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“Nothing is static, nothing is final, everything is held provisionally.”

Jocelyn Bell Burnell,

a British astrophysicist who missed out a Nobel Prize.



Abstract

For nearly 40 years, engineers, researchers and scientists from the nuclear industry

across the World have been trying to understand the behaviors of deposition, bounce and

re-suspension of heavy, radioactive particles suspended as a dilute secondary phase in

the cooling circuits of primary reactor systems. The aim is to understand the mechanism

of transport and deposition of such particles through large, complex geometry systems,

so that the risk of dispersal of radioactive particles may be assessed, and confirmed to

be acceptably small both in closed containers and in the atmosphere in the case of an

accident scenario.

The first part of the present work addresses the challenge of robustly and efficiently

predicting the behaviors of rigid and spherical particles (referred to as heavy particles)

within turbulent boundary layers, the underlying physics of which is the controlling

factor on particle deposition in smooth pipes and ducts. In the second component of

work we study the deposition and bounce of heavy particles suspended in turbulent

flows across heat exchanger tube banks, using Large Eddy Simulation (LES). It was

originally proposed to extend the boundary layer work to this application, but it was

quickly identified that the deposition mechanisms here are governed by the high core

flow turbulence, rather than boundary layer phenomena, so that LES provides the only

realistic modelling approach. In both cases the dispersed heavy particles are expressed in

a Lagrangian framework solved in an independently developed large-scale parallel code;

whilst the fluid phase is described in an Eulerian framework, either based on correlations

from published Direct Numerical Simulation (DNS) for the boundary layer models, or

from Computational Fluid Dynamics (CFD) simulations for both the boundary layer

and tube-bank models, making use of the unstructured-grid based Navier-Stokes solver

ANSYS FLUENT.

Underpinning this work we implement a complete stochastic Lagrangian particle track-

ing module, based on a robust and efficient particle localization algorithm which can

determine and update the cell containing each particle as the particles move through

an unstructured finite volume grid overlying the flow domain. The module can handle

correctly the interactions of particles with complex boundaries, and uses a novel numeri-

cal scheme for interpolating the carrier-phase velocity field seen by the particles from

cell-centred values obtained from CFD computation. It implements a Gear three-level

implicit scheme to compute the particle velocity, which is more robust, accurate and

efficient than the conventional explicit and implicit schemes. The module has been fully



parallelized using MPI (Message Passing Interface) settings on a Linux cluster consisting

of 20 single CPU node, and further been successfully integrated with both the steady and

unsteady ANSYS FLUENT solvers, complete replacing the built-in Lagrangian particle

tracking model provided by ANSYS FLUENT. The algorithm and numerical schemes

have been validated against analytical solutions of particle transport in a two-dimensional

straining shear flow and other cases.

For turbulent boundary layer flows, a simpler but more promising stochastic quadrant

model, inspired by the discrete random walk model of Kallio and Reeks and the quadrant

analysis of Wu and Willmarth, is developed in order to account for the effects of near

wall large-scale coherent structures, e.g. sweeps and ejections, on particle transport. The

input parameters for the stochastic quadrant model are educed from the corresponding

statistics obtained from a Large Eddy Simulation (LES) of a fully developed channel flow.

The model is applied to the prediction of deposition of heavy particles in a turbulent

boundary layer; both using a Kallio and Reeks correlation based model of the flow,

and also a Reynolds-Averaged Navier-Stokes (RANS) flow solution of using ANSYS

FLUENT, the latter flow model having the potential to be extended to complex duct

geometries. These solutions are compared to those of by solving an alternative Langevin

equation of Dehbi, or continuous random walk model, which satisfies the fully mixed

condition and describes the fluid velocity fluctuations seen by heavy particles.

Prior to the current work no systematic investigation of the potential errors in particle

deposition in turbulent boundary layers due to the modified hydrodynamic forces experi-

enced by particles when very close to the wall has been carried out, possibly because

of the complexity of the correlations involved. The effect is explored with the present

stochastic quadrant model, using recently published composite correlations of Zeng and

Balachandar for the particle drag coefficient CD and lift coefficient CL for near wall

particles. This work provides an important first confirmation that for practical cases

hydrodynamic effects can reasonably be neglected for particle deposition in turbulent

boundary layers.

The boundary layer methods developed in the first part of this thesis are applicable to the

prediction of heavy particle deposition in fairly complex duct geometries, but are shown

to be inappropriate for flow over tube-banks, where the boundary layers are no longer the

rate limiting feature. Consequently the parallel Lagrangian stochastic particle tracking

model is extended to study the particle impaction efficiency on tube banks in a turbulent

flow in the framework of Large Eddy Simulation (LES). The flow field, obtained from

Large Eddy Simulation with the dynamic Smagorinsky sub-grid scale model within



ANSYS FLUENT, is fully validated against existing experimental data. As far as the

dispersed particle phase is concerned, the energy losses when particles impact on and

generally, but not always, rebound from cylinders within the tube-bank is taken into

account using an empirical critical-impact velocity model. The efficiency of particle

impaction is measured for particles of three Stokes number, and the results are compared

with existing experimental data.
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Chapter 1

Introduction

1.1 Background and motivation

Particle-laden turbulent flows are involved in a wide variety of fields. Atmospheric

sciences and environmental pollution, sediment transport in rivers, spray drying and

fouling of heating exchangers are just a few areas where the behavior of small particles

suspended in a fluid is of vital importance (see Crowe et al. (1998); Crowe (2006);

Friedlander (2000)). In the past forty years, with concerns about the consequences of

accidents in nuclear reactors, a great deal of research effort has been devoted towards

the modelling and calculation of the deposition/plate-out, resuspension, dispersal and

of radioactive particles both in the reactor coolant system and containment and their

possible release to the atmosphere.

Though the design of the civil advanced gas-cooled reactors (CAGRs), which is unique

to the UK, is capable of preventing large-scale failure and fission-attached radioactive

dust release even in accident scenarios, significant quantities of radioactive dust may be

deposited in the primary system and available for release due to resuspension. Some may

result from a dropped fuel during on-loading refuelling operations. The radioactive dust

generated by dropped fuel will be transported and suspended in the coolant gas circuit,

and plate-out onto surfaces in the primary system. The high-pressure coolant gas renders

enough momentum for releasing radioactive dust from the primary system to the outside

1
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environment in the event of a breach of the reactor coolant system and a loss-of-coolant

accident (LOCA) (see Hewitt and Collier (2000); Allelein et al. (2008).

In order to assess the magnitude of the release it is crucial to know the mechanism by

which the radioactive dust deposit/plate-out, and resuspended during transient flows from

the containment surfaces. This normally involves a series of complex deposition pro-

cesses including turbulent diffusion, turbophoresis, thermophoresis, inertial impaction,

interception, gravitational settling, Brownian motion and the effects of surface roughness,

etc. However, in effective assessments of deposition of radioactive dust, it is frequently

assumed that the deposition rate is limited by the transport of dust particles through the

turbulent boundary layer adjacent to depositing surface. This assumption significantly

simplifies all the related computations of radioactive particles suspended in the complex

containers. Based on this idea, the industrial code CIRCD, developed by Reeks (1991) in

British Energy (part of EDF), has been successfully applied to the analysis of the trans-

port, deposition or plate-out on the container surfaces and resuspension from transient

flows of radioactive dust in the gas-coolant circuit.

Focusing on transport of particles in turbulent boundary layers, Kallio and Reeks (1989)

first demonstrated that a discrete random walk (DRW) boundary model is capable of

predicting the inertial deposition of a wide spectrum of particles from turbulent flows

when compared to the benchmark experimental measurements of particle deposition

in a turbulent pipe flow by Liu and Agarwal (1974). The central idea of Kallio and

Reeks (1989) is to account for the turbulence effect on the particle motions through

simulating random particle-eddy-interaction within turbulent boundary layers. This

idea has attracted a great deal of attention and been employed by Greenfield (1998) for

studying particle deposition. More recently, Dehbi (2008a) implemented this approach

into the CFD code ANSYS FLUENT as a proper stochastic boundary layer particle-eddy

interaction model for the prediction of particle deposition in turbulent pipe flows.

Near wall coherent-structures (CS) have received much attention in recent years due

to their critical role in turbulence generation and maintenance, which offers important

mechanisms on the transfer and segregation of inertial particles within turbulent boundary

layers (see Marchioli and Soldati (2002)). The term coherent-structures (CS) refers to
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a wide variety of spatially coherent events that are usually identified in turbulent flows

using flow visualization or analysis of velocity signals measured experimentally and

numerically. They play an important role on the turbulent transport process and has also

been investigated as a potential engineering model used in the nuclear CFD code Saturne

for the prediction of inertial particle deposition in turbulent flows by Guingo and Minier

(2008). However, the above model utilized artificial parameters needing fine tuning and

is also too complex to be used in the practical safety assessment calculations.

One way to simplify the loosely defined near wall coherent-structures is make use of

the approach of quadrant analysis proposed by Willmarth and Lu (1972). Later, Wei

and Willmarth (1991) used the quadrant analysis to study the wall-normal velocity

fluctuations within a turbulent boundary layer measured by LDA, and proposed to use

the mechanism of turbulent momentum transport normal to the wall for understanding

suspended sediment transport. The momentum transport mechanism is directly associated

with sweeps and ejections which produce large −ρu′v′ turbulent shear stresses. Sweeps

involve wall-ward directed high velocity fluid and cause particles to be transported

toward the wall; whilst ejections involve the ejection of low velocity fluid away from

the wall region and therefore cause particles to be migrated away from the wall. This

was established by DNS calculations of particle-laden channel flows from Marchioli and

Soldati (2002).

Another way to simulate the inhomogeneous and anisotropic feature of turbulent bound-

ary layers is based on the Langevin equation, which simulates the turbulent fluid velocity

fluctuations along the particles trajectories. This methodology was employed by Dehbi

(2008b) to study inertial deposition of particles in turbulent flows through the implemen-

tation of user-defined-functions (UDF) in ANSYS FLUENT.

From the practical engineering modelling point of view, this thesis presents a simple but

more promising stochastic quadrant model of near wall coherent-structures for studying

inertial deposition of particles in a CFD modelling framework. The model, inspired by

the discrete random walk (DRW) model of Kallio and Reeks (1989) and the quadrant

analysis of Willmarth and Lu (1972), is developed to account for the effects of large scale
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near wall coherent structures, e.g. sweeps and ejections, on particle transport within

turbulent boundary layers.

1.2 Thesis outline

The principal objective of this thesis is to investigate dispersion and deposition of heavy

particles suspended in turbulent flows as a dilute second dispersed phase in a CFD

modelling framework.

Chapter 2 describes the Eulerian-Lagrangian approach for turbulent dispersed particulate

flows. The governing equations for the fluid and particle phase are described in the

Eulerian and Lagrangian framework respectively. The Finite-Volume-Method (FVM)

used in the present CFD modelling framework is also briefly reviewed. The two important

forces acting on rigid spherical particles, the drag force and lift force, are presented.

On the basis of the RANS modelling framework it then describes the detailed theory

concerning discrete random walk (DRW) eddy-interaction and continuous random walk

(CRW) model.

Chapter 3 presents an implementation of the Eulerian-Lagrangian method for investi-

gating heavy particle deposition in the CFD modelling framework ANSYS FLUENT. It

first discusses the background on heavy particle deposition from turbulent flows. Under-

pinning the idea both employed in CIRCD and proposed by Kallio and Reeks (1989),

the eddy-interaction model was applied to study particle deposition through UDFs in

the CFD modelling framework ANSYS FLUENT. Through this, multiple shortcom-

ings inherent in the discrete phase model (DPM) provided by ANSYS FLUENT were

revealed. However, these deficiencies are beyond the range of UDFs. Therefore, a

complete stochastic Lagrangian particle tracking module was implemented in ANSYS

FLUENT. This is based on a robust and efficient particle localization algorithm proposed

by Haselbacher et al. (2007), which can determine and update the cell containing each

particle as the particles move through an unstructured finite volume grid overlying the

flow domain. It then presents a novel numerical scheme for interpolating the carrier-

phase velocity field seen by the particles on structured grids. The module uses a Gear
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three-level implicit scheme to compute the particle velocity, which is more robust, accu-

rate and efficient than the conventional explicit and implicit schemes. It was further been

successfully integrated with both the steady and unsteady ANSYS FLUENT solvers,

complete replacing the built-in Lagrangian particle tracking model provided by ANSYS

FLUENT. The algorithm and numerical schemes have been validated against analytical

solutions of particle transport in a two-dimensional straining shear flow and other cases.

Finally the parallelization of this module using MPI (Message Passing Interface) is

described and its corresponding performance presented.

Chapter 4 deals with inertial deposition of heavy particles in a real turbulent boundary

layer, which is based on a simpler but more promising stochastic quadrant model of near

wall coherent-structures. The stochastic quadrant model is formulated mathematically

and its related statistics are presented. The performance of the model in predicting

deposition rates is evaluated through comparing against experimental measurements and

those from the continuous random walk. Various statistics related to the particle phase

are presented as well.

Chapter 5 presents an investigation of the wall effects on the hydrodynamic forces acting

on a particle in the very near wall region and the corresponding effects on particle

deposition. This is achieved through employing composite correlations for the drag

coefficient CD and lift coefficient CL in the particle equation of motion. These correlations

are based on very recent research from Zeng et al. (2009). These new correlations are

examined by comparing the results with those from the standard correlations.

Chapter 6 is concerned with a large eddy simulation (LES) study of a turbulent flow

over a tube bank. The dynamic Smagorinsky subgrid scale model based LES takes

advantage of the Werner and Wengle wall layer model in order to mitigate the forbidding

computational cost for such a complex flow. The LES methodology in simulating

turbulent flows across tube-banks is assessed carefully by comparisons with available

experimental measurements.

To understand further the deposition process of particles onto complex geometries,

Chapter 7 presents an LES study of the inertial deposition of heavy particles within

tube-banks in a turbulent flow. An empirical particle-wall collision model that considers
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the energy loss upon impaction is implemented to address particle rebound from the

cylinder surfaces. The results both on the fluid phase and particle phase are presented

and discussed.

Chapter 8 summarizes these investigations and discusses the general features of future

work.
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Chapter 2

Eulerian-Lagrangian methods for

dispersed particulate flows

2.1 Introduction

To predict turbulent dispersed particulate flows, two general approaches are possible. One

treats the carrier phase as a continuum and the dispersed particulate phase as individual

particles. This approach, which predicts the particle trajectories in a fluid phase by

solving their equations of motion, is usually known as the Eulerian-Lagrangian approach.

For example, this approach was used by many researchers (e.g. Maxey (1987); Kallio and

Reeks (1989); McLaughlin (1989); Elghobashi (1991); Squires and Eaton (1990, 1991);

Wang and Squires (1996b); Uijttewaal and Oliemans (1996); Marchioli and Soldati

(2002); Narayanan et al. (2003); Dehbi (2008a,b, 2009, 2010, 2011); Dehbi and Martin

(2011); Guingo and Minier (2008); Chibbaro and Minier (2008); Guha (2008)). The

another approach treats the particulate phase like the carrier flow as a fluid continuum,

and solves the appropriate mass, momentum and energy equations for both the carrier

and dispersed phases simultaneously. It is normally referred to as the Eulerian-Eulerian

or two-fluid approach. The Eulerian-Eulerian approach is also seen in the following work

for studying the near wall behavior of inertial particles in turbulent flows.(e.g. Cleaver

and Yates (1975); Reeks (1991, 1992); Swailes and Reeks (1994); Devenish et al. (1999);

9
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Young and Leeming (1997); Guha (1997, 2008); Sergeev et al. (2002); Zaichik et al.

(2008) )

In this thesis, the Eulerian-Lagrangian approach has been chosen for modelling the

deposition and dispersion of inertial particles in turbulent flows. This approach has the

advantage that, albeit an approximation, allows the simulation of millions of particles

suspended in a turbulent flow. The key feature of the Eulerian-Lagrangian approach

is that the exchanges of mass, momentum and energy between the continuous carrier

phase and the dispersed particulate phase are modelled, rather than directly resolved.

Otherwise, it would result in a significantly computational cost. This therefore requires

some assumptions for the development of mathematical models.

Here, the point-particle approximation (e.g. Prosperetti and Tryggvason (2007); Bal-

achandar and Eaton (2010)) is used to model the transport of the dispersed particle phase.

Under this approximation, individual particles are represented in terms of their position

and velocity and have no spatial dimensions under most circumstances except that they

tend to interact with another surface, i.e. the solid wall boundary. Nevertheless, this

approximation requires the dispersed particulate phase to satisfy certain requirements,

one of which is that the size of the particle is less than smallest length scale in the

underlying turbulent flow field. On the other hand, the point-particle approximation has

established a wide range of applications and proved to be a useful tool for modelling a

great deal of complex systems, especially those consisted of a huge amount of particles.

Moreover, in this thesis, it is assumed that the dispersed particulate phase has very low

volume fraction so that it does not affect the behavior of the continuous carrier phase.

This is referred to as one-way coupling. Furthermore, there is no mass and energy

transfer from the carrier phase to the dispersed particle phase. Particle-particle collisions

are insignificant. These assumptions hence allow us to focus on the behaviors of dilute

dispersed particles in turbulent flow fields.

Thanks to the development of numerical techniques in Computational Fluid Dynamics

(CFD) (e.g. Versteeg and Malalasekera (2007), Finite-Volume-Method (FVM) for the

Navier-Stokes equations on unstructured grids (e.g. Barth and Jespersen (1989); Mathur

and Murthy (1997)) has been very successful in addressing the single carrier-phase
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turbulent flow and has been implemented into commercial CFD codes such as ANSYS

FLUENT. Apart from using state-of-the-art numerical techniques for solving the Navier-

Stokes equations robustly and efficiently for the continuous carrier-phase, ANSYS

FLUENT allows users to incorporate User-Defined-Functions via the mechanism of

loading a dynamically linked shared-object library. This functionality allows users

to custom ANSYS FLUENT and can significantly enhance its modelling capabilities.

Therefore, to avoid reinventing the tool, the Finite-Volume Method(FVM) based Navier-

Stokes solver ANSYS FLUENT is justifiably used to solve the governing equations

of the continuous fluid phase and to achieve acceptable flow fields instead of using a

research academic code. In this regard, commercial CFD codes have been used by the

researchers for studying turbulent dispersed two-phase flows (e.g. Greenfield (1998);

Tian and Ahmadi (2007); Horn and Schmid (2008); Dehbi (2008a,b, 2009); Mehel

et al. (2010)). More importantly, this thesis focuses mainly on the investigation of the

deposition of inertial particles onto the adjacent wall surface exposed to a turbulent

flow in the Computational Fluid Dynamics (CFD) modelling framework. In this regard

the preference here has been to develop independently stochastic Lagrangian particle

tracking models which can be coupled to the Navier-Stokes solver, rather than using

the default general-purpose oriented Lagrangian particle tracking model provided by

ANSYS FLUENT.

This chapter is structured as follows: section 2.2 defines the governing equations and

boundary conditions for the continuous and dispersed particle phase; the Finite Volume

Method (FVM) employed by ANSYS FLUENT is briefly reviewed in section 2.3; two

significant forces, e.g. the drag and shear-induced lift force, acting on a rigid spherical

particle are discussed in section 2.4; section 2.5 gives the definitions of particle response

time and Stokes number that determines the dispersion characteristics of heavy particles

in turbulent flows. Finally, the theory on discrete random walk (DRW) and continuous

random walk (CRW) models used in CFD modelling frameworks to study turbulent

dispersed particle flow is presented in section 2.6.
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2.2 Governing equations and boundary conditions

2.2.1 Continuous phase

In view of the prominent role played by the incompressible single-phase Navier-Stokes

equations in the study of particle-laden turbulent flows, it is useful to review them here.

The derivation of Navier-Stokes is based on the conservation laws for mass, momentum.

Let ρ(x, t) and u(x, t) denote the fluid density and velocity fields of the continuous phase

at position x and time t, the continuity equation is given as

∂ρ

∂ t
+∇ · (ρu) = 0. (2.1)

In this thesis we consider incompressible flows of constant property (i.e., flows in which

ρ is independent both of x and of t). In this case the evolution equation Eq. (2.1) reduces

to

∇ ·u = 0. (2.2)

Eq. (2.2) embodies the idea that each elemental volume of fluid particle conserves its

volume as it moves in the flow.

In a similar form, the momentum equation is given as:

∂

∂ t
(ρu)+∇ · (ρuu) = ∇ ·σ +ρf, (2.3)

where f denotes an external force per unit volume acting on the fluid. The stress tensor σ

can be decomposed into a pressure p and viscous part τ:

σ =−pI+ τ, (2.4)

where I denotes the identity tensor δi j. This work deals with Newtonian fluids, for which

the viscous part of the stress tensor σ is given by

τ = 2µe, e =
1
2
(∇u+∇uT ), (2.5)
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where µ denotes the coefficient of dynamics viscosity, e is the rate of strain tensor, and

the superscript T represents the transpose; in component form, it can be written as:

ei j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
, (2.6)

where x = (x1,x2,x3). With Eq. (2.3), the momentum equation (2.5) may be written for

a Newtonian incompressible fluid as:

∂u
∂ t

+∇ · (uu) =− 1
ρ

∇p+ν∇
2u+ f. (2.7)

where ν = µ/ρ is the kinematic viscosity.

When it comes to the boundary conditions for the Navier-Stokes equations (2.2) and

(2.7), the only case needed to be considered in this thesis is the most common type of

boundary for the continuous phase —the rigid impermeable static wall. This type of

boundary condition amounts to

u · n̂ = 0, impermeable condition

u× n̂ = 0, no slip condition

 (2.8)

where n̂ is the unit normal to the wall surface.

2.2.2 Dispersed particle phase

To determine the trajectories of individual particles with radius ap and density ρp, which

move in a arbitrary flow field u(x, t) of a fluid with dynamic viscosity µ and density ρ .

The acceleration of the particle is described by the equation of motion, which is written

in a Lagrangian frame of reference in terms of the Newton’s second law of motion in the
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form of proposed by Maxey and Riley (1983):

dxp

dt
= up (2.9)

mp
dup

dt
= (mp−m f )g+m f

(
Du
Dt

)
x=xp(t)

−
m f

2
d
dt

(
up− (u+

a2
p

10
∇

2u)x=xp(t)

)

−6πa2
pµ

∫ t

0

d/dτ

(
up− (u+

a2
p

6 ∇2u)x=xp(τ)

)
√

π(t− τ)ρ/µ
dτ

−6πapµ

(
up− (u+

a2
p

6
∇

2u)x=xp(t)

)
, (2.10)

where xp denotes the position vector of the particle, up is the velocity of the particle, g

is the acceleration vector of gravity, mp = 4πρpa3
p/3 is the mass of the particle, m f =

4πρa3
p/3 represents the mass of the fluid displaced by the particle volume. Moreover,

the two terms (u+
a2

p
10∇2u)x=xp(t) and (u+

a2
p

6 ∇2u)x=xp(t) represent the average velocity

of the fluid over the particle volume and the average velocity of the fluid over the

particle surface, respectively. Eq. (2.10) was deduced for situations in which the particle

Reynolds number Rep = 2|up−u|ap/ν = O(1), i.e. the surrounding flow field around

the particle is assumed to be a Stokes flow.

The terms of on the right hand side of Eq. (2.10) represent buoyancy, a force due to the

acceleration of the undisturbed fluid, the virtual mass force due to the inertia of adjacent

fluid displaced by the particle motion, the Basset history force resulting from unsteady

relative acceleration, and the quasi steady viscous drag force due to the relative velocity

difference between the particle and the surrounding fluid, respectively.
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Divided by the particle mass mp for the Eq. (2.10), the following equations are obtained

in terms of the force balance per unit mass:

dxp

dt
= up (2.11)

dup

dt
= (1− ρ

ρp
)g+

ρ

ρp

(
Du
Dt

)
x=xp(t)

− 1
2

ρ

ρp

d
dt

(
up− (u+

a2
p

10
∇

2u)x=xp(t)

)

−
ap

τp

∫ t

0

d/dτ

(
up− (u+

a2
p

6 ∇2u)x=xp(τ)

)
√

π(t− τ)ρ/µ
dτ

− 1
τp

(
up− (u+

a2
p

6
∇

2u)x=xp(t)

)
(2.12)

where τp denotes the particle response time given by:

τp =
2
9

ρp

ρ

a2
p

ν
(2.13)

which represents the time required by a particle for adjusting itself to the velocity change

of surrounding fluid.

Moreover, perfectly absorbing (sticky) conditions on a solid surface for the particle are

considered. This corresponds to the situation when the distance from the particle center

to the adjacent wall surface is less than its radius and the particle sticks to the wall and

the computation for the particle is complete. However, this simple boundary condition is

not correctly implemented in ANSYS FLUENT. This point will be elaborated on later.

2.3 Finite Volume Method (FVM) for Navier-Stokes equa-

tions

The Finite Volume Method (FVM) is quite popular for solving the Navier-Stokes equa-

tions in Computational Fluid Dynamics (CFD) frameworks for a couple of reasons:

1. It ensures that the discretization of governing equations is conservative.
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2. It can be easily adapted to unstructured meshes. Using the finite volume formula-

tion, the integral forms of the conservative laws are satisfied to a great extent of

approximation for all control volumes of the underlying computational grid.

The Navier-Stokes equations solver in ANSYS FLUENT is a three-dimensional finite vol-

ume unstructured-grid based collocated solver that is capable of solving incompressible,

compressible, isothermal and non-isothermal flow problems.

2.3.1 Formulation of the Finite Volume Method (FVM)

2.3.1.1 The general transport equation

Eq: 2.7 may be rearranged to a general transport equation with an appropriate choice of

a general flow property variable φ ,Γ and Sφ . φ may be a scalar, vector or tensor field.

Then Eq: 2.7 may be rewritten as:

∂ρφ

∂ t︸ ︷︷ ︸
unsteady term

+∇ · (ρφu)︸ ︷︷ ︸
convective term

= ∇ · (Γ∇φ)︸ ︷︷ ︸
diffusive term

+ Sφ︸︷︷︸
source term

, (2.14)

where Γ denotes the diffusivity and Sφ the source term. One can average Eq: 2.14 by

integrating it over a three dimensional control volume, Ωi, of cell i,

∫
Ωi

∂ρφ

∂ t
dV +

∫
Ωi

∇ · (ρφu)dV =
∫

Ωi

∇ · (Γ∇φ)dV +
∫

Ωi

Sφ dV, (2.15)

Applying the divergence theorem, Eq: 2.15 may be written as follows:

∫
Ωi

∂ρφ

∂ t
dV +

∫
∂Ωi

(ρφu) ·ndS =
∫

∂Ωi

(Γ∇φ) ·ndS +
∫

Ωi

Sφ dV, (2.16)

where the vector n is normal to surface element dS of the entire bounding surface ∂Ωi of

Ωi.

Eq: 2.16 is the basis of the formulation of finite volume method (FVM). Choosing

appropriate properties for φ , Γ and Sφ , the generic transport equation can be transformed

into the continuity and momentum equations.
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2.4 Forces acting on rigid spherical particles

In this work, only situations where particles are suspended in incompressible, isothermal

flows are considered, the particle response time τp hence is a constant, provided that the

properties of the particle is given. Further, particles studied in this work are of much

higher density than the surrounding fluid, e.g. ρp � ρ . The particle radius is small

so that a2
p|∇2u| � |u|. The Basset history force is justifiably neglected in terms of the

assumption that the accelerations of the flow field are sufficiently small. When a particle

moves into the near wall region, it will experience the well-known Saffman lift force

(Saffman (1965, 1968)) resulting from the mean velocity gradient seen by the particle.

Moreover, the gravity is not considered throughout this study since it does not affect the

particle deposition both onto vertical surfaces and onto the tube-banks in a turbulent flow.

Based on these assumptions, which are applicable to this thesis, the Eq. (2.10) can be

simplified considerably as:

dup

dt
=

1
τp

(u−up)+ fL (2.17)

where u is the instantaneous fluid velocity seen by the particle. The first term on the

right hand side of Eq. (2.17) denotes the Stokes drag force resulting from the velocity

difference between the particle and surrounding fluid; the second term fL denotes the lift

force, i.e., the well-known Saffman lift force resulting from the shear of the underlying

flow. This force shall be elaborated further in the following section.

2.4.1 Viscous drag force

The Stokes drag force accounted for by the first term in Eq. (2.17) is applicable only when

Rep� 1. Nevertheless, the situation encountered in this thesis is not necessarily found to

be the case. For example, when a particle moves in the near wall region within turbulent

boundary layers, the particle Reynolds number is being of the order of magnitude O(10)

(see Kallio and Reeks (1989)). Hence, the Reynolds number effect on the drag force

needs to be addressed appropriately. The extension of the Stokes drag force to higher
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particle Reynolds numbers is normally based on the introduction of a drag coefficient

CD given by

CD =
FD

1
2ρ(u−up)2A

, (2.18)

where A = π/4d2
p is the cross-section area of a spherical particle with density ρp and

diameter dp. The drag force then may be rearranged for per unit particle mass as:

FD =
3
4

CD
ρ

ρpdp
(u−up)|u−up|, (2.19)

Then substituting Eq. (2.13) into Eq. (2.19), which in turn can be simplified as:

FD =
1
τp

CDRep

24
(u−up). (2.20)

Where CD is a function of the particle Reynolds number Rep as defined in section 2.2.2.

There has been a plethora of experimental investigations that have resulted in empirical

correlations for CD of rigid spherical particles at intermediate and high Reynolds number.

Figure 2.1 shows the dependence of CD of a rigid spherical particle upon Rep. From

this figure, it can be observed that there are several regimes which are associated with

different flow characteristics around the rigid spherical particle.

First, when the particle Reynolds number Rep is less than 0.1, viscous effect is dominat-

ing and analytic solution for CD from the Stokes equations may be presented as:

CD =
24

Rep
. (2.21)

This regime is also known as the Stokes flow as shown in Fig. 2.1. When Rep is in the

range of [0.1,0.4], the drag force follows the Oseen expression (see Oseen (1910, 1913))

and decreases monotonically with Rep but diverges from both the Stokes and Oseen

expression.

As the Rep increases, there is a transition regime (i.e. 0.4 < Rep < 1000), where inertial

effects become of increasing importance.
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Figure 2.1: Drag Coefficient CD as a function of the particle Reynolds number Rep for a
rigid spherical particle

When Rep > 1000, the flow is fully turbulent and CD remains almost constant up the

to the critical Reynolds number (Rep ≈ 3.0× 105). This regime is also known as the

Newton-regime with CD attains a value between 0.42 and 0.44. At the critical particle

Reynolds number Recrt , there is a drastic decrease in CD due to turbulent transition from

a laminar to a turbulent boundary layer around the spherical particle. However, this

regime is not relevant to the study in this thesis.

It is convenient in analytical and numerical investigations to use algebraic expressions for

the CD. For the non-linear regime various correlations have been proposed. Schiller and

Naumann (1933); Morsi and Alexander (1972) are the two among most frequently used

correlations. The correlation developed by Schiller and Naumann (1933) is relatively

simple and takes the form following

CD =
24

Rep
(1+0.15Re0.687

p ) =
24

Rep
f (Rep) (2.22)
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Morsi and Alexander (1972) proposed the following expression, which accounts for a

wide range of Rep with sufficiently high accuracy:

CD = c1 +
c2

Rep
+

c3

Re2
p
, (2.23)

where c1,c2,c3 are constants and provided by Morsi and Alexander (1972). Eq. (2.23)

exhibits the correct asymptotic behavior at low as well as high values of Rep. It can be

observed from Fig 2.1 that these two correlations fit CD very well up to Re≈ 1000 and

display no discrepancies within these regime.

2.4.2 Shear-induced lift force

A particle moving in a shear flow experiences a transverse lift force due to the non-

uniform fluid velocity over the particle and the resulting non-uniform pressure distri-

bution on the particle. Saffman (1965, 1968) derived the following expression for the

steady-state lift force (named Saffman lift force) on a not-rotating rigid spherical particle

in a uniform simple shear flow as shown in Figure 2.2:

fL = 1.615µdp
√

ReG(u−up), (2.24)

where ReG is the shear Reynolds number (see McLaughlin (1991)) defined as

ReG =
d2

p

ν

du
dy

, (2.25)

which depends on the mean fluid velocity gradient measured at the particle center. In

the case when a particle is moving within the viscous sub-layer, the mean streamwise

velocity gradient seen by it, is greater than zero in the wall-normal direction. If the

particle lags the surrounding fluid, it experiences the Saffman lift force directed away

from wall. Hence, it will reduce the chance of deposition of a particle. On the other

hand, if the particle leads the surrounding fluid, the Saffman lift force exerted on the

particle points toward the wall and will increase the chance of deposition of a particle.
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Figure 2.2: A particle in a uniform simple shear flow..

2.5 Particle response time and Stokes number

The response time of a particle is defined as

τp =
ρpd2

p

18µ
, (2.26)

where ρp is the density of the particle and dp the diameter of the particle, µ is the

dynamics viscosity of the continuous phase. The response time of a particle represents a

characteristic time scale for velocity changes of the particle. Similarly, a characteristic

time scale for velocity changes in the continuous phase may be defined.

