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Abstract

We define ', a subset of C?, related to the structured singular value p of 2x2
matrices. p is used to analyse performance and robustness of linear feedback
systems in control engineering. We find a characterisation for the elements
of 'y and establish a necessary and sufficient condition for the existence of
an analytic function from the unit disc into I'g satisfying an arbitrary finite

number of interpolation conditions.

We prove a Schwarz Lemma for 'y when one of the points in I'g is (0,0, 0),
then we show that in this case, the Carathéodory and Kobayashi distances

between the two points in I'g coincide.

We also give a characterisation of the interior, the topological boundary and
the distinguished boundary of I'g, then we define I'g-inner functions and
show that if there exists an analytic function from the unit disc into I'g
that satisfies the interpolating conditions, then there is a rational I'g-inner

function that interpolates.
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Chapter 1

Interpolation Problems

We start by stating the Nevanlinna-Pick problem and explaining its impor-
tance, then present some of the results of Agler and Young for the sym-
metrised bidisc I'. We prove later the analogue of these results of Agler and
Young for our new set ['p which we define in Section 2.1.

We also give some definitions and basic results in linear systems and explain
how it relates to our project.

We use the following notations; C denotes the set of complex numbers, D
denotes the open unit disc, D denotes the closed unit disc, T denotes the unit
circle, E denotes the space of diagonal 2 x 2 matrices, M5(C) denotes the
space of 2 x 2 matrices, C" is the set of complex n vectors, |.| is the absolute
value of elements in C and ||z|| is the Euclidean norm for z € C".

We write a 2 x 2 matrix A as follows:

11 Q12

A=
a21 A22



1.1 The Nevanlinna-Pick Problem

The classical Nevanlinna-Pick problem is as follows:
The Nevanlinna-Pick Problem Given n points Ai,..., A\, in the open
unit disc D and n complex numbers wy, ..., w,. Does there exist an analytic
function ¢ : D — C such that ¢()\;) = wj, for j=1,...,nand |p(N)| <1,
for all A € D?
This problem was solved by G. Pick in 1916 [2]. He showed that a necessary
and sufficient condition is that the Pick matrix

{1 — U_Jiwj:| "

L= X[m0

is positive semi-definite.

The two-by-two spectral Nevanlinna-Pick problem is the following:
Given distinct points A1, ..., A\, in the open unit disc D and 2 X 2 matrices
Wi, ...,W,, n > 1, find conditions for the existence of an analytic 2 x 2

matrix valued function F on D such that
F\)=W,, j=1,2,...,n,

and

p(F(N\) <1, for all X € D.

Here p(.) denotes the spectral radius of a matrix. This problem, while being
a special case of a classical topic, is also a test case of a fundamental question
in H* control; the problem of p-synthesis. As such it has been the subject
of a great deal of research during the last 25 years because a solution to
the general problem would, among other applications, enable the design of

automatic controllers which are robust with respect to structured uncertainty.
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As yet there is no existing analytic solution to the problem of p-synthesis and
therefore the standard approaches are computational; for example, the use
of a Matlab toolbox [12]. Analysis of even special cases of the problem will
therefore provide tests of the existing software and illuminate the difficulties
associated with the more general problem.

Agler and Young [8] established a necessary and sufficient condition for the
existence of a solution in the case of an arbitrary finite number of interpola-

tion points, their result is as follows:

Theorem 1.1.1 Let \q,..., \, be distinct points in D for somen € N and let
Wi, ..., W, be 2 x 2 matrices, none of them a scalar multiple of the identity.

The following two statements are equivalent:

(1) there exists an analytic 2 x 2-matriz function F on D such that F(\;) =
W;, 1<j<nand p(F(X) <1 forall X\ € D;

(2) there exists by, ... by, c1,...,c, € C such that

— 1 * 1 - Nn

=S; bz —Sj bj
T— | 2 1 2

C; —581' Cj —§8j -

1 — A =
L dij=1
52
where s; = trtW;, p; = det W; and bjc; =p; — ==, 1 < j <n.

Z7
Agler and Young [8] studied the case where the target matrices W; are 2 x 2

hoping that a breakthrough in this case would show the way for the general

problem. This led them to study the symmetrised bidisc which is defined to



be the set

I'={(z1 4+ 22, 2120) : |21] <1, ]20| <1} C C

In other words, it is the set
[ = {(trA,det A) : A € M5(C), p(A) <1} c C*.

In this project, we study the Nevanlinna-Pick problem for I'p and establish
a necessary and sufficient condition for the existence of an analytic function
from the unit disc into ['g satisfying an arbitrary finite number of interpola-
tion conditions.

In this project, we prove the analogue of the following results of Agler and

Young for a different set, I'g, which we introduce in the next chapter.

The following characterisation of points of GG, the interior of I', was given by

Agler and Young [9].

Theorem 1.1.2 Let s,p € C. The following are equivalent:
(1) (s,p) € G;
(2) the roots of the equation 2% — sz +p = 0 lie in D;
(3) |s—spl < 1—|p*:

_ 9ap —
(4) |s| <2 and, for all z € D, S

<1;

— ZS

(5) |p| <1 and there exists 3 € D such that s = Bp + f3;
(6) 2|s — 5p| + |s* — 4p| + |s|* < 4.

A full proof of this lemma can be found in [9]. We present our characterisation

for I'g in Theorem 2.1.4



Definition 1.1.3 A function f : D — C is a Schur function or belongs
to the Schur class S (in the open unit disc D) if f is holomorphic in D and
If(2)]| <1 forall z € D.

The next result of Agler and Young [9] relates the property of mapping the

unit disc D analytically to ' and membership of the Schur class.

Theorem 1.1.4 For any function ¢ = (s,p) : D — C?, the following are

equivalent:
(1) ¢ is analytic and maps D into T';

(2) there exists an analytic 2 X 2-matriz function ¢ = [1;;] on D such that
|lloo < 1, trep = 0 identically on D and ¢ = (211, — det ).

The 2 x 2 matrix function ¢ appearing in condition (2) of Theorem 1.1.4 be-
longs to the Schur class. Agler and Young [8] found a realization formula for
it. To present the realization formula for such an analytic I'-valued function,

we shall use the following notations; if H,U and Y are Hilbert spaces, and

A:H— H, B:U— H,

C:H—Y, D:U—Y

are bounded linear operators, then we define the operator

Al B
(2)=D+Cz(1-A42)"'B:U—Y
C|D

whenever 1 — Az is invertible.



Corollary 1.1.5 A function o = (s,p) : D — C? maps D analytically into

I' if and only if there exist a Hilbert space H and a unitary operator

A
" HeC* — HeC?
C D
such that
A | B A | By
s = — ,
Cl D11 02 D22
and
1 A|B
p= (—tr2 — det) ,
4 c| D
Cy
whereB:[Bl BQ]:C2—>H,C’: - H — C? and
Cy
D= [Dij]zz,jzl'

Our analogue of these two result for I'g is given in Theorem 2.2.5 and

Corollary 2.2.6.

The following result of Agler and Young [8] reduces the problem of analytic
interpolation from the unit disc D to I' to a standard classical matricial
Nevanlinna-Pick problem.

In the following result, by Nevanlinna-Pick data we mean a finite set

A1, ...y Ay of finite distinct points in D, where n € N, and an equal number

of “target” matrices Wy,..., W, of type m x k, say. We write these data as
A= Wi, 1<j<n. (1.1)

We say that these data are solvable, if there exists a function f in the Schur

class such that
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Clearly, the Nevanlinna-Pick problem with data (1.1) is solvable if an only if

> 0.

I — Wrw; 1"
L= Lo

In the next theorem, we use the following notations; s; = tr(WV;), and

p; = det(W;).

Theorem 1.1.6 Let \q,..., A\, be distinct points in D for some n € N and
let (sj,p;) €I for j=1,...,n. There exists an analytic function ¢ : —T
such that

p(Aj) = (s5,p5), 1< 1<,

if and only if there exist b;,c; € C such that

2
S] .
bjcj:pj_Z7 1<j<n,
and the conditions
1
557 j
Aj— 2 1 , 1 <5 <n,
G T35S

comprise solvable matricial Nevanlinna-Pick data.

In Theorem 2.3.1, we present an analogue of Theorem 1.1.6 for I'g.

Agler and Young’s Schwarz Lemma for the symmetrised bidisc [6] is as

follows:

Theorem 1.1.7 Let \g € D and (so,po) € I'. The following are equivalent:
(1) There exists an analytic function ¢ : D — ' such that ¢(0) = (0,0)
and ¢(Xo) = (50, Po);

11



2|50 — Sopol + |55 — 4pol

4 — |sp|? < ol

(2) |so| <2 and

In chapter 3, we prove a Schwarz Lemma for I'g.

1.2 Linear Systems

In this section, we present some simple concepts in linear systems theory.

In our study, we shall take all our linear systems to be finite dimensional.

C

Figure 1.1: A feedback control block diagram

A closed loop feedback system is a system that can be described as in Figure
1.1 above. In this Figure, GG represents the plant and C' represents a
controller. In such systems, we believe that the plant is what performs the
main role of the system and the controller is what ensures that it behaves
correctly. Mathematically, in a linear system, the plant and the controller
can be considered as multiplication operators (by the Laplace transform,
see [15]). Usually, there is no difference between the plant/controller and
the multiplication operator it produces. In the case that u is a

p-dimensional vector input and y is an r-dimensional vector output, the

12



plant G' and the controller C' will be the matrices r x p and p x r
respectively. It is clear to see that if v and y are scalar functions, then so
are G and C'. The case that they are all scalars is called the SISO case,

that is, single input, single output.

Figure 1.2: A simple block diagram

A simple block as in Figure 1.2, has v as an input and y as an output. It
satisfies y(s) = G(s)u(s). In this case, u, y and G are the Laplace
transformation of the input, output and plant which are functions of time.
The multiplication operators (which can be matricial) induced by the boxes

in the relevant diagram are called transfer functions.

Definition 1.2.1 A system is stable if its transfer function is bounded and

analytic in the right half-plane.

This definition means that the system in Figure 1.2 is stable if and only if
|G(s)] < M for some M € R and for all s € C. Note that G(s) is in general

only defined for Re s > 0.

Definition 1.2.2 A system is internally stable if the transfer function

between each input and each branch of the system is stable.

Note that systems with stable transfer functions can still have internal

instabilities.
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It is clear to see that the simple system given in Figure 1.2 is internally
stable if and only if it is stable. Meanwhile, the system in Figure 1.1 is

stable if and only if each of the following transfer functions is stable
(I+GC)™ !, (I+GO)'G, c(I+Go)™, Cc(I+GC)™'aG.

That is, the transfer function between each input and each branch in the
system is stable.

It is a great interest to know which controllers C' stabilise the system in
Figure 1.1 for a given G. To simplify this, assume that G is rational and
therefore has a co-prime factorisation. That is, there exist stable matrices

M, N, X and Y such that X and Y are proper, real rational, and
G=NM"'and YN+ XM =1I.
The following result and proof in the scalar case can be found in [27].

Theorem 1.2.3 Let G be a rational plant with co-prime factorisation
G = NM™! as above. Then C is a rational controller which internally

stabilises the system given in Figure 1.1 if and only if
C= (Y +MQ)X-NQ)™,

for some stable proper, real rational function Q for which (X — NQ)™*

exists.

N
In the scalar case, if G = i then C' produces an internally stable system

in Figure 1.1 if and only if

Y+ MQ

C_X—NQ

14



for some Q € H*® with X — N@Q # 0.
Observe that in the case of an internally stable single-input, single-output
(SISO) system we have

C Y+ MQ 1
1+GC X-NQ, NY+MQ
MX —NQ

Y + MQ M(X - NQ)
X - NQM(X —NQ)+ N(Y + MQ)

= (v +MQ)

NY + MX
= M(Y + MQ).

The Nevanlinna-Pick problem occurs in the context of robust stabilisation.
The problem of robust stabilisation studies the possibility of constructing a
controller which stabilises all feedback systems (as in Figure 1.1) with
plants that are ’close’ to G.

Let the system in Figure 1.1 be denoted by (G, C) and the right half-plane
by H. We denote the set of functions that are analytic on the right
half-plane with a unique limit at infinity by A(H). The following result can
be found in [27].

Theorem 1.2.4 Let (G,C') be an internally stable SISO feedback system

over A(H) and suppose that

¢ =&
I+GC|,

1
Then C stabilises G+ A for all A € A(H) with ||Alls < o

To see how the Nevanlinna-Pick problem and the robust stabilisation

problem are closely related, suppose we seek a controller C' which stabilises
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the SISO system (G + A, C') whenever |A||. < 1. Moreover, suppose that
G is a real rational function and that M and N are also rational. Clearly
by Theorem 1.2.4, it is enough to find ) such that

N7 - 1Q < 1.

C
[5ga| = 1m0 + 2@y =1y + i

I
, we can work
1+s

with functions on the unit disc rather than the right-half plane. Also, if

By changing the variables under the transform \ =

Y = T1 — TQQ, we have Q — T1 = —TQQ ThUS,

©(\) = Ty()), for all A € D with Ty(\) = 0.

Tl—(p
2

Conversely, if ¢ does interpolate T} at each of the zeros of Ts, then
is analytic and bounded in D and thus it can be considered as Q).
Therefore, our problem is to try to construct a function ¢ on I such that

lelloo < 1 and p(A;) = z;, for all \; satistying
Tl()\j) = Zj, and TQ(}\]) = 0.

Clearly, this describes the Nevanlinna-Pick problem, and therefore, this
version of the robust stabilisation problem is exactly the same as the

Nevanlinna-Pick problem.

Doyle [16] considered a slightly different robust stabilisation problem. He
was the first to consider the structured robust stabilisation problems. His
approach is based on the introduction of the structured singular value,
which is defined relative to an underlying structure of operators which

represent the permissible forms of the perturbation A.

The structured singular value as defined in [16] is a function defined on

matrices and denoted by pu(.). In the definition of p(A), where A € My(C),

16



there is an underlying structure E (which is a subspace of M3(C)) on which

everything in the sequel depends.

Definition 1.2.5 Let A € My(C) and let E be the space of 2 x 2 diagonal
matrices. Then pp(A) is defined as follows:

1

A P
p(A) inf{|| X : X € E, 1 — AX is singular}’

where || X || is the mazimum singular value of X, unless no X € E makes

1 — AX singular, in which case, pp(A) is defined to be 0.

Note that, the operator norm of a square matrix A, denoted by || A4, is
defined as the square root of the maximum eigenvalue of A*A, that is, the

maximum singular value of A. Meanwhile, the spectral radius p(A) of an

n X n matrix A with eigenvalues Ay, ..., A, is defined as follows:
p(A) = max |Al.

The following remarks were given in [16].

Remark 1.2.6 Clearly from the definition of u(A), we see that for any

a € C,
u(aA) = alu(A).

Remark 1.2.7 A natural question is why we work with p and not 1/p.
While it is clearly a matter of taste, there are important reasons;
mathematically, v is continuous, bounded and scales as indicated in the
remark above. More importantly, it generalises the spectral radius and the
mazimum singular value. To see that, we state the results below which can

be found along with full proofs in [16].

17



Lemma 1.2.8 Let A and E be defined as in Definition 1.2.5. Then

pu(A) = max  p(XA).

{XeE:|X|<1}

This lemma implies continuity of ;1 is based on continuity of the spectral

radius and max functions and the compactness of {X € E : || X|| < 1}.

Remarks 1.2.9 Let A be defined as before. Then
(1) If E = {61 :0 € C}, then ur(A) = p(A), the spectral radius of A.
(2) If E = My (C), then np(A) = || All.

(8) From the definition of p and the two remarks above we have

p(A) < pp(A) < [JA].

18



Chapter 2

Interpolation into ['g

In this chapter, we define a set I'g related to the structured singular value
of 2 x 2 matrices and find a characterisation of its elements. We establish a
necessary and sufficient condition for the existence of an analytic function
from the unit disc to I'g satisfying an arbitrary finite number of
interpolation conditions, then we find a realization formula for these

interpolating functions.

2.1 Definitions and Characterisation of ['g

In this section, we define ['g and give a characterisation of its elements. Let
E =

where z,w € C.
Definition 2.1.1 The set I'r is defined as follows:
T'p = {(an,az, det(A)) : A€ My(C), up(A) < 1},

19



We denote the interior of I'g by G so that

Gr = {(a11,a2,det(A)) : A€ My(C), up(A) < 1}.
Observe that, the set

X = {(a11,a9,det(A)) : A€ My(C),up(A) =1}

is not in Gg because in this case we have pug(X) = 1. Hence, for all € > 0,

where ¢ is sufficiently small,
pe (1+e)A)=14¢>1.

Therefore, (1 +¢)X is not in Gg. Thus, X ¢ Gg.

It is clear from the definition of I'g that if E consists of scalar multiples of
the 2 x 2 identity matrix, that is £ = {215 : z € C}, then I'p is the

symmetrised bidisc I', for in this case we have

1 — AX is singular < 1— (trd)z + (det A)z? #0, forall z € D

& 1—s2+pz2#0, forall ze D,

where s = trA and p = det A.

Remark 2.1.2 Let Xy = {A € M(C): pug(A) <1} and
Y ={A e My(C): p(A) <1}, where p(A) is the spectral radius of the

matriz A. We observe that the following diagram commutes:

ZE — >

! Ly

FE e r

T

20



where ¢ = (tr,det) and 7 : 'y — T is defined by
T(alla 22, det A) = <a11 + a99, det A) .

pg is found to be be very useful for analysing the performance and
robustness properties of linear feedback systems. A very important and
interesting mathematical problem is to find a necessary and sufficient
condition for the existence of analytic functions that interpolate from the
unit disc D into I'g.

Our results include a theorem that reduces the problem of analytic
interpolation from D to 'y to a family of standard classical matricial

Nevanlinna-Pick problems.

Definition 2.1.3 For z € C and x = (z1, 79, 13) € C3, we define ¥, and

T. as follows:

w’ if zs # 1
. (z) = 1 —zxy
1 if zxo = 1 and x129 = 3,
( —
M7 if zx1 # 1
T.(z) = 1 -2z

To if zxy =1 and x129 = x3.
\

Note that, ¥, is undefined if 125 # 23 and zze = 1. Also, T, is undefined
if x12x9 # 3 and zx; = 1. We shall on occasions write ¥(z,z) and Y(z, x)

for ¥, (z) and Y, (z), for z € C and z € C3.

In our first theorem we prove that x = (x1, 22, x3) € I'g is equivalent to 11

different conditions.

Theorem 2.1.4 Let x = (z1,x9,23) € C*. Then the following are

equivalent:

21



(2) 1 — 212 — 2w + 2320 # 0, for all (z,w) € D?.

|UU2|2 + |x1 — ZTaxs| + |T120 — 3] < 1, and

(3)

212 + |29 — Zras| + 2120 — 23] < 1, and

(4)

5) Fither V(.,z) is in the Schur class, or

if 1179 = 3, |T2| < 1.

) FEither Y(.,z) is in the Schur class, or

ifl‘lxg = T3, |ZL'1| S 1.

r; b
(7) There exist b,c € C such that bc = x1x9 — x3 and ' < 1.

C T2

(8) There exist b,c € C such that |b| = |c| = |z125 — 13|'/%, be = 1125 — 13
T b
and <1.
C T3

1 — |21]? = |zo]?® + |23]* — 2|z120 — 23] >0, and

(9)

lz1| <1, |og| <1, Jas] < 1.

(10) 1— ’$1‘2 -+ ’$2|2 — |x3]2 — 2’$1f3 — ii‘z’ 2 O, and

’JI1| S ]., |I2| S 1.

(11) 1 + |LL’1‘2 — |$2|2 - |JI3|2 - 2’1’253 - f1’ Z 07 and

71| <1, Jao| < 1.
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Proof Our proof has the following structure:

The implications from the proof can be found on the following pages:

(1) < (2): P.24—26.
(2) < (3): P.26— 35.
(3) <= (4): P. 35— 36.
2) < (5): P.36.

(2) < (6): P.3T.

(7) < (8): P.37—40.
(8) < (9): P.40—43.
(5) <= (10): P. 44.

(6) <= (11): P.45.

(9) <= (10): P. 45— 46.

23



(1)<(2) First, we show that (1) = (2). Let E = {diag(A\1, A2) : A\, A2 € C}
and let

@11 a2

A= S MQ(C)

Q21 a22

When pugp(A) # 0, we have

pe(A) <1 = inf{||X]|: X € E, 1 - AX is singular} > 1

z 0 z 0
= > 1 for all X = such that 1 — AX is singular

0 w 0 w
= max{|z|, |w|} > 1 for all z,w € C such that

1— a1z —a12W

det =0

—Qa921% 1-— A22W

= [(1 —a112)(1 — agw) — ajgazs zw = 0 = max{|z|, jw|} > 1]
= [z,weD=1-—a12z— apw+ det(A)zw # 0]

= 1 -2z — 2w + x32w # 0, for all (z,w) € D?

where 1 = a11, T3 = a9y, and x3 = det(A).

