
Adaptive Torque-Feedback Based Engine Control

Steven Clugston

SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Faculty of Science, Agriculture and Engineering,

Newcastle University.

May 2012

Abstract

The aim of this study was to develop a self-tuning or adaptive SI engine controller using

torque feedback as the main control variable, based on direct/indirect measurement and

estimation techniques. The indirect methods include in-cylinder pressure measurement,

ion current measurement, and crankshaft rotational frequency variation. It is proposed

that torque feedback would not only allow the operating set-points to be monitored and

achieved under wider conditions (including the extremes of humidity and throttle

transients), but to actively select and optimise the set-points on the basis of both

performance and fuel economy. A further application could allow the use of multiple

fuel types and/or combustion enhancing methods to best effect. An existing experimental

facility which comprised a Jaguar AJ-V8 SI engine coupled to a Heenan-Froude

Dynamatic GVAL (Mk 1) dynamometer was adopted for this work, in order to provide a

flexible distributed engine test system comprising a combined user interface and cylinder

pressure monitoring system, a functional dynamometer controller, and a modular engine

controller which is close coupled to an embedded PC has been created. The considerable

challenges involved in creating this system have meant that the core research objectives

of this project have not been met. Nevertheless, an open-architecture software and

hardware engine controller and independent throttle controller have been developed, to

the point of testing. For the purposes of optimum ignition timing validation and

combustion knock detection, an optical cylinder pressure measurement system with

crank angle synchronous sampling has been developed. The departure from the project’s

initial aims have also highlighted several important aspects of eddy-current

dynamometer control, whose closed-loop behaviour was modelled in Simulink to study

its control and dynamic response. The design of the dynamometer real-time controller

was successfully implemented and evaluated in a more contemporary context using an

embedded digital controller.

i

Acknowledgements

This work has been funded by the School of Mechanical & Systems Engineering, the

University of Newcastle-upon-Tyne.

I would like to thank my supervisor Dr Robert Bicker for his unwavering patience,

support, and accessibility throughout this project. I would also like to extend my

gratitude to Richard Burnett as through his interest and enthusiasm for all matters related

to electronics I have learnt many things and who has always made time to discuss many

of my electronic design issues when I have needed it on too numerous occasions to

recall.

I would also like to thank Professor James Burdess for his insight into state-space

control, and also Professors Alan Jack and Barrie Mecrow from the school of Electrical,

Electronic and Computer Engineering for discussing dynamometer magnetisation with

me.

ii

Contents

1 Introduction 1

1.1 Motivation for Research . 2

1.2 Research Methodology . 3

1.3 Reseach Objectives . 5

1.4 Contribution and Research Roadmap . 5

2 System Identification and Adaptive Control 9

2.1 Self-Tuning Control (STC) . 11

2.2 Model Reference Control (MRAC) . 12

2.3 Model Based Predictive Control . 14

2.4 System Identification and Parameter Estimation 16

2.5 Intelligent Control . 18

3 Literature Review 24

3.1 Dynamometer Operation and Control 25

3.2 Engine Testing and Calibration . 36

3.2.1 Automated Engine Mapping . 37

3.2.2 Sweep Mapping and Automated Engine Testing 37

3.2.3 Model Based Calibration Tools 38

3.2.4 Capturing Cylinder Pressure Data in Real-Time 39

3.2.5 Reduction of Cylinder Pressure Data 40

iii

3.3 Engine Modelling . 42

3.3.1 First-Principle Phenomenological Modelling 43

3.3.2 Mean Value Engine Model (MVEM) 43

3.4 NARMAX Models . 44

3.5 Other Models . 48

3.5.1 Sliding Mode and Constant Gain Extended Kalman Filter Models 48

3.6 Torque Estimation Techniques . 49

3.6.1 Torque and IMEP Estimation using Crankshaft Rotational

Frequency Variation . 49

3.6.2 Torque Estimation using Engine Block Angular Acceleration . . . 50

3.6.3 Torque to Cylinder Pressure Correlation 50

3.7 Air-Fuel Ratio Control Strategies . 50

3.7.1 Fuzzy Logic . 51

3.7.2 Sliding Mode Observer . 51

3.7.3 Event-Based Observer . 52

3.7.4 Artificial Neural Network (ANN) Augmented Controllers 52

3.7.5 Model Predictive Control . 58

3.7.6 Direct Inverse Model . 59

3.8 Spark Ignition Timing Control . 60

3.8.1 Self-Tuning Optimisation . 60

3.8.2 Peak Pressure Position Control for Maximum Brake Torque . . . 60

3.9 Instrumentation for Torque Determination 61

3.9.1 In-cylinder Pressure Transducers 61

3.9.2 Spark Plug Ion Sensing . 63

3.9.3 Torque determination via Piezoelectric Spark Plug Load Washer

or Engine Mount Strain Measurement 63

iv

3.9.4 Strain Gauge Fitment to a Drive Shaft 64

3.9.5 Magnetostrictive and Magnetoelastic Torque Measurement 65

3.9.6 Surface Acoustic Wave Measurement 66

3.10 Software for Engine Control . 67

3.10.1 Ford’s High Level Pascal-F Engine Control Software 67

3.10.2 Ford’s Automatic Code Generator 69

3.10.3 BASEMENT . 71

3.10.4 OSEK/VDK . 72

4 Development of a Dynamometer Controller and Automated Engine Test
System 73

4.1 Overview of Test Bed Work . 74

4.2 The Dynamatic Dynamometer . 81

4.2.1 Assessment of Controllability 84

4.3 Development of a Replacement Current Controller 90

4.3.1 Phase Angle and Current Controller 90

4.3.2 Current Controller Simulation 95

4.3.3 Controller Transient Behaviour 97

4.3.4 Speed Control Tests using the Current Controller 100

4.3.5 Dynamometer Response Characterisation 103

4.3.6 Improved Response Characterisation 107

4.3.7 State-space Estimation and Control of the Field Windings 118

4.3.8 Discretisation and Software Implementation of Flux Current

Estimator . 121

4.3.9 Standstill Testing of the Digital Current Controller 131

4.4 The Control Architecture . 136

v

4.4.1 Control Hardware Selection . 136

4.4.2 Arcom Viper . 137

4.4.3 Human Machine Interface and Controls 138

4.4.4 Diamond Systems DMM32AT Data Acquisition Card 140

4.4.5 CAN-bus interface . 141

4.5 Dynamometer Instrumentation for Control 141

4.5.1 Tachometer Circuit . 141

4.5.2 Load Cell and Amplification Circuit for Torque Measurement . . 144

4.5.3 Protection Circuit . 145

4.6 Automation Hardware . 146

4.6.1 SSR Engine Power Management and Opto-Coupled Interface . . 146

4.6.2 Plint Volumetric Fuel Meter and Digital Retrofit 146

4.6.3 Cylinder Pressure Acquisition System 147

4.6.4 Thermocouple Interface . 152

4.7 Software Architecture, Selection, and Development 154

4.8 Control Software . 155

4.9 Application Software . 155

4.9.1 The mseDyno Application . 156

5 Development of an Engine Controller 160

5.1 Nippon Denso ECU . 163

5.2 The MPC555 Microcontroller . 167

5.3 The Time Processor Unit . 169

5.4 The PATI Platform . 170

5.5 Porting eCos to PATI . 172

5.6 ECU Hardware Development . 172

vi

5.6.1 Fuel Injector Peak-and-Hold Driver Circuitry 172

5.6.2 Ignition Driver Circuitry . 174

5.6.3 Engine Speed and Phase Sensors 177

5.6.4 Lambda Sensor Signal Conditioning Circuitry 181

5.6.5 Knock Detection Circuitry . 181

5.6.6 Electronic Throttle Unit and Controller 186

5.6.7 Temperature Measurement . 199

5.6.8 Intake Air Mass Flow Meter . 201

5.6.9 Establishing the Ignition, Fuelling Sequence and Base Calibration 201

6 Conclusions 205

6.1 Conclusions . 205

6.1.1 Dynamometer Control . 206

6.1.2 Engine Controller . 207

6.2 Recommendations for Future Work . 207

References 210

A Circuit Schematic Diagrams 222

B Embedded Control 241

B.1 TPU Mask A . 241

B.2 Linux as an Embedded Operating System 243

B.2.1 Booting Embedded Linux from Flash 247

B.3 Control Software . 249

B.3.1 Diamond Device Driver . 249

B.3.2 Phillips SJA-11001 CAN4Linux Driver 251

vii

B.4 Application Software . 252

B.4.1 Selection of a Widget Toolkit 252

B.5 The MPC555 and Time Processor Unit 257

B.5.1 Time Slicing . 257

B.5.2 Channel Priority Levels . 258

B.5.3 Code Development for the TPU 258

B.5.4 The Standard Masks . 261

B.5.5 TPU Emulation Mode . 265

B.5.6 PMM and PSP TPU Functions 266

B.5.7 The PCI 9056 Interface . 270

B.5.8 The U-Boot Bootloader . 275

B.5.9 The MPC555 Address Map Problem 276

B.6 Porting eCos to PATI . 278

B.6.1 Real-time Performance . 280

B.6.2 Open Source Architecture . 280

B.6.3 Configurability and Scalability 281

B.6.4 Serial Interrupt Delay Problem 281

B.6.5 Creation of a TPU Device Driver for eCos 283

viii

Chapter 1. Introduction

Conventional electronic engine management systems for spark ignition engines fitted to

production road vehicles have limited control feedback. In addition, they require a high

calibration effort to satisfy multiple objectives such as meeting emission legislation

constraints, the driver’s expectations (such as responsiveness, drivability, and

acceleration performance), noise vibration and harshness (NVH), fuel economy, and

longevity of the powertrain. For an SI engine, the two main manipulated inputs are duty

of the fuel injectors (mass of injected fuel) and the spark ignition timing (ignition

advance).

The control strategies typically employed on mass produced engines have limited

adaptivity to accommodate real-world factors such as: variations due to manufacturing

tolerances, component wear/deterioration and variations in fuel type and quality.

Feedback learning occurs in the form of adaptive look-up tables which are updated on

the basis of feedback from the oxygen sensor, for fuel correction and combustion knock

events are used for correction of ignition advance timing. Learning algorithms can be as

simple as varying ignition advance fuel injection quantities by fixed increments based on

trial-and-error at a particular operating point. The last-known-good, or latest best

estimates are stored in look-up tables which are written to non-volatile memory at

key-off so that they can be reused to initialise the process after the next power cycle. The

learnt values are constrained to within calibratable maximum and minimum values for

reasons of meeting requirements for functional safety and long term reliability.

A recently produced SI engine might only include two main forms of sensory feedback,

neither of which directly measure the engine’s performance (torque or brake specific fuel

consumption) to ensure it is optimal at the current operating point. The first feedback

signal is the oxygen (or lambda sensor) which is used to infer air/fuel ratio by comparing

the oxygen content in the exhaust gas to that of the ambient air surrounding the sensor.

The fitment of this sensor has become commonplace since legislation has mandated the

fitting of catalytic converters to the exhaust systems of gasoline powered vehicles. For

correct operation, the catalytic converter requires that the air/fuel ratio is cycled close to

stoichiometric. The second sensor type (which is less commonly fitted) is the piezo

knock sensor. This sensor is used to detect the onset of combustion knock (or pinking)

which is the phenomenon of the fuel mixture self-igniting under compression either

before the ignition spark has taken place or before the combustion flame front has

reached the unburned gas region in the cylinder. By sensing the onset of combustion

knock (detected by measuring structure borne acoustic noise) using this sensor, the

ignition timing can be controlled closer to the optimum for operating regions which are

limited from reaching the optimum by the onset of knock.

1

An operating point is considered to be knock limited when the angle of spark advance

required to locate the peak-pressure-position at the optimum for maximum brake torque

(MBT) cannot be achieved without combustion knock occurring. The extents of the

knock limited region will vary with the prevailing conditions, such as localised engine

hot spots in the combustion space, and the humidity of the air intake charge. It is because

of this unpredictable variability that either feedback is required (normally in the form of

one or more piezo knock sensors), or worst-case conservative ignition timing must be

used to accomodate poor fuel quality (lowest octane rating) used on an aged engine

which has a build up of carbon deposits that result in a compression ratio increase.

Historically, piezo sensory feedback has been used only for turbo-charged SI engines

(due to the substantially increased knock risk arising from forced induction) whilst

naturally aspirated engines were set to worst case for the fuel grade available in the

market to which the vehicle was supplied. This has meant that many millions of vehicles

have been operating sub-optimally due to the absence of additional feedback. More

recently, rising fuel costs and environmental concerns have resulted in knock feedback

becoming more commonplace on naturally aspirated SI engines.

For any given engine there will be a crank angle which produces the maximum brake

mean torque where the in-cylinder combustion peak pressure, termed the

peak-pressure-position (PPP) is located. The PPP which results in maximum brake

torque (MBT) typically occurs at around 12° after-top-dead-centre, but this is engine

dependent and may also vary under different operating conditions. Production engines

are indirectly optimised for MBT by varying the ignition angle around the point which

yields MBT. Since there is a nominally parabolic sensitivity to variations in spark

advance, this amounts to a gradient search optimisation procedure. The main problem

with this approach is that intake air humidity and cycle-to-cycle combustion variability

causes the optimimum advance to be stochastic in nature which in turn causes the PPP to

vary for fixed ignition angles. The use of knock feedback does not address this issue, but

only allows for operation closer to MBT or optimal PPP for operating regions which are

knock limited. The issue can be addressed by continuing the ignition advance to torque

gradient search on-line or by directly measuring and controlling the PPP using individual

cylinder pressure measurements and by ideally referencing this controlled pressure

position to the output torque to ensure that the set-point is also optimal. Both of these

approaches need to be robust to transient variations in the engine operating point (load

and speed) and other disturbances, in order to be successful.

1.1 Motivation for Research

When an engine is used in either research or motorsport contexts, it is likely that several

aspects of the engine’s operation will need to be modified and the control objectives

2

changed. The calibration tables or maps used by the control strategies are often not

normally available if the engine is of a new design, or the OEM controller is to be

replaced and the calibrations have not been released to the researchers or developers.

Additionally, the interdependence of the OEM supplied engine ECU upon other vehicle

systems (such as security and immobilisation) is growing with time which further

increases the complexity of using these vehicle ECUs outside of there intended context

since they may require surrogate CAN signals to be provided as stimulus to allow

normal operation. If this information is not readily available (usually in the form of a

CAN signal database), then normal operation may not be possible using the OEM ECU

and so it must be replaced by an alternative. For these reasons the OEM supplied engine

controller is generally unsuitable for any application other than its intended purpose and

a replacement must be sourced. The main issues with using an aftermarket controller are

the initial setup effort in getting it calibrated to the point where the engine is in a runable

state, then thereafter there may be insufficient flexibility to achieve particular control

objectives. It would therefore be highly desirable to reduce the initial setup effort of the

replacement controller and its optimisation for specific objectives thereafter. This work

attempts to address these issues through the development of a flexible open-architecture

modular engine ECU onto which a self-tuning algorithm can be developed to automate

the initial calibration effort and provide in-service optimisation.

1.2 Research Methodology

The main output of an SI engine is the torque that it produces, however this is seldom

measured on-line as a basis for automotive engine feedback control. It is proposed to

design a self-tuning, or adaptive engine controller which uses torque feedback from

direct measurement as the major variable which the controller can use for tuning or

adaptivity.

Torque measurement and estimation are not new concepts and can be achieved through a

variety of direct and indirect means. Torque measurement techniques include spark plug

ion sensing (Nielsen & Eriksson, 1998), engine mount load monitoring, crankshaft

rotational frequency variation (Rizzoni, 1989) and magnetostrictive torque sensing

(Fleming, 1989). It can be assumed that none of the techniques alone have so far been

deemed adequate for use on production vehicles which may be because of cost and

reliability for a particular method. Also there may be no perceived added value from a

customer-sales perspective as fuel economy benefits may be outweighed by the up front

expensive and complexity of additional instrumentation. Rising fuel costs have increased

the emphasis on fuel economy from a sales perspective and the addition of a torque

sensor to production engines seems more tangible when considering recent advances in

3

torque sensing technology (such as the ABB Torductor) which mean that a sufficiently

cost effective and reliable torque sensor could be fitted.

For this work, direct torque measurement was the preferred sensing method since the

inferred measurements involve significant additional complexity, are usually model

dependent, and have more than insignificant margins of error associated with them. It is

proposed that with ‘knowledge’ of the system’s main output, the closed-loop controller

can become self-optimising and therefore a significant performance enhancement may

be realisable for a given particular engine over a wide range of operating conditions,

when compared to the fixed pre-calibrated control strategies that are commonly used in

these applications. In particular, it is expected that this approach will result in an

improved rejection, or even opportunistic optimisation, of disturbances arising due to

changing environmental conditions, such as intake air humidity, or other unmeasured

factors including those related to in-service ageing. The use of direct torque feedback

not only allows the operating set-points to be monitored and achieved under wider

conditions (including the extremes of humidity and throttle transients), but also allows

for actively selecting and optimising the set-points (such as A/F ratio and PPP) on the

basis of both performance and fuel economy. Further application of this approach may

allow the use of multiple fuel types and/or combustion enhancing methods (such as

water injection or onboard oxyhydrogen generation) to best effect. There is also the

possibility to perform condition monitoring by checking for significant differences

between the expected (leaned) output torque and the actual output torque.

This work is not the first to consider the approach of using torque-feedback. However, it

has been the particular aim of this project to establish if a controller can be constructed

which initially relies on having only minimal information about the characteristics of the

engine which it is to control (it’s general configuration, number of cylinders etc) to

remove the need for having a so-called base calibration. This is of particular benefit for

situations where the calibration tables or maps either do not exist, are not available, or do

not apply to the intended mode of operation. This is typically the case when an engine is

to be used for research or motorsport applications. The work does not consider the

automatic determination of sensor charateristics such as thermistors, mass airflow meter,

or determining control parameters for electronic throttle since it will be asssumed that

these are already known or can be determined independently.

A parametric approach can lead to a parameter tuning effort similar to the lookup tables,

so a blackbox approach is preferred since this will allow a more automated identification

process to take place. Applying a continuous perturbation signal to inputs then slowly

taking the engine through its operating range may provide sufficient time for cycle

averages to settle upon local optima.

4

1.3 Reseach Objectives

The aim of this study is to determine if directly or indirectly measured torque output

from an SI engine can be utilised to improve either or both the short term dynamic

performance and longer term calibration drift. To achieve this aim it was proposed to

develop and assess an SI engine control algorithm(s) with a self-adaptive optimisation or

learning capability. To achieve this aim the following objectives were outlined:

• Review past and current research in direct and indirect torque measurement, and to

decide how best to utilise the instantaneous torque measurement to benefit control.

• To set up an automated engine test environment to facilitate the assessment of the

torque controller.

• Assess the benefit of using Torque-feedback for SI engine control as the main

variable for the adaptation or learning.

• Instrument an existing Jaguar AJ26-V8 1998 MY engine for automation of testing

and assessment of the said engine control algorithm.

• Study how existing ECU hardware and control strategies work and identify any

possible deficiencies.

• Design a proposed engine controller hardware with the required flexibility to allow

implementation of a torque based algorithm.

• Retro-fit a dynamometer controller to an existing facility to meet the above

requirements.

Hypothesis Can torque feedback be used to perform an on-line identification and

optimisation of an SI engine to produce a worthwhile improvement in performance and

disturbance rejection, compared with other estimation techniques.

1.4 Contribution and Research Roadmap

The emphasis of this study was to create an engine controller which has as little a priori

knowledge as possible about the engine which it is to control. This necessitates a black

box model based approach and therefore the work has been carried using a real engine

rather than an engine model so as to preserve the stochastic and noise prone

characteristics of the real plant.

5

The NARMAX model approach has been considered, a blackbox nonlinear time series

method, which can describe the development of torque with respect to time in response

to changes in inputs. Significant time delays occur in the system due to a variety of time

constantants and propagation delays, for example due to fuel puddling evaporation,

intake air propagation, exhaust to lambda gas transport. Most of the system time

constants are dependent on engine speed and may also be effected by other factors such

as engine load. Broadly speaking, there can be two main approaches to using a blackbox

model to solve this particular problem. One of the two approaches is to identify the direct

inverse so that the inputs and outputs are essentially reversed. This enables the desired

real system output (torque) to be used as an input to the model which will then provide

the necessary real inputs (as outputs) ahead of time as feed-forward control input so that

disturbances may be rejected. This approach suffers from the problem of invertability,

for example a particular torque may be obtainable from more than one combination of

air-fuel ratio and ignition advance angle and therefore there is no single inverse solution.

It also relies on the fact that the desired optimal torque must be known under all

conditions an identified in the model and therefore a continuous process of on-line

identification would be required. The alternative approach is to identify the forward

model and use it as a part of an optimal control scheme such as a model predictive

controller. This approach was favoured since it removes the issue of invertability and

also allows the direct incorporation of subjective constraints such as the trade-off

between maximum brake torque and maximum brake specific fuel consumption.

The design of an eddy current dynamometer control system has been a requirement of

the work undertaken during this project to support the control algorithm development. A

number of dynamometer control challenges were met during the project including:

• Timely control of current/magnetic flux of the eddy current dynamometer

• Effective decoupling of interdependent torque and speed control loops

• Tracking of transient or varying torque/speed set points

The body of scientific literature which describes the operation of eddy-current

dynamometers is actually written on the subject of the theory and operation of

eddy-current couplings that were in wide spread use around the middle of the last

century. The two classes of machine have essentially the same principle of operation

where the eddy-current dynamometer appears to have been developed as a special

application of the equivalent design of coupling.

Roadmap

6

• The review of relevant literature falls into three categories related to engine

modelling, control, and engine testbed infrastructure and test techniques. This

process is on-going throughout the work, but the main outcomes are to be known

after two years from the project start with work being undertaken in parallel with

development of the test infrastructure.

• Work on the engine test environment infrastructure to be largely completed after

one year with subsequent work on-going to support particular research

requirements.

• Development of a modular ECU to allow flexibility in the way the engine control

is implemented is to be completed within one year to allow sufficient remaining

time to complete the experimental aspects of the research.

• The final year is to be spent evolving the general concept of an adaptive,

self-learning engine controller. Initially tests are to be performed on offline data

collected from the actual engine to establish the correct modelling approach. This

is to be followed by repeating the model structure search and parameter

identification on-line to establish if measurement noise and the stochastic nature of

engines prevents convergence to a model comparable with the initial offline

attempt. With either the on or offline models, the next stage is to embed it into a

control scheme which can use it for feed-forward control to reject disturbances.

These activities will be carried out in the following systematic way:

– Work on structure identification techniques to establish the nature of the

problem offline using real engine data. This first step shall reveal if a single

NARMAX model can adequately describe the entire operating range of the

engine, or if separate models are need to be switched in to cover the varying

dynamics as the operating point changes.

– Assuming that a structure for the engine characteristics can be found, the

parameters of the model must be identified then tested and validated against

further engine data.

– Once an offline model is proven, the challenge becomes to construct an

on-line scheme for structure detection and parameter identification. This

forms the basis for the adaptive self learning controller. The engine must be

taken slowly enough through its operating range that a solution can converge.

This will require a perturbation signal to be applied to each of the controlled

inputs for continuous on-line model validation.

– With the system model known, or obtainable on-line, then a model predictive

control scheme can be implemented and tested around the model. At this

stage constraints can be tested such as the limitation of air/fuel ratio

7

excursions during transients, maximum power performance, or maximum

fuel economy. The controller can then be compared to the original OEM

fixed calibration unit to see if there has been any net gain in control

performance.

– If constraints can be successfully applied and met, then this can be extended

to allow dynamic modification of the constraints to achieve changing

objectives. Combustion enhancing methods such as the injection of water or

hydrogen into the intake stream may then be then be usefully applied to

achieve new optimum operating points yielding either higher specific power

output or lower specific fuel consumption.

8

Chapter 2. System Identification and Adaptive Control

In order to be able to consider some of the engine control techniques that have been

presented in the literature, it is first necessary to review some of the supporting theory.

Conventional control and signal processing techniques assume that processes and

systems have fixed parameters. The proportional integral derivative (PID) controller is

commonly used in both continuous and discrete applications as it is widely understood

and tolerant of slight non-lineararities, can be applied to systems where there is virtually

no knowledge of the plant model, and new tuning techniques are being developed all the

time. However if the controlled process is highly non-linear it may be necessary to

retune the controller for each set point to maintain the desired system response. For

non-linear plants which can be considered approximately linear in the region of a chosen

set point, it is possible to construct a table of gains and other parameters for each set

point. This approach is usually adopted for highly non-linear plants in systems that have

frequently changing set points. This technique is called Gain Scheduling (Figure 2.1)

and is used in production engine management systems in the form of look-up tables

often referred to as maps. A simplified diagram of the use of a calibrated map for fuel

injector duty to maintain air/fuel ratio is shown in Figure 2.2.

Gain

schedule

ProcessRegulator

Control

signal

u(t)

Output

y(t)

Operating

conditions

Regulator

parameters

Command

signal

r(t)

Figure 2.1: A generalised Gain Scheduling scheme (Lelic & Gajic, 2002)

9

PI

Engine speed

Air
flow

Fuel
Injector

Ve

kTi

Figure 2.2: Engine mapping shown as a form of Gain Scheduling

When in addition to non-lineararities, a process has variable time delays, varying

parameters, and is disturbed by time-varying noise (as is the case with the SI engine),

then the PID controller may not be capable of controlling the plant to the desired

performance. It is in such cases that self-tuning and adaptive control techniques are

required. Adaptive controllers have evolved over many years and different approaches

have been combined so that they can now be categorised into three generalised groups:

1. Indirect or explicit adaptive controllers use online estimates of plant parameters to

adjust the control law. This type of controller is often referred to as a self-tuning

controller (STC).

2. Direct or implicit adaptive controllers make no effort to identify the plant

parameters. The control law is adjusted to minimise the error between the plant

output or states and those of a chosen model. The model used has the desired plant

response and is used to constrain and modify the actual plant response. This type

of controller is often referred to as a model reference adaptive controller (MRAC).

3. Intelligent adaptive controllers make use of black-box techniques such as neural

networks, wavelets or fuzzy logic. With these techniques it may be possible to

directly incorporate expert (or heuristic) knowledge and to effect adequate control

of a very complex system without having any phenomenological knowledge to

construct the plant model.

It should be noted that adaptive controllers are inherently non-linear and stability

analysis can only be determined analytically for certain limited cases. It has been shown

that if the gain of a system is changed dynamically within the fixed-gain stability margins

10

then the resulting system may not be stable. So the addition of an adaptive algorithm can

potentially destabilise an otherwise stable system. This can have implications for safety,

particularly if there is a burden of proof to show that a system can not ever become

unstable in the field. MISRA (1994) gives some guidelines on the use of adaptive control

on production automotive applications, which it considers to be a form of continuous

on-line optimisation. It recommends limiting the number of adaptive variables to restrict

the number of degrees of freedom and to use adaptivity in conjunction with look-up

tables to compensate for significant nonlinearities. It also states that adaptivity should be

considered during failure modes and effects analysis (FMEA). Neural networks are also

covered by MISRA (1994), in which they are considered as an emerging technology for

which it makes the particular recommendation to turn off the learning process once

training has been completed. In effect, this means that training must not be performed at

all in a production control unit to compensate for mechanical wear, for example. It also

highlights the difficulty in demonstrating stablity under all operating conditions which

would be required as part of the FMEA process performed for production vehicles.

2.1 Self-Tuning Control (STC)

Self-tuning control or indirect adaptive control differs from conventional control because

it introduces algorithms with coefficients that can vary with time. The idea behind STC

is to find an algorithm that can adjust its parameters to achieve a particular performance

objective especially when the plant to be controlled is subject to time varying changes.

The process parameters are estimated in real-time and these parameters are applied

without consideration of their uncertainty. STC is usually used to compensate for slow

performance degrading plant changes rather than attempting to track fast moving

changes. Since adaptive controllers are inherently non-linear there is no way to

guarantee stability except for certain restricted cases. Also it is not always certain that

the parameters will converge. A general block diagram for a STC scheme is shown in

Figure 2.3:

11

Parameter

estimation

ProcessController
u(t)

Output

y(t)

Command

signal

r(t)

Controller

design

Controller

parameters

Process parameters

Figure 2.3: Self-tuning control scheme (Lelic & Gajic, 2002)

2.2 Model Reference Control (MRAC)

A Model Reference Control or direct adaptive control scheme makes use of a model

which has the desired response to a set point. The desired response is compared with the

output of the system to form an error signal. The controller parameters are adjusted

accordingly to minimise this error. A general MRAC block diagram is illustrated in

Figure 2.4.

Adjustment

mechanism

ProcessRegulator
u(t)

Output

y(t)

Command

signal

r(t)

Model

Regulator parameters

y
m
(t)

Figure 2.4: Model reference control scheme (Lelic & Gajic, 2002)

The are several modified adaptation rules which make use of Lyapunov stability

techniques, but otherwise the stability of the algorithm is not guaranteed for gradient

type methods of parameter adjustment. A simple example of a continuous time model

12

for a MRAC system is shown in 2.5 whereby a first order model is used as a reference to

control a second order plant.

Y(s)R(s)

40

s +10s+202

Plant G(s)

2

s+10

Model Ref G'(s)

K

Figure 2.5: SIMULINK block diagram of a simple example MRAC scheme (Dutton et al.,
1998)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time [s]

S
y
s
te

m
 o

u
tp

u
t
Y

(s
)

K=100

K=5

K=1

Figure 2.6: Example MRAC step responses for various gains showing decaying higher
order oscillation (Dutton et al., 1998)

Figure 2.6 shows the step response of the system for different gains. High order

oscillations caused by interaction can be seen as the gain is increased. This is often a

problem for MRAC schemes as the oscillations can excite un-modelled higher order

terms in the plant which may lead to stability problems. For this reason STC is often

preferred to MRAC for many practical applications.

13

2.3 Model Based Predictive Control

The term model predictive control (MPC) does not designate a particular control strategy

(Camacho & Bordons, 2003), but refers to a range of methods which make explicit use

of a model of a process to obtain the control signal by minimising an objective function.

Most of the techniques encompass the idea of using a process model to predict the output

at future time instants up to a finite limit called a horizon. A control sequence is

calculated (on-line) to minimise an objective function, and there is the notion of a

receding horizon since at each control interval the horizon is displaced towards the

future. There are a variety of MPC schemes in existence, not all of which are published

as the details of them are considered proprietary as they form a part of commercial

software packages. One such commercial implementation which is often discussed and

documented is called Dynamic Matrix Control (DMC) and has been used widely by

petrochemical industries. Later, an open MPC implementation was published, known as

Generalised Predictive Control (GPC) (Clarke et al., 1987a,b) and has since become a

reference implementation which is often used and cited in the literature. GPC is said to

be able to overcome problems that minimum variance control has with process

dead-time in one algorithm, being capable of stable control of process with variable

parameters, variable dead-time, and changes in model structure provided that the inputs

and outputs are excited in such a way to allow the model identification process to be run

on-line in parallel with the controller. GPC is often used with black box linear time

series models such as ARMAX. This type of model can be identified and parameter

fitted statistically without knowledge of the process, which has allowed software

packages to be written to construct a model and run an MPC controller for an arbitrary

plant (provided it can be represented approximately linearly).

Some features of MPC are as follows:

• Explicit handling of constraints (useful for safety)

• Control of multiple input multiple output systems (MIMO) is possible (provided a

plant model exists)

• Explicit handling of process time delays and dead-time

• Can operate closer to constraints and safe operating region boundaries than

conventional control, resulting in improved performance

• Non-linear possible but stability proofs for limited cases only just becoming

available which may limit is use

• Use of cost functions or objective functions to subjectively influence how the

controller behaves

14

• Tuning is performed using: a control horizon, a prediction horizon, and weighting

matrices

Figure 2.7 shows the general structure of a MPC scheme.

Feedforward

model

Plant
Optimisation

algorithm

Control signal

u(t)

Output

y(t)

ŷ(t+N1), ...,ŷ(t+N2)

Reference

y
ref

(t)

Figure 2.7: General structure of a model-based predictive controller (Barreto & Araujo,
2004)

A factor which has been blamed for the relatively low level of uptake of MPC outside the

chemical and process industries is the lack of formal proof of stability, particularly for

the non-linear model case. This matter is being addressed in the literature, but some

assurance can be gained from the use of constraints to contain the actions of the

controller within safe regions of operation, although this does not constitute an absolute

proof that instability will not occur. It should be noted that even if a linear model is used,

that if constraints are used, then the resulting controller will be non-linear due to the

possible discontinuity in it control action which could in itself excite non-linear plant

dynamics. Nuno & Biegler (1994) deals with the effects of adding constraints to MPC

and the potential for inducing instability.

The subject of recent research interest has been that of non-linear MPC, or NMPC.

Chikkula et al. (1995) attempt the use of a Volterra time series model within a

conventional MPC framework and strategies for robustness are discussed. Chen et al.

(2000) consider that MPC applied to non-linear systems requires the on-line solution of a

non-convex, constrained nonlinear optimisation problem, which can lead to a large

increase in the computational effort and loss of optimality arising in the optimisation

procedures. The authors have developed a MPC scheme for nonlinear systems which it

is claimed can guarantee asymptotic stability. Mrabet et al. (2002) have attempted a

NARX model combined with a structure detection algorithm and a gradient decent based

evaluation of a cost function for control. Bai & Coca (2008) attempt a predictive

controller based around NARMAX models and try to show the robustness of the

approach.

15

2.4 System Identification and Parameter Estimation

The purpose of mathematical modelling, for a control objective, is to construct a

mapping of inputs to outputs to reflect the relationship between them to a reasonable

accuracy. Experimental data based modelling is known as system identification, which

requires a suitable model that should be made up of the simplest model structure, and the

smallest number of input variables and adjustable parameters, that can achieve the

desired accuracy.

A system’s input and output at time t can be denoted by u(t) and y(t) respectively. It is

useful to describe a system in discrete time as it is usually observed by sampling. If the

sample period is assumed to be a unit of time then for linear systems the following

generalisation can be made as a linear difference equation (2.1):

y(t)−a1y(t−1)+ . . .+any(t−n) = b1u(t−1)+ . . .+bmu(t−m) (2.1)

This is known as the ARMA model (Auto-Regressive Moving Average) because the a

coefficients give a dependence on previous outputs (hence auto-regressive) and the b

coefficients give a dependence on present and past inputs (hence moving or weighted

average). The following column vectors may be defined by collecting terms (2.2):

θ = [a1 . . .an b1 . . .bm]T (2.2)

ψ = [−y(t−1) . . .− y(t−n) u(t−n) . . .u(t−m)]T (2.3)

Equation 2.3 can be written in a simplified form, rearranged to express the new output y

in terms of the previous inputs and outputs (2.4):

y(t) = ŷ(t | θ) = ψ
T (t)θ (2.4)

The notation t | θ in (2.4) is used to emphasize that y is a function dependent on both

time and the parameter set of θ . It is usually the case for complicated systems that the

parameters represented by θ are not known a priori and must be determined by

experiment. A data set of input and output values obtained over a period of time can be

used to estimate θ . The least squares linear regression method is often used and the

following loss function can be defined based on N samples (2.5):

16

J(θ) =
1
2

N

∑
i=1

(yi− ŷ)2 (2.5)

The value of ŷ is a model estimate of the actual output y for each corresponding input.

Since the function J is a quadratic its minimum can be obtained by solving for its

differential equated to zero. This method allows parameters to be estimated from a

predetermined data set of N observations, but if a new input/output data pair were to be

added to improve the estimate, it would require that the whole calculation be repeated

each time. This necessitates that all previous data are stored and the memory

requirement and the number of calculations needed to obtain the result would increase

indefinitely with each iteration. Often data is observed sequentially and in the case of

adaptive control the calculation has to be performed online (although an initial estimate

can be provided from previous experimentation). It is therefore necessary to rearrange

the computations so that they may be performed recursively in separate iterations. This

enables a result previously obtained for N observations to be used to calculate an

updated estimate for N +1 observations (2.6) and (2.7).

Pn = Pn−1−
Pn−1xn−1xT

n−1Pn−1

1+ xT
n−1Pn−1xn−1

(2.6)

θn = θn−1−
Pn−1xn−1

(
xT

n−1θn−1− yn
)

1+ xT
n−1Pn−1xn−1

(2.7)

To cover the case where abrupt parameter changes occur, Pn can be periodically modified

or reset by a decision making algorithm. A forgetting factor (or discounting factor) can

be used for slow time varying parameters to add a time weighting to reduce the effects of

old data. This is usually achieved by multiplying equation (2.6), Pn by a factor less than

one. This factor does not have to be a fixed value but can be a function such as an

exponential or variable which is dynamically altered in real time by some other process

such as a neural network. Other recursive estimation techniques exist including recursive

extended least squares (RELS), for use with the ARMAX model (see below), and

recursive maximum likelihood (RML). The least squares method can be used for

non-linear identification but is restricted to models that are linear in the unknown

parameters.

An extension of the ARMA model is the ARMAX (Auto-Regressive Moving Average

with eXternal input) model which adds a disturbance term in the form of a moving

average of white noise. The ARMA and ARMAX models are just two permutations of a

family of models that must be selected to best suit the application. When non-linear

black-box models are considered it is most common to use only measured quantities

17

rather than estimated ones. In the case of engine control the complexity arises from

unmeasured disturbances which requires a different approach to be taken. A model that

relies upon estimation that is finding application in engine control is the Nonlinear

ARMAX or NARMAX (Nonlinear Auto-Regressive Moving Average with eXogenous

inputs) model. Equation (2.8) shows the NARMAX form where F(· · ·) is some

non-linear function. It is generalised as far as possible for a finite non-linear function and

its similarity to the ARMAX expression is apparent.

y(k) = F (y(k−1) , . . . ,y(k−ny) ,u(k−1) , . . . ,u(k−nu)) (2.8)

The NARMAX model is valid for non-linear systems that can be considered linear when

operated close to an equilibrium or set point. If the set point is changed then the whole

model structure might change and have to be re-evaluated. The NARMAX approach

considers all possible permutations of the linear combination of input and output terms.

The significant combinations have to be identified and various methodologies for this are

presented in the literature such as orthogonal least squares. Once the reduced set of

parameters has been chosen, then values for them are obtained from past data. As with

other empirical model types, the system data must be significantly rich enough which

requires that the system has been stimulated by a variety of inputs for the model to be

valid. A process of validation is used to check the model against a set of criteria.

Leontaritis & Billings (1987) prove that if a pseudo random binary sequence (PRBS) is

used to excite a non-linear system , it can cause loss of identifiability. This fact is

reiterated when work to identify an automotive turbo-charge diesel engine is carried out

(Billings et al., 1989). PRBS are a popular technique to excite plant for identification

linear ARMAX models as the signal can be imposed on top of the control output of a

closed loop system which is particularly useful for identifying system which are

open-loop unstable or require control for practical reasons. PRBS can still be used

provided that the level or amplitude is also varied so that the plant being identified is

being stimulated or excited by a sufficiently frequency rich signal to expose it’s

dynamics. For a closed-loop system, this may require that the set-point is varied in such

a way to provide additional stimulus to the system over and above that of the PRBS

signal added to the control output.

2.5 Intelligent Control

Intelligent control methods can be loosely grouped into three categories of so-called

black box techniques that are: Artificial Neural Networks (ANN), Wavelets, and Fuzzy

Logic. Neural networks have become a popular model structure in recent years and the

18

name refers to structural similarities with the neural synapse systems in humans and

animals.

Figure 2.8: MLP neural network configuration

The Multi Layer Perceptron Neural Network (MLP) type of ANN (Figure 2.8) is

supervised which means that the system updates it’s weighting parameters in response to

feedback it gets on its performance measured by the difference between the network

output and the desired output provided by the network trainer. A series of layers of nodes

are connected in a network fashion. An MLP network with two hidden layers is shown in

Figure 2.8. Each node performs a particular nonlinear operation to a weighted sum of its

inputs. The node output is then fed into the input of the node in the next layer. The

output is affected by all of the weights. MLP is therefore computationally intensive for

responding and learning. In particular complex systems require lots of nodes to achieve a

reasonable accuracy and so MLPs are often not suitable for real-time applications such

as engine control.

Radial Basis Function Networks (RBF) are another topology for neural networks. RBFs

are based upon the notion that an arbitrary function y(x) can be approximated as a linear

superposition of a set of localized basis functions. RBFs look much like the common

feed-forward architecture used with back-propagation training as shown in Figure 2.9.

19

Figure 2.9: RBF network structure

There are three layers which comprise the input layer, hidden layer, and output layer.

Each input is exhaustively connected to every hidden neuron via un-weighted links.

Each neuron calculates the following exponential shown as equation (2.9):

y = e
−|x−ui|

2σi (2.9)

where x is an input vector, ui (the output of the ith neuron) is a vector representing the

centre of the ith basis function and σi is the width of its Gaussian. The output of the

network is the weighted sum of the outputs from the hidden layer neurons. RBFs are

capable of rapid training, generality, and simplicity but the number of nodes required to

perform complicated tasks can be very large. This drawback is often referred to as the

curse of dimensionality.

The Cerebella Model Articulation Neural Network (CMAC) algorithm consists of two

mappings and an output computation for determining the value of a complex function. It

has been shown in the literature that CMAC is a Gauss-Seidel iterative scheme for

solving linear equations to an arbitrary accuracy.

Figure 2.10: Diagram of CMAC topology

20

A CMAC network layout is shown in Figure 2.10. There are two mappings that are

denoted by S and T. The mapping S relates the input vector to C locations in the

association memory A. The mapping constructs overlapping receptive fields. If an input

falls within the ith receptive field then that field becomes active and the ith location of A

has a value of one or zero. This bears some resemblance to the fuzzification process or

membership function used with fuzzy logic. The second mapping T relates each location

of A to a particular adjustable value in the weight memory W. The quantisation and

mapping structure allows nearby inputs to activate one or more of the same C weights

which can produce similar outputs. This creates a degree of generality which means that

training for one set of conditions can be applied to another similar but non-identical set

of conditions. This is more computationally efficient than some of the other schemes and

lends itself well to real-time applications. The general learning algorithm is (2.10) where

βI is a learning rate, d is the instantaneous desired output, and y is the actual output:

∆w = βI
d− y

C
(2.10)

Small values for βI , less than one are used (e.g. 0.25) to ensure smooth convergence.

Recurrent Neural Networks (RNNs) are another type of ANN that are suited to

simulating the dynamic behaviour of a controlled system. RNNs are derived from Multi

Layer Perceptron Feed Forward (MLPFF) networks by introducing feedback

connections amongst the neurons. The non-linear mapping features of MLPFF allow

black-box non-linear dynamic modelling. An external recurrent neural network feedback

typology can be written as (2.11):

ŷ(t,θ) = F
(

ŷ(t−1 | θ) , . . . , ŷ(t−n | θ) ,u(t−1) , . . . ,u(t−m)
)

(2.11)

where ŷ is the neural network output, u is the input and θ is the parameter vector of the

model. The indices n and m are set once the lag space of both the external input u and

the feedback variables are fixed. The similarity to the describing equation (2.8) of the

NARMAX model is noticeable. Where neural networks are to be used as a controller

they usually fall into one of two major classes which are Direct Control Systems (DCS)

and Indirect Control Systems (ICS). With DCS the network is used as a controller and its

outputs directly control the actions. With ICS the network outputs are processed using an

optimisation algorithm to determine the control actions. The DCS approach acts as a

controller which processes the signals coming from a real system. The control signals

are evaluated as a function of the target value of the controlled variable. DCS can be

further sub-classified into two types which are the Direct Inverse Model (DIM) and

Internal Model Control (IMC). DIM works by training the ANN (parameter

21

identification) to simulate the inverse dynamics of the real process then the inverse

model becomes the controller. The dynamics of a system can be described by (2.12):

ŷ(t +1) = F
(

ŷ(t) , . . . , ŷ(t−n+1) ,u(t−1) , . . . ,u(t−m+1)
)

(2.12)

The inverse RNN is an estimate of the input that caused the current output in terms of the

current output and previous inputs. The most recent control input can be isolated to

obtain the inverse RNN as (2.13):

u(t) = F−1
(

y(t +1) ,y(t) , . . . ,y(t−n+1) , . . . , û(t−m+1)
)

(2.13)

After training the network can be used as a controller by replacing the output y(t +1)
with the required target value r(t +1).

Figure 2.11: Direct Inverse Model structure: The controller performs the control action
one time step later than the desired target

The DIM structure is shown in Figure 2.11. The advantages of using DIM are its simple

implementation and dead-beat inbuilt control properties which results in a fast response

for wide and sudden variations of the state variables. The main disadvantage is that the

training is performed offline and so it cannot be considered an adaptive scheme without

extending it to have an online training methodology. IMC is derived from DIM in which

a predictive model is added to work in parallel with the inverse controller. The error

between the predictive model and the real plant is fed back as an additional controller

input as can be seen in Figure 2.12.

22

Figure 2.12: Internal Model Control structure

A filter is used to improve robustness. For the training a goal driven approach is used and

the network is trained to minimise the difference between the output of the predictive

model and the target value.

23

Chapter 3. Literature Review

Historically there has been much work published related to engine control issues. Much

of it claims some break-though in the approach, but in practice it usually represents an

incremental step along the road of development. Novel ’new’ control strategies are

seldom taken up by vehicle manufacturers. This review is concerned with the work

to-date that relates to an improvement upon the trusted but limited capabilities of the

lookup controller that is in wide-spread use. There is also consideration of work which

relates to the instrumentation and modelling challenges that are present when performing

work in this field.

It is not feasible to produce an accurate model of a spark ignition (SI) engine directly

from first principles without the inclusion of empirical data to augment it. Models which

attempt a first principle only approach have been shown to be of limited use due to the

parameter calibration effort and their sensitivity to an inherent inability to cope with

time-varying parameter change. The individual components of the SI engine processes

such as air induction, fuel flow, and combustion each constitute significant ongoing

research effort. Some of the many control strategies are essentially just robust linear

designs with accommodation for plant uncertainty as a coping mechanism for the

inherent non-lineararities. Transient response predictors have also been embedded,

although none of these approaches offer a unified solution and often suffer from issues of

robustness, especially to parameter changes of a real engine used on the road. The results

of many of the strategies developed are not tested on an actual engine let alone different

engines; they are instead tested against computer simulation models that have been

verified against an actual engine. Although this is both convenient and desirable as a fast

means of testing a particular strategy, this approach does not demonstrate how robust a

real implementation of a controller would be and how it may interact with or react to

higher order effects that may excite any part of the plant and induce stability problems or

just degrade the claimed performance in some way.

It is proposed to adopt and extend one or more of the techniques for air/fuel ratio control

presented here and to combine this with other strategies for improved spark timing

control that have not so far been discussed here. A significant amount of work may relate

to the study of the interaction between the techniques presented for air/fuel ratio control

and optimum ignition timing control. It is generally accepted that the peak cylinder

pressure should occur at around 12° after top dead centre for optimum power generation.

This will vary on a per engine basis and also vary throughout the operating range of a

particular engine. By directly controlling the peak pressure point and allowing the

air/fuel ratio to be more accurately controlled and varied, the synergistic combination of

24

the two techniques may yield beneficial results that have not so far been published. In

order to obtain the optimum control of both air/fuel ratio and spark timing in an online

real-time manner it will be necessary to utilise torque feedback as this is the main metric

by which to measure the effect of an online parameter change so that the optimisation

may be performed. Torque measurement and estimation is not a new concept and can be

achieved through a variety of direct and indirect means and may well require using a

combination of some of them. These techniques include spark plug ion sensing (Nielsen

& Eriksson, 1998), engine mount load monitoring, crank shaft rotational variance

(Rizzoni, 1989) and magnetostrictive torque sensing (Fleming, 1989). It can be assumed

that none of the techniques alone have so far been deemed adequate on the grounds that

they have not been adopted for use on production vehicles with few exceptions. This

may be because of cost and reliability for a particular method such as there may be no

perceived added value from a customer-sales perspective as fuel economy benefits can

already be obtained by purchasing smaller and often cheaper vehicles rather than a more

expensive one that is made even more expensive by improved instrumentation.

The rest of this chapter is broken down into several main sections which cover the areas

of interest which are those related to dynamometer control, engine calibration and

testing, engine modelling techniques, engine instrumentation techniques, and a review of

existing software implementations for engine control.

3.1 Dynamometer Operation and Control

The development of an eddy current dynamometer control system has been a required

part of the work undertaken during this project. Designing such a system has raised a

number of control challenges to which is it has been necessary to consult the literature to

find the previous and current states-of-the-art. The technical challenges include:

• Timely control of current/magnetic flux of the eddy current dynamometer

• Effective decoupling of interdependent torque and speed control loops

• Tracking of transient or varying torque/speed set points

It has been found that the body of literature which explains the operation of eddy-current

dynamometers actually is found with research into the theory and operation of

eddy-current couplings that were in wide spread use around the middle of the last

century. The principle of operation and design of the two classes of machine are very

similar and the eddy-current dynamometer appears to have been developed as a special

application of the equivalent design of coupling.

25

In a PhD study of transient behaviour in eddy-current couplings, Wright (1972) (an

employee of dynamometer manufacturer Redman Heenan Froude Ltd.) states that 80%

of (power transmission) couplings produced in the U.K. were of the eddy-current design.

No reference or data source was given to support this, but coupling sales quantities will

have been known to his employer. Figure 3.1 shows the basic design of the inductor pole

coupling, which of the two main types of eddy-current coupling, represents the larger

power rated and has closest correspondence to that of the dynamometer. The design

consists of a shaft mounted toothed solid iron rotor which has an appearance like a

coarse pitched plain spur gear. There is an annulus in the rotor into which a field coil is

wound. The rotor is held within a loss drum (also of solid construction) with a small air

gap clearance between the rotor’s poles and the inner surface of the drum, and they are

free to rotate relative to each other. When the field coil is energised, a toroidal field is

established around the rotor which passes through the air gap into the surface of the loss

drum then back through the air gap to the rotor. Figure 3.2 shows the air gap flux

distribution relative to the rotor’s poles. When there is relative motion between the rotor

and drum (termed slip-speed), the flux distribution is dragged around the drum so that

any fixed position on the drum sees an alternating flux intensity. It is this slip-speed

proportional change in flux which induces electrical currents in the drum close to it’s

internal surface which are known as eddy currents. The eddy currents in turn produce

their own magnetic field which is aligned in the opposite direction to the rotor field and

hence opposes it’s motion requiring torque to overcome it. Since the drum is of solid

construction, the electrical eddy currents conduct through the material forming a short

circuit which produces heat. Thus a part of the input power is converted directly to heat

in the loss drum in proportion to the field strength and the slip speed. For the case of the

dynamometer, the slip speed is equal to the input shaft speed and all of the input power is

converted to heat. Either the rotor or the drum side of the coupling can be used as the

input, but the convention is that the drum is used so that it’s higher speed assist

convection cooling of the generated heat. Also a minor benefit is that if slip rings are

used for the field coil then the wear rate will be lower if the rotor is the slower member

of the coupling. For dynamometers, the opposite convention is used where the drum is

kept stationary and the rotor is connected to the input shaft.

26

loss drum

field coil
(annulus)

flux path

N

N

S

S
toothed
rotor

Figure 3.1: Schematic of an eddy-current coupling (Davies, 1966)

fl
u
x
 d

e
n
s
it

y

tooth slot

loss
drum

Figure 3.2: Eddy-current coupling static air-gap flux distribution (Davies, 1966)

The magnetic circuit is completely unlaminated. It may be feasible to laminate a part of

the stationary iron, this was (and is) not done in practice as it would be difficult and more

expensive. Part of the stationary iron must be unlaminated and so must the poles. As a

result, these machines normally have a slow torque response. An effective means of

modifying the torque-slip curves can be achieved by brazing copper endrings onto the

extremities of the loss drum or by coating the internal surface of the drum with a thin

sleave of copper. The endring method gives little control over the shape of the

torque-slip curve since it only eliminates the end region loss. The copper facing method

allows control over the curve shape by control of the facing depth. The addition of

copper facing to the loss drum has negligble effect on the transient torque response (for

constant airgap) except at very low slip speeds where the copper facing reduces the

torque response time by 5-15% depending upon the rotor design. Wright reports that

there was no published literature on the transient performance of eddy-current couplings.

All of the published literature on the subject deals with the steady-state performance of

eddy-current couplings with homogeneous solid drums.

“Even though the coupling is clearly not a single order linear system, torque

response is usually specified in terms of the “torque time constant”, i.e. the

27

time to reach 63% of the steady-state torque, following a step of rated field

voltage. The torque time constant of a commercial coupling ranges from

0.20 s for a fractional kilowatt machine to approximately 10 s for a large
dynamometer.”

– Wright (1972)

The majority of eddy-current couplings are manufactured with solid iron rotors and

eddy-currents are expected in the loss drum as the principle mechanism of operation of

these machines, but eddy-currents are also induced in the other parts of the magnetic

circuit (particularly the rotor) during periods of transient flux. The these eddy-currents

produce their own field which tends to delay or damp the change (increase or decrease)

in air gap flux by opposing the main field which created them. Wright describes the

potential task of a direct analysis of the damping eddy-current paths as being formidable

even for simple geometry due to the interdependence of the inducing flux and the

resulting distribution of eddy-currents (a later attempt is made by Jamieson (1968) for an

unslotted iron rotor), although the subsequent substantial performance improvements in

modern computers and the adoption of finite element techniques may make this a more

tangible prospect (an early example for the solid iron rotor being Demerdash & Nehl

(1979)).

Figure 3.3: Eddy current coupling current (upper trace) and flux (lower trace) response at
standstill (Wright, 1972). 20 ms timebase, arbitrary vertical scale

28

Figure 3.4: Eddy current coupling current (upper trace) and flux (lower trace) response at
100 rpm, 10 Hz pole frequency (Wright, 1972). 20 ms timebase, arbitrary vertical scale

Concerned with establishing an applied change in voltage to transient torque

relationship, Wright uses an idea from Fegley (1956) (and others before him referenced

therein) to approximate the effects of eddy-current damping by a fictitious damper

winding which is magnetically coupled to the main field winding (3.5).

M

V ie

Rf Re

if

Figure 3.5: Field circuit and fictitious shorted damper winding circuit representing
eddy-current path (Wright, 1972; Fegley, 1956)

Fengly states that the analogy holds best for machines having a completely laminated

magnetic circuit (as these machines still stuffer from the same eddy-current effect, to a

lesser, but not negligible, degree), as in a solid iron section the eddy-current density is

highest in the vacinity of the surface (therefore lowest in the centre) creating variable

eddy-current density which causes a distortion in the air-gap flux. The reader is also

reminded by Fegley and his respondents that the relationship will only hold well for

excitation conditions that are far away from the magnetic material’s saturation point. A

respondent shows data for the predicted flux development alongside measured flux for a

29

DC machine which demonstrates the fact that the real flux develops more slowly than the

estimate. The writer who presented the data proposes that the time constant for both the

real and fictitious windings should instead be calculated from the design parameters and

mechanical dimensions (respectively) of the machine. For the fictitious winding the

technique outlined by Pohl (1949) (who notes eddy-current brakes as an application)

might be used for simple geometry, but for a salient pole rotor this must imply forming

an estimate of the eddy-current path resistance based upon an knowledge of the actual

eddy-current distribution which returns us to the original complexity noted by Wright.

Wright is however, slightly dismissive of a detailed analysis of the eddy-current damping

effect on the field winding transient current response, stating that it just serves to modify

(slow) the flux development time constant without changing it’s nature. This may be

true, particularly for an unsaturated laminated core/rotor, but for control purposes where

field current is the measured variable rather than flux (as it is more easily measured), it

would be advantageous to have a transient relationship between current and flux

development to allow virtual sensing of flux which in turn would allow either

compensated feedback/feedforward or a predictive control technique to be used.

kl = 1− M√
L f Le

(3.1)

The main result from Fegley (1956) is that for the case where flux leakage is neglected

(kl = 0), the initial current step takes place instantaneously, and the response of the field

current i f to an applied voltage can be can be expressed in terms of just the field and

damper winding time constants (3.2).

i f =
V
R f

[
1−
(

1− τe

τ f + τe

)
e

(
−t

τ f +τe

)]
(3.2)

(3.2) implies that when a voltage is applied the field current will rise instantaneously to a

value determined by the time constants of the real and fictitious windings:

Per-unit jump in i f =
τe

τ f + τe

The combined time constant for both windings
(
τ f + τe

)
can be determined by plotting

the natural logarithm of the transient current reponse against time and measuring the

resulting negative and approximately linear gradient. The size of the initial jump in field

current can be measured directly from a current-time plot. Hence by capturing a single

current transient response, the two field time constants can be determined. This

simplified result may be sufficient for control purposes depending upon the amount of

30

flux leakage the real machine exhibits and whether the step rise time lies inside the

control period. A difficulty in applying this techique is that DC couplings and

dynamometers usually use solid rotors, not laminated, and saturation is likely to occur in

some parts of the magnetic circuit which will distort this simple relationship.

Wright defines a general relationship for the pole flux developed for a given applied

voltage and field current as:

φac

V
=

NΛ/(1+A)R(
τl +

τg0
1+A

)
s+1

(3.3)

φac

i f
=

NΛ

1+A
(3.4)

where magnetic permeance Λ = φ

NI

Wright defines the time constant associated with the field winding as being composed of

a coupled and leakage time constants so that τ f = τg + τl and derives that following

transfer function relationships for the current response to an applied voltage for both the

field winding and the fictitious damper winding:

i f

V
=

1+ τes
R f [τe (τg + τl)kl (2− kl)s2 +(τg + τl + τe)s+1]

(3.5)

ie
V

=
Ms

R f Re [τe (τg + τl)kl (2− kl)s2 +(τg + τl + τe)s+1]
(3.6)

The poles for the two transfer functions are given by solving the quadratic denominator

common to both. Letting the two real roots be −1/τa and −1/τb where τb is the flux

leakage time constant, we have:

i f

V
=

1
R f
× 1+ τes

(1+ τas)(1+ τbs)
(3.7)

Setting the denominators equal to solve the quadratic:

τaτbs2 +(τa + τb)s+1≡ τe (τl + τg)kl (2− kl)s2 +(τl + τg + τe)s+1 (3.8)

Gives:

31

τa + τb = τg + τl + τe (3.9)

and

τaτb = τe (τl + τg)kl (2− kl) (3.10)

Wright applies the assumption that the flux leakage between the field and damper

windings is small so that τa� τb which allows τb to be dropped from 3.9:

τa = τl + τg + τe (3.11)

And by substitution back into 3.9:

τb =
τe (τl + τg)kl (2− kl)

τl + τg + τe
(3.12)

By substituting for τa and τb in the damper current transfer function 3.6 and using 3.3:

φac

V
=

NΛ/(1+A)R

(τl + τg + τe)s+1
(3.13)

Thus if a small flux leakage between the damper and field windings is assumed then the

only effect of the damper winding is to increase the overall flux time constant by τe.

Wright cites a result from an earlier paper (Davies, 1966) written by his main supervisor

that the drum can be assumed to be in a pseudo-steady-state condition during transients.

Davies reports that for the loss drum the magnetisation curve the BH relationship can be

summarised by a piecewise selection of B = kHn around the knee of the curve, then

B = µH and B = constant for the lower and higher extremes of operation respectively

(Davies, 1963, 1966). The flux penetration depth in the drum is affected by excitation

frequency which in turn is directly related to the coupling slip speed. Hence the flux will

pass from pole to pole though a very shallow surface layer for higher rotational speeds

causing saturation localised to the surface layer. Linear theory suggest that torque should

be proportional to the square of the excitation current (i.e. T ∝ φ 2
ac), however saturation

in the drum makes this not the case in practise. It is the degree of saturation which is the

basis for selecting which of the BH relationships describes the current operating point.

By defining and index m, transient torque will be affected by flux as:

T ∝ φ

2m
2m−1

ac

32

Wright further concerns himself with attempting to predict the transient torque response

to a change in applied voltage, noting that this is directly coupled to the transient flux

response which can only lead to an analytical solution for constant dφac
di which

corresponds to the lower part of the magnetisation curve which is approximately linear.

This implies that the analytical solution holds only for voltages resulting in relatively

low excitation currents, but he also states that the error is small for high currents at the

low slip speeds which couplings are usually rated for. Dynamometers are used for high

slips speeds so would require a piece-wise-linear solution where τg is held at a constant

for each of the (suggested three) linear solutions.

Koustas & Watson (1984); Koustas (1984) are among the earliest to report a full digital

implementation of an eddy current dynamometer controller. They developed a single

unit which could can be easily transferred between several dynamometers of different

ratings. The controller consists of three 16-bit PC’s fitted with data acquisition cards and

linked through three bi-directional 16-bit data buses. The controller was implemented in

such a way that design variations between dynamometers could be accommodated by

using different calibration files for each to retain optimal settings. For DC eddy current

dynamometers, the authors cite the disadvantages of no motoring capability and a

relatively slow response time, with very low inertia (typically 0.5 kg.m2), compared to

DC motor dynamometers. However they are relatively low cost whilst maintaining

precision and ease of control.

