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Abstract 

The gravity field of the Earth is fundamental to subjects such as geodesy and 

geophysics. Many observations within geodesy refer directly or indirectly to gravity. 

Geodetic techniques provide information regarding the Earth and the processes that act 

on it. Mass and angular momentum are, according to physics, conserved in a closed 

system. The Earth interacts very little with components outside of it and can be thought 

of as a closed system. Mass components in one reservoir of the Earth system are 

exchanged with others. Mass redistribution within the Earth system is caused by 

geophysical processes. This movement of geophysical fluid (mass) causes variations in 

the Earth’s rotation, gravity field and geocentre. The improvement of geodetic 

techniques over the last few decades allows us to measure the effects of these processes 

on the Earth to an unprecedented accuracy.  

 

Earth rotation parameters (ERPs) are excited by variations in the mass distribution on 

the Earth’s surface and the exchange of angular momentum between the atmosphere and 

oceans and the solid Earth. The same mass redistribution causes temporal changes in the 

gravity field coefficients with the second degree harmonics related to the rotational 

deformation and hence to changes in the Earth’s inertial tensor. If precise models of the 

atmospheric and oceanic angular momentum are available solution for polar motion and 

degree-2 Stokes harmonics can be unified. In this study we utilise SLR tracking of 

LAGEOS to compare (i) degree-2 harmonics from ERPs and gravitation, and (ii) 

LAGEOS excitation functions and geophysical data (mass + motion). To what extent a 

unified approach is possible with current models for AM data and gravity mass change 

estimated from ERP within orbit determinations is investigated. Finally, the ability of 

SLR to calculate the motion of the Earth’s geocentre is also investigated. 
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Chapter 1  

 
1 Introduction 

 
1.1 Introduction 

 
 
Over the past few decades there have been great advances in the quality and quantity of 

geodetic technology and data availability. This advancement was driven partly by the 

need to improve knowledge and understanding of the rotational dynamics of the Earth 

system. 

 

The causes of variations in Earth rotation can be divided into two main categories, 1) 

the gravitational interaction between the Earth and other celestial bodies (such as the 

Sun, Moon and other major planets) and 2) interactions of the Earth’s geophysical fluids 

(atmosphere, oceans, water storage, core etc). The drive to understand these interactions 

more, led to the development of better techniques to observe these phenomena and soon 

routine daily determinations of Earth Rotation Parameters (ERPs) were being 

determined using Very Long Baseline Interferometry (VLBI) (Carter et al., 1985, 

Robertson, 1991), Satellite Laser Ranging (SLR) (Tapley et al., 1985) and Lunar Laser 

Ranging (LLR) (Dickey and Eubanks, 1985). In addition to these Earth Rotation 

Parameters even higher frequency time series are routinely derived using Global 

Navigation Satellite Systems (GNSS) such as the Global Positioning System (GPS) 

(Herring et al., 1991; Lichten et al., 1992). 

 

Rotational variations have been linked to a number of geophysical phenomena, such as 

fluid dynamic processes in the atmosphere, oceans and core as well as the exchange of 

mass between the atmosphere, oceans and the “solid Earth”. Earth orientation data 

provides valuable information on the processes of mass redistributions within the Earth 

system on a global scale which is typically poorly determined from other techniques. 

The variations of the Earth are not easily understood in isolation but can be better 

understood by the use and understanding of theory and data from other areas of 

geophysics and thus makes the science of Earth rotation a multi-disciplinary science 

encompassing geodesy, meteorology, oceanography, geomagnetism, hydrology and 

others (Eubanks, 1993).  
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The movements of mass within the Earth system that affect rotational dynamics are the 

same processes that affect the variations of the Earth’s gravity field, and hence the geoid. 

Knowledge of the Earth’s gravity field is important for many subject areas such as 

surveying, geodesy, oceanography, hydrology, and geophysics and satellite orbit 

determination. It is important in geodesy as it contributes to knowledge about the size 

and shape of the Earth and therefore aids in the understanding of how the Earth is 

changing on a global scale. 

 

The temporal variations of the gravity field are important in the study of many scientific 

fields. They are regarded as important for understanding the Earth’s interior structure 

and characteristics, as well as providing valuable information about the redistribution of 

mass around the Earth. This thesis will concentrate on the links between observed 

parameters of the rotation of the Earth and how these relate to models of the Earth’s 

geophysical fluids and gravity. 

 

The relationship between ERPs and the low degree spherical harmonics of the Earth’s 

gravity field J2, C21 and S21 has been described in Wahr (1982) and Gross and 

Lindqwister (1992) has been utilised to compare these low degree harmonics derived 

from geodetic sources, SLR, GPS and GRACE, from geophysical models and from 

ERPs. Good agreement has been found between the different sources. 

 

Newcastle University’s Precise Orbit Determination (POD) software, FAUST, 

(Boomkamp, 1998) is a multi-satellite, multi arc satellite orbit determination software. 

It uses a least squares process to minimise the sum of the residuals to obtain the best 

position of the satellite at a specific epoch. FAUST can process data from Doppler 

Orbitography and Radio positioning Integrated by Satellite (DORIS), the Precise Range 

and Range-Rate Equipment (PRARE) and SLR as well as satellite altimetry (raw 

heights and crossovers), Gravity Recovery And Climate Experiment (GRACE) inter-

satellite range-rate data and Cartesian positioning derived independently from say 

GNSS tracking.  

 

FAUST has been improved, by the author, by bringing it in line with the IERS 

conventions 2003 (McCarthy and Petit, 2003) as well as adding to the functionality of 
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the software by adding the ability of the software to estimate the Earth orientation 

parameters XP, YP and Length of Day (LOD). 

 

In this thesis FAUST has been used to process SLR data to the geodetic satellites 

LAGEOS I and LAGEOS II from 1996 – 2007, estimating the low degree spherical 

harmonics of the Earth’s gravity field, ERPs and station coordinates. These results have 

been used to assess the agreement between the low degree harmonics of the gravity field 

derived directly from the orbit of LAGEOS and the same harmonics estimated from the 

ERP values also estimated from the same SLR defined orbit and geophysical models. 

 

However, the typically low sensitivity of orbits to gravity field variability or the high 

correlation between the harmonics means that there is little possibility of space geodetic 

techniques providing accurate measurements of mass change, even at low spatial 

resolutions, at intervals of less than a few days/weeks (e.g. SLR, GPS) or months (e.g. 

GRACE). However, the disparity in temporal resolutions raises the possibility of 

simultaneously recovering and using higher frequency degree-2 harmonics from the 

ERP data (on utilizing angular momentum data from geophysical models) within an 

orbital determination procedure. High correlations are also found between the 

harmonics which have an effect on the overall fit of the orbit and the accuracy of the 

harmonics themselves.  

 

FAUST has been modified to utilise the relationship and relatively good agreement 

between the low degree harmonics derived from SLR orbit determination to LAGEOS 

and ERPs to solve for J2, C21 and S21 on a daily basis, as well as solving for one 

correction over a 15 day period to mimic what is currently done within the normal 

gravity estimating process. The main aim of this thesis is to investigate to what extent 

this integrated orbit determination process is useful in determining the low degree 

harmonics and whether the models and ERP estimates are accurate enough to obtain 

good estimates of the corrections to J2, C21 and S21 to glean more information about 

the high frequency variations in the Earth’s gravity field from space geodetic techniques. 

This will be done by comparing the same orbital period processed while estimating 

different sets of parameters. 

 



4 
 

Finally, as mass redistribution within the Earth system also contributes to the movement 

of the centre of mass of the Earth with relation to the centre of the Earth coordinate 

system, SLR orbits produced by FAUST have also been used to investigate how SLR 

determines geocentre motion when compared with the same estimates derived from 

GPS and from loading models.  

 

1.2 Thesis Overview 

 

This thesis will investigate the relationship between the temporal variations in the 

Earth’s gravity field, the ERPs and the geophysical models derived from collected 

geophysical data. The main themes of this thesis are the Earth’s Gravity field and its 

estimation from SLR, ERPs and their estimation from SLR and the usefulness of using 

ERP-derived gravity field estimates in a combined orbit determination solution. 

 

1.2.1 Chapter 2 

 

This chapter describes the fundamental theory of the Earth’s gravity field that is the 

underlying subject of this thesis. It also describes how the Earth’s gravity field can be 

described in terms of spherical harmonics. Finally it gives a brief introduction to 

computing the gravity field from precise orbit determination. 

 

1.2.2 Chapter 3 

 

This chapter reviews the theory of Earth rotation. It very briefly addresses and describes 

the main three areas of Earth rotation, the theories of precession, nutation and polar 

motion. The theory of rigid body rotation is treated initially as it provides the 

background theory before the theory of non-rigid body rotation can be introduced. This 

provides the equations that relate the variations of rotation in the Earth to the Earth’s 

inertia tensor and therefore the excitation functions that describe how the rotation of the 

Earth can be excited by geophysical processes. This mathematical theory will be used in 

subsequent chapters to relate the variations of rotations within the Earth system, to the 

observations of gravity field variations, various loading and angular momentum models 

and Earth rotation computed in FAUST. 
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1.2.3 Chapter 4 

 

Chapter 4 gives discussion and analysis of the available geophysical models from 

various organisations that provide data on how mass in the atmosphere, oceans and 

continental water storage change as a function of time. It gives a review of each of the 

possible sources of variations in the rotation of the Earth and gravity field and estimates 

of the sizes of these. The mathematical theory described in Chapter 3 is expanded to 

show how estimates of geophysical processes in the atmosphere, oceans and continental 

water storage can be expressed as excitation functions of the Earth’s rotation. 

 

Plots of the excitation functions (atmospheric, oceanic and hydrological) are given and 

comment is made about the contributions of each excitation function to the variations in 

the rotation of the Earth from published literature. 

 

Finally an analysis of the excitation functions of the atmosphere computed by various 

different organisations is presented. 

  

1.2.4 Chapter 5 

 

This chapter gives a description of the precise orbit determination software FAUST and 

gives an overview of the amendments made to the software by the author for the 

purposes of bringing it in line with the IERS conventions 2003 (McCarthy and Petit, 

2003) and also for the purpose of the research within this thesis and future research on 

Earth rotation and gravity. The methods for computing the corrections for the orbit 

determination process are described. 

 

The orbit determination strategy is then described in full showing which models were 

used in the process as well as showing the rejection criteria that was used for processing 

the data. This is followed by an analysis of the fit of several different orbit 

determination strategies that will be used for comparison purposes later in the thesis.  
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1.2.5 Chapter 6 

 

Chapter 6 describes the method for computing corrections to the low degree spherical 

harmonics of the Earth’s gravity field using excitation functions for motion computed 

from geophysical models, described in Chapter 4 and the ERPs computed within 

FAUST. 

 

Following on from this theory, comparisons between excitation functions estimated 

from the different sources and gravity field harmonics estimated from different sources 

are compared to see how well they agree with each other. The aim of this analysis is to 

analyse whether estimating low degree spherical harmonics in this manner is good 

enough to expect an improvement in the orbit. 

 

1.2.6 Chapter 7 

 

Chapter 7 describes a novel method of estimating gravity field harmonics in an iterative 

orbit determination process using geophysical models and ERPs. It presents and 

discusses the results of using gravity field harmonics estimated from ERPs. The RMS 

values from the orbits presented in Chapter 5 of this thesis are compared to the RMS 

values of the orbits using the new method. 

 

In addition to this the improvements and deteriorations of the orbits at specific epochs 

are analysed in more detail to try to identify the reason why some epochs show 

improvements while other show deterioration. 

 

1.2.7 Chapter 8 

 

Chapter 8 describes analysis of the variation of the geocentre of the Earth from SLR, 

GPS and loading models. The methods of processing the data and the different models 

used have been described. 

 

Estimates of geocentre motion from SLR orbits determined using FAUST are validated 

by comparing with the same estimates from International Laser Ranging Service (ILRS) 

combination SLR contribution to ITRF2005. These results show good agreement. The 
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geocentre estimates from SLR, GPS and the loading models are then analysed to gain an 

understanding of how well the estimates from different techniques agree with one 

another. 

 

1.2.8 Chapter 9 

 

Chapter 9 provides a review of the thesis and a discussion of the results that have been 

described in previous chapters. It also gives recommendations for future research in this 

particular subject area. 
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Chapter 2 

 
2 Gravity Field Theory 

 
2.1 Introduction 

 

Understanding the gravity field of the Earth is fundamental to subjects such as geodesy 

and geophysics. Many observations within geodesy refer directly or indirectly to gravity 

and thus modelling of these observations requires knowledge of the gravity field or 

geopotential. The common approach for representing the global gravity field of a 

planetary body is through the use of spherical harmonics, which will be discussed 

further in this chapter. The gravity field is one of the key issues discussed in this thesis 

and therefore is explained separately. This thesis will however cover only the key 

aspects of gravity field theory relevant to the study; for a more in depth discussion of 

the subject see Bomford (1980), Torge (2001) and Heiskanen and Moritz (1967). 

 

2.2 The Earth’s Gravity field 

 

The analysis of the external gravity field of the Earth gives information regarding the 

internal structure of the Earth (Torge, 2001). If gravity is known on the Earth’s surface 

then the shape of the Earth can be determined. The geoid, which is the equipotential 

surface of the Earth’s gravity field and coincides on average with mean sea level, is 

important for height referencing. Knowledge of the gravity field of the Earth is also 

required for orbit determination of Earth satellites. 

 

The starting point for all discussions on gravity is Newton’s Law of Gravitation (1687). 

The gravitational attraction between two point masses is given by 

 

 l
l

mm
GF ö

2
21−=  (2.1) 
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where F is the gravitational force (attractive force), m1, m2 are masses that are separated 

by distance l,  lö  a unit vector from point one to point two and G is Newton’s 

gravitational constant given as: 

 

 
2131110673.6 −−−×= skgmG  (2.2)  

 

We can connect the gravitational force F with the potential V by introducing the 

gradient vector. 

 

 
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We can now consider the gravitational force acting between the Earth and an Earth 

orbiting satellite in a global Cartesian coordinate system (X, Y, Z) see Figure 2.1.  

 

 

 
Figure 2.1 Cartesian coordinate system 
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For simplicity let m2, an elemental mass of the Earth, be equal to m and m1 the mass of 

the satellite, be a unit mass. According to Newton’s second law of motion, “The rate of 

change of momentum of the body is proportional to the force impressed and is in the 

same direction in which the force acts”, an orbiting satellite with a gravitational force F 

will experience an acceleration a of magnitude. 

 

 l
l

Gm
a ˆ

2
=  (2.4) 

 

The representation of gravitational acceleration is simplified if expressed as a scalar 

quantity “potential” instead of the vector quantity “acceleration”. This is because 

gravity is invariant to rotations (Torge, 2001). We can therefore express equation 2.4 as: 

 

 GradVa =  (2.5) 

 

The gravitational potential at any point is the work done against the force of gravitation 

in moving a body from infinity to that point. The Earth is composed of an infinite 

number of these elemental masses, represented as m. To obtain the total gravitational 

attraction of the Earth to an object outside the Earth, such as an artificial satellite, it can 

be expanded as a triple integral over the whole Earth. Let δv be an elemental volume of 

the Earth centred at (x’, y’, z’) with a density of ρ(x, y, z). The element then has mass 

δm = ρδv .The gravitational potential due to δm is  

 

 

l

Gm
V =  with 

∞→l
lim 0=V  (2.6) 

 

Therefore the gravitational potential over the whole earth is given by 

 

 v
l

G
l

m
GV

EarthEarth

δρδ
∫∫∫∫∫∫ ==  (2.7) 

 

We can now show that V in this case satisfies Laplace’s equation at every point which 

is not occupied by matter (MacMillan, 1958). 
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The density function of the Earth ρ = ρ(r’) is not well determined. Therefore we cannot 

use Newton’s Law of Gravitation to find the gravity potential of the Earth from 

equation 2.7. However it is possible to solve Laplace’s differential equation (equation 

2.8) as a convergent series expansion of V (Torge, 2001). This can be derived from the 

reciprocal of the distance l from equation 2.7 (Blakely, 1995). 
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Here r and r’ are the position vectors of the attracted point P from Figure 2.1, ψ is the 

central angle from the origin of the coordinate system O to P and P’ respectively. We 

can now expand 1/l in a series converging for r’< r (Heiskanen and Moritz, 1967; 

Blakely, 1995) 
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Here 
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l

l
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l
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!2

1
)( 2 −×

×
=  (2.11) 

 

   

The Pl(cosψ) terms represent polynomials, known as Legendre polynomials of the lth 

degree in cosψ. They are computed using equation 2.11, where t = cosψ .  

 

We can now introduce a unit sphere with a spherical coordinate system, where r is the 

geocentric distance from the attracting body, θ is the co-latitude and λ the longitude. 
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Through the decomposition of Pl(cosψ) by introducing the longitude λ and geocentric 

latitude θ of point r as 

 

 

 

 

 

we obtain 
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where k equals 1 when m = 0 and 2 when m ≠0 (Torge, 2001). 

 

Any solution of Laplace’s equation is known as a harmonic function. The solution is 

given by separating the variables in spherical coordinates. The general solution of 

Laplace’s equation in spherical coordinates is 

  

( )











+







+= ∑∑
=

∞

=

)cos(sincos
Re

1
01

θλλ lmlmlm

ll

ml

PmSmC
rr

Gm
V    (2.13) 

 

 

where Clm and Slm are coefficients of the Earth’s gravity field (unnormalised) which 

describe the dependence on the Earth’s internal mass distribution (Montenbruck and 

Gill, 2000), M is the mass of the Earth, Re is the equatorial radius of the Earth and  Plm 

are Legendre functions of the first kind given by 
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The harmonic coefficients, also known as Stokes’ coefficients, of the Earth’s gravity 

field can now be written in spherical coordinates as 

 

 

'''

'

'

'cos'

)(cos
Re

'

)!(

)!(2

)(cos
Re

'1

λθθ

ρθ

ρθ

dddrrdv

dvP
r

ml

ml

MS

C

dvP
r

M
CC

lm

l

Earthlm

lm

l

l

Earth
llm

=









+
−×=
















==

∫∫∫

∫∫∫

 (2.15) 

 

 

These formulae link the gravity field of the Earth and the Earth’s internal density ρ. As 

the coefficients tend to small values, partly because of the nature of the Earth’s gravity 

field and partly because the associated Legendre functions tend to large values as the 

degree increases, it is convenient to write spherical harmonics in their unnormalised 

form rather than in their unnormalised state. Conversion from unnormalised to 

unnormalised harmonics is given by Torge (2001), Montenbruck and Gill (2000), and 

Lambeck (1980b). 
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2.3 Spherical Harmonics 

 

To gain a better understanding of why we use spherical harmonics as a representation of 

the geopotential of the Earth, we need to understand some of the characteristics of 

spherical harmonics and what the harmonics themselves represent in the real world. 

Spherical harmonics are functions of two coordinates θ,λ on the surface of a unit sphere. 

Spherical Harmonics are orthogonal; this means that for each function, using different 

degree and order (l and m), they each contribute independent information. An advantage 

of using spherical harmonics as a representation of the Earth’s gravity field is that they 

are easy to visualise. 

 

Following on from equation 2.13 the functions 

 

          

,cos)(cos λθ mPlm
  

(2.17) 

,sin)(cos λθ mPlm  

 

depending on θ and λ are known as Laplace’s surface harmonics. They characterise the 

behaviour of a function on a unit sphere (Torge, 2001). 

 

Spherical harmonics when m = 0 are known as zonal harmonics. Zonal harmonics have 

no dependence on longitude and have l zeros between ±90° in latitude. This means that 

for even values of l, the zonal harmonics are symmetric about the equator and for odd 

value of l, they are asymmetric. As the degree increases so the number of zeros between 

±90° in latitude also increases. This means that the higher the degree the smaller the 

scale of the latitudinal variations in the Earth’s geopotential. Therefore if one is only 

interested in the large scale changes in the Earth’s gravity field only low degree 

harmonics need be considered. The most important of the zonal harmonics is C20 which 

is of the order 10-3 in size and accounts for the oblateness of the Earth. 

 

Another special case in spherical harmonics is when m = l. These are called sectorial 

harmonics and, in contrast to zonal harmonics, vary with longitude. As with the zonals, 

however, the higher the degree the finer the spatial representation is acquired from the 



15 
 

harmonics. All remaining harmonics are known as tesserals and are defined when m > 

0 and m < l. Tesserals have the same properties as sectorial harmonics (Kaula, 1966; 

Torge, 2001). 

 

The )(cosθlmP  up to l = 2 are given below according to Torge (2001). 

 

         θθ 2
000 cos

2

3
,cos,1 === PPP

          
(2.18) 

                             

The degree one terms l = 1 are related to the centre of mass of the system. If we choose 

the origin of the reference frame to be the instantaneous centre of mass of the total Earth 

and atmosphere then, in this inertial reference frame, the degree-1 coefficients are zero. 

In an Earth fixed terrestrial reference frame this origin, often referred to as the geocentre, 

r moves in time and space due to the redistribution of mass within the Earth (Feissel-

Vernier et al., 2006). The motion of the geocentre obeys the law of conservation of 

angular momentum in an Earth fixed reference frame. The degree-1 terms of the gravity 

field are related to the three coordinates of the geocentre; xg, yg, zg in a terrestrial 

reference frame. The geocentre will be discussed in more detail in Chapter 8. 

 

The second degree spherical harmonics are related to the Earth’s inertia tensorI which 

describes how difficult it is to induce an angular rotation of an object around a particular 

axis. The relationship between the Stokes’ coefficients and the inertia tensor of the 

Earth is given by: 
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2.4 Precise Orbit Determination and Gravity 

 

From the very beginning of space flight, ground based observations of artificial 

satellites have allowed scientists to infer the Earth’s gravity field through the associated 

perturbations seen in the orbits of these satellites (Montenbruck and Gill, 2000). The 

LAGEOS satellites used in this research are especially good at determining the Earth’s 

gravity field, more especially the very long wavelength part (i.e. very low degree and 

order) of this gravity field. These parameters can be determined from the normal 

equations in the many precise orbit determination packages that have been developed 

for this purpose. However gravity values can only be determined over the period of the 

orbit determination, typically a minimum of 7 days, using this method. One of the main 

aims of this project is to investigate whether it is possible to use a new method to 

determine the low degree gravity value to improve the resolution of this data. 

 

2.5 Conclusion 

  

Knowledge of the gravity field is of vital importance in geodesy and particularly in 

orbital dynamics, with which this thesis is primarily concerned. Knowledge of the 

basics of the gravity field, and how that gravity field affects the orbits of satellites, is of 

key importance in understanding the methods and purpose of this study. The methods 

employed for the gravity models and for solving for low degree harmonics will be 

discussed in Chapters 4 and 5. 
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Chapter 3  

 
3 Earth Rotation Theory 

 
3.1 Introduction 

 
Space geodesy uses many kinds of space orientated techniques and measurements 

including  VLBI, lunar, and satellite (Plag et al., 2009; Vanâiécek and Krakiwsky, 

1986). These techniques provide information regarding the Earth and the processes that 

act on it. It is necessary therefore to have an understanding of the different forces that 

act on the Earth and how the Earth is affected by these processes. Since Earth rotation is 

fundamental to this thesis a discussion of the theory of the rotation of the Earth follows. 

 

The theory of Earth rotation can be divided into three areas, the study of precession and 

nutation, the study of polar motion, also known as wobble, and the study of the length 

of time the Earth takes to spin round its axis, more commonly referred to as Length of 

Day. In this thesis we are primarily concerned with the latter two parts of Earth rotation 

theory and their links to gravity and geophysical models. To appreciate how these links 

come about it is necessary to understand the fundamental principles of firstly rigid body 

rotation and secondly non-rigid body rotation. This chapter discusses these principles in 

some detail and derives the important equations needed for first calculating Earth 

rotation within the orbit determination process and, then, using these Earth rotation 

values to derive low degree gravity harmonics of the Earth. For a more complete 

discussion of Earth rotation refer to Munk and MacDonald (1960) and Lambeck 

(1980b). 

