity of the al-

gorithm. However, it can be noted that the matricesQ0 andQ1 are similar to those of the

uniform binary case, so we believe that the optimisation techniques used for the binary

radix can be adopted to binary-to-q-nary RM expansions.

The following example illustrates the structure of the circuit implementing binary-to-

q-nary RM expansions.

Example 4.5. For GF(3), the element (−1) = 2, so the matrices Q0 and Q1 are:

Q0 =

 1 0

2 1

 Q1 =

 0 1

1 2


For binary-to-ternary expansion the vectors d0,2→3 = [00220012]t, d1,2→3 = [11001100]t

are taken, and the result is as follows (k = 0):

b1 = (Q0 ⊗Q0 ⊗Q0) · d0,2→3 over GF(3), ,
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Figure 4.6: Component-level schematic for binary-to-ternary RM expansion.

b1 =

 1 0

2 1

⊗
 1 0

2 1

⊗
 1 0

2 1

 · d0,2→3

=



1 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

2 1 2 1 0 0 0 0

2 0 0 0 1 0 0 0

1 2 0 0 2 1 0 0

2 0 2 0 1 0 1 0

1 2 1 2 2 1 2 1



·



0

0

2

2

0

0

1

2



=



0

0

2

0

0

0

2

1



,

b2 = (Q0 ⊗Q0 ⊗Q0) · d1,2→3 = [10200000]t over GF(3),

and the functions take the form:

F0,2→3 (y0,y1,y2) = 2y1 + 2y1y2 + y0y1y2

F1,2→3 (y0,y1,y2) = 1 + 2y1

The schematic is shown in Figure 4.6.

4.6 Summary

A radix model is a schema of applying radices at the level of mathematical representation,

which is chosen before the synthesis stage, and the circuit is produced with respect to the

radix model from the very beginning. For the sum of product, two-level radix models

imply application of one radix to the operations of multiplication and another radix to
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the operations of addition. Such simplification narrows down the radix search space and

enables cross-radix computation.

A number of two-level radix models has been developed and described. Due to the

homomorphism of certain fields, it was possible to extend the Green’s direct method

to compute mixed radix Reed-Muller expansions in the presented radix models. The

possibility to apply faster methods of computation has not been explored so far, as the

estimation of the mixed radix efficiency has been put at higher priority. The described

method has been effective enough to synthesise the benchmarks presented in Chapter 5.

This chapter is mostly based on the journal paper accepted for publication [53]. Mixed

radix domain model has been published for {2, 4}→ 4 case in [58].
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Chapter 5

Use Case and Experimental Results

The presented research is focused on the security applications. However, the MVL

synthesis approach based on mixed radix Reed-Muller expansions over Galois fields can

be applied to any area that requires encoding of signals and multi-valued logic.

This chapter presents the application of the theory described in Chapter 4. In order

to proceed with the proposed design flow, the designer must follow the steps described

below.

1. Define encoding. The encoding is the foundation of the approach. If there is no

need to encode the signals, the standard EDA design flow is recommended instead.

In our case, 1-of-n encoding has been chosen, as discussed in Chapter 2.

2. Build the component library of GF operations with respect to the specified encoding

and other application requirements. Include addition (x+ y), multiplication (x · y),

and operations with constants (x+ c) , (x · c) over selected Galois fields. Estimate

the physical properties of the components using per-component SPICE simulation

or another acceptable technique. Section 5.1 gives the example implementations for

the security applied 1-of-n encoded libraries.

3. From the physical properties of the designed component libraries, choose the

appropriate radix models.

4. Map function specifications into required radices. Ideally, this could be done by a
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synthesis tool – we consider it as one of the subjects for future work.

5. Use the provided synthesis tool (presented in Section 5.3) to produce the encoded

data path.

6. Integrate data path modules with the control path as proposed in Chapter 3 and

continue with the regular EDA procedures such as place and route.

The Section 5.4 discusses the security applied benchmark results with respect to the

component level and the technology level parameters.

5.1 Component implementations

Chapters 2 and 4 have presented the synthesis at the level of technology-independent

components. The components thereafter are substituted by their physical implementa-

tion using predesigned libraries of GF arithmetic components. These libraries constitute

a connection between the abstract mathematical representation and the technology level.

Applying the theory of RM expansions to secure devices we compare two approaches

to 1-of-n encoded logic: implementation using runtime library (RTL) cells and custom

design dynamic logic cells. This chapter describes these implementations with respect to

the features of power-balanced logic.

5.1.1 Implementation using RTL

Generic approaches for 1-of-n codes over Galois fields were patented in [73]. The general

guidelines for power balancing in CMOS circuits is given in Chapter 2. Galois field

arithmetic components implement the truth tables shown in Figure 2.10 with applied

encoding according to Table 2.1.

The numbering of wires encoding a signal is respective, i.e. for 1-of-n encoded n-

ary signal x, wire xi = 1 while in the data phase means that x = i; i = 1 . . .n.

The corresponding equations and the list of figures displaying the corresponding RTL

implementations are given in Table 5.1. The components have eager evaluation of data

and early propagation of spacers, i.e. the output signal is evaluated only when the data
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Table 5.1: GF component implementations

radix, encoding operation equation shown in

q = x+ y q0 = x0y0 +x1y1
q1 = x0y1 +x1y0

Figure 5.1

GF(2), dual-rail q = xy, relaxed balancing
q0 = x0 +y0
q1 = x1y1

Figure 2.6(a)

q = xy, fully balanced
q0 = x0y0 +x0y1 +x1y0
q1 = x1y1 + 0 + 0 Figure 2.6(b)

q = x+ y
q0 = x0y0 +x1y2 +x2y1
q1 = x0y1 +x1y0 +x2y2
q2 = x0y2 +x1y1 +x2y0

–

GF(3), 1-of-3 q = xy, relaxed balancing
q0 = x0 +y0
q1 = x1y1 +x2y2
q2 = x1y2 +x2y1

–

q = xy, fully balanced
q0 = x0y0 +x0y1 +x0y2 +x1y0 +x2y0
q1 = x1y1 +x2y2 + 0 + 0 + 0
q1 = x1y2 +x2y1 + 0 + 0 + 0

–

q = x+ y

q0 = x0y0 +x1y1 +x2y2 +x3y3
q1 = x0y1 +x1y0 +x2y3 +x3y2
q2 = x0y2 +x1y3 +x2y0 +x3y1
q3 = x0y3 +x1y2 +x2y1 +x3y0

Figure 5.2

GF(4), 1-of-4 q = xy, relaxed balancing

q0 = x0 +y0
q1 = x1y1 +x2y3 +x3y2
q2 = x1y2 +x2y1 +x3y3
q3 = x1y3 +x2y2 +x3y1

Figure 5.3

q = xy, fully balanced

q0 = x0y0 +x0y1 +x0y2 +x0y3 +x1y0
+x2y0 +x3y0

q1 = x1y1 +x2y3 +x3y2 + 0 + . . . + 0
q2 = x1y2 +x2y1 +x3y3 + 0 + . . . + 0
q3 = x1y3 +x2y2 +x3y1 + 0 + . . . + 0

Figure 5.4

Figure 5.1: Dual-rail encoded GF(2) addition
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Figure 5.2: 1-of-4 encoded GF(4) addition
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Figure 5.3: 1-of-4 encoded GF(4) multiplication, relaxed balancing
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Figure 5.4: 1-of-4 encoded GF(4) multiplication, fully balanced
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Figure 5.5: Dynamic logic implementation of 1-of-4 encoded GF(4) addition

arrives at both inputs and is reset to NULL right after any of the inputs is dropped to

NULL. Higher radix operations have more complex implementations, especially if the

balancing feature is fully applied.

5.1.2 Dynamic logic implementation

In order to obtain better characteristics of balanced components, we use custom design

cells that optimise area and switching behaviour at the transistor level. The 1-of-n library

described in [16] builds GF arithmetic components using dynamic logic [78].

An example of a dynamic logic based one-hot encoded GF component is shown in

Figure 5.5. In CMOS the use of higher radix encoding is well known; evaluations are

performed in N-channel logic. Dynamic logic requires two phases. The first phase

is called the precharge phase and the second phase the evaluation phase. There are

three important benefits to N-channel only evaluation gates relative to traditional static

gates [33]. The first is the elimination of P-channel devices on input signals, which

reduces the input load significantly. The second is the elimination of the need to build

the complementary function in P-channel devices, which means that the more efficient

faster N-channel gates are possible. The third advantage of N-channel only evaluation

is the ability to share portions of the evaluate “stack” among multiple outputs, which

is not possible with static CMOS gates because it is not possible to obtain each output’s
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Table 5.2: Physical characteristics of GF components

physical characteristics
radix, operation RTL: AMS 0.35µm RTL: Faraday 90nm Dynamic logic 90nm

encoding energy, area, energy, area, energy, area,
pJ µm2 10−3 pJ cell units 10−3 pJ cell units

GF(2), + 0.36 330 3.348 24 2.450 13
dual-rail × relaxed balancing 0.39 182 2.783 14 – –

× fully balanced 0.39 366 4.110 28 2.430 13
GF(3), + – – 4.110 54 2.640 18
1-of-3 × relaxed balancing – – 3.348 31 – –

× fully balanced – – 6.893 81 2.410 24
GF(4), + 0.42 1244 7.419 108 2.520 27
1-of-4 × relaxed balancing 0.39 805 4.110 61 – –

× fully balanced 0.81 1699 10.202 147 2.950 39

function and complement from shared devices in both the P and N-channel stacks.

