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ABSTRACT 

 

A new Multivariate Statistical Process Monitoring (MSPM) system, which comprises of three 

main frameworks, is proposed where the system utilizes Classical Multidimensional Scaling 

(CMDS) as the main multivariate data compression technique instead of using the linear-

based Principal Component Analysis (PCA). The conventional method which usually applies 

variance-covariance or correlation measure in developing the multivariate scores is found to 

be inappropriately used especially in modelling nonlinear processes, where a high number of 

principal components will be typically required. Alternatively, the proposed method utilizes 

the inter-dissimilarity scales in describing the relationships among the monitored variables 

instead of variance-covariance measure for the multivariate scores development. However, 

the scores are plotted in terms of variable structure, thus providing different formulation of 

statistics for monitoring. Nonetheless, the proposed statistics still correspond to the 

conceptual objective of Hotelling’s T
2 

and Squared Prediction Errors (SPE). The first 

framework corresponds to the original CMDS framework, whereas the second utilizes 

Procrustes Analysis (PA) functions which is analogous to the concept of loading factors in 

PCA for score projection. Lastly, the final framework employs dynamic mechanism of PA 

functions as an alternative for enhancing the procedures of the second approach. A simulated 

system of Continuous Stirred Tank Reactor with Recycle (CSTRwR) has been chosen for the 

demonstration and the fault detection results were comparatively analyzed to the outcomes of 

PCA on the grounds of false alarm rates, total number of detected cases and also total number 

of fastest detection cases. The last two performance factors are obtained through fault 

detection time.  The overall outcomes show that the three CMDS-based systems give almost 

comparable performances to the linear PCA based monitoring systemwhen dealing the abrupt 

fault events, whereas the new systems have demonstrated significant improvement over the 

conventional method in detecting incipient fault cases. More importantly, this monitoring 

accomplishment can be efficiently executed based on lower compressed dimensional space 

compared to the PCA technique, thus providing much simpler solution. All of these 

evidences verified that the proposed approaches are successfully developed conceptually as 

well as practically for monitoring while complying fundamentally with the principles and 

technical steps of the conventional MSPM system.    
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

The ultimate aim of any production system, in the context of chemical and process industries, 

is to produce the maximum amount of consistently high quality products as per requested and 

specified by the customers. This is regarded as highly challenging due to the nature of the 

processes that always change over time and are also affected by various factors such as 

variations of raw materials as well as operating conditions, the presence of disturbances and 

also modification in the process technologies. On top of those, the influence of the 

surrounding factors including changing in market demands, the environmental impacts, 

restructuring of the workforces and the unpredictable revolution in the management policies, 

may also to certain extent affect the product quality as well as the productivity of the 

production system. In any of the situations, one of the main critical problems is to promptly 

detect the occurrence of faulty or abnormal operating conditions in the routine process 

operation and subsequently remove them. 

 Such issues can be addressed quite effectively by the use of process monitoring 

techniques. Currently, there are various types of process monitoring systems. However, 

multivariate statistical process monitoring (MSPM) can be considered as the most practical 

method for monitoring complicated and large scale industrial processes (Chiang et al., 2001). 

MSPM mainly addresses multivariate processes with highly correlated process variables 

where the multivariate correlation among process variables should be essentially considered 

and cannot be simply ignored during the monitoring operation. Traditionally, statistical 

process control (SPC) has been used as the basic solution for monitoring industrial 

production processes. However, this scheme has been criticized, particularly in dealing with 

multivariate processes, based on various technical aspects as listed as follows: 
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i.        SPC normally monitors the process based on charting only a small number of 

variables (mostly the variables concerning the final product quality) and 

examining them only one at a time (Bersimis et al., 2006; Nomikos and 

MacGregor, 1995).  

ii. As a result of (i), analysis and justification cannot be performed accurately as the 

observed trends are actually reflecting on the correlations among the main 

variables and not really on the manifestation of individual drive (MacGregor and 

Kourti, 1995; Raich and Cinar, 1996).   

iii. The potentials of false alarms may be multiplied as the variables being monitored 

increase when applied to multivariate processes (Kano et al., 2002; Mason and 

Young, 2002). 

iv. There are many individual control charts need to be monitored concurrently and 

this is difficult for process operators to handle (Bersimis et al., 2006). 

MSPM, which can be viewed as the upgraded version of SPC, on the other hand, has 

two significant advantages in relation to the same context as follows: 

i.        It is a data-driven method (Chiang et al., 2001) and can handle enormous amount 

of process data (Yoon and MacGregor, 2000; Zhao et al., 2004), which is typical 

in modern chemical industry as a result of advanced instrumentation and data 

acquisition techniques. Thus, the excess storage of process data can be 

beneficially utilized in this regard.   

ii. It belongs to the area of process chemometrics (Qin, 2003) where process 

behaviour is modelled by transforming the high-dimensional data into a lower 

dimensional space. In effect, some useful parameters (normally in terms of 

statistical indexes) can be computed subsequently.  Therefore, the tasks of 

monitoring can be made much simpler, where only a small number of control 

charts are required to be monitored.     
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In general, the MSPM method normally utilizes two types of monitoring statistics 

namely Hotelling’s T
2
 and squared prediction errors (SPE) (MacGregor and Kourti, 1995; 

Wise and Gallagher, 1996; Martin et al., 1996; Raich and Cinar, 1996). These parameters are 

derived directly from the multivariate scores in terms of observation-sample configurations. 

T
2
 reflects the magnitude of the deviation of the individual sample from a specified mean, 

whereas SPE describes the variation in terms of correlations among the monitored process 

variables (Qin, 2003). The scores are usually developed on the ground of variance-covariance 

or correlation measure of the standardized multivariate data. Usually, principal component 

analysis (PCA) is the most widely applied multivariate tool in this regard due to perhaps its 

simplicity in terms of principles and computation. The main idea of this multivariate 

technique is simply to transform the original structure of the multivariate data into a few 

linear combinations (new variables) which mostly capture the original data variations and 

more importantly these linear combinations are uncorrelated with each other (Jackson, 1991; 

Gnanadesikan, 1997; Jolliffe, 2002). Thus, it provides the new basis vectors of 

transformation. In addition, a set of warning and control limits are identified for both 

statistics and a fault situation will be immediately signalled and declared if any of the 

statistics violate the corresponding control limits.  The Shewhart-type control chart is usually 

employed in providing the visualisation of the progression of the monitoring statistics 

(Bersimis, 2007). 

 The whole framework of MSPM is fundamentally guided as well as complies with the 

core characteristics of any process monitoring systems as suggested by Jackson (1991) as 

stated as follows (in no particular order and these criteria will be known afterwards as JPMC 

– Jackson’s Process Monitoring Criteria):            

i.  A solution should be available in answering this question - ‘is the process really 

in control?’.  

ii. Statistical limits of ‘Type I’ error should be specified reflecting the process 

environment.  

iii. Relationships among the variables should be considered in the monitoring 

operation. 

iv. The source of the problems should be examined in relation to the out-of-control 

control situation.      
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Out of these four criteria, the third should be considered as primary as it relates to the 

emergence of multivariate analysis in the realm of process monitoring. Besides, this is also 

strongly connected to the problematic situation of implementing the conventional SPC as 

described previously. In assessing the matter more seriously, two critical issues need to be 

clarified. The first pertaining to the accuracy of the multivariate model in emulating the true 

behaviour of the original multivariate data, whereas the second relates to the capability of that 

particular multivariate model in detecting various types of process malfunctions.  