A commercial thyristor voltage controller excitation unit (BEC 12/45) was used initially

with a maximum output of 45 V. This was primarily a voltage controller not a current

controller and the authors claim that a slow thyristor response was limiting the load

application response of the dynamometer. To improve this the thyristor unit was replaced

by a pulsed high voltage current controller which took the form of a DC voltage chopper

with current feedback where the mark-space ratio controls the RMS current (no details

are provided) from a rectified 240 V AC supply. A switching frequency of 2.5 kHz was

used, limited by the switching delays in the power transistors, and the current ripple was

maintained <5%. The reported current rise time for this unit was (dynamometer

dependent) typically 20 ms. For rapid unloading, reverse polarity is applied to the

dynamometer. Although the control of the dynamometer is described in terms of its flux,

it was the excitation current which was directly controlled as torque and steady state

excitation were assumed to be proportional to flux. The main reason for using flux was

so that if torque and speed are mapped into flux the control problem can be reduced to a

SISO system without loss of the speed information.

At the time of publication, it was believed by the authors that no existing dynamometer

torque controller uses speed as an input so as to avoid the need for multivariable control.

Speed was treated as an exogenous disturbance to be rejected by the torque controller.

The transient current and flux behaviour was not considered as the excitation unit was

33

said to be able to achieve the required current within the torque controller period of

40 ms (software adjustable to any multiple of 20 ms), although no data is presented to

support this and it is not stated what conditions the excitation unit can achieve this, i.e.

for how big a step change in input. An open loop measured flux response is shown and

does not reach steady state after 6 seconds. Driving the field coil with a much higher

voltage, under control, than is required to maintain a particular steady state flux will

reduce this time considerably for small changes in demand. However, a full scale

demand change is unlikely to reach the set-point in anywhere near 40 ms even with a

high voltage power supply.

An attempt at a theoretical and analytical set of models of varying order for the flux

response were made from simplified geometry of the magnetic path and they are shown

to make reasonable agreement with the measured flux response of a dynamometer.

However, the test conditions are not stated and it is mentioned briefly (in a different

section of Koustas (1984) to that which the model is derived) that the second order

least-squared fitted flux model (presumably selected as the best candidate model order)

was later abandoned due to its inability to accurately provide predictions over the full

operating range. Instead a 3-D map relating speed, torque and steady state excitation

current to flux was used with a linear interpolation program. The rest of the work

assumes flux to be the manipulated input to the dynamometer from which it must be

assumed that the required steady-state current to achieve the demand flux is looked up

for the particular operating point. No direct mention is made of eddy-current damping

and its effect on the transient current/flux/torque responses.

Five test run control modes were used from a console user interface:

1. A series of steady-state test points with data-logging at each.

2. A transient tracking mode in which both controllers go through a predefined

transient schedule, using preview methods to optimise the torque schedule.

3. A non-tracking version of 2, with no preview for optimisation.

4. A power-speed law such that torque is some predetermined function of speed,

using a third order speed polynomial.

5. Speed control by torque. The throttle controller follows a prescribed throttle

position whilst the torque controller adjusts torque to achieve the desired speed.

The torque control algorithm was based upon time optimal control using a dynamometer

excitation model. For this, a second order model based on the magnetic flux (rather than

torque) was selected to simplify the model derivation. For large set point changes a

34

bang-bang control mode is used until a target range is achieved, then within this range a

pseudo-singular mode is activated until the actual target is achieved.

The torque sampling and control loop frequency is 50 Hz. The torque signal was

measured using a strain gauge load cell and all the dynamometers are undamped for fast

response. Due to the inevitable noise from vibration, the torque signal is first passed

through a low-pass filter with a cut-off frequency of 200 Hz and then integrated over the

20 ms sample period. The torque schedule is specified every 0.5 s. Non-tracking modes

use a single point look ahead and a four point (2 second) preview for tracking. A

stepping motor forms the actuator for the engine governor and is directly controlled

open-loop by software generated pulses. The stepper motor scheduling is described in

detail, but essentially the fastest possible velocity profile, or acceleration/deceleration

curves without the motors missing any steps, is used directly by the time-optimal speed

controller.

Speed

control

PID

Optimal

throttle

controller

Stepping

Motor
Engine

Dyno.
Excitation

unit

Optimal

torque

controller

Throttle/

torque/

speed map

Speed

Torque

Speed

request

Torque

request

Speed feedback

Torque feedback

_+

_+

Speed

disturbance

Torque

disturbance

_+

Figure 3.6: Block diagram of modes 1 and 3, no preview. (Koustas & Watson, 1984)

Figure 3.6 shows the schematic diagram of the control system in modes 1 and 3. This

shows the software based torque control with torque feedback, the dynamometer’s speed

variation is treated as an external disturbance, since this alters torque for a given

excitation. For speed control a PID controller with velocity feedback is used and the PID

output is compensated for the load point using a throttle/torque/speed map.

Speed

control

PID

Optimal

throttle

controller

Stepping

Motor
Engine

Dyno.
Excitation

unit

Optimal

torque

controller

Preview

processor

Flux/torque/

speed map

Speed

Torque

Speed

request

Torque

request

Throttle

request

Speed feedback

Torque feedback

_+

_+

Speed error flux

correction

Speed

disturbance

Torque

disturbancePre-calculated offline

Figure 3.7: Block diagram of mode 2, torque and speed tracking with preview. (Koustas
& Watson, 1984)

35

Speed

control

PID

Optimal

throttle

controller

Stepping

Motor
Engine

Dyno.
Excitation

unit

Optimal

torque

controller

Power

law

generation

Speed

Torque

Speed

request

Torque

request

Speed feedback

Torque feedback

_+

Speed

disturbance

Torque

disturbance

_+

Figure 3.8: Block diagram of mode 4, power-speed law. (Koustas & Watson, 1984)

Speed

control

PID

Optimal

throttle

controller

Stepping

Motor

EngineDyno.
Excitation

unit

Optimal

torque

controller

SpeedSpeed

request

Torque

request

Throttle

request

Speed feedback

_

+_+

Speed

disturbance

Throttle position

Torque feedback

Figure 3.9: Block diagram of mode 5, control of speed using torque. (Koustas & Watson,
1984)

Mode 5 (Figure 3.9) uses torque to control speed and the time optimal speed controller is

replaced with a conventional PID controller with a 40 ms control interval and is tuned

under step load application at constant throttle. The optimal torque controller requires a

steady-state flux map of the dynamometer as input. Mapping is performed as a 3D array

of speed, torque and excitation (considered proportional to flux). The map is then used

by the controller through linear interpolation.

Other work in this area includes a generalised predictive controller (GPC) (Noble et al.,

1988; Beaumont et al., 1988) of Ricardo. Also King et al. (1991) presents a pole

placement self-tuning controller for the torque control loop.

3.2 Engine Testing and Calibration

The aim of an adaptive engine controller is to replace some or all of the calibration effort

of a conventional one, and/or to optimally track changes in the prevailing conditions

whether that is due to internal plant parameter drifting or external climatic change. A

further application of engine condition monitoring may arise naturally as a consequence

of having a plant model available in the control strategy whether any physical

correspondance from the model to the plant is possible or not. When a sudden or

unexpected parameter change is detected then this may be indicative of a fault or the

onset of a fault (Krishnaswami & Rizzoni, 1995) and allow prognostics and diagnostics

to take place.

36

For work to commence on a control strategy it is necessary to have a baseline calibration

with which adaptive algorithms may be compared. Rapid determination of the

calibration maps is desirable. For this to be realised there must be some level of

automation in adjusting the engine to the various set points and acquiring data.

Collection of data is also necessary for off-line model fitting and model validation.

Traditional steady state mapping is very time consuming especially if it is performed

manually, so it must be performed using an automated procedure, some of the history of

which is considered here.

3.2.1 Automated Engine Mapping

Hochschwarzer et al. (1992) has developed and tested an automated engine calibration

system. They state that there are large number of control elements in engine control

software and they often contradictory requirements, the determination of the best

compromise is a complex and labor intensive task.

The setting of ECU calibration variables is achieved using a ROM emulator plugged into

the EPROM socket and dual-ported RAM is used to link ECU to PC for real-time

monitoring. Constrained optimisation is achieved using Lagrangian techniques and the

engine protected from damage by calculation of safe operating regions and monitoring of

exhaust temperatures, cylinder pressure and knock. The operator can define an allowable

range for each control characteristic, but this cannot gaurantee that an unfortunate

combination of control parameters does not cause a limit violatation. The optimisation

module is able to cancel a parameter variation if a limit threatens to be violated (such as

knock). A custom programming language was developed that they called OPTI, which

allows a test scenario to be described in terms of the manipulated variables, constraints

and the performace objective. It is not stated, but this implementation would require a

dynamometer and torque speed controller capable of reaching and maintaining the

desired test operating points independently of whatever calibration exercise was being

performed. The engine map calculator produces fully populated maps from a relitively

low number of optimised settings. It performs interpolation and extrapolation using a

spline function from the optimisation results and provides filters and confidence checks.

They claim that the resulting engine maps compared favourably with manually

determined maps, with a torque improvement for one cited case.

3.2.2 Sweep Mapping and Automated Engine Testing

Steady state mapping has been commonplace for optimising IC engine operation. Engine

data are logged after a predefined time has elapsed and this is repeated systematically for

37

each operating point that is required. Conversely, the sweep method continuously moves

the engine through its operating envelope without dwelling to speed up data capture.

This method is not straight forward as thermal and mechanical inertias associated with

the engine make instantaneous measurements different to steady state ones and also as

the settling time of the instrumentation used must be taken into account. Sweeping the

engine through its torque range at constant speed helps to reduce the effects of inertia,

rather than allowing it to accelerate through its speed range as is often done to produce

torque and power curves.

Research at Bath University in collaboration with Cosworth Technology (formerly, now

MAHLE Power Train division) compared the accuracy and repeatability of the sweep

approach under experimental conditions, with that of steady state testing (Ward et al.,

2002). The authors reported that the errors can be reduced to satisfactory levels by

modelling the engine and instrumentation responses. The sweep mapping technique

required intensive data processing and test bed sophistication over conventional steady

state mapping, and showed the potential to give accuracy comparable to steady state

testing, but with much reduced mapping times. The response time of some equipment

(particularly relating to air, fuel and emissions) was found to be the limiting factor for

the maximum sweep speed.

3.2.3 Model Based Calibration Tools

Lumsden et al. (2004) considered the use of proprietary model based calibration tools for

use with what they have termed complex engines, i.e. those that have added degrees of

freedom created by variable valvetrain mechanisms (lift and timing), variable

compression ratio, stratified direct injection, variable intake geometry and charge

direction control ability. Such additions to the conventional engine design can increase

the calibration effort by orders of magnitude and it may become unfeasible to map the

entire operating envelope systematically. For these engines it is necessary to either

accept suboptimal operation in known stable regions or employ Design of Experiment

(DoE) techniques that have more commonly been applied to the chemical processing

industry to improve data quality and reduce testing time. The use and interpretation of

results created using DoE tools is not straightforward for engine management and work

is ongoing to improve these tools. DoE tools are also used to reduce the amount of

experimentation and perform optimisations.

They first tested a software tool by Umetrics called Modde which allowed only simple

constraints to be applied to the test regions. It is suggested that an n-dimensional hull is

required, the construction of which is not a simple task. A typical task might include

attempting to minimise BSNOx (brake specific nitrous oxide emissions) at a particular

operating point whilst maintaining acceptable combustion stability. An acceptable result

38

may be obtained but it does not deal with practical considerations such as the need for a

smooth transition in control parameters along any given speed-load trajectory. The

creation of the subsequent map becomes at least as difficult as the original model

construction using DoE. The Quadratic models produced by the software proved useful

for prediction and optimisation of the NOx and CoV (combustion stability) responses,

but they were not found to be adequate for BSFC (brake specific fuel consumption) or

THC (Total Hydrocarbon emissions) modelling.

The Mathworks MBC (Model-Based Calibration) Toolbox was used to develop

experiments which allow cubic models to be produced. Tools for directly populating

engine calibration maps are included when using Matlab, unlike standalone DoE

software. The cubic models showed a better predictive ability than the quadratic models,

in particular for the BSFC and THC where it was thought that quadratic model shape

was just not suitable for representing the complexity of these two parameters to the

desired accuracy. Due to a clustering of data points the model was reworked and an

additional radial basis function (RBF) model was tested.

It is stated that it is not yet common for engineers to have complete trust in automated

optimisation routines for high numbers of dimensions and that flexible plotting functions

are essential so that some opportunity for judgement is still possible. Cosworth

Technology have previously used motoring dynamometers only as these allow the engine

to keep running during extremely poor combustion that might otherwise cause a stall

condition. Being able to keep the engine running is essential during automated testing as

an engine stall would cause the experimental program to abort and would require manual

intervention to restart it each time. Recent work now allows them to use conventional

absorb-only dynamometers presumably by making using of DoE constraints as well as

monitoring transitions between operating sites. They are also investigating the use of

Genetic Algorithms (GA) to run optimisations in the Matlab environment. By using GA

the effective number of evaluated points increases as an exponential function of run time

and they hope that this will allow them to efficiently find local and global optima.

3.2.4 Capturing Cylinder Pressure Data in Real-Time

Cylinder pressure data is required to establish effective ignition spark timing and to

validate techniques that use pressure measurement or estimation as a means of indicating

output torque. It is also useful for misfire detection when starting and operating close to

regions of increasingly unstable combustion in an automated experimental system. Early

cylinder pressure data capture systems were not fast enough to gather data form a single

cycle so they were triggered at fixed a crank angle which was varied with time to build

up a time averaged chart of cylinder pressure. It is now possible to obtain transducers

that have a sufficient response time and A/D converters which can sample at a high

39

enough rate such that complete pressure traces can be captured for consecutive engine

cycles. However, capturing data in this way presents a storage (and interpretation)

problem as large amounts of data can be generated. Data windowing and reduction

techniques can be used to discard and reduce data points where high density is not

required. This can dramatically reduce the amount of data requiring storage.

Perkins Technology, manufacturers of diesel engines, pioneered their own data capture

system at a time when the commercially available systems were inadequate. A 12-bit

500 k samples/second A/D conversion system with an onboard microprocessor and RAM

to handle the acquisition, with direct output of data to an oscilloscope, X-Y data plotter

and tape storage. It was also coupled to an IBM PC through a RS-232 serial connection

and an 8-bit bus which could be used interchangeably. The PC was deemed to be too

slow (having a 6303 processor at 4.9152 MHz) to manage the data collection directly and

so it was decoupled by having an onboard processor which was programmed using

FORTH and sections of assembly language code. There must have been considerable

cost and complexity in this custom system and its low level design, but it was considered

worthwhile as it enabled them to visualise cold starting performance and conclude that

only the charge in one cylinder of four needs to self ignite under starter motor cranking

and the other cylinders will follow on.

3.2.5 Reduction of Cylinder Pressure Data

Capturing cylinder pressure data can result in very large file sizes. By way of an

example, the aquistion from one cylinder of a four-stroke engine running at 3000rpm,

sampling at 1 degree crank angle resolution to 16-bit precision results over a 240 degree

interval, results in a data rate of 703 kB/min or 41.2 MB/hour. Reducing the sample

interval to 0.5 degrees whilst running the engine at 6000 rpm and sampling the pressure

of all eight cylinders of a V-8 engine, increases this to 1.29 GB/hour. Whilst recent

advances in manufacture of harddisks mean that storage of over a Terabyte is easily

affordable, it is still desirable to keep the amount of data storred to a minimum. One

technique to reduce the amount of data storred is to use a variable resolution technique

such as that presented by Brunt et al. (2000). Figure 3.10 shows how the variable

resolution scheme employed for data reduction against an actual cylinder pressure curve.

It is claimed by the authors that by dividing the pressure curve into regions of interest

determined by mean cycle characteristics in angle space, allows upto 90% of the original

data to be discarded. From Figure 3.10 the amount appears to be closer to 75% for the

angular windowed region shown. The figure of 90% may refer to a comparison with

continous sampling of a four-stroke cycle or the fact that derived statistical quantities no

longer have to be stored alongside the pressure data as they can be recontructed from this

data at a later time the reduced data is still representative of the original data.

40

Figure 3.10: Mean cylinder pressure curve for datum test condition for reduced format
resolution, showing the stored data points and the interpolated curve (Brunt et al., 2000)

Figure 3.11: Typical comparison of cylinder pressure vs. crank angle curves for original
and reduced cylinder pressure, difference is shown in lower region of the plot (Brunt et al.,
2000)

Figure 3.11 shows a mean pressure curve and the pressure difference between the

original data and the reduced data against crank angle. This shows that the reconstructed

mean from the reduced dataset differs from that derived from the original data by at most

800 mbar and by only 50 mbar in the central -90 to +90 degree region of interest where

the main pressure rise has occurred. Figure 3.12 shows how the data reductions

technique has effectively been filtered and introduced a small offset (of at most 50 mbar)

to the original data at a region peripheral to the main pressure rise.

41

Figure 3.12: Comparison of reduce cylinder pressure and origninal data (Brunt et al.,
2000)

3.3 Engine Modelling

This section covers some of the many models which have been proposed for representing

engine dynamics either to allow study of behaviour without the need for the physical

engine, or for direct inclusion within a control scheme to improve it’s performance.

Why Model?

“Essentially, all models are wrong, but some are useful.”

– Box & Draper (1987)

A very brief summary of the of the rationale for the use of modelling for engine control

is as follows:

• Models can be used for off-line development of controller.

• They can be used for verification.

• They can be used for parameter estimation in a control loop or can be used directly

as a control mechanism if converted into code either manually by a programmer or

using by a block diagram and an automatic code generator.

• Models vary in complexity and use.

• More complexity usually means that it is harder to generalise and is specific to a

particular engine. As the number of parameters increase the effort require in

obtaining valid value for the model’s coefficients and constants increases.

42

3.3.1 First-Principle Phenomenological Modelling

The overhead in representing the physical plant is considerable and is only useful for

engine design and conceptualisation where a complex model is not needed, but a detailed

model of the aspect of design under scrutiny is. The overhead is too high for control and

may deal with parameters that are immeasurable on a production engine and

identification and validation can be difficult to impossible to achieve. Mean Value

Engine Models (discussed in the next section) are usually phenomenological, but offer

some simplifications to make them more usable in practise.

3.3.2 Mean Value Engine Model (MVEM)

Mean Value Engine Models (MVEMs) describe the main dynamic processes as a

function of the most significant engine variables, and were pioneered mainly by the work

of Hendricks (Hendricks & Sorenson, 1990), building upon early published work on

them such as Dobner (1980); Dobner & Fruechte (1983) and Aquino (1981). Hendricks

has given much attention to filling dynamics (Hendricks et al., 1996; Chevalier &

Hendricks, 2000) throughout his work, with particular attention paid to validity during

throttle transients (Chevalier et al., 2000) as this offers the potential to improve

open-loop transient emissions. MVEMs have been used to verify engine control

strategies (Silviero et al., 1995) and also have been used to directly control engines as

they are computationally simple enough for real-time computation, however they are

limited by approximations made during their design and identification. Heat transfer

from the intake manifold is, for example, not accounted for and correction factor maps

have to be manually tuned. These static maps are used to account for the non-linear

dependence of model parameters such as the fuel evaporation time constant. MVEMs

take some time and experimentation to fit to a particular engine and do not take

long-term temporal factors, such as engine component wear and contamination, into

account. Classical adaptive strategies have been proposed around MVEMs without these

underlying problems having first been resolved. Despite the limitations outlined,

MVEMs represented a leap forward in engine modelling in that offline software

simulations can be formulated and run to a reasonable level of accuracy with only a

moderate effort required to tune the model to approximate an actual engine. Control

strategies can then be tested without going to the full time, effort and expenditure of

creating a hardware implementation.

An overview and detailed explanation of MVEMs are given in Hendricks (1997, 2000)

and offer an excellent starting point for the interested reader who has just come across

them and wishes to understand more about them.

43

Melgaard et al. (1990) describe an identification process for MVEMs using maximum

likelihood estimation, and gives particular attention to the identification of the major

time constants of the engine. Data is collected in a time-based fashion rather than in the

angular domain and a pseudo random binary sequence if imposed upon the normal

demand signals. Although the work was carried out for the purpose of calibrating a

MVEM for offline use, the authors state that the noise estimates produced are also useful

for construction of Kalman filters for condition monitoring or control applications. The

identification results themselves also have potential for condition monitoring and

control, although the MVEM is in a continuous form which limits its use outside a

simulation environment without further work to discretise and optimise it for

implementation on a microcontroller.

3.4 NARMAX Models

NARMAX is an abbreviation for Nonlinear AutoRegressive, Moving Average with

eXogenous inputs. Many systems that have nonlinear behaviour may be modelled by a

NARMAX model structure. This structure describes both the stochastic and

deterministic behaviour of the system. It models the input-output relationship of the

system as the non-linear, but linear-in-the-parameters (LIP), difference equation of the

form shown in (3.14),

y(t) = F
(

y(t−1) , ...,y(t−ny) ,u(t) , ...,u(t−nu) ,e(t−1) , ...,e(t−ne)
)

+ e(t)

(3.14)

where y is the output, u is the controlled input (i.e., exogenous variables), and e is the

noise input. F is a nonlinear mapping, which may include a variety of nonlinear terms,

such as terms raised to an integer power, products of past inputs, past outputs, or

cross-terms. The maximum number of terms in a NARMAX model depends on the

maximum lag on the inputs, the output, and on the error, the number of the inputs, and

the maximum non-linearity order. Even for moderately complex models the number of

candidate terms becomes very large. However, the actual number of terms needed to

fully describe a NARMAX model may be relatively few, therefore a subset of the total

possible candidate terms has to be selected, in the process of structure detection, to

construct what is often termed a parsimonious model. The danger of using a

non-parsimonious model is the same as that of an artificial neural network with too many

layers or nodes. A model with a higher order or more terms than the underlying system’s

structure will attempt to reproduce noise.

44

The main difficulty with constructing a NARMAX model is that the structure of the

model must either been known in advance from a priori or expert knowledge, or

estimated for a given set of data. The most widely used parameter estimation method for

NARMAX models is the extended least squares (ELS), which addresses the bias

problem by modelling lagged errors to obtain an unbiased parameter estimate.

To assist with the identification of what is normally an initial highly over-parameterised

model, a bootstrap-based algorithm presented by Kulreja et al. (1999) has been proposed

that consists of structure detection as well as parameter estimation. The paper assumes

the order of the model is known which might not always be the case if little is known

about the underlying structure of the system to be modelled. If the order of the model is

not known then the order can be estimated from frequency response functions or by

using the bootstrap method to test different model orders. The frequency response

method has been reported by Åkesson & Sällberg (2003) as being the most reliable to

estimate the model orders.

The bootstrap method, introduced some years ago by Efron (1979), is a numerical

procedure for estimating the distribution of statistical parameters which requires few

assumptions, and can be used in situations where regression is not valid. The method has

regained popularity in recent years with the widespread availability of high performance

computers required for its repetitive nature. The only conditions needed for bootstrap

methods are that the errors are independent, identically distributed, and have zero mean.

For the usual method of regression analysis, accurate estimates of the parameter

variances are needed, which are difficult to obtain unless the model structure is correct.

The structure detection problem is to select only a subset of the candidate terms which

best describe the output. Several methods for NARMAX structure detection have been

proposed including hypothesis testing of the differences between means via t-test,

stepwise regression and Korenberg’s orthogonal structure detection routine. All of these

methods can fail in nonlinear system identification for various reasons.

The application of the bootstrap method to structure detection involves first computing a

series of parameter replications, then forming percentile intervals for hypothesis testing

where the significance of the parameters is determined. Bootstrap data is formed by

estimating the residuals of the identified model. These residuals are then re-sampled with

replacement data and added to the predicted output to generate bootstrap replications of

the output. A number B of bootstrap data sets are generated to estimate B bootstrap

parameter replications. The significance of each parameter is determined by checking if

zero lies in its interval, if so the parameter is rejected, as illustrated in Algorithm 3.1.

More recently a Matlab toolbox called detectNARMAX (Shafai et al., 2003) has been

developed to automate the Bootstrap procedure for NARMAX models. The authors have

developed a graphical user interface that allows the users to keep track of both the

45

Algorithm 3.1 The BSD Algorithm

1. Compute an initial estimate of the unknown parameter vector and estimate the residuals

2. Generate B bootstrap data sets and compute the bootstrap parameter replications

3. Form percentile intervals for each parameter by ranking estimates from the B parameter

replications in increasing order

4. Estimate the upper and lower bounds of each parameter's con�dence interval for a desired

level of signi�cance

5. Determine if zero lies in the interval of each parameter in the vector

6. If zero lies in the interval for any parameter(s) remove them from the regression

7. Compute the new estimate of the parameter vector and residuals

8. Go to 2 until convergence

structure detection process and the parameter estimation, which they consider to be most

useful in the case of a higher model order with a large number of candidate terms. The

program also allows the user to make a pre-selection of candidate terms that may be

known in advance from a proiri or expert knowledge of the system. A more detailed

assessment of the bootstrap method for structure detection was presented and it was

compared using Monte-Carlo simulations to the t-test method to which it compared

favourably.

Diesel Generator NARMAX Representation A relevant application of NARMAX

identification was performed by one of the original proposers (Leontaritis & Billings,

1985a,b) who used a difference equation to predict the output of a 4.6 MW 12-cylinder

industrial diesel generator (Billings et al., 1988). At the time of its publication, virtually

no practical NARMAX applications for real industrial processes had been reported.

Numerous experiments were conducted on the diesel generator but only a limited

amount of data was recorded in a suitable form for analysis. The sample time interval of

5 seconds was found to be too small so the data was decimated to retain only every 100th

point. Two data sets were used, one to estimate the model, and the other to validate the

model against. Although the resulting model showed good prediction against the data set

(Figure 3.13) it was not subsequently tested against any other data sets collected. By the

author’s own admission it was not known if the data sets were fully representative of the

engine’s whole range of operation and excitation.

46

Figure 3.13: Estimation results using NARMAX input-output model compared with the
original data set

Idle Speed Controller Designed from a NARMAX representation An engine idle

speed controller has been developed Glass & Franchek (1999) using a NARMAX model

of the underlying system to help determine an improved controller transfer function. The

difference equation (3.15) is an example NARMAX model:

y(k)= c01,1y(k−1)+c01,2y(k−2)+c02,1y(k−1)y(k−1)+c10,1u(k−1)+c20,1u(k−1)u(k−2)
(3.15)

The subscripts represent the order of the contribution of past inputs, the order of the

contribution of past outputs, and the coefficient for a specific regressor structure,

respectively. The actual model used for the resulting controller was not given. A

statistical evaluation process uses an orthogonal estimator to identify key regressor terms

out of the many possibilities. An example of this is a cubic NARMAX model using three

past states having 99 different combinations of terms. The model is linear in the

coefficients and they can be identified using the least squares method, as with a linear

model. The NARMAX least square problem can be formulated as (3.16) where y(k)is
the model output, pi (k) are the regressor terms and i are the coefficients for each

regressor term and e(k) is the noise model of the system.

y(k) =
M

∑
i=1

pi (k)θi + e(k) (3.16)

The noise term e(k) has to be minimised so that it is uncorrelated with the input and

output signals. To allow the NARMAX model to be used in a controller frequency

domain a describing function of the model was developed. The fundamental component

47

of the system output due to a single frequency harmonic input was considered and

higher-order harmonics were neglected due to their much lower amplitude. A harmonic

balancing method (Nayfeh & Mook, 1995) was used to recover the fundamental

frequency content of the non-linear system response. The controller was designed using

a loop shaping approach (Jayasuriya & Franchek, 1991) developed by the authors.

A Ford 4.6 L V8 fuel injected engine was used to test the controller algorithm. The idle

speed was controlled using the by-pass idle air valve (BPAV) which at the time was

standard on many Ford engines. This electric solenoid valve controls the idle air flow

into the engine when the throttle is fully closed. The engine speed was measured using a

high resolution optical encoder. The pulse train was passed through a voltage to

frequency converter and low pass filtered at 25 Hz to avoid aliasing. A sample rate of

250 Hz was used to capture the engine speed. The controller was implemented using

Real Time Workshop C code generator, but the details of the hardware implementation

were not given. A disturbance step load of 20 Nm was imposed on the engine by

saturating the power steering pump. The controller was set to limit the engine speed

deviation to 100rpm and was set to maintain 700 rpm that is also the set speed for the

original Ford controller. As can be seen from Figure 3.14, the controller compares

favourably to the original production ECU showing both an improved time response and

that the drop in engine speed is exactly bounded to the designed limits.

Figure 3.14: Comparison of the experimental response of on-board Ford idle speed
controller with a NARMAX controller to a 20 Nm step load torque disturbance

3.5 Other Models

3.5.1 Sliding Mode and Constant Gain Extended Kalman Filter Models

(Kaidantzis et al., 1993) build upon earlier work (Hendricks et al., 1992) which uses a

48

constant gain extended Kalman Filter (CGEKF) to estimate air mass flow into an engine

in combination with a mean value model to estimate the fuel film dynamics. The

emergence in the literature of sliding mode observers prompted investigation into a

comparison with the CGEKF estimator due to claims of high levels robutness in the

literature. An aggressive driving scenario was used for the tests, and it is shown that it

has a degree of robustness, but not to a significantly higher level than the CGEKF based

observer. It is also claimed that the mode of operation of the sliding mode observer is

inherently noisy which degrades its performance when compared to the CGEKF. The

authors note that both types of observer can be implemented on microcontrollers in use

at the time of publication, so the comparison is one of performance rather than a

particular implementational advantage.

3.6 Torque Estimation Techniques

3.6.1 Torque and IMEP Estimation using Crankshaft Rotational Frequency
Variation

Rizzoni (1989) has presented a technique for estimating the indicated engine torque by

relating cylinder pressure deterministically to net engine torque through the geometry

and dynamics of the reciprocating assembly. A passive second-order electrical circuit

model with constant parameters is used. It is claimed that the experimental results

confirm the validity of the model over a wide range of engine operating conditions,

including transients.

Lida et al. (1990) also present an indicated mean effective pressure (IMEP) estimation

technique, from flywheel angular-speed fluctuations and has claimed high accuracy at

medium to low speeds engine speeds.

Wang et al. (1997) has developed a crank-angle-based model to design a nonlinear

event-based observer to estimate the indicated engine torque using one or more

measurements of crankshaft angular velocity. They have used crank-angle based

implementation for the observer, because the crankshaft angular velocity signal can

sampled at discrete crank angle intervals to give more uniform signal than previous

time-based approaches and so that the processing of the velocity signal is performed at in

a way which is synchronised to the torque pulses being produced by the engine. The test

results presented suggest a good correspondence with torque calculated from

measurements taken with a cylinder pressure sensor for both steady-state and transient

operation. The authors emphasise the benefit of the sliding mode approach particularly

for the transient case where a non-linear model would otherwise be required.

49

3.6.2 Torque Estimation using Engine Block Angular Acceleration

Ball et al. (2000) examines the possibility of detecting misfires via measurements of the

angular acceleration of the engine block. They took measurements on a production

4-cylinder engine and modeled it as a single degree of freedom torsional oscillator. The

torque waveform was estimated then compared to the indicated torque estimated from

cylinder pressure measurements. Their results indicated the results were most reliable at

low frequency, but at high frequency preformance was degraded due to modelling

limitations and the non-rigid behavior of the block at high engine speeds. From these

results it appears that this techique may be useful as another way to detect misfire, but is

of limitied practical use for acurate torque estimation for simimlar reasons as crankshaft

rotational frequency variation measurement.

3.6.3 Torque to Cylinder Pressure Correlation

Larsson (2003) introduces a parametric crankshaft model based approach for controlling

the individual cylinder peak pressure position from the torque data a crankshaft based

torque sensor (ABB Torductor) and a parameterised pressure model to reconstruct

pressure for peak-pressure-position (PPP) determination and control (Larsson &

Schagerberg, 2004).

3.7 Air-Fuel Ratio Control Strategies

Current emissions regulations has meant the normal control objective is to hold the

air-fuel ratio near to a constant value assumed to be near stoichiometric, but in practise is

an optimum for efficient gas conversion in the catalytic converter. A problem with

air-fuel ratio strategies that are not constrained to a constant air/fuel ratio (such as

lean-burn engines, or motor sport and off-road applications) is that there is no direct

method for the driver to convey the required performance, for example if the maximum

possible power (hence acceleration) is required or best fuel consumption. This is

sometimes inferred from the absolute accelerator pedal position or its rate of change, but

the driver is not necessarily aware of this and so may not adopt the required strategy to

obtain best economy or power. Some vehicles have featured a power/economy selector

which may change the final drive ratio of the gear box, or directly affect some engine

parameter. More modern vehicles also have featured a sport switch which tells the ECU

and associated systems, such as transmission and body control units of the driver’s

intentions. None of these systems readily allow the driver’s performance requirement to

be altered dynamically in response to changing road conditions.

50

The section looks at some of the model based approaches to air/fuel ratio control that

have been documented in the literature. To the authors knowledge, none of these

techniques have been used in production or aftermarket engine controllers despite there

being some degree of promise and benefit in their approaches, such as the removal of the

need for an initial calibration map, and their ability to cope with parameter drift and wear

effects.

3.7.1 Fuzzy Logic

The use of fuzzy logic for fuel-injection control has either been less well explored in

published literature, or less successful than other techniques. Lee et al. (2003) describe a

fuzzy controller developed for a Bosch Suffolk single cylinder 2-stoke 98cc engine. The

results were inconclusive as the benefit of fitting fuel injector was not reported and only

the resulting fuzzy logic controller results were shown. Small single cylinder engines

that are used on lawn mowers usually have carburettors that are single-jetted and don’t

correct the non-linearity caused by the characteristic of the venturi. In practise this forms

an natural speed and power limiting mechanism as the air/fuel ratio leans towards high

flow rates. A simple look-up table may have worked just as well or even better than the

fuzzy solution.

Chamaillard & Perrier (2001) present a preliminary investigation into the use of fuzzy

logic and perform and evaluation against an MVEM simulation. More work is needed to

establish the validity of the technique on an actual engine.

Passaquay et al. (2001) describe the torque based control of air/fuel ratio using a control

structure a gasoline direct injection (GDI) engine. They propose an engine controller

which uses fuzzy logic to define piecewise linear controllers. A stability analysis of the

engine is shown, based on a bifurcation diagrams.

3.7.2 Sliding Mode Observer

Choi and Hedrick have proposed a sliding mode observer fuel injection control scheme

initially in Cho & Hedrick (1988), then again a decade later in (Choi & Hedrick, 1998).

The sliding mode approach uses the switching of the exhaust gas oxygen sensor (narrow

band type) to estimate the rate of airflow into the cylinder. A simplified model that uses a

lumped parameter for both the lag and propagation time delay of the oxygen sensor

feedback and essentially consists of a three state model for the controller design. The

first is the mass of air in the intake manifold, the second is the engine speed, and the

third is the fuelling and its dynamics. There are delays incurred from intake to torque

and spark to torque. Many states are not modelled (such as exhaust pressure, exhaust gas

51

recirculation (EGR)), but the authors claim that it holds up well when compared against

more vigorous and complicated models. This attempt improved upon previous sliding

mode schemes by reducing chatter but still performed relatively badly during fast throttle

transitions. The choice of feedback gain was the limiting factor as a value that guarantees

stability and minimises chatter holds the scheme suboptimal for fast engine dynamics.

Cho & Oh (1993) also report a variable structure based scheme for controlling SI engine

air/fuel ratio.

3.7.3 Event-Based Observer

Chang et al. (1993) have developed a discrete non-linear crank-angle based SI engine

model for the design of AFR control algorithms. The engine model includes intake

manifold air dynamics, fuel wall-wetting dynamics, and cycle delays. The modelling

approach is a conventional first-principal one, for example using the ideal gas law for

intake air flow. The continous equations representing the engine dynamics are

discretisied using difference equations. A constant gain matrix Kalman filter (Kalman,

1960) is used to estimate the fuel puddle mass in the intake system. Integral control is

used in the form of state-space bias estimation to remove steady-state air/fuel ration

errors. To speed up the dynamic response, the authors use a form of adaptive

feedforward control that they describe as a learning map to store the biases that have

been previous learned by the integral controller so that under transient conditions the

integrator can be reinitialised to the previous bias value for the operating point. During

testing of the scheme the ignition timing was independently controlled to maintain the

combustion peak-pressure-position to 15° ATDC. The air/fuel ratio shown to be

controlled to within 0.5% rms of the demanded value during an arbitary throttle

transients and over 10° throttle angle step changes.

A later papers by the same authors (Chang et al., 1995; Powell et al., 1998) revisit this

work with more details of the experimental hardware, more consideration to the lambda

UEGO sensor’s characteristics (differing lean-rich and rich-lean response times), and

further description of the engine model formulation and experimental results for lean

air-fuel ratios which the controller was able to track to within 0.8% rms.

3.7.4 Artificial Neural Network (ANN) Augmented Controllers

Sliding mode with Gaussian RBF Transient Compensation A paper (Won et al.,

1998) which builds on the results of Choi and Hendrick’s use of sliding mode observers,

takes the sliding mode system further by introducing a Radial Basis Function (RBF)

network to provide transient fuelling compensation under fast throttle changes using

52

dynamic sliding mode control. A degree of robustness is given to engine ageing and the

peculiarities of individual engines. This Gaussian implementation was tested alongside a

production ECM on a 3.8L V6 sequential port injection engine. A 33 MHz 386 PC was

used with Microsoft Quick-C compiler to run the control algorithm within a 10ms loop

time. LM322 timer ICs were used to override the ECM and impose the new fuel injector

duty cycle. The results appear to have improved upon the original ECM performance for

transient conditions with a standard deviation of only 1.56% of the 14.64:1 air/fuel ratio

set point that was used. Again this was achieved without the laborious process of engine

mapping and so compares favourably to the ECM in the limited test case.

Radial Basis Function Air Mass Flow Estimator Another approach that set out to

improve upon the previously referenced sliding mode scheme was outlined by Manzie

et al. (2002). The controller’s ability was extended by using a wideband oxygen sensor

(UEGO) which has a linear response to changes in air/fuel ratio. A RBF neural network

was used as an estimator of the air mass flow into the cylinder instead of the sliding mode

scheme. It was initially trained using the same speed density laws that are used directly

in the sliding mode scheme. This approach maintains adaptivity whilst the estimator is

still based upon known calculated quantities. A first order model was used to represent

the fuel pooling on the manifold walls. A model predictive control (MPC) algorithm is

used to produce an optimal control set that compensates for the fuel film. MPC is

believed to be the only methodology that can handle the constraints in a systematic way.

The authors tested the resulting controller by both simulation and experiment. The

simulation used the Mean Value Engine Model technique, but with a modification

required due to a limitation in the way the fuelling dynamics are represented (Aquino,

1981). The engine tests were performed using a MoTec controller connected to a

4-cylinder 2.4 L Mitsubishi Magna SEFI TE series engine that has no external EGR. The

replacement control algorithm was implemented using LabView software running on a

Pentium class PC. A National Instruments data acquisition (NIDAQ) PC-LPM16 card

was used to interface the PC to the engine sensors and output the fuel injector pulse

width. The original MoTec ECU was used to trigger the fuel injector driver circuitry at

the correct time so the PC software did not have to calculate the engine timings, but was

required to update the fuel demand within an engine cycle. A Bosch UEGO sensor was

placed about 1m from the exhaust valves and a MoTec linearising kit was used to convert

the output into a DC voltage in the range of 0-1.6 V.

For testing purposes the throttle was changed by 10° over a 200 ms duration. The results

show that the proposed controller is able to maintain the air/fuel ratio within a 1%

boundary of the desired ratio. This is better than the MoTec but it exhibits far more

oscillation within the boundary than the MoTec does. It is suggested that this could be

fixed by a low-pass filter on the control signal, but this was not attempted because the

53

bounded oscillations are not harmful to the catalytic converter and the emissions will be

time averaged. As with other proposals little or no consideration was given to the

processor speed, or computational effort, that would be required for a production

implementation. Also no discussion was assigned to issues of cold starting when the

UEGO sensor had not reached operating temperature or is broken. It is likely that a

lookup system would still be needed as a fallback in these cases.

Hybrid ARX Controller A hybrid fuel injection controller has been proposed by

Wendeker & Czarnigowski (2000), the conventional controller as a single-input

single-output (SISO) jump-ramp controller, where the input signal is the amount of fuel

and the output signal is the lambda sensor feedback. The core of the system was a

mathematical model based upon a multi-cylinder 2198 cc 16-valve engine with

multipoint injection. The complete description of this model is not given but an

unpublished reference written in Polish is cited instead. The text suggests that a dynamic

engine model may contain a submodel of the fuel film behaviour but it is not clear

whether or not this is the case for the model that was used.

Adaptive identification was used in the form of a linear ARX (similar to ARMAX but

the parameters are considered time-invariant hence the absence of the MA or Moving

Average terms) model. The identification is used to estimate the parameters of a

regulator which controls the value of a coefficient used by the engine model to adjust the

value it has determined for fuel injector duration.

A forgetting factor is used with the model which must be optimised to find a

compromise between the speed and the precision of the adaptation. The factor is

adjusted for optimum operation by the use of a neural network which does so as a

function of the engine speed, load and change in load. Very few details about the neural

network are given except that it uses three groups of nodes or neurons. The input layer

has three variables engine speed, intake manifold air pressure (MAP), and a transiency

variable delta MAP which is the difference between the current MAP and the average

over the previous seven cycles. There is a hidden layer with ten neurons and an output

layer which has the forgetting factor value.

The results are presented only for a simulated engine, the data for which was collected

from road tests. An example optimal forgetting factor distribution for the three variables

was shown. It is not clear how the neural network was trained, either before or during the

simulation. The engine model parameters are not adjusted, only the gain is, therefore the

scheme does not directly accommodate changes in the plant over time which will

inevitably deviate from the model, increasing the amount of correction and adaptation

that is required. This approach does however keep the complexity level down which may

make it suitable for use in production hardware. The complexity of the engine model

54

used is unknown so it is difficult to asses the computational overhead of the whole

scheme.

Cerebellar Model Articulation Controller (CMAC) Majors et al. (1994) reported

their first implementation of a CMAC neutral network for control of the air/fuel ratio of a

research vehicle. The control objective was to maintain the air/fuel ratio with a 1% band.

The CMAC controller was configured to be fast learning and adapts as the operating

point changes. No information is retained about an operating point, and so optimums

have to be relearned each time an operating point is revisited. The researcher used a

wide-band (linear) lambda sensor and the results compared favorably with the

production controller under relatively steady conditions. The limitation found was that

the CMAC neural network did not work as well under transient conditions. The authors

also cite the use of the more expensive and less widely used wideband sensor as being a

practical limitation.

Figure 3.15: Block diagram of a the CMAC fuel injection controller (Shiraishi et al.,
1995)

In a continuation of the same work, Shiraishi et al. (1995) proposed another CMAC fuel

injection controller. A block diagram of a CMAC fuel injection controller and a block

diagram is shown in Figure 3.15. This CMAC implementation also uses engine speed

and intake manifold pressure (MAP) senors as inputs with online learning to attempt to

maintain a constant air to fuel ratio of 14.64:1. There is no temperature compensation

scheme, but the variation of engine temperature is slower than the reaction time of the

controller so it will adjust with time without explicit temperature measurement. Past

experience of temperature variation is therefore not stored for later reuse to allow faster

learning. A standard narrow band (non-linear) lambda oxygen sensor (sometimes refered

to as the binary type due to it’s sigmodal sensitivity characteristic near to the target

measured gas oxygen content) was used for the CMAC controller feedback. The lambda

sensor time delay (presumably the combined exhaust gas transport delay and sensor’s

55

own time constant) is compensated for by adjusting the previously activated weights

rather than the currently active one which will affect the next output and not the current

one.

The test vehicle used to test for drivability was a 1988 Oldsmobile Cutlass Calais with a

Quad-4 DOHC 4-cylinder engine having a multi-port simultaneous fuel injection system.

The CMAC controller was implemented on a PC using MS-DOS with a RTI-815 I/O

board fitted. The original engine ECU was left in place and a toggle switch was used to

override the ECU injector signal with that of the CMAC controller. A wideband linear

oxygen sensor was installed downstream of the normal narrow band lambda sensor to

provide an independent means of monitoring the controller’s regulation performance.

Figure 3.16: Throttle and A/F ratio control using the standard ECM (left) and using
the proposed CMAC controller (right) under random driving conditions (Shiraishi et al.,
1995)

The new controller performed as well as (or better than) the original ECM, as can be

seen by a comparison of the A/F ratio excursions in Figure 3.16. No mapping was

required, with only a period of self training. Extra weights had to be used to compensate

for transient throttle conditions. It was recognised that the throttle tip-in and tip-out

conditions had to be handled differently as they produce opposite mixture excursions.

An identified limitation was the quantisation error for the MAP input. A pressure of

0-20 kPa was divided into 40 discrete intervals and this was thought to be insufficient to

cope with transient conditions. If the number of intervals had been increased then the

computational overhead would have been increased also and the training time extended.

The approximation capabilities of the CMAC network have been improved (Gan &

Rosales, 2003) by replacing the constant weights with linear function weights. The

improvements in smoothing are demonstrated but it is not reported whether there is a

significant penalty in adaptation time. It is thought that CMAC networks are chosen for

their simplicity and localisation of weights for quick online adaptation and any increase

in complexity acts contrary to this.

56

Radial Basis Function (RBF) Controller An online trained neural network for fuel

injection control that is adaptive and was verified on a real engine was outlined by Park

et al. (2003). This made use of a Radial Basis Function Network (RBFN) combined with

a conventional linear feedback controller. A wideband oxygen sensor was used for

feedback error learning. The feedback controller was fixed and two RBFNs provide a

feed-forward path. The first network (designated RBFN_S) was given inputs of engine

speed and MAP, the second (RBFN_T) was given the derivative inputs of the first.

RBFN_S was optimised in accordance with engine speed and MAP since the air mass

flow per stroke is a non-linear function of the engine speed and MAP. The air mass flow

rate is proportional to the corresponding fuel requirement. RBFN_T was used to

compensate for throttle transients by adding an additional fuel demand to the existing

RBNF_S and a fixed base injector duration termed Ti0. This demand can be negative and

so it will reduce the overall demand when necessary. The RBFN_T has to be trained

after RBFN_S in a way that is analogous to conventional engine controller mapping

where transient compensation is added after the static maps are calibrated. A block

diagram of the system is shown in Figure 3.17.

Figure 3.17: Radial Basis Function augmented controller (Park et al., 2003)

The setup was tested using a 2.0 L 4-cylinder DOHC engine connected to an eddy

current dynamometer. Results are presented after a 15 minute learning cycle for only a

single (but repeated amplitude throttle transition) which was a change from 5% to 10%

of full throttle opening. The test time shown had a duration of 100 minutes which is too

long to show the detail and the magnitude of individual air/fuel ratio excursions. The

controller does not store past results for use if the sensor fails or the neural network

diverges from the optimum solution, and thus needs resetting.

57

Recurrent Neural Network (RNN) Controller (Offline Trained) A proposal for the

use of Recurrent Neural Networks (RNNs) for air/fuel ratio control has been presented

by Arsie et al. (2004). The controller was implemented using direct inverse modelling

and compensates for wall wetting dynamics to make estimates of air/fuel ratio during

throttle transients. The controller was only tested with an engine simulator but

nevertheless the results presented show that the air/fuel ratio can be bounded about a

target value as shown in Figure 3.18.

Figure 3.18: Results of direct inverse modelling approach to air/fuel ratio control (Arsie
et al., 2004)

The training of the RNN was performed offline and so this implementation was not

adaptive and would need extending to allow it to learn online so that it could be made to

cope with any parameter change such as fowling of the fuel injectors leading to an

altered spray pattern.

3.7.5 Model Predictive Control

Lennox & Montague (2001) have developed a non-linear model predictive control

(NMPC) scheme around an ANN model.They explain that the difficulty with NMPC

over MPC is that the solution or optimisation of the cost function is not explicitly

possible and instead the cost function must be optimised using an iterative non-linear

optimisation procedure such as quasi-Newton, genetic algorithms, or successive

quadratic programming. These techniques can realise a solution in seconds, which

makes them very effective for use in the chemical and process industries. However, they

are entirely inappropriate for engine control use which might typically require a solution

every 10 ms. The authors rejected the use of ARMAX and NARMAX models in favour

of an ANN. They captured the engine process dynamics by incorporating low-pass filters

into the neuron processing elements of the ANN. The filter constants are not known a

priori and therefore need to be determined by the training algorithm in addition to the

58

network weights during training of the ANN. The authors also decided not to use the

Padé approximation approach for handling variable delays with ANNs, which they say

has been demonstrated previously. Instead they opted to use an external time delay

model to time shift the data presented to the ANN due to the large magnitude of delays

which can be associated with engine dynamics. They rely on the ANN to accommodate

for any small errors in the delay model. For training a Levenberg-Marquardt search

direction method was used. The control scheme was tested only against an engine

model. The model used was produced by Ricardo and is described in Beaumont et al.

(1993), however the reference gives only an overview with very few specifics and

presents very limited results. The model was used to generate simulation results which

were in turn used to train the ANN. Also a finite impulse response (FIR) model was

developed and results shown that compare the fit to the simulation data of the trained

ANN model to the FIR model. The ANN output follows the simulation output almost

indistinguishably over the range and at the scale presented, but the FIR model diverges

substantially during transients. The FIR model was stated to be more accurate than both

ARX and ARMAX models which were also attempted, but for which no results are

shown. In order to solve the non-linear cost function quickly enough for engine control

use, a linear approximation to the non-linear step response, evaluated at each time step

was performed and tested under simulation alongside a much more computationally

intensive iterative solver for comparison and the two approaches were found to give very

similar results which validates the use of the linear approach. As a final step, the

controller was tested using a linear approximation to the ANN which is shown to

perform poorly against the ANN approach, confirming the requirement for predicting the

non-linear process dynamics.

Saerens et al. (2008) present the use of what is described as model predictive control to

minimise fuel consumption of an SI engine through dynamic optimisation, using a mean

value model of the powertrain and vehicle. The model has two state variables: the

pressure in the engine manifold and the engine speed. They use throttle valve angle as a

control input to the model which is identified on a dynamometer. Optimum (for

minimising fuel consumption) engine speed trajectories are calculated offline, then a

trial-and-error tuned PI controller is used to track the static trajectories on-line. Since

this approach does use a model for prediction which is ultimately used for control, but

does not conform to the conventional understanding of the term model predictive control

which implies a controller which uses an on-line optimisation of a receding horizon. The

results presented claim that an optimal engine speed trajectory yields a reduction of the

fuel consumption of 12% when compared to a linear trajectory.

3.7.6 Direct Inverse Model

Gerasimov et al. (2011) have presented an approach to torque tracking and air/fuel ratio

59

control using a tandem inverse model and direct model approach. They describe the

models as being grey box with a fixed structure, the parameters of which are estimated

off-line using vehicle data and linear regression. The controller attempts to maintain the

gain between the direct and inverse models at unity. A PID controller is used in

combination with the feed-forward controller to improve performance and reject external

disturbances. Limited results are presented for a V8 engine over speed transients

spanning less than 800 rpm.

3.8 Spark Ignition Timing Control

3.8.1 Self-Tuning Optimisation

Scotson & Wellstead (1990) have presented a technique to perform on-line optimisation

of the ignition angle map used by engine controllers. Earlier work from Wellstead &

Zanker (1981) used similar self-tuning control (or extremum control) techniques for

engine speed regulation. For optimisation to take place a feedback signal is required

which for ignition angle variation, is usually engine torque, either indicated or measured

at the output. For this work the authors used measured variations in flywheel speed to

determine changes in torque output. They concede that this produces a torque signal

with a poor signal-to-noise ration, but present techniques to cope with noise. The benefit

of this approach is that it does not require the addition of a torque sensor, so can be

applied to existing engines and the existing ignition map is retained so that the

adaptation process can be turned off at any time. A variable amplitude perturbation

signal was applied to the normal ignition angle to allow the optimiser to search for new

optimums. The authors suggest that the technique could be extended to work on an

individual cylinder basis and could also be used for condition monitoring indicated by

larger than expected drifts in parameter optimums.

3.8.2 Peak Pressure Position Control for Maximum Brake Torque

Early work by David Powell of Stanford University was presented in Hubbard et al.

(1976) for an optimum peak pressure position (PPP) ignition angle controller was

developed for a test engine. The experimental results showed a good performance

increase over the conventional mechanical distributor advance mechanism with the

air/fuel ratio held constant. Powell goes on to show how the humidity of intake air acts

as a significant disturbance which is automatically rejected by the PPP controller. The

work is continued in Hosey & Powell (1979) where it is shown that the (PPP) controller

works in spite of large variations in air/fuel ratio, an the use of the pressure sensor as a

knock controller is also introduced. The paper gives further consideration to the various

60

types of pressure sensor which might be suitable and advocates the adoption of cylinder

pressure transducer based PPP control for production engines based on the fact that

volume production levels would substantially reduce the per-unit cost of the piezo

pressure sensors. Almost 20 years after the initial investigation work began, with

cylinder pressure transducer still not fitted to production engines, Powell (1993) revisits

the use of cylinder pressure and advocates it’s many uses including air/fuel ratio (as

detailed in Gilkey & Powell (1985); Gassenfeit & Powell (1989)) and intake charge

temperature estimation.

The widespread adoption of lambda sensors combined with piezo knock sensors on

production vehicles with SI engines, does now make pressure sensing seem less

worthwhile, however controlling an engine against it’s knock margin does not

necessarily correspond to the maximum brake torque (and hence efficiency) PPP being

achieved, particularly in the present of varying humidity and other disturbances.

3.9 Instrumentation for Torque Determination

Torque is a desirable feedback variable for engine control and condition monitoring. It

can be used both to maximise power output and to determine/optimise brake specific fuel

consumption (BSFC) to a minimum and hence ensure best efficiency is being

maintained. As torque is a consequence of cylinder pressure, it can be inferred from

pressure signals as well as from direct measurement at the output from the crankshaft.

This section looks at some of the various options for measuring engine torque for use as

a control feedback variable.

3.9.1 In-cylinder Pressure Transducers

In cylinder pressure measurement is desirable from a control and condition monitoring

perspective but historically it has been plagued by problems as transducers that are

exposed to the combustion process are subjected to large thermal shock and typically

require water cooling. They are also expensive and fragile making them unsuitable for

use outside of a laboratory environment.

The lack of a reliable and cost effective cylinder pressure sensor is why they have not

having been widely adopted for production engine use. Electronic pressure sensors that

are be used for other applications cannot meet the specifications required to be reliable

for the > 109 combustion cycles (approximately 11,000 hours at 3000 rpm) that might be

typically required. Piezoelectric sensors have been used for high temperature in-cylinder

use in the past. The natural quartz devices can operate up to 350°C without water

61

cooling but they are prohibitively expensive and have limited durability making them

unsuitable for production use. Piezo-ceramics can be cost effective but they are usually

used for indirect pressure measurement (e.g. as a spark plug washer) which results in

reduced accuracy and large vibration and inertial acceleration errors. Silicon

micro-machined sensors made using techniques borrowed from VSLI process

technology have been developed but due to the nature of the silicon suffers a temperature

limitation of around 150°C and are susceptible to EMI/RFI interference. Higher

temperature devices have been developed using silicon on insulator (SOI) and silicon

carbide (SiC) designs but the long term reliability of these has yet to be demonstrated,

not withstanding the cost and complexity issues that remain.

An optical transducer has been proposed by Ulrich et al. (2001), shown schematically in

Figure 3.19 and the two spark plug embedded variants of the sensor are pictured in

Figure 3.20. The PSIplug variant of this sensor was purchased for use in this project and

is the variant in which the sensor is screwed externally into a port braised onto the side of

a modified spark plug. This allows the sensor to be unscrew and used with different

spark plugs, but does mean there is a slight pressure propagation delay as the pressure

front has migrate up through the hole drilled in the wall of the spark plug before it is

sensed. The other variant has the sensor element embedded directly into the wall of the

spark plug so that its face is exposed directly to the combustion flame-front. The sensor

is novel because it allows the instrumentation to be located some distance away from the

sensing diaphragm via a optical fibre so that issue of electrical interference as removed

as well as not needing to supply the sensing element with electrical power. It’s small size

means it can be fitted into a modified spark plug (or diesel glow plug) so that no engine

modifications are needed. The sensor does not suffer from the sever thermal shock that

similar piezo sensor do and does not need sensitive charge amplifier electronics which

can be problematic in the vicinity of high voltage ignition circuitry.

Figure 3.19: Schematic of optical pressure sensor construction (Ulrich et al., 2001)

62

Figure 3.20: CALplug (left) and PSIplug (right) modified spark plugs using an optical
pressure sensor

3.9.2 Spark Plug Ion Sensing

Mecel AB of Sweden produced an engine ECU fitted to some Saab models which made

use of spark plug ion current sensing for misfire detection. This lead to a PhD

investigation (Eriksson, 1999) into the use of the ion signal from the Mecel ECU to

derive a cylinder pressure signal. The ion current does give a good pressure indication,

but the signal is very stochastic in nature with a poor signal to noise variation. Eriksson

makes some progress with processing of the signal and revisits the peak pressure

position control work of David Powell and demonstrates the benefit of the controller for

use with water injection. Much interest followed in the literature from this work

including many more paper such as Andersson & Eriksson (2001), with studies on the

influence of air/fuel ratio and permutations of other variables.

3.9.3 Torque determination via Piezoelectric Spark Plug Load Washer or Engine
Mount Strain Measurement

Fleming (1982) describes several techniques for direct measurement of engine torque

using strain effects caused directly by torque. The use of a load washer under the spark

plug seat is one method considered. This technique is thought to be problematic due to

the calibration effort and temperature effects. Also to determine cycle-by-cycle torque

requires the evaluation of a pressure integral that requires synchronised volume and

pressure signals. This however, might be more easily achieved using a modern engine

management system than when the paper was published.

63

Fleming also considers the use of load-cell force sensors installed in engine and

transmission mounts, so that the torque reaction forces of the engine/transmission

assembly can measured. The reaction forces are proportional to driveline torque, but to

isolate interfering shear forces from the reaction forces, special engine mounts need to

be used. The limitations beyond the general use of strain gauges an the associated

electrical noise and thermal drift issues, are that inertial brake torque is not measured

since the combined driveline torque is being measured. Also anything offering a reaction

torque to the engine such as pressurised coolant hoses and electrical cabling will

contribute an error to the measurement.

In the text of a US patent, Willner (2006) describes low cost piezo-ceramic devices, such

as spark plug washers, as unable to offer high accuracy under all engine operating

conditions, and cites that they are also subject to electromagnetic interference and tend

to have durability problems related to alloy separation, selective oxidation and diffusion

when used in production engines.

3.9.4 Strain Gauge Fitment to a Drive Shaft

A model was developed to help predict the fuel consumption of heavy goods vehicles

(Sandberg, 2001), and in order to validate it a series of experiments was performed by

instrumenting the propeller shaft on an actual truck as shown in Figure 3.21.

Figure 3.21: Propeller shaft fitted with strain gauges (Sandberg, 2001)

The vehicle was driven at as near as possible constant speed and torque data was

recorded for a variety of speeds so that the external forces such as air resistance and

rolling resistance could be determined and compared to those predicted by the model.

64

Figure 3.22: Propeller shaft torque (vehicle travelling at 81 km/h sampled at 100 Hz)
(Sandberg, 2001)

A sample of the recorded data is shown in Figure 3.22 and the fluctuations caused by the

ignitions of the six-cylinder engine can be seen.

3.9.5 Magnetostrictive and Magnetoelastic Torque Measurement

Fleming (1982) presents and introduction to the use of magnetostrictive torque sensing.

This technique using the change in magnetic properties in the surface of a material due

to strain as mechanically deforms under torsional stress. It is expected that this could be

a method to directly measure torque on an engine’s crankshaft and benefits from being

non-contacting (no wear or electrical contacting issues) and has a fast response time.

The limitations are that a clear shaft length of ~22 mm that is required may necessitate

engine redesign. Also a sleeve needed to achieve consistent results between sensor

installations. The size of the air gap (needed due to the oil-filled/fluidic crankshaft

bearings) causes signal-to-noise ratio problems which imposes a frequency response

limitation. The sensor is strongly temperature sensitive and if installed on a crankshaft,

would be in a location that is exposed to large temperature changes. Fleming (1989)

addresses some of the sensor characteristic far more comprehensively with a non-linear

model to compensate for real-world magnetic effects such as saturation.

Sobel et al. (1996) describe a similar sensor to Fleming. The instantaneous torque of an

internal combustion engine was measured adjacent to the flywheel, using a inductive

magnetoelastic torque sensor. They measured torque in a four-cylinder engine and

compared data with pressure signals during bench tests. They report excellent

correlation with values of the mean effective pressure for each cylinder. Road tests were

performed in a car with a five-cylinder engine and automatic transmission. Results are

presented with respect to engine control and misfire detection, which show only minor

disturbances caused by driving on rough roads.

65

Uras (2001) describes a permanent-magnet implementation of a magnetostrictive sensor

which is constant flux eliminates exhibit temperature an drift problems and the need for a

power source. The sensor is only capable of measuring dynamic effects so it’s use is

limited to misfire detection and stall/crash detection.

Larsson & Schagerberg (2004) describe the use of a commercial implementation of a

magnetostrictive/magnetoelastic called Torductor produced by ABB, shown in Figure

3.23. It was fitted to the crankshaft of an SI engine and used for research into estimating

and controlling the peak-pressure-position (PPP) of combustion in individual cylinders.

The sensor requires that copper strips (rather than a sleeve) are attached to the shaft from

which torque is to be measured.

