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Abstract

We define ΓE, a subset of C3, related to the structured singular value µ of 2×2

matrices. µ is used to analyse performance and robustness of linear feedback

systems in control engineering. We find a characterisation for the elements

of ΓE and establish a necessary and sufficient condition for the existence of

an analytic function from the unit disc into ΓE satisfying an arbitrary finite

number of interpolation conditions.

We prove a Schwarz Lemma for ΓE when one of the points in ΓE is (0, 0, 0),

then we show that in this case, the Carathéodory and Kobayashi distances

between the two points in ΓE coincide.

We also give a characterisation of the interior, the topological boundary and

the distinguished boundary of ΓE, then we define ΓE-inner functions and

show that if there exists an analytic function from the unit disc into ΓE

that satisfies the interpolating conditions, then there is a rational ΓE-inner

function that interpolates.
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Chapter 1

Interpolation Problems

We start by stating the Nevanlinna-Pick problem and explaining its impor-

tance, then present some of the results of Agler and Young for the sym-

metrised bidisc Γ. We prove later the analogue of these results of Agler and

Young for our new set ΓE which we define in Section 2.1.

We also give some definitions and basic results in linear systems and explain

how it relates to our project.

We use the following notations; C denotes the set of complex numbers, D

denotes the open unit disc, D̄ denotes the closed unit disc, T denotes the unit

circle, E denotes the space of diagonal 2 × 2 matrices, M2(C) denotes the

space of 2× 2 matrices, Cn is the set of complex n vectors, |.| is the absolute

value of elements in C and ‖x‖ is the Euclidean norm for x ∈ Cn.

We write a 2 × 2 matrix A as follows:

A =


 a11 a12

a21 a22


 .
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1.1 The Nevanlinna-Pick Problem

The classical Nevanlinna-Pick problem is as follows:

The Nevanlinna-Pick Problem Given n points λ1, . . . , λn in the open

unit disc D and n complex numbers w1, . . . , wn. Does there exist an analytic

function ϕ : D −→ C such that ϕ(λj) = wj, for j = 1, . . . , n and |ϕ(λ)| ≤ 1,

for all λ ∈ D?

This problem was solved by G. Pick in 1916 [2]. He showed that a necessary

and sufficient condition is that the Pick matrix

[
1 − w̄iwj

1 − λ̄iλj

]n

i,j=1

is positive semi-definite.

The two-by-two spectral Nevanlinna-Pick problem is the following:

Given distinct points λ1, . . . , λn in the open unit disc D and 2 × 2 matrices

W1, . . . ,Wn, n ≥ 1, find conditions for the existence of an analytic 2 × 2

matrix valued function F on D such that

F (λj) = Wj, j = 1, 2, . . . , n,

and

ρ(F (λ)) ≤ 1, for all λ ∈ D.

Here ρ(.) denotes the spectral radius of a matrix. This problem, while being

a special case of a classical topic, is also a test case of a fundamental question

in H∞ control; the problem of µ-synthesis. As such it has been the subject

of a great deal of research during the last 25 years because a solution to

the general problem would, among other applications, enable the design of

automatic controllers which are robust with respect to structured uncertainty.
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As yet there is no existing analytic solution to the problem of µ-synthesis and

therefore the standard approaches are computational; for example, the use

of a Matlab toolbox [12]. Analysis of even special cases of the problem will

therefore provide tests of the existing software and illuminate the difficulties

associated with the more general problem.

Agler and Young [8] established a necessary and sufficient condition for the

existence of a solution in the case of an arbitrary finite number of interpola-

tion points, their result is as follows:

Theorem 1.1.1 Let λ1, . . . , λn be distinct points in D for some n ∈ N and let

W1, . . . ,Wn be 2× 2 matrices, none of them a scalar multiple of the identity.

The following two statements are equivalent:

(1) there exists an analytic 2×2-matrix function F on D such that F (λj) =

Wj, 1 ≤ j ≤ n and ρ(F (λ)) ≤ 1 for all λ ∈ D;

(2) there exists b1, . . . , bn, c1, . . . , cn ∈ C such that




I −




1

2
si bi

ci −1

2
si




∗ 


1

2
sj bj

cj −1

2
sj




1 − λ̄iλj




n

i,j=1

≥ 0,

where sj = trWj, pj = detWj and bjcj = pj −
s2

j

4
, 1 ≤ j ≤ n.

Agler and Young [8] studied the case where the target matrices Wj are 2× 2

hoping that a breakthrough in this case would show the way for the general

problem. This led them to study the symmetrised bidisc which is defined to
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be the set

Γ = {(z1 + z2, z1z2) : |z1| ≤ 1, |z2| ≤ 1} ⊂ C2.

In other words, it is the set

Γ = {(trA, detA) : A ∈M2(C), ρ(A) ≤ 1} ⊂ C2.

In this project, we study the Nevanlinna-Pick problem for ΓE and establish

a necessary and sufficient condition for the existence of an analytic function

from the unit disc into ΓE satisfying an arbitrary finite number of interpola-

tion conditions.

In this project, we prove the analogue of the following results of Agler and

Young for a different set, ΓE, which we introduce in the next chapter.

The following characterisation of points of G, the interior of Γ, was given by

Agler and Young [9].

Theorem 1.1.2 Let s, p ∈ C. The following are equivalent:

(1) (s, p) ∈ G;

(2) the roots of the equation z2 − sz + p = 0 lie in D;

(3) |s− s̄p| < 1 − |p|2;

(4) |s| < 2 and, for all z ∈ D̄,

∣∣∣∣
2zp− s

2 − zs

∣∣∣∣ < 1;

(5) |p| < 1 and there exists β ∈ D such that s = βp+ β̄;

(6) 2|s− s̄p| + |s2 − 4p| + |s|2 < 4.

A full proof of this lemma can be found in [9]. We present our characterisation

for ΓE in Theorem 2.1.4
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Definition 1.1.3 A function f : D −→ C is a Schur function or belongs

to the Schur class S (in the open unit disc D) if f is holomorphic in D and

‖f(z)‖ ≤ 1 for all z ∈ D.

The next result of Agler and Young [9] relates the property of mapping the

unit disc D analytically to Γ and membership of the Schur class.

Theorem 1.1.4 For any function ϕ = (s, p) : D −→ C2, the following are

equivalent:

(1) ϕ is analytic and maps D into Γ;

(2) there exists an analytic 2× 2-matrix function ψ = [ψij] on D such that

‖ψ‖∞ ≤ 1, trψ = 0 identically on D and ϕ = (2ψ11,− detψ).

The 2× 2 matrix function ψ appearing in condition (2) of Theorem 1.1.4 be-

longs to the Schur class. Agler and Young [8] found a realization formula for

it. To present the realization formula for such an analytic Γ-valued function,

we shall use the following notations; if H,U and Y are Hilbert spaces, and

A : H −→ H, B : U −→ H,

C : H −→ Y, D : U −→ Y

are bounded linear operators, then we define the operator


 A B

C D


 (z) = D + Cz(1 − Az)−1B : U → Y

whenever 1 − Az is invertible.
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Corollary 1.1.5 A function ϕ = (s, p) : D −→ C2 maps D analytically into

Γ if and only if there exist a Hilbert space H and a unitary operator

 A B

C D


 : H ⊕ C2 −→ H ⊕ C2

such that

s =


 A B1

C1 D11


 −


 A B2

C2 D22


 ,

and

p =

(
1

4
tr2 − det

) 
 A B

C D


 ,

where B =
[
B1 B2

]
: C2 −→ H, C =


 C1

C2


 : H −→ C2 and

D = [Dij]
2
i,j=1.

Our analogue of these two result for ΓE is given in Theorem 2.2.5 and

Corollary 2.2.6.

The following result of Agler and Young [8] reduces the problem of analytic

interpolation from the unit disc D to Γ to a standard classical matricial

Nevanlinna-Pick problem.

In the following result, by Nevanlinna-Pick data we mean a finite set

λ1, . . . , λn of finite distinct points in D, where n ∈ N, and an equal number

of “target” matrices W1, . . . ,Wn of type m× k, say. We write these data as

λj 7→ Wj, 1 ≤ j ≤ n. (1.1)

We say that these data are solvable, if there exists a function f in the Schur

class such that

f(λj) = Wj, 1 ≤ j ≤ n.
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Clearly, the Nevanlinna-Pick problem with data (1.1) is solvable if an only if

[
Ik −W ∗

i Wj

1 − λ̄iλj

]n

i,j=1

≥ 0.

In the next theorem, we use the following notations; sj = tr(Wj), and

pj = det(Wj).

Theorem 1.1.6 Let λ1, . . . , λn be distinct points in D for some n ∈ N and

let (sj, pj) ∈ Γ for j = 1, . . . , n. There exists an analytic function ϕ : −→Γ

such that

ϕ(λj) = (sj, pj), 1 ≤ 1 ≤ n,

if and only if there exist bj, cj ∈ C such that

bjcj = pj −
s2

j

4
, 1 ≤ j ≤ n,

and the conditions

λj 7−→




1

2
sj bj

cj −1

2
sj


 , 1 ≤ j ≤ n,

comprise solvable matricial Nevanlinna-Pick data.

In Theorem 2.3.1, we present an analogue of Theorem 1.1.6 for ΓE.

Agler and Young’s Schwarz Lemma for the symmetrised bidisc [6] is as

follows:

Theorem 1.1.7 Let λ0 ∈ D and (s0, p0) ∈ Γ. The following are equivalent:

(1) There exists an analytic function ϕ : D −→ Γ such that ϕ(0) = (0, 0)

and ϕ(λ0) = (s0, p0);
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(2) |s0| < 2 and
2|s0 − s̄0p0| + |s2

0 − 4p0|
4 − |s0|2

≤ |λ0|.

In chapter 3, we prove a Schwarz Lemma for ΓE.

1.2 Linear Systems

In this section, we present some simple concepts in linear systems theory.

In our study, we shall take all our linear systems to be finite dimensional.

u

C

G y

Figure 1.1: A feedback control block diagram

A closed loop feedback system is a system that can be described as in Figure

1.1 above. In this Figure, G represents the plant and C represents a

controller. In such systems, we believe that the plant is what performs the

main role of the system and the controller is what ensures that it behaves

correctly. Mathematically, in a linear system, the plant and the controller

can be considered as multiplication operators (by the Laplace transform,

see [15]). Usually, there is no difference between the plant/controller and

the multiplication operator it produces. In the case that u is a

p-dimensional vector input and y is an r-dimensional vector output, the
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plant G and the controller C will be the matrices r × p and p× r

respectively. It is clear to see that if u and y are scalar functions, then so

are G and C. The case that they are all scalars is called the SISO case,

that is, single input, single output.

u G y

Figure 1.2: A simple block diagram

A simple block as in Figure 1.2, has u as an input and y as an output. It

satisfies y(s) = G(s)u(s). In this case, u, y and G are the Laplace

transformation of the input, output and plant which are functions of time.

The multiplication operators (which can be matricial) induced by the boxes

in the relevant diagram are called transfer functions.

Definition 1.2.1 A system is stable if its transfer function is bounded and

analytic in the right half-plane.

This definition means that the system in Figure 1.2 is stable if and only if

|G(s)| < M for some M ∈ R and for all s ∈ C. Note that G(s) is in general

only defined for Re s > 0.

Definition 1.2.2 A system is internally stable if the transfer function

between each input and each branch of the system is stable.

Note that systems with stable transfer functions can still have internal

instabilities.

13



It is clear to see that the simple system given in Figure 1.2 is internally

stable if and only if it is stable. Meanwhile, the system in Figure 1.1 is

stable if and only if each of the following transfer functions is stable

(I +GC)−1, (I +GC)−1G, C(I +GC)−1, C(I +GC)−1G.

That is, the transfer function between each input and each branch in the

system is stable.

It is a great interest to know which controllers C stabilise the system in

Figure 1.1 for a given G. To simplify this, assume that G is rational and

therefore has a co-prime factorisation. That is, there exist stable matrices

M , N , X and Y such that X and Y are proper, real rational, and

G = NM−1 and Y N +XM = I.

The following result and proof in the scalar case can be found in [27].

Theorem 1.2.3 Let G be a rational plant with co-prime factorisation

G = NM−1 as above. Then C is a rational controller which internally

stabilises the system given in Figure 1.1 if and only if

C = (Y +MQ)(X −NQ)−1,

for some stable proper, real rational function Q for which (X −NQ)−1

exists.

In the scalar case, if G =
N

M
, then C produces an internally stable system

in Figure 1.1 if and only if

C =
Y +MQ

X −NQ
,
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for some Q ∈ H∞ with X −NQ 6= 0.

Observe that in the case of an internally stable single-input, single-output

(SISO) system we have

C

1 +GC
=

Y +MQ

X −NQ

1

1 +
N

M

Y +MQ

X −NQ

=
Y +MQ

X −NQ

M(X −NQ)

M(X −NQ) +N(Y +MQ)

= (Y +MQ)
M

NY +MX

= M(Y +MQ).

The Nevanlinna-Pick problem occurs in the context of robust stabilisation.

The problem of robust stabilisation studies the possibility of constructing a

controller which stabilises all feedback systems (as in Figure 1.1) with

plants that are ’close’ to G.

Let the system in Figure 1.1 be denoted by (G,C) and the right half-plane

by H. We denote the set of functions that are analytic on the right

half-plane with a unique limit at infinity by A(H). The following result can

be found in [27].

Theorem 1.2.4 Let (G,C) be an internally stable SISO feedback system

over A(H) and suppose that
∥∥∥∥

C

I +GC

∥∥∥∥
∞

= ε.

Then C stabilises G+ ∆ for all ∆ ∈ A(H) with ‖∆‖∞ <
1

ε
.

To see how the Nevanlinna-Pick problem and the robust stabilisation

problem are closely related, suppose we seek a controller C which stabilises

15



the SISO system (G+ ∆, C) whenever ‖∆‖∞ < 1. Moreover, suppose that

G is a real rational function and that M and N are also rational. Clearly

by Theorem 1.2.4, it is enough to find Q such that
∥∥∥∥

C

I +GC

∥∥∥∥
∞

= ‖M(Y +MQ)‖∞ = ‖MY +M2Q‖∞ def
= ‖T1 − T2Q‖∞ ≤ 1.

By changing the variables under the transform λ =
1 − s

1 + s
, we can work

with functions on the unit disc rather than the right-half plane. Also, if

ϕ = T1 − T2Q, we have Q− T1 = −T2Q. Thus,

ϕ(λ) = T1(λ), for all λ ∈ D̄ with T2(λ) = 0.

Conversely, if ϕ does interpolate T1 at each of the zeros of T2, then
T1 − ϕ

T2

is analytic and bounded in D and thus it can be considered as Q.

Therefore, our problem is to try to construct a function ϕ on D such that

‖ϕ‖∞ ≤ 1 and ϕ(λj) = zj, for all λj satisfying

T1(λj) = zj, and T2(λj) = 0.

Clearly, this describes the Nevanlinna-Pick problem, and therefore, this

version of the robust stabilisation problem is exactly the same as the

Nevanlinna-Pick problem.

Doyle [16] considered a slightly different robust stabilisation problem. He

was the first to consider the structured robust stabilisation problems. His

approach is based on the introduction of the structured singular value,

which is defined relative to an underlying structure of operators which

represent the permissible forms of the perturbation ∆.

The structured singular value as defined in [16] is a function defined on

matrices and denoted by µ(.). In the definition of µ(A), where A ∈M2(C),

16



there is an underlying structure E (which is a subspace of M2(C)) on which

everything in the sequel depends.

Definition 1.2.5 Let A ∈M2(C) and let E be the space of 2 × 2 diagonal

matrices. Then µE(A) is defined as follows:

µE(A) =
1

inf{‖X‖ : X ∈ E, 1 − AX is singular} ,

where ‖X‖ is the maximum singular value of X, unless no X ∈ E makes

1 − AX singular, in which case, µE(A) is defined to be 0.

Note that, the operator norm of a square matrix A, denoted by ‖A‖, is

defined as the square root of the maximum eigenvalue of A∗A, that is, the

maximum singular value of A. Meanwhile, the spectral radius ρ(A) of an

n× n matrix A with eigenvalues λ1, . . . , λn is defined as follows:

ρ(A) = max
1≤i≤n

|λi|.

The following remarks were given in [16].

Remark 1.2.6 Clearly from the definition of µ(A), we see that for any

α ∈ C,

µ(αA) = |α|µ(A).

Remark 1.2.7 A natural question is why we work with µ and not 1/µ.

While it is clearly a matter of taste, there are important reasons;

mathematically, µ is continuous, bounded and scales as indicated in the

remark above. More importantly, it generalises the spectral radius and the

maximum singular value. To see that, we state the results below which can

be found along with full proofs in [16].
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Lemma 1.2.8 Let A and E be defined as in Definition 1.2.5. Then

µE(A) = max
{X∈E:‖X‖≤1}

ρ(XA).

This lemma implies continuity of µ is based on continuity of the spectral

radius and max functions and the compactness of {X ∈ E : ‖X‖ ≤ 1}.

Remarks 1.2.9 Let A be defined as before. Then

(1) If E = {δI : δ ∈ C}, then µE(A) = ρ(A), the spectral radius of A.

(2) If E = Mn(C), then µE(A) = ‖A‖.

(3) From the definition of µ and the two remarks above we have

ρ(A) ≤ µE(A) ≤ ‖A‖.

18



Chapter 2

Interpolation into ΓE

In this chapter, we define a set ΓE related to the structured singular value

of 2 × 2 matrices and find a characterisation of its elements. We establish a

necessary and sufficient condition for the existence of an analytic function

from the unit disc to ΓE satisfying an arbitrary finite number of

interpolation conditions, then we find a realization formula for these

interpolating functions.

2.1 Definitions and Characterisation of ΓE

In this section, we define ΓE and give a characterisation of its elements. Let

E =


 z 0

0 w


 ,

where z, w ∈ C.

Definition 2.1.1 The set ΓE is defined as follows:

ΓE = {(a11, a22, det(A)) : A ∈M2(C), µE(A) ≤ 1},

19



We denote the interior of ΓE by GE so that

GE = {(a11, a22, det(A)) : A ∈M2(C), µE(A) < 1}.

Observe that, the set

X = {(a11, a22, det(A)) : A ∈M2(C), µE(A) = 1}

is not in GE because in this case we have µE(X) = 1. Hence, for all ε > 0,

where ε is sufficiently small,

µE ((1 + ε)A) = 1 + ε > 1.

Therefore, (1 + ε)X is not in GE. Thus, X /∈ GE.

It is clear from the definition of ΓE that if E consists of scalar multiples of

the 2 × 2 identity matrix, that is E = {zI2 : z ∈ C}, then ΓE is the

symmetrised bidisc Γ, for in this case we have

1 − AX is singular ⇔ 1 − (trA)z + (detA)z2 6= 0, for all z ∈ D

⇔ 1 − sz + pz2 6= 0, for all z ∈ D,

where s = trA and p = detA.

Remark 2.1.2 Let ΣE = {A ∈M2(C) : µE(A) ≤ 1} and

Σ = {A ∈M2(C) : ρ(A) ≤ 1}, where ρ(A) is the spectral radius of the

matrix A. We observe that the following diagram commutes:

ΣE ↪→ Σ

↓ ↓ ϕ

ΓE −→
τ

Γ

20



where ϕ = (tr, det) and τ : ΓE −→ Γ is defined by

τ(a11, a22, detA) = (a11 + a22, detA) .

µE is found to be be very useful for analysing the performance and

robustness properties of linear feedback systems. A very important and

interesting mathematical problem is to find a necessary and sufficient

condition for the existence of analytic functions that interpolate from the

unit disc D into ΓE.

Our results include a theorem that reduces the problem of analytic

interpolation from D to ΓE to a family of standard classical matricial

Nevanlinna-Pick problems.

Definition 2.1.3 For z ∈ C and x = (x1, x2, x3) ∈ C3, we define Ψz and

Υz as follows:

Ψz(x) =





x1 − zx3

1 − zx2

, if zx2 6= 1;

x1 if zx2 = 1 and x1x2 = x3,

Υz(x) =





x2 − zx3

1 − zx1

, if zx1 6= 1;

x2 if zx1 = 1 and x1x2 = x3.

Note that, Ψz is undefined if x1x2 6= x3 and zx2 = 1. Also, Υz is undefined

if x1x2 6= x3 and zx1 = 1. We shall on occasions write Ψ(z, x) and Υ(z, x)

for Ψz(x) and Υz(x), for z ∈ C and x ∈ C3.

In our first theorem we prove that x = (x1, x2, x3) ∈ ΓE is equivalent to 11

different conditions.

Theorem 2.1.4 Let x = (x1, x2, x3) ∈ C3. Then the following are

equivalent:
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(1) x ∈ ΓE.

(2) 1 − x1z − x2w + x3zw 6= 0, for all (z, w) ∈ D2.

(3)





|x2|2 + |x1 − x̄2x3| + |x1x2 − x3| ≤ 1, and

|x1| ≤ 1.

(4)





|x1|2 + |x2 − x̄1x3| + |x1x2 − x3| ≤ 1, and

|x2| ≤ 1.

(5)





Either Ψ(., x) is in the Schur class, or

if x1x2 = x3, |x2| ≤ 1.

(6)





Either Υ(., x) is in the Schur class, or

if x1x2 = x3, |x1| ≤ 1.

(7) There exist b, c ∈ C such that bc = x1x2 − x3 and

∥∥∥∥∥∥


 x1 b

c x2




∥∥∥∥∥∥
≤ 1.

(8) There exist b, c ∈ C such that |b| = |c| = |x1x2 − x3|1/2, bc = x1x2 − x3

and

∥∥∥∥∥∥


 x1 b

c x2




∥∥∥∥∥∥
≤ 1.

(9)





1 − |x1|2 − |x2|2 + |x3|2 − 2|x1x2 − x3| ≥ 0, and

|x1| ≤ 1, |x2| ≤ 1, |x3| ≤ 1.

(10)





1 − |x1|2 + |x2|2 − |x3|2 − 2|x1x̄3 − x̄2| ≥ 0, and

|x1| ≤ 1, |x2| ≤ 1.

(11)





1 + |x1|2 − |x2|2 − |x3|2 − 2|x2x̄3 − x̄1| ≥ 0, and

|x1| ≤ 1, |x2| ≤ 1.
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Proof Our proof has the following structure:

(1)

m

(11) ⇐⇒ (6) ⇐⇒ (2) ⇐⇒ (5) ⇐⇒ (10) ⇐⇒ (9) ⇐⇒ (8) ⇐⇒ (7)

m

(3)

m

(4)

The implications from the proof can be found on the following pages:

(1) ⇐⇒ (2) : P. 24 − 26.

(2) ⇐⇒ (3) : P. 26 − 35.

(3) ⇐⇒ (4) : P. 35 − 36.

(2) ⇐⇒ (5) : P. 36.

(2) ⇐⇒ (6) : P. 37.

(7) ⇐⇒ (8) : P. 37 − 40.

(8) ⇐⇒ (9) : P. 40 − 43.

(5) ⇐⇒ (10) : P. 44.

(6) ⇐⇒ (11) : P. 45.

(9) ⇐⇒ (10) : P. 45 − 46.
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(1)⇔(2) First, we show that (1) ⇒ (2). Let E = {diag(λ1, λ2) : λ1, λ2 ∈ C}

and let

A =


 a11 a12

a21 a22


 ∈M2(C).

When µE(A) 6= 0, we have

µE(A) ≤ 1 ⇒ inf{‖X‖ : X ∈ E, 1 − AX is singular} ≥ 1

⇒

∥∥∥∥∥∥


 z 0

0 w




∥∥∥∥∥∥
≥ 1 for all X =


 z 0

0 w


 such that 1 − AX is singular

⇒ max{|z|, |w|} ≥ 1 for all z, w ∈ C such that

det


 1 − a11z −a12w

−a21z 1 − a22w


 = 0

⇒ [(1 − a11z)(1 − a22w) − a12a21zw = 0 ⇒ max{|z|, |w|} ≥ 1]

⇒ [z, w ∈ D ⇒ 1 − a11z − a22w + det(A)zw 6= 0]

⇒ 1 − x1z − x2w + x3zw 6= 0, for all (z, w) ∈ D2

where x1 = a11, x2 = a22, and x3 = det(A).

Conversely, when µE(A) 6= 0, the proof of (2) ⇒ (1) is as follows:

(2) holds ⇒ 1 − x1z − x2w + x3zw 6= 0, for all (z, w) ∈ D2

⇒ we can find a 2 × 2 matrix A =


 a11 a12

a21 a22




so that x1 = a11, x2 = a22, x3 = det(A), and

1 − x1z − x2w + x3zw 6= 0, for all (z, w) ∈ D2

⇒ 1 − a11z − a22w + det(A)zw 6= 0, for all z, w ∈ D

⇒ [(1 − a11z)(1 − a22w) − a12a21zw = 0 ⇒ max{|z|, |w|} ≥ 1]
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(2) holds ⇒ max{|z|, |w|} ≥ 1 for all z, w ∈ C such that

det


 1 − a11z −a12w

−a21z 1 − a22w


 = 0

⇒

∥∥∥∥∥∥


 z 0

0 w




∥∥∥∥∥∥
≥ 1 for all X =


 z 0

0 w


 such that 1 − AX is singular

⇒ inf{‖X‖ : X ∈ E, 1 − AX is singular} ≥ 1

⇒ µE(A) ≤ 1

⇒ (1) holds.

That is, (1) ⇔ (2) in the case that µE(A) 6= 0.

The case that µE(A) = 0: Let

A =


 a11 a12

a21 a22


 ∈M2(C).

We claim that µE(A) = 0 ⇐⇒ a11 = 0, a22 = 0 and at least one of a12 and

a21 equals zero.

(⇐) Suppose a11 = 0, a22 = 0 and at least one of a12 and a21 is zero, then

det(1 − AX) = 1 for all X in E.

Hence, 1 − AX is non-singular for all X in E, and therefore, µE(A) = 0.

(⇒) Now, suppose that µE(A) = 0. This means that there is no X in E

that makes 1 − AX singular. That is, 1 − AX is non-singular for all X in

E, which is the same as saying det(1 − AX) 6= 0,∀X ∈ E.

det(1 − AX) = 1 − a11z − a22w + (a11a22 − a12a21)zw 6= 0.

Since this polynomial in z, w has no zeros in C2, it is a non-zero constant,

and hence a11 = 0, a22 = 0, and at least one of a12 and a21 is zero.

25



Therefore, for x1 = a11, x2 = a22, and x3 = det(A),

µE(A) = 0 ⇐⇒ 1 − x1z − x2w + x3zw 6= 0.

That is, (1) ⇔ (2) in the case that µE(A) = 0. This completes the proof

that (1) ⇔ (2).

We shall now show that (2)⇔(3). We have

(2) holds ⇐⇒ ∀z, w ∈ D, 1 − x1z − x2w + x3zw 6= 0,

⇐⇒ ∀z, w ∈ D, z(x3w − x1) 6= x2w − 1,

⇐⇒





∀z, w ∈ D such that x3w 6= x1, z 6=
x2w − 1

x3w − x1

, and

if
x1

x3

∈ D, 0 6= x2
x1

x3

− 1,

⇐⇒





f(D) ∩ D = ∅, where f(z) =
x2z − 1

x3z − x1

, and

if |x1| < |x3|, x3 6= x1x2.
(2.1)

We need to find f(D). We consider the following cases:

(i) |x1| < |x3|,

(ii) |x1| > |x3| 6= 0,

(iii) |x3| = 0,

(iv) |x1| = |x3| 6= 0 and x1x2 6= x3,

(v) |x1| = |x3| 6= 0 and x1x2 = x3.