As far as a characteristic time scale τ f of the continuous phase is concerned, there are

various definitions according to the most interesting scale in the underlying flow. A

characteristic time scale for the macroscopic motion of the continuous phase, e.g. in a

flow over tube banks may be defined as:

τ f =
Lc

Uc
(2.27)



Chapter 2. Eulerian-Lagrangian methods for dispersed particulate flows 22

where Lc is a characteristic length scale of the flow, e.g. the cylinder diameter D, and Uc

denotes a characteristic velocity, e.g. the mean inlet velocity U0.

For a fully turbulent boundary layer, the characteristic time scale τ f is normally defined

as

τ f =
ν

u2
τ

, (2.28)

where uτ is the wall friction velocity and given by

uτ =
√

τw

ρ
, (2.29)

where τw denotes the wall shear stress.

The Stokes number is defined in terms of the ratio of the particle response time τp to

the characteristic time scale in the underlying flow τ f defines , which is an important

dimensionless parameter governing the dynamics of particles in a turbulent flow and

given by,

St =
τp

τ f
. (2.30)

In this work, when the concern is particle deposition within turbulent boundary layers,

St may be estimated as:

St =
ρp

ρ

d2
pu2

τ

18ν2 (2.31)

In the case of particle deposition on tube-banks in a turbulent flow field, St is defined as

St =
ρpd2

p

18µ

Uinlet

D
(2.32)

One may note that, if St � 1, the particle response time is much smaller than the

characteristic time associated with the underlying flow. In this case, the particle will

have enough time to respond to velocity changes in the continuous phase. Hence, the

particle will completely follow the motions of the continuous phase and there is velocity

equilibrium between the dispersed and continuous phase; On the other hand, if St� 1,

then the particle essentially will have no time to adjust to the fluid velocity changes

and the motion of the dispersed particles and of the continuous phase may be totally

uncorrelated. This may be schematically shown in in Figure 2.3.
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Figure 2.3: Schematic show of heavy particles trajectories in a free-shear vortex flow
for various non-dimensional particle response time (Stokes number) St. The solid line
denotes the continuous fluid streak lines, whilst the dashed lines denote heavy particle
trajectories.

2.6 Turbulent particle dispersion in CFD modelling frame-

works

While there has been a plethora of work which employs computationally expensive

methods, e.g. either Large Eddy Simulation (LES) (e.g. Wang and Squires (1996b,a);

Uijttewaal and Oliemans (1996); Kuerten and Vreman (2005); Kuerten (2006); Berrouk

et al. (2008)) or Direct Numerical Simulation (DNS) (e.g. McLaughlin (1989); Uijtte-

waal and Oliemans (1996); Zhang and Ahmadi (2000); Portela and Oliemans (2003);

Marchioli and Soldati (2002); Narayanan et al. (2003); Marchioli et al. (2003); Picciotto

et al. (2005); Marchioli et al. (2008b,a)) to investigate the dispersion and deposition of

inertial particle in turbulent flows, they focused primarily on the behavior of point-like

particles in idealized flow geometries i.e. fully developed channel flows. As a matter of

fact, the accuracy of the Lagrangian particle tracking, to a great extent, depends on the

accurate characterization of turbulence in the underlying flow field. In many practical

circumstances, it is usually calculated in a RANS (Reynolds-Averaged Navier-Stokes

equation) modelling framework to establish an appropriate averaged flow field, instead of

using LES, not to even mention DNS. Furthermore, using a RANS modelling framework

does not resolve small length and temporal scales which influence the dispersed particle

transport. Therefore, in order to account for turbulent particle transport, the turbulence
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in the fluids has to be modelled appropriately. In this regard, two widely modelling

approaches have been demonstrated to be quite successful. One is referred to as the dis-

crete random walk model(DRW) or eddy interaction model(e.g. Hutchinson et al. (1971);

Gosman and Ioannides (1983); Kallio and Reeks (1989); Graham and James (1996);

Graham (1996, 1998, 2004); Dehbi (2008a)); another is known as the continuous random

walk (CRW) based on the Langevin equation (e.g. Bocksell and Loth (2006); Dehbi

(2008b, 2009, 2011); Dehbi and Martin (2011); Guingo and Minier (2008); Chibbaro

and Minier (2008)).

2.6.1 Discrete Random Walk (DRW) models

The central idea behind DRW models is that the turbulence in the underlying flow

may be described as a series of discretized random eddies, among which particles

successively interact those encountered along their trajectories. A sketch of this is shown

in Figure (2.4).

Figure 2.4: particle interaction with a succession of eddies in a turbulent flow field.

Each eddy is characterized by an eddy length le and eddy life time τe as it moves at the

mean fluid velocity. Furthermore, it is assumed that each eddy contributes a random

fluctuating velocity to the fluid velocity in addition to the mean fluid velocity interpolated
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at the particle position. This may be expressed as:

ue = U +u′e, (2.33)

where ue is the instantaneous eddy velocity seen by the particle, U is mean velocity of

the flow and the fluctuating component u′e, which is usually kept constant during an eddy

life time τe.

Moreover, in order to reproduce a flow with the same characteristics of the underlying

flow, the eddy velocity fluctuation u′e is computed from a Gaussian distribution N[0,u′].

The fluid velocity fluctuation u′ is a function of local turbulence conditions (e.g. the

particle distance away from the wall).

When particles are dispersed by the underlying turbulent flow, they move according to

the mean flow velocity and local fluctuations generated by individual eddies encountered

along the trajectories.

Assuming the only force acting on a particle is the drag force and obeys the linear Stokes

drag law, the particle motion may be expressed in the form

dup

dt
=

1
τp

(ue−up). (2.34)

Within each eddy, ue remains constant in space and time. Given the particle initial

velocity up(0) at the very beginning of an interaction, one can obtain a general solution

of up by analytically solving Eq. (2.34) as

up(t) = ue− (ue−up(0))e−
t

τp , (2.35)

Eq. (2.35) may be rewritten as

ur = up(t)−ue =−(ue−up(0))e−
t

τp , (2.36)

where ur is the relative velocity between the particle and eddy. Supposing the particle

stop distance ls equal to τpup when a particle moves in a quiescent fluid (see Young and
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Hanratty (1991)), we then can evaluate the eddy interaction time ti that is the time spent

by a particle within an eddy as follows:

• if |ur|τp < le, the particle is captured by the eddy and interacts with it until it

decays. Under this circumstances, ti = τe.

• if |ur|τp > le, the particle crosses the eddy at an eddy crossing time tc before the

eddy decays. In this case, ti = min(tc,τe).

The eddy crossing time tc may be calculated by integrating Eq. (2.36) and by setting it

equal to le

tc =−τplog
(

1− le
|ur(0)|τp

)
, (2.37)

in which ur(0) = up(0)− ue, represents the relative particle/eddy velocity at the start

of a particle/eddy interaction. Eq: (2.37) is valid only if le/(|ur(0)|τr) < 1, and if this

condition holds, it indicates the particle crosses the current eddy before it decays. Hence

ti is set equal to tc. This phenomenon is usually referred to as the crossing trajectory

effect (see Yudine (1959); Csanady (1963); Wells and Stock (1983)). If this inequality

does not hold, it implies that the particle is captured by the current eddy. Therefore ti is

set equal to the current eddy lifetime τe.

In the case of a small particle response time, the particle is normally be captured by

the eddies. The particle/eddy interaction time thus can be set to equal the eddy lifetime

and the particle follows the fluid. Then the particle velocities quickly approach the

fluid velocities. In this case, the turbulent dispersion of rigid spherical particles will

be similar to that of fluid particles. In the case of a large particle response time, the

particle/eddy interaction time will be more often equal to the particle crossing time. In

such circumstances, the interaction time may be independent of the eddy lifetime.

For practical implementation, the discrete random walk model requires:

1. The mean fluid velocity, U , and the r.m.s value u′;

2. Values of the eddy time τe and the eddy length le.
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In RANS simulations, apart from the mean fluid velocity U , information on the turbulence

is only available in statistical averaged terms. For example, turbulent kinetic energy

and energy dissipation rate in simulations with the k− ε turbulence model, or Reynolds

stresses and dissipation from a Reynolds stress model.

2.6.1.1 Eddy lifetime τe and length scale le

The selection of appropriate values of eddy lifetime τe and length scale le is crucial

for the success of discrete random walk model in the determination of the behaviors

of turbulent dispersed particles. In the widely-used model of Gosman and Ioannides

(1983), it is assumed that the eddy length and lifetime are set according to the following

relations:

le = C3/4
µ

k3/2

ε
, τe =

√
3
2

C3/4
µ

k
ε
, (2.38)

where k denotes the turbulent kinetic energy, ε represents the rate of dissipation and Cµ

is a constant used in the k− ε turbulence model. In this study, both the eddy lifetime τe

and the eddy length scale le are deterministic functions of the distance away from the

wall boundary in the computational domain.

Kallio and Reeks (1989) used a random distribution of eddy lifetime τe for predicting

particle deposition in an inhomogeneous turbulent boundary layer. Moreover, Wang and

Stock (1992) demonstrated that the correct choice of eddy lifetime distribution in the

eddy interaction model ensures the following self-consistent dispersion properties of

fluid particles in homogeneous, isotropic and stationary turbulence (see Taylor (1921)):

〈
u′2
〉

TL =
1
2

d
〈
y2(t)

〉
dt

, (2.39)

where u′ represents the r.m.s fluctuation velocity, TL denotes the integral Lagrangian time

scale, y(t) is the displacement of a fluid particle relative to its mean motion, and <>

indicates an ensemble average over all realizations of all the particle trajectories. The

above expression 2.39 denotes the diffusivity of fluid particles.
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The integral Lagrangian time scale is a measure that how long the particle velocity at the

present time will influence its future velocity. It is determined according to the following

expression

TL =
∫ t

0
RL(τ)dτ, (2.40)

where RL(τ) is the Lagrangian correlation coefficient, which describes how the particle

velocity are temporally related along the particle trajectory. It is defined as

RL(τ) =
〈u(t)u(t + τ)〉〈

u2
0
〉 . (2.41)

In a homogeneous, isotropic and stationary turbulence u(t) equals u0. Hence, it is critical

to determine R(τ) for evaluating TL. The problem is that, on the one hand, there is no

theoretical form for RL(τ); on the other hand, experimental measurements of Lagrangian

quantities are difficult to obtain. Therefore, there is not a great deal of information about

RL(τ). Nevertheless, two important asymptotic results are available by making use of

the following properties of the correlation coefficient RL(τ):

RL(0) = 1, RL(t)→ 0, as t→ ∞. (2.42)

The two results represents for the limiting case t→ 0 and t→ ∞, respectively:

1. short time limit t� TL: if t is small enough, the correlation coefficient RL(τ) may

be approximated by unity, RL(τ) = 1. Then, one may obtain

〈
y2(t)

〉
=
〈
u2

0
〉

t2. (2.43)

The above expression (2.43) indicates that the distance covered by the representa-

tive particle is equal to its velocity multiplied by the time elapsed at short diffusion

time.

2. long time limit t � TL: Given a time long enough for allowing the correlation

coefficient RL(τ) to have fallen to zero, the integral of Eq: (2.40) is cut off and
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equal to TL. Then, one may get

〈
y2(t)

〉
∼ 2

〈
u2

0
〉

TLt. (2.44)

Eq: (2.44) suggests that the r.m.s particle displacement is proportional to the square

root of the time elapsed, which corresponds to the same result obtained by Taylor

(1921) who analysed the classical random walk of discontinuous movements.

To match the above two diffusion properties of fluid particles in a homogeneous, isotropic

and stationary turbulent filed, Wang and Stock (1992) proposed that, if the eddy lifetime

is randomly distributed in terms of a probability density function (PDF) f (te), then a

time averaged form of RL(τ) may be estimated by:

RL(τ) =
∫

∞

τ
(te− τ) f (te)dte

Te
, (2.45)

where the denominator is the mean of random eddy time interval te and given by:

Te =
∫

∞

0
te f (te)dte. (2.46)

Eq: (2.45) may be rewritten using integration by parts as:

RL(τ) =
∫

∞

τ
φ(te)dte∫

∞

0 φ(te)dte
, (2.47)

where

φ(te) =
∫

∞

te
f (t1)dt1, (2.48)

according to f (te) denotes the PDF of eddy lifetime, φ(te) is the probability that the

random eddy lifetime is greater than te, i.e. φ(te) = P(t > te).

If the characteristic eddy lifetime is defined as constant (e.g. Hutchinson et al. (1971);

Gosman and Ioannides (1983); Fluent (2009)), then the PDF of f (te) is a delta function,

i.e. f (te) = δ (te−Te), where Te is the constant mean value of eddy lifetime. In this case,
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the Lagrangian auto-correlation coefficient takes the form:

RL =

1− τ

Te
, τ � Te,

0 τ � Te,

(2.49)

then the integral Lagrangian time scale TL defined in Eq: (2.40) may be found to be

TL = 0.5Te by integrating Eq: (2.47). Accordingly, in order to ensure the self-consistency

dispersion properties proposed in Kallio and Reeks (1989), the eddy lifetime Te is chosen

as:

Te = 2TL. (2.50)

An exponential distribution,

f (te) =
1
Te

e−te/Te, (2.51)

was used to describe the PDF of the eddy lifetime in Kallio and Reeks (1989). This

distribution yields a more realistic description of the correlation coefficient RL(τ), which

can be found to be by integrating Eq: (2.47):

RL(τ) = e−τ/Te. (2.52)

In this case, one may obtain TL = Te. Therefore, choice of Te = TL yields self-consistency

dispersion properties for random eddy lifetime.

The same procedure can be applied to study the eddy length scale le. Considering

fluid velocity fluctuation auto-correlation along a particle path, G(τ), we can define it

according to homogeneity in space and time domain as

G(τ) =
〈
u f (x, t)u f (x+Usτ + ε(τ), t + τ)

〉
= u′2Rp

f (τ), (2.53)

where x+Usτ + ε(τ) is the position of particle at time t + τ due to setting velocity and

random velocity fluctuations. Rp
f (τ) denotes the fluid velocity auto-correlation along a

particle path and Rp
f (0) = 1.
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In the limit of very heavy particle (Usτ � ε(τ)), the turbulence seen by the particle can

be assumed to be “frozen” in time and Eq: (2.53) may be rewritten as:

G(τ) = u′2RE(Usτ,0)), (2.54)

with Eq: (2.53), one obtains:

RE(Usτ,0) = Rp
f (τ), (2.55)

where RE represents the Eulerian fluid velocity auto-correlation, and given by

RE(x, t) =

〈
u f (x0, t)u f (x0 +x, t0 + t)

〉〈
u2

f (x0, t0)
〉 , (2.56)

RE(x, t) in Eq: (2.56) is assumed to be independent of t0 and x0 in a homogeneous,

isotropic and stationary turbulent field.

Integrating both sides of Eq: (2.55) with respect to τ , one gives:

∫
∞

0
Rp

f (τ)dτ =
1

Us

∫
∞

0
RE(x,0)dx =

ΛE

Us
, (2.57)

where ΛE denotes the Eulerian length-scale of the flow field. Similarly, employing the

same procedure proposed by Wang and Stock (1992), it can be demonstrated that, if the

eddy length scale le is kept constant in DRW, le = 2ΛE ; whilst le obeys an exponential

distribution, le = ΛE . Then, both cases can reproduce the self-consistency dispersion

properties of heavy particles.

In this thesis, specifying the eddy lifetime that obeys an exponential distribution is

adopted for studying the deposition and dispersion of heavy particles in turbulent bound-

ary layers.

2.6.1.2 The pros and cons of DRW models

DRW models are widely used for modelling turbulent dispersed particulate flows in CFD

modelling frameworks. The advantages of DRW models lie in its conceptual simplicity,
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in that it merely requires the length, time and velocity scales of the flow to reconstruct the

turbulence effect on the particle dispersion. In DRW models, the motion of the dispersed

particulate phase in a turbulent flow field is determined by simulating the interactions of

particles with a succession of random discrete eddies. The eddy velocity is determined

according to the sum of the interpolated average fluid velocity and a random velocity

fluctuation. The random velocity fluctuation is normally characterized by the turbulent

velocity fluctuations and random eddy time scales according to a function of the local

turbulence conditions.

Although DRW models enjoy a huge popularity and great success in a wide range

of turbulent particle-dispersion applications, they fail in a few cases. This was partly

summarized by Graham (1998).

1. They yield contrary results to analytical solutions and experimental measurements,

which show that the dispersion of heavy particles increases with increasing particle

inertia and is stronger than that of fluid particles. This is also known as the inertia

effect (see Reeks (1977); Wells and Stock (1983)). This results from the fact that

the particle/eddy interaction time in DRW models never exceeds the eddy lifetime.

2. The crossing trajectory effect (e.g. Yudine (1959); Csanady (1963); Wells and

Stock (1983)) may not be properly accounted for, since the turbulent dispersed

particles may move faster than the encountered eddies along the path. Under this

circumstance, eddies are crossed by particles in a relatively shorter time that results

in a reduced turbulent dispersion effect on the particle motion.

3. DRW models fail to account for the “continuity effect” proposed by Csanady

(1963), whereby the particle dispersion in the direction of gravitational drift is

stronger than the counterpart at the right angle to this direction.

4. It has been demonstrated by MacInnes and Bracco (1992) that DRW models

cause serious spurious drift of heavy particle in inhomogeneous turbulence. The
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unphysical accumulation of particles results from the fact that sampling velocity

fluctuations in each eddy attains constant values, which causes particles drift

relative to the mean flow from regions with higher turbulence intensity to lower

ones.

Corresponding modifications with respect to the cons of DRW can be consulted in

Graham (1998) and MacInnes and Bracco (1992).

2.6.2 Continuous Random Walk (CRW) models

Continuous random walk (CRW) models have proved to be a successful and versatile

tool in the study of the dispersion of fluid particles and deposition of heavy particles

in turbulent flows (see Bocksell and Loth (2006); Dehbi (2008b)), and these models

avoid unphysical infinite accelerations experienced by particles when using the discrete

random walk models.

2.6.2.1 One-dimensional models

The CRW approach is based on the Langevin equation, which was proposed by Langevin

(1908) to give an alternative description of the Brownian motion. For simplicity, the

acceleration of a Brownian particle in one dimension can be expressed as

du
dt

=−αu+σξ (t), (2.58)

in which u denotes a Brownian particle velocity, t is time, and α represents a damping

coefficient associated with viscous drag on the particle suspended in a fluid, ξ (t) repre-

sents what is called white noise resulting from irregular, unsymmetrical and stochastic

molecular bombardment on the particle, σ may be interpreted as an amplified factor

to ξ (t). Physically speaking, the first term on the right hand side of Eq: (2.58) may be

called the local drift term of random velocity u, whilst the second term may be called

the diffusion term. If α attains constant value, then u is modelled by the stationary

Brownian motion process or called Ornstein-Uhlenbeck (OU) process (Gardiner (2004);
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van Kampen (2007)). Eq: (2.58) in fact is a stochastic differential equation (SDE) in

disguise and may be rewritten as:

du = −αudt +σdW (t),

dx = udt.

 (2.59)

where W (t) denotes a Brownian motion or Wiener process that satisfies the following

properties:

1. W (t) is continuous;

2. W (0) = 0;

3. For s < t the stochastic variable W (t)−W (s) has the Gaussian distribution N[0,
√

t− s];

4. W (t) has independent increments, i.e. if r < s ≤ t < u then W (u)−W (t) and

W (s)−W (r) are independent random variables.

Figure (2.5) shows five realizations of the Brownian paths.

2.6.2.2 Connection with the Fokker-Planck equation

The Langevin equation is mainly concerned with the properties of individual realizations

of fluid particle trajectories with drift and diffusion. Whereas the alternative is to discover

the statistics of a sufficient large number of particle paths: their mean and variance, or

more generally, the time evolution of the probability density distribution (PDF) of a

stochastic process. The time evolution of the PDF is normally governed by the Fokker-

Planck equation, which can be used to obtain the coefficients α and σ appearing in

equation 2.58 according to the corresponding Eulerian statistics of the turbulent flow

field.

Assume P(x,u, t) denotes the probability density function of phase-space (i.e. (x,u-

space)) distribution of all the fluid particles described by Eq: 2.58, the evolution of the
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Figure 2.5: Five realizations of Brownian motion (Wiener process) W (t)

distribution P(x,u, t) may be given:

∂P(x,u, t)
∂ t

+u
∂P(x,u, t)

∂x
=− ∂

∂u
[−αuP(x,u, t)]+

1
2

∂ 2

∂u2

[
σ

2P(x,u, t)
]
. (2.60)

This is called the backward Kolmogorov equation (see Risken (1996)). Here, the Itô

formula is used to drive Eq: 2.60 as

dP(x,u, t) =
∂P
∂ t

dt +
∂P
∂x

dx+
∂P
∂u

du+
1
2

∂ 2P
∂x2 (dx)2 +

1
2

∂ 2P
∂u2 (du)2. (2.61)

According to Eq: 2.59

(du)2 = α2u2(dt)2 +σ2 (dW )2−2αuσ(dt)(dW ),

(dx)2 = u2(dt)2.

 (2.62)

The term containing (dt)2 above is negligible compared to the dt-term, and it can also be
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shown that the term (dt)(dW ) is negligible compared to the dt-term. Furthermore, it is

known that (dW )2 = dt, and substituting all this into Eq: 2.61 gives the following:

dP(x,u, t) =
∂P
∂ t

dt +u
∂P
∂x

dt +(−αu)
∂P
∂u

dt +σ
∂P
∂u

dW +
1
2

σ
2 ∂ 2P

∂u2 dt. (2.63)

Integrating the both sides of the above equation, and assuming there is no any source,

one obtains:

∫
∂P
∂ t

dt +
∫

u
∂P
∂x

dt +
∫

(−αu)
∂P
∂u

dt +
∫

σ
∂P
∂u

dW +
∫ 1

2
σ

2 ∂ 2P
∂u2 dt = 0. (2.64)

By the martingale property of Itô integrals (see Øksendal (2003)) that

E
{∫
·dW

}
= 0, (2.65)

Hence Eq: 2.64 may be written as:b

∫ [
∂P
∂ t

+u
∂P
∂x

+(−αu)
∂P
∂u

dt +
1
2

σ
2 ∂ 2P

∂u2

]
dt = 0. (2.66)

Now one can obtain Eq: 2.60. Similarly, P(x,u, t) satisfies the forward Kolmogorov or

Fokker-Planck equation:

∂P(x,u, t)
∂ t

+u
∂P(x,u, t)

∂x
=

∂

∂u
[αuP(x,u, t)]+

1
2

∂ 2

∂u2

[
σ

2P(x,u, t)
]
. (2.67)

Eq: 2.67 may also be written as:

∂P(x,u, t)
∂ t

+u
∂P(x,u, t)

∂x
=

∂

∂u

[
αuP(x,u, t)+

1
2

σ
2 ∂P(x,u, t)

∂u

]
. (2.68)

Eq: 2.68 is also known as the PDF transport equation that has the following physical

interpretation for a one-dimensional flow: the material derivative of the probability

distribution function P(x,u, t) is balanced by the flux of
{

αuP(x,u, t)+ 1
2σ2 ∂P(x,u,t)

∂u

}
in the u direction that is a probability distribution being carried by a mean velocity αu

due to the drift and a diffusion with coefficient 1
2σ2.
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2.6.2.3 Determination of the coefficients

The determination of the coefficient σ in Eq: 2.59 with an initial condition u(0) = u0 is

relatively simple. According to the theory of linear ODE, the solution of Eq: 2.59 may

be conjectured as:

ut = e−αtu0 +σ

∫ t

0
e−α(t−s)dW (s). (2.69)

Eq: 2.69 is of several interesting features. First, one can see that as t→ ∞ the influence

of the initial value u(0) = u0 decays exponentially, which corresponds to that the velocity

of fluid particle has short memory. Second, E [u(t)] = e−αtu0 since the dW (s) integral

has mean zero, so the mean E [u(t)] also goes to zero rapidly.

Moreover, both sides of Eq: 2.69 times u(0) and runs an ensemble average for a large

number of fluid particles u(t) one may obtain the following:

〈u(t)u(0)〉=
〈
u(0)2〉e−αt . (2.70)

Looking back to the Eqs: 2.41 and 2.51 for the correlation coefficient RL(τ), one finds

α =
1
TL

. (2.71)

According to the Itô isometry for a stochastic process X(t) (see Øksendal (2003)):

E

[(∫ T

0
X(t)dW (t)

)2
]

= E
[∫ T

0
X(t)2dt

]
, (2.72)

one may compute the variance of u(t),
〈
u(t)2〉 from Eq; 2.69 as:

〈
u(t)2〉= e−2αt 〈u(0)2〉+σ

2
∫ t

0
e−2α(t−s) ds = e−2αt 〈u(0)2〉+ σ2

2α

(
1− e−2αt) .

(2.73)

From this calculation, it has 〈
u(t)2〉→ σ2

2α
, (2.74)
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Then one can find for a stationary turbulence:

σ =
√

2α 〈u(t)2〉=

√
2〈u(0)2〉

TL
. (2.75)

2.6.2.4 Drift correction with the well-mixed condition

For the Eq: 2.68, assuming that the convection term u∂P(x,u,t)
∂x and drift term αu∂P(x,u,t)

∂u

equals to zero, one obtains:

∂P(x,u, t)
∂ t

=
1
2

σ
2 ∂ 2P(x,u, t)

∂u2 . (2.76)

This is a diffusion equation. With an initial condition P(x,u, t) = δ0(x,u) (the Dirac

delta function), the long time equilibrium solution for P(x,u, t) is a Gaussian distribution

namely

P(x,u, t) =
1√

2πσx
exp

[
− 1

2

(
u
σx

)2
]

(2.77)

satisfies Eq: 2.76 for diffusion with σx denoting the variance of the Eulerian fluid velocity.

In Thomson (1987), the above equation is also assumed to satisfy the Fokker-Planck

equation 2.68.

In order to satisfy the well-mixed condition proposed by Thomson (1987) in a inhomo-

geneous flow field, e.g. a fully turbulent boundary layer, the Langevin equation 2.59

need modifications to account for the mean pressure gradient that exists in the fluid. The

following equations result from Eq: 2.68 and define the well-mixed condition:

α1P =
∂

∂x

(
σ2

2
P
)

+φ(x,u, t), (2.78a)

∂φ

∂u
=−∂P

∂ t
− ∂

∂x
(uP) . (2.78b)

where α1 is used to substitute αu in Eq: 2.68. Moreover,

φ → 0 as |u| → ∞. (2.79)
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To obtain α1, substituting the partial derivatives of Eq: 2.77 with respect to t,u,x, one

finds:

α1 =− u
TL

+
φ

P
. (2.80)

Now one need to find out a solution for the “drift correction” represented by second term

in the above equation φ/P.

Thomson (1987) and Rodean (1996) gave the following expression:

φ

P
=

1
2

∂σ2
x

∂x
+

1
2σ2

x

(
∂σ2

x
∂ t

)
u+

1
2σ2

x

(
∂σ2

∂x

)
u2. (2.81)

With stationary conditions, the second term in the above equation may be set to zero.

Then substituting Eqs: 2.81 and 2.80 into Eq: 2.59 yields

du =− u
TL

dt +
1
2

[
1+
(

u
σx

)2
]

∂σ2
x

∂x
dt +

(
2σ2

x
TL

)1/2

dW (t). (2.82)

This is the model for one-dimensional (wall-normal) diffusion in stationary inhomoge-

neous turbulence. Eq: (2.82) can be normalized as

d
(

u
σx

)
=−

(
u
σx

)
1
TL

dt +
∂σx

∂x
dt +

(
2
TL

)1/2

dW (t). (2.83)

Bocksell and Loth (2006) further considered the inertial effect in the drift correction

term, and following this Eq: (2.83) can be rewritten as

d
(

u
σx

)
=−

(
u
σx

)
1
TL

dt +
(

1
1+St

)
∂σx

∂x
dt +

(
2
TL

)1/2

dW (t), (2.84)

where St is the particle Stokes number. Eq: (2.84) is the basis that is adopted to account

for the wall-normal fluctuations of fluid velocity seen by heavy particles along their

trajectories.
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Chapter 3

Implementation of the

Eulerian-Lagrangian method for heavy

particles deposition in ANSYS

FLUENT

3.1 Introduction

This chapter first reviews the theory of heavy particle deposition from turbulent flows.

Then it reveals the deficiencies of the existing Discrete Phase Model (DPM) in the

unstructured-grid based Navier-Stokes equation solver ANSYS FLUENT for studying

the depositions of heavy particles within turbulent boundary layers. After this, it discusses

a new implementation of the Eulerian-Lagrangian approach as a User Defined Function

(UDF) within ANSYS FLUENT, developed to address these shortcomings. It then shows

validations of the new Lagrangian particle tracking model. Furthermore, it discusses the

parallelization of the self-developed Lagrangian particle tracking code using the open-

source Message Passing Interface (MPI) library. The computational efficiency gains of

parallelization allow us to study the deposition of heavy particles onto blunt bodies in a
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turbulent flow through complex geometries, such as heater-exchange tube-banks using

Large Eddy Simulation (LES) for the carrier phase flow solution..

3.2 Background on heavy particles deposition

Heavy particles transport and deposition in turbulent flows has been an experimental,

theoretical and computational research topic for more half an century. There are a few

comprehensive reviews on this subject (e.g.Papavergos and Hedley (1984); Guha (2008);

Soldati and Marchioli (2009)).

It is worthwhile to review here the pioneering work on particle deposition developed

by Friedlander and Johnstone (1957), who proposed the concept of “stop distance”

and ascribed the deposition to the radial fluctuating component of suspended particles

velocity. Friedlander and Johnstone (1957) and Davies (1966) proposed and developed

a two-fluid model, which is commonly referred to as the “diffusion/free flight” model,

to simulate the deposition of heavy particles. In this model, particles are transported

by turbulent diffusion from the bulk flow to an adjacent wall surface and to within

one particle stop distance. This stop distance is normally characterized by the particle

response time τp and wall normal velocity fluctuations. In the bulk of the underlying flow,

it is assumed that particle transport is governed by a convective-diffusion equation. At

the particle stop distance, particles are assumed to separate from the local turbulent fluid

motion, and are projected to the wall surface through free-flight in terms of their inertia.

As a result, deposition is usually determined by the particle flux through a thin near-wall

layer to the adjacent wall surface, after gaining some specified initial velocity. Central

to this idea is the concept of the particle “stop distance”; the distance that a particle

with a specified momentum will pass into the viscous sublayer without the influence

of turbulent fluctuations. The concept of “stop distance” also implies that the particle

response time τp should be the only parameter for determining the deposition rate. In

the original gradient transport theory for particle transport in the bulk of flow, there is a

difference from the usual theory of convective diffusion because of a special boundary

condition: the particle concentration at the stop distance is assumed to vanish. This has a
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significant effect on particle deposition rates and results in considerable difficulty in the

mathematical theory. Moreover, in order to match existing experimental measurements,

the particles free-flight velocity is modelled in a heuristic way. If the free-flight velocity

is assumed to equal to the local fluid velocity, deposition rate is usually under-predicted

by 1−2 orders of magnitude. Despite these underlying issues, the diffusion/free-flight

model has a few novel ideas that are still explored in research and industrial applications.

Young and Leeming (1997) summarized many experimental measurements as shown

in Figure (3.1). The experimental measurements from Liu and Agarwal (1974) are the

most frequently cited and reliable data among all the experiments. The figure shows the

deposition rate of a wide spectrum of particles, which is represented by the dimensionless

deposition velocity, Vdep+ , as a function of dimensionless particle response time τp+ .

The dimensionless particle deposition velocity is defined as

Vdep+ =
Jw

ρpcuτ

, (3.1)

where Jw represents the mass flux of particles that get deposited to the wall per unit

area and per unit time, ρp is the density of the particle, c denotes the mean particle

concentration in the bulk of the flow, and the wall friction velocity uτ is used to non-

dimensionalized particle deposition velocity and response time τp.

It can be observed from figure (3.1) that the deposition rates may be divided into three

regimes. In the “diffusional deposition” regime, Vdep+ show a monotonically decreasing

characteristic as a function of τp. Within this regime, the particle deposition on to the

wall may be well described by a gradient diffusion model, which represents turbulent

diffusion in the bulk of the flow and Brownian diffusion in the very thin near wall region

directly adjacent to the wall.

In the “diffusion-impaction” regime, there is a dramatic variation in deposition rate

of several orders of magnitudes, which corresponds to around a fourfold increase in

terms of particle diameter, since τp is proportional to the square of particle diameter

dp. As the name “diffusion-impaction” suggests, there exist two mechanisms by which

particles from the turbulent core can penetrate the viscous sublayer and deposit. First,

relatively heavy particles may shoot through the sublayer to the wall directly because
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Figure 3.1: Summary of experimental measurements on particle deposition from fully
developed turbulent pipe flow.Young and Leeming (1997)

they have greater momentum value than that associated with the r.m.s.value of fluid

particles. Second, relatively light particles may be brought to a sufficiently close distance

to the wall because of the weak fluid velocity fluctuations within the viscous sublayer.