5.1.3 Estimating component physical parameters

According to the motivation behind the research, the secure design flow necessitates

estimation of physical characteristics in order to compare the efficiency of the synthesised

expansions. Precise physical simulation is available only after the placement and routing

has been done, which is a complex task. At the logic synthesis stage a tool should use

statistical evaluation based on numeric values from the library specification.

In our RTL-based implementations we used the Faraday 90nm library (FSD0A_A for

UMC’s 90nm 1P9M Logic/Mixed Mode Low-K SP process). Energy and area estimations

of the proposed components are shown in Table 5.2. In order to show the difference

between technologies, we have included the out-dated AMS C35 0.35µm library results as

well. For RTL implementations, the total switching energy is computed as the sum of the

switching energies for each layer of a component circuit. The total area of a component is

a sum of area values for all gates in its circuit. Higher radix components grow too large

and difficult to implement, so the possible error in estimating their parameters can be

significantly increased. Therefore we limit ourselves to radices 2, 3 and 4.

The dynamic logic library uses a 90nm technology, and its switching energy estimates

have been normalised in order to enable cross-technology comparison with 90nm RTL
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components. GF(2) addition, identical at the transistor level to an RTL implementation,

has been simulated in SPICE to find the scaling factor. The component’s power con-

sumption has been measured and multiplied by this factor. Although the estimation

method is fairly rough, it satisfies the required level of approximation. Area is measured

by transistor count using relative measures.

The parameters of 0.35µm-implemented components cannot be compared to other

libraries as absolute values, since they are obtained using different estimations rules.

However, it is still possible to observe how different radices impact on the component

and circuit parameters for this technology.

As can be seen from Table 5.2, RTL operations over GF(4) show a considerable area

overhead compared to their GF(2) counterparts. A possible explanation is the fact that

binary operations use the same radix as their gate level implementations, so the radix

mapping problem is encountered at the sub-component level. Dynamic logic however

has reduced overheads in higher radices, especially for switching energy, as it is less

dependent on the binary computation according to the features listed in Section 5.1.2.

Interestingly, the AMS library has acceptably cheap energy costs for quaternary compon-

ents, while in Faraday both area and power go up with the radix.

Another interesting point concerning 1-of-n encoded component implementations is

so-called “wire crossing” operations. Certain arithmetic functions in these encodings

degenerate into trivial re-assignment of signals. For example, dual-rail inversion (x+ 1)

has the following structure: q0 = x1, q1 = x0. The truth table for “wire crossing”

operations over GF(4) is shown in Figure 5.6. In the one-hot ternary case such trivial

operations are: (x+ 1), (x+ 2) and 2x. Consequently, these pseudo-components have

no area or switching costs, and this also should be considered when estimating physical

circuit parameters.

From the discussion presented in this subsection one can conclude that simple

efficiency analysis, such as the number of terms or the number of operations, is not

sufficient for the correct search for the optimal RM expansion. All components have

specific characteristics that depend on the choice of the library, encoding and power
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x 0 1 A B

x+ 1 1 0 B A
x+A A B 0 1
x+B B A 1 0
Ax 0 A B 1
Bx 0 B 1 A
x2 0 1 B A

Figure 5.6: “Wire crossing” operations in 1-of-4: their implementations do not involve
any logic

Table 5.3: Estimated physical characteristics of the examples using Faraday 90nm library
(relaxed balancing)

radix circuit switching sw. en., area,
wires 10−3pJ c. units

2→ 2 Figure 2.11 on page 37 6 18.393 114
2→ 3 Figure 4.6 on page 93 4 13.786 136
2→ 4 Figure 4.4 on page 82 3 12.985 136

{2, 4}→ 4, r = 1 Figure 4.5(a) on page on page 88 5 23.187 286
{2, 4}→ 4, r = 2 Figure 4.5(b) on page on page 88 5 28.638 347

4→ 4 Figure 2.12 on page 38 8 52.734 942
4→ 2 Figure 4.3 on page 75 8 49.120 587

balancing strength. The next subsection presents and compares benchmark results for

different radix combinations.

Example 5.1. Assuming that Examples 2.1—4.5 are required to be secure (power bal-

anced), the components have been mapped into RTL implementations from Table 5.2.

Table 5.3 gives the estimates for the physical parameters of the circuits. Although the

mixed radix examples show fewer components and reduced switching activity, the area

for binary is smaller, as expected from the background discussion.

The next section presents and compares benchmark results for real security al-

gorithms, and also gives a detailed discussion on how we estimate the circuit parameters.

5.2 Mapping specifications from one radix to another

For a combinational logic circuit defined as a p-nary truth table, the goal is to build the

truth table in radix qwith the same functionality. Formally this can be defined as follows.
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Figure 5.7: An example of using the repetition heuristics to handle “don’t care” values.

For a given p-nary mapping Fp→p : Y → E the task is to build a q-nary mapping Fq→q :

X → D, such that having defined radix interpretations ρ1 : Y → X and ρ2 : E → D, we

have

Fq→q (ρ1 (y)) = ρ2 (Fp→p (y)) (5.1)

for each y ∈ Y. It should be noted that this is not a general isomorphism, as ρ1 and ρ2 are

not necessarily isomorphic mappings.

The radix interpretation ρ1 : Y → X can be defined in a trivial way:

yn1−1p
n1−1 + . . . + y1p+ y0 = xn2−1q

n2−1 + . . . + x1q+ x0 (5.2)

where yn1−1 . . .y0 are p-nary digits of y ∈ Y and xn2−1 . . . x0 are q-nary digits of x ∈ X.

For example, for p = 2, q = 3 and y = 〈1011〉2, we have 23 + 21 + 20 = 32 + 2 · 30, hence

x = 〈102〉3. Similarly for ρ2 : E→ D.

The cardinality of the domain Y of the function Fp→p is |Y| = pn1 , where n1 is the

number of p-nary inputs, and the cardinality of its co-domain E is |E| = pm1 , where

m1 is the number of p-nary outputs. For the function Fq→q, |X| = qn2 and |D| = qm2

respectively. The number of inputs n2 and outputs m2 must be chosen to guarantee that

the domain and co-domain of Fq→q “cover” the domain and co-domain of the original

function, in other words, |X| > |Y| and |D| > |E|. Consequently, qn2 > pn1 and qm2 > pm1 .
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Dealing with “don’t care” values The cardinality of the domain determines the length

of the truth vector. The truth table of Fq→q can be longer than the truth table of Fp→p, so

it may contain “don’t care” (DC) values1. Expansions from (2.1) and (4.14) present one

digit q-nary outputs, thus working with truth vectors instead of truth tables. Here a truth

vector is a single column (digit) of the truth table. Unfortunately, there is no straight-

forward solution to deal with DC values in multi-valued RM expansions, so each DC

value requires an exhaustive search in order to reduce the logic overheads. Hence the

computation time is increased qµ times, where µ is the number of DC values in the truth

vector, which can be significantly large. Heuristics should be used instead.

Simply replacing all the DC values with zeroes or any other arbitrary constant

generates rather poor results. For example, in the case of the binary truth vector [10XX],

replacement with [1000] results in f (x1, x2) = x1x2, while the truth vector [1010] would

give the simple solution f (x1, x2) = x1. The DC values can be filled with repeating

power of q sized portions of the truth vector, thus reducing the dependency on certain

variables. Figure 5.7 shows an example how this can be done. The target truth vector

has length 27, so the function has 3 ternary input variables. The first 9 values in the

truth vector correspond to x2 = 0. Copying these values to the last 9 positions of the

truth vector (x2 = 2) make the whole function less dependant on x2. The next 3 values

correspond to x1 = 0, x2 = 1 and copied to the positions corresponding to x1 = 2, x2 = 1,

hence the result becomes less dependant on x1 while x2 = 1. Finally the middle section,

x0 = 0, x1 = 1, x2 = 1, is copied to the next two positions, so the function is not dependant

on x0 while x1 = x2 = 1.

Most functions are traditionally defined in binary radix p = 2. Binary-to-q-nary

function F2→q : X → D specifies that X is binary, and since Y is also binary, ρ1 : Y → X

becomes an equivalence: X ≡ Y. In other words, binary-to-q-nary function F2→q uses the

same domain as binary function F2→2. Consequently, |X| = |Y|, n2 = n1, the length of their

truth tables are equal, and DC values and all related problems are never encountered,

which can be considered as an advantage of binary-to-q-nary functions.

1In this section we do not discuss input “don’t cares” as they are the feature of a function specification
and do not appear from radix mapping.
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Figure 5.8: Reed-Muller based synthesis flow

5.3 Synthesis tool and optimisations

The ideas presented in Chapter 4, as well as the synthesis of uniform radix RM ex-

pansions, have been implemented in a tool [1] and used to synthesise a number of

benchmarks, presented in Section 5.4. Section A.5 also provides an example of using

the tool within the design flow. The user manual is given in Appendix A.

Figure 5.8 shows a block diagram showing the processing of one Reed-Muller

expansion. The flow consists of the distinct steps described below.

Computing RM expansion

For the given polarity number k = 0 . . .qn − 1 the tool computes the RM expansion in

the specified radix. The output of the tool is a coefficient vector, i.e. the RM expansion is

given in a mathematical form.
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Mapping into GF arithmetic components

The mathematical expression is decomposed into the operations of multiplication (x · y),

addition (x + y), multiplication by a constant (cx), and constant addition (x + c) over

GF(2) or GF(q), where x, y are 2-valued or q-valued variables; c is a constant value. The

output of this process is a component-level netlist.