Figure 3.23: ABB’s magnetoelastic torque sensor called a Torductor

3.9.6 Surface Acoustic Wave Measurement

Surface acoustic wave (SAW) devices are used as frequency dependent strain gauges to

measure the change in resonant frequency which is proportional to the strain experienced

in the shaft. In SAW devices surface waves are produced by passing an alternating

voltage across the terminals of two interleaved comb-shaped arrays which are laid onto

one end of a piezoelectric substrate. At the other end of the transducer there is a

receiving array to convert the wave signal into an electrical signal.

A company called Sensor Technology (Palmer, 2004) has developed a compact

commercial unit (Figure 3.24), which contains two Cygnal processors. The first

processor is used with the SAW sensors and the other is used for outside

communications so that a high bandwidth of 5-10 KHz can be achieved. Torque

sensitivity ranges from 100 mNm up to around 10,000 Nm are achieved from three case

sizes and seven shafts sizes. Various connectivity options are available including

RS-232/USB and Bluetooth for wireless interrogation.

66

Figure 3.24: Commercial non-contact TorqSense RWT310/320 unit

The RWT device uses a non-contact RF (radio frequency) couple for power transmission

and signal communication as opposed to the more conventional slip ring approach. The

company also supply a NI LabView software component which they have named

TorqView for use with its sensors.

3.10 Software for Engine Control

3.10.1 Ford’s High Level Pascal-F Engine Control Software

Unlike many other automotive manufacturers, Ford has historically, developed all of its

EEC range of engine controllers in-house albeit using the services of third party

contractors, in all likelihood. Mills (1985) describes how a high-level engine control

strategy was written using a specially written real-time version of Pascal (the

development of which is detailed in references therein) called Pascal-F.

Ford’s EEC-IV was introduced from 1982, the code which was originally written in

assembly language for the Intel 8061. The 8061 was a custom VLSI version of the

popular 8051 8-bit microprocessor, which was developed jointly between Intel and Ford

for use in its engine controller units. The assembly language coded program for the

EEC-IV was divided into only two blocks of code which were termed foreground and

background. The foreground was responsible for performing all of the outputs including

spark firing, fuel injector pulsing, and EGR (exhaust gas recirculation) valve control. It

also comprised routines which service three interrupts, keeping track of the time between

successive cylinder firings, and the time between task-controller executions. The

67

background code was a piece of round-robin, sequentially and continuously executed

code used to perform calculations such as spark angle, fuel injector pulse width and

frequency, as well as the amount of EGR to permit. These background tasks are engine

state dependent and the code path length will vary. Variable code path lengths can often

cause development issues in real-time systems as intermittent and infrequent

malfunctions, or bugs, can occur which by their nature are difficult to diagnose or debug.

As a direct result of the growing use of engine controllers within Ford, there was a group

of engineers who all needed to develop and modify engine control programs. The

debugging and modification of the code became a major task for these people. Assembly

language programmers with considerable knowledge of processor architecture and low

level hardware interfaces were needed. This dependency probably concerned Ford’s

management enough to commission the team of one assembly language, and two

Pascal-F programmers, to develop a robust high-level implementation of the EEC-IV

code over a period of six months. A further eight months were used for debugging and

testing of the resulting code.

Figure 3.25: Crank angle representation of computer time usage (Mills, 1985)

Various issues had to be tackled to achieve a successful high level implementation.

Engine control requires stringent execution time and memory restrictions. Figure 3.25

shows the computational requirements with reference to crank rotation and an example

of this is an 8-cylinder engine turning at 5000 rpm has only 3 ms between cylinder firings

and in that time the code must handle several interrupts and perform various lookup

calculations in order to be ready for the next firing event. The engine controller needs to

work with sampled real numbers rather than the integer values that are native to the 8051

architecture and its derivatives. There is no floating point hardware support in the 8061

and software emulation was deemed to be far too slow. Fixed point arithmetic was made

part of the Pascal-F language as a compromise to allow real numbers to be used. The

original assembly language production version had two code blocks loosely described as

one being for real-time tasks, and the other for lower priority tasks. This method was

replaced by a small 200 byte kernel, also written in assembly language, which the

68

complier implicitly makes part of every Pascal-F program. The kernel can support the

scheduling of processes and inter-process synchronisation is achieved through hardware

interrupts and a software SEND construct. The kernel is able to respond to an interrupt

and switch processes within 100 ms. A monitor process allows access to its data from

other processes using exported procedures and a signalling mechanism. Each process is

assigned a fixed priority by the programmer which can be in the range 0-15 where 0 is

the lowest. This priority is used if there is a contention for the processor and it will

determine which monitor process is chosen to run.

The replacement EEC-IV program had eight processes in total that are shown in

Table3.1.

Process Name Acronym Priority

(0 = low)

Description

High Speed Output

(high time resolution)

HSO 15 2.5µs max output for high accuracy of spark timing and injector pulse

width.

Fuel Injector Control FIC 14 Handles conversion of pulse width into timed on/off signals.

High Speed Input

(high time resolution)

HIS 13 Digital signals which need the time of occurrence recording. Also initiates

the spark and fuel output events.

Time keeper & low resolution output routines TMK 12 Keeps track of timers to 5ms resolution. Low resolution outputs (e.g.

EGR) also.

Analogue Input Utility (A/D) routines ADU 10 Control logic for EGR and throttle kicker. Executes synchronously every

10ms from time keeper process.

Engine Synchronous Machine ESM 7 Controls the conversion of analogue inputs through the A/D converter.

Time Based Machine TBM 6 Contains code for initialisation and safety fuel pump shutoff. Executes

only when no other processes are ready or able to.

Main Program MAIN 0 Performs engine state determination and calculates the desired spark

timing and fuel injector pulse width. It is structured to execute between

cylinder firings.

Table 3.1: Engine control program processes (Mills, 1985)

The resulting code was found to be as conformant and reliable as the assembler code

which it replaced, but it came at a cost of requiring twice as much memory and 60%

longer execution time. For these reasons it was probably never adopted for production

release and only used internally to assist with development.

3.10.2 Ford’s Automatic Code Generator

A separate attempt was made by another team working within Ford, around the same

time as the Pascal-F development, to research an alternative to writing their engine

controller code in raw assembly language (Srodawa et al., 1985). Ford Automotive

Control Terminology, or FACT, was developed as an abstract high level specification

language to meet its own needs for (but not limited to) engine controller programming. It

69

was based upon FLECS which was a pre-ANSI standard form of what later became

FORTRAN 77.

FACT is essentially an automatic code generator and not a complier. It produces

assembler code from the abstract control code which is linked with hand written

assembler code before compilation. It has data types and attributes that are needed for

writing control algorithms. There are scalar, function, table, timer, and I/O channel data

types to which several attributes can be assigned to specify items like allocation, size,

and engineering units. Unlike the Pascal-F implementation, it has full floating point

support which is scaleable up to 32-bit for arithmetic which can preserve significance.

By comparison the equivalent production system, to which it was being compared to,

could only perform 16-bit arithmetic. FACT uses soft I/O channels to which requests are

posted that are later serviced in a periodic manner. FACT also has built-in functions that

provide table lookup and interpolation routines.

The hand coded assembler that works with FACT consists of two main parts. The first is

an executive operating system (EOS) and the second is the real time interface (RTI). The

EOS implements a preemptive multitasking system which has four priority levels. It can

support sixteen tasks at each priority level, but the number of tasks and their priority are

fixed at compile time. The RTI is the interface between the high level FACT strategy and

the low level functions of the EOS. It maps the input channels to FACT input variables,

converting any raw values to engineering values, if required. It also maps output

variables to calls upon the EOS output primitive and contains interfaces to the function

and table interpolation routines. It is itself organised as a set of intermediate-priority

tasks.

The resulting engine controller code that was produced was conformance and

performance tested against the equivalent production code that was written entirely in

assembler. It was found to perform as well, and in some cases out-perform the native

code owing to the extra floating point precision that it is able to use which allowed it to

operate with greater accuracy. The FACT system used 12.3 kbytes of ROM whereas the

production code used only 6.8 kbytes which represents an increase of 81% in this case.

This is partially due the overhead of having a generic real time executive scheduler (the

EOS and RTI) in addition to the algorithm code. When only the FACT generated code is

compared to its production assembler equivalent, only a 47% increase in code size is

seen. It would seem that there is an economy of scale advocated by the researchers that;

if the FACT code length and complexity was to be increased for another application,

then the executive part of the code would remain the same and the resulting binary size

would compare more favourably, or even better, than the equivalent assembler only code.

With regard to execution speed, the production code background loop time was

measured at 10 ms, whereas the FACT produced code took 20-30 ms (engine speed

dependent) to do the same. It is speculated by the paper’s author that the increased unit

70

cost created by the extra ROM size requirement will mean that the FACT system would

not be used for production use until either the required algorithm complexity increases or

the benefits of being able to execute strategies concurrently (such as transmission

control) from the same control unit are recognised.

3.10.3 BASEMENT

BASEMENT is a distributed real-time architecture presented by Hansson et al. (1995)

and was developed for vehicle internal use in the automotive industry. BASEMENT was

inspired by from examination of the MARS (Maintainable Real-Time System) operating

system developed at the University of Vienna (Kopetz et al., 1989) during a time of

emerging concerns over the performance of safety critical real-time systems (particularly

for aerospace applications). A key feature of MARS (and so presumably of

BASEMENT) is that all task scheduling is performed offline assuming worst case

latencies, and only a single interrupt source used (or allowed) which is timebase for the

scheduler. All other hardware events are handled by polling to remove the uncertainty

and asynchronous behaviour of hardware interrputs and software latency in processing

them. This approach has come to be known as time-triggered. With BASEMENT, they

have attemped to take what they describe as a holistic approach to application

development across software and hardware boundaries. This is an appropriate approach

for modern vehicles as an application often consists of resources spread across different

pieces of hardware which are network linked using a combination of LIN-Bus (Local

Interconnect Network, UART serial based) and CAN. They key features of BASEMENT

are as follows:

• Resource sharing (multiplexing) of processing and communication resources

• A guaranteed real-time service for safety critical applications a best-effort service

for non-safety critical applications

• A communication infrastructure providing efficient communication between

distributed devices

• A program development methodology allowing resource independent and

application oriented development of application software

A later paper (Hansson et al., 1997) considers BASEMENT again with more

implementation details and an example application (having implications for safety and

reliability) of an intelligent cruise control system which makes use of distributed

resources and the syncronisation mechanisms within BASEMENT.

71

3.10.4 OSEK/VDK

OSEK is a specification (covered in part by ISO 17356) for an automotive embedded

operating system, a communications stack, and a network management protocol for

vehicular applications. OSEK is a German acronym for Offene Systeme und deren

Schnittstellen fur die Elektronik im Kraftfahzeug or in English Open Systems and their

Interfaces for the Electronics in Motor Vehicles and is a standards body founded in 1993

by a consortium of German vehicle manufacturers, suppliers, and the University of

Karlsruhe. At around the same time a group of French cars manufacturers, Renault and

PSA Peugeot Citroën, had a similar project called VDX (Vehicle Distributed eXecutive)

which resulted in them joining the OSEK consortium and the official name became

OSEK/VDX.

Some further details of OSEK/VDK are described in a paper by produced by the

compiler vendor Wind River Systems and automotive semiconductor manufacture

Infineon (Foster & Schwab, 2000). The article showcases their products in the context of

OSEK/VDK, but also gives some implementation details. Another overview artical from

Motorola (Bannatyne, 2002) gives a concise introduction in the context of

microcontroller use in the automotive industry, but lacks any specific details.

An open source implentation of OSEK/VDK has emerged called Trampoline and is

described in a paper by Béchennec et al. (2006) which gives a brief survey of

OSEK/VDX before describing the details of their Trampoline implementation.

Trampoline an acedemic intiative which is not intended to compete with commercial

implementations and useful since it supports different architectures (including PIC 18

series, Infineon C167, MPC565 and Linux/x86) to varying levels and allows

investigation of a particular application by compiling it as a normal UNIX executable

aplication for testing on a PC, obviously forgoing its real-time capabilites.

72

Chapter 4. Development of a Dynamometer Controller and
Automated Engine Test System

This chapter describes the work which has been undertaken to develop an automated

engine test facility around an existing water-cooled eddy current dynamometer. The

dynamometer was originally purchased in 1956 from the merged Heenan-Froude

company which was at the time producing dynamometers under licence from the

Dynamatic Company. It is not known how the dynamometer was originally controlled,

but it can be reasonably assumed that it incorporated a floor-standing valve-amplifier

console unit that was supplied with dynamometers of this type. The dynamometer was

subsequently retro-fitted with a newer Froude controller (circa 1980) of an analogue

electronic design. At the time of starting the PhD it was assumed that the

engine/dynamometer were both fully functional. In the event it quickly became apparent

that this was not the case, and the dynamometer controller was unserviceable. After

some investigation it was reluctantly concluded that a digital software controllable

replacement would have to be designed and implemented, as the project was not fully

resourced and funding for a commercial unit was not forthcoming.

The first section of this chapter gives an overview of the hardware developed and

installed so that the chronological sequence can be understood, and subsequent sections

describe the details of and the challenges met by individual parts of the system. During

the early stages of it’s development the dynamometer was found to be difficult to control

due to its slow overall current response combined with a very rapid initial response to

any change in applied voltage. Magnetic analysis of DC machines seems to be currently

far less prevalent possibly with the rise in popularity of AC inverter drives. Much of

magnetisation theory which remains readily accessible pertains to the AC operation of

transformers with some treatment of the effects of DC bias on them. Machines with

large solid and unlaminated cores are no longer common place and the explanation of

their magnetic properties is no longer readily available. The in-rush effect was modelled

as a parallel resitance as this represents the proportionality to applied voltage which it

exhibits. However this approach failed to show correspondence with the trainsient nature

of the in-rush step and how its effects seemed to be both rate dependent and

demininshing with time. After speculating various causes for the magnetisation

phenomenon which appear to defy the plausible L
R ratio for the machine, in the interim

period, progressively older archives of literature have been catalogued and made

searchable elctronically, the cause of both the initial in-rush of current followed by an

unexplainably slow response to steady-state was eventually found to be attributed to

eddy-current damping. It appears that this phenomenon was a well known and

problematic effect at a time when large DC machines where in more widespread use due

73

to the ability to vary their speed more easily than their AC counterparts. Laminated cores

reduce the eddy-current paths so that their effects become far less pronounced. AC

operation tends to remain further down the magnetisation curve away from saturation as

the alternating field allows less time for saturation to take place and therefore hysterisis

and the associated losses is normally of more interest when considering magnetisation

effects.

4.1 Overview of Test Bed Work

The development work was undertaken in two phases. In the first phase it was sought to

directly upgrade the existing facility which had both the dynamometer controller (Figure

4.1) and operator control panel box (Figure 4.2) hinge mounted together on the outside

of the engine test cell enclosure. This existing setup used long cable runs to carry both

power and signals to and from the dynamometer.

Figure 4.1: Froude dynamometer controller

74

Figure 4.2: Froude operator’s control panel for the dynamometer

It was decided, due to space restrictions within the cell, to retain some of the control

hardware outside the cell. This meant the embedded system for torque and speed control,

monitoring and automation, would be located outside the cell in an operator’s box

(Figure 4.3). A power electronics and signal conditioning enclosure box (Figure 4.4) was

mounted inside the cell adjacent to the dynamometer to reduce the cable length. The

intention was that this enclosure would contain the solid-state electronics and current

controller that would be unlikely to change or require frequent access once configured.

Buffered analogue signals (such as torque, speed, and field current set-point) were run to

the outside of the cell using individually screen cables to the operator box outside the

cell. The existing ad-hoc test bed engine power supply wiring was replaced with suitably

rated control cable and routed into conduits leading to an automation plate (Figure 4.5)

mounted above the engine which provides fused sold-state relay (SSR) control over the

engine and a place to mount a battery isolator, current-trip, the engine ECU, ignition

drivers and fuse box. Low current control lines were run from the SSRs to the outside

operator’s panel so the the engine could be started from outside the cell. Opto-isolated

overrides were used to allow software automation of engine starting and testing.

Although the intention was to use automated software testing, manual overrides were put

in place on the operator box to allow manual control of the dynamometer duty or

set-points and to provide a familiar knob and dial user interface in case that was

preferred by a user. Control and signal wiring was fed through a rectangular aperture

made in the cell wall through to the rear of the operator box to allow easy access and

modification of cabling. A small enclosure was mounted on the inside of the cell to

75

cover the aperture and provide a location for connectors to be mounted, allowing cables

to be disconnected from the inside of the cell. In the first development phase, the

operator control box components and features include the following:

• Mains powered AT PC PSU

• ARM based networked processing unit running embedded Linux

• Bespoke colour LCD touchscreen interface

• Connector panel for serial, CAN, USB and Ethernet network connections

• Operator switches and overrides using bespoke opto-isolated interface

• Engine instrumentation (including battery voltage an oil pressure)

• Bespoke multiplexed thermocouple amplifier

• Bespoke incremental encoder interface

The power electronics enclosure components and features include the following:

• Linear mains powered PSU

• Semikron phase angle controller

• Thyristor bridge module

• Bespoke analogue current controller

• Bespoke frequency-to-voltage tachometer

• Bespoke load-cell strain gauge amplifier

• SSR control of cooling water valve with valve open and water pressure switch

indicators

76

Figure 4.3: Operator control box mounted on the outside of the engine cell

Figure 4.4: Dynamometer power electronics and signal conditioning box

77

Figure 4.5: ECU and power distribution plate front (left) and rear (right)

During the course of the work it became apparent that the current controller approach

adopted was too problematic, and the instrumentation was suffering from electrical noise

coming from the mains supply through the earth rail to which the all steel-construction

test cell room was connected. Despite precautions been taken to use shielded cable for

signals, limit ground currents, and isolate instrumentation using common-mode chokes,

the noise spikes were never completely eliminated or their source determined beyond the

mains supply being dirty. Tests were undertaken to attempt close loop speed control of

the dynamometer-engine system. The speed control was performed by varying the

dynamometer applied load torque on the engine. This was done as the other control

mode, using engine throttle to control speed, was not possible at that stage as a throttle

controller had not been developed until a later stage in the project. It was during these

tests that it became clear that the current response was far too slow for stable operation

and that the system was open-loop unstable for at least some of the operating range. The

provision for engine cooling (using a cell-roof mounted radiator and fan) was also found

to be inadequate and limited the run-time to the order of minutes under load before

overheating occurred resulting pressurisation and loss of coolant. This impacted upon

the amount of continuous testing that was possible, but still provided enough data for an

initial assessment of the dynamometer’s performance.

The second phase of work came about when the existing engine cell was

decommissioned and replaced with a much larger facility1. The move into the new

1Access was prohibited for approximetely 12 months during the rebuilding and recommissioning work.

78

facility presented an opportunity to improve upon the short comings of the first phase.

The first phase of work had revealed problems with long cable runs, signal noise,

inadequate processor performance for a software GUI operator display, and that an

analogue current controller could not be tuned to be both stable and fast enough in

response to allow useful torque and speed regulation. The system layout issue arising

from space constraints in the cell and the need for a operator interface to be located

remotely from the engine had been removed. The new cell is equipped with a dedicated

multi-engine cooling heat exchanger system so that the engine can be run for as long as

needed. The cell has an operator’s control room, acoustically isolated from the engine

enclosure, but with no provision for routing of cabling between the two rooms. There

was also no prospect of a cable routing provision being added as it would compromise

the air-seal between the two rooms required as part of the fire protection system. This

made mounting the operator box in front of the engine the only suitable location. The

box was reconfigured as a pendant box (Figure 4.8) so that it had a range of movement to

allow access and visibility of the controls from more than one direction. More

fundamentally it was decided that it no longer served any purpose to split the

dynamometer control between two locations. The ARM embedded system and the power

electronics were consolidated into a larger box to contain everything directly relating to

the control of the dynamometer. The LCD touchscreen was also moved with the ARM

board so that a console monitoring interface could be provided for the dynamometer

which is independent of the test bed application software and to assist with the controller

development (Figure 4.6). Having everything in one box now meant that much of the

external cabling was not needed, and any of the remaining cables leading to sensors were

only short in length with more direct routing. The chassis plate mounted components of

the previous smaller power electronics box were transferred on the chassis plate to save

effort with remounting (Figure 4.7). The analogue current controller was removed and

the embedded system was used to control the field current directly under software

control. To allow the current to be sampled for control, a current transducer board was

developed in place of the analogue current controller. Also a software switchable

load-dumping circuit was developed to allow faster removal of torque load under

software control. The low-current mains linear supply was replaced with a custom made

higher current fan-cool linear supply to meet the increased current demand created by

adding additional electronics into the box. A linear supply was constructed to avoid the

signal noise problems associated with proximity to switched mode supplies.

An x86 based embedded system with an integrated graphics controller was acquired and

used with an off-the-shelf VGA LCD touchscreen (Figure 4.8) to provide a graphical

user interface. The operator box has retained the engine related switches and

instrumentation and uses a network link to the dynamometer controller to monitor, set

and display the operating points of the dynamometer using purpose written application

software. The PC processor board was used to acquire engine cylinder pressure data

79

using the previously developed digital encoder interface. The mains powered PC

switched mode PSU replaced by a vehicle switched mode DC-DC 5 V power supply

which runs off the 12 V engine battery. 12 V nominal power is supplied directly from the

battery where is is required, unregulated, but with some transient protection at the box

end. The aperture cut into the box for the AT PC PSU was reused to provide a connector

panel for thermocouples and control cables that were previously routed through the back

of the box. An industrial cable chain has been used to flexibly transfer the wiring across

to the engine test bed.

Figure 4.6: Dynamometer power electronics and control box in new engine cell

Linear regulators

Figure 4.7: Dynamometer power electronics and control box inside view

80

Figure 4.8: Pendant operator’s box

Compact flash
interface

Figure 4.9: Inside the pendant operator’s box

4.2 The Dynamatic Dynamometer

There are currently several dynamometer designs in widespread use. Each type has

either cost or performance benefits over its counterparts.

• Hysteresis

• DC and AC generator

81

• Wet and dry internal rotor

• Air-cooled external disc rotor

• Water pump (Heenan Froude)

It is thought that the original Dynamatic company eddy-current dynamometer was

manufactured Heenan Froude in the UK under licence from Dynamatic. Historically,

there was then a split of the Heenan Froude and Dynamatic companies. For this reason it

is now not clear who holds exact specification details of the MK1 machine used for this

project, although when contacted, Froude still seem to have some of the original

technical drawings. Similar designs are still made and reconditioned by the

DyneSystems Inc. in the USA, who took over the original Dynamatic Company’s

manufacturing plant for the US market. Their company website gives the following

details:

Dynamatic Dynamometer & Engineering Company contracted with

Midwest Dynamometer in the 1920’s to build its eddy current

dynamometers, but in the 1960’s, under the ownership of Eaton Corporation,

utilised its engineering capabilities to design higher speed, lower inertia

dynos. - www.dynesytems.com

Figure 4.10 shows an annotated cross-section of the MK1 design, and Figure 4.11 shows

a partial schematic of the retro-fitted Froude controller that was inherited with the

dynamometer at the beginning of this project. The design of both the machine and

controller is discussed further throughout the rest of this chapter.

82

Figure 4.10: Heenan Froude G.V.A.L. Mk1 dynamometer cross-section

G

DC eddy current

dynamometer

5A max

240VAC

Semiconductor

fuse

Semiconductor

fuse 10A 660V ac

Ceramic wirewound

1.457K 60W 300V

23R

560K

2%

6R8

5%

0.1uF 1500V
200R 5%

560K 2%

33R 2%

33R 2%

33R 2%

33R 2%

Fully controlled

bridge rectifier /

thyristor bridge

L

N

Phase

control

Current

transformer

5 turns

50A/50mA

Snubber

network

Snubber

network

3A Fuse

3A Fuse

100R 100R

4K7

Current set

set to 1K29

0.47uF
47K STAB

set to 27K8

0V

20V

20V

0V

25V

100uF

63v

4K7

Meter FSD

set to 934R

Trigger

cct

M Excitation Meter

0-1mA FSD

1K 2%

1K 2%

470K 2%

10K

Figure 4.11: Simplified schematic of the original current controller

83

4.2.1 Assessment of Controllability

It can be seen from Figure 4.12 the G.V.A.L. Mk1 rated torque exceeds that of the 3.2L

AJ26 V8 engine for a region between 600 to 3800 rpm. Thereafter, the steady state

torque must be reduced parabolically (constant power) to stay within the 150 BHP rating

of the machine. This means that for speeds above 3800 rpm the engine cannot be run to

its full throttle torque limit for any length of time due to heat dissipation limitations.

Heenan Dynamatic G.V.A.L MK1 Maximum Power and Torque

0

50

100

150

200

250

300

350

400

450

0 1000 2000 3000 4000 5000 6000

Shaft Speed [rpm]

P
o

w
e

r
[k

W
],

 T
o

rq
u

e
 [

N
m

]

Dyno power

Dyno torque

Dyno rated power

Dyno power limited torque

3.2L AJ26 F.T. Power

3.2L AJ26 F.T. Torque

112kW (150BHP)

Figure 4.12: Dynamometer and AJ26 V8 engine maximum power and torque curves
shown together for comparison

As the dynamometer is now an old piece of equipment, some analysis of the

controllability of the combined engine-dynamometer system is beneficial before

attempting to realise the controller. It is required to hold the engine at a particular

load-speed operating point using a combination of engine throttling and dynamometer

braking load. Initially, the case of fixed throttle angle is considered. This leaves the

brake torque from the dynamometer as the controlled system input and the engine speed

as the system output. In physical terms the operator will open the throttle to an arbitrary

set-point and the controller will attempt to regulate the engine speed to a

predetermined-determined set-point by applying a braking load to the engine. It should

be noted that this type of dynamometer can not motor an engine. That is, it cannot drive

the engine any faster than it is running at a given time by providing additional torque. It

can only reduce the braking torque it is applying and thus allow the engine speed to rise

of it’s own accord. As engine torque output for most of the operating range is

proportional to speed, the torque will usually fall with speed and hence also with applied

84

braking load. Constant speed is achieved when the braking torque equals engine torque,

so the engine speed will only rise if the engine torque exceeds the braking torque. The

consequence of this is that under fixed throttle conditions the dynamic behaviour of the

system will be different when the engine speed is being reduced to when it is being

allowed to increase. Also if the controller applies too much torque too quickly a

run-away condition may occur where the engine torque begins to collapse, which when

combined with a slow dynamometer response, may cause the system to enter a limit

cycle leading to an engine stall. This is most likely to occur when the torque-speed

gradient for the dynamometer at a given excitation current exceeds that of the engine for

a given throttle opening, and particularly when at full throttle as it takes time to dump the

energy stored in the dynamometer’s field and the engine is unable to provide more

torque.

Both the engine and dynamometer exhibit strongly non-linear characteristics which

makes it difficult from the outset to know if a particular engine-dynamometer pairing is

controllable from the point of view of the inertias in the system and the response time of

the dynamometer. An assessment of whether or not the engine-dynamometer system is

speed controllable at a particular operating point using load torque (or equally engine

throttle by the same process) follows.

Consider first, the moment of inertia of the combined engine-dynamometer system 4.1.

J
d∆ω

dt
= ∆TE −∆TL (4.1)

Where J is the moment of inertia of the combined system, ∆N is a small change in

engine speed N, engine torque TE is some surface or unknown function of engine speed

N and throttle angle θ :

TE = F (N,θ)

and dynamometer brake torque or load torque TL is some surface or unknown function of

the field current I and engine speed N:

TL = F (I,N)

A linear approximation can be made using the first term of a Taylor series expansion for

a speed set-point, which can be written as:

∆TE =
∂TE

∂N
∆N +

∂TE

∂θ
∆θ (4.2)

85

∆TL =
∂TL

∂ I
∆I +

∂TL

∂N
∆N (4.3)

where ∆θ is a small change in throttle angle. Since a single set-point is being considered

the partial gradients can be represented by the unknown constants β1,β2,α1,α2 valid

only at the set-point:

∆TE = β1∆N +β2∆θ (4.4)

∆TL = α1∆N +α2∆I (4.5)

Substituting 4.4 and 4.5 back into 4.1 we have 4.6.

J
d∆N

dt
= (β1−α1)∆N +β2∆θ −α2∆I (4.6)

Let us assume that the effect of speed on load torque is small, thus we can let the

gradient tend toward zero, α2→ 0. To simplify further we can consider a constant

throttle angle, allowing only load torque to be varied to control speed, ∆θ → 0 and hence

β2 is redundant as well so that 4.6 simplifies to 4.7.

J
d∆N

dt
= β1∆N−α2∆I (4.7)

Converting to the Laplace domain:

(Js−β1)∆N +α2∆I = 0

We will (for now) represent the dynamometer electrically by an inductor with in-series

resistance 4.8.

∆V = L
d∆I
dt

+R∆I (4.8)

where L is the inductance, R is the in series resistance and V is the voltage applied across

the windings. Using the Laplace operator again

∆I =
∆V

Ls+R
(4.9)

86

By combining 4.7 with 4.9 we arrive at:

(Js+β1)∆N +
α2∆V
Ls+R

= 0 (4.10)

We can now add a simple proportional control law with a negative sign to correspond

with the braking action 4.11.

∆V =−K∆N (4.11)

Adding the control law to 4.10 gives the characteristic equation for the closed loop

system 4.12.

{(Js+β1)(Ls+R)−α2K}∆N = 0 (4.12)

Multiply out and collect terms:

{
JLs2 +(JRs−β1L)s− (β1R+α1K)

}
∆N = 0 (4.13)

By inspection of 4.13, without resorting to the Rough-Hurwitz method for determining

stability, we can observe the necessary conditions JR > β1L and β1R > α1K, which

suggests that too little inertia or too much proportional gain may make the system

unstable for a given operating point, neither of which is greatly surprising.

It is probably not a safe assumption that the dynamometer’s torque sensitivity to speed is

much less than the engine’s for much of the operating range. A variation of the previous

approach requiring less simplification is to put 4.6 and 4.8 in matrix form as 4.14 to

allow a state-space analysis.

[
J 0

0 L

][
∆Ṅ

∆İ

]
=

[
β1−α1 −α2

0 −R

][
∆N

∆I

]
+

[
β2 0

0 1

][
∆θ

∆V

]
(4.14)

Which can be rearranged into state space form ẋ = Ax+Bu as 4.15.

ẋ[
∆Ṅ

∆İ

]
=

A[
(β1−α)

J −α2

0 −R
L

] x[
∆N

∆I

]
+

B[
β2
J 0

0 1
L

] u[
∆θ

∆V

]
(4.15)

Consider now a proportional control law, say ∆V = K (Nset−N). If also, the throttle

position is held constant so that ∆θ = 0, we have:

87

K ≡

[
0 0

−k 0

]
(4.16)

ẋ = Ax+B

[
0

−k∆V

]
(4.17)

ẋ = Ax+B

[
0 0

−k 0

][
∆V

∆I

]
(4.18)

ẋ = (A+BK)x (4.19)

From here we can follow the techniques outlined in classical control texts, such as Dorf

& Bishop (2001) and Ogata (1997) for assessment of stability and controllability. The

system is said to be controllable if an unconstrained (Dorf & Bishop, 2001) external

input can move the internal state of a system from any initial state to any other final state

in a finite time interval (Ogata, 1997). The system’s characteristic equation is formed

using the A matrix:

det (sI−A) = 0

The system is said to be stable if all of the roots of the characteristic equation have

negative real parts. If we define the dimension or rank of A to be n, then the

controllability matrix is:

R =
[

B AB A2B . . . An−1B
]

and the system is said to be controllable if R has full rank, i.e. Rank (R) = n.

These results can only be applied to one set-point at a time, but can be used to search for

the boundaries of stability by varying the control gain and the set-point accordingly.

Where both stability and controllability cannot be guaranteed (one may contravene the

other) it might be indicative of there not being enough inertia in the system, or the

dynamometer response being too slow, or a sensitivity to the alignment of the

dynamometer-torque-speed and engine-torque-speed gradients.

This analysis has assumed that the engine and dynamometer are joined using a stiff or

inflexible shaft. The actual flexibility of the propeller shaft is not known and cannot be

ready calculated using hollow shaft torsion theory as the yokes and spider of the

universal joints will contribute significantly to the overall flexibility and require more

complicated analysis. Having flexibility will change the the transient torque behaviour

making the combined inertia assumption a weaker one. The controllability assessment

88

also assumes that the controlling input is unconstrained i.e. no actuator saturation. In

practise the applied voltage is limited to the supply voltage. The other difficulty is that

unknown physical parameters such as engine inertia are required. These could be

provided by manufacturer or calculated from component dimensions, but requires

measurement from either unavailable dimensioned engine schematics or disassembling

of the engine and dynamometer. Some dimensions such as the dynamometer rotor could

be scaled from drawings, but this kind of estimation might result in a large source of

error. Typical inertia values quoted for similar engines and dynamometers seem to vary

depending upon their source and may prove to be misleading. A throttle-torque-speed

mapping for the engine would be needed to asses the required gradients at each operating

point considered as well as a steady-state current-torque-speed mapping for the

dynamometer. The problem becomes circular in practical terms as these mappings could

be experimentally obtained if the system was already operational. Finally the linear time

invariant assumption (LTI) may not hold true as the machine’s self inductance is vary

hard to quantify due to magnetic saturation and other effects such as eddy-current

damping.

Nomura et al. (2000) have modelled the engine-dynamometer system as two-masses

connected via a flexible shaft. They noticed that the two-mass model can be regarded as

a one-mass system when excited by a low frequency, and also as a resonant system in a

high frequency domain. This allows the system’s unknown parameters to be isolated

from each other as the engine inertia can be identified at low frequency (assuming the

dynamometer’s inertia is already known) and the shaft’s spring coefficient can be

determined at a high frequency of torque variation. They are able to demonstrate an

on-line adaptive identification for engine inertia and the spring coefficient in order to

estimate dynamic engine output torque using only the torque measured at the

dynamometer. The estimated torque is then fed back to the torque controller which uses

the engine’s throttle to regulate torque. This reduces torque overshoot due to

measurement error and so decouples the engine torque interaction with the speed control

loop.

Even when all of the concerns relating to unknown physical parameters are addressed the

field current time constant of the dynamometer is a limiting factor to stability an

controllability. No account has so far in this discussion been taken for the use of a current

controller which can bring down the open-loop current (and hence flux) time constant in

inverse proportion to the step change in input. The effect being that small changes to a

set-point will be achieved far more quickly than large ones due to the finite voltage

which can be applied. This is in itself a non-linearity before the machine’s dynamics are

considered. The next section describes the work undertaken to design a current

controller and is flowed by a section which assess its performance using simulation.

89

4.3 Development of a Replacement Current Controller

4.3.1 Phase Angle and Current Controller

Figure 4.13: Semikron phase angle controller

The Semikron phase angle controller (Figure 4.13), is a sealed unit for isolated control of

a resistive or inductive load from a single phase 240 V AC mains supply. The load can be

supplied with AC using a triac or DC using one or more thyristors or a group of

thyristors mounted in a single package which is called a silicon controlled rectifier

(SCR). Open loop control of a load using phase angle control is inherently non-linear as

it is achieved by chopping a sine wave in linear proportion (in this case the mains

supply). Providing a current feedback path to adjust the phase angle set-point effectively

linearises the system’s input-output relationship. It also removes output drift caused by

variations in mains supply RMS voltage and changes in the load’s characteristics (e.g.

with temperature) to ensure a fixed steady-state input-output relationship. The

linearisation achieved by closed-loop control is shown in Figure 4.14.

90

Figure 4.14: Comparison of open and closed loop current control modes

An example control circuit provided with the Semikron unit is illustrated in Figure 4.15.

In this circuit the load is supplied with AC from a triac unit. The load current is passed

through a current sensing transformer. The output from the transformer is then passed

through a bridge rectifier then connected to a burden resistor. The current through the

burden resistor produces a voltage across it which is directly proportional to the load

current being measured. The choice of burden resistor value effectively sets the scaling

or feedback gain. Inside the Semikron unit there is an uncommitted op-amp which is

used with some external components to produce a PI controller. The controller set point

is adjusted using a potentiometer to produce a reference voltage of between 0 and 2 V.

The maximum load current that can be set is at 2 V and is determined by the choice of

burden resistor.

91

Figure 4.15: Semikron current control circuit for an AC load

The Semikron provided circuit was modified for use with the dynamometer which

requires a DC supply. An SCR unit was used in place of the triac to provide a rectified

DC supply instead of AC. Off-the-shelf phase angle controllers that could be sourced

were found to be designed only to be able to trigger half bridge thyristor units. To avoid

the development time of designing, assembling, testing a custom phase angle controller,

a commercial off-the-shelf controller was required and so a half-bridge SCR (Figure

4.16) was selected to compliment it, and are more readily available than full bridge

four-thyristor versions. Half bridge SCRs have a pair of diodes which replace two of the

Figure 4.16: P102W SCR

thyristors (Figure 4.17). The half bridge versions can be shown to regulate the current

through a load identically to a full bridge, but at a lower device cost and with reduced

triggering complexity. One limitation is that reverse-generation is not possible with the

half-bridge configuration.

92

Figure 4.17: P series SCR configurations

A Semikron snubber unit was connected across the SCR to protect it and help prevent

false triggering. Snubbers usually form an RC filter, but this device also incorporates a

varistor to suppress transient voltage spikes. A pair of ceramic power resistors were also

connected across the load to replace a large wound resistive heater element that was used

with the original dynamometer controller, mounted in the operator’s box.

Figure 4.18: LEM hall effect current sensor

Current sensing transformers tend to be large and are often rated for currents much

higher than required for this application. The original Froude controller used a current

sensing transformer which was rated for a much higher current (50 A) than the

dynamometer (5 A). For the replacement controller, a hall effect current transducer was

selected instead (Figure 4.18) as these devices are smaller, can be more cost effective,

and are be found in measurement ranges better matched to this application. The device

chosen has an output voltage measurement offset of 2.5 V obtained using an internal

reference. This is to allow for measurement of current in both directions without the

need for a negative supply rail. For this application the current will only flow in one

direction so the offset was removed using a c zener reference in combination with an

instrumentation amplifier (AD623) to apply the offset whilst also allowing scaling of the

feedback signal to a 0-2 V range in the same way as a burden resistor is used in the

original Semikron circuit. The modified circuit design also has provision for the

potentiometer signal to be switch out and replaced by a DAC signal for microprocessor

interfacing and also to allow for under/over-speed solid state protection using

comparators and potentiometer set references. The DAC signal was used to provide

closed-loop speed control and is discussed in the following sections. The circuit is

shown in Figure A.1.

93

G166mH

240 VAC

22.5R

1.5K

60W

Semikron

SKPC200

Phase angle

control unit

7

8

9

10

11

12

1

2

3

4

5

6

0.5A

0.47uF

Circuit

breaker

L

N

10K
0.01uF

50V

Semikron

SKRC440

Snubber

100K

100K 0.47uF 50V

150K

100K
0.1uF

50V

1K pot phase

angle control

Half controlled

bridge rectifier

Semikron SKPC200-240

Phase angle controller

Manual/DAC

switch

DAC

u
1

x
1

Computer

AD623

10uF 0.1uF

+12V

100K

Over/under

speed

switch

LM4040-2.5

100R

P102W

Integrated

thyristor

bridge

1.5K

+12V

LEM

HX05-P/SP2

Current

Transducer

100K

Current

set

100R

Output

2.5V+/-0.125xI

Class X2

Suppression

HRC

10A

Figure 4.19: Current controller schematic

Initial component values for the PI controller were taken from the Semikron example

circuit. The circuit was tested and found to correctly control the current which was

monitored independently using a digital ammeter. After testing, further modifications

were made to the circuit. It was found using simulation that the time response for the

current to settle could be improved so some of the PI related components were changed

accordingly with ones that more closely matched those of the iteratively tuned

simulation model. An initial estimate for the winding inductance of 40 Henrys was used

in the model based on the open-loop response time and the measured winding resistance.

This estimate was based on the measured winding resistance and the fact that it took

approximately 10 seconds for the current to reach an apparent steady state when

measured on an in-series connected ammeter. An integrator wind-down problem was

observed when the controller was left at zero demand for a period of time. The phase

angle controller’s internal op-amp is supplied from dual rail ±10 V supply thus allowing

a negative signal to develop. A slight mismatch between the hall effect sensor’s internal

reference and the external reference caused a DC offset in the current signal when no

current is actually flowing through the load. This is seen by the PI controller as a small

steady-state error which the integral action attempts to correct. Additionally, any noise

which develops on the potentiometer reference signal or the feedback current signal was

found to contribute to the initiation wind-down to the negative rail of the op-amp. A low

pass filter was added to the current feedback signal to remove both noise and the 50 Hz

mains supply sinusoidal component which is imposed upon it. It was not entirely

necessary to remove the 50 Hz component as it was found in simulation to have little

effect on the control, but it was removed to allow the current feedback to be observed

more easily both in simulation and on the real system. Also the occurrence of negative

direction noise spikes, resulting from stray capacitance of the cable joining the SCR to

the dynamometer and fast switching of the SCR’s thyristors, was significantly reduced,

preventing them from being a disturbance to the controller. Leaving a small positive DC

94

signal on the set-point input, small enough not to trigger the lower threshold of the phase

angle controller but sufficient to prevent controller wind-down was used when the

set-point voltage was supplied from a DAC rather than from the manual potentiometer.

For potentiometer control, a small initial delay in response from a zero set-point due to

wind-down recovery was not considered important. The problem of integrator wind-up

was reduced or prevented by adding a 5.6 V zener diode across the op-amp feedback

path to clamp the PI controller output, rather than allowing it to rise up to the +10 V

supply rail. This was necessary as the maximum input signal of the phase angle

controller is 5 V for full duty and any further rise in input voltage would not have an

increased effect (analogous to actuator saturation), but so long as an error persists, the PI

controller would otherwise continue to increase the control signal resulting in excessive

overshoot when the set-point is eventually reached.

4.3.2 Current Controller Simulation

Before the controller described in the previous section was actually constructed it was

decided to verify the design using a Simulink simulation model and it’s PowerSims

toolbox. The PowerSims toolbox internally constructs a state-space representation of the

components laid out from the graphical building blocks in Simulink. This allows models

for complex systems containing power devices to be constructed in a fraction of the time

it might otherwise take using basic transfer function building blocks. Figure 4.20 shows

an overview of the whole system model. The system takes an input signal of 0-2 V

corresponding to a control set-point of 0-5 A. There are two main subsystems which

consist of the PI controller and another block which lumps the phase angle triggering

unit, the SCR unit, and the dynamometer load. The remaining blocks model the response

of the hall effect transducer and a low-pass filter which provide the feedback signal to

the PI controller.

1/NCurrent

voltage to current

Scope

Phase Demand

Load Current

Trigger Angle

Phase angle controller
Dyno system

Error Control

PI Controller

2

Demand
[0-2 Volts]

NCurrent

0.000003s+1

Current transducer

1

0.05s+1

Current feedback LPF

Figure 4.20: Top level of the control system model

Figure 4.21 illustrates the PI controller subsystem. The single transfer function of the

op-amp arrangement is shown unconnected for reference, but the terms were separated

95

out to allow explicit saturation limits to be placed on the integrator. This approach also

allows a Scope block to be separately attached to the P and I terms so that their

individual contribution to the controller’s response can be observed.

1

Control

Terminator

Scope

OpRf

OpRi

P-Gain

OpRf*OpCf.s+1

OpRi*OpCf.s

OP-Amp
Transfer Fcn

1
s

Integrator

1

OpRi*OpCf

I-Gain

Ground

Add

1

Error

Figure 4.21: PI Controller subsystem

Figure 4.22 shows the main subsystem consisting of the supply, load, SCR bridge, and

phase angle trigger system. This might have reasonably been broken down further into

separate system blocks, except for the fact that it is constructed partly from PowerSims

blocks which cannot be directly mixed with other Simulink blocks. Connection from the

PowerSims model to the rest of the system is made through dedicated interfaces on

blocks representing the ammeter, voltmeter, and thyristor gates. The model represents

the functionality of the Semikron phase angle trigger unit and the SCR bridge with

snubber. The supply is represented with some line impedance added to remove

unrealistic very high magnitude current spikes from the supply at switching events. The

other components such as the ballast power resistor and dynamometer windings are also

represented by the model. The figure also shows the inclusion of a bypass resistor

internal to the dynamometer which was added at a later stage and discussed in the

sections that follow.

2

Trigger
Angle

1

Load
Current

180-(36*u(1))

volts to angle

v
+
-

V Load

Tm2 Tm

g
m

a
k

Thyristor2

g
m

a
k

Thyristor1

Supply
impedance

Supply
Scope

Snubber
Power

Resistor

Phase control
limits (0-5V)

v
+
-

Line Voltage

i
+

-

Line Load

1

0.0005s+1

Input LPF

i
+

-

I Load

Field
Windings

Diode3

Diode2Diode1

By-pass
Resistor

Bridge
Scope

AC Mains
240V
50Hz

 Pulse
 generator

1

Phase
Demand

Figure 4.22: SCR bridge, phase angle control, supply and load

There is one further subsystem which consists of the phase detection and gate trigger

pulse generation shown in Figure 4.23. This works in a similar way to the Semikron unit,

using a ramp function, but takes into account the discrete nature of the simulation system.

96

2

Trigger
angle

1

Trigger
pulse

Zero retard
Switch

Switch Sum1
Sum

 S/H

Sample
and Hold

Repeating
sequence

T
0.0005 s

Monostable1

T
0.0005 s

Monostable

Memory

Hit
Crossing

u[1]>0

Fcn 0

Constant4

0

Constant3

1

Constant2

2

Line
Voltage

1

Demand
angle

Figure 4.23: Phase detection and gate trigger pulse generation subsystem

The model confirmed that the system behaves in a stable and controllable manner in the

presence of supply and load current ripple, and the physical system was constructed

accordingly. Once an improved estimate for the winding inductance was obtained, the

model was then used to improve the tuning of the actual system as physical component

substitution is much more difficult than parameter adjustment in the model.

4.3.3 Controller Transient Behaviour

Although the controller described in the previous section worked well at achieving and

maintaining a steady state current, the response time of the system was found to be very

slow. This problem is inherent from the properties of the dynamometer. However, given

the limitations of the plant, it was considered important to make sure that the controller

was achieving a good near optimum response to keep the long rise time to an absolute

minimum. As the model shown in the previous section is relatively complex it runs quite

slowly and the result of any changes can take significant time to be seen, so a reduced

model was made to study the effectiveness of the PI controller. Figure 4.24 shows the

simplified model, having no subsystems.

1/NCurrent

Volts to Current

PeakV/5

Voltage Gain

Scope

|u|

Rectifier1

|u|

Rectifier

Product

0.1

Pot Demand
[0-2 Volts]

OpRf*OpCf.s+1

OpRi*OpCf.s

OP-Amp
PI Controller

1

0.05s+1

Low pass filter1

1

0.05s+1

Low pass filter

1

0.166s+120

Dynamometer TF2

1

Ldyno.s+Rdyno

Dynamometer TF1

1

Ldyno.s+Rdyno

Dynamometer TF

NCurrent

3e-6s+1

Current transducer TF

1

0.05s+1

Current feedback LPF

50Hz Sine1

50Hz Sine

0-5V

Figure 4.24: Block diagram of simplified current controller model

97

The controlled system is run in parallel with an identical (open-loop) dynamometer

transfer function and which is given the full supply voltage as this forms the constraint

for fastest possible response for comparison with the controlled response. The point of

interest is when the PI controller departs from this fastest response curve to achieve its

set-point. Ideally (as the system is essentially first order), this would occur at the exact

instant the set-point was achieved. As the controller has a proportional term, this is not

possible as the error will reduce as the set-point is approached and therefore so will the

proportional term’s response to it. Driving the output into saturation using a high gain

may reduce this for a small step change in demand, but for a large scale change a high

gain may result in an unsatisfactory overshoot, so in the absence of any derivative action,

a compromise has to be reached. Figure 4.25 shows the response to a full scale demand

change of 0-5 A. The controller holds the response to the maximum, but exhibits an

overshoot of around 8%. It can also be seen that the full response takes around 2.3

seconds and realistically this cannot be improved upon without increasing the supply

voltage. Another consequence of this is that the controlled response for smaller step

changes will take less time despite the underlying time constant of the machine

remaining the same. This will be an important consideration when designing the outer

torque/speed control loops which in discrete form may depend on the previous control

action having been completed before executing the next. For the outer controller to be

fully decoupled it would have to be run at intervals longer than 2.3 seconds without

addressing the need that smaller demand changes will require less time to take effect.

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

Time [seconds]

C
u

rr
e
n
t
[A

]

2.0V controlled response

Open loop full duty response

Figure 4.25: Plot of maximum demand controlled response and open loop full duty
response

98

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

C
u
rr

e
n
t

[A
]

Step Response

0 0.5 1 1.5 2 2.5 3 3.5 4

0

1

2

3

4

5

Time [seconds]

C
u

rr
e

n
t

[A
]

Error Response

2.0V

Open loop

1.5V

1.0V

0.75V

0.5V

0.25V

Figure 4.26: Plot of step response to various control set points and corresponding error
response

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

Time [seconds]

C
u
rr

e
n

t
[A

]

Small Signal 5% Step Response

0.1V controlled response

open loop full duty

95% response

0.1V intercept

open loop intercept

Figure 4.27: Comparison of open loop rise time with a small signal response

Figure 4.26 illustrates that small signal changes achieve their set-point in a fraction of the

time of larger ones. The poor response for a small signal (5% of full demand) set-point is

shown in Figure 4.27. The green curve again shows response to maximum supply

99

voltage applied open-loop from which it can be seen that the desired set-point could have

been optimally achieved in about 120 ms, but instead took approximately 960 ms, eight

times longer. Increasing the gain would improve this, but this would also increase the

overshoot for the full-scale demand change to an unacceptable level, possibly exceeding

the maximum current rating of the machine for long enough to cause damage.

4.3.4 Speed Control Tests using the Current Controller

The analogue current controller described in the previous section was tested in a digital

PID speed control loop using dynamometer applied torque to limit engine speed. The

measured torque was recorded but not used as part of the control loop, only speed. A

10 ms control loop time was used to coincide with (but not synchronised to) the mains

half cycle frequency. Speed and torque were sampled one hundred times faster (10 kHz

per channel) and the mean of each one hundred samples was recorded and provided at

each control time step. The PID gains were not normalised to the control period, but very

small gains were needed for the system to be at all stable. Tests were performed for a

variety of gains, the data for three of which are shown here. The test procedure was to

start the engine and allow it to idle. A constraint speed would then be set and the throttle

opened manually by increasing arbitrary fixed increments. The controller would be given

time to stabilise and achieve a steady state speed before the next increment was applied.

It was found that although the response time and overshoot were relatively poor, the

system would achieve a steady-state up until a certain throttle opening was reached

whereby it would enter a limit cycle and become unstable. Some improvement may have

been possible through the use of gain scheduling or some variable gain approach, but the

system was found to be fundamentally unstable by a moderate throttle opening

regardless of the gains used. This is due to the slow current response time and the current

controller’s inability to add and remove flux quickly enough. The slow application of

torque using low gains is initially acceptable provided the speed overshoot is not and

issue. However once torque has become too great the engine’s speed drops and so does

the torque which results in further speed loss. The controller reacts by removing the

applied voltage, but the current continues to recirculate in the dynamometer’s windings

dissapated only by the winding resistance and the load dump resistor connected in

parallel. When a certain throttle opening is reached, the controller is not able to act fast

enough and essentially is out of phase with the system as is over-reacts providing too

much torque, too late. Figure 4.28 shows a test the speed is controlled to somewhere

near the set-point correcting the throttle widening disturbances, albeit with a large

overshoot and long settling time of over ten seconds. Figure 4.29 shows a similar test

over a longer period using a lower gain which exhibits a slower settling time. The use of

a higher gain was initially more effective for wider throttle openings show in a further

test plotted inFigure 4.30, but results in the onset of an unstable limit cycle which cannot

100

be easily recovered even with manual intervention using the the throttle.

The use of a Smith predictor was considered to correct for slow current response by

treating it as a delay in the process (a technique popular in the chemical and process

industry for dealing with process dead-time), but the idea was later abandoned. After

some investigation of literature sources, it was apparent that this would only be

appropriate for systems with fairly predictable fixed delays (such as dead-time due to

transport delays) rather than slow response delays. Also, if the response delay varies

with the process set-point and load conditions, then systems using a Smith predictor

tends to be sensitive to errors in the modelled delay and can easily be made to have a

worse performance and stability than if the predictor had not been used. Some recent

progress has been made in this field, for example Panda et al. (2006) have outlined a

modified Smith predictor enhanced PID control scheme which addresses its poor

performance in load-change cases and Kwak et al. (1999) have outlined a new structure

for the Smith predictor for use with unstable processes. It was felt that this approach

would not be suitable for solving this particular problem.

0 10 20 30 40 50 60 70 80 90
500

1000

1500

2000

2500

3000

3500

4000

S
p
e
e
d
 [
R

P
M

]

Dynamometer speed control test, target speed=2600rpm, Kp=0.0002, Ki=0.0, Kd=0.0

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

T
o
rq

u
e
 [
v
o
lt
s
]

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

Time [seconds]

C
o
n
tr

o
l
d
u
ty

 [
%

]

Figure 4.28: Plot of engine speed control test, medium gain

101

0 20 40 60 80 100 120 140 160 180 200 220
500

1000

1500

2000

2500

3000

3500

4000

S
p
e
e
d
 [
R

P
M

]

Dynamometer speed control test, target speed=2600rpm, Kp=0.000120, Ki=0.0, Kd=0.0001

0 20 40 60 80 100 120 140 160 180 200 220
0

2

4

6

8

10

T
o
rq

u
e
 [
v
o
lt
s
]

0 20 40 60 80 100 120 140 160 180 200 220
0

20

40

60

80

100

Time [seconds]

C
o
n
tr

o
l
d
u
ty

 [
%

]

Figure 4.29: Plot of engine speed control test, low gain

102

0 20 40 60 80 100 110
500

1000

1500

2000

2500

3000

S
p
e
e
d
 [
R

P
M

]

Dynamometer speed control test, target speed=2300rpm, Kp=0.001, Ki=0.0, Kd=0.0

0 20 40 60 80 100 115
0

2

4

6

8

10

T
o
rq

u
e
 [
v
o
lt
s
]

0 20 40 60 80 100 115
0

20

40

60

80

100

Time [seconds]

C
o
n
tr

o
l
d
u
ty

 [
%

]

Figure 4.30: Plot of engine speed control test, high gain

It was decided that satisfactory performance could not be achieved through controller

tuning or by accounting for the delay in the either the speed or torque control processes

and that the current response would need to be improved through better current control.

In the next section tests are described which were performed to try to experimentally

quantify the current response in order that it’s control might be improved.

4.3.5 Dynamometer Response Characterisation

The full current rise time was found to be considerable, taking over 10 seconds for the

current to stabilise at 5 A from a zero current initial condition, despite the fact that the

current response had been improved by re-tuning the current controller. It was decided to

investigate the reason for the long rise time in the hope that a further improvement could

be made, as the benefits of low mechanical inertia of this machine type would be negated

by the very long current rise time. A step test was performed to help characterise the

dynamometer’s current response. The test was performed using a 30 V DC linear

regulated bench power supply. A digital data storage oscilloscope was used to capture the

response and was triggered using the rising edge produced when the mechanical rocker

switch was closed. As the load being tested was largely inductive, switch contact bounce

103

was not expected to be a problem as (unlike a capacitive load) virtually no current should

be drawn at the instant the switch contacts close. The result of the step test can be seen in

Figure 4.32. The initial observation is the pronounced jump or step in current at the

instant which voltage is applied. This initial step is a concern as it forms a disturbance to

an outer torque control loop which depends upon a proportional relationship between

measured field current and brake torque. The response of the step itself was captured by

repeating the test at a higher sampling resolution. From the appearance of the step, it was

thought that this might be due to an internal power resistor connected in parallel with the

windings to assist with recirulative dissapation of storred engery during unloading and

for protection of the insulation (if the windings are disconnected under load resulting in

a large voltage as the magnetic field collapses). Alternative causes considered were the

effect of the core not being fully magnetised until a certain minimum current flows,

sufficient to polarise the magnetic domains, and also the possibility of an inrush current

caused by inter-winding and inter-layer capacitance. Inter-winding capacitance is a well

known phenomenon which presents itself to high frequency transformer designers,

however some simple modelling revealed that the size of the capacitance that would be

required to correlate with the measured data would be inplausible. Other causes for the

curve shape considered were the effects of saturation and eddy-current damping. In a

brief informal telephone conversation with an engineer at Froude Hofmann it was stated

that the field coil was wound from a single length of wire an sealed into a tin casing

using argon gas welding, a process which they no longer use and the wire was of a type

nolonger available to them. This would make unfeasable the rewinding of the field coil

or inspection of it to eliminate the possiblility of a partial short. As no further

information was available at the time, the simple hypothesis of a parallel resistence

(actual or analogous) was pursued for comparsion with the meaured data.

Applied Voltage

Scope1

1/120

Parallel
Resistance

1

Ldyno.s+Rdyno

Dyno TF

30

Figure 4.31: Block diagram of the simple DC step response model

The response was modelled with a parallel resistance (Figure 4.31) which results in a

similar same apparent initial jump, and responses for different inductances are shown.

The 70 Henry curve appears to be the best fit. A slight deviation in curvature from an

ideal inductor can be seen appears similar to what can be observed due to skin effect in

the windings when a high frequency AC voltage source is applied to a magnetic

machine. Skin effect causes a temporary increase in the conductor effective resistivity as

progressively less of the conductor’s cross-sectional area is used as the frequency of the

104

driving voltage increases. A temporary or dynamic increase in series resistance due to

skin effect in the field windings would result in a faster response as the R
L ratio changes.

However as a DC voltage source was used rather than an AC one, and with the machine

stationary skin effect can be ruled out and so local saturation of part of the magnetic

pathway is likely to be the cause. Partial saturation would also change the R
L ratio, as the

effective L would dynamically decrease so that the reponse is hasened slightly as R starts

to predominate.

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

Time [seconds]

C
u
rr

e
n
t

[A
]

Actual response

80 Henry

60 Henry

70 Henry

Figure 4.32: Dynamometer winding measured response to 30 V DC step input plotted
against different simulated responses

105

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Time [seconds]

C
u

rr
e

n
t

[A
]

Actual response (offset removed)

70 Henry

Expected intercept

63.2% of response

Actual intercept

63.2%

Figure 4.33: Measured 30 V DC step response, plotted with step offset removed to
estimate time constant

Figure 4.33 shows the same step response, but with the initial jump removed so that the

time constant of the inductive current rise may be estimated. Again the modelled

response for a 70 Henry load is shown for comparison. A time constant of about 2.2

seconds can be seen for the actual sampled response and a slightly longer time constant

of about 2.5 seconds for the modelled response, a difference in time constant of about

300 ms. The response is shown in Figure 4.34 from which it can clearly be seen that

switch contact bounce has obscured the result. A modelled series resistive-inductive

response that best fits the sampled curve is shown as well. Also an inductance of 1 Henry

seems large for a device or mechanism which is intended to be largely resistive and not

inductive. These factors started to suggest that the jump is more likely to be a core

magnetisation effect than that of a parallel resistor.

106

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.1

0.2

0.3

0.4

0.5

0.6

Time [Seconds]

C
u

rr
e

n
t

[A
]

Raw Data

1 Henry, 78 Ohms

Figure 4.34: Plot of an expansion of the initial step in full response. A parallel resistance
with some inductance is shown for comparison.

4.3.6 Improved Response Characterisation

Owing to switch bounce during the step tests, the cause of the initial current jump was

still uncertain. From a control perspective, it was considered more important to

determine whether the initial current that flows contributes to the brake torque than to

understand why it occurs. It was decided that the tests should be repeated using a

MOSFET instead of a mechanical switch to capture the initial response more accurately

and the resulting test circuit is shown in Figure 4.35.

0-60V

33R

1R

10K15V

GND Isense

Dyno

Windings

Figure 4.35: FET based step test circuit

107

A SPDT mechanical toggle switch was used with in-line resistance to reduce

gate-ringing and a pull-down resistor to ensure the off-state is maintained. A separate

15 V supply was needed to ensure that the gate voltage (VGS) was sufficient to turn the

device fully on given that the current though the sense resistor will cause the source

voltage to float above ground. A series of turn-on tests were repeated for a range of

applied voltages to establish if there was any voltage dependency on the apparent rise

time and the magnitude of the initial step phenomenon.

Dynamometer DC Step Responses (1 sec/div)

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9

Time [Seconds]

C
u

rr
e

n
t

[A
]

5V

10V

15V

20V

25V

30V

35V

40V

45V

50V

55V

60V

Figure 4.36: Field current step response to steady-state for a range of applied voltages

108

Dynamometer DC Step Responses (1ms/div)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5 6 7 8 9

Time [ms]

C
u

rr
e

n
t

[A
]

5V

10V

15V

20V

25V

30V

35V

40V

Figure 4.37: Initial rise in field current for a range of applied voltages

Figure 4.36 shows the test results for the set of 9 second duration responses, and also the

small scale initial responses over a 9 ms duration are shown in Figure 4.37, both for a

range of applied voltages. It can be seen that the large scale response is much the same

as the previous test using a mechanical switch. This time the range of voltages tested

shows that the initial step appears to be proportional to the applied voltage. The small

scale responses, when plotted at a suitable scale, appear to have the same basic shape as

the full responses, but without the initial step and over a much shorter time duration. To

help resolve this further, a test was needed to establish how the response behaves when

the applied voltage is removed. With the existing test circuit the current sense resistor is

removed from the current loop when the MOSFET is turned off. This prevents the

turn-off response from being logged. When the MOSFET or switch is turned off the

freewheel diode forward biases and the current direction remains the same through the

windings. The energy stored by the inductance of the machine maintains the current

which recirculates through the diode and is dissipated by the resistance of the windings.