They then may be carried to the wall surface due to their own inertia.

Evidence for both diffusion and impact mechanism based on numerical simulations

has been reported by Chen and McLaughlin (1995) and Narayanan et al. (2003). They

found that the particle impact velocities striking the wall for dimensionless particle

response time τp+ = 5,10,15 may be separated into two groups: Group A with low

impact velocities, group B with high impact velocities. Group A is mainly associated

with relatively lighter particles with a longer particle residence time within the viscous

sublayer, whilst Group B is mostly associated with relatively heavier particles with a

larger wall-normal fluctuating velocities and a shorter residence time in the viscous

sublayer.

The third regime is referred to as the “inertia-moderated” region. Here the deposition

of particles results mainly from their own inertia and large particle velocity fluctuations
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acquired from the turbulent core. Hence, the theory of diffusion gradient transport is not

applicable for such particles. The reduction in deposition rate with increasing particle

size may be ascribed to the fact that the increasing particle inertia results in a decrease in

the underlying flow turbulence.

This thesis is concerned primarily with the “diffusion-impact” region that is most chal-

lenging of all.

3.3 Preliminary results from the Discrete -Phase Model

(DPM)

There is a Discrete-Phase Model (DPM) embedded in ANSYS FLUENT for studying

turbulent dispersed particulate flows. Nevertheless, it has a few serious deficiencies

when used to study deposition of heavy particles in turbulent boundary layers, which

have not been previously reported in the literature. Moreover, the source code of

ANSYS FLUENT is not open to the public since it is a commercial software code. On

the other hand, ANSYS FLUENT provides an excellent mechanism through which it

may load a user-provided shared object. Then, in our case, particle trajectories in a

turbulent flow field can be acquired by integrating the particle equation of motion through

self-developed codes which acts a share-object code and interacts with the flow field

data solved by the unstructured-grid based Navier-Stokes equation solver in ANSYS

FLUENT. Moreover, the use of a user provided share object code does not slow down

the Navier-Stokes equation solver too much.

In ANSYS FLUENT, the equations that need to be solved by the DPM in order to track

a particle in a flow field are as following:

dxp = up(xp; t)dt, (3.2)

dup =
F(xp; t)

mp
dt. (3.3)



Chapter 3. Implementation of the Eulerian-Lagrangian method for heavy particles
deposition in ANSYS FLUENT 52

where mp is the mass of the particle. The force F is the instantaneous force exerting on a

particle suspended in a turbulent flow field, which consists mainly of the drag force due

to the difference between the instantaneous fluid and particle velocity and lift force due to

the mean velocity gradient in the underlying flow field. With the resolved fluid velocities

at every cell centroid available from a converged Reynolds Averaged Navier-Stokes

(RANS) or Unsteady Reynolds Averaged Navier-Stokes (URANS) solution, there are

four points which are crucial for a successful simulation of deposition of heavy particles

in turbulent boundary layers.

1. the spatial interpolation scheme for time-averaged mean fluid velocity;

2. the integration scheme for particle equations of motion 3.2 and 3.3;

3. the prediction of fluctuating velocity components due to turbulence;

4. boundary handling and particle capture conditions.

At each integration time step, the DPM obtains the discrete, resolved three-dimensional

fluid velocities from the Navier-Stokes equations solver. After this, the DPM has to

interpolate these velocities to the location of individual particles from the cell centroid

at which the discretised fluid velocities are stored, since the particle positions will not

coincide exactly with cell centroid. Then the new positions of the particles are calculated

using the integration scheme based on the interpolated velocities. Since RANS or

URANS simulations only provide the averaged fluid velocities, there is a need for an

extra model to account for the influence of flow turbulence. The input velocities for the

integration scheme may be divided into a resolved averaged and a fluctuating part. At

the end of the DPM step, the boundary interaction handling scheme for a fully absorbing

wall should ensure that heavy particles will be captured when the distance from the

particle centre to the nearest wall face is less than the particle radius. In the ANSYS

FLUENT documentation Fluent (2009), no details are give about the first and fourth

points listed above. Therefore, we assumed that these had been fully debugged and

correct. Nevertheless, the DPM failed to reproduce the results for particle deposition in

turbulent boundary layers when compared against the results resolved by a stand-alone
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grid-free Lagrangian particle tracking code. The reasons that the DPM provided by

FLUENT fails to reproduce the deposition results shall be elaborated later.

3.3.1 Particle deposition using the standard k− ε model

The first logic step was to apply the default DPM to studying particle deposition using an

appropriate turbulence model (e.g. standard k− ε) and compare against the benchmark

deposition experiments by Liu and Agarwal (1974) and the curve-fit following available

experimental data made by McCoy and Hanratty (1977). The results for particle deposi-

tion obtained from running the DPM based on a converged RANS simulation obtained

using the standard k− ε turbulence model are shown in Figure 3.2.
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Figure 3.2: Results on particle deposition from fully developed turbulent pipe flow using
the DPM with the standard k− ε model and compared against experiments.

It can be observed that the deposition rates obtained from the standard k− ε model show

negligible variation across the whole range of heavy particles studied. This is totally
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contradictory to the experimental measurements. The isotropic nature of the standard

k−ε model is one obvious possible cause of this failure. We recall that the DPM obtains

the fluctuating fluid velocities associated with turbulence from the RANS flow field. In

the standard k− ε model, the r.m.s values of fluctuating fluid velocities are defined as:√
u′2 =

√
v′2 =

√
w′2 =

√
2k/3, (3.4)

where k is the turbulent kinetic energy obtained from the standard k− ε model. Since

the simple k− ε model has no mechanism for evaluating the component fluctuations

separately, the assumption of isotropy is and the use of Eq: 3.4 is unavoidable. In this

case, the turbulence within the turbulent boundary layer in a fully developed pipe flow

seen by particles is assumed as the same homogeneous and isotropic as the turbulent

core. Hence, so far the prediction of almost same deposition rates for a wide range of

particle response time may be explained by the fact that the standard k− ε turbulence

model does not yield a proper turbulent boundary layer.

Moreover, appropriate grids with adequate resolution have been used to resolve the

turbulent flow field, in which the investigation of particle deposition is carried out. An

exhaustive comparison study of all the available turbulence models may be carried out to

investigate the effect on the particle deposition (see Tian and Ahmadi (2007)), but this is

not the main focus of this thesis.

3.3.2 Particle deposition using the standard k−ε turbulence model

accounting for the inhomogeneous and anisotropic feature of

fully developed turbulent boundary layers

Based on the methodology for Lagrangian particle tracking in a numerically generated

inhomogeneous anisotropic random flow field proposed by Kallio and Reeks (1989), a

similar implementation was developed as a ANSYS FLUENT User Defined Function

(UDFs) into ANSYS FLUENT to study particle deposition in this Thesis. A similar

approach has been employed previously by Greenfield (1998); Matida et al. (2000);

Dehbi (2008); Horn and Schmid (2008).
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Following the work of Dehbi (2008), a new treatment that accounts for the inhomo-

geneous and anisotropic feature of fully turbulent boundary layers is adopted. In this

implementation, the default model from the standard k−ε model with the assumption of

isotropic turbulence is retained as long as particle is outside the turbulent boundary layer,

i.e. as long as the dimensionless particle distance or the y+ value of the particle location

is greater than 100. If particles move into the turbulent boundary layer, then the values

of r.m.s of fluctuating fluid velocities seen by particles are modified in order to account

for the anisotropic feature of boundary layer turbulence. For this, the r.m.s. values in

three dimension are based on the curve fit based on DNS solutions for a channel flow

with Re = 13000 made by Dehbi (2008) as following:

u′+ =
√

u′2
uτ

= 0.40y+

1+0.0239(y+)1.496 , (streamwise)

v′+ =
√

v′2
uτ

= 0.0116(y+)2

1+0.203y++0.00140(y+)2.421 , (wall normal)

w′+ =
√

w′2
uτ

= 0.19y+

1+0.0361(y+)1.322 , (spanwise)

 (3.5)

where uτ is the wall friction velocity that is acquired from the wall shear stress resolved

by RANS simulations. The terms in Eq: (3.5) in turn represents the streamwise , wall

normal and spanwise r.m.s values of fluctuating fluid velocities, and are graphed in

Figure (3.3).

It can be observed from the above figure that the fully developed boundary layer tur-

bulence displays strongly inhomogeneous and anisotropic features, especially for the

region when y+ < 10.

With this new boundary layer model accounting for the inhomogeneous and anisotropic

fluctuating fluid velocities seen by particles, implemented as an appropriate UDF, it is

possible to perform investigations of particle deposition from a fully developed turbulent

pipe or channel flow. An important point of detail, not elaborated on here, is the need to

convert non-dimensional r.m.s values from the local particle y+ coordinate system to the

fixed computational coordinate system.

The results for particle deposition acquired from this model, based on the idea of Kallio

and Reeks (1989) and implemented as a Fluent UDF, coupled with the standard k− ε
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Figure 3.3: Curve fit of non-dimensional r.m.s of velocity fluctuations within turbulent
boundary layers. Dehbi (2008)

model in ANSYS FLUENT are shown and compared against those from the default

standard k− ε model and experiments in Figure 3.4.

It can be observed from figure 3.4 that the results for particle deposition from the

improved model are beginning to show a fall-off in deposition rate with decreasing

particle relaxation time in the diffusion-impaction region of the graph. Nevertheless,

the method still gives an over-prediction by around three-orders of magnitude for small

particles.

As a result of these disappointing preliminary results, a stand-alone, grid-free Monte

Carlo approach based on Lagrangian particle tracking in a numerically generated random

turbulent boundary layer proposed by Kallio and Reeks (1989) was developed in the C

programming language to study particle deposition. The results for particle deposition

from this stand-alone C code are shown and compared against those from the previous

results obtained in this Thesis in Figure 3.5.
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Figure 3.4: Results for particle deposition from the implementation of the DRW model
of Kallio and Reeks (1989), implemented as a UDF coupled with the standard k-epsilon
model in ANSYS Fluent, compared against those from the default standard k− ε model
and experiments.

Interestingly, the stand-alone C code implementation yields better results for particle

deposition than the UDF implementation, especially for small particles, i.e. τ+
p < 10.

Moreover, there is fair agreement between the predictions from the stand-alone C code

and the experimental measurements, though the code still shows over-predictions for the

smallest particles. Another point to note is that a huge discrepancy can be observed from

Figure 3.5 between the stand-alone C code and the UDF implementation, both of which

are based principally on the same idea and ought to yield similar results.

With regard to the discrepancies and over-predictions from the second UDF implemen-

tation, possible options within the ANSYS FLUENT computational framework were

to switch to another available sophisticated turbulence model (e.g. Tian and Ahmadi

(2007); Parker et al. (2008)) or to change from a discrete random walk (DRW) to contin-

uous random walk (CRW) model (e.g. Dehbi (2008); Mehel et al. (2010)). So, first an
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Figure 3.5: Results for particle deposition from a stand-alone C code implementation of
the grid-free model of Kallio and Reeks (1989), compared with those from the default
Fluent k− ε model, a Fluent UDF implementation of the model of Kallio and Reeks
(1989), and experiment.

successful simulation of a fully developed turbulent pipe flow are carried out with the

more sophisticated Reynolds Stress Model (RSM) using a grid in which the y+ of the

first cell centroid adjacent to the wall was 1. The results reported by Parker et al. (2008)

for this case could not be reproduced in our study, which showed similar results to the

UDF implementation of the model of Kallio and Reeks (1989). The second option of

applying Continuous Random Walk models was also investigated briefly, but was not

followed through because of lack of time. Instead., a more detailed investigation of the

possible sources of error in Fluent’s underlying DPM code was carried out, as described

next.
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3.3.3 Serious deficiencies concerning the standard Fluent Discrete

Particle Model for studying particle deposition in Boundary

Layers

As far as the black box of ANSYS FLUENT’s inbuilt discrete phase model (DPM)

is concerned, comprehensive debugging investigations with regard to the four critical

points discussed in section 3.3 are carried out. The debugging work was based on the

exported information associated with the tracked particle trajectories. The first serious

issue discovered is concerned with the wall boundary condition handling for particle

capture. DPM employes the point particle approach, which means particles have no

physical dimensional size. In fact, as long as particles do not touch the wall surface, the

assumption of a point particle is reasonable. On the other hand, if the particle distance

away from the wall surface is less than its radius, then the particle is captured in terms

of perfectly absorbing wall boundary condition adopted in the first part of this Thesis.

Nevertheless, the findings demonstrate that ANSYS FLUENT assumes the point particle

approach to be valid throughout all the simulation domain, right up to wall boundaries.

This is a perceived failure when particles are found to become artificially trapped within

less than one particle radius of the wall, and are never recorded as captured, or leave the

simulation domain, even when the simulation is based on the Reynolds stresses model

with enhanced wall treatment.

The failure of perfectly absorbing wall boundary condition is due to the fact that ap = 0

is assumed in FLUENT and demonstrated through Figure 3.6. A particle is released

from a non-dimensional wall distance y+ = 5 from some distance away from the inlet of

a fully turbulent channel flow. The particle trajectory displays random characteristics

under the influence of the underlying turbulence implemented through UDF. Under the

default wall boundary condition, the particle surface touches the wall, which should

result in capture but, since the particle centroid does not reach the wall, it eventually

coasts along the wall surface and leaves the simulation domain. This indicates that the

default wall boundary condition in DPM for particle deposition fails. It is not possible to

alter the capture condition directly via an UDF, so an artificial strategy of applying a large

wall-directed force to any particle coming within one particle radius of a wall surface
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was implemented. The effectiveness of this somewhat inelegant solution is shown by the

trajectory of similar particle marked “Modified”.
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Figure 3.6: Debugging the default wall boundary condition on particle deposition, It is
not possible to alter the capture condition directly via a Fluent DPM UDF, so an artificial
strategy of applying a large wall-directed force to any particle coming within one particle
radius of a wall surface was implemented. The effectiveness of this somewhat inelegant
solution is shown by the trajectory of similar particle marked “Modified”.

Another dubious treatment in DPM is concerned with the fluid velocity interpolation

from the cell centroid to the particle position. Figure 3.7 shows the interpolated mean

fluid velocities seen by particles positioned from a location near the wall surface to

y+ = 200, and are compared with the standard law of the wall. The mean velocity shown

is physical (not dimensionless) velocity so that the mean velocity based on the standard

law of the wall is converted to physical mean velocity as well. First, It can be observed

that the y+ value of the first cell centroid is around 30, which meets the requirement

of standard k− ε turbulence model (e.g. Wilcox (1993)). Second, it can be seen that

the mean fluid velocity at the particle position interpolated from the cell centroid is

based on a linear interpolation scheme. With this interpolation scheme, the mean fluid
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velocities seen by particles whose non-dimensional particle distance is less than the y+

value of the first cell centroid are greater than the values based on relation of the law of

the wall. Hence, the fluid velocities seen by particles may contain physically wrong high

values. In this case, the drag force experienced by particles may exhibit similarly wrong

behavior, especially in the very near wall region. This may result in over prediction of

particle deposition demonstrated in Figure 3.4. Once again, this issue cannot be addresed

0 50 100 150 200
y+

0

2

4

6

8

10

12

14

U

fluid velocity

Seen by particles

Law of the wall

Figure 3.7: Debugging the fluid velocity interpolation scheme

within the framework of Fluent’s standard DPM UDFs.

These shortcomings are not criticisms of Fluent alone. Most if not all of the commercial,

general purpose, CFD codes routinely use similar approximations. An example of this

for the Open Source CFD Code Saturne is shown in Chibbaro and Minier (2008). Two

conclusions may be drawn from this. Firstly, in view of these serious but common defects,

it is surprising that many recent publications seem to report satisfactory prediction of

particle deposition using commercial CFD codes. Secondly, since the standard Fluent

DPM UDFs cannot be used to cleanly resolve these issues, a more radical solution is
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necessary. This is based on the self-developed stochastic Lagrangian particle module

coupled with the steady and unsteady unstructured-grid based Navier-Stokes solver in

ANSYS FLUENT. The next section will elaborate the implementation in details.

3.4 Self-implementation of the Lagrangian particle track-

ing approach in the colocated unstructured grid based

Navier-Stokes solver in ANSYS FLUENT

A prerequisite for the Lagrangian prediction of particle deposition from turbulent flows

in simple or complex geometries is the accurate determination of the particle trajectories

in the underlying flow field. With this purpose, a stochastic Lagrangian particle tracking

module has been developed taking advantage of the data structure of the unstructured

grid used by the Navier-Stokes equations solver ANSYS FLUENT. The steps involved

for studying particle deposition using this module combined with ANSYS FLUENT are

shown in Figure 3.8

Since this thesis involves large-scale computations, i.e. the grid used for particle de-

position on tube banks in a complex flow through Large Eddy Simulations is of order

3∼ 4×106 cells, an efficient algorithm for determining the particle trajectories on such

grids has to be implemented.

3.4.1 A particle localization algorithm for unstructured grids

In turbulent dispersed particulate flows, the evolution of the fluid phase is determined

by solving the Navier-Stokes equations in the Eulerian framework, whilst the dispersed

particulate phase is determined by the Lagrangian particle tracking approach through

solving the particle equations of motion. The solution of the particle equations of motion

requires evaluation of the fluid velocities at the particle position. With this aim, two

procedures are performed in sequence: First, the cell in which the particle resides is

to be determined. Second, the fluid velocity at the particle position is obtained via
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a converged CFD flow field data

initialize particle modelparameters

identify host cell

evaluate fluid velocity

advance particle position

update host cell

particle captured
by wall surface?

not captured

stop

no

Yes

Figure 3.8: Flow chart for studying particle deposition using self-developed Lagrangian
particle tracking module
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an interpolation scheme from cell centroid stored values resolved by the colocated

unstructured-grid based Navier-Stokes solver.

As far as the first step is concerned, a robust and efficient algorithm is required. This

step is also known as the particle-localization problem. A formal statement of this is

given by Haselbacher et al. (2007) as following: “Given a grid, a particle position, and

the cell which contains that particle position, determine the cell which contains a nearby

particle position”. Algorithms that solve this problem are often referred to as particle

localization algorithms.

A number of particle localization algorithms have been designed for structured or

unstructured two-dimensional and three-dimensional grids (e.g. Seldner and Westermann

(1988); Löhner and Ambrosiano (1990); Löhner (1995); Darmofal and Haimes (1996);

Zhou and Leschziner (1999); Apte et al. (2003); Haselbacher et al. (2007)). After a

careful study, the particle localization algorithm proposed by Haselbacher et al. (2007)

was found to be applicable to the computational framework used in this thesis and was

implemented independently.

3.4.1.1 Identifying the initial host cell

Given the particle initial position, the search algorithm can find the cell in which the par-

ticle is currently located. For simplicity, the algorithm is described in a two-dimensional

setting.

Considering a scenario as shown in Figure 3.9 where a particle is located at a position Pp

in a cell volume, an “in-cell-test” may be performed in terms of the following expression:

(Pc−Pp) ·n≥ 0, (3.6)

where Pc is the centroid of the face and n is the outward unit normal of the face, and

both the centroid of the face and its outward unit normal are available from the data

structure of the grid file. If all of the faces of a cell satisfy Equation: 3.6, the cell is

determined to be the particle initial host cell. So, as far as identifying the initial host
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Figure 3.9: Identifying the cell which contains the particle initial position

cell is concerned, the algorithm is an exhaustive search which loops over the whole

computational domain for individual particles (O(n2)). This is extremely expensive for a

large-scale computation involving millions of particles on millions of cells. Fortunately

this operation need only be called once for identifying the particle initial host cell. This

also demonstrates that the computational efficiency of the particle localization algorithm

is crucial to a Lagrangian particle tracking module.

3.4.1.2 Updating the host cell

The central idea of the particle localization algorithm proposed by Haselbacher et al.

(2007) is face-to-neighbouring cell search. Assuming after one integration step, we are

given a situation similar to the one shown in Figure 3.10, where a particle is located

at position P0 and the cell C0 contains that position, we are to find the cell which

contains the updated particle position P1. The displacement vector of the particle hence

can be computed as P1−P0. Then it is needed to find the position Pinter at which the

displacement vector P1−P0 intersect with a cell face of the cell C0. This problem can
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also described as to find the λi ∈ [0,∞) that satisfies

(Pinter−Pc) ·n = 0, Pinter = P0 +λi(P1−P0). (3.7)

0c
1c

4c
2c

3c

0p
1ppinter t

1f

2f
3f

4f

5f

Figure 3.10: Updating the host cell through face-neighbouring cells search. (simple case)

Provided (P1−P0) ·n 6= 0, Equation: 3.7 may be rearranged as:

λi =
(Pc−P0) ·n
(P1−P0) ·n

, ((P1−P0) ·n 6= 0) (3.8)

Thus, it seems that we must calculate λi for all faces to find out which cell face the

particle hits first. Nevertheless, it is instructive to analyse the sign of the numerator and

denominator of the right hand side of Equation: 3.8. Taking into account the Equation: 3.6

for “in-cell-test” condition that is non-negative if the particle lies in the current cell,

the denominator have to be positive in order to ensure λi ∈ [0,∞). Moreover, if the
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denominator is positive, that indicates that the particle is moving toward the cell face

and may hit it. Therefore, it is only necessary to work out all the λi values for those

faces that satisfy (P1−P0) ·n > 0. Then the particle original position P0 may be updated

according to the smallest positive λmin and the following expression:

P0 =

 P1, if λmin ≥ 1,

Pdummy = P0 +λ (P1−P0), if λmin = min(1,max[0,λi)).
(3.9)

Correspondingly, the host cell may be updated according to:

cnew =

 cold, if λmin ≥ 1,

cdummy← fi, if λmin ∈ [0,1),
(3.10)

where cnew denotes the updated host cell which contains the updated P0. Here, the

information on face-cell connectivity from the date structure of grid file is used to work

out the neighbouring cell cdummy from the intersected cell face fi.

0c
1c

4c
2c

3c

0p

1p
pinter

t

1f

2f
3f

4f

5f

Figure 3.11: Updating the host cell through face-neighbouring cells search. (complex
case)
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The algorithm also works if a particle crosses to a cell which does not share a common

face with the current host cell. For example, Fig 3.11 shows an extreme scenario, in

which a particle pass through a vertex to another cell that has no face-cell connection

information with the current host cell. With repetition of the algorithm described by

Eq: (3.9-3.10), the host cell may be updated through a process

P0→ Pinter→ Pinter→ Pinter→ P1; co→ f2→ c2→ f3→ c3→ f5→ c4.

Obviously, in this case the cost of updating the host cell is slightly more expensive

than the situation where a particle goes to a direct connected cell. But overall, the

computational cost involved in updating host cells is of order O(n) and much less than

that of initialization O(n2).

3.4.2 Velocity interpolation based on the reconstruction of velocity

gradient

In a CFD modelling framework, the particle position is unlikely coincide with the point

where the solution data is stored as part of the computation of the underlying flow field.

The Navier-Stokes solver used in this thesis employs a colocated cell-centroid storage

unstructured grid based methodology. Therefore, an appropriate numerical methods for

the interpolation of the flow solutions to the particle position is required.

In previous research concerned with a dispersed particulate phase, several interpolation

approaches, such as Lagrangian polynomials, shape functions, partial Hermite and

spectral methods (Kontomaris et al. (1992)), cubic spine interpolation (Yeung and

Pope (1988)), Taylor series expansion (Marchioli et al. (2007)) have been extensively

studied and applied to the orthogonal and non-orthogonal grids typically used for simple

geometries. Nevertheless, less effort has been devoted to the development of higher order

interpolation scheme for non-orthogonal unstructured grids used for complex geometries.

In such cases, assuming the fluid properties exhibit a linear variation, the interpolation

scheme is usually linear and make use of different geometrical weighting procedures.

In applications, the interpolation methods are based on the use of local approximations

to acquire estimations from the points on which the underlying solution is computed and
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stored. Following Balachandar and Maxey (1989), a useful way to estimate the fluid

velocity at the particle location in a three-dimensional domain is given by:

ũi(xp,yp,zp, t) = ∑
xl

∑
ym

∑
zn

ai(xl,ym,zn; t) fl(xp)gm(yp)hn(zp), (3.11)

where ũi indicates the estimated Cartesian velocity component at the particle position

that is denoted by (xp,yp,zp). Equation (3.11) expresses the fluid velocity at the particle

position as a weighted summation over the grid of basis functions fl,gm and hn and

coefficients ai. The choice of the basis functions and coefficients depends on the method.

In this thesis, a quadratic fluid velocity interpolation scheme is developed. The scheme is

based on least-squares representation of the multi-dimensional Taylor serious expansion

for the derivatives of flow variables. A similar procedure was developed by Barth

and Jespersen (1989), whilst Potts and Tasri developed a second order extension for

gradient-reconstruction of flow field variables on unstructured grids. As far as Lagrangian

particle tracking is concerned, the scheme utilizes the resolved fluid velocity to calculate

fluid velocity derivatives at cell centroids, which are the stored in user-defined memory

(UDM), for interpolation of the fluid velocity to the particle location (xp,yp,zp) after the

determination of particle host cell c0. The mean fluid velocity components are acquried

from the CFD calculations directly. With Taylor serious expansion, a scalar value φ̃ at a

cell c1 shown in a two-dimensional computational stencil depicted in Fig 3.12 may be

given, to second order accuracy as:

φ̃c1 = φc0 +
(

∂φ

∂x

)
c0

∆x1 +
(

∂φ

∂y

)
c0

∆y1

+
1
2!

(
∂ 2φ

∂x2

)
c0

∆x2
1 +
(

∂ 2φ

∂x∂y

)
c0

∆x1∆y1 +
1
2!

(
∂ 2φ

∂y2

)
c0

∆y2
1. (3.12)

In order to determine the five unknown derivatives in Eq: 3.12 for a two-dimensional

case, in least squares sense, the number of neighbour cells n must exceed the number

of unknowns. Then an application of Eq: (3.12) to all the cells connected to the cell c0

gives a system of linear equations for the derivatives at cell c0,

Ax = b, (3.13)
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Figure 3.12: Computational stencil for the determination of second order derivatives of
fluid variables.

where A is a nnc×5 matrix of geometrical terms,

A =


∆x1 ∆y1 0.5∆x2

1 ∆x1∆y1 0.5∆y2
1

∆x2 ∆y2 0.5∆x2
2 ∆x2∆y2 0.5∆y2

2
...

...
...

...
...

∆xnnc ∆ynnc 0.5∆x2
nnc ∆xnnc∆ynnc 0.5∆y2

nnc

 (3.14)
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x is a five element column vector containing derivatives,

x =



(
∂φ

∂x

)
c0(

∂φ

∂y

)
c0(

∂ 2φ

∂x2

)
c0(

∂ 2φ

∂x∂y

)
c0(

∂ 2φ

∂y2

)
c0


(3.15)

and b is an nnc element column vector of scalar difference values,

b =


φ1−φ0

φ2−φ0
...

φnnc−φ0

 (3.16)

Since there are usually more neighbour cells than derivatives (nnc > 5), Eq: (3.13) may

be solved for derivatives x in a least squares fashion.

A general closed-form solution of Eq: (3.13) may be derived through the QR decomposi-

tion of A using the modified Gram-Schmidt process that makes the decomposition of

A stable (see Galassi et al. (2009)). The general closed-form solution then allows the

reconstruction of derivatives of the scalar variable φ .

Substituting a velocity component Ui for φ , the local fluid velocity component at the

particle position for a two-dimensional case thus may be approximated from the host

cell centroid according to:

Ui|p ≈ Ui +
(

∂Ui

∂x

)
(xp− x)+

(
∂Ui

∂y

)
(yp− y)

+
1
2!

(
∂ 2Ui

∂x2

)
(xp− x)2 +

1
2!

(
∂ 2Ui

∂y2

)
(yp− y)2

+
(

∂ 2Ui

∂x∂y

)
(xp− x)(yp− y). (3.17)

In order to alleviate the computational cost associated with the interpolation of fluid

velocity to particle positions and speed up particle tracking, the cell-centroid based
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fluid velocity gradients may be computed and stored as UDMS before starting particle

tracking.Extension of the method to three dimensions involves more lengthy algebra, but

is otherwise straightforward.

3.4.3 An implicit ODE solver for the particle equation of motion

In addition to the equation of motion 3.3 used to determine the particle velocity, the

displacement of each particle within the simulation domain is evolved according to

the kinematic relation 3.2. The non-linear differential equations 3.3 and 3.2 constitute

initial value problems (IVPs) that describe the velocity and displacement of a particle

in turbulent flows. One hence starts at the initial particle position with all the solution

information and marches the differential equation solutions forward in time.

Both equations have the general form of an IVP,

y′ = f(t,y), 0≤ t ≤ b, y(0) = c (3.18)

where y can represent both the particle position xp and the particle velocity up, and

for Eq: (3.18) numerical solutions may be carried out either with multistep schemes

(Adams-Bashforth type) or with mulitstage schemes (Runge-Kutta type) at discrete time

intervals.

Combined with the particle localization algorithm, a three-level, second-order accurate

implicit scheme (Gear 2) is implemented as, i.e. for the particle equation of motion 3.3,

k

∑
j=0

α jyn− j = ∆tβ0fn, (3.19)

where α0 = 1, α1 =−4
3 , α2 = 1

3 , β0 = 2
3 , thus one may obtain

yn =
1
3

[
2f(tn,yn)∆t +4yn−1−yn−2

]
. (3.20)
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It may also be written as:

yn−1 +∆y =
1
3

[
2f(tn−1 +∆t,yn−1 +∆y)∆t +4yn−1−yn−2

]
, (3.21)

where f may be approximated as:

f(tn−1 +∆t,yn−1 +∆y)≈ f(tn−1,yn−1)+∆t
∂ f
∂ t |t=tn−1,y=yn−1

+∆y
∂ f
∂y |t=tn−1,y=yn−1

. (3.22)

In the case of the particle equation of motion, i.e. y = up, it may be assumed that:

∂ f
∂ t

= 0, (3.23)

and up is assumed to be independent of the particle position xp.

Since f is a vector, this then requires evaluation of the Jacobian matrix f′ = ∂ f
∂y ,

∂ f
∂up

=


− 1

τpc
0 0

0 − 1
τpc

0

0 0 − 1
τpc

 , (3.24)

where
1

τpc
=

1
τp

CD
Rep

24
. (3.25)

Finally as far as the particle equation of motion is concerned, i.e. y = up, it then may be

discretized according to the following formula in terms of the acceleration per unit mass

f that is substituted by the corresponding Cartesian components,


un

p

vn
p

wn
p

= B


2∆t
3τpc

un
f

2∆t
3τpc

vn
f

2∆t
3τpc

wn
f

+
4
3

B


un−1

p

vn−1
p

wn−1
p

− 1
3

B


un−2

p

vn−2
p

wn−2
p

 , (3.26)

where B is equal to 3τpc
3τpc+2∆t .

Similar procedure can be formulated for the lift force component in the particle equation

of motion. Further, the second order Adams-Bashforth scheme is used to integrate the
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particle kinematic equation 3.3.

Compared to the fourth order schemes (RK45) by Cash and Karp (1990) used in ANSYS

FLUENT, Eq: (3.26) requires few function evaluations and consequently less computa-

tion cost for updating particle solution per time step. On the other hand, the associated

storage overhead is higher as well as it needs more storage.

3.5 Validations

This section presents a couple of validations of the stand-alone Lagrangian particle track-

ing algorithm developed for replacing the default DPM provided by ANSYS FLUENT.

The performance of the particle localization algorithm and of several ODE solvers is

assessed by comparing the particle trajectory acquired by numerical solutions against

analytical solutions.

3.5.1 Case 1: Irrotational straining flow

3.5.1.1 The transport of a particle in a two-dimensional symmetric shear flow

The first case is concerned with the motion of particles in a two-dimensional symmetric

shear flow in which the trajectory of a particle has a corresponding analytical expression

(e.g. Martin and Meiburg (1994); Reeks (2005); Ammar et al. (2009). The flow field is

also known as an irrotational straining flow except at the origin and is given by

u1 = αx1

u2 =−αx2

 (3.27)

where α is a positive constant denoting the strain rate, −1 < xi < 1, i = 1,2. Fig 3.13

show the streamlines for a flow with α = 2.
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Figure 3.13: Contour of stream function of the 2-d symmetric shear flow with α = 2.