Applying component-level optimisations

Logic optimisation, such as minimisation of terms, has to be applied at the component-

level rather than the gate-level in order to guarantee that it does not affect the representa-

tion of multi-valued signals. Optimisation techniques are the subject of ongoing research.

However, a number of basic algorithms have been added to the tool.

The optimisation applied after the decomposition process is a minimisation of the

RM expansion. The minimisation problem may also refer to factorisation. However,

factorisation is not applicable to the described mixed radix circuits, since it changes the

order of additions and multiplications overriding operation radices. We used a first-order

minimisation algorithm which extracts repeating subterms and treats them as temporary

variables. A certain research effort has been previously made in the area of uniform radix

Reed-Muller expansions [75, 79, 77, 34], transfer of these techniques to the mixed radix

approach is one of the suggestions for future work.

Additional type of optimisation reduces the radix of q-nary signals that are con-

strained to less than q values. For example, according to the properties of GF(q), xq−1 = 1

for any non-zero x thus constraining the result of this operation to the binary range.

Consequently all q− 1 power forms of the variables in uniform q-nary RM expansions

can use multiplications over GF(2) instead of GF(q). Since GF(q) multiplication of binary

arguments also produce binary results, GF(2) propagation through the circuit can be

traced. This optimisation approach does not alter the circuit structure: it attempts to

remove paths that never switch. Hence it reduces the area whilst the energy consumption

is not affected.
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Table 5.4: Mixed domain results for different radix numbers; r* is the best radix number
found

2→ 4 {2, 4}→ 4 4→ 4
circuit r operations r* operations r operations

aes 15 1427 14 1391 0 1405
misty7 15 151 15 151 0 338
misty9 31 165 31 165 0 482

kasumi7 15 144 15 144 0 359
kasumi9 31 161 31 161 0 454

des1 7 151 7 151 0 153
des2 7 123 7 123 0 143
des3 7 131 7 131 0 149
des4 7 152 1 149 0 161
des5 7 137 6 132 0 137
des6 7 136 7 136 0 141
des7 7 131 5 125 0 152
des8 7 122 7 122 0 147

Estimating circuit costs

Statistical information on arithmetic components can be collected after the optimisation

is done and then used to approximately estimate the actual physical characteristics

of the synthesised circuit. The estimated cost is used to search for the most efficient

implementation through qn polarity forms.

Typically the expansion with the least number of non-zero terms is chosen as the best

one [28, 59]. In this case, the actual number of additions and multiplications as well as

their power and area costs is not considered. The exact number of operations is known

only after the decomposition. For large circuits the execution time can be infeasible if

we decompose the expansions for all polarities. Therefore the decomposition should be

performed for a smaller number of the best expansion candidates selected using a simple

suboptimal criterion, e.g. the number of non-zero terms.

After the best solution is found, the components are mapped directly to gates using

the predefined component library.
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5.4 Synthesis results

DES, AES [9], Serpent [12], Kasumi [8] and Misty [44] S-boxes have been chosen as

benchmarks because they are commonly used cryptographic algorithms. Typically they

are specified in the form of a truth table, which is convenient for the RM approach. These

circuits have been synthesised in binary, ternary, quaternary radices and also their two-

level combinations with binary using the approach presented here.

It is important that binary circuits have been synthesised using the same flow as

higher radix examples, since we intend to compare the effect of radices rather than the

synthesis algorithms. According to the discussion in Chapter 1 and the peculiarity of

the application area, we intentionally do not compare the results with the conventional

tools, such as Synopsys and Cadence, which simply cannot be used in this case. We

do not think the mixed radix approach can replace the standard binary flow in general

purpose logic synthesis. The goal of the research, as well as its main potential, is

in reinforcing the specialised design flow where the specific signal representation is a

dominant prerequisite.

Before giving the discussion on the main results, let’s consider some intermediate

results produces while the tool was at the initial state of its development. Table 5.4

shows the synthesis results for the mixed radix domain radix model {2, 4} → 4. The

radix number r* has been obtained by searching through all possible radix numbers

including 2 → 4 and 4 → 4 cases, thus it corresponds to the best solution by definition.

At the component level, the number of operations for the majority of the benchmarks

is optimal for 2 → 4 radix model, and only few benchmarks got different radix number.

The logic minimisation algorithm in that version of the tool was constrained by the mixed

radix domain. However, keeping all input variables in the same radix, enabled further

significant improvement of the algorithms. Since the mixed radix domain did not give

considerable benefit, the support of this model has been removed from the tool.

The following benchmark runs has been made for uniform binary, ternary and

quaternary radices (2 → 2, 3 → 3, 4 → 4) and the radix extension models (2 → 3, 2 → 4).

We have considered radix reduction model as well: the tool is able to compute 4 → 2
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truth vector and map it to the library components, but the current version does not give

a satisfactory optimisation of such a circuit, so the comparison with other radix models

would be unfair. A proper minimisation of radix reduction circuits is a subject of futher

improvement of the tool. Therefore, no radix reduction model has been included in the

benchmarks results.

For the selected radix models, during the synthesis process the tool searches through

all possible polarity forms for each benchmark. Each candidate is decomposed into a

netlist and optimised, before estimating its cost. In spite of the high complexity, such

a search is feasible even for relatively large benchmarks: for AES, 28 polarity forms,

each computing 28 long coefficient vectors for every one of 8 (binary) outputs have been

synthesised less than a minute on a 1.60 GHz Intel i7-720Q laptop (the number of cores is

not relevant as the tool is currently does not use parallel computation). Runtimes for all

benchmarks as well as their sizes are given in Tables 5.5–5.7. Note that the tool uses the

computation based on the direct method, so the exponential computational complexity

significantly limits the size of the benchmarks: the largest synthesised circuits are Kasumi

9 and Misty 9 S-boxes with 9 binary inputs and 9 binary outputs. Optimisation of

computation time is out of the scope of the thesis and considered as a part of future

work.

At the technology mapping stage, GF components have been substituted with their

RTL implementations and dynamic logic implementations presented in Section 5.1.

Tables 5.5–5.7 show a number of selected characteristics for the component level, namely

the number of switching wires (sw. wires), number of operations per radix, critical path

length. The switching is given for the full period, i.e. each component switches twice:

from spacer to data and from data back to spacer. Technology mapped results are shown

in Tables 5.8–5.10 giving the switching energy of gates (sw. en.) and total area. As has

been mentioned, precise evaluation of physical characteristics requires placement and

routing to be done. In our case an approximate statistical estimation (described below)

based on the library specifications has been used instead.

For the balanced benchmarks (dynamic logic and relaxed balancing in Faraday 90nm
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and AMS 0.35 µm2), all signals are encoded using corresponding 1-of-n code. Single-rail

results are given as a reference point and are not discussed futher in this section.

Since the power balanced implementation has the property of data-independent

energy consumption, the total switching energy of gates in the circuit per period can be

approximated to a constant and found as a sum of switching energies of all components

according to their library specification given in Table 5.2. For single-rail circuits the

switching energy is also given as a total sum, thus providing the maximum switching

energy in the circuit. During the normal operation in the single-rail circuit only 10% of

gates switch , and they switch at a half speed comparing to 1-of-n codes.

Per-radix component count considers all components including wire-crossing opera-

tions, therefore their sum exceeds the number of switching wires. It is interesting that

binary operations can be found in uniform radix MVL circuits. This is the result of q-

nary operation xq−1, hence according to Section 5.3, such signals have been reduced in

radix in order to optimise the circuit area.

The given area parameter is a sum of the component areas. It does not include the area

occupied by the wires, as this is unknown at this stage. The circuit delay is estimated

at the component level as the length of the critical path, and given as a number of

components.

The presented results do not show a distinctively optimal radix solution, however

certain general trends can be observed and analysed. The efficiency of the synthesised

circuits depends on the properties of the implemented functions. Unfortunately, there is

no straight-forward solution to predict a function’s behaviour in the target radix from its

truth table. RM design flow however is not bound to any particular radix, so it can be

used to investigate this after the synthesis is done. The presented tool provides a range of

characteristics giving a full picture how the function is related to certain radices or their

combinations.