For this recirculation current to be measured, the sense resistor needs to be moved inside

the recirculation loop (4.38). As one side of the resistor still needs to remain grounded to

measure the voltage drop across it, then this presents a difficulty in triggering the

MOSFET gate with the correct voltage relative to the supply. This might have been

resolved by using a p-channel MOSFET and switching the load from the high side

instead of the low side, but instead a mechanical switch was used again to simplify the

task and initial fast switched responses had already been captured.

109

0-60V

1R

GND

Isense

Dyno

Windings

Figure 4.38: Test circuit modified to capture the turn-off response

For the turn-off test a single applied voltage of 24.5 V was used and the test was repeated

with the supply being switched off after different amounts of time.

-0.05

0.15

0.35

0.55

0.75

0.95

0 1 2 3 4 5 6 7 8 9

4.5 sec

2.0 sec

Figure 4.39: Turn-off step tests

Figure 4.39 shows that the turn-off characteristic is remarkably similar to an inverted

turn-on response, both being exponential with an initial jump. From the test it is clear

that there is evidence of energy storage and it confirms that the inductance is large and

that there is a long time constant. The initial drop in the output current immediately after

turn-off casts doubt on the effect being an initial magnetisation effect (remanence and

coercivity on the magnetisation curve) as current is already flowing and the core is

energised.

110

Figure 4.40 shows a selection of the transient responses plotted together in a normalised

form to compare how the responses change with applied voltage. All of the responses are

similar except for 5V. This may be evidence of a minimum magnetisation energy or core

penetration effect. The responses for higher voltages (particularly 55 V and 60 V) appear

to deviate more from an exponential shape towards steady-state and this is likley due to

the onset of magnetic saturation at a particular flux level. Figure 4.41, Figure 4.42,

Figure 4.43, and Figure 4.44 are plots of the natural logarithm of the normalised

responses which should be a linear for an ideal exponential response. The plot sections

in red have been median filtered to remove outlier noise and also show the data range

used for a straight line best fit. The data in the plots shows reasonable adherance to the

straight line fit, execpt for the 55 V and 60 V plots which deviate strongly after a certain

unknown flux level is reached which is due saturation occuring, possibly localised

somewhere in the magnetic pathway. If the coupled pair of inductors model discussed in

section 3.1 is assumed, which makes use of a ficticous damper winding, we can deduce

from the reciprocal of straight line fit gradient a combined time constant for the field

winding and the damper winding, τ f and τe respectively. The size of the initial current

step multiplied by the combined time constant (τ f + τe) gives τ f and so τe can be found

also. Table 4.1 gives the calculated time constants for each of the five plotted responses.

It also shows that estimated self inducance varies depending upon the excitation

conditions. The peak estimated inductance is around 42 Henrys when the machine is

fully excited but less than the point of saturation. This is estimate much lower then the

70-80 Henrys than results from using the current time constant alone. Figure 4.45 shows

how the two field and damping time constants vary in proportion to each other over the

limited test range. The damper current time constant appears to remain a constant

proportion of the field current over about 10 V and the overall combined time constant

falls slightly with applied voltage. It should also be noted that these relationships are

shown with the machine at rest and may alter significantly with load torque and shaft

speed.

111

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8

Time [seconds]

N
o

r
m

a
li

se
d

 C
u

r
r
e
n

t
I/

Im
a

x

5V

10V

35V

55V

60V

Figure 4.40: Normalised field current transients for several applied voltages

y = -0.4142x - 0.8978

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0 1 2 3 4 5 6

Time [seconds]

ln
((

I m
a

x
-I

)/
I m

a
x
)

Figure 4.41: Natural logarithm of normalised field current for a 5 V transient

112

y = -0.429x - 0.2925

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0 1 2 3 4 5 6

Time [seconds]

ln
((

I m
a

x
-I

)/
I m

a
x
)

Figure 4.42: Natural logarithm of normalised field current for a 35 V transient

y = -0.5252x - 0.2052

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0 1 2 3 4 5 6

Time [seconds]

ln
((

I m
a

x
-I

)/
I m

a
x
)

Figure 4.43: Natural logarithm of normalised field current for a 55 V transient

113

y = -0.5377x - 0.215

-6

-5

-4

-3

-2

-1

0

0 1 2 3 4 5 6

Time [seconds]

ln
((

I m
a

x
-I

)/
I m

a
x
)

Figure 4.44: Natural logarithm of normalised field current for a 60 V transient

Applied Voltage [V]
5 10 35 55 60

τ f + τe 2.41 2.47 2.33 1.90 1.86
τe 1.33 0.62 0.47 0.38 0.37
τ f 1.09 1.86 1.86 1.52 1.49
τe
τ f

1.22 0.33 0.25 0.25 0.25
L f = R f τ f 24.5 41.9 41.9 34.7 33.2

Table 4.1: Estimated time constants and self inductance for a selection of applied voltages

114

0

0.5

1

1.5

2

2.5

5 10 15 20 25 30 35 40 45 50 55 60

Applied Voltage [V]

T
im

e
 C

o
n

s
ta

n
t

[s
e

c
o

n
d

s
]

a
n

d
 r

a
ti

o

Te

Tf

Te+Tf

Te/Tf

Figure 4.45: Time constant variation for several applied voltages

Figure 4.46 shows a block diagram of the tranfer function models of the field and

damper windings. Normalised responses were obtained from this model and compared

to the actual measured responses for the two extremes of 5 V (Figure 4.47) and 60 V

(Figure 4.48) using the empirically determined time constants shown in Table 4.1. The

parameter k determines the level of curvature in the initial step and was determined

manually by trial-and-error. The responses show remarkable correspondence to the

measured data given the uncertainty in the parameters; the 60 V showing slight diviation

due to the onset of saturation. How this saturation onset might be affected by shaft

rotation producing an alternating field in the loss drum is not known and would require

further tests to determine.

Scope

1/(Rf*Re)

1/Rf
Te.s+1

(Te*Tf*k*(2-k))s +(Te+Tf)s+12

Field Winding Current

M.s

(Te*Tf*k*(2-k))s +(Te+Tf)s+12

Damper Winding Current

22.6

Figure 4.46: Transfer functions for applied voltage to field winding and damper winding
current

115

Normalised Measured and Modelled Current Curves for 5V Applied Voltage Step

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8

Time [seconds]

N
o

r
m

a
li

se
d

 C
u

r
r
e
n

t
I/

Im
a

x
Measured

Empirical fit, Tf=1.09, Te=1.33, k=0.04

Figure 4.47: Modelled and measured normalised current responses to a 5 V applied
voltage

Normalised Measured and Modelled Current Curves for 60V Applied Voltage Step

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8

Time [seconds]

N
o
r
m

a
li

se
d

 C
u

r
r
e
n

t
I/

Im
a
x

Measured

Empirical fit, Tf=1.49, Te=0.37, k=0.04

Figure 4.48: Modelled and measured normalised current responses to a 60 V applied
voltage

116

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

Time [seconds]

N
o

r
m

a
li

se
d

 C
u

r
r
e
n

t
I/

Im
a

x

Total field

Flux producing

Damper

Figure 4.49: Modelled current winding responses and predicted flux current

Figure 4.49 shows the modelled 5 V (chosen as it has a high τe
τ f

ratio which accentuates

the effect) curent responses and allows the difference between them as to be seen as the

green curve which can be assumed to be the flux producing current. The value of the

coupling parameter M was chosen arbitarily to make the damper response magntiude

initially equal to the field current as initially this should be true. It is the green flux curve

(which cannot be easily validated) which reveals the nature of the flux response and will

be directly proportional to torque for any given shaft speed. Being able to predict this

curve would allow a current controller to be used to force the torque response to a

demand value in the minimum time. The total field current is all that can be measured

externally, and if a controller was to use this for feedback, taking Figure 4.49 as an

example, after half a second the feedback current would indicate that around 60%, or one

time constant, of the response had been achieved when in fact only around 15% of the

steady-state flux rise had occured. The controller might then tend to reduce the applied

voltage prematurely increasing the overall time taken to achieve the desired flux

asociated with a particular steady-state current value. To obtain an optimal rise time or

slew rate in the field windings the applied voltage must be be held at a maximum until

the demand current is reached or approached. No controller can achieve this without

knowledge of the internal electrical properties of the machine. This leads to a

requirement for a model based approach such as a state-space model by which the

internal state of the field windings can be estimated from a knowledge of the plant

model. An impediment to this approach is the parameter uncertainty and variation of

parameters with setpoint and operating conditions. The next section demonstrates how a

117

state-space approach can be adopted to provide a virtual sensor to the current controller.

4.3.7 State-space Estimation and Control of the Field Windings

As it is not possible to just directly measure the flux producing proportion of the current

through the field windings, a state-space model can help to observe or estimate the

current using the inductance and resistance parameters that have experimentally

determined. The estimated state for the part of the field winding current which

contributes to the production of flux can then be used as a virtual sensor as feedback to a

controller. As there is no flux measurement for feedback the model must be

asymtotically convergent with the real flux state so that plant and measurement noise do

not cause the estimate to diverge with time. If this were not the case then a Kalman filter

(Kalman, 1960) with respresenitive input and output noise models would be required.

For the purposes of forming a state-space model the dynamometer is electrically

represented here by two inductors connected electrically in parallel with no magnetic

coupling. This approach was chosen before eddy-current damping was established to be

the most likely cause for the shape of the current response and before the magnetically

coupled inductor model shown in the previous section had been validated. However, the

general approach is still valid, requiring only modification to the state equations.

Treating the inductor pairs as uncoupled, the current though each inductor element can

be expressed as:

u(t) = L
di
dt

+ iR

By choosing the current i as a state x and rearranging we have:

ẋ =−R
L

x+
1
L

u(t)

Now choosing the first state variable to be the current through the by-pass resistor

(denoted x1) and the second state variable to be the current though the field windings

(denoted x2) expressed in matrix form leads to the following state-space matrices:

A =

[
−R1

L1
0

0 −R2
L2

]
=

[
−722.9 0

0 −0.3957

]

B =

[
1

L1
1

L2

]
=

[
6.024

0.01429

]

118

C =
[

1 1
]

D = 0

To form a full order estimator (FOE) the two poles for the two states need to be placed at

an arbitrarily fast (relative to the system being estimated) location:

P =
[
−2 −2

]
The Matlab function acker for Ackerman’s method for pole placement can then be used,

but the A and C matrices have to be transposed to allow matrix multiplication to take

place:

G1 = acker(A′,C′,P)

G = G1′ =

[
−719.2993

0.0036

]

The new A matrix for the FOE, which we will denote F , is formed from the relationship:

F = A−GC =

[
−3.6007 719.2993

−0.0036 −0.3993

]

With the estimator in place it is now possible to attempt control of the field winding

current using state variable feedback (SVF). The vector:

K =
[

0 1
]

is used to reduce the feedback states to a scaler containing only x2. The system model

which includes SVF acting on x2 is shown in Figure 4.50. The controller needs to be

able to track the set-point rather than act just as a regulator so a simple PI control

topology was used to ensure any steady state error is quickly reduced as the set-point

changes. A more comprehensive treatment might have included the proportional and

integral action in the state-space SVF design, however the topology presented here was

found to suffice. The inclusion of a saturation block allows the use of a very high

proportional gain which ensures that the maximum applied voltage is used until the set

point is very nearly reached, where the response becomes proportional to the error. For

simplicity, this simulation model assumes that the supply is a perfectly regulatable

0-240 V DC, with no ripple.

119

Step

x' = Ax+Bu
 y = Cx+Du

State-Space Scope

PID

PI Controller

K*u

K

1
s

Integrator

K*u

H=B

K*u

G

K*u

F

0-240V

Figure 4.50: State-space model with full order estimator and state variable feedback
control

The step block was used to simulate the response to a set-point change from an initial

4 A through the field windings, to a lower value of 1 A after 2 seconds. Figure 4.51

shows that the estimator accurately predicts the two internal states given that there is no

additive noise or plant-estimator model mismatch. The total current momentarily

exceeds the maximum rated 5 A in achieving the 4 A field winding set-point. The time

for the current to fall to the reduced set-point is the order of 3.5 seconds which is

considerably longer than the time it took to rise by the same amount. This is because,

with the supply removed, there is nowhere for the inductively stored energy to dissipate

except due to internal resistance as it recirculates through the windings. The same

problem exists for the real system, as once the thyristors have been triggered they cannot

be switched off again, until the current falls to zero. With a purely resistive load, this

occurs at the next mains zero voltage crossing after the gate drive signal is removed, but

with a highly inductive load such as this, it can take considerably longer.

120

0 1 2 3 4 5
0

2

4

6

C
ur

re
nt

 [A
m

ps
]

Full Order State Estimator Response

0 1 2 3 4 5
0

2

4

6

C
ur

re
nt

 [A
m

ps
]

Plant Model Response

0 1 2 3 4 5
0

50

100

150

200

250

Time [seconds]

C
on

tr
ol

 V
ol

ta
ge

Plant Input from SVF Controller

Total

X1 By-pas s res is tor

X2 Field windings

X̂1 By-pas s res is tor

X̂2 Field windings

Figure 4.51: Time response plots of the estimated system to step inputs of 4 A and 1 A, at
t=2 and t=4 seconds respectively

4.3.8 Discretisation and Software Implementation of Flux Current Estimator

There are two issues arising from the continuous model in the previous section. One is

how it can actually be implemented to control the real plant and the other is how to

reduce the relatively long plant wind-down time. The latter will be deferred for the

moment and the former can be addressed by moving the model into the discrete domain

so that the control system can eventually be implemented in software. As a first step the

plant model is put into discrete form and is verified against the original continuous one.

The discrete form of the state-space system can be made from the continuous one, using

Matlab’s c2d function and then the resulting matrices can be exported to the Simulink

model:

A = [-Rbp/Lbp 0; 0 -Rdyno/Ldyno];

B = [1/Lbp; 1/Ldyno];

C = [1 1]; D = 0;

sys_con = ss(A,B,C,D);

Ts = 0.01;

121

sys_dis = c2d(sys_con,Ts);

[F,G,C,D,Ts1] = ssdata(sys_dis);

To test that the new discrete model is representative of the continuous one, we can revert

back to the state-space model with a DC input to the system as shown in Figure 4.52.

The continuous and discrete forms of the model are given the same input and the outputs

are compared.

z

1

Unit Delay

Step

Output

1
s

Integrator

K*u

G

K*u

F

Error

K*u

C1

K*u

C

K*u

B

K*u

A

0-240V

Figure 4.52: Continuous and discrete models for comparison

Figure 4.53 shows that the discrete form gives a reasonable (for control purposes)

conformance to its continuous counterpart, exhibiting a 10 ms lag due to the sampling

period, as expected.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time [ms]

C
u
rr

e
n
t
[A

]

Continuous

Discrete

Figure 4.53: Plot showing the correspondence between continuous and discrete models

122

Since the discrete model gives a reasonable representation, the continuous model can be

removed and a discrete Simulink solver can be used instead as there are no longer any

continuous states in the model. The next step is to convert the continuous estimator into

a discrete form and add this to the previous model and then perform an open loop test of

the discrete estimator. It was found that the position of the poles had to be moved closer

to the origin to make the estimator faster acting than was necessary for the continuous

case to prevent blow-up. The following Matlab code was used to construct the discrete

form of the estimator:

P = [-0.002+0.002j -0.002-0.002j];

Gc2 = acker(F', F'*C', P);

Gcd = Gc2';

Fp = F-Gcd*C;

The resulting block diagram is shown in Figure 4.54. Running the model reveals that

there is zero prediction error as the system is fully discrete and the is no additive input,

output, or measurement noise. For the real system all of these noise sources will exist as

well as some inevitable plant-model mismatch. The question which arises is whether or

not the estimator will be prone to diverge from the real system. If the estimator is found

to diverge, then a Kalman filter approach will be needed, however as the additional effort

to construct a Kalman filter with input and output noise models is significant and so is to

be avoided here if at all possible. As the hardware required would be the same whether

or not a Kalman filter design is employed, we can proceed with the current approach.

z

1

Unit Delay1

z

1

Unit DelayStep

States

Prediction
Error

K*u

H=G

K*u

Gcd

K*u

G

K*u

Fp

K*u

F

K*u

C0-240V

Figure 4.54: Discrete plant and estimator block diagram

With the estimator in discrete form, it is now possible to write it in the form of program

code. A Simulink S-function block which can call external C code was used and the

estimator was written into a callback function which is called for each time-step of the

model. For comparison, the original block form of the estimator was left in place, with a

123

switch added to manually change between the two. In addition, a discrete PID controller

block was added to assess the controlability of the system and provide a wider stimulus

for the estimator than the simple step change inputs used previously with the discrete

system. The estimated field current is fed back to the controller, as was done with the

continuous case. Figure 4.55 shows the resulting block diagram.

z

1

Unit Delay

Switch

Step

Scope

K*u

K

K*u

H=B

K*u
Gcd

K*u

F

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Discrete State-Space Dyno

PID

Discrete
PID Controller

discretessfunc

C code
S-Function

K*u

C

0-240V

Figure 4.55: Discrete plant and controller with C coded estimator block diagram

0 1 2 3 4 5 6

0

1

2

3

4

5

6

C
u
rr

e
n
t
[A

]

0 1 2 3 4 5 6

0

50

100

150

200

250

Time [seconds]

C
o
n
tr

o
l
V

o
lt
a
g
e
 [
V

o
lt
s
]

Total current (from discrete SS model)

By-pass resistor estimate

Field windings estimate

Figure 4.56: Plot of discrete controlled system response to step demand changes of 4 A
(t=0 seconds), and 2 A (t=2.5 seconds)

124

Figure 4.56 shows the response of the system to an initial input demand of 4 A (the

maximum allowable on the real system), falling to 2 A after 2.5 seconds. The estimated

field current shows agreement with the model-measured current for the period of time

where no control voltage is applied, as expected. The system reaches the 4 A set-point in

approximately 1.5 seconds as with the continuous case where state feedback was used.

The above model is a simplified representation of the real system, and does not include

the details of the phase angle control, or the dynamics of the instrumentation. As the

discrete estimator and controller models have been shown to perform as well as their

continuous model counterparts, it is appropriate at this point to transfer them for testing

to the full system model. In addition, a workaround for the slow current fall problem was

tested. At the time that the applied voltage is removed from the dynamometer there will

be a nominal amount of current flowing through the inductive part of the windings. This

current continues to flow when the driving voltage is removed due to the energy stored in

the inductor’s field. Provided there is still a closed current path, then initially, the same

amount of current will flow. As the current recirculates, energy is dissipated due to the

resistance in the current path and so the amount of current will fall with time until there

is no stored energy left, or the driving voltage is re-instated. The rate at which this

current falls will depend upon how much resistance is in the recirculation path. A higher

resistance will yield a faster fall time which is desirable from a control perspective an is

the objective here. However, including more resistance in the normal current path (in

series with it) will serve to impede the current rise when voltage is applied, which is

undesirable. If there is no way to reverse the polarity of the driving voltage (as is the

case with the thyristor half-bridge topology) and if the same system is to be made to

have a fast rise time and a fast fall time, then the effective in-series resistance needs to be

changed on-demand. If an external resistance was connected in parallel with the

dynamometer (as in the original controller), and if the thyristor bridge was somehow

forced to turn off, this resistor would become part of the current recirculation path during

the turn-off period and hence reduce the wind-down time. This could be achieved by

including a switch into the circuit so that when the control demand is zero the current

can be stopped from flowing through the bridge which could be achieved with a

gate-turn-off (GTO) thyristor, but not a convention thyristor. The choice of resistor is a

compromise between the power it will dissipate under normal conditions when voltage is

applied, and the voltage developed across it when the current through the bridge is

stopped. In practise the power dissipation is too high for a manageable voltage that does

not exceed the rating of the existing components. In simulation very large voltage spikes

occur at switching transitions which indicate high-stress conditions for the thyristors and

the switch. The exact nature of these spikes will be sensitive to the real properties of the

components (thyristors, switch, snubbers) and in simulation will be sensitive to

modelling errors.

125

It is clear that a different topology is needed. By moving the resistor in series (instead of

parallel) with the dynamometer, then the current won’t have to be stopped from flowing

though the thyristor bridge to cause the resistor to be used for recirculation which

removes a source of switching stress. This approach leaves the problem of a significantly

slower current rise time. If a resistor is only connected during current decay conditions,

by employing a switch to by-pass the resistance during normal conditions, then the best

of both states can be achieved. Under normal applied voltage conditions with the switch

closed (on) the only change to the effective circuit would be the on-state resistance of the

switch which can be neglected as it is will be very small compared to that of the

windings. When the switch opens (off), current can continue to flow through the

thyristor bridge, but it will also have to pass through an external resistor and so the stored

energy will be dissipated much faster. The limiting factors are still the maximum power

that a given resistor can dissipate, and the voltage developed across it, but the resistor

will have a reduced duty (over the parallel approach), dissipating power only under

current fall conditions. The properties of the system dictate that the amount of energy

that can be dissipated is restricted by the current rise time. For example, if it takes a

minimum of 2 seconds for the current to be ramped to the maximum of 4 A and a further

2 seconds for it to fall back to zero, then the sequence can only be repeated once every 4

seconds. By current fall we are referring to a wind-down condition which the controller

demand has fallen to zero (effectively saturated) as a proportional reduction in demand

has not reduced the current sufficiently, possibly due to a large change in set-point and

not due to the normal perturbations or controller correction about a set point. This will

be a function of the controller design and gain. The duty of the resistor would increase

for a proportional controller with a high gain as it would be more likely to reach a zero

demand than one with a lower gain.

Figure 4.57 shows the block diagram for the modelled dynamometer system with

modifications for a discrete controller. A discrete PID block has been added in place of

the continuous one. Also the C coded discrete estimator is used. A test for a zero

demand condition has been added so that the switch controlling an external shunt resistor

can be activated and is included at this level as the signal is also used with the estimator

to change the applied voltage which is used for the estimation. When a zero demand

condition is detected then the estimated field current is used to calculate the voltage

developed across the combined resistance of the external shunt resistor and the by-pass

resistor internal to the dynamometer. This voltage is then fed back as the voltage input to

the estimator. During this phase there is an increased risk of estimator divergence as no

measured data are being used to update the estimate. However, the system is not subject

to significant external disturbance when the supply is disconnected so only plant/model

mismatch related divergence should occur. If any estimator/plant mismatch has occurred

during an open-loop phase, then this should quickly re-converge when the driving

voltage is re-applied. A demand voltage to phase angle conversion block has been added

126

for linearisation as the non-linearity was found to cause a controller gain sensitivity

(discussed later). A monitoring subsystem (Figure 4.58) have been added so that the

effectiveness of the estimator can be observed without cluttering the top-level model.

The phase angle controller and dynamometer subsystem (Figure 4.59) has also been

modified to include the shunt resistor. Some additional instrumentation has also been

added and directed to a current monitoring subsystem (Figure 4.60).

Voltage
Selector

Switch

Step
Demand

Scope

Phase Demand

Cutoff

Field Current Est

Load Current

Trigger Angle

Load Voltage

Phase Angle Controlled
Dyno System

> 0

Non-zero
Demand Test

States

Filtered Current

Est Load Voltage

Load Voltage

Monitoring

u yfcn

Load Voltage to
Phase Angle
Linearisation

K*u

K

-u(1)/(1/Rext+1/Rbp)

Effective
Resistance

InMean

Discrete mean

PID

Discrete
PID

0.8

Demand
Current

1

0.000003s+1

Current Transducer Current
Measurment

Limit

discretessfunc

C Code Discrete
State Estimator

Figure 4.57: Block diagram of the full dynamometer system model with modifications
for discrete controller and state estimator

Monitoring

K*u

K2

K*u

K1

4

Load
Voltage

3

Est Load
Voltage

2

Filtered Current

1

States

Measured and Estimated Current

Load Voltage

Figure 4.58: Monitoring subsystem block diagram

127

3

Load
Voltage

2

Trigger
Angle

1

Load Current
180-(36*u(1))

volts to angle

v
+
-

V Load

g a
k

Thyristor2

g a
k

Thyristor1

g

1
2

Switch & Snubber

Supply
impedance

Supply
Scope

Supply
240VAC

50Hz

Shunt Resistor

i
+

-

Shunt
Current

SCR
Snubber

Phase control
limits (0-5V)

v
+
-

Line Voltage

i
+

-

Line Load

1

0.0005s+1

Input LPF

i
+

-

Inductor
Current

i
+

-

I Load

Field
Windings

In Mean

Discrete Mean

Diode3

Diode2Diode1
Field Current

By-pass Current

Resistor Current

Current
Monitoring

i
+

-

Bypass
Current

By-pass
Resistor

Bridge
Scope

 Pulse
 generator

3

Field Current
Est

2

Cutoff

1

Phase
Demand

Figure 4.59: Dynamometer and phase angle controller subsystem block diagram with
shunt resistor modification

Power
Dissipation

Load
Currents

1
s

Integrator1

1
s

Integrator

u(1)*u(1)*Rext

ISqRext

u(1)*u(1)*Rbp

ISqRbp

In Mean

Discrete mean1

In Mean

Discrete mean

3

Resistor
Current

2

By-pass
Current

1

Field
Current

Figure 4.60: Current monitoring subsystem block diagram

Tuning of the system is a compromise between achieving the fastest possible rise time to

full current (high gain) and keeping perturbations for low current set-points and small

set-point changes to an acceptable level. It became apparent during tuning attempts that

the non-linearity caused by using phase angle as a control variable was affecting

performance. To remove this affect a block was added to convert a demand voltage

directly into a phase angle based upon the integrated area under a sine curve. This is an

open loop conversion as the output voltage is not directly measured and the mains

waveform will not be perfectly sinusoidal due to harmonic distortions caused by the

local affect of the phase angle controlled loading and other remote loads sharing the

same supply phase. Figure 4.61 shows the response of the system to step changes in

control demand. Initially a target of 4 A is set, reducing to 1 A after 2.5 seconds. The

first set-point is achieved in approximately 1.8 seconds. The second is achieved in

around 2 seconds with a small steady-state error and slight perturbation about the

set-point. The estimator tracks the actual system model well including during the

open-loop wind-down phase which occurs after 2.5 seconds when the control duty falls

to zero and the shunt resistor is switched in. At this time the voltage across the load

inverts to below -200 V which is determined by the combined resistance of the

128

dynamometer windings and the external shunt resistor, and the current direction reverses

through the dynamometer’s internal by-pass resistor.

0 0.5 1 1.5 2 2.5 3 3.5 4

-200

-100

0

100

200

V
o
lt
a
g
e
 [
V

o
lt
s
]

Applied Voltage

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

C
u
rr

e
n
t
[A

]

Total Input Current

0 0.5 1 1.5 2 2.5 3 3.5 4

0

1

2

3

4

Time [seconds]

C
u
rr

e
n
t
[A

]

Field Winding Current

Figure 4.61: Plot of full model and estimator response to control set-point step changes
for comparison. (blue represents the model output and red the estimator)

A value of 112W for the external resistor was selected as to limit the peak transient

voltage (<600 V) that can occur when switching at the maximum inductor current of 4 A.

Figure 4.62 shows that although the voltage developed is around -220 V steady state, it

spikes at -550 V during an initial transient which lasts a few milliseconds. The actual

voltage developed will be dependent on the switch characteristics which will be subject

to modelling errors. An ideal switch was used in the model to reduce computational

overhead, but a varistor or tranzorb device can be used on the real plant to protect

components from over-voltage damage. The chosen value of resistor also provides a

current fall time which is comparable to the rise time which should help to construct an

outer torque control loop by reducing gain selection sensitivity. The choice of resistor

has so far neglected the overall and peak energy dissipation in the resistor. To address

this the worst case single event of reducing from 4 A to zero is considered. Figure 4.63

shows a plot (using the current monitoring subsystem block) of the power dissipated

when the current falls from 4 to 0 A. After an initial transient peak, the power falls

exponentially from 450 Watts to zero over approximately 2.5 seconds. In practise, this

condition could not be repeated for another 2 seconds (for the current to rise again), so

with adequate heat sinking the temperature of the resistor can be maintained within its

design limit. The charge curve is obtained by integrating to find the area under the power

129

curve and gives an indication of the total energy that could be dissipated in a single

full-current wind-down event, and is in the order of 170 Joules.

0 5 10 15 20 25 30
-600

-500

-400

-300

-200

-100

0

100

200

300

Time [ms]

V
o
lt
a
g
e
 [
V

o
lt
s
]

Supply

Bridge

Figure 4.62: SCR bridge voltage spike occurring when a resistor is switched into the
circuit at the full current rating

0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

350

400

450

500

Time [seconds]

P
o
w

e
r/

C
h
a
rg

e
 [
W

a
tt
s
/J

o
u
le

s
]

Power

Charge

Figure 4.63: Plot of the modelled power dissipation and integrated charge in the external
shunt resistor from maximum (4 A) to zero current

130

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

Time [ms]

P
o
w

e
r

[k
W

]

Figure 4.64: Plot of the modelled instantaneous peak power dissipation in the shunt
resistor

Regardless of what heat sink is used, the resistor’s peak power rating must be able to

support the instantaneous peak power. Figure 4.64 shows in more detail the transient

power spike of Figure 4.63 which reaches 2.5 kW.

4.3.9 Standstill Testing of the Digital Current Controller

The field current controller was reimplemented using software as part of the second

phase of work. A software PID loop was written and run initially at the mains half-cycle

frequency of 100 Hz. A key difference from the analogue controller is the linearisation

of the control output to the Semikron phase angle controller. This is done by assuming

the supply voltage is perfectly sinusoidal and the area under the half-cycle curve from

the trigger angle onwards is equivalent to the mean applied voltage. By inverting this

relationship the trigger angle for a desired mean voltage can be determined. The trigger

angle can then be scaled to a 0-5 V 12-bit DAC output voltage, taking account for any

dead-band offset which the Semikron unit does not respond. This step alone was found

to improve the current controller performance greatly over the previous analogue design

as the gain is not compromised by a varying sensitivity to control output. The

controller’s steady-state performance was found to improve further when the control

period was increased to 20 ms to cover the complete mains cycle as at 10 ms the

controller was observed to fluctuate at each half-cycle.

131

Figure 4.65 shows the current response to a full range step change in demand, taking in

the order of 500 ms to reach 5 A. This is a vast improvement over the analogue controller

which was observed to take in the order of seconds to stabilise to a constant current. The

current response may be close to optimal as the high gain used holds the current rise rate

at its maximum until very close to the vicinity of the set point, but the unmeasured flux

response will not be optimal since when the demand current is achieved, the flux will

still be rising, and the rate at which is does will be reduced when the controller reduces

the applied voltage to maintain the current set point. Figure 4.66 shows how the current

response behaves for smaller incremental increases in current demand. A 20-40%

current overshoot can be seen, although the flux response will not overshoot so it will not

be detrimental to using it for torque or speed control. To determine how much the

instantaneous current is representative of the flux level, several tests were performed

using the the setup. Figure 4.67 shows the result of holding the output at full duty for ten

mains cycles or 200 ms, which is the time taken to reach 3 A, then adjusting the trigger

angle to a range of lower equivalent voltages. When its voltage was lowered to around

32 V the output stayed much the same at close to 1 A. This shows that although 3 A was

being measured, only there was equivalent to less than 1 A steady-state of current

producing flux. Figure 4.68 shows the same test in closer detail and demonstrates that

the current rise is fairly repeatable as most of the points lie close or on top of each other

for the six tests even though the controller output is not syncronised to the mains. The

test shown in Figure 4.69 holds the maximum duty until a selected demand current is

reached. It then drops the applied voltage to a predetermined voltage which will

maintain the same current under steady-state conditions. This gives an indication of how

much less the flux producing current is and how much longer it could take to reach its

steady-state value under current controlled conditions. Figure 4.70 shows current over

and under shoot for a variety of increasing and decreasing step changes in current

demand. Figure 4.71 shows that the current decay from slightly over 1 A to zero. This

part of the range takes considerably longer than at higher currents due to the fact that as

the recirculation current falls so does the power dissipation due to resistive I2R copper

losses in the field windings. It also shows that not only does eddy-current damping

impede current rise, it also slows the current fall rate due to rate of change of flux. If the

engine is approaching a stall condition, this makes it difficult to quickly remove the

torque load. Load dump resistors were fitted for activation under software control, but

were not used for these tests. The intention is that they can be switched into the circuit

by opening the bypass switch when a sufficiently large drop in demand occurs at the

lower end of the current range.

132

Dynamometer current controller response to 5A step demand

using 10ms control period (Kp=12.0, Ki=6.0, Kd=1.5)

0

1

2

3

4

5

1.8 2 2.2 2.4 2.6 2.8 3

Time [seconds]

C
u

rr
e
n

t
[A

]

Figure 4.65: Step response to a full scale 5 A demand change

Dynamometer current controller response using 10ms control period (Kp=49.0, Ki=4.5, Kd=1.3)

0.45

0.95

1.45

1.95

2.45

16.75 17.25 17.75 18.25 18.75 19.25

Time [seconds]

C
u

rr
e

n
t

[A
m

p
s

]

Setpoints

Current

Figure 4.66: Response to incremental step increases in controller demand current

133

Open-loop step drop tests, from 216V (mean) held for 200ms

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3

Time [seconds]

C
u

rr
e
n

t
[A

]

5A, 130V
4A, 107V
3A, 81V
2A, 57V
1A, 32.4V
0.5A, 16V

Figure 4.67: Open-loop response step decreases in applied

Open-loop step drop tests, from 216V (mean) held for 200ms

0

0.5

1

1.5

2

2.5

3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Time [seconds]

C
u

rr
e
n

t
[A

]

5A, 130v
4A, 107V
3A, 81V
2A, 57V
1A, 32.4V
0.5A, 16V

Figure 4.68: Open-loop response step decreases in applied voltage, initial response

134

216V (mean) held until a nominal current is reached, then dropping to voltage

which achieves the same steady state current

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3

Time [seconds]

C
u

rr
e

n
t

[A
]

5A

4A

3A

2A

1A

Figure 4.69: Open-loop response step decreases to voltage for equivalent steady-state
current

Dynamometer current controller response using 20ms control period

(Kp=8.0, Ki=60.0, Kd=16.0)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

50 55 60 65 70 75 80

Time [seconds]

C
u

rr
e

n
t

[A
]

Setpoints

Current

Figure 4.70: Response to incremental step changes in demand

135

Dynamometer current controller response using 20ms control period

(Kp=8.0, Ki=60.0, Kd=16.0)

0

0.2

0.4

0.6

0.8

1

80 81 82 83 84 85 86 87 88 89 90

Time [seconds]

C
u

rr
e

n
t

[A
]

Setpoints

Current

Figure 4.71: Response to step change to zero demand current

4.4 The Control Architecture

4.4.1 Control Hardware Selection

Several conventional proprietary dynamometer controllers feature a self-contained

controller with an RS-232 interface to a desktop PC for monitoring and scheduling of the

power/torque trajectory. A reduced data-set is provided over the serial line to the PC

application software. Another commercial approach uses National Instruments Labview

software on a PC running real-time Windows .

With recent developments in microprocessors and microcontrollers intended for

embedded devices, there are now processors which can provide a computational

performance comparable to that of a PC of only a few years ago, but at fraction of the

cost, size, and power requirements. It was proposed that an integrated embedded

approach would be investigated as a standalone solution that not only could provide

deterministic closed loop control of the dynamometer, but also provide an economic

platform for automation and monitoring of the test-cell. It could also provide additional

data acquisition for independent verification of engine control strategies. With an

embedded controller it would be possible to have direct access to all incoming data as it

is acquired, and also provide a user interface as part of a self-contained unit. An LCD

touchscreen (for embedded devices) was added to provide a graphical user interface for

the test-cell operator directly from the embedded controller. Such a screen reduces the

136

need for mechanical switches, indicators, and instrumentation to be provided as these

can all be implemented in software in a more flexible and configurable fashion. The

addition of a network connection to the embedded unit also provides an external

connection to a conventional PC, for example to allow permanent storage of any data

collected, or remote operation.

The approach described above presented a number of technical challenges to achieve the

several different roles from a single piece of hardware with only modest computational

performance. To fulfil the design requirements there was a need to integrate several

different software and hardware components without any certainty that an effective

system would be realisable. Providing the operator with a responsive user interface

without compromising the determinism of the control loop is one example of this. A

discussion of the development and challenges of this system follows.

4.4.2 Arcom Viper

Recent years have brought an ever increasing number of embedded processor boards.

Many of these are so-called evaluation boards intended to allow a particular architecture

and platform to be assessed for use in a commercial product without need for the prior

investment of time an effort to develop a viable board only to find that there are

insurmountable shortcomings with the candidate architecture. This approach also allows

software and hardware development to take place in parallel as software engineers can

use a development board whilst hardware engineers are working on a production design.

For the purpose of this project the choice of board was for a one-off design which

precludes many of the evaluation boards from being useful. It was decided to narrow the

search to PC/104 form-factor boards as these are fully functional and standalone with the

option to expand the capabilities through the ISA bus. The majority of PC/104 boards

are x86 processor based as the form factor is in essence a repackaging of legacy PC

hardware onto a smaller PCB for embedded applications using recent advances in

process technology to reproduce older processor variants in smaller packages and run

them at lower core voltages so that passive cooling is often sufficient.

The Arcom Viper was selected, it is a single board computer (SBC) based around an

Intel XScale PXA255 400MHz RISC ARM processor. The board (Figure 4.72) is

PC/104 form factor and includes an ISA bus. The XScale architecture is the successor to

the StrongARM which was an implementation of the ARM V4 instruction set

architecture (ISA) developed by Digital Equipment Corporation (DEC), but later

acquired by Intel (Montanaro et al., 1996) and targeted mainly at the personal digital

assistant (PDA) market. The XScale is a variant of the ARMv5TE ISA architecture, but

with no floating point instructions implemented, and is commonly used for portable

devices requiring high performance with low power consumption, low heat dissipation

137

Figure 4.72: Arcom Viper SBC version 1

from a small IC package. XScale processors have a number of on-chip peripherals

including multiple high-speed serial channels, PCMCIA host controller, a sound codec,

and a integrated graphics frame-buffer for directly driving LCD panels. At the time that

the selection was made this specification compared favourably both in terms of

performance, specification, and cost with other x86 based PC/104 boards.

The board has suport for embedded Linux and since the author has previous experience

with a Intel StrongARM based board also running embedded Linux there was a natural

progression to using this. There was also a minor research motivation which was to

determine the viability for this type of integrated system for use as a real-time controller

and data acquisition system as well as at the same time providing a responsive graphical

interface to an operator. The traditional approach is to have a dedicated microcontroller

based black box connected to a PC application via some form of communication link,

usually a serial or network connection. This integrated approach was found to be both

challenging and problematic using the selected hardware and general purpose sotftware

such as the X11 graphics server. It might have been possible to write (or purchase)

dedicated fully optimised low level graphics software, but this would have been a project

in its own right. Recent developements in ARM processors for mobile devices (such as

tablets) have improved the situation by including more dedicated hardware support for

rendering combined with the incremental increases in processor clock speeds.

4.4.3 Human Machine Interface and Controls

The various functions of the engine testbed can be adjusted from the operator box. The

box provides an LCD touchscreen, a rotary encoder and mechanical switches which can

be overriden in software. The LCD screen was initially a bespoke setup which was later

138

moved to the dynamometer control box along with the Arcom Viper board. An

off-the-shelf unit replaced the first LCD interface, but provides the same funcionallity.

Multiturn rotary potentionmeters were fitted to the side of the box with override swtiches

to allow the dynamometer field current (and any other asigned variable) to be set

manually. An analogue meter is also present to show the controller field current demand.

This faciltiy was removed when the Viper board was transfered to the dynamometer

control box, but the potentiometers have been left in place for future use.

LCD Interface Hardware A Panasonic 8-bit passive STN colour LCD screen with

factory bonded glass plate 4-wire resistive touchscreen overlay was chosen as an

economical display solution that is suitable for direct connection to XScale processor.

TFT screens offer better contrast ratios, improved brightness, more colours (colour

dithering not needed), and a much better response time. However, in the early stages of

the project when the hardware was being selected the price of TFT screens were not cost

effective and the interfacing can be considerably more complicated than passive screens.

The Panasonic screen is 640x480 (VGA equivalent) resolution. A custom interface

board was made to connect the screen to the Viper board, providing the necessary

adjustable contrast voltage and regulated 3.3 V power supply which is taken either

directly from the Viper or an on board regulator, selectable via a jumper. The interface

board provides, as the datasheet for the screen prescribes, a strict signal assertion order

as a violation could cause a DC signal on the liquid crystals potentially resulting in

damage. This would occur if the interface cable was disconected or pulled out and the

LCD was subsequently power on with no data signal. This configuration removes the

need for a separate graphics controller as the screen shares the memory pipeline of the

processor, but this also has a performance penalty which increases with the size of the

display. A 12 V TDK backlight inverter is used with the display and is controlled by the

Viper using an IC packaged solid state relay on the interface board. The backlight is

autmatically switched on when the display is enabled by the device driver software

running on the Viper board. The contrast is controlled either from a panel mounted

poteniometer, or via a PWM signal from the Viper, an is jumper selectable.

Arcom TSC Resistive Touchscreen Interface The TSC touchscreen interface is a

small Microchip PIC based board for resistive touchscreen overlays and provides 8 and

10-bit resolution and outputs over an RS-232 serial link which is connected to the Viper.

Arcom provide a Linux daemon which runs in the background and passes touch

co-ordinates to the X server which moves the mouse cursor. Only the 8-bit mode seems

to work with the driver. The driver is closed source and the serial protocol is

unpublished, but simple enough to deduce. The tsc1 daemon works with a patched

version of the X11 TinyX server. Calibration program is provided which generates a text

139

format configuration file which can be manually edited if needed.

The XScale PXA processor used on the Viper board is the successor to the StrongARM

processor and has direct support for a Phillips UCB1x00 series chipset which privided

certain features useful to a mobile handheld device through a dedicated serial codec. One

of its functions was a resistive touchscreen interface. When Intel revised the StrongARM

to form the XScale they removed this functionality from the architecture which has

created the need for an independent touchscreen interface such as the TSC.

4.4.4 Diamond Systems DMM32AT Data Acquisition Card

A Diamond Systems DMM32AT Data Acquisition card was selected for use with the

Arcom Viper board to provide analogue and digital I/O to the system. Many of the card’s

features are useful but cannot be used concurrently. Externally triggered sampling and

gating was identified as useful for capaturing cylinder pressure data, but crank position

sampling conflicts with control and other monitoring requiring periodic sampling. Also,

different sample rates for different channels is not possible without triggering each

individual sample or batch of samples from software. Access to the card’s FPGA

software would have made it possible to sample using a channel pattern scheme, but it

was not feasible as it was a proprietary card and to develop a similar card would be a

major undertaking and distract from the aim of the project. It is perhaps a design

shortcoming that it is not possible to set from software a bitmap of a non-sequential

channel sampling pattern.

In writing a driver for the card a significant issue was discovered. Both the Viper and the

DMM32AT are specified as being having ISA connectivity (but don’t claim compliance),

but it turned out that they were not compatible, a high rate of spurious interrupts was

occuring. Initially, the driver software under development was thought to be at fault, but

after a significant period of investigation it became clear that it was a bus signal issue

and not a software one. It was eventually found that the Viper was using a pull-down

reistor on the IRQ bus line and the DMM32AT was using a pull-up resistor. The logic

level was floating close to the detection threshold and since edge detection was being

used, bus noise from data transfers was coupling onto the IRQ line creating bursts of

false interrupts. The PC/104 ISA specification (Haris, 2003) outlines the use of pull-up

resistors to allow IRQ lines to be shared between cards, and thus the Viper board violates

this requirement by using pull-down resistors. The response from Arcom was that the

board was not designed for interrupt sharing and that the Viper’s bus was not a real ISA

bus since the bus logic is carried out by a CPLD device and not an ISA chipset.

However, it must be reasonable to assume that other card manufacturers would

implement their card’s logic arrangements in a way outlined by the PC/104 specification

to be compatable with other cards even if interrupt sharing is not directly supported.

140

Arcom were eventually persuaded to exchange the Viper for the second generation of the

board which uses weaker pull down resistors. Version 2 of the board was found to work

much better with the DMM32AT and only produced spurious interrupts at a rate of

several per second. These interrputs can be detected and ignored in software and at that

rate do not have a detrimental effect on the system.

4.4.5 CAN-bus interface

An Arcom CAN-104 PC/104 form factor CANbus interface which is based upon Philips

SA-11001 controller has been used to provide a CAN interface to the Viper board. This

is to allow deterministic data exchange between the engine controller and the

dynamometer controller should this be required.

4.5 Dynamometer Instrumentation for Control

4.5.1 Tachometer Circuit

The dynamometer had at one time been retro-fitted with a 60-tooth gear and sheet metal

cowling on the rear output shaft shown, as in Figure 4.73. The cowling is used as a

mechanical guard and as a means to locate a variable relucatance magnetic pickup sensor

in proximity with the gear teeth. The choice of 60 teeth makes the conversion from

frequency to revolutions-per-minute trivial as the seconds to minutes conversion cancels

with the number of teeth division which makes the tooth frequency directly equal to the

shaft RPM.

141

Figure 4.73: Dynamometer 60-tooth shaft-end gear and variable-reluctance sensor

It was required to convert the tooth induced pulse frequency into a form which could be

read and used by the digital control system. For this task a frequency-to-voltage

converter (LM2907) was chosen. The circuit was constructed in a similar manner to that

illustrated in Figure 4.74. This circuit takes the signal directly from the sensor and, using

a charge pump, produces a voltage proportional to the input frequency and the supply

voltage using a timing capacitor, an output resistor, and a integratinag filter capacitor.

The choice of these components forms a compromise between output voltage ripple,

linearity, and the maximum measurable intput frequency. In order to supress the effect of

supply voltage variations, a voltage reference circuit was used to supply the

tachogenerator. The reference was given an improved current sourcing ability using an

npn-transistor in the same way as was used to supply the load cell described in 4.5.2.

The analogue output from the tachogenerator was the order of 900 rpm/V and was

sampled using the ADC card described in Section 4.4.4.

142

Figure 4.74: Typical tachometer circuit using the LM2907 IC (National-Semiconductor,
2000)

Although the circuit appeared to function well, the LM2907 IC failed in service after

several tens of hours of use. It is thought that the 28 V maximum input voltage may have

been exceeded at some point during its use which may have contributed to its premature

failure.

During of the second phase of work a new digital tachometer circuit was designed and

made. This consisted of two major components, the National Semiconductor LM1815

adaptive variable reluctance sensor amplifier and a UFDC-1 universal

frequency-to-digital converter produced by SWP Inc. The LM1815 was used for signal

conditioning to convert the sensor voltage into a logic level pulse train, and it’s

opertation is discussed in Section 5.6.3 since it was also used in the design of the engine

controller developed for this project. The UFDC-1 has a choice of serial interfaces (logic

level RS-232, SPI, I2C) and references the input pulse train against a 16 MHz quartz

crystal clock. The accuracy of the measurement given is in proportion to how rapidly

updated values are requested and ranges from 1 to 0.001% relative error, implying that a

successive approximation is made which improves with time. The UFDC-1 has a

calibration procedure which outputs a 8 MHz square wave signal at exactly half the input

crystal’s frequency. This signal can be used to cablibrate a correction factor if an higher

precision instrument is availible to measure it with. The calibration factor is stored in

non-volitile memory and is used for all future calculations unless the procedure is

repeated. Little information is available about the electronic design details of the IC as

there is only a combined brief specification and application note available which covers

only external connections, setup, modes of operation and serial command protocols. It is

postulated from the pin-outs that it is constructed from a Microchip PIC or similar low

cost 8-bit microcontroller. The circuit was tested and found to work well with the

dynamometer and the rpm estimation showed good correspondence with that displayed

by the Nippon Denso ECU software. The only limitation for this application found with

143

the UFDC-1 was that RPM data can be obtained either by polling or via an autonomous

mode using external DIP switch settings and outputing data at a periodic rate at a baud

rate of 2400 bits/s. The periodic rate was found to be far slower than required for a

control loop which makes the polling mode preferable. The limitation is that the IC was

(although not documented) found to enter its automous mode several seconds after

power-up if no serial commands had been received. Once in autonomous mode the IC

ignores any further serial commands and cannot be reset using serial or any logic input to

the IC. This is a problem when interfacing to a Linux system as the boot time is much

longer than serveral seconds. The solution is to control the power to the IC from

software using either an uncommitted GPIO line of serial control line to a small IC

packaged solid-state relay. This problem was not anticipated so power control was not

included in the board’s design and will have to be added externally, or as a temporary

solution the board could be manually reset with a switch when the dynamometer control

software is about to be started. The UFDC IC is covered by an aritcle in an industry

journal (Yurish, 2007) and also its performance for a particular application is more

independently evaluated in a conference paper (Pereira et al., 2005).

4.5.2 Load Cell and Amplification Circuit for Torque Measurement

A load cell amplifier was designed and made based upon a AMP04 instrumentation

amplfier IC. The board was designed to operate from a single rail linear supply in the

dynamometer power electronics box and provides a 10 V precision reference supply for

the strain gauge bridge in the load cell. The signal amplfication gain is set using a 25

turn potentiometer mounted on the board. The board has been designed to give

maximum supply ripple rejection though the use of a large supply and ground plain area

and decoupling as close to the supply pins active devices as possible using both tantalum

and surface mount ceramic capacitors to offer a combination of a high reservoir capacity

and low in series resistance. Care has also been taken to reduce thermal drift effects by

adjusting the null offset as close to zero as possible without causing clipping due to the

single rail supply. It is important that the offset pin is driven from a low impedance

source as any measurable resistance will degrade the amplifier’s common-mode

rejection performance as well as its gain accuracy. An OP213 op-amp has been used to

buffer the offset null circuit as shown in Figure 4.75.

144

Figure 4.75: AMP04 offset nulling scheme (Analog-Devices, 2000)

The cable shield is often grounded at the analog input common in many applications,

however it is claimed (Analog-Devices, 1999b) that improved dynamic noise rejection

and a reduction in effective cable capacitance is achieved by driving the shield with a

voltage follower at a potential equal to the voltage seen at the input. Figure 4.76 shows

an active guard drive suggested for use with AD623 and is configured to improve AC

common-mode rejection by bootstrapping the capacitances of input cable shields, thus

minimising the capacitance mismatch between the inputs. This scheme was employed

for both the input and output cables using the uncommited amplifiers from OP213 dual

operational amplifiers (the other amplifier being used for either the voltage reference of

offset nulling of the AMP04). It was hoped that by actively driving the shields the

general noise immunty would increase, however it was found to encourage cross

coupling of signals between separately shielded signals in a multicore cable used to

supply the RPM voltage signal and torque signal to the dynamometer operator control

box. For this reason the output cable shield was simply to a grounded at one end. The

full schematic for the board is shown in Figure A.3.

Figure 4.76: Common-mode shield driver (Analog-Devices, 1999b)

4.5.3 Protection Circuit

The dynamometer was fitted with a motorised water valve of a type commonly used in

domestic central heating systems, and contains a switch to indicate when the valve has

fully opened. This valve is used to switch on the supply of cooling water from the mains

supply using a solid state relay in the control box. The dynamometer was originally

fitted with a mechanical pressure switch which was used as safety cut-off if the cooling

145

water flow was insufficient. This device was removed an replaced with a standard

adjustable pressure switch. The pressure switch and water valve swith are both supplied

with a current limited 5 V signal which can be used to ensure the valve has opened and

that water pressure is present. There is facility to perform these check either in software

or to allow a zero duty signal to be switched in place of the control signal to the phase

angle controller. This is performed using an analogue switch IC. LED indicators were

mounted on the control box front panel to indicate the valve and pressure states. These

two signals were also made available from the protection circuit at logic level.

4.6 Automation Hardware

4.6.1 SSR Engine Power Management and Opto-Coupled Interface

The battery ignition supply to the engine, its starter motor solenoid, the fuel pump, and a

cooling fan are all controlled using high current solid state relays (SSRs). These SSRs

can be controlled by the 12 V nominal battery voltage and are connected to operator

control box using low current signal wire in a multi-core shielded cable. The SSR cable

connects to a power control board which allows conventional mechanical switches

mounted on the front panel of the box to activate the SSRs. The board also allows the

supervisory embedded system to overide the switch states using a set of opto-couplers.

The opto-couplers have been used to provide voltage level shifting from digital logic

level to battery voltage, but the grounds are not isolated so there is still electrical

coupling between the engine and the control system.

4.6.2 Plint Volumetric Fuel Meter and Digital Retrofit

Figure 4.77: Plint TE12 volumetric fuel meter with digital range selection

146

A Plint volumetric fuel meter (Figure 4.77) was obtained and fitted to the engine testbed.

It consists of a vertically mounted cylinder into which three optical level sensors are

fitted. The engine takes and returns its fuel to the cylinder. The cylinder level is

controlled by a solenoid valve and is filled under gravity from the main tank. Once filled,

the solenoid closes and the engine operates on a closed loop with the cylinder acting as a

small reservoir. A digital counter keeps track of how long it takes for the fuel level to

drop between two of the level sensors and latches the result. The time/counter is

displayed on an LED digit display on the front panel and is also output for external

measurement as an analogue voltage proportional to the final latched time using a 12-bit

DAC. The particular model of Plint fuel meter was fitted with a mechanical two position

rotary switch which is used to select between 100 ml and 50 ml measurement ranges.

Later models used a relay so that the range can be remotely selected. It was desired to

add this remote selection facility to the existing meter so the rotary switch was replaced

with a custom daughter board (A.4) which was socketed into the original location of the

switch on the main PCB. In order to retain manual operation, a non-latching

press-to-make switch was fitted to the original switch’s front panel aperture. Two panel

mounted LEDs were used to indicate the selected range. A digital flip-flop circuit was

used to latch the selected range which can be toggled using either the front panel switch

or by a control line to a microprocessor, allowing the intended remote operation. The

daughter board uses an analogue switch IC to replace the mechanical switch so that the

original logic levels of the main board are preserved.

4.6.3 Cylinder Pressure Acquisition System

Figure 4.78: Engine crank pulley (left) fitted with adaptor for an encoder shaft (right)

This system is used for cylinder pressure sampling at fixed crank angle intervals. A

second Diamond Systems DMM32AT data acquisition card was used with the x86 based

embedded system in the operator box. The engine was fitted with a Hohner Series 85

incremental encoder rated up to 3000 rpm with 0.5 degree resolution. As the engine may

be operated at up to 6000 rpm (the dynamometer’s maximum speed rating). The

147

manufacturer was contacted to find out what the limiting condition for encoder’s

maximum speed is. Hohner said that the bearings could be run at 6000 rpm but the optics

and trigger circuit may impose a limitation. The encoder was mounted on an electric

motor and run up to 6000 rpm to check for distortion or corruption of the output signal

and none was found, so it was deemed to be suitable for this application.

HCTL Encoder Interface Circuit The Hohner encoder provides complimentary

inverted and non-inverted TTL level logic for the A, B and I channels which can be

compared with each other for noise rejection. As there is a relatively long cable run in

the presence of electrical noise from the engine ignition system, mains supply, and

dynamometer power electronics, the encoder’s differential logic signals where used. An

RS-422/485 line receiver chip such as the MAX3095 could have been used to decode

these signals which would provide some ESD protection, but instead a pair of

hex-inverter and AND gate logic chips were used together with a pull-down resistor

network to place some current loading on the signals for further noise immunity.

The encoder interface board (Figure A.7) was designed to use a HCTL-2032 IC, which

was chosen to decode the encoder quadrature signal and maintain a counter of the

encoder ticks, which it is capable of doing for high frequencies, dependent upon the

timing crystal fitted to the circuit. The HCTL-2032 is able to separately decode two

independent encoders on a multi-axis system. As only one encoder was required for the

engine crankshaft encoder, the other spare axis counter was used with a mechanical

encoder (of the type commonly used as a digital volume or jog control) to provide the

operator with a convenient means of setting control parameters such as load torque or

speed set point. The HCTL-2032 has two 16-bit counters that are read through an 8-bit

digital I/O interface (lower byte first) which was connected to the Diamond DMM32AT

PC/104 card. If only the lower 8-bits of counter depth are required then the second byte

of the word does not have to be read and can be ignored as the lower byte wraps around.

Figure 4.79: HCTL digital channel filter (csewards, 2004)

The HCTL chip has a digital noise filter input section which is responsible for rejecting

both common-mode and differential-mode noise on the incoming quadrature signals

148

which might otherwise cause false counts to be triggered. Figure 4.79 shows the

simplified schematic of the input section which is repeated for each of the A, B and I

input signals. Two techniques are used to achieve improved noise rejection. The inputs

are Schmitt-triggers and a three clock-cycle delay filter is used to reject both low level

noise (<1 V) and larger, short duration, noise spikes that typically occur in the presence

of switched power electronics (such as is used for the dynamometer). Using a

Schmitt-trigger buffer addresses the problem of input signals with slow rise times with

low-level noise imposed upon them. The signals are passed onwards to a four-bit shift

register delay filter which samples each channel on rising clock edges and constructs a

time history of the signals. Any change of the input state is tested for a stable level being

present for three consecutive rising clock edges. The filtered output waveforms can only

change after an input level has the same value for three consecutive rising clock edges

and pulses or noise spikes shorter than two clock periods are rejected. The HCTL chip

can be clocked at upto 33 MHz, however at 6000 rpm, this equates to 72 kHz, so a lower

frequency clock will suffice. A 10 MHz TTL output oscillator was used and found to

work, however the duration of the output pulses where later found to be too short to

reliably trigger the DAQ card leading to samples being randomly missed, so the 10 MHz

oscillator was replaced with a 4 MHz oscillator and thereafter it functioned correctly.

Figure 4.80: Optrand PSIplug and M3.5 sensor

Optrand Pressure Sensing Spark Plug The test engine has a plug-on-coil type

ignition system. This raised some concern about whether the Optrand modified spark

plug and sensor (Figure 4.80) could be made to actually fit the engine. The first issue is

whether the modified spark plug would still fit into the bore, and the second was whether

there is sufficient clearence for the steel braided fibre-optic sensor cable to be routed out

149

of the bore past the coil pack (Figure 4.81) without violating it’s minimum allowable

bending radius. The bore and coil channel was measured for diameter and profile and the

plug, coil, bore and cylinder head cover channel were parametrically modelled (Figure

4.82) using Autodesk Inventor to establish what clearences are present when the coil is

assembled onto the engine. The sectioned drawings were provided to Optrand to serve as

requirement for the size constraint of the sensor protrusion on the modified spark plug.

When the sensor was received it was found that the insulation boot on the coil needed to

be thinned slightly by abrasive linishing to fit between the fibre-optic cable and the spark

plug ceramic insulator. This was the only modification to the engine that was required to

fit the sensor.

Figure 4.81: Photographs of spark plug bore and coil channel

Figure 4.82: Spark plug bore and coil channel 3D parametric model

Determination of the Top-Dead-Centre Position Despite the fact that the engine will

normally rotate in one direction when running, all three A, B and I channels where used.

This is so that a manual piston top-dead-centre (TDC) search calibration could be

performed which requires the engine crank to be turned in both directions so that TDC

150

position for the instrumented cylinder could be determined relative to the encoder’s

index mark. With the spark plug removed, a dial test indicator (DTI) gauge was inserted

into the bore to rest on the piston crown and measure piston displacement. Knowing the

number of counts between the index count and TDC allows data to be pegged to actual

crank angle values in a repeatable way. The reach of the DTI gauge was extended using

an aluminium welding rod with one end threaded and the other probing end rounded to a

ball-nose. The AJ-V8 pistons are a flat top design and the spark plug bore is

concentrically aligned with the cylinder so that the DTI probe can be introduced

orthoganally to the piston crown. The engine was rotated manually using a spanner to

search for the TDC position. The trajectory of a slider-crank mechanism means that the

piston displacement is least sensitive to crank rotation at the furthest extremes of its

travel. This meant that in the vacinity of TDC, there was no appreciable change in DTI

gauge reading over a rotation of several degrees. The physical process of rotating the

engine by small increments is also difficult to achieve by hand as once enough force is

applied to the lever to overcome the friction then engine will tend to rotate more than the

desired amount so that the process has to be repeated in the opposite direction and back

in the original direction to eliminate backlash effects. After repeating the process several

times, an angle central to the measurement dead-zone was recorded. When the engine

was motored without any combustion taking place, the peak of the pressure trace was

found to be out of alignment with the predicted TDC by about 1.5 degrees so the

software offset was adjusted accordingly.