Conversely, when pg(A) # 0, the proof of (2) = (1) is as follows:

(2) holds = 1 —z12 — zow + z32w # 0, for all (z,w) € D?
. @11 a2
= we can find a 2 X 2 matrix A =
a21 A22

so that x1 = aj1, To = ag, w3 = det(A), and
1 — 212 — mow + 232w # 0, for all (z,w) € D?
= 1—ay12 — apw +det(A)zw # 0, for all z,w €D

= [(1 — CLHZ)(]_ — CLQQU)) — a12a212w = 0 = maX{|Z|7 |w|} > ]‘]

24



(2) holds = max{|z|,|w|} > 1 for all z,w € C such that

det 1-— a1z —Qa12W _ 0
—ag1z 1— A22W
z 0 z 0
= > 1 forall X = such that 1 — AX is singular
0 w 0 w

= inf{||X||: X € E, 1 — AX is singular} > 1

= (1) holds.

That is, (1) < (2) in the case that ug(A) # 0.
The case that ug(A) = 0: Let

@11 a2

A= c MQ(C)

(21 A22
We claim that pg(A) =0 <= aj; = 0,a9 = 0 and at least one of a5 and

as1 equals zero.

(<) Suppose a;; = 0, aze = 0 and at least one of ajs and ag; is zero, then
det(l — AX) =1 for all X in F.

Hence, 1 — AX is non-singular for all X in E, and therefore, ug(A) = 0.

(=) Now, suppose that pp(A) = 0. This means that there is no X in F
that makes 1 — AX singular. That is, 1 — AX is non-singular for all X in
E, which is the same as saying det(1 — AX) #0,VX € E.

det(l — AX) =1- a112 — AW + (a11a22 - CLlQCL21>ZU) §£ 0.

Since this polynomial in z,w has no zeros in C?, it is a non-zero constant,

and hence a;; = 0, ass = 0, and at least one of a5 and aq; is zero.
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Therefore, for x1 = a1, T3 = ag, and x3 = det(A),

pp(A) =0 <= 1 — 212 — xow + x32W # 0.

That is, (1) < (2) in the case that ug(A) = 0. This completes the proof

that (1) & (2).

We shall now show that (2)<(3). We have

(2) holds «—=

—

Vz,weD, 1 —x12 — xow + x32Ww # 0,

Vz,w €D, z(zsw — 1) # xow — 1,

We need to find f(ID). We consider the following cases:

(1) |21| < s,

(i) [a1] > || # 0,

(iii) |xs] =0,
(iv) |x1| = |z3| # 0 and z129 # w3,
(V) |z1| = |z3] # 0 and zy29 = 3.

When |z3] # |z1|, f maps

x1

— | OO7

Zs3

Zf3 . l’gi‘g — T
Ty 23] — |z [2

26

( —1

Vz,w € D such that z3w # x1, 2 # &7
T3W — T

if e, 04zt —1,

\ T3 T3

( —1
f(D)ND =0, where f(z) = —2 " and

T3z — I1
{ if |ZE1| < |I3|, T3 7£ T1T2.

and

(2.1)



Thus f(T) is a circle of centre where T is the unit circle.

.1'2—1

f(1) = e f(T).

T3 — X1
Therefore, the radius of f(T) is

.IQfg — (Z’l To — 1 T3 — T1T9

23] — |21 ]2 N T3 — I 23] — |1 ]2

f(D) is either the bounded component or the unbounded component of the
Toly — T X3 — 12

circle of centre and radius

|9173|2 - |5L’1|2 |9f33|2 - |5L“1|2

I |22 < 1, then oo = f(ﬂ) € f(D) and so f(DD) is the unbounded
T3 T3
component of f(T). Likewise, if N 1, then f(D) is the bounded
T3

component of f(T).

Case (i): The case that |z1| < |z3].

Figure 2.1: f(ID) is the unbounded component of f(T)

D)ND =0,
(2) holds <= /(D)
T3 7 X112,
distance between centres + 1 < radius of f(T),
—
T3 # T1T2,
J]Q.fg — Zf‘l T3 — T1T9 1
= 23> = lza P [lws —lza?] T

x3 7é T1X2,
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|[L’2£Z’3 — fl| — |373 — 1'11'2|
2) holds <= < -1 2.2
(2) holds 232 — [21]2 = (2.2)

Automatically, x5 # xx5 if this holds.

Case (ii): The case that |z1| > |z3].

Figure 2.2: f(DD) is the bounded component of f(T)

We have
(2) holds <= f(D)ND =0,
<= |centre of f(D)| > 1+ radius of f(D),
ToXsz — T X3 — T1T2
= — > 1,
|25* — [1]? |z5|* = o [*]
| 2973 — $12| — |3 2— 71T > 1. (2.3)
1> — |5
Both inequalities (2.2) and (2.3) can be written as follows:
(2) holds < 12288 = D1l Z |25 —mamaf (2.4)

|21]2 — |23]?

We multiply both sides of the equivalence (2.4) by
‘Lngg — ﬂ_fll + ‘ﬂfg — .171372‘,

which is strictly positive, then we factorise the left hand side and that will

give
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|.T2f3 — IE1| — ’.%3 — 33'1]72’

(2) holds

> 1
|21]2 — |23|? -

|xoZs — 1_31|2 — |3 — $1I2|2

|$1|2 — |x3|2 2 |£L’2£f3 — i'1| + ‘xg — .%133'2‘,

(Iz2” = D)(|zs]* — |21 [*)

|21 [? = |52

Z |[E2i’3 — ZZ'1| + |ZE3 — 171I2|,

P11

1 — |zo]? > |m0Z3 — 71| + |23 — T122].

Moreover, we know that (1) and (2) are equivalent, that is,

(2) holds <= there exists a 2 X 2 matrix A with a1; = 1, ags = o, det(A) = x3,
and pp(A) <1,

Hence, |z1| <1, |zo] < 1 and |z3| < 1.
Therefore, in the cases that |z3| # |z1| and z3 # 0, that is, cases (i) and (ii),

’5C2|2 + |21 — Zoxs| + |x122 — 23] < 1, and

(2) holds <= (2.5)
We shall show that this equivalence remains true when |z3| = |21| and when
T3 = 0.

Case (iii): First consider the case that x5 = 0. If we take z3 to be zero in

equivalence (2.5) above, we get

|zo|? + |21| + |z122] < 1, and

(2) holds <=

7| <1
1| (1 + Jaa]) <1~ Jaaf?, and

<~
71| <1
|z1] <1 — 2|, and

<~
’171’ S 1

= |z| + |z < 1L (2.6)
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We claim that the equivalence (2.6) is true, that is, if 3 = 0 then
(2) holds <= || + |xo| < 1.
We shall show that
Vz,w €D, 212+ 2w # 1 <= |o1| + |2o] < 1.

(<) Suppose that there exist z and w in D, such that z12 + zow = 1. We
show that |z1| + |z2| > 1.

Since z and w are in D, |z] < 1 and |w| < 1. Therefore, |x12| < |z1| and

|zow]| < |x2].
Thus
1 = |21z + 2w,
< wyz| + |zew),
< | + faa.
Hence,

Vz,w €D, 124+ xow #1 < |oq| + |22 < 1.

(=) Conversely, suppose that |z;| + |22 > 1. We show that there exist z
and w in D, such that z1z + zow = 1.

First case: If |z1] # 0, |xo| # 0. Let

o |ﬂ71| - |=’E2|
z=———— and W= ——"7"——,
Ty (|z1] + |22]) To(|z1] + |22])
1
Iz| = |w| = —————— < 1.
21| + |22
Then
T1Z2 +Tow = I |I1| X9 \x2|
o1 (|71] + [22]) To(|z1] + |22])’
= 1.
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Second case: At least one of x1, x5 is zero. We can suppose that
1 1
x1 =0,|xe] > 1. Let w=—,2= .
T 2
Then z,w € D and x12z + xow = 1.
Therefore,

|21 + 22| <1 <= Vz,w €D, 212 + z0w # 1.

Therefore, in the case that x5 =0,

(2) holds <= |z1| + |22 < 1.

Case (iv): We claim also that the equivalence (2.5) is true when |z3]| = |z4].
As before,
—1
(2) holds <= f(D)ND =0, where f(z) = —2——
T3z — I

We have to find f(D).

f maps
I
— > 00,
T3
1
0 — —,
T
T2
(O O e —
T3
x
f(]DD):{ZGC:z——<z——2}.
T T3

fDND=0 <= 0¢ f(D), and

1 T

the distance from 0 to the perpendicular bisector of — and =2 >1,
T T3

1

X1

X2
—1, and
Zs3

— >

1 x
the distance from 0 to the perpendicular bisector of — and 22>,
T T3
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<

Figure 2.3: Finding f(D)

Choose t so that

1 1 1 1
— |- : 2tRe{(——@)_—}
£y I3 |$1| T xr3 ) I1
1 2)®  |x? 1 20\ 7o
_ el +_.4@{§"_)_}
T T3 T3 T T3 /) T3
2
) 1

¥
=
[©)
—N
7 N
e
|
&8
N——
7 N
H||H|
w |
|
Gl
SN——
H,_/
I

I3 |.§L’1|2
1 2 SR |
T Y| T -
xy €3 X3 |901|
1 i) 2
2
— —|x1‘1 Bl >0
R
T I3
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Figure 2.4: Distance between 0 and ¢

1
Hence, c =t <— — @) can be easily calculated as follows:
T T3
1 T2 2
o \561|2 T3
= T
2 (_— - @>
T I3
. |z5|* — |z120 T1T3
|z1w3> 2(T3 — T17y)’

’303|2 - \~’1315’32|2

2.’13133’3(.@3 — i’lfg) ’

x
Therefore, the distance from 0 to the perpendicular bisector of — and 22 s

T I3
o] = |23” — |zaza® | ‘ 1 — Janf?
21’1.T3(Li’3 — Q_ﬁlfg) 2’1’3 — I1$2’
Hence, in the case that |z3] = |z1| # 0, 23 # 2129,
1— 2
|zo| <1, el T > 1, and
(2) holds <= 2|ws — w12

|£L‘1| S 1
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(2) hold 1 — |22* > 2|23 — 12|, and
olds <=
‘l’ll S 1

|w2]? + 2|23 — w129] < 1, and

lzi| <1,

which is equivalent to the right hand side of (2.5), that is, equivalent to

’952|2 + |x1 — ZTaxs| + |r122 — 3| < 1, and

|[L‘1| S 1a
for when |z3] = |z1|, it is clear to see that
’l’gfg — i’ly = ‘33'3 — xlazg\ < ‘.I'Qi’g — f1‘2 = ‘1'3 — .Tll'g‘z
< |$2£L‘3|2 + |ZL’1|2 — QRG{I’QZZ'gﬁl}
= |ZL‘3|2 + |I1172|2 — QRG{ZElJ]QZZ'g},
which is always true for |z3| = |z4].
Case (v): The case that |x3| = |x1| # 0,23 = z129. If |29| < 1, we have

|33'2‘2 + |.T2£Z'3 — .f1| + |l’3 — £IZ’1$Q| < 1 ’.%’2|2 + |l’2i’1i’2 — f1| < 1
’$2|2 + |371| }|x2|2 — 1‘ S 1

[21|(1 = Jz2l*) <1 — |2of?

[

If |zo| = 1, ]3| = |x1| # 0, 23 = 129, equivalence (2.5) holds. Also, if (2)

holds, then |z;| <1 and |zy| < 1.

Now, if |z1] < 1 and |zo| < 1,
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(2) holds

rtrtr117}

which is true for |z;] <1 and |zo| < 1.

This concludes the proof that (1) < (2) < (3).

(3)<(4) Since (1) < (3), there exists a matrix

a11 a2

A= € My(C),

Q21 A22

such that (a1, ag,det(A)) € Tp. Let

~ Q22 A21

A= = JAJ,

Q12 A11

0 1
where J =
10
Also, by the equivalence (1) < (3) and by the definition of I'g, if
pe(A) # 0,
! inf{|| X : X € E,1 — AX is singular}
= in : 11— is singular
pe(A)

r32w — 112 —Tow+ 1 #£0, Vz,w €D
T1Tozw — 12 — xow + 1 #0, Vz,w e D
r12(row — 1) — (mow — 1) £ 0, Vz,w € D
(x12 — 1)(xow — 1) #0, Vz,w e D
r1z—1#0and xow —1#0, Vz,w € D

1 1
z# —and w # —, Vz,w € D,
T )

— inf{||X||: X € E,1— JAJX is singular}
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— inf{||X||: X € E,1— AJXJ is singular}

— inf{||Y]|: Y = JXJ € E,1— AY is singular}
1

pe(A)

Hence, if 1 = agy = x9, T = ay1 = 11, T3 = x3, We get

Tol? + |2y — Toxs| + |z120 — 23] < 1
|4 |21 o3| + |T122 3] < Ls(A) < 1
7| <1

= up(d) <1
|| + |71 — Tafs| + |T10 — T3] < 1,

71| < 1

212 + |29 — Tyas] + w122 — 23] <1,
|zo| < 1.

Moreover, in the case that ug(A) = 0, the equivalence (3) < (4) clearly

holds since in this case x = (0,0, 0).

Hence, (3) < (4).

(2)<(5) From the equivalence (2.1) of the proof of (2) < (3), we find that
( Toz — 1
f(D)ND =0, where f(z) = ——,
(2) holds <= T3z — 1

\ if |x1] < |xs|, x129 # 3.

(1 1 _
— is in the Schur class, where _n Zx?’,
— f f(2) 1=z

L if T1X9 = T3, ’1’2’ < 1.

and

Note that if |z1| < |x3|, 122 # z3 always holds, and if 212, = w3,
|z1] <1, |zo| <1 (see case (v) of the proof of (2) < (3) above). Thus

U(.,z) is in the Schur class, and
(2) holds <=

if T1T9 = T3, ‘1'2’ < 1.

<= () holds.
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1 —
(2) < (6) Similarly, let f(z) = ﬂ, by using the same method as in
Lo — =2T3

our proof of (2) & (5), we find that

1 1 — 2.

— is in the Schur class, where _ Z%, and
(2) holds <= f(z)  1—zm

if T1T9 = XT3, |ZL'1| S 1.

T(.,z) is in the Schur class, and

<
if T1T9 = T3, ‘1'1’ S 1.
<= (6) holds.

Now we show that (7)< (8). Trivially (8) = (7). Suppose (7) holds.
Consider the analytic function F': C\{0} — M5(C) defined by

w | <
8
N

We show first that ||F'(z)]| is constant on |z| = R, where R is the radius of a

disc. For |w| =1, we have

w 0 T Uz w 0 w 0 10 uzw
v = v
0 w — T9 0 w 0 w -0 Tow
z - z
T uzw?
9@2 i)
L 2
Hence,
IF(2)]| = [|IF(w?2)].
Therefore, || F(z)]|| is constant on |z| = R.
Moreover,
1 U
(1) = , (2.7)
v X2



and, for u # 0,
T v
F (3) | . (2.8)
u T
Observe that the matrix in (2.8) is the transpose of the matrix in (2.7).

Hence, they have the same norm. Therefore, in the case that u # 0, we have

IF@I =7 (5] (2.9)

‘ v
U 1

-
N

Figure 2.5: ||F(2)|| is constant on |z| =1

We have three cases; case (i) when |v| < |u|, case (ii) when |v| > |u| and

case (iii) when |v| = |u].

Case (i) when |v| < |u|: By the maximum modulus principle (at 2? = E),
u

we find that

||F(2)|| < |values on the boundary]| .
Note that for all boundary values we have
[E ()| = [[F (D]
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where w is on the boundary. Therefore,
IE ) < IF@)]-
Case (ii) when |v| > |u|: By the maximum modulus principle, we find that

IF@I<|F(5)

)

and by (2.9), we find that
IF ()] < 17 (V)]

Therefore, in case (i) and case (ii), we find that ||F'(z)]| < ||F(1)]].

Case (iii) when |v| = |u|, we have

v
where 22 = —. Hence,
u

1/2

1/2
‘ = |uv|/*,

v
juz] = Jul | =

and

1/2.

v u|l/2
2=l
z v

= [uv|

Hence,
v

|uz| =
Therefore, for a 2 x 2 matrix

T b
C T2

where 13 = x1x9 — be, that is, bc = x1x9 — x3, we have
] = [e] = [be]'/2.

39



That is,

b = |c| = |21 — x3]"/?,

Note that, in the case uv = 0, we suppose that v = 0. Define

T, uz
G(z) =
0 i)
Then we have
G = [[GO)],
where
T U z; O
G(1) = , and G(0) =
0 m 0

Therefore, uv = 0 = 2,29 — 13, hence, |u| = |v] = 0 = |z125 — 23|"/2.

Thus, (7) = (8), and therefore (7) < (8).
To show that (8)<(9), we need the following lemma.

Lemma 2.1.5 Let
I b
X = € My(C),
CcC X2
be = 11709 — 3, and |b| = |c| = |v129 — 23|"/%, where x5 = det(X). Then the
following hold:

1 — x> = o0 — x —71b — x9C
(1) IX][ <1 oaf” = lonea = 2 C >0

_ = Y%
—$1b — IoC 1-— ’.172|2 — ‘xle — LIZ‘3‘

(2) det(l — X*X) =1- |[E1|2 — |I2|2 + |JI3|2 — 2’1‘1[E2 — J]3|.

Proof First we show that (1) holds. We know that
IX[<1e1-X"X>0.
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Now we calculate 1 — X*X.

T c T b
1-X*'X = 1| ,
b fz C X9
1— |.’L’1|2 — |C’2 —.f'lb — X9C
—Ill_) — J_IQC 1-— |ZE2|2 — |b|2
1 — |.T1|2 — |ZE1J]2 — $3| —Zf'lb — ZL’QE
—ZL‘ll; — I9C 1-— |ZL‘2|2 — |l’1[1§2 — T3
Therefore,
1 — |22 = |22 — 2 —T1b — xoC
||)(||§1<:> ‘1’ _|12 3| 1 2 ZO
—xlb — jQC 1-— |ZE2|2 — |(L’1ZL’2 — 1]3|
(2.10)
That is, (1) holds.
We shall show now that (2) holds. Observe that
1—|21]? = |zy20 — 2 —T1b — x9C
det(l — X*X) = det = _’ 172~ 73| e
—xlb — ToC 1— |$2|2 — |I1£C2 — $3|

= (1 — |z = |z1we — z3]) (1 = |2o|® — |z122 — 235])

—(=Z1b — 398) (—21b — Tg0),
and moreover that
(=Z1b—220) (—21b — Toc) = |122 — w3|(|21]* + |22|*) + 2Re(T172 (122 — 73)),
and

(1= |21 = |z —x3|) (1= |2 — w122 —x3]) = 1= |21 [P~ |22 +|m1 20— 25| (|21 [ +]22|)

—2|z1 30— 23|+ |11 00— 23] 2|31 || 72|
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Note that

|.T1|2|$2|2 + ’1’11’2 — l’3|2 — 2Re(f1i’2(x1x2 — .Ig)) = |ZL’1I2 — (1'11'2 — l’g)’Z

Hence,

det(l — X*X) = (1 — |$1|2 — |£L’1.T2 — I3|)(]. — |l’2|2 — |I11’2 — I3|)
—(—.f'lb — .1'25)(—513'16 — ii’gC)

= 1 —|m)? — |2 + |23|* — 2|w1m9 — 23], (2.11)

That is (2) holds.

We shall now prove (8) = (9) Suppose that (8) holds. Let

I b
X = € My(C).

C X2

Then 1 — X*X > 0, and so by Lemma 2.1.5,
det(l — X*X) =1 — |o1|> — |zo|® + |23]* — 2|z129 — 23] > 0.

x; b
From (8), ' < 1, which implies that |z;| <1, |z5] < 1 and

C XI9
|z3] < 1. Thus (9) holds and hence, (8) = (9).

(8) < (9) Suppose (9) holds. Then |z1] <1, |zo| <1 and |z3| < 1.

Since 1 — |x1]? — |22| + |23]* — 2|z129 — 23] > 0, then by Lemma 2.1.5,
(1—|131|2—‘I1$2—I3|)(1—|I2‘2—’1’1I2—I3|)—(—13’1I12—I2i’21)(—Ilflz—i’ﬂm) >0,

42



That is,

dot 1 — |21 = |z12s — 3] —XT1X12 — Taloy >0
—X1T12 — ToX21 1- |$2|2 — |x1my — 3]

We claim that 1 — |z1]? — |z129 — 23] > 0.
Since if

(1= |z1]? = |z12e — 23)) (1 — |22]? — |w122 — 23]) > 0,

then 1 — |z1]? — |z129 — 23] and 1 — |25|* — |z129 — 23] are either both
non-positive or both non-negative. Since (9) holds, and since |z3| < 1 then

they are both non-negative, for

1— |Q31|2 - ’1'2|2 -+ |LU3’2 — 2’1’1372 — Ig’ Z 0 = 2-— ‘I1’2 — |.T2‘2 — 2|I1.§C2 — 373| Z 1— ’$3|2
= 2- ‘33’1’2 — ‘.1'2‘2 — 2‘.T1[B2 — 333‘ >0
= 1 —|21|* — |z122 — 23] > 0, and

1-— |J]2|2 - |ZL’1JI2 - ZE3| 2 0.
Therefore,

1 — |21 = |z1wg — 23] >0, and 1 — |z5]* — 2129 — 23] > 0.