When |x3| 6= |x1|, f maps

x1

x3

7−→ ∞,

x̄3

x̄1

7−→ x2x̄3 − x̄1

|x3|2 − |x1|2
.
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Thus f(T) is a circle of centre
x2x̄3 − x̄1

|x3|2 − |x1|2
, where T is the unit circle.

f(1) =
x2 − 1

x3 − x1

∈ f(T).

Therefore, the radius of f(T) is
∣∣∣∣
x2x̄3 − x̄1

|x3|2 − |x1|2
− x2 − 1

x3 − x1

∣∣∣∣ =

∣∣∣∣
x3 − x1x2

|x3|2 − |x1|2
∣∣∣∣ .

f(D) is either the bounded component or the unbounded component of the

circle of centre
x2x̄3 − x̄1

|x3|2 − |x1|2
and radius

∣∣∣∣
x3 − x1x2

|x3|2 − |x1|2
∣∣∣∣.

If

∣∣∣∣
x1

x3

∣∣∣∣ < 1, then ∞ = f(
x1

x3

) ∈ f(D) and so f(D) is the unbounded

component of f(T). Likewise, if

∣∣∣∣
x1

x3

∣∣∣∣ > 1, then f(D) is the bounded

component of f(T).

Case (i): The case that |x1| < |x3|.

D f(D)

f(T)

Figure 2.1: f(D) is the unbounded component of f(T)

(2) holds ⇐⇒





f(D) ∩ D = ∅,

x3 6= x1x2,

⇐⇒





distance between centres + 1 ≤ radius of f(T),

x3 6= x1x2,

⇐⇒





∣∣∣∣
x2x̄3 − x̄1

|x3|2 − |x1|2
∣∣∣∣ −

∣∣∣∣
x3 − x1x2

|x3|2 − |x1|2
∣∣∣∣ ≤ −1,

x3 6= x1x2,
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(2) holds ⇐⇒ |x2x̄3 − x̄1| − |x3 − x1x2|
|x3|2 − |x1|2

≤ −1. (2.2)

Automatically, x3 6= x1x2 if this holds.

Case (ii): The case that |x1| > |x3|.

f(D) D

Figure 2.2: f(D) is the bounded component of f(T)

We have

(2) holds ⇐⇒ f(D) ∩ D = ∅,

⇐⇒ |centre of f(D)| ≥ 1 + radius of f(D),

⇐⇒
∣∣∣∣
x2x̄3 − x̄1

|x3|2 − |x1|2
∣∣∣∣ −

∣∣∣∣
x3 − x1x2

|x3|2 − |x1|2
∣∣∣∣ ≥ 1,

⇐⇒ |x2x̄3 − x̄1| − |x3 − x1x2|
|x1|2 − |x3|2

≥ 1. (2.3)

Both inequalities (2.2) and (2.3) can be written as follows:

(2) holds ⇐⇒ |x2x̄3 − x̄1| − |x3 − x1x2|
|x1|2 − |x3|2

≥ 1. (2.4)

We multiply both sides of the equivalence (2.4) by

|x2x̄3 − x̄1| + |x3 − x1x2|,

which is strictly positive, then we factorise the left hand side and that will

give
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(2) holds ⇐⇒ |x2x̄3 − x̄1| − |x3 − x1x2|
|x1|2 − |x3|2

≥ 1,

⇐⇒ |x2x̄3 − x̄1|2 − |x3 − x1x2|2
|x1|2 − |x3|2

≥ |x2x̄3 − x̄1| + |x3 − x1x2|,

⇐⇒ (|x2|2 − 1)(|x3|2 − |x1|2)
|x1|2 − |x3|2

≥ |x2x̄3 − x̄1| + |x3 − x1x2|,

⇐⇒ 1 − |x2|2 ≥ |x2x̄3 − x̄1| + |x3 − x1x2|.

Moreover, we know that (1) and (2) are equivalent, that is,

(2) holds ⇐⇒ there exists a 2 × 2 matrix A with a11 = x1, a22 = x2, det(A) = x3,

and µE(A) ≤ 1,

Hence, |x1| ≤ 1, |x2| ≤ 1 and |x3| ≤ 1.

Therefore, in the cases that |x3| 6= |x1| and x3 6= 0, that is, cases (i) and (ii),

(2) holds ⇐⇒





|x2|2 + |x1 − x̄2x3| + |x1x2 − x3| ≤ 1, and

|x1| ≤ 1.
(2.5)

We shall show that this equivalence remains true when |x3| = |x1| and when

x3 = 0.

Case (iii): First consider the case that x3 = 0. If we take x3 to be zero in

equivalence (2.5) above, we get

(2) holds ⇐⇒





|x2|2 + |x1| + |x1x2| ≤ 1, and

|x1| ≤ 1

⇐⇒





|x1|(1 + |x2|) ≤ 1 − |x2|2, and

|x1| ≤ 1

⇐⇒





|x1| ≤ 1 − |x2|, and

|x1| ≤ 1

⇐⇒ |x1| + |x2| ≤ 1. (2.6)
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We claim that the equivalence (2.6) is true, that is, if x3 = 0 then

(2) holds ⇐⇒ |x1| + |x2| ≤ 1.

We shall show that

∀z, w ∈ D, x1z + x2w 6= 1 ⇐⇒ |x1| + |x2| ≤ 1.

(⇐) Suppose that there exist z and w in D, such that x1z + x2w = 1. We

show that |x1| + |x2| > 1.

Since z and w are in D, |z| < 1 and |w| < 1. Therefore, |x1z| < |x1| and

|x2w| < |x2|.

Thus

1 = |x1z + x2w|,

≤ |x1z| + |x2w|,

< |x1| + |x2|.

Hence,

∀z, w ∈ D, x1z + x2w 6= 1 ⇐ |x1| + |x2| ≤ 1.

(⇒) Conversely, suppose that |x1| + |x2| > 1. We show that there exist z

and w in D, such that x1z + x2w = 1.

First case: If |x1| 6= 0, |x2| 6= 0. Let

z =
|x1|

x1(|x1| + |x2|)
and w =

|x2|
x2(|x1| + |x2|)

,

|z| = |w| =
1

|x1| + |x2|
< 1.

Then

x1z + x2w = x1
|x1|

x1(|x1| + |x2|)
+ x2

|x2|
x2(|x1| + |x2|)

,

= 1.
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Second case: At least one of x1, x2 is zero. We can suppose that

x1 = 0, |x2| > 1. Let w =
1

x2

, z =
1

2
.

Then z, w ∈ D and x1z + x2w = 1.

Therefore,

|x1| + |x2| ≤ 1 ⇐ ∀z, w ∈ D, x1z + x2w 6= 1.

Therefore, in the case that x3 = 0,

(2) holds ⇐⇒ |x1| + |x2| ≤ 1.

Case (iv): We claim also that the equivalence (2.5) is true when |x3| = |x1|.

As before,

(2) holds ⇐⇒ f(D) ∩ D = ∅, where f(z) =
x2z − 1

x3z − x1

.

We have to find f(D).

f maps

x1

x3

7−→ ∞,

0 7−→ 1

x1

,

∞ 7−→ x2

x3

.

f(D) =

{
z ∈ C :

∣∣∣∣z −
1

x1

∣∣∣∣ <
∣∣∣∣z −

x2

x3

∣∣∣∣
}
.

f(D) ∩ D = ∅ ⇐⇒ 0 /∈ f(D), and

the distance from 0 to the perpendicular bisector of
1

x1

and
x2

x3

≥ 1,

⇐⇒
∣∣∣∣

1

x1

∣∣∣∣ ≥
∣∣∣∣
x2

x3

∣∣∣∣ , and

the distance from 0 to the perpendicular bisector of
1

x1

and
x2

x3

≥ 1.
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f(D
)

1

x1

{
z ∈

C : |z
−

1

x1

| <
|z −

x2

x3

|
}

f(T
)

x1

x3

x2

x3

0

D

T

•

•

Figure 2.3: Finding f(D)

Choose t so that

∣∣∣∣t
(

1

x1

− x2

x3

)
− 1

x1

∣∣∣∣
2

=

∣∣∣∣t
(

1

x1

− x2

x3

)
− x2

x3

∣∣∣∣
2

⇐⇒ t2
∣∣∣∣

1

x1

− x2

x3

∣∣∣∣
2

+
1

|x1|2
− 2tRe

{(
1

x1

− x2

x3

)
1

x̄1

}

= t2
∣∣∣∣

1

x1

− x2

x3

∣∣∣∣
2

+

∣∣∣∣
x2

x3

∣∣∣∣
2

− 2tRe

{(
1

x1

− x2

x3

)
x̄2

x̄3

}

⇐⇒ 2tRe

{(
1

x1

− x2

x3

) (
x̄2

x̄3

− 1

x̄1

)}
=

∣∣∣∣
x2

x3

∣∣∣∣
2

− 1

|x1|2

⇐⇒ −2t

∣∣∣∣
1

x1

− x2

x3

∣∣∣∣
2

=

∣∣∣∣
x2

x3

∣∣∣∣
2

− 1

|x1|2

⇐⇒ t =

1

|x1|2
−

∣∣∣∣
x2

x3

∣∣∣∣
2

2

∣∣∣∣
1

x1

− x2

x3

∣∣∣∣
2 , t > 0.
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1
x
1

1
x
1

− x
2

x
3

x
2

x
3

c

t
(
1

x
1

− x
2

x
3

)
0

Figure 2.4: Distance between 0 and c

Hence, c = t

(
1

x1

− x2

x3

)
can be easily calculated as follows:

c =

1

|x1|2
−

∣∣∣∣
x2

x3

∣∣∣∣
2

2

(
1

x̄1

− x̄2

x̄3

) ,

=
|x3|2 − |x1x2|2

|x1x3|2
x̄1x̄3

2(x̄3 − x̄1x̄2)
,

=
|x3|2 − |x1x2|2

2x1x3(x̄3 − x̄1x̄2)
.

Therefore, the distance from 0 to the perpendicular bisector of
1

x1

and
x2

x3

is

|c| =

∣∣∣∣
|x3|2 − |x1x2|2

2x1x3(x̄3 − x̄1x̄2)

∣∣∣∣ =

∣∣∣∣
1 − |x2|2

2|x3 − x1x2|

∣∣∣∣ .

Hence, in the case that |x3| = |x1| 6= 0, x3 6= x1x2,

(2) holds ⇐⇒





|x2| ≤ 1,
1 − |x2|2

2|x3 − x1x2|
≥ 1, and

|x1| ≤ 1
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(2) holds ⇐⇒





1 − |x2|2 ≥ 2|x3 − x1x2|, and

|x1| ≤ 1

⇐⇒





|x2|2 + 2|x3 − x1x2| ≤ 1, and

|x1| ≤ 1,

which is equivalent to the right hand side of (2.5), that is, equivalent to





|x2|2 + |x1 − x̄2x3| + |x1x2 − x3| ≤ 1, and

|x1| ≤ 1,

for when |x3| = |x1|, it is clear to see that

|x2x̄3 − x̄1| = |x3 − x1x2| ⇐⇒ |x2x̄3 − x̄1|2 = |x3 − x1x2|2

⇐⇒ |x2x3|2 + |x1|2 − 2Re{x2x̄3x1}

= |x3|2 + |x1x2|2 − 2Re{x1x2x̄3},

which is always true for |x3| = |x1|.

Case (v): The case that |x3| = |x1| 6= 0, x3 = x1x2. If |x2| < 1, we have

|x2|2 + |x2x̄3 − x̄1| + |x3 − x1x2| ≤ 1 ⇐⇒ |x2|2 + |x2x̄1x̄2 − x̄1| ≤ 1

⇐⇒ |x2|2 + |x1|
∣∣|x2|2 − 1

∣∣ ≤ 1

⇐⇒ |x1|(1 − |x2|2) ≤ 1 − |x2|2

⇐⇒ |x1| ≤ 1.

If |x2| = 1, |x3| = |x1| 6= 0, x3 = x1x2, equivalence (2.5) holds. Also, if (2)

holds, then |x1| ≤ 1 and |x2| ≤ 1.

Now, if |x1| ≤ 1 and |x2| ≤ 1,
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(2) holds ⇐⇒ x3zw − x1z − x2w + 1 6= 0, ∀z, w ∈ D

⇐⇒ x1x2zw − x1z − x2w + 1 6= 0, ∀z, w ∈ D

⇐⇒ x1z(x2w − 1) − (x2w − 1) 6= 0, ∀z, w ∈ D

⇐⇒ (x1z − 1)(x2w − 1) 6= 0, ∀z, w ∈ D

⇐⇒ x1z − 1 6= 0 and x2w − 1 6= 0, ∀z, w ∈ D

⇐⇒ z 6= 1

x1

and w 6= 1

x2

, ∀z, w ∈ D,

which is true for |x1| ≤ 1 and |x2| ≤ 1.

This concludes the proof that (1) ⇔ (2) ⇔ (3).

(3)⇔(4) Since (1) ⇔ (3), there exists a matrix

A =


 a11 a12

a21 a22


 ∈M2(C),

such that (a11, a22, det(A)) ∈ ΓE. Let

Ã =


 a22 a21

a12 a11


 = JAJ,

where J =


 0 1

1 0


.

Also, by the equivalence (1) ⇔ (3) and by the definition of ΓE, if

µE(A) 6= 0,

1

µE(A)
= inf{‖X‖ : X ∈ E, 1 − AX is singular}

= inf{‖X‖ : X ∈ E, 1 − JÃJX is singular}
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1

µE(A)
= inf{‖X‖ : X ∈ E, 1 − ÃJXJ is singular}

= inf{‖Y ‖ : Y = JXJ ∈ E, 1 − ÃY is singular}

=
1

µE(Ã)
.

Hence, if x̃1 = a22 = x2, x̃2 = a11 = x1, x̃3 = x3, we get




|x2|2 + |x1 − x̄2x3| + |x1x2 − x3| ≤ 1

|x1| ≤ 1
⇐⇒ µE(A) ≤ 1

⇐⇒ µE(Ã) ≤ 1

⇐⇒





|x̃2|2 + |x̃1 − ¯̃x2x̃3| + |x̃1x̃2 − x̃3| ≤ 1,

|x̃1| ≤ 1

⇐⇒





|x1|2 + |x2 − x̄1x3| + |x1x2 − x3| ≤ 1,

|x2| ≤ 1.

Moreover, in the case that µE(A) = 0, the equivalence (3) ⇔ (4) clearly

holds since in this case x = (0, 0, 0).

Hence, (3) ⇔ (4).

(2)⇔(5) From the equivalence (2.1) of the proof of (2) ⇔ (3), we find that

(2) holds ⇐⇒





f(D) ∩ D = ∅, where f(z) =
x2z − 1

x3z − x1

,

if |x1| < |x3|, x1x2 6= x3.

⇐⇒





1

f
is in the Schur class, where

1

f(z)
=
x1 − zx3

1 − zx2

, and

if x1x2 = x3, |x2| ≤ 1.

Note that if |x1| < |x3|, x1x2 6= x3 always holds, and if x1x2 = x3,

|x1| ≤ 1, |x2| ≤ 1 (see case (v) of the proof of (2) ⇔ (3) above). Thus

(2) holds ⇐⇒





Ψ(., x) is in the Schur class, and

if x1x2 = x3, |x2| ≤ 1.

⇐⇒ (5) holds.
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(2) ⇔ (6) Similarly, let f(z) =
1 − zx1

x2 − zx3

, by using the same method as in

our proof of (2) ⇔ (5), we find that

(2) holds ⇐⇒





1

f
is in the Schur class, where

1

f(z)
=
x2 − zx3

1 − zx1

, and

if x1x2 = x3, |x1| ≤ 1.

⇐⇒





Υ(., x) is in the Schur class, and

if x1x2 = x3, |x1| ≤ 1.

⇐⇒ (6) holds.

Now we show that (7)⇔(8). Trivially (8) ⇒ (7). Suppose (7) holds.

Consider the analytic function F : C\{0} −→M2(C) defined by

F (z) =


 x1 uz

v

z
x2


 .

We show first that ‖F (z)‖ is constant on |z| = R, where R is the radius of a

disc. For |ω| = 1, we have


 ω 0

0 ω̄





 x1 uz

v

z
x2





 ω̄ 0

0 ω


 =


 ω 0

0 ω̄





 x1ω̄ uzω

v

z
ω̄ x2ω




=


 x1 uzω2

v

z
ω̄2 x2


 .

Hence,

‖F (z)‖ = ‖F (ω2z)‖.

Therefore, ‖F (z)‖ is constant on |z| = R.

Moreover,

F (1) =


 x1 u

v x2


 , (2.7)
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and, for u 6= 0,

F
(v
u

)
=


 x1 v

u x2


 . (2.8)

Observe that the matrix in (2.8) is the transpose of the matrix in (2.7).

Hence, they have the same norm. Therefore, in the case that u 6= 0, we have

‖F (1)‖ =
∥∥∥F

(v
u

)∥∥∥ . (2.9)

∣∣∣
v

u

∣∣∣
1

Figure 2.5: ‖F (z)‖ is constant on |z| = 1

We have three cases; case (i) when |v| < |u|, case (ii) when |v| > |u| and

case (iii) when |v| = |u|.

Case (i) when |v| < |u|: By the maximum modulus principle (at z2 =
v

u
),

we find that

‖F (z)‖ ≤ |values on the boundary| .

Note that for all boundary values we have

‖F (w)‖ = ‖F (1)‖,
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where w is on the boundary. Therefore,

‖F (z)‖ ≤ ‖F (1)‖.

Case (ii) when |v| > |u|: By the maximum modulus principle, we find that

‖F (z)‖ ≤
∥∥∥F

(v
u

)∥∥∥ ,

and by (2.9), we find that

‖F (z)‖ ≤ ‖F (1)‖.

Therefore, in case (i) and case (ii), we find that ‖F (z)‖ ≤ ‖F (1)‖.

Case (iii) when |v| = |u|, we have

F (z) =


 x1 uz

v

z
x2


 ,

where z2 =
v

u
. Hence,

|uz| = |u|
∣∣∣
v

u

∣∣∣
1/2

= |uv|1/2,

and
∣∣∣
v

z

∣∣∣ = |v|
∣∣∣
u

v

∣∣∣
1/2

= |uv|1/2.

Hence,

|uz| =
∣∣∣
v

z

∣∣∣ .

Therefore, for a 2 × 2 matrix

 x1 b

c x2


 ,

where x3 = x1x2 − bc, that is, bc = x1x2 − x3, we have

|b| = |c| = |bc|1/2.
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That is,

|b| = |c| = |x1x2 − x3|1/2.

Note that, in the case uv = 0, we suppose that v = 0. Define

G(z) =


 x1 uz

0 x2


 .

Then we have

‖G(1)‖ ≥ ‖G(0)‖,

where

G(1) =


 x1 u

0 x2


 , and G(0) =


 x1 0

0 x2


 .

Therefore, uv = 0 = x1x2 − x3, hence, |u| = |v| = 0 = |x1x2 − x3|1/2.

Thus, (7) ⇒ (8), and therefore (7) ⇔ (8).

To show that (8)⇔(9), we need the following lemma.

Lemma 2.1.5 Let

X =


 x1 b

c x2


 ∈M2(C),

bc = x1x2 − x3, and |b| = |c| = |x1x2 − x3|1/2, where x3 = det(X). Then the

following hold:

(1) ‖X‖ ≤ 1 ⇔


 1 − |x1|2 − |x1x2 − x3| −x̄1b− x2c̄

−x1b̄− x̄2c 1 − |x2|2 − |x1x2 − x3|


 ≥ 0,

(2) det(1 −X∗X) = 1 − |x1|2 − |x2|2 + |x3|2 − 2|x1x2 − x3|.

Proof First we show that (1) holds. We know that

‖X‖ ≤ 1 ⇔ 1 −X∗X ≥ 0.
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Now we calculate 1 −X∗X.

1 −X∗X = 1 −


 x̄1 c̄

b̄ x̄2





 x1 b

c x2


 ,

=


 1 − |x1|2 − |c|2 −x̄1b− x2c̄

−x1b̄− x̄2c 1 − |x2|2 − |b|2


 ,

=


 1 − |x1|2 − |x1x2 − x3| −x̄1b− x2c̄

−x1b̄− x̄2c 1 − |x2|2 − |x1x2 − x3|


 .

Therefore,

‖X‖ ≤ 1 ⇐⇒


 1 − |x1|2 − |x1x2 − x3| −x̄1b− x2c̄

−x1b̄− x̄2c 1 − |x2|2 − |x1x2 − x3|


 ≥ 0.

(2.10)

That is, (1) holds.

We shall show now that (2) holds. Observe that

det(1 −X∗X) = det





 1 − |x1|2 − |x1x2 − x3| −x̄1b− x2c̄

−x1b̄− x̄2c 1 − |x2|2 − |x1x2 − x3|







= (1 − |x1|2 − |x1x2 − x3|)(1 − |x2|2 − |x1x2 − x3|)

−(−x̄1b− x2c̄)(−x1b̄− x̄2c),

and moreover that

(−x̄1b−x2c̄)(−x1b̄− x̄2c) = |x1x2 −x3|(|x1|2 + |x2|2)+2Re(x̄1x̄2(x1x2 −x3)),

and

(1−|x1|2−|x1x2−x3|)(1−|x2|2−|x1x2−x3|) = 1−|x1|2−|x2|2+|x1x2−x3|(|x1|2+|x2|2)
−2|x1x2−x3|+|x1x2−x3|2+|x1|2|x2|2.
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Note that

|x1|2|x2|2 + |x1x2 − x3|2 − 2Re(x̄1x̄2(x1x2 − x3)) = |x1x2 − (x1x2 − x3)|2

= |x3|2.

Hence,

det(1 −X∗X) = (1 − |x1|2 − |x1x2 − x3|)(1 − |x2|2 − |x1x2 − x3|)

−(−x̄1b− x2c̄)(−x1b̄− x̄2c)

= 1 − |x1|2 − |x2|2 + |x3|2 − 2|x1x2 − x3|, (2.11)

That is (2) holds.

�

We shall now prove (8) ⇒ (9) Suppose that (8) holds. Let

X =


 x1 b

c x2


 ∈M2(C).

Then 1 −X∗X ≥ 0, and so by Lemma 2.1.5,

det(1 −X∗X) = 1 − |x1|2 − |x2|2 + |x3|2 − 2|x1x2 − x3| ≥ 0.

From (8),

∥∥∥∥∥∥


 x1 b

c x2




∥∥∥∥∥∥
≤ 1, which implies that |x1| ≤ 1, |x2| ≤ 1 and

|x3| ≤ 1. Thus (9) holds and hence, (8) ⇒ (9).

(8) ⇐ (9) Suppose (9) holds. Then |x1| ≤ 1, |x2| ≤ 1 and |x3| ≤ 1.

Since 1 − |x1|2 − |x2|2 + |x3|2 − 2|x1x2 − x3| ≥ 0, then by Lemma 2.1.5,

(1−|x1|2−|x1x2−x3|)(1−|x2|2−|x1x2−x3|)−(−x̄1x12−x2x̄21)(−x1x̄12−x̄2x21) ≥ 0,
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That is,

det





 1 − |x1|2 − |x1x2 − x3| −x̄1x12 − x2x̄21

−x1x̄12 − x̄2x21 1 − |x2|2 − |x1x2 − x3|





 ≥ 0,

We claim that 1 − |x1|2 − |x1x2 − x3| ≥ 0.

Since if

(1 − |x1|2 − |x1x2 − x3|)(1 − |x2|2 − |x1x2 − x3|) ≥ 0,

then 1 − |x1|2 − |x1x2 − x3| and 1 − |x2|2 − |x1x2 − x3| are either both

non-positive or both non-negative. Since (9) holds, and since |x3| ≤ 1 then

they are both non-negative, for

1 − |x1|2 − |x2|2 + |x3|2 − 2|x1x2 − x3| ≥ 0 ⇒ 2 − |x1|2 − |x2|2 − 2|x1x2 − x3| ≥ 1 − |x3|2

⇒ 2 − |x1|2 − |x2|2 − 2|x1x2 − x3| ≥ 0

⇒ 1 − |x1|2 − |x1x2 − x3| ≥ 0, and

1 − |x2|2 − |x1x2 − x3| ≥ 0.

Therefore,

1 − |x1|2 − |x1x2 − x3| ≥ 0, and 1 − |x2|2 − |x1x2 − x3| ≥ 0.

Hence,

(9) holds =⇒


 1 − |x1|2 − |x1x2 − x3| −x̄1x12 − x2x̄21

−x1x̄12 − x̄2x21 1 − |x2|2 − |x1x2 − x3|


 ≥ 0

=⇒ (8) holds.

That is, (8) ⇐ (9). This completes the proof of (8) ⇔ (9).

43



(5)⇔(10) Let x1, x2, x3 ∈ C. When x1x2 = x3, (5) is the statement that

z 7→ x1 is in the Schur class and |x2| ≤ 1. Therefore in this case, |x1| ≤ 1

and |x2| ≤ 1.

(5) holds ⇐⇒





either x1x2 = x3, |x1| ≤ 1 and |x2| ≤ 1, or∣∣∣∣
x1 − zx3

1 − zx2

∣∣∣∣ ≤ 1, ∀z ∈ T, and |x2| < 1,

⇐⇒





either x1x2 = x3 , |x1| ≤ 1 and |x2| ≤ 1, or

|x1 − zx3|2 ≤ |1 − zx2|2, ∀z ∈ T, and |x2| < 1

⇐⇒





either x1x2 = x3, |x1| ≤ 1 and |x2| ≤ 1, or

(x1 − zx3)(x̄1 − z̄x̄3) ≤ (1 − zx2)(1 − z̄x̄2), ∀z ∈ T, and |x2| < 1

⇐⇒





either x1x2 = x3, |x1| ≤ 1 and |x2| ≤ 1, or

|x1|2 − z̄x1x̄3 − zx̄1x3 + |x3|2 ≤ 1 − z̄x̄2 − zx2 + |x2|2, ∀z ∈ T, |x2| < 1

⇐⇒





either x1x2 = x3, |x1| ≤ 1 and |x2| ≤ 1, or

z(x2 − x̄1x3) + z̄(x̄2 − x1x̄3) ≤ 1 − |x1|2 + |x2|2 − |x3|2, ∀z ∈ T, |x2| < 1

⇐⇒





either x1x2 = x3, |x1| ≤ 1 and |x2| ≤ 1, or

2Re[z̄(x̄2 − x1x̄3)] ≤ 1 − |x1|2 + |x2|2 − |x3|2, ∀z ∈ T, and |x2| < 1

⇐⇒





either x1x2 = x3, |x1| ≤ 1 and |x2| ≤ 1, or

2|x̄2 − x1x̄3| ≤ 1 − |x1|2 + |x2|2 − |x3|2, and |x2| < 1

⇐⇒





either x1x2 = x3, |x1| ≤ 1 and |x2| ≤ 1, or

1 − |x1|2 + |x2|2 − |x3|2 − 2|x̄2 − x1x̄3| ≥ 0, and |x2| < 1

⇐⇒





1 − |x1|2 + |x2|2 − |x3|2 − 2|x̄2 − x1x̄3| ≥ 0, and

|x1| ≤ 1, |x2| ≤ 1.

⇐⇒ (10) holds.
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(6)⇔(11) Similarly, we find that

(6) holds ⇐⇒





either x1x2 = x3, |x1| ≤ 1 and |x2| ≤ 1, or∣∣∣∣
x2 − zx3

1 − zx1

∣∣∣∣ ≤ 1, ∀z ∈ T, and |x1| < 1,

⇐⇒





1 + |x1|2 − |x2|2 − |x3|2 − 2|x̄1 − x2x̄3| ≥ 0,

|x1| ≤ 1, |x2| ≤ 1.