Collection of Cylinder Pressure Data Although the encoder index postion was

known relative to TDC, a mechanism for pegging the samples to the encoder index was

still needed. The technique devised was to gate the sampling process until the index

pulse has been reached for the first time which was achieved using a software resetable

latch circuit. The index pulse triggers the latch which enables sampling on the DAQ and

the index is then ignored unless the latch is reset at some point in the future by a software

controlled digital output. Providing that no samples are ever lost or gained due to false

triggering, the angle of every sample is known by its relative position in the sample

buffer. The DAQ can buffer up to 500 samples, but was set to dump the buffer every 360

samples by raising an interrupt. The card driver then transfers the samples from the card

and buffers them before delivering them in multiples of 1440 to the application software.

The application software is able to detect from the measured pressure level which half of

the 1440 samples contains the combustion part of the cycle and choose to reject the other

half or window the data further to the region of interest. The combustion phase can never

be known in advance as the latch circuit can be triggered with the engine in either phase

for the instrumented cylinder. Also there is a requirement that the latch should only be

reset with the engine stationary as it needs to be done before the DAQ driver is

configured so that the sample buffer is empty when the latch is triggered. With the

151

engine running, the software latancy between reseting the latch and configuring the card

means that sampling does not repeatably start from the same angle. However, this is not

an unreasonable constraint to perform the setup before starting the engine, as the

sampling process can continue continously from engine startup, discarding the data if

not required. With this approach, there is a risk that if the DAQ was to be triggered

falsely then the angular error would acculumate over time. The aquisition system was

run for extended periods of over half an hour and at no time did any noticable angular

offset error accumulate which implies that the noise protection measures are adequate.

Figure 4.83 shows some pressure data captured during an engine start cycle. The lowest

trace occured before any combustion has taken place and is therefore has a peak pressure

symmetric with TDC.

Cylinder Pressure Traces from Startup

-20

80

180

280

380

480

580

680

-90 -70 -50 -30 -10 10 30 50 70 90 110 130 150 170 190

Crank Angle Relative to TDC [degrees]

C
y

li
n

d
e

r
P

re
s

s
u

re
 [

p
s

i]

Figure 4.83: Cylinder pressure curves obtained during engine start-up

4.6.4 Thermocouple Interface

A thermocouple instrumentation board (Figure A.5) was developed to allow monitoring

of the engine cooling water and exhaust gas temperatures. These measurements are

intended for general health monitoring rather than for modelling or control purposes. A

Type K Chromel/Alumel thermocouple has a useable measurement range –200°C to

+1250°C giving –5.973 to +50.633 mV. The relationship is not linear and polynomial

reference calibrations are available in the ITS-90 Thermocouple Database from the (US)

National Institute of Standards and Technology (NIST). The AD595 (Analog-Devices,

152

1999a) IC was used with an ADG507 mutiplexer to amplifiy eight thermocouple

channels. The AD595 is an instrumentation amplifier with an integrated thermocouple

cold junction compensator on a monolithic chip. It combines an ice point reference with

a pre-calibrated amplifier to produce a high level (10 mV/°C) output directly from a

thermocouple signal and gives the following input/output relationship:

AD595Out put = (TypeKVoltage+11µV)×247.3

The IC’s calibration is centred around 20°C but (due to the non-lineararity in the actual

thermocouple’s characteristic) the relationship diverges for colder and warmer

temperatures. As the type K thermocouple has greater measurement range above 0°C,

then this is more significant for higher temperatures. As an example (from the table

provided in Analog-Devices (1999a)) at a thermocouple temperature of 800°C the

AD595 will output 8.232 V which corresponds to a measurement error of 23.2°C. For

this project temperature measurement is intended for health monitoring and consistency

of data collection, then this static error will not be an issue as it will be repeatable and

can be compensated for using online software or offline, should a greater level of

accuracy be required. The circuit did suffer from a larger source of error created by

ground currents between non-electrically inslultated probe tips and the circuit. The

multiplexer is an analogue switch and has typically around 280W of impedence between

the input and output of the selected channel. As the voltage being measured is very small

then it only required a small amount of ground current to induce a large offset error

voltage across the multiplexer’s impedance. The insulated probes produced only a few

degrees of offset error, whereas the non-insulated probes could be out by the order of 40

degrees.

153

Figure 4.84: Thermocouple multiplexing circuit (Marcin, 1998)

4.7 Software Architecture, Selection, and Development

The Acrom Viper SBC is supplied with Redboot boot-loader which is an eCos

application. There is also available a board support Linux package which Arcom call

Arcom Embedded Linux or AEL, that is loosely based around Debian Linux and makes

use of a number of commonly used embedded tools for a reduced memory footprint. A

commercial version of FMSlabs RTLinux was also available at considerable cost,

although the exact level of integration with the Viper board is not disclosed. As both

eCos and the Linux components are all covered under variations of the GPL licence, the

development CDROM was obtained from Arcom.

A decision had to be made as to which operating system would be used, balancing the

real-time requirements against the up-front porting and setup effort with cost and the

potential for rolling out the solution to other applications with real-time requirements

within the research group. Any choice would involve a potentially serious commitment

of development time which would make it difficult to change at a later stage. After an

initial investigation into porting the ARM varient of an open source real-time linux

entention called RTAI, it was decided to use AEL Linux as the hardware interrput from

the DAQ board could be used to create periodic software event relatively independently

of the scheduler’s timing mechanisms. The main challenges arrising out of AEL were

the age of the packages versions and the limited flash storage space and the host tool’s

dependence on an obsolete and supported version of Linux Standard Base (LSB).

154

Appendix B.2 provides further detail on the rationale on how conventional Linux was

chosen to implement the embedded controller.

4.8 Control Software

The control software for the dynamometer was based on the ARM based Arcom Viper

board and a Diamond Systems data aquisition card (DAQ) connected to the Viper

through an ISA bus. The software written was cross compiled in a sandbox environment

called Scratchbox on a Linux host PC. The control loop uses the DAQ card to generate

an interrupt based periodic event when a batch of samples has been acquired. The

control code was initially written as a standalone C program with the intention of

merging it into a C++ based GUI monitoring application being developed in parallel for

the same hardware. When difficulties were encountered with the GUI software, the

control program was migrated to a standalone C++ program with a console display.

Further information on the Diamond DMM32AT card and API compatibilty library

issues are provided in Appendix B.3.

4.9 Application Software

This section describes the work carried out to provide an application for a user operator

interface and for monitoring and data recording on the engine testbed. Application

software was initially written to run on the ARM based Arcom Viper board for display

on an LCD touchscreen. The application software was intended to provide a front end

for the dynamometer control software. After much difficulty with rendering issues and

general performance, the software was moved to an embedded x86 platform (Kontron

MOPS) which had nominally similar processor performance, but owing to dedicated

graphics hardware, the application is able to run at an acceptable rate on a larger VGA

signal compliant LCD screen. The control software was retained on the Viper board and

a colour ncurses console was used instead of a rendered window environment, as this

was within the capability of the display. The MOPS board was used with Crunchbang

Linux 9, derived from Ubuntu, but simplified to use Openbox window manager and

other minimalistic software making it an appropriate starting point for an embedded PC.

Crunchbang was installed onto a 2 GB high speed CompactFlash card and was used with

a CompactFlash to ATA-IDE adaptor so that the MOPS board could be used without a

hard disk. Any software packages missing from the default Crunchbang install (such as

wxWidgets) could be installed via a network connection to the board from the normal

Ubuntu package repositories. Appendix B.4 provides more discussion on the chosen

Windows Server TinyX used on the Viper board (SmallX as it is now commonly called).

155

4.9.1 The mseDyno Application

The torque signal can be optionally filtered using the filter button below the plot area.

The filter is an expontentially weighted moving average filter of the form:

Yt = αXt +(1−α)Yt−1

where α is a tuneable coefficient that can be related to the time constant of an R-C filter

for a fixed sample period of ∆T :

RC = ∆T
(1−α)

α

This filter was used for its low computational overhead due to its recursive nature and is

a simple infinite impluse response (IIR) as it depends on both previous inputs and

outputs and has an impluse response similar to a physical R-C filter. As such it is said to

be causal as it cannot see ahead into the future and so introduces some phase lag seen as

a time shift delay between the filtered and unfiltered signals. Since the data is being

process in time-triggered batches, the lag could possibly be removed using a non-causal

filter that require data ahead of time, but it was not considered to be of high importance

to do so for a monitoring application. Such a filter would also prevent the most recent

sample data points from being rendered at the time they are received as the ahead of time

data (relative to those points) would not be available until the next batch arrives. The full

torque signal deviation for each decimated point that is redendered at a particular zoom

level can be selectively shown using the Min-Max button. The rendering approach for

plotting incomming data in near-realtime (as it is received, subject to varying transfer

delays) could adopt one of three approaches.

1. Continuously scroll the plot from a fixed point. This would require buffering the

data blocks in a FIFO and create a data stream or delaying rendering by one or

more blocks of data so that there is always at least one block of data in-hand. This

approach results in a high rendering overhead as the whole area has to be replotted

each time the data window is advanced. The continuous rendering would normally

result in either a visible flicker (if the plot area is cleared after each rendering) or

tearing (if the plot area is incrementally overwritten and background blanked) that

would require double buffering to remove. Double buffering is the process of

rendering to a hidden plot area then swapping the completed scene into view. The

previously viewable area then becomes hidden and can be used to render the next

frame. wxWidgets supports double buffering, but the actual implementation

depends on lower software layers not accessible to the user API (other than to

156

enable double buffering and controlling when the frame is to be switched), so there

may be significant additional overhead caused by the block image transfer (BLIT)

depending upon how much assistance the graphics hardware is able to provide and

how that hardware support has been utilised by the various software layers that lie

between the framebuffer(s) and wxWidgets.

2. Continuously wrap-around and over draw data. This technique can often be

observed on digital electrocardiogram (ECG) displays in hospitals and also digital

oscilloscopes when set to a slow timebase. The data stream is plotted from left to

right and starts again from the left side over drawing the previous trace. This

results in a visible tearing or seam where the old and new data meet. In this case

the tearing is not a problem as it marks the current point in time and can be marked

by a moving vertical cursor line if desired. This technique results in a lower

rendering overhead as the whole data window does not have to be redrawn at each

time increment, only new data added. Also, the overhead is consistent so there is a

reduced likelihood of glitching. A possible drawback is that once data has left the

plotted window, then it is gone for good as it does not make sense (from a user

interface perspective) to attempt to scroll a data window that has been wrapped

around.

3. Plot data as it arrives and scroll the plot area by fixed increments. This is a

compromise between continuously scrolling and continuously plotting (and

wrapping around) the data. New data is appended to the existing plot either on a

time interval basis or in blocks as it arrives. This prevents having to redraw the

entire visible data window onto the plot area for each update, but also allows the

plotted view to be shifted instead of wrapped. By shifting the data it is possible to

scroll backwards through time or pause and resume (catchup) data plotting. The

view can be scrolled by the same amount and interval as the drawing of new data

blocks, or it can be scrolled ahead at longer intervals leaving some blank space for

drawing so lowering the overall rendering overhead. The downside to this

approach is an overall reduction in the smoothness which the plot progresses and a

less consistent overhead which could result in glitching if there is a delay in the

extra computational load being met at each scroll event.

The third approach was adopted for mseDyno due to its lower rendering overhead and

ability to preserve the time history of the data collected. There is a menu selectable

auto-scroll option (which is enabled by default) which when selected caused the display

to advance by 2/3 of the display area so that newly plotted data can always be seen as a

continuation of previous data.

157

Figure 4.85: The mseDyno front end GUI showing the data plotter panel

The cylinder pressure panel can display cylinder pressure as it is acquired until the frame

rate is exceeded by the ignition rate. It uses an embedded OpenGL/Mesa panel to render

pressure traces which can be rendered in either 2D or 3D. The 2D view (Figure 4.86)

marks the peak-pressure-position for the current and previous seven traces using the

sample which has the largest pressure. This could be improved using a gradient search or

a mass-burned-fraction technique (Eriksson, 1999), but it was considered better to keep

the processing overhead as low as possible for online display. The 3D view (Figure 4.87)

shows the current and previous nine pressure traces in an receding horizon waterfall so

that brief trends in pressure can be observed by the operator. The axes can be removed in

both views if desired. Data is transferred from a dedicated server program called

mseEncoderMon. This program takes care of setting up the encoder interface and

reading sample from the DAQ card, discarding non-combustion phase data, then packing

the remaining data into a binary stream for transmission to mseDyno or other listening

application using TCP/IP. This allows mseDyno or other custom data logging software to

be located on a different computer/device away from the hardware if required. Data

packing and serialisation is done using the GNU implementation of External Data

Representation (XDR) library which standardises how data types such as floating point

are transmitted between different kind of computer systems. This helps to prevent issues

of endianess between the various embedded boards in use on the engine testbed.

158

Figure 4.86: The mseDyno front end GUI showing the pressure plotter panel

Figure 4.87: The mseDyno front end GUI showing the pressure plotter panel

159

Chapter 5. Development of an Engine Controller

This chapter describes the work undertaken to develop an engine controller for research

purposes. The motivation for this work has been due to the absence of an existing

controller which can allow the direct real-time access to inputs and outputs, high

bandwidth data acquisition for model identification and the direct implementation of

computationally intensive model based control algorithms.

For a university based engine research project to take place there is often a dependency

on developing a relationship with a vehicle manufacturer to obtain an development ECU

and engine to carry out a piece of research which is of mutual interest which may mean

it must have some inherent short term commercial value to be viable. Aftermarket ECUs

may at first seem to be an alternative, but these are usually aimed at enthusiasts or race

applications and are supplied with static control software which can be calibrated using a

proprietary piece of software to provide the desired fuelling and ignition timing, but have

no mechanism to be dynamically overridden by an external source. An industry de facto

standard method of ECU software prototyping is often to use the generic controller units

from the dSPACE product range combined with Mathworks Simulink model based

autocoding, and this approach has been cited for use in university engine related

projects. However since these units (and others) are aimed towards so-called Tier 1

customers and suppliers thereof, the cost is prohibitive and even if the hardware is

obtained there is still an overhead to interfacing with an actual engine and producing the

basic level of software to realise a running engine. Commercially available ECUs that

are supplied ready for connect to an engine without additional interface hardware (except

for wiring and connectors) and which allow end-user software to be written or Simulink

model generated and deployed, examples are Ricardo’s rCube or it successor Morfeus,

and certain models from the Pi-Shurlok OpenECU range. However, the cost of these

units and that of the supporting software required to achieve a running engine is

considerable and outside that of research budgets. The requirements for meeting safety

integrity levels (SIL) makes development versions of production ECU hardware

expensive also, then the cost of a software calibration tool licence has to be met, and a

Mathworks Simulink Embedded Coder licence if a model based approach is adopted.

It was decided to search for a PC/104 form-factor board containing an MPC555

processor commonly used by the automotive industry, to use as the basis for a research

ECU. The original intention for this was to allow the I/O and communication capability

to be extended beyond that of the MPC555 should that be required as the project’s

research aims developed. However, it quickly became clear that a greater benefit would

be to allow the MPC555 to be coupled to an x86 board for data transfer and expansion of

160

a computationally intensive modelling and control technique on to a much faster (but

less deterministic) x86 environment. Two candidate boards emerged from a search, the

first was a PC/104 form-factor PPC/104-555 board made by Parvus Corporation,

illustrated in Figure 5.1. This board hosts an ISA bus which allows peripheral boards to

be added, but prevents it being directly connected to a x86 processor board since it

would also be a bus host. The PPC/104-555 board was no longer available from stock or

in active production for low volume purchases when an enquiry was made to Parvus.

Figure 5.1: Parvus PPC/104-555 board

The second candidate board is the MPL PATI shown in Figure 5.2. This board is

PC/104+ form-factor and is a PCI target (peripheral card) that can also be used

standalone. It has an ISA Bus pass-through but there is no data connection to the Bus. It

is able to access the PCI Bus for data exchange with a PCI host, normally an x86 based

processor board. The PATI was selected for use with this project and used initially as

standalone, but later with a Kontron MOPS x86 PC/104+ processor board which was a

arbitrary choice of cost effective board with sufficient resources to support a PC variant

of Linux. The PATI is supplied as a bare board with no software support (as none

existed), so a board port (the process of writing/porting board specific supporting code)

of an open source operating system called eCos was made as a basis for further software

development.

161

Figure 5.2: MPL PATI PC/104+ board

To support the PATI board in it’s role as an engine controller, a number of other interface

circuit boards were designed and produced to allow it to interface to the engine. These

boards were also made to comply with the PC/104 mechanical dimensions specification

so that the controller could be assembled to form a PC/104 stack if desired. Since the

controller hardware itself was under development and testing, the boards were mounted

onto a chassis plate in an electrical enclosure for protection (Figure 5.3). The existing

engine wiring loom was spliced with multi-pole connectors so that either the prototype

ECU or the existing OEM ECU could be quickly reconnected to the engine at any time.

The interface boards consist of two injector driver boards (for driving eight injectors), a

digital I/O buffer board, and an analogue signal conditioning board (Figure 5.4).

The peak-and-hold injector driver boards are able to current control four fuel injectors.

The digital I/O buffer board with a row of LEDs to give a visual indication outputs (to

visually validate firing order for example), and an analogue signal board which provides

active filtered signal conditioning for two Lambda sensors, two RTD sensors

(thermistors), two hall effect sensors, scaled battery voltage, and general filtered signals

inputs for other sensors such as the engine’s MAF sensor. In addition to the interface

boards, an independent throttle controller board with an opto-isolated CAN transceiver

board was produced so that the electronic throttle unit fitted to the engine could be

controlled independently from the main controller, accepting input commands from

either the mechanical throttle cable, the engine controller (for idle control), or the

dynamometer controller (for torque/speed control).

162

Injector driver boards

PC/104+ stack

CompactFlash
interface

Figure 5.3: Inside the research ECU box

Analogue signal
board

Figure 5.4: Inside the research ECU box showing the MOPS embedded PC and analogue
signal board

The engine controller hardware was tested on the engine and each of the subsystems was

found to function as intended, from throttle control, through to actuating the injectors

and reading analogue signals. Unfortunately, time constraints and difficulty with the

Motorola TPU microcode prevented the software from being developed to the point

where the engine could be tested whilst running. The rest of this chapter describes the

challenges in developing the software and hardware which has resulted in the prototype

research ECU, beginning in the next section by looking at how the original OEM ECU

for the engine is constructed.

5.1 Nippon Denso ECU

An AJ26-V8 engine was supplied by Jaguar with a development ECU (refered to in

Jaguar terminology as an engine control module (ECM)) and software for use with an

163

undergraduate project that had taken place a number of years prior to the commencement

of this one. The history of the engine and ECU are not known, but from an examination

of the ECU it appears to have been a prototype for the unit which was eventually fitted to

production vehicles. The arrangement of the ECU is slightly unusual as it has three

PCBs and appears to be an adaptation of a two PCB design. The lower main PCB can be

seen in Figure 5.5 and contains the main power input, electronics to drive actuators. The

throttle H-bridge can be seen mounted on the side of the case and eight transistors

mounted (without heatsinks) in the middle region of the board are evidently for driving

the fuel injectors. There are also low ohm solid resistors for current sensing/monitoring.

The lower board joints to a much smaller intermediate board via a set of three short

board-to-board ribbon cables. This board contains what appears to be two locations for

surface mount microcontrollers to mount and a Intel 82527 CAN controller IC. In place

of the expected processors there are mounted instead socket breakout boards. Four hand

spliced ribbon cables are then attached to these adaptor board and carry signals up to the

final upper board. The top level board can be seen in Figure 5.6 and contains processors

and EPROMS. Other than the EPROMS, the major components are not identifiable by

part number also, but their roles can be assumed. The following devices have been

identified:

• Two Motorola XC370600FU CPUs marked as a samples.

• Two Hitachi HN27C1024HGJ-90 1-Mbit (64-kword × 16-bit) EPROMs.

• Two 4.0 MHz clocked large devices possibly FPGAs or other programmable logic

devices

• Two Xicor X28HC256 256 kbit 32 kB x 8-bit EEPROMs

• A Sound Design Technologies device marked DSP 7133 LA90GB, possibly an

application specific integrated circuits (ASIC) .

No information about the Motorola CPU is available from the part number, but it is

highly likely that it is a microcontroller variant of the 68000 series 16-bit CPU. Each

CPU is accompanied by a large high pin count device which has their own pair of 8-bit

EEPROMs. It is possible that these are FPGAs programmed to handle the low level

timings tasks of the engine controller. The last device of interest has a manufacturer

marking of SDT where the S formed using the integrand symbol. This can be assumed to

be a Sound Design Technologies device for knock signal processing, either a custom

ASIC or a Digital Signal Processor (DSP), although from it age, the former is more

likely. There is also a 3-pin header which connects to a DE-9 connector mounted on the

case for RS-232 serial development port that interfaces to the calibration software

running on a PC.

164

Figure 5.5: Nippon Denso ECM, middle and lower PCBs visible

Figure 5.6: Nippon Denso ECM, upper PCB visible

The calibration software runs on MS-DOS and connects the the ECU via a serial cable or

CAN, although it is not known which CAN hardware is supported. It allows 16 variables

to be monitored and logged to a data file. It allows the many calibration tables to be

viewed and edited either on the running engine or offline. The ECU firmware for the two

CPUs is stored in Motorola s-record files an can be uploaded to the ECU. Figure 5.7

165

shows the software running on FreeDOS using the QEMU processor emulator under

Linux. The DOS serial COM ports can be mapped to a USB to serial device by the

emulator allowing the software to run on recent hardware. The screen shown is a fuel

map of mass air flow normalised per engine revolution against fuel injector opening

duration which ranges from around 450 ms to 10 ms.

Figure 5.7: Nippon Denso calibration software for MS-DOS

The details of the communication protocol between the ECU and the PC software are not

known. The pairing of ECU calibration software with the ECU of a particular

manufacturer is something which has been addressed by a German interest group formed

from Car manufacturers originally calling itself ASAP (A German acronym for Working

Group For Standardising Calibration Systems). This group adopted a standard called

CAN Calibration Protocol (CCP) which forms the subset ASAP1a of the standard called

ASAP1. The standards work carried out by the group has since been renamed in

December 1998 to form a new organisation called ASAM which is an acronym for

Association for Standardisation of Automation and Measuring Systems. The association

was founded as an initiative of German Car manufacturers. Despite its name, CCP does

not mandate the use of a particular physical layer or bitrate so it could also be applied to

a serial link. It is possible that Nippon Denso have used CCP for either the CAN and/or

serial communication links to the ECU, or that a proprietary protocol has been used. The

ASAM standards are not freely available, but Vector (2004) gives a comprehensive

overview of the ASAP/ASAM history and the protocol level details of CCP. CCP is a

relatively simple and effective protocol that can be used for uploading and flashing

binary code to an ECU, setting/modifying calibrations and on-line monitoring of data

variables and calibrations. It is not normally used alone. Application software which

166

uses CCP normally requires a database (known as an ASAP2 file) which contains a list

of data variables and calibration tables along with information about the data items, as a

minimum the name and memory address on the ECU where they are to be found, a brief

description of their purpose and the offset, scale factor, and engineering units which the

stored value represents. The ASAP2 file is normally generated by post processing the

binary image output from from the compiler for symbolic information and comparing it

with a data-dictionary which contains a formatted list of the data items with their

corresponding descriptions and other information. Without the ASAP2 file, CCP is of

little use since the significance of data stored at a particular memory address is not

known. Figure 5.8 shows how the ASAP interfaces relate to each other. At the centre is

the PC software based calibration tool. As as result of the adoption of the ASAP

standards, the particular tool used can be chosen by the ECU calibrator rather than the

ECU manufacturer which has seen the emergence of independent ECU calibration tools

such as Vector CANape, ETAS INCA, and ATI Vision. With the ability to read ECU

variables on-line as the control program is running, it is possible to perform

processor-in-the-loop (PIL) tests by setting overrides for measured variables to contrive

external conditions, or hardware-in-the-loop (HIL) tests using a dedicated test hardware

(often an industrial PC with specialist I/O timing interface cards) which can connect to

the application PC using the APAP3 RS-232 protocol or otherwise. Chen & Carpenter

(2010) describe the use of feedback with HIL test hardware and ASAP3 to manipulate

the internal state if the ECU software that cannot be directly reached by statically

mimicking inputs to the ECU.

Automated Calibration
Controller

or HIL tester

Measurement
and Calibration Tool

(PC Application)
ECU

Database
(Data Dictionary)

ASAP3
ASAP1
(CCP)

ASAP2

Figure 5.8: The relationship between the ASAP interfaces

5.2 The MPC555 Microcontroller

In brief the MPC555 microcontroller has the following features:

• Made from over 6.7 million transistors using 0.35 mm manufacturing process

• RISC PowerPC architecture with FPU @ 40 MHz, 52.7 kMIPS (Dhrystone 2.1)

• 8 differential 10-bit ADC channels, 25 kHz each

167

• 32 timing channels from two Time Processor Units (TPU3)

• Two Serial RS-232 interfaces

• Two CAN 2.0b (TouCAN) interfaces

• 448 kB Motorola one transistor (MoneT) CMF Flash, one cycle access (limited to

100 erase/write cycles)

• 26 kB SRAM, one clock cycle access for data

• 5 V general purpose I/O (GPIO)

Figure 5.9: Block diagram of MPC555 internal features

Figure 5.9 shows the key components of the processor’s architecture. The System

Interface Unit (SIU) supports full burst mode for glueless (no arbitration logic required)

connection external memories (such as SRAM and Flash). It has a 32-bit data bus and a

24-bit address bus (16 MB) with four chip select regions, each with extensive timing

options. A 64-bit timebase is used and there is a built in real-time clock (RTC),

watchdog and bus monitor protection circuits. Notably there is no memory management

unit (MMU) and no cache. This arises from the intended application of the processor

being for time critical applications. An MMU is required for general purpose

applications such as a desktop PC where the user can attempt to run arbitrary code such

as a word-processor, whereas in the field the MPC555 is likely to run only one well

tested deterministic application which is treated as firmware. The need for code to run

under memory protection becomes less of a issue in this case and the addition of an

MMU would only serve to increase the cost and complexity of the chip unnecessarily.

The processor does however implement a supervisor mode and 36 of its special-function

registers (SFRs) can be protected from casual non-supervisor accesses. The lack of

cache is due to the fact that the processor is not clocked fast enough to prevent direct

168

access to contemporary memory for program execution, and in general the addition of

cache can add a variable latency which may be unacceptable for time critical control and

instrumentation applications. There is also a small amount of (26 kB) of on-chip SRAM

which is accessible in a single clock cycle if fast access memory is required from

program data variable storage.

There are two dual queued analog-to-digital converter modules (QADC) which together

multiplexed 32-channels with 10-bit resolution with an achievable 5 ms conversion time.

Since the two ADC modules are independent the processor is capable of simultaneously

sampling two analog inputs.

The Modular Input/Output Subsystem (MIOS) unit is provided for general purpose

digital I/O. It features programmable counters, eight PWM sub-modules, and a 16-bit

parallel port. A limitation of the PATI is that none of the MIOS channels are exported to

external connectors and so unfortunately are not available for use.

Figure 5.10: IMMR layout detail

All of the special function registers, internal memory, and other resources of the MPC555

are accessable from a 4MB region within its address space shown in Figure 5.10.

5.3 The Time Processor Unit

The time processor unit (TPU) is a semi-autonomous micro-controller designed for

timing control. It operates simultaneously with the CPU, processing micro-instructions

169

to schedule and process real-time hardware events. It can access shared data without

CPU intervention. This effectively decouples it from the main CPU and allows it to

achieve very deterministic real-time performance. There is still a scheduler latency, but

as it is a hardware scheduler this will always be the same and a worst case latency can be

calculated for each channel. The deterministic nature means that it can be used for tasks

which might conventionally only be practical to implement using dedicated hardware

external to the CPU, or using dedicated processors that are unable to perform other tasks

without inducing unwanted latency. The TPU can replace general CPU hardware IRQ

events normally requiring ISRs. It essentially is able to perform or process a series of

events that are either a match or a capture.

The TPU consists of two 16-bit time bases, 16 independent timer channels, a task

scheduler, a micro-engine and a host interface for CPU access. Each of the 16 channels

corresponds to a single dedicated digital I/O line that can be programmed as either an

input or an output. The TPU channels are general and independent. No channel is

specialised for a particular task so that any channel is capable of running any time

function. Upon initialisation, the CPU can assign a time function and a priority to each

channel. The priority gives more frequent service to high-priority channels and less to

low-priority channels.

The MPC555 has two TPU3, third revision units which in total provides 32 channels.

The TPU3 is identical to the TPU2 and TPU and it has some additional features

including those added to the TPU2. The enhancements include up to four 2 kB for

micro-code storage, eight words of parameter RAM, and an improved comparator. On

the PATI all of the 32 channels are exported to an external connector and are therefore

available for use as a part of the ECU.

A detailed description of what the TPU is and how it works and is programmed is given

in Dyson & Bannoura (1999). Motorola previously supplied information on

programming in TPU microcode, in the Time Processor Unit Reference Manual

TPURM/AD (Motorola, 1990). Unfortunately, in later editions (labelled

TPURM/AD-xx), the microcode information was removed, as it caused some confusion

to application developers who just wanted to use the standard functions supplied by

Motorola, making that process seem much more complex than it actually is. The updated

simplified version of this document is now provided by Freescale (1996). A summary of

the key information from these references is provided in Appendix B.5.

5.4 The PATI Platform

PATI is an acronym for PowerPC controlled Analog and Timer-I/O Intelligence board

(Figure 5.11) and is made by MPL AG Electronik of Switzerland (Bea, 2004). It is a

170

PC/104+ form factor card implemented as a PCI slave device. It has no ISA connectivity,

although a pass-through connector is provided. As it’s name implies, it is intended to

function as an active, or intelligent I/O and data acquisition card to a PCI master device

such as an x86 processor, but despite this it is capable of functioning as a standalone

board. It is based upon the Motorola/Freescale MPC555 processor which is has been

commonly used in the automotive industry, and is also suitable for robotics applications.

Unlike more conventional data acquisition cards, nearly all of the board’s functionality

comes directly from the MPC555 itself. In addition to the processor there are 16 MB of

SDRAM, 4 MB of programmable flash memory, a PCI-bridge chip and an erasable

programmable logic device (EPLD) to facilitate the glue logic and power-up cold boot

configuration of the processor.

The card was designed to exploit the extensive peripherals that surround the MPC555

processor’s PowerPC core. The card was selected for this project, not for use as an

acquisition card in the strictest sense, but to make direct use of the processor for engine

control with the potential for future expansion through the PCI-bus. The choice of a card

which has an MPC555 processor was a natural one given that this processor is used in

some production ECUs. This makes it easier to have prior confidence that the platform is

both capable of, and suitable for, controlling an engine. It will also permit a reasonable

assessment to be make of any new control algorithm’s suitability for implementation on

existing ECU hardware which has only modest computational speed when compared to a

desktop PC for example. There is also a certain amount of commercial support for

development on this architecture for control applications such as Mathworks Embedded

Coder (formerly Real-Time Workshop for Simulink). Further detailed information on the

MPC555 Peripherals is provided in Appendix B.5.

Figure 5.11: MPL AG PATI PC/104+ card

171

5.5 Porting eCos to PATI

The Embedded Configurable Operating System (eCos) was chosen as the operating

system to run on the PATI board. The reasons for this are that it is real-time capable and

completely open source with a small memory footprint. It is also highly configurable.

An MPC555 varient was already in existence and early startup code specific to the PATI

was needed to assign memory mappings and configure the external SDRAM refresh.

The equivalent U-Boot code was used as a reference, but since this memory setup

operation has to be performed before a C stack has been created, this code had to be

written in assembly language rather than C as used for the U-Boot code. Additionally,

board specific reset code was added and the two existing serial drivers for other MPC555

based boards were consolidated into a single generic MPC555 serial driver. A board

specific driver was written for the external Intel Flash, which required only slight

addition to the generic Intel Flash driver to enable the write/erase voltage to the flash by

writing to a specific register in the EPLD. These changes were then committed back to

the main eCos CVS repository as a board port. Further information on eCos and

real-time issues are provided in Appendix B.6.

5.6 ECU Hardware Development

5.6.1 Fuel Injector Peak-and-Hold Driver Circuitry

The current required to overcome the kinetic and constriction force to open a solenoid is

several times greater than the current needed to hold it open. The LM1949 IC can be

used to control the current through the injector using an external NPN Darlington

transistor, as shown in Figure 5.12. By directly measuring the current through the

injector it can initially saturate the driver until the peak current reaches four times the

holding current to guarantee that the injector opens. The current is then reduced to a

sufficient level to keep the injector open for the duration of the input pulse. This

technique reduces the amount of power dissipated in the system as well as improving the

correspondence of input pulse duration to fuel quantity by reducing the closing time of

the injector as the current only has to fall from a reduced holding level. Fuel injectors

can be modelled by a simple RL circuit (National-Semiconductor, 1995). In operation

the value of inductance L will change whether the solenoid is open or closed. The peak

current is determined by the value of the sense resistor Rs. When the voltage drop across

the sense resistor reaches the peak threshold level (nominally 385 mV) the IC is tripped

from the peak state into the hold state. The IC will then attempt to reduce the injector

current to one quarter by maintaining 94mV across the sense resistor in a closed loop.

172

Figure 5.12: Injector drive controller typical application circuit (National-Semiconductor,
1995)

Since the injector is an inductive load, a change in current controlled by Q1 will result in

a voltage spike. This occurs at the peak-to-hold transition and at the end of each input

pulse. A fly-back zener diode is needed to provide a current path which prevents the

voltage level exceeding the breakdown voltage of the Darlington driver. A zener is

preferred to a clamp diode as automotive systems are prone to voltage transients on the

battery line and a zener can provide protection to the Darlington during short over

voltage conditions.

A timer function constrains the time that the current is allowed to rise to the peak level.

For example, if the battery voltage is too low, the peak current may never be achieved,

but a slightly lower current may persist whilst the circuit waits for the peak level to be

reached. The timer function provides a timeout so that if the peak current is not reached

in this period, then the current will be reduced to the hold level regardless. Without the

provision of the timer circuit, an injector current of just less than the peak level may be

held for the duration of the input pulse which may overheat the injector. The time

constant for the timer is set by choosing the values of RT and CT such that τ = RTCT . A

time constant in the order of 4 ms is typical, but should be chosen to suit the particular

injector to ensure that it is given sufficient time to open.

173

0 0.5 1 1.5 2 2.5 3 3.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Injector Current Measured at V
bat

=12.2V During Engine Idle

Time [ms]

In
je

c
to

r
C

u
rr

e
n
t
[A

m
p
s
]

Figure 5.13: Fuel injector current response showing a knee point as the solenoid opens

Another design consideration is power dissipation in the driver, zener, and sense resistor.

Generalisation possible using a PWM and external comparator technique with additional

TPU channel to detect when the peak current has been reached.

5.6.2 Ignition Driver Circuitry

The AJ-V8 uses a pair of self-contained ignition driver modules, of the type shown in

Figure 5.14. This removes the need to design a set ignition drivers since they are not

integral to the existing ECU unit. However some consideration of their design is still

necessary.

Figure 5.14: Denso ignition driver unit

174

Generally, ignition driver stages feature either multi-stage Darlington power transistors

or IGBTs which control the flow of primary current through the coil, replacing contact

breaker points found on earlier ignition systems. The ignition output stage also has to

limit both the primary current and the primary voltage. The primary voltage is restricted

to prevent excessive increases in the supply of the secondary voltage which could

damage components in the high-tension circuit. Restrictions on primary current hold the

ignition system’s energy output to a specified level. Power output stages can be internal

or external to an ECU.

When the firing point arrives, the ignition driver stage interrupts the flow of current. The

flux in the magnetic field induces a voltage in the coil’s secondary winding. The

potential of the secondary voltage depends upon a number of factors which include the

amount of energy stored in the ignition system, the capacity of the windings and the

coil’s turns-ratio as well as secondary load and the restrictions on primary voltage are

determined by the ignition system’s driver stage. There are essentially three types of

ignition system that have been in common use. The first uses a single oil-filled ignition

coil and directs the spark potential using a mechanical rotor arm and distributor. The

second type removes the need for any moving parts by using (for a four-cylinder engine)

two coils which each have a spark plug attached to either end. This type is sometimes

called wasted-spark ignition as the spark potential is applied to two spark plugs at once.

For this type, cylinders are chosen in pairs so that when one requires ignition, the other

will be in a late exhaust phase. This places some restriction on the permissible spark

timing so as to not unintentionally reignite products of combustion or freshly induced

mixture. Some sources also state that a spark will only occur at one of the two plugs due

to the higher impedance presented by lower pressure in one cylinder than the higher

pressure and wetter more conductive conditions in the other. The third type is the

so-called coil-on-plug type which has emerged from better driver control circuitry and

epoxy enclosed dry insulation which together make it possible to reduce the unit size

enough to make them practical. This third type is the only one which requires a

knowledge of the engine’s valve phase (using a camshaft sensor) to know which cylinder

to fire. With the first type this is taken care of by the mechanical distributor, and the

second it is unimportant as two plugs are always fired simultaneously. If spark timing is

to be controlled on an individual cylinder basis (such as for knock prevention) then a

camshaft sensor is still required.

When the primary current is switched, an undesired voltage of about 1-2 KV is induced

in the secondary winding (termed switch on voltage) the polarity of which is the opposite

of that of the intended high-tension spark-producing voltage. It is essential that arcing at

the spark plug (termed switch-on spark) is avoided as this could ignite the mixture at

completely the wrong stage in the cycle causing backfire or mechanical damage.

Systems with a rotating spark distribution system use a distributor spark discharge gap

175

for effective suppression of this phenomenon. On systems with single-spark coils a

special diode (in reality a stack of diodes to achieve the required voltage rating) is

incorporated in the high-voltage circuit to perform the same function. With stationary

and two spark coil systems the high voltage needed to create arcing when two spark

plugs are connected in series suppresses the switch-on spark, without additional

measures being necessary.

Figure 5.15: The three main types of ignition coil (Steinbrenner et al., 1994). a)
Conventional single spark coil used with a distributor. b) single spark coil (coil-on-plug)
c) dual spark coil (wasted spark)

Figure 5.16: Coil-on-plug assembly (Steinbrenner et al., 1994), 1) LV terminal 2)
Multiplate iron core 3) Primary winding 4) Secondary winding 5) HV terminal 6) Spark
plug

Various ignition coil driver IGBTs targeted specifically at coil-on-plug designs have

emerged on the market which are able to limit the stress applied to the ignition coil and

provide over-voltage protection using an active voltage clamp between the collector and

176

the gate (Figure 5.17). The voltage clamping is termed self-clamped inductive switching

(SCIS), and is a way of controlling the spark energy for consistent ignition by clamping

to typically 400V for a total discharge of around 200-500 mJ.

Figure 5.17: N-Channel ignition IGBT (Fairchild-Semiconductor, 2005)

5.6.3 Engine Speed and Phase Sensors

The AJ-V8 engine is fitted with two variable reluctance sensors to detect its angular

position and valve phase. The engine’s position is detected using a timing disc that is

embedded into the flywheel. The relative change in this position is used by the ECU to

get a direct estimate of the instantaneous speed. Using a disc on the flywheel is an

alternative to using either a dedicated toothed disc or suitably modified crankshaft pulley

with teeth at the other end of the crankshaft that is often used on other engines. Slots in

the flywheel (Figure 5.18) give 36 timing positions from the webs left in between

adjacent slots. Two of the webs are left out to provide an index which is detected when

the gap in the generated pulse-train is twice as large as the previous and subsequent

periods.

Figure 5.18: AJ-V8 flywheel embedded timing disc (Jaguar, 1996)

177

One of the four camshafts has a timing ring attached (Figure 5.19) with a key which

triggers the second variable reluctance sensor once per camshaft revolution (or every two

crankshaft revolutions). An effect of this is that during starting of the engine, it may need

to be cranked for at least two revolutions before the ECU can determine enough

information about the engine’s position and phase to be able to trigger the ignition.

Figure 5.19: Camshaft timing ring (Jaguar, 1996)

The engine speed sensor has an output signal which is sinusoidal in appearance. Figure

5.20 shows the signal close-up and also at a resolution which shows a complete engine

revolution. The 34 cycles with a gap of two cycles can be seen.

Figure 5.20: Engine speed sensor outputs captured using an oscilloscope

The output from the camshaft sensor is similar, as can be observed in Figure 5.21.

178

Figure 5.21: Camshaft variable reluctance sensor output

The varying voltage amplitude pulses produced by the variable reluctance sensors need

to be conditioned into discrete logic level waveforms before they can be used by the

engine management system. For this an adaptive variable reluctance sense amplifier IC

LM1815 (National Semiconductor) has been used been used for the research ECU. The

basic application circuit is shown in Figure 5.22.

Figure 5.22: Adaptive sense amplifier typical application circuit
(National-Semiconductor, 2005)

The LM1851 IC is more sophisticated than a rudimentary comparator wave-shaping

circuit than might be considered for this signal conditioning application. The circuit is

able to sense in situations where there is high frequency noise is greater than the low

179

frequency signal amplitude. This is achieved using input hysteresis which varies with

input signal amplitude. A positive-going threshold is derived by peak detecting the

incoming signal and dividing this down. The sense amplifier gives a one-shot pulse

output whose leading edge coincides with the negative-going zero crossing of the input

signal as shown in Figure 5.23. The LM1815 acts as a zero-crossing detector which

cannot be triggered until the input signal has crossed an arming threshold on the

positive-going part of the waveform. Subsequent zero-crossings are ignored until the

arming threshold is exceeded again. This makes the circuit far more robust to false

triggering than a simple comparator based design.

Figure 5.23: LM1815 output triggered from a low amplitude input signal

There are some design considerations when using the LM1815. The input signal voltage

is internally clamped. An external resistor has to be chosen to limit the current to ±3 mA

based upon the maximum peak voltage that is expected to be generated by the variable

reluctance sensor. The other consideration is the duration of the one-shot pulse which

will limit the maximum input frequency for reliable operation. The pulse needs to be

wide enough to be noticed by the ECU, but narrow enough that consecutive pulses do no

merge. The pulse duration t is determined by the values of R and C in Figure 5.22 which

is given by the relationship:

t = 0.673RC

where the maximum usable input frequency is:

Fin (max) =
1

1.346RC

The TPU input detection threshold can be programmed in terms of the number of clock

cycles a signal transition must be held before it is considered a valid logic state. Since

180

this allows for some flexibility in the design, then the datasheet typical values (shown in

Figure 5.22) of 150 kW and 1 nF were used giving a pulse of about 101ms duration.

5.6.4 Lambda Sensor Signal Conditioning Circuitry

The LM9040 IC made by National Semiconductor has been employed to condition the

signals from the lambda oxygen sensors. Figure 5.24 shows the typical connection to the

sensors. For use with the AJ-V8, the main implementation exception is that a dedicated

signal ground path is not available as part of the standard wiring loom and so a common

battery ground has to be used instead. The signal itself is supplied through a screened

single cable which is grounded at the ECU end, rather than the twisted pair cable

grounded to the sensor body and again at the signal conditioning end.

Figure 5.24:
Lambda sensor interface amplifier typical application circuit (National-Semiconductor,
2001)

5.6.5 Knock Detection Circuitry

Combustion knock is a phenomenon which occurs when freshly induced mixture

pre-ignites in spontaneous combustion before being reached by the expanding flame

front. It often produces a characteristic audible knocking or pinging noise caused by

local pressure increases which is how it has become known as knock. Shock waves with

velocities in excess of 2000 m/s can occur (compared to 30 m/s for normal combustion)

181

(Steinbrenner et al., 1994) which can lead to mechanical damage and therefore knock is

to be avoided.

Optimum spark timing is knock-limited for much of an SI engine’s operating range.

Historically conservative ignition timing was used to prevent knock, allowing for worse

case conditions and factors related to engine ageing such as carbon buildup (which

produces a slight increase in compression ratio and the creation of local hot-spots) that

can reduce knock margins. Modern engines (and older turbocharged engines) employ a

knock detection system that allows a near-to-optimum timing at all times. A piezo sensor

is used to detect structure borne acoustic noise generated by knock and is usually

measured on either the cylinder block or cylinder head. The optimum number and

location of sensors is somewhat engine dependent. The general rule is that if it is desired

to determine which cylinder caused the last knock event then a single sensor is needed

for four cylinder engines but at least two are needed for V configuration engines due to

mechanical separation and eight cylinder (and over) engines which also need two or

more due to over-lapping combustion timing regardless of whether they are in an in-line

or V configuration. By continuously running an engine on the verge of knock, the best

efficiency is maintained in the presence of varying fuel properties (grade and quality)

and other influences such as mixture and engine temperature variations. For example,

engines are more prone to knock when they are fully warmed up (to their designed

normal operating temperature) or are hot. When a hot engine (due to prolonged load

conditions such as towing or hard acceleration) is combined with a hot weather day then

there may be a propensity for knock to occur. Using knock detection, knock can be

avoided under these adverse conditions without compromising efficiency and

performance during more favourable conditions, which may exist for the majority of the

time.

Bosch produce a knock sensor signal conditioning ASIC that is likely to have been used

in their Motronic range of OEM ECUs.

182

Figure 5.25: Bosch CC195 knock signal conditioner internal schematic

Figure 5.26: Bosch CC195 knock signal conditioner internal schematic

A US patent filed by a General Motors (Hernandez, 2007) describes how the

functionality of ASIC based knock detection can be performed by a digital signal

processor (DSP) microprocessor. Freescale have integrated features into the MPC5500

family of microprocessors (which have now superseded the MPC500 series) to help

reduce the need for an external signal conditioning IC (Freescale, 2007), such as the

CC195. There is a differential interface to an on-chip ADC. The ADC can sample at

800 kHz so that it has sufficient bandwidth to sample from one or more knock sensors at

an equivalent rate of 150 - 200 kHz and still have time to sample the other analogue

183

inputs of the system. The time processor unit (TPU) can be setup to automatically start

and stop (gate) the ADC to acquire samples at engine crankshaft angle intervals at which

knock is likely to occur. There is also a memory controller which can autonomously

move the ADC results into RAM and sort the data from different sensors into different

buffers. One buffer can be filled whist another is being processed by the microprocessor.

A DSP engine is included capable of 200 million multiplies per second which using

multiply-accumulate (MAC) instructions can implement a finite impulse response (FIR)

or infinite impulse response (IIR) for bandpass filtering and fast Fourier transform (FFT)

for frequency spectrum analysis. Using the microcontroller to directly acquire and

process knock signals keeps the component count down conserving board area, but more

importantly than the slight cost saving, allows greater flexibility in the knock detection

strategy over a fixed hardware design. Handling knock detection in software rather than

hardware may make more complex approaches such as that described by Borg et al.

(2005) more practically realisable to improve the detection quality over the conventional

technique which uses bandpass filtering combined with amplitude threshold level

measurement of the nominally 15 kHz knock signature. A university final year project by

Rajagopalan (2006) describes the use of Motorola’s ProSAK IC (which is another knock

detection ASIC), but extends the application to a software statistical characterisation

approach which lead to a US patent (Naber & Rajagopalan, 2008) being granted.

The two types of digital filter that are used for knock detection are the finite impulse

response (FIR) and the infinite impulse response (IIR), and are briefly summarised as

follows:

FIR

• Works without feedback (previous outputs)

• Inherently stable

• Requires data ahead of time so induces a time delay

• Can be designed directly from waveform data (bird song, knock signature etc)

• Design can produce many coefficients (>100 typically)

• Can be updated dynamically

• Inherently stable

• Can be made to have no phase distortion

184

IIR

• Uses feedback

• Requires only a few coefficients (typically 3 input and 3 output)

• Can be unstable (due to feedback) particularly if coefficients suffer from rounding

errors

• Can model conventional analogue filter topologies well

• Cannot be designed directly from the frequency domain, needs a trial-and-error or

brute force approach

• Cannot be updated dynamically due to iterative design method

IIR is suited to relatively simple filter requirements such as high or low pass, whereas

FIR can be used for more complicated designs. Figure 5.27 shows an example two tap

IIR band-pass filter which could be used for knock detection.

Y[n] = 0.05X[n]+1.4Y[n-1]-0.99Y[n-2]

Y[n] = a0X[n]+b1Y[n-1]+b2Y[n-2]

1

Y

z

1

z

1

1.4

-0.99

0.051

X

Figure 5.27: IIR Band-pass Simulink representation

The filter can be placed before a knock detection integrator and a threshold used to

indicate a knock condition. Figure 5.28 shows how a knock detection algorithm might be

formulated in hardware and software. The knock signal is represented by a chirp passing

through the frequency at which knock is expected with some additive white noise. The

signal is rectified before sampling, then once in the digital domain, is passed through the

IIR filter. A dead-zone is used to provide a threshold to ignore the effects of noise and

slight knock. When the magnitude of the filtered signal exceeds the threshold value, it

starts to integrate. Figure 5.29 shows the filter’s response the the chirp signal and the

output from the integrator. By setting a threshold value (of say 1) for the integrator then

knock can be deemed to have occurred.

185

Scope

Random
Number

X Y

IIR Band-pass centre 15.4kHz
for 122.5kHz sample rate

0.2

K Ts

z-1

Discrete-Time
Integrator

Dead Zone

double

Chirp Signal
Start: 10000Hz
End: 20000Hz

|u|

|u|

Noise

Figure 5.28: Knock detection example model

0 20 40 60 80 100 120 140 160 180 200
-3

-2

-1

0

1

2

3

Time [ms]

F
ilt

e
r

o
u
tp

u
t

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Time [ms]

In
te

g
ra

to
r

v
a
lu

e

Figure 5.29: Plot of filtered chirp signal and model detection output

5.6.6 Electronic Throttle Unit and Controller

The AJ-V8 engine is fitted with a Denso electronic throttle unit. The electronic throttle

enables the ECU to perform the following functions:

• Engine air flow control

• Engine idle speed control

• Vehicle cruise control

• Torque reduction for stability/traction control (in response to ABS commands)

• reverse gear torque reduction

186

• Engine power limiting

• Engine and vehicle speed limiting

• Mapping of throttle response to engine torque allowing for torque based control

and compensation for changes in vehicle altitude and other climatic conditions

• Compensation for torque loss due to catalyst light-off spark retard strategies

• Tip-in bump elimination on manual transmissions

The interested reader can refer to McKay et al. (2000) for further detail about how

electronic throttle control can be usefully employed. In earlier mechanical throttle

designs for fuel injection systems an idle air by-pass valve is used to allow fine control of

the intake air flow when the throttle is fully closed and the engine is idling. When

electronic throttles are fitted, idle control strategies can use a combination of throttle

actuation and ignition advance control to vary torque output and regulate engine idle

speed. The throttle position movement provides for a slow coarse adjustment whilst

controlling ignition advance provides a faster means to provide a finer adjustment to

sooth the idle speed. The exact proportion to which each is used will depend upon

various constraints such as requirements upon noise vibration and harshness (NVH) and

exhaust emissions. Cruise control requires an electronic throttle, but so-called

drive-by-wire also makes possible the decoupling of the accelerator pedal from the actual

throttle butterfly which is advantageous as it can be used to prevent the driver applying

very fast throttle transients leading to A/F ratio excursions which cannot be corrected

and have a detrimental effect on emissions. Also throttle response characteristics can be

programmed to alter the throttle response feel as perceived by the driver to create sports

modes, compensate for altitude torque loss, or create a driver torque-demand based

control provided the engine’s torque response is known for all conditions.

The unit is of a somewhat larger and more complicated design than those which have

been more recently used. The main distinction in the design is that it has mechanical

redundancy/limitation from a convention throttle cable whereas newer designs are

entirely electronic and have no physical connection to the vehicle’s accelerator pedal.

When the unit is unpowered the throttle plate can be moved using the accelerator input

shaft due to the spring force acting between the throttle butterfly and the input shaft

mechanical guard. When a vacuum is applied, the guard is moved and the throttle

butterfly moves to its fully open position. The throttle plate can be closed under the

action of the throttle motor. The torque required from the motor is therefore more to

close the plate than to open it. During normal driving ECU attempts to track the

accelerator position with the throttle valve to within a minimum offset distance so that

the engine’s power output is directly determined by driver demand. The time for the

throttle to fully open from the idle position is a maximum of around 120 ms, and from

187

fully open to idle a maximum of around 140 ms (Jaguar, 1996). From inspection of the

Denso ECU, observation of throttle operation and measurement of the drive signal, the

throttle plate appears to be driven in both directions from a half-bridge driver stage using

a signed anti-phase whereby a 50% PWM duty is required to hold the motor stationary.

A PWM frequency of around 240 Hz is used by the Denso controller. It is not known

why this frequency was used (seemingly low for a PWM motor drive) but it was possibly

just high enough to be filtered out from the analogue input signal filters (forming a low

end constraint) whilst being kept as low as possible to reduce EMI related problems

and/or keep switching losses low (the frequency at which they occur) allowing for a

lower slew rate also to minimise potential radio frequency noise problems (forming a

high end constraint). Using a low frequency results in the power conversion causing an

audible whine in the motor, but the noise is not of great concern as it is low in

comparison to the noise of a running engine and the vehicle occupants are insulated from

it from within the cabin. The control strategy appears to display some level of adaptivity

in the gains used as it was possible to trick the controller by sudden application or

removal of vacuum to the throttle unit which resulted in some temporary instability each

time until a short period of adjustment has elapsed (in the order of a couple of seconds).

Figure 5.30: Electronic throttle unit cross-section (Jaguar, 1996)

The throttle unit is fitted with three position sensors (Figure 5.31). There are two

potentiometers configured as separate tracks in a single unit shown in Figure 5.33, one

(dual track) for measuring the accelerator pedal position, and the other (single track) to

measure the position of the mechanical guard. The two are normally coincident, but

during cruise control the guard is moved out of the way using vacuum, so its position has

to be monitored separately to the accelerator pedal. The third sensor is a rotary dual hall

188

Figure 5.31: Simplified diagram of the electronic throttle unit (Jaguar, 1996)

effect sensor at the motor end of the electronic throttle, which measures the position of

the throttle plate shaft. Figure 5.32 is taken from a datasheet (P3-America, 2005) for

rotary hall effect sensors and shows that the characteristic is approximately linear over a

90° range which adequately covers the range of motion for a throttle butterfly. The

butterfly is servo-actuated and forms a control loop actuator during idle and under cruise

control conditions which could contribute to significant wear of a conventional

potentiometer. As hall effect sensors are non-contacting, there is no track wear.

Figure 5.32: Rotary hall effect potentiometer characteristic (P3-America, 2005)

During engine air flow control when the accelerator pedal is above idle, the ECU

positions the throttle valve in response to the inputs from the accelerator pedal position

sensor. The valve follows or leads at a minimum distance to the mechanical guard as the

guard is moved by the accelerator pedal. Thus engine power output is directly related to

driver demand.

A solenoid valve is used to apply a vacuum stored in a small reservoir tank to lift the

mechanical guard out of the way to allow full throttle actuation without driver

intervention. When cruise control is cancelled the vacuum is released and the guard

returns to the position determined by the accelerator pedal. Fail-safe measures are in

place (such as a redundant vacuum release solenoid and brake pedal switches) to ensure

189

Figure 5.33: Electronic Throttle Sensors (Jaguar, 1996)

that cruise control can always be cancelled so that the protection provided by the

mechanical guard is not defeated.

It was initially thought the throttle controller design would be design an be based around

a dsPIC which could be used both for the dual purpose of engine knock detection

(making use of the DSP instruction set for IIR or FIR band-pass filtering) and throttle

control this is separate to the main ECU processor so that the throttle position can be

independently set by the dynamometer control system and used without the main

development ECU needing to be in an operational state. This might permit the engine to

be run under dynamometer load using the original ECU off-idle. When used alongside

the development ECU, the throttle controller could be commanded directly from the

ECU via SPI for idle control then overridden or monitored remotely using a CAN

interface and a suitable protocol such as SAE J1939. However, time constrains meant

that the knock detection circuit would never be realised within the scope of this project,

so it was decided instead to reduce the throttle controller to a simpler design based upon

a 8-bit microcontroller which the author has previous experience, a PIC18F458, and

commanded through a CAN interface only, leaving SPI as a future exercise. A board was

designed and constructed to control the throttle unit. To ensure independent operation

from the ECU, the board has its own 5 V sensor output to supply derived from a

precision reference which is buffered to increased current sourcing capability sufficiently

to supply all of the throttle sensors with some reserve capacity. The board is supplied

with 5 V for the digital components and 12 V nominal battery voltage needed for the

analogue signal conditioning components and 5 V reference. Both supply inputs are

Tranzorb/TVS diode protected to help improve immunity supply over-voltage transients.

The 5V sensor supply output is also Tranzorb clamped to help protect the sensors from

over-voltage should the reference circuit fail or the sensor wiring be mis-connected to

the battery positive (in such an event the Tranzorb would likely fail short-circuit which

190

should result in a supply fuse blowing). The throttle unit has an output for each of the

two accelerator position tracks and the mechanical guard track. Each of the three tracks

are supplied from the 5 V source and the wiper voltages are fed back to the board. The

throttle position sensor (TPS) is hall effect and has two current controlled outputs which

are supplied from the same 5 V reference, but through 2.2 kW resistors (as per the original

ECU) so that the current can be measured as a voltage. None of the sensor outputs cover

the full 0-5 V span and head room is left at both ends of the range. This allows for fault

diagnostics to be performed as a reading of either 0 V or 5 V may indicate a short to

ground, short the vehicle supply, open circuit in the wiring or a faulty sensor. Wiring

diagnostics are less of a concern for a research and development environment as faults

can be investigated directly and more easily on a test bed than an unsupervised in a

vehicle. This combined with use of the relatively low precision 10-bit ADC built into the

PIC16F458 meant that an increase in effective resolution could be obtained by removing

some of the offset and scaling the signals which have no absolute calibration to obscure.

Offset voltages are generated on the board using fixed resistance potential divider

resistor pairs which are fed through unity gain voltage followers (to reduce the source

impedance) into the two ADC voltage reference pins on the PIC18F458 device.

Figure 5.34: Active input filter schematic diagram

An active 3rd order Butterworth low-pass filter in a Sallen-Key topology (Figure 5.34)

was designed to be used with each of the input signals to provide anti-aliasing, noise

reduction, and to provide a low impedance source to the ADC to minimise the effects of

signal distortion caused by the ADC sample-and-hold capacitor loading an input signal

each time a sample is taken from it. The filter consists of a 2nd order unity gain active

filter with a cutoff of around 117 Hz at -3 dB.

191

TP1 (left) TP2 (left)

TP3 (left)

Frequency
20.0 50.0 100 200 500

M
a

g
n

it
u

d
e

(d

B
)

-35.0

-25.5

-16.0

-6.50

3.00

y -3.06130E+0

x 1.17268E+2

Figure 5.35: Simulated frequency response plot for input filters used on the throttle motor
controller. The Green line shows the 1st order filter response, red the 2nd order, and
blue shows the combined 3rd order response. The cursor marks the -3dB point for the
combined filter stages.

This frequency was chosen to allow a fast throttle response without introducing too

much phase lag for control purposes whilst also keeping noise input to a minimum. The

operational amplifiers that have been used are supplied from the 12 V rail so if they were

to have no input connected at the outputs whilst powered, their outputs could potentially

float up to that 12 V rail. This would result in a low impedance connection of 12 V or

more to the 5 V maximum rated ADC input. To prevent this from happening, for each

filter circuit, a current limiting resistor was placed on the output and then a Schottky

signal diode to the 5 V supply to clamp the output to 5V. Since there was now to be a

resistor on the output, the opportunity to put a capacitor after it to form an additional 1st

order low-pass filter was taken. The 2nd order active filter was designed to have a slightly

raised frequency response close to the cut-off frequency to compensate for the additional

roll-off created by the addition of the 1st order passive filter. The result is a 3rd order

overall filter with a nearly flat frequency response and a sharp fall-off at the cut-off

frequency. Figure 5.35 shows the separate and combined simulated frequency response

of the filter sections produced using spice software called 5Spice. It was not possible to

achieve a completely flat response before roll-off using standard series resistor and

capacitor combinations, but the slope of amplitude decay and the sharpness around the

cut-off frequency is much improved over using a simple 1st order RC filter alone. The

filters are decoupled with through-hole mounting tantalum and surface mount ceramic

chip capacitors in parallel which are mounted as close as possible to the supply pins.

This combination provides both a large reservoir capacity and very low equivalent series

192

resistance (ESR) to help reduce the effects of supply variation and noise as well as

sudden loading of the filter output by the ADC sample and hold capacitor. Partial ground

and power plains (due to the 2-layer design) are used to deliver the supply to the

op-amps. Most of the ICs were chosen as the through-hole type so that they can be

socketed and removed if required (since the design is a prototype). The surface mount

passive components have been used for the filters to increase the component density

enough that the 2-layer design could be routed onto the area of a PC/104 form-factor

board.

Additionally, the board provides connection outputs for two status LEDs to be mounted

remotely if required, a PWM logic output, and a direction logic output. An open drain

output to permit low-side switching of the throttle motor relay has also been provided.

The relay switching is performed using an Infineon BSP318S MOSFET which is rated

for automotive applications and is logic level switchable, and avalanche capable (without

damage) which make it suitable for switching slightly inductive loads such as a relay.