Hence,
1— x| = |lxixy — —Z1T19 — ToT
(9) holds — |21 | | 122 3 1712 2T91 >0
—X1X12 — T2y 1— |$2|2 — |x1m9 — 3]
= (8) holds.

That is, (8) < (9). This completes the proof of (8) < (9).
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(5)<(10) Let x1, 29,23 € C. When z129 = x3, (5) is the statement that
z + 1 is in the Schur class and |z3] < 1. Therefore in this case, |z1] < 1
and |zo] < 1.

either 129 = x3, |r1| <1 and |z3] <1, or

(5) holds <=

Ty — 2T
“L "8l <1, V2 €T, and |za| < 1,

1— zxo
either 129 = x5, |z1| < 1 and |zo| < 1, or

|1 — za3]? < |1 — 2m9)%, V2 €T, and |zo] < 1

either z129 = 3, |21| < 1 and |x9| < 1, or

(1 — zw3)(T1 — 2%3) < (1 — zx9)(1 — 2Z5), V2 € T, and |zo| < 1
either z129 = 3, |21| < 1 and |xo| < 1, or

|z1? — Z21T3 — 2Tyxs + 23] <1 — 20y — 2m9 + |22|?, V2 €T, |10 < 1
either x1x9 = x3, |r1| <1 and |z3] <1, or

2(T2 = T123) + 2(Tp — 1173) <1 — |21[* + |22f” — |23)°, V2 € T, |22] < 1

ZRQ[Z(EQ - Ili':g)] S 1-— ‘I1’2 + |2L’2|2 - |l’3|2, Vz € T, and |LU2‘ <1
either 2129 = 3, |21| < 1 and |xo| < 1, or
2|Zf'2 — $1ZZ‘3| <1- |I1|2 + |l’2|2 — |JZ3|27 and |ZL’2| <1

either z129 = 3, |z1| < 1 and |xo| < 1, or

1-— |I1|2 + |ZE2|2 — |£L‘3|2 — 2|ZZ‘2 — Ili'3| > 0, and |l’2| <1

1-— |ZE1|2 + |ZL‘2|2 - |l’3|2 - 2|£f‘2 - I1j3| Z 0, and

!

{ either 129 = @3, |21] < 1 and |xo] <1, or
<

’[L'l’ S 1, ‘.’L’Ql § 1.
<= (10) holds.
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(6)<(11) Similarly, we find that

either 129 = 23, |21] < 1 and |zo] <1, or
(6) holds <= _
272 o 1, Vz €T, and |z4] < 1,

1—2zxy
L [z |* — |z2]? — |23 — 2|21 — 2273] > 0,
|£L‘1| S 1, |$2| S 1.

(9)<(10) By the equivalence (1) < (5), we find that

Ty — 2
22781 <1, V2 €T, and |z <1, or

($1,[E2,£L‘3) € FE = 1- 2T

r1me = x3, and |zy| <1
|zg — zxs] < |1 —zaq|, V2 €T, and |z1| < 1, or
r1me = x3, and |z5| <1
Ty — ZT3] < |1 — zay|, V2 € T, and |z1| < 1, or

T1Ty = x3, and |zy| <1

Ty = x3, and |za| <1

T3 — 2T9
23 P2 Yz eT, and |z1| < 1, or

1— 21

{ |Toz — T3] < |1 — zxq|, V2 € T, and |z1| < 1, or

r1me = x3, and |ry| <1

= (l‘hff'g,d_fg) cl'g.

That is,

(1, 29,23) € g & (21,73,72) € .

Moreover, since

(x1,29,23) € T'p & (22,21,23) € T'p,
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we find that

1— a1 ? + |aof* — |2s|* — 2|l213 — 22 > 0,

(10) holds <
|z1] < 1, Jao| <1
1 — |z1]? = |z2)? + |z3)? — 2|lz129 — 23] > 0,
=
|I1| S ]-7 |.T2| S 17 |I3| S ]-
< (9) holds.

The next result follows from equivalences (9) < (10) and (3) < (4) of
Theorem 2.1.4.

Corollary 2.1.6 We have
(x1,29,23) €E'p <<= (x1,T3,%2) € I'p, and

(Il,l‘g,l'g) € FE < (1‘2,1'1,1'3) c FE

Corollary 2.1.7 The following holds:

(s, )eF<:><22

Proof Recall that, from Theorem 1.1.2 and Theorem 2.1.4, we have

)erE.

(s,p) €T & [s—3p| <1—[p°, and
(z1,72,23) €T & 1 —|o* + |22|® — |23]* — 2|2125 — Z2| > 0.
Therefore,

(S 8,p>eFE & 1—|p|2—2‘—p——‘>0
272
& 1—p|* > |s— s5p|

& (s,p) el
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2.2 A Necessary Condition for Interpolation
into ['g

By the Nevanlinna-Pick data we mean a finite set A\q,..., A, of distinct
points in D, where n € N, and an equal number of “target points”

wi, ..., w, in C. We write these data

We say that these data are solvable if there exists a function F' in the Schur
class such that F'(\;) = w;, 1 < j < n. By the classical theorem of Pick, the
Nevanlinna-Pick problem (2.12) is solvable if and only if the “Pick matrix”
{1 — wiwj} "
L= A ij=1
is positive semi-definite.

The next result follows immediately by (1) < (5) of Theorem 2.1.4.

Corollary 2.2.1 Let \i,...,\, €D, 20 = (mgj),xéj),xgj)) e I'g for
j=1,2,--- . n. A necessary condition for the existence of an analytic
function f : D — T'g such that f(\;) = 2W, 1 < j < n, is that for all
w GT\{i‘gj) 1< j<n},

ROJEG)

—, 1<j<n
1-— wxgj)

Aj —
are solvable Nevanlinna-Pick data.
Corollary 2.2.2 Let \y,..., \, €D, zU) = (xgj),xéj),xéj)) €' for
73 =1,2,--- ,n. If there exists an analytic function f : 1D +—— T'g such that
f\) =29 1< j<n, then for allw € T\{:fgj) : 1< j<n},

1— 0, (@), (20 ]
1— A
2,7=1

> 0.
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Remark 2.2.3 The converse of Corollary 2.2.2 is not true.

Example We consider interpolating points of the form xgj ) = xgj )xgj ),

1 < j <n. In this case, the converse of Corollary 2.2.2 suggests a sufficient
condition would be that there exists an analytic function f : D —— I'g such
that f(\;) =29, 1 <j <n, but
; ; ; N @ (1 _,,,.9
v (x(j)) _ xga) _ wxéﬂ) _ ng) _ wng?ng) _ Ty (1 Wy > _ g;gj),

1—wal 1—wal 1—wzd

Hence, we can take [Béj ) to be any n points in D which cannot be

interpolated by A; — xgj ). In this case, we certainly cannot solve the

interpolation \; — z(7).

In the case of the symmetrised bidisc I', Agler and Young [3], [9] gave a
necessary condition for interpolation into I'. Their result is as follows:
Let Ay, ..., A\, be distinct points in D and let z; = (s;,p;) be in G for
j=1,...,n, where G is the interior of I'. If there exists an analytic

function h : D — G such that h(\;) = z;, for j =1,...,n, then for all

weT,
1- (I)w<zi)<bw(zj) >0
1 — N\ N ’
4,j=1
2Wp; — S; .
here ®(z;) = —2—"1 1 < j <n.
where D, (2;) 2w, <Jj<n

They believe that the converse of their result fails to hold in general,
however, in [9], they show that it does hold when n = 2. In the case of I'g,

we state the following question for the converse of Corollary 2.2.2.

Question 2.2.4 Let \y,...,\, €D, 20 = (xgj),xgj),xgj)) el'g for
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j=1,2,---.n. If for all w GT\{:Z'gj),Egj): 1 <j<n},

1= T (@) Ty (2) " o
1= A\ T
2,J=1

does there exist an analytic function f: 1D — ['g such that

1—T (20 1"
ol —>\ij(x ) >0 and
1 — N ,
1,j=1

fy) =2V, 1<j<n?

The next result relates the property of mapping D analytically to I'g and

membership of the Schur class.

Theorem 2.2.5 For any function ¢ = (o1, pa, p3) : D — C3, the

following statements are equivalent:
(1) ¢ is analytic and maps D into T'g;

(2) there exists an analytic 2 x 2-matriz valued function ¥ = [1;;] on D

such that ||Y e < 1 and o = (11, a2, det(1)).

Proof (1)=-(2) Let ¢ : D — 'y be analytic. We shall construct

o1 Y12

a1 2
analytic in D such that @109 — Y1219 = @3 and ||¢||o < 1. That is, Y1299
has to be @105 — 3.
Since ¢ : D — I'g is analytic, ¢1p2 — @3 € H*, and so by a theorem of F.
Riesz, which follows easily from inner-outer factorisation [17], there exist

functions Y19, 191 € H* such that 15191 = p1(02 — 3 and importantly

1/2

V12| = |Ya1| = |12 — 3| /* on T.
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Since ¢ : D —— I'g, then by the equivalence (1) < (9) of Theorem 2.1.4, we

have
L= |@1]* = Jwal* + [s]® = 2|lg192 — @3] > 0, and
1] <1, fpa] <1, |ps] < 1.

Therefore, by (2) of Lemma 2.1.5, we find that

det(1 —¢*9) = 1= [p1]* = [@a|* + |3]* = 2102 — 03] > 0.
We need to show that 1 — |¢;]? — [p192 — 3] > 0. Since (o1, 2, ¢3) € T'g,
1—|e1]? = o192 — @3] > |p2 — Greps] >0, and
1—[paf® = [o102 — @3] > |1 — Paps| >0
Hence

1— 2 — _ 5 =
(1) holds = o1 P12 — 3 Y112 — P2¥21 >0,

—P1P12 — P21 1 — |@af® = o192 — 3]
= |[Yll < 1.

That is (1) = (2).
(2)=(1) Suppose that ||¢||cc < 1. Then by Lemma 2.1.5,

det(1 — ¢*1h) =1 — |@1]* — |a|* + |os]* — 2|12 — 3| > 0.

Also, our assumption that |||/ < 1 implies that |p1] < 1, [¢2| < 1 and

lp3] < 1. Hence,

1 - |<P1|2 - |<P2|2 + |Q03‘2 — 2|12 — 3| >0,
Y]l <1 =
[p1] <1, [po] <1, Jeps] < 1.
That is, (2) = (1). Thus, (1) & (2). 0

30



The next result allows us to find a realization formula for analytic functions
from D to I'p. The 2 x 2 matrix function ¢ appearing in condition (2) of
Theorem 2.2.5 belongs to the Schur class, and can therefore be realised, as

in the Realization Theorem.

Corollary 2.2.6 A function ¢ = (¢1, P2, p3) : D — C* maps D
analytically into U'g if and only if there exist a Hilbert space H and a

unitary operator

A
"THpC? — Ho C?
C D
such that
A| By A | By Al B
Y1 = ;P2 = and @3 = det ,
Cy | Dyy Csy | Dy C|D
4
whereB:[B1 BQ]:(C2—>H, C = - H — C? and
Cy

D = [Dyl}

ij=1"

Proof (=) Given the analytic function ¢ : D — I'g, choose 9 as in
Theorem 2.2.5, so that ¢ is in the Schur class and ¢ = (11, 22, det(v))).

By the Realization Theorem, there exists a Hilbert space H and a unitary

operator
A
on H @ C?
C D
such that for all A € D,
A| B
P(A) = ()
C|D

= D+CA1-A4N"'B
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Dy Dn| |
v = + N1=AN B By
D21 D22 | 02
Thus )
A | B A | By
P = , og =
Ci| Du | Cy | Dy
and so
A Bl A BZ
01 =Y = , P2 =gy = , and
Cy | Dy Cy | Do
Al B

w3 = dety = det
C|D

(«<=) Conversely, if H, A, B,C and D are as described, then the function

Al B
X = = [xij]
C|D

is analytic and ||x|| < 1 by the Realization Theorem. By hypothesis,

and

w3 = det x.

Hence, by Theorem 2.2.5, ¢ = (1, @2, ¢3) maps D analytically into I'g.
O

2.3 The Nevanlinna-Pick Problem for ['g

In this section, we establish a necessary and sufficient condition for the
existence of an analytic function ) — I'g satisfying an arbitrary finite

number of interpolation conditions.

92



Theorem 2.3.1 Let A\, --- , A\, be distinct points in D for some n € N and
let (7, xé,mé) €l'g forj=1,--- ,n. There exists an analytic function

¢ : D+ T'g such that
90()\]) = (I’Jl,l‘%,l’%), 1<j<n,

if and only if there exist b;,c; € C such that

bic; = vjal —a}, 1< j<n, (2.13)
and the conditions
Ijl bj
)‘j — |, 1< <n, (2'14)
cj

comprise solvable Nevanlinna-Pick data.

Proof (=) Suppose ¢ as described exists. By Theorem 2.2.5, there is an

analytic 2 X 2 matrix-valued function ¢ on D such that ||[¢||. < 1 and

© = (11,192, det(¢))). Choose
bj = V12(N)), ¢j = Yar(N), 1 <j <.

Then

and

) = 23(\) = det(v () = aja) — bic.

Thus, the equations (2.13) are satisfied, and for this choice of b;, ¢;, the
matricial Nevanlinna-Pick data with (2.14) is indeed solvable, since 1) is a

solution of it.
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(<) Suppose b;, ¢; can be found such that the equations (2.13) hold and the
matricial Nevanlinna-Pick data (2.14) are solvable, with solution x = [x;;].

Thus x is a 2 x 2 Schur function, and

Define functions 1, @9, @3 by

Y1 = Xi1,
®2 = X292,

03 = XuXze —det(x),

and let ¢ = (p1, P2, ¢3). By Theorem 2.2.5, ¢ maps D analytically to I'g
and we have

p1(N) = xuly) =1,

p2(Nj) = x22(N;) = 23,

ps(N) = @lz] —bjc; = ]

The next corollary follows immediately from Theorem 2.3.1.

Corollary 2.3.2 Let Ay, --- , A, be distinct points in D for some n € N and
let 17 = (2], 2}, 23) € T, for j=1,2,--- ,n. The following two statements

are equivalent:

(1) there exists an analytic function ¢ : D — Ty such that ();) = a7,

l<j=<n;
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(2) there exists by, -+ by, c1,--+ ,c, € C such that

S J ;
bjc; = x5 — 3, 1 < j < n, and
— * . Qn
b ] b
1 Ui 19
I - .
i j
— >0
I =N
L dij=1

Theorem 2.3.3 The following identity is valid for all z € D, x1, 29,23 € C
and r € [0,1).

[1—rzaq|*—|ra —rzxs)? = r*{|1—zao|*—| 21— 223} +(1—7) (14+r—27rRe(223)).

Proof For all z € D, x1,x9,23 € C and r € [0,1),we have

11— rzmy|® — |roy —rzws)® = (1 —rzay) (1 — r235) — r’ (2, — 223) (T — 273)
= 1—rzxy —1rZTg + 7’2|Z|2|$2’2
—r?(|o1|* — Zw1T3 — 27123 + |27 |2s)?)
= 7“2(1 — 2T9 — ZT9 + \Z|2’$2|2)
—r?(|21|? — Z21%3 — 27123 + |2]%|23]?)
+1 471 —r(zzs + 222) —r(1+71 —r(222 + 212))
= 7r?(1 — 2m9)(1 — 2Z9) — r*(my — 223) (1 — 273)
+(1 =) +7r—r(zzy + 2T9))

= 7|1 — zao* — |21 — za3*} + (1 — 7)(1 + 7 — 2rRe(z23)).

O
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Theorem 2.3.4 T'g is not convex, though it is starlike about the point

(0,0,0).

Proof To show that ['g is not convex, we give the following example:

The points (1,4,7) and (—i,1,—i) are in I'g, but the mid-point of these

1—2 1+
points is Z, +Z,0 ¢ I'g, for
2 2
1 2 1 2
|21 ? + |2y — Tras| + |z120 — 23] =§+§+§=1+\/7_ £ 1.

To prove that ['g is starlike about the point (0,0,0), we need to show that
if v = (v1,29,23) € I'g and 0 <7 < 1 then (rxy,rzy, ra3) € I'p. Fix

(21, %9,23) € T'g and r € [0,1). By Theorem 2.1.4 we have, for all z € D,

Tr1 — 2T3 <1

I

1—zx9
that is,

11— zao|* — |21 — za3)*> > 0.

Therefore, by Theorem 2.3.3, we have, for r € [0,1) and for all z € D,

11— rzmg® — |ray —rzws)® = {1 — zao)* — |2y — 223>} + (1 — 7)(1 +7r — 2rRe(z1y))
> 0.
Therefore,
rr1 —Trzl3 < 17
1—rzeg | —

for all z € D. Hence, by Theorem 2.1.4, (rzy,rxe,rx3) € I'g. Thus, I'g is a

starlike about the point (0,0,0).
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Chapter 3

A Schwarz Lemma for ['gp

The classical Schwarz Lemma gives a necessary and sufficient condition for
the solvability of a two-point interpolation problem for analytic functions
from the open unit disc D into itself. This lemma has many generalisations
in which the two copies of D are replaced by other domains. One of our
goals is to prove a Schwarz Lemma for I'g.

The Classical Schwarz Lemma Given \g € D\{0} and zo € D, there
exists an analytic function f: 1D — D such that f(0) =0 and f(Xo) = 20 if

and only if |zo| < | Aol

In section 3.4, we describe a large group of holomorphic automorphisms of
G'g, which we conjecture to be all the automorphisms of Gg. We do this
using automorphisms induced by Mobius automorphisms and the natural

involution (a,b,p) € T'g +— (b,a,p) of T'g.

We also use the Mébius automorphisms in Chapter 4 to find the

distinguished boundary of I'g and to prove some other results.
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3.1 A special case of the Schwarz Lemma

for I'p

In this section we prove the Schwarz Lemma for I'g in the case that the two

points in I'p are (0,0,0) and (a,b,0).

Theorem 3.1.1 Let 0 < by < ag < 1—0by and let \g € D. The following

are equivalent:

(1) There exists h : D — Gg such that h(0) = (0,0,0) and
h()\ﬂ) - (a0a b07 0)}

Qo
2) || > :
(2) ol = =5

(3) there exists an analytic function F : D — My(C) such that for all
AeD, [[FON)| <1 and

roy= | | Eog =] " YRR

0 0 7'_1\/ aobo bo

for some ¢ € (0,1) and 7 > 0.

Proof (1)=-(2) Suppose that there exists h : D — G such that
h(O) = (0,0,0) and h()\o) = ((1,0, b0,0).
We know that for any w € T, the function ¥, defined by

a— wp
v, ) b7 =
(a,b,p) = T—
maps G'g to D, and the same is true for
b— wp
T,(a,bp) = )
(a,b,p) = T——
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Therefore, ¥, o h maps D to D,

U, oh(0) = ¥,(0,0,0) = 0,

a
T, 0h(N) = \I/w(ao,bO,O)zl_z)bo.
Also,
Y,oh(0) = 1,(0,0,0) =0,
b
Tooh(N) = Tulag, by, 0) = 1_‘;%.

By the Schwarz Lemma, for any w € T,
(W, 0 h(X)| < || and [Ty, 0 h(Ao)] < |Ao]-

Hence,

sup [¥, 0 h(Ag)| < || and sup|Y, o h(Ng)] < [Nl

Hence,

Qo b()
<A d
1— bo - ’ 0’ a 1-— ap

Therefore, (1) = (2).

< Aol

(2)=(3) Suppose that (2) holds. We can suppose that Ay = N % %o that
— 0o
0< A <1
[ b [1—0
Let ¢ = 0 = 0 and let
1— bo ao
0 C ao RV aobg v/ o
Xl = 5 X2 = = A/ ag T b()
0 0 7'71\/ aobo bo 7'71\/%
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Note that ¢ € (0,1) and || X5|| < 1, for

b
[ Xaf = \/(ao + _g) (ao + 72bo)

aob
= ao + b2 + T2aghy + ﬂ
= CZO + b + bo bo) + 1 b
— bo
. ao 1 — bo + bo(l — bo) + (Iobo
B 1 — by
(IO -+ bg 1 - bo
1— 10y
ag
= b
1 — b(] =+ 0o,
and since ag < 1 — by, then b < 1, which implies that 1 b < ag.
—bo — bo
Therefore,
2
a
Xy = O +h
| Xz 1= by + 0o
< Vag+ bo

< 1
Consider the Mobius transformation M x, (X3) defined by
My, (X2) = (1= X0 X7) 72X = Xo)(1 = X7 Xo) 7' (1 — X7 X0)Y2
Note that My, (X5) is defined and is a contraction, for
1= M, (Xa) " Mx, (X2) = (1-X7 X)) (1-X3X1) 7 (1-X3 Xo) (1- X7 X0) T (1-X7 X0) Y2,

and since || X]| <1, || X2]] < 1 and (1 — X} X5) is invertible, Mx, (X3) is
defined and || Mx, (X5)|| < 1, see Chapter 12 of [29].
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Now we have

My, (Xz) =

(1-=¢H72 0 —ay ¢ — TV agbo

| —aoC 1 —=(7vapbo 0 (1- C2)1/2

—ag ¢ — 7V agbo 1 0 ) 0
VTN
a()C 1 ——s
_771 \% Cl()b() _bO 1-— C’T\/ a()bo 1-— CT\/ a()b() 0 1= C
—a aoC(¢ — TV aobo) ¢ — 7Vagby
VI-C T C(1—¢rvaobe) /11— C2(1 — (rv/agho) 1 0
_T—lm_ﬂ b 0 Vi-c2
070 1—CT\/a0b0 I—CT\/aobo

— ao( (¢ — T/ agbo) ¢ — 7Vaghy |
V1= J1—=C(1—=C(mvVagby) 11— (mvagbo

—Vagbg _ Gagbg —bov 1—¢?
T 1— CT\/ aobo 1-— CT\/ aobo |

—a/T=C (-~ r/agh |
1—{7'\/a0b0 1-(7’\/%

- aobo —bO\/ 1-— C
7(1 = (Tvaghy) 1—(Tvapby
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T —aoy/T — 2b bov/bo 7
(1= bo)vI =0y (1—bo)v/I=Dbo

My, (Xz) =

—apv/by —bov/1 — 2by
(1= bo)vI =By (1—bo)v/T by .