(9)⇔(10) By the equivalence (1) ⇔ (5), we find that

(x1, x2, x3) ∈ ΓE ⇔





∣∣∣∣
x2 − zx3

1 − zx1

∣∣∣∣ ≤ 1, ∀z ∈ T, and |x1| < 1, or

x1x2 = x3, and |x2| ≤ 1

⇔





|x2 − zx3| ≤ |1 − zx1|, ∀z ∈ T, and |x1| < 1, or

x1x2 = x3, and |x2| ≤ 1

⇔





|x̄2 − z̄x̄3| ≤ |1 − zx1|, ∀z ∈ T, and |x1| < 1, or

x1x2 = x3, and |x2| ≤ 1

⇔





|x̄2z − x̄3| ≤ |1 − zx1|, ∀z ∈ T, and |x1| < 1, or

x1x2 = x3, and |x2| ≤ 1

⇔





∣∣∣∣
x̄3 − zx̄2

1 − zx1

∣∣∣∣ , ∀z ∈ T, and |x1| < 1, or

x1x2 = x3, and |x2| ≤ 1

⇔ (x1, x̄3, x̄2) ∈ ΓE.

That is,

(x1, x2, x3) ∈ ΓE ⇔ (x1, x̄3, x̄2) ∈ ΓE.

Moreover, since

(x1, x2, x3) ∈ ΓE ⇔ (x2, x1, x3) ∈ ΓE,
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we find that

(10) holds ⇔





1 − |x1|2 + |x2|2 − |x3|2 − 2|x1x̄3 − x̄2| ≥ 0,

|x1| ≤ 1, |x2| ≤ 1

⇔





1 − |x1|2 − |x2|2 + |x3|2 − 2|x1x2 − x3| ≥ 0,

|x1| ≤ 1, |x2| ≤ 1, |x3| ≤ 1.

⇔ (9) holds.

�

The next result follows from equivalences (9) ⇔ (10) and (3) ⇔ (4) of

Theorem 2.1.4.

Corollary 2.1.6 We have

(x1, x2, x3) ∈ ΓE ⇐⇒ (x1, x̄3, x̄2) ∈ ΓE, and

(x1, x2, x3) ∈ ΓE ⇐⇒ (x2, x1, x3) ∈ ΓE.

Corollary 2.1.7 The following holds:

(s, p) ∈ Γ ⇔
(s

2
,
s

2
, p

)
∈ ΓE.

Proof Recall that, from Theorem 1.1.2 and Theorem 2.1.4, we have

(s, p) ∈ Γ ⇔ |s− s̄p| ≤ 1 − |p|2, and

(x1, x2, x3) ∈ ΓE ⇔ 1 − |x1|2 + |x2|2 − |x3|2 − 2|x1x̄3 − x̄2| ≥ 0.

Therefore,

(s
2
,
s

2
, p

)
∈ ΓE ⇔ 1 − |p|2 − 2

∣∣∣
s

2
p̄− s̄

2

∣∣∣ ≥ 0

⇔ 1 − |p|2 ≥ |s− s̄p|

⇔ (s, p) ∈ Γ.

�
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2.2 A Necessary Condition for Interpolation

into ΓE

By the Nevanlinna-Pick data we mean a finite set λ1, . . . , λn of distinct

points in D, where n ∈ N, and an equal number of “target points”

w1, . . . , wn in C. We write these data

λj 7→ wj, 1 ≤ j ≤ n. (2.12)

We say that these data are solvable if there exists a function F in the Schur

class such that F (λj) = wj, 1 ≤ j ≤ n. By the classical theorem of Pick, the

Nevanlinna-Pick problem (2.12) is solvable if and only if the “Pick matrix”
[
1 − w̄iwj

1 − λ̄iλj

]n

i,j=1

is positive semi-definite.

The next result follows immediately by (1) ⇔ (5) of Theorem 2.1.4.

Corollary 2.2.1 Let λ1, . . . , λn ∈ D, x(j) = (x
(j)
1 , x

(j)
2 , x

(j)
3 ) ∈ ΓE for

j = 1, 2, · · · , n. A necessary condition for the existence of an analytic

function f : D 7−→ ΓE such that f(λj) = x(j), 1 ≤ j ≤ n, is that for all

ω ∈ T\{x̄(j)
2 : 1 ≤ j ≤ n},

λj 7−→
x

(j)
1 − ωx

(j)
3

1 − ωx
(j)
2

, 1 ≤ j ≤ n

are solvable Nevanlinna-Pick data.

Corollary 2.2.2 Let λ1, . . . , λn ∈ D, x(j) = (x
(j)
1 , x

(j)
2 , x

(j)
3 ) ∈ ΓE for

j = 1, 2, · · · , n. If there exists an analytic function f : D 7−→ ΓE such that

f(λj) = x(j), 1 ≤ j ≤ n, then for all ω ∈ T\{x̄(j)
2 : 1 ≤ j ≤ n},

[
1 − Ψω(x(i))Ψω(x(j))

1 − λ̄iλj

]n

i,j=1

≥ 0.
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Remark 2.2.3 The converse of Corollary 2.2.2 is not true.

Example We consider interpolating points of the form x
(j)
3 = x

(j)
1 x

(j)
2 ,

1 ≤ j ≤ n. In this case, the converse of Corollary 2.2.2 suggests a sufficient

condition would be that there exists an analytic function f : D 7−→ ΓE such

that f(λj) = x(j), 1 ≤ j ≤ n, but

Ψω

(
x(j)

)
=
x

(j)
1 − ωx

(j)
3

1 − ωx
(j)
2

=
x

(j)
1 − ωx

(j)
1 x

(j)
2

1 − ωx
(j)
2

=
x

(j)
1

(
1 − ωx

(j)
2

)

1 − ωx
(j)
2

= x
(j)
1 .

Hence, we can take x
(j)
2 to be any n points in D which cannot be

interpolated by λj 7→ x
(j)
2 . In this case, we certainly cannot solve the

interpolation λj 7→ x(j).

In the case of the symmetrised bidisc Γ, Agler and Young [3], [9] gave a

necessary condition for interpolation into Γ. Their result is as follows:

Let λ1, . . . , λn be distinct points in D and let zj = (sj, pj) be in G for

j = 1, . . . , n, where G is the interior of Γ. If there exists an analytic

function h : D −→ G such that h(λj) = zj, for j = 1, . . . , n, then for all

ω ∈ T, [
1 − Φω(zi)Φω(zj)

1 − λ̄iλj

]n

i,j=1

≥ 0,

where Φω(zj) =
2ωpj − sj

2 − ωsj

, 1 ≤ j ≤ n.

They believe that the converse of their result fails to hold in general,

however, in [9], they show that it does hold when n = 2. In the case of ΓE,

we state the following question for the converse of Corollary 2.2.2.

Question 2.2.4 Let λ1, . . . , λn ∈ D, x(j) = (x
(j)
1 , x

(j)
2 , x

(j)
3 ) ∈ ΓE for
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j = 1, 2, · · · , n. If for all ω ∈ T\{x̄(j)
1 , x̄

(j)
2 : 1 ≤ j ≤ n},

[
1 − Ψω(x(i))Ψω(x(j))

1 − λ̄iλj

]n

i,j=1

≥ 0 and

[
1 − Υω(x(i))Υω(x(j))

1 − λ̄iλj

]n

i,j=1

≥ 0,

does there exist an analytic function f : D −→ ΓE such that

f(λj) = x(j), 1 ≤ j ≤ n?

The next result relates the property of mapping D analytically to ΓE and

membership of the Schur class.

Theorem 2.2.5 For any function ϕ = (ϕ1, ϕ2, ϕ3) : D 7−→ C3, the

following statements are equivalent:

(1) ϕ is analytic and maps D into ΓE;

(2) there exists an analytic 2 × 2-matrix valued function ψ = [ψij] on D

such that ‖ψ‖∞ ≤ 1 and ϕ = (ψ11, ψ22, det(ψ)).

Proof (1)⇒(2) Let ϕ : D −→ ΓE be analytic. We shall construct

ψ =


 ϕ1 ψ12

ψ21 ϕ2


 ,

analytic in D such that ϕ1ϕ2 − ψ12ψ21 = ϕ3 and ‖ψ‖∞ ≤ 1. That is, ψ12ψ21

has to be ϕ1ϕ2 − ϕ3.

Since ϕ : D −→ ΓE is analytic, ϕ1ϕ2 − ϕ3 ∈ H∞, and so by a theorem of F.

Riesz, which follows easily from inner-outer factorisation [17], there exist

functions ψ12, ψ21 ∈ H∞ such that ψ12ψ21 = ϕ1ϕ2 − ϕ3 and importantly

|ψ12| = |ψ21| = |ϕ1ϕ2 − ϕ3|1/2 on T.
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Since ϕ : D 7−→ ΓE, then by the equivalence (1) ⇔ (9) of Theorem 2.1.4, we

have 



1 − |ϕ1|2 − |ϕ2|2 + |ϕ3|2 − 2|ϕ1ϕ2 − ϕ3| ≥ 0, and

|ϕ1| ≤ 1, |ϕ2| ≤ 1, |ϕ3| ≤ 1.

Therefore, by (2) of Lemma 2.1.5, we find that

det(1 − ψ∗ψ) = 1 − |ϕ1|2 − |ϕ2|2 + |ϕ3|2 − 2|ϕ1ϕ2 − ϕ3| ≥ 0.

We need to show that 1 − |ϕ1|2 − |ϕ1ϕ2 − ϕ3| ≥ 0. Since (ϕ1, ϕ2, ϕ3) ∈ ΓE,

1 − |ϕ1|2 − |ϕ1ϕ2 − ϕ3| ≥ |ϕ2 − ϕ̄1ϕ3| ≥ 0, and

1 − |ϕ2|2 − |ϕ1ϕ2 − ϕ3| ≥ |ϕ1 − ϕ̄2ϕ3| ≥ 0

Hence

(1) holds =⇒


 1 − |ϕ1|2 − |ϕ1ϕ2 − ϕ3| −ϕ̄1ϕ12 − ϕ2ϕ̄21

−ϕ1ϕ̄12 − ϕ̄2ϕ21 1 − |ϕ2|2 − |ϕ1ϕ2 − ϕ3|


 ≥ 0,

=⇒ ‖ψ‖∞ ≤ 1.

That is (1) ⇒ (2).

(2)⇒(1) Suppose that ‖ψ‖∞ ≤ 1. Then by Lemma 2.1.5,

det(1 − ψ∗ψ) = 1 − |ϕ1|2 − |ϕ2|2 + |ϕ3|2 − 2|ϕ1ϕ2 − ϕ3| ≥ 0.

Also, our assumption that ‖ψ‖∞ ≤ 1 implies that |ϕ1| ≤ 1, |ϕ2| ≤ 1 and

|ϕ3| ≤ 1. Hence,

||ψ||∞ ≤ 1 =⇒





1 − |ϕ1|2 − |ϕ2|2 + |ϕ3|2 − 2|ϕ1ϕ2 − ϕ3| ≥ 0,

|ϕ1| ≤ 1, |ϕ2| ≤ 1, |ϕ3| ≤ 1.

That is, (2) ⇒ (1). Thus, (1) ⇔ (2). �
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The next result allows us to find a realization formula for analytic functions

from D to ΓE. The 2 × 2 matrix function ψ appearing in condition (2) of

Theorem 2.2.5 belongs to the Schur class, and can therefore be realised, as

in the Realization Theorem.

Corollary 2.2.6 A function ϕ = (ϕ1, ϕ2, ϕ3) : D −→ C3 maps D

analytically into ΓE if and only if there exist a Hilbert space H and a

unitary operator 
 A B

C D


 : H ⊕ C2 −→ H ⊕ C2

such that

ϕ1 =


 A B1

C1 D11


 , ϕ2 =


 A B2

C2 D22


 and ϕ3 = det


 A B

C D


 ,

where B =
[
B1 B2

]
: C2 −→ H, C =


 C1

C2


 : H −→ C2 and

D = [Dij]
2
i,j=1.

Proof (=⇒) Given the analytic function ϕ : D −→ ΓE, choose ψ as in

Theorem 2.2.5, so that ψ is in the Schur class and ϕ = (ψ11, ψ22, det(ψ)).

By the Realization Theorem, there exists a Hilbert space H and a unitary

operator 
 A B

C D


 on H ⊕ C2

such that for all λ ∈ D,

ψ(λ) =


 A B

C D


 (λ)

= D + Cλ(1 − Aλ)−1B
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ψ(λ) =


 D11 D12

D21 D22


 +


 C1

C2


λ(1 − Aλ)−1

[
B1 B2

]
.

Thus

ψ11 =


 A B1

C1 D11


 , ψ22 =


 A B2

C2 D22




and so

ϕ1 = ψ11 =


 A B1

C1 D11


 , ϕ2 = ψ22 =


 A B2

C2 D22


 , and

ϕ3 = detψ = det


 A B

C D


 .

(⇐=) Conversely, if H,A,B,C and D are as described, then the function

χ =


 A B

C D


 = [χij]

is analytic and ‖χ‖∞ ≤ 1 by the Realization Theorem. By hypothesis,

ϕj =


 A Bj

Cj Djj


 , j = 1, 2

and

ϕ3 = detχ.

Hence, by Theorem 2.2.5, ϕ = (ϕ1, ϕ2, ϕ3) maps D analytically into ΓE.

�

2.3 The Nevanlinna-Pick Problem for ΓE

In this section, we establish a necessary and sufficient condition for the

existence of an analytic function D −→ ΓE satisfying an arbitrary finite

number of interpolation conditions.
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Theorem 2.3.1 Let λ1, · · · , λn be distinct points in D for some n ∈ N and

let (xj
1, x

j
2, x

j
3) ∈ ΓE for j = 1, · · · , n. There exists an analytic function

ϕ : D 7−→ ΓE such that

ϕ(λj) = (xj
1, x

j
2, x

j
3), 1 ≤ j ≤ n,

if and only if there exist bj, cj ∈ C such that

bjcj = xj
1x

j
2 − xj

3, 1 ≤ j ≤ n, (2.13)

and the conditions

λj 7−→


 xj

1 bj

cj xj
2


 , 1 ≤ j ≤ n, (2.14)

comprise solvable Nevanlinna-Pick data.

Proof(⇒) Suppose ϕ as described exists. By Theorem 2.2.5, there is an

analytic 2 × 2 matrix-valued function ψ on D such that ‖ψ‖∞ ≤ 1 and

ϕ = (ψ11, ψ22, det(ψ)). Choose

bj = ψ12(λj), cj = ψ21(λj), 1 ≤ j ≤ n.

Then

ψ(λj) =


 xj

1 ψ12(λj)

ψ21(λj) xj
2


 =


 xj

1 bj

cj xj
2




and

xj
3 = x3(λj) = det(ψ(λj)) = xj

1x
j
2 − bjcj.

Thus, the equations (2.13) are satisfied, and for this choice of bj, cj, the

matricial Nevanlinna-Pick data with (2.14) is indeed solvable, since ψ is a

solution of it.
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(⇐) Suppose bj, cj can be found such that the equations (2.13) hold and the

matricial Nevanlinna-Pick data (2.14) are solvable, with solution χ = [χij].

Thus χ is a 2 × 2 Schur function, and

χ(λj) =


 xj

1 bj

cj xj
2


 .

Define functions ϕ1, ϕ2, ϕ3 by

ϕ1 = χ11,

ϕ2 = χ22,

ϕ3 = χ11χ22 − det(χ),

and let ϕ = (ϕ1, ϕ2, ϕ3). By Theorem 2.2.5, ϕ maps D analytically to ΓE

and we have

ϕ1(λj) = χ11(λj) = xj
1,

ϕ2(λj) = χ22(λj) = xj
2,

ϕ3(λj) = xj
1x

j
2 − bjcj = xj

3.

�

The next corollary follows immediately from Theorem 2.3.1.

Corollary 2.3.2 Let λ1, · · · , λn be distinct points in D for some n ∈ N and

let xj = (xj
1, x

j
2, x

j
3) ∈ ΓE, for j = 1, 2, · · · , n. The following two statements

are equivalent:

(1) there exists an analytic function ϕ : D −→ ΓE such that ϕ(λj) = xj,

1 ≤ j ≤ n;
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(2) there exists b1, · · · , bn, c1, · · · , cn ∈ C such that

bjcj = xj
1x

j
2 − xj

3, 1 ≤ j ≤ n, and




I −


 xi

1 bi

ci xi
2



∗ 
 xj

1 bj

cj xj
2




1 − λ̄iλj




n

i,j=1

≥ 0.

Theorem 2.3.3 The following identity is valid for all z ∈ D, x1, x2, x3 ∈ C

and r ∈ [0, 1).

|1−rzx2|2−|rx1−rzx3|2 = r2{|1−zx2|2−|x1−zx3|2}+(1−r)(1+r−2rRe(zx2)).

Proof For all z ∈ D, x1, x2, x3 ∈ C and r ∈ [0, 1),we have

|1 − rzx2|2 − |rx1 − rzx3|2 = (1 − rzx2)(1 − rz̄x̄2) − r2(x1 − zx3)(x̄1 − z̄x̄3)

= 1 − rzx2 − rz̄x̄2 + r2|z|2|x2|2

−r2(|x1|2 − z̄x1x̄3 − zx̄1x3 + |z|2|x3|2)

= r2(1 − zx2 − z̄x̄2 + |z|2|x2|2)

−r2(|x1|2 − z̄x1x̄3 − zx̄1x3 + |z|2|x3|2)

+1 + r − r(zx2 + z̄x̄2) − r(1 + r − r(zx2 + z̄x̄2))

= r2(1 − zx2)(1 − z̄x̄2) − r2(x1 − zx3)(x̄1 − z̄x̄3)

+(1 − r)(1 + r − r(zx2 + z̄x̄2))

= r2{|1 − zx2|2 − |x1 − zx3|2} + (1 − r)(1 + r − 2rRe(zx2)).

�
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Theorem 2.3.4 ΓE is not convex, though it is starlike about the point

(0, 0, 0).

Proof To show that ΓE is not convex, we give the following example:

The points (1, i, i) and (−i, 1,−i) are in ΓE, but the mid-point of these

points is

(
1 − i

2
,
1 + i

2
, 0

)
/∈ ΓE, for

|x1|2 + |x2 − x̄1x3| + |x1x2 − x3| =
1

2
+

√
2

2
+

1

2
= 1 +

√
2

2
� 1.

To prove that ΓE is starlike about the point (0, 0, 0), we need to show that

if x = (x1, x2, x3) ∈ ΓE and 0 ≤ r < 1 then (rx1, rx2, rx3) ∈ ΓE. Fix

(x1, x2, x3) ∈ ΓE and r ∈ [0, 1). By Theorem 2.1.4 we have, for all z ∈ D,

∣∣∣∣
x1 − zx3

1 − zx2

∣∣∣∣ ≤ 1,

that is,

|1 − zx2|2 − |x1 − zx3|2 ≥ 0.

Therefore, by Theorem 2.3.3, we have, for r ∈ [0, 1) and for all z ∈ D,

|1 − rzx2|2 − |rx1 − rzx3|2 = r2{|1 − zx2|2 − |x1 − zx3|2} + (1 − r)(1 + r − 2rRe(zx2))

≥ 0.

Therefore, ∣∣∣∣
rx1 − rzx3

1 − rzx2

∣∣∣∣ ≤ 1,

for all z ∈ D. Hence, by Theorem 2.1.4, (rx1, rx2, rx3) ∈ ΓE. Thus, ΓE is a

starlike about the point (0, 0, 0).

�
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Chapter 3

A Schwarz Lemma for ΓE

The classical Schwarz Lemma gives a necessary and sufficient condition for

the solvability of a two-point interpolation problem for analytic functions

from the open unit disc D into itself. This lemma has many generalisations

in which the two copies of D are replaced by other domains. One of our

goals is to prove a Schwarz Lemma for ΓE.

The Classical Schwarz Lemma Given λ0 ∈ D\{0} and z0 ∈ D, there

exists an analytic function f : D → D such that f(0) = 0 and f(λ0) = z0 if

and only if |z0| ≤ |λ0|.

In section 3.4, we describe a large group of holomorphic automorphisms of

GE, which we conjecture to be all the automorphisms of GE. We do this

using automorphisms induced by Möbius automorphisms and the natural

involution (a, b, p) ∈ ΓE 7→ (b, a, p) of ΓE.

We also use the Möbius automorphisms in Chapter 4 to find the

distinguished boundary of ΓE and to prove some other results.
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3.1 A special case of the Schwarz Lemma

for ΓE

In this section we prove the Schwarz Lemma for ΓE in the case that the two

points in ΓE are (0, 0, 0) and (a, b, 0).

Theorem 3.1.1 Let 0 ≤ b0 < a0 < 1 − b0 and let λ0 ∈ D. The following

are equivalent:

(1) There exists h : D −→ GE such that h(0) = (0, 0, 0) and

h(λ0) = (a0, b0, 0);

(2) |λ0| ≥
a0

1 − b0
;

(3) there exists an analytic function F : D −→M2(C) such that for all

λ ∈ D, ‖F (λ)‖ < 1 and

F (0) =


 0 ζ

0 0


 , F (λ0) =


 a0 τ

√
a0b0

τ−1
√
a0b0 b0


 ,

for some ζ ∈ (0, 1) and τ > 0.

Proof (1)⇒(2) Suppose that there exists h : D −→ GE such that

h(0) = (0, 0, 0) and h(λ0) = (a0, b0, 0).

We know that for any ω ∈ T, the function Ψω defined by

Ψω(a, b, p) =
a− ωp

1 − ωb

maps GE to D, and the same is true for

Υω(a, b, p) =
b− ωp

1 − ωa
.
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Therefore, Ψω ◦ h maps D to D,

Ψω ◦ h(0) = Ψω(0, 0, 0) = 0,

Ψω ◦ h(λ0) = Ψω(a0, b0, 0) =
a0

1 − ωb0
.

Also,

Υω ◦ h(0) = Υω(0, 0, 0) = 0,

Υω ◦ h(λ0) = Υω(a0, b0, 0) =
b0

1 − ωa0

.

By the Schwarz Lemma, for any ω ∈ T,

|Ψω ◦ h(λ0)| ≤ |λ0| and |Υω ◦ h(λ0)| ≤ |λ0|.

Hence,

sup
ω

|Ψω ◦ h(λ0)| ≤ |λ0| and sup
ω

|Υω ◦ h(λ0)| ≤ |λ0|.

Hence,

a0

1 − b0
≤ |λ0| and

b0
1 − a0

≤ |λ0|.

Therefore, (1) ⇒ (2).

(2)⇒(3) Suppose that (2) holds. We can suppose that λ0 =
a0

1 − b0
so that

0 < λ0 < 1.

Let ζ =

√
b0

1 − b0
, τ =

√
1 − b0
a0

and let

X1 =


 0 ζ

0 0


 , X2 =


 a0 τ

√
a0b0

τ−1
√
a0b0 b0


 =




√
a0

τ−1
√
b0




[ √
a0 τ

√
b0

]
.
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Note that ζ ∈ (0, 1) and ‖X2‖ < 1, for

‖X2‖ =

√(
a0 +

b0
τ 2

)
(a0 + τ 2b0)

=

√
a2

0 + b20 + τ 2a0b0 +
a0b0
τ 2

=

√

a2
0 + b20 + b0(1 − b0) +

a2
0b0

1 − b0

=

√
a2

0(1 − b0) + b0(1 − b0) + a2
0b0

1 − b0

=

√
a2

0 + b0(1 − b0)

1 − b0

=

√
a2

0

1 − b0
+ b0,

and since a0 < 1 − b0, then
a0

1 − b0
< 1, which implies that

a2
0

1 − b0
< a0.

Therefore,

‖X2‖ =

√
a2

0

1 − b0
+ b0

<
√
a0 + b0

< 1.

Consider the Möbius transformation MX1
(X2) defined by

MX1
(X2) = (1 −X1X

∗
1 )−1/2(X1 −X2)(1 −X∗

1X2)
−1(1 −X∗

1X1)
1/2.

Note that MX1
(X2) is defined and is a contraction, for

1−MX1
(X2)

∗MX1
(X2) = (1−X∗

1X1)
1/2(1−X∗

2X1)
−1(1−X∗

2X2)(1−X∗
1X2)

−1(1−X∗
1X1)

1/2,

and since ‖X1‖ < 1, ‖X2‖ < 1 and (1 −X∗
1X2) is invertible, MX1

(X2) is

defined and ‖MX1
(X2)‖ < 1, see Chapter 12 of [29].
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Now we have

MX1
(X2) =




(1 − ζ2)−1/2 0

0 1







−a0 ζ − τ
√
a0b0

−τ−1
√
a0b0 −b0







1 0

−a0ζ 1 − ζτ
√
a0b0




−1 


1 0

0 (1 − ζ2)1/2




=




−a0√
1 − ζ2

ζ − τ
√

a0b0√
1 − ζ2

−τ−1
√

a0b0 −b0







1 0

a0ζ

1 − ζτ
√

a0b0

1

1 − ζτ
√

a0b0







1 0

0
√

1 − ζ2




=




−a0√
1 − ζ2

+
a0ζ(ζ − τ

√
a0b0)√

1 − ζ2(1 − ζτ
√

a0b0)

ζ − τ
√

a0b0√
1 − ζ2(1 − ζτ

√
a0b0)

−τ−1
√

a0b0 −
ζa0b0

1 − ζτ
√

a0b0

−b0

1 − ζτ
√

a0b0







1 0

0
√

1 − ζ2




=




−a0√
1 − ζ2

+
a0ζ(ζ − τ

√
a0b0)√

1 − ζ2(1 − ζτ
√
a0b0)

ζ − τ
√
a0b0

1 − ζτ
√
a0b0

−
√
a0b0
τ

− ζa0b0

1 − ζτ
√
a0b0

−b0
√

1 − ζ2

1 − ζτ
√
a0b0




=




−a0

√
1 − ζ

1 − ζτ
√
a0b0

ζ − τ
√
a0b0

1 − ζτ
√
a0b0

−
√
a0b0

τ(1 − ζτ
√
a0b0)

−b0
√

1 − ζ

1 − ζτ
√
a0b0
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MX1
(X2) =




−a0

√
1 − 2b0

(1 − b0)
√

1 − b0

b0
√
b0

(1 − b0)
√

1 − b0

−a0

√
b0

(1 − b0)
√

1 − b0

−b0
√

1 − 2b0

(1 − b0)
√

1 − b0




=: X3.

Let F : D −→M2(C) be given by F (λ) = M−X1

(
λ

λ0

X3

)
, λ ∈ D.

That is,

F (λ) = M2

6

6

6

6

4

0 −
√

b0
1 − b0

0 0

3

7

7

7

7

5

(
λ

λ0

X3

)

Note that F is analytic in D,

F (0) = X1 =


 0 ζ

0 0


 ,

F (λ0) = X2 =


 a0 τ

√
a0b0

τ−1
√
a0b0 b0


 ,

where ζ =

√
b0

1 − b0
∈ (0, 1), τ =

√
1 − b0
a0

> 0.

We must show that ‖F (λ)‖ < 1, for all λ ∈ D.

First, we shall show that ‖X3‖ = λ0. i.e., that ‖X∗
3X3‖ = λ2

0.

det (X∗
3X3) =

(
a0b0(1 − 2b0) + a0b

2
0

(1 − b0)3

)2

=

(
a0b0

(1 − b0)2

)2

=
a2

0b
2
0

(1 − b0)4
,

tr(X∗
3X3) =

(a2
0 + b20)(1 − 2b0) + (a2

0 + b20)b0
(1 − b0)3

=
a2

0 + b20
(1 − b0)2

.

The squares s2
0, s

2
1 of the singular values s0, s1 of X3 are the roots of the

equation

y2 − tr(X∗
3X3)y + det(X∗

3X3) = 0 in y,
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that is, of the equation

y2 − a2
0 + b20

(1 − b0)2
y +

a2
0b

2
0

(1 − b0)4
= 0.