 

3.2 Precession, Nutation, Wobble and Length of Day 

 

In geodesy we are primarily concerned with 1) the Earth’s motion around the Sun or 

annual motion and 2) the movement of the Earth around its instantaneous axis of 

rotation or diurnal motion. The motion of the Earth around the Sun is perturbed by other 

planets so that it is not exactly elliptical. The effects of these perturbations are small 

compared with the orbital dimensions and, for most applications, can be neglected 

(Vanâiécek and Krakiwsky, 1986). When describing the motion of the Earth around its 
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instantaneous axis the dimensions of the motion are no longer negligible. The 

instantaneous axis of rotation of the Earth and the Earth’s principal axis of inertia 

coincide in a rigidly rotating Earth but differ slightly in the presence of external torques.   

As stated previously, Earth rotation theory can be divided into three different sections, 

namely precession and nutation; polar motion and Length of Day (LOD). Each one will 

now be discussed briefly. 

 

3.2.1 Precession  

 

Consider the Earth to be a rigid body travelling around the Sun, and spinning around its 

own axis. In mechanics this is known as a gyroscope. If an external torque is applied to 

a spinning gyroscope then the gyroscope describes a circular cone with its vertex at the 

centre of mass of the gyroscope. For the external torques acting on the Earth the period 

of the motion around the circular cone is about 26,000 years. In the case of the Earth the 

external torque is the attraction of other celestial bodies. This motion is known as 

precession. 

 

3.2.2 Nutation  

 

The orbit of the moon is inclined with respect to the ecliptic by 5º 11´ (Mueller, 1969). 

The intersection of the lunar orbital plane with the Earth’s ecliptic rotates every 18.6 

years. This causes a periodic change, a rocking or swaying motion, in the orbital axis of 

the Earth.  This is known as nutation. 

 

3.2.3 Polar motion (Wobble) and Length of Day 

 

In a non-uniform rotating Earth in an Earth fixed coordinate system the Earth’s rotation 

axis varies slightly with time, this is called the Earth’s Wobble. The wobble of the Earth, 

also known as free nutation, is a torque free nutation that accompanies any gyroscopic 

motion (Vanâiécek and Krakiwsky, 1986).  The length of time it takes the Earth to 

rotate once in this reference frame also varies with time and is known as LOD. Changes 

in the rotation of the Earth are caused by the redistribution of mass within the Earth thus 

conserving the angular momentum of that body. This is the main subject of this thesis 
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and, therefore, will be explained in detail, starting with Earth Dynamics and then 

linking Earth Dynamics with mass redistribution calculated from geophysical models. 

 

3.3 Earth Dynamics 

 

The understanding of how the Earth moves with respect to different coordinate systems 

is fundamental to this thesis and will therefore be treated in some detail. Rigid Body 

rotation gives a basic understanding of the fundamental equations used in rotation 

theory and will be treated first. Secondly we will discuss non-rigid rotation of the Earth 

by building upon this knowledge. 

 

3.3.1 Rigid Body Rotation 

 

Before considering how the Earth rotates, i.e. non uniform body rotation, we must 

consider uniform body rotation. In the absence of internal energy and gravitational and 

mechanical forces and interactions with other celestial bodies, the Earth, both its solid 

(crust, mantle, inner core) and fluid (ocean, atmosphere, outer core) parts, would rotate 

together at a constant rate (Barnes et al., 1983). For a continuous distribution of 

particles situated throughout space we introduce the following expression for the 

moments and products of inertia (Rutherford, 1964). Notationally, A, B and C are called 

the moments of inertia about x1, x2, x3; D, E and F are known as the products of inertia 

with reference to the axes (x2, x3), (x3, x1), (x1,x2). 
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We now consider a body rotating about a fixed point O, with an angular velocity of ω 

about an instantaneous axis of rotation Oω at any time t. Let ),,( 321 xxxP represent any 

fixed point on the body such that OP = r (see Figure 3.1). 
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Figure 3.1 Diagram illustrating rigid body rotation 
 

From Figure 3.1 we let PN be perpendicular to Oω and ∧  be the unit vector in the 

direction ON. 

 

We now can show that the velocity of P is θr sin or vectorially 

 

 rωrrωrωrv ∧=∧∧=∧∧=  (3.2) 

 

where kji  ωωωω ++=
 
and kji xxxr ++= . Now if we know the velocity of P we can 

use this to find the vector angular momentumH . 

 

  dMvrH
M

∧= ∫  (3.3) 

Since r  ωv ∧= we then have, 
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By expanding this vector triple product we obtain, 
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Using the definition for ω  and r  and remembering that H  is a vector we can equate 

the components of H to give: 

 

 dMxxωdMxxω)dMx(xωH
MMM
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From our definition of moments and products of inertia (equation 3.1) we define 
1H  as: 
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Similarly, when we equate for j  and k we obtain 
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We now consider the matrix I, the inertia tensor, given as: 
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We note that CIBIAI === 332211 ,, and ,2112 FII −== ,3113 EII −==

.2332 DII −==  Equations 3.7 and 3.8 become 

 

 ω⋅= IH  (3.10) 

 

For a rigid body with its axes fixed the inertia tensor I  does not vary with time and thus 

the axes can be chosen such that the products of inertia, D, E and F are equal to zero. In 

this case we can rewrite equation 3.9 as 
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The fundamental equations that describe the rotation of a body are Euler’s Dynamical 

Equations (Munk and MacDonald, 1960

the rotational response of a body to an applied torque L in an inertial reference frame. 

We can use our definition of 
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This can be even further simplified if the body being considered is rotationally 

symmetrical about the 
3x  axis as, in this case, BA= . We can now write 

321 ωωω CAAH ++=  

The fundamental equations that describe the rotation of a body are Euler’s Dynamical 

Munk and MacDonald, 1960; Lambeck, 1980b). These equa

the rotational response of a body to an applied torque L in an inertial reference frame. 

We can use our definition of H  from equation 3.12 to determine Euler’s equation.

Figure 3.2 Point P, relative to reference frame  21 and , XX

(3.11) 

plified if the body being considered is rotationally 

. We can now write H as: 

(3.12) 

The fundamental equations that describe the rotation of a body are Euler’s Dynamical 

. These equations describe 

the rotational response of a body to an applied torque L in an inertial reference frame. 

to determine Euler’s equation. 

 

3 andX  
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Figure 3.2 considers a point ),,( 321 xxxP =  in space relative to the frame with origin 

O and axes 32 1  XXX . The velocity of the point P relative to this frame is given by: 
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In the above equation 
dt

id
 is the velocity of the point (1, 0, 0) and is given by 
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Similarly for j  and k 
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Now if we substitute back equation 3.14 and 3.15 into equation 3.13 
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The velocity of P in our frame is given by )( 321 kxjxix &&& ++ . If 0=ω , that is, our 

frame is not moving, then this term would equalv. We now denote this term using
dt

rd . 
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Using our previous definitions for ω  and r  we can show that 

 

 rxxixxjxxi ∧=−+−+− ωωωωωωω )()()( 122131132332  (3.18) 

 

Therefore 

 

  (3.19) 

 

Therefore for any differentiable vector ),,( 321 xxxF  

  

 F
dt

Fd ∧= ω  (3.20) 

 

In the case of Euler’s dynamical equations we need to consider the motion of a rigid 

body about some point that is fixed within that body. We can now substitute for H  in 

equation 3.20 which gives us the rate of change of angular momentum about an origin 0,  

 

 H
dt

Hd ∧= ω  (3.21) 

 

 

If we now denote kLjLiLL 321 ++=
 
to represent the vector moment of the external 

forces acting upon our rigid body, or the torque, we can write 

 

 L=Η
•

 (3.22) 

r
dt 

rd ∧= ω 
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Equation 3.22 describes the motion of a rigid body in an inertial frame X. It is more 

convenient to express forces, velocities and torques with respect to an Earth fixed 

terrestrial reference frame. Euler’s dynamical equation is given in equation 3.23 and 

refers to the axes 
ix )( 3,2,1=i (Lambeck, 1980b; Munk and MacDonald, 1960). 

 

 L
dt

d =Η∧+Η ω  (3.23) 

 

As
dt

d
 describes motion relative to the frame we can define 

dt

Hd
using equation 3.12 as 

 

 
dt

d
C

dt

d
A

dt

d
A

dt

Hd 321 ωωω ++=  (3.24) 

 

 

Also, 

 

 kiCAiACH 0)()( 3121 +−+−=∧ ωωωωω  (3.25) 

 

Now if we substitute equation 3.25 and 3.24 into equation 3.23 we obtain 
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ω
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 (3.26) 

 

Here L is a vector so equating components gives 
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If no torques were present equation 3.27 becomes 
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0
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dt

d
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AC
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d
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AC
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ω
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 (3.28) 

 

When considering a rigid body rotating, as in this case, symmetrically about the 
3x axis 

we can say Ω== constant 3ω . If we now substitute this constant into equation 3.28 

and let Ω−=
A

AC
r

)(σ  (the frequency of motion) we now get 

 

 

 

0
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=+

ωσω

ωσω
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dt

d
dt

d

 (3.29) 

 

The solutions of these equations are  

 

 

Ω==
+=
+=

constant

cossin

sincos

3

002

001

ω
σσω
σσω

tbta

tbta

rr

rr

 (3.30) 

 
where Ω,, 00 ba  are constants of integration (Lambeck, 1980b). 
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The equations 3.28, 3.29 and their solutions (equation 3.30) provide us with a good way 

of describing the rotation of a rigid body, if we approximate the Earth to be a rigid body. 

We have defined Ω−=
A

AC
r

)(σ  where, for the Earth 1510292.7 −−×=Ω s and, if we 

choose appropriate values for the Earth’s principal moments of inertia, 
rσ  is 

approximately equal to 1/306 rev d-1 (revolutions per day). Hence, for small 

displacements of axis 3x  from the rotation axisω , the latter rotates in a circular path 

according to equation 3.30. This motion is known as free Eulerian precession or free 

nutation see Lambeck (1980b). 

 

Now substituting Euler’s dynamical equations back into equation 3.10, we obtain in 

vector form 

 

 LI
dt

Id =⋅∧+⋅
)(

)( ωωω
 (3.31) 

 

Equation 3.31 is only valid when the inertial coordinate system Xi and the moving axes 

of the Earth 
ix coincide. The equation will remain valid for any instant t as long as each 

different value of t a new inertial coordinate system is defined that coincides with the 

moving axes of the Earth. Thus, for a complete description of motion of a rotating rigid 

Earth, we need to define a relationship between the inertial system Xi at time t and 

inertial system Xi’ at time t’. We can define this relationship using three Eulerian angles 

iα  (Woolard, 1953). Our inertial system Xi is defined by the mean X1 X2 plane and the 

mean equinox X3 for the epoch T0. The definition given by Woolard (1953) is 

 

1α = inclination of the 
21xx plane on the mean ecliptic 

2α = angle in the X1X2 plane on the ecliptic. 
2α  is measured positive from X1. 

3α = angle in the 
21xx plane between descending node and the 

1x  axis.

TT Ω≈= 33 ωα  

 

Hence 
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 xRRRX )()()( 331123 ααα −−=  (3.32) 

 

where )( jiR α denotes an anti-clockwise rotation through an angle jα about the axis
ix . 

The time derivatives of jα  represent the motion of the 
1x  axis with respect to the 

inertial frame. Resolving these velocities along the 
1x  axis and equating them to 

iω  

gives 
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where 
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100
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We now have a complete description of the motion of a rigid rotating body both in 

inertial space and with respect to a fixed coordinate system, fixed to that particular body. 

These equations are known as Euler’s kinematic equations of motion. Studies of polar 

motion and LOD use equation 3.31 and studies of precession and nutation use equation 

3.33. Since Ω≈3α the Eulerian motion’s nutation frequency in space is given by  

 

 Ω+rσ  (3.35) 

 

 

The free wobble is associated with an almost diurnal oscillation in space. For a more 

complete discussion see Woolard (1953), or Kinoshita (1977).   

 

If no torques act on the body then H , which is the axis of angular momentum of the 

body, is fixed in space. The instantaneous axis of rotation ω moves around 
3x in a cone. 
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This is the free Eulerian motion or wobble with frequency rσ . Also ω traces out a 

smaller cone around H . This is nutation described by Euler’s kinematic equations of 

motion. 

 

3.3.2 Non-rigid, body rotation 

 

In the absence of external torques any rotating rigid body would have predictable 

motion once the initial conditions of that motion had been established. In section 3.3 we 

made the assumption that the Earth rotates rigidly, this is not the case for two reasons: 

the inertia tensor I  of the Earth is time dependent, and motion occurs relative to the 

axesx. We must therefore write the total angular momentum, compared with rigid body 

rotation equation 3.10, as  

 

 

 )()()()( thttItH += ω  (3.36) 

where  

 

 ( )dM ∫ ∧=
M

urh  (3.37) 

 

is the angular momentum vector due to motion and u is velocity relative to r . We now 

substitute equation 3.37 into equation 3.31 to obtain 

 

 [ ] )()()()( thtIthtI
dt

d
L +∧++







= ωωω  (3.38) 

 

These are the Louville equations (Munk and MacDonald, 1960). 

 

In most discussions on non rigid body rotation, and in the case of our Earth, the 

difference from uniform body rotation is small (Lambeck, 1980b). It is therefore 

convenient to write 
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 ),1(,, 332211 mmm +Ω=Ω=Ω= ωωω  (3.39) 

 

where Ω  is the angular momentum of the Earth and ,,, 321 mmm  are small 

dimensionless quantities. The values ,1,, 321 mmm +  represent direction cosines of ω  

relative to the axis
3x . 

 

Changes in the Earth’s inertia tensor are also small, so we can write these changes as 

 

 ),(),(),( 333322221111 tICItIAItIAI ∆+=∆+=∆+=  (3.40) 

 

while for the other components in the inertia tensor we have the general formula 

 

 jitI ijij ≠∆= )(  (3.41) 

 

In the previous section we defined kji  ωωωω ++= so using equation 3.39 this 

becomes 
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Now using equations 3.41 and 3.42 and our definition of H from equation 3.36, and 

after neglecting squares and products of small terms, we obtain 
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Differentiation of L gives 
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Now the vector product of ω  with L gives 
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Once again the squares and products of small terms have been neglected. Now 

substituting this into the Louville equation, equation 3.38, we get 
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Since kji  LLLL ++= , we are able to equate the terms in equation 3.46 for the three 

terms that make up the vector L. On equating the i  term and rearranging we find 
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In the previous section we defined Ω−=
A

AC
r

)(σ , where this is the frequency for 

rigid body rotation, so equation 3.47 becomes (Lambeck, 1980b). 
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where 
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Now if we similarly equate the jand k terms we obtain  
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and  

 

 33 ψ=m&  (3.52) 

 

where 
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The expressions ,,, 321 ψψψ are known as excitation functions and their units are 

dimensionless. These excitation functions contain all the geophysical processes that 

perturb the rotation of the Earth, or in other words, cause the Earth to rotate non-

uniformly. These geophysical processes include the atmosphere and oceans, the 

coupling of the mantle and the core, the hydrological cycles on the land as well as some 

other factors that do not contribute (Dickey, 1992). These geophysical processes cause 
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small changes in the Earth’s inertia tensor I  which causes the rotation of the Earth to 

change. 

 

We separate equations 3.49 and 3.51 from equation 3.53 because they perturb different 

elements of the inertia tensor, torques and angular momentum. The first two relate to 

the wobble of the Earth, or the position of the pole (XP, YP) with respect to a terrestrial 

reference, while the third equation is related to LOD. Complex number notation gives a 

more compact form of these equations (Lambeck, 1980b). 
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Now we can add equation 3.51 to equation 3.53 and multiplying by j we obtain 
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By rearranging equation 3.55 we obtain  
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Now using the complex numbers notation that we introduced in equation 3.54 
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or 
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 ψ
σ

=+ m
mj

r

&
 (3.58) 

 

where ψ  is given by equations 3.51 and 3.53 multiplied byj , namely  
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Equation 3.58 is a simple first order linear equation whose solution is given by 
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where 
0m is a constant of integration. The solution for the axial component 3m  is given 

in equation 3.52 and is simpler by comparison to equation 3.60. In the absence of 

external torques we can express the law of conservation of angular momentum as 

(Barnes et al., 1983). 

 

 3333 )1( hImC +Ω∆++Ω  (3.61) 
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ω
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2

ω
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0

3 Λ
∆Λ−=m  (3.62) 

where ∆Λ  is the difference of LOD from its mean value 
Ω

=Λ π2
0 of 86400 seconds. In 

the next chapter we will discuss how we can then compare values of LOD to variations 

within the fluid Earth. 
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3.3.3 Rotational Deformation 

 
The main difference between uniform and non-uniform rotation is caused by 

deformation due to centrifugal force. This section will look at the deformation of the 

Earth due to centrifugal force. It is convenient to describe other perturbations of the 

rotation of the Earth with reference to this deformation. We describe the potential 
CU  of 

the centrifugal force at a pointP , and distance l  from the instantaneous rotation axis as 

 

 22

2

1
lU C ω=  (3.63) 

 

The direction cosines of ω are given by ωω /iim = so that (Barnes et al., 1983). 

 

 

2
22 







−= ∑∑
i

ii

i
i

x
xl

ω
ω

 (3.64) 

 

Now if we substitute equation 3.64 into equation 3.63 we get 
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with 
22 ∑=

i
ixr and ∑=

i
i
22 ωω  

 

The potential 
cU  can be written as 
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where 
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The first term in equation 3.67 results in a small, purely radial deformation (about 0.004 

cm at Earth’s surface (Lambeck and Cazenave, 1973). The second term, however, is 

harmonic in degree-2 and can be written in terms of spherical harmonics as (Lambeck, 

1980b). 
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where )(sin φnmP  are the associated Legendre polynomials described in Chapter 2. The 

potential above causes the Earth to deform. For an elastic body, a further change can be 

described at the Earth’s surface and outside the Earth’s surface using Dirichlet’s 

theorem (Lambeck, 1980b). On the Earth’s surface, Rr = , therefore 

 

 )()( 2
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Outside the Earth, where k2 = 0.30 (Lambeck, 1980b), 
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This equation can now be written in spherical harmonics in the form given by equation 

2.12 
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Now equating ∗mC2 and ∗mS2 with the appropriate elements in the second degree 

inertia tensor (equation 2.10), then )(tI ij∆ changes as follows (Lambeck, 1980b).  
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In the above equations small terms have been neglected for the final simplification step. 

This gives the deformation due to centrifugal force related to the appropriate parts of the 

Earth’s inertia tensor. How rotational deformation is related to the excitation functions 

1ψ and 
2ψ  found in equations 3.49 and 3.51 will now be described. In the case of 

rotational deformation, torque and angular momentum do not affect the excitation of 

rotation. Therefore, the terms in equations 3.49 and 3.51 involving torque L and angular 

momentum h are neglected. Now substituting equations 3.73 into 3.49 and 3.51 to 

obtain the excitation from rotational deformation (Lambeck, 1980b). 
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where   
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 (Lambeck, 1980b; Barnes et 

al., 1983). Hence 3.74 becomes  
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0σ using 
rσ  which is the frequency for rigid body rotation defined in section 3.3.1 

is defined as. 
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Now substituting the excitations 
1ψ and 

2ψ into equation 3.48 and 3.50 gives (in the 

absence of all other excitations) 
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The solution of these equations is (Lambeck, 1980b) 

 

 
),sin(

),cos(

002

001

θσ
θσ

+=
+=

tmm

tmm
 (3.79) 



 

where 
0m and θare constants and 

in equation 3.79 we can see that the motion is once again circular, the same as given in 

rigid body rotation given in section 3.3.1. In the section on rigid body rotatio

frequency of the Earth’s wobble was given as

this period give it as approximately

increases the period of the Earth’s wobble from 306 days to appro

The difference between a rigidly rotating Earth and an elastic Earth will now be shown.

 

Figure 3.3 Motion of the rotation axis with respect to 
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constants and 
0σ is given in equation 3.77. From the solution given 

in equation 3.79 we can see that the motion is once again circular, the same as given in 

rigid body rotation given in section 3.3.1. In the section on rigid body rotatio

frequency of the Earth’s wobble was given as 1-
0 d rev

306

1=σ , whereas observations of 

this period give it as approximately 1-
0 d rev

435

1=σ . Thus the elasticity of the Earth 

increases the period of the Earth’s wobble from 306 days to appro

The difference between a rigidly rotating Earth and an elastic Earth will now be shown.

Motion of the rotation axis with respect to Earth fixed axes, Initial State for non rig
rotation 

is given in equation 3.77. From the solution given 

in equation 3.79 we can see that the motion is once again circular, the same as given in 

rigid body rotation given in section 3.3.1. In the section on rigid body rotation the 

, whereas observations of 

Thus the elasticity of the Earth 

increases the period of the Earth’s wobble from 306 days to approximately 435 days. 

The difference between a rigidly rotating Earth and an elastic Earth will now be shown. 

 
axes, Initial State for non rigid body 



 

Figure 3.3 illustrates rigid body rotation where 

rotation axis and the excitation axis 

state m  is aligned with the principle axis of rotation

body is perturbed then the excitation pole is shifted to 

excitation pole with a frequency

 

Figure 3.4 Motion of the rotation axis with respect to E
 

Figure 3.4 represents the effects of perturbation on a non

Earth responding elastically to a perturbation. In this case the rotating body has th

same initial conditions as in 

freely about a mean position. The excitation functions were given previously in 
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illustrates rigid body rotation where m represents the motion around the 

rotation axis and the excitation axis ψ is relative to the body fixed axis 

is aligned with the principle axis of rotation
3x , with m

body is perturbed then the excitation pole is shifted to 
r

ψ and 

excitation pole with a frequency
rσ  and amplitude 0m .  

Motion of the rotation axis with respect to Earth fixed axes, initial state for rigid body rotation

represents the effects of perturbation on a non-rigid rotating body, i.e. the 

Earth responding elastically to a perturbation. In this case the rotating body has th

same initial conditions as in Figure 3.3. This time, however, the rotation axis wobbles 

freely about a mean position. The excitation functions were given previously in 

represents the motion around the 

is relative to the body fixed axis x. In its initial 

0=m  and 0=ψ . If the 

and m  moves around the 

 
xes, initial state for rigid body rotation 

rigid rotating body, i.e. the 

Earth responding elastically to a perturbation. In this case the rotating body has the 

. This time, however, the rotation axis wobbles 

freely about a mean position. The excitation functions were given previously in 
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equation 3.74. These can also be written as 1
0

2
1 m

k

k=ψ   and 2
0

2
2 m

k

k=ψ and in complex 

notation as m
k

k
D

0

2=ψ . This excitation is due to the bulge adjusting itself to the 

constantly changing position of m . The equations of motion from equation 3.57 can 

now be written as 
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Where 






 −=
0

2
0

1

k

k
rσσ  is the frequency of the free oscillation of the elastic Earth 

(Lambeck, 1980b). Now, from our relationship between the Earth’s inertia tensor and 

rotation given in equation 3.71, we have 
D

ψ as the orientation of the principal axes of 

the Earth with respect to x.  

 

In the above case 
D

ψψ = . Additionally, if the Earth is subjected to another excitation 

function, one of force, the total excitation ψ  acting on the Earth, is made up of the new 

excitation of force 
r

ψ   being considered and 
D

ψ , which has already been defined. The 

equations of motion now become (remembering that 
rD
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showing that an elastic Earth changes the amplitude of the excitation function by

20

0

kk

k

−
. It can now be said that the amplitude of the wobble of the Earth increases as a 

result of the Earth, giving an elastic response rather than the response of a rigid Earth. 