The acceleration of an inertial particle in such a flow field is governed by the linear set

of ordinary differential equations,

u̇p
1 = βτ(u1−up

1)

u̇p
2 = βτ(u2−up

2)

 (3.28)

where Stokes drag is assumed and βτ is the particle response rate,

βτ =
1
τp

(3.29)

and τp is the particle response time. In such flow, the Stokes number is defined as

St =
τp
1
α

=
α

βτ

(3.30)
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Eq: 3.28 may be rewritten as

ẍ1 = βτ(αx1− ẋ1)

ẍ2 = βτ(αx2− ẋ2)

 (3.31)

and it may be rearranged as

1
β 2

τ

ẍ1 +
1
βτ

ẋ1−Stx1 = 0

1
β 2

τ

ẍ2 +
1
βτ

ẋ2 +Stx2 = 0

 (3.32)

Eq: 3.32 is a set of homogeneous second order linear ordinary differential equation

whose characteristic equation is

1
β 2

τ

λ
a2 +

1
βτ

λ
a−St = 0

1
β 2

τ

λ
b2

+
1
βτ

λ
b−St = 0

 (3.33)

According to quadratic formula,

λ
a

1,2 =
−βτ ±βτ

√
1+4St

2

λ
b

1,2 =
−βτ ±βτ

√
1−4St

2

 (3.34)

Thus, for x1, the discriminant ∆ =
√

1+4St is always > 0, so

x1(t) = C1eλ a
1 t +C2eλ a

2 t (3.35)

Furthermore,  1 1

λ a
1 λ a

2

C1

C2

=

 x0

αx0

 (3.36)
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where x0 is the particle starting point x coordinate. We assume the particle initial velocity

equal the carrier phase velocity αx0 at this particle starting position. Therefore

C1 =
x0(λ a

2 −α)
λ a

2 −λ a
1

C2 =
x0(λ a

1 −α)
λ a

1 −λ a
2

For x2, in the second equation, the solution depends on the Stokes number.

When St < 1/4 (subharmonic), ∆ > 0, so

x2(t) = C3eλ b
1 t +C4eλ b

2 t (3.37)

Furthermore,  1 1

λ b
1 λ b

2

C3

C4

=

 y0

−αy0

 (3.38)

where y0 is the particle starting point y coordinate, we assume that the particle initial

velocity is equal to the carrier phase velocity −αy0 at this particle starting position.

Therefore,

C3 =
y0(λ b

2 +α)
λ b

2 −λ b
1

C4 =
y0(λ b

1 +α)
λ b

1 −λ b
2

Finally, when St = 1/4 (harmonic), ∆ = 0, λ b
1 = λ b

2

x2(t) = C5eλ b
1 t +C6teλ b

1 t (3.39)

Furthermore,

C5 = y0

C6 =−αy0−C5λ
b
1
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When St > 1/4 (superharmonic), ∆ < 0,

x2(t) = eRe{λ b}t(C7 cos(Im{λ b}t)+C8 sin(Im{λ b}t)) (3.40)

where

Re{λ b}=−βτ

2

Im{λ b}=
βτ

√
−1+4St

2

C7 = y0

C8 =
−αy0−Re{λ b}C7

Im{λ b}

3.5.1.2 UDF patch of the two-dimensional symmetric shear flow in ANSYS FLU-

ENT

The mesh on which this analytically derived flow field is discretised to test the tracking

algorithm is shown as in Fig 3.14. The 2-d symmetric shear flow with α = 2 is patched

through UDF in ANSYS FLUENT. For example, the macro F PROFILE (Fluent (2006))

is employed to define the velocity inlet condition for the top and bottom boundary. Then

the whole flow field is initialized through the macro DEFINE INI. Consequently, a flow

solution may be obtained in this way and is shown in Fig 3.15.

3.5.1.3 Comparison of Lagrangian particle tracking

After obtaining a steady irrotational flow field, a superharmonic inertial particle with

τp = 1s is introduced into the flow. The corresponding Stokes number is equal to 2

according to Eq: 3.29. The trajectory of such a particle is obtained using the Runge-

Kutta RK4 scheme and Gear2 scheme from the initially released position (0.1,1.0),

respectively. The time step used to integrate the equations is 0.1τp. The interpolation

of fluid velocity to the particle position in such a coarse resolution is based on the

reconstruction gradients of fluid velocities. Based on these settings, the RK4 solution

gives an under-shoot prediction when compared against the analytical solution, whilst
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Figure 3.14: Computational mesh used for the 2-d symmetric shear flow with α = 2 in
ANSYS FLUENT.
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Figure 3.15: Patched contour of velocity magnitude and vector plot for the 2-d symmetric
shear flow with α = 2 in ANSYS FLUENT.



Chapter 3. Implementation of the Eulerian-Lagrangian method for heavy particles
deposition in ANSYS FLUENT 80

the Gear2 solution yields an over-shoot prediction. However, the discrepancy between

the Gear2 and exact solution is smaller than that between the RK4 and exact solution.

Theoretically, RK4 ought to give a more accurate solution than Gear2. The bigger

discrepancy shown by RK4 may result from the error accumulations in the process of

interpolation of fluid velocity to the particle position. Nevertheless, Fig 3.16 indicates

that Gear2 may be used to integrate the particle equation of motion with good accuracy.

0.0 0.2 0.4 0.6 0.8 1.0x
1.0

0.5

0.0
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1.0

y

analytical RK4 Gear 2

Figure 3.16: Inertial particle trajectory obtained using RK4 and Gear2 scheme and
compared against the analytical solution for particle trajectory in a irrotational flow.

3.5.2 Case 2: Sinusoidal flow

3.5.2.1 The transport of a particle in a sinusoidally modulated flow

The performance of the interpolation scheme of fluid velocity is further assessed by

comparing the discrepancy incurred when interpolating a prescribed sinusoidal flow field
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where trajectories of fluid particles are known analytically. Such a simple test case is

based on the same form of velocity field as the one from Kontomaris et al. (1992):

U(x,y,z; t) = U0,

V (x,y,z; t) = Asin(klx).

 (3.41)

The velocity field is periodic, frozen in time. Fluid particles in this flow move sinusoidally

in the x− y plane, and are uniformly translated in the x− direction. The trajectory of

a fluid particle may be derived by an analytic integration of the kinematic equations

(dx/dt = U0,dy/dt = Asin(klx)). The solution in terms of particle trajectory (x,y) at

time t is given by:

x(t) = x0 +U0t,

y(t) = y0 +
A

klU0
[cos(klxo)− cos(klxo + klUot] ,

 (3.42)

where (x0,y0) denotes the particle initial position. Errors in computed fluid particle

trajectory may be quantified by comparing with Eq: 3.42.

The parameters of the prescribed flow are chosen as U0 = 5m/s and A = 20, the particle

is initially placed at point (315.0,315.0) and the wave number kl = 3 in the x−direction.

The computational box has the dimension (630×630) and the grid is (16×64) for a

simulation which resolves a wave with five nodes. The simulation procedure is basically

the same as the one discussed in section 3.5.1.2.

The trajectory of a fluid particle in such a flow is computed numerically and compared

against the exact trajectory predicted analytically. Different interpolation schemes, i.e.,

linear, reconstruction gradient based on ANSYS FLUENT (R G FLUENT), reconstruc-

tion gradient based on UDF (R G UDF), are applied whilst integrating Eq: 3.42 with

a second order Adams-Bashforth scheme. Here, it is assumed that the time-stepping

error is negligible with respect to the interpolation error as an appropriate time step is

employed according to a complete test. It can be observed from Fig 3.17 that the linear

interpolation scheme which is based on the derivatives of fluid velocity provided by

ANSYS FLUENT gives an over-prediction for the sinusoidal variation of the particle

trajectory. Whilst the second-order reconstruction gradient scheme, which is solved
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via a UDF with UDM storage, reproduces the analytic trajectory almost exactly. The

first-order reconstruction gradient scheme implemented via a UDF with UDM storage

gives a better predictions that the reconstruction gradient scheme based on standard UDF

macros. Moreover, the reconstruction gradient of ANSYS FLUENT fails to compute a

smooth fluid trajectory, which implies that the interpolated velocity is not continuous

across the interfaces of neighbour cells via this scheme.
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Figure 3.17: Computed errors of fluid particle trajectory obtained in a prescribed velocity
field using different interpolation scheme and compared against the analytical solution.

3.5.3 Application of the self-implemented Lagrangian particle track-

ing scheme UDF to the prediction of particle deposition in tur-

bulent boundary layers

Unlike working with ANSYS FLUENTs provided Discrete Particle Model UDF stencils,

the new, self-implemented particle tracking UDF allows complete and elegant control of



Chapter 3. Implementation of the Eulerian-Lagrangian method for heavy particles
deposition in ANSYS FLUENT 83

issues such as particle capture conditions and velocity interpolation to the current particle

position. Even with the new velocity interpolation scheme in place, however, it was not

possible to achieve good agreement with the stand-alone C-code implementation of the

Kallio and Reeks method. The problem is that the deposition curve is extremely sensitive

to the near-wall profile for both turbulent velocity perturbations and the mean velocity

profile. The latter is not resolved to sufficient accuracy even with the new interpolation

scheme and near wall grid refinement. The solution, therefore, was to replace numerical

interpolation of the carrier field velocity in the near-wall region (y+ < 35) with a curve-

fit based on the law of the wall, in a similar manner to the curve-fits used for the

perturbation v′ between y+ = 0 and y+ = 200. This modification could easily be made

in the new particle tracking implementation, and resulted in excellent agreement of

deposition prediction with the stand-alone C code results based on the idea of Kallio

and Reeks (1989), as shown in Figure 3.18. Despite this agreement between the two

implementations, both show great deviation from the experimental Liu and Agarwal data

than suggested by the original calculations of Kallio and Reeks. The reasons for this are

not known.

The UDF implementation has the major advantage, over the stand-alone C code, that it

can be used for complex duct geometries, rather than just the simple, flat plate test case.
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Figure 3.18: Comparison of particle deposition prediction from various implementations
of the discrete random walk model, based on the basic model of Kallio and Reeks (1989)

3.6 Parallelization of the stochastic Lagrangian particle

tracking model using MPI

With the aim of tackling the more computationally challenging problem of particle

deposition on heat-exchanger tube banks in turbulent flows with Large Eddy Simula-

tions (LES) of the carrier phase, and in order to take advantage of the available high

performance computational facilities in the author’s lab, the Lagrangian particle tracking

module has been parallelized using the publicly available Message Passing Interface

(MPI) library (MPI Forum (2009)) and further coupled with the parallel Navier-Stokes

solver in ANSYS FLUENT. It is capable of parallel and/or distributed computation for

particle tracking with or without linking to the Navier-Stokes solver in ANSYS FLUENT.

From the computational perspective, Lagrangian particle tracking models are very

different from Eulerian models for the carrier phase. Instead of solving a set of partial
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differential equations, the trajectories of many particles are obtained by solving the

associated governing ordinary differential equations. To some degree, the acquisition of

statistically significant predictions of the dispersed particle phase via Lagrangian particle

tracking depends mainly on the number of particles.

Parallelization of the Eulerian model for the CFD flow solution, as implemented by

ANSYS FLUENT, follows a very different paradigm. Here the computational mesh

overlaid on the physical solution domain is divided into a number of connected partitions,

each containing an approximately equal number of cells. Each computer node in the

parallel machine then takes responsibility for solution of the discretised Navier-Stokes

equations in one partition, with common data at the partition boundaries being shared

between the appropriate nodes by MPI communication after each solve iteration. Solution

data for each partition is only held locally by its associated compute node, which has

implications for particle tracking, as particles cross from one partition to another. Figure

3.19 shows a typical one-dimensional computational decomposition used for parallel

solution. x denotes the streamwise (flow) direction, and y denotes the wall-normal

direction and z the spanwise direction. Particles might migrate from one partition

to another partition in the z direction, and this leads to particle data communications

between different computer nodes. The description here is necessarily simplified for

brevity: for a more detailed discussion, the reader is referred to the ANSYS FLUENT

manuals.

This section focuses on the description of an abstract data type for particles, the proce-

dures for parallelizing the Lagrangian stochastic module based on the standard MPI that

supports parallel I/O and block data-communications, on grids used for the simulation

of the carrier phase. Moreover, It will show the corresponding performance on a Linux

cluster with 20 single CPU nodes based on a parallel random number generator (RNG)

SPRNG and the trajectory of a specimen particle in a Large Eddy Simulation (LES) of a

channel flow.
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Figure 3.19: One-dimensional computational domain decomposition

3.6.1 An abstract data type for particles

Lagrangian particle tracking models are generally well suited for parallelization. The

trajectory of particles may be computed independently since they represent independent

realizations within a large number of particles. Accordingly, many computation nodes

may participate in the computation without data communication with each other. Never-

theless, one data transfer between neighbour partitions in the CFD modelling framework

for the carrier phase may be needed to finish a complete realization of a particle trajectory.

This is clearly the case when the particle trajectory crosses a boundary between two

different CFD mesh partitions. Then the challenge in parallelizing Lagrangian particle

tracking model in a CFD modelling framework is that the number of particles to be

transferred between grid partitions may vary both in space and time. Hence, an abstract

data type for particles is designed as follows:
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Listing 3.1: The abstract date type for particles
t y p e d e f s t r u c t particle{

l o ng ID ; / * i d e n t i f i e r f o r p a r t i c l e * /

i n t my_rank ; / * i d e n t i f i e r f o r c u r r e n t sub−p r o c e s s / compute r node * /

d o u b l e p_p0 [ dim ] ; / * need t o u p d a t e h o s t c e l l * /

d o u b l e p_p1 [ dim ] ;

d o u b l e v0 [ dim ] ;

d o u b l e v1 [ dim ] ;

d o u b l e v [ dim ] ;

d o u b l e a_p [ dim ] ;

l o ng host_cell ;

l o ng old_cell ;

. . .

s t r u c t particle *next ; / * p o i n t t o n e x t p a r t i c l e * /

}particle ;

The data structure of linked-list is employed to contain the particles residing on each

computer node. Therefore, a pointer may be used to iterate down the particle list. In

order to enhance the efficiency of particle tracking and reduce the cost associated with

pointer search operations along the particle list, a larger number of particles may be

simulated via splitting the particle list into several sub- linked-lists of equal length.

3.6.2 The procedure for parallelization

The parallelization of the Lagrangian particle models may be described as follows:

1. If a particle is detected to cross the boundary of the current CFD mesh partition,

which results from decomposition of the computational domain in the z−direction,

the index of the corresponding destination partition is determined, the counter

of particles to be sent is incremented and the data associated with the particle is

stored, ready for transmission, and is and then removed from the current particle

link list, and the particle is flagged for transfer.

2. Once all particle have been either located or flagged for transfer, the total number

of particles which need to be transferred between all partitions is determined via a

reduction operation.
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3. Tests are carried out to check if the number of particles to be transferred is non-zero.

If so each node sends messages containing the number of particles to be transferred

for every partition boundary to nodes that contains the corresponding neighbour

partition. These messages are clearly different for each sending node. Hence

memory has to be allocated to contain the particle data to be sent (e.g. particle

ID, velocity and position coordinates) ready for dispatch via the appropriate MPI

function call. The migrated particles are removed from the particle link list. On

receiving the number of particles to receive, each node allocates corresponding

receive buffer memory.

4. The actual data transfer occurs. Then receiving nodes need to unpack the received

particle data, using the particle-in-cell test to determine the host cell on the new

partition, then appending the data to the particle linked-list on the current node.

5. Finally, the memory allocated for send and receive buffers is freed.

3.6.3 Test of speed-up performance and particle data transfer

The speed-up performance of the Lagrangian particle module is tested using 1,2,4, and

8 CPUs from a Linux cluster consisting of 20 single CPUs nodes. The test is not linked

to the Navier-Stokes solver in ANSYS FLUENT so it does not involve communications

of particle data. A parallel random number generator SPRNG (Mascagni and Srinivasan

(2000)) is adopted for extending the Lagrangian particle module to a stochastic one. The

performance of speed-up for the test is shown in Fig 3.20. Finally, a test was carried out

to verify the communication of particle data between different computational partitions

when the stochastic parallel Lagrangian particle tracking module is coupled with a Large

Eddy Simulation of channel using ANSYS FLUENT. Two specimen particles meander

in the channel and migrates between different computational partitions as shown in

Fig 3.21.
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Figure 3.20: Test of speed-up performance to each node with 106 particles.

Figure 3.21: Trajectory of specimen particles computed by the stochastic parallel La-
grangian particle tracking module coupled with a Large Eddy Simulation of a channel
flow.
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3.7 Conclusion

In this chapter, first the background of particle deposition in turbulent flows is reviewed.

Then a preliminary test applying the default DPM in FLUENT is presented to the

problem of particle deposition from a flat plate turbulent boundary layer. The results

completely fail to capture the experimentally determined variation in deposition with

particle response time. FLUENT’s DPM UDFs were then used to replace CFD calculated

turbulent velocity fluctuations with a curve-fit to DNS data for the wall region 0 < y+ <

200, following Kallio and Reeks (1989). This produced only a minor improvement in

deposition prediction. Two serious deficiencies associated with FLUENT’s standard

DPM when applied to particle deposition in boundary layers were then discovered, i.e.,

the point particle approximation is assumed for the particle-wall interaction and the

linear velocity interpolation for the fluid velocity to the particle location violates the

no-slip condition, which were not correctable using the standard DPM UDF framework.

Therefore, a self-written large-scale parallel stochastic Lagrangian particle tracking

module was developed and fully coupled with the steady and unsteady Navier-Stokes

equations solver in FLUENT. It involves the implementation of a robust and efficient

particle localization algorithm for unstructured grids, an implicit ODE solver (Gear2)

for the particle equation, and a second order accurate scheme for interpolation of the

fluid to the particle position. The module is validated by comparing particle trajectories

acquired by numerical calculations against the exact solutions. This module is then

applied to the problem of particle deposition in a turbulent boundary layer on a flat

plate, and it is additionally found necessary to replace the interpolation of fluid velocity

close to the wall (y+ < 35) by a curve-fit based on the law of the wall to get good

agreement with a stand-alone C code, based on the model of Kallio and Reeks (1989).

This new implementation, using ANSYS FLUENT, is applicable to prediction of particle

deposition in more general, complex geometry problems. Finally, the parallelization of

the module using the MPI library is discussed. Further, It has been demonstrated that

the parallelized code fully couples with the Large Eddy Simulation model in ANSYS

FLUENT. This is a significant advance, since, up to at least Fluent version 13.0, the

standard DPM model is not compatible with Fluent’s LES model.
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Chapter 4

A stochastic quadrant model for

particle deposition

4.1 Introduction

In this chapter, we propose a simple but more promising stochastic quadrant model of

coherent structures for heavy particle deposition, which was inspired by the quadrant

analysis proposed by Willmarth and Lu (1972). It is another way to model deposition

of heavy particles within fully developed turbulent boundary layers that hopefully can

add some further insight or give new ideas to improve the deposition prediction of heavy

particles.

From the perspective of numerical modelling, the deposition of particle deposition

from turbulent flows is a much studied topic. Friedlander and Johnstone (1957) and

Davies (1966) developed gradient diffusion/free-flight theories where the concept of

particle stopping distance was proposed. However, in order to obtain agreement between

theory and experiments, the initial particle free flight velocity had to be adjusted to get

good agreement with the experimental data. Hutchinson et al. (1971) and Kallio and

Reeks (1989) employed the Monte-Carlo based Lagrangian particle tracking method for

calculating particle deposition. In the work of Kallio and Reeks (1989) the turbulent

boundary layer was described as a randomized eddy field with corresponding velocity
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and time scales as functions of the particle distance away from the wall. Swailes and

Reeks (1994) proposed to use the kinetic equation developed by Reeks (1991) as a model

to study the deposition of “high inertia” particles in a turbulent duct flow. Young and

Leeming (1997) developed a simple approach based on an advection diffusion equation

(ADE) to address the particle deposition in turbulent pipe flows, which represents a

considerable advance in physical understanding over previous free-flight theories. Guha

(1997) developed a unified Eulerian theory, which is based on a Reynolds averaging of

the particle continuity and momentum conservation equations, for studying turbulent

deposition onto smooth and rough surfaces. Zaichik et al. (2010) developed a simplified

Eulerian model called the diffusion-inertia (DIM), which is based on a kinetic equation

for the probability density function (PDF) of particle velocity distribution, to investigate

the dispersion and deposition of low-inertia particles in turbulent flows. Furthermore,

the DIM was incorporated into the nuclear industrial CFD code SATURNE for the

deposition of aerosols (e.g. Nerisson et al. (2011)).

Thanks to significant progress achieved in CFD, in particular in the development of

sophisticated turbulence models and numerical methods for unstructured grids used

for complex geometry, the CFD approach has been used to study the deposition of

heavy particles in simple and complex geometries. This is usually described in an

Eulerian-Lagrangian calculation framework in which the mean flow field is computed

by Eulerian methods, whilst Lagrangian calculations are carried out for a sufficiently

large amount of particles to obtain statistically stationary results. This facility has been

embedded into most CFD codes though, the stochastic nature of both the turbulence of

the underlying flow and the dispersed particulate flow makes the problem of turbulent

dispersed particulate flows far more complex than its single-phase counterpart. Therefore,

in order to acquire as accurate as possible results on turbulent particle deposition via

numerical simulation, additional modelling work needs to be incorporated into the

RANS modelling framework to account for the effect of turbulence on the dispersion of

particulate phase. Furthermore, the value of the modelling has to be accurately assessed

by comparing the results against experimental measurements or data determined by

DNS or LES (see McLaughlin (1989); Brooke et al. (1992); Wang and Squires (1996);
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Uijttewaal and Oliemans (1996); Zhang and Ahmadi (2000); Narayanan et al. (2003);

Marchioli et al. (2003)).

There have been several investigations on extending the existing basic Lagrangian particle

tracking method in a RANS modelling framework to address particle deposition, since

the default model gives several orders of magnitude over-prediction for the deposition

rates. Greenfield (1998) applied the random eddy interaction boundary layer approach

proposed by Kallio and Reeks (1989) in CFD code CFX to study deposition of heavy

particles. Similar work was performed by Matida et al. (2000) who applied the same

model as Kallio and Reeks (1989) for particle deposition in a turbulent pipe flow, in

which the Lagrangian time scales seen by small particles were modified in order to make

results obtained by numerical simulations match with the experimental measurements

from Liu and Agarwal (1974). Dehbi (2008a) implemented the random eddy interaction

model as UDFs in ANSYS FLUENT for the investigation of particle deposition, in which

fluid velocity fluctuations seen by particles within the turbulent boundary layer are fed in

via curve fitted DNS data. The same method was employed by Horn and Schmid (2008)

to extend the Lagrangian particle tracking facility in CFX to address particle deposition

from turbulent flows. The essence of work by Greenfield (1998), Dehbi (2008a) and

Horn and Schmid (2008) was to address an appropriate boundary layer which is not

properly resolved in the most-widely used standard k− ε turbulence model in a CFD

modelling framework. This results from the inherent isotropic assumption used in the

standard k− ε model to calculate fluctuating fluid velocities u′i =
√

2k/3. However,

it is structure and timescale of the near wall turbulence that is critically controlling

factor for the deposition of heavy particles. Apart from the simple and efficient standard

k− ε turbulence model, Tian and Ahmadi (2007) carried out a thorough comparison

of the different turbulence models on particle deposition. They demonstrated that the

sophisticated Reynolds stress model (RSM) in ANSYS FLUENT coupled with enhanced

wall treatment still gives significant over-prediction of deposition rates. Interestingly,

Parker et al. (2008) used a different method to work out the particle flux to the wall

and obtained very good agreement with the benchmark experimental data from Liu and

Agarwal (1974) by means of the same RSM model and Lagrangian particle tracking

for studying particle deposition. As far as the above investigations are concerned, the
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central idea is to attempt to feed better fluid velocity fluctuations seen by particles within

each eddy lifetime modelled than those used in discrete random walk approach in RANS

modelling frameworks.

However, there is another way called continuous random walk models based on the

Langevin equation to feed fluid velocity fluctuations seen by heavy particles. Dehbi

(2008b) developed a normalized Langevin equation based Lagrangian continuous random

walk model, which he implemented as UDFs in ANSYS FLUENT to account for the

inhomogeneous anisotropic boundary turbulence. Guingo and Minier (2008) proposed

a new one-dimensional Langevin boundary layer model of fluid fluctuating velocity

which explicitly simulates the interaction of heavy particles with the well-known near

wall coherent structures (e.g. sweeps and ejections) into the open source CFD code

SATURNE. Similar methodology has been employed by Chibbaro and Minier (2008)

who obtained satisfactory prediction of deposition rates with the standard k− ε model

in SATURNE. In this regard, both Guingo and Minier (2008) and Chibbaro and Minier

(2008) demonstrated the important role played by the near wall coherent structures on

the transport and deposition of heavy particles within turbulent boundary layers.

Since Kline et al. (1967) first reported the presence of surprisingly well-organized

spatially and temporally dependent motions in the near wall region (named bursting),

the role played by coherent structures of near wall on the transport and deposition of

inertia particle has been the focus of a good fraction of the research efforts before

Guingo and Minier (2008). Owen (1969) first suggested that the transport of fine solid

particles from a turbulent gas stream to an adjoining surface may result from the sporadic

violent eruptions from the viscous sublayer. Cleaver and Yates (1975) proposed a sub-

layer model, which takes into account of the role the upsweeps and downsweeps of

fluid observed in the near wall region of turbulent flows, in order to obtain a better

understanding of the mechanics of particle deposition. The model predictions were

in satisfactory agreement with experimental measurements on deposition rates. The

sub-layer model of Cleaver and Yates (1975) was used by Fichman et al. (1988) and

Fan and Ahmadi (1993) for calculating particle deposition. Wei and Willmarth (1991)

carried out a quadrant analysis of LDA measurements of near wall fluid velocity in

order to acquire a preliminary understanding of suspended sediment transport. Kaftori
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et al. (1995a,b) demonstrated the importance of coherent wall structures on particle

motion in turbulent boundary layer, entrainment and deposition processes via systematic

experiments. Marchioli and Soldati (2002) further examined the mechanisms for particle

transfer and segregation in turbulent boundary layers through DNS calculation of a

channel flow. They revealed that downward sweeps, referred to as Q4 events, cause

particles to transfer to the near wall region where particle preferentially accumulate in the

low-speed streaks, whilst ejections, referred to as Q2 events bring about the migration of

particles to the region of outer flow. Soldati and Marchioli (2009) provided a systematic

review and physical insight on the physics and modelling of deposition and entrainment

of particles from turbulent flows. It renders ideas for better implementation of models on

particle depositions in practical simulation scenarios.

The research efforts of Wei and Willmarth (1991) are particularly worth noting for

elucidating the central idea behind the work described in this thesis. They performed

the quadrant analysis of Willmarth and Lu (1972) to examine the high-resolution, two-

component laser-Doppler anemometer (LDA) measurements of the wall normal fluid

velocity fluctuations in a fully developed water channel flow. They found that there is

a net upward momentum flux in the range of y+ > 30 that may be associated with the

bursting process occurred in quadrant II, whilst there is a net downward momentum

flux in the range of 10 ≤ y+ ≤ 30 that may be associated with the sweeps process

occurred in quadrant IV . The net momentum flux results from the positively skewed

distribution of the fluctuating wall-normal velocity. Inspired by this idea, the present

work proposes another way to model near wall coherent structures and their interaction

with particles under a positively skewed distribution of fluctuating wall-normal velocity

that hopefully can add new insight or give new ideas to improve the prediction of

deposition rates. Moreover, the results are compared against those obtained by solving

the Langevin equation used in continuous random walk models which satisfies the

well-mixed condition (e.g Thomson (1987)).

The present chapter is structured as follows. First, the stochastic quadrant model is

formulated and discussed. We then present the related statistics in four quadrants obtained

using a quadrant analysis for the wall-normal fluid velocity fluctuations acquired from

an LES of a fully developed channel flow. Finally, results on deposition rates from an
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implementation of this stochastic quadrant model are presented, where they are compared

with results from benchmark experimental measurements, obtained by solving a one-

dimensional Langevin-based continuous random walk (CRW) model and from other

CRW models. Several statistics concerning particle phase in the near wall region are also

shown.

4.2 Modelling methodology

4.2.1 Formulation of the stochastic quadrant model

The discrete random walk (also known as Monte-Carlo eddy interaction) model is the

basis of the formulation of the present stochastic model. The fluid velocity field in

the absence of the dispersed particle phase is determined by a RANS computation

with the standard k− ε model. The temporal fluctuations of the velocity field are

described as a system of discrete eddies, with which the suspended particles interact for a

randomized eddy lifetime. In the particle equation of motion Eq: (4.21), the instantaneous

fluid velocity is represented by a Reynolds decomposition of averaged and fluctuating

components,

u = U+u′, (4.1)

The time-averaged fluid velocity U is acquired from the solution of a RANS calculation

for the turbulent flow. Thus it is crucial to model the fluctuating components to account

for the effect of turbulence on the dispersion of particles. In this respect, there have been

a number of attempts as discussed above (e.g. Tian and Ahmadi (2007); Dehbi (2008a,b);

Guingo and Minier (2008); Chibbaro and Minier (2008); Mehel et al. (2010)).

In this work, the attention is confined to the deposition of particles from the fully

developed region, in which velocity statistics no longer vary with streamwise coordinate

x. As stated by Pope (2000), the fully developed channel flow can be considered as

statistically stationary and one-dimensional, with velocity statistics depending on wall

normal direction y only. In this case, a new approach is proposed here to model the

wall-normal fluctuating velocity component denoted by v′ based on quadrant analysis.
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Furthermore, the particle tracking is performed by a Lagrangian particle tracking module

independent of the discrete phase model (DPM) provided by ANSYS FLUENT.

It is widely considered that the distribution of the wall normal fluctuating velocity is

skewed within fully developed turbulent boundary layers (e.g. Kim et al. (1987)). The

wall normal fluctuating component can be distinguish as positive or negative according to

whether the momentum flux is away from or toward the wall. Thus let v′+ be a function

defined as

v′+ =

 v′ if v′ > 0,

0 if v′ ≤ 0
(4.2)

and v′− defined as

v′− =

 v′ if v′ < 0,

0 if v′ ≥ 0.
(4.3)

It is possible to define the average value of v′+ and v′− as:

〈
v′+
〉

=
1

T+

∫ T

0
v′+ dt (4.4)

and 〈
v′−
〉

=
1

T−

∫ T

0
v′− dt, (4.5)

where T is the interval of observation time containing the fraction of v′+ denoted by T+

and the fraction of v′− denoted by T−. Then, we have

〈
v′+
〉
+
〈
v′−
〉

=
1

T+

∫ T

0

(
v′+ +

T+

T−
v′−

)
dt. (4.6)

Accordingly,
1
T

∫ T

0

(
v′+ + v′−

)
dt = 0. (4.7)

Thus if T+ < T−, ∣∣〈v′+〉∣∣> ∣∣〈v′−〉∣∣ , (4.8)

if T+ > T−, ∣∣〈v′+〉∣∣< ∣∣〈v′−〉∣∣ . (4.9)
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Similarly, average momentum flux per unit area can be defined as:

〈
v′+

2
〉

=
1

T+

∫ T

0

(
v′+
)2 dt (4.10)

and 〈
v′−

2
〉

=
1

T−

∫ T

0

(
v′−
)2 dt. (4.11)

According to Eq: (4.8), when T+ < T− we have

∣∣∣〈v′+
2
〉∣∣∣> ∣∣∣〈v′−

2
〉∣∣∣ , (4.12)

and according to Eq: (4.9), when T+ > T−

∣∣∣〈v′+
2
〉∣∣∣< ∣∣∣〈v′−

2
〉∣∣∣ . (4.13)

It is obvious that
∣∣∣〈v′+

3
〉∣∣∣> ∣∣∣〈v′−

3
〉∣∣∣ when T+ < T−; whilst

∣∣∣〈v′+
3
〉∣∣∣< ∣∣∣〈v′−

3
〉∣∣∣ when

T+ > T−. These two cases mean that the wall normal fluctuating component is derived

from positively and negatively skewed distributions, respectively. Under the positively

skewed distribution, there will be a net upward momentum flux of fluid; whilst under the

negatively skewed distribution, there will be a net downward momentum flux of fluid.

Thus the imbalance of momentum flux of fluid particle within fully turbulent boundary

layers might play an important role on the transport and deposition of heavy particles.

The data in Kim et al. (1987) show that the wall normal fluctuating component is of

positive skewness in the range of 0 < y+ < 10 and y+ > 30.

4.2.2 Statistics of v′ in each of the four quadrants

Inspired by the quadrant analysis, we classified the wall normal fluctuating velocity and

averaged it into the four quadrants according to the instantaneous quadrant of motion.

In this sense, the instantaneous velocity of a sufficiently large number of fluid particles

at a specified position may be categorized in terms of the sign of the streamwise and

wall normal velocity fluctuations. For example, when both u′ and v′ are great than zero,
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the instantaneous velocity signal will be categorized into the Quadrant I; in the case of

u′ < 0 and v′ > 0, this will be put into the quadrant II, and so on. This can be referred to

as the criterion of quadrant analysis. Kline et al. (1967) and Willmarth and Lu (1972)

suggested that upward momentum fluxes may be primarily associated with the bursting

process that resides in Quadrant II, whilst downward momentum fluxes may be mainly

associated with sweep events that are come from Quadrant IV. Physically speaking,

upward momentum fluxes associated with Quadrant II would cause particles to move

away from the wall and downward momentum fluxes associated with Quadrant IV would

result in the migration of particles toward the wall.