Hence,

s2
0 =

a2
0

(1 − b0)2
and s2

1 =
b20

(1 − b0)2
.

Note that b0 < a0, and so
a2

0

(1 − b0)2
>

b20
(1 − b0)2

.

Therefore, ‖X3‖2 =
a2

0

(1 − b0)2
, and hence, ‖X3‖ = λ0. Now we show that

‖F (λ)‖ < 1 for all λ ∈ D.

Since

∥∥∥∥
λ

λ0

X3

∥∥∥∥ = |λ|
∥∥∥∥
X3

λ0

∥∥∥∥ = |λ| < 1, we have ‖F (λ)‖ < 1, for all λ ∈ D.

Thus, F has the required properties and so (2) ⇒ (3).

(3)⇒(1) Let F satisfy condition (3) and let h = (F11, F22, detF ). Clearly,

h is analytic. We know that

F (0) =


 0 ζ

0 0


 and F (λ0) =


 a0 τ

√
a0b0

τ−1
√
a0b0 b0


 ,

for some ζ ∈ (0, 1) and τ > 0.

Therefore,

h(0) = (F11, F22, detF )(0) = (0, 0, 0),

h(λ0) = (F11, F22, detF )(λ0) = (a0, b0, 0).

For any λ ∈ D, we have ‖F (λ)‖ < 1, and so by (3) of Remark 1.2.9,

µE(F (λ)) ≤ ‖F (λ)‖ < 1. Hence (F11(λ), F22(λ), detF (λ)) ∈ GE. Thus h

maps D into GE.

�
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In the next result we give an explicit formula for an analytic function

f : D −→ GE such that f(0) = (0, 0, 0) and f(λ0) = (a0, b0, 0), where

λ0 ∈ D.

Corollary 3.1.2 Let 0 ≤ b0 < a0 < 1− b0 and let λ0 ∈ D. If there exists an

analytic function f : D −→ GE such that f(0) = (0, 0, 0) and

f(λ0) = (a0, b0, 0), then f = (f1, f2, f3) : D −→ GE can be given by

f(λ) =

(
λa0(1 − 2b0)

a0(1 − b0) − λb20
,

λb0(1 − 2b0)

a0(1 − b0) − λb20
,
λb0 (λ(1 − b0) − a0)

a0(1 − b0) − λb20

)
,

for all λ ∈ D.

Proof Suppose that there exists an analytic function f : D −→ GE such

that f(0) = (0, 0, 0) and f(λ0) = (a0, b0, 0). By Theorem 3.1.1, there exists

an analytic function F : D −→M2(C) such that for all λ ∈ D, ‖F (λ)‖ < 1

and

F (0) =


 0 ζ

0 0


 := X1, F (λ0) =


 a0 τ

√
a0b0

τ−1
√
a0b0 b0


 := X2,

where λ0 =
a0

1 − b0
, ζ =

√
b0

1 − b0
∈ (0, 1) and τ =

√
1 − b0
a0

> 0.

As in the proof of Theorem 3.1.1, we may take

F (λ) = M−X1

(
λ

λ0

X3

)
,

and

X3 =




−a0

√
1 − 2b0

(1 − b0)
√

1 − b0

b0
√
b0

(1 − b0)
√

1 − b0

−a0

√
b0

(1 − b0)
√

1 − b0

−b0
√

1 − 2b0

(1 − b0)
√

1 − b0



.
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Hence,

M−X1

(
λ

λ0

X3

)
= (1 −X1X

∗
1 )−1/2

(
−X1 −

λ

λ0

X3

) (
1 +X∗

1

λ

λ0

X3

)−1

(1 −X∗
1X1)

1/2

=




√
1 − b0
1 − 2b0

0

0 1







λ
√

1 − 2b0√
1 − b0

−
√
b0(a0 − λb0)

a0

√
1 − b0

−λ
√
b0√

1 − b0

λb0
√

1 − 2b0

a0

√
1 − b0







1 0

λa0

√
b0(1 − 2b0)

a0(1 − b0) − λb20

a0(1 − b0)

a0(1 − b0) − λb20







1 0

0

√
1 − 2b0
1 − b0




=




λ
−
√
b0(a0 − λb0)

a0

√
1 − 2b0

−λ
√
b0√

1 − b0

λb0
√

1 − 2b0

a0

√
1 − b0







1 0

λa0

√
b0(1 − 2b0)

a0(1 − b0) − λb20

a0(1 − b0)

a0(1 − b0) − λb20







1 0

0

√
1 − 2b0
1 − b0




=




λ− λb0(a0 − λb0)

a0(1 − b0) − λb20

−
√
b0(1 − b0)(a0 − λb0)√

1 − 2b0(a0(1 − b0) − λb20)

−λ
√
b0√

1 − b0
+

λ2b0
√
b0(1 − 2b0)√

1 − b0(a0(1 − b0) − λb20)

λb0
√

1 − b0
√

1 − 2b0
a0(1 − b0) − λb20







1 0

0

√
1 − 2b0
1 − b0
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M−X1

(
λ

λ0

X3

)
=




λa0(1 − 2b0)

a0(1 − b0) − λb20

−
√
b0(1 − b0)(a0 − λb0)

a0(1 − b0) − λb20

−λ
√
b0(1 − b0)(a0 − λb0)

a0(1 − b0) − λb20

λb0(1 − 2b0)

a0(1 − b0) − λb20




:= F (λ).

Hence,

f1(λ) =
λa0(1 − 2b0)

a0(1 − b0) − λb20
,

f2(λ) =
λb0(1 − 2b0)

a0(1 − b0) − λb20
,

f3(λ) = det(f(λ)) =
λ2a0b0(1 − 2b0)

2 − λb0(1 − b0)(a0 − λb0)
2

(a0(1 − b0) − λb20)
2

=
λb0 (λ(1 − b0) − a0)

a0(1 − b0) − λb20
.

Thus, for all λ ∈ D,

f(λ) =

(
λa0(1 − 2b0)

a0(1 − b0) − λb20
,

λb0(1 − 2b0)

a0(1 − b0) − λb20
,
λb0 (λ(1 − b0) − a0)

a0(1 − b0) − λb20

)
.

�

3.2 A More General Schwarz Lemma for ΓE

In this section, we prove a more general case of the Schwarz Lemma for ΓE.

Given (a, b, p) ∈ GE, we find necessary and sufficient conditions for the

existence of an analytic function F : D −→ GE such that F (0) = (0, 0, 0)

and F (λ0) = (a, b, p), where λ0 ∈ D\{0}.
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Theorem 3.2.1 Let U ∈M2(C), ‖U‖ < 1 and let λ0 ∈ D\{0}. Then there

exists an analytic function G ∈ S2×2 such that

G(0) =


 ∗ ∗

∗ 0


 and G(λ0) = U,

if and only if det(M) ≤ 0, where

M =


 [(1 − ρ2U∗U)(1 − U∗U)−1]11 [(1 − ρ2)(1 − UU∗)−1U ]21

[(1 − ρ2)U∗(1 − UU∗)−1)]12 [(UU∗ − ρ2)(1 − UU∗)−1]22


 (3.1)

and ρ = |λ0|.

Proof Suppose that ‖U‖ < 1 and that there exists an analytic function

G ∈ S2×2 such that

G(0) =


 ∗ ∗

∗ 0


 and G(λ0) = U.

Moreover, assume that

MU(G(λ0)) = 0 and MU(G(λ)) = Bλ0
(λ)H(λ),

where H ∈ S2×2 and Bλ0
(λ) =

λ− λ0

1 − λ̄0λ
.

Therefore, there exists G ∈ S2×2 such that G(0) =


 ∗ ∗

∗ 0


 and G(λ0) = U

⇔ ∃ H ∈ S2×2 such that G(0) = M−U(Bλ0
(0)H(0)) = M−U(−λ0H(0))

has 2 × 2 entry 0

Let X = −λ0H(0), where H(0) is a constant of norm 1. Then

Such a G exists ⇔ ∃ X ∈M2(C) such that ‖X‖ ≤ |λ0| < 1 and [M−U(X)]22 = 0.
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We have

M−U(X) = (AX +B)(CX +D)−1, where A = (1 − UU∗)−1/2, B = (1 − UU∗)−1/2U,

C = U∗(1 − UU∗)−1/2, D = (1 − U∗U)−1/2.

Therefore,

Such a G exists ⇔ ∃ X ∈M2(C) such that ‖X‖ ≤ ρ, and

〈(AX +B)(CX +D)−1e2, e2〉 = 0

⇔ ∃ X ∈M2(C) such that ‖X‖ ≤ ρ, ξ ∈ C2, ξ 6= 0, and



〈(AX +B)ξ, e2〉 = 0, and

〈(CX +D)ξ, e1〉 = 0

⇔ ∃ X ∈M2(C) such that ‖X‖ ≤ ρ, ξ ∈ C2, ξ 6= 0, and

ξ ∈ (X∗A∗ +B∗)e⊥2 ∩ (X∗C∗ +D∗)e⊥1

⇔ ∃ X ∈M2(C) such that ‖X‖ ≤ ρ and

span{X∗A∗e2 +B∗e2, X
∗C∗e1 +D∗e1} 6= C2

⇔ ∃ X ∈M2(C) such that ‖X‖ ≤ ρ and

X∗A∗e2 +B∗e2 and X∗C∗e1 +D∗e1 are linearly dependent

⇔ ∃ X ∈M2(C) such that ‖X‖ ≤ ρ and α1, α2 ∈ C not both zero

such that α2(X
∗A∗e2 +B∗e2) + α1(X

∗C∗e1 +D∗e1) = 0

⇔ ∃ X ∈M2(C) such that ‖X‖ ≤ ρ and α1, α2 ∈ C not both zero

such that X∗(α1C
∗e1 + α2A

∗e2) = −(α1D
∗e1 + α2B

∗e2)

⇔ ∃ α1, α2 ∈ C not both zero, such that

‖α1D
∗e1 + α2B

∗e2‖2 ≤ ρ2‖α1C
∗e1 + α2A

∗e2‖2
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Such a G exists ⇔ ∃ α1, α2 ∈ C not both zero, such that

〈D∗e1, D
∗e1〉α1ᾱ1 + 〈D∗e1, B

∗e2〉α1ᾱ2 + 〈B∗e2, D
∗e1〉ᾱ1α2

+〈B∗e2, B
∗e2〉α2ᾱ2 − ρ2[〈C∗e1, C

∗e1〉α1ᾱ1 + 〈C∗e1, A
∗e2〉α1ᾱ2

+〈A∗e2, C
∗e1〉ᾱ1α2 + 〈A∗e2, A

∗e2〉α2ᾱ2] ≤ 0

⇔ M :=


 〈D∗e1, D

∗e1〉 − ρ2〈C∗e1, C
∗e1〉 〈D∗e1, B

∗e2〉 − ρ2〈C∗e1, A
∗e2〉

〈B∗e2, D
∗e1〉 − ρ2〈A∗e2, C

∗e1〉 〈B∗e2, B
∗e2〉 − ρ2〈A∗e2, A

∗e2〉




is not positive definite

⇔ either 〈D∗e1, D
∗e1〉 − ρ2〈C∗e1, C

∗e1〉 ≤ 0, or det(M) ≤ 0.

Hence, we can write M as follows:

M =


 [DD∗ − ρ2CC∗]11 [BD∗ − ρ2AC∗]21

[DB∗ − ρ2CA∗]12 [BB∗ − ρ2AA∗]22




=


 [(1 − UU∗)−1 − ρ2U∗U(1 − U∗U)−1]11 [(1 − UU∗)−1U − ρ2(1 − UU∗)−1U ]21

[U∗(1 − UU∗)−1 − ρ2U∗(1 − UU∗)−1]12 [UU∗(1 − UU∗)−1 − ρ2(1 − UU∗)−1]22




=


 [(1 − ρ2U∗U)(1 − U∗U)−1]11 [(1 − ρ2)(1 − UU∗)−1U ]21

[(1 − ρ2)U∗(1 − UU∗)−1)]12 [(UU∗ − ρ2)(1 − UU∗)−1]22


 .

Note that, since ‖U‖ < 1 and ρ ∈ (0, 1), then

[(1 − ρ2U∗U)(1 − U∗U)−1]11 > 0,

for, let Q = U∗U , then Q is a positive matrix and strictly contractive.

Hence, (1 − ρ2Q)(1 −Q)−1 is a positive function of a positive variable on

the spectrum of Q, therefore, by the Spectral Theorem, (1 − ρ2Q)(1 −Q)−1

is positive.

Therefore, there exists an analytic function G ∈ S2×2 such that

G(0) =


 ∗ ∗

∗ 0


 , and G(λ0) = U,
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if and only if det(M) ≤ 0, where M is given as in (3.1).

�

The proof of the next result in the case that ab = p follows immediately by

applying the classical Schwarz Lemma, in this case we have

|λ0| ≥ max{|a|, |b|}.

Theorem 3.2.2 Let (a, b, p) ∈ GE, ab 6= p, λ0 ∈ D\{0} and let w ∈ C

satisfy w2 = ab− p. Then there exist τ > 0 and F ∈ S2×2 such that

F (0) =


 0 ∗

0 0


 and F (λ0) =


 a τw

τ−1w b


 ,

if and only if

either





|b| ≤ |a|, and

|λ0| ≥
|a− b̄p| + |ab− p|

1 − |b|2
or





|a| < |b|, and

|λ0| ≥
|b− āp| + |ab− p|

1 − |a|2
.

To prove this theorem, we need the following Lemma.

Lemma 3.2.3 Let a, b, p be defined as in Theorem 3.2.2, 0 < λ0 < 1 and let

U =




a

λ0

τw

τ−1w

λ0

b




and

M =


 [(1 − ρ2U∗U)(1 − U∗U)−1]11 [(1 − ρ2)(1 − UU∗)−1U ]21

[(1 − ρ2)U∗(1 − UU∗)−1)]12 [(UU∗ − ρ2)(1 − UU∗)−1]22


 ,
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where ρ = |λ0| = λ0. Then

det (M det(1 − U∗U)) = C−4τ
−4 + C−2τ

−2 + C0 + C2τ
2 + C4τ

4,

where

C−4 =
−|ab− p|2

λ2
0

,

C4 = −|ab− p|2λ2
0,

C−2 = −|ab− p|
(
−λ2

0 + |a|2 + |b|2 − |p|2
λ2

0

)
+

(
1 − |a|2 − |b|2 + |p|2

) |ab− p|
λ2

0

−
(

1 − λ2
0

λ0

)2

|ab− p|,

C2 = −|ab− p|
(
−λ2

0 + |a|2 + |b|2 − |p|2
λ2

0

)
+

(
1 − |a|2 − |b|2 + |p|2

)
|ab− p|λ2

0

−
(

1 − λ2
0

λ0

)2

|p|2|ab− p|,

C0 = −2|ab− p|2 + (|a|2 + |b|2)(1 + |p|2) − (|a|4 + |b|4 + 2|p|2) + λ2
0(1 − |a|2)(|b|2 − 1)

+
1

λ2
0

(
|p|2(|a|2 + |b|2 − |p|2) − |a|2|b|2

)
.

Proof First, we calculate det(1 − U∗U).

U∗U =




ā

λ0

τ−1w̄

λ0

τw̄ b̄







a

λ0

τw

τ−1w

λ0

b




=




|a|2
λ2

0

+
|w|2
λ2

0τ
2

τwā

λ0

+
bw̄

τλ0

aτw̄

λ0

+
b̄w

λ0τ
τ 2|w|2 + |b|2



.
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Hence,

1 − U∗U =




1 − |a|2
λ2

0

− |w|2
λ2

0τ
2

−τwā
λ0

− bw̄

τλ0

−aτw̄
λ0

− b̄w

λ0τ
1 − τ 2|w|2 − |b|2



.

Therefore,

det(1 − U∗U) =

(
1 − |a|2

λ2
0

− |w|2
λ2

0τ
2

) (
1 − τ 2|w|2 − |b|2

)
−

(
τwā

λ0

+
bw̄

τλ0

) (
aτw̄

λ0

+
b̄w

λ0τ

)

= 1 − |a|2
λ2

0

− |b|2 +
|p|2
λ2

0

− |ab− p|
(
τ 2 +

1

λ2
0τ

2

)
.

Now, we calculate M . We start by calculating [(1 − ρ2U∗U)(1 − U∗U)−1]11.

Clearly,

1 − ρ2U∗U =




1 − |a|2 − |w|2
τ 2

−λ0

(
τwā+

bw̄

τ

)

−λ0

(
aτw̄ +

b̄w

τ

)
1 − λ2

0 (τ 2|w|2 + |b|2)



,

and

(1 − U∗U)−1 =
1

1 − |a|2
λ2

0

− |b|2 +
|p|2
λ2

0

− |ab− p|
(
τ 2 +

1

λ2
0τ

2

) ×




1 − τ 2|ab− p|2 − |b|2 τwā

λ0

+
bw̄

λ0τ

aτw̄

λ0

+
b̄w

τλ0

1 − |a|2
λ2

2

− |ab− p|
τ 2λ2

0



.
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Therefore,

[
(1 − ρ2U∗U)(1 − U∗U)−1

]
11

=

(
1 − |a|2 − |ab− p|

τ 2

)
(1 − |b|2 − τ 2|ab− p|)

1 − |a|2
λ2

0

− |b|2 +
|p|2
λ2

0

− |ab− p|
(
τ 2 +

1

λ2
0τ

2

)

−

(
τwā+

bw̄

τ

) (
aτw̄ +

b̄w

τ

)

1 − |a|2
λ2

0

− |b|2 +
|p|2
λ2

0

− |ab− p|
(
τ 2 +

1

λ2
0τ

2

)

=

1 − |a|2 − |b|2 + |p|2 − |ab− p|
(
τ 2 +

1

τ 2

)

1 − |a|2
λ2

0

− |b|2 +
|p|2
λ2

0

− |ab− p|
(
τ 2 +

1

λ2
0τ

2

) .

Now we shall calculate [(UU∗ − ρ2)(1 − UU∗)−1]22.

UU∗ =




a

λ0

τw

τ−1w

λ0

b







ā

λ0

τ−1w̄

λ0

τw̄ b̄




=




|a|2
λ2

0

+ τ 2|ab− p| aw̄

τλ2
0

+ b̄τw

āw

τλ2
0

+ bτw̄
|ab− p|
τ 2λ2

0

+ |b|2



.

Hence,

UU∗ − ρ2 =




|a|2
λ2

0

+ τ 2|ab− p| − λ2
0

aw̄

τλ2
0

+ b̄τw

āw

τλ2
0

+ bτw̄
|ab− p|
τ 2λ2

0

+ |b|2 − λ2
0



,
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and

(1 − UU∗)−1 =
1

1 − |a|2
λ2

0

− |b|2 +
|p|2
λ2

0

− |ab− p|
(
τ 2 +

1

λ2
0τ

2

) ×




1 − |ab− p|
τ 2λ2

0

− |b|2 aw̄

τλ2
0

+ b̄τw

āw

τλ2
0

+ bτw̄ 1 − |a|2
λ2

0

− τ 2|ab− p|



.

Therefore,

[
(UU∗ − ρ2)(1 − UU∗)−1

]
22

=

(
−λ2

0 +
|ab− p|
τ 2λ2

0

+ |b|2
) (

1 − |a|2
λ2

0

− τ 2|ab− p|
)

1 − |a|2
λ2

0

− |b|2 +
|p|2
λ2

0

− |ab− p|
(
τ 2 +

1

λ2
0τ

2

)

+

(
aw̄

τλ2
0

+ b̄τw

) (
āw

τλ2
0

+ bτw̄

)

1 − |a|2
λ2

0

− |b|2 +
|p|2
λ2

0

− |ab− p|
(
τ 2 +

1

λ2
0τ

2

)

=

−λ2
0 + |a|2 + |b|2 − |p|2

λ2
0

+ |ab− p|
(
τ 2λ2

0 +
1

τ 2λ2
0

)

1 − |a|2
λ2

0

− |b|2 +
|p|2
λ2

0

− |ab− p|
(
τ 2 +

1

λ2
0τ

2

) .

Moreover, we calculate the following:

[
(1 − ρ2)(1 − UU∗)−1U

]
21

=
(1 − λ2

0) (w + abτ 2w̄ − τ 2w|ab− p|)

λ0τ

(
1 − |a|2

λ2
0

− |b|2 +
|p|2
λ2

0

− |ab− p|
(
τ 2 +

1

λ2
0τ

2

)) ,

and

[
(1 − ρ2)U∗(1 − UU∗)−1

]
12

=
(1 − λ2

0)
(
w̄ + āb̄τ 2w − τ 2w̄|ab− p|

)

λ0τ

(
1 − |a|2

λ2
0

− |b|2 +
|p|2
λ2

0

− |ab− p|
(
τ 2 +

1

λ2
0τ

2

)) .
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Therefore,

M =
1

1 − |a|2
λ2

0

− |b|2 +
|p|2
λ2

0

− |ab− p|
(
τ 2 +

1

λ2
0τ

2

) ×




1 − |a|2 − |b|2 + |p|2 − |ab − p|
(

τ2 +
1

τ2

)
(1 − λ2

0
)

λ0

(
τ āb̄w − τw̄|ab − p| + w̄

τ

)

(1 − λ2

0
)

λ0

(
τabw̄ − τw|ab − p| + w

τ

)
−λ2

0
+ |a|2 + |b|2 − |p|2

λ2

0

+ |ab − p|
(

τ2λ2

0
+

1

τ2λ2

0

)


 .

Note that

‖U‖ < 1 ⇔




1 − |a|2
λ2

0

− |w|2
λ2

0τ
2

− āτw
λ0

− bw̄

τλ0

−aτw̄
λ0

− b̄w

λ0τ
1 − τ 2|w|2 − |b|2



> 0

⇔





τ 2|ab− p| < 1 − |b|2, and

det(1 − U∗U) = 1 − |a|2
λ2

0

− |b|2 +
|p|2
λ2

0

− |ab− p|
(
τ 2 +

1

τ 2λ2
0

)
> 0

⇔





τ 2 <
1 − |b|2
|ab− p| , and

τ 2 +
1

τ 2λ2
0

<

1 − |a|2
λ2

0

− |b|2 +
|p|2
λ2

0

|ab− p| .

Therefore,

M det(1−U∗U) =




1 − |a|2 − |b|2 + |p|2 − |ab − p|

„

τ2 +
1

τ2

«

(1 − λ2

0
)

λ0

„

τ āb̄w − τw̄|ab − p| +
w̄

τ

«

(1 − λ2

0
)

λ0

“

τabw̄ − τw|ab − p| +
w

τ

”

−λ2

0
+ |a|2 + |b|2 −

|p|2

λ2

0

+ |ab − p|

„

τ2λ2

0 +
1

τ2λ2

0

«


 .

Hence,

det (M det(1 − U∗U)) = C−4τ
−4 + C−2τ

−2 + C0 + C2τ
2 + C4τ

4,
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where

C−4 = −|ab− p|2
λ2

0

,

C4 = −λ2
0|ab− p|2,

C−2 = −|ab− p|
(
−λ2

0 + |a|2 + |b|2 − |p|2
λ2

0

)
+ (1 − |a|2 − |b|2 + |p|2) |ab− p|

λ2
0

−
(

1 − λ2
0

λ0

)2

|ab− p|,

C2 = −|ab− p|
(
−λ2

0 + |a|2 + |b|2 − |p|2
λ2

0

)
+ (1 − |a|2 − |b|2 + |p|2)|ab− p|λ2

0

−
(

1 − λ2
0

λ0

)2

(abw̄ − w|ab− p|)(āb̄w − w̄|ab− p|)

= −|ab− p|
(
−λ2

0 + |a|2 + |b|2 − |p|2
λ2

0

)
+ (1 − |a|2 − |b|2 + |p|2)|ab− p|λ2

0

−
(

1 − λ2
0

λ0

)2

|p|2|ab− p|,

C0 = −λ2
0|ab− p|2 + (1 − |a|2 − |b|2 + |p|2)|

(
−λ2

0 + |a|2 + |b|2 − |p|2
λ2

0

)
− |ab− p|2

λ2
0

−
(

1 − λ2
0

λ0

)2 (
w(āb̄w − w̄|ab− p|) + w̄(abw̄ − w|ab− p|)

)

= −2|ab− p|2 + (|a|2 + |b|2)(1 + |p|2) − (|a|4 + |b|4 + 2|p|2) + λ2
0(1 − |a|2)(|b|2 − 1)

+
1

λ2
0

(
|p|2(|a|2 + |b|2 − |p|2) − |a|2|b|2

)
.

�

Proof of Theorem 3.2.2 We shall show that there exist τ > 0 and

F ∈ S2×2 such that ‖F‖ < 1 and

F (0) =


 0 ∗

0 0


 , and F (λ0) =


 a τw

τ−1w b


 ,
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if and only if

either





|b| ≤ |a|, and

|λ0| >
|a− b̄p| + |ab− p|

1 − |b|2
or





|a| < |b|, and

|λ0| >
|b− āp| + |ab− p|

1 − |a|2
.

Note that if F exists, then F = G


 z 0

0 1


 , z ∈ D, for some G ∈ S2×2.

Hence, there exists an analytic function F ∈ S2×2 and τ > 0 such that

F (0) =


 0 ∗

0 0


 , and F (λ0) =


 a τw

τ−1w b




if and only if there exists an analytic function G ∈ S2×2 such that

G(0) =


 ∗ ∗

∗ 0


 , and G(λ0) = U,

where U ∈M2(C) and ‖U‖ < 1.

That is, by Theorem 3.2.1, if and only if det(M) ≤ 0, where M is given by

(3.1).

That is, if and only if det (M det(1 − U∗U)) ≤ 0, where U ∈M2(C) and

‖U‖ < 1.

Let x = λ0τ
2 +

1

λ0τ 2
so that x2 = λ2

0τ
4 +

1

λ2
0τ

4
+ 2. Hence, we can write

det (M det(1 − U∗U)) as follows:

det (M det(1 − U∗U)) = −|ab− p|2x2 + |ab− p|
(

2|p|2 − |a|2 − |b|2
λ0

+ λ0(2 − |a|2 − |b|2)
)
x

+2|ab− p|2 − 2|ab− p|2 + (|a|2 + |b|2)(1 + |p|2)

−(|a|4 + |b|4 + 2|p|2) + λ2
0(1 − |a|2)(|b|2 − 1)

+
1

λ2
0

(
|p|2(|a|2 + |b|2 − |p|2) − |a|2|b|2

)
.
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Therefore,

∃ such an F ⇔





∃ τ > 0 such that τ 2 <
1 − |b|2
|ab− p| ,

τ 2λ0 +
1

τ 2λ0

< λ0

|a|2
λ2

0

− |b|2 +
|p|2
λ2

0

|ab− p| ,

−|ab− p|2x2 + |ab− p|
(

2|p|2 − |a|2 − |b|2
λ0

+ λ0(2 − |a|2 − |b|2)
)
x

+(|a|2 + |b|2)(1 + |p|2) − (|a|4 + |b|4 + 2|p|2) + λ2
0(1 − |a|2)(|b|2 − 1)

+
1

λ2
0

(
|p|2(|a|2 + |b|2 − |p|2) − |a|2|b|2

)
≤ 0,

where x = λ0τ
2 +

1

λ0τ 2
.

(3.2)

Let

f(x) = −|ab− p|2x2 + |ab− p|
(

2|p|2 − |a|2 − |b|2
λ0

+ λ0(2 − |a|2 − |b|2)
)
x

+(|a|2 + |b|2)(1 + |p|2) − (|a|4 + |b|4 + 2|p|2) + λ2
0(1 − |a|2)(|b|2 − 1)

+
1

λ2
0

(
|p|2(|a|2 + |b|2 − |p|2) − |a|2|b|2

)
,

and let

Y = λ0

1 − |a|2
λ2

0

− |b|2 +
|p|2
λ2

0

|ab− p| .