A
Let F': D — M5(C) be given by F(\) = M_x, <)\—X3) , AeD.
0

That is,

- 0 C
F(O) - Xl - 5
1 00
Qo TV CLQb()
F(}\()) - X2 - y
T \/ aobo bo

where ( = \/ (0,1), 7=

We must show that |F(N\)| < 1, for all )\ eD.
First, we shall show that || X3]| = \o. i.e., that || X3 X3|| = 2.
bo(1 — 2b i\ b\’ 202
det (X Xs) = ( L ) - ( " ) = T
(1= bo) (1= bo) (1 —bo)

X (ag +b3)(1 — 2bo) + (ag +b5)bo  ag + b
tr(X?) 3) - (1 _ b0)3 - (1 . bo)g'

The squares s2, s7 of the singular values sy, s; of X3 are the roots of the

equation

y® —tr( X5 X3)y + det(X;X3) =0 in y,

62



that is, of the equation

at + b? aZb?
R L YR L )
(1—b0)*" * (1 —bo)
Hence,
2 2
2 o 2 b5
S5 1= b’ and sj 1= b2
a? b3
Note that b d C > 2
ote that by < ag, an sc; =02~ =)
Therefore, || X3]|? = (1a—0b)2’ and hence, || X3|| = A\o. Now we show that
— 0o
|F'(N)]] <1 for all A € D.
A X,
Since || =Xl = |2 A—?’ — || < 1, we have |[F(\)|| < 1, for all A € D.
0 0

Thus, F' has the required properties and so (2) = (3).

(3)=-(1) Let F satisfy condition (3) and let h = (Fyy, Fh,det F'). Clearly,

h is analytic. We know that

0 a T/ agh
F(0) = | and F()) = ’ 0
0 0 7'71\/ CL()b() b()

for some ¢ € (0,1) and 7 > 0.
Therefore,
h(O) = (FH, FQQ, det F)(O) = (0, 0, 0),
h()\o) = (Fn, FQQ, det F)()\o) = (ao, bo, O)
For any A € D, we have ||[F'(A)|| < 1, and so by (3) of Remark 1.2.9,

up(FOV) < ||FOV|| < 1. Hence (Fii()), Fas(\), det (V) € G, Thus h

maps D into Gg.
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In the next result we give an explicit formula for an analytic function
f:D — Gg such that f(0) = (0,0,0) and f(\g) = (ao, bo, 0), where
Ao € D.

Corollary 3.1.2 Let 0 < by < ag < 1—1by and let \g € D. If there exists an
analytic function f: 1D — Gg such that f(0) = (0,0,0) and
f(Xo) = (ao, bo, 0), then f = (fi, f2, f3) : D — Gg can be given by

)\&0(1 — 2b0) )\bo(l — 2b0) )\bo ()\(1 — bo) — ao)
) = 27 27 2 ’
ag(l — bo) — )‘bO Clo(l — bo) — )\b() ao(l - bo) - )\bo

for all X\ € D.

Proof Suppose that there exists an analytic function f : D — G such
that f(0) = (0,0,0) and f(X\g) = (ao, bo,0). By Theorem 3.1.1, there exists
an analytic function F': D — M,(C) such that for all A € D, ||F(N)]| <1

and
0 ¢ Qg TV agbo
F(O) = = Xl, F(/\()) = = XQ,
0 0 7'_1\/ aobo bo
a b 1-0b
where \g = 1_—0b0, (= | —Obo €(0,1) and 7 = ~ °>0.

As in the proof of Theorem 3.1.1, we may take
A
F()\) - M_X1 (—Xg) s

and

i —aopV 1-— 2b0 bo\/b_o T
(1—bo)vVI—bo (1—bo)v/I—bo

e
I

—agy/by —bov/1 — 2b
[ (T boVT by (1= bo)V/1 by
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A Ao\t
(1— X, X5)"1/2 <—X1 — A—Xg,) (1 + Xf)\—X?,) (1—X;X,)Y2
0 0

[ )\\/ 1-— 2b0 —\/b_o(ao - )\bo) ]
1_b0 \/1—(?0 ao\/l—bg
1 — 2b,
0 1 —MWbhy  Abpy/T — 2bg
L 1-— bg ao\/l — b() J
1 0
1 0
1 — 2b,
)\CL() bo(]_ — 2b0) Cbg(l — bo) 0 1 o bO
L CLO<1 — b(]) — /\bg CLO(l — bo) — )\b% ]
[ A —\/%(ao —Abo) ][ 1 0 ]
agvV 1— 2b0
_/\\/% )\bO' /1 — 2b0 /\CLO b()(l - 2b0) ao(]_ — bo)
L V1 — b agy/1 — by 4 L ao(l—bo)—)\b% CLO(l_bO)_)‘b(z) i
1 0
1—2b,
0
1 — by
[ N — )\bo(a,o — )\bo) —\/%(1 — bo)(ao — /\bg) T
(10(1 — bo) - /\bg vV 1— 2b0(a0(1 - bo) - )\bg)
—Mby A2bov/bo (1 — 2bg) Abov/1 — bo/1 — 2by
L \/1—60 \/1 —bo(ao(l —bo) —)\b%) ao(l—bo) —)\b% |
1 0
1— 2b,
L 1 — by
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)\a()(l — 2b0) —1/ bo(l — bo)(ao — /\bo)

a()(l — bo) — )\b% (lo(l — bo) — )\b%

—A\/ bo(l - bo)(ao - )\bo) )\bo(]. - 2b0)

CLO<1 — bg) — /\bg Clo(l — bo) — )\b%

/\ao(l - 260)
(1,0(1 - bo) - )\b%,

Abo(1 = 2by)
(10(1 — bo) — )\b(2)7

f2(>‘) =

)\2a0b0(1 — 2b0)2 — /\bo(l — bo)(ao — )\bo)2
(ao(1 — by) — ABR)?

f3(A) = det(f(A) =

)\bo ()\(1 — bo) — Go)
ag(l — bo) — )\b% ’

Thus, for all A € D,

f()\ . ( )\CLO(l — 2b0> )\bg(l — 2b0) /\b() ()\(1 — bo) — ao))
~ \ao(1 —by) — A2 ag(1 —by) — Ab3™ ao(1 — by) — b2

3.2 A More General Schwarz Lemma for ['p

In this section, we prove a more general case of the Schwarz Lemma for I'g.

Given (a,b,p) € G, we find necessary and sufficient conditions for the
existence of an analytic function F': D — G such that F'(0) = (0,0, 0)
and F(\) = (a,b,p), where Ny € D\{0}.
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Theorem 3.2.1 Let U € My(C), ||U|| < 1 and let Ao € D\{0}. Then there

exists an analytic function G € Sy such that
*
G(0) = and G(X\) =U,

if and only if det(M) < 0, where

M — (1=pU )1 = U V) (1= p*)(1 = UU) " U]y (3.1)
(L= p)U (1L =UU) ]y [(UU" = p*)(1 = UU") ]y

and p = |Ao|.

Proof Suppose that ||U|| < 1 and that there exists an analytic function

G € 8349 such that
*
G(0) = and G(\g) = U.

Moreover, assume that
My (G(N)) =0 and My (G(N)) = By, (M) H(A),

where H € Syyo and By, (\) = I

ko ok
Therefore, there exists G € Sywo such that G(0) = and G(\g) =U
* 0

< I H € Syxo such that G(0) = M_y(By,(0)H(0)) = M_y (=X H(0))

has 2 x 2 entry 0
Let X = —X\gH(0), where H(0) is a constant of norm 1. Then

Such a G exists & 3 X € My(C) such that || X|| < [X\| <1 and [M_y(X)],, =0.
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We have

M_y(X) = (AX + B)(CX + D)}, where A= (1-UU*)"Y2 B=(1-UU")""?U,

C=U"1-UU""Y* D=01-UU)""
Therefore,

Such a G exists < 3 X € M,(C) such that ||.X]|| < p, and
((AX 4+ B)(CX + D) 'eg,e2) = 0
& 3 X € My(C) such that || X|| < p, & € C* € #0, and
((AX + B)¢,e5) =0, and

<(CX + D)€761> =0
& 3 X € My(C) such that || X|| < p, & € C* ¢ #0, and

£ € (X A" + B)ey N (X*C* 4 D*)et

< 3 X € My(C) such that || X]|| < p and
span{ X*A*ey + B*ey, X*C*ey + D*e,} # C?

< 3 X € My(C) such that || X < p and
X*A%ey + B*ey and X*C¥ey; + D*e; are linearly dependent

< 3 X € My(C) such that || X|| < p and ay, s € C not both zero
such that ag(X*A%ey + B*eg) + a1 (X*C*e; + D¥e;) =0

< 3 X € My(C) such that || X|| < p and ay,ay € C not both zero
such that X*(a1C"e; + asA*es) = —(a1 D% ey + apB¥es)

< dag,as € C not both zero, such that

|lan D*e1 + aaBes||* < p?|laiC¥er + agA*es|?
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Such a G exists < dajg,ay € C not both zero, such that
(D*ey, D*eq)aray + (D¥eq, B eg)aan + (B*ep, D*eq)das
+(B%ey, B es) oty — p2[<0*61, Creryanag + (Crey, A%eq)ag g
+(A%eq, C*er)aran + (Aey, A'eg)andn| <0
(D*ey, D*e1) — p*(C*ey,C*e) (D*ey, B*ey) — p*(C*ey, A*es)

(B*eq, D*ey) — p*(A*ey, C*e;) (B*eq, B*eq) — p*(A*eq, A%es)

is not positive definite

& M=

& either (D*e;, D*e;) — p*(C*ey, C*ey) <0, or det(M) < 0.

Hence, we can write M as follows:

[DD* — p2CC*],, [BD* — pACY,,
[DB* — p2CAY),, [BB*— p?AAY,,

M =

(1= UU™ = PUU - U V)Y, (1= UU) U = 21 - UU%) U,
U*(1—=UU*)t = p*U (1 = UU*) Y, [UU(1-=UU*)"t=p*(1-UU")1,,

(1=pUU)(1 = U U) ]y (1= p*)(1 = UU) " U]y
| (A=) U A =UU) )y, [(UU" = p*) (1 =UU") ]y

Note that, since |U]| < 1 and p € (0, 1), then
(1 - p*UU)(1 —UU) 1 >0,

for, let ) = U*U, then @ is a positive matrix and strictly contractive.
Hence, (1 — p?Q)(1 — Q)™ is a positive function of a positive variable on
the spectrum of @, therefore, by the Spectral Theorem, (1 — p?Q)(1 — Q)™ !
is positive.

Therefore, there exists an analytic function G € Sy such that

G(0) = , and G(\) =U,
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if and only if det(M) < 0, where M is given as in (3.1).
O

The proof of the next result in the case that ab = p follows immediately by

applying the classical Schwarz Lemma, in this case we have
| Ao| = max{lal, |b]}.

Theorem 3.2.2 Let (a,b,p) € Gg, ab # p, A\g € D\{0} and let w € C

satisfy w? = ab — p. Then there exist T > 0 and F € Syy o such that

0 x* TW
F(0) = and F(X\g) = :
0 0 —w b
if and only if
0] < lal, and la| < [b], and
either a—bp|+|ab—p| O b—ap| +|ab—p| -
Dol > |a — bp| + ab — p| Dol > |b—ap| + |ab — p|

1— [b? 1— a2

To prove this theorem, we need the following Lemma.

Lemma 3.2.3 Let a,b, p be defined as in Theorem 3.2.2, 0 < \g < 1 and let

a TW
Ao
U pr—

-1

T w b

L Ao i
and
A (1= pUrU)(1-UU) My, [(1=p*) (1 =UU*) Uy,

Y

(1= p U1 =UU) ], [(UUT = p*)(1 = UU) ™y,
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where p = |Xo| = Ao. Then

det (M det(1 — U*U)) = C_ym* + C_om™? + Cp + Cor? + Cy1?,

where
—[ab — p[?
c., = 12— P
4 )\(2) )
C, = —\ab—p|2)\g,
2 ab—p
Co = —lab=pl (<3 laf 0 = ) (1 = o ) 122
0 0
1—A2\?
_< AO 0) |ab—p|)
2
Co = —lab—pl (=48 la + = ) (0 = 02 ) oo -
0
1—22\?
—( " 0) p|*|ab — pl,
Co = —2lab—p[> + (la]* + [b*)(1 + [p[*) — (al* + [b]" + 2[p*) + X5(1 — [af*)([6]* — 1)

1
+3 (PP (lal® + [BI° = [pP*) = lal*[B°)
0

Proof First, we calculate det(1 — U*U).

A N
Ao Ao Ao
v =
lw
0 b
| Tw b ey |
[ al? |w]* Ttwa b ]

~ t 3 Tlwl+ P
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Hence,

[ la|>  |w|? Twa — bw ]
/\% )\37’2 /\0 T/\()
1-UU =
aTw bw
8T T 21wl — (b2
S =l - bl

Therefore,
la)*  |w|? 9 12 5 Twa  bw atw  bw
det(1 — U* = ([1-—5—-——=](1- — |b]7) —
et(l =) ( pra =g NG Ul DAl (vl A o vl
|af? 2, Il 2 1
— — [0] +>\—(2)—|ab—p| T+/\(2)7_2 )

A
Now, we calculate M. We start by calculating [(1 — p?U*U)(1 — U*U) Y|,

= 1

Clearly,
— 2 b_ -
1—|a* - % —Xo (Twa + _w)
T T
1—p*UU = ,
b
o <cmv + —“’) 1 — X2 (22w]? + |b]2)
- T -
and
1-U0U)" = ! X
1—w—|b\2+w—\ab—p| (7’2+ ! )
A2 A2 372
_ 2 b -
1—2lab—p2—p2 242
Plab—pP -
arw  bw . la|?>  |ab — p|
L Ao TAo )\% 72)\(2) i
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Therefore,

| | (1=t =22 (1= = o - )
(1-pUU)(1-UU)Y,, =

n I

a pl? 2 1
1— 2L P4+ 2 — jab —

(rua+ %) (o0 + )
Twa + — aTw + —
T T

jal®

a pl? 2 1
L W A L R

1
L faf? = o+ o = fab =gl (72 + )

|2 2 |p|2 2 1 ‘
—%—’b‘ +>\—g—]ab—p\ T —|—)\3T2

la
1—
A

Now we shall calculate [((UU* — p?)(1 — UU*)1],,.

L | [E e
Ao Ao Ao
vuur =
1w _
\ b TW b
[ Ao
_|a|2+ *lab — p| Wy _
— 4+ 7°ab — — + brw
A2 Y
aw - |ab — p| 2
— +b ———+ b
| 7'/\(2)+ T T2N\3 + 18] i
Hence,
il + 7%|ab — p| — A\ “woy _
LR T7°lab — — -y TW
22 P TAZ
UU* — p* = :
aw - lab — p| 5 5
T—)\%—l-bTw 7_2)\3 +|b| -0
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and

1

(1 _ UU*)fl — "
S Bl (74 o
S Y b A372
i lab — p| , i .
1— — b - b
7_2)\3 d 7_)\3 + bTw
a 2
CHRERE
Therefore,
ab—p al2
(_)‘3 + | 2)2 | + |b|2) ( ‘)\’2 — 7%|ab —p|)
* 2 %\ —1 0
[(UU —-p)(1-UU) }22 - |a|2 , |p|2 ) .
aw aw ~

al*

24 IpP B 9 1
R (T i A%TQ)
—\2 2 4 p2 — |p| b 2)2 1
o+ lal® +[b] +lab—p| | N + 5
2§

|a|2 2 |p‘2 2 1
— — b g =
)\g | | + )\(2) la p‘ e )\37—2

1 —
Moreover, we calculate the following:

[(1- )1 —UU"U], = (1= A2) (w + abrw — T%wlab — p|)

la® lp|? T\’
AoT (1 N —[bl* + B |ab —p| | 7 + P

(1= 22) (@ + abrw — 72w|ab — p|)

| | 2y |p|2 9 1 ’
AoT (1 — |0 + —lab—p| (T +
>‘(2) 372

and

[(1— AU (1 -UU)], =
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Therefore,

1
M = »
lal? I’ 1
g b g el (s
2, L =)/ - W
1—lal® — |b]2 + [p|* — |ab — p| <T +ﬁ " (Tabw Tw|ab — p| + 7')
_\2
%(T“W‘WWWH%) —X3 + lal? + b — |§|2 + b — p| <72A3+
Note that
1— |a|2 lw|? arw  bw ]
U <1 < -0
a0 bWy e o
)\0 )\07’ i
2lab—p| < 1— b, a
7| oo - —u—|b|2+ﬂ—yab—p| 2a L) s
\ )\2 /\2 7—2/\(2)
(L _1-bP
jab — p|’ a2 o
< @ 2, 1P
1— b
2+ 1 /\2 | | )\2
-
\ T2AS |ab — p|
Therefore,

1—[a|? — [b]2 + [p|? — |ab — p| (TQ

M det(1-U*U) =

(1-x%)
v

Hence,

det (M det(1 — U*U))

== 0747'74
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1
T

w
0 (Tabw — Tw|ab — p| + 7>
-

1— )2 _ _
a=2) (‘r&bw — 7w|ab — p| + E)
2o pn

1
*)\(2)+|a|2+|b|2 |§‘ + |ab — p\( 2>\g+7

4 Co+ Cor? + Oyt




jab — p|?
C4 = ——5—,
3
Cy = —Aglab—pl,
2
p ab —p
Coo = —lab=pl (=4 +1a + 2 = B )+ (1 fa = o+ )22
0 0
1-22)\°
_( >\0 0> |a’b_p|7
2
Co = —lab—pl (=N 1a + o = B ) 4 0= ol = o+ o) 10
0
11—\ o
- )\ (abw — wl|ab — p|)(abw — w|ab — p|)
0
2
p
= —lab =gl (=8l 107 = ) (1= o - P 4 5103
0
1-22)\°
—( " 0> [pl*[ab — pl,
pI*\ _ lab—p|®
Co = —Aglab—p[> + (1 — |a]> — [b]* + |p[*)] (—)\3 +al* + [0 — )T e
0 0

1-X2\*, I
-(— (w(abw — wlab — p|) + w(abw — wlab — pl))
= —2lab—p|* + (laf* + [bI*) (1 + [pI*) — (la|* + B" + 2[p[*) + AG(L — [al*)(b]* — 1)

1
+3 (PP (al® + b = 1pl") = lal*o) -
0

Proof of Theorem 3.2.2 We shall show that there exist 7 > 0 and
F € S5y such that ||F|| < 1 and

0 =* a TW
F(0) = . and F'(X\) = ,
00 T tw b
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if and only if

[b] < [al, and la] <[b], and
either la — bp| + |ab—p| ©F b —ap| + |ab—p| -

Ao| >
ol = T ol T

z 0
Note that if F' exists, then F' = G , z €D, for some G € Syys.
0 1

Hence, there exists an analytic function F' € Sy and 7 > 0 such that

where U € My(C) and ||U|| < 1.

That is, by Theorem 3.2.1, if and only if det(M) < 0, where M is given by
(3.1).

That is, if and only if det (M det(1 — U*U)) < 0, where U € M,(C) and
Ul <1,

1
Let © = \o72 + 3 50 that 2% = \27% + + 2. Hence, we can write

072

det (M det(1 — U*U)) as follows:

2.4
AT

s 2.2 _ 2|p|* — |af* — [b]? 2 2
det (M det(1 —U*U)) = —|ab— p|*z” + |ab — p| ;) + Xo(2 = al* = |b]%) ) =
0
+2ab — p|* = 2|ab — p|* + (la* + [b*)(1 + [p|*)
—(lal* + [6" +2Ipl*) + Ao(1 — lal*)([b]* — 1)

1
+5 (PP (lal* + [BI° = [pF*) = lal*[B°)
0
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Therefore,

1—|b?
lab — p|’

37 > 0 such that 7% <

|a]?