According to ergodic property, time averages of v′ and momentum flux v′2 can be defined

for each of the four quadrants according to Eq: 4.8 and 4.10 as

〈
v′i
〉

=
1
Ti

∫ T

0
v′i dt; i = I, II, III, IV (4.14)

and 〈
v′i

2〉=
1
Ti

∫ T

0
v′i

2 dt; i = I, II, III, IV, (4.15)

where Ti denotes time spell spent in the quadrant i by v′i, and v′i is define as

v′i =

 v′ if v′ satisfies the criterion of quadrant analysis,

0 if not.
(4.16)

A large eddy simulation (LES) of a fully developed channel flow with Reτ = 180 was

carried out to obtain the corresponding statistics of v′i across the boundary layer. A scatter

plot of u′ and v′ with corresponding probability density function (pdf) with 162000

non-dimensional time units is shown in figure 4.1 according to the quadrant analysis. It

can be observed that the probability density function of both u′ and v′ are skewed.

In figure 4.2, 〈v′i〉 and v′ as a function of y+ show that the fluctuating components in the

four quadrants are smaller in magnitude than the v′ across the y+ range shown. 〈v′i〉 in

each of the four quadrants is of different magnitude, indicating that there is an asymmetry

in the wall normal fluctuating components. Furthermore, the greatest magnitude of 〈v′i〉

is found in quadrant II across most of the y+ range. Figure 4.3 shows that there is a net
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Figure 4.1: Scatter plot of u′ and v′ at y+ = 50 resolved by LES, categorised in terms of
quadrant analysis.

upward momentum flux resulting from quadrant II for the range of y+ > 20. However,

this situation reverses in the range of y+ < 20. The asymmetry of 〈v′i〉 and
〈
v′i

2〉 in each

of the four quadrants is a new feature for modelling velocity fluctuations seen by heavy

particles. It is particularly interesting for studying the deposition rates.

4.2.3 Implementation of the stochastic quadrant model

The imbalance of 〈v′i〉 within four quadrants may be of different importance on the

transport and deposition of heavy particles. Events in quadrant II are mainly associated
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Figure 4.2: Profiles of v′ and 〈v′i〉 as a function of y+ at Reτ = 180 in each of the four
quadrants.

with violent ejections of low-speed fluid away from the wall; motions in quadrant IV are

primarily associated with an inrush of high-speed fluid toward the wall, also referred to

as the sweep event. There are no significant structures associated with quadrant I and

III. The upward momentum flux in quadrant II may be a strongly contributing factor

on the transport of particles away from the wall and reduce the deposition rates; whilst

the inward momentum flux in quadrant IV may be a strongly contributing factor on the

transport of particles towards the wall and increase the deposition rates.

The results on 〈v′i〉 and
〈
v′i

2〉 enables us to specify the statistics of wall-normal velocity

fluctuations seen by particles in each encountered eddy along their trajectories. For

example, curve-fitting of the four profiles of 〈v′i〉 could be achieved easily. However,

comparing the shape of 〈v′i〉 against with the shape of v′, a different scale factor is

assumed between 〈v′i〉 and v′. In figure 4.4 the probability density functions for a half

normal distribution and 〈v′i〉 in each of the four quadrants at y+ = 30 show that they are



Chapter 4. A stochastic quadrant model for particle deposition 106

0 20 40 60 80 100
y+

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
ea

n
m

om
en

tu
m

fl
u

x

〈
v′I

2
〉

〈
v′II

2
〉

〈
v′III

2
〉

〈
v′IV

2
〉

Figure 4.3: Profiles of momentum fluxes as a function of y+ at Reτ = 180 in each of the
four quadrants.

in fare agreement with each other, indicating that a half normal distribution may be used

to describe the distribution of v′i. This probability distribution function is given by

fX(x; σ) =


√

2
σ
√

π
exp
(
− x2

2σ2

)
if x≥ 0,

0 if x < 0,
(4.17)

where σ is set to equal to the value of
√

π

2

〈
v′i

2〉1/2 at the corresponding y+ location.

The logical next step is to construct a random process, which models eddy motions

in the four quadrants. Particles would interact with a random succession of eddies

resulting from different quadrants. For this, a homogeneous Markov chain was conceived

as a model for the evolution of eddy events in the four quadrants along the particle

trajectories. Particles interact with an eddy in quadrant I. After this eddy decays, they

would then be able to interact with an eddy resulting from any of the four quadrants with

a certain transition probability. Figure 4.5 describes this process. As far as the transition
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Figure 4.4: Probability density function (pdf) for 〈v′i〉 obtained by LES and a comparison
with a half normal distribution (HND)

probabilities are concerned, let Qi, i = {I, II, III, IV} be a discrete time Markov chain on

{QI,QII,QIII,QIV} with transition matrix

P =


p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p444

 , (4.18)

where (pi j : i, j ∈ {1,2,3,4}) denotes the corresponding probability distribution of ran-

dom eddy events in each quadrant. For eddy events in the four quadrants, Eq: (4.18) is

reduced to a “degenerate” transition matrix as

P =
(

p11 p22 p33 p44

)
. (4.19)

Figure 4.6 shows variations of the relative probability associated with each of the four
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quadrants as a function of y+. These probabilities are used as the transition probabilities

denoted in Eq: (4.19).

QII QI

QIII QIV

p1,2

p2,3

p3,4

p4,1

p2,4

p1,3

1

Figure 4.5: Diagram describing the Markov chain modelling motions in the four quad-
rants.

The time scale of eddies in each of the four quadrants is difficult to estimate from the

present study, although Luchik and Tiederman (1987) provided several quantitative

techniques to measure time scales associated with burst events. In the present study, the

lifetime of eddies in the four quadrants are assumed to equal to the Lagrangian time

scale of fluid particles according to their corresponding y+ position. Figure 4.7 shows

the Lagrangian time scale of fluid particles within turbulent boundary layers. This is

taken from the curve-fitting of Kallio and Reeks (1989). Furthermore, the Lagrangian
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Figure 4.6: Relative probability of four quadrants as a function of y+.

time scale is assumed to obey an exponential distribution

fX(x,λ ) = λe−λx, (4.20)

where λ equals to the integral Lagrangian time scale TL at the particle position. Figure

4.7 also shows the wall-normal r.m.s profile of fluid velocity. 〈v′i〉 in each of the four

quadrants is obtained by multiplying v′ by a scaling factor. In every eddy generated from

the four quadrants, fluctuation velocity is sampled from a half normal distribution with

having mean v′i and a variance corresponding to the particular particle y+ value in the

boundary layer.
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Figure 4.7: Non-dimensional wall normal fluid velocity and Lagrangian time integral
time scale as a function of y′ within turbulent boundary layers.

4.2.4 Governing equations of particle motion

A Lagrangian particle tracking module was developed and coupled with the unstructured

mesh Navier-Stokes equation solver in ANSYS FLUENT to calculate trajectories of

heavy particles in flow fields. The focus of this work is on the deposition of non-inter-

collision, rigid, spherical and heavy particles. The ratio of particles density to fluid

density is 770, which is the same as the experimental measurements of Liu and Agarwal

(1974). The concentration of particles is dilute enough to make one-way coupling

assumption. The particle equation of motion discussed by Maxey and Riley (1983) is

simplified in this work by taking into account only the drag force. We thus can write the

particle equation of motion involving the non-linear form of the drag law with the point

particle approximation
dup

dt
=

1
τp

CD
Rep

24
(u−up), (4.21)



Chapter 4. A stochastic quadrant model for particle deposition 111

where up is the particle velocity and u the instantaneous fluid velocity at the particle

position, τp is the particle response time. Previous research effort on particle dispersion

in a channel flow (e.g. Marchioli et al. (2006)) has demonstrated that the particle

Reynolds number, Rep = |u−up|dp/ν does not necessarily remain small enough. Thus,

an empirical relation for CD from Morsi and Alexander (1972), which is applicable to a

wide range of particle Reynolds number with sufficiently high accuracy, is employed.

CD = c1 +
c2

Rep
+

c3

Re2
p
, (4.22)

in which c1,c2,c3 are constants and provided by Morsi and Alexander (1972). The above

empirical expression exhibits the correct asymptotic behavior at low as well as high

values of Rep. A state-of-art composite correlation for drag coefficient and lift coefficient

will be investigated in the following work.

The position xp of particles is obtained from the kinematic relationship

dxp

dt
= up (4.23)

The boundary condition for the above equation is that the particle is captured by the wall

when its center is less than its radius away from the nearest wall. This is not properly

treated in the default discrete phase model (DPM) provided by ANSYS FLUENT.

Furthermore, this error has a significant effect upon predictions concerning the deposition

of heavy particles under investigation.

From a converged RANS computation of an Eulerian velocity field, Eq: (4.23) is

integrated in time using the second-order Adams-Bashforth scheme to get particle trajec-

tories, whilst Eq: (4.21) is integrated with the second-order accurate Gear2 (backward

differentiation formulae) scheme that is applicable to stiff systems. Fluid velocities are

stored at the cell centroid. Since it is only by chance that a particle coincides with the

cell centroid, a quadratic scheme based on velocity gradient reconstruction is used to

interpolate the fluid velocity to the particle location.

Properties of the dispersed phase are obtained by following the trajectories of 105

particles. The trajectories of a sufficiently large number of particles are crucial in order
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to present significantly statistical results for the dispersed particle phase.

4.3 Results and discussions

4.3.1 Continuous phase

The stochastic quadrant model was applied to study the transport and deposition of heavy

particles in a fully developed turbulent boundary layer. The turbulent boundary layer

was resolved using the standard k− ε model with enhanced wall treatment in ANSYS

FLUENT. The y+ value of the first cell adjacent to the wall was put at unity. Two points

need to be pointed out. First, there is not discernible discrepancy between the inlet

and middle plane velocity profiles. Second, the calculated velocity profiles show fair

agreement with the DNS data of Kim et al. (1987) across the boundary layer. Given the

fact that RANS was employed, the small difference between the calculated and DNS

values shown in figure 4.8 is reasonable. As far as there is no discrepancy between the

velocity profiles from two planes, this was achieved through a special treatment for the

inlet boundary condition. An auxiliary simulation was set up in a small computation

domain. Then a converged velocity profiles from the middle plane of this simulation was

exported to provide initial velocity condition on the inlet plane. Through this technique,

a developing region from the inlet plane was avoided.

4.3.2 Dispersed particle phase

4.3.2.1 Particle deposition rates

The prediction of heavy particle deposition rates is of primary interest in this study. The

deposition rate in a turbulent boundary layer is usually quantified through a mass transfer

coefficient K defined as

K =
Jw

c
, (4.24)
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Figure 4.8: Mean fluid velocity profiles from the inlet and middle plane. Both based on
uτ and compared with the U+ data of Kim et al. (1987).

where Jw represents the particle flux onto the wall surface per unit area and unit time, c is

the average particle concentration within the boundary layer. The computation technique

proposed by Kallio and Reeks (1989) was used to calculate the non-dimensional particle

deposition velocity defined as

V +
dep =

UA
uτP∆x

ln
(

Nin

Nout

)
(4.25)

where U is the average streamwise fluid velocity across the fully developed turbulent

boundary layer, A is the boundary layer cross sectional area, P the duct perimeter, ∆x

is the incremental length of section considered, and Nin and Nout are the total number

of particles passing through the start and end plane of each section, respectively. The

characteristic wall friction velocity uτ was used to obtain the non-dimensional deposition

velocity V +
dep. In this study, 105 particles were introduced uniformly from the inlet plane.

Computed dimensionless particle deposition velocities are compared with benchmark
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experimental measurements (e.g. Liu and Agarwal (1974)), the theoretical curve-fit by

McCoy and Hanratty (1977) and the standard k− ε model in figure 4.9. In particular,

the results from Guingo and Minier (2008) , who developed a complex stochastic model

to account for the geometrical structures in turbulent boundary layers, are included for

comparison. It can be observed that very good agreement exists between the present

computed results and experimental data in the range of St > 5. For St < 5, the stochastic

quadrant model gives under-prediction of the deposition rates. Similar phenomena is

also observed from the work of Guingo and Minier (2008) who predicted less deposition

than obtained in this study. This under-prediction may be directly attributable to the

effects of ejection events on particle transport, causing particles to migrate away from

the wall region and leading to a over-decrease in their deposition rate.
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Figure 4.9: Comparison of dimensionless particle deposition velocity as a function of
dimensionless particle response time with experimental measurements and different
models in turbulent boundary layers. The results from the stochastic quadrant are model
compared against the benchmark experimental measurements from Liu and Agarwal
(1974), against the theoretical curve fit by McCoy and Hanratty (1977). In addition, the
numerical results from Guingo and Minier (2008) are presented.
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In this work, an alternatively continuous random walk (CRW) model was applied to

repeating the numerical study of particle deposition rates. This model is based on the

wall-normal component of normalized Langevin equations in boundary layers (e.g. Mito

and Hanratty (2002); Dehbi (2008b)), which takes into account the effect of Stokes

number along heavy particle path (see Bocksell and Loth (2006)). The normalized

Langevin equation was solved through a second-order accuracy Milshtein scheme (see.

Mil’shtein (1978)). The non-dimensional fluctuating fluid velocity solved this way was

converted to a physical velocity. This fluctuating wall-normal fluid velocity was then

added into the particle equation of motion in order to account for the turbulence.
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Figure 4.10: Comparison of dimensionless particle deposition velocity as a function
of dimensionless particle response time with experimental measurements and different
models in turbulent boundary layers. The results from a CRW model are compared
to the benchmark experimental measurements from Liu and Agarwal (1974), and the
theoretical curve fit by McCoy and Hanratty (1977). In addition, the CRW results are
compared with numerical results from various models (e.g. Guingo and Minier (2008);
Dehbi (2008b); Hanratty and Mito (2006)).

Results on deposition rates from a CRW model are shown in figure 4.10. There are



Chapter 4. A stochastic quadrant model for particle deposition 116

a few interesting points to note. Firstly, very similar results can be observed from

the present one-dimensional CRW model and Dehbi (2008b)’s work. Secondly, the

numerical results from all the models show fair agreement with experiments for large

particles. Nevertheless, they all give significant under-predictions on deposition rates for

small particles. In contrast to the present one-dimensional CRW and stochastic quadrant

model, the CRW model employed by Dehbi (2008b) was solved in three dimensions with

curve-fitting DNS database. This may further corroborate the view that the wall-normal

fluid fluctuations are a critical control factor on the deposition of heavy particles from

fully developed turbulent boundary layer. Thus, as far as practical applications are

concerned, it is possible and feasible to feed in only the wall-normal fluid fluctuations

for studying particle deposition. On the other hand, compared to CRW models, the

stochastic quadrant model is capable of yielding equal quality results on deposition rates,

given its relatively simple nature and physical meaning, it is potentially a very promising

model for studying deposition of heavy particles from turbulent flows.

4.3.2.2 Preferential mean particle concentration

Figure 4.11 shows preferential mean particle concentration profile as a function y+

across the boundary layer. Although the present stochastic quadrant model was not

corrected for the spurious drift of particles (see MacInnes and Bracco (1992)), this does

not affect the preferential mean particle concentration very much since the eddy fluid

velocity fluctuation is continuously revised to be that determined by the local turbulence

velocity scale according to particle position. It can be noted that there is a significant

build-up in concentration for the four classes of particles within the viscous sublayer.

The phenomena of build-up of particles has been observed by numerous researchers

(e.g. Kallio and Reeks (1989); Marchioli and Soldati (2002); Narayanan et al. (2003)).

This is attributed to turbophoresis (see Reeks (1983)). The gradient in wall-normal fluid

fluctuations in boundary layer turbulence acts as a driving force and results in a wallward

net particle flux. The build-up concentration of particle with St = 20, is smaller than

those of smaller particles with St = 2,5,10. This may result from the fact that they are

too heavy particles to follow the relatively quiescent viscous sublayer. On the other hand,
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they may move across the viscous sublayer and deposit on the adjacent wall surface,

which may also be responsible for the relative reduction of build-up.
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Figure 4.11: Particle preferential concentration profile as a function of y+.

4.3.2.3 Mean wallward drift velocity

Figures 4.12 and 4.13 show the mean wallward drift and sampled fluid velocity profiles

in the near wall region. It can be observed that for the four sets of particles, St =

2,5,10 and 20, have non-zero wallward mean velocity (negative) values. This indicates

that the present stochastic quadrant model is capable of predicting the phenomena of

turbophoresis. This wallward mean velocity of heavy particles results from primarily the

turbulence gradient of boundary layer turbulence as well, which is the prime mechanism

that is responsible for the build-up of particles. It is observed that the mean wallward

drift velocity of particles varies monotonically with the increase of the particle inertia.

Although the wall-normal fluid velocity has zero mean, the sampled mean fluid velocity
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at the particle location has positive values. This may result from the fact that particles

sample preferentially events in quadrant II (ejections) characterized by a large positive

mean velocity. Since the methodology employed in this study is mainly for industrial

applications, it is encouraging that the data quality of mean wallward drift velocity are as

good as those obtained by high-fidelity DNS calculations (e.g. Narayanan et al. (2003);

Picciotto et al. (2005)).

4.3.2.4 Root mean square (r.m.s.) velocity profiles

Figures 4.14 and 4.15 show that the r.m.s. of velocity fluctuations of four sets of particles

are compared with the fluid velocity fluctuations. It is observed that the r.m.s of particle

phase is significantly different from the fluid phase. The difference is increasing with

the increase of particle inertia. This results from the fact that the heavier the particles

are, the slower their response to the change of surrounding fluid. As far as the noise

displayed in the computed particle r.m.s profile is concerned, the reasons may be that the

particle phase still has not reached equilibrium or that each sampling bin does not have a

sufficient number of representative particles.

4.3.2.5 Mechanisms for particle deposition

The present stochastic model is also applied to study the mechanisms for particle deposi-

tion. Brooke et al. (1994); Narayanan et al. (2003) attributed two different mechanisms

for particles of different inertia by analysing extensively DNS data-sets. Relatively lighter

particles deposit by diffusion mechanism, whilst heavier particles deposit as a result of

free-flight. To differentiate the two mechanisms, the concept of particle residence time,

which is referred to the continuous time spent by a particle within a certain wall region

before depositing, is introduced. Through diffusion, depositing particles have relatively

smaller values of deposition velocity and larger values of residence time. Compared to

the diffusion counterpart, depositing particles via free-flight mechanism have opposite

values. For the deposition velocities and residence time, figure 4.16 shows a scatter plot

of wall-normal deposition velocities as a function of particle residence time within the
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Figure 4.12: Mean wallward drift velocity and sampled wall-normal fluid velocity, (a)
St = 2, (b) St = 5.
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Figure 4.13: Mean wallward drift velocity and sampled wall-normal fluid velocity, (a)
St = 2, (b) St = 5.
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Figure 4.14: Root mean square (r.m.s) of velocity fluctuations, (a) St = 2, (b) St = 5.
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Figure 4.15: Root mean square (r.m.s) of velocity fluctuations, (a) St = 10, (b) St = 20.
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region of y+ < 3. The red curve is plotted according to the relation between the wall

normal deposition velocity V +
dep and the residence time T +

res provided by Narayanan et al.

(2003)

V +
dep =

3−d+
p /2

τ+
[
1− exp

(
T+

res
τ+

)
]
] , (4.26)

where dp is the non-dimensional particle diameter. It can be observed that particles

with St = 2.0 get deposited mainly by diffusion as expected. However, the results for

St = 5 obtained in the present work are different from DNS data of Narayanan et al.

(2003). The results in this work do not follow the relation in Eq: 4.26. However, it can

be observed that one population of depositing particles results from diffusion. They are

also approaching the curve of free flight. The population of particles with large values

of residence time and deposition velocity may get deposition with motions in quadrant

IV (sweeps). They then have relatively large deposition velocity. The Lagrangian

integral time scales used for motions in quadrant IV may result in the increase of particle

residence time.

4.3.2.6 Probability density function (pdf) of impact velocities of particles

Figures 4.17 and 4.18 show the PDF of non-dimensional wall-normal impact velocities

of depositing particles onto the wall. It is observed that there is a large increase in

probability in the first bin for the three sets of particles. The particles falling in this bin

may be associated with the population of depositing particles by diffusion. There also

exists long trail of high impact velocities, indicating some of the depositing particles

have high deposition velocities. They may be associated with free-flight particles. The

PDF of St = 20 is much wider than those of St = 5,10, indicating that heavier particles

are transported by free-flight across the viscous sublayer before deposition.
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Figure 4.16: Particle residence time in the region of y+ < 3 versus particle deposition
velocity (a) St = 2, (b) St = 5.
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Figure 4.17: Probability density function (pdf) of non-dimensional impact velocities of
particles, St = 5.



Chapter 4. A stochastic quadrant model for particle deposition 126

−2.5 −2.0 −1.5 −1.0 −0.5 0.0
Non-dimensional impact velocity

0

1

2

3

4

5

6

P
ro

ba
bi

lit
y

de
ns

ity
fu

nc
tio

n
St = 10

(a)

−2.5 −2.0 −1.5 −1.0 −0.5 0.0
Non-dimensional impact velocity

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

P
ro

ba
bi

lit
y

de
ns

ity
fu

nc
tio

n

St = 20

(b)

Figure 4.18: Probability density function (pdf) of non-dimensional impact velocities of
particles, (a) St = 10, (b) St = 20.
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4.4 Concluding remarks

A simple stochastic quadrant model was developed for investigating dispersion and

deposition of heavy particles in a fully developed turbulent boundary layer. The quadrant

model was inspired by the quadrant analysis. The correspondingly detailed statistics

of each quadrant are based on a quadrant analysis of the wall-normal fluid velocity

fluctuations obtained by an LES of a fully developed channel flow. The turbulent

dispersion of heavy particles in fully developed turbulent boundary layer is modelled as

interactions of heavy particles with a succession of random eddies found four quadrants

in a homogeneous Markov process way. This deals with the skewness of wall-normal

fluid velocity fluctuations in developed boundary layers naturally. The model was fully

coupled with the steady Navier-Stokes solver in ANSYS FLUENT via a stand-alone

Lagrangian stochastic particle tracking module. Deposition rates of heavy particles

from turbulent flows is of particular interest to the present stochastic model. This model

yields very good predictions of deposition rate for particles St > 5 when compared

against benchmark experimental measurements. Prediction of deposition rates at lower

values of St gives under-estimation and may need further improvement. In addition,

the deposition rates obtained by the stochastic quadrant model was compared with that

acquired by solving a one-dimensional Langevin equation based on a continuous random

walk (CRW) model as well as results from multiple CRW models. The discrepancy

between deposition rates for particles St > 5 is minor. Of particularly significance is the

comparison of the present model with a stochastic model based on the Langevin equation

accounting for explicitly the strong sweeps and ejections in boundary layer turbulence.

The present model is much simpler and statistically more consistent with experiments.

Most of the predicted statistics of heavy particles are consistent with experiments or

DNS calculations. Preferential particle concentration is observed in the near wall region.

This indicates that the present stochastic model is capable of predicting turbophoresis

responsible for the build-up of particles. The related mean wallward drift velocity is

predicted in the viscous sublayer. Predicted r.m.s. profiles of heavy particles wall-normal

velocity are typically lower than the counterpart of fluid particles. Mechanisms for

particle deposition is explored by observing particle residence time versus deposition
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velocity. The population of depositing particles by diffusion is well retrieved. This is

also corroborated by a large increase in probability of deposition velocities in the first

bin near zero.

The major drawbacks in the present stochastic models lie in the Lagrangian integral time

scales for the random eddies occurred in four quadrants and in the inherent spurious

drift associated with discrete random walk models. The latter disadvantages may be

corrected by adding a appropriately counting component into the eddy fluid velocity

fluctuation (see MacInnes and Bracco (1992)). However, the time scales for the events in

four quadrants still call for further investigations.
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Chapter 5

The effects of near wall corrections of

hydrodynamic forces on the particle

deposition and dispersion in turbulent

boundary layers

5.1 Introduction

In the Lagrangian particle tracking approach used for modelling particle-laden two-

phase flows, rigid, spherical particles are usually approximated as point particles. A

complex two-phase problem thus can be significantly simplified through the point particle

approximation, i.e. individual particles regarded as mathematical point sources of mass,

momentum and energy without physical size. However, this approximation requires

further examination, especially the inherent assumption that the size of particles is less

than the smallest local length scale in the underlying flow field. On the other hand, the

Lagrangian particle tracking approach faces a difficult choice of multiple forces exerted

on particles. In this regard, Maxey and Riley (1983) may serve as a theoretical baseline

for which forces should be incorporated in the particle equations of motion. For an

example, in the scenario when a particle with the ratio of particle density to fluid density

134
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ρp/ρ f � 1 moves in a steady flow, the added, or virtual, mass force and history force

are negligible. The drag force and lift force will determine the motion of particles in the

background flow. Then the problem of choosing an appropriate expression for modelling

drag and lift force arises.

Numerous expressions for the drag coefficient CD, which account for the effect of particle

Reynolds number Rep, exist. The two most frequently used forms are from Schiller and

Naumann (1933) and Morsi and Alexander (1972), respectively. The drag coefficient

from Schiller and Naumann (1933) can be written as

CD =
24

Rep

(
1+0.15Re0.687

p

)
. (5.1)

The above expression reverts to the Stokes relation CD = 24/Rep when Rep� 1. Morsi

and Alexander (1972) proposed the following expression

CD = c1 +
c2

Rep
+

c3

Re2
p
. (5.2)

where c1,c2,c3 are known constants and provided by Morsi and Alexander (1972). Fig-

ure 5.1 shows that the expression from Morsi and Alexander (1972) exhibits the correct

asymptotic behavior at low as well as high values of Rep. Compared to the standard

experimental drag-Reynolds-number relationship for rigid, spherical particles, the above

two expressions shows no discernible discrepancy. The standard drag correlations from

Schiller and Naumann (1933) were used in numerous research efforts that employed

sophisticated numerical techniques, i.e. DNS (e.g. Marchioli and Soldati (2002); Marchi-

oli et al. (2008)) or LES (e.g. Wang and Squires (1996b,a)) to solve the incompressible

Navier-Stokes equations, coupled with a Lagrangian particle tracking method to study

particle-laden two-phase flows. The above two correlations from Schiller and Naumann

(1933) and Morsi and Alexander (1972) were all derived for the drag force exerted on a

rigid, spherical and steadily moving particle in an unbounded viscous incompressible

flow, as was the original Stokes drag law from Stokes (1845). Chen and McLaughlin

(1995) were the first to consider the wall effect on the Stokes drag to study particle depo-

sition. The nonlinear drag law was not employed in the work of Chen and McLaughlin
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Figure 5.1: Drag Coefficient CD as a function of the particle Reynolds number Rep for a
rigid spherical particle

(1995) as they regarded Rep� 1, although this is not always the case for deposition of

particles (see Kallio and Reeks (1989); McLaughlin (1989); Marchioli et al. (2006)).

The lift force can play a part in the process of particle deposition but is also one of the

most difficult forces to be properly modelled. The Saffman lift force, which is the most

frequently studied shear-induced lift force, takes the form

fl = 1.615d2
p(ρµ)1/2

(∣∣∣∣dux

dy

∣∣∣∣)1/2

(ux−upx), (5.3)

where ρ and µ denote the fluid density and dynamics viscosity respectively, dp represents

the radius of the rigid spherical particle, upx and ux are particle velocity fluid velocity

at the particle centroid in the x−direction and dux/dy is the gradient of fluid velocity

or the shear rate of the mean flow. Saffman assumed that the particle Reynolds number

based on relative velocity, Rep = |ux−upx|dp/ν , and that based on velocity gradient G
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at the particle centre, ReG = Gd2
p/ν , are both very much less than 1, and that Rep� ReG.

According to Eq: 5.3, the relative velocity (ux−upx) between the particle and surrounding

fluid and the shear rate determine fl , the lift force acting on a rigid spherical particle

moving in a unbounded, unidirectional and steady linear shear flow. Kallio and Reeks

(1989) employed the relation derived by Saffman (1965, 1968) to account for the lift force

exerting on a rigid, spherical particle moving within a fully developed turbulent boundary

layer. They observed an increase of deposition rate of heavy particles resulting from

the Saffman lift force. McLaughlin (1989) included this same form derived by Saffman

for lift force in the particle equation of motion to study aerosol particle deposition in a

turbulent channel flow, in which the incompressible three-dimensional Navier-Stokes

equations were solved through DNS calculations. McLaughlin (1989) found that the

Saffman lift force plays a significant role both in the inertial deposition of particles and

in the accumulation of trapped particles within the viscous sublayer where the gradient

of streamwise fluid velocity has the highest value across the channel. McLaughlin (1991)

and Mei (1992) extended the expression derived by Saffman (1965) to the situation

when Rep is comparable with, or larger than the square root of ReG. McLaughlin (1993);

Cherukat and McLaughlin (1994) further developed expressions for the lift force exerted

on a particle in a wall-bounded linear shear flow and for the wall-induced lift force when

a particle lies in a linear shear flow field near a flat wall. Based on the above research,

Chen and McLaughlin (1995) considered wall-induced and shear-induced lift in the

particle equation of motion to study particle deposition coupled with a DNS channel

flow.

There have been some research efforts to take into account the wall effects on the drag

force combined with different expressions for the lift force. Wang et al. (1997) developed

an “optimum” form that combines both the shear-induced part and wall-induced part of

the lift force on a particle in a wall-bounded shear flow. Lataste et al. (2000) studied

the importance of the shear-induced lift force on a particle in a turbulent boundary layer.

They found that the shear-induced lift force plays a significant role in the near wall

region. Furthermore, they observed that the formulation from Cherukat and McLaughlin

(1994) for the lift force gives the best results when compared with experiments. In the

DNS calculations of particle-laden channel flows from Arcen et al. (2006), the drag force
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was corrected for the presence of a wall, according to the direction of motion the particle,

i.e. a particle moving parallel or perpendicular to the wall; the lift force was taken the

form derived by Cherukat and McLaughlin (1994). They found that even the inclusion

of the most accurate treatment of lift force and drag force for the wall effects does not

give rise to significant changes in the statistical properties of the dispersed particle phase,

except for the high inertia particles.

Bagchi and Balachandar (2003) studied the effect of turbulence on the drag and lift force

acting on a rigid, spherical particle suspended in a free-stream isotropic turbulent flow

through DNS calculations. They observed that the standard drag correlation from Schiller

and Naumann (1933), based on the instantaneous or mean relative velocity results in a

reasonably accurate prediction of the mean drag acquired from DNS calculations. This

indicates that the standard drag correlation is applicable to turbulent dispersed particle

flow as well. They also demonstrated that the mean drag is insensitive to the fluid velocity

measured at the particle center, or acquired by averaging over a fluid volume of the

order of the particle size. This confirms that the point particle approach is an acceptable

approximation for small particles.

The objective of this chapter is to study the effects of near wall corrections to the hydro-

dynamic forces on particle deposition and dispersion characteristics in fully developed

turbulent boundary layers. Brand new composite correlations for CD and CL were pro-

posed by Zeng et al. (2009) and Lee and Balachandar (2010), who used DNS with

the immersed boundary method (IBM) to fully resolve the flow field around a fixed

or moving rigid spherical particle in a wall-bounded shear flow. In order to judge the

influence of near wall corrections, three different cases of simulations are performed.

The first case is concerned with the standard drag law CD and with near wall corrected CD

from Zeng et al. (2009); the second case focuses on the inclusion of the Saffman lift force

with the standard drag law CD in the particle equation of motion; the final case studies the

inclusion of the wall corrected CL with the standard drag law. The comparison is made

based on particle deposition rates, mean streamwise particle velocities and wall-normal

r.m.s. velocities.
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5.2 Corrections of hydrodynamic forces

As stated in Clift et al. (1978), in terms of the analytical solutions for flow around

rigid and circulating particles, the effect of containing walls is to change the boundary

conditions for the equations of motion and continuity of the continuous phase. The

corrections for CD in presence of containing walls were achieved through either analytical

methods (see Brenner (1961); Goldman et al. (1967)) or numerical simulations (see Zeng

et al. (2009); Lee and Balachandar (2010)).

5.2.1 Near wall correction for the drag force

The drag force resists relative velocity between the particle and surrounding fluid and is

therefore defined as

FD =−1
2

ρ f
∣∣up−u

∣∣(up−u)ApCD, (5.4)

where ρ f is the fluid density, Ap is the projected area of the particle, equalling πd2
p/4 for

a rigid spherical particle, and CD is the drag coefficient which is a function of particle

Reynolds number Rep. When the particle Reynolds number Rep� 1, CD is given by

24/Rep so that Eq: 5.4 reverts to the Stokes formula. In this study, CD is also dependent

upon the distance of the particle center from the wall and so this unbounded flow result

requires corrections.

The problem of the approach a rigid spherical particle to a nearby plane wall in a viscous

fluid constitutes an entire field of research. Brenner (1961) developed an expression for

the corrections to Stokes’s law necessitated by the presence of a plane boundary at a

finite distance from the particle when the particle moves normal to the wall. It can be

written as

CD ∼=
(

1+
9
8

dp

2L

)
24

Rep
, (5.5)

where L is the distance from the center of the particle to the nearby wall. Goldman et al.