1.2 Motivation 

With regard to the first matter, linear PCA is sometimes improperly used especially in 

modelling highly non-linear processes as a high number of principal components (PCs) is 

always required technically in order to obtain high degree of transformed variances from the 

original data (Dong and McAvoy, 1996). Two options are normally available in confronting 

with this particular issue.  

 Firstly, non-linear PCA (Dong and McAvoy, 1996) was proposed where less 

dimensionality can be achieved and eventually feasible for utilization in nonlinear process 

monitoring. The works reported in (Martin et al., 1996; Zhang et al., 1997; Doymaz et al., 

2001; Lopes and Menezes, 2004) constitute the integration technique between auto-

associative neural network and principal curve, however, their development is very 

computationally demanding. In particular, the method involves a huge amount of 

computation for developing a nonlinear PCA model as well as introduces complications in 

deciding how many mapping and de-mapping layer nodes are necessary in building up an 

optimized multivariate model in the form of an auto-associative neural network. Choi et al. 

(2004) and Lee et al. (2004) have also criticized the approach and they have come out with 

another version of nonlinear PCA - kernel PCA (KPCA) originally proposed by Schölkopf et 

al. (1998). Unlike the previous method, which specifically emphasize on the nonlinear 

optimization, the KPCA scheme focuses on transforming the original data space into a new 

space (named as the ‘feature space’) that comprises of higher dimensionalities. The main 

benefit is that the original nonlinear behaviour can be mapped into the feature space and then 

analysed through linear correlation (through a specified means of kernel function), and as a 

result, linear PCA can be effectively executed for monitoring. Even though the computation 
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is technically less complicated, but the implementation is still involved with high 

dimensionality models, thus the original problem cannot be solved efficiently.            

 The second option is to permanently engage with the high dimensionality selection. 

This means, a large number of PCs are selected for application. Nonetheless, this has to 

involve with cumbersome tasks and is time consuming because there are too many plots that 

must be analyzed simultaneously (even though this can be resolved with the advanced 

computing). Besides, the benefit of using PCA for data compression is fundamentally lost 

(Zhang et al., 1997).  

 The second issue (relates to the last paragraph in Section 1.1), however, draws the 

attention in assessing whether a developed monitoring model can reliably give overall 

excellent process monitoring performance. Despite the fact that non-linear PCA method may 

tend to produce the correct fault detection outcomes, nonetheless, fault identification may 

lead to false conclusions as the original non-linear behaviour is still inherited within the 

modified non-linear PC models. Such inconsistency has been explained by Doymaz et al. 

(2001) when differentiating the faults that are contributed by sensor failures from those of 

abnormal processes.   

 In short, using a linear approach for modelling extremely non-linear multivariate 

processes is inappropriate as explained in the previous descriptions. Introducing non-linear 

PCA might seem to be a good answer, but it by no means changes the nature of non-linearity 

implication of the original multivariate data. Hence, these arguments are the core foundation 

of this work in order to identify other alternatives which are not just suitable in providing a 

radical solution from a different perspective (in relation to other multivariate techniques), 

especially on summarizing the associative data for the use in monitoring applications.   

 In the effort to understand more deeply towards the issues, the main criteria of 

multivariate analysis (MVA), which includes PCA, should be conceptually clarified in terms 

of its functionality. From a generic outlook, the subject interest of MVA is either on 

analyzing the association among the variables alone or evaluation on the combination 

between variable-object behaviour (Green and Carroll, 1976). In another viewpoint, Dillon 

and Goldstein (1984) have simplified the technique into two subdivision methods – 

dependence and interdependence, where their respective mechanisms are absolutely similar 

to the previous descriptions. Anyway, both groups have agreed that PCA belongs to the 
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second category, where the aim is to construct a set of reduced dimensional composites 

which conceptually represents a significant amount of the original multivariate data 

information.  

 Under the same category, multidimensional scaling (MDS) is another multivariate 

technique which can also be utilized in the same regard as PCA. Nevertheless, this technique 

applies inter-dissimilarity settings of the original multivariate data in developing the 

multivariate scores in the reduced dimensional space. In other words, the scores are 

constructed such that the dissimilarity measures of the scores must somewhat be mapped to 

the dissimilarity measures of the original data. In particular, the points (scores) in the lower 

dimensional space are arranged in such a way that their distances correspond to the pre-

defined dissimilarity measures in the original data set (Takane, 2003). Kruskal and Wish 

(1978) and Torgerson (1967) stated that the main purpose of any MDS algorithms is to 

measure how fit the reconstructed multivariate scores configuration matches as closely as 

possible to the original dissimilarity scales.  

 MDS has a very strong connection to PCA in two aspects. Firstly, Cox and Cox (1994) 

outlined the procedures of reproducing the eigen basic structure of dissimilarity scales that is 

originated from the basis of minor product moment of the original data (which is basically 

applied for PCA). Secondly, Cox and Cox (1994) and Cox (2001) have proved that both 

techniques share the same observation-sample score configurations whenever Euclidean-

distance is used as the dissimilarity measure. This shows that MDS can contribute in the 

sense that, firstly the non-linearity issue can be naturally incorporated in the MDS scores 

through inter-distance measures. Secondly, fault detection can perhaps be operated 

effectively as well as efficiently, in relatively less dimensionality compared to linear PCA                                                                                                                                         

because MDS never use the concept of variance transformation but focusing on dissimilarity 

scale transformation. This basically means that the magnitude of variances will be identified 

or formulated based on the multivariate score behaviours instead of adopted from the original 

data. Therefore, this study believes that MDS has the full potentials based on its unique 

capacities and is the closest candidate with regard to the main issue. However, the attempt of 

embedding the technique into the general MSPM framework is not an easy task and has to 

face four great challenges. The first regards to the multivariate scores development, where 

MDS essentially uses the inter-dissimilarity measures (usually in terms of distance) in 

describing the association among the interested objects. One of the main criteria of any 
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MSPM procedures, suggested by Jackson (1991), is to fundamentally consider the 

relationships among the variables and not on the observation samples. Thus, in complying 

strictly according to the rule, the final score coordination will be in the form of variable 

configuration and not by way of sample distribution as normally obtained through PCA. As a 

result, the typical T
2
 and SPE statistics cannot be utilized in this context.  Therefore, the 

second challenge is to properly introduce different types of monitoring statistics which 

conceptually correspond to the original definition of the traditional T
2
 and SPE as a result of 

radical change in the scores’ basis. Then, the third main task is to propose various appropriate 

projection mechanisms, as CMDS never utilize any kind of loading factors for the 

development of the new scores. Lastly, the final critical assignment is to evaluate the 

performance of the proposed MDS-based monitoring outcomes in relative to the linear PCA 

based MSPM results in order to justify the beneficial of using the proposed methodology. 

More specifically, this study attempts to investigate the following critical questions: 

i. What is (are) the most appropriate distance(s) to be used for describing the 

dissimilarity among the variables under the proposed MDS based monitoring 

scheme? What is/are the main reason(s) behind of the findings? 

ii. What kinds of monitoring statistics or parameters that can be used in the 

proposed monitoring procedures, which are similar in concept to the traditional 

T
2
 and SPE? How do they work?     

iii. How does the MDS-based system deal with on-line monitoring?  What is (are) 

the most optimized condition(s) which can produce improved monitoring 

performance, while sustaining a good representation of normal operating 

condition (NOC) behaviour?   

iv. How should the monitoring performance of the proposed MDS based monitoring 

schemes be assessed? What is (are) the generic outcome(s) of the comparative 

evaluation between the MDS-based and linear PCA-based monitoring results, 

particularly using relatively lower dimensional models?   
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1.3 Aim and Objectives 

The main aim of this research is to develop a comprehensive MDS-based process monitoring 

system that works systematically according to the general framework of MSPM as well as 

acts in accordance with the basic monitoring characteristics as suggested by Jackson (1991). 