1 BY3

2\ < A
Ao+ T2 )\ 0 lab — p|
Jsuchan FF & (3.2)

pl2 — lal2 — [p]2
—|ab — p|2x? + |ab — p| < i |/\a| 1o + Xo(2 — |a]* — ]b\2)> x
0

((al? + 21+ 1p2) — (jal* + bl + 20p[2) + 31— [af2) (b — 1)
1

5 (PP (al + b = [p) ~ [aPIbP) <0,
0

1
h = \o7> .
\ where x o7 + 72

pl?
-+ 55
A

Y

ol — lal? — Ib]2
) = lav=pPat+ o= pf (EEREZLE - - o ) o
0

+(lal” + [b1%) (1 + [pI*) — (lal” + [6]" + 2Ip[*) + AG(L — lal*)([b]* — 1)

1
+3 (PP (al® + [bF° = [p[*) = [al*[bF)
0

and let |]2
p

—|p|? 4+ L
|b]* + N

_af?
S

lab — p|

1
Y =X\

We shall find under what conditions it is true that there exists z € [2,Y)
such that f(z) <O0.
Note that

Bsuch an x <= f(2) >0and f(Y)>0.

Next, we calculate f(Y).
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2 2
(1o
—|ab—10|2/\2 A A

lab — p[?
(1-BF—pp )
—|—|ab—p|)\0 A%) )‘3 (Q‘p’ _|a| —
|ab — p|
+(lal* + [p[*) (1 + [p*) = (lal* + [oI" + 2Ip|*)

1
+o(1 = |al*)(]B]* = 1) + = (|p|2(|a|2 +[b]* —

Ao

p|*) —

|a|? |p|2 |a]?
- —)\3(1—)\2 b]* + AQ + 1—A2 |b]* +

bl 2 2
+ X0(2 = lal” = [b])

[al*[6])

2
p
+ I 2 — o - o)

H%MMPMPWWQﬂWﬂW+WHWmHH%
5 P

A2 A2

—(lal* + [b]* + 2Ip[*) + A5(1 — [al*)(Ib]* — 1) +

That is, f(Y) = 0. We also have

b lpl®

2|ab — p| lal®
=-XN(1l—-|a? -+ 2 -2 1) (1 -
=4 (1 ) (1R

Moreover, f(z) has the following roots:

b el
A
Yi = X 0 and
jab — p|
el e P
7 | ‘ 22
Y, = Xo =Y.
jab — p|
We shall find conditions for when f(2) < 0. Let
b Ip[* _ 2[ab—pl
A D
_ lal® _ oy PP 2lab —p|
A2 = v P X
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First, we show that X5 > 0. From (3.2) we have

|a[* Ip|? |a[* Ip?
1— o — b+ 55 1- o — b+ 55
Y A2 Y A2
2 < Ao & 2<
lab — p lab — p
Ao
la[? 2, Ipl> 2|ab—p|
e (1- b i 0 B
( Yl — oI+ A2 Xo

& X >0

a
& <)\—0 b, fo) € Gp.
Therefore, X5 > 0.
Now we shall find under what conditions it is true that X; > 0 so that
f(2) < 0. There are two cases; when 0 < X3 < X and when 0 < X; < Xo.

In the case that 0 < X5 < X5, we have, for 0 < A\g < 1,

2
XQSXI = 1—u—‘b|2

lpl>  2Jab — p| <1 |af? - o> | Ip*  2|ab—p|
A2 =

)\2 )\0 )\2 )\_% )\0
| |2 |a|2 w
N A3

1 1
0 0

& al* = [p*

N < [bf* -

& a| > 0].
Similarly, in the case that 0 < X; < X5, we have, for 0 < Ay < 1,
X < Xy & al < b).

Therefore, there exists an x € [0,Y") such that

f(z) =det (M det(1 — U*U)) < 0 if and only if

bl < Jal, and
" 1_w_‘b|2_|_w’
A A



or

la] <[], and
2lab —
Ao > ‘a f’ 7 -
1 2 |b| |p|
— |a|? — )\2 + — )\2
Thus,
( o L—bP
d 7 > 0 such that 7° < 7
lab — pl
dsuch an F € Sy & b] <lal, and
2|ab — p|
o
1— b2 +
\ )\2 ’ ‘ )\2

From the proof above, we observe that, when |b| < |a|,

2ab — p al> 5 Ipl? lab—p)
A 1——— b
R T P e L I T
1 /\2 |b’ )\2
a p
b,
& (/\0 )\O)EGE
bp ab—p
b2 + |2 1, la| < |A
|| A—i_)\o )\0 <,‘CL|_|0|
|a — bp| + |ab — p|
A
= 0> 1—|b|2
Similarly, when |a| < |b],
2lab — b
Ao > |CL fl 5 = (a,—,ﬁ) € Gg
1— a2 — |b’ +\p;| Ao~ Ao
)\2 A2
b—a b—
- >\o>’ ap| + |ab —p|

1= al?

Hence, there exists 7 > 0 and F' € Syx such that ||F|| < 1 and

0
F(0) = and F(\) = ,
0 0 lw b
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if and only if

|b| < lal, and la| < 1], and

cither | > = bpl+lab—p] O b —ap| + |ab—p| -
0 1— [b[? 1— |af?

|Ao| >

Finally, we shall find under what a, b, p does there exist 7 > 0 such that

( 1 — |bl?
MoT2 < No 1 =: A, and

lab — pl

(3.3)
al? Mk
A <A =Y
L or +/\07'2 0 lab — p| 2
x
e — ¢
Gm 1 mG A

Let ¢ = \o72. We shall find under what conditions on A and Y, there exists

1
¢ < A such that ( + = < V5.

¢
1 1
Let f(¢)=(+ ¢ Note that ¢ + ¢ > 2.
1
If A > 1, then there exists ( < A such that ( + - < Y5. If A < 1, then there

¢
1
exists ( < A such that ( + Z < Ys if and only if A > (3, where (; < 1isa

1
root of ¢ + Z =Y5 and (5, > 1 is the other root.
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Therefore, there exists ( < A such that f(¢) < Y3 if and only if A > (.
When ¢; < A < (s, there exists ( < A such that f(¢) < Y3 if and only if
¢ € [¢1,A), and when A > (, there exists ¢ < A such that f({) < Y5 if and

only if ¢ € [(1, (o).

Note that
al? 2
ar Ly, o P lebmpl _%%_MP+%%
A Plab—p] T a7 |ab — p|
1
= ab—p|* = (1= [b]*)(—lal* + |p|”
Xo(1 — [b[2)]ab — p| (| pl" = ( 16]7)(—[al” + |p| )
1
= —2Re{abp} + |al® + |b]?|p|?
)\0(1—|b|22|ab—p| ( {abp} + |al 10"[p| )
ja — bpl

= > 0.
Ao(1 = [bf)]ab —p| —

1
Hence, A > 1. That is, there exists ( < A such that { + E <Ys.
Thus,

37 > 0 such that (3.3) holds & A>1

S A >

Note that, f(Y1) = 0= f(Ys) and f(2) <0, thus, z < Y] or x > Y5,
therefore, x € [2,Y]].

b— 1 — |b|?
u, there exists 7 > 0 such that 72 < 1
1 —b[? |ab — p|
and the range of values of 7 is given by ¢; < \g7? < (s, where (; and (, are

Therefore, when Ay >

1 1
the roots of ( + = = Y5, that is, the roots of \g72 + =Y.
C )\OT2
1—[b]?

|ab —p|
values of 7 is as given above and F' € Syyo such that ||F|| < 1 and

Therefore, there exists 7 > 0 such that 72 < where the range of

0 =* a TW
F(0) = and F(\) = , (3.4)
00 7w b
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if and only if

[b] <al, and la] < [b], and
either m>|a—bp|+|ab—p| or |b—ap| +|ab—p| -
0 1—[b|? 1— |af?

[Ao| >

O

In Theorem 3.2.2, if |U|| — 1, we pick Ac = [Ao|(1 +¢), where € > 0 is small

enough so that 0 < [\g| < |A:] < 1 and ||U.|| < 1, where

_ a -
N TW
U, =
7~ tw
b
L A i

We proceed in the proof exactly as we did above but using A. instead of A,.
Then we apply Montel’s Theorem which states: Any locally bounded
sequence of holomorphic functions f, defined on an open subset of C has a
subsequence which converges uniformly to a holomorphic function f on
compact subsets.

In this case, we find that, since F. : D — I'g, where I'g is bounded, F, has
a subsequence that converges to a holomorphic function F': D — I'g.
Moreover, since A\ = Aog(1 + €), then for e < 0, A\, € I = [1, 4] is a compact

line-segment. Hence, A\. — Ag. Therefore, F.(\.) — F(Xg).

Corollary 3.2.4 Let (a,b,p) € Gg and Ay € D\{0}. Then there exists an
analytic function h : D — Gg such that h(0) = (0,0,0) and
h(Xo) = (a,b,p) if and only if

|b| <la|, and la| <10, and

TN gl > la= Bl lab—pl " b—ap| +Jab—p| -
o= 1— [b[? 1— [af

|Xo| >
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Observe that, when |a| = |b],

la—bpl* — b —ap* = |a]* + [bP|p|* — 2Re(abp) — ([b* + |af*|p* — 2Re(abp))
= (la]* = o)1 = [p*)
= 0.

Therefore, if |a| = |b|, then |a — bp| = |b — ap|.

3.3 The Carathéodory and Kobayashi
Distances

In this section, we prove that the Carathéodory and the Kobayashi

distances between two points in I'g are equal, where one point is (0,0, 0).

We write d for the pseudo-hyperbolic distance on D which is defined as

follows:
z—w

d(z,w) = , z,w € D.

1 —wz
The Carathéodory extremal problem for a domain €2 and for a given pair of

points z1, 29 € (2 is to find the quantity
Ca(z1, 22) w sup {d (F(z1), F(22)) : F maps 2 analytically into D} .

Any F' for which the supremum on the right hand side is attained is called
Carathéodory extremal function for €2 and the points z1, 25, and Cq is called
the Carathéodory distance on €.
The Kobayashi extremal problem for a pair of points 2z, zo € ) is to find the
quantity

da (21, 22) = inf{d(A1, A2) },
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over all pairs A1, Ay € D such that there exists an analytic function

h:D — Q such that h(A;) = 2z; and h(A2) = 2. Any such function h for
which the infimum is attained is called a Kobayashi extremal function for )
and the points z1, zo. The Kobayashi distance Kq on () is defined to be the
largest pseudo-distance on 2 dominated by dq, [14].

It is standard that

Cq < Kq < dq. (3.5)

Lempert’s theorem [14] asserts that Cp = Kp for any convex domain D.
Although the symmetrised bidisc I" is not convex, Agler and Young [9]
proved the equality of the Carathéodory and Kobayashi distances on G, the
interior of I'.

Note that, the Carathéodory and the Kobayashi distances are metrics on
bounded domains in C”, which is the case for G since it is bounded.

In this section, we show that the Carathéodory and the Kobayashi

distances between the points (0,0,0) and (a, b, p) are equal in Gg.

Theorem 3.3.1 Let a,b,p € C and ab # p. If zy = (0,0,0) and
29 = (a,b,p) are in Gg then

(|a — bp| + |ab— p|
1— |b?

, if [b] < al, or

OGE(Z1722) = KFE(ZI;Z2) =X
b — ap| + |ab — p|
\ 1—|af?

if lal < 0.

Proof By the Schwarz Lemma for I'g, i.e., Corollary 3.2.4, we have

(|a — bp| + |ab— p|
1— |b?

, if |b] < al, or

6GE(ZI7ZQ) —
b — ap| + |ab — p
\ 1 —laf?

, if |a| < |b].
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For w € T, define F, : Gg — C by
U, (a,b,p), if |b] <|al, or
F(aV,p') =
Tw(a'/ab/7p/)7 lf ‘(Z| S |b’
By Theorem 2.1.4, ¥, and T, map Gg to D. That is, F, : Gg — D.

Moreover, F,(z1) = 0 and hence by the definition of Gp,

Cop > max |Fu(22)].

we
Now )
QTP it 1] < |al, or
1—wb
|Flo(22)] = <
b_
“PL i jal < |b).
L |1 —wa

As we have shown in the proof of Theorem 2.1.4, the two linear rational

transformations

., i bl < al, or
Z —
b—zp
if a| < |b
g L lal <18l

map T to circles of centre ¢y, ¢y and radius Ry, Ry, respectively, where

G = e d Ry = f |b] < |al, or
b—ap |ab — p|
= dR flal < b
\ Co 1_ ’a‘2 2 1 | ‘2? ‘a’ — | ’
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Thus,

p

la — bp| + |ab — p|

lei] + Ry = = = 0p (21, 22), if |b] < al, or
CGE(ZDZQ) Z
|b — ap| + |ab — p ‘
lea] + Re = P = 0ry (21, 22), if |a| < |b].
\ _

(3.6)
Hence, by (3.5) and (3.6), we find that

(|a — bp| + |ab — p|
1— b

, if |b] < |al, or

Cop(21,22) = dg, (21, 22) = Kap (21, 22) =
b —apl| + |ab — p
\ 1 —|af?

,if |a| < |b].

O

3.4 Automorphisms of G

An endomorphism is a homomorphism from a domain to itself. An
endomorphism that is also an isomorphism is called an automorphism.

In this section, we study the automorphisms of Gg. We conjecture that we
have found all the automorphisms of GGg, but we have not obtained a proof

of this thus far.

Definition 3.4.1 Let a,b,c,d be complex numbers, where ad — bc # 0. A
Mébius automorphism from C* to C*>, where C* = CU {0}, is an

analytic function p such that

az+b
cz+d

w(z) =
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Note that the composition of Mobius automorphisms is a Mobius
automorphism, and the inverse of a Mobius automorphism is a M6bius

automorphism.

Let 2 € T, We define T,(z) : D — D as follows: For all z € I,

T3z — T2

Tz — 1
In order to define the action of the Mdbius automorphisms g on the left
and the right of G, we consider the following;:

For each z = (z1, 22, 23) € G, define a matrix

T3 —XT2
X =
T —1
We pick a matrix
a b
M, = ,
c d

such that det(M) # 0, which induces a Mobius automorphism g : D — D,

az+b
= —V D.

In the case of the action of M6bius automorphisms on the left hand side of

Gg, we observe that

a b Ty —To

M, X =

c d r; —1

axrs + bry —(azxy +0b)

cxs +dr; —(cxe +d)

Clearly, since z € D, ¢z + d # 0 as u has no pole in D, and since x € Gg,

|z;| < 1,1 <4 < 3. Hence, cxy + d # 0. Therefore, M, X induces the same
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Mobius map as

axs + brq axrs +b
A B cxo+d cro+d
J‘Jl —1 cr3 + d[L‘l

-1
cro +d

Observe that the choice of M, used to represent the Mobius map above
does not change the resulting (2, 5, z%).
We use the notation A = B if A and B induce the same Mobius map.

Define p!, = (o, 24, x5). We have

; cxs+dr; axrs+b axs+ bry ,
e, = , , x.
cro+d cxro+d cro+d

We shall show that @’ € Gg. There are two cases; (i) when zy29 # x3 and
(11) when T1X9 = I3.

Case (i): In the case that xyz9 # 3, we have
t' = (2,2}, 2%) € Gp < Tp(D) C D. (3.7)

The equivalence (3.7) follows from Theorem 4.2.8 that we include later. A
full proof of the theorem can be found in Section 4.2 where we study Gg
and present a characterisation for its elements.

We shall show that Y, (D) C D. Clearly, since p : D — D and by Theorem
214, 2 €T < Y,(2) : D — D, we have p (Tx(z)> :D — D.

Observe that

90



Case (ii): When x1x9 = x3, we have

cri1xy +dxy axe+b arixe + by

cro+d cro+d  cxo+d
ars+b axs+b

= (= x

Yerg+d ery +d

= (1, p(x2), T1p0(2)) -

o = (@) ) = (

For all z € D,
- Thz — @
T, — 37 2
»(2) iz —1
_ T p(T2)2 — pu(2)
12— 1
B 1z — 1
= M(fz)xlz —3
= u(22).

)

Since 1 : D — D, T,(2) €D, for all z € D. That is, T, (D) € D. Thus,

l’/ € GE

Similarly, we define X M, the action of Mobius automorphisms on the right

hand side of Gg. In this case, we find that

T3a — XoC¢  T3b — zad
_I1b+ d _a:'lb—f_d / /

ria — ¢ Ty
—Qflb + d

and

o =\ oo+ d —sbtd —zbtd

Lemma 3.4.2 Let

xr3 —T2

T —1
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and let p1 and ps be Mobius automorphisms of D defined by

a1z + by

= \ D

i l2) a1z +dy e
a9z + b2

= VzeD

such that aidy — bicy # 0 and asdy — bacy # 0. Pick the matrices M, and

M, which induce p11 and o respectively,

a; b as b
M, = llande: 22,

a dy cy dy

such that det(M,,,) # 0 and det(M,,,) # 0. Then the following hold:
(1) My, (M, X) = Mpypop, X
(2) (X My,) My = X Mysop, -
(3) (M X) My, = My, (X My,).

Proof There are two cases; (i) z3 # x129, and (ii) x3 = z129.

Case (i): (1) When x5 # x125. Recall that

a1x3 + b1$1 _a1$2 + bl
1T + dy 1Ty + dy
MMX = ,
c1T3 + d1$1 1
C1T9 + Cll
where ciz9 + di # 0.
We shall now calculate M, (M, X).
13 + b1x1 _CL1$2 + bl
C1T9 + dl C1T2 + d1
Q9 b2
Muz (M/HX) =
C2 d2 C1T3 —+ dlxl

—1
C1T2 + dl
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a1xrs3 + blxl c1T3 + d1$1 a1T2 + bl

a —a —b
2 Ci1Zo + dl 2 Cc1%9 + dl 201332 + dl 2
Muz (MMX) =
a1rs + b1x1 13 + dlxl a1To + bl
Co 2 —Cp————— —dy
C1T9 + dl c1T9 + d1 C1T9 + d1

Since 4 is a Mobius endomorphism of D and |z5| < 1 as € G, we have

% < 1 and since —i—j ¢ D, i—z > 1. Hence, —2—2% # 1.
Thus, —co(a1xs + by) — do(c1zo + dy) # 0.
Therefore,
[ ax(arws +biw1) + ba(ciws + dawr)  as(@rwz +b1) + ba(crza + di) ]
ca(ay g + by) + do(c1zo + dy) ca(ay g + by) + do(c1zo + dy)
M, (M, X)=

ca(ayzs + bixy) + do(crxs + dyay)
ca(arxg + by) + do(cr2o + dy)
We shall now calculate (M, M, )(X). We have

(a1a2 + b201>Z + (CLle + bgdl)
(CQCLl + d261>2 -+ (Cle + dgdl) '

p2 0 pn = pa(p (2)) =
Hence, for the Mobius automorphism ps o p1, we define M,,,.,, by

aiag + bacy  ashy + bady
Mp,golu,l = ’
CaQ1 —+ dzCl Cgbl -+ dgdl

such that det(M,,,o,,) # 0. Since po 0 gy is an automorphism of D,

coby + dydy # 0. Therefore,
_alag + bQCl _CLle + del
Cgbl + dldg Cgbl + dldg

M,on, =
_car + docy _q
coby + dyids
Hence,
ayas + bocy asby + bady
coby + dyds coby + dyds vy —1
Mo X =

Coaq + docy ) T —1
coby + dids
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$3<a1a2 + bQCl) + xl(agbl + b2d1> ZEQ(CLlCLQ + bgCl) + CLgbl + bgdl i
Cgbl + d1d2 CZbl + d1d2

H20p1
.773(02@1 + dgcl) + xl(Cle + dldg) ZL’Q(CQ(Il + dgCl) + Cgbl + d1d2
Czbl + dldg CZbl + dldQ

As before, xo(caaq + dacy) + caby + dids # 0. Hence,

[ xg(alag + bgcl) + $1<a2b1 + Z)le) .’Eg(alag + bQCl) + a2b1 + bgdl ]

Z’Q(Cgal -+ dgcl) -+ Cgbl + dldz .%2(02611 + dgcl) + Czbl + dldg

S
I

H20p1
x3(62a1 + dgCl) + $1<Cgbl + dldg)
Z’Q(Cgal + dgCl) + Cgbl + d1d2

Therefore, (1) holds when 125 # 3.

Case (ii): (1) In the case that z3 = 129, we have

M/“X _ aq bl T1Ty9g —T2
i C1 d1 T —1
a1r1T + blﬂfl —((leg + b1>
| aT1T2 + dizy —(c1ze + dy)
[ " a1To + bl _all'g + bl
= ! C1%T2 + d1 C1T2 + d1
T -1
. I1M1($2) —,u1(562)
I —1
Therefore,
as by T (5172) —M1($2)
MM2<MLL1X) =

Co dg T —1

asifir(22) + boxy  —(agpi(z2) + b2))

Coxy i1 () + doxy  —(copir (o) + do)
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As in case (i), since 1, is an automorphism of D, then |u;(z2)] < 1. We
d d
also have — ¢ D, which implies that 2l >1.
Co Co

If ¢ = 0 and copig(x2) + do = 0 then dy = 0, but asdy — bacy # 0, therefore,
CQ/,Ll(ZUQ) + d2 7£ 0.