 

An anelastic response of the Earth to a disturbing potential will now be briefly 

considered. Using complex Love numbers (Lambeck, 1980b) we have 

 

 κjkk += 22  (3.83) 

 

Now substituting this into the complex form of equation 3.74 gives 
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Now substituting for ψ  gives  
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where, 
00

2
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1

k
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k
rr σσσ −







 −=  is the frequency of the aneleastic response to 

excitation. So to allow for the anelastic response of the Earth we can introduce the 

complex frequency ασσ j+= 00 . Therefore, the solution to these equations using this 

new frequency is given by 

 
tj t

0
0σα eemm −=  (3.85) 

 

The amplitude of the free wobble is dampened by the factor  tα−e  as a result of an 

anelastic response. This response is known as “damped linear motion” (Lambeck, 

1980b). 
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3.4 Conclusion 

 
 

Earth rotation theory has been discussed in some detail, deriving the fundamental 

equations needed to understand how the rotation of the Earth and how the processes that 

act on can be described mathematically. The final set of equations derived here 

describes how the rotation of the Earth can be “excited” by certain processes acting 

upon it. These equations are referred to as the excitation functions and can be linked to 

the movement of mass within the Earth system. In the subsequent chapters these 

equations will be used to investigate these mass redistributions within the Earth and 

their links with the gravity field of the Earth. 
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Chapter 4  

 

4 Mass Redistribution and Angular Momentum 

 
4.1 Introduction 

 
This chapter will look at the different ways in which mass is redistributed throughout 

the Earth system including the atmosphere, oceans and continental hydrological effects 

as well as the effects of the Earth’s core. The method of calculating the effects of each 

of these different processes on the redistribution of mass within the Earth system will be 

derived and examples of these excitation functions will be analysed. Finally, a 

comparison of Atmospheric Angular Momentum Function (AAMF) estimates from 

various organisations will be compared to assess which dataset might be the most 

appropriate to use in the orbit determination process. 

 

4.2 Redistribution of Mass 

 

Mass and angular momentum are, according to physics, conserved in a closed system. 

The Earth interacts very little with components outside of itself. The Earth therefore can 

be thought of as a closed system, and therefore mass components in one reservoir of the 

Earth system are exchanged with others (Salstein, 1993). Mass redistribution within the 

Earth system is caused by geophysical processes. This movement of geophysical fluid 

(mass) causes variations in the Earth’s rotation, gravity field and geocentre. The 

improvement of geodetic techniques over the last few decades allows us to measure the 

effects of these processes on the Earth to an unprecedented accuracy. The continuous 

collection of this kind of data allows scientists the opportunity to investigate these 

processes over varying timescales. 

 

As stated previously the changes in the rotation of the Earth are caused by the 

movement of mass in the Earth system, this has two effects. Firstly, the movement of 

geophysical fluids cause surface torques, which directly affect the rotation of the Earth 

and secondly, the associated redistribution of mass from this movement causes the 

Earth’s inertia tensor to be modified, thus instigating rotational change. From this 
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knowledge it can be said that the Earth obeys the law of “conservation of angular 

momentum” (Chao et al., 2000).  

 

The gravity field of the Earth is also closely associated with the geophysical processes 

within the Earth system. These processes cause changes in the Earth’s gravity field 

through Newton’s gravitational law (equation 2.1). This law states that a body creates 

its own gravity field according to the distribution of mass within that particular body. 

 

Finally, changes in the Earth’s geocentre obey the law of “conservation of linear 

momentum”. This law states that the centre of mass of the solid Earth plus the 

geophysical fluids such as the atmosphere and oceans obeys the law of celestial 

mechanics in its translational motion around the solar system. This geocentre motion 

manifests itself, for example, as a translation of the ground based network of SLR 

stations with respect to the centre of mass of the whole Earth system that is defined by 

the orbits of the satellites (Chao et al., 2000). 

 

 

 
Figure 4.1 Forces that perturb the Earth’s rotation (Lambeck, 1980a) 
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There are many processes (Figure 4.1) within the Earth system that cause mass to be 

redistributed. These include the atmosphere, oceans, hydrology (ground water), the 

Earth’s core and mantle, Earthquakes, volcanoes, post glacial rebound, tides and the 

melting of ice.  

 

The size of the effects on the geodynamics of the Earth by the mass transport of 

geophysical fluids is approximately proportional to (net transported mass)/(Earth mass) 

and (net transported distance)/(Earth radius). These processes cause variations in 

orientation, gravity and geocentre on all observable timescales (Gross et al., 2005). 

 

4.2.1 Atmosphere 

 

Variations in the Earth’s rate of rotation or LOD and polar motion can be attributed to a 

variety of sources. These can be split into three categories: an overall increase from tidal 

dissipation, the long term variations (i.e. decadal variations) and finally higher 

frequency variations on annual and seasonal timescales (Dickey, 1993). Numerous 

studies have examined the effects of mass redistribution on the rotation and gravity field 

of the Earth. These studies have shown that the movement of the atmosphere is the most 

variable of the geophysical processes that affect the Earth system. Excitation is 

significant in all three components. Studies show good agreement between changes in 

the angular momentum of the Earth’s atmosphere and that of the Earth’s rotation and 

gravity field. At periods longer than approximately 10 days, signals for excitation by the 

atmosphere are well established (Eubanks, 1993). 

 

The exchange of angular momentum between the atmosphere and the Earth is the major 

cause of variations in LOD for periods of approximately 5 years or less (Dickey, 1993; 

Lambeck and Cazenave, 1977).  At periods greater than 5 years the atmosphere may 

contribute to the excitation of the Earth’s rotation significantly (Lambeck, 1980a; 

Lambeck and Cazenave, 1977). The annual excitation of LOD is almost entirely 

dominated by the atmosphere after excluding the effects of the ocean and solid Earth; it 

has been shown that variations in the atmosphere contribute to the excitation of the 

Earth’s rotation (Eubanks et al., 1985; Rosen and Salstein, 1985; Hide et al., 1980). 
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Polar motion is dominated by two almost circular oscillations, one at a period of 1 year, 

known as the annual oscillation, and the second at a period of approximately 436 days, 

known as the Chandler wobble. The amplitudes of both these signals are approximately 

100-200 mas. There is also a long term drift of a few mas per year. The Chandler 

wobble is a free oscillation of the Earth and has not been fully accounted for, although 

the atmosphere is one of the major candidates for its excitation (Gross, 2000). A large 

part of the annual and semi-annual oscillation is driven by variations with the Earth’s 

atmosphere (Kuehne and Wilson, 1991; Chao and Au, 1991). The evidence for the 

atmospheric pressure being the main source of variations on an inter-seasonal timescale 

is strong (Eubanks et al., 1988), as well as evidence that atmospheric winds may play a 

role in this excitation (Gross and Lindqwister, 1992). Decadal scale fluctuations in polar 

motion are less likely to be caused by the atmosphere but this cannot be entirely ruled 

out (Khrgian, 1985). High frequency variations show statistically significant coherences 

between atmospheric excitation and polar motion for as little as 10 days (Salstein and 

Rosen, 1989). It is thought that the atmosphere also contributes highly to shorter period 

excitations but this is less well established (Nastula et al., 2002). 

 

4.2.2 Ocean 

 

The oceanic excitation of polar motion does not have as good observational evidence as 

that of the atmosphere. Ocean tidal fluctuations have been found to have the greatest 

effect on sub daily timescales (Chao and Ray, 1997; Gipson, 1996). Ocean tides have 

also been found to have an effect at fortnightly and monthly timescales (Gross, 1996; 

Gross et al., 1997). The effects of the tides on Earth rotation parameters have been well 

modelled (Yoder et al., 1981) and are usually removed when investigating the effects of 

the oceans on Earth rotation. Oceanic excitation is driven to a great extent by 

atmospheric forcing and the thermohaline processes caused by heat and freshwater 

fluxes (Brzezinski, 2002). Modelling this is complicated, as it requires three-

dimensional modelling of global ocean dynamics, This type of data has been produced 

by Ponte et al. (1998), and Johnson (1999) . 

 

The seasonal effects of the ocean on polar motion have been studied (Ponte and 

Stammer, 1999; Gross, 2000). These studies agree that adding the effects of the oceans 

to the effects of the atmosphere bring the modelled excitation closer to the observed 
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excitation. Gross (2000) also finds that oceanic excitations explain some of the 

discrepancies in inter-seasonal and inter-annual periods, although discrepancies still 

remain. The possible forcing of the Chandler wobble by oceanic processes has also been 

investigated (Ponte and Stammer, 1999; Gross, 2000; Brzezinski and Nastula, 2002; 

Brzezinski et al., 2002). These studies have shown the ocean to be important in exciting 

the Chandler wobble with ocean bottom pressure having the greatest effect. Oceanic 

excitation has been found not to have enough power to seriously affect low frequency 

variations in polar motion (Gross, 2000). 

 

The oceans also effect changes in the Earth’s rate of rotation. Studies have shown that 

the ocean could be responsible for some of the remaining LOD variation that cannot be 

accounted for by the atmosphere (Johnson, 1999; Marcus et al., 1998; Chen et al., 2000). 

 

4.2.3 Hydrology 

 

Although advances in technology, such as the GRACE satellite mission and Aqua 

satellite (Barnes et al., 2003), have improved the availability of data used to estimate the 

effect of hydrology on the rotation of the Earth, several components of the effects of 

hydrology are known with large uncertainties (Rummel et al., 2009). Due to this the 

effect of hydrology on the rotation of the Earth is also difficult to estimate and remains 

one of the more interesting research areas with respect to mass redistribution within the 

Earth system. Traditionally, hydrological angular momentum functions have been 

derived from precipitation, evapotranspiration and surface runoff based on sparse 

climatological models (Chen et al., 2000). 

 

Hydrology is thought to contribute to the secular change in polar motion by up to 20% 

of the total excitation. Melting of continental glaciers and other changes in continental 

water storage are the processes by which the mass is redistributed on the land 

(Gasperini et al., 1986; Trupin and Wahr, 1990; Kuehne and Wilson, 1991; Wilson, 

1993). Hydrology is thought to be more important than the atmosphere in decadal scale 

variations of polar motion, as water can be stored over these timescales as glaciers, 

snow and lakes etc whereas the atmosphere cannot (Kuehne and Wilson, 1991; Wilson, 

1993), especially in variations longer than 10 years. Chao et al. (1987), Chao and 

O'Connor (1988), and Trupin and Wahr (1990) studied the effects of long period 
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excitation from snow loads, reservoirs and glaciers and found that all of these processes 

only create 10% or less of the total excitation required. Studies have given contradictory 

results with regard to the importance of hydrological angular momentum (Kuehne and 

Wilson, 1991). Hydrology is thought to also contribute on a small scale to LOD 

variations on all timescales. More recent studies (Jin et al., 2010; Chen and Wilson, 

2005) have shown that hydrology does not close the gap between observed polar motion 

and LOD variations and the excitation computed from available models.   

 

4.2.4 Core 

 

Decadal variations in the rotation of the Earth are thought to be caused by the angular 

momentum of the Earth’s liquid core (Jault and Le Mouel, 1991; Lambeck, 1980b). 

This conclusion comes about by the process of exclusion as these variations are so large 

that it would take double the mean atmospheric zonal wind velocity or enough melting 

of the polar ice to increase the sea level by 20 cm to cause rotational variations on this 

scale. Neither of these phenomena has ever been observed. Since no theoretical process 

has been discovered that could generate enough excitation to produce this long term 

variation, it is assumed that this variation is caused by the torques between the Earth’s 

core and mantle (Eubanks, 1993). 

 

4.2.5 Other Effects 

 

A secular variation has been detected in polar motion (Gross and Chao, 1990; Ming and 

Danan, 1987) although studies do not agree on the size of this variation, showing how 

difficult it is to determine secular motion of the Earth poles. This secular variation has 

been generally attributed to post glacial rebound (Wu and Peltier, 1984; Peltier, 1998) 

and is thought to be responsible for the secular change found in J2 and other 

gravitational harmonics. This secular change in J2 changed in 1998, the cause of which 

is not yet known for certain (Cox and Chao, 2002). The linear increase in LOD, 

attributed to tidal dissipation and glacial isostatic adjustment  has been estimated to be 

about 1-2 milliseconds per century (Stephenson et al., 1984; Rummel et al., 2009). 

 

The possibility of earthquakes exciting the Earth’s rotation enough to account for 

discrepancies between the excitation needed to cause polar motion and LOD and that 
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excitation that can be modelled from the atmosphere, oceans and hydrology, as well as 

the possibility of earthquakes exciting the Chandler wobble, have been investigated. 

This, however, has been shown to be unlikely as all earthquakes between 1977 and 

1990 only account for excitation equivalent to a few tenths of a millisecond (Gross, 

1986, Chao and Gross, 1987) 

 

For a more comprehensive review of the processes that cause the excitation of the 

Earth’s rotation, see Eubanks (1993). 

 

4.2.6 The Southern and Quasi-Biennial Oscillations 

 

Measurements of LOD have shown interannual fluctuations (i.e. variations of between 

one and 10 years). Studies have shown correlations between these fluctuations and two 

quasi-periodic global oscillations in the oceans and atmosphere. These are known as the 

Southern Oscillation or SO (Stepanick, 1982; Chao, 1984; Eubanks et al., 1986; Hide 

and Dickey, 1991) and the Quasi-Biennial Oscillation (Chao, 1989). 

 

El Nino and La Nina events are important temperature fluctuations in the eastern Pacific 

Ocean, the cause of which is still not totally understood. El Nino and La Nina events are 

now recognised as being part of the SO and are referred to together as ENSO cycles. An 

El Nino phenomenon occurs as a body of water in the eastern Pacific Ocean, which is as 

much as 2o higher in temperature than the surrounding waters, moves across the Pacific 

in just a matter of months (Eubanks, 1993). It has been suggested that the cause may be 

the result of non-linear air-sea interactions, which cause changes in the temperature at 

the sea surface and therefore cause change in the wind stress on the ocean, which are 

also modified by the new atmospheric conditions (Philander, 1990; Barnett et al., 1991). 

 

The Quasi Biennial Oscillation is a quasi-periodic oscillation of the equatorial zonal 

winds (Baldwin et al., 2001). The mean period of the oscillation is 28 months. 

 

Studies, starting with Stepanick (1982) have connected these events with fluctuations in 

the Earth’s rotation rates. During the very strong 1982-1983 El Nino event, Rosen et al. 

(1984) observed some unusually large and rapid rotational variations in LOD. These 

effects were later confirmed by subsequent studies (Chao, 1984; Eubanks et al., 1986) 
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showing that most LOD variations on inter-annual timescales were linked to these 

ENSO events and the Quasi Biennial Oscillation. 

 

4.3 Excitation and Angular Momentum Function 

 

In Chapter 3 we described the rotation of the Earth and introduced some excitation 

functions due to changes in the inertia tensor and angular momentum of the Earth. The 

excitation equations shown in equations 3.48 through 3.53 are well suited for 

calculating excitation functions when changes in relative angular momentum are well 

separated from changes in the Earths inertia tensor I or when one of these quantities is 

zero. These equations are, however, inadequate for computing excitation functions 

when looking at changes occurring due to redistribution of matter and relative angular 

momentum separately. The reason is that both angular momentum and the inertia tensor 

involving relative motion are both second order. 

 

It should be noted that there are two different methods for calculating the effect of the 

atmosphere and oceans etc on the rotation of the Earth (Munk and MacDonald, 1960; 

Wilson and Haubrich, 1976; Lambeck, 1980b). In the torque approach, the torques that 

act upon the surface of the Earth, due to the movement of fluids within, above and on 

the Earth are related to the rate of change of angular momentum of the Earth. 

Alternatively, in the angular momentum approach, the angular momentum of the Earth 

and of the atmosphere and oceans are considered equal and opposite (Barnes et al., 

1983). In this thesis we use the angular momentum approach due to the fact that wind 

data is readily available. Therefore, we must separate the excitation functions to look at 

each effect independently. Recall equations 3.53 and 3.59. 
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The excitation functions contain contributions from: 

i. Redistribution of mass (matter), 

ii.  Relative motion of mass (motion), 

iii.  Torques. 

 

This can be written as 
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where from equation 4.1 
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and from equation 4.2. 
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Equations 4.1 and 4.2 can now be written as (Munk and MacDonald, 1960) 
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 ( ) ( ) ( )∫∫ ++∆=Ω
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where 21 jFFF +=  

 

 

Now, to obtain equations for 1F , 2F  and 3F  in Cartesian coordinates, recall equation 3.1, 

namely the general form of I in Cartesian coordinates. 
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m

jiij jidMxxI  (4.8) 

 

Since dVdM ρ= where ρ is the density, then  
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Now consider 
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From Chapter 3 recall 
ijij II =∆  where ji ≠ , therefore equation 4.10 becomes 

 

 ( ) ( )∫ ∫ ≠−∆−=∆=
V V
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d
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The above equation can now be separated to obtain expressions for both matter and 

motion. 
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Now on setting the torque to zero ( 0=iL ), we can write the excitation functions in 

CCartesian coordinates as 
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In equation 4.13 the first integrals on the right hand side are the matter terms while the 

second integrals are the motion terms as they involve velocities iu as well as densityρ. 

 

The expressions for 1F , 2F  and 3F are obtained from equations 4.6 and 4.7 in terms of 

Cartesian coordinates using equations 4.4, 4.5 and 4.12. This gives: 

 

 

 

( )

( )

∫Ω==−=

















+−Ω=
−+Ω=
−+Ω−=

+Ω−=Ω−=Ω−=

t

dtLFLFLFtorque

uxuxF

uxuxuxF

uxuxuxF

motion

xxFxxFxxFmatter

0

331221

12213

3223132

3113231

2
2

2
13322311

,,:

2

2

:

,,:

&&

&&

 (4.14) 

 

Similarly these functions can be written in terms of spherical harmonics by letting λu , 

θu and ru  designate the East, South and Up components of velocity respectively and 

λθθ ddrdrdV sin2=  as the differential volume. We then have (Munk and MacDonald, 

1960)  
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The torque is more complicated and is written as the sum of two terms. 
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The excitation χ  caused by the atmosphere can be concisely written in terms of 

complex numbers. 
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Figure 4.2 Atmospheric Angular Momentum Functions mass terms using an Inverted Barometer (IB) and 

non Inverted Barometer derived by NCEP 
 

   
where the terms 1.61 and 1.44 in equation 4.17 account for the effect of core decoupling 

and the yielding of the solid Earth to the loading respectively. The term 0.756 in 

equation 4.18 again accounts for the yielding of the solid Earth to the load. 

 

Using equations 4.17 and 4.18 we can compute excitation functions from geophysical 

data.  Figure 4.2 and Figure 4.3 show the excitation functions calculated from the NCEP 



 

reanalysis atmospheric angula

2006 inclusive. 

 

 

Figure 4.3 Atmospheric Angular Momentum Functions motion terms derived by NCEP
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reanalysis atmospheric angular momentum values (Kalnay et al., 1996

Atmospheric Angular Momentum Functions motion terms derived by NCEP
 

Kalnay et al., 1996) from 1996 to 

 

 
Atmospheric Angular Momentum Functions motion terms derived by NCEP 
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Figure 4.4 Oceanic Angular Momentum Functions motion and mass terms using the JPL ECCO 

circulation model kf049f  
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It should be noted at this point that the variance of the mass terms X, Y and Z derived 

using the Inverted Barometer (IB) correction are smaller than those when not utilizing 

this correction. This is due to the fact that in areas where the atmospheric pressure is far 

different from the mean atmospheric pressure over the Earth, using the correction gives 

a better approximation of the effects of atmospheric loading. 

The IB correction effect is given by (Wunsch and Stammer, 1997): 
 
 
    IBC= -1/ρG(ρ-Pref)     (4.19) 
 
 
where Pref is the global mean pressure over the ocean, ρ is the density of the sea water 

and G is gravity. This correction takes into account the variability of the atmospheric 

pressure over the oceans. The correction involves substituting the mean atmospheric 

pressure with the atmospheric surface pressure over the oceans at every point (Salstein, 

1993).  

 

It should also be noted that the annual signal on the X component is less well defined 

than the annual signal on the other components. The reason for this may be that the 

major driver for the annual signal of polar motion is the build up of high pressure over 

Siberia every winter which is much closer to the Y axis than the X axis. 

 

In Figure 4.4 the corresponding excitation functions from the movements and mass 

distribution of the oceans are plotted using the JPL ECCO circulation model kf049f as 

this was the most recent version at the time the work in this thesis was carried out. 

ECCO is based on an earlier MIT global ocean circulation model (Marotzke et al., 

1999), details of which are given by Chen and Wilson (2003b). It can be noticed that 

excitation caused by the mass and motion of the oceans to the movement of the Earth is 

much smaller in the Y and Z terms  compared with the effect of the mass and motion of 

the Earth’s atmosphere. This effect is still significant within the Earth system. The 

effects on the X terms are similar when using the IB corrected mass term from the 

atmospheric data. 

 

It can also be noticed that the motion Z term from the oceans is considerably smaller 

than that of the Z motion term from the atmosphere. The Z term is 10 times smaller in 



 

the oceans than in the atmosphere. This is due to the much larger movements of the 

atmosphere (the zonal winds) around the rotation axis of the Earth when compared to 

the transport of the oceans. On the other hand the motion terms from X and Y are of 

similar size when compared with atmospheric terms and therefore must be considered as 

significant in how they affect the inertia of the Earth’s rotation.

 

In Figure 4.5 the corresponding excitation functions from the distribution of the 

hydrology from the NCEP reanalysis model are plotted. Hydrology does not contribute 

to the motion part of the excitation so only mass terms are plotted. There is a very clear 

annual signal on all three components of the hydrological angular momentum functions. 

The sizes of the mass terms are similar to the mass terms computed from the ocean. 

 

Figure 4.5 Hydrological Angular Momentum Functions mass terms
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4.4 Angular Momentum Models 

 

Geophysical data from which angular momentum values are derived, and thus excitation 

functions as shown above, come from a variety of sources. To assess how the values 

derived from these sources vary when compared to each other, an analysis of the 

difference between the models has been undertaken. This analysis of the different 

models will aid in choosing which model is the best suited in the new orbit 

determination procedure being developed in this thesis. As the atmosphere is the 

greatest contributing factor to the effect on the rotation of the Earth the values of AAMF 

from different organisations have been compared below. 

 

Figure 4.6 - 4.11 show the comparison from four different organisations that produce 

values of AAMF; The four organisations are the European Centre for Medium Range 

Weather Forecasts (ECMWF), the Japan Meteorological Agency (JMA), the National 

Centre for Environmental Prediction (NCEP) and the United Kingdom Met Office 

(UKMO). Each of these centres computes the data at a different sampling rate. To make 

all the data the same sampling rate of 1 value every 15 days, to match the output from 

FAUST, weighted daily averages were taken for organisations whose sampling rates 

were greater than one day.  

 

There were two possibilities for this. First, some data was given every 6 hours. In this 

case a weighted average at midday was computed using weights of  1/8, 
1/4, 

1/4, 
1/4, 

1/8 for 

the 6 hour data starting at 0 hour.  
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Figure 4.6 Comparison of AAMF X mass term from 4 different organisations 

 

 

The second scenario was data given at midnight and at midday. In this case a weighted 

average of three values using weights of 1/4, 
1/2, 

1/4, was derived from the data values 

spanning midnight, midday and next midnight respectively. Other data was already 

daily and this data was interpolated to give a daily value at midday. Once all the data 

had been converted into daily values a weighted 15 day average was computed to give a 

value at the middle of the 15 day period.  

 

Figure 4.6 shows that there is very good agreement between all four organisations; 

estimates of the X mass term. It can also be seen that the data from ECMWF only spans 

the first few years of the compared data set and that there are large periods of data 

missing in the JMA and the UKMO time series. The only data series that is complete is 

the data series from NCEP. 
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Figure 4.7 Comparison of AAMF X motion term from 4 different organisations 

 
 
 

In contrast, when comparing the X motion term of AAMF from the same four 

organisations (Figure 4.7) it is immediately clear that the agreement is much less well 

defined. In the mass term shown in Figure 4.6 the annual signal, that would be expected 

to be present, caused by the semi annual and annual tides is very clear on all sets of data, 

whereas in Figure 4.7 although there is some resemblance of an annual signal, 

especially from NCEP data, the agreement of this seasonality between data sets is 

sketchy. This suggests that defining the motion term in the X axis from the collected 

data is much more difficult than defining the mass term. 
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Figure 4.8 Comparison of AAMF Y mass term from 4 different organisations 

 
 

 
Figure 4.9 Comparison of AAMF Y motion term from 4 different organisations 
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Figure 4.8 shows the Y component of the AAMF, once again compared against each 

other. The comparison of the mass and motion Y components demonstrates very similar 

attributes to the X term, these being a very well defined annual signal in the mass term 

and a less well defined annual signal in the motion term (Figure 4.9).  