In order to achieve this aim as well as to conduct a thorough evaluation on the proposed 

system, the following list shows the three primary objectives (frameworks):  

i. Framework I: To develop a basic generic procedure of MDS-based process 

monitoring system that utilizes the standard Classical Multidimensional Scaling 

(CMDS) algorithms for the construction of the NOC model, control limits and 

also the new sample scores. This framework is considered as the simplest 

methodology in this study as it merely uses the established CMDS procedures in 

developing the scores. It is expected that whenever a fault occurs in the process, 

the resulting scores in the reduced dimensional space will move away from the 

normal cluster. Fault detection is carried out based on the changes of the resulting 

scores in the reduced dimensional space.  

ii. Framework II: To develop an integrated generic procedure of MDS-based process 

monitoring system that merges between CMDS and Procrustes Analysis (PA) 

algorithms in constructing the NOC model, control limits and also projecting the 

new sample scores. This particular framework can be perceived as an improved 

technique upon the first framework because it creates a set of PA transformation 

factors (emulating the concept of loading functions in PCA) in projecting the new 

sample scores. In other words, it standardizes the score development procedures 

through the mapping functions of PA.   

iii. Framework III: To develop enhanced procedure of MDS-based process 

monitoring system that combines CMDS and PA algorithms in modelling the 

NOC behaviour as well as control limits, but more importantly it dynamically 

projects the sample scores using different sets of PA transformation factors. By 

utilizing this particular framework, this study believes that the reconstructed 

scores can be configured more accurately compared to framework II. This will 

then perhaps, contribute higher degree of robust process monitoring performance. 
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1.4 Scopes 

The scopes of this study are summarised as follows: 

i. This study employs two kinds of distances, Euclidean and City-block, in 

calculating the dissimilarity measures. Typically, MDS utilizes Euclidean space 

for the construction of the multivariate scores regardless of the distances used. 

Thus, it is normal to assume that Euclidean distance is more sensible in this 

situation. Nevertheless, it is also preferable to have another dissimilarity measure, 

such as City-block, in order to analyze the credibility of the results more 

critically. Therefore, the idea of employing the City-block distance is such an 

effort to identify the tendency of changes that other distance measures may 

contribute compared to the Euclidean distance measure.  

ii. This study also introduces two new monitoring statistics, which fundamentally 

correspond to the original concept of T
2
 and SPE. This is very important as this 

study focuses on the variable score instead of observation-sample structure. In 

technical terms, the traditional T
2
 highlights the weighted distance from a 

monitored sample to the centre of NOC in the principal component space, while 

SPE signifies the consistency of the individual scores according to the PCA 

model. Whenever a fault condition occurred, at least one monitoring statistic will 

increase in magnitude, but this depends on how sensitive are the chosen PCs in 

capturing the abnormal trends. The same principle is also applied in the MDS 

case, but, technically in different practical mechanisms. In the case of the first 

new monitoring statistic, every score will be either measured according to the 

centre of the NOC’s multivariate score coordinates (origin) or from a specified 

location that is determined by the NOC model. The second monitoring statistic, 

on the other hand, connects to the measure of dissimilarity scales between the 

current samples and original NOC data. It is in this particular step that MDS has 

an advantage over PCA, whereby MDS is particularly able to reproduce the 

dissimilarity scales in the reduced dimensional space relative to the original 

measure. More specifically, the consistency of the variables association can be 

transferred into the compressed domain, where the analysis can be executed more 

directly without having to predict back into the original space. Thus, the needs of 

dealing with more dimensionality can be avoided to certain degree.        
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iii. This study utilizes the over-lapping moving window schemes (Kano et al., 2000; 

2001; 2002) in monitoring continuous process data and this is very vital based on 

two reasons. Firstly, the distances among process variables under the MDS 

scheme are calculated based on the number of samples in the NOC data. When 

calculating the distances among process variables in on-line monitoring, the data 

dimension should be the same as that in the NOC data. Thus, the over-lapping 

moving window approach ensures that the distances among process variables can 

be calculated at every sampling time. The second reason is that the size of 

moving window structure can be modified as necessarily as required and this 

initiates various options for the improvement of monitoring performance, 

particularly in balancing up with the NOC model robustness.  

iv. This study examines all the results based on three major performance factors, 

number of cases detected, fault detection time, and false alarm rates. The 

descriptions of those terms and how they differentiate with each other will be 

discussed in detail in subsequent chapters. The emphasis will always be to 

perform a comparative analysis on the monitoring outcomes between each of the 

frameworks with the linear PCA based MSPM scheme as well as among of the 

new methods themselves. This has been done on several fault cases of simulated 

industrial process (the details are given in Chapter 3). The objective of the whole 

evaluation is to determine the best possible monitoring solution(s) as well as to 

identify the impact of using much lower dimensions on the monitoring 

performance. This is imperative as it highlights the main advantage of using MDS 

over linear PCA for monitoring the specific continuous multivariate process 

which tends to be non-linearly behaved.           

1.5 Contributions 

The main contributions of this study are: 

i.        The introduction of MDS, or specifically CMDS, as an alternative tool for data 

dimension reduction technique in the MSPM framework. As a result, a new kind 

of MSPM framework is eventually obtained and it possesses the following 

features which are characteristically unique compared to the conventional 

method: 
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a.     Dissimilarity measure is introduced as the basis in describing the 

association among of the monitored process variables. The benefit of this 

method is that it indirectly addresses the issue of using linear methods for 

modelling non-linear processes.  

b.     The proposed monitoring system uses variable scores instead of sample 

scores (as normally obtained through PCA). This main feature enables the 

monitoring operation as well as its analysis to be performed directly in the 

reduced dimensional space and not involving the original domain. This will 

help in the effort of inculcating a relative less dimensional model for an 

effective monitoring execution.      

c.      Three types of generic MDS-based MSPM frameworks are proposed and 

this may initiate other development directions in expanding the process 

monitoring scopes much wider instead of moving deeper using the PCA 

approach. Possible further extensions are described in the final chapter 

under the section of recommendation for further works.        

ii. In general, the main strategy, to which the justification process will be made, is 

by a comparative analysis between the MDS based monitoring system and the 

linear PCA based monitoring system. Thus, even if the goal and also the 

objectives of this study have been successfully fulfilled, but this does not prove 

that the linear PCA is no more applicable.  In fact, the main intention of this study 

is actually trying to promote MDS as an option for improving the linear PCA 

based monitoring system performance. Hence, this is the main perspective 

maintained throughout this project especially when discussing the results. In other 

words, the impact of this study is not to discard the linear PCA from the process 

monitoring area but rather to strengthen the practicality of MSPM as to be 

consistently relevant in all situations.    

 

 

 

 



12 

 

1.5  Thesis Organization 

This thesis is divided into seven chapters. Chapter 1 discusses the background of the work 

which highlights its general motive, importance as well as the main considerations, in which 

this research should be conducted.  