Despite this a protection diode was also added between relay connection and the battery

supply rail. Additional protection of the gate was added in the form of an in-series

resistor (1 kW) then a resistor to ground (47 kW) to prevent gate ringing and ensure fast

turn-off (discharging of the gate capacitance). A 5 V zener diode was also connected

between the gate and ground to reduce the likelihood of gate damage due to electrostatic

discharge or gate over-voltage. A header is provided for an off-board CAN transceiver as

well as an RJ11 connector for in-circuit programming/debugging of the PIC18F458. An

I2C serial EEPROM was added to the board design to provide for non-volatile storage of

fixed or adaptive parameters such as the controller gains and the fully open/closed sensor

positions. It was decided to keep the PWM motor drive frequency the same as used by

the Denso ECU. A 4 MHz crystal was used for the PIC18F458 as this is the fastest clock

frequency that could be used to generate a 244 Hz PWM frequency limited by the

maximum divisor ratio for that device.

A Simple-H board (Figure 5.36) was selected to drive the DC throttle motor. This board

is based on a pair BTS7960B automotive ICs which consist of logic level controllable

half-bridge MOSFET-pair drivers. There is shoot-through protection by virtue of the

IC’s design. Only one switch can be enabled at a time as there is only one logic input

which toggles between either the high-side or low-side being closed depending upon its

high or low state and there is built-in dead time which is dependent upon the slew-rate,

externally programmable via a set resistor. The ICs can be paired together to form a full

H-Bridge if required. The Simple-H board bridge configuration can be set via jumpers so

that the bridge-halves can be ganged together to increase the current rating, or used

individually to form a two output full-bridge. There is also provision for supply and

mounting of a cooling fan and the on-chip load current sensing is exported to the

connector as well as the logic connections.

193

Figure 5.36: Simple-H driver board

The controller board was configure to use the Simple-H board as a half-bridge to drive

the motor in one direction only. This was chosen to minimise the development time of

the control software. The use of signed anti-phase mode could potentially cause the

throttle to slap the end of its travel in the fully closed position during the setup of the

50% PWM duty needed to hold the motor stationary. This could of course have been

mitigated by not enabling the h-bridge until a safe duty is asserted, but it dependent upon

the correct operation of the software right from the beginning of the development cycle.

By using the uni-directional half-bridge mode, a zero start-up duty results in no motor

action and the PID control influence can bought into play progressively by increasing the

gains incrementally until satisfactory performance is obtained. Half-bridge mode also

avoid the need for managing direction changes coherently such as the duty cycle

inversion that is required. Full-bridge mode has the potential to be problematic if a

oscillatory disturbance was placed on the throttle when it is being held at a constant

opening by the controller. This scenario could require rapid changes in the direction of

torque application from the motor. The situation may have be improved by the fact that

the torque needed to hold throttle plate at constant opening is biased in one direction by

the spring which is attempting to hold it against the mechanical guard. The spring force

might have been enough to mitigate the need for a motor direction change when

rejecting oscillatory disturbances, but without testing this is an unknown.

The throttle unit was removed from the engine to allow it to be bench tested and the new

controller software to be developed. The test setup can be see in Figure 5.37. The

throttle motor was powered from a pair of 6 V sealed lead acid batteries connected in

series, whilst the controller board was power from a bench PSU. A vacuum pump was

connected to the vacuum actuator to hold the mechanical guard out of the way of the

throttle motor. With the guard raised the throttle plate is decoupled from the accelerator

pedal lever so that only the motor can move it.

194

Figure 5.37: Photograph of the throttle unit test setup including the controller board, CAN
interface, vacuum pump, and batteries

The control software was written in Microchip C for the 18 series PIC and is structured

in a semi-time triggered manner. A fully time-triggered system would use only a single

periodic timer interrupt to control program flow through a loop and all other resources

would be polled. For this configuration a timer is used to in this way, but also a separate

CAN interrupt is used and there is also main program loop to perform low priority

non-control related asynchronous tasks like processing CAN messages. Timer 0 is used

for the high priority interrupt and the low priority interrupt is used for servicing the CAN

buffers. Timer 0 is used to action the main control loop and is set to 16-bit mode with a

1:1 prescale. An interrupt occurs whenever the timer overflows and the timer is

incremented by each processor clock cycle. The timer is set to give around a 814 Hz

interrupt rate by writing to the timer register at the end of each ISR. The value written is

compensated with the value currently in the timer register which is the time the ISR has

taken to execute in timer ticks, since it is has wrapped around to zero when the ISR is

initially triggered and continues to count up thereafter. This technique ensures the

interrupts are exactly periodic and occur independently of how long each ISR takes to

reach it’s end through varying code paths. The ADC is software triggered to sample

from one of five channels during the interrupt service routine (ISR) and the channel

195

number is incremented each time this ISR is run. The ISR does not wait for the ADC

conversion to take place, but instead collects the result the next time it is run before

initiating the next conversion. When four samples have been taken from each channel,

after twenty times through the ISR, the mean sample value is calculated for each channel

and a PID routine is run to update the PWM output. This gives a PWM update rate of six

PWM periods corresponding to 24.6 ms or a 41 Hz rate. The main program loop (within

the C main() entry point) is used to process incoming CAN messages as can be

preempted by both the timer ISR and the CAN ISR, except where data is transferred

atomically, as interrupts are briefly disabled. The controller was setup to receive throttle

demand positions via CAN messages and through the use of the accelerator pedal lever.

Whichever of the two demand the widest opening takes precedence. CAN messaging

was setup for testing to be protocol-less, accepting any identifier and using only the first

data byte as the demanded position, ignoring subsequent data bytes if present in the

message. For the purposes of collecting transient data, an area of RAM was set aside in

the linker script for data storage. Due to the limited RAM available on this low-cost

microcontroller, there was only sufficient space to store in the order of a few seconds of

data. Once the RAM region was full, the data would then be automatically output over

CAN where it could be logged on a host PC.

With the motor unpowered the throttle plate opens fully under the action of a spring. The

main issue with using the half-bridge mode is that the fastest opening time response is

determined by the spring. Figure 5.38 shows the throttle plate opening response from

fully open to fully closed. The controller saturates to zero output as the motor is unable

to drive the plate open in this configuration. It can be seen to take around 2 seconds to

open under the action of the spring with a rate of opening of around 60° per second for

much of the range. This time would be unacceptable to the driver of a car and severely

affect drivability, however for use with a dynamometer controller and for idle control it is

adequate. The dynamometer controller will only be required to manipulate the position

by small increments to obtain closed loop engine speed/torque control and can follow a

relatively slow trajectory to arrive in the vicinity of the set-point. At idle the throttle

plate is close to being fully closed where the spring force is at its highest and therefore a

reasonable response to small demand changes should be obtainable.

196

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

60

70

80

90

Time [seconds]

T
h
ro

tt
le

 A
n
g
le

 [
d
e
g
re

e
s
]

Figure 5.38: Throttle plate opening under spring action alone

A constant motor duty offset was used to overcome the spring force needed to hold the

throttle plate stationary. This was found to reduce the reliance upon the integrator term

of the PID controller to act to hold the plate when the position error is zero, and so acts

as a simple feed-forward constant term. The effect is that when the throttle is opening

and the demand position is approached the motor starts to act before the sign of the error

has changed which reduces overshoot. Ideally this offset duty would be a function of the

either a predetermined function of spring force (which doesn’t appear to conform to

Hooke’s law due to the opposing action of different springs in the system) or be learnt

adaptively. For simplicity (and therefore expediency) a constant value was used an found

to be adequate. No velocity trajectory control was used, but the maximum velocity was

constrained to an upper limit minimise overshoot. Figure 5.39 shows the response to a

step changes in position demand issued over CAN. The test was repeated with and

without velocity constraining to show the severity of overshoot occurring in the

unconstrained case caused by the throttle bouncing against the torsional force of the

spring as the control action is withdrawn past the set-point. The throttle position returns

toward the set-point at a slightly faster rate than when opening under the free action of

the spring due to this momentum bounce effect. Constraining the velocity removes the

overshoot whilst reaching the set-point in the same time as the overshoot return.

197

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
35

40

45

50

55

60

65

70

Time [seconds]

T
h
ro

tt
le

 A
n
g
le

 [
d
e
g
re

e
s
]

Unconstrained Velocity

Constrained Velocity

Figure 5.39: Throttle controller transients in response to CAN demanded step changes

Figure 5.40 shows the system’s response to a brisk opening and closing of the pedal lever

by hand. The controller achieves reasonable tracking performance for most of the range,

but struggles close to wide-open-throttle due to its reliance on the spring force. The

controller constrains the demand position close to fully open and closed so that the

motor is not powered against the end of the mechanism’s travel which could result in

either an impact if it is already moving, or excessive current being drawn if stationary,

but the demand is increased beyond the end of travel.

198

0 0.5 1 1.5 2 2.5 3 3.5 4

0

10

20

30

40

50

60

70

80

90

Time [seconds]

T
h
ro

tt
le

 O
p
e
n
in

g
 A

n
g
le

 [
D

e
g
re

e
s
]

Pedal Position

Throttle Position

Figure 5.40: Throttle tracking of accelerator pedal lever demand position

5.6.7 Temperature Measurement

The are two temperature sensors associated with the engine which are both resistive

thermal devices (RTD). The engine coolant temperature (ECT) sensor which is a

negative temperature coefficient (NTC) thermistor and mass air flow sensor (MAFS) unit

which has an integrated NTC thermistor to measure the intake air temperature. Figure

5.41 shows the characteristic for a similar NTC thermistor made by Bosch for

automotive applications which cover the coolant temperature range of -30 to +120°C.

Figure 5.41: Typical automotive NTC thermistor characteristic

199

The temperature is determined by forming a potential divider with the thermistor and

another fixed value resistor. The potential divider is supplied from a constant voltage

source (usually 5 V) and the voltage drop across the fixed resistor is measured as the

current varies with temperature. The fixed value resistor is chosen to produce a

measurable voltage over the required temperature range. The thermistor characteristic

stored within the ECU was interrogated by connecting fixed value resistors in place of

the thermistor and recording the voltages and corresponding temperatures reported by

the ECU using the Denso software. It was established that a 2K7 resistor has been used

in series with the thermistor to produce a measurable voltage in the 0-5 V ADC range.

The values are quantised to the 10-bit ADC resolution.

Extended Steinhart-Hart equation:

1
T

= A+B ln(R)+C ln(R)2 +D ln(R)3

A 1.9131×10−3

B 1.6683×10−5

C 3.1637×10−5

D −1.1696×10−6

Table 5.1: Steinhart-Hart curve fitted coefficients for ECU NTC characteristic

Thermistor Resistance against Temperature from Reported by ECU

0

5000

10000

15000

20000

25000

30000

35000

40000

-40 -20 0 20 40 60 80 100 120

Temperature [Degrees Celcius]

R
e

s
is

ta
n

c
e

 [
O

h
m

s
]

Steinhart-Hart fit

ECU values

Figure 5.42: NTC thermistor characteristic measured from the ECU

200

5.6.8 Intake Air Mass Flow Meter

There are two methods commonly used to detect the engine load, or the mass of air

which has entered the cylinder so that the corresponding amount of fuel can be injected.

One method is to measure the intake manifold pressure, the other is to measure the mass

flow rate of the air moving through the intake system using either a volumetric air flow

meter or a mass air flow meter. The AJ-V8 is fitted with a hot-wire mass airflow sensor

(MAFS).

ECU Reported Intake Air Mass Flow Rate

y = 4.2638x
3
 - 4.9801x

2
 + 2.8184x

0

50

100

150

200

250

300

350

400

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

Flow Meter Output [Volts]

M
a

s
s

 F
L

o
w

 R
a

te
 [

g
/s

e
c

o
n

d
]

ECU values

3rd Order Polynomial Fit

Figure 5.43: MAFS characteristic measured from the ECU

5.6.9 Establishing the Ignition, Fuelling Sequence and Base Calibration

Jaguar (1996) provides some limited information about the ignition firing sequence for

the AJ-V8 engine, but nothing about the absolute meaning of the flywheel and camshaft

datums other than their existence and that they are used by the engine management

system to determine the engine’s angular position and phase. The firing order is

1A,1B,4A,2A,2B,3A,3B,4B where A and B signify the left and right cylinder banks

respectively when looking at the engine from the front and the cylinders of each bank are

numbered 1 to 4 from front to back. This firing order is far less intuitive than a more

conventionally understood four cylinder in-line engine until the geometry of the V8 is

considered. The AJ-V8 engine has a cross-plane crank which is conventional for modern

V8 engines intended for road vehicles as it has much improved mechanical balancing

characteristic to the alternative flat-plane design (which is more commonly used for race

engines as it incurs a weight saving by not requiring large crankshaft balance weights).

201

The flat-plane crankshaft has its crank pins aligned to the same plane so that there is

either 0 or 180° offset between them as in a conventional four cylinder in-line engine, the

difference being that each pin is shared by two connection rods so that is displaces eight

rather than four pistons. A V8 cross-plane engine has its crank pins aligned to two planes

that are 90° apart. As each pin is shared by two pistons, this places one of the four pins at

each of the 12, 3, 6, and 9 o’clock positions when the crank shaft is viewed from one

end. When fitted to a 90° V bank angle engine such as the AJ-V8, this places two pistons

(connected to different crank pins) simultaneously at TDC every 90° of crank shaft

rotation. An unavoidable drawback with the cross-plane design is that it is not possible

to avoid at least one pair adjacent cylinder firing consecutively at some point in the

sequence (3B and 4B for the AJ-V8) and this may lead to uneven heat distribution that

can result in one or two cylinders being hotter than the others.

Since no information about the relative phase of the camshaft key pulse to the flywheel

missing tooth was available, or either the missing tooth and the camshaft key to the

absolution position of any piston in its cycle, some investigation was required. It is

essentially a mechanical relationship which can be established by inspection of the

design, for example by looking at the camshaft lobe positions, but it was desirable not to

have to dismantle the engine if it could be determined by other means. The TDC position

of the piston in cylinder 1B was previously determined relative to a crankshaft mounted

incremental encoder. The position of the first tooth after the missing tooth gap could then

be found relative to an absolute angle of crankshaft rotation by reading the angle

between TDC of cylinder 1B to the position where the first flywheel tooth after the

missing tooth gap is aligned with flywheel sensor. The alignment was found by turning

the crankshaft by hand and using an inspection hole present in the under side of the

engine casing to feel for the missing tooth in the timing ring on the inward side of the

flywheel. The sensor was then removed to allow the first tooth after the missing tooth

gap to be centred in the orifice in which the sensor is mounted.

Once the crank angle to flywheel datum relationship had been established, the engine

camshaft phase needed to be determined. In a wasted spark ignition system, the phase

can be neglected as the spark energy is naturally directed to the cylinder spark plug

which has the lowest spark gap impedance. This is the cylinder under compression (the

one with compressed wet vapour). However, with a plug-on-coil system (as fitted to the

AJ-V8), the engine’s phase needs to be known so that the correct plug is triggered at the

correct time in the engine cycle. For this to be known, two pieces of information are

required. The first is the (crankshaft) angle at which the camshaft key pulse occurs, and

the second is the significance of the key pulse for a particular cylinder, whether or not

that cylinder is in its compression or exhaust phase. To determine the camshaft key pulse

position relative to the flywheel pulse sequence, the engine needed to be run at a

relatively constant speed to allow an oscilloscope to trigger consistently from the

202

flywheel pulse train. This was achieved by removing all eight spark plugs and motoring

the engine with the starter motor to achieve a steady pulse train. Figure 5.44 shows the

resulting sensor output and the LM1815 conditioned pulses from both the flywheel and

camshaft sensors. The first visible flywheel pulse is the first tooth after the missing tooth

gap, and it can be clearly seen that the camshaft pulse occurs almost coincident with the

sixth flywheel pulse.

Figure 5.44: Camshaft to crankshaft phase shown from dual LM1815 outputs. CH1
from is the flywheel sensor and CH3 the zero crossing detection pulse, CH2 is from the
camshaft sensor and CH4 shows the corresponding detection pulse.

The camshaft key position relative to the engine phase was then determined by

connecting the original ECU to the engine and running the engine and searching for a

cylinder who’s ignition trigger pulse from the ECU was located temporally near to the

camshaft key pulse. Since it had already been determined that cylinders 4B and 2A are at

TDC at the midpoint between flywheel tooth 4 and 5, and that the camshaft key is in the

vicinity of tooth 6, then the search was reduced to the ignition point of these two

cylinders. The exact ignition point is unimportant and will vary under control, but its

proximity to a particular cylinder’s TDC unambiguously reveals the engine’s phase.

Figure 5.45 shows the occurrence of camshaft key pulse relative to the ignition trigger

logic pulse output from the ECU for cylinder 4A, that confirms the key pulse signifies

the compression phase for cylinder 4A. With this information (combined with a

knowledge of the firing order) the firing point of each cylinder can be expressed relative

to flywheel and camshaft pulses and so the TPU can be configured to fire each spark plug

at an absolute angle and in the correct engine cycle phase.

203

Figure 5.45: Camshaft key pulse to ignition phase. CH1 is the injector voltage, CH2 is
the ignition trigger pulse for cylinder 4A from the ECU, and CH3 is from the camshaft
sensor.

204

Chapter 6. Conclusions

This work has been undertaken to establish if the output torque of a spark ignition IC

engine can be beneficially used to optimise it’s performance using a blackbox model

approach coupled with online system identification or other adaptive compensation

technique. To achieve this aim a large amount of time and effort was placed on providing

the supporting architecture upon which the necessary identification work can be

performed. This chapter summarises the contributions and achievements, and suggests

how they can provide a useful platform for future work in this area.

6.1 Conclusions

The aim of this project was to establish if a directly measured or inferred engine torque

signal could be used to optimise the operation of an SI engine, starting from either no

initial calibration or a suboptimal calibration, in the face of parameter drift due to

varying steady-state conditions such as environmental changes, ageing effects, or

changing fuel composition. The intention was to consider the engine essentially as a

black box upon which there would be an initial structure detection process of either a

forward or direct inverse plant model. If a forward model was used, then this could then

be placed into a non-linear model predictive controller or other model based control

scheme. Alternatively, a direct inverse model could be used to compensate a

conventional proportional control scheme in place of the mapped look-up calibration

tables that are currently commonplace for engine control. An existing experimental

facility which comprised a Jaguar AJ-V8 SI engine coupled to a Heenan-Froude

Dynamatic GVAL (Mk 1) dynamometer was adopted for this work, in the expectation

that it would provide a flexible and reconfigurable test-bed on which the engine

controller could be implemented and evaluated. In the event this decision proved to be

problematic insomuch that it required considerable effort to re-commission the engine,

after which it was established that the eddy-current brake controller was no longer

serviceable and required a complete redesign; which subsequently proved to be a major

distraction from the original aims of the work. Nevertheless, a flexible distributed engine

test system consisting of a combined user interface and cylinder pressure monitoring

system, a dynamometer controller, and a modular engine controller which is close

coupled to an embedded PC has been created. The considerable challenges involved in

developing this system, have meant that the key objective of this project has not been

met, i.e. establishing a torque feedback based engine control scheme. Notwithstanding

the departure from the projects initial aims, this has led onto some interesting aspects of

eddy-current dynamometer control, in particular current control, which is an area that

205

can be assumed to be increasingly left to a commercial domain (as indicated by the lack

of recent published work) both in terms of an understanding of the control issues and in

being able to fund the purchase of the necessary hardware.

6.1.1 Dynamometer Control

This work has encountered interesting issues of dynamometer control, a machine that is

still in widespread use, and it is suggested that by putting it into the more contemporary

context of embedded digital control, it may encourage future work in this area, making

the domain of engine testing in general more accessible to university based research. The

dynamic effects of eddy-current damping and magnetic saturation were found to perturb

current control loop considerably and obscure the current to flux (and hence torque)

relationship. A possible outcome from using a model based current control approach is

that the need for a high voltage supply (above that of 240V mains) for improved time

response to demand input changes is reduced as a more optimal response time can be

achieved using the simple, robust and off-the-shelf available hardware consisting of a

phase angle controlled thyristor bridge. Phase angle control of dynamometer has

received some criticism in other published work due to the slow response time caused by

switching opportunities only occurring once every mains half cycle. However,

linearisation of the thyristor trigger angle to output voltage relationship in software was

found to give improved performance and when combined with a model based scheme the

need for a faster response to cancel the dynamic effects of eddy-current damping

diminishes. A model predicting the current response at stand-still using a fictitious

damper winding was found to be valid up to the point where significant saturation starts

to occur. This model required parameter fitting to each region of operation, and more

work is needed to quantify the change in parameter values over the operating range then

assess the quality and repeatability of a piecewise linear or non-linear model which

covers the entire envelope of operation for control. An XScale processor was used to

implement a combined controller and graphical user interface for the dynamometer. The

performance of this device was found to be inadequate to provide a responsive and

usable graphical interface, but performed well as a controller with a simpler terminal

user interface. An embedded PC board became available during the work and this was

used to provide a graphical operator interface. Recent developments in ARM core

processors for hand-held devices may mean that once these processors have become

available in the form of embedded processor cards for industrial applications, there may

be an improved prospect for creating a combined controller and graphical operator

environment run on the same device.

206

6.1.2 Engine Controller

An open architecture software and hardware engine controller and independent throttle

controller aimed at research use has been created. The novelty of this system is that it

allows close co-operation between the low-level engine control application running on a

microcontroller and a higher performance attached processor device such as an

embedded PC. This approach will provide higher bandwidth than a CAN Calibration

Protocol connection, and makes real-time data transfer possible without degrading the

control determinism. There is provision for the dynamometer controller to take control

of the throttle position to remove the need for a separate throttle cable actuator for closed

loop torque/speed control. The hardware layout is flexible since it is modular and

scalable so that there is scope for adaptation for use with different engines by

adding/replacing individual module boards. The boards can be arranged on a panel for

initial setup work then re-configured into a PC/104 stack if space is restricted or easier

portability is required. The Motorola TPU microcode functions for engine control,

particularly the PMM function for crank angle detection, did not work effectively, and

unfortunately because of severe time constraints towards the end of the project there was

insufficient time remaining to adopt an alternative approach. An optical cylinder

pressure transducer and half-degree crank angle synchronous sampling system with

real-time graphical rendering of pressure traces was developed to assist the validation of

the ignition timing on-line optimisation process so that it can be demonstrated when a

controller is able to maintain the peak cylinder pressure position close to that which

maximum brake torque is achieved. The pressure monitoring system also allows an

independent means to monitor of the onset of combustion knock which may be

encountered if a torque feedback learning algorithm is allowed to run free since under

certain operating conditions the maximum brake torque is not achievable without the

onset of knock and is therefore said to be knock limited. There is also the possibility to

use the indicated cylinder pressure as a means to infer output torque and so it could be

used in place of a torque sensor as part of the engine control loop.

6.2 Recommendations for Future Work

From the work on dynamometer control there are issues which remain that offer the

opportunity for further investigation. The dynamometer has voltage-current,

current-flux, and flux-torque relationships which change both transiently and in

steady-state with both the speed and torque operating points. To control the output

torque in a timely fashion using applied voltage, it may be sufficient to manipulate the

magnetic flux level using an estimate determined from measured current and a

current-flux model. To establish the current-flux and flux-torque relationships for a range

207

of operating points a high power servo-motor could be used and magnetometers (or other

flux measuring device) placed onto one the rotor’s teeth to determine air-gap flux. A

telemetry system might be required to acquire the data from the rotating magnetometers

if fitted to the rotor and the instrumentation would require sealing from exposure to the

cooling water. If a high-powered servo motor was used, then this could be used to drive

the dynamometer for characterisation. A servo-motor would give reduced torque and

vibration noise over that of an IC engine and provides an independent means to allow

data to be collected from a range of operating points, removing the challenge of

controlling the dynamometer to reach each operating point whilst at the same time

attempting to excite as required for the characterisation or identification process. More

work is required to investigate suitable signal conditioning for the torque signal that

provides the least phase shift or time delay in the measurement despite the large

amplitude wide-band noise created by vibration from the engine and coupling to the

dynamometer. A suitably designed filter could improve the phase-gain margins of the

system and give improved transient disturbance rejection where torque is used for

control feedback. Further improvements in transient response could be achieve by

considering the torsional stiffness of the coupling between the engine and dynamometer

as well as the separate intertias of the two so that engine torque can be estimated from

the measured dynamometer torque. These two torques are equal under steady-state

conditions but differ momentarily during speed transients. Initially, an XScale based

Arcom Viper board was used to provide both real-time control of the dynamometer and

an interactive graphical user interface. The resources of this platform were found to be

insufficient to perform the rendering of the interface with an appropriate level of

responsiveness. During the course of this project, newer processors have emerged which

use ARMv7 Cortex architectures (such as OMAP) which offer greatly increased

performance over the XScale based on ARMv5 since they allow faster clock speeds, and

can have multiple cores with floating point and DSP instructions. This now makes it

more feasible to construct the combined embedded user interface and controller which

was oringinally attempted. If this approach was successful, then further investigation

into the use of real-time Linux and the interaction between the controller code and the

user interface code without loss of determinism would be worthwhile. To complete the

engine controller which has been constructed the issue of TPU microcode for crank

angle measurement needs to be resolved. Assuming that commercially available

microcode would not be acquired due to high cost, the challenge that remains is to write

custom microcode equivalent to the Motorola PMM and PSP functions, or investigate

new and improved eTPU microcode functions from Freescale which exist for more

recent microcontrollers such as the MPC55xx series which has superseded the older

Motorola MPC5xx series. The change to a new eTPU processor platform would provide

greater longevity and allow use of a microcode compiler that has a C like programming

interface. Pseudo serial device drivers were written as a data transfer mechanism through

208

a PCI bus connecting the PATI board and an embedded PC. Although this mechanism

works, it became apparent that a CAN driver, upon which the CAN Calibration Protocol

(CCP) could be implemented, would be a better solution both for the underlying

hardware and to make use of the existing CCP protocol that can support data acquisition,

observing variables and modifying constants (calibratibles) on a running system. Both

eCos and Linux have CAN device driver APIs which could be used to reduce the

development effort of buffering data and delivering it to the applications running on both

sides of the bus. The use of DMA could also be investigated as an alternative for

transfers of large blocks of data if that feature was needed for a particular purpose. The

ECU hardware was tested with the AJ-V8 engine, but could be generalised for use with

other engines. One way to achieve this is through the use of programmable

peak-and-hold injector current to allow different fuel injectors to be used. This could be

done using a TPU channel configured as a PWM output which would then be fed

through a filter into a comparator to set the reference peak injector current which in turn

triggers a TPU input capture channel to adjust the PWM signal for the hold current. This

could be done in a host service routine using existing TPU functions, or autonomously if

custom microcode was written. It would also allow the peak and hold currents to be

separately programmable whereas the injector drive IC used for this project only

supports a hold current which is a fixed ratio of the peak current. There is also scope to

add TPU triggered analogue sampling, at fixed crank angle intervals, for example.

209

References

Åkesson, H., & Sällberg, B. (2003). Identification and Analysis of Nonlinear Systems.

Masters, Department of Telecommunication and Signal Processing, Blekinge Institute

of Technology.

Analog-Devices (1999a). AD594/AD595 monolithic thermocouple amplifiers with cold

junction compensation. Electronic PDF datasheet.

Analog-Devices (1999b). AD623 single supply, rail-to-rail, low cost instrumentation

amplifier. Electonic PDF. Rev. C.

Analog-Devices (2000). AMP04 precision single supply instrumentation amplifier. Rev.

B.

Andersson, I., & Eriksson, L. (2001). Ion sensing for combustion stability control of a

spark ignited direct injected engine. (pp. 609–614).

Aquino, C. (1981). Transient A/F control characteristics of the 5 liter central fuel

injection engine. SAE Journal Transactions, (pp. 1819–1833).

Arsie, I., Pianese, C., & Sorrentino, M. (2004). Nonlinear recurrent neural networks for

air fuel ratio control in SI engines. SAE Journal Special Publication, SP-1822,

359–368.

Bai, L., & Coca, D. (2008). Nonlinear predictive control based on narmax models. In

Proc. 11th International Conference on Optimization of Electrical and Electronic

Equipment OPTIM 2008, (pp. 3–10).

Ball, J. K., Bowe, M. J., Stone, C. R., & Mcfadden, P. D. (2000). Torque estimation and

misfire detection using block angular acceleration. Modeling of SI Engines (SP-1511),

(2000-01-0560).

Bannatyne, R. (2002). Microcontrollers for the automobile. Web page article. Micro

Control Journal.

URL http://www.mcjournal.com/articles/arc105/arc105.htm

Barreto, G., & Araujo, A. (2004). Identification and control of dynamical systems using

the self-organizing map. Neural Networks, IEEE Transactions on, 15(5), 1244 – 1259.

210

http://www.mcjournal.com/articles/arc105/arc105.htm

Bea (2004). ATI product overview datasheet. Electronic PDF datasheet.

Beaumont, A., Beauchamp, S., & Noble, A. (1993). Air-fuel ratio control technology for

ultra-low emissions vehicles. In ISATA Proceedings from the 26th international

symposium on automotive technology and automation 1993, 93EN032, (pp. 399–406).

Beaumont, A., Noble, A., & Mercer, A. (1988). Predictive control of transient engine

testbeds. In International Conference on Control.

Béchennec, J.-L., Briday, M., Faucou, S., & Trinquet, Y. (2006). Trampoline an open

source implementation of the OSEK/VDX RTOS specification. In Proc. IEEE Conf.

Emerging Technologies and Factory Automation ETFA ’06, (pp. 62–69).

Billings, S., Chen, S., & Backhouse, R. (1989). The identification of linear and

non-linear models of a turbocharged automotive diesel engine. Mechanical Systems

and Signal Processing, 3(2), 123 – 142.

URL

http://www.sciencedirect.com/science/article/pii/0888327089900125

Billings, S., Fadzil, M. B., Sulley, J. L., & Johnson, P. M. (1988). Identification of a

non-linear difference equation model of an industrial diesel generator. Mechanical

Systems and Signal Processing, 2(1), 59–76.

Borg, J., Cheok, K., Saikalis, G., & Oho, S. (2005). Wavelet-based knock detection with

fuzzy logic. In Proc. CIMSA Computational Intelligence for Measurement Systems

and Applications 2005 IEEE International Conference on, (pp. 26–31).

Box, G. E. P., & Draper, N. R. (1987). Empirical Model Building and Response

Surfaces. John Wiley & Sons.

Brunt, M. F. J., Huang, C. Q., Rai, H. S., & Cole, A. C. (2000). An improved approach

to saving cylinder pressure data from steady-state dynamometer. SI Combustion,

SP-1517.

Camacho, E., & Bordons, C. (2003). Model Predictive Control. Springer-Verlag.

Chamaillard, Y., & Perrier, C. (2001). Air-fuel ratio control by fuzzy logic, preliminary

investigation. In G. Kiencke, U. Gissinger (Ed.) Advances in Automotive Control

2001. Proceedings of the 3rd IFAC Workshop, (pp. 211–216). Pergamon. Accesion no:

00824366.

Chang, C.-F., Fekete, N., Amstuz, A., & Powell, D. (1995). Air-fuel ratio control in

spark-ignition engines using estimation theory. IEEE Transactions on Control Systems

Technology, 3(1), 22–31.

211

http://www.sciencedirect.com/science/article/pii/0888327089900125

Chang, C.-F., Fekete, N., & Powell, D. (1993). Engine air-fuel ratio control using an

event-based observer. SAE Journal Transactions, 102(3), 1002–1017.

Chen, W.-H., Ballance, D., & O’Reilly, J. (2000). Model predictive control of nonlinear

systems: computational burden and stability. Control Theory and Applications, IEE

Proceedings-, 147(4), 387 – 394.

Chen, Y., & Carpenter, R. (2010). Use of feedback control to implement ECU system

function testing. SAE Journal Transactions, (2010-01-0663).

Chevalier, A., & Hendricks, E. (2000). Predicting the port air mass flow of si engines in

air/fuel ratio control applications. SAE Journal Transactions, 109(3), 183–209.

Chevalier, A., MÃ¼ller, M., & Hendricks, E. (2000). On the validity of mean value

engine models during transient operation. SAE Journal Transactions, 109(3),

1571–1592.

Chikkula, Y., Lee, J., & Ogunnaike, B. (1995). Robust model predictive control of

nonlinear systems using input-output models. American Control Conference, 1995.

Proceedings of the, 3, 2205 – 2209.

Cho, D., & Hedrick, J. K. (1988). A nonlinear controller design method for fuel-injected

automotive engines. Transactions of the ASME; Journal of Gas Turbines and Power,

110, 313–320.

Cho, D.-I. D., & Oh, H.-K. (1993). Variable structure control method for fuel-injected

systems. Transactions of the ASME; Journal of Dynamic Systems, Measurement, and

Control, 115, 475–481.

Choi, S. B., & Hedrick, J. K. (1998). An observer-based controller design method for

improving air/fuel characteristics of spark ignition engines. IEEE Transactions on

Control Systems Technology, 6(3), 325–334.

Clarke, D., Mohtadi, C., & Tuffs, P. (1987a). Generalized predictive control–part i. the

basic algorithm. Automatica, 23(2), 137–148.

URL

http://www.sciencedirect.com/science/article/pii/0005109887900872

Clarke, D., Mohtadi, C., & Tuffs, P. (1987b). Generalized predictive control–part ii

extensions and interpretations. Automatica, 23(2), 149–160.

URL

http://www.sciencedirect.com/science/article/pii/0005109887900884

csewards (2004). Agilent HCTL-2032 quadrature decoder/counter interface ICs

datasheet. Electronic PDF datasheet.

212

http://www.sciencedirect.com/science/article/pii/0005109887900872
http://www.sciencedirect.com/science/article/pii/0005109887900884

Darley, S. (1997a). Period measurement with missing transition detection (PMM) TPU

function. Electronic PDF.

Darley, S. (1997b). Position-synchronized pulse generator (PSP) TPU function.

Electronic PDF.

Davies, E. J. (1963). An experimental and theoretical study of eddy-current couplings

and brakes. 82(67), 401–419.

Davies, E. J. (1966). General theory of eddy-current couplings and brakes. Proceedings

of the Institution of Electrical Engineers, 113(5), 825–837.

Demerdash, N., & Nehl, T. (1979). Use of numerical analysis of nonlinear eddy current

problems by finite elements in the determination of parameters of electrical machines

with solid iron rotors. IEEE Transactions on Magnetics, 15(6), 1482–1484.

Dobner, D. J. (1980). A mathematical engine model for development of dynamic engine

control. SAE Journal Transactions, 89(1), 373–381.

Dobner, D. J., & Fruechte, R. D. (1983). An engine model for dynamic engine control

development. In Proc. American Control Conf , (pp. 73–78).

Dorf, R. C., & Bishop, R. H. (2001). Modern Control Systems. Prentice Hall.

Dutton, K., Thompson, S., & Barraclough, B. (1998). The Art of Control Engineering.

Addison Wesley Longman.

Dyson, A., & Bannoura, M. (1999). TPU Microcoding for Beginners. AMT Publishing,

Austin, Texas, USA, 3 ed.

URL http://www.amtpublishing.com

Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The Annals of

Statistics, 7(1), 1–26. The 1977 Rietz Lecture.

Eriksson, L. (1999). Spark Advance Modeling and Control. Ph.D. thesis, Division of

Vehicular Systems, Department of Electrical Engineering, Linköping University.

Fairchild-Semiconductor (2005). ISL9V2540S3ST EcoSPARK N-Channel Ignition

IGBT. Electronic PDF.

Fegley, K. A. (1956). Determining the parameters of a short-circuited winding that

represents eddy-current paths. Part III Power Apparatus and Systems Transactions of

the American Institute of Electrical Engineers, 75(3), 143–147.

Fleming, W. J. (1982). Automotive torque measurement: A summary of seven different

methods. 31(3), 117–124.

213

http://www.amtpublishing.com

Fleming, W. J. (1989). Magnetostrictive torque sensor performance - nonlinear analysis.

IEEE Transactions on Vehicular Technology, 38(3), 159–167. TY - JOUR.

Foster, N., & Schwab, M. (2000). Real-time 32-bit microcontroller with OSEK/VDX

operating system support. SAE Journal Transactions, 109(3), 1470–1476.

Freescale (1996). TPU Time Processor Unit Reference Manual (including the TPU2).

Freescale Semiconductor Inc.

Freescale (2007). Knock detection: Combining efficient architecture and advanced

peripherals for quality solutions. Email newsletter.

Gan, Q., & Rosales, E. (2003). CMAC with linear functional weights. In Proceedings of

the 13th IFAC Symposium on System Identification (SYSID ’03), (pp. 1838–1843).

Rotterdam, The Netherlands: Elsevier.

Gassenfeit, E., & Powell, D. (1989). Algorithms for air-fuel ratio estimation using

internal combustion engine cylinder pressure. SAE Journal Transactions, 98(3),

351–356.

Gerasimov, D. N., Javaherian, H., & Nikiforov, V. O. (2011). Data driven inverse-model

control of si engines. In Proc. American Control Conf. (ACC), (pp. 426–431).

Gilkey, J., & Powell, D. (1985). Fuel-air ratio determination from cylinder pressure time

histories. Transactions of the ASME; Journal of Dynamic Systems, Measurement, and

Control, 107.

Glass, J. W., & Franchek, M. A. (1999). NARMAX modelling and robust control of

internal combustion engines. International Journal of Control, 72(4), 289–304.

Hansson, H., Lawson, H., Bridal, O., Eriksson, C., Larsson, S., Lon, H., & Stromberg,

M. (1997). BASEMENT: an architecture and methodology for distributed automotive

real-time systems. IEEE Transactions on Computers, 46(9), 1016–1027.

Hansson, H. A., Lawson, H. W., Stromberg, M., & Larsson, S. (1995). BASEMENT: a

distributed real-time architecture for vehicle applications. In Proc. Real-Time

Technology and Applications Symp, (pp. 220–229).

Haris, P. (2003). PC/104 specification version 2.5. Electronic PDF.

Hendricks, E. (1997). Engine modelling for control applications: A critical survey.

Meccanica, 32(5), 387–396. TY - JOUR.

Hendricks, E. (2000). A generic mean value engine model for spark ignition engines. In

41st Simulation Conference, SIMS 2000. DTU.

214

Hendricks, E., Chevalier, A., Jensen, M., Sorenson, S. C., Trumpy, D., & Asik, J. (1996).

Modeling of the Intake Manifold Filling Dynamics, vol. SP-1149, chap. 960037.

Society of Automotive Engineers.

Hendricks, E., & Sorenson, S. C. (1990). Mean value modelling of spark ignition

engines. SAE Journal Transactions, 99(3), 1359–1373.

Hendricks, E., Vesterholm, T., & Sorenson, S. C. (1992). Nonlinear, closed loop, si

engine control observers. SAE Journal Transactions, (3), 326–343.

Hernandez, C. A. (2007). DSP-based engine knock detection including knock sensor and

circuit diagnostics.

Hochschwarzer, H., Kriegler, W., & Schon, M. (1992). Fully automatic determination

and optimization of engine control characteristics. SAE Journal Transactions,

101(920255), 380–391. SAE 920255.

Hosey, J., & Powell, D. (1979). Closed loop, knock adaptive spark timing control based

on cylinder pressure. Transactions of the ASME; Journal of Dynamic Systems,

Measurement, and Control, 101, 64–70.

Hubbard, M., Dobson, P., & Powell, D. (1976). Closed loop control of spark advance

using a cylinder pressure sensor. Transactions of the ASME; Journal of Dynamic

Systems, Measurement, and Control, 98, 414–420.

Jaguar (1996). AJ-V8 Engine and 5HP24 Transmission Introduction. Service

Communications, Jaguar Cars Ltd.

Jamieson, R. A. (1968). Eddy-current effects in solid, unslotted iron rotors. Proceedings

of the Institution of Electrical Engineers, 115(6), 813–820.

Jayasuriya, S., & Franchek, M. A. (1991). Frequency domain design for maximal

rejection of persistent bounded disturbances. Transactions of the ASME; Journal of

Dynamic Systems, Measurement, and Control, 113, 195–205.

Kaidantzis, P., Rasmussen, P., Jensen, M., Vesterholm, T., & Hendricks, E. (1993).

Advanced nonlinear observer control of SI engines. SAE Journal Transactions, (pp.

1029–1037).

Kalman, R. (1960). A new approach to linear filtering and prediction problems.

Transactions of the ASME; Journal of Basic Engineering, 82, 35–45.

King, P., Burnham, K. J., D.J.G., J., Norton, J., & Sharpe, S. R. (1991). Implementation

of a self-tuning controller to the dynamometer torque loop of an engine test cell. In

International Conference on Control 1991, vol. 1, (pp. 110–114).

215

Kopetz, H., Damm, A., Koza, C., Mulazzani, M., Schwabl, W., Senft, C., & Zainlinger,

R. (1989). Distributed fault-tolerant real-time systems: the Mars approach. IEEE

Micro, 9(1), 25–40.

Koustas, J. (1984). Optimal Control of Engine Test-beds by Microcomputer Networks.

Ph.D. thesis, Thermal Power Section, Department of Mechanical Engineering,

Imperial College of Science and Technology.

Koustas, J., & Watson, N. (1984). A transient diesel test bed with direct digital control.

In SAE Journal Transactions. SAE 840347.

Krishnaswami, V., & Rizzoni, G. (1995). Nonlinear parity equation based residual

generation for diagnosis of automotive engine faults. Control Engineering Practice,

3(10), 1385–1392.

Kulreja, S. L., Galiana, H., & Kearney, R. (1999). Structure detection of narmax models

using bootstrap method. In Proceedings of the 38th Conference on Decision and

Control, vol. 1, (pp. 1071–1076). Phoenix, AZ, USA.

Kwak, H. J., Sung, S. W., Lee, I.-B., & Park, J. Y. (1999). A modified smith predictor

with a new structure for unstable processes. Industrial & Engineering Chemistry

Research, 38(2), 405–411.

URL http://pubs.acs.org/doi/abs/10.1021/ie980515n

Larsson, S. (2003). SI-Engine spark advance control using torque sensors. Thesis for

the degree of licentiate of engineering, Control and Automation Laboritory,

Department of Signals and Systems, Chalmers University of Technology, University

of Gothenborg, Gothenburg, Sweden.

Larsson, S., & Schagerberg, S. (2004). SI engine cylinder pressure estimation using

torque sensors. Electronic Engine Controls 2004, SP-1822, 401–410. Features ABB

torque sensor.

Lee, S., Howlett, R., & Walters, S. (2003). Fuzzy air-fuel ratio control of a small

gasoline engine.

Lelic, M., & Gajic, Z. (2002). Intelligent Vehicle Technologies, chap. 9, Adaptive Control

System Techniques, (pp. 259–287). Butterworth Heinemann. ISBN 0-7506-5093-1.

Lennox, B., & Montague, G. (2001). Nonlinear predictive control: theory and practice,

chap. Chapter 12: Neural network control of a gasoline engine with rapid sampling,

(pp. 245–255). The Institution of Electrical Engineers.

Leontaritis, I., & Billings, S. (1985a). Input-output parametric models for non-linear

systems. part i: Deterministic non-linear systems. International Journal of Control,

41(2), 303–328.

216

http://pubs.acs.org/doi/abs/10.1021/ie980515n

Leontaritis, I., & Billings, S. (1985b). Input-output parametric models for non-linear

systems part ii: Stochastic non-linear systems. International Journal of Control,

41(2), 329–344.

Leontaritis, I., & Billings, S. (1987). Experimental design and identifiability for

non-linear systems. International Journal of Systems Science, 18(1), 189–202.

Liverpool Harold Cohen has holdings.

Lida, K., Katsuo, A., & Kido, K. (1990). Imep estimation from instantaneous crankshaft

torque variation. SAE Journal Transactions, (pp. 1374–1385).

Lumsden, G., Browett, C., Taylor, J., & Kennedy, G. (2004). Mapping complex engines.

In Direct Injection SI Engine Technology 2004, vol. 1, (pp. 107–118).

Majors, M., Stori, J., & Cho, D.-i. (1994). Neural network control of automotive

fuel-injection systems. IEEE Control Systems, (pp. 31–36).

Manzie, C., Palaniswami, M., Daniel Ralph, D., Watson, H., & Yi, X. (2002). Model

predictive control of a fuel injection system with a radial basis function network

observer. Transactions of the ASME; Journal of Dynamic Systems, Measurement, and

Control, 124(2000-01-1248), 648–658.

Marcin, J. (1998). Thermocouple signal conditioning using the ad594/ad595. Electronic

application note.

McKay, D., Nichols, G., & Schreurs, B. (2000). Delphi electronic throttle control

systems for model year 2000; driver features, system security, and OEM benefits. ETC

for the mass market. In Electronic Engine Controls 2000: Controls (SP-1500),

2000-01-0556. Detroit, Michigan: SAE Technical Paper Series; SP-1500.

Melgaard, H., Hendricks, E., & Madsen, H. (1990). Continuous identification of a

four-stroke si engine. In Proc. American Control Conf , (pp. 1876–1881).

Mills, R. A. (1985). A high-level language implementation of an engine control strategy.

IEEE Transactions on Industrial Electronics, 32(5), 313–317.

MISRA (1994). Development guidelines for vehicle based software.

URL http://www.misra.org.uk

Montanaro, J., Lee, T. H., Witek, R. T., Lin, P. C. M., Anne, K., Madden, L., Black,

A. J., Murray, D., Cooper, E. M., Pearce, M. H., Dobberpuhl, D. W., Santhanam, S.,

Donahue, P. M., Snyder, K. J., Eno, J., Hoeppner, R. S. G. W., Thierauf, S. C., &

Kruckemyer, D. (1996). A 160-MHz, 32b, 0.5-w CMOS RISC microprocessor. IEEE

Journal of Solid-State Circuits, 31(11), 1703–1714. Also reprinted in Digital

Technical Journal, Volume 9, Number 1, 1997. pp. 49-62.

217

http://www.misra.org.uk

Motorola (1990). Time Processor Unit Reference Manual TPURM/AD. Motorola, first

ed.

URL http://www.eslave.net/

MPL-AG (2004). PATI Preliminary User Manual. MPL AG Switzerland.

Mrabet, M., Fnaiech, F., Chaari, A., & Al-Haddad, K. (2002). Nonlinear predictive

control based on narx models with structure identification. IECON 02 [Industrial

Electronics Society, IEEE 2002 28th Annual Conference of the], 3, 1757–1762.

Naber, J. D., & Rajagopalan, S. R. (2008). Combustion knock detection and control

through statistical characterization of knock levels.

URL http://www.patentgenius.com/patent/7415347.html

National-Semiconductor (1995). LM1949 injector drive controller. Electronic PDF.

National-Semiconductor (2000). LM2907/LM2917 frequency to voltage converter.

Electronic PDF datasheet.

National-Semiconductor (2001). LM9040 dual lambda sensor interface amplifier.

Electronic PDF.

National-Semiconductor (2005). LM1815 adaptive variable reluctance sensor amplifier.

Electronic PDF.

Nayfeh, A. H., & Mook, D. T. (1995). Nonlinear Oscillations. Wiley Classics Library.

John Wiley & Sons Inc.

Nielsen, L., & Eriksson, L. (1998). An ion-sense engine fine-tuner. IEEE Control

Systems, (pp. 43–52).

Noble, A. D., Beaumont, A. J., & Mercer, A. S. (1988). Predictive control applied to

transient engine testbeds. SAE Journal Transactions, 97, 6.798–6.803. SAE 880487.

Nomura, M., Suzuki, M., Hori, M., & Terashima, M. (2000). Decoupling torque control

system for automotive engine tester. 36(2), 467–474.

Nuno, M. C. d. O., & Biegler, L. T. (1994). Constraint handing and stability properties

of model-predictive control. AIChE Journal, 40(7), 1138–1155.

Ogata, K. (1997). Modern Control Engineering. Prentice Hall. ISBN 0-13-227307-1.

P3-America (2005). Potentiometers: Hall effect precision potentiometer - series

mp1613. Electronic PDF, San Diego, California.

URL http://www.p3america.com/pp/pdfs/mp1613.pdf

Palmer, D. (2004). Torqueing sense to the outside world. Eureka on campus,

2004(Summer), 10–11.

218

http://www.eslave.net/
http://www.patentgenius.com/patent/7415347.html
http://www.p3america.com/pp/pdfs/mp1613.pdf

Panda, R. C., Hung, S.-B., & Yu, C.-C. (2006). An integrated modified smith predictor

with pid controller for integrator plus deadtime processes. Industrial & Engineering

Chemistry Research, 45(4), 1397–1407.

URL http://pubs.acs.org/doi/abs/10.1021/ie0580194

Park, S., Yoon, M., & Sunwoo, M. (2003). Feedbackerror learning neural networks for

air-to-fuel ratio control in si engines. SAE Journal Transactions, (pp. 522–526).

Passaquay, D., Boverie, S., Heredia, G., Ollero, A., Titli, A., & Aracil, J. (2001). Fuzzy

modelling, control, and stability analysis of an automotive engine. In Advances in

Automotive Control 2001. Proceedings of the 3rd IFAC Workshop, (pp. 223–237).

Pereira, J. M. D., Postolache, O., & Girao, P. S. (2005). A self-adaptable method to

optimize the performance of frequency-to-code conversion based measurement

systems. In Proc. IEEE Intelligent Data Acquisition and Advanced Computing

Systems: Technology and Applications IDAACS 2005, (pp. 295–298).

PLX-Technology-Inc (2002). PCI 9056 product overview datasheet 9056-sil-pb-p2-1.0.

Electronic PDF.

Pohl, R. (1949). Rise of flux due to impact excitation: retardation by eddy currents in

solid parts. Proceedings of the IEE -Part II: Power Engineering, 96(49), 57–65.

Powell, D. (1993). Engine control using cylinder pressure: Past, present, and future.

Transactions of the ASME; Journal of Dynamic Systems, Measurement, and Control,

115, 343–350.

Powell, D., Fekete, N., & Chang, C.-F. (1998). Observer-based air-fuel ratio control.

IEEE Control Systems, (pp. 72–83).

Rajagopalan, S. R. (2006). Experimental Measure and Analysis for Determination of

Combustion Knock Intensity in a Spark Ignition Engine. Master’s thesis, Mechanical

Engineering, Michigan Technological University, Houghton, MI.

Rizzoni, G. (1989). Estimate of indicated torque from crankshaft speed fluctuations: A

model for the dynamics of the ic engine. IEEE Transactions on Vehicular Technology,

38(3), 168–179. TY - JOUR.

Saerens, B., Diehl, M., Swevers, J., & Van den Bulck, E. (2008). Model predictive

control of automotive powertrains - first experimental results. In Proc. 47th IEEE

Conf. Decision and Control CDC 2008, (pp. 5692–5697).

Sandberg, T. (2001). Modeling and validation of traveling resistance for heavy trucks.

Electronic engine controls 2001; modeling, controls, OBD and neural networks,

SP-1585, 127–133.

219

http://pubs.acs.org/doi/abs/10.1021/ie0580194

Scotson, P., & Wellstead, P. (1990). Self-tuning optimization of spark ignition

automotive engines. IEEE Control Systems Magazine, 10(3), 94–101.

Shafai, E., Bianchi, M., & Geering, H. P. (2003). detectNARMAX: A graphical user

interface for structure detection of narmax models using the bootstrap method. In

Proceedings of the 13th IFAC Symposium on System Identification, (pp. 1013–1018).

Shiraishi, H., Ipri, S., & Cho, D.-i. (1995). CMAC neural network controller for

fuel-injection systems. IEEE Transactions on Control Systems Technology, 3(1),

32–38.

Silviero, C., Scattolini, R., Gelmetti, A., Poggio, L., & Serra, G. (1995). Analysis &

validation of mean value models for si ic-engines. In Advances in Automotive Control:

Postprint Volume from the IFAC Workshop, Ascona, Switzerland, 13-17 March 1995.

Pergamon.

Smart, J., Hock, K., & Csomor, S. (2005). Cross-Platform GUI Programming with

wxWidgets. Prentice Hall.

Sobel, J. R., Jeremiasson, J., & Wallin, C. (1996). Instantaneous crankshaft torque

measurement in cars. Electronic Engine Controls 1996 (SP-1149), SP-1149.

Srodawa, R. J., Gach, E., Rodger, & Glicker, A. (1985). Preliminary experience with the

automatic generation of production-quality code for the ford/intel 8061

microprocessor. IEEE Transactions on Industrial Electronics, 32(4), 318–326.

Steinbrenner, U., Barho, H., Bottcher, K., Gandert, V., Gollin, W., Haming, W., Joos, K.,

Mezger, M., Peter, B., & Wild, E. (1994). Motronic Engine Management. Stuttgart:

Robert Bosch Gmbh, 3rd ed.

Tough, J. (2002). Pi Technology Limited, unpublished internal document.

Ulrich, O., Wlodarczyk, R., & Wlodarczyk, M. T. (2001). High-accuracy low-cost

cylinder pressure sensor for advanced engine controls. SAE Journal Special

Publication, SP-1586, 61–68.

Uras, M. H. (2001). Magnetostrictive dynamic strain sensor. Sensor and Actuators 2001

(SP-1609), (2001-01-0617).

Vector (2004). Introduction to the can calibration protocol. Tech. Rep. AN-AMC-1-102,

Vector CANtech Inc.

Wang, Y.-Y., Krishnaswami, V., & Rizzoni, G. (1997). Event-based estimation of

indicated torque for ic engines using sliding-mode observers. Control Engineering

Practice, 5(8), 1123–1129. TY - JOUR.

220

Ward, M., Brace, C., Vaughan, N., Ceen, R., Hale, T., & Kennedy, G. (2002).

Investigation of ’sweep’ mapping approach on engine testbed. SAE Journal

Transactions, (pp. 1130–1135).

Wellstead, P. E., & Zanker, P. (1981). Application of self-tuning to engine control,

chap. 12, (pp. 282–295). IEE Control engineering series 15. Institution of Engineering

and Technology, Peter Peregrinus Ltd.

Wendeker, M., & Czarnigowski, J. (2000). Hybrid air/fuel ratio control using the

adaptive estimation and neural network. SAE Journal Transactions, 109(3),

1477–1484.

Williams, C. (2002). Linux schedular latency. Electronic pdf, Redhat Inc.

URL www.linuxfordevices.com/files/article027/rh-rtpaper.pdf

Willner, C. A. (2006). Fiber optic cylinder pressure measurement system for a

combustion engine.

Won, M., Choi, S. B., & Hedrick, J. K. (1998). Air-to-fuel ratio control of spark ignition

engines using gaussian network sliding control. IEEE Transactions on Control

Systems Technology, 6(5), 678–687.

Wright, M. T. (1972). Steady-state and Transient Performance of Eddy-current

Couplings. Ph.D. thesis, The University of Aston in Birmingham.

Yodaiken, V. J. (1999). Adding real-time support to general purpose operating systems.

Yurish, S. (2007). High-speed universal frequency-to-digital converter for quasi-digital

sensors and transducers. Sensors & Transducers, 80(6), 1225–1229.