 

In addition, the X motion and the Y motion terms do not agree well. Again this 

confirms that it is more difficult to define the motion term of the excitation functions. 

Once again the data with the best defined annual signal is that of the NCEP (Figure 4.9). 

 

 
Figure 4.10 Comparison of AAMF Z mass term from 4 different organisations 

 

  
Finally Figure 4.10 and Figure 4.11 show the comparisons of the data of the Z 

component of the AAMF. This time both the mass and motion terms from the Z 

component of AAMF from all centres have a clearly defined annual signal that 

corresponds to the changes in the seasons and weather patterns. There is also good 

agreement between all data sets for both the mass and the motion, although the 

agreement, in contrast to the X and Y components, seems to be better on the motion 

component. This suggests that evaluating the excitation on the Z axis is easier than 
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defining the excitation in the X and Y axes, especially when considering the motion part 

of the signal. 

 

This data comparison has shown the AAMF data that is available and how complete the 

data sets are. The comparison has also shown how well these data sets agree with one 

another, which may give an insight into how AAMF data might compare with excitation 

computed from gravity and from ERP values as described in Chapter 3 and the 

beginning of this chapter. 

 

 
Figure 4.11 Comparison of AAMF Z motion term from 4 different organisations 

 
 
Due to the fact NCEP data is the most complete data set, as well as being the data set 

that displays the most consistent annual signals in all the components of the excitation 

functions, the NCEP data will be chosen for use in the orbit determination process. 
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4.5 Conclusion 

 
This chapter has discussed those excitation functions which are currently estimated by 

different organisations and discussed briefly how these terms are derived, what each 

excitation function includes and by whom the excitation functions have been derived. It 

has been shown that the major excitations with regard to the rotation of the Earth are 

driven by the atmosphere, which causes the largest excitation on an annual timescale. In 

addition, the ocean excitation is similar in size to the atmospheric excitation in the mass 

terms but less important in the motion terms, while the hydrological cycle which has a 

similar effect to that of the oceans in terms of mass load is not considered in terms of 

motion as this data is not available. 

 

Finally values of AAMF computed by different meteorological organisations have been 

compared for consistency of signal, as well as how well-defined these signals are, as 

this may be important in an orbit determination process. It was noticed that the data 

from the NCEP was the most complete and best defined data set. 
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Chapter  5 

 

5 Recovery of Gravity and Earth Rotation Parameters from SLR 

observations to LAGEOS 

 

5.1 Introduction 

 

In this chapter we will focus on the process of computing precise orbits for the 

LAGEOS satellites using Newcastle University’s (POD) software FAUST (Moore et al., 

1999; Boomkamp, 1998). Approximately 10 years of SLR data have been processed in 

15 day arcs using the methods and models summarised in this chapter. All available 

SLR station data in the MERIT II format (ILRS, 2012)  has been utilised in this research. 

The results from this processing will then be analysed.  

 

5.2 Geodetic Satellites for Satellite Laser Ranging 

 

In this study the satellites that have been used to calculate gravity field coefficients, 

station coordinates and ERPs are LAGEOS I and LAGEOS II where LAGEOS is an 

acronym for LAser GEOdynamics Satellite (Figure 5.1).  

 

Both satellites are passive dense spheres with the surface covered by retro reflectors, 

allowing them to be tracked using SLR. LAGEOS I was developed by NASA and orbits 

the Earth in a high inclination (109º) orbit so that ground stations all over the world can 

track its orbit. LAGEOS II was developed jointly by NASA and the Italian Space 

Agency (ASI) and has been placed in an orbit (56º inclination) to complement 

LAGEOS I and more specifically to enable scientists to understand irregularities noticed 

in LAGEOS I’s orbit as well as to provide more coverage of seismic activity 

particularly in the Mediterranean and in California (NASA, 2010). Both LAGEOS 

satellites orbit at an altitude of 5,900 km and have an orbital period of approximately 

225 minutes. Due to their highly stable orbits the LAGEOS satellites orbits will not 

degrade significantly for millions of years. It is possible however that the degradation of 

the retro reflectors may shorten this lifespan. 
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Figure 5.1 LAGEOS I 

 

The LAGEOS satellites have been specifically designed for very precise orbit 

determination. They have a high mass to limit the effects of non-gravitational forces as 

well as being light enough to be placed in a highly inclined orbit to improve coverage. 

They have a relatively small surface area to minimise the effects of solar radiation 

pressure. The material that they are made out of has been chosen to reduce the effect of 

the Earth’s magnetic field (NASA, 2010). Overall these considerations make the orbits 

of the LAGEOS satellites very stable and therefore one of the most precise positioning 

references available. For these reasons LAGEOS has been chosen for this particular 

thesis. 

 

5.3 Orbital Motion 

 

In this section we will give a brief overview of the principles used in the FAUST 

software (Boomkamp, 1998; Moore et al., 1999). Most principles are consistent with the 

IERS2003 Conventions (McCarthy and Petit, 2003).  
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The orbital motion of a satellite can be described, in a coordinate system and under a 

force F by the equations of motion as 

 

 mtrrFr /),,( &&& =  (5.1) 

 

where m is the mass of the satellite, t  is time,  is the position, r&  the velocity and r&&  

the acceleration. 

 

FAUST uses a least squares estimation process to determine the orbit of the satellite. 

The basic idea of a least squares minimisation is to determine the orbital parameters of 

the satellite to minimise the squared difference between the mathematical model and the 

observed measurements. The problem that arises is that each measurement may have 

different units; therefore each measurement is weighted and what is actually used is the 

square of the weighted residuals (Montenbruck and Gill, 2000). Let the state vector be 

given by 
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We can describe x& as 

 

 ),( xtfx =&  (5.3) 

 

with an initial value of 

 

 )( 00 txx =  (5.4) 

 

i.e. 0x is the initial value of x at epoch 0t . 

 

 

r
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Let zbe defined by 
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This is the n-dimensional vector of measurements taken at epochs tn, where the 

observations are described by (Montenbruck and Gill, 2000): 

 

 iiiiiiii xthtxtgz εε +=+= )())(,( 0  (5.6) 

 

where z is the observation, in this case the range to the satellite, and ig  is the model 

value of the ith observation as a function of time it . On the other hand ih is the same 

but as a function of the state 0x at the reference epoch0t . The values iε give the 

difference between the actual and the modelled observations due to measurement errors 

and modelling deficiencies. This can be written briefly as 

 

 ( ) ε+= 0xhz  (5.7) 

 

The least squares orbit determination problem can now be defined as finding the state 

that minimises the loss function (i.e. the squared sum of the residuals ip ) 

 

 ( ) ( )( ) ( )( )000 xhzxhzxJ
TT −−== ρρ  (5.8) 

 

for some given set of measurements z(Montenbruck and Gill, 2000). 

 

5.3.1 Time 

 

There are many different systems that are used in geodesy to describe time. All of these 

systems use units of days and seconds. As FAUST uses data that have time tags 

recorded using different time systems it is necessary to understand the difference 
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between these systems. The satellite equations of motion are defined in FAUST with 

reference to Terrestrial Time (TT). The observations are defined with reference to 

Universal Coordinated Time (UTC) and UT1 is used to perform the transformation 

between the terrestrial and celestial reference frames. A brief description of the time 

systems used in FAUST is now given (Montenbruck and Gill, 2000). 

 

• TT, a conceptually uniform time scale that would be measured by an ideal clock on 

the surface of the geoid. 

• International Atomic Time (TAI), which provides the practical realization of a 

uniform time scale based on atomic clocks and agrees with TT except for a constant 

offset and the imperfections of the clocks. 

• GPS Time, which is a common time reference for GPS. Apart from management 

error (less than 100ns) GPS time differs from TAI by a constant offset: 

GPS time = TAI - number of leap seconds 

• UT1, today’s realization of a mean solar time, which is derived from Greenwich 

Mean Sidereal Time (GMST) by a conventional relation. 
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• UTC differs from TAI by an integer number of leap seconds to follow UT1 within 

0.9s 

• GMST, also known as Greenwich Hour Angle, denotes the angle between the mean 

vernal equinox of date and the Greenwich meridian. 
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where the time argument is  

 

36525

2451545-JD(UT1)=T
                

(5.12)
 

 

which specifies the time in Julian centuries of Universal Time elapsed since 1st Jan 

2000. 

• Greenwich Apparent Sidereal Time (GAST), which represents the hour angle of the 

true equinox. 

• TDB (barycentric dynamical time) is designated as the coordinate time in the 

barycentric frame of the solar system for a description of planetary and lunar 

motion. It differs from TT due to general relativistic effects. TDB is used to 

determine the positions of the solar system bodies, nutation and precession angles. 

 

5.3.2 Reference Systems 

 

The motion of a satellite is described within a reference frame that has its origin at the 

centre of the Earth but is free from rotation, known as a celestial reference frame 

(Montenbruck and Gill, 2000). SLR ranging of orbiting satellites is observed from 

stations that are fixed to the surface of the Earth which rotate with respect to the 

celestial reference frame. The coordinates of these ground stations are defined within a 

terrestrial reference frame. It is therefore essential to define the relationship between 

these two reference frames. 

 

The J2000 reference system: In FAUST the satellite orbits are defined within the J2000 

reference frame. The origin is defined as the Earth’s centre of mass and the Z and X 

axes are defined as the mean rotation axis of the Earth and the mean equinox at 12 hour 

on 1st January 2000. The origin of this frame undergoes a small acceleration due to the 

annual rotation around the Sun and is therefore referred to as quasi-inertial. 

 

Earth Centred Fixed (ECF) reference system: The origin of this reference frame is 

defined as the centre of mass of the Earth. The Z axis points toward the conventional 
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North Pole, while X is defined by the IERS zero meridian. This is realised by the 

ITRF2000 station coordinates. 

 

True of Date reference system: The origin is defined as the Earth’s centre of mass but 

the X axis is defined by the true equinox of date and Z is perpendicular to the true 

equator of date. 

 

The relationship between these systems is given as 
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 (5.13) 

 

where N  and P , the nutation and precession matrices (Montenbruck and Gill, 2000) 

and x and y are the angles that define polar motion and Ri(α) denotes the rotation 

matrix for an anti-clockwise rotation α about the ith axis.  

 

5.4 Equations of Motion 

 

The equations of motion can be expanded from (Montenbruck and Gill, 2000) 
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to give 
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5.5 Force Model 

 

Precise orbit determination requires us to model the forces that act on a satellite and 

perturb its motion. The main cause of orbital perturbation is the acceleration caused by 

non-spherical mass redistribution within the Earth described by equation 2.12. Gravity 

field theory has been described in more detail in Chapter 2. There are other effects that 

perturb the orbit of a satellite to a lesser degree; these are tidal effects, third body 

attraction, atmospheric drag, solar radiation pressure, Earth reflected radiation due to the 

Earth albedo and infrared radiation and relativistic effects. This therefore gives the 

equation of motion as: 

 

 εa
r

GM
a e += r0 3

 (5.18) 

 

where  

 

654321 aaaaaaa +++++=ε  

 

Each element of εa  as seen in equation 5.17, taken into consideration within FAUST 

will now be briefly described. 

 

=1a Perturbation caused by third body attraction 

=2a Perturbation caused by atmospheric drag 

=3a Perturbation caused by solar radiation pressure 

=4a  Perturbation caused by albedo 

=5a  Perturbation caused by tidal effects 

=6a  Perturbation caused by relativistic effects 

 

5.5.1 Third Body Attraction ( 1a ) 
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As well as the Sun and Moon the planets cause a gravitational attraction that is large 

enough to consider in precise orbit determination. These planets are large distances 

from the Earth and can therefore be thought of as point masses. This gives Newtonian 

attraction of the form of equation 2.4. The equations of motion are described in the 

J2000 reference frame, this is a semi-inertial geocentric frame and therefore the effect of 

the gravitational attractions of the other planets is given as the difference between those 

attractions and that of the Earth as described by 
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with similar expressions for x and y (Boomkamp, 1998). According to (Melbourne, 

1983) the only bodies in the solar system for which equation  5.18 is non-negligible are, 

in order of importance, Sun, Moon, Venus, Jupiter, Mars and Mercury.  

 

5.5.2 Atmospheric Drag ( 2a ) 

 

Atmospheric drag is the largest non-gravitational force acting on low orbiting satellites 

but has near negligible effect at higher altitude at which the LAGEOS satellites orbit. 

The effect of the atmosphere on the satellite depends on (Seeber, 2003): 

 

• The geometry of the satellite 

• The velocity of the satellite 

• The orientation of the satellite, with respect to the flow 

• The density, temperature and composition of atmospheric gas. 

 

The mathematical representation of this is therefore quite complicated; here the 

acceleration of the satellite is given in the opposite direction to the flow. 
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where sm is the mass of the satellite, A the cross sectional area of the satellite, DC  the 

drag coefficient of the satellite, ),( trρ  the density of the atmosphere and ar& is the 

velocity of the satellite relative to the ambient atmosphere. 

 

5.5.3 Solar Radiation Pressure ( 3a ) 

 

Solar radiation pressure is the force exerted on a satellite by radiation from the Sun. The 

magnitude of its effect on a satellite’s orbit depends upon the satellite mass and surface 

area. The acceleration of a satellite caused by solar radiation pressure is given by 

(Montenbruck and Gill, 2000). 
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where m is the mass of the satellite, n is the normal vector that gives the orientation of 

the surface areaA. ε  is the reflectivity, n is inclined at an angle θ  and the vector Θe

points with  respect to the direction of the Sun. ΘP is the solar radiation pressure 

multiplicative coefficient, AU is the astronomical unit defined as km8105.1 × , Θr the 

satellite-sun distance in astronomical units, and rC is the reflectivity of the satellite and 

)cos(θ is defined as 

 

Θ= enT)cos(θ
 
 

 

where n and Θe are unit vectors. 

 

In equation 5.17 v is the shadow function: 

 

v = 0, satellite is in the Earth’s shadow, 

v = 1, satellite is in sunlight, and 

0 < v < 1, satellite is in the penumbra. 



78 
 

 

5.5.4 Albedo ( 4a ) 

 

Albedo is solar radiation pressure that has been reflected back onto the satellite by the 

Earth as well as the infra red radiation produced by the Earth’s black body temperature 

(Wang, 2004). Once again the effect on the satellite is proportional to the surface area of 

the satellite and also to the reflectivity of the satellite. The perturbing acceleration is 

written as (Montenbruck and Gill, 2000). 
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where SP is the Sun constant (quotient of solar flux and velocity of light in the 

Astronomical Unit), 
m

A
 is the cross section area of the satellite as seen from the Sun 

divided by its mass, andrC is the reflectivity of the satellite. 

 

5.5.5 Tidal Effects ( 5a ) 

 

The tidal effects caused by the Moon and the Sun cause changes in the geopotential of 

the Earth. The effect caused by the solid Earth tides is expressed as 
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where dm is the mass of the disturbing body, dr is the geocentric position vector of the 

disturbing body, θ  is the angle between the geocentric position vector r  of the satellite 

and dr and 2k is the degree-2 Love number. 

 

The effect of ocean tides on the Earth’s geopotential is more difficult to model because 

of irregular coastlines. It is possible to use a global tide model e.g. (Eanes, 1994) to 
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compute for each point P  on the ocean’s surface the tidal heights and thus the total 

induced mass variations (Seeber, 2003): 

 

 σρ dtPhdmp ),(0=  (5.24) 

 

where 0P is the average density of water, t is the time and σd  is a surface element. The 

variation of the potential is given by 
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where 0nP are the Legendre polynomials, 'nk are the deformation coefficients and ψ is 

the angle between the initial point A and the surface point P. 

 

5.5.6 Relativistic Effects ( 6a ) 

 

According to McCarthy and Petit (2003) the correction to the satellite equations of 

motion for relativistic effects is given by 
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5.5.7 Tropospheric Correction 

 

The tropospheric model used within the FAUST software is the method described by 

Marini and Murray (1973) 
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where, 

 =∆R range correction in metres 

 E = true elevation of satellite 

 P0 = atmospheric pressure at the laser site 

 T0 = atmospheric temperature at the laser site 

 e0 = water vapour pressure at the laser site 

( )λf  = laser frequency parameter 

( )Hf ,φ  = laser site function, and  

φ = geodetic latitude 

 

5.5.8 Magnitude of Perturbations 

 
Table 5.1 shows the relative magnitude of the accelerations caused by the 

aforementioned perturbations. It presents the accelerations acting on the Earth sensing 

satellite ENVISAT at an altitude of near 800 km given as an example of how the effects 

of the processes described above can affect satellite motion only. The effects on the 

LAGEOS satellites will be different, particularly in respect of atmospheric drag which 

is negligible due to the altitude of the LAGEOS satellites. 
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i  Cause Magnitude of accelerations 

1 Earth’s oblateness C20 10-3 

1 High-order geopotential harmonics: e.g. l =18, 

m =18 

10-8 

2 Perturbation due to the Moon 10-7 

2 Perturbation due to the Sun 10-8 

2 Perturbation due to other planets (e.g. Venus) 10-11 

2 Indirect oblateness of the Earth 10-12 

2 Indirect oblateness of the Moon 10-15 

3 Atmospheric drag 10-8 

4 Solar radiation pressure 10-8 

5 Earth radiation pressure 10-9 

6 Solid Earth tides 10-8 

6 Ocean tides 10-9 

7 General relativistic correction 10-10 

Table 5.1 The orders of magnitude for various perturbing forces on ENVISAT (Montenbruck and 
Gill, 2000) 
 
 
5.6 Integration of Equations of Motion 

 

There are two methods of integrating the equations of motion of an Earth satellite 

(Seeber, 2003). These are analytical integration and numerical integration.  

 

In analytical integration we attempt to find algebraic expressions for the forces acting 

on the satellite and integrate them in closed form. In this case we would define the 

Keplerian elements of the satellite’s orbit and use Lagrange’s equation of motion  
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where 

 

a  =  axis of the oscillating ellipse 

e  = eccentricity, 

i  = inclination of the orbit with respect to the reference plane 

Ω  = right ascension of the ascending node 

ω  = argument of perigee 

M , f and E are mean anomaly, true anomaly and eccentric anomaly respectively. 

n  = is the mean angular velocity of the satellite 

p = = ( )21 ea −⋅  

 

R, S and W  are three components decomposed from εa  i.e., radial, perpendicular to 

radius in the instantaneous orbital plane and normal to the orbital plane. 

 

Numerical integration is the more widely used of the two methods, due to the increased 

complexity of the force modelling and the need for high accuracy (Seeber, 2003). It 

differs from the analytical method as all forces acting on a satellite at a particular 
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position are explicitly calculated and then used as starting conditions for a step wise 

integration, therefore the accelerations are integrated directly (Seeber, 2003). 

 

5.7 Precise Orbit Determination Using FAUST 

 

Newcastle University’s POD software FAUST (Boomkamp, 1998) is a multi satellite, 

multi arc satellite orbit determination software. It uses a least squares process to 

minimise the sum of the residuals to obtain the best position of the satellite at a specific 

epoch. FAUST can process data from DORIS, PRARE and SLR as well as satellite 

altimetry (raw heights and crossovers), GRACE intersatellite range-rate data and 

Cartesian positioning derived independently from say GNSS tracking. 

 

5.7.1 Modifications to FAUST 

 

In the initial stages of this project several modifications were made to the FAUST 

software for the purposes of this thesis. It was essential that FAUST was able to 

calculate ERPs so that these could be used later to investigate the relationships between 

gravity, angular momentum and Earth rotation. Other corrections were also added to 

bring FAUST in line with IERS conventions. The major changes and corrections are 

discussed below. 

 

5.7.1.1 Earth Rotation Parameters 

 

Determining ERPs over a long period of time was an essential part of this project. The 

FAUST software therefore needed to be modified to allow it to solve for XP, YP, LOD 

and UT1. The basic concept of SLR is shown here. 

 

 

 



 

 

 

Figure 
 

 

 

 

Figure 
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Figure 5.2 Principle of Satellite Laser Ranging (SLR) 

Figure 5.3 Principle of Satellite Laser Ranging (SLR) 2 (II)

 

 (I) 

 
2 (II) 
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where  

 

R = radius of Earth 

h = altitude 

ρ = range of satellite from station 

R’ = distance from centre of Earth to satellite 

H = hour angle 

δ’ = satellite declination 

δ = station Latitude 

 

and 

 

HS coscos'coscos'sincos δδδδ +=  

 

The software was modified so that satellites could be used to solve for ERPs. The 

observation equation for satellites being tracked by SLR for example is given by 

 

 )coscos'coscos'(sin'2'222 HRRRR δδδδρ +−+=  (5.34) 

 

Partial differentiation of this equation yields the equations 5.34 and 5.35 below, which 

have been used within the least squares process in FAUST to solve for ERPs. 

 

If there is a small change in UT1-UTC, then the effect is equivalent to increasing UT1 

by this amount, with UTC fixed. This yields: 
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 (5.35) 

 
where the factor 1.0027379 is the ratio of the rate of change of sidereal time in a solar 

day. 
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From the partial differential for UT1-UTC we can obtain the partial differential for 

LOD at the midpoint of the arc as given below. 

 

 t
UTCUTLOD )1( −∂

∂=
∂

∂ ρρ
 (5.36) 

 

We will now look at the coordinates of the pole. Let XP and YP be the coordinates of 

the pole and θ  and λ the latitude and longitude of the station relative to the equator of 

date (i.e. the Earth’s equator at a particular epoch is used as the fundamental plane of 

the reference system). Finally let mθ  and mλ be the latitude and longitude of the 

station relative to BIH or CIO in an Earth fixed frame. The latitude and longitude of the 

station relative to the equator of date are given by Heiskanen and Moritz, 1967: 
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This in turn gives the partial derivatives with respect to the range from SLR to be 

 

 mm
H

m
Xp

H

HXpXp
λθρλ

θ
ρρθ

θ
ρρ

sintancos
∂
∂+

∂
∂=

∂
∂

∂
∂+

∂
∂

∂
∂=

∂
∂

 (5.38) 

 

 mm
H

m
Yp

H

HYpYp
λθρλ

θ
ρρθ

θ
ρρ

costansin
∂
∂+

∂
∂−=

∂
∂

∂
∂+

∂
∂

∂
∂=

∂
∂

 (5.39) 

 

All equations are referenced to the true equator and equinox of date. 

 

5.7.1.2 Ocean Tide Loading 

 

Prior to this study FAUST did not account for deformations of the Earth caused by 

Ocean Tide Loading (OTL). Corrections to the a-priori station coordinates to account 

for this have been added and tested within the FAUST software. The mathematical 

models used for this came from IERS Conventions 2003 (McCarthy and Petit, 2003) 

with help from Dr Nigel Penna at Newcastle University whose own OTL software was 
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modified and implemented within FAUST. Corrections for 3 dimensional ocean tide 

loading are computed by 
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where 

 

=∆c displacement component (radial, west, south) 

jK = amplitude 

jω = velocity 

=jχ astronomical argument at ht 0=  

=ckA amplitudes of ocean tides 

=Φck phase of ocean tides 

 

The phase and amplitudes are taken from the relevant model and input in equation 5.40 

(McCarthy and Petit, 2003). OTL has been tested and is now being successfully used to 

process satellite data within FAUST. 

 

5.7.1.3 Relativistic effects 

 

The relativistic propagation correction for laser ranging is due to space-time curvature 

near the Earth. It amounts to about 1cm. The correction is given in seconds t∆  . The 
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equations are given below and are taken from the IERS Conventions 2003 (McCarthy 

and Petit, 2003). 
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where 

 

=Stax x position of the station 

=Satx x position of the satellite  

=1R distance from the body’s centre (of the Earth) to the beginning of the light path 

=2R distance from the body’s centre (of the Earth) to the end of the light path 

=c speed of light 

GM = gravitational parameter of the deflecting body 

=γ PPN parameter equal to 1 in general relativity 

 

5.7.1.4 SINEX 

 

Data submitted to and used by the ILRS are required to be in SINEX format. The 

SINEX format has been used since 1995 by the International GNSS Service (IGS) and 

was developed as a tool for storing GPS products. SINEX was further developed to 

handle other geodetic techniques and the ILRS and International VLBI Service (IVS) 

use it for their projects which meant that additions were made to the then SINEX 1.00 to 

become SINEX 2.00.  The format of output from FAUST at the start of this project was 

an in house format only used in FAUST. FAUST now outputs results in both the original 

format and in SINEX version 2.00. 
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5.7.2 Orbit Determination Strategy 

 

Precise orbit determination of LAGEOS I and LAGEOS II for the period July 1996 – 

March 2007 from satellite laser tracking has been processed for this study. The SLR 

data (normal points) utilised in this study were obtained from the ILRS data archive 

hosted by the Crustal Dynamics Data Information System (CDDIS) in the MERIT-II 

data format. All available data in this data set was used in this study, although some 

data was rejected based on rejection criteria that will be explained later in this thesis. 