The original specifications for the S-boxes are given in a binary radix. In order to be

synthesised in higher radices, the truth tables had to be converted. For an n1-variable

q-nary function, qn1 is the cardinality of its domain (and the length of its truth vector).
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Table 5.5: Component level synthesis results

truth component level
circuit radix vectors, runtime, generic parameters

number sec sw. wires operations crit. path,
and length total by radix comp-s

des1 2→ 2 4× 26 0.6 330 171 2:171 10
2→ 3 3× 26 0.8 362 232 2:87; 3:145 10
3→ 3 3× 34 1.2 396 247 2:16; 3:231 11
2→ 4 2× 26 0.5 246 173 2:60; 4:113 9
4→ 4 2× 43 0.5 244 173 2:5; 4:168 9

des2 2→ 2 4× 26 0.5 258 135 2:135 8
2→ 3 3× 26 0.8 350 224 2:64; 3:160 10
3→ 3 3× 34 1.1 372 227 2:15; 3:212 11
2→ 4 2× 26 0.5 224 160 2:59; 4:101 9
4→ 4 2× 43 0.5 252 185 2:5; 4:180 9

des3 2→ 2 4× 26 0.5 252 133 2:133 8
2→ 3 3× 26 0.8 376 233 2:118; 3:115 10
3→ 3 3× 34 1.1 378 237 2:15; 3:222 11
2→ 4 2× 26 0.5 246 172 2:70; 4:102 10
4→ 4 2× 43 0.5 246 177 2:4; 4:173 9

des4 2→ 2 4× 26 0.6 340 173 2:173 9
2→ 3 3× 26 0.8 358 224 2:72; 3:152 10
3→ 3 3× 34 1.1 386 243 2:16; 3:227 11
2→ 4 2× 26 0.5 282 203 2:60; 4:143 10
4→ 4 2× 43 0.5 280 198 2:7; 4:191 9

des5 2→ 2 4× 26 0.5 320 167 2:167 8
2→ 3 3× 26 0.8 358 226 2:89; 3:137 10
3→ 3 3× 34 1.1 378 230 2:16; 3:214 11
2→ 4 2× 26 0.5 242 178 2:56; 4:122 10
4→ 4 2× 43 0.5 260 189 2:5; 4:184 9

des6 2→ 2 4× 26 0.5 288 149 2:149 8
2→ 3 3× 26 0.8 322 199 2:73; 3:126 10
3→ 3 3× 34 1.1 366 226 2:15; 3:211 11
2→ 4 2× 26 0.5 254 173 2:74; 4:99 10
4→ 4 2× 43 0.5 260 190 2:5; 4:185 9

des7 2→ 2 4× 26 0.5 270 139 2:139 9
2→ 3 3× 26 0.8 340 219 2:77; 3:142 10
3→ 3 3× 34 1.1 366 223 2:15; 3:208 11
2→ 4 2× 26 0.5 230 171 2:48; 4:123 9
4→ 4 2× 43 0.5 254 181 2:5; 4:176 9

des8 2→ 2 4× 26 0.5 254 132 2:132 8
2→ 3 3× 26 0.8 356 225 2:85; 3:140 10
3→ 3 3× 34 1.1 346 216 2:16; 3:200 11
2→ 4 2× 26 0.5 202 143 2:43; 4:100 10
4→ 4 2× 43 0.5 232 168 2:5; 4:163 9
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Table 5.6: Component level synthesis results (continued)

truth component level
circuit radix vectors, runtime, generic parameters

number sec sw. wires operations crit. path,
and length total by radix comp-s

serp1 2→ 2 4× 24 0.1 56 32 2:32 5
2→ 3 3× 24 0.1 70 57 2:18; 3:39 6
3→ 3 3× 33 0.2 78 53 2:7; 3:46 8
2→ 4 2× 24 0.1 52 39 2:14; 4:25 6
4→ 4 2× 42 0.1 58 44 2:2; 4:42 6

serp2 2→ 2 4× 24 0.1 66 37 2:37 6
2→ 3 3× 24 0.1 78 53 2:22; 3:31 6
3→ 3 3× 33 0.2 84 54 2:8; 3:46 7
2→ 4 2× 24 0.1 52 43 2:12; 4:31 6
4→ 4 2× 42 0.1 60 49 2:3; 4:46 6

serp3 2→ 2 4× 24 0.1 60 35 2:35 5
2→ 3 3× 24 0.1 76 49 2:19; 3:30 6
3→ 3 3× 33 0.2 68 44 2:8; 3:36 7
2→ 4 2× 24 0.1 50 42 2:12; 4:30 6
4→ 4 2× 42 0.1 50 41 2:2; 4:39 6

serp4 2→ 2 4× 24 0.1 62 35 2:35 5
2→ 3 3× 24 0.1 62 45 2:15; 3:30 6
3→ 3 3× 33 0.2 86 58 2:7; 3:51 7
2→ 4 2× 24 0.1 52 42 2:11; 4:31 6
4→ 4 2× 42 0.1 48 41 2:2; 4:39 6

serp5 2→ 2 4× 24 0.1 66 39 2:39 6
2→ 3 3× 24 0.1 64 41 2:25; 3:16 6
3→ 3 3× 33 0.2 86 52 2:6; 3:46 8
2→ 4 2× 24 0.1 52 40 2:11; 4:29 6
4→ 4 2× 42 0.1 44 33 2:2; 4:31 6

serp6 2→ 2 4× 24 0.1 66 39 2:39 5
2→ 3 3× 24 0.1 80 48 2:29; 3:19 6
3→ 3 3× 33 0.2 76 53 2:7; 3:46 8
2→ 4 2× 24 0.1 52 41 2:11; 4:30 6
4→ 4 2× 42 0.1 52 44 2:4; 4:40 5

serp7 2→ 2 4× 24 0.1 62 33 2:33 5
2→ 3 3× 24 0.1 62 47 2:20; 3:27 6
3→ 3 3× 33 0.2 84 54 2:13; 3:41 8
2→ 4 2× 24 0.1 58 41 2:13; 4:28 6
4→ 4 2× 42 0.1 48 41 2:2; 4:39 6

serp8 2→ 2 4× 24 0.1 68 39 2:39 6
2→ 3 3× 24 0.2 66 50 2:19; 3:31 5
3→ 3 3× 33 0.2 88 58 2:6; 3:52 8
2→ 4 2× 24 0.1 54 41 2:10; 4:31 6
4→ 4 2× 42 0.1 48 38 2:2; 4:36 6
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Table 5.7: Component level synthesis results (continued)

truth component level
circuit radix vectors, runtime, generic parameters

number sec sw. wires operations crit. path,
and length total by radix comp-s

aes 2→ 2 8× 28 46.7 2450 1233 2:1233 14
2→ 3 6× 28 55.3 2486 1517 2:455; 3:1062 14
3→ 3 6× 36 397.2 2570 1529 2:46; 3:1483 15
2→ 4 4× 28 31.7 1974 1340 2:300; 4:1040 14
4→ 4 4× 44 27.8 1954 1326 2:14; 4:1312 12

misty7 2→ 2 7× 27 2.7 248 127 2:127 6
2→ 3 5× 27 7.8 1100 669 2:188; 3:481 12
3→ 3 5× 35 23.2 1182 712 2:32; 3:680 13
2→ 4 4× 27 2.1 250 157 2:68; 4:89 7
4→ 4 4× 44 10.4 512 355 2:3; 4:352 8

kasumi7 2→ 2 7× 27 2.7 252 130 2:130 6
2→ 3 5× 27 7.9 1084 658 2:186; 3:472 12
3→ 3 5× 35 22.8 1048 637 2:32; 3:605 13
2→ 4 4× 27 2.0 236 154 2:64; 4:90 7
4→ 4 4× 44 11.1 512 357 2:3; 4:354 8

misty9 2→ 2 9× 29 155.9 268 141 2:141 5
2→ 3 6× 29 292.7 4776 2847 2:777; 3:2070 16
3→ 3 6× 36 509.5 4948 2948 2:54; 3:2894 16
2→ 4 5× 29 89.7 250 168 2:53; 4:115 6
4→ 4 5× 45 526.2 456 320 2:4; 4:316 7

kasumi9 2→ 2 9× 29 156.7 256 132 2:132 5
2→ 3 6× 29 287.9 4950 2946 2:768; 3:2178 15
3→ 3 6× 36 509.8 5140 3044 2:50; 3:2994 16
2→ 4 5× 29 90.3 244 165 2:55; 4:110 6
4→ 4 5× 45 545.4 432 306 2:5; 4:301 7
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Table 5.8: Technology level synthesis results

Dynamic logic Faraday 90nm AMS 0.35µm Faraday 90nm
circuit radix (relaxed balancing) (relaxed balancing) single-rail

sw. en., area, sw. en., area, sw. en., area, sw. en.*, area,
10−3pJ c. units 10−3pJ c. units pJ µm2 10−3pJ µm2

des1 2→ 2 402.9 2145 515.1 3300 61.4 44682 719.1 1470
2→ 3 460.7 2843 607.6 5792 – – – –
2→ 4 305.2 2551 563.8 6744 48.4 81622 1015.4 1984
4→ 4 329.0 3728 706.1 9857 49.8 116933 1645.3 12551

des2 2→ 2 312.4 1664 393.5 2452 47.9 33064 538.4 1125
2→ 3 448.9 2819 606.3 6242 – – – –
2→ 4 277.5 2282 499.0 5746 44.3 72094 880.0 1745
4→ 4 339.5 3848 735.1 10308 51.5 122352 1782.8 14078

des3 2→ 2 307.5 1638 387.4 2414 47.2 32552 523.2 1098
2→ 3 473.2 2808 604.6 5162 – – – –
2→ 4 304.4 2439 545.2 6236 48.5 76334 950.8 1884
4→ 4 332.0 3781 722.9 10171 50.3 120707 1743.2 14427

des4 2→ 2 415.1 2210 527.9 3314 63.3 45740 749.8 1501
2→ 3 432.9 2670 574.9 5506 – – – –
2→ 4 350.4 3037 631.7 7148 56.0 103570 1220.3 2372
4→ 4 375.0 4210 822.4 11486 57.3 135882 1870.6 13403

des5 2→ 2 390.5 2080 493.3 3090 57.9 42748 732.9 1462
2→ 3 455.5 2802 619.3 6166 – – – –
2→ 4 300.5 2567 579.9 6782 48.1 86772 1084.8 2113
4→ 4 349.6 3956 741.1 10271 53.2 128210 1849.2 15050

des6 2→ 2 344.1 1833 433.1 2694 52.8 36318 623.7 1286
2→ 3 410.3 2538 547.2 5302 – – – –
2→ 4 314.0 2463 545.4 6110 49.8 74214 948.2 1885
4→ 4 348.7 3932 742.9 10224 53.1 127922 1848.1 15043

des7 2→ 2 329.5 1755 416.4 2610 50.5 35226 598.6 1197
2→ 3 434.2 2705 580.4 5710 – – – –
2→ 4 285.7 2461 560.9 6570 46.5 90268 1127.1 2181
4→ 4 342.4 3887 727.1 10150 51.8 120666 1714.2 13109

des8 2→ 2 310.1 1651 395.8 2528 46.5 33998 547.9 1118
2→ 3 453.4 2783 602.1 5800 – – – –
2→ 4 251.0 2167 484.7 5988 39.9 72076 879.3 1707
4→ 4 311.7 3506 686.1 9642 47.5 114310 1631.0 12925