221

www.linuxfordevices.com/files/article027/rh-rtpaper.pdf

Appendix A. Circuit Schematic Diagrams

222

Fi
gu

re
A

.1
:C

ur
re

nt
co

nt
ro

lle
rb

oa
rd

sc
he

m
at

ic

223

Fi
gu

re
A

.2
:P

ro
te

ct
io

n
ci

rc
ui

ts
ch

em
at

ic

224

Fi
gu

re
A

.3
:L

oa
d

ce
ll

am
pl

ifi
ca

tio
n

ci
rc

ui
ts

ch
em

at
ic

225

Fi
gu

re
A

.4
:P

lin
tm

et
er

da
ug

ht
er

bo
ar

d
sc

he
m

at
ic

226

Fi
gu

re
A

.5
:T

he
rm

oc
ou

pl
e

am
pl

ifi
ca

tio
n

bo
ar

d
sc

he
m

at
ic

227

Fi
gu

re
A

.6
:L

C
D

in
te

rf
ac

e
bo

ar
d

sc
he

m
at

ic

228

Fi
gu

re
A

.7
:E

nc
od

er
qu

ad
ra

tu
re

in
te

rf
ac

e
ci

rc
ui

ts
ch

em
at

ic

229

Fi
gu

re
A

.8
:C

A
N

bu
s

tr
an

sc
ei

ve
rb

oa
rd

ci
rc

ui
ts

ch
em

at
ic

230

Fi
gu

re
A

.9
:C

ur
re

nt
tr

an
sd

uc
er

bo
ar

d
ci

rc
ui

ts
ch

em
at

ic

231

Fi
gu

re
A

.1
0:

D
ig

ita
lt

ac
ho

m
et

er
bo

ar
d

ci
rc

ui
ts

ch
em

at
ic

232

Fi
gu

re
A

.1
1:

L
oa

d
du

m
p

bo
ar

d
ci

rc
ui

ts
ch

em
at

ic

233

Fi
gu

re
A

.1
2:

E
nc

od
er

in
de

x
la

tc
h

bo
ar

d
ci

rc
ui

ts
ch

em
at

ic

234

Fi
gu

re
A

.1
3:

T
hr

ot
tle

co
nt

ro
lle

rb
oa

rd
ci

rc
ui

ts
ch

em
at

ic
1

235

Fi
gu

re
A

.1
4:

T
hr

ot
tle

co
nt

ro
lle

rb
oa

rd
ci

rc
ui

ts
ch

em
at

ic
2

236

Fi
gu

re
A

.1
5:

E
C

U
fu

el
in

je
ct

or
dr

iv
er

bo
ar

d
ci

rc
ui

ts
ch

em
at

ic

237

Fi
gu

re
A

.1
6:

E
C

U
an

al
og

ue
si

gn
al

bo
ar

d
ci

rc
ui

ts
ch

em
at

ic
1

238

Fi
gu

re
A

.1
7:

E
C

U
an

al
og

ue
si

gn
al

bo
ar

d
ci

rc
ui

ts
ch

em
at

ic
2

239

Fi
gu

re
A

.1
8:

E
C

U
di

gi
ta

ls
ig

na
lb

uf
fe

rb
oa

rd
ci

rc
ui

ts
ch

em
at

ic

240

Appendix B. Embedded Control

B.1 TPU Mask A

The following is a code except which shows the automotive TPU Mask A converted

from s-records to a 2kB C char array with the empty function entry points padded. The

embedded comments show where each region of the codespace resides.

c o n s t unsigned char tpu_mask [] = {
/ * Microcode b lock , 4 x 32− b i t i n s t r u c t i o n s per row * /

0x3F , 0 xFF , 0 xFF , 0 xFE , 0 x7F , 0 xFF , 0 xFE , 0 xFE , 0 x23 , 0 x1F , 0 xFF , 0 xFF , 0 xE3 , 0 x1E , 0 x21 , 0 xFF ,
0xE3 , 0 x1E , 0 x41 , 0 xFF , 0 xE3 , 0 x1E , 0 x61 , 0 xFF , 0 xE3 , 0 x1E , 0 x81 , 0 xFF , 0 xE3 , 0 x1E , 0 xA1 , 0 xFF ,
0xE3 , 0 x1E , 0 xC1 , 0 xFF , 0 xE3 , 0 x1E , 0 xE1 , 0 xFF , 0 x60 , 0 xF9 , 0 xFE , 0 xD7 , 0 xBF , 0 xFF , 0 xFF , 0 xC8 ,
0x3E , 0 x7F , 0 xF8 , 0 x0E , 0 xD2 , 0 x12 , 0 xFF , 0 xFF , 0 x3C , 0 x7F , 0 xF8 , 0 x0B , 0 xAE , 0 x12 , 0 xFE , 0 xFF ,
0x3C , 0 x7F , 0 xF8 , 0 x0B , 0 xBE , 0 x14 , 0 xF2 , 0 xCF , 0 x10 , 0 x1F , 0 xF0 , 0 x13 , 0 x42 , 0 x5C , 0 xF5 , 0 xC7 ,
0x16 , 0 x7E , 0 x40 , 0 x0F , 0 x30 , 0 x7C , 0 xF8 , 0 x0F , 0 xA6 , 0 x19 , 0 xFE , 0 xFF , 0 x1F , 0 xFF , 0 xF0 , 0 x03 ,
0xA2 , 0 x28 , 0 xFE , 0 xFF , 0 x03 , 0 x5F , 0 xF0 , 0 x07 , 0 x90 , 0 x29 , 0 xFF , 0 xFF , 0 x20 , 0 xDF , 0 xD0 , 0 x07 ,
0x7F , 0 xF9 , 0 xFF , 0 xFF , 0 x22 , 0 xDC, 0 x0F , 0 xFF , 0 x84 , 0 x00 , 0 xFE , 0 xFF , 0 x3E , 0 xDF , 0 xF0 , 0 x07 ,
0x3E , 0 xFF , 0 xF0 , 0 x0F , 0 x9A , 0 x00 , 0 xFF , 0 xFF , 0 x7F , 0 xFF , 0 xFF , 0 xD3 , 0 x3F , 0 xFF , 0 xF8 , 0 x17 ,
0xB0 , 0 x26 , 0 xFF , 0 xFF , 0 x7F , 0 xFF , 0 xFF , 0 xD6 , 0 xC4 , 0 x02 , 0 xF0 , 0 x00 , 0 x3F , 0 xFF , 0 xF8 , 0 x16 ,
0x90 , 0 x2F , 0 xFE , 0 xC7 , 0 x1E , 0 x7F , 0 xF0 , 0 x13 , 0 x60 , 0xDD, 0 xDF , 0 xC7 , 0 xD0 , 0 x24 , 0 x70 , 0 x13 ,
0xA0 , 0 x2F , 0 xFE , 0 xFF , 0 x3C , 0 x7F , 0 xF8 , 0 x0B , 0 x42 , 0 x58 , 0 xF5 , 0 xC6 , 0 x7F , 0 xFD , 0 xFF , 0 xFE ,
0xBF , 0 xFF , 0 xFF , 0 xD8 , 0 x3C , 0 x7F , 0 xF8 , 0 x17 , 0 x7F , 0 xF9 , 0 xFE , 0 xCA, 0 x7F , 0 xFF , 0 xFF , 0 xFA ,
0x38 , 0 x7F , 0 xFD , 0 xDB, 0 x3A , 0 x7F , 0 xFD , 0 xDF , 0 xAC, 0 x33 , 0 xFF , 0 xFF , 0 xBF , 0 xFF , 0 xFF , 0 xC0 ,
0xCF , 0 xFF , 0 x50 , 0 x07 , 0 x1F , 0 xFF , 0 xF8 , 0 x0B , 0 x1F , 0 xFF , 0 xFA , 0 x03 , 0 x56 , 0 x5C , 0 x3F , 0 xFF ,
0x3C , 0 xFF , 0 xF0 , 0 x12 , 0 x16 , 0 xFF , 0 xFA , 0 x03 , 0 x02 , 0 x3F , 0 xF0 , 0 x03 , 0 x9A , 0 x44 , 0 xFE , 0 xD3 ,
0x1F , 0 xFF , 0 xF0 , 0 x0F , 0 x1F , 0 xFF , 0 xF8 , 0 x0F , 0 x1F , 0 xFF , 0 xFA , 0 x03 , 0 x56 , 0 x5D , 0 xFF , 0 xFF ,
0x3F , 0 xFF , 0 xF8 , 0 x13 , 0 x22 , 0 x7F , 0 xFF , 0 xFF , 0 x1E , 0 x7F , 0 xF2 , 0 x03 , 0 xFF , 0 x5E , 0 x0F , 0 xFF ,
0x36 , 0 x6A , 0 x3F , 0 xFD , 0 xDF , 0 xFF , 0 xE8 , 0 x07 , 0 x16 , 0 x1D , 0 xE0 , 0 x13 , 0 x80 , 0 x4D , 0 xF6 , 0 xFF ,
0xC0 , 0 x30 , 0 xF0 , 0 x03 , 0 x30 , 0 xFE , 0 xF0 , 0 x13 , 0 x50 , 0 x5D , 0 xFF , 0 xD2 , 0 xBF , 0 xFF , 0 xFF , 0 xF9 ,
0x1F , 0 xFF , 0 xF0 , 0 x07 , 0 x3F , 0 xFF , 0 xF0 , 0 x03 , 0 x7F , 0 xF9 , 0 xFE , 0 xD2 , 0 x98 , 0 x8D , 0 xFF , 0 xFC ,
0x78 , 0 x5F , 0 xFF , 0 xDF , 0 x1F , 0 xFF , 0 xF8 , 0 x0B , 0 x16 , 0 x1C , 0 x00 , 0 x13 , 0 x94 , 0 x52 , 0 xFF , 0 xFF ,
0x84 , 0 x5C , 0 xFE , 0 xC7 , 0 x03 , 0 x5F , 0 xD0 , 0 x0B , 0 xC2 , 0 x5E , 0 xF8 , 0 x0F , 0 x70 , 0 x3F , 0 xDF , 0 xCF ,
0x03 , 0 x5F , 0 xE8 , 0 x0B , 0 x16 , 0 x3F , 0 xE0 , 0 x0F , 0 x10 , 0 x1F , 0 xF0 , 0 x17 , 0 x22 , 0 xFE , 0 x7F , 0 xFF ,
0x17 , 0 xFC , 0 x00 , 0 x17 , 0 x84 , 0 x67 , 0 xFF , 0 xFF , 0 x02 , 0 x7F , 0 xE0 , 0 x13 , 0 x00 , 0 x9C , 0 xC8 , 0 x13 ,
0x84 , 0 x6E , 0 xFE , 0 xFF , 0 xD2 , 0 x6E , 0 xFF , 0 xFF , 0 x20 , 0 xDF , 0 xDF , 0 xFF , 0 x1F , 0 xFF , 0 xF0 , 0 x13 ,
0x20 , 0 x9D , 0 xEF , 0 xFF , 0 x84 , 0 x6D , 0 xFE , 0 xFF , 0 x17 , 0 xFC , 0 x48 , 0 x13 , 0 x84 , 0 x6E , 0 xFE , 0 xFF ,
0xC0 , 0 x55 , 0 xF0 , 0 x0F , 0 x00 , 0 xDF , 0 xE8 , 0 x13 , 0 x24 , 0 x9F , 0 xF0 , 0 x13 , 0 x37 , 0 x5F , 0 xFF , 0 xFF ,
0x34 , 0 x7F , 0 xF8 , 0 x0B , 0 x22 , 0 x3F , 0 xFF , 0 xFF , 0 xE6 , 0 x7E , 0 x2B , 0 xFF , 0 x16 , 0 x7F , 0 xD2 , 0 x03 ,
0x1E , 0 x1F , 0 xFA , 0 x03 , 0 x32 , 0 x1E , 0 x3F , 0 xFD , 0 x36 , 0 xFE , 0 x4F , 0 xFF , 0 x1C , 0 x1E , 0 x30 , 0 x17 ,
0x20 , 0 xC6 , 0 x3F , 0 xFF , 0 x20 , 0 xC6 , 0 x3F , 0 xFF , 0 x9E , 0 x7D , 0 xFE , 0 xFF , 0 x3F , 0 x5F , 0 xFF , 0 xFF ,
0x3F , 0 x5F , 0 xDF , 0 xFF , 0 x05 , 0 x5D , 0 xF8 , 0 x03 , 0 x94 , 0 x81 , 0 xF5 , 0 xFF , 0 xD2 , 0 x84 , 0 xFF , 0 xFF ,
0x36 , 0 x75 , 0 xFF , 0 xFF , 0 x36 , 0 x65 , 0 xFF , 0 xFF , 0 x90 , 0 x84 , 0 xFE , 0 xFF , 0 x36 , 0 x7F , 0 xDF , 0 xFF ,
0x8C , 0 x86 , 0 xFE , 0 xFF , 0 x7F , 0 xFF , 0 xF3 , 0 xFF , 0 x35 , 0 xFD , 0 xFF , 0 xFF , 0 x94 , 0 x89 , 0 xFE , 0 xFF ,
0x1F , 0 xFF , 0 xF8 , 0 x07 , 0 x26 , 0 x9C , 0 x08 , 0 x03 , 0 x52 , 0 x59 , 0 xFE , 0 xFF , 0 xE7 , 0 x3E , 0 x21 , 0 xFF ,
0x94 , 0 x7D , 0 xFE , 0 xFF , 0 x7F , 0 xFF , 0 xFE , 0 xFE , 0 x7F , 0 xFF , 0 xFF , 0 xFB , 0 x1F , 0 xFF , 0 xF8 , 0 x17 ,
0x1F , 0 xFF , 0 xF0 , 0 x13 , 0 x7A , 0 x19 , 0 xFE , 0 xDF , 0 x21 , 0 xFC , 0 x48 , 0 x07 , 0 x8C , 0 xA5 , 0 x50 , 0 x84 ,
0xB0 , 0 x96 , 0 xFF , 0 xFF , 0 x36 , 0 xFF , 0 xFF , 0 xFF , 0 x40 , 0 x5D , 0 xCF , 0 xCE , 0 xB0 , 0 x99 , 0 x50 , 0 xC7 ,
0x98 , 0 x8E , 0 xFE , 0 xFF , 0 x1A , 0 x1F , 0 xD8 , 0 x17 , 0 x00 , 0 x3F , 0 xF0 , 0 x13 , 0 x3F , 0 xFF , 0 xF8 , 0 x07 ,
0x34 , 0 x7F , 0 xF0 , 0 x0F , 0 x98 , 0 xA5 , 0 xFF , 0 xFF , 0 x7F , 0 xFF , 0 xFF , 0 xFB , 0 x21 , 0 xFC , 0 xCF , 0 xFF ,
0x84 , 0 x95 , 0 xFF , 0 xDF , 0 x33 , 0 xFC , 0 xCF , 0 xFF , 0 x90 , 0 xA5 , 0 xFE , 0 xC7 , 0 x8E , 0 xA6 , 0 xFF , 0 xFF ,
0x3A , 0 x5F , 0 xF0 , 0 x0F , 0 x20 , 0 x5F , 0 xF0 , 0 x0F , 0 x5F , 0 xFD , 0 xFF , 0 xD6 , 0 x98 , 0 xAF , 0 xF4 , 0 xCF ,
0xD0 , 0 xAB, 0 xFF , 0 xFF , 0 x7F , 0 xFF , 0 xF3 , 0 xFF , 0 x98 , 0xAD, 0 xFE , 0 xCF , 0 x29 , 0 xFF , 0 xFF , 0 xFF ,
0x5C , 0 x5D , 0 xCF , 0 xD6 , 0 xB0 , 0 xAF , 0 xFF , 0 xFF , 0 x3C , 0 x7F , 0 xF8 , 0 x0B , 0 xD4 , 0 xDF , 0 xFF , 0 xFF ,

241

0x31 , 0 xE5 , 0 xCF , 0 xFF , 0 x84 , 0 xB4 , 0 x4F , 0 xD7 , 0 x7C , 0 x7E , 0 x3F , 0 xC7 , 0 x56 , 0 x5D , 0 xC1 , 0 xDE ,
0x5C , 0 x5C , 0 x3F , 0 xCE , 0 xB0 , 0 xB9 , 0 x54 , 0 xC7 , 0 x69 , 0 xFF , 0 xFF , 0 xFB , 0 x3C , 0 x7F , 0 xF8 , 0 x0B ,
0xC0 , 0 xB0 , 0 xF0 , 0 x07 , 0 x9A , 0 xA5 , 0 xF1 , 0 xFF , 0 x00 , 0 x7F , 0 xF0 , 0 x07 , 0 x7A , 0 x1F , 0 xDF , 0 xFB ,
0x21 , 0 xFC , 0 xC0 , 0 x0F , 0 x94 , 0 x9F , 0 xFE , 0 xFF , 0 xD4 , 0 xDF , 0 xFF , 0 xFF , 0 xD0 , 0 xCC , 0 xFF , 0 xFF ,
0x1A , 0 x1F , 0 xF0 , 0 x13 , 0 x01 , 0 xFC , 0 x68 , 0 x17 , 0 xAC, 0 xC4 , 0 xFE , 0 xFF , 0 x3F , 0 xFF , 0 xF8 , 0 x06 ,
0x8C , 0 x00 , 0 xFF , 0 xFF , 0 xBE , 0 xA5 , 0 x50 , 0 xC7 , 0 x3F , 0 xFF , 0 xF8 , 0 x07 , 0 xAC, 0 x00 , 0 xFE , 0 xFF ,
0xB0 , 0 xD6 , 0 xFE , 0 xFF , 0 x3F , 0 xFF , 0 xF0 , 0 x07 , 0 xA4 , 0 xCC , 0 xFE , 0 xFF , 0 x9C , 0 xB5 , 0 xFF , 0 xFF ,
0x18 , 0 x1F , 0 xF8 , 0 x0B , 0 x32 , 0 x3E , 0 xCF , 0 xFF , 0 x35 , 0 xFC , 0 x0F , 0 xFF , 0 x90 , 0 xD1 , 0 x4F , 0 xD7 ,
0x58 , 0 x5D , 0 xF5 , 0 xCE , 0 x36 , 0 x3E , 0 x3F , 0 xFF , 0 x33 , 0 xFC , 0 x8F , 0 xFF , 0 x8C , 0 xD5 , 0 xFE , 0 xC7 ,
0x54 , 0 x5D , 0 xF5 , 0 xCE , 0 x54 , 0 x5D , 0 xC1 , 0 xDE , 0 x1A , 0 x1F , 0 xF0 , 0 x13 , 0 x00 , 0 x7F , 0 xF0 , 0 x17 ,
0x21 , 0 xFC , 0 x40 , 0 x07 , 0 x8C , 0 xA5 , 0 x50 , 0 xC7 , 0 x21 , 0 xFC , 0 xC0 , 0 x0F , 0 x94 , 0 xBE , 0 xFF , 0 xD7 ,
0x8C , 0 x95 , 0 xFF , 0 xDF , 0 x5A , 0 x5D , 0 xFF , 0 xD6 , 0 xBC , 0 x00 , 0 xFE , 0 xF9 , 0 x02 , 0 x3F , 0 xF0 , 0 x03 ,
0x22 , 0 x7F , 0 xFF , 0 xFF , 0 x1E , 0 x1F , 0 xFA , 0 x03 , 0 xFF , 0 x5E , 0 x0F , 0 xFF , 0 x32 , 0 x0A , 0 xFF , 0 xFD ,
0xDB, 0 xFF , 0 xFF , 0 xFF , 0 x32 , 0 xE7 , 0 xFF , 0 xFF , 0 x3E , 0 x67 , 0 xD8 , 0 x0B , 0 x3E , 0 x1F , 0 xCF , 0 xFF ,
0xBF , 0 x14 , 0 xFE , 0 xF8 , 0 x7E , 0 xF9 , 0 xEE , 0 xFF , 0 xA4 , 0 xF4 , 0 xFE , 0 xFF , 0 xE1 , 0 xFC , 0 x03 , 0 xFF ,
0x94 , 0 xEE , 0 xFF , 0 xFF , 0 x20 , 0 xDF , 0 xD0 , 0 x0B , 0 xA0 , 0 xF4 , 0 xFF , 0 xFF , 0 x9A , 0 xF2 , 0 xFE , 0 xFF ,
0x20 , 0 x0D , 0 xFF , 0 xFF , 0 x32 , 0 x0D , 0 xFF , 0 xFF , 0 x95 , 0 x0B , 0 xFE , 0 xFF , 0 x5C , 0 x5D , 0 xCF , 0 xFE ,
0x00 , 0 x1F , 0 xF8 , 0 x03 , 0 x3E , 0 xDF , 0 xF0 , 0 x0B , 0 x3C , 0 xFF , 0 xF0 , 0 x03 , 0 x7C , 0 x22 , 0 xCF , 0 xFF ,
0x98 , 0 xFA , 0 xFE , 0 xFF , 0 x32 , 0 x09 , 0 xFF , 0 xFF , 0 xF2 , 0 x08 , 0 x01 , 0 xD7 , 0 x32 , 0 x7F , 0 xF8 , 0 x13 ,
0x34 , 0 x7F , 0 xF8 , 0 x17 , 0 x1F , 0 xFF , 0 xF0 , 0 x0F , 0 x1A , 0 xDC, 0 x05 , 0 xFB , 0 x20 , 0 xDF , 0 xD5 , 0 xFB ,
0x87 , 0 x11 , 0 xFE , 0 xFF , 0 x33 , 0 xFD , 0 xFF , 0 xFF , 0 x95 , 0 x0B , 0 xFE , 0 xFF , 0 x1E , 0 x1F , 0 xF0 , 0 x0F ,
0xFF , 0 x5E , 0 x0F , 0 xFF , 0 x22 , 0 x3F , 0 xFF , 0 xFF , 0 x32 , 0 x0A , 0 xFF , 0 xFD , 0 x32 , 0 x25 , 0 xFF , 0 xFF ,
0x8D , 0 x0B , 0 xFF , 0 xFF , 0 x91 , 0 x0B , 0 xFF , 0 xFF , 0 x5C , 0 x5C , 0 xBF , 0 xCE , 0 x1E , 0 x1F , 0 xC5 , 0 xFB ,
0x31 , 0 xFD , 0 xFF , 0 xFF , 0 x8D , 0 x13 , 0 xFE , 0 xFF , 0 xA0 , 0 xF3 , 0 xFE , 0 xFF , 0 xD1 , 0 x13 , 0 xFF , 0 xFF ,
0x3C , 0 x7F , 0 xF8 , 0 x03 , 0 x3E , 0 x1F , 0 xFF , 0 xFF , 0 x3E , 0 x7F , 0 xF8 , 0 x0B , 0 x5C , 0 x5D , 0 xCF , 0 xFF ,
0xFE , 0 x3F , 0 xFF , 0 xFF , 0 x72 , 0 x17 , 0 xDF , 0 xD7 , 0 x20 , 0 xFE , 0 x75 , 0 xFB , 0 x73 , 0 xBE , 0 xBF , 0 xC2 ,
0xAD, 0 x1C , 0 xFF , 0 xC7 , 0 xA5 , 0 x1E , 0 xFE , 0 xFF , 0 xA1 , 0 x33 , 0 xFF , 0 xFF , 0 x56 , 0 x5D , 0 xCF , 0 xFE ,
0xA5 , 0 x33 , 0 xFE , 0 xFF , 0 xA1 , 0 x22 , 0 xFE , 0 xFF , 0 x1F , 0 xFF , 0 xF5 , 0 xFB , 0 x20 , 0 xDF , 0 xD5 , 0 xFB ,
0xAF , 0 x10 , 0 xFF , 0 xFF , 0 x7F , 0 xFB , 0 xFF , 0 xFF , 0 x1F , 0 xFF , 0 xF0 , 0 x07 , 0 x3A , 0 xDC, 0 x0F , 0 xFF ,
0x95 , 0 x27 , 0 xFF , 0 xFF , 0 xC3 , 0 x11 , 0 xF5 , 0 xFB , 0 x36 , 0 x5F , 0 xFF , 0 xFF , 0 x02 , 0 x3F , 0 xE0 , 0 x0B ,
0xB3 , 0 x2C , 0 xFE , 0 xFF , 0 x23 , 0 xFD , 0 xFF , 0 xFF , 0 x22 , 0 x9F , 0 xD0 , 0 x0B , 0 x23 , 0 xFC , 0 x8F , 0 xFF ,
0x85 , 0 x30 , 0 xFF , 0 xFF , 0 x3E , 0 x9F , 0 xF0 , 0 x0B , 0 x3E , 0 xDF , 0 xE5 , 0 xFB , 0 x3F , 0 xBF , 0 xEF , 0 xFF ,
0xAD, 0 x32 , 0 xFE , 0 xFF , 0 x7F , 0 xFF , 0 xFF , 0 xDF , 0 x56 , 0 x5D , 0 xCF , 0 xFA , 0 x3D , 0 xFC , 0 xCF , 0 xFF ,
0xC2 , 0 xF4 , 0 xF0 , 0 x0B , 0 x8C , 0 xEB , 0 xFF , 0 xFF , 0 x03 , 0 x5F , 0 xF8 , 0 x0F , 0 x36 , 0 x7F , 0 xD8 , 0 x0F ,
0x1F , 0 xFF , 0 xF8 , 0 x0F , 0 x16 , 0 x3F , 0 xF8 , 0 x0B , 0 x37 , 0 xFC , 0 x8F , 0 xFF , 0 x85 , 0 x3E , 0 xFF , 0 xFF ,
0x3C , 0 x7F , 0 xF8 , 0 x17 , 0 x7F , 0 xFB , 0 xFF , 0 xFE , 0 xAF , 0 x41 , 0 xFE , 0 xFF , 0 x3C , 0 x7F , 0 xF8 , 0 x13 ,
0xD4 , 0 x02 , 0 xFF , 0 xFC , 0 x20 , 0 x7F , 0 xFF , 0 xFF , 0 x1F , 0 xFF , 0 xF2 , 0 x03 , 0 x22 , 0 x9F , 0 xD2 , 0 x03 ,
0xB3 , 0 x49 , 0 xFE , 0 xFF , 0 x7F , 0 xFF , 0 xF1 , 0 xFB , 0 x1F , 0 xFF , 0 xF0 , 0 x03 , 0 x3E , 0 x7F , 0 xF8 , 0 x0F ,
0xBF , 0 xFF , 0 xFF , 0 xF8 , 0 x7F , 0 xF9 , 0 xFE , 0 xFE , 0 xE1 , 0 xE4 , 0 x01 , 0 xC7 , 0 x8F , 0 x4E , 0 xFE , 0 xF8 ,
0x78 , 0 x59 , 0 xFE , 0 xFF , 0 x7A , 0 x59 , 0 xFE , 0 xFF , 0 x3C , 0 x7F , 0 xF8 , 0 x07 , 0 xD5 , 0 x51 , 0 xFF , 0 xFF ,
0x52 , 0 x5C , 0 xB5 , 0 xFA , 0 x16 , 0 x3F , 0 xF0 , 0 x0B , 0 x10 , 0 x1D , 0 xF8 , 0 x0F , 0 x87 , 0 x58 , 0 xFF , 0 xFF ,
0x36 , 0 xFE , 0 xB0 , 0 x13 , 0 x37 , 0 xFC , 0 x4F , 0 xFF , 0 x85 , 0 x59 , 0 xFF , 0 xFF , 0 xD9 , 0 xFF , 0 x1F , 0 xFF ,
0x54 , 0 x5C , 0 xF1 , 0 x8A , 0 x54 , 0 x5C , 0 xF1 , 0 x4A , 0 xA5 , 0 x4E , 0 xFF , 0 xFF , 0 xD1 , 0 x4F , 0 xFF , 0 xFF ,
0xA5 , 0 x5F , 0 xFE , 0 xFF , 0 x9D , 0 x5F , 0 xFE , 0 xFF , 0 x3C , 0 x7F , 0 xF8 , 0 x07 , 0 xD5 , 0 x51 , 0 xFF , 0 xFF ,
0x54 , 0 x5C , 0 xF3 , 0 xFA , 0 x50 , 0 x5D , 0 xF3 , 0 xFE , 0xAD, 0 x69 , 0 xFF , 0 xFF , 0 xBF , 0 xFF , 0 x0F , 0 xFC ,
0x58 , 0 x5F , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xFF , 0 xB1 , 0 x69 , 0 xFE , 0 xC3 , 0 xCF , 0 xFF , 0 x30 , 0 x0B ,
0x5C , 0 x5E , 0 x31 , 0 xFF , 0 xB7 , 0 x6D , 0 xFF , 0 xFF , 0 x1F , 0 xFF , 0 xF0 , 0 x07 , 0 x70 , 0 xE9 , 0 xFE , 0 xFB ,
0x3F , 0 xFF , 0 xF0 , 0 x06 , 0 x70 , 0 xE9 , 0 xFE , 0 xFB , 0 x30 , 0 xFF , 0 xC0 , 0 x06 , 0 xBD, 0 x6B , 0 x40 , 0 xBF ,
0xBD, 0 x6D , 0 x40 , 0 x7F , 0 xE1 , 0 xE4 , 0 x01 , 0 xC7 , 0 x8F , 0 x75 , 0 xFE , 0 xD0 , 0 x78 , 0 x59 , 0 xFF , 0 xFF ,
0x3A , 0 x5F , 0 xFF , 0 xFF , 0 xB3 , 0 x87 , 0 xFE , 0 xFF , 0 x1F , 0 xFF , 0 xF0 , 0 x0F , 0 xCF , 0 xFF , 0 x30 , 0 x13 ,
0x3C , 0 x7F , 0 xF8 , 0 x03 , 0 x30 , 0 x7F , 0 xFF , 0 xFF , 0 x02 , 0 x7F , 0 xF2 , 0 x03 , 0 x10 , 0 x1F , 0 xFA , 0 x03 ,
0x3F , 0 xFF , 0 xF8 , 0 x17 , 0 x16 , 0 x3F , 0 xF0 , 0 x0B , 0 x12 , 0 x1E , 0 x30 , 0 x0F , 0 x52 , 0 x5C , 0 x34 , 0 xCB ,

/ * End o f normal microcode r e g i o n * /
0x34 , 0 x7E , 0 x38 , 0 x06 , 0 x9C , 0 x00 , 0 xFE , 0 xFF , 0 xCF , 0 xFF , 0 xE8 , 0 x17 , 0 xB6 , 0 x00 , 0 xFF , 0 xFF ,
0x36 , 0 xFE , 0 x30 , 0 x07 , 0 x50 , 0 x5D , 0 xF3 , 0 xD6 , 0 x7F , 0 xFF , 0 xFE , 0 xDF , 0 x3C , 0 x7F , 0 xF8 , 0 x03 ,
0x10 , 0 x7E , 0 xF0 , 0 x0B , 0 x5C , 0 x5C , 0 x35 , 0 xC3 , 0xAD, 0 x8E , 0 xFE , 0 xFF , 0 x1F , 0 xFF , 0 xF0 , 0 x13 ,
0x23 , 0 x5F , 0 xFF , 0 xFF , 0 xD4 , 0 x02 , 0 xFF , 0 xFC , 0 x3F , 0 xFF , 0 xF8 , 0 x06 , 0 x7F , 0 xFF , 0 xFE , 0 xDE ,
0x99 , 0 x96 , 0 xFE , 0 xFF , 0 x1F , 0 xFF , 0 xF0 , 0 x13 , 0 x00 , 0 x7F , 0 xF0 , 0 x17 , 0 xCF , 0 xFF , 0 xEA , 0 x03 ,
0x16 , 0 x7E , 0 x30 , 0 x0F , 0 x36 , 0 x7E , 0 x38 , 0 x07 , 0 x56 , 0 x5D , 0 xF3 , 0 xD6 , 0 xBF , 0 xFF , 0 x07 , 0 xFC ,
0x67 , 0 x39 , 0 xFE , 0 xFF , 0 x3E , 0 xFF , 0 xC0 , 0 x0F , 0 xB5 , 0 x9C , 0 xFF , 0 xFF , 0 x3E , 0 xFF , 0 xF0 , 0 x0F ,
0x38 , 0 x7F , 0 xF8 , 0 x0A , 0 x67 , 0 x39 , 0 xFF , 0 xFF , 0 x10 , 0 x3D , 0 xF8 , 0 x13 , 0 xB7 , 0 xA2 , 0 xFE , 0 xFF ,

242

0x10 , 0 xFF , 0 xCA, 0 x03 , 0 x35 , 0 xFD , 0 xCF , 0 xFF , 0 x8C , 0 x01 , 0 xFE , 0 xFF , 0 x30 , 0 x3C , 0 xF0 , 0 x0F ,
0x1C , 0 xFF , 0 xF8 , 0 x17 , 0 xB3 , 0 xA8 , 0 xFE , 0 xFF , 0 x36 , 0 x7F , 0 xD2 , 0 x03 , 0 x35 , 0 xFD , 0 xCF , 0 xFF ,
0x8F , 0 xAB, 0 xFE , 0 xFF , 0 x1F , 0 xFF , 0 xF2 , 0 x03 , 0 x30 , 0 xFF , 0 xD2 , 0 x02 , 0 x30 , 0 xFF , 0 xE2 , 0 x02 ,

/ * A c t u a l Microcode end , u s i n g 5 1 / 2 unused f u n c t i o n e n t r y p o i n t s f o r code space * /
/ * Padding b y t e s f o r t h e l a s t h a l f o f unused f u n c t i o n 5 e n t r y p o i n t * /

0x00 , 0 x00 , 0 x00 , 0 x00 , 0 x00 , 0 x00 , 0 x00 , 0 x00 , 0 x00 , 0 x00 , 0 x00 , 0 x00 , 0 x00 , 0 x00 , 0 x00 , 0 x00 ,
/ * End padding b y t e s * /
/ * E n t r y p o i n t 6 − QDEC * /

0xF8 , 0 x01 , 0 xF8 , 0 x01 , 0 xE9 , 0 x9C , 0 xE9 , 0 x97 , 0 x61 , 0 x9D , 0 x61 , 0 x9D , 0 x61 , 0 x9D , 0 x61 , 0 x9D ,
0xF8 , 0 x01 , 0 xF8 , 0 x01 , 0 xF8 , 0 x01 , 0 xF8 , 0 x01 , 0 xF8 , 0 x01 , 0 xF8 , 0 x01 , 0 xF8 , 0 x01 , 0 xF8 , 0 x01 ,

/ * E n t r y p o i n t 7 − SPWM * /
0xF8 , 0 x00 , 0 xF8 , 0 x00 , 0 x01 , 0 x71 , 0 x61 , 0 x81 , 0 x39 , 0 x90 , 0 x39 , 0 x96 , 0 x71 , 0 x87 , 0 x91 , 0 x78 ,
0x91 , 0 x8F , 0 x61 , 0 x82 , 0 x91 , 0 x8F , 0 x61 , 0 x82 , 0 x91 , 0 x92 , 0 x61 , 0 x82 , 0 x71 , 0 x86 , 0 x91 , 0 x78 ,

/ * E n t r y p o i n t 8 − DIO * /
0x31 , 0 x70 , 0 x31 , 0 x70 , 0 x31 , 0 x6F , 0 x11 , 0 x62 , 0 x31 , 0 x6B , 0 x41 , 0 x68 , 0 x31 , 0 x6D , 0 x41 , 0 x68 ,
0x10 , 0 x01 , 0 x10 , 0 x01 , 0 x10 , 0 x01 , 0 x10 , 0 x01 , 0 x31 , 0 x6B , 0 x41 , 0 x68 , 0 x31 , 0 x6D , 0 x41 , 0 x68 ,

/ * E n t r y p o i n t 9 − PWM * /
0x29 , 0 x5C , 0 x29 , 0 x5A , 0 x01 , 0 x4A , 0 xF8 , 0 x00 , 0 x91 , 0 x61 , 0 xF9 , 0 x5E , 0 x31 , 0 x4E , 0 x31 , 0 x4E ,
0xF8 , 0 x01 , 0 xF8 , 0 x01 , 0 xF8 , 0 x01 , 0 xF8 , 0 x01 , 0 xF8 , 0 x01 , 0 xF8 , 0 x01 , 0 xF8 , 0 x01 , 0 xF8 , 0 x01 ,

/ * E n t r y p o i n t A − ITC * /
0x11 , 0 x47 , 0 x11 , 0 x47 , 0 xF8 , 0 x00 , 0 xF8 , 0 x00 , 0 x31 , 0 x36 , 0 x31 , 0 x36 , 0 x31 , 0 x36 , 0 x31 , 0 x36 ,
0xF8 , 0 x01 , 0 xF8 , 0 x01 , 0 xF8 , 0 x01 , 0 xF8 , 0 x01 , 0 x31 , 0 x36 , 0 x31 , 0 x36 , 0 x31 , 0 x36 , 0 x31 , 0 x36 ,

/ * E n t r y p o i n t B − PMA/PMM * /
0x10 , 0 xE6 , 0 x10 , 0 xE6 , 0 xF8 , 0 x00 , 0 xF8 , 0 x00 , 0 x50 , 0 xEA , 0 x19 , 0 x18 , 0 x50 , 0 xEA , 0 x19 , 0 x18 ,
0xF8 , 0 x01 , 0 xF8 , 0 x01 , 0 xF8 , 0 x01 , 0 xF8 , 0 x01 , 0 xF8 , 0 x01 , 0 xF8 , 0 x01 , 0 xF8 , 0 x01 , 0 xF8 , 0 x01 ,

/ * E n t r y p o i n t C − PSP * /
0x80 , 0 xC0 , 0 xA0 , 0 xC7 , 0 xE8 , 0 x8F , 0 x10 , 0 xDE , 0 x70 , 0 xA9 , 0 x70 , 0 x97 , 0 x70 , 0 xA7 , 0 x70 , 0 xB5 ,
0xF8 , 0 x01 , 0 xF8 , 0 x01 , 0 xF8 , 0 x01 , 0 xF8 , 0 x01 , 0 xF8 , 0 x01 , 0 xF8 , 0 x01 , 0 xF8 , 0 x01 , 0 xF8 , 0 x01 ,

/ * E n t r y p o i n t D − SM * /
0x10 , 0 x8D , 0 x10 , 0 x8D , 0 x10 , 0 x4F , 0 x60 , 0 x53 , 0 x90 , 0 x5C , 0 x90 , 0 x59 , 0 x90 , 0 x5C , 0 x90 , 0 x59 ,
0x10 , 0 x8D , 0 x10 , 0 x8D , 0 x10 , 0 x8D , 0 x10 , 0 x8D , 0 x10 , 0 x8D , 0 x10 , 0 x8D , 0 x10 , 0 x8D , 0 x10 , 0 x8D ,

/ * E n t r y p o i n t E − OC * /
0x00 , 0 x34 , 0 x00 , 0 x34 , 0 x10 , 0 x00 , 0 x10 , 0 x30 , 0 x10 , 0 x31 , 0 x38 , 0 x4A , 0 x10 , 0 x31 , 0 x38 , 0 x4A ,
0x10 , 0 x01 , 0 x48 , 0 x3D , 0 x10 , 0 x01 , 0 x48 , 0 x3D , 0 x10 , 0 x01 , 0 x48 , 0 x3D , 0 x10 , 0 x01 , 0 x48 , 0 x3D ,

/ * E n t r y p o i n t F − PPWA * /
0x10 , 0 x00 , 0 x10 , 0 x00 , 0 x10 , 0 x0A , 0 x10 , 0 x00 , 0 x40 , 0 x0F , 0 x80 , 0 x2C , 0 x40 , 0 x0D , 0 x80 , 0 x2C ,
0x10 , 0 x01 , 0 x10 , 0 x01 , 0 x10 , 0 x01 , 0 x10 , 0 x01 , 0 x40 , 0 x0F , 0 x80 , 0 x2C , 0 x40 , 0 x0D , 0 x80 , 0 x2C

} ;

B.2 Linux as an Embedded Operating System

The eCos Operating System For control purposes eCos would be a natural choice as it

is a low-level real-time OS with a variety of scheduler policies to choose from. However

the board support that was developed by Arcom was only sufficient enough to allow the

Redboot boot-loader (a minimal schedalarless eCos application in itself) to function

correctly. Also under the eCos single process model, providing a graphical framebuffer

GUI is possible, but would not be trivial in terms of development effort. There is some

open source support under eCos for Microwindows (renamed to Nano-X Window

system due to Microsoft tradmark infringement), Bejing based FMSoft’s MiniGUI

orginally developed for a Linux based CNC machine tool user interface, and there has

previously been commercial support for a framebuffer graphical environment called

posC, although this seem to have ceased to exist since the time that this work was carried

243

out. The amount of work to make any of these solutions work with the PXA processor

hardware and eCos was not known and would have required further investigation.

Conventional Linux Linux is a general purpose operating system which provides

good overall work throughput for use on a desktop machine and also for dedicated

servers. In its standard form it does not allow any one process to monopolise the

processor’s time which maintains a responsive user interface. It has a multi-threaded

non-preemptive kernel which can be the cause of occasional but significant scheduler

latencies for user mode applications. These factors make Linux much less of an

appropriate choice for real-time control applications. Despite this Linux has gained

increasing popularity in recent years for embedded devices and consumer electronics.

The open source nature and ports to a very wide range of architectures has assisted with

this as well as the availability of a wide range of compatible open source software. The

very fact that software can be obtained as source code allows it to be cross-compiled to

different processor architectures without necessarily requiring the consent or support of

its original author. In fact, several distributions including Debian are supplied

pre-compiled for non-x86 plactforms suchas ARM and PowerPC. This means if the

dependencies are present, a package can be simply downloaded and copied or installed

directly onto the embedded target. For AEL this ment bringing some of the base level

packages into line with a current version of Debian by manually installing their contents

into situe so that other packages could be used without having to cross-compile all of the

source and dependencies. This process was assisted by the use of a cross-compling

sandbox environment called Scratchbox. It is possible to install all of the base

dependecies into a sandbox and cross-compile against them. Then by using Scratchbox

remote shell (which in turn uses chroot) is is possible to run the newly compiled program

from a network share of the sandbox on the PC, on the target hardware without having to

install it or any dependencies onto the hardware. This speeds up the development

process and allows different packages to be tested without having to install them. It also

removes the need to use the outdated AEL provided cross-compiler an use source which

knows how to be configured for cross-compilation. Much of the open source software

has never been tested for cross-compilation or written with that in mind, but Scratchbox

allow the configuration scripts to believe they are being natively compiled for the target

hardware which removes the source of many problems.

RTLinux RTLinux offers a compromise to conventional Linux by allowing existing

native Linux software to be run whilst offering a real-time framework at the same time.

It does this using a patented dual OS model (Yodaiken, 1999) whereby a general purpose

OS is added as a task to a real-time one as depicted by Figure B.1. There is a POSIX

compliant real-time OS under which Linux is run as a self-contained application. Any

244

real-time control code must be run as a process on the underlying POSIX OS and

communication which any Linux applications is performed through a dedicated IPC

mechanism.

Figure B.1: RTLinux dual kernel model

A quote was obtained for RTLinux, but the licensing requirements were found to be very

restrictive allowing only a single architecture to be chosen per licence. Also it was not

clear what level of Viper specific hardware support would be provided. Any additional

hardware device drivers such as CAN or acquisition data cards that would take

advantage of the real-time support would require reimplementing for the POSIX kernel

as native Linux drivers are not supported.

Linux Kernel Real-Time Patches The option exists to modify the standard or vanilla

Linux kernel to bring down the worst case scheduler latencies. Williams (2002)

performed a test of the unmodifed vanilla kernel running on a 700 MHz Pentium class

x86 machine to estabish the magnitude frequency of occurrence of scheduler latencies

whilst running software to stress the kernel over a 41 minute period. Figure B.2 show the

results of the test from which it can be seen that (noting the logarithmic scales) the vast

majority of samples fall within 100 ms, but a significant minority take a much greater

time of up to 110 ms. This is caused by the kernel entering long or non-preemptable code

sections or loops. There existed a set of patches to reduce this preemption and

low-latency patches which were two slighly different approaches to solve the same

problem. The preemption patch modifies the kernel to allow preemption to take place

more often and reduce the amount of time it take from a call the the scedular to the point

where it runs. The low latency approach is to intersect long or slow code sections with

explict preemption points where it is safe to perform a context switch.

245

Figure B.2: Linux kernel latency (Williams, 2002)

RTAI Real-Time Application Interface (RTAI) is a project that was created to add

real-time capability to Linux and circumvent the RT-Linux patent by adding that support

directly into the operating system, rather than layering it on top of a separate

deterministic operating system. RTAI uses a modification to the kernel which they call

Adaptive Domain Environment for Operating Systems (Adeos) which is a nanokernel

hardware abstraction layer (HAL) that resides between the kernel device drivers and the

hardware. What is does in essence is to form a thin virtualisation layer between the

kernel and the hardware so that it can capture interupts and hardware access then decide

how, when and where to displach them, thus preventing the Linux kernel from interfering

with real-time processes. RTAI then form the framework for these real-time processes.

To investigate the suitablity of RTAI for this work, a version of the host development

distrubution’s kernel supplied with Mandriva Linux was patched to include RTAI support

in order to evaluate RTAI using a desktop PC. This required hand merging the changes

made to the standard version 2.6.13 kernel source by the Mandriva team with those made

by RTAI as both patch sets can only be applied to the standard kernel source. The

resulting kernel source was successfully compiled and run, and an example real-time

trivial application run, but some kernel instabiliy was incountered and time constraints

prevented any further investigation of this framework. It was anticipated that a

significant amount of extra work would be required to get RTAI to work with the AEL

version of the Arm Linux 2.4.26 version of the kernel, particularly if an RTAI patch

doesn’t exist for this exact kernel version. AEL uses an unmodified standard or ’Vanilla’

246

kernel, but despite this it provides additional device drivers and configuration options

that might conflict with the RTAI modifications. At the time of investigation, the 2.6

branch of the kernel was becoming the standard revision in use and support of version

2.4 (still used by the AEL version in use at that time) was starting to decline as it became

a legacy kernel. Also a significant deciding factor was that the ARM platform had much

less support than x86 from RTAI developers as the low level interrupt catching

mechanism differs from that of the x86 processor where a larger user base and interest

level existed. On this basis it was decided to wait until the exact nature of the real-time

requirements had been established before committing more time to development of RTAI

for AEL Linux which might have been problematic. Debugging of kernel code is often

far more difficult than conventional code without expensive hardware tools as the

conventional software mechanisms (such as the GDB debugger) are not able to work.

There are a number of techniques which can be employed to assist with kernel

development but many of them require further modifications to the kernel source to

allow for instrumentation. This could further exacerbate the problem by making yet

more changes to the kernel. Since this work was carried out, there have emerged two

deguggers, KGDB and KDB, the first being a remote serial debugger allowing a second

machine to be used to debug the first, and the second a local debugger for the kernel.

Both require patches to the kernel and have only been introduced from around release

version 2.6.26. Also, the Adeos abstraction layer does itself permit patchless debugging

of the kernel, but how effective this would be when it is required to assist with setting up

of RTAI is not immediately clear.

Xenomai During the course of the development work, another project for real-time

Linux emerged called Xenomai. This project was motivated and bourne out of certain

frustrations surrounding RTAI, and general lack of support for non-x86 architectures

having previously merged with the RTAI project as RTAI/fusion, it forked again and has

different emphasis and goals, particularly being more readly usable rather than providing

the absolute mininum latencies as a point of techical achivement. Xenomai has a lot in

common with RTAI, but has diverged from RTAI and was not intended to remain

compatible with it. Xenomai has been an interesting development, but its re-emergence

from RTAI occured at a stage which was too late to adopt it for this project.

B.2.1 Booting Embedded Linux from Flash

A problem encountered using the Arcom Viper was that the flash disk space was found

to be restrictive for development purposes and also file access to the JFFS2 filesystem

images is only possible using the running operating system on the board. This make

upgrading libraries and important system files on the running system precarious as it

247

could render the system unstable or inoperable. An inoperable system that requires the

entire filesystem image is replaced using the Redboot bootloader. The process is quite

time consuming and also mandates (to be worthwhile) that regular backups of the system

partition images are taken which is in itself a time consuming manual process. Image

files can be transfered over an Ethernet network using trival file transfer protocol (TFTP)

which requires configuring a TFTP server on a host PC, or alternatively a serial line

connection to a terminal program can be used which is even more time consuming and

temperamental due to the large file sizes. Creation and modification of JFFS2 images on

the host PC is possible but requires memory technology device (MTD) support to be

compiled into the kernel which is often not for PC based distributions as raw flash access

is seldom required due to the fact that the vast majority of flash devices (including

CompactFlash, USB Pen drives) work as block devices that function like disks at the

hardware interface level. The host Mandriva kernel was recompiled from source to allow

JFFS2 image and loopback mounting of the Viper image, but this approach is neither

convenient or maintainable as updated kernels are releases at regular intervals for

security fixes and other improvements.

A solution that was investigated was the use of CompactFlash to add significant

additional removable file storage space. Device drivers were already provided and

installed, so mounting a filesystem on CompactFlash is relatively trivial. The Linux

chroot command can be used to swap the location of the root filesystem to another

location for all processes executed after the command is run. This offers an intermediate

solution if all of the system files are replicated on the external CompactFlash device. It

was felt that a better solution would be to boot directly from the compact flash itself,

allowing it to be removed and the root filesystem to be modified from a host PC, and

even duplicates kept on separate flash devices to support different configurations under

test. It also would make the backup process as simple as backing up any other removable

storage device. With embedded Linux, the kernel image is normally stored separately to

it’s root filesystem. In the case of the Viper, the kernel image is stored in a raw flash

partition and is loaded into memory by Redboot and executed in place. The bootloader is

able to pass a command line of arguments to the kernel before it starts and the kernel

uses this to determine where to look for its root filesystem. The kernel has the JFFS2

filesystem drivers it needs to read the disk image contents from the flash device which is

mapped as memory, so no hardware drivers are required. This mechanism is in contrast

to the boot procedure used by PC based Linux distributions which make use of a

temporary file system in RAM called an initial ramdisk (initrd image). The PC boot

process make use of the BIOS, a disk based bootloader, then the initrd image which

allows the generic kernel to gain access to device driver modules and other critical files

which it may need to continue the boot process. This allow a kernel image to be built

which doesn’t need to include every possible hardware driver it may need to boot on any

PC. For the embedded case the kernel is usually compiled for a specific board or

248

hardware configuration. Booting directly from compact flash, by loading the kernel

image off either the external flash or the on-board flash and allowing it to use the

external flash for its root filesystem is technically possible from a hardware standpoint. It

does also require software co-operation. The Viper kernel was recompiled to have the

necessary drivers built into the kernel to read the compact flash thought its PCMCIA

interface and to be able to read an ext2 or FAT filesystem on the card. It was found that

despite the kernel having the drivers which were previously compiled as modules, built

into its image, there were more file dependencies that could not be resolved to get it to

work. The problem was circular in that it required files from the filesystem in order to

read the file system. This could have been overcome by creating a filesystem in the

on-board flash which contains the necessary files, but it was felt that the time consumed

was too great for the benefit that would be obtained.

B.3 Control Software

B.3.1 Diamond Device Driver

The Diamond DMM32AT card was purchased in the belief that it is provided with

open-source driver code. It was assumed that the necessary changes could be made to

this source code to allow it to be used with the Arcom Viper SBC. Unfortunately it was

subsequently found that on closer inspection of the provided code all that is supplied is

an open source kernel module and pre-compiled i386-Linux library which an application

can be linked against. The driver is essentially what is known as a user mode driver. The

kernel module handles interrupts and notifies the library code residing in user space of

the confirmed interrupt and supplies it with any data resulting from an ADC conversion.

The configuration of the card is performed in the closed source library. This was

obviously unsuitable for use with ARM Linux as the library is not binary compatible, so

the UK supplier was contacted to find out if the source code could be obtained. In spite

of the fact that at least one other customer was reported to be interested in an ARM port,

they were not prepared to contact the manufacturer about releasing the library source, or

putting a time scale on work to port the library to ARM Linux. Their library has been

coded in such a way so that it can be compiled for several operating systems (such as

Linux, QNX, Windows, and DOS) whilst maintaining the same API, which may be a

significant factor in their unwillingness to release source code due to the loss of

intellectual property in their approach to creating a multi-operating driver system API. It

was subsequently realised that the supplier (Diamond Point International) is only a

distributor for Diamond Systems Corporation and although bears a similar name, does

not necessarily represent them, and that also the source code is available directly from

Diamond System for an undisclosed fee.

249

Without the library, there was a limited amount of information available from the

accompanying documentation about how to use the card from a low-level of register

access. Actual examples given related to either simple one shot software sampling, or

using their API and library to achieve higher rate interrupt based sampling. Although all

of the registers are documented, it was not possible to ascertain how several advanced

features of the card functioned such as performing auto-calibration, loading calibration

data, and setting the programmable range of the DAC to something other than the 5 V

default.

To preserve the general structure and maintain API level compatibility with the library

provided by Diamond (in case an ARM variant might be release in the future), it was

decided to disassemble their binary library, and as best as possible, reconstruct it as C

source so that it could be re-compiled for any Linux architecture. Support for other

operating systems was not required which simplified the task somewhat. From the

unstrapped binaries contained within the static library archive it was possible to

’stub-out’ the general structure used from the function names and their dependencies

upon each other and on function calls to system libraries such as the POSIX pthread

library. It was then possible to reconstruct the basic functionality required to run the card

by rewriting the source using the register documentation and a certain amount of trial

and error using the actual card to test the code. It was also possible to achieve some

efficiency improvements as the existing library supports much of Diamond’s product

range and checks which card type is in use every during every function call. There was

also evidence of a kind of state machine which appeared to be producing unnecessary

overhead.

Integrating a C Callback with a C++ Application One problem facing C++

programmers is finding a method to connect to the outside world, when this is often done

at the C level by registering a function pointer to an operating system call. C++ function

pointers are usually incompatible with the C function pointer and there can be compiler

specific implementation differences. A solution to this problem was required to write a

class to handle the Diamond DMM32AT card. It was desired that a single instance of a

class could be instantiated and methods of the class called to initialise the card and

deliver sample results. The Diamond supplied library for use with the card uses the

typical C callback technique were a user C function can be called when sample results

are available. No state information is retained by the function and global variables have

to be used to gain access to the card status and sampled data once inside the callback

function. Retaining all of the state information within a class and having a class method

called when data is available is a preferable and more contemporary approach, although

opinions as to the correctness any approach in software often vary greatly depending

upon the background of the individuals concerned. It is normal practise for C callback

250

interfaces to allow a void* data item to be set and then passed to the callback function

when it is called. The called function understands the significance of the pointer and can

cast it to another data type or simply ignore it as appropriate. This allows the

programmer to pass current contextual information into the function or provide a pointer

to a data storage location which is only known at run-time. The Diamond library

provides this interface (they state in the documentation) to maintain calling compatibility

with Microsoft Windows. However the pointer is not retained and passed to the callback

when set. Since an API compatible library was written for this project to allow

cross-compilation to ARM Linux, this functionality could be easily added. A C++ class

member which has been declared static can be used as a helper function and set as a C

callback function and a reference to the class instance (this pointer) can be set as the

void* data item. The helper function is compatible with the C compiler calling interface,

but is also a C++ class member so it can cast the void* data item back to a class instance

an call the appropriate class method. In this case the method was made a pure virtual so

that the class could be derived from and the derived function would be called instead.

The derived class was a controller class and the callback event is used for the controller

update period using the sampled feedback data. This keeps the details of accessing the

DAQ card separate from the control code which remains synchronised to the sampling

hardware and so it’s period is determined by the hardware rather than by software timers.

The same callback helper function technique was used with eCos for the engine

controller described in the next chapter to provide thread and timer class abstractions

from the eCos C interfaces. There may be some irony in the fact that wrapper functions

are required to create a C++ API for eCos when it is actually written in C++ and the

internal thread objects are represented by classes, but it only publishes C level interfaces.

Since eCos is open source, it is possible to use the internal C++ infrastructure directly,

but its use is not documented or recommended and there is no guarantee that it may not

change significantly at the internal C++ level at some time in the future.

B.3.2 Phillips SJA-11001 CAN4Linux Driver

An Arcom AIM104-CAN PC/104 form factor Controller Area Network (CAN) bus

interface which is based upon Philips SA-11001 controller has been used to provide a

CAN interface to the Viper board. This is to allow deterministic data exchange between

the engine controller and the dynamometer controller should this be required. A

modified version of the CAN4Linux driver was cross-compiled for the Viper. The driver

required modification to the ISA bus address range from 16 to 32-bit data storage type

due to the address range allocated to the ISA bus by the Viper. Also, the opto-coupled

interface on the AIM104-CAN required inverting the logic as a configuration parameter.

Once these two issues had been resolved, the driver was found to function well even

though it had been written for x86 hardware with a real ISA bus.

251

B.4 Application Software

The Viper board was supplied with a cut down version of the X11R6 X Window System

referred to at the time as TinyX. A very limited amount of information or documentation

could be found about this, and only by examining the X11R6 source it was found to be

possible to configure the X11 build process to generate the TinyX server. TinyX (or

SmallX as it has more recently become known) is a highly stripped down version of the

X server for embedded systems, sometimes referred to as a thin X server. Exactly what

functionality has been removed and how this impacts on compatibility is not

immediately clear.

A possible implementation (or reimplementation) of TinyX is called KDrive named after

it’s author Keith Packard. The terms KDrive and TinyX were being used interchangeably

at the time this work was carried out, but it is not clear if they amounted to the same

thing at some point in time. Keith Packard has been a long time contributor to the X

Window System until a schism occurred in the XFree86 project which lead to Keith

Packard forming the X.org project which has largely superseded the XFree86 project due

to the high level of adoption and support it has received. Keith Packard is a well known

member of the open source community, but despite having a personal web-page and

public profile, does not seem to be directly contactable and there is otherwise very little

information or support for either the TinyX or KDrive servers. This meant that

upgrading the X server or 8-bit pseudo colour palette and dithering issues encountered

were not resolved. A variety of window managers were tested including Matchbox,

Blackbox and some of it’s derivatives such as Fluxbox and Openbox. Also, a selection of

applications which provide a taskbar or panel interface were tested. The most suitable

combination was found to be fbpanel and Openbox 3 window manager, which at version

3 was completely rewritten and no longer contains any source code in common with

Blackbox. Both of these programs could be configured into a minimalistic state that

worked with the colour palette restrictions and the touchscreen touches which are

equivalent the left click of a mouse.

The next section describes how a widget set was chosen and tested for use in the resource

constrained TinyX embedded environment, so that an application could be developed for

monitoring of the engine test bed which is discussed in the subsequent section.

B.4.1 Selection of a Widget Toolkit

Widget toolkits (or GUI toolkits) are sets of basic building blocks for graphical user

interfaces. They are often implemented as a library, or application framework. Most

make extensive use of an object-orientated framework not least as the components of a

252

typical GUI such as windows and menus are intrinsically objective in nature. Also these

components lend themselves well to the concepts of inheritance and building upon

abstract bases classes. Others which are intended for use with non-object orientated

languages such as C are implemented in procedural code which may have some level of

modularity.

Making a Choice for an Embedded Application The toolkit that was chosen for

development of an application was wxWidgets (formerly wxWindows derived from the

name Windows and X widgets, but changed due to Microsoft trademark infringement). It

was originally created in 1992 at the AI Applications institute in the University of

Edinburgh (Smart et al., 2005). This is an extensive toolkit which can also be described

as a middleware as it provides many non-GUI components for various things such as

strings, regular expressions, and array container classes for handling numeric data, all of

which are useful for loading, handling, and saving data from files. The toolkit provided

the type of codebase for the author which a team of software developers would normally

have written to have at their disposal and might otherwise have taken considerably

longer to develop and test. There was also the added benefit that wxWidgets provides a

similar API framework to MFC (although it predates MFC) which the author has

previous industrial experience with, somewhat lessening the learning curve. The cross

platform and open source nature of the toolkit means that any code written could be

potentially moved and cross compiled to another platform should the need arise and

there is also a possibility it could be reused in other areas of work. For example a PCB

drilling application was initially written to and used extensively to CNC drill the

majority of printed circuit boards designed for this project. The code for this application

was recycled to form the initial basis for the dynamometer application.

As a reasonable alternative to wxWidgets, there is another cross-platform toolkit called

Qt (pronounced cute). It is was produced by a Norwegian company which has changed

names many times (Quasar Technologies, Trolltech, Qt Software, and Qt Development

Frameworks) and currently owned by Finnish telecommunications company Nokia who

have used it for many of their handheld mobile products and have recently sold the Qt

licencing rights on to another company called Digia PLC. The toolkit is open source and

is free to use for non-commercial purposes, but a licence is normally required for

commercial use. A embedded variant is also available. Qt based applications that were

run on a PC but re-targeted to display on the Viper’s LCD were found to render well,

using dithering to display within the limited colour environment of the 8-bit display. An

initial attempt to cross-compile the embedded version of Qt was made so that it could be

compared with wxWidgets, but significant problems in the build process were

encountered that could not be immediately resolved. Since time and effort had already

been invested in using wxWidgets, Qt was not explored any further.

253

Unlike Qt, wxWidgets attempts to maintain the look and feel of the native environment

which it is run on. For this to be possible (and to reduce the development overhead)

wxWidgets makes use of other widget sets from the native environment which the library

is configured then compiled for. For Windows this is the native Windows widget set, but

for Unix based X Window environments, a choice of intermediate widget sets can be

used which have a C API (as opposed to C++ used for wxWidgets and Qt). It allows

GTK+ (GIMP toolkit), Motif, and its own universal X Windows widget set to be used, as

shown in Figure B.3. Where X Windows is used directly the actual widget set is

provided by wxWidgets itself in a layer called wxUniversal, but is only a partial

implementation with not all features working or provided. For use on the Viper this

means that unless the X Windows variant is used then the toolkit libraries upon which is

relies needs to also be cross-compiled and made available on the board. The convenience

of a developed application framework means that there is significant additional layering

which adds to the processing overhead between making a function call within the

application to the framebuffer display being modified. This overhead is insignificant for

most PC based applications, but was found to impact noticeably for embedded ones.

Operations requiring dynamic memory allocation or rendering were found to be

particularly slow. This is most noticeable during application start up when both memory

allocation and rendering are taking place. The usability was pushed towards a boundary

of being too slow to be of reasonable use. For this reason all of the available widget sets

which wxWidgets supports were cross-compiled and tested on the Viper.

Xlib

Xt

QtGTK+

MotifXaw

wxUniversal

wxWidgets

X server

Kernel framebuffer driver

TCP

Figure B.3: wxWidgets and X Window System and widget toolkit stack

254

Motif Motif is a widget toolkit for building graphical user interfaces under the X

Window System on Unix and other POSIX-compliant systems that emerged in the

1980s. It’s 3D chiseled style has a somewhat dated appearance by current standards, but

it’s relative simplicity makes it still acceptable for industrial user interface applications

where more complicated shading effects might be considered unhelpful. The Motif API

is covered by the standard IEEE 1295. Both the use and distribution of the original

release of Motif requires the payment of royalties, but since the year 2000 the source

code has also been released under a more permissive licence as Open Motif. An

independently developed open source implementation called LessTiff has also been

written which provides an alternative to Open Motif whilst still conforming to the IEEE

1295 API. Both variants cross-compiled and installed alongside a wxMotif and tested on

the Viper.

GTK+, The GIMP Toolkit GTK+ is a C based toolkit that was originally created (as

GTK) for the GNU Image Manipulation Program (known as GIMP), a raster graphics

editor, in 1997 by Kimball, Mattis, and MacDonald of the University of California,

Berkeley, to provide an alternative to Motif. GTK+ does not use the X Toolkit Intrinsics

(Xt) library which allows GTK+ to be more portable, using GIMP Drawing Kit (GDK)

to interface to the low level Xlib. A possible disadvantage of this approach is that it

doesn’t have access to the X resource database, which is the traditional way for

customising X11 applications. For the embedded software developer the disadvantage of

GTK+ is that it has many sprawling cross-dependencies and it increasingly depends on

other libraries such as ATK (accessibility), pango (international text rendering), cairo

(2D vector rendering) which have their own dependencies and version sensitivities and

run-time overhead. Getting all of these dependencies cross compiled and installed into

the limited flash disk space is both time consuming and often challenging.

The wxUniversal native X11 interface was found to be the fastest and most responsive,

but lacked a full enough implementation to be useful as some control did not render

correctly or at all. wxMotif was found to be slower than wxUniversal and still had

rendering deficiencies and incomplete control implementations. Both Open Motif and

LessTif were tested and found to be similar in performance, although there were some

subtle differences with the rendering and functioning of widgets, neither could be said to

better overall. GTK+ had a fully functional widget implementation, but was found to be

too slow to be useful and there was colour palette issues where each time the application

(or any other application) was run, colours in the palette were modified which often lead

to the display appearing corrupted or unviewable when similar colours which are

intended to contrast are placed adjacent to each other. When the source code for both the

wxUniversal and wxMotif layers of wxWidgets was examined, it was apparent that they

had not be updated for many years during which time wxWidgets had undergone many

255

feature changes and major releases. This undoubtedly due to their lack of demand when

compared to the mainstream wxWin32, wxGTK and wxMAC layers.

A solution considered was to use either GtkFB (GTK+ built in support for the Linux

framebuffer using a single process model) or the work of the GTK on DirectFB project

(GTK-DFB) to completely remove the window manager and protocol overhead of the X

Window System using a windowless environment to render applications directly to the

framebuffer using a version GDK which interfaces to DirectFB instead of Xlib. This in

turn could in theory be used by wxWidgets without requiring any modification. Figure

B.4 shows how these software layers would stack on top of each other. DirectFB stands

for Direct Frame Buffer and is a self contained abstraction layer library for Linux

framebuffer drivers. It is also possible to use Qt embedded with DirectFB. The

GTK-DFB approach would probably give a substantial performance increase, but was

not pursued due to there being too many uncertainties associated with getting all of the

dependencies cross-compiled and installed on the Viper and if it would even work with

the particular framebuffer driver version found on the Viper which is closely coupled to

the kernel and is not merely upgradable. At the time that this was investigated, GTKFB

and the GTK-DFB project were considered experimental and appeared to not be actively

supported for the current GTK+ version.

Qt for embedded
Linux

GTK+

wxWidgets

DirectFB

Kernel framebuffer driver

GTK-DFB

Figure B.4: wxWidgets on top of a DirectFB stack

Limitations of Legacy Pseudo Colour Support and an 8-Bit Passive LCD Display
The display used was a 8-bit Super-twisted Nematic (STN) LCD display which at the

hardware level consists of an 8-bit data bus with control lines for a pixel clock, a line

clock, and a frame clock. Since the bus is 8-bit the screen is only able up to 256 different

256

colour shades. The framebuffer device must limit itself to a palette of 256 colours whilst

a dithering patterns are used to create the illusion of more colours. Qt based applications

that were redirected from a desktop PC to use the TinyX server display over a network

connection were able to use dithering to render reasonably well even when attempting to

display a high number colours such as a web page with photographs. GTK applications,

whether run on the board, or redirected from another PC, were found to display poorly,

and did not attempt to dither, but instead modified the palette, displacing colours already

in use and often making the display unusable through colour cycling. The disrupted

colour allocation persists even after a reboot. For this reason an updated version of

GTK+ was persued to allow other dependent software to be tested (such as Matchbox

and fbpanel). The upgrade path was obstructed by the fact that more recent versions of

GTK+ had adopted the use of a 2D rendering library called Cairo. After much

experimentation with different versions a freedesktop.org bug number 4945, with the

description “Cairo doesn’t support 8-bit pseudocolor visuals”, was found to have been

reported by other users in November 2005. This had been reported in the context of

GTK+ applications that had previously worked, but had started to crash when run on

8-bit X server displays. Since the bug had been reported around 2 years prior to this

work and nothing had been done to fix it in the interim period, it looked as if support for

8-bit displays had effectively been abandoned. If nothing more, then it was clear that

Cairo and GTK+ releases were not being tested on 8-bit displays prior to release as it

was left to end-users to discover the lost functionallity. This issue was eventually

confirmed to have been fixed in version 1.8.6 of Cairo by end-users who posted their

testmonials in Febrary 2009.