We shall find under what conditions it is true that there exists x ∈ [2, Y )

such that f(x) ≤ 0.

Note that

@ such an x ⇐⇒ f(2) > 0 and f(Y ) ≥ 0.

Next, we calculate f(Y ).
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f(Y ) = −|ab− p|2λ2
0

(
1 − |a|2

λ2
0

− |b|2 +
|p|2
λ2

0

)2

|ab− p|2

+|ab− p|λ0

(
1 − |a|2

λ2
0

− |b|2 +
|p|2
λ2

0

)

|ab− p|

(
2|p|2 − |a|2 − |b|2

λ0

+ λ0(2 − |a|2 − |b|2)
)

+(|a|2 + |b|2)(1 + |p|2) − (|a|4 + |b|4 + 2|p|2)

+λ0(1 − |a|2)(|b|2 − 1) +
1

λ0

(
|p|2(|a|2 + |b|2 − |p|2) − |a|2|b|2

)

= −λ2
0

(
1 − |a|2

λ2
0

− |b|2 +
|p|2
λ2

0

)2

+

(
1 − |a|2

λ2
0

− |b|2 +
|p|2
λ2

0

) (
2|p|2 − |a|2 − |b|2

)

+λ2
0

(
1 − |a|2

λ2
0

− |b|2 +
|p|2
λ2

0

) (
2 − |a|2 − |b|2

)
+ (|a|2 + |b|2)(1 + |p|2)

−(|a|4 + |b|4 + 2|p|2) + λ2
0(1 − |a|2)(|b|2 − 1) +

1

λ2
0

(
|a|2|p|2 + |b|2|p|2 − |p|4 − |a|2|b|2

)

= 0.

That is, f(Y ) = 0. We also have

f(2) = −λ2
0

(
1 − |a|2 − |b|2

λ2
0

+
|p|2
λ2

0

− 2|ab− p|
λ0

) (
1 − |a|2

λ2
0

− |b|2 +
|p|2
λ2

0

− 2|ab− p|
λ0

)
.

Moreover, f(x) has the following roots:

Y1 = λ0

1 − |a|2 − |b|2
λ2

0

+
|p|2
λ2

0

|ab− p| , and

Y2 = λ0

1 − |a|2
λ2

0

− |b|2 +
|p|2
λ2

0

|ab− p| = Y.

We shall find conditions for when f(2) ≤ 0. Let

X1 = 1 − |a|2 − |b|2
λ2

0

+
|p|2
λ2

0

− 2|ab− p|
λ0

,

X2 = 1 − |a|2
λ2

0

− |b|2 +
|p|2
λ2

0

− 2|ab− p|
λ0

.
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First, we show that X2 > 0. From (3.2) we have

2 < λ0

1 − |a|2
λ2

0

− |b|2 +
|p|2
λ2

0

|ab− p| ⇔ 2 <

1 − |a|2
λ2

0

− |b|2 +
|p|2
λ2

0

|ab− p|
λ0

⇔
(

1 − |a|2
λ2

0

− |b|2 +
|p|2
λ2

0

− 2|ab− p|
λ0

)
> 0

⇔ X2 > 0

⇔
(
a

λ0

, b,
p

λ0

)
∈ GE.

Therefore, X2 > 0.

Now we shall find under what conditions it is true that X1 ≥ 0 so that

f(2) ≤ 0. There are two cases; when 0 < X2 ≤ X1 and when 0 ≤ X1 < X2.

In the case that 0 < X2 ≤ X1, we have, for 0 < λ0 < 1,

X2 ≤ X1 ⇔ 1 − |a|2
λ2

0

− |b|2 +
|p|2
λ2

0

− 2|ab− p|
λ0

≤ 1 − |a|2 − |b|2
λ2

0

+
|p|2
λ2

0

− 2|ab− p|
λ0

⇔ |a|2 − |a|2
λ2

0

≤ |b|2 − |b|2
λ2

0

⇔ |a|2
(

1 − 1

λ2
0

)
≤ |b|2

(
1 − 1

λ2
0

)

⇔ |a|2 ≥ |b|2

⇔ |a| ≥ |b|.

Similarly, in the case that 0 ≤ X1 < X2, we have, for 0 < λ0 < 1,

X1 < X2 ⇔ |a| < |b|.

Therefore, there exists an x ∈ [0, Y ) such that

f(x) = det (M det(1 − U∗U)) ≤ 0 if and only if




|b| ≤ |a|, and

λ0 >
2|ab− p|

1 − |a|2
λ2

0

− |b|2 +
|p|2
λ2

0

,
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or 



|a| < |b|, and

λ0 >
2|ab− p|

1 − |a|2 − |b|2
λ2

0

+
|p|2
λ2

0

.

Thus,

∃ such an F ∈ S2×2 ⇔





∃ τ > 0 such that τ 2 <
1 − |b|2
|ab− p| ,

|b| ≤ |a|, and

λ0 >
2|ab− p|

1 − |a|2
λ2

0

− |b|2 +
|p|2
λ2

0

.

From the proof above, we observe that, when |b| ≤ |a|,

λ0 >
2|ab− p|

1 − |a|2
λ2

0

− |b|2 +
|p|2
λ2

0

⇔ 1 − |a|2
λ2

0

− |b|2 +
|p|2
λ2

0

− 2
|ab− p|
λ0

> 0

⇔
(
a

λ0

, b,
p

λ0

)
∈ GE

⇔ |b|2 +

∣∣∣∣
a

λ0

+
b̄p

λ0

∣∣∣∣ +

∣∣∣∣
ab− p

λ0

∣∣∣∣ < 1, |a| ≤ |λ0|

⇔ λ0 >
|a− b̄p| + |ab− p|

1 − |b|2 .

Similarly, when |a| < |b|,

λ0 >
2|ab− p|

1 − |a|2 − |b|2
λ2

0

+
|p|2
λ2

0

⇔
(
a,

b

λ0

,
p

λ0

)
∈ GE

⇔ λ0 >
|b− āp| + |ab− p|

1 − |a|2 .

Hence, there exists τ > 0 and F ∈ S2×2 such that ‖F‖ < 1 and

F (0) =


 0 ∗

0 0


 and F (λ0) =


 a τw

τ−1w b


 ,
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if and only if

either





|b| ≤ |a|, and

|λ0| >
|a− b̄p| + |ab− p|

1 − |b|2
or





|a| < |b|, and

|λ0| >
|b− āp| + |ab− p|

1 − |a|2
.

Finally, we shall find under what a, b, p does there exist τ > 0 such that




λ0τ
2 < λ0

1 − |b|2
|ab− p| =: A, and

λ0τ
2 +

1

λ0τ 2
< λ0

1 − |a|2
λ2

0

− |b|2 +
|p|2
λ2

0

|ab− p| =: Y2

. (3.3)

x

Y2

Y1

x

2

f(ξ)

ζ1 η1 1 η2 ζ2 A
ζ

Let ζ = λ0τ
2. We shall find under what conditions on A and Y2 there exists

ζ < A such that ζ +
1

ζ
< Y2.

Let f(ζ) = ζ +
1

ζ
. Note that ζ +

1

ζ
≥ 2.

If A ≥ 1, then there exists ζ < A such that ζ +
1

ζ
< Y2. If A < 1, then there

exists ζ < A such that ζ +
1

ζ
< Y2 if and only if A > ζ1, where ζ1 ≤ 1 is a

root of ζ +
1

ζ
= Y2 and ζ2 ≥ 1 is the other root.
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Therefore, there exists ζ < A such that f(ζ) < Y2 if and only if A > ζ1.

When ζ1 < A ≤ ζ2, there exists ζ < A such that f(ζ) < Y2 if and only if

ζ ∈ [ζ1, A), and when A > ζ2 there exists ζ < A such that f(ζ) < Y2 if and

only if ζ ∈ [ζ1, ζ2].

Note that

A+
1

A
− Y2 = λ0

1 − |b|2
|ab− p| +

|ab− p|
λ0(1 − |b|2) − λ0

1 − |a|2
λ2

0

− |b|2 +
|p|2
λ2

0

|ab− p|
=

1

λ0(1 − |b|2)|ab− p|
(
|ab− p|2 − (1 − |b|2)(−|a|2 + |p|2

)

=
1

λ0(1 − |b|2)|ab− p|
(
−2Re{abp̄} + |a|2 + |b|2|p|2

)

=
|a− b̄p|

λ0(1 − |b|2)|ab− p| ≥ 0.

Hence, A > 1. That is, there exists ζ < A such that ζ +
1

ζ
< Y2.

Thus,

∃ τ > 0 such that (3.3) holds ⇔ A > 1

⇔ λ0 >
|ab− p|
1 − |b|2 .

Note that, f(Y1) = 0 = f(Y2) and f(2) ≤ 0, thus, x < Y1 or x > Y2,

therefore, x ∈ [2, Y1].

Therefore, when λ0 >
|ab− p|
1 − |b|2 , there exists τ > 0 such that τ 2 <

1 − |b|2
|ab− p|

and the range of values of τ is given by ζ1 ≤ λ0τ
2 ≤ ζ2, where ζ1 and ζ2 are

the roots of ζ +
1

ζ
= Y2, that is, the roots of λ0τ

2 +
1

λ0τ 2
= Y2.

Therefore, there exists τ > 0 such that τ 2 <
1 − |b|2
|ab− p| where the range of

values of τ is as given above and F ∈ S2×2 such that ‖F‖ < 1 and

F (0) =


 0 ∗

0 0


 and F (λ0) =


 a τw

τ−1w b


 , (3.4)
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if and only if

either





|b| ≤ |a|, and

|λ0| >
|a− b̄p| + |ab− p|

1 − |b|2
or





|a| < |b|, and

|λ0| >
|b− āp| + |ab− p|

1 − |a|2
.

�

In Theorem 3.2.2, if ‖U‖ → 1, we pick λε = |λ0|(1 + ε), where ε > 0 is small

enough so that 0 < |λ0| < |λε| < 1 and ‖Uε‖ < 1, where

Uε =




a

λε

τw

τ−1w

λε

b



.

We proceed in the proof exactly as we did above but using λε instead of λ0.

Then we apply Montel’s Theorem which states: Any locally bounded

sequence of holomorphic functions fn defined on an open subset of C has a

subsequence which converges uniformly to a holomorphic function f on

compact subsets.

In this case, we find that, since Fε : D −→ ΓE, where ΓE is bounded, Fε has

a subsequence that converges to a holomorphic function F : D −→ ΓE.

Moreover, since λε = λ0(1 + ε), then for ε < δ, λε ∈ I = [1, δ] is a compact

line-segment. Hence, λε −→ λ0. Therefore, Fε(λε) −→ F (λ0).

Corollary 3.2.4 Let (a, b, p) ∈ GE and λ0 ∈ D\{0}. Then there exists an

analytic function h : D −→ GE such that h(0) = (0, 0, 0) and

h(λ0) = (a, b, p) if and only if

either





|b| ≤ |a|, and

|λ0| ≥
|a− b̄p| + |ab− p|

1 − |b|2
or





|a| ≤ |b|, and

|λ0| ≥
|b− āp| + |ab− p|

1 − |a|2
.
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Observe that, when |a| = |b|,

|a− b̄p|2 − |b− āp|2 = |a|2 + |b|2|p|2 − 2Re(abp̄) −
(
|b|2 + |a|2|p|2 − 2Re(abp̄)

)

= (|a|2 − |b|2)(1 − |p|2)

= 0.

Therefore, if |a| = |b|, then |a− b̄p| = |b− āp|.

3.3 The Carathéodory and Kobayashi

Distances

In this section, we prove that the Carathéodory and the Kobayashi

distances between two points in ΓE are equal, where one point is (0, 0, 0).

We write d for the pseudo-hyperbolic distance on D which is defined as

follows:

d(z, w) =

∣∣∣∣
z − w

1 − w̄z

∣∣∣∣ , z, w ∈ D.

The Carathéodory extremal problem for a domain Ω and for a given pair of

points z1, z2 ∈ Ω is to find the quantity

CΩ(z1, z2)
def
= sup {d (F (z1), F (z2)) : F maps Ω analytically into D} .

Any F for which the supremum on the right hand side is attained is called

Carathéodory extremal function for Ω and the points z1, z2, and CΩ is called

the Carathéodory distance on Ω.

The Kobayashi extremal problem for a pair of points z1, z2 ∈ Ω is to find the

quantity

δΩ(z1, z2) = inf{d(λ1, λ2)},
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over all pairs λ1, λ2 ∈ D such that there exists an analytic function

h : D −→ Ω such that h(λ1) = z1 and h(λ2) = z2. Any such function h for

which the infimum is attained is called a Kobayashi extremal function for Ω

and the points z1, z2. The Kobayashi distance KΩ on Ω is defined to be the

largest pseudo-distance on Ω dominated by δΩ, [14].

It is standard that

CΩ ≤ KΩ ≤ δΩ. (3.5)

Lempert’s theorem [14] asserts that CD = KD for any convex domain D.

Although the symmetrised bidisc Γ is not convex, Agler and Young [9]

proved the equality of the Carathéodory and Kobayashi distances on G, the

interior of Γ.

Note that, the Carathéodory and the Kobayashi distances are metrics on

bounded domains in Cn, which is the case for GE since it is bounded.

In this section, we show that the Carathéodory and the Kobayashi

distances between the points (0, 0, 0) and (a, b, p) are equal in GE.

Theorem 3.3.1 Let a, b, p ∈ C and ab 6= p. If z1 = (0, 0, 0) and

z2 = (a, b, p) are in GE then

CGE
(z1, z2) = KΓE

(z1, z2) =





|a− b̄p| + |ab− p|
1 − |b|2 , if |b| ≤ |a|, or

|b− āp| + |ab− p|
1 − |a|2 if |a| ≤ |b|.

Proof By the Schwarz Lemma for ΓE, i.e., Corollary 3.2.4, we have

δGE
(z1, z2) =





|a− b̄p| + |ab− p|
1 − |b|2 , if |b| ≤ |a|, or

|b− āp| + |ab− p|
1 − |a|2 , if |a| ≤ |b|.
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For ω ∈ T, define Fω : GE −→ C by

Fω(a′, b′, p′) =





Ψω(a′, b′, p′), if |b| ≤ |a|, or

Υω(a′, b′, p′), if |a| ≤ |b|.

By Theorem 2.1.4, Ψω and Υω map GE to D. That is, Fω : GE −→ D.

Moreover, Fω(z1) = 0 and hence by the definition of GE,

CGE
≥ max

ω∈T

|Fω(z2)|.

Now

|Fω(z2)| =





∣∣∣∣
a− ωp

1 − ωb

∣∣∣∣ , if |b| ≤ |a|, or

∣∣∣∣
b− ωp

1 − ωa

∣∣∣∣ , if |a| ≤ |b|.

As we have shown in the proof of Theorem 2.1.4, the two linear rational

transformations

z 7→





a− zp

1 − zb
, if |b| ≤ |a|, or

b− zp

1 − za
, if |a| ≤ |b|,

map T to circles of centre c1, c2 and radius R1, R2, respectively, where





c1 =
a− b̄p

1 − |b|2 and R1 =
|ab− p|
1 − |b|2 , if |b| ≤ |a|, or

c2 =
b− āp

1 − |a|2 and R2 =
|ab− p|
1 − |a|2 , if |a| ≤ |b|.
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Thus,

CGE
(z1, z2) ≥





|c1| +R1 =
|a− b̄p| + |ab− p|

1 − |b|2 = δΓE
(z1, z2), if |b| ≤ |a|, or

|c2| +R2 =
|b− āp| + |ab− p|

1 − |a|2 = δΓE
(z1, z2), if |a| ≤ |b|.

(3.6)

Hence, by (3.5) and (3.6), we find that

CGE
(z1, z2) = δGE

(z1, z2) = KGE
(z1, z2) =





|a− b̄p| + |ab− p|
1 − |b|2 , if |b| ≤ |a|, or

|b− āp| + |ab− p|
1 − |a|2 , if |a| ≤ |b|.

�

3.4 Automorphisms of GE

An endomorphism is a homomorphism from a domain to itself. An

endomorphism that is also an isomorphism is called an automorphism.

In this section, we study the automorphisms of GE. We conjecture that we

have found all the automorphisms of GE, but we have not obtained a proof

of this thus far.

Definition 3.4.1 Let a, b, c, d be complex numbers, where ad− bc 6= 0. A

Möbius automorphism from C∞ to C∞, where C∞ = C ∪ {∞}, is an

analytic function µ such that

µ(z) =
az + b

cz + d
.
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Note that the composition of Möbius automorphisms is a Möbius

automorphism, and the inverse of a Möbius automorphism is a Möbius

automorphism.

Let x ∈ ΓE. We define Υ̃x(z) : D −→ D as follows: For all z ∈ D,

Υ̃x(z) =
x3z − x2

x1z − 1
= Υz(x).

In order to define the action of the Möbius automorphisms µ on the left

and the right of GE, we consider the following:

For each x = (x1, x2, x3) ∈ GE, define a matrix

X =


 x3 −x2

x1 −1


 .

We pick a matrix

Mµ =


 a b

c d


 ,

such that det(M) 6= 0, which induces a Möbius automorphism µ : D −→ D,

µ(z) =
az + b

cz + d
,∀z ∈ D.

In the case of the action of Möbius automorphisms on the left hand side of

GE, we observe that

MµX =


 a b

c d





 x3 −x2

x1 −1




=


 ax3 + bx1 −(ax2 + b)

cx3 + dx1 −(cx2 + d)


 .

Clearly, since z ∈ D, cz + d 6= 0 as µ has no pole in D, and since x ∈ GE,

|xi| < 1, 1 ≤ i ≤ 3. Hence, cx2 + d 6= 0. Therefore, MµX induces the same
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Möbius map as


 x′3 −x′2
x′1 −1


 :=




ax3 + bx1

cx2 + d
−ax2 + b

cx2 + d

cx3 + dx1

cx2 + d
−1



.

Observe that the choice of Mµ used to represent the Möbius map above

does not change the resulting (x′1, x
′
2, x

′
3).

We use the notation A ≡ B if A and B induce the same Möbius map.

Define µl
x = (x′1, x

′
2, x

′
3). We have

µl
x :=

(
cx3 + dx1

cx2 + d
,
ax2 + b

cx2 + d
,
ax3 + bx1

cx2 + d

)
= x′.

We shall show that x′ ∈ GE. There are two cases; (i) when x1x2 6= x3 and

(ii) when x1x2 = x3.

Case (i): In the case that x1x2 6= x3, we have

x′ = (x′1, x
′
2, x

′
3) ∈ GE ⇔ Υ̃x′(D̄) ⊂ D. (3.7)

The equivalence (3.7) follows from Theorem 4.2.8 that we include later. A

full proof of the theorem can be found in Section 4.2 where we study GE

and present a characterisation for its elements.

We shall show that Υ̃x′(D̄) ⊂ D. Clearly, since µ : D −→ D and by Theorem

2.1.4, x ∈ ΓE ⇔ Υx(z) : D̄ −→ D̄, we have µ
(
Υ̃x(z)

)
: D̄ −→ D.

Observe that

µ
(
Υ̃x(z)

)
= Υ̃x′(z).

Thus, Υ̃x′(z) : D̄ −→ D.
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Case (ii): When x1x2 = x3, we have

x′ = (x′1, x
′
2, x

′
3) =

(
cx1x2 + dx1

cx2 + d
,
ax2 + b

cx2 + d
,
ax1x2 + bx1

cx2 + d

)

=

(
x1,

ax2 + b

cx2 + d
, x1

ax2 + b

cx2 + d

)

= (x1, µ(x2), x1µ(x2)) .

For all z ∈ D̄,

Υ̃x′(z) =
x′3z − x′2
x′1z − 1

=
x1µ(x2)z − µ(x2)

x1z − 1

= µ(x2)
x1z − 1

x1z − 1

= µ(x2).

Since µ : D −→ D, Υ̃x′(z) ∈ D, for all z ∈ D̄. That is, Υ̃x′(D̄) ⊂ D. Thus,

x′ ∈ GE.

Similarly, we define XMµ, the action of Möbius automorphisms on the right

hand side of GE. In this case, we find that

XMµ ≡




x3a− x2c

−x1b+ d

x3b− x2d

−x1b+ d

x1a− c

−x1b+ d
−1




:=


 x′3 −x′2
x′1 −1




and

µr
x :=

(
x1a− c

−x1b+ d
,
−x3b+ x2d

−x1b+ d
,
x3a− x2c

−x1b+ d

)
= x′′ ∈ GE.

Lemma 3.4.2 Let

X =


 x3 −x2

x1 −1


 ,
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and let µ1 and µ2 be Möbius automorphisms of D defined by

µ1(z) =
a1z + b1
c1z + d1

, ∀z ∈ D,

µ2(z) =
a2z + b2
c2z + d2

, ∀z ∈ D,

such that a1d1 − b1c1 6= 0 and a2d2 − b2c2 6= 0. Pick the matrices Mµ1
and

Mµ2
which induce µ1 and µ2 respectively,

Mµ1
=


 a1 b1

c1 d1


 and Mµ2

=


 a2 b2

c2 d2


 ,

such that det(Mµ1
) 6= 0 and det(Mµ2

) 6= 0. Then the following hold:

(1) Mµ2
(Mµ1

X) = Mµ2◦µ1
X.

(2) (XMµ2
)Mµ1

= XMµ2◦µ1
.

(3) (Mµ1
X)Mµ2

= Mµ1
(XMµ2

).

Proof There are two cases; (i) x3 6= x1x2, and (ii) x3 = x1x2.

Case (i): (1) When x3 6= x1x2. Recall that

Mµ1
X ≡




a1x3 + b1x1

c1x2 + d1

−a1x2 + b1
c1x2 + d1

c1x3 + d1x1

c1x2 + d1

−1



,

where c1x2 + d1 6= 0.

We shall now calculate Mµ2
(Mµ1

X).

Mµ2
(Mµ1

X) =


 a2 b2

c2 d2







a1x3 + b1x1

c1x2 + d1

−a1x2 + b1
c1x2 + d1

c1x3 + d1x1

c1x2 + d1

−1
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Mµ2
(Mµ1

X) =




a2
a1x3 + b1x1

c1x2 + d1

+ b2
c1x3 + d1x1

c1x2 + d1

−a2
a1x2 + b1
c1x2 + d1

− b2

c2
a1x3 + b1x1

c1x2 + d1

+ d2
c1x3 + d1x1

c1x2 + d1

−c2
a1x2 + b1
c1x2 + d1

− d2



.

Since µ1 is a Möbius endomorphism of D and |x2| < 1 as x ∈ GE, we have∣∣∣∣
a1x2 + b1
c1x2 + d1

∣∣∣∣ < 1 and since −d2

c2
/∈ D,

∣∣∣∣
d2

c2

∣∣∣∣ > 1. Hence, − c2
d2

a1x2 + b1
c1x2 + d1

6= 1.

Thus, −c2(a1x2 + b1) − d2(c1x2 + d1) 6= 0.

Therefore,

Mµ2
(Mµ1

X) ≡




a2(a1x3 + b1x1) + b2(c1x3 + d1x1)

c2(a1x2 + b1) + d2(c1x2 + d1)
−a2(a1x2 + b1) + b2(c1x2 + d1)

c2(a1x2 + b1) + d2(c1x2 + d1)

c2(a1x3 + b1x1) + d2(c1x3 + d1x1)

c2(a1x2 + b1) + d2(c1x2 + d1)
−1



.

We shall now calculate (Mµ2
Mµ1

)(X). We have

µ2 ◦ µ1 = µ2(µ1(z)) =
(a1a2 + b2c1)z + (a2b1 + b2d1)

(c2a1 + d2c1)z + (c2b1 + d2d1)
.

Hence, for the Möbius automorphism µ2 ◦ µ1, we define Mµ2◦µ1
by

Mµ2◦µ1
=


 a1a2 + b2c1 a2b1 + b2d1

c2a1 + d2c1 c2b1 + d2d1


 ,

such that det(Mµ2◦µ1
) 6= 0. Since µ2 ◦ µ1 is an automorphism of D,

c2b1 + d1d2 6= 0. Therefore,

Mµ2◦µ1
≡




−a1a2 + b2c1
c2b1 + d1d2

−a2b1 + b2d1

c2b1 + d1d2

−c2a1 + d2c1
c2b1 + d1d2

−1



.

Hence,

Mµ2◦µ1
X =




−a1a2 + b2c1
c2b1 + d1d2

−a2b1 + b2d1

c2b1 + d1d2

−c2a1 + d2c1
c2b1 + d1d2

−1





 x3 −x2

x1 −1
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Mµ2◦µ1
X =




−x3(a1a2 + b2c1) + x1(a2b1 + b2d1)

c2b1 + d1d2

x2(a1a2 + b2c1) + a2b1 + b2d1

c2b1 + d1d2

−x3(c2a1 + d2c1) + x1(c2b1 + d1d2)

c2b1 + d1d2

x2(c2a1 + d2c1) + c2b1 + d1d2

c2b1 + d1d2



.

As before, x2(c2a1 + d2c1) + c2b1 + d1d2 6= 0. Hence,

Mµ2◦µ1
X ≡




x3(a1a2 + b2c1) + x1(a2b1 + b2d1)

x2(c2a1 + d2c1) + c2b1 + d1d2

−x2(a1a2 + b2c1) + a2b1 + b2d1

x2(c2a1 + d2c1) + c2b1 + d1d2

x3(c2a1 + d2c1) + x1(c2b1 + d1d2)

x2(c2a1 + d2c1) + c2b1 + d1d2

−1



.

Therefore, (1) holds when x1x2 6= x3.

Case (ii): (1) In the case that x3 = x1x2, we have

Mµ1
X =


 a1 b1

c1 d1





 x1x2 −x2

x1 −1




=


 a1x1x2 + b1x1 −(a1x2 + b1)

c1x1x2 + d1x1 −(c1x2 + d1)




≡



x1
a1x2 + b1
c1x2 + d1

−a1x2 + b1
c1x2 + d1

x1 −1




≡


 x1µ1(x2) −µ1(x2)

x1 −1


 .

Therefore,

Mµ2
(Mµ1

X) =


 a2 b2

c2 d2





 x1µ1(x2) −µ1(x2)

x1 −1




=


 a2x1µ1(x2) + b2x1 −(a2µ1(x2) + b2))

c2x1µ1(x2) + d2x1 −(c2µ1(x2) + d2)


 .
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As in case (i), since µµ1
is an automorphism of D, then |µ1(x2)| < 1. We

also have
d2

c2
/∈ D, which implies that

∣∣∣∣
d2

c2

∣∣∣∣ ≥ 1.

If c2 = 0 and c2µ1(x2) + d2 = 0 then d2 = 0, but a2d2 − b2c2 6= 0, therefore,

c2µ1(x2) + d2 6= 0.

Therefore,

Mµ2
(Mµ1

X) ≡



a2x1µ1(x2) + b2x1

c2µ1(x2) + d2

−a2µ1(x2) + b1
c2µ1(x2) + d2

x1 −1




≡


 x1µ2 (µ1(x2)) −µ2 (µ1(x2))

x1 −1


 .

Now we calculate the right hand side of (1). We have

Mµ2◦µ1
X =




−a2a1 + b2c1
c2b1 + d2d1

−a2b1 + b2d1

c2b1 + d2d1

−c2a1 + d2c1
c2b1 + d2d1

−1





 x1x2 −x2

x1 −1




=




−(a2a1 + b2c1)x1x2 + x1(a2b1 + b2d1)

c2b1 + d2d1

x2(a2a1 + b2c1) + a2b1 + b2d1

c2b1 + d2d1

−(c2a1 + d2c1)x1x2 + x1(c2b1 + d2d1)

c2b1 + d2d1

x2(c2a1 + d2c1) + c2b1 + d2d1

c2b1 + d2d1



.