(1967) further analysed a particle moving parallel to a plane wall through still fluid, and
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proposed the following correction

CD =

[
1− 9

16

(
dp

2L

)
+

1
8

(
dp

2L

)3

− 45
256

(
dp

2L

)4

− 1
16

(
dp

2L

)5
]−1

24
Rep

. (5.6)

Zeng et al. (2009) proposed a composite drag coefficient for a particle, moving through

still fluid, parallel to a plane wall. Further, the drag coefficient is valid for a wide range

of Rep and distance from the wall. It is given by

CD =
{

1+0.15
[
1− exp

(
−
√

δ

)]
Re[

0.687+0.313exp(−2
√

δ)]
p

}
CD0, (5.7)

where

CD0 =
[

1.028− 0.07
1+4δ 2 −

8
15

ln
(

270δ

135+256δ

)]
24

Rep
, δ =

L
dp
−0.5. (5.8)

The above expressions for a particle moving parallel to a wall are shown in figure 5.3

and compared to the standard drag law from Schiller and Naumann (1933). They are

plotted as a function of Rep for different values of normalised gap between the particle

and wall, δ = L/dp−0.5. It can be seen that as a particle moves closer to a nearby wall,

the drag coefficient CD rises. In particular, CD experiences a significant increase when

the gap is vanishingly small (e.g. δ = 0.005). On the other hand, the expressions for CD

from Goldman et al. (1967) and Zeng et al. (2009) collapse into the standard drag law

when the particle moves farther away from the nearby wall. It must be noted that the

wall effects would be additionally affected by the shear flow in the vicinity of the wall

and the rotation of a particle (see Goldman et al. (1967); Lee and Balachandar (2010)).

Whilst being very complete, the composite correlations of Lee and Balachandar (2010)

are extremely complex and unwieldy and, although the present author did try to include

them in the particle deposition model, the resulting model was not sufficiently robust to

provide useful solutions. Since the additional shear and rotation corrections are relatively

small, the composite correlation for CD from Zeng et al. (2009) is regarded as the most

accurate practical representation of drag force acting on a particle moving parallel to

a wall for use in the present study. This enabled comparison of particle deposition
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Figure 5.2: Comparison of corrections for CD, (a) Rep < 1, (b) Rep > 1.
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and dispersion characteristics through the inclusion of the composite correlation from

Zeng et al. (2009) in the stochastic quadrant model presented in Chapter 4, with results

obtained using the standard drag law.

5.2.2 Lift force

In this study, it is assumed that each particle attains an equilibrium spin rate and expe-

riences a lift force resulting from vorticity in the underlying carrier-phase. Extending

the original Saffman expression for three dimensional flow, and introducing a correction

function to account for the Reynolds number dependence of the lift force, Eq: 5.3 can

become:

FL = 1.615d2
p(ρµ)1/2

(
1
|ω|

)1/2

[(u−up)×ω] f (Rep,ReG), (5.9)

where ω is the vorticity of the fluid and the shear Reynolds number ReG of the particle is

given by:

ReG =
Gd2

p

ν
. (5.10)

In a two-dimensional wall bounded linear shear flow, |ω| is equal to the shear rate.

Eq: 5.9 can be rewritten as

FL =
1
2

ρApdp [(u−up)×ω]
4.1126

Re1/2
G

f (Rep,ReG). (5.11)

In the light of the definition of CL and from Eq: 5.11, the Saffman lift coefficient CLS is

then given by

CLS =
4.1126

Re1/2
G

f (Rep,ReG). (5.12)

For a creeping flow, the restriction of Rep� Re1/2
G � 1 was assumed in the derivation

of Saffman (1965, 1968). This condition was relaxed by McLaughlin (1991), and Mei
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(1992), who proposed the following expression for f (Rep,ReG)

f (Rep,ReG) =


(

1−0.3314α1/2
)

exp
{
−Rep

10

}
+0.3314α1/2 for 0 < Rep ≤ 40,

0.0524(αRep)
1/2 for Rep > 40,

(5.13)

where

α = 0.5
ReG

Rep
. (5.14)

In the case of a wall-bounded linear shear flow, the direction of the lift force on a particle

is determined by the relative slip velocity from Eq: 5.9, i.e. for a particle moving in

a shear flow parallel to a wall, if the particle leads the surrounding fluid, the lift force

points to the wall; if particle lags behind the surround fluid, the lift force points away the

wall. Hence the lift force causes particles to migrate to the wall or away from the wall.

The presence of a wall has a significant effect on the lift force as well. As far as the

shear-induced lift is concerned, Zeng et al. (2009) proposed a composite correlation for

CLs. The expression reads

CLs = CLs,w exp

{
−0.5δ

(
Rep

250

)4/3
}
×
[
exp
{

αsL(Rep)δ βsL(Rep)
}
−λsL (δ , Rep)

]
,

(5.15)

where
CLs,w = 3.663

(Re2
p+0.1173)0.22 ,

αsL(Rep) = −exp
{
−0.3+0.025Rep

}
,

βsL(Rep) = 0.8+0.01Rep,

λsL(δ ,Rep) = {1− exp{−δ}}
(

Rep
250

)5/2
.


(5.16)

Eq: 5.15 is applicable for the circumstance when a stationary particle is positioned in

a wall-bounded linear shear flow, 1 < Rep < 200 and even when the particle touches

the wall (δ → 0). Here, Eq: 5.15 is extended to the situation when Rep < 1. This

extension seems valid when compared with numerous earlier research efforts focusing on

Rep < 1 (see Zeng et al. (2009)). Figure 5.3a shows that CLs results from the combined

effect of flow-shear and wall proximity for five dimensionless gap values. Compared

to the Saffman lift coefficient with the correction function f (Rep,ReG) set to 1, CLs
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is considerably higher than the Saffman lift coefficient when the gap is vanishingly

small. On the other hand, the value of CLs is pretty close to the value of the Saffman lift

coefficient when Rep� 1 and the gap δ = 3.5.

Zeng et al. (2009) proposed a composite lift coefficient CLt for a sphere translating

through still fluid and parallel to the nearby plane wall. It reads

CLt = f (L,Rep)+ [CLt,w− f (L = 1/2,Rep)]exp

{
−11

(
δ

g(Rep)

)1.2
}

, (5.17)

where

f (L,Rep) = f0(Rep)CLt,0(L∗)L f1(Rep), (5.18)

f0(Rep) = 1+0.329Rep +0.00485Re2
p

f1(Rep) = −0.9tanh(0.022Rep)

 , (5.19)

CLt,0 =


(
9/8+5.78×10−6 L∗

)
exp{−0.292L∗} for 0 < L∗ < 10,

8.94L∗−2.09 for 10 < L∗ < 300,
(5.20)

CLt,w = 0.313+0.812exp
{
−0.125Re0.77

p
}

(5.21)

g(Rep) = 3exp
{
−0.17Re0.7

p
}

, (5.22)

and

L∗ =
LRep

dp
. (5.23)

Eq: 5.17 is applicable for 0 < Rep < 100 and 0 < L∗ < 300. Figure 5.3b shows the

curves of CLt for five dimensionless gap values almost collapse into a single curve as L∗

decreases below 1.0. Comparing figures 5.3a to 5.3b, it can be observed that the value of

CLs is much higher than the value of CLt when Rep < 1. In this study, the shear-induced

lift force is considered the dominant lift force. Eq: 5.15 is thus used to study the effects of

near wall corrections on the lift force and compare with the Saffman lift force expression

for unbounded flow.
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Figure 5.3: Comparison of corrections for CL, (a) CLs for a particle in a shear flow
adjacent to a wall, and compared to the Saffman lift coefficient , (b) CLt for a particle
translating through still fluid next to a wall.
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5.3 Modelling methodology

A fully developed turbulent boundary layer at Reτ = 200 was solved by a RANS cal-

culation with the standard k− ε turbulence model and enhanced-wall treatment, using

ANSYS Fluent v.12.0. Particle of various (tau+) were then tracked through this flow field,

using the methodology described in Chapter 4, and deposition and dispersion data were

recorded. The size of rigid spherical particles is restricted to smaller than the size of the

first wall-adjacent cell ∆y+ = 1. As a consequence, the point particle approach is taken.

The volume fraction of the particle phase is small enough so that one-way coupling is

assumed. Furthermore, the density ratio of particle to fluid obeys ρp/ρ f � 1, so that the

non-linear drag force and shear-induced lift force are considered only. Therefore, the

particle equation of motion reads

dup

dt
=

1
τp

CD
Rep

24
(u−up)+

fL

mp
, (5.24)

where up,u are the particle velocity and instantaneous fluid velocity at the particle center,

τp is particle response time defined as ρpd2
p/18µ , fL is the shear-induced lift force. Both

the drag coefficient CD and lift coefficient CL are corrected for the wall effect.

In RANS calculations, the instantaneous fluid velocity is decomposed into two parts,

u = U+u′, (5.25)

where U is solved by the RANS calculation, u′ is fluid velocity fluctuations. For a fully

developed turbulent boundary layer in this chapter, only the wall normal fluctuation is

provided by the stochastic quadrant model presented in Chapter 4 in order to account for

the turbulence effect on the particle dispersion.

5.4 Results and discussions

The results presented here were obtained from four sets of particles characterized by

different particle Stokes number making use of the standard drag CD, near-wall correction
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of CD from Zeng et al. (2009), CL from Saffman (1965) and near-wall correction of CL

from Zeng et al. (2009) in the particle equation of motion, respectively. The Stokes

number used were St = 2,5,10 and 20, made dimensionless through the characteristic

time ν/u2
τ and particle-to-fluid density ration ρp/ρ = 770 . Statistics for the dispersed

particle phase were based on 5×104 particles released initially. The boundary condition

of the nearby wall was assumed to perfectly absorbing when the particle centroid was a

radius away from the wall surface.

5.4.1 Near-wall corrections of CD

5.4.1.1 Particle deposition

The effects of near-wall correction of CD on the deposition rate of heavy particles were

studied first. The results for deposition rates of fourteen sets of heavy particles are shown

in figure 5.4 and compared with the experimental measurements from Liu and Agarwal

(1974) and the curve-fit of McCoy and Hanratty (1977). While the two expressions from

Eqs: 5.2 and 5.7 for CD does not yield significant change on the deposition rates for the

particles considered, the overall effect of the near-wall correction is that it reduces the

deposition rates of small particles and increases the deposition rates of large particles.

This may be explained as follows: When a small particle gets into the region within

3.5 times the particle diameter through diffusion, the particle experiences considerably

higher drag as a result of the wall-effects and its small Rep; this helps the particle to coast

along the vicinity of the near wall and reduces deposition. As far as large particles are

concerned, they normally have higher velocity fluctuations in the near wall region. The

increase of drag force due to the wall-effects is not strong enough to modify their velocity

to the local equilibrium values of fluid velocity. These large particles get deposited by

their own inertia. Moreover, the increased drag may prevent particles escaping from the

near wall region. For instance, if a particle experiences ejection events resulting form

quadrant II, the increased drag may reduce the escape probability of the particle away

from the wall along the encountered ejection. Therefore, the near-wall correction of CD

has opposite effects on the deposition rates.
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Figure 5.4: Deposition comparison with the standard drag law CD and near-wall correc-
tions from Zeng et al. (2009)

5.4.1.2 Mean streamwise and wall normal r.m.s velocities

Figure 5.5 and 5.6 show a comparison of mean streamwise particle velocities as a function

of y+. The results were obtained from the two expressions for CD and are compared

with the mean streamwise fluid velocities. It can be observed that there is no discernible

difference between the standard drag law CD and corrected CD for the particles of Stokes

number St = 2,5,10. However, The mean streamwise particle velocities for particles of

Stokes number St = 20 acquired from the corrected CD simulation diverge significantly

from the fluid velocities. The standard drag CD yields much less divergence from the

fluid velocities. In fact, the phenomena that values of streamwise particle velocities are

significantly higher than that of fluid velocities in the near wall region is the correct,

as confirmed by experiments by Kulick et al. (1994) and numerical simulations from

Wang and Squires (1996b). Therefore, the near-wall corrected CD produce more correct

near-wall behavior for large particles. However, for small particles, the mean streamwise

velocities of small particles (St = 2,5) are lower than the counterpart of fluid in the near
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wall region. This might result from the fact that the streamwise fluid velocity fluctuations

were not incorporated in the present study. From the wall-normal particle and fluid r.m.s

velocities shown in Figure 5.7 and 5.8, it can be observed that there is no statistical

difference for the two sets of particles of Stokes number St = 2,5. The corrected CD,

however, increases the particle of Stokes number St = 20 wall-normal r.m.s values in the

near wall region.

5.4.2 Near-wall corrections of CL

5.4.2.1 Particle deposition

From figure 5.9, it is evident that the inclusion of lift force into the particle equation

of motion does not result in significant change in the deposition rates of particle sizes

considered. The two expressions for CL produce reduced deposition rates for the smallest

particle with Stokes number St = 2. This contrasts with the previously reported results

on the effects of lift force upon particle depositions (see Kallio and Reeks (1989); Wang

et al. (1997)). From previous discussions, the present stochastic quadrant model, which

does not incorporate the streamwise fluid velocity fluctuations, causing inertial particles

to move incorrectly slower than fluid particles in the near-wall region. According to

the definition of lift force expressed in Eq 5.11, a positive velocity difference between

particles and surrounding fluid results in a lift directed away from the wall. Thus, it

reduces the deposition rates of small particles. If, on the other hand, inclusion of stream-

wise fluid velocity fluctuations in the present stochastic quadrant model did produce the

correct near-wall particle behavior, with stream-wise inertial particle velocities exceeding

fluid velocities in the near-wall region, then the near-wall corrected CL would generate

higher deposition rates than the standard lift coefficient CL does.

5.4.2.2 Mean streamwise and wall normal r.m.s velocities

Figure 5.10 and 5.11 suggest that the inclusion of the lift force in the particle equation of

motion does not have any significant effect on the mean streamwise particle velocities



Chapter 5. The effects of near wall corrections of hydrodynamic forces on the particle
deposition and dispersion in turbulent boundary layers 150

10−1 100 101 102

y+

0

5

10

15

20

U
+

St = 2

Fluid

Particle CD

Particle CD Z2009

(a)

10−1 100 101 102

y+

0

5

10

15

20

U
+

St = 5

Fluid

Particle CD

Particle CD Z2009

(b)

Figure 5.5: Comparison of mean streamwise particle velocities with the standard drag
law CD and near-wall corrections from Zeng et al. (2009) and compared to the fluid
velocities (a) St = 2, (b) St = 5.
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Figure 5.6: Comparison of mean streamwise particle velocities with the standard drag
law CD and near-wall corrections from Zeng et al. (2009) and compared to the fluid
velocities (a) St = 10, (b) St = 20.
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Figure 5.7: Comparison of wall-normal particle r.m.s velocities with the standard drag
law CD and near-wall corrections from Zeng et al. (2009) and compared to the fluid r.m.s.
velocities (a) St = 2, (b) St = 5.
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Figure 5.8: Comparison of wall-normal particle r.m.s velocities with the standard drag
law CD and near-wall corrections from Zeng et al. (2009) and compared to the fluid r.m.s.
velocities (a) St = 10, (b) St = 20.
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Figure 5.9: Deposition comparison with the standard drag law CD and Saffman lift
coefficient CL and CL with near-wall corrections from Zeng et al. (2009)

for Stokes number St = 2,5 or 10. The near-wall corrected CL coupled with the standard

drag law CL has fair effects on the very near wall behavior of mean streamwise particle

velocities at Stokes number St = 20. A similar conclusion that the wall-normal r.m.s

velocities of small particles (St = 2,5,10) are insensitive to the inclusion of lift force, or

of near-wall corrected lift force can be drawn from figures 5.12 and 5.13a. The near-wall

corrected CL does significantly increase the wall-normal r.m.s velocities of large particles

with Stokes number (St = 20) in the very near wall region. In fact, Rizk and Elghobashi

(1985) reported similar findings that the inclusion of Saffman lift force had a significant

effect on the wall-normal r.m.s velocities of the largest particles considered.
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Figure 5.10: Comparison of mean streamwise particle velocities with the standard drag
law CD, with CL and inclusion of near-wall corrections on CL from Zeng et al. (2009)
and compared to the fluid velocities (a) St = 2, (b) St = 5.
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Figure 5.11: Comparison of mean streamwise particle velocities with the standard drag
law CD, with CL and inclusion of near-wall corrections on CL from Zeng et al. (2009)
and compared to the fluid velocities (a) St = 10, (b) St = 20.
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Figure 5.12: Comparison of wall-normal r.m.s velocities with the standard drag law
CD, with CL and inclusion of near-wall corrections on CL from Zeng et al. (2009) and
compared to the fluid velocities (a) St = 2, (b) St = 5.
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Figure 5.13: Comparison of wall-normal r.m.s velocities with the standard drag law
CD, with CL and inclusion of near-wall corrections on CL from Zeng et al. (2009) and
compared to the fluid velocities (a) St = 10, (b) St = 20.
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5.5 Concluding remarks

This work investigated the effect of near wall corrections for the drag force, and of the

inclusion of Saffman lift force and of near wall corrected lift force on the deposition

rates and dispersion characteristics of heavy particles. The near wall corrected drag

coefficient CD has no significant effects on particle deposition. However, the corrected

CD provides a greater divergence between particle and fluid stream-wise velocities for

large particle (St = 20) in the near wall region (see Kulick et al. (1994)). The results for

deposition rates obtained from the inclusion of Saffman lift force and near wall corrected

lift force must be interpreted with caution since they increase the under-prediction of

deposition rates for small particles with Stokes number St = 2 and 5. This may result

from the deficiency of the stochastic quadrant model that accounts for the wall-normal

velocity fluctuations only. On the other hand, the inclusion of a near wall corrected lift

force has only small effects on particle deposition and dispersion characteristics within

the near wall region. Given all the results presented, whether the wall effects on the

hydrodynamic forces should be included or not depends on specific applications. For

instance, making use of the wall-corrected CD to study large particles (i.e. St > 10) with

containing walls provides better particle dispersion characteristics in the near wall region.

In general, however, it may be concluded that the inclusion of near wall effects has only

a minor effect on particle deposition prediction.
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Chapter 6

An LES study and comparison with

experimental measurements of a

turbulent flow over an in-line

tube-banks

6.1 Introduction

Turbulent flows over tube-banks have been traditionally modelled using the Reynolds-

Averaged Navier-Stokes (RANS) equations with turbulence models (see Beale and

Spalding (1999); Rollet-Miet et al. (1999); Watterson et al. (1999); Benhamadouche

and Laurence (2003); Wang et al. (2006)). The flow across tube banks is strongly

unsteady, which is characterized by strong vortex shedding and bluff-body wakes. Rodi

(1997) has demonstrated the difficulty or even impossibility of accurately simulating

the flow phenomena using the RANS methodology with the standard k− ε turbulence

model. Meanwhile, the astonishingly rapid development of Large-Eddy Simulation

(LES) (see Rogallo and Moin (1984); Mason (1994); Sagaut (2001)) has shown the

163
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potential to more accurately simulate simple flow phenomena, as LES resolves the large-

scale unsteady motion directly and requires only modelling of the universal small-scale

turbulence structures.

It is still a challenging task for numerical simulations to get an accurate prediction of

unsteady flow separation at high Reynolds number flow over a single cylinder, not to

mention flow across tube-banks, since the flow exhibits strong unsteadiness and complex

vortex structures. Whether the dynamic boundary layer around cylinder is accurately

resolved with appropriate numerical techniques and resolution (see Davidson (2009);

Breuer (1998)) is crucial to the correct prediction of the unstable region where turbulence

is generated, the instability of shear layer (see Bloor (1964)) and the physics of the wake

(see Williamson (1996); Jordan (2003)). Hence the conventional LES of turbulent flows

across a single cylinder and tube-banks is an extremely expensive endeavour for high

Reynolds number flows (see Breuer (1998, 2000)).

In recent years, LES has been applied to simulate turbulent flows across in-line and

staggered tube-banks (see Barsamian and Hassan (1997); Hassan and Barsamian (2004);

Beale and Spalding (1999); Benhamadouche and Laurence (2003); Bouris and Bergeles

(1999); Liang and Papadakis (2007); Lam et al. (2010)) and shown feasibility and

effectiveness in this application. Barsamian and Hassan (1997) carried out a two-

dimensional LES calculation of flow over tube bundle arrays using two subgrid scale

models, and studied the power spectra of drag and lift forces. Later extension to three-

dimensional LES by Hassan and Barsamian (2004) was used to study velocity profile,

power spectra density (PSD) of velocities and forces, auto-correlation functions of

streamwise and transverse velocities in a flow past a tube bundle, at Reynolds number

21700 based on the free stream velocity and cylinder diameter. Rollet-Miet et al. (1999)

performed an LES based on the Finite Element Method for a turbulent, incompressible

flow around a staggered array of tubes, and compared the results with the measurements

from Simonin and Barcouda (1988). Beale and Spalding (1999) performed an LES of

transient flow in a relatively low Reynolds number regime of Re ∈ [30,3000] based on

the gap velocity and cylinder diameter. Both in-line square and staggered-square tube

banks were studied in their work to investigate pressure drop, lift, drag and heat transfer.
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Liang and Papadakis (2007) employed a Finite-Volume Method (FVM) based LES to

study the vortex shedding characteristics inside a staggered tube bundle.

The simulation of turbulent flows over tube bundles can be simplified by modelling only

a small element, provided that the cylinders are packed so closely that coherent vortex

shedding is suppressed. In this case, the computational domain is reduced to a single

periodic circular cylinder with four cylinder quarters around it. Hence periodic boundary

conditions are assumed in the streamwise and cross-flow direction. Benhamadouche

and Laurence (2003) carried out a comprehensive comparative study of turbulent flow

across a single periodic cylinder in a tube bundle with LES, coarse LES and URANS.

In their study, LES with a wall function modelling method gave the best results when

compared with experimental measurements of Simonin and Barcouda (1988) and DNS

results from Moulinec et al. (2002). Moulinec et al. (2004b) conducted a DNS based

on the diagonal Cartesian method (DCM) to study turbulent flow past an “element cell”

in a tube bundle with four different grids. The Reynolds number was chosen as 6000

based on the bulk velocity and the cylinder diameter. They compared the results for

the mean velocity and r.m.s velocity values from the finest mesh with the benchmark

data measured by Simonin and Barcouda (1988) and numerical solutions calculated by

Rollet-Miet et al. (1999), and showed the feasibility of an “element cell” as an LES

computational domain. Following the work of Moulinec et al. (2004b), Moulinec et al.

(2004a) further studied the wake turbulence in a “wide element” consisting of 16 circular

cylinders using a three-dimensional DNS for Re ∈ [50,6000] based on the bulk velocity.

In the present study, in contrast to previous research work (e.g. Rollet-Miet et al. (1999);

Benhamadouche and Laurence (2003); Moulinec et al. (2002, 2004a)), a full scale

turbulent flow across an in-line tube bundle is computed with a three-dimensional LES.

The numerical technique is based on the Finite-Volume Method (FVM) using wall-layer

modelling on unstructured grids with a collocated arrangement for all the unknown flow

variables. Particular attention is given to the investigation of detailed statistics around

the circular cylinder in the middle of each column within the array, which are compared

against with the available experimental data of Shim (1985); Hill et al. (1986); Shim

et al. (1988).
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The rest of the this chapter is structured as follows. The computational methodology

and geometry are presented first. Then, a detailed comparison and discussion of mean

and r.m.s surface pressure distribution on the middle cylinders from each column are

given. In addition to that, the corresponding drag and lift force, frequency analysis of

velocity signals and auto-correlations of streamwise and cross-stream velocities in the

spanwise direction, which complement the existing experimental measurements, are

reported. Finally, conclusions are drawn.

6.2 Computational methodology

6.2.1 Formulation of the dynamic Smagorinsky model

The governing equations for LES are obtained by spatially filtering the Navier-Stokes

equations. In this process, the eddies that are smaller than the filter size used in the

simulations are filtered out. Hence, the resulting filtered equations govern the dynamics

of large eddies in turbulent flows. A spatially filtered variable that is denoted by an

overbar is defined using a convolution product (see Leonard (1974))

φ(x, t) =
∫
D

φ(y, t)G(x,y)dy, (6.1)

where D is the computational domain, and G is the filter function that determines the

scale of the resolved eddies.

In the current study, the finite-volume discretization employed itself provides the filtering

operation as

φ(x, t) =
1
V

∫
D

φ(y, t)dy, y ∈ V , (6.2)
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where V is the volume of a computational cell. Hence, the implied filter function, G(x,y)

in equation (6.2), is a top-hat filter given by

G(x,y) =

1/V for |x−y| ∈ V ,

0 otherwise.
(6.3)

Filtering the continuity and Navier-Stokes equations, the governing equations for resolved

scales in LES are obtained as follows

∂ui

∂xi
= 0, (6.4)

∂ui

∂ t
+

∂uiu j

∂x j
=− 1

ρ

∂ p
∂xi

+
∂

∂x j

(
ν

∂ui

∂x j

)
−

∂τi j

∂x j
, (6.5)

where τi j is the subgrid scale (SGS from here on) stress tensor defined by

τi j = uiu j−uiu j. (6.6)

The filtered equations are unclosed since the SGS stress tensor τi j is unknown. The SGS

stress tensor can be modelled based on isotropic eddy-viscosity as:

τi j−
1
3

δi jτi j =−2νtSi j, (6.7)

where νt is the SGS eddy viscosity, Si j is the resolved rate of strain tensor given by

Si j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
, (6.8)

where νt is computed in terms of the Smagorinsky (1963) type eddy-viscosity model

using

νt = (Cν∆)2|S|. (6.9)

Here Cν is the Smagorinsky coefficient, |S| is the modulus of rate of strain tensor for the

resolved scales,

|S|=
√

2Si jSi j, (6.10)
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and ∆ is the grid filter length obtained from

∆ = V1/3. (6.11)

Consequently, the SGS stress tensor is computed as follows

τi j−
1
3

δi jτi j =−2(Cν∆)2|S|Si j. (6.12)

This model claims to be simple and efficient. It needs merely a constant in priori value

for Cν . Nevertheless, work from previous researchers (see Lilly (1966); Deardorff

(1970); Piomelli et al. (1988)) has shown different values of Cν are required for distinct

flows. Hence, the major drawback of this model used in LES is that there is an inherent

inability to represent a wide range of turbulent flows with a single value of the model

coefficient Cν . Given that the turbulent flow over tube-banks in the current study is fully

three-dimensional, and a universally accepted value for Cv is not known for this case, the

standard Smagorinsky SGS model is not employed.

Germano et al. (1991) proposed a new procedure to dynamically compute the model

coefficient Cν based on the information obtained from the resolved large scales of motion.

The new procedure employes another, coarser filter ∆̃ (test filter) whose width is greater

than that of the default grid filter. Applying the test filter to the filtered Navier-Stokes

equations, one obtains the following equations

∂ ũi

∂ t
+

∂ ũiũ j

∂x j
=− 1

ρ

∂ p̃
∂xi

+
∂

∂x j

(
ν

∂ ũi

∂x j

)
−

∂Ti j

∂x j
, (6.13)

where the tilde denotes the test-filtered quantities. Ti j represents the subgrid scale stress

tensor from the resolved large scales of motion and is given by

Ti j = ũiu j− ũiũ j. (6.14)

The quantities given in equations (6.6) and (6.14) are related by the Germano identity:

Li j = Tij− τ̃i j, (6.15)
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which represents the resolved turbulent stress tensor from the SGS tensor between the

test and grid filters. It can be computed directly from the resolved field through

Li j = ũiu j− ũiũ j. (6.16)

Applying the same Smagorinsky model to Ti j and τi j, the anisotropic parts of Li j can be

written as

Li j−
1
3

δi jLi j =−2CMi j, (6.17)

where C = C2
ν and

Mi j = ∆̃
2|S̃|S̃i j−∆

2|̃S|Si j. (6.18)

One hence can obtain the value of C from equation (6.17). The model value of C is

obtained via the least squares approach proposed by Lilly (1992), since expression (6.17)

is an overdetermined system of equations for the unknown variable C. Lilly (1992)

defined a criterion for minimizing the square of the error as

E = (Li j−
δi j

3
Lkk +2CMi j)2. (6.19)

In order to obtain a local value, varying in time and space in a fairly wide range, for the

model constant C, one takes ∂E
∂C and sets it zero to get

C =−1
2

Li jMi j

Mi jMi j
. (6.20)

A negative C represents the transfer of flow energy from the subgrid-scale eddies to

the resolved eddies, which is known as ”back-scatter” and is regarded as a desirable

attribute of the dynamic model, since this phenomenon has been shown to occur in

practice (see Leslie and Quarini (1979)). The Smagorinsky constant Cv , as defined

earlier, is given by the square root of C, but the possibility of negative C values presents

no difficulty in practice, since the equation for eddy viscosity 6.9 involves Cv squared.
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6.2.2 The Werner and Wengle wall layer model

The Large Eddy Simulation (LES) of turbulent flows over tube-banks is hampered by

the excessive computational cost incurred when the dynamic and thin near-wall layer is

fully resolved. To obviate the computational cost associated with calculating the wall

shear stress from the laminar stress-strain relationship that requires the first cell to be put

within the range of y+ ≈ 1, Werner et al. (1993) propose a simple power-law to replace

the law of the wall, in which the velocity profile on a solid wall is given as following,

u+ =

y+ for y+ ≤ 11.81

A(y+)B for y+ > 11.81
(6.21)

where A = 8.3 and B = 1/7. An analytical integration of (6.21) results in the following

relations for the wall shear stress

|τw|=


2µ|up|

∆y for y+ ≤ 11.81

ρ

[
1−B

2 A
1+B
1−B

(
µ

ρ∆y

)1+B
+ 1+B

A

(
µ

ρ∆y
B|up|

)] 2
1+B

for y+ > 11.81
(6.22)

where up is the velocity component parallel to the wall and given by:

|up|=
µ

2ρ∆y
A

2
1−B (6.23)

where ∆y is the wall-normal dimension of the near-wall control volume. The Werner-

Wengle form of wall function is more computationally efficient than the standard form

and is more flexible in terms of applicable y+ range.

6.2.3 Flow configuration of in-line tube banks

The flow configuration is shown in figure 6.1 and the coordinate system is defined in

figure 6.2. Flow is from left to right and normal to the cylinder axis. The computational

domain is of size Lx×Ly×Lz = 28D× 16D× 2D, where D is the cylinder diameter.

This configuration is based on the second test case considered in Shim (1985) which
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measures surface pressure distributions and fluctuating lift forces and was performed in a

suction-type wind tunnel. It consists of four-column in-line tube bundles with transverse

pitch-to-diameter ratio ST (PT /D) of 2.67 and longitudinal pitch-to-diameter ratio SL

(PL/D) of 2.31, respectively. The Reynolds number Reobased on the free stream velocity

Uo and the cylinder diameter D equals 9600, and Reg based on the gap streamwise

velocity between two cylinders is equal to 15200.

The Navier-Stokes solver used in this work, ANSYS FLUENT v12.0, uses a cell-centered,

collocated grid arrangement finite-volume (FV) discretization method. All spatial terms

in the momentum equations are discretized by the bounded central differencing scheme,

which not only offers the advantage of low numerical diffusion of central-differencing

scheme but also eliminates unphysical oscillations in the solution fields. Furthermore,

the spatial discretization scheme is based on a multi-dimensional, least squares cell-

based gradient reconstruction scheme to guarantee a second-order spatial accuracy. In

order to prevent unphysical checker-board pressure field, ANSYS FLUENT employs a

procedure similar to that proposed by Rhie and Chow (1983). Gear’s implicit, three-level

second-order accurate scheme is employed for temporal discretization. A generalized

fractional-step method is employed for the overall time-advancement.

The computational grid is evident in figure 6.3. The total number of grid elements used

for the present simulation is 2730240, and has an embedded region of fine cells local

to the tube array in order to enhance the mesh resolution near the cylinders without

incurring too large an increase in the total number of mesh elements. 96 grid points are

allocated around the circumference of each cylinder. The gird spacing adjacent to the

cylinder in the radial, circumferential, and spanwise direction are ∆r/D = 1.4×10−2,

∆θ = 3.27× 10−2, ∆z/D = 5.0× 10−2, respectively. The centroid of the first cell

adjacent to the cylinder is within the range ∆y+ < 11.8 in wall units1 that satisfies

the requirements of the Wener-Wengle wall-layer model for LES. Prior to the present

simulation, with the standard Smagorinsky subgrid scale model, coarser grid simulations

were carried out to determine the grid resolution necessary to obtain realistic solutions.

1The superscript + denotes a non-dimensional quantity scaled using the wall variables, e.g. y+ = yuτ/ν ,
where ν is the kinematic viscosity and uτ =

√
τw/ρ is the wall friction velocity based on the wall shear

stress τw, and which is a velocity scale representative of velocities close to a solid boundary.
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It should be noted, however, that demonstration of grid independence is notoriously

difficult with LES solutions.