* The discussion on how to compare switching energies of balanced and single-rail
implementations is given on page 112.
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Table 5.9: Technology level synthesis results (continued)

Dynamic logic Faraday 90nm AMS 0.35µm Faraday 90nm
circuit radix (relaxed balancing) (relaxed balancing) single-rail

sw. en., area, sw. en., area, sw. en., area, sw. en., area,
10−3pJ c. units 10−3pJ c. units pJ µm2 10−3pJ µm2

serp1 2→ 2 68.4 364 88.7 582 10.3 7908 128.3 258
2→ 3 88.5 519 112.0 988 – – – –
2→ 4 64.4 520 106.5 1256 9.7 17018 209.2 408
4→ 4 78.7 843 163.5 2246 11.8 26778 374.8 2427

serp2 2→ 2 80.6 429 104.3 682 11.8 9080 150.5 299
2→ 3 98.9 602 128.8 1218 – – – –
2→ 4 64.7 576 142.3 1830 10.5 21618 277.6 538
4→ 4 81.2 870 163.6 2111 12.3 25558 406.1 2484

serp3 2→ 2 73.2 390 92.5 580 10.8 7942 148.8 295
2→ 3 96.9 599 127.1 1198 – – – –
2→ 4 62.1 535 127.5 1590 10.0 18876 255 491
4→ 4 68.6 735 130.4 1764 10.3 23554 348.9 2380

serp4 2→ 2 75.7 403 97.0 624 11.5 8750 143.5 289
2→ 3 79.2 493 104.4 914 – – – –
2→ 4 64.8 590 133.8 1598 10.4 20928 256.7 499
4→ 4 65.6 696 137.9 1873 9.9 22165 331.8 1920

serp5 2→ 2 80.5 429 101.4 632 12.2 9114 146.2 300
2→ 3 80.3 471 101.9 816 – – – –
2→ 4 64.7 576 122.7 1542 10.2 18698 232.4 452
4→ 4 59.7 618 122.8 1664 9.0 19828 314.4 2310

serp6 2→ 2 80.5 429 99.2 628 12.3 8966 154.3 309
2→ 3 100.5 579 123.3 976 – – – –
2→ 4 64.6 562 125.7 1430 10.4 19972 248 485
4→ 4 72.2 744 131.1 1786 9.7 21438 338.8 2361

serp7 2→ 2 75.8 403 98.7 654 11.4 8898 145.1 289
2→ 3 78.5 478 96.5 796 – – – –
2→ 4 69.5 588 124.6 1494 11.2 18520 227 442
4→ 4 65.2 684 145.3 1980 9.9 23188 325.6 1480

serp8 2→ 2 83.0 442 105.9 676 12.6 9296 160.7 326
2→ 3 81.2 496 106.1 982 – – – –
2→ 4 67.2 603 125.3 1506 10.8 21110 255 495
4→ 4 65.6 696 128.1 1662 9.7 20997 300.5 1863
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Table 5.10: Technology level synthesis results (continued)

Dynamic logic Faraday 90nm AMS 0.35µm Faraday 90nm
circuit radix (relaxed balancing) (relaxed balancing) single-rail

sw. en., area, sw. en., area, sw. en., area, sw. en., area,
10−3pJ c. units 10−3pJ c. units pJ µm2 10−3pJ µm2

aes 2→ 2 2996.3 15925 3962.3 26940 448.4 367842 6000.9 11620
2→ 3 3190.0 20139 4234.5 42670 – – – –
2→ 4 2415.6 21893 5002.3 64692 384.2 774626 8866.2 16936
4→ 4 2541.2 28672 6253.3 89620 398.8 1038716 12946.1 80834

misty7 2→ 2 302.8 1612 386.3 2466 46.2 33372 535.1 1096
2→ 3 1414.8 8969 1915.2 18586 – – – –
2→ 4 309.2 2423 520.0 5778 48.5 71200 870.4 1719
4→ 4 678.0 7686 1628.8 23427 105.4 276103 3705 29171

kasumi7 2→ 2 307.6 1638 391.9 2494 46.9 33736 541.6 1113
2→ 3 1393.9 8830 1904.1 19870 – – – –
2→ 4 291.9 2304 488.4 5442 45.8 67062 843.5 1669
4→ 4 680.2 7746 1610.9 23159 105.2 273467 3805.8 31070

misty9 2→ 2 327.5 1742 425.5 2806 49.5 38152 620.5 1227
2→ 3 6147.3 39087 8413.4 88316 – – – –
2→ 4 310.6 2647 577.3 7032 48.7 85708 1035.7 1997
4→ 4 596.1 6564 1527.6 22108 94.4 259196 3298.5 23223

kasumi9 2→ 2 312.9 1664 408.2 2712 47.2 36912 597.9 1184
2→ 3 6379.7 40739 8745.1 92594 – – – –
2→ 4 302.9 2524 563.2 6756 47.6 82154 1008.7 1947
4→ 4 565.8 6240 1442.6 20872 89.4 244852 3172.4 22987
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While converting to radix p, we need to ensure that the whole domain is covered by

a new specification, i.e. pn2 > qn1 , where n2 is the number of arguments of the new

function. In the case of pn2 > qn1 , the final truth vector is longer than the original one

and may contain “don’t care” values. The problem of “don’t care” values is not covered

by this thesis, but in general, longer truth vectors normally result in larger circuits.

For the component level benchmarks shown in Tables 5.5–5.7, one can observe good

switching activity of wires for quaternary and binary-to-quaternary circuits. In terms of

specification, the benchmarks are useful for quaternary, as they have 8, 6 and 4 binary

inputs and the same number of outputs; 28 = 44, 26 = 43 and 24 = 42, so the radix

mapping does not induce “don’t cares” and any associated overheads. The reason for

the component-level overheads in binary-to-ternary and ternary circuits is inefficient

domain (only for ternary) and co-domain mapping: 28, 26 and 24 do not have matching

3m substitutes.

The fact that binary-to-quaternary results are better than purely quaternary ones

indicates that mathematically the functions are not perfectly bound to the quaternary

radix. The mixed radix approach replaces parts of the circuit with lower radix logic.

The search through all possible polarity forms provides the optimal balance between the

radices. From this point of view the conversion approach, discussed in Chapter 3, may

have greater flexibility as it considers the radix of each particular gate. But since it works

at the gate level, it requires explicit conversion of signals, implying a huge amount of

additional logic (up to 35% of the circuit). Hence, in practice the radix conversion is less

efficient than mixed radix synthesis.

At the physical level, the difference in energy costs of the GF components changes the

picture even more; this is why simple counting of operations does not always serve as a

sufficient criterion for the search.

Let’s consider dynamic logic benchmarks first. The switching energy of gates in

binary-to-quaternary circuits is 7–42% less than in any other radix combination, even

if the component-level statistics are better for uniform quaternary. However the area is

bigger than in binary. Since one-hot encoded higher radix signals of radix q have qwires
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Table 5.11: Comparison between conversion and synthesis results

switching wires
circuit Reed-Muller synthesis converted from single-rail

binary mixed radix binary mixed radix
(dual-rail) (dual-rail, 1-of-4) (dual-rail) (dual-rail, 1-of-4)

2-bit adder 44 46 20 14
4-bit multiplier 112 110 56 58
Kasumi S-box 7 252 236 250 264
Kasumi S-box 9 256 244 256 264
AES S-box 2450 1974 1594 1640

per signal, the amount of logic required to maintain a computation increases with the

radix. Hence it is a property of the encoding that, despite reduced switching energy,

higher radix logic has a larger area. So here we have a power-area trade-off: comparing

binary-to-quaternary circuits with purely binary, one can observe a 15–25% switching

energy reduction for the cost of 15–30% area overhead. The benefit of mixed-radix RM

expansions here is in providing such a trade-off. Uniform radix circuits show up to 18%

energy saving (versus binary) for 34–57% more area, and in some benchmarks there is no

energy saving at all.

For Faraday 90nm implemented circuits higher radices have a totally inefficient out-

come as was expected from Table 5.2, and even binary circuits have worse characteristics

than their dynamic logic counterparts. Consequently one could conclude that efficient

MVL synthesis requires custom design components, however it is important to remember

that the relation of physical characteristics to radices may change from library to library.

The benchmarks built using AMS 0.35µm library have different radix efficiency. The

results for AES show 14% less switching energy in the binary-to-quaternary circuit than

in the purely binary one. Hence we cannot talk about global efficiency or inefficiency; the

approach provides a range of solutions, so the designer may choose the most appropriate.

In our benchmarks for the considered 90nm technology the results show that custom

design circuits are a lot more efficient than RTL-implemented ones.

Table 5.11 compares the approaches presented in Chapter 3 and Chapter 4. Although

the conversion driven mixed radix design is considered to be inefficient due to the large

amount of signal conversion logic added, it is still more efficient than Reed-Muller
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synthesis. There are two possible reasons: 1) fixed polarity Reed-Muller expansion

is not an appropriate form for implementing these functions; 2) RMMixed tool’s logic

minimisation provides insufficient optimisation and needs to be improved.