Therefore,
[ aszipn(22) + baxn _ Qofh (z2) + by
MM2(MM1X) = C2f1 <x2) + d2 Cofi1 <I2) + d2
1 -1

wipig (pa(w2))  —p2 (pa(22))

T —1

Now we calculate the right hand side of (1). We have

[ aza1 + bacy _a2b1 + body
Cgbl + d2d1 Cgbl + dgdl T1Ty —To
MH2OM1X -
_02(1,1 + dQC1 1 1 —1
L Cgbl + dgdl
[ B (agay + bocy)x1xe + 1(A2by + bady)  xa(agay + bacy) + asby + bads i
Cgbl + d2d1 Cgbl + dgdl
B (coay + docy)x1me + 1(C2b1 + dady)  xa(coay + dacy) + coby + dady
| coby + dady coby + dady
Note that

a1T9 + bl
C1T9 + d1
= CQ(CLliEQ + bl) + dQ(Cle + dl) 7& 0

02u1<$2)+d27£0 = C2 +d2§£0

= QSQ(CQCll + dgcl) + Cgbl + d2d1 7é 0.

Therefore,
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" 21 (ag(a1za + by) + ba(c1xe + dy)) as(ayzo + by) + ba(c1x9 + dy)

Cg(all‘g + bl) + dQ(Cll’g + d1> CQ(CL1{L’2 + b1> + dg(cll‘g + dl)
Mo X =
X1 —1
[ a1y + by a1y + by i
+b a +b
129 + dy 2 . 2C151/’2 +d; ’
a1Ts + by a1z + by
c +d d
= 2011‘2 + dy 2 2611:2 +dy ?
I —1

[ agp(xa) + by aspir(x2) + bo
T —
copir (z2) + do Copir (x2) + do

T -1

w1pig(pa(z2))  —pa(p(22))

I —1

Therefore, (1) holds when zyz5 = x3.

The proof of (2) and (3) follows by the associativity of matrix

multiplication.

The next result follows from the previous lemma.

Corollary 3.4.3 Let x € Gg and let py, po be Mobius automorphisms of
D. Then the following hold:

(1) po(pn) = (popn)w.
(2) (wpz)pn = x(p2p)-

(3) (mz)pe = pa(zp2).
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Remarks 3.4.4 Let © = (a,b,p) € Gg and let py and py be Mébius

automorphisms of D. Then

(1) The following are holomorphic automorphisms of Gg:

(1) = () = pa(ap2).

(2) (a,b,p) — (b,a,p).

(2) The the following are non-holomorphic automorphisms of Gg:

(1) (CL, bap) = (a,ﬁ, b)
(2) (a,b,p) — (p,b,a).

T3z2 — To

Theorem 3.4.5 Let x = (1,29, 73) € G, To(2) = :D—D.

12— 1
Then there exist Mobius automorphisms py, po of D such that

,UITx,UQ =Tz,
where 0 < r < 1.

Proof When z;25 = x3, our result follows easily since in this case we have,
Tx(z) = x9. Hence, we can choose j5 to be any automorphism of D and
to be an automorphism of D) such that p;(z5) = 0.

When z129 # x3, there are two cases; case (i) when 0 < r < 1, and case (ii)
when r=0.

Case (i): When 0 <r < 1, let € Gg, and let |z;| # 1.

For py, o : D — D, automorphisms of D, defined by

a12+b1
- X1 veD,
'ul(Z) bz + ay ‘
CLQZ‘l'bQ
= X2 v, eD.
MQ(Z) bQZ+C_LQ §
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Qﬂ@ (9%

Figure 3.1: p; o T, 0 puo(2)

Define M, and M,, by

such that det(M,,) and det(M,,). Recall that 2 € Ty < T,(z) : D — D.

Hence, we define

T3 —X
¥ — 3 2
T —1
that induces T, (z) = Y
Tz —1
We have
MMQX _ Cj2 by Tz —I2
bg a9 T -1

asx3 + bowy  —(agzs + be)

i 621'3 + 6_121'1 _(BQxQ + C_lg)

[ aszs + boxy _ GTy + by ]
bg.’ﬂg + as bgﬂl‘g + as
ngg + aoxq 1
baxo + Qo J
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Let

, boxs + g1y
$1 = = — ;
bgl’g -+ (05}
27, . (055} -+ bg
2 - 7 —_
boxs + Go
, QT3+ baxy
Ty = l_)—_
2T + G2

I ing «f, = /1%, 1
We are seek 5 = 2’12%. That is,

asTo + by B (52233 + agxl) (0@333 + ngl)
boxo + as baZo + as boxy + a9 .

That is,
(CLQ[EQ + bg)(bgffg + (Ig) = (bgii‘g + aszl)(aQQ?g + bgﬂ?l). (38)

We shall now find values of as and by, such that (3.8) holds and |by| < |as|.
Note that, since pp maps T — T and the interior to the interior (of the
unit disc), then |ag|* — |ba]? > 0, therefore, |as| > |bs].

Thus, we have

(&2332 + bQ)(bQii‘Q + az) = (bg.ﬁi’g + &2.731)(@}%’3 + 621'1)
= U,ng — a2b2|x1|2 + agbg|$2|2 — a2b2|x3|2 —|— ag(l‘g — fll'g) + bg(fg — 1L'1f3) = 0

= CLQbQ(]_ — |I1|2 + |l’2|2 — |ZE3|2) + a%(@ — Ifl.l’g) + bg(fg — J]lfg) =0.

Hence, we can take

ay = 1=+ [wof* — as® + /(1 = |21]2 + |2af? — [25]2)? — 4wy — Tras?,

b2 = 2(531%3—172).
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Since © = (z1, x2,23) € G, then

(1 — |21 + [22]? — |z3]*)? — 4z — Zras]* > 0, and clearly, |ba| < |az|.

Now we shall find an r such that pu; Y, pus = rz.

M, XM, =

We seek an r such that

Hence,

/
Ty —Ty
ry —1
a1xy — by,
L
a1ry — bl

a1xy — by,

a; b

by a;

/ — /
bizh — a7,

/ _
blxl — a1

/ - /
bizh — a1 7,

—ble/l + a;

CL1{E/1 — b1

| _blxll + C_Ll

[ ayrhy — by, biath — agal, ]
/ = / =
_blml + ay —b1$1 + ay
, _
a1ry — bl 1
—_— —
L —bhz) + @ _
ala:’l — bl
—bll‘ll + a

! - /
bz — a, 7,

—blx’l + C_Ll

—a1 5 + by

—bll‘ll + a

—blfb/l + a;

- . (3.9)

= 0=b = dll’_ll,

— !l !
= 0= 7y, = 2125,

Therefore, we can take a; = 1, and b; = 2'1, so that |b;| < |ay], hence,

_ g
P
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Now we substitute the values of 2/, x5, x5 in r.

’ ’ (bgl’g + &2$1) (CLQ!BQ + bz) _ a3 + bgl’l

rhay, —ay = = - = = = -
bg!I?Q + asg bQLUQ + aog bgl’g + ag

(62563 + dQLUl)(CL2$2 +7b2> — (CLQ.T3 + ngl)(62$2 + C_LQ>
(bg%g + d2)2

(z122 — 23)(|az|® — [b2?)

(T)QIQ + C_L2)2

Y

and
1_ ]ac' ‘2 — 1_ ngg + C_LQ.Tl Z)Qfg + CLQLfl
1 bay + a9 baTo + ao

las*(1 — |z, |?) + |b2|2(|$2|f — |@3]?) + agba(wa — T123) + Goba (T2 — 2173)
(bgl’g + ELQ)(beQ + CLQ)

Therefore,

_ (z172 — w5)(las|” — |bo|*) (b2 + a2)
(bzl’g + dz)(|a2|2(1 — |931|2) + |bg|2(‘l‘2’2 — |SL’3|2) + a2b2($2 — 571333) + &gbg(fg — l’ﬂfg))

Case (ii): when r=0, we have T,(z) = L_xf =0, Vz € D. Therefore,
1z —

x32—x9 =0, forall z€DD = x32=uy, forall zeD

= 29 =0and xz3 = 0.

b
Therefore, we can find a Mobius automorphism g of the D, u(z) = gzi_,
z+a

Vz € D, |b] < |a|, then define the matrix M, by

a b
M= |0 | bl < al,
a
so that
0O O a b 0 0
r, —1 b a 0 —1



In this case, we have

0 0 a b B 0 0

r; —1 b a N _axl—B bx1 —a
| 0 0
_;x—lbxlj -1

Hence, b = ax;, which implies that |b| < |a|. Therefore, we can take a = 1

and b = T; so that

0 0 1 7 B -O 0
r; —1 x —1 - 0 |z > + 1
o oo
B i 0 —1

Thus, in the case that » = 0, we have x = (21,0,0) € Gg.

Finally, we shall show that 7 is unique. For T, and Y, define X, and X,
respectively by

—r 0 —s 0
Xr = s and XS = y
0 -1 0 -1
where 7, s > 0. Hence, for |b;| < |a;|, j = 1,2,
(05} b2 —-T 0 —S 0 aq bl
MMXT = XSMM = _ = _
b2 as 0 -1 0 -1 bl ay
—asr —by —a18 —bys
= 3 = _
—bQT —C_LQ —bl —al
[ —asr  —by ] [ —a;s  —bis ]|
as az ay ax
= = , (3.10)
b b
L Q2 i L O i




where a1, as # 0 because jiq, o are Mobius automorphisms.

There are three cases; case (i) when 7 # 0 and by, by # 0, case (ii) when

r # 0 and either by = 0 or by = 0, and case (iii) is when r = 0.

Case (i): If r # 0, then it is easy to see from (3.10) that |r| = |s|, which
implies that r = s since r, s > 0. Therefore, r is unique.

Case (ii): This is the case that r # 0 and either by, or by is zero, which is
the scalar case. This case also follows easily from (3.10). Hence, r = s and
thus 7 is unique.

Case (iii): If » = 0, then from (3.10), we find that a;s = 0, which implies

that s = 0 (since a; # 0), therefore, r = s = 0, and hence, r is unique.

The next result is a generalisation of Theorem 3.3.1 when ab = p. In this
result, we show that the Carathéodory and the Kobayashi distances
between two points x1 = (a1, by, p1) and x5 = (ag, bg, p2) in G are equal in

the case that a1b; = p;.

Lemma 3.4.6 Let a;,b;,p; € C,i=1,2. If x1 = (a1,b1,p1) and

xo = (a9, by, p2) are in Gg such that a;by = py, then

CGE (1317 $2) = KGE (9617 xz)-

Proof Observe that, since z1 = (ay, by, a1b) € Gg,

alblz — b1 bl(CLlZ — 1)

T, = = = by.
(z1) a1z —1 a1z — 1 !
As before, since
biz—b
T.(z,) = “nz=o%n . D,
a1z — 1
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then for each x; = (a1, b1, a1b1) € Gg, we define the matrix

arby —b
xi=| . (3.11)

aq —1

Consider the Mobius automorphisms of the D, defined as follows:

zZ 4+ aq
= , Vz €D, and
1 zr—>alz+1 Z an
Z-bl
= 2> = , Vz € D.
He blZ—l

For p; and po as above, define M, and M,, by

1 a1 1 —b1
M,, = , laa] <1land M, = | , |b1] < 1.
aq 1 b1 —1

We shall multiply X; by M,, and M, to move the point z; to (0,0, 0).

Let |ai| < 1, then

XlMlul a1b1 —bl 1 dl
aq -1 aq 1
0 bi(la? = 1)
0 |(11’1—1
_ 0 —b
o -
Let |b1| < 1, then
1 - 0 —b
MuzXle = _
by —1 0 -1
0 0
01— |bf?




which corresponds to the point (0,0,0). Since Cg,, and K¢, are invariant
distances, the holomorphic automorphisms of Gg are isometric with respect
to Cq, and K¢,,. Therefore, the Mobius automorphisms on the left and the
right hand sides are isometric with respect to both distances, C¢, and K¢,.
Therefore, we can take z; = (0,0,0) and xs = (ag, by, p2) in Gg. Thus, by
Theorem 3.3.1,

CGE('xla 332) = KGE (xh 33'2).

Theorem 3.4.7 Let x = (z1,79,23) € C3. Then the following hold:
(1) If |z1] < |z3| then (x € Tp < |21* + |x120 — 23] > |23]* + |21 — To23]).
(2) If |zo| < |z3| then (v € Tg & |x2|? + |v120 — 23| > |23]* + |20 — T123]).
(3) If |z1| < |z2| then (v € Tg & |21|* + |10 — Tyas| > |22|* + |21 — Toxs|).
(4) If |za| < |z1| then (x € Tp & |xa]? + |v1 — Taws| > |21 |* + |0 — T123)).

X

Proof (1) Let < 1. That is, |z;| < |z3]. Define a Mobius

T3
automorphism g of D by

. $3(i’32 — [Z'l)

T3(x1z — 1)
For this ;v define M, by
1 -t
— €3
M, 0o
T3

so that M, induces p. As before, for each z € I'g, we define

xr3 —T2
X =

T -1
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Then

R T
- _ {L‘3 —T9
M,X = L3
T
— -1 r, —1
T3 -
_ 9 o
|21 T
T3 — —— —X9 + —
= T3 T3
—X1T2
0 +1
L XT3 .

lzs|? — 21> —xoZs 4+ Ty

— T3 x3
—T1Ty + T3
0 _ e T
L :L'g
[ w3(lasl” — |1]*)  23(22%5 — 71) S
7 P Ty —Iy
= 33'3(36’1372 - 563) $3(SC1362 - 373) =
0 -1 . —1

Since a’ = (2, x4, 25) € I'g, then by (1)<(4) of Theorem 2.1.4, we have

ToT3 — X1 |21 |* — |25]?

relyg <1

T1T9 — I3 T1T9 — T3

21 — Eas| + [[1]? — || < |e1s — 5], and

|21 — Tows| < [71709 — 23]
Therefore, if |z1] < |23/, then
v €T & |z1]* + |12y — 23] > |3]* + |21 — To23].
That is, (1) holds.
(2) This holds immediately since (x1, 22, 23) € 'y & (22,21, 23) € I'g.
(2) This holds immediately since (x1,x2,23) € ' & (21,73, %2) € I'g.

(4) This holds immediately since (x1, 22, 23) € T'p & (22,11, 23) € T'g.
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Chapter 4

The Topological and the
Distinguished Boundaries of I'g

and ['p-Inner Functions

In this chapter, we define Fg) and give a characterisation for its elements.

We also define the topological boundary and the distinguished boundary of
['g. In section 4.5 we define I'g-inner functions and present some results
concerning this type of functions. We also give a general formula for
rational I'g-inner functions.

We shall use the following notations; OI'g denotes the topological boundary
of I'g, G denotes the interior of I'g and bI'g denotes the distinguished

boundary of I'g.

Definition 4.0.1 Let K be a compact subset of C". The distinguished
boundary of K is defined to be the Silov boundary of the algebra A(K) of

functions continuous on K and analytic on the interior of K, that is, the
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smallest closed subset of K on which every function in A(K) attains its

maximum modulus.

4.1 Characterisation of Fg)

Let B(0;1/r) denote the open ball of centre 0 and radius 1/r in C?, and
D1/, denote the disc of radius 1/7 in C, where 0 < r < 1.

We define Fg) as follows:
T = {(a11, ass, det(A)) 1 A € My(C), up(A) <r},
where 0 < r < 1.

Lemma 4.1.1 (,Il’l'Q’xS) e 1"%) = <:Cl :L'Q :Cg

r’or’r?

Proof From the definitions of I'g and F(Ef) and by Remark 1.2.6, which

states:

ne(AA) = |Aues(A),

where A € C and A € M,(C), we find that

I b
(1,29, 23) € F( S g < r, for some b, c € C such that bc = x129 — w3,
C T3
T b
& —uE < 1, for some b, c € C such that bc = x1x9 — 23
CcC T2
I b
- - be xx T
& Up 70” xrz <1, for some b, c € C such that ——:—1—2——;’
c T2 rr ror r
ror
Ty T2 T3
<_7_a_2) PE?
ror’'r
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Corollary 4.1.2 Let z € C and v € C3. We define V" and T as

follows:
( 1rxy — 22
—1—3, if zxe # 1, and
\I/(’“)(x) _ ror— 2ZT9
Ty .
—, if zxog =71 and x1x9 = T3,
r

1 —
SR TR i aw A, and
T(T)(x) — T — 2T

To .
o iof zxy =1 and x1x9 = x3.

Note that U' is undefined when 2,25 # 73 and zzs = r. Also, TV is
undefined when x5 # x5 and zx, = r.

The next result follows from Theorem 2.1.4 and Lemma 4.1.1.

Theorem 4.1.3 Let x € C? and 0 < r < 1. Then the following are

equivalent:
(1) z €T,

(2) 1 —x12 — 20w + x32w # 0, for all (z,w) € B(0;1/r).

( T2 2 i I Zf'Q x3 1 T2 T3

—_ - = —— ——=1 <1, and
(3) r r r r? ror 72
T
<,
\ r
( 2 =
I T 1 I3 1 To T3
— + == —=—= ——= — 2| <1, and
(1) r r r r? rr r2l =7
x
2l<1
\

ol (x) is in the Schur class,

(5)

. T2
if x1x9 = 13, 7‘ < 1.

T (x) is in the Schur class,
(6)

if T1T2 = T3,

T
—1‘31-
,
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r1 b
(7) There exist b,c € C such that bc = x1x9 — x3 and ! <r.

C T2

(8) There exist b,c € C such that |b] = |c¢| = |v179 — 23|12, be = 2175 — 23

T b
and <r.
C T9
rl—ﬂz—gQ%—‘ﬁ -2 Nt >0, and
(9) r r 73 ror r2l = 7
A<, |2l <, |2
L | r r T
4
1_‘ ‘ _‘E ‘ﬂx—;——’>0, and
(10) rTrTr
<1,
\ T
( To T T
(1]) TTr T
‘<1 ‘_
’

The next result follows from Theorem 4.1.3.

Corollary 4.1.4 We have

Gp= |J TV

0<r<1

4.2 The Topological Boundary of ['p

In this section, we study the topological boundary and the interior of I'g.
Our results include a characterisation of points in the topological boundary
and in the interior of I'g.

Recall that

29| + |71 — Tows| + |w129 — 23] < 1, and
el o E2 |21 23| + |2122 3| < (4.1)
|$1|S;17

110



Lemma 4.2.1 Let x € C3. Then

x| + |71 — Toxs| + |T120 — 23| = 1, and
v €y & [ral’ A fos = o] - foaws — (4.2)
‘xlyélv

Proof If the equality in (4.2) holds, then f(D) "D € T, where
~1 _
f(z)= T forall 2 € D, because for = to be in the topological
T3z — T1

boundary of I'g, we must have that the image of the disc touches the unit

circle.

Figure 4.1: f(D)ND ={a} €T

The proof of this result is similar to that of (2) < (3) of Theorem 2.1.4,

where in this case since x is on the topological boundary of I'g, we have

x € Ol < |centre of f(D)| = 1 + radius of f(D).

The result above is not what one might expect. One might think that
boundary points can also arise from having equality in the second

inequality of (4.1). Below, we show that there are no such points.
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Remark 4.2.2 There are no points v € OI'g such that

|3’72‘2 + |x1 — Toxs| + |T122 — 23] < 1, and (43)

|ZL’1| =1,

Suppose that (4.3) holds. Let 71 = €? as |z1| = 1 and let ¢ = ezy — 3.

0

20| 4 | — Zows| 4 P20 — 3] <1 = |z + | — Zy(ePxy — )| 4 |g] < 1

0

= |zl + € — Py + Tog| + e < 1

= 24+ |(1—12) +e PToe| + || < 1,
where t = |x3|, but since |x2| < 1 by (4.3), we have
2 (1= 29Z0) + € OTge| + |e] > 2+ 1 =12 — |Toe| + |e] = 1 — |zoe| + || > 1,

which a contradiction. Therefore, if © € OI'g, then (4.3) does not hold.

Remark 4.2.3 Lemma 4.2.1 shows that for all x = (x1,x2,x3), where

lz;] <1, j=1,2,3 such that

|[E2|2 + |[E1 - i’QZL‘3| + |IL‘1JZ2 — .Z'3| = ]_, (44)
1—
there exists z = UL e T such that U(z,z) €T.
To — T3
1— ax; . . .
Example If x3 = 0, we have z = . In this case, equation (4.4) is
T2

1
equivalent to || + |z2| = 1 and so ¥(z,x) = — € T. Hence the points
a

xz = (Jz1|,1 — |21],0) are on the boundary of I'g.
Remark 4.2.4 For all x = (x1, z2, 23) € C3 such that

|[E2|2 + |$1 — {fQIE3| + |331:B2 — 5133| = 1,
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1
there exists o such that —— € T, for some x.