 

Although all the available data in the MERIT-II data set has been used the number and 

distribution of SLR stations is far from ideal. Figure 5.4 shows the locations of all the 

SLR stations and their current status. 

 

 

 
Figure 5.4 Map showing the distribution of SLR stations (ILRS, 2011) 
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Figure 5.5 shows the relative average single shot RMS in mm for LAGEOS (column 

14), from different ILRS stations, for the last quarter in 2007, with RMS values ranging 

from 5.8 mm to 70 mm. The ILRS produce a report similar to this each quarter. Below 

is a description of what is contained in each column of the report card. By reference to 

these report cards the data used in the study can be identified. 

 

Column 1 is the station location name.  

Column 2 is the monument marker number.  

Column 3 is the LEO pass total during the past 12 months.  

Column 4 is the LAGEOS pass total during the past 12 months.  

Column 5 is the high satellite pass total during the past 12 months.  

Column 6 is the pass total (i.e., all satellites) during the past 12 months.  

Column 7 is the LEO NP total during the past 12 months.  

Column 8 is the LAGEOS NP total during the past 12 months.  

Column 9 is the high satellite NP total during the past 12 months.  

Column 10 is the NP total (i.e., all satellites) during the past 12 months.  

Column 11 is the total tracking minutes (i.e., all satellites) during the past 12 months.  

Column 12 is the average single-shot calibration RMS (mm), during the last quarter.  

Column 13 is the average single-shot Starlette RMS (mm), during the last quarter.  

Column 14 is the average single-shot LAGEOS RMS (mm), during the last quarter. 

 

Station dependant weights of between 10 cm and 30 cm have been chosen according to 

the quality of the data from a particular station. These weights have been chosen by 

analysing data from the ILRS (ILRS, 2007). Any station with a LAGEOS RMS greater 

than 20 mm has been weighted using 30 cm in the solution. All other stations are 

weighted using 10 cm. 
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Figure 5.5 Table showing the relative quality of SLR stations 4th quarter 2007 (ILRS, 2007) 
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Pre-processing of the normal point MERIT-II data was carried out to extract the one 

way ranges, time tags and meteorological data. Also the data is sorted chronologically: 

duplicates are removed and ranging and timing biases corrected using data provided by 

the ILRS. Finally the data is converted into a format readable by FAUST. 

 

In the first instance a base solution was calculated within the FAUST software. This 

base solution will be used firstly to validate the implementation of the new processing 

methods within FAUST and then as a means of testing orbit determination processes 

using a new method for calculating the low degree harmonics of the Earth’s gravity 

field. It also defines the processing strategy that will be used throughout this thesis, the 

models and constraints described below will be utilised throughout the work carried out 

in this thesis unless otherwise stated. 

 

To produce the base solution and to reduce errors in modelling, a satellite state vector 

(positions and velocities) was estimated over a 5 day arc, along with two empirical 

along track accelerations and one solar radiation pressure parameter. As the LAGEOS 

satellites are effectively above the Earth’s atmosphere air-drag is negligible. However, 

there are some drag-like effects which are modelled as constant terms over 2.5 days and 

estimated within the solution. The individual 5 day arcs were grouped together into 15 

day arcs over which global parameters (e.g. station coordinates, ERPs, gravity field 

harmonics) were to be estimated. This is because the global parameters give more 

reliable results when solved for over longer periods of time and the satellite dependant 

parameters are better solved over shorter arcs. These sets of three 5 day arcs were first 

processed with no global parameters and iterated until convergence. After convergence 

any stations with less than 20 measurements and/or with a post fit RMS of over 5 cm 

were removed from the orbits. These orbits were then re-processed again until 

convergence was obtained. 

 

To create the base solution the global parameters were now introduced. In the base 

solution the ERPs XP, YP and LOD were estimated at midday on a daily basis using the 

a-priori values taken from the IERS C04 file that have been linearly interpolated to give 

parameters at midday. The IERS C04 data was used as a-priori for the ERPs as at the 

time of writing it was the most up to date long term data set for ERPs. The C04 daily 

values for UT1-UTC were held fixed to place a constraint on the LOD values. In 
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addition to Earth rotation parameters the station coordinates for each of the stations used 

in any particular 15 day arc were also estimated.  

 

The a-priori estimates for station coordinates were taken from ITRF2000. The 

computations were obtained by placing weak constraints of 1m on station coordinates 

and the equivalent of 1m surface displacement on polar coordinates while holding UT1-

UTC fixed.  The estimation of UT1-UTC and LOD are not independent as Earth 

rotation cannot be separated from satellite motion. In particular, errors in the satellite 

force model ascending node cannot be separated from LOD. However, by assuming that 

the mis-modelling gives rise to long –term errors in the node, the seasonal and shorter 

term signatures in the LOD can be attributed to mass and motion excitations. Orbital 

modelling included the GGM01C gravity field model (Tapley et al., 2003) to degree and 

order 20 and the CSR4.0 (Eanes, 1994) ocean tidal model.  

 

The same constraints have been used in all solutions in this thesis unless otherwise 

stated. The same models have been used as input to FAUST in all solutions mentioned 

in this thesis unless otherwise stated. 

 

To begin with FAUST was utilised as described above to determine orbits and estimates 

of ERPs and station coordinates over the specified period. No estimates for gravity field 

coefficients have been calculated in the base solution.  

 

Using the base solution as the starting point, orbits were then estimated by solving for 

low degree harmonics of the Earth’s gravity field up to degree three. By solving for 

gravity field harmonics it is only possible to compute one estimate for each harmonic 

over the 15 day arc as 5 days is too short. 

 

5.7.2.1 Determination of the Satellite Orbits 
 

The first solution estimated using FAUST was a solution estimating only the state vector, 

the two along track empirical accelerations over each 5 day arc and a single solar 

radiation pressure coefficient per 5 day arc. This was undertaken to have an initial 

validation of the addition of ERPs to the FAUST software. The results in Figure 5.6 
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show that all post fit residual RMS values for the estimation procedure without solving 

for any global parameters are at the 4 cm level; all post fit residual RMS values are 

below 5 cm with the mean for the combined solution being 3.89 cm and the median 

3.93 cm. 

 

As specified earlier the daily ERPs and the coordinates of the station used in the 

solution are now solved for. This solution is subsequently called the base solution. A 

brief analysis of the base solution orbit will now be undertaken.  Figure 5.7 shows the 

post fit residual RMS of the base solution over the 15 day time periods. This will be 

used as a comparison for all other data sets to be analysed.  

 

 
Figure 5.6 RMS fit of orbit solution solving only for state vectors, 2 along track accelerations and 1 solar 

radiation pressure every 5 days 
 

 

 

It is expected that the estimation of the additional parameters XP, YP and LOD on a 

daily basis would improve the fit to the overall solution shown in Figure 5.6. It can be 

seen that the corresponding 15 day data fit in Figure 5.7 is always less than 2.5 cm. The 

mean fit of the data is 1.35 cm and the median is 1.31 cm. When Figure 5.7 is compared 



95 
 

with Figure 5.6 there is a large improvement in the fit of the orbits with the mean value 

of the combined orbits lowered by 65% and the median lowered by 66%. This gives 

strong supporting evidence to the fact that the ERP procedure has been successfully 

introduced into FAUST. 

 

 
Figure 5.7 RMS fit of base solution; i.e. (solving for state vectors, 2 along track accelerations and 1 solar 

radiation pressure every 5 days and station coordinates and ERPs estimated over 15days) 
 

 
 
Figure 5.8 shows the number of rejected observations per 15 day arc. The number of 

rejected observations decreases with time over the course of the data analysis. This is 

likely to be due to the improvements made in laser technology over the period of the 

data utilised in this study. 
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Figure 5.8 Number of rejected observations for base solution 

 

 

 
Figure 5.9 The difference of RMS fit from the base solution to the RMS fit of the base solution plus 

degree-3 gravity estimates (positive values show improvement with gravity estimates) 
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The base solution is now compared with the RMS fit to the tracking data when solving 

for gravity field harmonics up to degree and order 3. Figure 5.9 shows that by solving 

for degree-3 harmonics of the Earth’s gravity field the overall fit of the orbits are 

improved on 99.6% of the processed arcs.  

 

Figure 5.10 shows the difference in the number of rejected observations arc to arc over 

the processed data period between the base solution and the base solution plus estimates 

of the Earth’s gravity field. The graph shows that the vast majority of arcs (221 out of 

273 or 81%) have used either the same number or a larger number of measurements to 

estimate the orbits. This shows that solving for gravity over a 15 day arc results in a 

large improvement on the overall fit of the orbit compared with using a constant value 

for gravity. 

 

 
Figure 5.10 The difference in the number of rejected observations of the base solution plus degree-3 

gravity estimates (positive values show improvement with gravity estimates) 
 

 

 



98 
 

In addition to this, FAUST was used to compute orbits that use estimates of the gravity 

field harmonics up to degree and order 4. The difference in the low degree gravity field 

harmonics J2, C21 and S21 from the degree-3 solutions and a degree-4 solution will be 

compared in section 5.7.2.3.  

 

Figure 5.11 shows that by solving for higher degree and order terms of the Earth’s 

gravity field there is a further improvement in the post fit residual RMS of the processed 

orbits. 270 (or 99%) out of the 273 arcs estimated obtained either the same or better post 

fit residual RMS than solving for only the degree-3 harmonics. The improvement after 

introducing degree-4 gravity field coefficients can be seen to be less than the 

improvement in fit when first introducing the degree-3 harmonics. The mean 

improvement in post fit residual RMS over the time period when adding the degree-4 

harmonics is 0.07 cm.  

 

 
Figure 5.11 The difference of RMS fit between the degree-3 gravity estimates and the degree-4 gravity 

estimates (positive values show improvement with degree-4 gravity estimates) 
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Finally Figure 5.12 shows the difference in the number of rejected observations between 

the orbits solved with degree-3 gravity field harmonics and degree-4 gravity field 

harmonics. In this graph the improvement is less obvious but still shows an 

improvement on the number of observations used in the processing. 

 

 
Figure 5.12 The difference in the number of rejected observations between the degree-3 gravity estimates 
and the degree-4 gravity estimates (positive values show improvement with degree-4 gravity estimates) 

 

This section has analysed the post fit residual RMS of the orbits solved using the 

FAUST software for the same raw data set (although in each case different numbers of 

observations have been rejected) while solving for different parameters. These and the 

parameters estimated will be used throughout this thesis as a basis for comparing 

outputs from the edited versions of FAUST that are to be tested as the fundamental 

research topic of this thesis. The results show in the first instance the orbital fit of the 

processed data in what is to be called the ‘base solution’ that includes ERPs and then 

compared this solution with solutions that solve for the Earth’s gravity field. This 

analysis has given some initial evidence that the base solution using ERPs is a good 

addition to the software and that the implementation has been successful. This 

hypothesis will be further investigated in the following section.  
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5.7.2.2 Earth Rotation Parameters 
 
 
FAUST has been used to calculate the combined orbits of LAGEOS I and LAGEOS II 

in several different scenarios. In the base solution and the base solution plus degree-3 

gravity field harmonics and degree-4 gravity field harmonics the ERPs have been 

solved for as described at the beginning of section 5.7.2. In this section a comparison 

will be made between the ERP estimates calculated in each of these scenarios compared 

with the IERS C04 ERP values used as a-priori values in the solution.  

 

 
Figure 5.13 Comparison of LOD from IERS C04 and from FAUST (base solution) 

 
 

Figure 5.13 shows a comparison of the LOD given by the IERS C04 time series, used as 

the a-priori input for this study, and the solution for ERPs from FAUST. A similar 

comparison between the coordinates of the pole is also shown in Figure 5.14. The two 

solutions are so close to each other on these scales that to compare them the difference 

of the two time series has been taken. These differences are shown in Figure 5.15  



 

Figure 5.14 Comparison of XP plotted against YP from IERS C04 and from 
 
 
Figure 5.15 shows the difference between the IERS C04 Earth rotation time series and 

the estimates for the same parameters from 

derived from a combination of several space geodetic tech

Ranging (LLR), SLR, VLBI, and more recently GPS and DORIS. In terms of the values 

of XP, YP and LOD only SLR, VLBI, GPS and DORIS are used in their derivation. The 

combination of these parameters is not equally weighted, based 

contributions from GPS, with DORIS being weighted the least. Measurement from 

VLBI and SLR are weighted approximately equally and their importance lies 

somewhere between that of GPS and DORIS 

 
The values plotted in 

larger than four times that of the standard deviation of the time series. This is to remove 

any outliers that are likely to be due to solutions that demonstrate a poor post residual 

RMS fit. In this thesis the C04 ERP time se

case it should be expected that by differencing 

assumed to be the truth that the estimated solution differences would oscillate around a 

zero mean. The means of both the 

is most likely to be due to the fact that the C04 time series is a combination of Earth 
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Comparison of XP plotted against YP from IERS C04 and from 

shows the difference between the IERS C04 Earth rotation time series and 

the estimates for the same parameters from FAUST. The IERS C04 time series has been 

derived from a combination of several space geodetic techniques including Lunar Laser 

Ranging (LLR), SLR, VLBI, and more recently GPS and DORIS. In terms of the values 

of XP, YP and LOD only SLR, VLBI, GPS and DORIS are used in their derivation. The 

combination of these parameters is not equally weighted, based 

contributions from GPS, with DORIS being weighted the least. Measurement from 

VLBI and SLR are weighted approximately equally and their importance lies 

somewhere between that of GPS and DORIS (Bizouard and Gambis, 2009

The values plotted in Figure 5.15 have been filtered by excluding any value that is 

larger than four times that of the standard deviation of the time series. This is to remove 

any outliers that are likely to be due to solutions that demonstrate a poor post residual 

RMS fit. In this thesis the C04 ERP time series is being taken as the standard. In this 

case it should be expected that by differencing FAUST’s solution with a solution that is 

assumed to be the truth that the estimated solution differences would oscillate around a 

zero mean. The means of both the XP and YP time series show a positive bias. This bias 

is most likely to be due to the fact that the C04 time series is a combination of Earth 

 
Comparison of XP plotted against YP from IERS C04 and from FAUST (base solution) 

shows the difference between the IERS C04 Earth rotation time series and 

. The IERS C04 time series has been 

niques including Lunar Laser 

Ranging (LLR), SLR, VLBI, and more recently GPS and DORIS. In terms of the values 

of XP, YP and LOD only SLR, VLBI, GPS and DORIS are used in their derivation. The 

combination of these parameters is not equally weighted, based more heavily on 

contributions from GPS, with DORIS being weighted the least. Measurement from 

VLBI and SLR are weighted approximately equally and their importance lies 

Bizouard and Gambis, 2009).  

by excluding any value that is 

larger than four times that of the standard deviation of the time series. This is to remove 

any outliers that are likely to be due to solutions that demonstrate a poor post residual 

ries is being taken as the standard. In this 

’s solution with a solution that is 

assumed to be the truth that the estimated solution differences would oscillate around a 

XP and YP time series show a positive bias. This bias 

is most likely to be due to the fact that the C04 time series is a combination of Earth 
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rotation products while the FAUST solution is SLR only. The relatively poor 

distribution of SLR stations, when compared with the distribution of GPS stations, may 

also be a contributing factor in this effect.  

 

The RMS values show that the precision of the FAUST time series is approximately 0.6 

mas and 0.5 mas when the bias is present. If this bias is removed these values fall to 0.2 

mas and 0.4 respectively. The mean of the LOD time series is zero at three significant 

figures and shows a precision of 0.1 ms. 

 
Figure 5.15 Difference between ERPs from IERS C04 and solutions from FAUST (base solution) 

 

To analyse how the ERP values from FAUST have changed after introducing degree-3 

gravity estimates into the estimation process the difference between FAUST’s degree-3 

gravity solutions and the C04 ERP values are plotted in Figure 5.16. 

 
The introduction of degree-3 gravity estimates to the process has improved both the 

mean values of XP, YP and LOD, the standard deviations of the time series and the 

RMS error when compared with the C04 time series. 
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Figure 5.16 Difference between ERPs from IERS C04 and solutions from FAUST (degree-3 gravity 

solution) 
 
 

 
Figure 5.17 Difference between ERPs from IERS C04 and solutions from FAUST (degree-4 gravity 

solution) 
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Figure 5.17 shows the results of the FAUST solution using estimates of up to degree and 

order 4 of the Earth’s gravity field. The results show that the differences between the 

degree-3 solution and the degree-4 solution are small, but slightly degraded in most 

cases. It should be noted that there is now a small positive bias in the LOD time series. 

The reason that this solution is worse when the fit of the orbit is the best indicates over 

parameterization. This is most likely a consequence of the high correlations that are 

experienced between the degree-2 and degree-4 spherical harmonics of the Earth’s 

gravity field and their relationship with the ERPs (as described in Chapter 3). 

 

The comparison with the C04 time series has shown that there are some differences 

between the data sets especially in the mean values of XP and YP. It is likely that these 

differences can be explained by the different geodetic data used to derive the combined 

C04 solution compared to an SLR only solution. 

 

5.7.2.3 Gravity Field 

 
As stated previously FAUST has been used to estimate orbits for LAGEOS I and II in 

several different scenarios.  

 

Two of these scenarios have produced the low degree harmonics of the gravity field of 

which a large part of this thesis is primarily concerned.  This section will compare the 

results from each of these scenarios with low degree harmonics of the Earth’s gravity 

field calculated from other sources. 

 

Figure 5.18 shows a comparison of the degree-2 spherical harmonics of the Earth’s 

gravity field estimated from three different space geodetic techniques, namely SLR, 

GPS and GRACE. The SLR results are from FAUST using the base solution plus 

solving for up to degree and order 3 gravity harmonics. GPS data is taken from weekly 

GPS Solution INdependent EXchange (SINEX) files (re-analysed) from the 

International GNSS Service (IGS) analysis centre at the Scripps Institution of 

Oceanography (SIO) [ftp://garner.ucsd.edu/pub/combinations]. The data was 

downloaded in 2007, further details on the data set can be found in Nikolaidis, 2002. 

The SINEX was processed and the gravity field harmonics calculated from this process 
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were provided for this analysis by Dr David Lavellee. The GRACE data is taken from 

GSM and GAC geopotential products from the Center for Space Research (CSR) 

Release 4. 

 
Figure 5.18 Comparison of degree-2 (with FAUST Solving for up to degree-3) spherical harmonics of the 

Earth’s gravity field from GPS, GRACE and SLR. 
 

 
Figure 5.19 Comparison of degree-2 (with FAUST Solving for up to degree-4) spherical harmonics of the 

Earth’s gravity field from GPS, GRACE and SLR. 
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From Figure 5.18 it can be seen that there is reasonable agreement between the results 

from the three different techniques although the SLR measurements are noisier than 

GPS and GRACE. This may be to do with the relatively sparse number of SLR stations 

and therefore a worse geometry and their varying quality. The agreement is best on the 

J2 harmonic and worst on the C21 harmonic. 

 

Figure 5.19 again shows a comparison of the degree-2 spherical harmonics of the 

Earth’s gravity field estimated from three different space geodetic techniques, namely 

SLR, GPS and GRACE. The SLR results this time are estimated using FAUST for the 

base solution plus solving for up to degree and order 4 gravity harmonics. When Figure 

5.19 is compared with Figure 5.18 it can clearly be seen that the SLR low degree 

harmonics agree less with GPS and GRACE when introducing estimates for the degree-

4 harmonics of the Earth’s gravity field. This is most likely due to the high correlations 

between the degree-2 harmonics and the degree-4 harmonics within the least squares 

process. 

 

5.8 Conclusion  

 
This chapter has described the method used to estimate the orbits of LAGEOS I and 

LAGEOS II using the precise orbit determination software FAUST. The mathematical 

models used within FAUST to compute the orbit as well as the models used as input into 

the software have been explained to provide an understanding of how the calculations 

were carried out. 

 

As part of this thesis the FAUST software was modified in several ways to bring it in 

line with the IERS conventions. These included adding the ability to solve for ERPs, the 

introduction of an ocean tide loading correction and a correction for relativistic effects 

on the satellites and the ability to output the results in SINEX format. 

 

Finally, the method for producing the orbits has been described. Orbits have been 

processed over three 5 day arcs to give a single combined 15 day arc over which global 

parameters such as ERPs, station coordinates and gravity can be solved. A base orbit 

solution has been defined for comparison purposes as well as a short analysis of the 
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ERP estimates and the gravity field estimates with comparison against similar values 

computed from other geodetic techniques. These comparisons have shown the SLR 

results from FAUST compare reasonably well with results from other geodetic 

techniques. This is a fundamental issue that needed to be addressed before the next 

stage of the thesis can proceed. 
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Chapter 6  

 

6 Excitation Functions 

 
6.1 Introduction 

 

Space geodetic techniques such as SLR, DORIS, GPS and VLBI are used to calculate 

regular time series of ERPs for rotational dynamics and station coordinates for 

estimating plate tectonics. Space geodetic techniques can also be used to investigate 

surface mass redistribution in the atmosphere, oceans and continental water storage as 

these variations cause changes in the Earth’s gravity field harmonics (Wahr et al., 1998) 

that have a direct effect on the orbits of the satellites. Degree-2 gravitational variations 

can be estimated from accurately obtained Earth rotation variations (Chen and Wilson, 

2003a). ∆J2 (defined as J2 = -√5 C20 ), ∆C21 and ∆S21 are estimated using Earth 

rotation variations calculated within FAUST, from the SLR estimated orbits of the 

LAGEOS satellites, and excitation functions calculated using angular momentum data 

derived from geophysical models. 

  

6.2 Comparison of Excitation Functions from LAGEOS and Geophysical Data 

from Models 

 

As has been established in the preceding chapters, variations in the Earth’s rotation for 

periods of less than a few years are forced mainly by the mass redistribution of the 

atmosphere, oceans and hydrosphere/cryosphere via the conservation of angular 

momentum. The causes of Earth rotation variations can be divided into two categories. 

These are (1) surface mass load contributions from atmospheric surface pressure, 

continental water storage (including snow and ice), ocean bottom pressure, and (2) 

motion contributions caused by wind and ocean currents which cause an exchange of 

angular momentum between the atmosphere, oceans and the Earth. 

 

Previous studies of surface mass redistribution from space geodetic techniques have 

utilised satellite laser ranging to passive geodetic satellites such as LAGEOS, Starlette, 

Stella or Ajisai (Dong et al., 1996, Cheng et al., 1997; Cazenave et al., 1999; Cheng and 
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Tapley, 1999; Nerem et al., 2000; Cox and Chao, 2002; Moore et al., 2005) to 

investigate secular variations in zonal harmonics and annual and semi-annual variability 

in lower degree and order harmonics. Several of these studies have shown good 

agreement between the geodetic results and the geophysical models.  

 

Space geodetic techniques provide ERP parameters at daily intervals with the possibility 

of even shorter time scales using GPS. However, the typically low sensitivity of orbits 

to the gravity field variability or the high correlation between the harmonics means that 

there is little possibility of space geodetic techniques providing accurate measurements 

of mass change, even at low spatial resolutions, at intervals of less than a few 

days/weeks (e.g. SLR, GPS) or weeks/months (GRACE). However, the disparity in 

temporal resolutions raises the possibility of simultaneously recovering and using 

higher frequency degree-2 harmonics from the ERP data (on utilizing angular 

momentum data) within an orbital determination procedure.  