5.5 Summary

Muti-valued and mixed radix Reed-Muller expansions, described in Chapters 2 and 4,

have been applied to the security aware logic synthesis. The implementation of power-

balanced Galois field arithmetic components has been provided for RTL and custom

design dynamic logic. The theoretical background has been implemented in a tool. A

number of related optimisations have been also introduced, however the current version

of the tool is still work-in-progress. Better logic minimisation algorithms and reduced

computation complexity are still required.

Multiple security related benchmarks have been synthesised in different radices

and technologies. The set of tested radix models include uniform radix functions and

some two-level radix models. Mixed radix domain {2, 4} → 4 model has been found

insufficiently beneficial in comparison with the optimisation possibilities of other radix

models and has been rejected. The binary-to-quaternary model has been found more

efficient in many cases, however there is no objective general trends as each function has

different relation to radices. The main contribution of the mixed radix approach is that it

provides a range of solutions, so the designer may choose the most appropriate.

In our benchmarks, for the considered 90nm technology, the results show that custom

design circuits are a lot more efficient for security application than RTL-implemented

ones.

Section 3.2.5 has been previously published in [56] for RTL-based component imple-

mentations and in [16] for dynamic logic implementations; it is also accepted for public-

ation in [53]. Section 5.3 has been published in [58]. [53] includes the benchmark results

and related discussion from Section 5.4. Workflow example, presented in Section A.5, has

been published in [57].
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Conclusion

M-of-n codes in asynchronous circuits have been considered as an efficient countermeas-

ure to side-channel attacks, particularly to power analysis. In scope of these techniques a

number of existing design environments and synthesis tools have been analysed for their

capabilities.

Two design approaches have been determined and elaborated into design flows. The

conversion approach suggests reusing the existing insecure designs in order to produce

secure higher radix circuits. The synthesis approach uses multi-valued logic synthesis

theory. The idea of using mixed radices has been applied to both approaches.

For the conversion driven design, the results have shown a number disadvantages

with respect to different optimisation criteria. The tests revealed power and area

overhead, mostly caused by additional logic required to connect lower radix parts with

higher radix parts. The number of signal converters in the circuit can be up to 35% of

the total number of encoded components. However, the advantageous property of the

developed CDD algorithms is a considerably smaller computational cost in comparison

with the developing a completely new synthesis; and the approach more easily fits within

the standard EDA flow. From this point of view, Verimap tool [67] is recommended for

conversion driven design, as it applies secure dual-rail encoding without converting the

circuit radix.

The synthesis approach is based on the developed theory of mixed radix Reed-Muller
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expansions and cross-radix computation at the level of mathematical representation.

Compared to the existing radix-conversion approach, the presented method avoids using

signal conversion, producing more efficient results. The overall benefit of this theory is

that it provides a new dimension for logic/interconnect trade-off, and allows the designer

to observe the effect of changing the radix in the whole range of radix combinations.

A flow based on mixed and uniform radix RM expansions has been proposed and

implemented within a tool. The tool has been used in a real-life application example –

secure implementations of cryptographic algorithms – in order to compare the efficiency

of security-applied custom design logic and RTL-based MVL implementations. Circuits

based on dynamic logic 1-of-n encoded components use less switching energy in binary-

to-quaternary compared to any other radix, and also reduce the switching activity of

the wires. The price is area overhead. However, if using uniform radices only, the

same energy gain can be achieved for almost double overhead. RTL implementations

are significantly worse than the dynamic logic benchmarks, but simplier to implement

and finalise using the standard tools.

The use of mixed radix also contributes advantageously to security due to its intrinsic

diffusion of binary values between signals representing a mixed radix value. A data

signal passing through the mixed radix circuit is “unpredictably” reformed due to the

mixing with other signals and splitting again for multiple times. Therefore a tracing of

the initial data becomes more complex, thereby increasing the resistance to DPA attacks.

In general, the thesis presents a novel view on using radices: different radices can

be combined together within a single circuit or even a single function in order expand

the search space for optimisation. The flow using Reed-Muller expansions adds new

features to the design automation enabling MVL synthesis that is flexible to application

requirements. Power balancing has been implemented providing security properties for

the price of increased power consumption and area. The proposed flow has been applied

in a typical example of a cryptographic algorithm (DES), and has been recognised to be

easy to follow and acceptable for the industrial use. Previously this method has never

been used in a practically applied design flow.
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6.1 Future work

The theory of mixed radix Reed-Muller expansions is complete, but some improvement

is still required for the synthesis tool.

Runtime Currently the tool computes Reed-Muller expansions using Green’s direct

method and derived mixed radix solutions. For some radix q and n input variables,

this implies the multiplication of qn-by-qn matrix and qn-long vector over GF(q), which

is a very high computational complexity. Presumably, the improvement of the Reed-

Muller computation algorithm can be derived from the previously known optimisation

techniques for uniform radix Reed-Muller expansions [24, 59, 36, 25]. The suggestion is

to find the possibility of extending these algorithms to two-level radix models.

In addition, it is essential to optimise the tool for multicore processors. This is

relatively straightforward, since each polarity can be computed concurrently.

Input formats Input in a truth vector format is natuaral for Green’s direct method of

computation, however it is absolutely not user friendly. The planned new feature of

the tool is the support of BLIF-MV format [42]. It would also be very helpful to have

the possibility of reading binary BLIF and Verilog files and mapping the specification

into higher radices. This may imply the radix conversion similar to the one described in

Chapter 3, but applied at the per-module scale rather than at the gate level. The latter

issue requires a dedicated research.

Logic minimisation As can be observed from Table 5.4 in comparison with Tables 5.5–

5.7, the improved logic minimisation algorithms significantly increased the efficiency of

the synthesis. However, comparing the results with the dual-rail circuits obtained using

the conversion approach, most of the converted binary circuits are still better, because

the original circuits have been synthesised by the mature EDA tools, such as design

compiler. These tools certainly outperform our tool, therefore it needs more work on

the optimisation part in order become a viable solution for EDA.
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Application The security application was the main goal of the presented research.

However, the proposed methodology is not limited to this particular application area.

Exploration of other encodings and possible application areas might uncover more

advantages of the tool and the design flow.
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Appendix A

RMMixed User Manual

A.1 Tool features overview

The tool is implemented in two versions: command line tool (rmmixed-cmd.jar) and

Tcl console (rmmixed.jar). Both share the same internal structure and algorithms, the

different is in the interface.

Command line tool can be used to compute a Reed-Muller expansions of one of

the predefined radix models, which include uniform radix binary, ternary, quaternary

expansions and the following two-level radix modes: 2→ 3, 2→ 4, 4→ 2. The expansion

is minimised and mapped into provided library of Galois field arithmetic components.

The circuit optimisation can be made by estimating total energy, area or switching activity

of the circuit. At the moment the only accepted input format is the truth table. Supported

output format is structural Verilog. For the command line options refer to Section A.2.

Tcl version of the tool is designed mainly for reseach purposes, while the command

line tool has been made for intensive benchmark runs. Tcl version has an extended list of

features accessible through the Tcl commands:

· the tool supports arithmetic in any Galois field;

· Reed-Muller expansions can be computed in any uniform radix (assuming that

corresponding GF exists) or any radix model described in Chapter 4;

· the tool includes an expression calculator for GF arithmetic, see Section A.3.
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The complete list of Tcl command is given in Section A.4.

A.2 Command line tool: rmmixed-cmd

Synopsis

java -jar rmmixed-cmd.jar ?-lib file_name? ?-in file_name? ?-out

file_name? ?other_options?

Options

-in file_name

Read truth vectors from the specified file. By default, reads from stdin.

-out file_name

Write output to the specified file. By default, writes to stdout.

-lib file_name

Read GF component library.

-radix-binary or -rbb

Synthesise uniform radix binary expansions.

-radix-ternary or -rtt

Synthesise uniform radix ternary expansions.

-radix-quaternary or -rqq

Synthesise uniform radix quaternary expansions.

-radix-binary-to-ternary or -rbt

Synthesise using 2→ 3 radix model.

-radix-binary-quaternary or -rbq

Synthesise using 2→ 4 radix model.

-radix-quaternary-to-binary or -rqb

Synthesise using 4→ 2 radix model.

-polarity k or -p k

Do not search for the best polarity, synthesise using the specified k.
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-zero-polarity or -p0

Do not search for the best polarity, synthesise using k = 0.

-optimise-switches or -ow

Optimise the circuit using the number of switching wires as a search criterion.

-optimise-energy or -oe

Optimise the circuit using the estimated switching energy as a search criterion.

-optimise-area or -oa

Optimise the circuit using the total area of gates as a search criterion.

-optimise-timing or -ot

Optimise the circuit using the length of the longest path (maximum delay) as a search

criterion.

-name module_name

Assign a module name to the output circuit.

-interface-binary or -ib

Frame the mixed radix circuit with the signal conversion logic, if necessary, in order

to make all ports binary.

-interface-ternary or -it

Frame the mixed radix circuit with the signal conversion logic, if necessary, in order

to make all ports ternary.

-interface-quaternary or -iq

Frame the mixed radix circuit with the signal conversion logic, if necessary, in order

to make all ports quaternary.