Chapter 2 describes the mathematical theories as well as a critical review of MSPM 

particularly from the perspective of JPMC and the relations with the motivation of this study. 

Among others, various extensions of PCA as well as other multivariate statistic techniques on 

monitoring applications are considered, and are subsequently followed by the description on 

the fundamentals of MDS. The generic outcome of this particular chapter is to explain the 

necessity of applying MDS in enhancing the MSPM system, where previous works of MSPM 

extensions are critically reviewed.            

Chapter 3 introduces the case study, which is a continuous stirred tank reactor (CSTR) 

with recycle through a heat exchanger. In this case study, 11 different types of fault cases will 

be investigated. The PCA models corresponding to those NOC sets are also presented. 

Meanwhile, each of these abnormal events is categorized into two groups – abrupt and 

incipient faults. All of these cases are used to test each of the proposed frameworks.            

Chapter 4 focuses on the description of framework I. The corresponding detailed 

procedures centralised on promoting the variable scores as the basic measure in computing 

the monitoring statistics are presented. The overall monitoring results are presented and 

compared with linear PCA based monitoring system. This is to establish a basic perception 

on the credibility of the assumptions made upon the MSPM applications.       

 Chapter 5 elaborates thoroughly on the procedures as well as the results of using 

framework II. The discussion stresses on the extension it has made from framework I, where 

eventually it changes the way of monitoring statistics is formulated from the initial version. 

Apart from being compared to the traditional PCA performances, the results of this particular 

method are also assessed in relative to the outcomes of framework I. This is to understand the 

implication of the modification, either it alter the original perception (obtained in framework 

I) or otherwise.      

 Chapter 6 accentuates on the framework III explanation. The description elaborates the 

justification of using the dynamic mechanism, but still retaining the steps designed in 
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framework II. While the details might differ slightly from the second framework, the analysis 

on the results should be conducted comprehensively which include linear-PCA, and both 

frameworks I and II. This is again to evaluate whether the initiative of injecting the dynamic 

projection can really create improvement or not on the basic perception obtained from 

frameworks I and II.     

 Lastly, Chapter 7 concludes the whole study and presents suggestions for future works. 

The main consideration of this chapter is to provide answers corresponding to the list of 

research questions provided in Chapter 1. This has to be performed in light of the result 

evaluations from those proposed frameworks performances. Some further works are also 

recommended to expand the capabilities of MDS based monitoring systems proposed in this 

study.       
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CHAPTER 2 

  

MULTIVARIATE STATISTICAL PROCESS MONITORING  

 

2.1  Introduction 

It was mentioned in the first chapter that MSPM is considered as the best option in 

monitoring complex as well as considerably large scale industrial systems. There are also 

other methodologies such as model-based and knowledge-based techniques, but impractical 

particularly when concerning the huge scale and complexity issues (Chiang et al., 2001). In 

general, such difficulties are the rigidity, validity as well as difficulty in the development of 

first principle models, credibility of the process knowledge used as well as spurious decision 

outcomes, and not to mention complications as well as inflexibility in updating recent 

information for the improvement of monitoring operation (Venkatasubramanian et al., 2003a; 

2003b; 2003c). Nevertheless, these non-statistical process monitoring techniques may 

undoubtedly become more productive when concerning the diagnostic phase in contradiction 

to MSPM which is heavily dependent on the credibility of the process history data alone. 

Venkatasubramanian et al., (2003a; 2003b; 2003c) have also suggested that this can be 

modified further, perhaps by using a hybrid  system that integrates various sets of techniques 

which works complementary with each other.  

 This chapter mainly concentrates on the survey of MSPM works and also the extent of 

the relevancy of those works in relation with this particular study. Besides, this chapter also 

explains the justifications of using MDS for MSPM applications. 

 This chapter is divided into five main sections including the first section as the 

introduction. Section 2.2 discusses the fundamentals of the conventional MSPM methodology 

with respect to its generic framework and also the corresponding mathematical background. 

Section 2.3 presents the critical review on the various advanced techniques of industrial-

based MSPM applications in the light of Jackson’s process monitoring criteria (JPMC) as 
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introduced in the first chapter. Section 2.4 focuses on the implementation of MDS for process 

monitoring, where the emphasis is on the rationality of applying MDS in the generic MSPM 

framework. Lastly, Section 2.5 summarizes the chapter. 

2.2 Fundamentals of Conventional MSPM System 

This section focuses on the general procedures as well as theoretical basis of MSPM 

techniques. There are also other terminologies such as ‘Multivariate Statistical Process 

Control’ (MSPC) (Martin, et al., 1996; Kano et al., 2000; 2001; 2002; Bersimis et. al., 2007) 

or ‘Multivariate Methods for Process Monitoring’ (Kourti and MacGregor, 1995) or 

‘Statistical Process Control’ (SPC) in multivariate process (MacGregor and Kourti, 1995) or 

‘Statistical Process Monitoring’ (SPM) (Raich and Cinar, 1996) that have been used to 

represent the MSPM methodology. In other words, all of these systems denote the same 

monitoring mechanism that systematically utilizes statistical analysis in capturing the 

essential process information based on a correlation model from a set of variables of the 

collected historical normal operational process data (Yoon and MacGregor, 2000). 

Nevertheless, the depth of the monitoring scopes defined by those works differs from one to 

another.  

  According to Chiang et al., (2001), the complete procedures of any process monitoring 

systems can be generally associated with four main elements, which are fault detection, fault 

identification, fault diagnosis and process recovery. Fault detection is always the essential 

and the most basic step (Qin, 2003) and its purpose is to designate the departure of observed 

samples from an acceptable range using a set of parameters (Himmelblau, 1978). Therefore, 

fault detection should be accepted as the first step in any of process monitoring system.     

 With regard to fault identification and fault diagnosis steps, however, the terms are 

sometimes interchangeably as well as in many cases separated, and thus, a clear standpoint 

should be described accordingly (it is also understandable that both steps are only executed 

after a fault has been detected through the fault detection step). In particular, fault 

identification involves identifying the observed process variables that are most relevant to the 

fault which is typically identified by using the contribution plot technique, whereas fault 

diagnosis specifically determines the type of fault which has been significantly (and should 

be also validated) contribute to the signal (Chiang et al., 2001). Raich and Cinar, (1996) also 

express the similar idea and they clarified that monitoring mainly concentrates on the 
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detection and identification alone, while diagnosis (sometimes also referred to as isolation) 

should be performed during the intervention or control phase.  MacGregor and Kourti, (1995) 

as well as Yoon and MacGregor, (2000) have used contribution plots for diagnosis (isolation) 

operation. This can be achieved by implementing a time series analysis on the contribution 

plot progression. However, Martin et al,. (1996) argued that the outcomes of the contribution 

plots do not necessarily indicate the diagnostic solution because the probable cause may be 

affected by several combination of large (including the largest deviation value) and small 

magnitude changes.  Qin, (2003), on the other hand, has introduced fault reconstruction in the 

combined phase of fault identification and diagnosis besides of merely using the contribution 

plot technique. The issue becomes more complicated when considering the process recovery 

(or control) step.   

 In conjunction to this, Nomikos and MacGregor, (1995) comment that MSPM is not 

specifically a cause-and-effect model but rather a general structure of correlation measure of 

the whole set of variables involved. Therefore, they have suggested using other on-line 

diagnostic tools in further exploring the nature of the faulty behaviour corresponding to the 

fault detection outputs. In supporting  this argument, recent studies show that MSPM requires 

more complex solutions such as knowledge-based systems (Norvilas et al., 2000; Undey et 

al., 2003; Chew et al., 2007) for fault diagnosis.   