Note that

c2µ1(x2) + d2 6= 0 ⇒ c2
a1x2 + b1
c1x2 + d1

+ d2 6= 0

⇒ c2(a1x2 + b1) + d2(c1x2 + d1) 6= 0

⇒ x2(c2a1 + d2c1) + c2b1 + d2d1 6= 0.

Therefore,
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Mµ2◦µ1
X ≡




x1 (a2(a1x2 + b1) + b2(c1x2 + d1))

c2(a1x2 + b1) + d2(c1x2 + d1)
−a2(a1x2 + b1) + b2(c1x2 + d1)

c2(a1x2 + b1) + d2(c1x2 + d1)

x1 −1




≡




x1

a2
a1x2 + b1
c1x2 + d1

+ b2

c2
a1x2 + b1
c1x2 + d1

+ d2

−
a2
a1x2 + b1
c1x2 + d1

+ b2

c2
a1x2 + b1
c1x2 + d1

+ d2

x1 −1




≡



x1
a2µ1(x2) + b2
c2µ1(x2) + d2

−a2µ1(x2) + b2
c2µ1(x2) + d2

x1 −1




≡


 x1µ2(µ1(x2)) −µ2(µ1(x2))

x1 −1


 .

Therefore, (1) holds when x1x2 = x3.

The proof of (2) and (3) follows by the associativity of matrix

multiplication.

�

The next result follows from the previous lemma.

Corollary 3.4.3 Let x ∈ GE and let µ1, µ2 be Möbius automorphisms of

D. Then the following hold:

(1) µ2(µ1x) = (µ2µ1)x.

(2) (xµ2)µ1 = x(µ2µ1).

(3) (µ1x)µ2 = µ1(xµ2).
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Remarks 3.4.4 Let x = (a, b, p) ∈ GE and let µ1 and µ2 be Möbius

automorphisms of D. Then

(1) The following are holomorphic automorphisms of GE:

(1) x 7→ (µ1x)µ2 = µ1(xµ2).

(2) (a, b, p) 7→ (b, a, p).

(2) The the following are non-holomorphic automorphisms of GE:

(1) (a, b, p) 7→ (a, p̄, b̄).

(2) (a, b, p) 7→ (p̄, b, ā).

Theorem 3.4.5 Let x = (x1, x2, x3) ∈ GE, Υ̃x(z) =
x3z − x2

x1z − 1
: D −→ D.

Then there exist Möbius automorphisms µ1, µ2 of D such that

µ1Υ̃xµ2 = rz,

where 0 ≤ r < 1.

Proof When x1x2 = x3, our result follows easily since in this case we have,

Υ̃x(z) = x2. Hence, we can choose µ2 to be any automorphism of D and µ1

to be an automorphism of D such that µ1(x2) = 0.

When x1x2 6= x3, there are two cases; case (i) when 0 < r < 1, and case (ii)

when r=0.

Case (i): When 0 < r < 1, let x ∈ GE, and let |x1| 6= 1.

For µ1, µ2 : D −→ D, automorphisms of D, defined by

µ1(z) =
a1z + b1
b̄1z + ā1

, ∀z ∈ D,

µ2(z) =
a2z + b2
b̄2z + ā2

, ∀z ∈ D.

97



µ2
Υx µ1

Figure 3.1: µ1 ◦ Υx ◦ µ2(z)

Define Mµ1
and Mµ2

by

Mµ1
=


 a1 b1

b̄1 ā1


 and Mµ2

=


 a2 b2

b̄2 ā2


 ,

such that det(Mµ1
) and det(Mµ2

). Recall that x ∈ ΓE ⇔ Υ̃x(z) : D −→ D.

Hence, we define

X =


 x3 −x2

x1 −1




that induces Υ̃x(z) =
x3z − x2

x1z − 1
.

We have

Mµ2
X =


 a2 b2

b̄2 ā2





 x3 −x2

x1 −1




=


 a2x3 + b2x1 −(a2x2 + b2)

b̄2x3 + ā2x1 −(b̄2x2 + ā2)




≡




a2x3 + b2x1

b̄2x2 + ā2

−a2x2 + b2
b̄2x2 + ā2

b̄2x3 + ā2x1

b̄2x2 + ā2

−1



.
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Let

x′1 =
b̄2x3 + ā2x1

b̄2x2 + ā2

,

x′2 =
a2x2 + b2
b̄2x2 + ā2

,

x′3 =
a2x3 + b2x1

b̄2x2 + ā2

.

We are seeking x′2 = x̄′1x
′
3. That is,

a2x2 + b2
b̄2x2 + ā2

=

(
b2x̄3 + a2x̄1

b2x̄2 + a2

) (
a2x3 + b2x1

b̄2x2 + ā2

)
.

That is,

(a2x2 + b2)(b2x̄2 + a2) = (b2x̄3 + a2x̄1)(a2x3 + b2x1). (3.8)

We shall now find values of a2 and b2, such that (3.8) holds and |b2| < |a2|.

Note that, since µ2 maps T −→ T and the interior to the interior (of the

unit disc), then |a2|2 − |b2|2 > 0, therefore, |a2| > |b2|.

Thus, we have

(a2x2 + b2)(b2x̄2 + a2) = (b2x̄3 + a2x̄1)(a2x3 + b2x1)

⇒ a2b2 − a2b2|x1|2 + a2b2|x2|2 − a2b2|x3|2 + a2
2(x2 − x̄1x3) + b22(x̄2 − x1x̄3) = 0

⇒ a2b2(1 − |x1|2 + |x2|2 − |x3|2) + a2
2(x2 − x̄1x3) + b22(x̄2 − x1x̄3) = 0.

Hence, we can take

a2 = 1 − |x1|2 + |x2|2 − |x3|2 +
√

(1 − |x1|2 + |x2|2 − |x3|2)2 − 4|x2 − x̄1x3|2,

b2 = 2(x̄1x3 − x2).
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Since x = (x1, x2, x3) ∈ GE, then

(1 − |x1|2 + |x2|2 − |x3|2)2 − 4|x2 − x̄1x3|2 ≥ 0, and clearly, |b2| < |a2|.

Now we shall find an r such that µ1Υxµ2 = rz.

Mµ2
XMµ1

=


 x′3 −x′2
x′1 −1





 a1 b1

b̄1 ā1




=


 a1x

′
3 − b̄1x

′
2 b1x

′
3 − ā1x

′
2

a1x
′
1 − b̄1 b1x

′
1 − ā1




≡




a1x
′
3 − b̄1x

′
2

−b1x′1 + ā1

b1x
′
3 − ā1x

′
2

−b1x′1 + ā1

a1x
′
1 − b̄1

−b1x′1 + ā1

−1



.

We seek an r such that




a1x
′
3 − b̄1x

′
2

−b1x′1 + ā1

b1x
′
3 − ā1x

′
2

−b1x′1 + ā1

a1x
′
1 − b̄1

−b1x′1 + ā1

−1




=


 −r 0

0 −1


 . (3.9)

Hence,

a1x
′
1 − b̄1

−b1x′1 + ā1

= 0 ⇒ b1 = ā1x̄′1,

b1x
′
3 − ā1x

′
2

−b1x′1 + ā1

= 0 ⇒ x′2 = x̄′1x
′
3,

−a1x
′
3 + b̄1x

′
2

−b1x′1 + ā1

= r.

Therefore, we can take a1 = 1, and b1 = x̄′1, so that |b1| < |a1|, hence,

r =
x′1x

′
2 − x′3

1 − |x′1|2
, |x′1| 6= 1.
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Now we substitute the values of x′1, x
′
2, x

′
3 in r.

x′1x
′
2 − x′3 =

(
b̄2x3 + ā2x1

b̄2x2 + ā2

) (
a2x2 + b2
b̄2x2 + ā2

)
− a2x3 + b2x1

b̄2x2 + ā2

=
(b̄2x3 + ā2x1)(a2x2 + b2) − (a2x3 + b2x1)(b̄2x2 + ā2)

(b̄2x2 + ā2)2

=
(x1x2 − x3)(|a2|2 − |b2|2)

(b̄2x2 + ā2)2
,

and

1 − |x′1|2 = 1 −
(
b̄2x3 + ā2x1

b̄2x2 + ā2

) (
b2x̄3 + a2x̄1

b2x̄2 + a2

)

=
|a2|2(1 − |x1|2) + |b2|2(|x2|2 − |x3|2) + a2b̄2(x2 − x̄1x3) + ā2b2(x̄2 − x1x̄3)

(b̄2x2 + ā2)(b2x̄2 + a2)

Therefore,

r =
(x1x2 − x3)(|a2|2 − |b2|2)(b2x̄2 + a2)

(b̄2x2 + ā2)(|a2|2(1 − |x1|2) + |b2|2(|x2|2 − |x3|2) + a2b̄2(x2 − x̄1x3) + ā2b2(x̄2 − x1x̄3))
.

Case (ii): when r=0, we have Υ̃x(z) =
x3z − x2

x1z − 1
= 0, ∀z ∈ D. Therefore,

x3z − x2 = 0, for all z ∈ D ⇒ x3z = x2, for all z ∈ D

⇒ x2 = 0 and x3 = 0.

Therefore, we can find a Möbius automorphism µ of the D, µ(z) =
az + b

b̄z + ā
,

∀z ∈ D, |b| < |a|, then define the matrix Mµ by

Mµ =


 a b

b̄ ā


 , |b| < |a|,

so that 
 0 0

x1 −1





 a b

b̄ ā


 =


 0 0

0 −1


 .

101



In this case, we have

 0 0

x1 −1





 a b

b̄ ā


 =


 0 0

ax1 − b̄ bx1 − ā




≡




0 0

ax1 − b̄

ā− bx1

−1


 .

Hence, b̄ = ax1, which implies that |b| < |a|. Therefore, we can take a = 1

and b = x̄1 so that

 0 0

x1 −1





 1 x̄1

x1 −1


 =


 0 0

0 |x1|2 + 1




≡


 0 0

0 −1


 .

Thus, in the case that r = 0, we have x = (x1, 0, 0) ∈ GE.

Finally, we shall show that r is unique. For Υ̃r and Υ̃s, define Xr and Xs,

respectively by

Xr =


 −r 0

0 −1


 , and Xs =


 −s 0

0 −1


 ,

where r, s ≥ 0. Hence, for |bj| < |aj|, j = 1, 2,

Mµ2
Xr = XsMµ1

⇒


 a2 b2

b̄2 ā2





 −r 0

0 −1


 =


 −s 0

0 −1





 a1 b1

b̄1 ā1




⇒


 −a2r −b2

−b̄2r −ā2


 =


 −a1s −b1s

−b̄1 −ā1




⇒




−a2r

ā2

−b2
ā2

−b̄2r
ā2

−1




=




−a1s

ā1

−b1s
ā1

−b̄1
ā1

−1



, (3.10)
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where a1, a2 6= 0 because µ1, µ2 are Möbius automorphisms.

There are three cases; case (i) when r 6= 0 and b1, b2 6= 0, case (ii) when

r 6= 0 and either b1 = 0 or b2 = 0, and case (iii) is when r = 0.

Case (i): If r 6= 0, then it is easy to see from (3.10) that |r| = |s|, which

implies that r = s since r, s ≥ 0. Therefore, r is unique.

Case (ii): This is the case that r 6= 0 and either b1, or b2 is zero, which is

the scalar case. This case also follows easily from (3.10). Hence, r = s and

thus r is unique.

Case (iii): If r = 0, then from (3.10), we find that a1s = 0, which implies

that s = 0 (since a1 6= 0), therefore, r = s = 0, and hence, r is unique.

�

The next result is a generalisation of Theorem 3.3.1 when ab = p. In this

result, we show that the Carathéodory and the Kobayashi distances

between two points x1 = (a1, b1, p1) and x2 = (a2, b2, p2) in GE are equal in

the case that a1b1 = p1.

Lemma 3.4.6 Let ai, bi, pi ∈ C, i = 1, 2. If x1 = (a1, b1, p1) and

x2 = (a2, b2, p2) are in GE such that a1b1 = p1, then

CGE
(x1, x2) = KGE

(x1, x2).

Proof Observe that, since x1 = (a1, b1, a1b1) ∈ GE,

Υz(x1) =
a1b1z − b1
a1z − 1

=
b1(a1z − 1)

a1z − 1
= b1.

As before, since

Υz(x1) =
a1b1z − b1
a1z − 1

: D −→ D,
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then for each x1 = (a1, b1, a1b1) ∈ GE, we define the matrix

X1 =


 a1b1 −b1

a1 −1


 . (3.11)

Consider the Möbius automorphisms of the D, defined as follows:

µ1 = z 7→ z + ā1

a1z + 1
, ∀z ∈ D, and

µ2 = z 7→ z − b1
b̄1z − 1

, ∀z ∈ D.

For µ1 and µ2 as above, define Mµ1
and Mµ2

by

Mµ1
=


 1 ā1

a1 1


 , |a1| < 1 and Mµ2

=


 1 −b1
b̄1 −1


 , |b1| < 1.

We shall multiply X1 by Mµ1
and Mµ2

to move the point x1 to (0, 0, 0).

Let |a1| < 1, then

X1Mµ1
=


 a1b1 −b1

a1 −1





 1 ā1

a1 1




=


 0 b1(|a1|2 − 1)

0 |a1|1 − 1




≡


 0 −b1

0 −1


 .

Let |b1| < 1, then

Mµ2
X1Mµ1

=


 1 −b1
b̄1 −1





 0 −b1

0 −1




=


 0 0

0 1 − |b1|2


 ,
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which corresponds to the point (0, 0, 0). Since CGE
and KGE

are invariant

distances, the holomorphic automorphisms of GE are isometric with respect

to CGE
and KGE

. Therefore, the Möbius automorphisms on the left and the

right hand sides are isometric with respect to both distances, CGE
and KGE

.

Therefore, we can take x1 = (0, 0, 0) and x2 = (a2, b2, p2) in GE. Thus, by

Theorem 3.3.1,

CGE
(x1, x2) = KGE

(x1, x2).

�

Theorem 3.4.7 Let x = (x1, x2, x3) ∈ C3. Then the following hold:

(1) If |x1| < |x3| then (x ∈ ΓE ⇔ |x1|2 + |x1x2 − x3| ≥ |x3|2 + |x1 − x̄2x3|).

(2) If |x2| < |x3| then (x ∈ ΓE ⇔ |x2|2 + |x1x2 − x3| ≥ |x3|2 + |x2 − x̄1x3|).

(3) If |x1| < |x2| then (x ∈ ΓE ⇔ |x1|2 + |x2 − x̄1x3| ≥ |x2|2 + |x1 − x̄2x3|).

(4) If |x2| < |x1| then (x ∈ ΓE ⇔ |x2|2 + |x1 − x̄2x3| ≥ |x1|2 + |x2 − x̄1x3|).

Proof (1) Let

∣∣∣∣
x1

x3

∣∣∣∣ < 1. That is, |x1| < |x3|. Define a Möbius

automorphism µ of D by

µ =
x3(x̄3z − x̄1)

x̄3(x1z − 1)
.

For this µ define Mµ by

Mµ =




1 − x̄1

x̄3
x1

x3

−1




so that Mµ induces µ. As before, for each x ∈ ΓE, we define

X =


 x3 −x2

x1 −1


 .
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Then

MµX =




1 − x̄1

x̄3
x1

x3

−1





 x3 −x2

x1 −1




=



x3 −

|x1|2
x̄3

−x2 +
x̄1

x̄3

0
−x1x2

x3

+ 1




=




|x3|2 − |x1|2
x̄3

−x2x̄3 + x̄1

x̄3

0
−x1x2 + x3

x3




≡



x3(|x3|2 − |x1|2)
x̄3(x1x2 − x3)

x3(x2x̄3 − x̄1)

x̄3(x1x2 − x3)

0 −1


 :=


 x′3 −x′2
x′1 −1


 .

Since x′ = (x′1, x
′
2, x

′
3) ∈ ΓE, then by (1)⇔(4) of Theorem 2.1.4, we have

x ∈ ΓE ⇔
∣∣∣∣
x2x̄3 − x̄1

x1x2 − x3

∣∣∣∣ +

∣∣∣∣
|x1|2 − |x3|2
x1x2 − x3

∣∣∣∣ ≤ 1

⇔





|x1 − x̄2x3| + ||x1|2 − |x3|2| ≤ |x1x2 − x3|, and

|x1 − x̄2x3| ≤ |x1x2 − x3|

Therefore, if |x1| < |x3|, then

x ∈ ΓE ⇔ |x1|2 + |x1x2 − x3| ≥ |x3|2 + |x1 − x̄2x3|.

That is, (1) holds.

(2) This holds immediately since (x1, x2, x3) ∈ ΓE ⇔ (x2, x1, x3) ∈ ΓE.

(2) This holds immediately since (x1, x2, x3) ∈ ΓE ⇔ (x1, x̄3, x̄2) ∈ ΓE.

(4) This holds immediately since (x1, x2, x3) ∈ ΓE ⇔ (x2, x1, x3) ∈ ΓE.

�
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Chapter 4

The Topological and the

Distinguished Boundaries of ΓE

and ΓE-Inner Functions

In this chapter, we define Γ
(r)
E and give a characterisation for its elements.

We also define the topological boundary and the distinguished boundary of

ΓE. In section 4.5 we define ΓE-inner functions and present some results

concerning this type of functions. We also give a general formula for

rational ΓE-inner functions.

We shall use the following notations; ∂ΓE denotes the topological boundary

of ΓE, GE denotes the interior of ΓE and bΓE denotes the distinguished

boundary of ΓE.

Definition 4.0.1 Let K be a compact subset of Cn. The distinguished

boundary of K is defined to be the Šilov boundary of the algebra A(K) of

functions continuous on K and analytic on the interior of K, that is, the
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smallest closed subset of K on which every function in A(K) attains its

maximum modulus.

4.1 Characterisation of Γ
(r)
E

Let B(0; 1/r) denote the open ball of centre 0 and radius 1/r in C2, and

D1/r denote the disc of radius 1/r in C, where 0 < r < 1.

We define Γ
(r)
E as follows:

Γ
(r)
E = {(a11, a22, det(A)) : A ∈M2(C), µE(A) ≤ r},

where 0 < r < 1.

Lemma 4.1.1 (x1, x2, x3) ∈ Γ
(r)
E ⇔

(x1

r
,
x2

r
,
x3

r2

)
∈ ΓE, where 0 < r < 1.

Proof From the definitions of ΓE and Γ
(r)
E and by Remark 1.2.6, which

states:

µE(λA) = |λ|µE(A),

where λ ∈ C and A ∈M2(C), we find that

(x1, x2, x3) ∈ Γ
(r)
E ⇔ µE





 x1 b

c x2





 ≤ r, for some b, c ∈ C such that bc = x1x2 − x3,

⇔ 1

r
µE





 x1 b

c x2





 ≤ 1, for some b, c ∈ C such that bc = x1x2 − x3

⇔ µE






x1

r

b

r
c

r

x2

r





 ≤ 1, for some b, c ∈ C such that

b

r

c

r
=
x1

r

x2

r
− x3

r2

⇔
(x1

r
,
x2

r
,
x3

r2

)
∈ ΓE,

�
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Corollary 4.1.2 Let z ∈ C and x ∈ C3. We define Ψ
(r)
z and Υ

(r)
z as

follows:

Ψ(r)
z (x) =





1

r

rx1 − zx3

r − zx2

, if zx2 6= r, and

x1

r
, if zx2 = r and x1x2 = x3,

Υ(r)
z (x) =





1

r

rx2 − zx3

r − zx1

, if zx1 6= r, and

x2

r
, if zx1 = r and x1x2 = x3.

Note that Ψ
(r)
z is undefined when x1x2 6= x3 and zx2 = r. Also, Υ

(r)
z is

undefined when x1x2 6= x3 and zx1 = r.

The next result follows from Theorem 2.1.4 and Lemma 4.1.1.

Theorem 4.1.3 Let x ∈ C3 and 0 < r < 1. Then the following are

equivalent:

(1) x ∈ Γ
(r)
E .

(2) 1 − x1z − x2w + x3zw 6= 0, for all (z, w) ∈ B(0; 1/r).

(3)





∣∣∣
x2

r

∣∣∣
2

+
∣∣∣
x1

r
− x̄2

r

x3

r2

∣∣∣ +
∣∣∣
x1

r

x2

r
− x3

r2

∣∣∣ ≤ 1, and
∣∣∣
x1

r

∣∣∣ ≤ 1.

(4)





∣∣∣
x1

r

∣∣∣
2

+
∣∣∣
x2

r
− x̄1

r

x3

r2

∣∣∣ +
∣∣∣
x1

r

x2

r
− x3

r2

∣∣∣ ≤ 1, and
∣∣∣
x2

r

∣∣∣ ≤ 1.

(5)





Ψ
(r)
z (x) is in the Schur class,

if x1x2 = x3,
∣∣∣
x2

r

∣∣∣ ≤ 1.

(6)





Υ
(r)
z (x) is in the Schur class,

if x1x2 = x3,
∣∣∣
x1

r

∣∣∣ ≤ 1.
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(7) There exist b, c ∈ C such that bc = x1x2 − x3 and

∥∥∥∥∥∥


 x1 b

c x2




∥∥∥∥∥∥
≤ r.

(8) There exist b, c ∈ C such that |b| = |c| = |x1x2 − x3|1/2, bc = x1x2 − x3

and

∥∥∥∥∥∥


 x1 b

c x2




∥∥∥∥∥∥
≤ r.

(9)





1 −
∣∣∣
x1

r

∣∣∣
2

−
∣∣∣
x2

r

∣∣∣
2

+
∣∣∣
x3

r3

∣∣∣
2

− 2
∣∣∣
x1

r

x2

r
− x3

r2

∣∣∣ ≥ 0, and
∣∣∣
x1

r

∣∣∣ ≤ 1,
∣∣∣
x2

r

∣∣∣ ≤ 1,
∣∣∣
x3

r

∣∣∣ ≤ 1.

(10)





1 −
∣∣∣
x1

r

∣∣∣
2

+
∣∣∣
x2

r

∣∣∣
2

−
∣∣∣
x3

r2

∣∣∣
2

− 2
∣∣∣
x1

r

x̄3

r2
− x̄2

r

∣∣∣ ≥ 0, and
∣∣∣
x1

r

∣∣∣ ≤ 1,
∣∣∣
x2

r

∣∣∣ ≤ 1.

(11)





1 +
∣∣∣
x1

r

∣∣∣
2

−
∣∣∣
x2

r

∣∣∣
2

−
∣∣∣
x3

r2

∣∣∣
2

− 2
∣∣∣
x2

r

x̄3

r2
− x̄1

r

∣∣∣ ≥ 0, and
∣∣∣
x1

r

∣∣∣ ≤ 1,
∣∣∣
x2

r

∣∣∣ ≤ 1.

The next result follows from Theorem 4.1.3.

Corollary 4.1.4 We have

GE =
⋃

0<r<1

Γ
(r)
E .

4.2 The Topological Boundary of ΓE

In this section, we study the topological boundary and the interior of ΓE.

Our results include a characterisation of points in the topological boundary

and in the interior of ΓE.

Recall that

x ∈ ΓE ⇔





|x2|2 + |x1 − x̄2x3| + |x1x2 − x3| ≤ 1, and

|x1| ≤ 1,
(4.1)
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Lemma 4.2.1 Let x ∈ C3. Then

x ∈ ∂ΓE ⇔





|x2|2 + |x1 − x̄2x3| + |x1x2 − x3| = 1, and

|x1| ≤ 1,
(4.2)

Proof If the equality in (4.2) holds, then f(D̄) ∩ D̄ ∈ T, where

f(z) =
x2z − 1

x3z − x1

for all z ∈ D̄, because for x to be in the topological

boundary of ΓE, we must have that the image of the disc touches the unit

circle.

c

r 1

0

f(D̄) D̄α

Figure 4.1: f(D̄) ∩ D̄ = {α} ∈ T

The proof of this result is similar to that of (2) ⇔ (3) of Theorem 2.1.4,

where in this case since x is on the topological boundary of ΓE, we have

x ∈ ∂ΓE ⇔ |centre of f(D̄)| = 1 + radius of f(D̄).

�

The result above is not what one might expect. One might think that

boundary points can also arise from having equality in the second

inequality of (4.1). Below, we show that there are no such points.
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Remark 4.2.2 There are no points x ∈ ∂ΓE such that





|x2|2 + |x1 − x̄2x3| + |x1x2 − x3| < 1, and

|x1| = 1,
(4.3)

Suppose that (4.3) holds. Let x1 = eiθ as |x1| = 1 and let ε = eiθx2 − x3.

|x2|2 + |eiθ − x̄2x3| + |eiθx2 − x3| < 1 ⇒ |x2|2 + |eiθ − x̄2(e
iθx2 − ε)| + |ε| < 1

⇒ |x2|2 + |eiθ − eiθx2x̄2 + x̄2ε| + |ε| < 1

⇒ t2 + |(1 − t2) + e−iθx̄2ε| + |ε| < 1,

where t = |x2|, but since |x2| < 1 by (4.3), we have

t2 + |(1−x2x̄2)+ e−iθx̄2ε|+ |ε| ≥ t2 +1− t2 −|x̄2ε|+ |ε| = 1−|x2ε|+ |ε| ≥ 1,

which a contradiction. Therefore, if x ∈ ∂ΓE, then (4.3) does not hold.

Remark 4.2.3 Lemma 4.2.1 shows that for all x = (x1, x2, x3), where

|xj| ≤ 1, j = 1, 2, 3 such that

|x2|2 + |x1 − x̄2x3| + |x1x2 − x3| = 1, (4.4)

there exists z =
1 − αx1

x2 − αx3

∈ T such that Ψ(z, x) ∈ T.

Example If x3 = 0, we have z =
1 − αx1

x2

. In this case, equation (4.4) is

equivalent to |x1| + |x2| = 1 and so Ψ(z, x) =
1

α
∈ T. Hence the points

x = (|x1|, 1 − |x1|, 0) are on the boundary of ΓE.

Remark 4.2.4 For all x = (x1, x2, x3) ∈ C3 such that

|x2|2 + |x1 − x̄2x3| + |x1x2 − x3| = 1,
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there exists α such that
1

Υα(x)
∈ T, for some x.

Thus

Ψ

(
1 − αx1

x2 − αx3

, x

)
=

x1(x2 − αx3) − (1 − αx1)x3

x2 − αx3 − (1 − αx1)x2

=
x1x2 − x3

α(x1x2 − x3)

=
1

α
.

Therefore, for z =
1 − αx1

x2 − αx2

∈ D̄, α ∈ T, we have |Ψ(z, x)| =

∣∣∣∣
1

α

∣∣∣∣ = 1.

The table below is a guide to some of our results concerning the

characterisation of the topological boundary and the interior of ΓE.

Case x ∈ ∂ΓE x ∈ GE

x1x2 6= x3 Theorem 4.2.5 Theorem 4.2.8

x1x2 = x3 Theorem 4.2.6 Theorem 4.2.9

Theorem 4.2.5 For x ∈ ΓE, when x1x2 6= x3,

x ∈ ∂ΓE ⇔ Υ̃x(D̄) ∩ T 6= ∅,

where Υ̃x(z) =
x3z − x2

x1z − 1
, for all z ∈ D̄.

Proof Note that in the case that x1x2 6= x3, we have |x1| 6= 1.

Consider the Möbius automorphism µ of D̄ given by:

µ(z) =
z + x̄1

x1z + 1
, ∀z ∈ D̄.