Examples

java -jar rmmixed-cmd.jar -lib "vlib/gflib_dynamic.v" -in "serp1_q.in" -out

"serp1.v" -rbq -name SerpSBox1 -oe

Reads GF library of dynamic logic components and a quaternary specification of the

Serpent S-box 1, computes binary-to-quaternary Reed-Muller expansion optimised by

switching energy, and writes the circuit into a verilog file.
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java -jar rmmixed-cmd.jar -lib "vlib/gflib_relaxed_generic.v" -in

"aes_b.in" -out "aes.v" -rbb -name AES -ow -p0

Reads GF library of relaxed implementations using generic cells and a binary specific-

ation of the AES S-box, computes zero polarity binary Reed-Muller expansion optimised

by the number of switching wires, and writes the circuit into a verilog file.

For a complete design flow example see Section A.5.

A.3 Galois field expression calculator

GF expression can be calculated using gfexpr Tcl command. It accepts the following

types of data:

· GF value. GF constants can be expressed by integer numbers and uppercase latin

letters.

· Matrices matrices of GF elements. Matrices can be created using matrix Tcl

command.

· Polynomials of transcendental variable x. Polynomials can be created using poly

Tcl command.

· Integer numbers (to express the powers).

The expression string can contain nested Tcl commands or Tcl variables.

Table A.1 displays the list of supported operators.

Examples

gfexpr -gf [gf 4] A*(B-1)

Calculates A (B− 1) over GF(4).

set_default_gf [gf 2]

set p1 [poly 101]

set p2 [poly 11]

gfexpr $p1*$p2
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Table A.1: gfexpr operators

operator type description

unary operators

- -value negate GF value, (−x)
-matrix negate each element of the matrix

~ ~value get inverse GF value, x−1

~matrix invert matrix
binary operators

+ value+value add in GF, x+ y
element+poly treat GF element as a polynomial
poly+element and add the polynomials
poly+poly add polynomials

matrix+matrix add matrices
- value-value subtractin GF, x+ (−y)

element-poly treat GF element as a polynomial
poly-element and subtract the polynomials
poly-poly subtract polynomials

matrix-matrix subtract matrices
* value*value multiply in GF, x · y

value*poly treat GF element as a polynomial
poly*value and multiply the polynomials
poly*poly multiply polynomials

value*matrix multiply matrix by value
matrix*value

matrix*matrix multiply matrices
/ value/value divide GF values, x · y−1

value/poly treat GF element as a polynomial
poly/value and divide the polynomials
poly/poly divide polynomials

% value%value always 0
value%poly treat GF element as a polynomial
poly%value and find the remainder of division
poly%poly find remainder of the polynomial division

** matrix**matrix Kronecker product of two matrices
^ value^integer exponentiate GF value, xn

poly^integer exponentiate polynomial
( ) change operator precdence
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Multiplies polynimials of transcendental x:
(
x2 + 1

)
(x+ 1) over GF(2).

rm_radix_model -in 4 -out 4

set_default_gf [gf 4]

set d [vector BBAABB1ABBAABB1A]

set s0 [rm_get_smatrix 0]

set w0 [gfexpr ~$s0]

gfexpr ($w0**$w0)*d

Manually compute zero-polarity quaternary Reed-Muller expansion.

A.4 List of Tcl commands

get_primitive_poly Get primitive poly for the specified prime power Galois field.

gf Create Galois field for the specified characteristic.

gfexpr Compute the expression in the Galois field.

gfpp Create prime power Galois field for the specified primitive polynomial.

help Get help on Tcl commands.

identity_matrix Create an identity matrix.

is_prime_poly Tells if the specified polynomial is irreducible.

is_primitive_poly Tells if the specified polynomial is a primitive polynomial.

list_prime_polys Create the list of irreducible polynomials of the specified degree.

matrix Create a matrix parsing the list of strings.

poly Create polynomial using the coefficients provided.

print_gf_elements Print elements of a Galois field.

print_gf_operations Print operation truth tables for a Galois field.

print_poly Convert polynomial object into a readable string.
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print_prime_polys Print the list of irreducible polynomials into a string.

rm Solve RM expansions.

rm_get_smatrix Get constant power matrix for the specified polarity in the preset radix

model.

rm_get_wmatrix Get Green’s matrix for the specified polarity in the preset radix model.

rm_radix_model Create new Reed-Muller synthesis configuration.

rm_reset_spec Reset all specification tables for Reed-Muller synthesis.

rm_synthesise Synthesise Reed-Muller expansions.

set_default_gf Set default Galois field for other Tcl commands.

set_format_elements Set output format for the elements of prime power fields.

spec_add_vector Add a truth vector to the specification.

spec_library Set GF component library and optimisation criteria.

spec_print_ports Print list of inputs and outputs in the current circuit specification.

spec_read Read truth vectors from file.

vector Create a single row matrix parsing the string of values.

get_primitive_poly

Name

get_primitive_poly - Get primitive poly for the specified prime power Galois field.

Synopsis

get_primitive_poly ?-gf gf?
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Description

get_primitive_poly returns the characteristic irreducible polynomial that has been used

to create the specified prime power Galois field. If $p is some prime polynomial and $gf

is a field created using set gf [gfpp $p] command, getprimitivepoly $gf will return

$p.

Options

-gf gf

Galois field (Java reflection object), optional. Prime power Galois field. If the

parameter is omitted, the field previously set by set_default_gf is used.

Returns

Polynomial (Java reflection object).

Examples

get_primitive_poly -gf 8

Displays the default polynomial, used to create GF(8), which is x3 + x+ 1.

gf

Name

gf - Create Galois field for the specified characteristic.

Synopsis

gf order

Description

gf creates Galois field for the specified order. The command caches the result, so the

consequent calls do not recompute operation tables.
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gf always returns a Galois field for a valid order. For nonprime fields, if there is no

cached resut previously created by gfpp command, the first primitive polynomial is taken

to create a new field. For example, for some q = pt, gf $q can replace the following code:

foreach prime [list_prime_polys -gf [gf $p] $t] {

if { ![is_primitive_poly $prime] } then { continue }

return [gfpp $prime]

}

You can always use get_primitive_poly to figure out which polynomial has been

used to create the field.

Note: GF(q) is isomorphic to any other GF(q) regardless on the primitive polynomial.

Options

order

Integer. Order of the Galois field, must be a power of prime.

Returns

Galois field (Java reflection object).

Examples

gf 3

Creates GF(3).

gfpp [poly -gf [gf 3] {122} ]

print_poly [get_primitive_poly -gf [gf 9]]

First line creates GF(32 = 9) with the primitive polynomial x2 + 2x+ 2 over GF(3). The

second line retrieves the previously created GF(9) and prints it’s primitive polynomial.

Without the first line gf 9 would use default polynomial x2 + x+ 2 over GF(3) to create

a new field.

print_gf_operations -gf [gf 4]
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Creates GF(4) and prints all operation tables. Since there is only one irreducible

polynomial of degree 2 over GF(2), gf 4 successfully replaces gfpp [poly -gf [gf 2]

111].

gfexpr

Name

gfexpr - Compute the expression in the Galois field.

Synopsis

gfexpr ?-gf gf? expression

Description

gfexpr is a powerful tool to perform computations in Galois fields. See Section A.3.

Options

-gf gf

Galois field (Java reflection object), optional. Galois field, over which the expression

is computed. If the parameter is omitted, the field previously set by set_default_gf is

used.

expression

String. Arithmetic expression.

Returns

Result of the expression can be a GF value (String), a polynomial or a matrix (Java

reflection objects).
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gfpp

Name

gfpp - Create prime power Galois field for the specified primitive polynomial.

Synopsis

gfpp polynomial

Description

The characteristic of the Galois field is determined by the characteristic of prime field

used to create the polynomial and the degree of the polynomial, i.e. anxn+ . . .+a1x+a0

over GF(p) will create GF(pn). Both prime Galois field and polynomial degree can be

specified when creating the polynomial using poly command.

You can use is_prime_poly and is_primitive_poly to check if the polynomial can be

used to create a field. list_prime_polys lists all prime polynomials of the given degree

for the specified prime Galois field.

Options

polynomial

Polynomial (Java reflection object). Irreducible polynomial over GF prime. Polyno-

mial can be created using poly command.

Returns

Galois field (Java reflection object).

Examples

gfpp [poly -gf [gf 2] {1101} ]

Creates GF(23 = 8) with primitive polynomial x3 + x2 + 1.
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help

Name

help - Get help on Tcl commands.

Synopsis

help ?command?

Options

command

String. Tcl command to get help for.

Returns

String.

identity_matrix

Name

identity_matrix - Create an identity matrix.

Synopsis

identity_matrix ?-gf gf? size

Options

-gf gf

Galois field (Java reflection object), optional. Galois field, in which to create the

matrix. If the parameter is omitted, the field previously set by set_default_gf is used.

size

Integer. Size of the matrix.

137



CHAPTER A. RMMIXED USER MANUAL

Returns

Matrix (Java reflection object).

Examples

identity_matrix -gf [gf 2] 4

Creates 4-by-4 identity matrix over GF(2).

is_prime_poly

Name

is_prime_poly - Tells if the specified polynomial is irreducible.

Synopsis

is_prime_poly poly

Options

poly

Polynomial (Java reflection object). The polynomial to check.

Returns

Integer. 1 if the polynomial is irreducible, 0 otherwise.

is_primitive_poly

Name

is_primitive_poly - Tells if the specified polynomial is a primitive polynomial.

Synopsis

is_primitive_poly poly
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Options

poly

Polynomial (Java reflection object). The polynomial to check.

Returns

Integer. 1 if the polynomial is primitive, 0 otherwise.

list_prime_polys

Name

list_prime_polys - Create the list of irreducible polynomials of the specified degree.