With fully developed turbulent flows, periodic boundary conditions are justifiable for

using along the normal (y) and spanwise (z) direction. This assumption is strained in the

present case, as the wide pitching of the cylinder array results in significant coherent

vortex shedding. However, it is considered that the dimensions of the computational

domain in the pitch-wise and span-wise directions are sufficiently large to obtain realistic

solutions for the centre cylinders. For the inlet boundary condition, a simple uniform

velocity profile is assumed and the turbulent intensity set to zero. Hence, the turbulence

fluctuations at the inlet was not accounted for temporally and spatially. Nevertheless, a

length 5D before the first column bank is used to allow the development of turbulence. At

the exit boundary, the solution variables from the adjacent interior cells are extrapolated

to satisfy the mass conservation.

The simulation is advanced with a non-dimensional time step ∆tUo/D≈ 2×10−3 that

yields a maximum Courant-Friedrichs-Lewy (CFL) number 0.5. For the results presented

here, the first-order statistics are collected by integrating the unsteady solutions over an

interval of 30D/Uo, and all the statistics are averaged over the 40 sampling points across

the spanwise direction.

6.3 Results and discussion

To provide an overview of the turbulent flow development across the four-column

in-line tube banks, wake vortices visualized using the Q criterion proposed by Hunt

et al. (1988) are presented first. Then, time-resolved pressure distributions provide

quantitative information on surface pressure fluctuations, which are compared with

the experimental measurements of Shim (1985). Following this, the time histories of

coefficient of drag CD and lift are given. The developments of vortex shedding behind

the cylinder in the middle column are studies by examining the corresponding energy

spectrum in the wake. The coherence of vortex shedding along the length of the middle

cylinder is investigated through computing the auto-correlation function of each velocity
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fluctuation component. In the present work, the turbulent flow across tube banks has

been considered to have reached the statistically stationary state after a simulation time

of T = 200D/Uo. All the statistics presented here are computed after this transient stage.

Further, the statistics (apart from the spanwise auto-correlation) are averaged in the

periodic spanwise direction.

6.3.1 Instantaneous flow field

Vortex structures in the flow field around the four-in-line tube bank array are revealed

in figure 6.4 by plotting iso-surfaces of normalised Q− criterion = 8× 10−2. The

Q− criterion, proposed by Hunt et al. (1988), is defined as a positive second invariant of

velocity gradient tensor ∇u for incompressible flows by the following expression

Q =
∂ui

∂x j

∂u j

∂xi
=

1
2
(||ωi j||2−||ei j||2), (6.24)

where ei j and ωi j denotes the symmetric and antisymmetric parts of ∇u; i.e. ωi j =
1
2(ui, j−u j,i) and ei j = 1

2(ui, j +u j,i), respectively. The iso-surfaces are coloured according

to the magnitude of the local resolved turbulence kinetic energy (TKE), whilst Figure 6.5

shows the corresponding contours of TKE on the mid-span plane through the domain.

The instantaneous flow field shows the salient feature of the wake dynamics where a wide,

yet different range of scales behind every column of cylinders can be observed. As far as

the first column cylinders are concerned, the flow shows no unexpected properties, but a

few points are worth noting for comparison with flow patterns behind other cylinders.

Firstly, the boundary layer on each individual cylinders of the first column remains

laminar up to the separation point, and it undergoes transition to turbulence in the sepa-

rated shear layer. The boundary layer separation on the cylinders from the downstream

columns is much delayed so that the wake is much narrower, resulting in a much smaller

coefficient of drag. This results principally from the significantly increased inflow tur-

bulence level for the downstream cylinders. Figure 6.5 shows a close-up of the vortex

motion around the cylinders across the middle plane, again shown contours of TKE

in terms of the same normalized-Q criterion. It is evident that the turbulence level is
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quite high at the front side of the downstream cylinders , and has reached approximately

equilibrium levels by the third and fourth column of cylinders..

Secondly, figure 6.4 illustrates different flow pattern of vortex travelling downstream

each column of cylinders. Large coherent structures are visible in the wake of first

column of cylinders. Nevertheless, the classical von Karman vortex street does not

persist because the second cylinder column lies within the range of the recirculation

region of flow behind the first column and hence breaks up the vortex street in the wake.

Another effect of the downstream cylinder is to increase the wake instabilities further.

Large flow structures are lost and broken into small eddies, producing ultimately a fully

developed grid turbulence after the final cylinder column.

6.3.2 Surface pressure characteristics

Figure 6.6a presents time-averaged surface pressure distributions against angle θ from

the front stagnation point for the middle circular cylinder, taken from the first column to

the fourth column, respectively. The experimental results of Shim (1985) are shown for

comparison.

The mean surface pressures are presented in terms of the coefficient of pressure

Cp =
〈p〉T − pre f

qre f
, (6.25)

where 〈p〉T denotes an ensemble average across the spanwise direction for all the

sampling points on the cylinder surface over the sampling time interval T. Although the

vortex shedding does not necessarily occur in phase over the whole spanwise direction,

the time-averaged boundary layers on either side of each circular cylinder are assumed

to be symmetrical. qre f is the dynamic pressure in terms of gap velocity ug and fluid

density ρ , which is given by

qre f =
1
2

ρu2
g. (6.26)

In order to make Cp equal to unity at the front stagnation point for every cylinder, the

corresponding static pressure pre f is calculated by applying equation 6.25 to enforce
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Cp = 1.0 at θ = 0o. This value of pre f is then used to determine Cp around the rest

of the cylinder surface. This procedure was also used in the work of Shim (1985) for

calculating Cp.

Excellent agreements for the time-averaged surface pressure distribution around the

four cylinders are observed between the present LES calculations and the experimental

measurements of Shim (1985) among the four plots of figure 6.6. Other quantities, for

example, the r.m.s pressure distribution and vortex shedding frequency are also very

comparable. They shall be shown in later figures in this chapter. For the central cylinder

in the first column, it may be seen that the LES data in figure 6.6a contains a kink near

θ = 85o, which indicates the presence of the laminar boundary layer separation from the

upper and lower surfaces of the cylinder. This transition region from the experimental

data of Shim (1985) is not as readily perceived as in the LES computation, in that the

measurements were taken in 10-degree increments from the forward stagnation point to

each side of the cylinder. For the discernible wiggle from the present calculations in the

range of θ ∈ [80o,120o], the likely reason is entrainment of shear layer fluid on to the

cylinder surface owing to the interference from the close arrangement of cylinders.

To the best of the author’s knowledge, there is so far no information available on the

pressure distribution around the surfaces of cylinders in a tube bank from LES. It is of

interest, thus, to show mean pressure distributions around the surface of the downstream

cylinders in terms of the equation 6.25, and to further compare the results measured by

Shim (1985). As far as the positive values of base Cp obtained from the downstream

cylinders are concerned, this results from the definition of Cp in this work. It can

be observed that the results from LES and experiment are very comparable across

the figure 6.6b, c, d. Because of the wake from the first column of cylinders which

impinges upon the downstream second column of cylinders, there is a dip in total pressure

towards the row centre line, which explains the non-intuitive rise in surface pressure

from the stagnation point, θ = 0o, on the second row cylinder. In particular, as can be

observed from the figure 6.6a and 6.6b, they display distinct shapes for mean pressure

distribution. The rise of mean pressure distribution is clearly discernible within the

range of θ ∈ [0o,40o] in figure 6.6b. It is interesting to note that the peaks indicated

by LES and experiment lie almost exactly at the same position around θ = 40o in
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figure 6.6b. Moreover, it is worthwhile noting that the difference from the pressure of

front stagnation point and the base pressure is reduced significantly compared to the

corresponding cylinder from the first column. This is because a “laned” total pressure

profile is developed as a result of the stream-wise alignment of the cylinder wakes. In

contrast to figure 6.6b, the rise is barely discernible for CP from the third and forth

column in figure 6.6c,d. This can be explained as the wake from downstream cylinders

is much more mixed than the one behind the first column.

The r.m.s value of the fluctuating pressure around the surfaces of the centre cylinders in

the four columns are shown in the four figures 6.7a, b, c, d along with the experimental

data of Shim (1985). The first feature to note is that the pressure fluctuates more than

50% for the downstream cylinders. This indicates that the instantaneous surface pressure

is significantly different from the time-averaged value and further demonstrates that the

URANS methodology is not suitable for the present work. Figure 6.7a exhibits relatively

high and uniform values of fluctuating pressure distributions around the first cylinder

from the findings of Shim (1985). The experimental result must be suspected to be in

error here since according to the work of Norberg (2003) at a comparable Reynolds

number C′P exhibits a very low level at the frontal stagnation line (θ = 0o). Considering

the LES prediction, the position of first peak as shown in the figure 6.7a corresponds to

the same angle in the figure 6.6a that indicates the laminar boundary layer separation.

Moreover, the second peak after the shoulder of the cylinder is probably associated with

influence of shed vortices. It can be observed that the general trend of the LES results is

in reasonably good agreement with the measurements of Shim (1985) except for the first

column cylinder.

Table 6.1 shows a comparison of maximum value of r.m.s pressure fluctuation from the

present LES computation with the experimental values of Shim (1985) and Norberg

(2003). It can be observed that the values from the present calculations match very

well with the measurements, especially for the angular position within the upwind side

at which the maximum r.m.s value of fluctuating pressure occurs. In addition, one

interesting point is that the width of wakes from the second, third and fourth column

cylinder is very close. The maximums on downstream cylinders are caused by the

impingement of shedding-vortex from the upstream cylinders. The low r.m.s values of
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Case Maximum of C′p C′p(90o)

Present LES (Reg = 15270)

C1 0.236 (110o) 0.159
C2 0.584 (40.4o) 0.425
C3 0.640 (40.4o) 0.441
C4 0.544 (36.7o) 0.377

Experiments (Shim, 1985)

C1 0.457 (110o) 0.438
C2 0.641 (40o) 0.539
C3 0.658 (40o) 0.592
C4 0.658 (40o) 0.582

Experiments (Norberg, 2003)
Single cylinder Re = 10k

0.292 0.282

Table 6.1: Comparison of results for r.m.s pressure distribution C′p

pressure fluctuation compared with experimental measurements on the downwind side

may possibly result from the relatively weak wake predicted by the present LES with

wall-layer modelling. It is also worthwhile emphasizing that the calculated results at

θ = 90o are significantly higher than the value at a comparable Re = 10k compiled in

Norberg (2003) for a single circular cylinder, except for the first row.

Finally, judging from the shape of mean and r.m.s pressure distribution around the surface

in the two figures 6.6, 6.7, it may be concluded that the present calculation is capable of

accurately predicting the pattern and dynamics of turbulent flow across the tube bank.

6.3.3 Drag and lift coefficients

To further validate the present study with experiments, table 6.2 summarizes the flow

parameters CD and C′L along with experimental measurements. The coefficient of mean

drag per unit span is defined by:

CD =
FD

ldρu2
g/2

, (6.27)

where l is the spanwise length of the cylinder; FD denotes the form drag force caused

by the surface pressure distribution through ignoring the viscous drag force, which is

obtained by an integration of mean pressure distribution around the cylinder. Thus, CD is
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given by

CD =
∫ 180o

0o
CP cos(θ)dθ . (6.28)

It is evident that the results of CD predicted by the present LES study agree favorably

well with the experimental measurements of Shim (1985) except for over-prediction

of CD for the second column cylinder. The magnitudes of C′L obtained from this work

show reasonable agreement with experimentally measured values except for the first

column cylinder due to the reason discussed before. The results for CD and C′L are

also presented in terms of the free stream velocity uo, based on the conversion factor

discussed in section 6.3.2. Changing the non-dimensionalising factor clearly increases

all the coefficient values, and is done to facilitate comparison with data for an isolated

single cylinder.

Comparing this modified value of CD = 1.941 in terms of Reg = 15270 with CD = 1.185

(see Schlichting et al. (2000)) for a comparable Reynolds number, it can be observed

that CD for the first column cylinder predicted in this LES study is considerably higher

than the value for a unconfined single smooth circular cylinder. This discrepancy is

undoubtedly a consequence of a higher pressure coefficient which principally results

from higher separation velocities in confined flow situations (see Richter and Naudascher

(1976)).

In the light of the foregoing discussion it might be thought that the CD values for the

downstream cylinders would also be much higher than for an unconfined circular cylinder,

due to blockage effects. However, compared with the standard isolated cylinder value

CD = 1.185 (see Schlichting et al. (2000)), table 6.2 shows comparable values for CD.

This apparent anomaly is due to the lane-ing of total pressure created by the wakes of

the in-line cylinder array. The first column of cylinders see a uniform value of total

pressure upstream, and the corresponding high static pressure on much of the upstream

surface of these cylinders, combined with a lower, approximately uniform static pressure

in the wake gives rise to a high form drag. For cylinders in the subsequent columns

the total pressure in the regions between stream-wise adjacent cylinders is significantly

reduced, leading to the reduction in form drag seen in table 6.2 for the LES and tube

array experiment.
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Case
CD C′L CD C′L
Based on ug Based on uo

Present LES

C1 0.767 0.228 1.941 0.579
C2 0.404 0.655 1.022 1.656
C3 0.454 0.650 1.146 1.645
C4 0.464 0.507 1.174 1.284

Experiments
Estimated Estimated

C1 0.799 0.05-0.08 2.022 0.127-0.202
(Shim, 1985) C2 0.324 0.55-0.65 0.820 1.391-1.645

C3 0.465 0.60-0.70 1.176 1.518-1.771
C4 0.476 0.52-0.60 1.204 1.316-1.518

Emp.correlation Re = 15270 Re = 9600
(Norberg, 2003) 0.520 0.520

Experiments Blockage ratio = 1/4
(Richter and Nau-
dascher, 1976)

1.35-1.40 0.80-0.90

Table 6.2: Comparison of results for CD and C′L

The remaining data in table 6.2 show comparisons for r.m.s. lift coefficient C′L from

isolated cylinder results due to Norberg (2003) and confined cylinder experimental

data from Richter and Naudascher (1976). The data for C′L from Norberg (2003) are

determined from the following correlation

C′L = 0.52−0.06× [log(Re/1600)]−2.6 (5.4×103 < Re < 2.2×105), (6.29)

which covers the upper bound of sub-critical Reynolds number range. C′L does not

display much variation when the Reynolds remains below the critical value. The data

from Richter and Naudascher (1976), which are extrapolated from their experimental

observations performed for a smooth circular cylinder in a wind-tunnel with a blockage

ratio of 1/4, comparable to that for the present cylinder array, are included for further

comparisons.

Considering the r.m.s. values of C′L non-dimensionalised using the free stream velocity u0,

the LES value for the first column of cylinders is around 3 times larger than that measured

by Shim (1985), but not very much higher than that suggested by the correlation 6.29 for

an isolated cylinder, whilst it is significantly lower than the confined cylinder value of

Richter and Naudascher (1976). The LES values of C′L for the downstream columns of
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cylinders are almost three times as large as for the first column, and here the agreement

with the experimental data of Shim (1985) is reasonably good. Both the experimental

and LES data show fluctuating lift coefficient C′L values significantly larger than the

isolated cylinder values, even that of Richter and Naudascher (1976), which includes

the effect of blockage. Overall, this suggests enhancement of the vortex shedding for

columns downstream of the first for the in-line cylinder configuration.

Figures 6.8 and 6.9 show time histories of the instantaneous drag and lift coefficients

from the LES respectively, again basing the non-dimensionalising factor on the uniform

gap velocity ug. For an isolated cylinder, the theoretically expected result for instan-

taneous drag coefficient CD would be a low-amplitude sinusoidal ripple at twice the

Strouhal frequency, superimposed on a mean value of 1.35-1.4. In practice, the amount

of noise on the low amplitude drag oscillation often makes the double frequency signal

hard to discern. This type of behaviour is clearly seen for the first column cylinders

C1 in figure 6.8a , though with a higher mean drag. For subsequent columns, the mean

drag coefficient drops to around 1.1, but with a very much higher level of fluctuation,

showing strong Strouhal frequency and double Strouhal frequency components, but with

irregularly modulated amplitudes. The largest peak-to-peak excursions are shown in

the second column of cylinders, C2, in figure 6.8a, probably due to the influence of

the strong vortex shedding from the first column. Subsequent columns, C3 and C4 in

figure 6.8b, show similar but less erratic and slightly lower amplitude variations in CD,

but still with a peak-to-peak amplitude of over 5 times that expected for an isolated

cylinder. Figure 6.9 shows the corresponding LES time histories for instantaneous lift

coefficient C′L. The predominant feature in all these plots is a sinusoidal variation in lift

around a mean of zero, at the Strouhal vortex shedding frequency. After the first column

of cylinders, the amplitude of the oscillation increases considerably, and the signal shows

a greater level of random modulation. As indicated by the r.m.s. values in table 6.2,

the amplitude is a maximum in the second and third columns, falling off slightly in the

fourth, possibly because there is no further downstream column. A similar phenomenon

was reported by Liang and Papadakis (2007).
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6.3.4 Shear-layer instability and vortex shedding

Figure 6.10 presents close-up views of an instantaneous velocity vector map in the middle

plane of the flow domain around the four cylinders C1, C2, C3 and C4. In accordance

with the results of previous researchers (e.g. Bloor (1964)), in the sub-critical regimes,

the laminar boundary layer separates near the shoulder of the cylinder, forming a laminar

shear layer. Transition to turbulent flow occurs shortly afterwards, within this shear layer.

In figure 6.10a, it can be observed that small-scale vortexes are being formed in the

shear layers behind C1, which may indicate the unstable break-up of the shear layer and

transition to turbulence, though it is unclear whether the resolution of the present model

is sufficient to simulate this accurately. Nevertheless, such small vortexes appear not to

be formed behind the downstream cylinders as shown in figure 6.10b c d. In the real

flow, for cylinders in the second and subsequent columns, the upwind boundary layers

would be turbulent almost from the stagnation point, due to the high level of background

turbulence, and so this form of instability would not be seen.

Figure 6.11 presents a statistically significant sample of time histories of velocity fluc-

tuations at a point, (x/D = 0.55,y/D = 0.65) with respect to the center, of the cylinder

that lies in the near wake near of the central cylinder in the first column. The power

spectrum density is obtained by an ensemble average across the 40 sampling stations in

the homogeneous spanwise direction. The fairly sharp peak in the spectrum, indicated in

figure 6.12b, corresponds to the Strouhal frequency fSt , which characterizes the predomi-

nant frequency of vortex shedding. There follows a plateau in the spectrum, until another

possible peak, certainly in v′, again indicated on figure 6.12b. Following Dong et al.

(2006), it is suggested that this peak may correspond to the frequency of the pre-transition

shear layer vortices, fsl . However, the value for fsl predicted for the first central column

cylinder does not match the well-known Re0.67 law for an unconfined circular cylinder

(e.g. Prasad and Williamson (1997). This is consistent with the observations from Brun

et al. (2004) that indicate there is no universal Reynolds number dependence of fsl/ fSt

for two cylinders placed side by side.

The time histories and corresponding power spectrum densities for the three downstream
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cylinders, obtained in a similar way, are presented in figure 6.12, figure 6.13 and fig-

ure 6.14. The fundamental frequency of vortex shedding is well pronounced for the

central cylinders in all three successive columns. Accord to Gerrard (1965, 1966), the

fundamental shedding frequency depends primarily on the mean flow rather than the

fluctuating quantities, because the strengths of the shed vortices depend most strongly

on the mean rate of shedding of vorticity, which is governed by the mean behavior of

the separated shear layer. Consequently, it is reasonable to expect that the fundamental

shedding frequency will show little variation for downstream cylinders in the sub-critical

range of Reynolds number. Finally, no second peak signature for shear layer vortices is

observed in the spectra for any of the cylinder columns after the first. This is consistent

with existence of laminar shear layers only for the first column cylinders, as discussed

earlier.

The dominant Strouhal frequency of vortex shedding predicted in the present study is

evaluated in terms of the mean velocity across the gap ug. It is of interest to compare

the predicted value with the experimental observations, especially with the universal

Strouhal number St∗ proposed by Roshko (1954) that is defined as f d∗/u∗ in terms of the

wake width between the rows of vortexes d∗ and the wake velocity u∗ obtained from the

free-streamline theory. These are summarized in the table 6.3 along with an extrapolated

value from the measurements for a confined circular cylinder by Richter and Naudascher

(1976). It can be observed that the present LES predictions of Strouhal number for all

4 columns are identical, and all are in excellent agreement with the experimental value

of Shim (1985). Agreement with the universal Strouhal number number, based on the

experimental measurements of Richter and Naudascher (1976) and the theoretical value

from Roshko (1954) is also good, with a maximum discrepancy of less than 5%.

6.3.5 Correlation length for vortex shedding

To examine the spatial structure of vortex shedding behind the cylinders, figure 6.15

presents the auto-correlation functions for the streamwise and crosswise velocity compo-

nents for the 40-sampling stations, at location (x/D = 0.55,y/D = 0.65) with respect to

the axis of the cylinder, across the homogeneous spanwise direction. The auto-correlation
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Case St

Present LES (Reg = 15270)

C1 0.153
C2 0.153
C3 0.153
C4 0.153

Experiments (Shim, 1985) 0.152

Experiments (Richter and Naudascher, 1976) (Re = 1.5×104) St∗ 0.151

Theoretical Value (Roshko, 1954) (Re < 2×105) St∗ 0.16

Table 6.3: Comparison of St with the universal Strouhal number

function is defined as

Rii(x;z, t) =
u′i(x; t)u′i(x+ z; t)

u′i
2(x; t)

(6.30)

From figure 6.15a, it can be observed for the first column cylinder C1 that Ru′u′ and

Rv′v′ decreases monotonically to zero within the range of L/D = 1. This implies that the

spanwise length of the biggest eddy from vortex shedding approximately equal to the

diameter of the cylinder. This feature has been demonstrated for an unconfined single

circular cylinder by previous researchers. The fact that Ru′u′ and Rv′v′ appear to show

re-correlation between mid-span and z/D = 2.0 is concerned with the periodic boundary

condition employed for the homogeneous spanwise direction in the present LES study.

From figure 6.15b,c d, it can be observed that the downstream cylinders C2, C3 and

C4 display different behavior with respect to the auto-correlation as a function of the

spanwise length for the streamwise and crosswise velocity fluctuations. Firstly, within

the length of L/D = 1, Ru′u′ and Rv′v′ do not decease to zero. Secondly, Rv′v′ wiggles

across the middle part of the cylinder L/D ∈ [0.5,1.5]. Both of the discrepancies from

the first column cylinder C1 behavior may result from the mixing of the shed vortices

from different column cylinders, giving rise to complex eddy patterns in the wake.

6.4 Concluding remarks

A turbulent flow across tube banks with transverse and longitudinal pitch PT /D = 2.67,

PL/D = 2.31, respectively, has been simulated successfully by Large Eddy Simulation
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(LES) based on the dynamic Smagorinsky subgrid scale model (SGS) with a wall-layer

model. Flow structures within the tube bank based on the normalized Q criterion have

been presented. Contours of Q criterion, coloured by turbulence intensity, indicate that

turbulence intensity builds up to an equilibrium level by the third column of cylinders.

The middle cylinder from each column was chosen to present results and compare with

experiments. The mean surface pressure characteristics observed in the experiments of

Shim (1985) are reproduced almost exactly. LES prediction of the fluctuating pressure

measurements which, to the author’s knowledge has never been previously shown,

is generally in good agreement with experiment, apart from for the cylinder in the

first column. Even here, based on separate published results for an isolated cylinder,

the evidence is that the major error is probably in the experimental results, since the

frontal surface fluctuation levels are unexpectedly high for undisturbed inflow. Quite

satisfying agreement was observed between the present simulation and the experimental

measurements of Shim (1985) for drag and lift coefficients, which indicate that the

cylinders in the second column experience the minimum mean drag force and maximum

lift force fluctuation. The LES shows that, for cylinder columns beyond the first, the

mean drag coefficient is lower than that expected for an isolated cylinder at similar

Reynolds number, whilst the fluctuations in both lift and drag coefficient are much higher.

A frequency analysis for velocity signals at the position with respect to each cylinder

axis (x/D = 0.55,y/D = 0.65) is presented and compared with experimental as well

as theoretical work. These results show that , for this relatively large-pitch tube bank,

there is a constant dominant vortex shedding frequency throughout the cylinder array,

corresponding to a Strouhal number of 0.153 based on gap velocity. Only for the first

column of cylinders, where a laminar shear layer follows separation, is a shear layer

instability frequency peak observed in the spectra. As far as the first column cylinder

is concerned, the shear layer instability frequency observed does not agree with the

universal value for an unconfined single circular cylinder, but this supports the recent

experimental measurements for tandem cylinders by Brun et al. (2004). Finally, auto-

correlation functions for streamwise and cross velocity fluctuations as a function of the

spanwise length are investigated. For the first column cylinders the correlation function

falls to zero over a spanwise length of +/− one diameter, as is generally observed for
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an isolated cylinder. The turbulent eddies behind downstream cylinders are of more

complex structure than for the first column cylinders, as a result of the mixing of shed

vortices from different column cylinders, and the spanwise correlation function does not

fall below 0.3.
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Figure 6.1: Configuration of the four-column in-line tube banks
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X

Y

Z

Figure 6.2: Configuration of the four-row in-line tube bank, The x− axis indicates
the freestream flow direction; y− and z−axis respectively indicate the transverse and
spanwise direction.
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Figure 6.4: The filtered flow structure development across the four-in-line tube banks,
iso-surface of the second invariant of velocity gradient tensor, colored by the resolved
turbulent kinetic energy (TKE)
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Figure 6.5: Vortex motion around cylinders at the middle plane cut
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Figure 6.8: Time history of CD, (a) C1,C2 (b) C3,C4
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Figure 6.11: Time histories of velocity signal fluctuations behind cylinder C1 and the
corresponding power spectrum density.
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Figure 6.12: Time histories of velocity signal fluctuations behind cylinder C2 and the
corresponding power spectrum density.
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Figure 6.13: Time histories of velocity signal fluctuations behind cylinder C3 and the
corresponding power spectrum density.
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Figure 6.14: Time histories of velocity signal fluctuations behind cylinder C4 and the
corresponding power spectrum density.
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Chapter 7

An LES study of particle deposition

within an in-line array tube-banks

7.1 Introduction

An investigation of the deposition and impact of aerosol particles to heat exchangers

is of importance in the design and operation of heat exchanger tube banks used in a

wide range of industrial applications, e.g., civil advanced gas-cooled reactor (CAGR)

boilers, oil-fired steam boilers of thermal power stations and process plants. In many

safety cases involving dropped fuel in CAGRs a significant proportion of the activity

will be associated with small aerosol U3O8 particles. The main mechanisms by which

aerosol particulates deposit and impact on wall surfaces include gradient/diffusion or

free-flight to the wall , inertial deposition, interception, and turbulent eddy-diffusion,

Brownian diffusion and thermophoresis, gravitational setting, etc. The mechanisms

that are responsible for the deposition of heavy particles in fully developed turbulent

boundary layers are gradient/diffusion and free flight to the wall (Friedlander and

Johnstone (1957)) and by turbophoresis (Reeks (1983)) with turbulent eddy-diffusion

(Kallio and Reeks (1989)). However, under the conditions of high volume flow rate low

pressure drop filtration, inertial impact becomes the dominant mechanism governing
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deposition among all the competing ones that contribute to the deposition of aerosol

particulates on cylindrical surfaces (see Helgesen and Matteson (1991, 1994)).

There has been extensive research regarding the inertial deposition of heavy particles

or droplets from flowing gas streams by impact on a single cylinder surfaces through

theory and experiments. For example, Brun et al. (1955) reported three impingement

characteristics of water droplets on a cylinder surface, which are total rate of water

droplet impingement, extent of droplet impingement zone and local distribution of

impinging water on the cylinder surface. The results for the collection efficiency of

a cylinder in Brun et al. (1955) were presented as a function of a combination of the

Stokes and Reynolds number of the droplets considered. This treatment was extended to

use a generalized Stokes number to determine the collection efficiency of a cylinder for

non-Stokesian particles by Israel and Rosner (1982). This generalized Stokes number is

normally referred to as the effective Stokes number and defined as

Steff = ψ(Rep)St, (7.1)

where ψ(Rep) is the non-Stokes drag correction factor and given by

ψ(Rep) =
24

Rep

∫ Rep

0

1
CD(Re′)Re′

dRe′, (7.2)

and

St =
ρpd2

pUo

18uD
. (7.3)

More recently, the collection efficiency was examined through directly solving the

incompressible Navier-Stokes equations coupled with the Lagrangian point particle

tracking approach in a relatively low Reynolds number cross flow across a cylinder by

Haugen et al. (2010).

There have been a number of numerical studies on the deposition and impact of heavy

particles on tube-banks surfaces, and they focused on the two-dimensional simulations.

Jun and Tabakoff (1994) carried out a two-dimensional numerical simulation for a dilute

particle laden laminar flow over in-line tube-banks in order to study particle impact and

erosion of cylinders. Rebound phenomena of particles from cylinder surfaces were taken
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into account as well in the above work. Bouris et al. (2001) performed a two-dimensional

large eddy simulation to evaluate different tube configurations for particle deposition

rate reduction on heat exchanger tube bundles, in which an energy balance model was

implemented to account for the adhesion or rebound of particles upon hitting a tube. Tian

et al. (2007) made use of the two-dimensional RANS (Reynolds-averaged Navier-Stokes)

modelling framework and embedded particle tracking model in ANSYS FLUENT to

study the characteristics of particle-wall collisions. An algebraic particle-wall collision

and stochastic wall roughness model was also implemented by these authors.

Engineering predictions of the deposition of heavy particles on bluff bodies depends

primarily on the accurate prediction of the mean flow and the turbulence based on RANS.

The methodology of three-dimensional RANS modelling frameworks coupled with a

separate boundary layer model, which supplies fluctuating fluid velocity fluctuations seen

by heavy particles, has been extended to study the prediction of deposition rates of heavy

particles (e.g. Dehbi (2008)) in complex geometries. Dehbi and Martin (2011) further

employed this method to study particulate flows around linear arrays of spheres and got

good predictions of deposition rates when compared with experimental measurements.

However, for a turbulent flow across bluff bodies, e.g. spheres or cylinders, the dominant

feature of such a flow is that it has strongly unsteady, three-dimensional vortex shedding

Williamson (1996). This requires solving the Navier-Stokes equations with the time-

dependent term, i.e. unsteady RANS (URANS) or LES, in order to resolve the unsteady

phenomena of vortex shedding as accurately as possible. In this study, first a URNAS

simulation was carried out for a turbulent flow across in-line tube-banks. The approach

presented in Dehbi (2008) was used to determine the y+ value of each cell associated

with its correspondingly nearest wall-adjacent cell face. However, as shown in figure 7.1

for the contour of constant y+ for each cell associated with its correspondingly nearest

wall-adjacent cell face, the boundary layer around every cylinder based on a threshold y+

value 100 doesn’t have a regular shape. This irregular boundary layer shape as a result of

the unsteadiness of vortex shedding makes the application of RANS using wall-functions

for near wall behaviour, problematic.

LES has been convincingly demonstrated to be superior to unsteady RANS (URANS)

in accurately predicting the flow and vortex dynamics of a turbulent cross-flow in a
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Figure 7.1: Contour of the y+ value of each cell associated with its correspondingly
nearest wall-adjacent cell face in a turbulent flow across in-line tube-banks. UDM-2
stands for y+.

staggered tube bundle (see Benhamadouche and Laurence (2003)). This is because

LES is capable of providing details of the large scales structures and in particular

resolving a significant part of the vortex shedding physics and hence reducing the

reliance on modelling. The success of LES for single-phase turbulent flows across

complex geometries has been extended to two-phase flows over complex geometries.

Apte et al. (2003) performed an LES study of particle-laden swirling flow in a coaxial-jet

combustor. They demonstrated that results obtained from LES are significantly more

accurate than the results by RANS applied to the same problem. Riber et al. (2009)

conducted a comparison study of numerical strategies for LES of particulate two-phase

recirculating flows and observed that the dispersed phase is predicted more accurately

by the Lagrangian point particle approach than the Eulerian approach. Therefore, the

Lagrangian point particle approach coupled with the LES technique is employed in this
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study.

The principal objective of this work is to investigate inertial deposition and impaction of

heavy particles on in-line array tube-banks in a turbulent cross flow. The numerical tech-

nique used for the underlying flow field is large eddy simulation, whilst the Lagrangian

point particle tracking approach is employed to obtain particles trajectories.

7.2 Overview of numerical simulations

7.2.1 Mathematical formulation of LES

The mathematical formulation of LES for the continuous phase has already been de-

scribed in the previous chapter, section 6.2.

7.2.2 Flow configuration of in-line tube banks

Figure 7.2 shows the flow configuration with the corresponding coordinate system, which

is based on the experiments involving particle deposition on heat exchanger tube-banks

from Hall (1994). Flow is from left to right and normal to the cylinder axis. The

computational domain is of size Lx×Ly×Lz = 36.16D×6.94D×2D, where D is the

cylinder diameter. The configuration of this tube-banks is different from the tube-bank

considered in Chapter 6. It consists of four by five pairs of in-line tube banks. Every

pair has the transverse pitch that is of the ratio of pitch-to-diameter ST (PT /D) = 1.388

and the longitudinal pitch that is of the ratio of pitch-to-diameter SL0(PL/D) = 1.331,

respectively. The longitudinal pitch between the two adjacent cylinders from two adjacent

tube-banks is of the ratio of pitch-to-diameter SL1(PL/D) = 2.331. The Reynolds number

Reo based on the free stream velocity Uo and the cylinder diameter D equals to 9500,

and a Reynolds number Reg based on the gap velocity Ug in the x− direction between

two cylinders of 33960.