Ta(z)
Thus
" 1—ax; x1(zy — axs) — (1 — axy)xs
_ T —
Ty — Qs xo — axz — (1 — axy)wy
. T1T9 — T3
a(r1xe — T3)
B 1
= -
1—ax _ 1
Therefore, for z = ——— € D, a € T, we have |¥(z,z)| = |—| = 1.
Lo — XT9 «

The table below is a guide to some of our results concerning the

characterisation of the topological boundary and the interior of I'g.

Case xz € 0l'y r € Gg

x1T9 # w3 | Theorem 4.2.5 | Theorem 4.2.8

r122 = x3 | Theorem 4.2.6 | Theorem 4.2.9

Theorem 4.2.5 For x € I'g, when x1x5 # T3,

where To(z) = L_mf, for all z € D.
12 —

Proof Note that in the case that xyz9 # x3, we have |x1| # 1.

Consider the M&bius automorphism g of D given by:

24+ I =
= , Vz e D.
#z) T12+1 :

Since p is an automorphism of D, this is the same as showing that
zedlp T, (kD) NT £ 0.
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The map Y, o p is linear taking

T1Tg — T3 To — T1T3
D>
Z — 1_‘x1’22 1_‘x1’2,
and so maps D to a disc with centre C' = ?_—fl? and radius
— |z,
|z129 — 23]
R=-—-———.Th
o us,
T.D)NT#0 & [C|+R=1
’352 - 571333’ |3315172 — l‘g’
& 1
1 — |x;)? 1—z)?
’3’71|2 + |xe — Tyxs| + |T122 — 23] = 1, and
-~
<~ T E 8FE

Theorem 4.2.6 For x € I'g, when x1x9 = 3,

x €0l & |z1| <1 and |xe| =1, or x| =1 and |z5] < 1.

Proof By Lemma 4.2.1, we have

|zo|? + |21 — Zows| + |z122 — 23] = 1, and

x € 8FE =
- |zo|? + |21| |1 — |22]?] = 1, and
- 21| [1 = |z2[*] = 1 — |22]*, and

& |z <1and |zg| =1, or |z1| =1 and |z5| < 1.
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The next characterisation of points on the topological boundary of I'g

follows from Lemma 4.2.1 and Remark 4.2.3.

Corollary 4.2.7 Let x = (x1, 29, 73) € C3. Then the following are

equivalent.

(2) |x2|2 + |371 — 5321U3| + |231332 — .T3| = 1, and

(3) 21 [* + 22 — T123] + 2122 — @3] = 1, and

ry b
(4) There exist b,c € C such that bc = x1x5 — x5 and ' = 1.

CcC I9

(5) There exist b,c € C such that |b| = |c| = |z125 — 13|'/%, be = 1125 — 13
il b
and =1
CcC X9

1— |21 = |zo|® + |23)* — 2|m122 — 23| = 0, and

(6)

[z <1, |2 <1, |as| < 1.

1— |21 + |2a]® — |23|> — 2|1Z3 — T2| = 0, and
(7)

lz1| <1, o] < 1.

1+ |.Z'1‘2 — ’$2|2 — |£L’3’2 — 2’.%'2.1'3 — i'1’ = O, and
(8)
’$1| S ]., |l’2| S 1.

Next, we shall find conditions for when z is in the interior of I'g.
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Theorem 4.2.8 For x € I'g, when x1x5 # T3,

zeGg e T,(D) CDh,

w, for all z € D.
r1z — 1

where To(z) =
Proof Since T, is in the Schur class, we have

re€Gp & x¢dlg

& Pz € Dsuch that T,(z) €T

< T,(D)cD.

Theorem 4.2.9 For x € I'g, when x1x9 = 23,

r€Gg <z <1 and || < 1.

Proof Clearly, by Theorem 4.2.8,

|x2|2 + |x1 - j251U3| + |$1$2 — I3| <1, and
r€e€Gp &
|f[)1| < 1.

Hence, if 2129 = x3, then

|za|? + |21 | (1 — |22]?) < 1, and
reGp &
|£L'1’ < 1.

[21] (1= [2a]?) < 1~ |asf?, and

=
|£L’1| < 1.

& ] < 1 and |zo] < 1.

The next characterisation of points in the interior of I'g follows from

Theorem 4.1.3, Corollary 4.1.4 and Lemma 4.2.1.
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Corollary 4.2.10 Let z € C?* and Gg = {(a11, asz, det(A)) : up(A) < 1}.

Then the following are equivalent.

(1) Z‘EGE.

) |z2|? + |x1 — Toxs| + |T122 — 23] < 1, and

|x1| < 1.

s) |12 + |xo — Tyx3| + |T122 — 23] < 1, and

|£L’2| < 1.

0 U(.,z) is analytic in D and |V(.,x)| <1

ifl‘lxg = I3, |£L‘2| < 1.

5) Y(.,z) is analytic in D and |Y(.,x)| <1,

ifl‘liﬂg = I3, |ZL'1| < 1.

x; b
(6) There exist b,c € C such that bc = x1x9 — x3 and ' < 1.

CcC I

(7) There exist b,c € C such that |b| = |c| = |v125 — 23]"/2, be = 2129 — 3
I b
and < 1.
C T3

1— |21 — |zo|® + |23)> — 2|z129 — 23] > 0, and

(8)
|£I§'1’ < 1, ‘1’2’ < 1, ‘.1'3‘ < 1.

1-— |ZE1|2 + |ZL‘2|2 — |l’3|2 — 2|£L‘1i'3 — i’2| > 0, and

lz1] < 1, |zo] < 1.

(9)

(10) 1+ |ZL’1|2 — |ZE2|2 — |Z’3|2 — 2|l‘2[f'3 — j]1’ > 0, and

lz1] < 1, |zo] < 1.
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Remark 4.2.11 If x = (x1, 29, 23) € G, then |x3| # 1.
To see this, let |z3] = 1. We may assume that x3 = 1. Then

x € GE <~ ’£E2|2 + |$1 — f2$3| + |$1ZE2 — .173| <1 (45)

S |wa? + |21 — To| + |22 — 1] < 1.
Let e = 1 — Xy so that £y = To + . Then

r€Gg & |wo®+le| +|aa(Zy +e)—1] <1

Sz + |e| + |z + 232 — 1| < 1,
but
|a|” + |e] + [|zal? + exo — 1| > [z + [e] — |22]® — |eaa| +1 > 1,

which is a contradiction, unless |zs| = 1, which cannot happen since

|zo| < 1 by (4.5). Therefore, if x € G, then |z3| < 1.

4.3 Peak Sets

We need the following definitions and results from T. Gamelin [21] in order
to find the distinguished boundary of I'g. Throughout this section, let K

be a compact metric space and A be a uniform algebra on K.

Definition 4.3.1 A point x € K is a peak point if there is a function
f € A such that f(x) =1 while |f(y)| <1 fory € K, y # x. Any function

f which satisfies this condition is said to peak at x relative to K.
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Definition 4.3.2 A closed subset H of K is a peak set if there is a
function f € A such that f(z) =1 forxz € H, and |f(y)| <1 fory e K\H.

Any function f satisfying this condition is said to be peak on H.

Definition 4.3.3 A closed subset H of K is a p-set, or generalised peak

set if it is the intersection of peak sets.

We state the following result from Gamelin’s book without a proof. For a

full proof see Theorem 12.5 of [21].

Theorem 4.3.4 Let B be a closed subspace of C(K) and B* be the space
of all measures orthogonal to B. Let H be a closed subset of K such that
my € BL for all measures m € BL. Let f € B|g, and let p be a positive
continuous function on K such that |f(y)| < p(y) fory € H. Then there is
g € B such that g|lg = f and |g(z)| < p(x) for all x € K.

Corollary 4.3.5 If H is a p-set of A, and F C H is a p-set of A|y, then
F is a p-set of A.

Example In Definition 4.3.2, if we take K to be I'g and

— 1
H ={(z1,71,1) : 21 € D}, then p = % has a peak set H.

4.4 The Distinguished Boundary of ['g

Agler and Young [9] have shown that the distinguished boundary of the

symmetrised bidisc I' is the set

i = {(21 +22,2122) I21,%9 € T}
= {(s,p) €C*: s=3p,[p| = 1,[s] < 2}.
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In this section, we shall show that the distinguished boundary of I'g is the
set

B:={x = (21,29,23) € 'p: 21 = Toxy, |13] =1}

Lemma 4.4.1 'y NR? is a tetrahedron.

Proof Let x = (a,b,p) € R3. Recall that, if |a| < 1, then

h—
:BGFE@‘ Zpgl,VzE']I‘.
1—za
We shall find
zp—b‘
sup
zeT za —1

when a,b,p € R. Observe that, when |a| < 1,

p —=b 1 —a p—ab b—pa
a —1 a —1 0 1—aa

[ ab—1p b—ap
- 1—aa 1—aa
0 —1

Therefore,

Observe that

1—aa 1—aa v
0 -1 1
is biggest at w = +1.
Hence, — | is biggest at
1 —a +1 +1 —a
a —1 1 +a —1
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That is, at

1 —

a:—l, or
a—1
1—a

1.
—a—1

Thus, Pz 1 is biggest at z = F1. Therefore,
az —

—b —p—b
(a.bp) TR, |a| <1 & 2=Y g lZ2=0
la — 1 | —a—1]
b oy
e 1< cqand —1< 277 <4
a—1 —a—1
& —(a—1)>p—-b>a—landa+1>-p—>b>—-a—1.

Thus, 'y N R? is a tetrahedron with four faces given by the inequalities:

—a+b—p+1>0 , —a—b+p+1>0,

a+b+p+1>0 , a—b—p+1>0, (4.6)
where a,b,p € [—1,1].

Moreover, the vertices of this tetrahedron are:

(1,1,1),(1,-1,-1),(-1,1,-1),(—-1,-1,1).
In the case that |a| = 1, we have

la]? + |b — ap| + |ab —p| < 1, and
relyr &
bl <1
|b—ap| + |ab—p| <0, and
~
o] <1
=ap, ab=p, and
=
bl <1

< |b| = |p| and |b] < 1.
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Clearly, points (a,b,p) € Tr NR3 such that |a| = 1 and |p| = [b| < 1 are in

the tetrahedron described above.

(_]—a ]-7 -

Figure 4.2: I'p in the real case

Lemma 4.4.2 The set C = {x € 'p: x1 = Toxs, |x2| =1 and |z3| < 1} is

disjoint from the distinguished boundary of I'g.
Proof Let x € C. We can fix xo with |z2| = 1 and define a map A from the
open disc into C' as follows:
h:D — C,
w —  (Tow, x9,w).

Therefore, we have an analytic disc in C' that contains the point x, but no
point in the interior of an analytic disc can be a peak point. Therefore,

such an z is not in the distinguished boundary of I'g.
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Lemma 4.4.3 A point x such that |x1| =1, |z3| < 1 and x1x9 = 23 is not

in the distinguished boundary of I'g.

Proof Let z € D, i.e., |z| < 1. Then (x1,z,112) € T'g, because

2a|® + |21 — Toma| + |T122 — 23] = |2|° + |21 — 221 2]
= |2+ [a]]1 = |2

= P+ 0= <1

Hence, there exist analytic discs that contain the points x € 'y with
|z1| = 1 and x129 = 3 or with |x3] = 1 and x1x9 = x3. Therefore, such

points x are not in the distinguished boundary of I'g.

Theorem 4.4.4 The point (p,p, 1) is a peak point relative to H C ',
where H = {(z1,71,1) : x € D}.

Moreover, (p,p, 1) is a peak point relative to T'g.

Proof Let x = (21, 29,23) € H CT'g. If 3 = 1 and x; = Z5, then we can

define a function f, that peaks at (p,p,1) in H, where 0 < p <1, by

(21— p)(22 — P)
I .

(21,20, 23) =1 —

Clearly, f, is an analytic function in H such that when z; # p, we have

- _ (21— p)(T1 — p)
fp(mhxl’l) = 1- 4

2
o |331 pl <
4

= 1 1.

Hence, |f,(z1,21,1)| < 1. Moreover, f(p,p,1) = 1. Therefore, f, peaks at
(p,p,1) in H.
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Let d be a metric on C? and let

1
9(51317932>$3) = m

Then |f,(y)| < g(y), for all y € H. Hence, by Theorem 4.3.4, f, is analytic
on I'g with |f,(y)| < g(y), for all y € I'y. Therefore, (p,p, 1) is a peak point

relative to I'g.

(r129 —x3) + 1
2
relative to U'g, for, g is an analytic function in D such that |g(x)| < 1,

Remark 4.4.5 The function g(z) = peaks at (0,0, —1)

because

(x109 —x3) + 1
2

T1To — T3
2

l9(z)| =

E

and g(0,0,—1) = 1. Moreover, |g(z)| =1 =z =(0,0,—1), for,

(Ill‘g — ZL’3) +1
o(a) g
= xxe —x3 =1, by (3) of Theorem 2.1./
= |x1] =0 and |z2| = 0,
Hence, x1 =0 = x5 and x5 = —1.

Let bI'g denote the distinguished boundary of I'p and recall that B is

defined as follows:
B = {l‘ S FE 1T = To3, |JZ3| = 1}

Next, we find necessary and sufficient conditions for x to be in B and in
bI'g, then we show that bI'y = B. The table below is a guide to these

results.
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Case reB rz € bl'y ', =8B

x1x9 # x3 | Theorem 4.4.6 | Theorem 4.4.8 | Theorem 4.4.10

z1T9 = x3 | Theorem 4.4.7 | Theorem 4.4.9 | Theorem 4.4.10

w, for all z € D. When 139 # 3,
12— 1

Theorem 4.4.6 Let T,(z) =

z € B e T,(D)=D.

Proof In the case that zx9 # 23, we have |z1] # 1. Consider the M&bius
automorphism s of D,

24T =
= , VzeD,
11(z) PR

Since p is an automorphism of D, it suffices to prove that

ze€Be T, (1(D))=D.

The map T, o  is linear, taking

T1T2 — T Tg — 1T
D3z+— 11_2|x1|23z 12_ |:v11|237
and so maps D to a disc with centre C' = 9612—_—\0211? and radius
R = M Therefore,
1 — |z )?
T.D)=D & C=0and R=1

& x9=Tiw3 and |T130 — 23] = 1 — |21 |?
& x9 =Tz and |21Z123 — 23] = 1 — |21
& X9 = Tyxg and |x3] ‘1 — |x1|2‘ =1— |z
& 1y = Taxg and |r3| =1
& e B.
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Theorem 4.4.7 When i1z = 23,

|z1]| = |22 = |23] =1z € B.

Proof (=) This implication is clear; if z 29 = 3 and

|z1| = |2 = |x3] = 1, then
T1ToTog = Toly = ZL‘1|I2|2 = ToX3 = T1 = ToT3.

Hence, 21 = Tows and |z3| = 1.

(<) If 2129 = x3, 11 = Toxz and |23 = 1, then
Tr1 = Toly = |1’1| = |£i‘2$3| = |ZL‘1| = |[L’2|,

Hence,

T1To = T3 = Tol3zly = T3 = ’332‘ =1.

Therefore, |z1| = |zo| = |z3] = 1.

In the following results, we find conditions on x so that it is in the

distinguished boundary bI'g of I'g.

Theorem 4.4.8 When x1x9 # 3,

z € by < T, (D) =D,

where To(z) = L_xf, for all z € D.

12 —

Proof (<) If T,(D) = D, then T, is a Mobius automorphism of . Hence,
we can compose it with its inverse T;l so that we get Y., where

e=(0,0,—1).
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Therefore, there exists an automorphism u of I'g that sends points of I'g to

(0,0, —1), which is a peak point by Remark 4.4.5. Hence, x € bI'g.

(=) If T,(D) # D, then we have two cases; (i) either z is in the interior of
'z, or (i) that T, (D) touches T.

Case (i): Points in Gg are not peak points because we can embed an
analytic disc w — (1,22 + cw, x3) € I'g for |w| < 1 and a small ¢, this
analytic disc contains (1,2, x3), hence (1,2, x3) cannot be in the
distinguished boundary by the maximum modulus principle.

Case (ii): Let & = (21,29, x3). Recall that when T,(z) touches T, we have
T.(1) = {a} € T. We may compose T, (1) with an automorphism so that

we move {a} to 1. Therefore, we have Y,(1) = 1. Hence,

xr3 — T2

= 1.
Ty — 1
That is,
r3— Ty — 21+ 1=0. (4.7)
For x € I'g, define
P Tr3 —XT2
T —1

Let H denote the right half-plane. Consider the map h : H — D, defined as

—z+1
hz) —
()= —,
which corresponds to
-1 1
-1 -1
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Let L(z) : H — H. Then
Ly Lo B -—1 —1- -:1:3 —X -1 1
Ly 1] N s N -1 -1
- -1 -1 1 —x3+ X2 T3+ T
N 1 —1_ i —r1+1 x1+1
T3—29+r1—1 —23—29—71—1

—r3t+wot+mx—1 13+ —11—1
ZL‘3-I2+1’1—1 —1'3—1‘2—1'1—1

0 33’3+332—.’L‘1—1

1'3—£C2+561—1 —$3—$2—$1—1

£B3+.1'2—$1—1 1’3—|—$2—.’L'1—1
0 1

From (4.7), we have x5 = x1 + 22 — 1. Therefore, L; = 0 and

ZE3—JZ2+I1—1_ZE1+I2—1—ZE2+I1—1_1—.’L’1

Ly = = = ,
5 $3+I2—$1—1 $1+JI2—1+I2—(L’1—1 1—I2
I . —1'3—332—1'1—1_—$1—1’2+1—l’2—$1—1_$1+x2
S 233+£L'2—ZE1—1 N ZL‘1+$2—1+{B2—$1—1 _1—1‘2'

Therefore, L(z) = L3z + Lo, where Lz must clearly be a real non-negative
constant. We can write L(z) as follows
1— T T+ X2

L(z) = 1—29 1—um
0 1

Hence, we can define a family of analytic functions L. as

Ls Lo+
L(2) = 3 Lo 7



where € > 0 is sufficiently small and A € D. Therefore, given a solution as

L(2) = L3z + Ly, where L3 > 0 and Ly : D — H, we have

xh  —ah B -1
. —1 -1
—1
—1

Lg L2—|—€)\ -1 -1
0 1 1 -1

—L3+L2+€)\ —L3—L2—€)\
1 -1

Lg—Lg—&)\—i‘l L3+L2+€/\—1

_Lg—Lg—{f/\—l L3+L2+5)\+1
L3—L2—€)\+1 L3+L2+E>\—1

CLst+ Lo+ed+1  Ly+Lotel+1

Lg—L2—€)\—1

L La+t Ly ter+1

—1

where
1
Ls = xl, 2:x1+x2andx3:x1+x2—1.
1—.’132 — X2
Observe that
, —2x7 — eM(1 — x4 £ 0
a— —x1as e — 0,
! —2 —eA(1 — x3) !
—2ZE2 — 6/\(1 — [Eg)
Ty, = e p—" — T9 as e — 0,
21 — 21 — a2) — eA(1 —
Ty = (L= 21— 22) — X x2)—>—1+x1—|—x2:x3ass—>0.

—2 — (1 — x9)

Hence, as ¢ — 0, (2, 2}, %) — (21, 22, 23) € ['g. Therefore, this family L.
1> L2, T3

of functions is analytic and contains L(z). Therefore, z = (x1, 9, x3) is not

a peak point and so it is not in the distinguished boundary of I'y. Thus,

1,(D) = .

O
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Theorem 4.4.9 For x € I'g, when x1x9 = 3,

r €'y & || = |xo| = |23] = 1.

Proof (=) If z129 = 3 and |z1| < 1 or |z3| < 1, say |z2| < 1, then there
exists an analytic disc (z1, z,212), z € D, this disc contains (x1, z2, T123).
Therefore, points = € I'g such that 2125 = x5 and |z1| < 1 or |zo| < 1 are
not in the distinguished boundary of I'g. Hence, points x such that
1Ty = x3 and |z1| = 1 = |z are in bI'g. Since we also have, x1 = Zoz3 and
|z3| = 1, we have |z1| = |z3| = |z3] = 1.
(<) We have |x1| = |z2| = |z3] = 1. Let p = xy, hence, p = 2273 and
pp = 117973 = x13T3 = |13]* = 1. Therefore, x = (1, 223, v373) = (p, P, 1),
which is a peak point by Theorem 4.4.4. Thus, x € bl'g.

O

The next result follows immediately from Theorems 4.4.6, 4.4.8, 4.4.7 and

4.4.9. Tt shows that the distinguished boundary of I'g is in fact B. That is,
B=WWg={x€lr: x; =Tz, |z3] =1}
Corollary 4.4.10 We have
rebl'g sz eB.

Theorem 4.4.11 Let x = (xq, 39, 23) € C3. Then

U, (z)| =1, YVwe T, and
x € bFE <~
|T,(z)| =1, Vw e T.

Proof Since U, and Y, are automorphisms of D, then by continuity we

have that ¥,(T) =T and Y,(T) = T.

130



4.5 ['g-Inner Functions

In this section, we define I'g-inner functions and present some results
concerning this type of functions.

Fatou’s Theorem [29] states that a bounded analytic function on the unit
disc has radial limits at almost every boundary point.