 Thus, this study has summarized the MSPM procedures as shown in Figure 2.1. From 

Figure 2.1, the generic monitoring framework adopted in this study comprises of two main 

phases (Mason and Young, 2002; Bersimis et al., 2007), namely off-line modelling and 

monitoring (phase I) and on-line monitoring (phase II). The final outcomes are the fault 

detection and identification instead of diagnosis or even control. There are two primary 

reasons in arriving to this particular decision. Firstly, the focus of the framework should be 

obliged upon the angle of the problem that this study is trying to address. As far as this matter 

is concerned, this primarily involves the analysis on the correlations among the variables, 

which is the third element in JPMC. This factor is very fundamental and strongly relates to 

the measure of capability of the new fault detection technique as compared to the 

conventional method. In other words, it is expected that the main obvious impact will be on 

the fault detection and identification performances rather than diagnosis.    
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2.2.1 Phase I: Off-line Modelling and Monitoring 

The following discussion is related to steps 1 to 4 in Figure 2.1. Firstly, a set of normal 

operating condition (NOC) data, X of size n×m (n: number of samples, m: number of 

variables), are identified off-line (normally steady state) based on the historical process data 

archive as shown in Equation 2.1.  
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 where xn,m is  a particular element in the NOC data matrix at row n and column m., i.e. 

variable m measured at sampling time n. Note that this study assumes that standard pre-

screening techniques, such as missing data and outlier treatment, have been carried out prior 

to NOC data determination, and thus. detailed descriptions of data pre-screening techniques 

are omitted from this thesis.  

 NOC simply implies that the process is operated at the desired setting condition and 

produces satisfactory products that meet the specified qualitative as well as quantitative 

standards (Martin et al., 1996). The data are then standardized to zero mean and unit variance 

1. Collection and standardization of 

historical NOC data 

5. Collection and standardization of 

on-line process data 

PHASE I  PHASE II  

Figure 2.1. Conventional MSPM framework 

2. Development of PCA model for 

NOC data 

3. Calculation of monitoring statistics 

for NOC data 

4. Calculation of control limits  

6. Calculations of PCA scores for 

the new process data 

7. Calculation of monitoring 

statistics for the new process data 

8. Fault detection and identification 
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with respect to each of the variables by using Equation (2.2) because PCA results depend on 

data scales. 
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 Where, 
ijx ,

(
= standardized data for variable ‘i’ at sample ‘j’.  

   
i,jx = original measurement for variable ‘i’ at sample ‘j’.  

   ix = mean for variable ‘i’.   

   is = standard deviation for variable ‘i’.   

 The mean and standard deviation for each of the variables can be obtained respectively 

through Equation (2.3) and Equation (2.4).  
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 As a result, X is finally transformed into X
(

(standardized NOC data) after 

normalization process while the original size is maintained.   

  In the second step, the development of PCA model for the NOC data requires the 

establishment of a variance-covariance matrix, Cmxm , as indicated in Equation (2.5).  
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 Where,  cmm =  a particular element in the variance-covariance matrix at row m and  

    column m.  
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 Green and Carroll, (1976) proposed using the sums of squared and cross products 

(SSCP) matrix in order to obtain C through applying minor product moment on X
(

as given in 

Equation (2.6). 

 XXC
((

T

n 1

1

-
=          (2.6) 

 C is then transformed into a set of basic structures of eigen-based formula as provided 

in Equation (2.7).  

 C=VΛV
T         (2.7) 

 Where,  V = eigenvector matrix of C with the size of m by m. 

   Λ = eigenvalues matrix (diagonal) of C with the size of m by m.  

 Finally, the PCA model of X
(

can be simply developed by using Equation (2.8), where 

P is the score matrix and V is the loading matrix. The score matrix can be further expanded in 

details as shown in Equation (2.9). 

  VXP
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 From Equation (2.8), V provides the linear weighting functions (loading factor) that 

also reflect the correlation with respect to the original variables. P in Equation (2.8), on the 

other hand, represents the PCs scores matrix and it contains ‘n’ number of scores for each of 

the PCs and structured in terms of linear composites between X
(

and V as denoted in Equation 

(2.9). This particular model is the main justification which highlights the feasibility of using 

the MSPM-based techniques for monitoring industrial processes, whereby all variables are 

connected under a single equation to calculate a principal component score regardless of the 

amount of variables used (as depicted in Equation 2.9). The essential information is originally 

retained by embedding the original variation in certain degree (number of PCs) into the 

structure of PCA model. Typically, only a set of the first a few PCs, a, are used with a < m. 
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Equation (2.10) presents a measure of data variations captured by the first a principal 

components (Jolliffe, 2002). 
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       Where l1 to lm are the eigenvalues in Λ.  

 The third step basically involves calculation of the Hotelling’s T
2
 and SPE monitoring 

statistics.  Equation (2.11) shows the mathematical formula for the Hotelling’s T
2
 statistic 

(Jackson, 1991; MacGregor and Kourti, 1995; Kourti and MacGregor, 1995; Wise and 

Gallagher, 1996; Martin et al., 1996; Raich and Cinar, 1996; Mason and Young, 2002) 
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 Where, 2

iT = T
2
 value for sample i.  

   jip , = i
th

 element for principal component j.  

              lj = eigenvalue corresponds to principal component j. 

   a = number of PCs retained.  

 Mason and Young, (2002) emphasizes that T
2
 is a kind of weighted distance, which is 

conceptually dissimilar to the original Euclidean distance, where the variation on the samples 

of the ‘new variables’ (PCs) is significantly defined by the magnitude of its respective 

variances-covariances. Besides, Mason and Young, (2002) and Bersimis et al., (2007) have 

both agreed that the measure is also regarded as Mahalanobis distance (weighted or ratio 

distance), and according to Hotelling, (1931), it can be strongly connected to the idea of t 

student statistic (particularly when concerning on the inter-correlation between two groups of 

samples in its original formula structure). In particular, it indicates the scale of deviation of 

its individual averaged sample mean with respect to the population mean, where the value 

will be typically around zero in the normal condition (meaning that it is close to the targeted 

value).  
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 The SPE statistic, on the other hand, focuses on the consistency of the current variable 

relationships according to the pre-defined PCA model of the original NOC data (Jackson, 

1991; MacGregor and Kourti, 1995; Kourti and MacGregor, 1995; Wise and Gallagher, 

1996; Martin et al., 1996; Raich and Cinar, 1996). If the first a principal components are 

retained in the PCA model, then the PCA model predictions of the scaled NOC data are given 

by Equation (2.12). 

 T

aaVPX =ˆ         (2.12) 

Where Pa =[p1 p2 … pa] is the score matrix containing the first a score vectors and Va =[v1 v2 

… va] is the loading matrix containing the first a loading vectors. 

 The residual matrix, E
~

, between X̂ and X
(

is given by Equation (2.13). 
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 Where I is the identity matrix. 
 

 SPE is then computed as the sum of squared prediction errors as given in Equation 

(2.14).   

SPEi =
T~~

ii ee                                                                            (2.14) 

Where, ie~  = the ith row vector in the residual matrix.  