Figure 7.3 shows a side view of the computational grid with a close-up around a cylinder.

The total number of grid elements used for the present simulation is around 3.4 million.
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Figure 7.2: Configuration of four by five pairs of in-line tube banks.

The mesh has an embedded region of fine mesh designed for each cylinder in order to

enhance the mesh resolution near the cylinder without incurring too large an increase in

the total number of mesh elements. The first cell adjacent to the cylinder is within the

range ∆y+ < 11.8 in wall units1, which satisfies the requirements of the Wener-Wengle

wall-layer model used for wall-modelling LES. Prior to the present simulation, with the

standard Smagorinsky subgrid scale model, a simulation based coarse grid resolution

was carried out to determine the resolution.

With fully developed turbulent flows, the use of periodic boundary conditions is justified

to use along the normal (y) and spanwise (z) direction. For the inlet boundary condition,

a simple uniform velocity profile is assumed and the turbulent intensity set to zero.

Hence, the turbulence fluctuations at the inlet was not accounted for temporally and

spatially. Nevertheless, a length of 7.5D before the first column bank is used to allow

the development of turbulence. At the exit boundary, the solution variables from the

adjacent interior cells are extrapolated to satisfy the mass conservation.

The simulation is advanced with non-dimensional time step ∆tUo/D≈ 1.4×10−3 that

yields a maximum Courant-Friedrichs-Lewy (CFL) number 0.7. For the carrier phase,

the first-order statistics are collected by integrating the governing equations over a time

1The superscript + denotes a non-dimensional quantity scaled using the wall variables, e.g. y+ = yuτ/ν ,
where ν is the kinematic viscosity and uτ =

√
τw/ρ is the wall friction velocity based on the wall shear

stress τw, and which is a velocity scale representative of velocities close to a solid boundary.
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Figure 7.3: A side view of computational mesh used for the LES with a close look-up
around a cylinder.

interval of 25D/Uo, and all the statistics are averaged over the 40 sampling points across

in the spanwise direction.

7.2.3 Calculation of particle trajectories

A parallel Lagrangian particle tracking module was developed and fully coupled with

ANSYS FLUENT to calculate trajectories of heavy particles in flow fields (see Chapter 3).

The particle localization algorithm on unstructured grids proposed by Haselbacher et al.

(2007) was used to locate the cell which contains the current particle position. In this

study, the focus is on the impaction and deposition of non-inter-collision, rigid, spherical

and heavy particles on in-line tube-banks ; the concentration of particles is dilute enough

to assume one-way coupling. The momentum balance equation of particles discussed by

Maxey and Riley (1983) is simplified in this work by taking into account only the drag

force. We thus can write the particle equation of motion involving the non-linear form of
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the drag law with the point particle approximation

dup

dt
=

1
τp

CD
Rep

24
(u−up), (7.4)

where up is the particle velocity and u the instantaneous fluid velocity at the particle

location, τp is the particle response time. An empirical relation for CD from Morsi and

Alexander (1972), which is applicable to a wide range of particle Reynolds number with

sufficiently high accuracy, is employed, namely

CD = c1 +
c2

Rep
+

c3

Re2
p
, (7.5)

where c1,c2,c3 are constants and provided by Morsi and Alexander (1972). The above

empirical expression exhibits the correct asymptotic behavior at low as well as high

values of Rep.

The position xp of particles is obtained from the kinematic relationship

dxp

dt
= up (7.6)

The boundary condition for the above equation is that the particle is captured by the

wall when its center away the nearest wall surface is less than its radius. This is

not properly treated in the default discrete phase model (DPM) provided by ANSYS

FLUENT. Furthermore, this error has a significant effect upon predictions concerning

the deposition of heavy particles under investigation.

From a statistically stationary LES flow field, equation: (7.6) is integrated in time using

the second-order Adams-Bashforth scheme to get particle trajectories, whilst equation:

(7.4) is integrated with the second-order accurate Gear2 (backward differentiation for-

mulae) scheme that is applicable to stiff systems. Fluid velocities are stored at the cell

centroid. Since it is only by chance that a particle coincides with the cell centroid, a

quadratic scheme based on fluid velocity gradient is used to interpolate the fluid velocity

to the particle location.
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Results on for three sets of particles (St = 0.35,0.086,0.0075) are obtained by following

the trajectories of 107 particles which are continuously released into the computational

domain. Using this large number of particles trajectories is crucial in order to obtain

statistically significant results on the particle phase, especially in the unsteady vortex

shedding region. However, the particle accumulation on the tube-banks has not been

taken into account, otherwise it is necessary to consider particle-particle interaction upon

impacting on the cylinder.

7.2.4 A particle-wall collision model

Particle-wall collisions play an important role in particle-laden two-phase flows because

they affect the deposition and accumulation on wall surfaces. In this work, the aim is

not to seek a new particle-wall-collision model; instead a well-known dry particle-wall-

collision model from Thornton and Ning (1998) was implemented to account for the

energy loss resulting from the particle-wall-collision. The energy loss resulting from

impact upon a wall is normally characterized by the coefficient of restitution (CoR) e

that is defined by

e =
vn

r
vn

i
(7.7)

where vn
r is the rebound normal velocity and vn

i the incident normal velocity. Then, the

loss of kinetic energy ∆Q of a particle with mass mp is given by

∆Q =
1
2

mp
(
vn

i
2− vn

r
2)=

1
2

mpvn
i

2 (1− e2) . (7.8)

In the case of elastic impact, e = 1 means no energy loss has occurred. When e = 0,

the maximum incident normal velocity is normally referred to as the critical sticking

(impact) velocity vs. Then from

∆Q =
1
2

mpv2
s , (7.9)

e is given by

e =

[
1−
(

vs

vn
i

)2
] 1

2

. (7.10)
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If vn
i is higher than vs then e > 0 and the particle can bounce off the wall upon impact; if

not, the particle sticks the wall and e = 0. For adhesive and elastic particles, the energy

loss may be calculated according to

∆Q =
(

14.18
m∗

) 1
2
(

Γ5R∗

E∗2

) 1
6

, (7.11)

where R∗ = 0.5dp, m∗ = 1
6 π ρp d3

p, Γ is the inter-facial surface energy, and

1
E∗

=
1−ν2

1
E1

+
1−ν2

2
E2

, (7.12)

where E1 and E2 are Young modulus of the particle and cylinder, and ν1 and ν2 Poisson

coefficients. The critical sticking velocity vs then can be determined by the properties

of the particle and cylinder wall surface. In this study, the material properties used for

the particles and cylinder are based on alumina particles impacting on steel substrate.

Figure 7.4 shows the variation of critical sticking velocity on steel cylinder for a wide

range of alumina particle radii. It can be observed that the smaller the particle radius, the

larger the critical sticking velocity, i.e. it is easier for larger particles to get bounce upon

impact. Figure 7.5 illustrates how the coefficient of restitution varies with the particle

incident normal velocity. When the particle incident normal velocity is approaching

0.2 m/s the coefficient of restitution is close to 0.985.

In this study, the critical sticking velocities for three sets of particles considered are

calculated and input as parameters before starting particle tracking. Therefore, this model

can be used to determine whether a particle sticks to or rebound from a wall upon impact

with the wall.
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Figure 7.4: Critical sticking velocity on a steel cylinder as a function of alumnina particle
radius.
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Figure 7.5: Coefficient of restitution e as a function of alumina particle incident normal
velocity upon a steel cylinder.



Chapter 7. An LES study of particle deposition to in-line array of tube-banks 217

7.3 Results and discussion

7.3.1 Results on the carrier phase

Vortex structures in the flow field around the in-line tube-banks are revealed in figure 7.6

by plotting iso-surfaces of normalised Q− criterion = 8×10−2 (see Hunt et al. (1988)).

As can been seen, the top cylinder in the first column develops a laminar boundary layer

and has some kind of laminar vortex shedding. However, this is not observed from

the downstream cylinders. Large coherent structures are visible in the gaps between

tube-banks, but they are not as well organized and periodic as in typical Karman vortex

streets for a single cylinder at the similar Reynolds number. Large coherent structures

between two adjacent column cylinders in the same pair are not as obvious as those in

the gaps. This may result from the relatively small axial gap between the cylinders in

every pair, destroying the development of the wake. Finally, the flow is evolving into a

turbulent flow like a grid turbulence from the final pair of tube-banks.

Figure 7.6: Instantaneous velocity magnitude based on the normalised Q− criterion =
8×10−2.
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Figure 7.7: Mean pressure distribution on the middle cylinder surface. Definition of Cp
based on Shim et al. (1988). (a) the first pair tube banks, (b) the second pair tube banks.
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Figure 7.8: Mean pressure distribution on the middle cylinder surface. Definition of Cp
based on Shim et al. (1988). (a) the third pair tube banks, (b) the fourth pair tube banks.
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Figure 7.9: Comparison of mean pressure distribution on the middle cylinder surface
from the second, third and fourth pair of tube-banks

Following Shim et al. (1988), the coefficient for the mean pressure distribution on the

cylinder surface is define as

Cp =
〈p〉T − pre f

qre f
, (7.13)

where 〈p〉T denotes an ensemble average across the spanwise direction for all the

sampling points on the cylinder surface over the sampling time interval T , and

qre f =
1
2

ρU2
g . (7.14)

In order to make Cp equal to unity at the front stagnation point for every cylinder, the

corresponding static pressure pre f is calculated according to equation 7.13; Cp is hence

determined around the cylinder surface.

Comparisons of Cp on the middle cylinders surface from the first and second pair of

tube-banks are shown in figure 7.7. It can be observed that Cp has the standard shape

associated with that on a single circular cylinder on C1. However, Cp on the second
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cylinder C2 is of an S shape, indicating there is a region in the front side of the cylinder

that has a higher pressure than the front stagnation point. This effect is due to the reduced

total pressure in the small gap between the cylinders in the pair. The phenomena was

also observed in the experimental measurements for tube-banks with a close longitudinal

pitch from Shim et al. (1988). From 7.7b, It can be observed that Cp on C3 is also of

the standard shape for a single cylinder, but it has a relatively high base pressure. Cp on

the following cylinder C4 has the similar shape like to the one on C2, implying that the

shedding vortex from C3 impacts on the front side of C4.

Figure 7.8 shows Cp on the middle cylinders from the third and fourth pair of tube-banks.

As can been seen, the shapes of Cp on the front and back cylinder within these two pairs

are consistent with the shapes of Cp on the cylinders within the first and second pair

tube-banks. For instance, Cp on the front cylinder is of the standard shape of Cp on a

single cylinder; Cp on the back cylinder develops an S shape from the front stagnation

point to the back point due to the vortex impingement on the front side from the upstream

cylinder.

Figure 7.9 shows a comparison of Cp from cylinders within the third and fourth pair of

tube-banks. Interestingly, there is no discernible discrepancy between the same cylinder

from these two pairs. This indicates that the turbulent flow within the tube-bank has

reached approximately equilibrium and become stream-wise periodic by the third and

fourth column pairs.

7.3.2 Results for the particle phase

7.3.2.1 Sample particle trajectories and bounce upon impact

Figure 7.10 shows some sample trajectories of alumina particles with diameter 2×10−5

(St = 0.345) across the tube-banks. With the present particle-wall collision model, it

can be clearly observed that some particles rebound upon impact on the cylinders. This

normally results in a smaller rebound velocity as a result of energy loss.
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Figure 7.10: Sample particle trajectories and bounce upon impact on cylinders for
particles St = 0.35

7.3.2.2 Deposition efficiency on tube-banks

The deposition efficiency for a single cylinder (known as collection efficiency) is normally

defined as

ηsc =
Ndep

Ntot
, (7.15)

where Ndep is the number of deposition particles on the cylinder, and Ntot is the number

of uniformly distributed particles in the upstream cross-sectional area of the cylinders.

Table 7.1 shows the deposition efficiency of particles of Stokes number St = 0.35 onto

the individual cylinders from the first column. C1a denotes the top cylinder and C1e

the bottom cylinder shown in figure 7.2 within the first column. The present particle of

Stokes number St = 0.35 corresponds to an effective Stokes number Ste f f = 0.21 based

on equation 7.2, which is in the valid range of particle Stokes number considered by

Israel and Rosner (1982). Hence, the computed results are compared with the deposition

efficiency of particles of an effective Stokes number 0.21 onto an isolated single cylinder

from Israel and Rosner (1982). As can be seen, within the first column cylinders the

deposition efficiencies of particles onto individual cylinders are significant lower than

onto an isolated single cylinder. This may result from the fact that particles bounce upon

impaction is taken into account in this study, which reduces the deposition efficiency.
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Case η (individuals)

Present LES (Steff = 0.21)

C1a 0.00865058
C1b 0.00728681
C1c 0.00678809
C1d 0.00656457
C1e 0.00729435

Experiments (Israel and Rosner, 1982) 0.06869

Table 7.1: Comparison of deposition efficiency of particles of St = 0.35 onto the individ-
ual cylinders from the first column tube-banks with the deposition efficiency on a single
cylinder

Moreover, the reduction of deposition efficiency might also due to a “laned” stream-wise

velocity profile is developed in the longitudinal gap between two cylinders as a result

of the stream-wise in-line alignment of the cylinders, which accelerates the particles to

higher velocities when they are approaching the cylinders. The combined effects from

both bounce and acceleration reduces the deposition efficiency of particles significantly.

However, when it comes to particles depositing on in-line tube-banks, overall deposition

efficiencies for each tube-bank pair has to be defined differently. The deposition efficiency

for the first pair is determined by taking the number of particles in the upstream cross-

sectional area of the first column cylinders, and comparing that number to the number of

particles actually deposited on the first tube-bank pair. This reads

ηpair1 =
Npair1
5D

6.94DNtot
, (7.16)

where Npair1 is the number of deposition particles on the first tube-bank pair, Ntot is the

total number released from the upstream, 5D/6.94D is ratio of the cross-sectional area

of the first column cylinders to the cross-sectional area of the computational domain.

However, since it is difficult to define how many particles are in the upstream cross-

sectional area of the succeeding tube-banks, the number is assumed to be simply the

number in the particle release plane cross-sectional area 5Ntot/6.94 minus the number of

particles deposited on the preceding tube-banks. For example, the deposition efficiency
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Case η (pair of tube-banks)

LES (St = 0.35)

Pair1 7.317e-03
Pair2 6.012e-03
Pair3 1.502e-03
Pair4 2.824e-04

LES (St = 0.086)

Pair1 2.882e-02
Pair2 3.764e-02
Pair3 8.537e-03
Pair4 6.362e-04

LES (St = 0.0075)

Pair1 1.187e-02
Pair2 7.502e-03
Pair3 7.137e-04
Pair4 4.409e-05

Table 7.2: Comparison of deposition efficiency of particles of St = 0.35,0.086 and
0.0075 onto each pair of the tube-banks

of the fourth tube-bank pair can be written as

ηpair4 =
Npair4(

5D
6.94DNtot−∑

3
i=1 Npairi

) . (7.17)

The computed results for deposition efficiency of the three sets of particles (St =

0.35,0.086 and 0.0075) considered across the tube-banks are shown in Table 7.2.

Comparing the particle of Stokes number St = 0.35, it can be observed from Table 7.2

that there is a considerable increase of the deposition efficiency for particles of Stokes

number St = 0.086 and 0.0075, which is not consistent with theoretical results for a

single cylinder. A possible explanation is that a large amount of particles are entrained

into the wake of the back-columns of each pair of tube-banks and get deposited by

impaction on the downstream face (see Haugen et al. (2010)). In addition, for all the

three sets of particles, the deposition efficiency onto the downstream pairs of tube-banks

is considerably lower than onto the first pair of tube-banks.

7.3.2.3 Deposition fraction across the tube-banks

Deposition data for three sets of particles (St = 0.35,0.086,0.0075) on tube-banks are

presented here. The pairs of tube-banks shown in figure 7.2 are designated by pair1



Chapter 7. An LES study of particle deposition to in-line array of tube-banks 225

(upstream) through pair4 (downstream); the upstream and downstream column of tube-

banks in each pair are designated by front bank and back bank. 107 particles are released

into the computational domain continuously for an interval of 1000 continuous time

steps, in order to collect enough particles and account for the unsteady flows.

Figure 7.11, 7.12 and 7.13 show variation in the deposition fraction (as a fraction of the

total number of particles) across the whole set of tube-banks, for the three sets particles.

As can be seen from figure 7.11, for the particles with Stokes number St = 0.35, across

the four pairs of the tube-banks the fraction of deposition particles on the pair1 is

significantly higher than on the downstream pair of tube-banks, pair2, pair3 and pair4. In

addition, the fraction of deposition on the front cylinders in the same pair of tube-banks

is higher than on the back cylinders, especially for the pair1. This may result from the

fact that a significant part of this set of particles is entrained in the bulk flow between

cylinders and not within the vortices shed vortex from the preceding cylinders (see

figure 7.10). However, the computed results for particles St = 0.086,0.0075 are not

consistent with those results for St = 0.35. Although the fraction of deposition on the

pair3 and pair4 are lower than the preceding two pairs, a striking difference is noted

when compared to the particles with St = 0.35.

It can be observed from figure 7.14a that the downstream surface deposition on the back

cylinders of pair1 and pair2, for particles St = 0.0075 results in a considerably higher

fraction of deposition. For the downstream surface deposition, Haugen et al. (2010)

argued that when particle with response time τp is close to the eddy time τeddy, they

normally follow the eddies in the wake of the tube-banks and gain enough momentum to

impact on the cylinders.
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Figure 7.11: Fraction of total deposition particles across tube-banks for particles St =
0.35 (a) each pair of tube-banks, (b) each tube-banks.
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Figure 7.12: Fraction of total deposition particles across tube-banks for particles St =
0.086 (a) each pair of tube-banks, (b) each tube-banks.
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Figure 7.13: Fraction of total deposition particles across tube-banks for particles St =
0.0075 (a) each pair of tube-banks, (b) each tube-banks.
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(a)

(b)

Figure 7.14: Deposition particles on tube-banks (a) St = 0.0075, (b) St = 0.35.
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7.4 Concluding remarks

Deposition and impact of heavy particles to an in-line array of tube-banks has been

studied using Lagrangian particle tracking with an LES of the underlying carrier flow.

The flow Reynolds number, based on the cylinder diameter D and flow velocity between

the gap of two vertically adjacent cylinders, was 33960. Flow structures across the tube

bank based on the normalized Q criterion have been presented. Using the formula for

mean pressure distribution for cylinders in tube-banks proposed by Shim et al. (1988),

mean pressure distribution on the middle cylinder from each tube-bank was calculated.

The S shape of mean pressure distribution was observed on the back-bank of the first

pair and second pair of tube-banks. Further, the mean pressure distribution on the each

tube-bank within the third and fourth pair of tube-banks displays almost exactly the same

behavior. This confirms the turbulent flow has reached equilibrium from the third pair of

tube-banks.

The results for three sets of particles (St = 0.35,0.086,0.0075) are based on 107 particles

tracked using the Lagrangian point particle tracking approach. The particle bounce upon

impact is taken into account through a particle-wall collision model. Sample trajectories

of particle with diameter 20um across tube-banks were shown, indicating that some

particles rebound from the cylinder surface upon impact. The deposition efficiency for

the three sets of particles was presented across the tube-banks together with the fraction

of particles deposited across each tube-bank pairs. It was observed that for particles

with a St = 0.35 most get deposited on the first cyliders in each pair,, especially on the

first column. This is consistent with practical experience that the first column of tubes

plays a protection role on mitigating fouling on the succeeding tube-banks. Based on the

effective Stokes number proposed by Israel and Rosner (1982), the overall deposition

efficiency of the particle St = 0.35 on the first tube-bank pair is significantly lower

than that of a single circular cylinder. The results on deposition efficiency for particles

St = 0.086,0.0075 are different from those for particles of Stokes number St = 0.35.

The charts showing particle deposition fraction on each cylinder within each tube bank

pair indicate that many more of the smaller particles get deposited on the dowstream

surfaces of the rear cylinders within each pair. This is attributed to the fact that the



Chapter 7. An LES study of particle deposition to in-line array of tube-banks 231

smaller particles are more easily entrained into the wake and impact onto the downstream

faces of the rear cylinders within each pair.
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Chapter 8

Conclusions and future work

8.1 Conclusions

The inertial deposition of heavy particles from turbulent flows has been investigated

through Lagrangian particle tracking in a CFD modelling framework. The principal

goal of this study was to underpin the idea both used in the British Energy Nuclear code

CIRCD (Reeks (1991)) and proposed by Kallio and Reeks (1989), and to further develop

a simple but more complete engineering model that can be used in future simulations of

inertia deposition of heavy particles.

Through investigations of the discrete random walk (DRW) eddy-interaction model,

implemented within the commercial CFD code ANSYS FLUENT v12.0 using a RANS

modelling framework, multiple deficiencies associated with the discrete particle phase

(DPM) model were discovered, which have a significant effect on the predictions of

particle deposition in turbulent boundary layers. It should be emphasised that these defi-

ciencies are typical of most, if not all, of the present generation of general purpose CFD

codes, and are not directed as a specific criticism of FLUENT’s DPM implementation.

Some of these deficiencies were addressed by the author by additional code, implemented

via the standard User Defined Function templates (DPM UDFs), but limitations in access

to the main solver using this approach made it impractical to completely resolve the

underlying problems. As a result, a complete new Lagrangian particle tracking module

235
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was written and implemented as a high level UDF within FLUENT, replacing the native

tracking code entirely. Development of this model made it possible to predict particle

deposition within a turbulent boundary layer, using FLUENT, to the same level of ac-

curacy as a stand-alone C code based on the method of Kallio and Reeks (1989), but

with the advantage that deposition in complex geometries could be modelled. This new

model has been extensively tested and validated. Nevertheless the agreement with the

experimental data of Liu and Agarwal (1974) is not quite as good as that shown in the

original paper of Kallio and Reeks (1989), though no explanation for this has been found.

The new implementation allows prediction of the transport and deposition of heavy

particles suspended in steady and unsteady turbulent flows. Unlike the own Discrete

Phase Model in FLUENT (see Fluent (2009)), it is compatible with LES modelling,

though sub-grid scale effects are not currently included in the tracking algorithm. In

addition, parallelization of the Lagrangian particle tracking module is achieved using the

public domain MPI (Message Passing Interface) library.

8.1.1 Conclusions on the stochastic quadrant model

The CFD implementation of the DRW model of Kallio and Reeks (1989) produced

a dramatic improvement in the prediction of deposition of heavy particles in a fully

developed turbulent boundary layers compared to FLUENTs base DPM model, but the

predictions still showed over-prediction of deposition in the diffusion/impaction region,

compared to available experimental data. Further enhancements of the DRW model

of Kallio and Reeks (1989) were therefore investigated leading to a simple, but more

complete, stochastic quadrant model, which attempts to account for the effect of turbulent

structures (sweeps and ejections) on particle transport within the boundary layer. This

quadrant model was inspired by the quadrant analysis proposed by Willmarth and Lu

(1972). The corresponding detailed statistics of the wall-normal velocity fluctuations in

each quadrant are extracted from an LES of a fully developed channel flow, using the

quadrant analysis. The turbulent dispersion of heavy particles in fully developed turbulent

boundary layers is then modelled as interactions of heavy particles with a succession

of random eddies found from four quadrants in a homogeneous Markov process way.
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This model was fully coupled with the steady Navier-Stokes solver in ANSYS FLUENT

v.12.0 via the stand-alone Lagrangian stochastic particle tracking described previously.

Deposition rates of heavy particles from turbulent flows is of particular interest to the

present stochastic model. This model yields very good predictions of deposition rate for

particles with Stokes number St > 5 when compared against benchmark experimental

measurements from Liu and Agarwal (1974). Prediction of deposition rates at lower

values of Stokes number gives under-estimation, and may need further improvement

or the addition of Brownian motion effects. However, the deposition rates predicted

by the present model compare favorably with the results reported by other researchers.

Of particular significance is the comparison of the present model with a more complex

stochastic model which is based on the Langevin equation to account explicitly for the

strong sweeps and ejections in boundary layer turbulence.

The good agreement between the simulated and experimental results demonstrates that

the proposed stochastic quadrant model realistically reproduces the dynamic behaviour

of particles within turbulent boundary layers. It is concluded that the present model ap-

propriately incorporates the skewness of wall-normal velocity fluctuations in a numerical

simulation without either using too complex mathematical models, or needing to ”tune”

model parameters.

8.1.2 Conclusions on the wall effects on particle deposition

Prior to the current work no systematic investigation of the potential errors in particle

deposition in turbulent boundary layers due to the modified hydrodynamic forces experi-

enced by particles when very close to the wall has been carried out, possibly because

of the complexity of the correlations involved. The effect is studied with the proposed

stochastic quadrant model, using recently published composite correlations for the drag

coefficient CD and lift coefficient CL from Zeng et al. (2009). The computed results

indicate that for practical cases hydrodynamic effects can reasonably be neglected for

particle deposition in turbulent boundary layers.
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8.1.3 Conclusions on the LES study of inertial deposition of heavy

particles onto tube-banks

One of the aims of the present work was to investigate methods for the prediction of

inertial particle deposition in complex geometries, such as the heat exchanger tube banks

of CAGR boilers; a potential application of significant importance in nuclear safety

studies. Initially it was hoped to apply the RANS flow analysis and Lagrangian tracking

scheme of described in Chapter 2 to Chapter 5 of the present thesis to this problem. As

illustrated in Chapter 7, however, vortex shedding within tube banks results in extremely

irregular, fluctuating y+ fields, which make this methodology unsuitable. Also the high

turbulence levels within tube banks, mean that boundary layer effects have less impact

on deposition than direct impaction. As a result, Large Eddy Simulation (LES) was

considered to be the most appropriate tool to investigate deposition of heavy particles

within tube banks.

Firstly, it was necessary to validate the flow predictions given by ANSYS FLUENT v12.0,

using LES with the dynamic Smagorinsky SGS model and a wall-layer representation

of the boundary layer, for the carrier phase turbulent flow across a tube-bank, through

comparison with experiments. The experimental measurement of Shim et al. (1988)

provided a suitable benchmark case, giving mean and fluctuating pressure distribution

data for a widely pitched array of 4 columns of cylinders in a square, in-line arrangement,

together with measurements of vortex shedding frequencies. The LES model was based

on a domain including 4 columns of 6 cylinders each, with aspect ratio 2, between

pitch-wise and spanwise periodic boundaries, and comprised 2.7 million cells. The

Reynolds number, based on gap velocity, was 1.5×104. Agreement with experimental

data for mean pressure distribution for all columns was almost exact, whilst satisfactory

agreement with the fluctuating pressure distributions was achieved for all except the first

column. Even here, alternative comparative evidence suggests that the LES results may

be more reliable. Vortex shedding was correctly predicted for all columns within the

tube bank, with the correct Strouhal number. The results confirmed the importance of

vortex shedding and the high levels of turbulence seen in tube banks, and confirmed LES

to be an accurate predictive tool for this type of flow.
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Having established the reliability of LES for the prediction of turbulent carrier flow

field, the modelling was extended to investigate heavy particle deposition within tube

banks. At version 12.0, ANYSY FLUENT (see Fluent (2009)) does not support discrete

phase particle tracking in combination with LES turbulence modelling, but the use of

the complete new particle tracking UDF developed in this study, described in Chapter 3,

removed this basic limitation, though the effect of sub-grid scale turbulence on particle

motion is not included. Parallelization of the tracking code was essential to enable

statistically meaningful numbers of particles to be tracked through the computational

domain of around 3.5 million cells.

For the dispersed particle phase, prior work has documented the deposition efficiency

of heavy particles onto a single cylinder in turbulent flows. For example, Israel and

Rosner (1982) reported that the deposition efficiency depends on the effective particle

Stokes number. The tube bank geometry studied in the present work was based on a

partial model of a CAGR tube array, used in an experimental investigation of particle

deposition by Hall (1994). Here the tube columns were arranged in closely pitched

in-line pairs, with a wider gap separating each pair. Test rig used in Hall (1994) consisted

of 10 pairs of columns, each of 5 tubes, but the present computational domain modelled

only 4 column pairs because of limited computational resources. Nevertheless it was

demonstrated from the LES that the mean flow had become stream-wise periodic by the

third and fourth column pairs. The Reynolds number for simulations was 33960 based

on the gap velocity in the streamwise direction.

The Lagrangian point particle approach, coupled with LES of the carrier flow, was used

to study the inertial deposition of heavy particles onto this in-line tubebank for three

sets of heavy particles. An energy based model for possible particle bounce on impact

was included in the deposition algorithm. The deposition efficiency of heavy particles

on each pair of tube-columns across the bank was computed, and the results for the

largest particles, of Stokes number St = 0.345, were compared with theoretical values

for an isolated single circular cylinder. It was observed that the deposition efficiency

onto the first tube-bank pair was significantly lower than that onto an isolated circular

cylinder. In addition, the fractional deposition of particles across each of the tube-

column pairs was determined. For the particle Stokes number St = 0.345, most of
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particles were deposited on the upstream column of each pair, especially on the first

column. This is consistent with practical experience that the first column of tubes plays

a protection role in mitigating fouling on the succeeding tube columns. In contrast, the

results for deposition efficiency for particles of Stokes number St = 0.086 and 0.0075

are significantly different from those for particles of St = 0.345, based on the present

simulations. A display of particle deposition location on tube-bank suggests that far more

of the smaller particles get deposited on the downstream cylinders of each column pair,

with significant numbers being deposited on the rear surfaces. A possible explanation is

that the smaller particles are more easily entrained into the wake, and impact onto the

rear surfaces of the cylinders. This issue calls for further investigation.

8.2 Future work

Most notably, this is the first study to the author’s knowledge to propose a simple

stochastic engineering model embodying the effects of near-wall coherent-structures on

the inertial deposition of heavy particles However, some limitations are worth noting and

need further research of the proposed stochastic quadrant model and particle deposition

onto tube-banks.

First, although the hypotheses in the mode are supported statistically, the stochastic model

is not assessed through the well-mixed criterion (see Thomson (1987)). Future work

should therefore include follow-up work designed to evaluate whether the model satisfies

the above criterion and also whether it results in spurious drift (see MacInnes and Bracco

(1992)) following the turbulence gradient and, if so, how to address this. In addition,

the one-dimension nature of the present model fails to account for the prominence of

longitudinal vortices. Future work should therefore include the streamwise fluid velocity

fluctuations simultaneously. In addition, the present quadrant model considers only

wall-normal fluid velocity fluctuations, v′, as in the previous work of Kallio and Reeks

(1989). Pope (2000) discusses the work of Willmarth and Lu (1972) in Section 7.4 of his

book, and points out that the simple fact that the u-v correlation coefficient is around

-0.5 suggests that quadrant II and quadrant IV events are twice as likely as quadrant I
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and quadrant V events, irrespective of the turbulence structure. Including stream-wise

u′ fluctuations, correctly correlated with the wall-normal v′ fluctuations may therefore

offer an alternative modelling approach. The author did some preliminary work on this

concept, but abandoned it due to lack of time. Completion of this work might prove

a useful avenue of further research. The integral Lagrangian time scales used for the

eddies in four quadrants in the present quadrant method may also need further scrutiny.

Finally, the use of the Langevin equation as an alternative to the discrete random walk

approach should also be investigated.

Although the computed deposition rates based on the composite correlation for CD and

CL indicate that they have only a minor effects on particle deposition, future work may

consider the more general composite but more complex correlation proposed by Lee

and Balachandar (2010). On the other hand, the more general composite correlations

are much more computationally expensive, and correspondingly less robust than those

employed in the present study.

The new Lagrangian particle tracking algorithm, described in chapter 3, is compatible

with ANSYS FLUENTs LES turbulence model but, at present, does not include the

effects of sub grid scale turbulence on the particles. For the application to large scale

separated flows in tube banks, considered in chapter 7, this is not a major consideration,

but extending the model to account for SGS effects would increase its utility for the

boundary layer type problems considered in the earlier chapters of this thesis. The

approach suggested would be to combine FLUENTs turbulent kinetic energy transport

LES to generate the white noise term for a Langevin tracking model. The final topic

considered in the present work was prediction of the deposition of inertial particles

in the flow through tube banks; a subject of some importance in the nuclear industry.

This was the last piece of work to be completed and, although the work presented

demonstrates well the potential of combined LES and particle tracking for this demanding

application, time constraints prevented a more detailed comparison of results with the

earlier experimental work of Hall (1994). A more complete analysis of the generated

data would a valuable extension of this work. It should be noted that, to the authors

knowledge, Hall (1994) measurements provide the only experimental data available for

this important application. With the recent developments in experimental techniques such
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as Particle Image Velocimetry, it would be valuable if further experimental data could

also be generated. Finally there are a number of related problems of direct relevance

to the nuclear industry which could be investigated using this approach, such as the

difference in particle deposition for tube banks with finned tubes.
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