Since µ is an automorphism of D̄, this is the same as showing that

x ∈ ∂ΓE ⇔ Υ̃x

(
µ

(
D̄

))
∩ T 6= ∅.
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The map Υ̃x ◦ µ is linear taking

D 3 z 7−→ x1x2 − x3

1 − |x1|2
z +

x2 − x̄1x3

1 − |x1|2
,

and so maps D to a disc with centre C =
x2 − x̄1x3

1 − |x1|2
and radius

R =
|x1x2 − x3|
1 − |x1|2

. Thus,

Υ̃x(D̄) ∩ T 6= ∅ ⇔ |C| +R = 1

⇔ |x2 − x̄1x3|
1 − |x1|2

+
|x1x2 − x3|
1 − |x1|2

= 1

⇔





|x1|2 + |x2 − x̄1x3| + |x1x2 − x3| = 1, and

|x2| ≤ 1.

⇔ x ∈ ∂ΓE.

�

Theorem 4.2.6 For x ∈ ΓE, when x1x2 = x3,

x ∈ ∂ΓE ⇔ |x1| ≤ 1 and |x2| = 1, or |x1| = 1 and |x2| ≤ 1.

Proof By Lemma 4.2.1, we have

x ∈ ∂ΓE ⇔





|x2|2 + |x1 − x̄2x3| + |x1x2 − x3| = 1, and

|x1| ≤ 1.

⇔





|x2|2 + |x1| |1 − |x2|2| = 1, and

|x1| ≤ 1.

⇔





|x1| |1 − |x2|2| = 1 − |x2|2, and

|x1| ≤ 1.

⇔ |x1| ≤ 1 and |x2| = 1, or |x1| = 1 and |x2| ≤ 1.

�
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The next characterisation of points on the topological boundary of ΓE

follows from Lemma 4.2.1 and Remark 4.2.3.

Corollary 4.2.7 Let x = (x1, x2, x3) ∈ C3. Then the following are

equivalent.

(1) x ∈ ∂ΓE.

(2)





|x2|2 + |x1 − x̄2x3| + |x1x2 − x3| = 1, and

|x1| ≤ 1.

(3)





|x1|2 + |x2 − x̄1x3| + |x1x2 − x3| = 1, and

|x2| ≤ 1.

(4) There exist b, c ∈ C such that bc = x1x2 − x3 and

∥∥∥∥∥∥


 x1 b

c x2




∥∥∥∥∥∥
= 1.

(5) There exist b, c ∈ C such that |b| = |c| = |x1x2 − x3|1/2, bc = x1x2 − x3

and

∥∥∥∥∥∥


 x1 b

c x2




∥∥∥∥∥∥
= 1.

(6)





1 − |x1|2 − |x2|2 + |x3|2 − 2|x1x2 − x3| = 0, and

|x1| ≤ 1, |x2| ≤ 1, |x3| ≤ 1.

(7)





1 − |x1|2 + |x2|2 − |x3|2 − 2|x1x̄3 − x̄2| = 0, and

|x1| ≤ 1, |x2| ≤ 1.

(8)





1 + |x1|2 − |x2|2 − |x3|2 − 2|x2x̄3 − x̄1| = 0, and

|x1| ≤ 1, |x2| ≤ 1.

Next, we shall find conditions for when x is in the interior of ΓE.

115



Theorem 4.2.8 For x ∈ ΓE, when x1x2 6= x3,

x ∈ GE ⇔ Υ̃x(D̄) ⊂ D,

where Υ̃x(z) =
x3z − x2

x1z − 1
, for all z ∈ D̄.

Proof Since Υ̃x is in the Schur class, we have

x ∈ GE ⇔ x /∈ ∂ΓE

⇔ @z ∈ D̄ such that Υ̃x(z) ∈ T

⇔ Υ̃x(D̄) ⊂ D.

�

Theorem 4.2.9 For x ∈ ΓE, when x1x2 = x3,

x ∈ GE ⇔ |x1| < 1 and |x2| < 1.

Proof Clearly, by Theorem 4.2.8,

x ∈ GE ⇔





|x2|2 + |x1 − x̄2x3| + |x1x2 − x3| < 1, and

|x1| < 1.

Hence, if x1x2 = x3, then

x ∈ GE ⇔





|x2|2 + |x1| (1 − |x2|2) < 1, and

|x1| < 1.

⇔





|x1| (1 − |x2|2) < 1 − |x2|2, and

|x1| < 1.

⇔ |x1| < 1 and |x2| < 1.

�

The next characterisation of points in the interior of ΓE follows from

Theorem 4.1.3, Corollary 4.1.4 and Lemma 4.2.1.
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Corollary 4.2.10 Let x ∈ C3 and GE = {(a11, a22, det(A)) : µE(A) < 1}.

Then the following are equivalent.

(1) x ∈ GE.

(2)





|x2|2 + |x1 − x̄2x3| + |x1x2 − x3| < 1, and

|x1| < 1.

(3)





|x1|2 + |x2 − x̄1x3| + |x1x2 − x3| < 1, and

|x2| < 1.

(4)





Ψ(., x) is analytic in D and |Ψ(., x)| < 1

if x1x2 = x3, |x2| < 1.

(5)





Υ(., x) is analytic in D and |Υ(., x)| < 1,

if x1x2 = x3, |x1| < 1.

(6) There exist b, c ∈ C such that bc = x1x2 − x3 and

∥∥∥∥∥∥


 x1 b

c x2




∥∥∥∥∥∥
< 1.

(7) There exist b, c ∈ C such that |b| = |c| = |x1x2 − x3|1/2, bc = x1x2 − x3

and

∥∥∥∥∥∥


 x1 b

c x2




∥∥∥∥∥∥
< 1.

(8)





1 − |x1|2 − |x2|2 + |x3|2 − 2|x1x2 − x3| > 0, and

|x1| < 1, |x2| < 1, |x3| < 1.

(9)





1 − |x1|2 + |x2|2 − |x3|2 − 2|x1x̄3 − x̄2| > 0, and

|x1| < 1, |x2| < 1.

(10)





1 + |x1|2 − |x2|2 − |x3|2 − 2|x2x̄3 − x̄1| > 0, and

|x1| < 1, |x2| < 1.
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Remark 4.2.11 If x = (x1, x2, x3) ∈ GE, then |x3| 6= 1.

To see this, let |x3| = 1. We may assume that x3 = 1. Then

x ∈ GE ⇔ |x2|2 + |x1 − x̄2x3| + |x1x2 − x3| < 1 (4.5)

⇔ |x2|2 + |x1 − x̄2| + |x1x2 − 1| < 1.

Let ε = x1 − x̄2 so that x1 = x̄2 + ε. Then

x ∈ GE ⇔ |x2|2 + |ε| + |x2(x̄2 + ε) − 1| < 1

⇔ |x2|2 + |ε| +
∣∣|x2|2 + εx2 − 1

∣∣ < 1,

but

|x2|2 + |ε| +
∣∣|x2|2 + εx2 − 1

∣∣ ≥ |x2|2 + |ε| − |x2|2 − |εx2| + 1 ≥ 1,

which is a contradiction, unless |x2| = 1, which cannot happen since

|x2| < 1 by (4.5). Therefore, if x ∈ GE, then |x3| < 1.

4.3 Peak Sets

We need the following definitions and results from T. Gamelin [21] in order

to find the distinguished boundary of ΓE. Throughout this section, let K

be a compact metric space and A be a uniform algebra on K.

Definition 4.3.1 A point x ∈ K is a peak point if there is a function

f ∈ A such that f(x) = 1 while |f(y)| < 1 for y ∈ K, y 6= x. Any function

f which satisfies this condition is said to peak at x relative to K.
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Definition 4.3.2 A closed subset H of K is a peak set if there is a

function f ∈ A such that f(x) = 1 for x ∈ H, and |f(y)| < 1 for y ∈ K\H.

Any function f satisfying this condition is said to be peak on H.

Definition 4.3.3 A closed subset H of K is a p-set, or generalised peak

set if it is the intersection of peak sets.

We state the following result from Gamelin’s book without a proof. For a

full proof see Theorem 12.5 of [21].

Theorem 4.3.4 Let B be a closed subspace of C(K) and B⊥ be the space

of all measures orthogonal to B. Let H be a closed subset of K such that

mH ∈ B⊥ for all measures m ∈ B⊥. Let f ∈ B|H , and let p be a positive

continuous function on K such that |f(y)| ≤ p(y) for y ∈ H. Then there is

g ∈ B such that g|H = f and |g(x)| ≤ p(x) for all x ∈ K.

Corollary 4.3.5 If H is a p-set of A, and F ⊆ H is a p-set of A|H , then

F is a p-set of A.

Example In Definition 4.3.2, if we take K to be ΓE and

H = {(x1, x̄1, 1) : x1 ∈ D̄}, then p =
1 + x3

2
has a peak set H.

4.4 The Distinguished Boundary of ΓE

Agler and Young [9] have shown that the distinguished boundary of the

symmetrised bidisc Γ is the set

bΓ = {(z1 + z2, z1z2) : z1, z2 ∈ T}

= {(s, p) ∈ C2 : s = s̄p, |p| = 1, |s| ≤ 2}.
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In this section, we shall show that the distinguished boundary of ΓE is the

set

B := {x = (x1, x2, x3) ∈ ΓE : x1 = x̄2x3, |x3| = 1}.

Lemma 4.4.1 ΓE ∩ R3 is a tetrahedron.

Proof Let x = (a, b, p) ∈ R3. Recall that, if |a| < 1, then

x ∈ ΓE ⇔
∣∣∣∣
b− zp

1 − za

∣∣∣∣ ≤ 1, ∀z ∈ T.

We shall find

sup
z∈T

∣∣∣∣
zp− b

za− 1

∣∣∣∣

when a, b, p ∈ R. Observe that, when |a| < 1,


 p −b

a −1





 1 −ā

a −1


 =


 p− ab b− pā

0 1 − aā




=



ab− p

1 − aā
− b− āp

1 − aā

0 −1


 .

Therefore,

sup
z∈T

∣∣∣∣
zp− b

za− 1

∣∣∣∣ = sup
w∈T

∣∣∣∣
(p− ab)w + (b− āp)

1 − aā

∣∣∣∣ .

Observe that 

ab− p

1 − aā
− b− āp

1 − aā

0 −1





 w

1




is biggest at w = ±1.

Hence,
pz − b

az − 1
is biggest at


 1 −ā

a −1





 ±1

1


 =


 ±1 −ā

±a −1


 .
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That is, at 



1 − ā

a− 1
= −1, or

−1 − ā

−a− 1
= 1.

Thus,
pz − b

az − 1
is biggest at z = ∓1. Therefore,

(a, b, p) ∈ ΓE ∩ R3, |a| < 1 ⇔ |p− b|
|a− 1| ≤ 1 and

| − p− b|
| − a− 1| ≤ 1

⇔ −1 ≤ p− b

a− 1
≤ 1 and − 1 ≤ −p− b

−a− 1
≤ 1

⇔ −(a− 1) ≥ p− b ≥ a− 1 and a+ 1 ≥ −p− b ≥ −a− 1.

Thus, ΓE ∩ R3 is a tetrahedron with four faces given by the inequalities:

−a+ b− p+ 1 ≥ 0 , −a− b+ p+ 1 ≥ 0,

a+ b+ p+ 1 ≥ 0 , a− b− p+ 1 ≥ 0, (4.6)

where a, b, p ∈ [−1, 1].

Moreover, the vertices of this tetrahedron are:

(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1).

In the case that |a| = 1, we have

x ∈ ΓE ⇔





|a|2 + |b− āp| + |ab− p| ≤ 1, and

|b| ≤ 1

⇔





|b− āp| + |ab− p| ≤ 0, and

|b| ≤ 1

⇔





b = āp, ab = p, and

|b| ≤ 1

⇔ |b| = |p| and |b| ≤ 1.
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Clearly, points (a, b, p) ∈ ΓE ∩ R3 such that |a| = 1 and |p| = |b| ≤ 1 are in

the tetrahedron described above.

�

(1, 1, 1)

(1,−1,−1)

(−1, 1,−1)

(−1,−1, 1)

(0, 0, 1)

(0, 1, 1)

(1, 0, 0)

Figure 4.2: ΓE in the real case

Lemma 4.4.2 The set C = {x ∈ ΓE : x1 = x̄2x3, |x2| = 1 and |x3| < 1} is

disjoint from the distinguished boundary of ΓE.

Proof Let x ∈ C. We can fix x2 with |x2| = 1 and define a map h from the

open disc into C as follows:

h : D −→ C,

w 7−→ (x̄2w, x2, w).

Therefore, we have an analytic disc in C that contains the point x, but no

point in the interior of an analytic disc can be a peak point. Therefore,

such an x is not in the distinguished boundary of ΓE.

�
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Lemma 4.4.3 A point x such that |x1| = 1, |x3| < 1 and x1x2 = x3 is not

in the distinguished boundary of ΓE.

Proof Let z ∈ D, i.e., |z| < 1. Then (x1, z, x1z) ∈ ΓE, because

|x2|2 + |x1 − x̄2x3| + |x1x2 − x3| = |z|2 + |x1 − z̄x1z|

= |z|2 + |x1||1 − |z|2|

= |z|2 + (1 − |z|2) ≤ 1.

Hence, there exist analytic discs that contain the points x ∈ ΓE with

|x1| = 1 and x1x2 = x3 or with |x2| = 1 and x1x2 = x3. Therefore, such

points x are not in the distinguished boundary of ΓE.

�

Theorem 4.4.4 The point (p, p̄, 1) is a peak point relative to H ⊆ ΓE,

where H = {(x1, x̄1, 1) : x ∈ D}.

Moreover, (p, p̄, 1) is a peak point relative to ΓE.

Proof Let x = (x1, x2, x3) ∈ H ⊆ ΓE. If x3 = 1 and x1 = x̄2, then we can

define a function fp that peaks at (p, p̄, 1) in H, where 0 ≤ p ≤ 1, by

fp(x1, x2, x3) = 1 − (x1 − p)(x2 − p̄)

4
.

Clearly, fp is an analytic function in H such that when x1 6= p, we have

fp(x1, x̄1, 1) = 1 − (x1 − p)(x̄1 − p̄)

4

= 1 − |x1 − p|2
4

< 1.

Hence, |fp(x1, x̄1, 1)| < 1. Moreover, f(p, p̄, 1) = 1. Therefore, fp peaks at

(p, p̄, 1) in H.
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Let d be a metric on C3 and let

g(x1, x2, x3) =
1

1 + d(x,H)
.

Then |fp(y)| ≤ g(y), for all y ∈ H. Hence, by Theorem 4.3.4, fp is analytic

on ΓE with |fp(y)| ≤ g(y), for all y ∈ ΓE. Therefore, (p, p̄, 1) is a peak point

relative to ΓE.

�

Remark 4.4.5 The function g(x) =
(x1x2 − x3) + 1

2
peaks at (0, 0,−1)

relative to ΓE, for, g is an analytic function in D such that |g(x)| < 1,

because

|g(x)| =

∣∣∣∣
(x1x2 − x3) + 1

2

∣∣∣∣ ≤
∣∣∣∣
x1x2 − x3

2

∣∣∣∣ +

∣∣∣∣
1

2

∣∣∣∣ <
1

2
+

1

2
= 1,

and g(0, 0,−1) = 1. Moreover, |g(x)| = 1 ⇒ x = (0, 0,−1), for,

|g(x)| = 1 ⇒
∣∣∣∣
(x1x2 − x3) + 1

2

∣∣∣∣ = 1

⇒ x1x2 − x3 = 1, by (3) of Theorem 2.1.4

⇒ |x1| = 0 and |x2| = 0,

Hence, x1 = 0 = x2 and x3 = −1.

Let bΓE denote the distinguished boundary of ΓE and recall that B is

defined as follows:

B = {x ∈ ΓE : x1 = x̄2x3, |x3| = 1}.

Next, we find necessary and sufficient conditions for x to be in B and in

bΓE, then we show that bΓE = B. The table below is a guide to these

results.
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Case x ∈ B x ∈ bΓE bΓE = B

x1x2 6= x3 Theorem 4.4.6 Theorem 4.4.8 Theorem 4.4.10

x1x2 = x3 Theorem 4.4.7 Theorem 4.4.9 Theorem 4.4.10

Theorem 4.4.6 Let Υ̃x(z) =
x3z − x2

x1z − 1
, for all z ∈ D̄. When x1x2 6= x3,

x ∈ B ⇔ Υ̃x(D̄) = D̄.

Proof In the case that x1x2 6= x3, we have |x1| 6= 1. Consider the Möbius

automorphism µ of D̄,

µ(z) =
z + x̄1

x1z + 1
, ∀z ∈ D̄,

Since µ is an automorphism of D̄, it suffices to prove that

x ∈ B ⇔ Υ̃x

(
µ

(
D̄

))
= D̄.

The map Υ̃x ◦ µ is linear, taking

D 3 z 7−→ x1x2 − x3

1 − |x1|2
z +

x2 − x̄1x3

1 − |x1|2
,

and so maps D to a disc with centre C =
x2 − x̄1x3

1 − |x1|2
and radius

R =
|x1x2 − x3|
1 − |x1|2

. Therefore,

Υ̃x(D̄) = D̄ ⇔ C = 0 and R = 1

⇔ x2 = x̄1x3 and |x1x2 − x3| = 1 − |x1|2

⇔ x2 = x̄1x3 and |x1x̄1x3 − x3| = 1 − |x1|2

⇔ x2 = x̄1x3 and |x3|
∣∣1 − |x1|2

∣∣ = 1 − |x1|2

⇔ x1 = x̄2x3 and |x3| = 1

⇔ x ∈ B.

�

125



Theorem 4.4.7 When x1x2 = x3,

|x1| = |x2| = |x3| = 1 ⇔ x ∈ B.

Proof (⇒) This implication is clear; if x1x2 = x3 and

|x1| = |x2| = |x3| = 1, then

x1x2x̄2 = x̄2x3 ⇒ x1|x2|2 = x̄2x3 ⇒ x1 = x̄2x3.

Hence, x1 = x̄2x3 and |x3| = 1.

(⇐) If x1x2 = x3, x1 = x̄2x3 and |x3| = 1, then

x1 = x̄2x3 ⇒ |x1| = |x̄2x3| ⇒ |x1| = |x2|,

Hence,

x1x2 = x3 ⇒ x̄2x3x2 = x3 ⇒ |x2| = 1.

Therefore, |x1| = |x2| = |x3| = 1.

�

In the following results, we find conditions on x so that it is in the

distinguished boundary bΓE of ΓE.

Theorem 4.4.8 When x1x2 6= x3,

x ∈ bΓE ⇔ Υ̃x(D̄) = D̄,

where Υ̃x(z) =
x3z − x2

x1z − 1
, for all z ∈ D̄.

Proof (⇐) If Υ̃x(D̄) = D̄, then Υ̃x is a Möbius automorphism of D. Hence,

we can compose it with its inverse Υ̃−1
x so that we get Υ̃e, where

e = (0, 0,−1).
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Therefore, there exists an automorphism µ of ΓE that sends points of ΓE to

(0, 0,−1), which is a peak point by Remark 4.4.5. Hence, x ∈ bΓE.

(⇒) If Υ̃x(D̄) 6= D̄, then we have two cases; (i) either x is in the interior of

ΓE, or (ii) that Υ̃x(D̄) touches T.

Case (i): Points in GE are not peak points because we can embed an

analytic disc w 7−→ (x1, x2 + εw, x3) ∈ ΓE for |w| < 1 and a small ε, this

analytic disc contains (x1, x2, x3), hence (x1, x2, x3) cannot be in the

distinguished boundary by the maximum modulus principle.

Case (ii): Let x = (x1, x2, x3). Recall that when Υ̃x(z) touches T, we have

Υ̃x(1) = {α} ∈ T. We may compose Υ̃x(1) with an automorphism so that

we move {α} to 1. Therefore, we have Υ̃x(1) = 1. Hence,

x3 − x2

x1 − 1
= 1.

That is,

x3 − x2 − x1 + 1 = 0. (4.7)

For x ∈ ΓE, define

X =


 x3 −x2

x1 −1


 .

Let H denote the right half-plane. Consider the map h : H̄ −→ D̄, defined as

h(z) =
−z + 1

−z − 1
,

which corresponds to 
 −1 1

−1 −1


 .
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Let L(z) : H̄ −→ H̄. Then


 L3 L2

L1 1


 =


 −1 −1

1 −1





 x3 −x2

x1 −1





 −1 1

−1 −1




=


 −1 −1

1 −1





 −x3 + x2 x3 + x2

−x1 + 1 x1 + 1




=


 x3 − x2 + x1 − 1 −x3 − x2 − x1 − 1

−x3 + x2 + x1 − 1 x3 + x2 − x1 − 1




=


 x3 − x2 + x1 − 1 −x3 − x2 − x1 − 1

0 x3 + x2 − x1 − 1




≡



x3 − x2 + x1 − 1

x3 + x2 − x1 − 1

−x3 − x2 − x1 − 1

x3 + x2 − x1 − 1

0 1


 .

From (4.7), we have x3 = x1 + x2 − 1. Therefore, L1 = 0 and

L3 =
x3 − x2 + x1 − 1

x3 + x2 − x1 − 1
=
x1 + x2 − 1 − x2 + x1 − 1

x1 + x2 − 1 + x2 − x1 − 1
=

1 − x1

1 − x2

,

L2 =
−x3 − x2 − x1 − 1

x3 + x2 − x1 − 1
=

−x1 − x2 + 1 − x2 − x1 − 1

x1 + x2 − 1 + x2 − x1 − 1
=
x1 + x2

1 − x2

.

Therefore, L(z) = L3z + L2, where L3 must clearly be a real non-negative

constant. We can write L(z) as follows

L(z) =




1 − x1

1 − x2

x1 + x2

1 − x2

0 1


 .

Hence, we can define a family of analytic functions Lε as

Lε(z) =


 L3 L2 + ελ

0 1


 ,
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where ε > 0 is sufficiently small and λ ∈ D. Therefore, given a solution as

L(z) = L3z + L2, where L3 ≥ 0 and L2 : D̄ −→ H̄, we have

 x′3 −x′2
x′1 −1


 =


 −1 1

−1 −1





 L3 L2 + ελ

0 1





 −1 −1

1 −1




=


 −1 1

−1 −1





 −L3 + L2 + ελ −L3 − L2 − ελ

1 −1




=


 L3 − L2 − ελ+ 1 L3 + L2 + ελ− 1

L3 − L2 − ελ− 1 L3 + L2 + ελ+ 1




=




−L3 − L2 − ελ+ 1

L3 + L2 + ελ+ 1
−L3 + L2 + ελ− 1

L3 + L2 + ελ+ 1

−L3 − L2 − ελ− 1

L3 + L2 + ελ+ 1
−1



,

where

L3 =
1 − x1

1 − x2

, L2 =
x1 + x2

1 − x2

and x3 = x1 + x2 − 1.

Observe that

x′1 =
−2x1 − ελ(1 − x2

−2 − ελ(1 − x2)
→ x1 as ε→ 0,

x′2 =
−2x2 − ελ(1 − x2)

−2 − ελ(1 − x2)
→ x2 as ε→ 0,

x′3 =
2(1 − x1 − x2) − ελ(1 − x2)

−2 − ελ(1 − x2)
→ −1 + x1 + x2 = x3 as ε→ 0.

Hence, as ε→ 0, (x′1, x
′
2, x

′
3) → (x1, x2, x3) ∈ ΓE. Therefore, this family Lε

of functions is analytic and contains L(z). Therefore, x = (x1, x2, x3) is not

a peak point and so it is not in the distinguished boundary of ΓE. Thus,

Υ̃x(D̄) = D̄. �
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Theorem 4.4.9 For x ∈ ΓE, when x1x2 = x3,

x ∈ bΓE ⇔ |x1| = |x2| = |x3| = 1.

Proof (⇒) If x1x2 = x3 and |x1| < 1 or |x2| < 1, say |x2| < 1, then there

exists an analytic disc (x1, z, x1z), z ∈ D, this disc contains (x1, x2, x1x2).

Therefore, points x ∈ ΓE such that x1x2 = x3 and |x1| < 1 or |x2| < 1 are

not in the distinguished boundary of ΓE. Hence, points x such that

x1x2 = x3 and |x1| = 1 = |x2| are in bΓE. Since we also have, x1 = x̄2x3 and

|x3| = 1, we have |x1| = |x2| = |x3| = 1.

(⇐) We have |x1| = |x2| = |x3| = 1. Let p = x1, hence, p̄ = x2x̄3 and

pp̄ = x1x2x̄3 = x3x̄3 = |x3|2 = 1. Therefore, x = (x1, x2x̄3, x3x̄3) = (p, p̄, 1),

which is a peak point by Theorem 4.4.4. Thus, x ∈ bΓE.

�

The next result follows immediately from Theorems 4.4.6, 4.4.8, 4.4.7 and

4.4.9. It shows that the distinguished boundary of ΓE is in fact B. That is,

B = bΓE = {x ∈ ΓE : x1 = x̄2x3, |x3| = 1}.

Corollary 4.4.10 We have

x ∈ bΓE ⇔ x ∈ B.

Theorem 4.4.11 Let x = (x1, x2, x3) ∈ C3. Then

x ∈ bΓE ⇔





|Ψω(x)| = 1, ∀ω ∈ T, and

|Υω(x)| = 1, ∀ω ∈ T.

Proof Since Ψz and Υz are automorphisms of D̄, then by continuity we

have that Ψx(T) = T and Υz(T) = T.

�
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4.5 ΓE-Inner Functions

In this section, we define ΓE-inner functions and present some results

concerning this type of functions.

Fatou’s Theorem [29] states that a bounded analytic function on the unit

disc has radial limits at almost every boundary point.

An H∞ function on D that has unit modulus almost everywhere on T is

called an inner function [27]. Blaschke factors are inner and therefore so

are finite Blaschke products. Infinite Blaschke products are also inner, a

full proof of this can be found in [2].

The following definition of Γ-inner functions can be found in [8].

Definition 4.5.1 A Γ-inner function is an analytic function ϕ : D −→ Γ

for which almost all radial limits ϕ
(
eiθ

)
, θ ∈ R, lie in the distinguished

boundary bΓ of Γ (defined as the Šilov boundary of the algebra of continuous

functions on Γ which are analytic on the interior of Γ).

We define ΓE-inner functions as follows:

Definition 4.5.2 A ΓE-inner function is an analytic function ϕ : D −→ ΓE

such that ϕ(λ) ∈ bΓE for almost all λ ∈ T.

An example for a ΓE-inner function is ϕ(z) = (z, z2, z3), z ∈ D.

Definition 4.5.3 A matrix valued function F on D is said to be a

matricial inner function if it is unitary almost everywhere on T.

Theorem 4.5.4 A function ϕ : D −→ ΓE is a ΓE-inner function if and

only if there exists a 2 × 2 matricial inner function ψ : D −→M2(C) such
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that for all λ ∈ D,

ϕ(λ) = (ψ11(λ), ψ22(λ), detψ(λ)) .

Moreover, if ψ is rational, so is ϕ.

Proof (⇐) Suppose that there exists such a matricial inner function

ψ : D −→M2(C). Then

‖ψ(λ)‖ ≤ 1, for all λ ∈ D.

Therefore, by Theorem 2.2.5, ϕ is analytic and maps D −→ ΓE.

Since ψ is an inner function, for almost all λ ∈ T,

ψ(λ) =


 ψ11(λ) ψ12(λ)

ψ21(λ) ψ22(λ)


 is unitary,

which means that

‖ψ11‖2 + ‖ψ21‖2 = 1,

‖ψ12‖2 + ‖ψ22‖2 = 1,

ψ11ψ̄12 + ψ21ψ̄22 = 0.

We shall show that ϕ(λ) ∈ bΓE, for almost all λ ∈ T. That is, for almost all

λ ∈ T,

(ψ11(λ), ψ22(λ), detψ(λ)) ∈ bΓE.