 According to Jackson and Mudholkar, (1979), this particular parameter (also referred as 

Q-statistics) should be analyzed critically before assessing the T
2 

parameter. This is simply 

because SPE reflects the assumption made on the variable correlations, thus they commented 

that ‘it is better to test the assumptions first as any invalid assumptions will affect the 

credibility of the test’. In addition, Qin, (2003) also argued that a radical change detected by 

T
2 

and not captured by SPE is not necessarily due to a fault, but rather a shift in the operating 

mode. In relation to this, Zhao et al., (2004) produced a comprehensive monitoring procedure 

that utilized multiple PCA models for managing multiple operating modes. It is generally 
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presumed that SPE is relatively preferable than T
2
. However, both monitoring statistics 

should be used at the same time in order to detect different types of faults.   

 The final task in phase I deals with developing the control limits for both of the 

statistics as shown in Equation (2.15) for the T
2
 parameter

 
and Equations (2.16) to (2.20) for 

the SPE parameter (Jackson and Mudholkar, 1979, Jackson, 1991; Wise and Gallagher, 1996; 

Raich and Cinar, 1996).        
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 Where, A = number of PCs retained in the PCA model. 

   n = number of samples. 

F = F distributional index with A and n-A degrees of freedom at α confident   

       limit.  

α = 95% (warning limit) or 99% (control limit). 
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Where,  za= standard normal deviate corresponding to the upper (1-a) percentile. 

   A = number of PCs retained in the PCA model. 

   m = total number of variables. 
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α = 95% (warning limit) or 99% (control limit). 

 Usually, another set of NOC data (sometimes referred as testing set) will be collected 

and analyzed according to the established monitoring limits through both of the monitoring 

statistics for assessing its robustness. The details are given in Chapter 3. In this regard, NOC 

is defined as having the common cause which is entirely due to random noise only (Chiang et 

al., 2001). All these steps of phase I are also adhered to the generic criteria of monitoring 

system suggested by Jackson, (1991), which specifically corresponds to the criterion number 

(i), (ii) and (iii) simultaneously.    

2.2.2 Phase II: On-line Monitoring 

This section explains the on-line monitoring of the new samples that are collected on-line. 

Basically, steps 5 to 7 follow similar procedures of steps 1 to 3 in phase I. In step 5, the new 

samples will be standardized according to Equation (2.21).  
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 Where, 
ijnewx ,)(

(
= standardized form of the new data for variable ‘i’ at sample ‘j’.  

   
ijnewx ,)( = original measurement of the new data for variable ‘i’ at sample ‘j’.  

   ix = mean for variable ‘i’ of the NOC data.   

   is = standard deviation for variable ‘i’ of the NOC data.  

 Next in step 6, the new samples (in the standardized form) are projected into 

multivariate scores by employing Equation (2.22). 

 a

T

ii Vx(new)p
(

=         (2.22) 

 Where,  pi(new)  = PCs scores for the new sample ‘i’. 

   
T

ix
(

  = vector of the new sample ‘i’. 

   Va  = matrix of eigenvectors based on ‘a’ number of selected PCs.  



24 

 

 Then, both T
2 

and SPE statistics are computed in step 7as denoted in Equations (2.23) 

and (2.24) respectively.  
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 Where, 2)( inewT = T
2
 value for the new sample i.  

   2

,)( jinewp = i
th

 element for principal component j of the new scores.  

              lj = eigenvalue corresponds to principal component j. 

   a = number of PCs retained.  

SPE (new)i =
T

ii (new)e(new)e ~~                                                   (2.24) 

Where, i(new)e~  = vector for the new sample ‘i’, by which,  iii x - xe ˆ~ (
= . 

Regarding to step 8 (the last step), there are two main operations which have to be 

conducted separately - fault detection and fault identification. Regarding fault detection, a 

fault situation is regarded as a result of an occurrence of a special event that is not in 

conformance to the common cause nature (Chiang et al., 2001). Technically, a fault situation 

will be declared if either of the monitoring statistics exceeding its respective control limit for 

a pre-defined successive number of samples. Mason and Young, (2000) used the term ‘non-

central distribution’ in denoting the particular situation with regard to large T
2
 values. With 

respect to abnormal situations flagged up by large SPE, Jackson and Mudholkar, (1979) 

explained that this abnormality condition can be conceptually regarded as the current variable 

correlations deviate from that specified by the PCA model (which conceptually represent the 

NOC behaviour).         

Gertler, (1998), has categorized the process faults into 4 main groups.  

i. Additive process faults 

External disturbances are affecting the stability of operation normal condition. 

Great deviation may occur on the variables outputs, which are hardly 

recognizable through observing on the plant readings. Such events can be related 

to pipe leakages or abnormal loads.     
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ii. Multiplicative process faults 

Abnormalities in terms of gradual or abrupt changes are observed in some of the 

plant parameters.  The deviations can be spotted by observing both inputs as well 

as the main output variables. Such faults can be due to deterioration of plant 

equipment, such as surface contamination, clogging, or the partial or total loss of 

power. 

iii. Sensor faults  

This particular type of fault can be resulted from discrepancies between the 

measured and actual values of individual process variables. Usually, this fault is 

considered as additive element to the previous main faults as it merely involve 

with electrical problem which is not directly disturbing the normal operation.  

iv. Actuator faults  

There are inconsistencies between the input command of an actuator and its 

actual desired action. This is also can be considered as secondary because it deals 

with mechanical complexity and not on the fundamental deviation of the normal 

process. 

 

 In addition, the faults can be also existed as an integrated event of one and another. 

Particularly for faults (iii) and (iv), they can be both appear in the form of multiplicative 

faults, or in other words, sensor and actuator faults can be monitored through observing the 

corresponding process parameters. In another instance, Venkatasubramanian et al., (2003), 

has divided the faults into three main classes, which are gross parameter changes in a model, 

structural changes and also malfunctions of instruments (sensors and actuators). From their 

perspective, the first and second relate to additive and multiplicative process faults explained 

by Gertler, (1998) respectively. Meanwhile, Venkatasubramanian et al., (2003) has combined 

both categories (iii) and (iv) provided by Gertler, (1998) into one major domain, as well as 

basically agreed that, these faults can be also occurred as a joined scheme with the previous 

two types of malfunction conditions.  More importantly, Venkatasubramanian et al., (2003), 

have also provided a generic schematic diagram on connecting both monitoring and 

conventional feedback control systems, in which, all the signals applied in the four elements 

of feedback control can be also utilised for process monitoring. Lastly, they have also stated 

that outside the scopes of these classification, any deviation should be regarded as noise 

(process or measurement) or suffered from unstructured uncertainties.   
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 Contribution plot is the special tool which is normally used in identifying the variables 

that are most related to the detected abnormal condition. Technically, the out-of-control 

statistic is decomposed into components corresponding to different variables and those 

variables with comparatively large contributions are considered as related to the fault 

(MacGregor and Kourti, 1995; Yoon and MacGregor, 2000). This operation is easier to be 

performed based on the SPE parameter, where the contribution for SPE is simply breaking 

down the summation of SPE as shown in the following equation (Qin, 2003): 
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2        (2.25) 

 Where SPEi is the contribution of the ith variable to SPE at a particular sampling time.  

 Qin, (2003) stated that finding the contribution measure based on T
2 

is rather complex 

as it involves each of the PCs for every variable and may sometimes lead to negative 

contributions. In responding to the issues, Chiang et al., (2000) proposed to replace the 

negative values with zero, whereas Westerhuis et al., (2000) proposed utilizing generalized 

contribution plot to overcome the individual decomposition difficulty. The most common 

way for the contribution plot for T
2
 is to find contributions to the PCs that lead to large T

2
 

values as shown as follows (Yoon and MacGregor, 2000; Chiang et al., 2000):  

 
iijiT

xp)x(Cont
(

=2         (2.26) 

 Where, pij = weight of the ith variable in the jth PC. 

   ix
(

= standardized variables.  