 

Excitations of the Earth rotation due to mass variations are comparable with changes in 

the degree-2 spherical harmonics of the Earth’s gravity field (Chen and Wilson, 2003b; 

Hancock and Moore, 2007; Wahr, 1982; Eubanks, 1993). The excitation in the Earth’s 

rotation caused by mass variations cannot be separated from the variations caused by 

motion when using geodetic methods. Geophysical models are used to estimate the 

excitation caused by both the mass term and the motion term (see Chapter 4 of this 

thesis). The excitation caused by mass mass
iχ can be calculated by using the observed 

excitation obs
iχ calculated from the ERPs estimated simultaneously from LAGEOS I and 

II. By utilizing the relationship between the conservation of angular momentum and 

Earth rotation described in Chapter 3, the relationship between the observed excitation 

functions and polar motion is given in complex number notation as  

 

 

 
( )

( ) ( ) ; r
r

i dp C A
t p t

dt A
χ σ

σ
−= + = Ω  (6.1) 
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where  

 

( )tχ = the observed excitation functions from polar motion p at timet  

rσ =  the frequency of the Chandler wobble 

Ω = the mean rotation rate of the Earth 

C =  Earth’s Polar moment of inertia  

A=  Earth’s Equatorial moment of inertia  

 

Similarly the relationship between excitation functions and LOD is given as 

 

 3
0

( )
( )

t
tχ ∆Λ=

Λ
 (6.2) 

 

where 

 

3 ( )tχ =  the observed excitation functions from LOD at time t  

∆Λ = the LOD measured from LAGEOS I and II  

0Λ = the nominal value of LOD, given as 86400 seconds 

 
The equations for the relationship between the angular momentum quantities taken from 

the geophysical models are given in Chapter 3. The estimated excitation caused by 

motion estimated from geophysical models is now removed from the total observed 

excitation to yield the excitation caused by mass variations. 

 

 ( ) ( ) ( )m ass obs m otion
i i it t tχ χ χ= +  (6.3) 

 

 

The period of study for this research covers 1996 – 2008 inclusive. Geophysical data 

has been obtained from several sources. Atmospheric Angular Momentum (AAM) 

terms for both mass and motion have been derived from the NCEP/NCAR reanalysis 

(Salstein and Rosen, 1997). The atmospheric data is provided every 6 hours. For the 

Oceanic Angular Momentum (OAM) both mass and motion terms have been taken from 

the JPL ECCO circulation model kf049f. ECCO is based on an earlier MIT global ocean 
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circulation model (Marotzke et al., 1999), details of which are given by Chen and 

Wilson (2003b). Hydrological Angular Momentum (HAM) mass values were derived 

from the NCEP hydrological mass dataset. At the time of writing the HAM data was 

only available until the end of 2004 and therefore any comparisons of excitation 

functions that include HAM are between 1996 and 2004. The NCEP data contains 

information regarding soil moisture and snow cover. Water storage is taken as the sum 

of soil wetness and snow water with the former consisting of two layers of thickness 10 

cm and 190 cm. The soil and snow water were converted into daily equivalent water 

heights. It is noted that the data does not take into account any motion terms that are 

caused by rivers but such an omission will have negligible impact on the results. Both 

OAM and HAM are provided as daily values. The AAM data was therefore reduced to 

daily data compatible with both OAM and HAM. To do this simple weighting was used 

of (1/8, 1/4, 1/4, 1/4, 1/8) over five values. 

 

How well the excitation functions derived from ERP estimates derived within FAUST 

match with the excitation functions from geophysical models, should be a good 

indicator of the projected performance of using the said parameters within the orbit 

determination process. Prior to comparison of the excitation functions from geophysical 

data and from LAGEOS, it should be noted that the effects of long period solid earth 

and ocean tides have been removed from the LOD data and long period ocean tides 

from the polar motion data by reference to the IERS conventions (McCarthy and Petit, 

2003). Also the ERP values have been de-trended to eliminate the long period core-

mantle interaction which, although non-linear over geological time, can be taken as 

secular over the period of this study. A long term signature was also removed from the 

LOD to account for the accumulation of errors due to aliasing from satellite motion, 

core mantle interaction and the unmodelled 18.6 yr tide. This was done by fitting and 

removing a polynomial from the data. 
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Figure 6.1 Comparison of ��, �� and ��, combined mass and motion terms, daily values, derived from 

LAGEOS ERP estimates and geophysical models 
 

 

 
Figure 6.2 Comparison of ��, �� and ��, combined mass and motion terms 15 day averages, derived 

from LAGEOS ERP estimates and geophysical models 
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Figure 6.1 shows the three excitation functions (daily values) as explained in Chapters 3 

and 4  	
, 	� and 	�, containing both mass and motion terms, in mas for  	
, 	� and ms 

for 	�  from LAGEOS derived Earth rotation values plotted against the equivalent 

values computed from the combination of atmosphere, ocean and hydrological angular 

momentum models (NCEP data used). The means have been removed from all the data. 

 
Figure 6.2 shows the three excitation functions (weighted 15 day averages) of  	
, 	�  

and 	� containing both mass and motion terms, in mas for  	
, 	� and ms for 	� from 

LAGEOS Earth rotation values plotted against the equivalent values computed from the 

combination of atmosphere, ocean and hydrological angular momentum models. 

 

From Figure 6.1 it can clearly be seen that 	�  from both sources are in very good 

agreement with each other at least when looking at the annual/semi annual signals that 

appear in the data. The correlation function gives a value of just 0.671 and this is most 

likely due to the variations on small time scales not matching well. Figure 6.2 adds 

weight to this theory as it shows that the match between the data is very good when the 

high frequency data is removed with the correlation value increasing to 0.885. 

 

The computed excitations from 	
  and  	� are much noisier when computed from the 

LAGEOS ERP estimates than from the geophysical models on a daily basis. There is 

not a very good match between the data over short periods and thus the correlation 

values are very small for both 	
 and 	�. Taking a closer look at the data there is much 

better agreement between the data over longer periods. Again this is confirmed by 

comparing the excitation functions that have been averaged over 15 days shown in 

Figure 6.2. The correlation values have also increased (0.680 from 0.068 for 	
 and 

0.69 from 0.150 for  	� showing that again the agreement is better over the longer terms. 

The residual RMS fit of the data is also much better after the data has been averaged 

over 15 days showing that the agreement is better over the longer terms than over the 

high frequency periods. 
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Figure 6.3 Coherence estimates of ��  (top), ��  (middle) and ��  (bottom) using daily values 
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To investigate the correlation between the excitation functions in more detail a 

coherence estimate has been calculated. Figure 6.3 shows the coherence estimates 

between 	
, 	� and 	� using daily estimates given by: 

 

 
Cxy
f�= 

�Pxy
f��2

Pxx
f�Pyy
f� (6.4) 

 

where Pxx
f� and Pyy
f� are the power spectral densities of x and y and Pxy
f� is the 

cross power spectral density of x and y (Kay, 1988). The coherence is displayed as 

cycles/year against the magnitude of the coherence, where a value of 1 would show 

perfect coherence between the two signals and a value of 0 shows no coherence between 

the two signals at that particular frequency.  

 

Firstly, for 	�, there is very high, 95% significant coherence between the two signals at 

the dominant annual and semi annual periods as well as other lower temporal 

frequencies. This significance although not shown in Figure 6.3 is shown in (Hancock 

and Moore, 2007). The good agreement between the models and LAGEOS at longer 

periods must give optimism for the observed mass from LAGEOS being in good 

agreement with the geophysical data at these periods. This high coherence may be due 

solely to the dominance of the AAM motion term and how well it matches with 

estimates of LOD. The coherence values after 20 cycles/year show much less agreement, 

suggesting that higher frequency terms may not be as well defined. At the lower 

temporal frequencies coherence is once again clearly evident in 	� but less so for 	
, 

particularly at the dominant annual and semi annual period. The weaker agreement in 

 	
 is attributed to the greater contribution of meridional motion terms. However, and 

surprisingly, both 	
 and 	� exhibit relatively high coherence on the higher frequency 

terms up to approximately 50 cycles/year, with  	
 showing the better agreement on the 

higher frequencies than  	�.  

 

These results stimulate further research into the investigation of the residual 

components of the excitation functions to analyse if the errors can be seen in one 
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particular part of the excitation terms. To do this the excitation functions from the 

geophysical models AAM, OAM and HAM, are estimated in both mass and motion 

terms. The separated mass and motion terms can be used to estimate the contribution of 

that specific term to the excitation of polar motion and LOD on a daily basis. Therefore, 

the mass terms from the models can be used to recover the residual values from the 

LAGEOS ERP derived excitation functions (that contain both the excitation 

contributions from mass and motion) which should then equate to the contribution of 

the motion terms and vice versa (see equation 6.3).  

 

 
Figure 6.4  ��  (top), ��  (middle) and ��  (bottom) estimates of the contribution of the motion term to 

excitation 
 
Using this strategy Figure 6.4 shows the contribution of motion from  	
, 	� and 	� 

from 15 day averaged values of excitation functions in mas and ms respectively. Error! 

Reference source not found. shows the contributions of mass from  	
, 	� and 	� from 

15 day averaged values of excitation functions in mas and ms. It is immediately evident 

that the motion term for 	� Figure 6.4has a much better agreement than the mass term 

Figure 6.5 ��  (top), ��  (middle) and ��  (bottom) estimates of the contribution of 

the mass term to excitationFigure 6.5 In the case of 	�  this might have been expected 

due to the dominance of the motion term in the signal meaning any small errors in the 
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definition of the motion term or LOD from LAGEOS will demonstrate itself as a large 

residual when removing the motion term from the LOD derived excitation function. 

This effect can be seen clearly during orbits that are poorly defined as a large spike in 

the time series. If these large errors are removed the agreement between the longer term 

temporal variations such as the annual and semi annual terms still seem to be in fairly 

good agreement with each other. 

 

 
Figure 6.5 ��  (top), ��  (middle) and ��  (bottom) estimates of the contribution of the mass term to 

excitation 
 
In the case of 	
 the agreement seen between the mass terms and the motion terms is 

comparable and agreement is good for both on the longer term variations seen in the 

averaged results. The agreement on 	
 for these longer terms is less for the reasons 

previously stated. In the case of  	�  agreement is good on the mass term but not good 

when comparing the motion terms; at this scale the annual and semi annual signals are 

not well defined in the motion term. This is probably due to the fact that the 	� mass 

term is dominant when compared to the 	� motion term on both the atmospheric data 

and ocean data. 	
  does not have the same problem as 	�  and 	�  in that the 

contributions of mass and motion terms to the total excitation contribution are much 

more comparable as discussed in Chapter 4. To investigate the fit of these parameters 

further the coherence of the mass terms and the motion terms has also been computed. 
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Figure 6.6, Figure 6.7 and Figure 6.8 show the coherence estimates of 	� and  	
, 	� 

mass (top) and motion (bottom) terms respectively. 

 

 

 

 
Figure 6.6 �� mass (top) and motion (bottom) coherence estimates 
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Figure 6.7 �� mass (top) and motion (bottom) coherence estimates 
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Figure 6.8 �� mass (top) and motion (bottom) coherence estimates 
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The coherence of the mass terms are of particular importance as these will later be used 

to derive the degree-2 gravity field harmonics currently derived directly from the 

integration of the LAGEOS orbits. The data used to compute these coherence values are 

the weighted 15 day averages of the excitation functions. This has been done so that 

they are comparable with the 15 day estimates of the gravity field produced from 

FAUST and as such only up to 12 cycles per year are calculated. 

 

The estimates of coherence for 	� shown in Figure 6.6 show that the long term temporal 

variations seem to have good agreement across the vast majority of the frequencies 

shown and that this coherence may be significant especially at the annual signal.  

 

Once again this supports the use of 	� in the orbit determination process and shows that 

the values estimated from LAGEOS agree with those computed using the models. The 

motion term also shows good correlation at the annual and semi annual frequencies but 

is much less coherent at frequencies greater than two cycles a year. The lower 

coherence of the motion term is unexpected as the excitation functions seem to match 

well. Once again this may be due to the AAM being the dominant feature in this 

particular signal. 

 

Figure 6.7 shows the coherence estimates of 	
 in cycles per year. As shown previously 

when investigating the coherence of the combined excitation functions, 	
  does not 

agree as well as the other two excitations at the annual and semi annual terms. Once 

again we see that this is the case for both the mass and motion terms from 	
. There 

does however seem to be good coherence on the mass term of 	
 at slightly higher 

frequencies but it does seem that using 	
 to estimate the gravity field harmonics may 

be less successful when using 	
  than with 	�. 

 

Finally, comparing the mass and motion terms estimated for 	�  there is once again 

excellent agreement between the low frequency terms in the coherence estimates of the 

mass term, especially at the dominant yearly signal that is very evident in Figure 6.8. 

The motion term however shows the opposite effect, showing that the coherence 

between the two sources of 	� do not agree well at any of the low frequency terms. This 

phenomenon is probably due to the dominant signal in 	� data being the mass term and 
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small differences in the mass term displaying as relatively large differences when 

analysing 	� from the different sources. 

 

This analysis shows that if one of the signals is dominated by either the mass or motion 

term either from AAM, OAM, HAM, or a combination of these, that small differences 

between the signals in the dominant signals are transferred as relatively large 

differences in the less dominant signal.  

 

From the point of view of the next step in this research, which is to investigate the 

usefulness of using the relationships between these excitation functions to derive gravity 

terms in a iterative orbit determination process it is positive to see that two 

(	� and 	�� out of the three mass terms estimated from polar motion and LOD (after 

removing the estimates of the motion terms from the models) seem to match each other 

quite well. 	
 does not show the same level of coherence as the other two excitation 

functions and therefore would probably be expected to have a less positive effect on the 

orbit determination process. As shown in Chapter 4, the motion terms for 	
 are have a 

less well defined annual signal. Therefore it follows that using this term may give less 

agreement on the annual and semi annual time scales. 

 

6.3 Comparison of Degree-2 Gravity Field Harmonics  

 
 
Previous studies comparing degree-2 gravity field harmonics from various sources to 

those derived from ERPs have shown good agreement between data sets (Gross et al., 

2004; Chen et al., 2000; Chen and Wilson, 2003b).  

 

The relationship between the excitations due to mass variations and the degree two 

spherical harmonics of the Earth’s gravity field are given by Chen and Wilson (2003b). 
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Where  

 

M = mean mass of the Earth 

R = mean radius of the Earth 

C = Earth’s Polar moment of inertia of the Earth 

A = Earths Equatorial moment of inertia of the Earth 

2

'k = the degree-2 Love number (-0.301) which accounts for the elastic deformational 

effects on gravitational change. 

 

In equation 6.5 we have used the normalised second degree tesseral harmonics C2,i and 

S2,i  where 0,1i = and the second degree zonal harmonic 

 

 J2  = -√5 C20  
 
This section will compare the degree-2 spherical harmonics of the Earth’s gravity field 

estimated from the models, from LAGEOS derived ERP, ERP from the a-priori 

combined C04 time series and from harmonics recovered as geophysical parameters 

within the orbit determination process. 

 

Firstly the differences in the models derived using the Inverted Barometer (IB) 

correction, which is a loading correction done using a simple, isotatic, inverted 

barometer assumption (Gill, 1982)  and the non IB corrected models will be analysed. 

The IB correction applies only to the mass terms on the AAM models. The reason for 

this is to establish if there are any major differences between the two models and to 

decide which model may be the most suited for use in the orbit determination approach. 
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Figure 6.9 shows the agreement between the two models that have just been mentioned. 

Zonal harmonic J2: the correlation between the models for this harmonic is very good 

(0.863). The correlation is also very good (0.881) for the S21 harmonic although 

relatively large differences between the models is evident at the peaks and troughs that 

correspond to the annual cycles on both the S21 and the J2 terms. In contrast the 

correlation between the mass terms from C21 is much smaller and gives evidence that 

C21 is less well defined in the models than J2 and S21. 

 

Figure 6.9 and Figure 6.10 show comparisons of the two differently calculated NCEP 

reanalysis models with the degree-2 gravity harmonics calculated from LAGEOS as 

geophysical parameters. Figure 6.9 shows the non IB corrected model and Figure 6.10 

shows the comparison with the IB corrected model. As expected, due to their high 

correlation in the previous figure the correlation between the J2 terms from the models 

and from SLR are very similar. 

 

 
Figure 6.9 Comparison of NCEP reanalysis model using IB and non-IB derived AAM 
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The agreement between the S21 terms is also very similar between the models when 

compared with the SLR but the correlation is relatively low for both comparisons; being 

slightly higher for the non IB model. This seems to be due to the poor definition of the 

annual peaks in some instances. There does however seem to be a reasonable difference 

in how the values of C21 compare in the two instances presented here. Although both 

comparisons show very low correlation when using the non-IB corrected models the 

amplitude of the signal is similar in size to that of the SLR estimate C21 values. The 

correlation is slightly lower; although both show that the correlation is very low. There 

does however seem to be certain peaks in the non-IB comparison that match relatively 

well when compared to the IB corrected data that give hope that at those epochs the data 

may give a reasonable match. 

 

 
Figure 6.10 Comparison of NCEP reanalysis model using non-IB derived AAM and results derived from 

LAGEOS 
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Figure 6.11 Comparison of NCEP reanalysis model using IB derived AAM and results derived from 

LAGEOS 
 
 

 
Figure 6.12 Comparison of C04 ERP excitation functions compared with the non-IB models 
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Figure 6.11 shows the comparison of the C04 estimated gravity field harmonics of the 

Earth’s gravity field compared with the same values computed using the non IB models. 

Correlation is very good for the S21 term, but is slightly lower for J2. This is probably 

because the contribution of the motion term to J2 is much larger than the mass term 

therefore small errors in the motion term model mean relatively large errors when this is 

used to estimate the mass term from geodetic measurements. The S21 term on the other 

hand is dominated by the mass term and therefore less affected by this phenomenon. 

Consistent with other results the correlation for the C21 term is low probably due to the 

less well defined annual and semi annual terms in the model. 

 

The estimates of changes in J2, C21 and S21 are now compared between ERP, SLR and 

the non-IB sources for the reason explained above. Figure 6.12 shows a comparison of 

the C04 derived estimates of the degree-2 harmonics and the LAGEOS estimated 

gravity field harmonics from FAUST. As expected the agreement is most well defined 

in the J2 and S21 components of the harmonics with clear correlation apparent between 

dominant annual variations in these signals especially when referring to the change in J2.  

 

 
Figure 6.13 Comparison of C04 ERP excitation functions compared with the LAGEOS SLR gravity field 

harmonics 
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Finally the ERP derived gravity field estimates output from the base solution described 

in Chapter 4 are compared against the gravity field harmonics produced for LAGEOS 

orbits when solving for up to degree and order 3 gravity field harmonics. Figure 6.13 

shows the comparison using the 15 day estimates of the gravity field harmonics from 

ERP estimates and Figure 6.14 shows the same comparison this time using the daily 

values of Earth rotation to compute the gravity field harmonics. 

 

Firstly, it can be seen that, when compared to the C04 derived excitation functions using 

exactly the same models, the correlation of the J2 estimates in Figure 6.13 are slightly 

lower. This is most likely due to the differences that display as peaks in the time series. 

These are most likely caused by badly conditioned orbits, the removal of which would 

most likely raise the correlation coefficient to something similar to that of the C04 

comparison. 

 

The correlation of the S21 component has been sustained within FAUST when 

compared to the C04 derived excitation functions. Although there are several places 

where there are also differences seen as large peaks in this time series Figure 6.13. 

Finally the changes in C21 that are estimated from LAGEOS also display very similar 

characteristics to the estimates calculated from the C04 values, also with some large 

errors. It follows then that at the epochs of the time series that match well it would be 

expected that the gravity estimates from ERP may improve the orbit solution but there 

may be cases when the orbit is made worse by using ERP derived estimates of the 

gravity field harmonics. 

 

The correlations seen in Figure 6.14 are comparable to ERP from GPS and GPS 

measures of the time variability (Gross et al., 2004) where correlations of 0.27, 0.22 and 

0.61 were obtained for C20, C21 and S21 respectively. The two studies reveal better 

agreement in the degree-2 order 1 harmonics and show good agreement in the J2 and 

S21 terms on the dominant annual signals compared to GPS. In both the GPS and SLR 

results S21 exhibits a clear annual signal in response to the winter high in atmospheric 

pressure over Siberia (Gross et al., 2004). The poor correlation of C21 generally appears 

to reflect the relative contribution of mass to motion in the excitation functions and may 

indicate that the meridional motion terms are relatively poorly determined. In contrast, 

the relatively high correlation with the SLR J2 is perhaps unexpected given the 
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dominance of the atmospheric angular momentum in the excitation function. Despite 

the relatively low contribution of the mass component, the good agreement shows that 

the effects of the zonal atmospheric winds have been modelled sufficiently that it may 

be possible to determine small mass variations. The disparity between the SLR and GPS 

second degree zonal results points to an error in the GPS results rather than a major 

problem with the zonal winds as intimated in Gross et al., 2004.  

 

 
Figure 6.14 Comparison of SLR estimated ERP (15 day average) and SLR estimated gravity harmonics 

 
 
It should be noted that better correlations for J2 were obtained in Hancock and Moore, 

2007 but that the data has been compared over a longer period of time in this thesis. It 

may be that the agreement at the beginning of the time series seen in Figure 6.14, which 

seems to correlate the least, has contributed to this lower correlation value. 

 

As the main purpose of this thesis is to investigate the possibility of using daily ERP 

values to calculate small mass changes in the orbit determination process, Figure 6.15 

shows the daily estimates of J2, C21 and S21 from the base solutions ERP output 

plotted against the gravity harmonic estimates from LAGEOS. It is now much more 

difficult to see the correlation between the signals due to the noise in the ERP derived 

gravity field harmonics. This noise could well describe the high frequency variations in 
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the degree-2 harmonics and improve the orbits or it may be additional noise that causes 

the orbit solution to become worse. Looking back at the comparisons of 	
, 	� and 	�  

in Figure 6.1 and Figure 6.2 it looks more likely that in the case of C21 and S21 that this 

is perhaps noise. J2, however, has given evidence in this chapter that it may be 

modelled well enough - despite the dominance of the motion term - to describe the daily 

mass fluctuations within the Earth system.  

 

 
Figure 6.15 Comparison of SLR estimated ERP (daily values) and SLR estimated gravity harmonics 

 

 
 
6.4 Conclusion 

 

This chapter has investigated the correlation and coherence of the excitation functions,  

	
, 	�  and 	�  and the degree-2 gravity harmonics, J2, C21 and S21 of the Earth’s 

gravitational field derived from models, as well as excitation estimates from ERPs  and 

gravity field harmonics estimated as geophysical parameters in precise orbit 

determination. The results have shown good correlation between the ERP estimates of 

 	� and 	� and the models but less agreement between 	
 and the models. Comparisons 

between the models and SLR derived gravity field harmonics show very good 



131 
 

correlation between the J2 terms and some correlation in the S21 term. The C21 term 

correlates the least. The poor correlation of C21 generally appears to reflect the relative 

contribution of mass to motion in the excitation functions and may indicate that the 

meridional motion terms are relatively poorly determined. 

 

Comparing the ERP derived gravity field harmonics against the LAGEOS estimated 

harmonics shows promising agreement between the J2 terms, even though the 

correlation is lower than expected (0.59). This is most likely due to the large differences 

at certain epochs of the time series. This chapter shows that J2 is the most promising 

candidate for use in the orbit determination process and that C21 is the least likely to 

have a positive effect on the results. 
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Chapter 7  

 

7 Using Angular Momentum Models to Estimate Gravity from 

ERPs in an Orbit Determination Process 

 
7.1 Introduction 

 

In this chapter the effects of using angular momentum models to remove the motion 

term from 	
, 	� and 	� derived from ERPs estimated in LAGEOS within the iterative 

orbit determination process (see equation 6.3) are investigated. This will be undertaken 

in several stages. In the first instance, as the results of using 	� motion from models to 

obtain 	�  mass from LOD estimates converted to the J2 spherical harmonic of the 

Earth’s gravity field have the best agreement with both the models and the LAGEOS 

derived gravity field harmonics, estimates of J2 will be introduced to the orbit 

determination process independent of the other degree-2 harmonics. Firstly they will be 

calculated as a single correction over the 15 day arc, to mirror the timescales on which 

J2 has been derived as a geophysical parameter within FAUST and then this will be 

extended to calculate a daily correction to J2 over the 15 day arc. Following the analysis 

of J2, orbits will be processed utilizing all three degree-2 harmonics, C21, S21 and J2; 

firstly as a 15 day average and then as daily values across the 15 day arcs. The results of 

these orbit estimations will be compared to assess whether there is any advantage to 

using estimates of the degree-2 harmonics in this manner. 