That is, we shall show that for almost all λ ∈ T,

‖ det ψ(λ)‖ = 1 and ψ11(λ) = ψ22(λ) detψ(λ).

Since ψ is unitary, ‖ψ‖ = 1, therefore, ‖ detψ(λ)‖ = 1, for almost all λ ∈ T.
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Moreover, since ‖ψ22‖2 + ‖ψ12‖2 = 1 and ψ11‖ψ12‖2 = −ψ̄22ψ12ψ21, then

ψ11 = ψ11(‖ψ22‖2 + ‖ψ12‖2)

= ψ11‖ψ22‖2 + ψ11‖ψ12‖2

= ψ11‖ψ22‖2 − ψ̄22ψ12ψ21

= ψ̄22(ψ11ψ22 − ψ12ψ21)

= ψ̄22 detψ.

Therefore,

ϕ(λ) = (ψ11(λ), ψ22(λ), detψ(λ)) ∈ bΓE.

Thus, ϕ is a ΓE-inner function.

It is clear from the definition of ϕ that if ψ is rational then so is ϕ.

(⇒) Conversely, suppose that ϕ is a ΓE-inner function. Construct the 2 × 2

Schur function ψ exactly as in the proof of Theorem 2.2.5. Thus, we have

[ψij] analytic such that ‖ψ‖∞ ≤ 1, and ϕ = (ψ11, ψ22, detψ).

Hence, there exists functions ψ12, ψ21 ∈ H∞ such that

‖ψ12‖2 = ‖ψ21‖2 = ‖ψ11ψ22 − detψ‖ on T,

where detψ = ψ11ψ22 − ψ12ψ21.

Since ϕ = (ψ11, ψ22, detψ) is a ΓE-inner function, then for almost all λ ∈ T,

ψ11(λ) = ψ22(λ) detψ(λ) and ‖ detψ(λ)‖ = 1.

We shall show that ψ is unitary almost everywhere. That is, we shall how

that

‖ψ11‖2 + ‖ψ21‖2 = 1,

ψ11ψ̄12 + ψ21ψ̄22 = 0.
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There are two cases; case (i): when ψ11 6= 0, ψ22 6= 0 and case (ii): when

either ψ11 = 0 or ψ22 = 0.

Case (i): In the case that ψ11 6= 0 and ψ22 6= 0, we have

ϕ = (ψ11, ψ22, detψ) is a ΓE-inner. Hence

ψ11 = ψ̄22 detψ ⇒ ‖ψ11‖2 = ‖ψ22‖2.

We also have

‖ψ12‖2 = ‖ψ21‖2 on T.

Therefore,

‖ψ11‖2 + ‖ψ21‖2 = ‖ψ12‖2 + ‖ψ22‖2.

To show that ψ is unitary, it is enough to show that ‖ψ11‖2 + ‖ψ21‖2 = 1, or

that ψ11ψ̄12 + ψ21ψ̄22 = 0, because

ψ11ψ̄12 + ψ21ψ̄22 = 0 ⇔ ψ11‖ψ12‖2 + ψ12ψ21ψ̄22 = 0

⇔ ψ11‖ψ12‖2 + ψ̄22(ψ11ψ22 − detψ) = 0

⇔ ψ11‖ψ12‖2 + ψ11‖ψ22‖2 − ψ̄22 detψ = 0

⇔ ψ11‖ψ12‖2 + ψ11‖ψ22‖2 − ψ11 = 0

⇔ ψ11(‖ψ12‖2 + ‖ψ22‖2 − 1) = 0

⇔ ‖ψ12‖2 + ‖ψ22‖2 = 1.

Since ‖ψ12‖2 = ‖ψ21‖2 = ‖ψ11ψ22 − detψ‖ on T, ψ11 = ψ̄22 detψ and

‖ detψ‖ = 1, then

‖ψ22‖2 + ‖ψ12‖2 = ‖ψ22‖2 + ‖ψ11ψ22 − detψ‖

= ‖ψ22‖2 +
∥∥‖ψ22‖2 detψ − detψ

∥∥
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‖ψ22‖2 + ‖ψ12‖2 = ‖ψ22‖2 + ‖ detψ‖
∥∥1 − ‖ψ22‖2

∥∥

= ‖ψ22‖2 + 1 − ‖ψ22‖2

= 1.

Hence,

‖ψ11‖2 + ‖ψ21‖2 = 1 = ‖ψ12‖2 + ‖ψ22‖2.

Therefore, ψ is unitary, and hence, ψ is an inner function.

Case (ii): In the case that either ψ11 = 0 or ψ22 = 0, it is easy to show

that ψ is an inner function, for, suppose that ψ11 = 0.

Since ψ11 = ψ̄22 detψ and ‖ detψ‖ = 1, then

ψ22 = ψ̄11 detψ.

Hence, ψ11 = ψ22 = 0. Moreover, when ψ11 = ψ22 = 0, we have

‖ψ12‖2 = ‖ψ21‖2 = ‖ detψ‖ = 1.

Therefore,

‖ψ11‖2 + ‖ψ21‖2 = 1 = ‖ψ12‖2 + ‖ψ22‖2 and ψ11ψ̄12 + ψ21ψ̄22 = 0.

Thus, ψ is unitary, and hence, ψ is an inner function.

�

Theorem 4.5.5 Let x(j) =
(
x

(j)
1 , x

(j)
2 , x

(j)
3

)
∈ ΓE and λj ∈ D, 1 ≤ j ≤ n. If

there exists an analytic function f : D −→ ΓE such that f(λj) = x(j),

1 ≤ j ≤ n, then there exists a rational ΓE-inner function ψ : D −→ ΓE that

satisfies the same interpolating conditions.
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Proof Let x(j) =
(
x

(j)
1 , x

(j)
2 , x

(j)
3

)
∈ ΓE and λj ∈ D, 1 ≤ j ≤ n. Suppose

that there exists an analytic function f : D −→ ΓE such that f(λj) = x(j),

1 ≤ j ≤ n. Then by Theorem 2.3.1, there exists bj, cj ∈ C such that

bjcj = x
(j)
1 x

(j)
2 − x

(j)
3 , 1 ≤ j ≤ n,


 x

(j)
1 bj

cj x
(j)
2


 are contractions

and

λj 7→


 x

(j)
1 bj

cj x
(j)
2


 , 1 ≤ j ≤ n

are solvable matricial Nevanlinna-Pick data. That is, there exists a solution

to the matrix interpolation above. Since there exists a solution to the

matricial interpolating problem, then there exists a solution that is rational

and inner [2].

Therefore, by Theorem 4.5.4, there exists a rational ΓE-inner solution that

solves the interpolation problem.

�

Later in Theorem 4.5.7, we give a general formula for rational ΓE-inner

functions from D to ΓE.

The next result follows from Theorem 3.1.1 and the definition of ΓE-inner

functions. In this result, we find a formula for a rational ΓE-inner function

F : D −→ ΓE such that F (0) = (0, 0, 0) and F (λ0) = (a, b, 0).

Theorem 4.5.6 Let 0 ≤ b0 < a0 < 1 − b0 and let λ0 ∈ D. If there exists an

analytic function h : D −→ GE such that h(0) = (0, 0, 0) and

h(λ0) = (a0, b0, 0), then there exists a rational ΓE-inner function
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F = (F1, F2, F3) : D −→ ΓE, satisfies that F (0) = (0, 0, 0) and

F (λ0) = (a0, b0, 0). This F can be given as follows:

F (λ) =

(
λ(1 − 2b0)

1 − b0 − λb0ϕ(λ)
,
λϕ(λ)(1 − 2b0)

1 − b0 − λb0ϕ(λ)
,
λ (λϕ(λ)(1 − b0) − b0)

1 − b0 − λb0ϕ(λ)

)
,

for all λ ∈ D, where ϕ is a scalar inner function such that ϕ(λ0) = σ,

0 ≤ σ ≤ 1.

Proof Let λ0 ∈ D. Suppose there exists an analytic function h : D −→ GE

such that h(0) = (0, 0, 0) and h(λ0) = (a0, b0, 0). Therefore, by Theorem

3.1.1, there exists an analytic function f : D −→M2(C) such that

f(0) =


 0 ζ

0 0


 := X1 and f(λ0) =


 a0 τ

√
a0b0

τ−1
√
a0b0 b0


 := X2.

where λ0 =
a0

1 − b0
, ζ =

√
b0

1 − b0
∈ (0, 1), τ =

√
1 − b0
a0

> 0.

Let

f(λ) = M−X1

(
λ

λ0

X3

)
, ∀λ ∈ D,

where

X3 =




−a0

√
1 − 2b0

(1 − b0)
√

1 − b0

b0
√
b0

(1 − b0)
√

1 − b0

−a0

√
b0

(1 − b0)
√

1 − b0

−b0
√

1 − 2b0

(1 − b0)
√

1 − b0




= MX1
(X2).

Let

λ−1
0 X3 = U


 1 0

0 σ


V,

where 0 ≤ σ ≤ 1 and U, V are unitaries.

If σ = 1, then λ−1
0 X3 is inner. Suppose that σ < 1. We are seeking a

rational ΓE-inner function F such that F (0) = X1 and F (λ0) = X2. Hence,

MX1
◦ F (0) = 0 and MX1

◦ F (λ0) = X3.
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We write MX1
◦ F = λG, where G is a Schur function such that

G(λ) = λ−1
0 X3 = U


 1 0

0 σ


V.

Let

U∗GV ∗ =


 1 0

0 ϕ


 ,

where ϕ is a scalar inner function such that ϕ(λ0) = σ. Let

ϕ(λ) =
(λ− λ0) − σ(λλ̄0 − 1)

σ̄(λ− λ0) − (λλ̄0 − 1)
.

Clearly, ϕ is an inner function that maps λ0 7→ σ.

Therefore, we can take

F (λ) = M−X1


λ U


 1 0

0 ϕ(λ)


V


 .

This F is inner and satisfies F (0) = X1 and F (λ0) = X2.

We shall find unitaries U, V such that λ−1
0 X3 = U


 1 0

0 σ


V .

We have λ−1
0 =

1 − b0
a0

. Hence,

λ−1
0 X3 =




−
√

1 − 2b0√
1 − b0

b0
√
b0

a0

√
1 − b0

−
√
b0√

1 − b0

−b0
√

1 − 2b0

a0

√
1 − b0




:= X0
3 .

Let X0
3 = UP , where U us a unitary and P is a positive definite Hermitian,

i.e., P ∗ = P .
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Therefore,

P =
(
X0

3
∗
X0

3

)1/2

=







−
√

1 − 2b0√
1 − b0

−
√
b0√

1 − b0

b0
√
b0

a0

√
1 − b0

−b0
√

1 − 2b0

a0

√
1 − b0







−
√

1 − 2b0√
1 − b0

b0
√
b0

a0

√
1 − b0

−
√
b0√

1 − b0

−b0
√

1 − 2b0

a0

√
1 − b0







1/2

=




1 0

0
b0
a0


 .

Since X0
3 = UP , then

U = X0
3P

−1

=




−
√

1 − 2b0√
1 − b0

b0
√
b0

a0

√
1 − b0

−
√
b0√

1 − b0

−b0
√

1 − 2b0

a0

√
1 − b0







1 0

0
a0

b0




=




−
√

1 − 2b0√
1 − b0

√
b0√

1 − b0

−
√
b0√

1 − b0

−
√

1 − 2b0√
1 − b0



.

Therefore, V is the identity 2 × 2 matrix and so λ−1
0 X3 = UPV as required.

Next, we construct a ΓE-inner function F = (F1, F2, F3) : D −→ ΓE such

that F (0) = (0, 0, 0) and F (λ0) = (a0, b0, 0).

We have

F (λ) =


λ U


 1 0

0 ϕ(λ)


V
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F (λ) = λ




−
√

1 − 2b0√
1 − b0

√
b0√

1 − b0

−
√
b0√

1 − b0

−
√

1 − 2b0√
1 − b0





 1 0

0 ϕ(λ)





 1 0

0 1




= λ




−
√

1 − 2b0√
1 − b0

−
√
b0ϕ(λ)√
1 − b0

√
b0√

1 − b0

−
√

1 − 2b0ϕ(λ)√
1 − b0




:= λX̃3

Therefore, after calculations we have

F (λ) = M−X1

(
λX̃3

)

=




λ(1 − 2b0)

1 − b0 − λb0ϕ(λ)

−(1 − λϕ(λ))
√
b0(1 − b0)

1 − b0 − λb0ϕ(λ)

−λ(1 − λϕ(λ))
√
b0(1 − b0)

1 − b0 − λb0ϕ(λ)

λϕ(λ)(1 − 2b0)

1 − b0 − λb0ϕ(λ)



,

where λ0 =
a0

1 − b0
< 1, and ϕ(λ0) = σ =

b0
a0

< 1.

Clearly,

F1(λ) =
λ(1 − 2b0)

1 − b0 − λb0ϕ(λ)
,

F2(λ) =
λϕ(λ)(1 − 2b0)

1 − b0 − λb0ϕ(λ)
,

and

F3(λ) = detF (λ) =
λ2ϕ(λ)(1 − 2b0)

2 − λb0(1 − b0)(1 − λϕ(λ))2

(1 − b0 − λb0ϕ(λ))2

=
λ(λϕ(λ)(1 − b0) − b0)

1 − b0 − λb0ϕ(λ)
.
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Therefore,

F (λ) =

(
λ(1 − 2b0)

1 − b0 − λb0ϕ(λ)
,
λϕ(λ)(1 − 2b0)

1 − b0 − λb0ϕ(λ)
,
λ(λϕ(λ)(1 − b0) − b0)

1 − b0 − λb0ϕ(λ)

)
.

Clearly, F1(0) = F2(0) = F3(0) = 0, and

F1(λ0) =
a0(1 − 2b0)

(1 − b0)2 − b20
= a0,

F2(λ0) =
b0(1 − 2b0)

(1 − b0)2 − b20
= b0,

F3(λ0) =
a0(b0 − b0)

(1 − b0)2 − b20
= 0.

Note that F is a ΓE-inner function, because, for almost all λ ∈ T,

|F3(λ)| =

|λ|
∣∣∣∣λϕ(λ) − b0

1 − b0

∣∣∣∣
∣∣∣∣1 − λϕ(λ)

b0
1 − b0

∣∣∣∣

=

∣∣∣∣∣∣∣∣

λ̄ ¯ϕ(λ) − b0
1 − b0

1 − λϕ(λ)
b0

1 − b0

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

1

λ

1

ϕ(λ)
− b0

1 − b0

1 − λϕ(λ)
b0

1 − b0

∣∣∣∣∣∣∣∣

=

∣∣∣∣
1

λ

∣∣∣∣
∣∣∣∣

1

ϕ(λ)

∣∣∣∣

∣∣∣∣∣∣∣∣

1 − λϕ(λ)
b0

1 − b0

1 − λϕ(λ)
b0

1 − b0

∣∣∣∣∣∣∣∣

= 1.

Moreover, F1(λ) = F2(λ)F3(λ) because
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F2(λ)F3(λ) =
λ̄ϕ(λ)(1 − 2b0)

1 − b0 − λ̄b0 ¯ϕ(λ)

λ(λϕ(λ)(1 − b0) − b0)

1 − b0 − λb0ϕ(λ)

=

|λ|2 1

ϕ(λ)
(1 − 2b0) (λϕ(λ)(1 − b0) − b0)

(
1 − b0 −

b0
λϕ(λ)

)
(1 − b0 − λb0ϕ(λ))

=
λ(1 − 2b0)

1 − b0 − λb0ϕ(λ)

= F1(λ).

Hence, F is a rational ΓE-inner function.

�

In the next result, we use the following notations; µ denotes a Möbius

automorphism of D and B denotes a Blaschke product, that is,

Ba(z) = ζ
n∏

i=1

z − ai

āiz − 1
,

where ζ ∈ T and ai ∈ D.

Theorem 4.5.7 If x = (x1, x2, x3) : D −→ ΓE is a rational ΓE-inner

function, then it is of the form:

x(λ) = (B1(λ)x1(λ), B2(λ)x2(λ), B1(λ)B2(λ)B(λ)) ,

for all λ ∈ D, where B1, B2, B are Blaschke products,

x1(λ) = α

∏m′

i=1(λ− zi)∏n′

j=1(λ− pj)
, and

x2(λ) = β

∏m
i=1(λ− wi)∏n
j=1(λ− qj)

,

where α, β ∈ T, |pj|, |qj| > 1, zi, wi ∈ C and m′,m, n′, n ∈ N.
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Proof We shall assume that x1(λ), x2(λ) and x3(λ) have no roots at zero

by picking a Möbius automorphism µ so that x1(λ̃), x2(λ̃) and x3(λ̃) have

no root at zero, where λ̃ = µ(λ). During the proof of this theorem, we shall

write λ instead of λ̃. Note that later in the proof, we shall use a Blaschke

product B1(λ) that makes x1(λ) and x3(λ) have no common zero in D and

a Blaschke product B2(λ) that makes x2(λ) and x3(λ) have no common

zero in D.

Now, we are seeking a rational ΓE-inner function

x(λ) = (x1(λ), x2(λ), x3(λ)) : D −→ ΓE.

Since x is a ΓE-inner function, then x(λ) ∈ bΓE for almost all λ ∈ T.

Therefore, x1 = x̄2x3 and |x3(λ)| = 1, for almost all λ ∈ T. Thus, x3 has to

be a Blaschke product. That is, x3(λ) = B(λ), where λ ∈ D.

Let

x1(λ) = α

∏m′

i=1(λ− zi)∏n′

j=1(λ− pj)
, and

x2(λ) = β

∏m
i=1(λ− wi)∏n
j=1(λ− qj)

,

where |pj|, |qj| > 1 and zi, wi ∈ C. We have

x1 = x̄2x3 on T ⇒ x1(λ) = x2(λ)x3(λ), |λ| = 1

⇒ x1(λ) = x2(λ)B(λ), |λ| = 1

⇒ α

∏m′

i=1(λ− zi)∏n′

j=1(λ− pj)
= β

∏m
i=1(λ− wi)∏n
j=1(λ− qj)

Ba(λ), |λ| = 1
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x1 = x̄2x3 on T ⇒ α

∏m′

i=1(λ− zi)∏n′

j=1(λ− pj)
= β̄

∏m
i=1(λ̄− w̄i)∏n
j=1(λ̄− q̄j)

Ba(λ), λ̄ =
1

λ

⇒ α

∏m′

i=1(λ− zi)∏n′

j=1(λ− pj)
= β̄

∏m
i=1

(
1

λ
− w̄i

)

∏n
j=1

(
1

λ
− q̄j

)Ba(λ), λ ∈ T

⇒ α

∏m′

i=i(λ− zi)∏n′

j=1(λ− pj)
=
β̄λ−m

∏m
i=1(1 − λw̄i)

λ−n
∏n

j=1(1 − λq̄j)
Ba(λ), λ ∈ T

⇒ α

∏m′

i=1(λ− zi)∏n′

j=1(λ− pj)
= β̄

λ−m

λ−n

∏m
i=1(1 − λw̄i)∏n
j=1(1 − λq̄j)

ζ

n′′∏

k=1

λ− ak

1 − ākλ
, λ, ζ ∈ T,

where |ak| < 1.

We may assume that x1(λ) and x3(λ) have no common zeros in D, for all

λ ∈ D. Otherwise, we can take x1(w) = 0 = x3(w), w ∈ D.

Now consider

x′(λ) =

(
x1(λ)

(
zw̄ − 1

z − w

)
, x2(λ), x3(λ)

(
zw̄ − 1

z − w

))
,

where z, w ∈ D. Clearly, x′(λ) : D −→ ΓE, for

|x2(λ)|2 +

∣∣∣∣
zw̄ − 1

z − w

∣∣∣∣ |x1(λ) − x2(λ)x3(λ)| +
∣∣∣∣
zw̄ − 1

z − w

∣∣∣∣ |x1(λ)x2(λ) − x3(λ)|

= |x2(λ)|2 + |x1(λ) − x2(λ)x3(λ)| + |x1(λ)x2(λ) − x3(λ)|

≤ 1

because x(λ) = (x1(λ), x2(λ), x3(λ)) : D −→ ΓE.

Moreover, since x(λ) is a ΓE-inner function, then x′(λ) : D −→ ΓE is also a

ΓE-inner function, for

∣∣∣∣x3(λ)

(
zw̄ − 1

z − w

)∣∣∣∣ = |x3(λ)| = 1,
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and

x1(λ)

(
zw̄ − 1

z − w

)
= x2(λ)x3(λ)

(
zw̄ − 1

z − w

)
⇒ x1(λ) = x2(λ)x3(λ).

Therefore, we have

α

∏m′

i=1(λ− zi)∏n′

j=1(λ− pj)
= β̄

λ−m

λ−n

∏m
i=1(1 − λw̄i)∏n
j=1(1 − λq̄j)

ζ
n′′∏

i=1

λ− ai

1 − āiλ
, (4.8)

where |pj| > 1, |qj| > 1 and |ai| < 1.

Note that, unless λ is a root of unity,
λ−m

λ−n
= 1 implies that m = n.

Observe the following:

(1) All λ = ai are not roots of the left hand side by reduction hypothesis

(that x1 and x3 have no common roots), thus, λ− ai cancels
1

1 − λq̄j
,

and therefore, ai =
1

q̄j
.

(2) All
1

1 − λq̄j
are poles on the right hand side in D, so λ− 1

qj
must

cancel with λ− ai.

(3) All λ = pj are poles of the left hand side, so it must be
1

1 − λāi

.

Hence, pi’s are
1

āi

’s. Moreover, all λāi = 1 are poles of the right hand

side, so
1

1 − λāi

must cancel
1

λ− pi

.

(4) All λ = zi ∈ D are zeros of the left hand side by reduction hypothesis

(that x1 and x3 have no common root), so they are not ai’s, thus, zi’s

are
1

w̄i

’s. If zi is outside D or on the unit circle T, then zi has to be

1

w̄i

, because Ba(λ) is a Blaschke product which means that it has its

zeros in D.
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From (1) and (2), we have that all
1

q̄i
’s are ai’s. Hence, (3) implies that all

pj’s are qj’s.

Therefore, equation (4.8) can be written as follows:

α

∏n
i=1(λw̄i − 1)∏n
i=1(λ− pi)

= β̄

∏n
i=1(1 − λw̄i)∏n
i=1(1 − λp̄i)

ζ
n∏

i=1

(
λp̄i − 1

λ− p̄i

)
, (4.9)

where |pi| > 1 and ζ ∈ T.

Similarly, we assume that x2(λ) and x3(λ) have no common zero in D,

where λ ∈ D and find that

β

∏n
i=1(λz̄i − 1)∏n
i=1(λ− pi)

= ᾱ

∏n
i=1(1 − λz̄i)∏n
i=1(1 − λp̄i)

ζ

n∏

i=1

(
λp̄i − 1

λ− p̄i

)
, (4.10)

where |pi| > 1 and ζ ∈ T.

Therefore, from equations (4.9) and (4.10), we find that all wi’s are zi’s.

Therefore, a general ΓE-inner function is x = (x1, x2, x3) : D −→ ΓE, where

x1(λ) = α

∏n
i=1(λw̄i − 1)∏n
i=1(λ− pi)

,

x2(λ) = β̄

∏n
i=1(1 − λw̄i)∏n
i=1(1 − λp̄i)

⇒ x2(λ) = β

∏n
i=1(λ− zi)∏n
i=1(λ− qi)

,

x3(λ) = ζ

n∏

i=1

(
λp̄i − 1

λ− p̄i

)
.

Thus, a general ΓE-inner function x : D −→ ΓE is given by:

x(λ̃) =
(
B1(λ̃)x1(λ̃), B2(λ̃)x2(λ̃), B1(λ̃)B2(λ̃)B(λ̃)

)
,

where µ(λ) = λ̃ is the Möbius automorphism so that x1(λ), x2(λ) and x3(λ)

have no root at zero, B1(λ̃) is a Blaschke product that makes x1(λ) and
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x3(λ) have no common zero in D and B2(λ̃) is a Blaschke product that

makes x2(λ) and x3(λ) have no common zero in D.

Note that, B1(λ̃) = B1(µ(λ)) is a Blaschke product, for

B1(µ(λ)) = ζ
n∏

i=1

µi(µ(λ))

= ζ
n∏

i=1

(µi ◦ µ)(λ)

= ζ

n∏

i=1

µ̃i(λ),

where µ̃i is a Möbius automorphism of D. Also, B2(λ̃) is a Blaschke

product.

Since µ(λ) = λ̃, then
λ̃− ai

λ̃− qi
has roots at

λ̃ = µ(λ) = ai, that is, at λ = µ−1(ai)

and has poles at

λ̃ = µ(λ) = qi, that is, at λ = µ−1(qi).

Therefore, we can write the general ΓE-inner function

x = (x1, x2, x3) : D −→ ΓE as follows:

x(λ) = (B1(λ)x1(λ), B2(λ)x2(λ), B1(λ)B2(λ)B(λ)) ,

where λ ∈ D.

Note that in the case that zi = 0 or wi = 0, we have m 6= n in equation

(4.8), hence, λ on both sides will cancel some of
λ−m

λ−n
.

�

Example From Theorem 4.5.6 an example of a ΓE-inner function,

f : D −→ ΓE such that f(0) = (0, 0, 0) and f(λ0) = (a, b, 0), where λ0 ∈ D,
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is given by

f(λ) =

(
λ(1 − 2b)

1 − b− λbϕ(λ)
,
λϕ(λ)(1 − 2b)

1 − b− λbϕ(λ)
,
λ (λϕ(λ)(1 − b) − b)

1 − b− λbϕ(λ)

)
,

for all λ ∈ D, where ϕ is a scalar inner function such that ϕ(λ0) = σ, where

0 ≤ σ ≤ 1.
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Chapter 5

Areas for Further Study

This project has touched a number of different mathematical and

engineering areas, including interpolation theory, complex geometry, linear

systems and control engineering. There are many questions that arise

naturally as a consequence of our work on this new set ΓE.

We draw comparisons mainly with the work of Agler and Young because we

adopted their approach to derive most of our results.

It seems a natural question to ask, when presented with a necessary

condition for the existence of an analytic function that maps the disc into

ΓE, as in Corollary 2.2.2, if this condition is sufficient. We know that it is

not, but what if we added more conditions, would that make them

sufficient? We do not have an answer to this question. We stated Question

2.2.4 on what we believe are sufficient conditions for interpolation from the

disc into ΓE. In the case of the symmetrised bidisc Γ, Agler and Young

know that an analogous sufficient condition fails to hold in general but it

does hold when n = 2, they have provided a proof of this in [9].
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After proving a Schwarz Lemma for ΓE in the case that one of the points is

(0, 0, 0), we show that in this case, the Carathéodory and the Kobayashi

distances between two points in GE are equal. It would be interesting to

know if the Carathéodory and the Kobayashi distances between any pair of

points in ΓE are equal or not. By using Möbius automorphisms, we can

send a point (a, b, p) ∈ ΓE to (0, 0, 0), but we can only do this in the case

that ab = p, which corresponds to A being a triangular matrix. This way

we show that the Carathéodory and the Kobayashi distances are equal

between any two points in GE such that ab = p.

We believe that we have found all the automorphisms of GE, but since we

do not have a proof to support our claim, this remains open for study.

In this project, we concentrated on studying ΓE. One might consider ΣE,

we expect that our results can be lifted to this domain. Another interesting

set to consider is ΓE, where E is an upper triangular matrix of the form
 1 λ

0 1


, where λ ∈ D.

Our problem relates to robust stabilisation and interpolation, we hope that

the results of this project will make a significant contribution to the field by

throwing light on a hard, concrete special case.
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