   Contribution plots may not explain explicitly as well as directly the root cause(s) of 

the problem as the technique itself is not fundamentally a causal-based model but it may 

considerably assist in narrowing down the investigation task (MacGregor and Kourti, 1995; 

Yoon and MacGregor, 2000; Qin, 2003). Thus, it all depends on the interpreters (plant 

operators/process engineers) in executing further analysis on the outcomes or other diagnosis 

tools should be used in this respect.       
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2.3 MSPM Issues and Extensions 

MSPM has been generally applied in many industrial applications as summarized in Table 

2.1, where it also indirectly indicates that MSPM is generally practical for a wide range of 

industrial monitoring applications.   

Table 2.1: Examples of industrial applications of MSPM  

Specific Purpose Industrial Applications 

Process monitoring of 

continuous process 

Dairy pasteurization of food process (Kosebalaban and Cinar, 

2001); fermentation (Lopes and Menezes, 2004); hot stove 

system - POSCO (Lee et. al., 2004); pulp and paper Portuguese 

mill – Portucel (Reis and Saraiva, 2006); iron and steel – 

Sumitomo Metals Kokura (Kano and Nakagawa, 2008). 

Process monitoring of 

batch/semi-batch process 

 Polymerisation reactor (Kourti et al., 1995); sugar 

crystallization (Simoglou, 2005); polymerization – Dupont Co. 

(Camacho and Pico, 2006); wastewater treatment (Lee et. al., 

2006, Aguado et. al., 2007); bioprocess (Cimander et al., 2003, 

Amigo et. al., 2008); 

Loss prevention   Continuous catalyst generator (You, 1998); sensor failure 

management (Ramaker et. al., 2006); HPLC (Zhu et al., 2007). 

 

Table 2.2: Categories of MSPM issues and extensions reviewed in this study 

No. Main Categories Sub-categories 

1 Monitoring statistics 1. Integrated parameters 

2. Monitoring indexes 

2 Monitoring limits 1. Alternative control charts 

2. Non-parametric schemes 

3 Multivariate techniques 1. Advanced PCA-based techniques 

2. Non PCA-based techniques 

4 Fault diagnosis 1. Quantitative techniques 

2. Qualitative techniques 

5 Data formulation 1. Embedding external data 

2. Empirical modelling data 

6 Automation system 1. Industrial and real-time issues 

2. Hybrid system development 

 

 However, in the attempt of injecting more attractive and sustainably practical elements 

into the system, the conventional procedures have been aggressively modified in order to 

meet the specific various application challenges. Table 2.2 shows issues and extensions of 

MSPM that are reviewed in this study.  
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2.3.1  Issue 1: Monitoring Statistics 

With regard to the first issue, any MSPM method has to adopt monitoring statistics for 

indicating the status of the process under monitoring. Typically, a control limit will be set 

based on the collected NOC data and once this control limit is violated by the monitoring 

statistic, a fault situation is detected. Yue and Qin, (2001) proposed a single parameter which 

combines both T
2
 and SPE together. The new single index was used for fault reconstruction 

in order to improve the fault identification operation. In another approach, Chen et al., (2004) 

argues that the reduced variable set may not be normally distributed as usually presumed. 

Therefore, they have proposed using kernel estimation approach for the determination of the 

sample distribution. Nonetheless, the computation is technically complex and as a result, they 

proposed a synthesis scheme of T
2
 and SPE for monitoring. A rather more complicated 

solution is given by Qin, (2003), where a unified form of various monitoring statistics 

including T
2
, SPE and Mahalanobis distance is produced. As far as these works are 

concerned, the methods solely concern with fault detection sensitivity. Nonetheless, the 

original conceptual definition of T
2
 and SPE are still unchanged, and thus no radical 

modification has been imposed in this respect 

 Unlike the conventional as well as the integrated statistics of MSPM, Kano et al., 

(2000; 2001; 2002) proposed using ‘Moving-window PCA (MW-PCA)’ in detecting faults.  

They argued that changes in the correlation variable can be detected more effective by 

monitoring the changes in the PCs loadings rather than scores.  Consequently, they have 

introduced monitoring index in replace of statistics, where the index becomes zero when the 

current sample is operated normally, otherwise it tends close to one. They demonstrated that 

this method can only be productive when a high number of PCs are retained in the monitoring 

model. Therefore, this implies that the original concept of variable association formulation is 

still maintained as original, thus this can create problem when dealing with highly non-linear 

processes. 

2.3.2  Issue 2: Monitoring Limits 

The second issue involves with procedures in specifying the control limits.  Mason and 

Young, (2002) commented that the control limits should be carefully set according to the 

assumption made on the distributional properties, and that corresponds to those parameters 

(mean and covariance vectors) are either known or unknown. In particular, the F distribution 

is only applicable when the monitoring involves with estimated parameters of mean and 
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covariance vectors of process variables that follow normal distribution, otherwise other 

distribution models such as chi-square or beta model should be applied. Nonetheless, this 

suggestion is only relevant when the T
2
 is implemented in its original form (not calculated 

based on the scores in the latent space). Thus, the previous setting limits are still important in 

this study.      

  Beside of using Shewhart-type control chart for multivariate monitoring operation, 

there are also other important tools such as ‘Multivariate Cumulative Sum (CUSUM)’ 

(Woodall and Ncube, 1985) and ‘Multivariate Exponential Weight Moving Average 

(MEWMA)’ (Lowry et al., 1992) that have been utilized in improving the monitoring 

performance. The motive is that the conventional control chart is found relatively insensitive 

to small and moderate shifts in the mean vector due to limitation of information which is 

based solely on the current sample analysis (Qin, 2003). In contrary, both MCUSUM and 

MEWMA take the advantage of the past and current values in determining the status of the 

process based on a specified frame of time. Thus, these techniques have a major impact on 

the way the mean is determined and eventually on the control limits. Nevertheless, both of 

these charts are unsuitable to be used in this study based on two reasons. Firstly, the 

techniques are fundamentally focusing on the mean vector and not considering on the SPE 

chart. As this study deals with both statistics concurrently, thus, the improvement on T
2 

performance alone may not be crucial as this can be complemented by the use of SPE chart.  

The second reason is that there are no evidence or works which utilized those charts for SPE 

progression. This could be due to difficulty in explaining the relationship between the 

MCUSUM and MEWMA theories and the SPE concept.  

 Another important area which is popularly explored is the use of non-parametric 

schemes in estimating the probability distribution function (PDF), where one of the major 

works has been on kernel-based distribution estimation (KDE) (Martin et al., 1996). The 

conventional Gaussian distribution approach totally depends on the pre-determined 

parameters, such as mean and covariance, in defining the underlying function. On the other 

hand, KDE defines the PDF based on the summation in terms of kernel function that 

represented in the form of ‘bumps’ or ‘humps’, which are centred on each data point. 

Nonetheless, this method does not seriously consider the dependability on the linearity 

assumption that is used for the variable correlation. Thus, this may tend to involve a high 

number of PCs when the relationship among process variables is highly-nonlinear. Besides, 
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the technique has only proven effective when it involves small scale processes (Martin et al., 

1996).   