 
7.2 Use of AM Data and Gravity Mass Change in Orbit Determination 

 

Space geodesy is limited in its ability to provide mass changes over short time periods 

(less than 15 days) even at low spatial resolutions, due to the satellite’s low sensitivity 

to the Earth’s gravity field and to the high correlation between harmonics (especially 

degrees 2 and 4) (Hancock and Moore, 2007).  However space geodesy does provide 

high resolution (here daily but in some cases, such as with GPS, even more frequent) 

ERP data.  
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7.2.1 Orbit Determination Procedure 

 

The low sensitivity of orbits to the gravity field variability or the high correlation 

between the harmonics limits the time period over which mass change, even at low 

spatial resolutions, can be recovered from space geodesy. However, the relatively high 

temporal resolution of ERPs does raise the possibility of simultaneously recovering and 

using higher temporal frequencies for the degree-2 harmonics from the ERP data within 

an orbital determination procedure. The methodology will require that angular 

momentum data is available but this is not a major concern as geophysical studies 

utilizing geodetic satellites are typically retrospective. 

 

To investigate whether this methodology can lead to enhanced orbital accuracies, the 

variability in the degree-2 gravity field harmonics inferred from ERP parameters within 

the orbit determination is utilised. However, it has already been observed in Chapter 6 

that the mass components of the second degree first order harmonics from ERPs 

modified for the motion have low correlations with the mass variations determined 

directly from the orbital tracking. Consequently, we cannot anticipate any improvement 

with C21 and S21 despite the high contribution of mass (>50%) to the excitations. To 

ascertain this we undertook an analysis in which a single correction to the second degree 

harmonics was recovered from the ERPs over each 15 day LAGEOS arc. 

 

The method used comprised the following steps (Figure 7.1): 

 

1. Consider a-priori ERP values 

2. Form 15 day average of ERPs 

3. Read in angular momentum from NCEP model and form 15 day average 

4. Remove motion and secular core-mantle interaction terms from ERPs 

5. Derive change in second order harmonics J2, C21 and S21,  

6. Compute orbit and estimate orbital parameters 

7. If convergence achieved stop; otherwise reiterate starting at step 2. 

 

 



 

Figure 7.1 Schematic of orbit determination process using angular momentum.
 

7.3 Precise Orbit Determination Analysis

 

As described previously, precise orbits

calculated using FAUST

In the first instance 15 day arcs were calculated using no global parameters

gravity, station coordinates or ERPs were s

pressure and two along track corrections are estimated over 5 day arcs calculated from 

July 1996 until October 2007.

station with less than 20 observations ov

over 5 cm for the total arc was discarded from the solution at this point. These orbits 

were iterated until convergence. These converged orbits would then provide the starting 

point for the next stage of orbit
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Schematic of orbit determination process using angular momentum.

Precise Orbit Determination Analysis 

 
As described previously, precise orbits of LAGEOS I and LAGEOS II have been 

FAUST. A base solution was calculated first (for details see Chapter 5)

In the first instance 15 day arcs were calculated using no global parameters

gravity, station coordinates or ERPs were solved for. State vectors, solar radiation 

pressure and two along track corrections are estimated over 5 day arcs calculated from 

July 1996 until October 2007. All available data in the MERIT II format was used. Any 

station with less than 20 observations over the whole arc or an average RMS error value 

over 5 cm for the total arc was discarded from the solution at this point. These orbits 

were iterated until convergence. These converged orbits would then provide the starting 

point for the next stage of orbit determination. 

 
Schematic of orbit determination process using angular momentum. 

of LAGEOS I and LAGEOS II have been 

(for details see Chapter 5). 

In the first instance 15 day arcs were calculated using no global parameters (i.e. no 

. State vectors, solar radiation 

pressure and two along track corrections are estimated over 5 day arcs calculated from 

All available data in the MERIT II format was used. Any 

er the whole arc or an average RMS error value 

over 5 cm for the total arc was discarded from the solution at this point. These orbits 

were iterated until convergence. These converged orbits would then provide the starting 
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Using the previously converged orbits as a starting point a base solution was then 

determined for the purpose of later comparison.  State vectors, solar radiation pressure 

and 2 along track corrections are estimated over 5 day arcs but this time also solving for 

the global parameters of station coordinates and daily ERPs (XP, YP and LOD) 

estimated over the 15 day arc and iterated until the solution converges. Daily values for 

UTC are also introduced at this point but these are kept fixed to help constrain the LOD 

estimates. 

 

Starting again with the previously described converged orbits without any global 

parameters, the same orbits were solved for again using the modified version of FAUST 

that uses ERPs to calculate the low degree spherical harmonics of the Earth’s gravity 

field. This has been carried out using four different scenarios. 

 

1. Using only LOD to estimate an average value for J2 over the 15 day arc 

2. Using only LOD to estimate an average value for J2 on a daily basis 

3. Using XP, YP and LOD to estimate values for C21, S21 and J2 over the 15 day 

arc 

4. Using XP, YP and LOD to estimate values for C21, S21 and J2 on a daily basis 

 

Due to the analysis performed in Chapter 6 that shows that agreements between 

corrections to J2 have relatively high correlation compared with S21 and C21, LOD will 

be used independently to estimate a correction to J2. This will assess whether J2 on its 

own can give higher resolution estimates that will improve the estimated orbit. This will 

be done firstly with an averaged correction over the 15 day arc, to assess how well it 

compares with results from deriving gravity as a geophysical parameter in an iterative 

process, and then, secondly, calculating daily corrections. These tests will use all three 

parameters C21, S21 and J2 with the results expected to be less promising due to the 

lower correlations between the models and the SLR results. The results and 

comparisons of each of the scenarios with respect to the base solution are shown in 

Figure 7.2 – 7.9.  
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Figure 7.2 shows a comparison of the frequency of post-fit residual RMS error fits of 

the orbits derived from J2 gravity estimates from LOD only, averaged over the 15 day 

arc against the base solution grouped together in 2cm blocks. The post-fit residual RMS 

error values of each of the test solutions have been subtracted from the post-fit residual 

RMS error values of the base solutions. Thus, negative values imply that the test 

solution is an improvement on the base solution while positive values show that the test 

solution has been degraded by the introduction of gravity estimates from ERP 

parameters. 

 

As can be seen from Figure 7.2 calculated values of J2 using estimated values of LOD 

from LAGEOS averaged over a 15 day period improves the overall solution with 

respect to the base solution. From the previous analysis in Chapter 6 this is what would 

have been expected as the estimates of J2 from LAGEOS derived ERPs have fairly 

good agreement with both the J2 estimates from the models (correlation of 0.450)  and 

the J2 estimates from LAGEOS (correlation of 0.589).  Also Figure 7.2 shows that by 

calculating a value for J2 on a daily basis decreases the accuracy of the overall solution 

on the majority of the 15 day arcs and gives a worse solution than when solving for a 

single J2 correction over the 15 day arc. Once again previous analysis has shown this to 

be the likely outcome of this test as a comparison of daily J2 estimates from ERPs and 

daily values from the models in Chapter 6 has shown that the agreement between the 

two different estimates is far less due to the much noisier data apparent in the daily 

estimates of J2 when compared with J2 from LAGEOS. The overall improvement 

across the whole dataset when using ERPs to estimate J2 is a reduction in the mean 

post-fit residual RMS of 0.013 cm, this compares to a 0.714 cm increase in the average 

post-fit residual RMS values when using the J2 daily estimates.  

 

In considering the changes in the post-fit residual RMS error of the estimated orbits the 

number of rejected observations must also be considered as this has a direct effect on 

the post-fit residual RMS of the orbit. Figure 7.3 shows, similar to Figure 7.2, the 

frequency of the number of rejected observations when using an estimated value of J2 

derived from estimated LOD values averaged over 15 days, grouped together in blocks 

of 50 observations.  
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Figure 7.2 A comparison of RMS of orbits using J2 estimated from LOD on a daily basis and on a 15 day 

average against the base solution 
 

 

 
Figure 7.3 A comparison of rejected observations from orbits using J2 estimated from LOD on a daily 

basis and on a 15 day average against the base solution 
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 Figure 7.3 shows that the number of rejected observations from the orbital fit when 

using calculated J2 are less or the same in 75% (202 of 271, 115 of which are exactly 

the same) of the arcs processed when compared to the base solution whereas when J2 

values are estimated daily the number of arcs with a larger number of rejected 

observations increases greatly so that only 20% (56 of 271) reject less or the same 

number of observations as the base solution. Again these results reflect the analysis of 

the previous chapter and give evidence that 15 day estimates of J2 that show good 

agreement with both the models and the LAGEOS gravity field estimates for J2 provide 

a better fit in the orbit determination process compared with the average value for J2. 

 

The next set of tests carried out involved estimating all three low degree harmonics 

C21, S21 and J2 in the orbit determination process. As previously stated two separate 

tests were carried out giving results with low degree gravity harmonics averaged over 

the 15 day arc as well as the second test where C21, S21 and J2 were estimated daily 

from ERP values within the orbit determination process. 

 

Figure 7.4 shows a comparison of the frequency of post-fit residual RMS error results 

from these tests subtracted from the post-fit residual RMS error values of the base 

solution. As before negative values represent an improvement in the solution. A very 

similar result is achieved when compared to using J2 alone as we obtain an improved 

orbital estimate when using the averaged 15 day value but the solution of the orbit is 

degraded quite considerably when estimating the gravity values on a daily basis. The 

mean post-fit residual RMS value for all the arcs processed using C21, S21 and J2 with 

a 15 day average is 0.011 cm better than the base solution compared with 1.107 cm 

degraded mean post-fit residual RMS when using the daily values. 

 

Following on from analysing the post-fit residual RMS of the orbits, we again look at 

the number of accepted observations when using gravity values in the solution. As 

before we see that when using a 15 day average the number of arcs with a larger number 

or the same number of accepted values is 76% (205 of 271) giving evidence for a better 

solution when using gravity values from ERPs in the overall solution.  
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Figure 7.4 A comparison of RMS of orbits using C21, S21, J2 estimated from ERP on a daily basis and 

on a 15 day average against the base solution 
 

 

 
Figure 7.5 A comparison of rejected observations from orbits using C21, S21, J2 estimated from ERP on 

a daily basis and on a 15 day average against the base solution 
 

 



140 
 

Once again using daily gravity values vastly increases the number of arcs with a larger 

number of rejected observations in the solution. The number of arcs that accept more or 

the same number of observations is now just 8% (21 of 271). 

 

Figure 7.6 shows a comparison of orbits where we have firstly calculated J2 values 

alone from LOD and secondly when C21, S21, J2 are derived from XP, YP and LOD; 

all averaged over a 15 day period. It can be seen that the solutions are very similar to 

each other in terms of post-fit residual RMS. The graph shows that there is a slight 

improvement in the number of arcs that have an improved post-fit residual RMS when 

using C21, S21, J2 values in the solution compared with J2 alone. The mean post-fit 

residual RMS of the data, however, shows that the J2 alone solution is slightly better 

than the combined solution with the mean of the combined solution being a 0.011 cm 

improvement compared with the base solution and the J2 alone orbit showing a 0.013 

cm improvement over the same. The closeness suggests that the estimates of C21 and 

S21 may either have little effect on the results compared to J2 or that the data already 

has a high level of fit and thus further modelling improvements are minimal. This may 

cause small or zero improvements on certain arcs that have a RMS difference close to 

zero which may be increased slightly by C21 and/or S21 corrections that are a good fit 

to the data at that particular epoch. 

 

Figure 7.7 shows that in terms of the frequency of the number of accepted observations 

when comparing the 15 day averaged estimates of C21, S21 and J2 to the J2 alone 

solution yields a similar result to that of the above RMS comparison. Once again a 

small improvement is visible in Figure 7.7 when using the combined solution. This 

equates to 76% (205 of 271) of the arcs processed in the combined solution showing 

either the same number of rejections or less compared with 75% (202 of 271) when 

using the J2 only solution. The small improvement that is seen here when using the 

combined solution is somewhat unexpected as from the previous comparisons of 

degree-2 harmonics it can be seen that C21 and S21 estimates from ERPs do not agree 

as well with the same estimates from other sources as the J2 estimates do. The number 

of orbital arcs that are showing improvements may be due to particular arcs where the 

match of S21, C21 and J2 is relatively good and the post-fit residual RMS of the orbit is 

close to 0. This may cause small improvements in the fit of the orbit over that particular 

arc. 
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Figure 7.6 A comparison of RMS of orbits using J2 and of C21, S21, J2 estimated from ERP averaged 

over 15 days and against the base solution 
 

 
Figure 7.7 A comparison of rejected observations using J2 and of C21, S21, J2 estimated from ERP 

averaged over 15 days and against the base solution 
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Figure 7.8 shows a comparison between values for gravity spherical harmonics 

estimated from ERPs on a daily basis. From the previous analysis it can be seen that 

using daily values gives a much less well defined orbit than when using spherical 

harmonic values averaged over a 15 day period. Here, it can be seen that the daily 

values, when using all three low degree harmonics, gives a much worse solution 

(increase of 1.107 cm in RMS) than when using J2 gravity values alone (increase of 

0.714 cm in RMS). From the analysis in Chapter 6 this result would make sense as the 

daily degree-2 harmonics are much noisier than their 15-day-averaged counterparts.  

 

As all three harmonic data sets are very noisy this increased noise causes the fit of the 

orbit to degrade in most cases. It is also more likely that as the data is noisy on all three 

degree-2 harmonics that there is more chance that the orbit will be degraded when using 

all three estimates when compared to the J2 alone solution.  The noise in this data 

comes from the fact that the degree-2 estimates on a daily basis do not agree well at the 

higher frequency terms (i.e. weekly and daily terms) in the coherence plots shown in 

Chapter 6. The reason for this could be that either the models from the ocean and/or 

atmospheric data may not be accurate enough to use to model the small mass variations 

on a daily basis. These models do not take into account the whole of the motion of the 

ocean and atmosphere in their calculations and other error sources such as improper 

modelling of El Nino events may also cause discrepancies in the models. On the other 

hand the ERPs derived from LAGEOS may not be sensitive enough to these short term 

variations.  

 

This means that on a daily basis the estimated values of the degree-2 harmonics do not 

match well with the real mass variations of the Earth system. There are however a few 

arcs that show an improvement in post-fit residual RMS in both the combined solution 

and in the J2 alone solution. It is possible that at these particular epochs all three 

estimates agree well with the LAGEOS estimates by chance. Obviously there is more 

chance of a good match to the LAGEOS estimates of gravity if only one of the three 

parameters is estimated, which is the likely reason why the J2 only solution is much 

better than the combined solution. 
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Figure 7.8 A comparison of RMS of orbits using J2 and of C21, S21, J2 estimated from ERP on a daily 

basis against the base solution 
 

 
Figure 7.9 A comparison of rejected observations using J2 and of C21, S21, J2 estimated from ERP on a 

daily basis against the base solution 



 

 
As further evidence of the conclusions generated from the previous analysis, 

shows that there are many more rejected observations when using all 

harmonics (8% or 21 of 271 arcs show an increase in the number of acce

observations) in the orbit determination process compared with using J2 alone (20% or 

56 of 271 arcs show an increase in the number of accepted observations). The reason for 

this is once again the increased noise in the daily data.

 

7.4 Precise Orbit Dete

 

After analysing the 

observations of the four different scenarios set out in section 7.2 this section will 

attempt to investigate the specific arcs that have shown

when using estimates of the degree

from ERPs.  

 

Figure 7.10 RMS difference of the J2 15 day solution with global solution 
comparison of the J2 from LAGEOS (red) and ERP (black)
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idence of the conclusions generated from the previous analysis, 

shows that there are many more rejected observations when using all 

harmonics (8% or 21 of 271 arcs show an increase in the number of acce

observations) in the orbit determination process compared with using J2 alone (20% or 

56 of 271 arcs show an increase in the number of accepted observations). The reason for 

this is once again the increased noise in the daily data. 

Precise Orbit Determination - Gravity Comparison 

After analysing the post-fit residual RMS and the number of accepted and rejected 

observations of the four different scenarios set out in section 7.2 this section will 

attempt to investigate the specific arcs that have shown an improvement or deterioration 

when using estimates of the degree-2 spherical harmonics of the Earth’s gravity field 

RMS difference of the J2 15 day solution with global solution from 
comparison of the J2 from LAGEOS (red) and ERP (black)

idence of the conclusions generated from the previous analysis, Figure 7.9 

shows that there are many more rejected observations when using all three low degree 

harmonics (8% or 21 of 271 arcs show an increase in the number of accepted 

observations) in the orbit determination process compared with using J2 alone (20% or 

56 of 271 arcs show an increase in the number of accepted observations). The reason for 

RMS and the number of accepted and rejected 

observations of the four different scenarios set out in section 7.2 this section will 

an improvement or deterioration 

2 spherical harmonics of the Earth’s gravity field 

 
from FAUST (top) and a 

comparison of the J2 from LAGEOS (red) and ERP (black) 
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Figure 7.10 shows the post-fit residual RMS difference arc by arc of the base solution 

compared with the J2 only solution along with a comparison of the low degree 

harmonic J2 from LAGEOS as a geophysical parameter and from the ERP estimate of 

J2. The positive values on this graph show improvement in the fit of the SLR range data 

to the orbit. 

 

Figure 7.10 identifies several periods where improvement in the post-fit residual RMS 

error of the orbit is evident. There are five time periods of relatively large improvement 

in the post-fit residual RMS. These occur approximately at arc number 90, 115, 130, 

180 and 250.  All of these time periods of large improvement coincide with where the 

J2 comparison is particularly good. This is especially evident around arc number 180 

where the peaks of the two J2 parameters almost coincide. 

 

The time period of Figure 7.10 that shows the least agreement is at the beginning of the 

analysis. Here there are arcs showing much larger deterioration and the very large 

negative value around arc number 70 coincides with a large discrepancy between the J2 

data sets.  This figure gives evidence that using J2 as a 15 day average in an orbit 

determination process gives benefit as long as the match between the SLR derived 

gravity parameter J2 and the ERP estimate of the same match closely.  

 

If there is a large discrepancy between the SLR derived gravity parameter and the J2 

from ERPs then the fit deteriorates, this is likely caused by errors in the motion part of 

	� due to domination of the motion term in 	�. It is also interesting to note that most of 

the improved arcs seem to correspond to peaks in the J2 time series rather than the 

troughs. A similar but opposite pattern can be seen in Figure 7.11 which shows the post-

fit residual RMS fit of the FAUST solution solving for up to degree and order 3 

parameters of the Earth’s gravity field. This shows that the errors in the fit of the orbits 

are larger at this time of year. 

 



 

Figure 7.11 RMS difference of the 
a comparison of the J2, C21, S21 from LAGEOS (red) and ERP (black)

 
 

Figure 7.12 RMS difference of the 
and a comparison of the J2, C21, S21 from LAGEOS (red) and ERP (black)
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RMS difference of the degree-2 (J2, C21, S21) 15 day solution with global solution (top) and 
a comparison of the J2, C21, S21 from LAGEOS (red) and ERP (black)

RMS difference of the degree-2 (J2, C21, S21) 15 day solution with J2 15 day solution (top) 
and a comparison of the J2, C21, S21 from LAGEOS (red) and ERP (black)

 
2 (J2, C21, S21) 15 day solution with global solution (top) and 

a comparison of the J2, C21, S21 from LAGEOS (red) and ERP (black) 

 
2 (J2, C21, S21) 15 day solution with J2 15 day solution (top) 

and a comparison of the J2, C21, S21 from LAGEOS (red) and ERP (black) 
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Following on from the comparison in Figure 7.10, Figure 7.11 shows the fit of the base 

solution compared to the fit of the solution using all three degree-2 spherical harmonics, 

along with comparisons of C21, S21 and J2 derived from LAGEOS as a geophysical 

parameter and from ERPs estimated in LAGEOS.  The two comparisons of fit from 

Figure 7.10 and Figure 7.11 can be seen to be almost identical on this scale and that the 

relatively large improvements in the fit of the orbits are still evident around the same 

five time periods as mentioned above. Some of the arcs show good agreement on at 

least two out of the three gravity parameters in these areas, such as J2 and S21 at arc 

number 180 and just after and J2 and C21 at arc 250.  Finding an arc where all three 

parameters match well with their LAGEOS derived counterpart is difficult, which 

would be exactly what we would expect from previous analysis. It is however difficult 

to see any real effect caused by introducing the two additional parameters from Figure 

7.11 

 

Figure 7.12 shows the post-fit residual RMS error from the fit of the orbits that use J2 

only from ERPs and C21, S21 and J2 from ERPs. Positive values show an improvement 

when using the C21, S21 and J2 combined solution; negative values show deterioration 

of the solution. There are two time periods that are immediately apparent. The initial 

period has already been shown to give mixed results for J2 alone and can clearly be seen 

to have been degraded further by the addition of C21 and S21. Inspection of the data 

reveals that the match of S21 for these arcs is particularly bad and the match of  C21 

does not agree well either. Also of note is that the large error seen previously at arc 

number 70 has improved as the match of both C21 and S21 at this particular epoch are 

good especially when compared to the match of the J2 data. Arcs after number 260 

show large amounts of degradation most likely due to the poor match of the S21 data at 

these epochs. 

 

This analysis shows that when two of the three parameters have good matches to their 

respective counterparts derived from SLR orbits it is likely that the post-fit residual 

RMS of the orbit is improved. It also shows that the improvement seems to be 

dominated by the match of the J2 component to the data as the comparison in Figure 

7.10 and Figure 7.11 do not show many visible changes, indicating that J2 is more 
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important in defining the orbit than C21 and S21. This may be a result of the J2 

correction being larger than the correction to C21 and S21 respectively.  

 

It should also be noted that the correlations between the LAGEOS-derived degree-2 

harmonics of the gravity field and the ERP-estimated degree-2 harmonics have dropped 

from 0.589, 0.310 and 0.350 for J2, C21 and S21 respectively to 0.419, 0.210 and 0.221 

after the orbits have converged in this orbit determination process.  

 

7.5 Conclusion 

 

The analysis has shown that the overall estimated orbits are affected by the addition of 

gravity parameters C21, S21 and J2 derived from estimates of XP, YP and LOD in the 

orbit determination process.  This effect can be positive or negative dependent on the 

agreement of the ERP-estimated gravity values with the LAGEOS-estimated low degree 

spherical harmonics, which are assumed as truth at a particular epoch. If the ERP 

estimated low degree gravity harmonics match well with the LAGEOS estimated low 

degree gravity harmonics at a particular epoch then the orbit will improve when 

comparing with the base solution (as described in Chapter 6, otherwise the orbit will 

degrade as well as the number of accepted observations decreasing. 

 

It has been shown that there is not much difference in using J2 estimates from ERP 

parameters on its own and in using a combined solution using values of C21 and S21 in 

addition to J2. This was slightly unexpected due to the relatively low correlations of 

both C21 and S21 to the counterparts derived from the models and especially from 

LAGEOS. On detailed inspection of the specific arcs that show improvement it is 

evident that these improvements occur for orbits where J2 gives a small detrimental 

effect on the post-fit residual RMS that is compensated by reasonable agreement in the 

C21 and/or S21 parameters that can turn that detrimental effect into a positive. It has 

also been shown that the J2 parameter seems to have more influence on the orbits than 

the other degree-2 coefficients. 

 

Finally, it has been shown that using daily estimates of J2, C21 and S21 has a large 

detrimental effect on the post-fit residual RMS of the orbits. This is due to the noisy 

nature of the signals and, although a small percentage of arcs show an improvement 
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using this method, it is not practically useful to use this method in orbit determinations 

at the current time. This effect may be due to inaccuracies in the models or the 

insensitivity of LAGEOS to these high frequency variations. 
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Chapter 8  

 
8 Geocentre motion from SLR, GPS and Geophysical Models 

 
8.1 Introduction 

 

The geocentre is the centre of mass of the whole Earth, which means the combined 

centre of mass of the solid Earth, atmosphere, oceans, hydrosphere and cyrosphere. The 

distribution of mass within the Earth system is the cause of geocentre motion, which is 

defined as the displacement of the centre of mass of the Earth from the International 

Terrestrial Reference Frame (ITRF) origin. This chapter will derive geocentre motion 

from SLR, GPS and geophysical models and show a comparison of the three methods. 