B.5 The MPC555 and Time Processor Unit

B.5.1 Time Slicing

The TPU executes time functions on its channels. Each time function is made up of

so-called states which are simply a group of micro-instructions. Despite the fact that

there is only one execution unit per TPU, all time functions are able to run concurrently.

This is achieved by the fact that the execution unit uses time slicing to service a

channel’s state, before moving on to the state of another channel. The execution unit is

not able to decide which channel to service next as this is handled by the scheduler. The

scheduler looks at all the channels which are requesting service and decides (based upon

channel priority) which channel number to pass to the execution unit. Unlike a software

operating system, the scheduler and execution unit are autonomous parts of the hardware

architecture which allow the TPU to achieve a high degree of real-time performance with

small but predictable latencies. Despite the fact that all channels can run time functions

257

concurrently, the more channels that are running, the longer a particular channel may

have to wait for service. The latency for a channel is determined by the number of

channels running, the longest state in each function, and details of how priorities are

assigned. The worst case latency of a particular channel can therefore be calculated.

B.5.2 Channel Priority Levels

The TPU employs a primary and a secondary priority scheme that are both used together.

The primary scheme prioritises requesting channels that have different priority levels.

The user assigns a primary priority level of high, medium, or low to each channel. The

secondary scheme prioritises requesting channels that have the same priority level. If no

channel of the priority assigned to the current time slot is requesting service, the TPU

scheduler can pass priority to other levels. Granting service to a different level channel is

called priority passing. Priority passing is implemented in hardware and does not

contribute to worst case latency.

Inevitably, channels having the same priority level will request service simultaneously,

because channels can randomly request service. The secondary scheme prioritises these

requests. The scheduler services channels on each of the three priority levels, beginning

with the lowest numbered channel on that level. It services all of the requesting channels

of a particular level, before clearing any of them for new service. This means that the

choice of pin for a particular function may affect how often it is serviced which must be

borne in mind when designing and allocating pins to external hardware. The two priority

schemes are designed to ensure that high demand functions are serviced frequently and

that there is a minimum time allocation to all channels requesting service, regardless of

their priority level.

B.5.3 Code Development for the TPU

Development of custom code for the TPU might be considered a daunting task for

someone with no previous experience as it requires the use of a rather obscure

micro-instruction assembly language. Unlike the assembly language of a conventional

processor, there are tight constraints on the exact order that instructions are relevant and

permissible. There is no multiply instruction, but there is hardware support to make

multiply routines easier using sucessive additions. The TPU has only ten user registers

shown in Figure B.5. There are seven 16-bit registers: two timer counter registers (tcr1,

tcr2); the accumulator (a); the data input/output buffer (diob); the shift register (sr); the

event register temporary (ert) and the preload register (p). The two timer counter

registers are free-running counters and are usually only read from and not written to.

258

Register p can also be used as two separate 8-bit registers p_high and p_low.

Additionally there are three 4-bit registers, two of which (chanf_reg and dec) can be used

as a combined 8-bit register chan_dec. The TPU uses dual-ported RAM to exchange

parameters with the host CPU which can also be used to pass parameters between

channels, and it is this mechanism which allows the state of one channel to affect the

state of another such as for an angular position (input) triggered output. Each channel

has eight 16-bit parameter words, the first of which is used for configuration of the

channel, and the rest can be used for whatever purpose the channel’s assigned function

requires. The word sized parameters are often interpreted in two 8-bit halves or smaller

proportions to increase the number of parameters that can be read in one access of the

RAM. Each word must be accessed coeherently as a whole word (not an 8-bit

read/write), so if a CPU resident program needs to write to one part of the parameter it

must first read all of it, modify the subsection of the parameter then write the result back

to the parameter RAM.

The TPU has five instruction formats, each of which can have one of four types of

subcommands, designated by ram for parameter RAM, chan for channel, au for

arithmetic unit, and finally the sequencing subcommand has with no designator. The

subcommands for each instruction are separted by a semicomlon. The last subcommand

in an intruction statement is terminated by a period. Each intruction takes place in two

system clocks

259

Figure B.5: Layout of the ten TPU User Registers

Examples of code for a single micro-instruction of code look like:

chan PAC:=low_high, (* wait for a low to high transition *)

neg_tdl, (* negate transition detect latch *)

cir. (* interrupt CPU *)

also,

%macro MY_PARAM 'prm1'. (* Create an alias for the second RAM location *)

au ert:=tcr1+p; (* add tcr1 and p then assign to ert *)

ram diob->@MY_PARAM. (* copy diob contents to parameter RAM prm1 *)

and,

goto LABEL. (* Unconditional branch to code beginning with LABEL *)

260

A TPU channel corresponds to a single digital I/O line. There are sixteen channels per

TPU execution unit. A function has to be provided for each of the channels to be used

and the same function can be assigned to multiple channels if required. All of the

microcode instructions are 32-bits wide and execute in two CPU clock cycles. All of the

sixteen channels share the same set of registers, but each channel has its own private

RAM area which must be used to store its data due to the fact that the registers are

shared.

Entry Points An entry point tells the TPU execution unit where to go to start

executing a state. An entry point is an address that points to a time state. Each function is

allowed sixteen time states, which when multiplied by the maximum of sixteen channels

gives a maximum of 256 entry points. Entry points are stored in an entry table.

B.5.4 The Standard Masks

Historically, processors which contained a TPU were supplied with one of two so-called

standard masks which are pre-programmed into the TPU’s ROM. The standard mask

contained the microcode for several commonly used TPU functions. The original TPU

automotive standard mask is known as Mask A, and has functions shown in Table B.1.

Short name Full name Entry point
1 QDEC Quadrature decode 6
2 SPWM Synchronised pulse-width modulation 7
3 DIO Discrete input/output 8
4 PWM Pulse-width modulation 9
5 ITC Input capture/input transition counter 10
6 PMA/PMM Period measurement with additional/missing transition detect 11
7 PSP Position-synchronised pulse generator 12
8 SM Stepper motor 13
9 OC Output compare 14

10 PPWA Period/pulse-width accumulator 15

Table B.1: Mask A functions

Mask G, is known as the motor and motion control standard mask supports DC brushed

and brushless motors, AC induction motors, stepper motors, switched reluctance motors,

and multi-axis control using the appropriate functions shown in Table B.2.

261

Short name Full name Entry Point
1 FQD Fast quadrature decode 6
2 MCPWM Multi channel PWM 7
3 HALLD Hall effect decode 8
4 COMM Multi phase motor commutation 9
5 NITC New input capture/transition counter 10
6 UART Asynchronous receiver/transmitter 11
7 FQM Frequency measurement 12
8 TSM Table stepper motor 13
9 QOM Queue output match 14

10 PTA Programmable time accumulator 15

Table B.2: Mask G revision C functions

The automotive mask was the default mask supplied in ROM during the first generation

of TPU production, but the control mask could be requested as well. From TPU2

onwards the microcode memory (either ROM or RAM) is arranged into pages called

banks. As the microcode memory is shared between TPUs (on processors which have

more than one), the ability to select different banks means that a wider range of functions

can be assigned between TPUs. A TPU can use only one bank at a time and once a bank

has been selected during initialisation it is not possible to change banks without resetting

the TPU. The MPC555 contains a pair of third generation TPU3 units which are supplied

with a mask made up from Mask G with the addition of some of the more generic

functions from Mask A (FQD, DIO, ITC, SPWM). The full list of functions are shown in

Table B.3. Most of the functions are repeated over two banks, with the execption that

two new utility functions (ID and RWTPIN) have been provided in the second bank

(bank 1). The first of the new functions returns an identification number for the mask,

and the second allows the channel pin state to be read or written to as well as the current

value of the two timers tcr1 and tcr2. When the second bank is used the functions

SPWM, PPWA, and MCPWM are not available as they reside in bank 0 only.

Applications which check the mask version and also use one of the three functions only

present in bank 0 can do so by enabling bank 1 to perform the version check, then

resetting the TPU and use bank 0 thereafter.

262

Short name Full name Banks Entry point
1 SIOP Serial input/output port 0/1 0
2 SPWM Synchronised pulse-width modulation 0 1
3 RWTPIN Read write timers and pin 1 1
4 DIO Discrete input/output 0/1 2
5 PWM Pulse-width modulation 0/1 3
6 OC Output compare 0/1 4
7 PPWA Period/pulse-width accumulator 0 5
8 ID Mask identification 1 5
9 FQD Fast quadrature decode 0/1 6

10 MCPWM Multi channel PWM 0 7
11 HALLD Hall effect decode 0/1 8
12 COMM Multi phase motor commutation 0/1 9
13 NITC (New) Input capture/input transition counter 0/1 10
14 UART Asynchronous receiver/transmitter 0/1 11
15 FQM Frequency measurement 0/1 12
16 TSM Table stepper motor 0/1 13
17 QOM Queue output match 0/1 14
18 PTA Programmable time accumulator 0/1 15

Table B.3: Mask TPU3

If neither of the standard masks are suitable for an intended purpose then all is not lost as

there is an emulation mode which the TPU can operate in. The CPU and TPU share an

area of dual ported memory that the TPU can execute from once it is suitably initialised

with the required code by the CPU. There is no execution performance penalty for using

emulation mode and the TPU functions identically to the case where the code has been

permanently stored in its ROM. The source code for the individual functions (freely

available but copyrighted) can be used to construct a custom mask in whatever

combinations are needed, or custom functions can be written and combined with the

existing ones as required. The two functions from Mask A which are of greatest

importance to an engine control application (PMM and PSP) have not been supplied

with the TPU3 mask on the MPC555, so either Mask A needs to be used in emulation

mode or a custom mask created which contains these two functions (or equivalent

alternatives) to use in emulation mode. The masks are compiled into byte code from

source using a Motorola compiler called TPUMASM. The compiler reads a ’.asc’ file

which is created for the mask to instruct it which functions are to be included and what

bank location and function number they should have. The code itself is contained in a

separate ’.uc’ file for each function. The compiler outputs a Motorola s-record or SREC

format file which contains S19 records. The SREC file contains an ASCII encoding of

the binary. A short example mask is as follows:

S11F00003FFFFFFE7FFFFEFEE1E401C78E06FEF87859FEFF7A59FEFF3C7FF807BC

263

S11F001CD409FFFF525CB5FA163FF00B101DF80F8610FFFF36FEB01337FC4FFFFC

S11F00388411FFFFD9FF1FFF545CF18A545CF14AA406FFFFD007FFFFA417FEFFD4

S11F00549C17FEFF3C7FF807D409FFFF545CF3FA505DF3FEAC21FFFFBFFF0FFC78

S11F0070585FFFFFFFFFFFFFB021FEC3CFFF300B5C5E31FFB625FFFF1FFFF0074C

S11F008C70E9FEFB3FFFF00670E9FEFB30FFC006BC2340BFBC25407FBFFF477C88

S10B00A858583EFE5C583EFE70

S11F0620E001E001E0010029002B002B002B002BE001E001E001E001002B002B68

S11F063C002B002B302830283027101A302340203025402010011001100110016B

S11F06583023402030254020281428120002F8009019F81630063006F801F80195

S10F0674F801F801F801F801F801F801A0

S9030000FC

There is one record per line and each record starts with a start code which is the S

character. Imediately following the start code is a record type code then the remaining

hexadecimal byte sequence determined by the record type. The S19 SREC file format

output by the compiler is so-called as it contains S1 records which are data sequences

and a final S9 end-of-block record. The file is made up of S1 records with the exception

of the final S9 record used to terminate the file. In an S1 record characters use

hexadecimal notation. The next two characters after the record type code are used for the

byte count which is the number of bytes remaining in the record. Following that there is

a four character address field, then the data itself. Each record is finished with a one byte

checksum. Table B.4 shows an example decomposition using the 7th record from the

example mask above. Once each record has been decomposed the data field can be

extracted and used to build a C char array of the mask to copy to DPTRAM at runtime.

Normally the offset address for most records will follow on from the end of the previous

record, but care should be exercised as each mask will usually contain a hole in the

address range where the microcode finishes and the function entry points start. By

convention the function entry points are filled in reverse order as any unsed entry points

can be used for microcode. Allocating them in reverse allows the microcode remain as a

contiugous block if it is large enough to spill over into the function entry point area. The

hole must be padded with bytes to ensure the correct code alignment in memory. Any

unused entry points will also result in holes so it is best to assign consecutive numbers to

functions to prevent fragmentation leaving only one place to pad. The hole can often be

noticed by a record which is much shorter than its neighbours, as can be seen by the

record marked red in the example mask above. Failure to observe this fact caused the

author considerable lost time in tracing the reason for emulation mode code not working

at all due to mis-aligned entry points. For example, Mask A allocates functions from 15

to 6 and the microcode occupies the space that is used for 0 to 5, but only half of number

5’s entry point space is used by the microcode which leaves a gap of 16 bytes before the

start of function 6’s entry points. If the C array containing the mask is to be copied to

264

DPTRAM as a contiguous block, then these 16 padding bytes need to be added to the

array in the correct place for the rest of the entry points to be at the correct offset. The

full Mask A converted to a C char array is shown in Appendix B.

Record Byte Address Data Checksum
Type Count Offset
S1 0x0B (11) 0x00A8 0x58 0x58 0x3E 0xFE 0x5C 0x58 0x3E 0xFE 0x70

Table B.4: Example s-record decomposition for the record
S10B00A858583EFE5C583EFE70

32-bits Offset Instruction

Microcode

0x000 1

0x5FC 384
Function 0 0 1 0x600 385

Entry points 0-15
...

...
14 15 0x61C 392

Function 1 0 1 0x620 393

Entry points 0-15
...

...
14 15 0x63C 400

...

...

Function 15 0 1 0x7E0 505

Entry points 0-15
...

...
14 15 0x7F0 512

Figure B.6: Microcode and function entry point 2kB address region

B.5.5 TPU Emulation Mode

As discussed in earlier in this section, the functionallity of the TPU can be extended

beyond the built in microcode supplied on ROM by uploading alternative microcode to a

special area of dual-ported RAM called DPTRAM. This is required if the MPC555 is to

be used for angular based engine control as the built in ROM mask does not contain any

suitable functions.

265

B.5.6 PMM and PSP TPU Functions

The two TPU functions which are most pertinent to engine control are Period

measurement with additional/missing transition detection (PAM/PMM) and

Position-synchronised pulse generator (PSP). The two functions work together to

autonomously determine the instantaneous angular position of the engine, triggering the

fuel injectors and ignition at the correct angles in the engine cycle. Once configured,

these functions are able to in-effect, run an engine with minimal intervention from the

host CPU. This relieves the CPU from the critical timing aspects of the control that

would otherwise only be achieved by writing carefully timed assembly language code

which would monopolise the CPU in order that these timings are preserved. By adopting

a combination of time-triggered and angular triggered (via TPU generated events)

approach to the control software, complex control strategies are possible without

compromising the responsiveness to hard real-time deadlines. The functions make use of

both timer counter TPU registers. tcr2 is set to external trigger and is connected to a

position pulse sensor such as the signal conditioned output of a hall effect sensor

commonly fitted to engines with electronic engine management. tcr1 is free running at a

software programmed rate derived off the processor clock and is used as a high

resolution time reference to compare against tcr2. It is the interaction between channels

which allows TPU functions to have an automous connection between input and output

channels. This is done using the channel parameter RAM (registers). In the case of the

PSP function using the PMM function’s angular position estimate to decide when to

trigger an output, the angular estimate is stored in a location in the PMM function

parameter RAM. Once the channel allocation is known, the address of the angle estimate

in the PMM function parameter RAM can be set by the application into the PSP

parameter RAM. This is used in an analogous way to a pointer in C. Table B.5 shows

how the parameter address byte is determined for a particular channel.

Channel Parameter Address
Number 0 1 2 3 4 5 6 7

0 00 02 04 06 08 0A 0C 0E
1 10 12 14 16 18 1A 1C 1E
...

...
...

...
...

...
...

...
...

14 E0 E2 E4 E6 E8 EA EC EE
15 F0 F2 F4 F6 F8 FA FC FE

Table B.5: Parameter RAM address MAP. Locations 6 and 7 in for channels 0-13 shown
in bold are only available from TPU2 onwards.

Period Measurement with Missing Transition Detection The PMM function is

described in detail by Darley (1997a) and is used with an angular timing disc mounted

on the crankshaft and detects missing transitions embedded in a series of input pulses by

266

measuring each pulse period to a 23-bit resolution using tcr1 which is set to increment at

a fixed rate derived from the processor clock. A missing transition is detected when the

current period (measured in tcr1 ticks) is greater than the previous period multiplied by a

programmable ratio. The ratio must be set to discriminate between the largest difference

in consecutive pulses that may result from angular acceleration/deceleration of the

engine and that which is caused by the so-called missing tooth. The PMM function is

usually used in conjunction with the PSP function which generates an output pulse in

relation to the missing tooth. It can also be used with the Input Transition Counter (ITC)

function to detect the phase of the engine using a camshaft mounted once-per-revolution

sensor pulse. When used in this way the function is put into Bank Mode, otherwise it is

in Count Mode. Bank Mode requires more CPU intervention than Count Mode as the

current tooth count has to be reset by the CPU after each missing transition as the

function uses the analogy that there are twice as many teeth with two missing transitions,

one in each phase of the engine. In order to discriminate between valid and false

detections the function performs the following two sanity checks:

1. The total number of transitions does not exceed TCR2_MAX_VALUE

2. The number of normal transitions (between missing transitions) is equal to

NUM_OF_TEETH

The first tooth is numbered zero so that the parameter NUM_OF_TEETH should be set

to one less than the actual number of physical teeth. For each transition the function

increments the tcr2 register. When a missing transition occurs then the value stored in

tcr2 should equal the expected number of teeth. If this is not true then an error condition

is indicated to the CPU is interrupted due to the missing transition and then on every

transition thereafter until the error is cleared and it is left to the software application to

decide what measures should be taken. In addition the following points should be

adhered to:

• PMM and PSP channels must have the same priority level.

• PMM must be allocated to a lower channel number than PSP.

• PMM must have a high enough priority to ensure that it is serviced before the next

normal transition.

The last condition can be applied more widely to the CPU as it must always be able to

service the missing transition event before the next normal transition. This is so higher

priority interrupts must not occur frequently enough or take so long to process that the

interrupt latency is not too long for the shortest (worst case) period period between

267

missing and normal transitions that occurs at high engine RPM. This also assumes that

the function serviced directly from an interrupt service routine (ISR), not by a routine

that must be scheduled after the interrupt has been processed, such as an eCos DSR

which might have to compete with queued handlers for other hardware events and be

preempted by further ISR processing for other interrupt sources of any priority.

The parameter MAX_MISSING is used to set the number of missing teeth per revolution

and must be set to at least one. The function can accommodate more than one missing

tooth. This is so that an asymmetrical missing tooth pattern can be used to allow

synchronisation to occur faster. It is not clear from the documentation if the function is

able to correctly handle two consecutive missing teeth as used by Jaguar for the

AJ26-V8 engine, although it appears that at least one normal transition is expected

between and missing transitions. A PIC microcontroller was programmed to generate the

equivalent pulse train that would be seen from the AJ26-V8, but the the PMM function

could not be made to synchronise with the sequence in Count Mode using

MAX_MISSING values of either one or two. The source code file for the PMM function

has the creation date of “Pre 89” implying that it has existed in some form prior to the

year 1989. Additional comments refer only to clean-up work and syntactical changes to

keep it in-line with changes to the compiler.

An independent investigation (Tough, 2002) into the viability of the Motorola engine

control functions for actual deployment revealed a chain of issues and limitations, the

most serious of which being:

• Resolution is limited to 16-bits of usable precision (and not the claimed 23-bits)

after which is raises an error. It continues to count up to 23-bits but the extra

precision is of no further use.

• Poor crank ’syncing’ ability taking many revolutions to synchronise and the count

can be out by one tooth either way after the missing tooth.

• Suffers from interference from other functions running on other channels during

the missing tooth transition period which can lead to loss of synchronisation.

The issue of 16-bits (or even 23-bits) resolution is that for slow cranking speeds this can

easily saturate unless the tcr1 clock rate is reduced which compromises the measurement

resolution at much higher speeds. The usable range for the 8-bit RATIO parameter is

only 1 to 1.99 spread over 7-bits of precision, but more importantly the maximum ratio

of ~2 does not permit particularly high rates of engine acceleration without potentially

causing loss of synchronisation. These factors place significant doubt on whether the

PMM function is actually suitable to run an engine without significant modification or

reimplementation.

268

Position-Synchronised Pulse Generator The PSP function is used to generate an

output transition that is referenced to a time that has been previously determined by

another channel (Darley, 1997b), typically the PMM function. The PSP function can be

used to provide an angular ignition dwell and trigger signal or a fuel injector drive signal

pulse. The PSP function has two operating modes; angle-angle and angle-time. In

angle-angle mode both the rising and falling edges of the generated pulse are determined

from angles referenced to the PMM function. The angle-time mode uses an initial

reference from the PMM function and the falling edge is determined by a fixed time

relative to the initial rising edge. Once synchronised, the PSP function continuously

generates output pulses based upon angle and ratio parameters which can be updated by

the CPU.

Angle-angle mode uses the channel parameters ANGLE1, ANGLE2, RATIO1, and

RATIO2 to determine the start and finish angles of the pulse. When the tooth count

stored in ANGLE1 matches tcr2 (the tooth count) then the rising edge is produced after a

time determined by RATIO1 multiplied by the period pointed to by

PERIOD_ADDRESS which is normally the most recent inter-tooth period calculated by

the PMM function. Since the angle between the teeth is known then the ratio multiplied

by a time gives a fractional angle between teeth. The pulse level is maintained high until

ANGLE2 matched tcr2 and a further time of RATIO2 multiplied by the period pointed

to by PERIOD_ADDRESS has elapsed. It is therefore possible to specify the pulse start

and end times in relation to the fractional angles between teeth. This can be used to

control the ignition coil dwell and trigger angles in a similar manner to that which was

performed by a mechanical ignition distributor and contact breaker points. If external

circuitry which takes care of the coil charging is present then angle-time mode may be

more appropriate as a short pulse of fixed duration at the required ignition angle may be

all that is required.

In angle-time mode the parameters ANGLE1, RATIO1, and HIGH_TIME are used to

determine the rising and falling edges of the pulse. As with angle-angle mode, when the

tooth count stored in tcr2 matches ANGLE1 then the rising edge is produced after a time

determined by RATIO1 multiplied by the period pointed to by PERIOD_ADDRESS.

The pulse is held high for a time of HIGH_TIME specified in tcr1 clock ticks relative to

the rising edge, thus it is possible to specify an injector opening angle and pulse width.

The PSP function has a number of issues documented by Motorola (Darley, 1997b)

which must be worked around in software to avoid abnormal behaviour:

1. In angle-time mode, if the falling edge is set to occur before the rising edge of

ANGLE1+1, (i.e. within a single tooth period) then a stream of short pulses will

occur as tcr2 continues to match ANGLE1. This can be avoided by setting

269

ANGLE1 to the previous tooth and using a larger RATIO1 value to bring the start

angle to the same point.

2. In angle-angle mode, if ANGLE2 = ANGLE1+1 (i.e. consecutive teeth are used

for the start and end reference points) and RATIO1 is greater than 128 (0x80), then

the pulse will last as much as twice as long as expected. This condition can be

avoided by using ANGLE1=ANGLE2 with a larger RATIO2 value.

3. If the high time of a pulse is long enough that the falling edge occurs after the next

scheduled rising edge, then the next pulse fails to occur at all. Ensuring a small

time gap between the expected end and scheduled start of the next pulse is the only

prevention for this condition. In practise this may not be easily guaranteed with

angle-time mode if the engine is under going a rapid speed change.

In addition to the limitations highlighted above, the investigation documented by Tough

(2002), also raises the issue that inter-tooth angles are timed and limited to a resolution

of 1/64 of the inter-tooth spacing (0.156 degrees for a 36 toothed timing disc). It lacks the

facility to cope with transient conditions which may require that the pulse duration is

modified whilst it is in progress or the facility to specify an end angle or time-angle

mode to prevent open valve fuelling. Also, it has been found that it can become stuck

when issuing a host service request (HSR).

B.5.7 The PCI 9056 Interface

A unique and powerful feature that the PATI augments the MPC555 processor is a

Peripheral Component Interconnect (PCI) bus which allows high-bandwidth interfacing

to another processor. Close-coupling of the MPC555 through a PCI bus to a higher

performance processor is of particular advantage for a research ECU as data collection,

processing, and alorigthm implementation can be passed on to a much higher

performance (but less determinstic) processor, leaving the able MPC555 to meeting the

strict timing requirements of engine control. The PC/104+ specification provides for a

PCI bus via a stack-through connector. A PLX Technology PCI 9056 bridge chip used on

the PATI which is intended for use in I/O intensive embedded designs such as network

switches/routers and industrial equipment using a hot swap/pluggable CompactPCI

backplane (PLX-Technology-Inc, 2002). A PCI host is the same as other devices

connected on the bus except that it is responsible for configuring the PCI bus and it must

also provide an arbiter to provide arbitration for devices wishing to master the bus. The

directions of the reset and interrupt signals are reversed for the host. The PCI 9056 can

achieve this via a strapping option. The PCI 9056 is capable of performing the host role

on a PCI bus as it has an arbiter, but it has been configured for peripheral use only on the

PATI .

270

The combination of the EPLD and PCI chipset allows a sliding memory window to be

used to access all of the processors internal resources and also the external memory

provided on the board. This is an unusual feature that is made possible through the

processor’s design which allows up to eight of them to connected in parallel on a shared

memory bus, with one acting as a master and the rest as slaves exposing all of their

internal resources to the master. This parallel architecture is potentially very powerful as

it makes a lot of intelligent digital I/O and analogue channels available on a single board.

A possible limitation to this is the relatively small address space of the processor which

would have to be shared between all of the processors. The PATI has only one processor

on it, but if it is started in slave mode, the role of the master processor (not to be

confused with a PCI bus master) can be taken on by the PCI 9056 PCI chipset, allowing

access to the MPC555 internal registers from the PCI bus. This facility has the potential

to allow direct hardware source debugging through the PCI bus thus eliminating the need

for a separate BDM debugger device, although there is no pre-existing software for this.

The PATI can be configured so that MPC555 processor’s execution can be halted from

power-up (MPL-AG, 2004). The PCI bus can then be used to write executable program

data directly to the SDRAM on the PATI, then commence execution from SDRAM, after

pre-initialising the MPC555 to boot from there.

To realise the potential of the PATI it is necessary to perform data exchange between the

MPC555 and the close-coupled processor. The PCI 9056 (as configured on the PATI)

provides a number of data transfer mechanisms. The IC has internal mailbox and

doorbell registers for indirect parameter passing and also can perform direct data transfer

between the local and host processors using direct master, direct slave, and direct

memory access (DMA) transfers. It also has an implementation of a messaging queue

called I2O.

There are eight 32-bit mailbox registers that are readable and writable from both the PCI

and local buses, and can be typically used to pass command and status information

directly between the PCI and Local Bus devices. A local interrupt is asserted if at least

one of the first four mailbox registers are written to by the PCI host. The interrupt is

cleared once each of the affected registers have been read by a device on the local bus.

The result of this mechanism is that synchronous transfers using just the mailbox and it’s

associated interrupt can only be initiated by the PCI host. Transfers in the other direction

would require polling by the PCI host in anticipation or signalling by the local device

using another interrupt mechanism such as the host doorbell register.

There are two 32-bit doorbell registers, one assigned to the local bus (PCI-to-local), and

the other to host (local-to-PCI). The registers are bit sensitive so that if any single bit is

set then it will raise a doorbell interrupt which can only be de-asserted when the set bits

are cleared by writing zero to them.

271

PCI Bus Local Bus

←→ Mailbox 0 ←→
Mailbox 1

Mailbox 2

Mailbox 3

Mailbox 4

Mailbox 5

Mailbox 6

Mailbox 7

Figure B.7: PLX PCI 9056 32-bit mailbox registers

PCI Bus Local Bus
Set LINTo# (local interrupt)−→ PCI-Local −→
INTA# Set←− Local-PCI ←−

Figure B.8: PLX PCI 9056 32-bit doorbell registers

Direct Master, Direct Slave reads/writes and DMA The PCI 9056 supports Direct

Master and Direct Slave reads and writes. In a Direct Master write, the Local processor

(Master) writes data to the PCI Bus (Slave). In a Direct Master read, the Local processor

(Master) reads data from the PCI Bus (Slave). Separate FIFOs are used to allow the

processor to perform direct reads and writes indepentently of the PCI Bus. The local bus

data exchanges can be performed using a burst mode memory transaction, although this

is not supported by the MPC555. Direct Slave mode is similar to Direct Master, but the

PCI Bus is considered to be the Master and the PCI 9056 can map transactions directly to

local bus address space which saves CPU intervention.

Direct memory access (DMA) mode transfers allow a Master on either the local or PCI

Bus to place a description of the entire data transfer that is required into the PCI 9056 I/O

accelerator registers and the whole transaction is performed by the PCI 9056. This

allows whole blocks of memory to be automatically copied directly to or from the host’s

memory to the target’s memory. DMA transfers can be preformed simultaneously with

Direct Master/Slave transfers which take a higher priority to DMA.

272

Device Drivers for PCI Data Transfers The PCI 9056 offers a variety of data transfer

mechanisms of varying complexity. The fastest or most efficient methods require the

most setup effort, but least processor intervention once the transaction is initiated. For

this reason they are only suitable for infrequent transfers of large amounts of data, such

as the copying entire memory regions. A graphics framebuffer would be one example of

this where each frame of pixel data from a video stream may require copying from the

application to graphics card memory.

It was decided to use the doorbell and mailboxes to create a syncronous mechanism for

data transfer as the requirements would intially be to transfer control parameters and

possibly logged data from a region of memory. This would leave the more advanced

mechanism as an excercise for the future if larger or higher bandwidth transfers become

required. It was decided to attempt a simple pseudo serial port driver. Since there are

eight mailbox registers, and two doorbell reigisters (one for each direction) it seemed

reasonable to divide the mailboxes equally between the sending and recieving directions

so that full-duplex communication can be performed without interference between the

two. All the registers are 32-bit double word length. One byte from the doorbell registers

was allocated for indicating the number of data bytes in the transaction and the other

three where made available for data. Additionally, 16 bytes from the four mailbox

registers can be used to transfer a total of up to nineteen data bytes for each ring of the

doorbell. Using one byte for the data byte count entures that at least one bit is set in the

doorbell so that in interrupt is raised on the recipient of the data.

As eCos was to be used for the target software on the PATI, it’s serial device driver API

was used which is layered to allow different serial harware device drivers to use a

common mechanism to provide or recieve communication data to/from an application

through a software buffer. Many of the serial configuration parameters such as baud rate

do not apply, which simplifies the level of lower level driver implementation which is

required. On the host side, a Linux kernel character driver was written which takes up to

nineteen bytes of data at a time from a connected application, and fills the mailbox then

dorrbell registers throught the PCI Bus. The target eCos driver must then clear any set

doorbell bits to indicate that the data has been received and copied. The target then rings

the host’s doorbell to indicate that the transaction is complete and that zero or more data

bytes have been loaded into the other mailbox registers, and so the process continues.

Due to the PCI Bus speed of 33 MHz and the parallel data exchange, transfer speeds are

near instanteanous when compared to RS-232 serial or CAN which must send each bit

one at time at a much slower rate. The syncronous mechanism used to transfer data

requires a lot more CPU overhead per byte transferred on both sides than then Direct

Master/Slave or DMA methods, but is still more efficient than either serial or CAN as up

to nineteen bytes can be processed in one transaction. The driver pair was tested using a

simple test applications running on the PATI and the MOPS x86 board running

273

CrunchBang Linux 9. Data was sucessfully transfered in both directions. The only

significant isssue was resolving a PCI interrupt allocation issue on the MOPS board as

some hardware such as USB appears to not work with interrupt sharing. The PATI is

fitted with DIP switches which allows selection of one of the four (named A, B, C, and

D) PCI interrupts it uses. It is a matter of trial-an-error to discover which of the four

interrupts works without conflict for a particular host. Interrupts are normally assigned

by the host PCI chipset and may depend upon the card slots ocupied on a backplane. For

a PC/104+ formfactor there is no backplane so changing the slot is not an option to

resolve conflicts. The PATI’s DIP switches allow another means to change the slot.

When an interrupt occurs on the host side, the Linux kernel calls each driver which has

claimed ownership of a device which shares the interrupt in turn. Each driver must

determine if it’s device was the source of the interrupt (without causing further interrupts

to occur) and inform the kernel. If no driver claims the interrupt then it is treated as

spurious by the kernel and intially ignored then later masked if it continues to occur and

not be claimed. If two devices generate an interrupt at the same time then the interrupt

will persist after the first device has been processed (and cleared it’s interrupt source)

and the interrupt will retrigger so that the second device’s driver will be given the chance

to process it’s interrupt source. Due to this mechanism, an interrupt handler may be

called much more frequentely than anticipated and must endeavour to determine if it’s

device is a source for the interrupt as quickly as possible to minimise the overhead to the

rest of the system. For the PATI PCI driver, this means reading the mailbox registers and

checking for set bits.

There is more work required to make the pseudo serial driver useful. As with a real serial

link, there needs to be a protocol in place to allow meaningful data exchanges to take

place and application code to process the protocol and provide and interpret the data

passed. One such protocol already exists for CAN based communication of data and

variables, between an ECU and a piece of calibration software, and is called CAN

Calibration Protocol (CCP) (Vector, 2004). CCP is simple and flexible enough that it

could be directly implemented, except it then raises the question of why a pseudo serial

port has been implemented and not pseudo CAN. In fact since CCP only makes use of

CAN’s 8 data bytes and two fixed message identifiers, then either the existing pseudo

serial (with slight modification to identify blocks of 8 bytes), or a pseudo CAN driver

would work. It actually makes some sense to use a pseudo CAN link since only the data

bytes subset of CAN would be required (the message identifier would be redundant as

the message recipient is implicitly known) and the CAN4Linux infrastructure could be

used on the host side and the eCos CAN driver API layer on the target side. It could also

provide a level of indirection so that an actual CAN link could be used instead with

minimal additional effort (assuming MCP555 TouCAN drivers had been already

written).

274

B.5.8 The U-Boot Bootloader

The name U-Boot was inspired by the German WW2 film Das Boot, and is perhaps a

play on words between the English term for a boot and the German for boat or

submarine even though the German word boot is pronounced as the English boat.

U-Boot is an open source project to provide boot-strap support in the form of a

boot-loader to a large variety of hardware platforms. It is largely based on the Linux

kernel sources and is intended to allow very early platform specific start-up code to be

removed from the kernel image and placed into the boot-loader itself. This makes kernel

images more portable and generic within a given architecture and should greatly reduce

the need to compile a kernel image for every single platform variation of a given

architecture.

The PATI board is supplied with U-Boot programmed into the external flash. PATI is not

capable of running a standard Linux kernel as the MPC555 has no MMU which is a

basic requirement for Linux. Although highly modified versions of Linux have been

developed for basic processors with small memory footprints and no MMU, Linux in its

native form is not real-time and therefore not suitable for use as an engine controller.

Even though real-time patches and other schemes such as RT-Linux and RTAI exist it is

still unwieldy and unsuitable for use as an engine controller particularly as no direct user

interaction is required which makes large parts of its functionally somewhat redundant.

U-Boot is not an operating system in its own right, but can run specially linked code with

some libc services. For very deterministic procedural code that has no task, thread, or

device driver abstraction, this may be all that is needed. However it is not an adequate

solution for anything other than procedural code or simple co-operative multitasking, i.e.

no device drivers so therefore it would not be much use as the basis of an engine

controller. Powering up the PATI results in the following serial console output:

U-Boot 1.1.4 (Jul 17 2006 - 13:21:28)

(c) 2003 by MPL AG Switzerland , MEV -10084 -001 released

CPU: MPC555 /556 Version 2 at 40 MHz:

Board: PATI -1 Rev A SN: 107

DRAM: 16 MB

FLASH: 4 MB

In: serial

Out: serial

Err: serial

pati=>

The serial console command prompt is the only way for a user to interact with a program

running on the board as there are no USB, Ethernet, or PS2 connections to provide the

usual familiar interfaces.

275

B.5.9 The MPC555 Address Map Problem

All of the registers, internal memory, and other resources of the MPC555 are accessible

from a 4 Mb region within its address space. This region does not have to be fixed in any

one location as it can be placed in one of eight locations shown in Figure B.9. U-Boot

requires that normal memory, or RAM is available from the address 0x0000000 which in

the case of the PATI corresponds to the external SDRAM. Given that the default

MPC555 memory layout (that used by convention, not by necessity) is to place the

IMMR in the 0x0 slot, this presents a problem.

The MPC555 has many of the resources of a typical embedded system located on-chip

which should make much of the existing code written for it relatively portable between

platform variants as the absolute addresses of those resources need not change.

After examination of the source code, it appeared that some existing code for the

MPC555 (examples are Codewarrior example platform code, Matlab Real-Time

Workshop bootloader, and eCos) seemed to have been written with the assumption that

the IMMR is located at 0x0. From the comments in the code and its structure, the

authors of much of this code appear to have recognised the possibility that the IMMR

might be relocated from its default location and have made some use of compiler macros

or relative addresses to define the offsets of the various system registers. However the

actual implementations appear to be incomplete (and therefore untested) in that respect

as there are always some dependencies on hard-coded address locations meaning that

further work and testing would be required to get them working correctly with the

IMMR anywhere other than in the 0x0 position.

276

Figure B.9: Diagram of the eight possible IMMR locations within the full address space

The solution is to replace U-Boot and in order to remove the 0x01C00000 dependency to

allow more standard MPC555 code to be compiled and run provided the hardware has

been initialised correctly by some board specific start-up code. However, this is far from

straightforward. Because of the unusual hardware configuration of the PATI board

(having resource access through a PCI Bus), U-Boot initialises an external memory

controller (EPLD) and the SDRAM which must be brought online and for correct

refreshing and allowed to settle before memory can be accessed reliably. The SDRAM is

needed for storage of the application image as the processor only has 26 Kb of SRAM

which is sufficient to provide a stack for the boot-loader, but not much else.

The EPLD initialises the processor’s start-up state on power-up and after a hard reset.

The EPLD is factory programmed to force the IMMR to 0x01C00000 using the

processor’s Hardware Configuration Word (HCW). The EPLD asserts the HCW on the

data bus to initialise the processor which stores it in a register, and HCW is set to place

the IMMR into its furthest slot away from 0x0 (0x01C00000) to allow for 16 Mb of

SDRAM to start at 0x0. Paradoxically the IMMR location is set by a register within the

IMMR itself which moves with it to the new location when it is changed. The HCW can

be partially controlled using board mounted DIP switches to select certain operation

modes. Once the processor is running the HCW register can be changed in software and

after any subsequent resets the changes are applied. It should be possible to get U-Boot

to perform this operation and reset itself, or to halt execution using a hardware debug

tool and to directly modify the HCW and perform a reset.

To permanently change the HCW used on power-up, so that U-Boot is no longer

required, the value stored for the HCW must be reprogrammed in the EPLD. This can

277

only be done using the PCI chipset EPROM channel which requires the co-operation of

the PCI 9056 chip. MPL have provided the necessary function calls in a special version

of U-Boot which can be called from the command prompt. However any of the

commands which reference the PCI chipset seem to fail, perhaps because no host is

present the PCI 9056 is unable or unwilling to co-operate. As there is no PCI host, any

memory accesses to the PCI region were found to cause machine check exceptions, i.e. a

crash. This makes reprogramming the EPLD without a host (or direct reprogramming of

the EPLD using a JTAG tool and factory firmware) impossible.

The only remaining solution is to make the MPC555 use its internal shadow flash to get

the HCW at power-on rather than to load it from the external memory bus. This also

requires the co-operation of the EPLD which is done using the on-board DIP switches.

The shadow flash is a small memory region (Table B.6) that is page selectable in place of

the normal internal flash starting at the same memory location, at the beginning of the

IMMR, usually at 0x0.

Offset Range Description
0x00

Reset configuration word
0x03
0x04

Reserved for future applications
0x0F
0x10

General use MoneT shadow information
0xFF

Table B.6: Table of shadow flash layout

The shadow flash region shown in Table B.6 can be programmed using a suitable

hardware debugging/programmer tool and the appropriate software.

B.6 Porting eCos to PATI

With the provision of a board port for eCos, the Redboot bootloader (itself a minimal

eCos application with no kernel included) was compiled and flashed into the MPC555

internal flash, a process which is quite convoluted, but only needs to be performed once

per board. It was done by compiling a modified version of U-Boot which was changed to

enable the internal flash programming voltage by writing to a register in the EPLD.

U-Boot is able to perform a self-update. The cross-compiled U-Boot binary image is

converted into the correct format and uploaded over serial to the PATI using U-Boot.

U-Boot is then able to determine that the binary is a valid U-Boot image and then update

the external flash with the new image. Once the board has been reset, the modified

version of U-Boot runs and enables the internal flash programming voltage. At this point

278

a hardware debugger is used with the BDM port to take control of the processor, set the

IMMR region back to 0x0, then perform a soft reset of the processor (leaving the

programming voltage enabled). The harware configuration word in shadow flash can

then be written as described in the previous section. It was found that this must be done

before writing to the main flash area as the erase operation for the shadow region also

clears the main region. The internal flash can then be programmed with the Redboot

image using Codewarrior. Codewarrior uploads a small program into the MPC555

on-chip SRAM using BDM and excutes it. The program receives the image to be flashed

over BDM and performs the flash writing operation in stages. With the internal flash

written, the PATI can be powered down and the DIP switch setting is changed to use

internal flash to provide the harware configuration word (HCW) instead of the EPLD.

Once powered back on, the PATI will then be able to boot Redboot from internal flash

from reset and provides the following output over serial:

+ RedBoot(tm) bootstrap and debug environment [ROM]

Non-certified release, version PATI - NCL - built 12:30:01, Jul 16 2008

Copyright (C) 2000, 2001, 2002, 2003, 2004 Red Hat, Inc.

Copyright (C) 2003, 2004, 2005, 2006 eCosCentric Limited

RAM: 0x00400000-0x013fffff, [0x004088c0-0x00fe0fff] available

FLASH: 0xffc00000 - 0x0, 64 blocks of 0x00010000 bytes each.

RedBoot>

The external flash was configured to have the following contents:

RedBoot> fis list

Name FLASH addr Mem addr Length Entry point

FIS directory 0xFFC00000 0xFFC00000 0x0000F000 0x00000000

RedBoot config 0xFFC0F000 0xFFC0F000 0x00001000 0x00000000

jffs2 0xFFC10000 0xFFC10000 0x00050000 0xFFFFFFFF

nano 0xFFC60000 0x00410000 0x00050000 0x00410000

enginecontrol 0xFFCB0000 0x00410000 0x00080000 0x00410000

The external flash is formatted to have a FIS partition which allows it to be used like a

disk, having a partition table. The first partition is the partition table itself which

describes the rest of the flash contents. The next partition contains Redboot configuration

parameters such as the default baud rate and whether to use a startup script to

automatically load and execute an application for example. A JFFS2 file system was

created in the next partition to provide a small filesystem for the application to use for

parameter storage or configuration data. The JFFS2 partition contains only one XML

formatted configuration file, but could contain more if required. The minimal console

279

based text editior called nano was cross-compiled as an eCos application using a port of

pdcurses (public domain curses, a light weight re-implementation of ncurses) and takes

the next partition place. The editor can be used to load the XML file from the JFFS2

partition, edit and save it, requiring nothing more sophisticated than a terminal program

to edit application parameters (such as controller gains) in place on the board. The last

partition defined is for the engine control application and is positioned last to allow it

space to expand as it is developed and functionallity is added. Applications are run by

loading them from flash into the external SDRAM and excuting them from there rather

than directly from flash. The external SDRAM was used since Redboot is already using

part of internal SRAM for it’s stack so this was the most straight forward approach.

B.6.1 Real-time Performance

Being real-time capable is an obvious requirement for a low-level engine controller,

however there are different levels of real-time. As far as eCos is concerned, its real-time

capabilities are relatively good by virtue of the kernel’s design, although there are no

absolutes, as the exact performance depends upon the precise configuration and target

hardware. It has to be accepted that the determinism will always be less than the

equivalent procedural code and there is an overhead associated with context switching.

The kernel can optionally be instrumented to assess various latencies and the effect of

the actual instrumentation is taken into account. It must also be conceded that any

dynamically scheduled software system which is subject to potentially random external

hardware interrupts will suffer reduced determinism, thus reducing its predictability.

eCos reduces this affect by keeping interrupt service routine (ISR) durations to a

minimum. As a device driver implementer you are advised, but not compelled to adhere

to this bare minimum ISR approach. The body of work that has to be performed in

response to an interrupt is done in a deferred service routine (DSR). These DSR’s run in

their own context once an interrupt has been acknowledged. The occurrence of another

interrupt from another source will cause the execution of a DSR to be suspended until

the relevant ISR has been processed. Application code is blocked until all the DSR’s

have finished or yielded. This behaviour allows good overall performance with low

latencies, but does make application code less deterministic as even the highest priority

thread has to wait for DSR’s to complete. The exact interrupt behaviour is configurable

as to whether interrupts use their own stack or whether nested interrupts can occur and if

any arbitration methods are used.

B.6.2 Open Source Architecture

The availability of the source code is an important consideration for the requirements of

this project. The PATI has a unique hardware configuration and as a consequence of this

280

there was no pre-existing software support for it. It would have been possible to run a

closed source proprietary OS on it, but when inevitable difficulties arise with the

particular hardware it would unlikely have been any assistance would be available

without an expensive support contract, and it might not have been possible to resolve

those difficulties otherwise. The fact that eCos is open source makes it transparent and

the full execution path, from application code, through kernel code can be stepped

though and debugged. It also demystifies the workings of the kernel and makes porting

to new hardware possible. It should be stressed though, that possible does not

necessarily mean it is easy or time and cost effective. It is always a trade-off between

time, effort, and cost and therefore open source does not equal free.

B.6.3 Configurability and Scalability

eCos is made highly configurable by the extensive use of compiler directives and

conditional compilation. It is intended for firmware applications in highly embedded

systems that have fixed hardware and have very little need to change configuration at

run-time. This makes it possible to compile only the code that is absolutely required for

a particular application on a particular piece of hardware. It is generally considered bad

programming practise to litter source code with conditional statements of compiler

directives as it can lead to maintenance issues, effect code readability and introduce bugs

into code. eCos embraces and manages this through the use of a TCL derivative script

language called CDL. A set of utility programs are used to manage the inclusion of

packages and the configuration of all of the various options. These programs are able to

parse the CDL options and generate a build tree with all of the required header files to

provide the necessary compiler pre-processor defines for a particular configuration. To

further reduce the size of the resulting application binary, the eCos developers had a

special extension implemented in the gcc linker to force it to remove any unreferenced

(unused) code sections. A typical package might include an optional device driver, or a

software component such as a TCP/IP stack. As a result of this lean approach, a typical

self-contained eCos application raw binary image, which includes all of the kernel code

and the actual application, might be less than 100 kB in size and boot within one second.

When compared to Embedded Linux, whose kernel alone is over 6 MB and can take

several minutes to boot from flash.

B.6.4 Serial Interrupt Delay Problem

The use of the hardware serial device drivers with the transmit interrupt enabled revealed

a further issue. This was at first thought to be a bug or limitation of the driver code, but

after investigation proved to be an unfortunate limitation of the hardware, which is a

281

Algorithm B.1 Serial Transmission

1. Application calls cyg_io_write() with char array

2. IO layer driver code unmasks Tx IRQ

3. Tx interrupt imediately �res as bu�er is already empty

4. ISR masks Tx IRQ and posts request for serial DSR

5. DSR calles generic serial.c code which calls device speci�c code

6. Device code copies a single character the returns success

7. Shift register copies character to empty hardware for immediate dispatch

8. serial.c attempts to copy next character, calls device code again

9. Device code copies a single character to now empty bu�er returns sauces

10. serial.c attempts to copy next character, calls device code again

11. Device code copies �nd bu�er not ready, returns failure

12. serial.c code returns to DSR, DSR unmasks TX IRQ

13. Repeat from 4. until all characters are sent

good lesson in real-time performance. The MPC555 has two RS-232 capable serial ports

as part of its Serial Communication Interface (SCI). Both of these serial channels have

only a single byte transmit buffer which uses a shift register to load the character to be

transmitted into the actual hardware. In addition one of the two serial channels has an

optional 16-byte queue which can be used like a circular buffer. The original driver code

only implements this using the single byte buffer for both serial channels so as to keep

the code non-specific to either channel as a slight abstraction. There are two types of

transmit interrupt which can be used with the MPC555 SCI interface. The first is

’transmit buffer empty’ and the second is ’transmission of the last character has

completed’. The driver makes use of the former interrupt to load the next byte in a

sequence into the buffer. The software transmit process is shown in Algorithm B.1.

A consequence of this was found to be that an application thread set to loop at a 10 ms

interval, using a delay timer, was completely blocked from running during the

transmission of a 64-byte serial packet at 57600 baud. This is because the DSR code

takes precedence over application code and at that baud rate there was insufficient time

for the kernel to context switch to the application thread. To determine that this was the

case and that there wasn’t an interrupt problem, certain parts of the code were

instrumented. Two counters where placed into the low-level driver code to maintain a

count of bytes successfully copied to the transmit buffer and unsuccessful attempts when

the buffer was still full with the previous byte. A hardware debugger was used to

282

interrupt the execution of the code at non-specific intervals. A ratio of 2.06 successfully

copied bytes to unsuccessful was always observed. I/O lines were also used to allow

oscilloscope measurements to be taken of the thread execution and the serial transmit

time for each packet so that the interference of the threads execution could be observed.

By varying the baud rate it was found that 9600 baud caused only very slight, barely

noticeable, jitter on the thread’s timer event. Increasing the baud rate to 19200 baud

introduced pronounced noticeable amount of jitter. A baud rate 36400 bits/s caused sever

jitter in the occurrence of the timer event. 57600 bits/s again totally prevented the

occurrence of the timer event. The driver uses the size of the software buffer (a CDL

option) to determine if interrupts are to be used. With a buffer size of zero interrupts are

not used, but the same code is called directly from the thread context. As the code is not

called from a DSR it is subject to the same priority as the calling thread and may be

preempted by the scheduler if a higher or equal priority (if time-slicing is enabled)

thread is ready to run. This means that without interrupts being used a higher priority

thread is not perturbed by a serial transmission. The downside of this is that the transmit

code has no way of knowing when the buffer is ready to receive a byte and has to keep

testing until it becomes empty.

There is an important lesson to be learnt from this which is even when using a

minimalistic and deterministic real-time operating system such as eCos, the real-time

performance of application threads cannot be guaranteed in the same way as it can be

with procedural code. In this case the problem was also in part to the overhead incurred

though having a kernel perform context switches and in part due to the fact that the serial

processing is done in the context of a hardware event (interrupt) which is given

precedence over running application code. The only way to resolve this, so that even

another interrupt source could not potentially cause the problem to manifest again,

would be to move the periodic application code into a device driver and have it activated

by an external clock driven interrupt or the system RTC. Interrupts can also be given

priorities and the serial interrupts could be set to a lower priority. However this is

undesirable and if possible it would be preferable to make the application code (perhaps

a control loop) more robust to timer jitter.

In the case of the MPC555 based engine controller, the severely time critical aspects are

taken care of by the two TPU’s leaving much less critical (but still hard real-time control

code) to run as application code.

B.6.5 Creation of a TPU Device Driver for eCos

The approach normally adopted for eCos drivers is that of the hardware abstraction layer

(HAL). The eCos HAL approach is to create a generalised I/O layer which the

application uses to connect to the hardware. The I/O layer in turn interfaces with a low

283

level driver layer. This approach allows the same I/O layer to be used with different

physical hardware without the application needing to have any hardware specific

functionality. It also allows the hardware to be changed without modification of the

application as only the low level driver layer needs to be exchanged. CDL is used to

configure which I/O layer a driver depends upon and which hardware is present on a

particular processor board implementation.

When implementing the TPU driver, it could have been approached from two directions.

The first is to consider the class of device being controlled and make that the I/O layer

abstraction, hiding the TPU implementation details within the driver. An example of this

might be to have an incremental encoder driver. The device at the I/O layer would be an

encoder and would be concerned with things like counts per revolution, total revolutions

or angular distance moved, and current RPM. The low level driver would then take care

of configuring the TPU and assigning the fast quadrature decode (FQD) function the the

relevant channel. This approach would allow the I/O layer to be preserved if the

hardware was changed to not use a TPU, maybe instead a dedicated IC. If different TPU

functions are used together, each having different device class abstractions, then this

approach quickly becomes difficult to manage as each function, although consider

separate, still requires configuration and use of the TPU.

The approach adopted for this work was the converse to the one described above.

Instead, a TPU driver was created which allows a functions to be allocated to each

channel at the CDL level. This method still configures the channel allocation at compile

time rather than run-time, but is more flexible when it comes to allocating functions to

channels. Figure B.10 shows the configuration tree options for TPUA (TPUB has the

same repeated options) using the eCos configuration tool to enumerate the CDL option

tree. The setup of the module configuration registers (MCR) is done on a per TPU basis.

This could be done at run-time, but the since configurations are for fixed hardware, it is

possibly more robust to determine the required settings offline an allow the parameters to

be set at compile time from CDL. Using CDL offline simplifies configuration process for

the TPU and demystifies it as the resulting TCR frequencies are shown in CDL and do

not need to be calculated at run-time. Many Cryptic hard-coded constants are removed

from the code improving ease of maintenance and reducing continued reliance on

datasheets and application notes. There is an option to load a TPU mask from a C

function containing the mask encoded as C char array. This defaults to the Motorola

Mask A. This mask must be shared by both TPUs if they are set to use emulation mode,

as determined by the hardware.

284

Figure B.10: TPU Tree TPU Options

Figure B.11 shows the next level in the CDL hierarchy where individual channels can be

assigned a specific microcode function and generates the driver mount point based on the

function name and the channel number for the application to use to access, such as

“/dev/itcA0” if ITC was assigned to the first channel of TPU A. The limited complexity

of CDL mean it is not possible to completely restrict a set of selections to valid ones, for

example it does enforce that the PMM function is assigned to a lower channel number

than PSP, so doesn’t totally remove the need for some understanding of how the

functions work, but caveats and limitation can be documented in the description text for

each setting if required. Figure B.12 shows that specific function drivers can be enabled

for each TPU. Enabling a particular function driver specifies whether the code for that

function is compiled into the driver. The TPU is configured when the first channel is

opened from the application and looked-up by the kernel code. When the setup code has

been run the TPU is flagged as configured so that subsequent calls to configure other

channels do not repeat the configuration process. Drivers were created for ITC, FQD,

PWM, DIO, PMM and PSP functions. All of the functions apart from PMM and PSP

have been successfully used as part of another project (mobile robotics DC motor

control) that the author has been involved with. The remaining two functions have not

been fully tested initially due to problems with uploading the code in emulation mode,

then due to time constraints preventing the work from being complete. However, it is

suspected that both the PMM and PSP functions would require microcode modifications

to work correctly for this project and is discussed further in Section B.5.6.

285

Figure B.11: TPU Tree function options

Figure B.12: TPU Tree CDL enumeration

286

	Contents
	1 Introduction
	1.1 Motivation for Research
	1.2 Research Methodology
	1.3 Reseach Objectives
	1.4 Contribution and Research Roadmap

	2 System Identification and Adaptive Control
	2.1 Self-Tuning Control (STC)
	2.2 Model Reference Control (MRAC)
	2.3 Model Based Predictive Control
	2.4 System Identification and Parameter Estimation
	2.5 Intelligent Control

	3 Literature Review
	3.1 Dynamometer Operation and Control
	3.2 Engine Testing and Calibration
	3.2.1 Automated Engine Mapping
	3.2.2 Sweep Mapping and Automated Engine Testing
	3.2.3 Model Based Calibration Tools
	3.2.4 Capturing Cylinder Pressure Data in Real-Time
	3.2.5 Reduction of Cylinder Pressure Data

	3.3 Engine Modelling
	3.3.1 First-Principle Phenomenological Modelling
	3.3.2 Mean Value Engine Model (MVEM)

	3.4 NARMAX Models
	3.5 Other Models
	3.5.1 Sliding Mode and Constant Gain Extended Kalman Filter Models

	3.6 Torque Estimation Techniques
	3.6.1 Torque and IMEP Estimation using Crankshaft Rotational Frequency Variation
	3.6.2 Torque Estimation using Engine Block Angular Acceleration
	3.6.3 Torque to Cylinder Pressure Correlation

	3.7 Air-Fuel Ratio Control Strategies
	3.7.1 Fuzzy Logic
	3.7.2 Sliding Mode Observer
	3.7.3 Event-Based Observer
	3.7.4 Artificial Neural Network (ANN) Augmented Controllers
	3.7.5 Model Predictive Control
	3.7.6 Direct Inverse Model

	3.8 Spark Ignition Timing Control
	3.8.1 Self-Tuning Optimisation
	3.8.2 Peak Pressure Position Control for Maximum Brake Torque

	3.9 Instrumentation for Torque Determination
	3.9.1 In-cylinder Pressure Transducers
	3.9.2 Spark Plug Ion Sensing
	3.9.3 Torque determination via Piezoelectric Spark Plug Load Washer or Engine Mount Strain Measurement
	3.9.4 Strain Gauge Fitment to a Drive Shaft
	3.9.5 Magnetostrictive and Magnetoelastic Torque Measurement
	3.9.6 Surface Acoustic Wave Measurement

	3.10 Software for Engine Control
	3.10.1 Ford's High Level Pascal-F Engine Control Software
	3.10.2 Ford's Automatic Code Generator
	3.10.3 BASEMENT
	3.10.4 OSEK/VDK

	4 Development of a Dynamometer Controller and Automated Engine Test System
	4.1 Overview of Test Bed Work
	4.2 The Dynamatic Dynamometer
	4.2.1 Assessment of Controllability

	4.3 Development of a Replacement Current Controller
	4.3.1 Phase Angle and Current Controller
	4.3.2 Current Controller Simulation
	4.3.3 Controller Transient Behaviour
	4.3.4 Speed Control Tests using the Current Controller
	4.3.5 Dynamometer Response Characterisation
	4.3.6 Improved Response Characterisation
	4.3.7 State-space Estimation and Control of the Field Windings
	4.3.8 Discretisation and Software Implementation of Flux Current Estimator
	4.3.9 Standstill Testing of the Digital Current Controller

	4.4 The Control Architecture
	4.4.1 Control Hardware Selection
	4.4.2 Arcom Viper
	4.4.3 Human Machine Interface and Controls
	4.4.4 Diamond Systems DMM32AT Data Acquisition Card
	4.4.5 CAN-bus interface

	4.5 Dynamometer Instrumentation for Control
	4.5.1 Tachometer Circuit
	4.5.2 Load Cell and Amplification Circuit for Torque Measurement
	4.5.3 Protection Circuit

	4.6 Automation Hardware
	4.6.1 SSR Engine Power Management and Opto-Coupled Interface
	4.6.2 Plint Volumetric Fuel Meter and Digital Retrofit
	4.6.3 Cylinder Pressure Acquisition System
	4.6.4 Thermocouple Interface

	4.7 Software Architecture, Selection, and Development
	4.8 Control Software
	4.9 Application Software
	4.9.1 The mseDyno Application

	5 Development of an Engine Controller
	5.1 Nippon Denso ECU
	5.2 The MPC555 Microcontroller
	5.3 The Time Processor Unit
	5.4 The PATI Platform
	5.5 Porting eCos to PATI
	5.6 ECU Hardware Development
	5.6.1 Fuel Injector Peak-and-Hold Driver Circuitry
	5.6.2 Ignition Driver Circuitry
	5.6.3 Engine Speed and Phase Sensors
	5.6.4 Lambda Sensor Signal Conditioning Circuitry
	5.6.5 Knock Detection Circuitry
	5.6.6 Electronic Throttle Unit and Controller
	5.6.7 Temperature Measurement
	5.6.8 Intake Air Mass Flow Meter
	5.6.9 Establishing the Ignition, Fuelling Sequence and Base Calibration

	6 Conclusions
	6.1 Conclusions
	6.1.1 Dynamometer Control
	6.1.2 Engine Controller

	6.2 Recommendations for Future Work

	References
	A Circuit Schematic Diagrams
	B Embedded Control
	B.1 TPU Mask A
	B.2 Linux as an Embedded Operating System
	B.2.1 Booting Embedded Linux from Flash

	B.3 Control Software
	B.3.1 Diamond Device Driver
	B.3.2 Phillips SJA-11001 CAN4Linux Driver

	B.4 Application Software
	B.4.1 Selection of a Widget Toolkit

	B.5 The MPC555 and Time Processor Unit
	B.5.1 Time Slicing
	B.5.2 Channel Priority Levels
	B.5.3 Code Development for the TPU
	B.5.4 The Standard Masks
	B.5.5 TPU Emulation Mode
	B.5.6 PMM and PSP TPU Functions
	B.5.7 The PCI9056 Interface
	B.5.8 The U-Boot Bootloader
	B.5.9 The MPC555 Address Map Problem

	B.6 Porting eCos to PATI
	B.6.1 Real-time Performance
	B.6.2 Open Source Architecture
	B.6.3 Configurability and Scalability
	B.6.4 Serial Interrupt Delay Problem
	B.6.5 Creation of a TPU Device Driver for eCos