Synopsis

list_prime_polys ?-gf gf? degree

matrix

Name

matrix - Create a matrix parsing the list of strings.

Synopsis

matrix ?-gf gf? rows

Options

-gf gf

Galois field (Java reflection object), optional. Galois field, in which to create the

matrix. If the parameter is omitted, the field previously set by set_default_gf is used.

rows

List. List of strings, each one contains the elements of a matrix row.
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Returns

Matrix (Java reflection object).

Examples

identity_matrix -gf [gf 2] 4

Creates 4-by-4 identity matrix over GF(2).

poly

Name

poly - Create polynomial using the coefficients provided.

Synopsis

poly ?-gf gf? coefficients

Options

-gf gf

Galois field (Java reflection object), optional. Galois field, over which the polynomial

is computed. If the parameter is omitted, the field previously set by set_default_gf is

used.

coefficients

String. Polynomial coefficients in a form of a vector.

Returns

Polynomial (Java reflection object).

Examples

poly -gf [gf 2] 111

Creates polynomial x2 + x+ 1 over GF(2).
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print_gf_elements

Name

print_gf_elements - Print elements of a Galois field.

Synopsis

print_gf_elements ?-gf gf?

Options

-gf gf

Galois field (Java reflection object), optional. If the parameter is omitted, the field

previously set by set_default_gf is used.

Returns

String.

print_gf_operations

Name

print_gf_operations - Print operation truth tables for a Galois field.

Synopsis

print_gf_operations ?-gf gf?

Description

print_gf_operations prints truth tables for GF operations, including addition, multiplic-

ation, inverse, and exponentiation.

141



CHAPTER A. RMMIXED USER MANUAL

Options

-gf gf

Galois field (Java reflection object), optional. Galois field. If the parameter is omitted,

the field previously set by set_default_gf is used.

Returns

String.

print_poly

Name

print_poly - Convert polynomial object into a readable string.

Synopsis

print_poly poly

Options

poly

Polynomial (Java reflection object).

Returns

String.

print_prime_polys

Name

print_prime_polys - Print the list of irreducible polynomials into a string.
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Synopsis

print_prime_polys ?-gf gf? degree

Description

print_prime_polys is a convenience command for printing the list of irreducible polyno-

mials. Thus, printprimepolys -gf [gf $q] $n replaces the following code:

set str ""

foreach prime [list_prime_polys -gf [gf $q] $n] {

set str "$str[print_poly $prime]\n"

}

return $str

Options

-gf gf

Galois field (Java reflection object), optional. Galois field, over which the polynomials

are computed. If the parameter is omitted, the field previously set by set_default_gf is

used.

degree

Integer. Degree of the polynomials to list.

Returns

String. List of polynomials as a string.

Examples

print_prime_polys -gf [gf 2] 3

Prints all irreducible polynomials of degree 3 over GF(2).
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rm_get_smatrix

Name

rm_get_smatrix - Get constant power matrix for the specified polarity in the preset radix

model.

Synopsis

rm_get_smatrix polarity

Description

rm_get_smatrix returns Sk matrix for the specified k and the radix model previously set

by rm_radix_model command.

Options

polarity

Integer.

Returns

Matrix (Java reflection object).

rm_get_wmatrix

Name

rm_get_wmatrix - Get Green’s matrix for the specified polarity in the preset radix model.

Synopsis

rm_get_wmatrix polarity
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Description

rm_get_wmatrix returns Wk matrix for the specified k and the radix model previously

set by rm_radix_model command.

Options

polarity

Integer.

Returns

Matrix (Java reflection object).

rm_radix_model

Name

rm_radix_model - Create new Reed-Muller synthesis configuration.

Synopsis

rm_radix_model -in gfinput -out gfoutput

Description

rm_radix_model defines a two-level radix model for further Reed-Muller synthesis calls

using rm_synthesise command. If input radix is equal to output radix, the uniform radix

synthesis is applied.

Options

-in gfinput

Integer. Input radix

-out gfoutput

Integer. Output radix
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rm_reset_spec

Name

rm_reset_spec - Reset all specification tables for Reed-Muller synthesis.

Synopsis

rm_reset_spec

rm_synthesise

Name

rm_synthesise - Synthesise Reed-Muller expansions.

Synopsis

rm_synthesise ?-polatity polarity? ?-out file_name?

Description

rm_synthesise computes Reed-Muller expansion for the radix model previously set by

rm_radix_model command, optimises it and maps it using the library loaded using

spec_library command. The truth vectors can be specified using spec_add_vector

command.

Options

-polarity polarity

Integer, optional. Polarity number. If not specified, the tool searches for the best one.

-out file_name

String, optional. Output file name. By default prints to console output.
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set_default_gf

Name

set_default_gf - Set default Galois field for other Tcl commands.

Synopsis

set_default_gf ?gf?

Options

gf

Galois field (Java reflection object), optional. Default Galois field to be set. If not

specified, the default value is reset.

set_format_elements

Name

set_format_elements - Set output format for the elements of prime power fields.

Synopsis

set_format_elements ?format?

Description

Supported element formats are:

num - integer numbers only in the order of the field elements.

alnum - (default) integers for prime field elements and uppercase letters for others.

poly - print as polynomials of transcendental x.

vec - print as a coefficient vectors of polynomials of transcendental x.

vecls - print as a coefficient vectors of polynomials of transcendental x, the least

significant digit first.
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Options

format

String, optional. One of the num, alnum, poly, vec, and vecls flags.

spec_add_vector

Name

spec_add_vector - Add a truth vector to the specification.

Synopsis

spec_add_vector vector

Options

vector

String, optional. Truth vector.

spec_library

Name

spec_library - Set GF component library and optimisation criteria.

Synopsis

spec_library ?-opt flags? path

Description

Optimisation parameter may contain one of the following flags:

w - optimise the number of switching wires.

e - optimise switching energy.
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a - optimise area.

t - optimise timing.

Options

-opt flags

Integer, optional. Optimisation flags.

path

String. Library file path.

spec_print_ports

Name

spec_print_ports - Print list of inputs and outputs in the current circuit specification.

Synopsis

spec_print_ports

spec_read

Name

spec_read - Read truth vectors from file.

Synopsis

spec_read path

vector

Name

vector - Create a single row matrix parsing the string of values.
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D

E

Q
D Q

Figure A.1: Simple spacer injecting register

Synopsis

vector ?-gf gf? value

Description

Vector is a single row matrix.

Options

-gf gf

Galois field (Java reflection object), optional. Galois field, in which to create the vector.

If the parameter is omitted, the field previously set by set_default_gf is used.

value

String. String of elements.

Returns

Matrix (Java reflection object).

A.5 Workflow example

We have chosen DES as a classic example of cryptographic algorithm since it is simple

enough to fit into a short discussion. It was processed through the design flow illustrated

in Figure 3.2. Basic commands are listed in Algorithm 3.

The first step of the design process is the synthesis of S-boxes using Reed-Muller

expansions. Specified command line options mean that the synthesised modules have

a 1-of-4 encoded quaternary external interface (-iq), a mixed radix approach is applied

150



CHAPTER A. RMMIXED USER MANUAL

Algorithm 3 DES design flow commands
java -jar rmmixed-cmd.jar -iq -rbq -ow -lib gflib_relaxed_generic.v -in des/des1_q -out

des1.v

...

java -jar rmmixed-cmd.jar -iq -rbq -ow -lib gflib_relaxed_generic.v -in des/des8_q -out

des8.v

analyze -format verilog gflib_relaxed_generic.v des1.v ... des8.v descore.v

elaborate descore

compile -exact_map

write -format verilog -hierarchy -output descore_syn.v

htcomp -input des_control.ht

htmap -input des_control.hcl des

htlink -input descore_syn.v -top des_htmap.v des

htpost -input des_htlink.v des

sed 's/HDDFFPQ1/SpacerDFF/' des_htpost.v > des_htpost_sp.v

in a form of quaternary function of binary arguments (-rbq), i.e. 2 → 4 radix model is

used, and the applied optimisation minimises wire switching (-ow). The complete list of

command line options is given in Appendix A. A library of power-balanced components

is provided in the file gflib_relaxed_generic.v.

After the modules have been presynthesised, Synopsys design compiler is used to

elaborate all Verilog files into a single gate-level netlist. An important option at this stage

is that we use exact technology mapping (-exact_map), otherwise compiler would reduce

redundant logic paths used for power-balancing.

The next step is to process the design in a sequence of TiDE tools. Finally, in order to

enforce spacers in the circuit, the UNIX stream editor (sed) replaces all occurrences of D

flip-flops (HDDFFPQ1) with instances of the register SpacerDFF illustrated in Figure A.1.

When the Enable signal from the handshake control unit is high, a spacer is generated;

when Enable is low data is passed. The cycles are also asymmetric, so the spacer is

generated for only a small percentage of the cycle (20 – 30%). The addition of 20ps delay

gate at the front of the register is trivial and does not affect the timing constraints. A big

disadvantage of this approach is that flip-flops never get reset, i.e. they never capture

the spacer value. Consequently, although they give balancing to the logic, they are not

power-balanced themselves. However, compromised balancing can be accepted in order

to reduce power consumption as long as the number of memory cells is significantly

smaller than the number of logic gates. The number of replaced memory cells in our
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example is 5.3% of the total number of gates.

The final file des_htpost_sp.v contains an asynchronous power balanced m-of-n

encoded circuit. Layout has not been applied in this example; this is a subject for future

research.
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