 

8.2 Background 

 

From Wahr et al. (1998) let ∆�
�, �� be the mass unit area centred at latitude � and 

longitude � on the Earth’s surface. Expansion gives (Moore and Wang, 2003): 

 

             ∆σ�ϕ,λ�=Rρ
ω

∑ ∑ P� l,m
l
m=0 
sinϕ�∞

l=0 �ΔC� lmcosm + S� lmsinm  � (8.1) 

 

Where 

R = radius of the Earth 

ρ
ω

= water density 

P�l,m = the associated Legendre polynomial of degree l and order m 

ΔC� lm and ΔS� lm= dimensionless Stokes coefficients 

 

According to Wahr et al. (1998) using the orthogonality of the Legendre polynomials 

these harmonics can be evaluated by 

 

   !ΔC� lm

ΔS�lm

" = 1

4Rπρω
# dλ2R
0 # ∆σ
ϕ,λ�π

2

-π
2

P�l,m $cosmλ
sinmλ

%  cosϕdϕ                 (8.2) 
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These are related to the gravity field harmonics by Wahr et al. (1998) 

 

    &∆Clm

∆Slm
' = 

3ρω
ρav

1+kl
'

2l+1
(∆C� lm

∆S� lm
)       (8.3) 

 

where 

*+, = density of the Earth 

-./ = load Love number of degree l (Farrell, 1972) 

 

The loading associated with equation 8.1 deforms the elastic Earth and displaces points 

on the surface by distances 01, 02 and 03, where: 

 

Sr= 
GM

gR
∑ ∑ hl

l
m=0

∞
l=1 P� l,m
sinϕ��ΔC� lmcosmλS� lmsinmλ�

Sθ= 
GM

gR
∑ ∑ l l

l
m=0

∞
l=1

∂P� l,m

∂ϕ

sinϕ��ΔC� lmcosmλS� lmsinmλ�

Sλ= 
GM

gRcosϕ
∑ ∑ l l

l
m=0

∞
l=1 P� l,m
sinϕ��-mnC� lmsinmλS� lmcosmλ�

        (8.4) 

 

4here 

 hl = Degree-1 Love number 

 ll = Degree-1 Shida number                       

 

Observations of the Earth’s geocentre are important for two main reasons 1) most 

fundamentally, they are important for defining the origin of the ITRF and 2) for 

analyzing mass transports over the Earth (Kang et al., 2009).  

 

To be able to describe the motion of the geocentre a terrestrial reference frame needs to 

be defined with the centre of figure (CF) as the origin. The centre of mass (CM) of the 

whole Earth system (solid Earth, atmosphere, oceans, hydrosphere, cyrosphere) is 

defined as the geocentre of the Earth. Thus the gravitational harmonics of degree-1 in 

equation 8.3 are zero for l = 1 where, k1
'   = -1. The contribution of the non-zero ΔC� lm 

and ΔS� lm terms for m = 0,1 in the external gravity field coefficients from equation 8.3 

is seen as a displacement (Xg,Yg,Zg) in the position of the satellite tracking stations 

(Moore and Wang, 2003) where Trupin et al. (1992) give: 
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Xg=R√351-
h1+ 2l1

3
6 ρω
ρav
ΔC�11

Yg=R√351-
h1+ 2l1

3
6 ρω
ρav
ΔS�11

Zg=R√351-
h1+ 2l1

3
6 ρω
ρav
ΔC�10

                          (8.5) 

 

8.3 Comparison of Geocentre Motion from GPS, SLR and Geophysical Models 

 

There are two established definitions of geocentre variation (Dong et al., 2003). One is 

the offset of vector CF relative to CM and secondly the opposite of this. The amplitudes 

of these two variants will obviously be the same but their phases will differ by 180o. 

This offset can be observed by space geodetic techniques by measuring the tracking 

network relative to the centre of the tracked orbits or it can be inferred by observing the 

deformation of the solid Earth due to surface mass loads (Kang et al., 2009). Space 

geodetic techniques have shown this movement to be of the order of a few millimetres 

over timescales from diurnal to semi-diurnal (Eanes et al., 1997) to seasonal (Chen et al., 

1999).  

 

Geocentre motion has been computed from SLR, GPS and geophysical models. The 

method for performing these calculations is described below and a comparison of the 

results of these computations from the different sources is compared. 

 
8.3.1 Analysis Procedure 

 

To account for the tectonic motion of the GPS sites a secular model has been removed 

from the GPS site displacements. this correction has also been applied to the SLR data. 

For SLR and GPS, site displacements and gravity field variation (degree-1 only for GPS) 

map onto the same set of surface load coefficients in a “unified approach” (Lavallee et 

al., 2006).  

 

For GPS we use a set of modified spherical harmonic basis functions which incorporate 

the land-ocean distribution, mass conservation and self equilibration of the oceans 

(Clarke et al., 2007). The modified basis functions give a more stable, precise and 

accurate fit in tests using synthetic data and are less subject to aliasing errors. 
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The load coefficients for GPS have been estimated from the weekly GPS Solution 

Independent Exchange (SINEX) files (re-analysed) from the International GNSS servies 

(IGS) analysis centre at the Scripps Institute of Oceanography (SIO) 

[ftp://garner.ucsd.edu/pub/combinations]. The files were downloaded in 2007 further 

details on the data set can be found in Nikolaidis, 2002. This processing was carried out 

and provided by Dr David Lavellee using the TANYA software that was developed by 

Dr Lavellee. 

 

The load model is a combination of hydrology, ocean bottom pressure and atmospheric 

pressure data.  The hydrology data has been taken from the Land Dynamics model (LaD) 

(Milly and Shmakin, 2002). The ocean bottom pressure model is taken from the ECCO 

model and is based on an earlier MIT global ocean circulation model (Marotzke et al., 

1999), details of which are given by Chen and Wilson (2003b). The atmospheric 

pressure model data is from the NCEP reanalysis (Kalnay et al., 1996). The geophysical 

data from these models have been expanded into load spherical harmonics by numerical 

integration using equation 8.2. 

 

8.3.2 SLR orbit results 

 

FAUST has been used to calculate the orbits of LAGEOS I and LAGEOS II over the 

period 1996 – 2008. In this analysis the orbits have been calculated using 7 day arcs and 

using the processing conventions already described in this thesis and also in Moore et al. 

(2005). 

 

The parameters estimated in the orbit determination process were: 

• State vector – initial position and velocity 

• Two along track accelerations 

• Solar radiation pressure (See Figure 8.2) 

• Daily ERPs 

• Gravity field harmonics up to degree and order 4 

• Station coordinates 

• UT1-UTC fixed at the IERS C04 value 
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Figure 8.1 RMS fit of orbits from FAUST: LAGEOS I (black) and LAGEOS II (red) 

 

 
Figure 8.2 Solar radiation pressure from FAUST for LAGEOS I (black) and LAGEOS II (red) 
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Station dependant weights have been chosen according to the quality of the data from 

that station between 10 cm and 30 cm. These weights have been chosen by analysing 

data from the ILRS (ILRS, 2007). The tracking residuals for all the orbits combined are 

approximately equal to 1.1 cm (Figure 8.1). 

 

8.3.3 Geocentre motion 

 

The plots shown in Figure 8.3, Figure 8.4 and Figure 8.5 show the geocentre X, Y, Z 

coordinates respectively as derived from FAUST compared to the estimates of the same 

parameters from the ILRS combination SLR contribution to ITRF2005. 

 
Figure 8.3 X component of geocentre motion from LAGEOS observations computed using FAUST 

(black) and ILRS combination (red) in mm 
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Figure 8.4 Y component of geocentre motion from LAGEOS observations computed using FAUST 

(black) and ILRS combination (red) in mm 

 
Figure 8.5 Z component of geocentre motion from LAGEOS observations computed using FAUST (black) 

and ILRS combination (red) in mm 
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These comparisons show good agreement between the estimates of the geocentre 

derived from LAGEOS I and II with FAUST and with the combined solution from the 

ILRS. This gives a good indication that the results from FAUST are reasonable. 

 
 

 
 

Figure 8.6 Estimated degree-1 load coefficients here expressed as geocentre motion 
(CF relative to CM) time series (mm) for SLR (black), GPS (blue) and the loading model (green) 

 

 

Figure 8.6 shows a comparison of geocentre motion in mm for solutions estimated from  

SLR, GPS and geophysical models for the period 1996 to mid 2005 with the SLR 

estimates available until 2008.  

 

Table 8.1 shows the estimated amplitude and phase for the dominant annual and semi 

annual terms of the geocentre motion estimated through a least squares process. 
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 Annual Semi-Annual 

 Amp +/- Phase +/- Amp +/- Phase +/- 

Loading Model 

X 2.3  209  0.1  17  

Y 2.2  158  0.3  3  

Z 3.2  241  1.4  38  

SLR 

X 2.1 0.3 233 4 0.9 0.3 152 20 

Y 3.0 0.3 123 5 0.4 0.3 73 40 

Z 3.2 0.7 205 5 2.4 0.7 4 17 

GPS 

X 2.1 0.3 211 9 0.3 0.3 78 56 

Y 3.9 0.3 148 4 0.5 0.3 28 31 

Z 2.7 0.3 201 7 0.7 0.3 356 25 

 
Table 8.1 Estimated geocentre motion annual and semi-annual components (mm) 

 

 
These comparisons show that there is good agreement in general terms between the X 

and Y components from all three sources. Agreement is greater on the annual term both 

in phase and in amplitude. The Z term also shows good agreement on the annual term in 

phase and in amplitude but the semi annual term demonstrates itself as a much larger 

term from the SLR data and this can easily be identified from  

Figure 8.6. This may be due to possible aliasing from other geophysical signals, 

geodynamics or sampling. 

 

The differences in these estimates are most likely due to modelling errors in the orbits 

as well as the amount of data used in the estimates. For example the sparseness of the 

SLR station network Figure 5.4 compared to GPS and the fact that the quality of the 
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data from these stations varies over the globe will contribute to errors in the geocentre 

estimates.  

8.4 Conclusion 

 

Realisation of the geocentre is an important part of the monitoring of mass 

redistribution within the Earth system and it is important for defining the origin of the 

International Terrestrial Reference Frame (ITRF). It is possible to measure geocentre 

motion from a variety of geodetic techniques.  

 

Geocentre estimates from SLR, GPS and geophysical models have been estimated and 

compared. The estimates from LAGEOS I and LAGEOS II data calculated using 

FAUST have been shown to be comparable with the combined solution from the ILRS. 

The comparisons of data from SLR, GPS and the models have shown that there is good 

agreement between the different sources on the annual term for both phase and 

amplitude, especially for the X and Y terms. Agreement declines for the semiannual 

term and for the Z term from SLR in particular. 
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Chapter 9  

 
9 Conclusion 

 
9.1 Discussion 

 
As has been stated in this thesis, the Earth can be thought of as a closed system in terms 

of angular momentum, and therefore mass components (i.e. atmosphere, oceans, 

continental water storage (hydrology), core and mantle) in one reservoir of the Earth 

system are exchanged with others (Salstein, 1993). Mass redistribution within the Earth 

system is caused by geophysical processes. This movement of geophysical fluid (mass) 

causes variations in the Earth’s rotation, gravity field and geocentre. As geodetic 

techniques have improved in quantity and quality over time, especially over the last 50 

years or so, the manifestations of these mass distributions have been observed to 

unprecedented accuracy over an array of timescales. 

 

Variations in Earth rotation are affected by this exchange of mass in two ways. Firstly, 

the movement of geophysical fluids causes torques on the surface of the Earth and 

second the change of mass across the Earth causes changes in the Earth’s inertia tensor 

(as described in Chapter 3). From this knowledge it can be said that the Earth obeys the 

law of “conservation of angular momentum” (Chao et al., 2000). 

 

The gravity field of the Earth is very closely linked to the same geophysical process 

within the Earth system as it too is affected by the redistribution of mass around the 

globe. These processes cause changes in the Earth’s gravity field through Newton’s 

gravitational law. This law states that a body creates its own gravity field according to 

the distribution of mass within that particular body. 

 

Finally, changes in the Earth’s geocentre obey the law of “conservation of linear 

momentum”. This law states that the centre of mass of the solid Earth plus the 

geophysical fluids such as the atmosphere and oceans etc obeys the law of celestial 

mechanics in its translational motion around the solar system. 
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The main theme of this thesis relates to the redistribution of mass within the Earth 

system and how this relates to precise orbit determination and the parameters that can be 

estimated as part of the orbit determination process. As seen in Chapter 4, there are 

several reservoirs of mass whose redistribution contributes to the changes in the rotation 

of the Earth. Most of these reservoirs’ movements are modelled and data is readily 

available from several organisations across the world. Some of this data is shown in 

Chapter 4. This data, when converted to excitation functions, shows the differences 

between the mass and motion effects of these mass redistributions on the Earth’s 

variable rotation. These excitation functions show that the Z term that relates to the 

LOD is dominated by the atmospheric motion term and that all other terms have a 

relatively small effect on changes in LOD. The X and Y terms are much more similar in 

size when comparing the mass and motion terms as well as the contribution of 

atmosphere and oceans to the excitation are of similar size with the hydrological angular 

momentum contributing slightly less to changes in the poles. It has been shown that 

models developed by different organisations show good agreement on all of the mass 

terms and on the Z motion term. However agreement is sketchy between the X and Y 

motion terms giving evidence that these models are the least well defined. 

 

The Newcastle University’s POD software FAUST (Moore et al., 1999; Boomkamp, 

1998) has been modified to allow the estimation of daily ERPs (XP, YP, LOD). FAUST 

was then utilised to compute the orbits of LAGEOS I and LAGEOS II from 1996 – 

2007 in several different scenarios, firstly solving for ERPs and the coordinates of all 

stations used within the orbit determination process, secondly solving for the same with 

the addition of low degree gravity field variations (up to degree and order 3), thirdly 

solving for gravity field variations up to degree and order 4. The results of estimated 

parameters from these different scenarios have been compared and shown to be 

reasonable when compared with similar parameters from other sources such as a 

comparison with orbit determination software used at the NERC geodesy facility and 

also by comparing with data available on the web through the ILRS. 

 

Chapter 6 describes how ERPs can be converted into excitation functions of the Earth’s 

variable rotation. As described previously the Earth’s rotation is affected in two ways 

(torques and mass changes) and from different geophysical reservoirs. Because of this 

the excitation functions computed from ERPs contain the contributions to excitation 
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from all of these sources. To compare the models and the FAUST-derived excitation 

functions (from ERPs) the models were combined and the long term trends and means 

removed from the data. Very good agreement was found between the LOD derived 

excitation function and the combined Z term 	� from the models (when averaged over 

15 days), this is most likely due to the dominance of the atmosphere in this particular 

term and gives evidence that the Z motion term is relatively well defined in the models 

and from SLR. The agreement is less on 	
, 	� or the X and Y terms respectively. This 

may be because the modelled contribution of the motion terms is less well defined for 

	
  and 	� , as shown in Chapter 4. The agreement, evidenced by the much lower 

correlation values (0.068, 0.155, 0.671 compared to 0.683, 0.694, 0.885 for 	
, 	� and 

	� respectively) also degrades greatly when using daily values of  	
, 	� and 	�.  

  

In addition to this the coherence functions of each of the excitation functions were 

calculated to see how well the excitations from the models and from ERPs compare at 

different frequencies. The results of this analysis has shown that both 	� and 	� have 

very good agreement at the dominant annual and semi annual terms but that this 

agreement drops as the frequency increases. 	
 does not show such good agreement and 

the same dominant periods and once again the agreement drops away as frequency 

increases. The excitation functions calculated from ERPs have also been split into the 

effects caused by mass redistributions and those caused by motion (torques). This has 

been performed by using the modelled motion and mass terms to remove each 

respective element to leave the excitation residuals which should correspond to the 

opposite effect, depending on the accuracy of the models and of the total excitation 

estimated from the ERPs. As would be expected it was found that the motion term for 

	� showed an excellent match between model and ERPs due to the domination of this 

term. The other two motion terms do not match as well although there are some areas in 

the 	
 term that match well. The fact is that the relatively poor agreement in these terms 

is what would be expected following the comparison of models from different data 

centres compared previously. Also as we may expect the mass term for 	� has the least 

agreement of the three terms, with the dominant annual signal on 	�  showing good 

agreement.  
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Coherence analysis of the data shows that there is very good agreement between the 

dominant annual and semi annual terms in the data for 	� on the mass term (less so on 

the motion term as this term seems to be harder to define) and 	� on both the mass and 

the motion terms; this is perhaps not so expected due to the dominance of the motion 

term .  

 

The excitation functions can be converted to corrections to low degree spherical 

harmonics (J2, C21, S21) of the Earth’s gravity field by using the relationship given by 

Chen and Wilson (2003b). Matching these spherical harmonics calculated from 

different sources, averaged over 15 days, has shown that in general J2 has the best 

agreement between the different sources and S21 has agreement particularly with the 

dominant annual signal, C21 is in least agreement from the different sources which 

suggest it is perhaps poorly defined from one or more of the sources. This general 

pattern is followed when comparing the J2, C21 and S21 estimated from ERPs from 

LAGEOS, with LAGEOS directly-estimated J2, C21 and S21. When comparing the 

daily estimates the agreement reduces drastically and it is questionable whether it adds 

any more value to the data. 

 

Chapter 6 has shown that it is possible to use ERPs to calculate J2, C21 and S21 and 

that the agreement is relatively good between all of the harmonics, although it is 

particularly good for J2 and at its lowest on C21.  

 

Space geodesy is limited in its ability to provide mass changes at short time periods 

(less than 15 days) even at low spatial resolutions, due to the satellites’ low sensitivity 

to the Earth’s gravity field and to the high correlation between harmonics (especially 

degrees 2 and 4) (Hancock and Moore, 2007).  However space geodesy does provide 

high resolution (here daily but in some cases, such as with GPS, even more frequent) 

ERP data.  

 

The low sensitivity of orbits to the gravity field variability or the high correlation 

between the harmonics limits the time period over which mass change, even at low 

spatial resolutions, can be recovered from space geodesy. However, the relatively high 

temporal resolution of ERPs does raise the possibility of simultaneously recovering and 
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using higher temporal frequencies for the degree-2 harmonics from the ERP data within 

an orbital determination procedure. 

 

This theory has been tested in Chapter 7 by using the angular momentum models 

described in Chapter 5 to compute and remove the excitation caused by motion and 

surface torques from the ERPs. A strategy was carried out to use this in the orbit 

determination process by converting the ERPs to excitation functions and then using the 

NCEP reanalysis atmospheric angular momentum model and the ECCO ocean 

circulation model to remove the motion excitation from the ERP excitation to leave the 

mass excitation. These mass excitations from LOD were then converted to J2 and the 

correction applied to the average value of J2 beginning with correction over one 15 day 

arc. This process was repeated for several different scenarios which were: 

 

• J2 only one correction over a 15 day arc 

• J2 only one correction a day 

• J2, C21 and S21 one correction over a 15 day arc 

• J2, C21 and S21 one correction per day 

 

The results of these experiments have shown that using one correction over a 15 day arc 

gives an improvement to the orbits over the whole period (1996 – 2007), with a slightly 

better improvement achieved when using J2 only. The degradation of the orbits when 

using all three corrections is likely due to the fact that they do not often all have good 

agreement with the models or SLR derived gravity at the same epochs showing that it is 

probable that at least one of the estimates at that epoch may be wrong and corrupt the 

solution at that particular epoch. 

 

When utilising the high frequency (daily) ERPs to compute high frequency low degree 

harmonics the fit of the orbit is much poorer. From the analysis in Chapter 6 of this 

thesis this is likely to be due to the noisiness of the daily ERP-derived gravity field 

parameters, with this noisy data likely to be caused by either modelling errors or/and 

errors in the determination of the ERPs within the LAGEOS orbit determination process. 

It has already been shown that the motion terms (from the excitation functions) used to 

calculate S21 and C21 are poorly defined and that the excitation function used to derive 
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J2 is dominated by the motion signal meaning that any relatively small errors in the 

motion part of the excitation function will display as relatively large errors in the 

residual mass excitation function (left over). 

 

This analysis has shown that it is possible to derive the gravity field harmonics J2, S21 

and C21 from ERPs and angular momentum models and that, averaged over a 15 day 

period, they compare relatively well with the same parameters estimated directly from 

the least squares orbit determination process. However, it has also been shown that, 

using the methods in this thesis, using higher frequency gravity harmonics has a 

negative effect on the orbit determination procedure and that these daily estimate 

parameters do not compare well with other sources of the same data. 

 

Data from FAUST estimated orbits of SLR data to LAGEOS I and LAGEOS II has also 

been used to estimate the geocentre motion of the Earth. It has been shown that the 

geocentre estimate from SLR, GPS and geophysical models are comparable although 

the agreement varies between the various methods and also for the various parameters. 

These variations could be due to the differences in the various data networks and errors 

in the specific measurement methods. 

 

9.2 Future Work and Recommendations 

 

The main aims of this thesis were to investigate the usefulness of using Earth Rotation 

Parameters within the orbit determination process to establish higher frequency 

estimates of the low degree spherical harmonics of the Earth’s gravity field. Also 

investigated was the ability of SLR to determine mass redistribution through estimates 

of the Earth’s geocentre motion. These aims have generally speaking been met but there 

are several areas that could be looked at more closely to extend and improve the 

research in this thesis. 

 

As new models of atmospheric and oceanic data become available, analysis of this data 

could be performed to understand if these new models offer any advantage over the old 

models that might enhance the novel method investigated in this thesis. In addition to 

this it might be worth investigating methods of removing the secular term in the data. A 

more intensive investigation of the geophysical models used in the process could be 
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undertaken to evaluate which models give the best performance.  For example if core 

angular momentum data is available, this could be used to remove the secular part of the 

data. 

 

In this thesis two scenarios were assessed when investigating the usefulness of using 

angular momentum models to calculate gravity field estimates for the low degree 

harmonics from ERPs in a unified process. Firstly, J2 alone was evaluated, and then 

corrections to J2, C21 and S21 were calculated and evaluated. It would be useful to 

investigate the effects of each of the corrections on the orbits individually. This may aid 

in understanding the reasons why some arcs are affected positively by the corrections 

and others not so, or at least give evidence for which of these parameters is most likely 

causing the errors. 

 

Also, as mentioned in this thesis, one of the problems in solving for gravity field 

harmonics by integration is the high correlations between some of the harmonic 

parameters. This is especially true for the degree-2 and degree-4 harmonics. By solving 

for degree-2 harmonics in the method described in this thesis, the advantage of this 

method in removing these correlations can be investigated. 

 

The usefulness of solving for one correction every 15 days and solving for a daily 

correction to the degree-2 spherical harmonics of the gravity field has shown that daily 

corrections mostly make the solution worse and corrections averaged over the 15 day 

period improve the orbits. An investigation of where the breakeven point is would be 

useful as it would provide information regarding the frequency of gravity estimates 

available from this method that would provide estimates of the gravity field that may be 

close to the truth at higher frequencies. 

 

The lengths of the arcs could also be varied to investigate whether changes to the arc 

length will have a positive effect on the determination of the orbits. Along the same 

lines the method of rejecting observations and methods for weighting the SLR data 

could be investigated to determine a more robust method for selecting the data to be 

used in the determination of the global parameters. 
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This method could also be tested within the GPS or GNSS method for determining 

gravity field harmonics and ERPs. GPS allows even higher frequency ERP 

determination and may be more accurate in defining the ERPs than SLR. 

 

It has been shown that geocentre estimates derived using the changes in the station 

coordinates from SLR stations around the globe from FAUST are comparable with 

geocentre variations calculated from GPS and from geophysical models. However these 

comparisons have shown some discrepancies, especially in the Z term. It is well known 

that some SLR stations have better quality data than others. Therefore a method for 

improving the geocentre solution from SLR is to improve the method of weighting the 

measurements. 
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