An H® function on D that has unit modulus almost everywhere on T is
called an inner function [27]. Blaschke factors are inner and therefore so
are finite Blaschke products. Infinite Blaschke products are also inner, a
full proof of this can be found in [2].

The following definition of I-inner functions can be found in [§].

Definition 4.5.1 A I'-inner function s an analytic function ¢ : 1D — T°
for which almost all radial limits ¢ (eie), 0 € R, lie in the distinguished
boundary bI' of T (defined as the Silov boundary of the algebra of continuous

functions on T which are analytic on the interior of T').
We define I'g-inner functions as follows:

Definition 4.5.2 A I'g-inner function is an analytic function ¢ : D — I'g

such that ¢(X) € bl'g for almost all X € T.

An example for a ['g-inner function is ¢(z) = (2, 2%, 2%), z € D.

Definition 4.5.3 A matriz valued function F on D is said to be a

matricial inner function if it s unitary almost everywhere on T.

Theorem 4.5.4 A function ¢ : D — I'g is a U'g-inner function if and

only if there exists a 2 x 2 matricial inner function v : D — My(C) such
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that for all A € D,

P(A) = (11(A), h2a(A), det (X)) .

Moreover, if 1 is rational, so is .

Proof (<) Suppose that there exists such a matricial inner function

Y : D — My(C). Then
|1(N)]| < 1, for all A € D.

Therefore, by Theorem 2.2.5, ¢ is analytic and maps D — ['g.

Since 1 is an inner function, for almost all A € T,

Y(A) = Y Yl is unitary,

Pa1(A)  aa(A)

which means that

[oull® + [¢al® = 1,
[zl + g2l = 1,
Y11thra + Yoty = 0.
We shall show that p(\) € bl'g, for almost all A € T. That is, for almost all

AeT,
(11(N), Ya2(A), det (X)) € bI'g.

That is, we shall show that for almost all A € T,

[det YA =1 and 11 (X) = P2(A) det P(A).

Since v is unitary, ||¢|| = 1, therefore, || det ()| = 1, for almost all A € T.
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MOI'@OVGI‘, since Hw22H2 + ”w12|’2 =1 and w11||w12||2 = _15221#121#21; then

i = Yulllvel® + llvel?)
= dullval® + u ¢l
= Yulvnl — vutitn
= Yoa(P11%22 — Yr1a¢ar)
= gy det ).

Therefore,

e(A) = (W11(\), Pz (N), det (N)) € b

Thus, ¢ is a I'g-inner function.

It is clear from the definition of ¢ that if 1) is rational then so is ¢.

(=) Conversely, suppose that ¢ is a I'g-inner function. Construct the 2 x 2

Schur function ¢ exactly as in the proof of Theorem 2.2.5. Thus, we have
[¢i;] analytic such that ||¢|l <1, and ¢ = (11, P20, det ).

Hence, there exists functions 5,19, € H* such that

[12]]* = (b1 ]|* = 114092 — detp|| on T,

where det ¢ = Y1192 — 112991
Since ¢ = (111, W92, det 1) is a I'g-inner function, then for almost all A € T,

P11(AN) = aa(N) det i(N) and || det (N)|| = 1.

We shall show that 1) is unitary almost everywhere. That is, we shall how

that

ol + o ]? = 1,
V111g + Porthey = 0.
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There are two cases; case (i): when 111 # 0, ¥99 # 0 and case (ii): when
either 111 = 0 or 1y = 0.

Case (i): In the case that 111 # 0 and 199 # 0, we have

© = (Y11, 122, det ©) is a ['g-inner. Hence

Y11 = P det ) = [ohn||* = [Jehaa .

We also have

”¢12H2 = H¢21H2 on T.
Therefore,
[ ll? + 1wl = l[twll® + Ilebe2l?.

To show that 1 is unitary, it is enough to show that [|111 > + ||¢21]]* = 1, or

that ¥11912 + ta1¢2 = 0, because

ul[tnsll? + ratnthas = 0

Yul[rzll® + o (Y11¢e — dety)) = 0
u[[r2l® + ra[[22]|® — a2 det i = 0
ullvial® + Yul¢el® — i =0

i ((lrz]|* + [l = 1) = 0

[ral® + [l = 1.

Y1112 + Ya1tha = 0

r ¢ ¢ ¢ 3

Since [[P1a® = [|121]|? = [[¥113022 — det || on T, ¢h1; = thap det ¢ and
||det || = 1, then

WnHQ + leQHZ = HwQZHQ + Hwnwzg — deth
= [[22]|* + || 11022 det ¢ — det o]
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[Yo® + 12l = |wa2l” + | det 9] ||1 = (|22
= |[¢22l? + 1 — [[¢p?

= 1.

Hence,

[aall? + a1 = 1 = [[na]l* + llebal*.
Therefore, 1 is unitary, and hence, v is an inner function.

Case (ii): In the case that either 1);; = 0 or ¥ = 0, it is easy to show
that ¢ is an inner function, for, suppose that ¢y, = 0.

Since 111 = 19y det ¢ and || det || = 1, then
Yag = 111 det 1.
Hence, 111 = 199 = 0. Moreover, when 11 = ¥ = 0, we have

[12]]* = |21 || = || det || = 1.
Therefore,
[ ll® + [vall? = 1 = [[¢r2]|* + [[el” and 11912 + Y2120 = 0.

Thus, 1 is unitary, and hence, v is an inner function.

Theorem 4.5.5 Let z\9) = <x§j),x(j),xgj)) elpand \; €D, 1 <5< n. If
there exists an analytic function f : D — T'g such that f()\;) = 29,
1 < j <mn, then there exists a rational I' g-inner function ¢ : D — I'g that

satisfies the same interpolating conditions.
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Proof Let zU) = (xgj),xgj),xéj)> c€I'gand \; €D, 1 < j <n. Suppose
that there exists an analytic function f : D — 'y such that f()\;) = 2,

1 < j <n. Then by Theorem 2.3.1, there exists b;, c; € C such that

biej =22 — ) 1< j<n,

Ty b .
) are contractions
¢ xgj)
and
xgj) b .
Aj— . 1<j53<n
¢ x(23)

are solvable matricial Nevanlinna-Pick data. That is, there exists a solution
to the matrix interpolation above. Since there exists a solution to the
matricial interpolating problem, then there exists a solution that is rational
and inner [2].

Therefore, by Theorem 4.5.4, there exists a rational I'g-inner solution that

solves the interpolation problem.

Later in Theorem 4.5.7, we give a general formula for rational I'g-inner

functions from D to I'g.

The next result follows from Theorem 3.1.1 and the definition of I'g-inner
functions. In this result, we find a formula for a rational I'g-inner function

F : D — I'g such that F(0) = (0,0,0) and F(\g) = (a,b,0).

Theorem 4.5.6 Let 0 < by < ag <1 — by and let \yg € D. If there exists an
analytic function h : D — Gg such that h(0) = (0,0,0) and

h(Xo) = (ag, bo,0), then there exists a rational I'g-inner function
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F = (F, Fy, F3) : D — T'g, satisfies that F(0) = (0,0,0) and
F(X\o) = (ag,b0,0). This F' can be given as follows:

L2 e -2 ARG B) — b)
FO)= (1 — by — Abop(A)" 1 —by — Abgp(A)” 1 — by — Aboip(N) ) 7

for all A € D, where ¢ is a scalar inner function such that p(\g) = o,

0<o<1.

Proof Let \y € D. Suppose there exists an analytic function h: D — Gg
such that h(0) = (0,0,0) and h(Ag) = (ag, by, 0). Therefore, by Theorem

3.1.1, there exists an analytic function f : D — M;y(C) such that

0 ¢ ag TV agby
f(O) = = X1 and f()\()) = = XQ.
0 0 T_l\/agbo bo
where A\ = C (0,1), L= bo
Let
A
f()\) = M—X1 <>\_X3> ) VA e ]D)a
0
where
[ —apv1 —2b bov/by i
(1 —=bo)v/1—0y (1—"bg)v/1—"0g
X3 == — MX1 (X2>
—al /T2
L (= b)VT= T (1= bo)I =Dy |
Let
1 0
N'X3=U Vv,
0 o

where 0 < ¢ <1 and U,V are unitaries.
If o = 1, then \;' X3 is inner. Suppose that o < 1. We are seeking a

rational I'g-inner function F' such that F(0) = X; and F(\g) = X3. Hence,
My, 0 F(0) =0 and My, o F(A\g) = X
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We write Mx, o F' = MG, where G is a Schur function such that

1 0
G\ = )\ang =U V.
0 o
Let
0
U'GV* = ,
0 ¢

where ¢ is a scalar inner function such that ¢(A\g) = 0. Let

. ()\— /\0) —O'()\/_\O — 1)
PN = T A = (e 1)

Clearly, ¢ is an inner function that maps Ao — o.

Therefore, we can take

1 0
FAN)=M_x, | AU Vv
0 @A)
This F' is inner and satisfies F'(0) = X; and F(\g) = Xo.
10
We shall find unitaries U, V' such that A\, IX;=U V.
0 o
1—10
We have \;' = ® . Hence,
Qg
[ —VI-2b  bovbo ]
\/1-()0 aox/l—bo
Aot X = = X3

Let XY = UP, where U us a unitary and P is a positive definite Hermitian,

ie, P*=P.

_bO

—bov/1 — 2by

VI —1o

apy/ 1-— bo
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Therefore,

[ —/1 — 2b —/by 1T —v/1—2b bov/bo
\/l—bo \/l—bo \/1—b0 ao\/l—bo
bov/bo —bov/1 — 2by —vbo —bov/1 — 2bg
L CL()\/l—bQ Cl()\/l—b() Jd L \/1—b0 CLO\/l—bQ
1 0
= b
0o 2
Qo
Since XY = UP, then
U = XJ{P!
[ —V/1—2b bov/bo ]
\/1—[)0 CLQ\/]_—bO 1 0
~Vby  —bo/T= 2 b
L 1-— bo agy 1-— bo J
[ —/1—2by Vb 1
1 —by V1 —1bg
—/bo —V/1 —2bg
L 1—bg v1—"by

1/2

Therefore, V' is the identity 2 x 2 matrix and so \;' X3 = UPV as required.

Next, we construct a I'g-inner function F' = (Fy, Fy, F3) : D — I' such

that F(0) = (0,0,0) and F(X) = (ao, bo, 0).

We have




L V1= b
[ —v/1—2bg —vVbop(N)
1— b V1 — bo
= A = \X;
Vbo —v/1 —2byp(N)
1— b V1 — bo

Therefore, after calculations we have

F() = M_x, (AXS)

AL = 2by) —(1 = Ap(A))v/bo(1 — bo)
1 — by — Abop(A) 1 — by — Abop(N)
A = Ap(A) V/bo(1 — bo) Ap(A) (1 — 2bo)
1 — by — Abowp(A) 1 — by — Abowp(A)
Qo bO
where \g = <1,and p(Ng) =0 =— < 1.
—bo ap
Clearly,
A(1 — 2bg)
F =
1) 1— by — Abop(N)’
_ e = 2by)
RO = 17 bo — Abop(N)’
and

F3()\) = det F()\) — )‘290()‘)(1 — 260)2 B )\bo(l - 50)2(1 — )\30()\))2

(1 —bo — Abop(N))

_ AAp(A) (1 — bo) — bo)
1 — by — Abop(A)
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Therefore,

LA 2) A= 26 AL By) — bo)
FO= (1 — by — Abop(A)" 1 — by — Abgp(N)” 1 — by — Abop () ) '

Clearly, Fl(O) = FQ(O) = F3<O) = 0, and

ap(1 —2b

Fi(Xo) = mzam
bo(1 — 2b

F5(No) m = bo,
ao(bo — bo)

F3(o) b -0 0.

Note that F'is a I'g-inner function, because, for almost all A € T,

rMPwm—
B0 =

b
P—Aﬂnlj%

Moreover, Fi(\) = Fy(\) F3(A) because
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/_\W(l —2bg) A(Ap(A)(1 = bg) — bo)

BA)F(A) = 1— by — Abop(N) 1 — by — Abop(N)

o 1 _ — bo) —

) A 9O(A)(l 2b0) (Ap(A) (1 = bo) — bo)

bo
(1 by — /\@(A)) (1 —bo — Abop(N))

A(1 — 2bg)

1 —bo — Abop(N)

— ().

Hence, F' is a rational I'g-inner function.

In the next result, we use the following notations; u denotes a Mdbius

automorphism of D and B denotes a Blaschke product, that is,

where ¢ € T and a; € D.

Theorem 4.5.7 If v = (21, 29,23) : D — T'g is a rational I'g-inner

function, then it is of the form.:
z(A) = (Bi(A)z1(A), Ba(A)z2(A), Bi(A) B2(A) B(X))

for all X € D, where By, By, B are Blaschke products,

/

o H;L()‘ — 2i)

z1(A) = - , and
W H?=1<)‘_pj)
_ H:'L()‘ — w;)
S P

where o, 3 € T, |p;|, lg;| > 1, z;,w; € C and m’,m,n’,n € N.
J J
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Proof We shall assume that x1()), zo(A\) and z3(\) have no roots at zero
by picking a Mdbius automorphism g so that z1(\), 22(A) and z3(\) have
no root at zero, where \ = (). During the proof of this theorem, we shall
write A instead of A. Note that later in the proof, we shall use a Blaschke
product B;(\) that makes x;1(\) and z3(\) have no common zero in D and
a Blaschke product By(\) that makes z5(\) and z3(A) have no common

zero in D.

Now, we are seeking a rational I'g-inner function
JI(A) = (l’l()\),l‘g(/\),l’g(/\)) D —Tg.

Since x is a I'g-inner function, then z(\) € bl'g for almost all A € T.
Therefore, 1 = Toxsy and |z3(\)| = 1, for almost all A € T. Thus, 3 has to
be a Blaschke product. That is, x3(\) = B(\), where A € D.

Let

21\ = aH;n1(/\ - Zz)

H?; (A —w;)
H;'L:1()‘ —q)

where |p;|, |g;| > 1 and z;, w; € C. We have

za9(A) = [

T1 = ToZ3z ON T = .Tl()\> = .732(/\)5133(/\)7 |/\| =1

= n1(A) =2N)BN), |\l =1

/

— OZHZ;()\—%) _ Hg%l()\_Wi)Ba(/\), |/\| -1

H?:l (A —pj) Hj:l (A —qj)
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I

[[Z (0 —2) _ oIl

oA =py) 1L
I1
I1

mlzfgﬂngnT = «

/

[IE A —=) 277 (A ‘
= - =
aH?ﬂ()‘ p;) n (l _ CT)
7j=1 A J
= Qa H:til()\ Zl) BA_m 1—1(1 )\wl) Ba()\), )\ G T

where |ay| < 1.
We may assume that x1(A) and x3(\) have no common zeros in D, for all
A € D. Otherwise, we can take z;(w) =0 = z3(w), w € D.

Now consider

o) = (210 (Z50) ) (251,

where z,w € D. Clearly, 2/(\) : D — I'g, for

zw — 1 zw — 1

22 (M) + [1(X) = 22(A)z3(N)] + 21 (M)z2(A) = 23(A)]

= Jea(N)* + |21(A) = 22Nz (W] + |21 ()2 (V) — 23(N)]

<1

because x(A) = (x1(A), 22(N), 23(A)) : D — T'g.
Moreover, since x(A) is a ['g-inner function, then 2/(\) : D — I'g is also a

I'g-inner function, for

Z—Ww

) (2 ) = a0l = 1
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and

Z—Ww

#1()) <Z“’ - 1) — B\ (Zw - 1) = () = B(Vrs().

Therefore, we have

[0 —2) A IR0 -dw) 11 A—a 18
aH?;l()‘ —pj) 6>‘7n H;L:1(1 AG;) CE 1 —a;\ (48)

where |p;| > 1, |¢;| > 1 and |a;| < 1.

—m

Note that, unless A is a root of unity, FE 1 implies that m = n.

Observe the following:

(1) All A = @; are not roots of the left hand side by reduction hypothesis

(that x; and x3 have no common roots), thus, A — a; cancels

1
and therefore, a; = —.

q;

11—\’

J

1
— are poles on the right hand side in D, so A — — must
1-— )\qj qj
cancel with A\ — q;.

(2) All

(3) All A = p; are poles of the left hand side, so it must be T oa
—)\@;

Hence, p;’s are —’s. Moreover, all Aa; = 1 are poles of the right hand
a;

— must cancel

side, so .
— A — Di

(4) All A = z; € D are zeros of the left hand side by reduction hypothesis
(that x; and x3 have no common root), so they are not a;’s, thus, z;’s

1
are —’s. If z; is outside ID or on the unit circle T, then z; has to be
Wy

1

—, because B, () is a Blaschke product which means that it has its
W

zeros in .
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1
From (1) and (2), we have that all —’s are a;’s. Hence, (3) implies that all
4i

pj’s are g;’s.

Therefore, equation (4.8) can be written as follows:

H?:l()‘ — pi) H:‘L:1 1

where |p;| > 1 and ¢ € T.

S el 1 (C= )

Similarly, we assume that x2(\) and z3(\) have no common zero in D,

where A € D and find that

H?:l()‘z’i - 1)
H?:1()‘ — i)

where |p;| > 1 and ¢ € T.

_ @H?:1(1 —2Az) 1 (i1
’ oo (Y ) ao

Therefore, from equations (4.9) and (4.10), we find that all w;’s are z;’s.

Therefore, a general I'g-inner function is © = (x1, z9, 23) : D — ', where

H?:l(Awi — 1)
[ (A —pi)

r1(\) = «

H?:l (A —z)

M0

L0220

) = T )

A—Di

(g — 1
zs(\) = (][] ( > .
i=1
Thus, a general I'g-inner function x : D — I'g is given by:
(V) = (Bi0a1(0), Ba(Mz2(A), Bi (VB (N BV )

where ;i(\) = A is the Mobius automorphism so that z;(\), z2(\) and 23()\)

have no root at zero, Bi()) is a Blaschke product that makes z1(\) and
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x3(A) have no common zero in D and By () is a Blaschke product that
makes z3(\) and x3(A\) have no common zero in D.

Note that, B;(A) = By(u(\)) is a Blaschke product, for

Bi(u(\) = CHM(M(A))
= CH(/MON)()‘)

= CHﬂi()‘)v

where fi; is a Mobius automorphism of . Also, Bs()) is a Blaschke

product.

) o
Since p(\) = A, then 5 % has roots at
— 4

A = u(N\) = a;, that is, at A = " (a;)

and has poles at
A= () = g;, that is, at A = 7 (g;).

Therefore, we can write the general I'g-inner function

x = (21,22, 23) : D — ' as follows:

2(A) = (Bi(A)z1(A), Bo(A)22(A), Bi(A) B2(A)B(A)) ,

where A € D.
Note that in the case that z; = 0 or w; = 0, we have m # n in equation
(4.8), hence, A on both sides will cancel some of e

Example From Theorem 4.5.6 an example of a I'g-inner function,

f D — I'g such that f(0) = (0,0,0) and f(Ao) = (a,b,0), where \y € D,
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is given by

L MI=20) AN —20) AQA)(L—b) = b)
f()\>_<1—b—/\bgp(>\)’1—b—)\bg0()\)’ 1—b— Abp(N) >

for all A € D, where ¢ is a scalar inner function such that ¢(X\g) = o, where

0<o<1.
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Chapter 5

Areas for Further Study

This project has touched a number of different mathematical and
engineering areas, including interpolation theory, complex geometry, linear
systems and control engineering. There are many questions that arise

naturally as a consequence of our work on this new set I'g.

We draw comparisons mainly with the work of Agler and Young because we

adopted their approach to derive most of our results.

It seems a natural question to ask, when presented with a necessary
condition for the existence of an analytic function that maps the disc into
['g, as in Corollary 2.2.2, if this condition is sufficient. We know that it is
not, but what if we added more conditions, would that make them
sufficient? We do not have an answer to this question. We stated Question
2.2.4 on what we believe are sufficient conditions for interpolation from the
disc into I'g. In the case of the symmetrised bidisc I', Agler and Young
know that an analogous sufficient condition fails to hold in general but it

does hold when n = 2, they have provided a proof of this in [9].
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After proving a Schwarz Lemma for I'g in the case that one of the points is
(0,0,0), we show that in this case, the Carathéodory and the Kobayashi
distances between two points in Gg are equal. It would be interesting to
know if the Carathéodory and the Kobayashi distances between any pair of
points in ['g are equal or not. By using Mobius automorphisms, we can
send a point (a,b,p) € I'r to (0,0,0), but we can only do this in the case
that ab = p, which corresponds to A being a triangular matrix. This way
we show that the Carathéodory and the Kobayashi distances are equal

between any two points in G'g such that ab = p.

We believe that we have found all the automorphisms of G g, but since we

do not have a proof to support our claim, this remains open for study.

In this project, we concentrated on studying I'p. One might consider g,
we expect that our results can be lifted to this domain. Another interesting

set to consider is I'g, where E is an upper triangular matrix of the form

1 A
, where A € D.

0 1
Our problem relates to robust stabilisation and interpolation, we hope that

the results of this project will make a significant contribution to the field by

throwing light on a hard, concrete special case.
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