2.3.3  Issue 3: Multivariate Techniques 

The third issue corresponds to the application of multivariate technique and has been 

perceived as the key element that particularly relates to the contribution of this study. 

Typically, it is the behaviour of the variables (not on observation correlations or other 

possible means) of the process under investigation which should be essentially observed, as 

well as assessed when some changes happened or disturbed in the process, especially in 

bringing the process back to the normal region. As far as advanced MSPM is concerned, 

there are two main directions where all the developments can be categorized into.  

 The first regards to modification or improvement that is based on PCA technique and 

the others correspond to the utilization of non-PCA techniques. The advanced applications 

that use the PCA method should perhaps be perceived as the most popularly explored as 

shown in Table 2.3. In general, Table 2.3 indicates that the method of PCA itself is 

technically flexible and can be effectively adapted in various situations. There are two kinds 

of generic applications with regard to PCA extensions that have been made and those include 

modification within the technique itself (issues number 1 to 6) and the other involves 

integration with other schemes (issue number 7). Nonetheless, despite being very intensively 

explored and extended, these advanced works never significantly change the original 

interpretation on the variable correlation. In contradiction to the goal and studies of non-

linear techniques (which have been addressed in Chapter 1), these works still assume that the 

variables are associated linearly, and as a result, they have to use a high number of PCs for 

representing sufficient amount of data variations. Therefore, this study recognizes this 

direction as corresponding to the technical impact and merely involves with secondary issues 

rather than primary (based on the scopes specified in this study).  
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Table 2.3 Extensions of PCA-based monitoring techniques 

Issues Solution (s) Summary Descriptions  References 

1. Active changes in 

operating modes. 

Adaptive 

PCA/MSPC 

A weighted mean and covariance 

matrices are updated and 

embedded into the current PCA 

model. Thus, a new improved 

PCA model is produced which 

reflects the current operating 

mode.  

Choi et al., (2006)  

Multi-

recipes/products 

PCA 

The pooled sample variance-

covariance matrix of the 

individual product is used to 

estimate the principal component 

loadings of the multi-group 

model.  

Lane et al., (2001) 

2. Handling large 

scale processes. 
Multi-block PCA 

The process variables are divided 

into several blocks with respect 

to the number of unit operations 

involved for easier modelling 

and interpretation.   

MacGregor et al., 

(1994). 

3. Dynamic 

monitoring. 
Dynamic PCA 

This dynamic approach 

constructs a time series model 

from the data, where the 

detection sensitivity can be 

achieved especially when 

involving correlation model 

inconsistency.  

Ku et al., (1995) 

4. Handling data that 

subject to 

abnormality 

occurrence at 

different 

localization.  

Multi-scale PCA 

Separate PCA models are 

determined at different scales for 

increasing the fault detection 

sensitivity.   

Bakshi, (1998) 

5.  Facilitating for 

batch process 

monitoring 

Multiway / 

unfolding-PCA 

A three dimensional array data 

comprises of process variables, 

batch numbers and observation 

samples of each batch are 

transformed into 2-dimensional 

structure for the feasibility use of 

PCA.  

Nomikos and 

MacGregor, 

(1995), Nomikos, 

(1996), Lee, et al., 

(2004a) 

6.  Multi-phased 

dynamic monitoring 
Multi-phase PCA 

Extended version of multi-way 

PCA where dynamic element is 

introduced in the monitoring 

scheme.  

Chamaco and Pico, 

(2006), Doan and 

Srinivasan, (2008)  

7. Handling 

autocorrelation data. 

ARMA filters + 

PCA 

ARMA filter is used to remove 

the auto-correlation from the 

monitored variables to avoid the 

production of false alarms. 

Kruger et al., 

(2004) 
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 In another angle of advancement, the works suggest that the old style of linear 

technique should be reviewed and sometimes challenged in order to spark improvement in 

the process monitoring performance. Therefore, the impact of these changes should be 

regarded as fundamental as well as significant with respect to the particular criterion 

discussed in this sub-section because it initiates conceptual deviation from the conventional 

perspective. In general, these works adopt different kinds of multivariate and non-

multivariate techniques instead of PCA for summarizing and comprising the multivariate 

data.  

 Partial least square (PLS) is perhaps the main competitor of PCA with regard to its 

popularity in the area of MSPM application. Among others, the original works have been 

proposed by Nomikos and MacGregor, (1995), as well as Kourti et al., (1995), for batch 

process monitoring using multi-way PLS, whereas Kourti and MacGregor, (1995) proposed 

using PLS for both continuous and batch processes. Various extensions that focus on 

industrial applications also have been developed, for instance, Zhao et al., (2006) have 

utilised multiple PLS models with principal angles in coping with multiple operating modes, 

Lee at al., (2006) introduced PLS for biological wastewater treatment plant with non-linear 

application and Gunther et al., (2009) applied evolving PLS in industrial fed-batch cell 

culture. In a slightly different form compared to PCA, PLS requires two sets of data, which 

are a set of variables obtained from the on-line measurements, (X) and the other holds a set of 

quality variables collected either off-line or on-line, (YPLS). The aim is to capture the 

variation in X which is most predictive of the product quality data Y, based on the sample 

covariance matrix of X X  as shown in the following procedures: 

i. First PLS loading = w =  first eigenvector of X X.          (2.27) 

ii. First PLS scores =   t Xw                           (2.28) 

iii. First regression factor = p Xt t t                         (2.29) 

iv. First residual = X X t p                          (2.30) 

v. Second PLS loading = first eigenvector of X X           (2.31) 

vi. Second PLS scores = t Xw                             (2.32) 

According to MacGregor and Kourti, (1995), the scores are linear combination of X-

variables that maximizes the covariance between it and the Y space, whereby, the scores are 

orthogonal with the associated loading vectors. Conceptually, PLS is similar to PCA except 
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that it simultaneously reduces the dimensions of the X and YPLS spaces. This technique is 

suitably applied in the situations where one may have information on both of the process 

variables, the input variables X, and the product quality variables, YPLS, at the same time. In 

this case, the PLS methods can be used to make relationships between YPLS and X. 

Nonetheless, the mechanism of separating two sets of basic data tends to be problematic 

when considering the continuous process. This is because continuous process monitoring 

system treats all the variables equally as well as simultaneously.    

Another important technique is called factor analysis (FCA). FCA generally has the 

similar aims to PCA, except that it has an extension form of structure by way of rescaling on 

the original PCA model as shown as follows:  

                         X a F a F a F e  

    

     X a F a F a F e        ... (2.33) 

   where, a b  ; b = principal component loadings; F
Z

  ; z = principal 

component scores. 

By having such structures, the new uncorrelated scores will have unit variances. Amigo 

et al., (2008) has used FCA specifically under a model called as Parallel Factor Analysis 

(PARAFAC) to be inculcated in the MSPC framework as a monitoring and real-time control 

tool for bioprocesses. Taking advantages of the mathematical properties of PARAFAC, 

batches of a bioprocess measured under normal operating conditions were used to develop a 

calibration models in a real time manner. Therefore, the main advantage of PARAFAC is that 

the true underlying phenomena can be obtained from the model scores without depending on 

the off-line model.  

 Canonical variate analysis (CVA) is another technique that is similar in concept to PLS. 

Thus, two sets of data are generally required and the goal is to capture the linear 

combinations that signify maximum correlation between these matrices. Simoglou et al., 

(2002) have proposed using CVA technique and state space models for process monitoring 

combining past measurements and current/future values. Thus, their concern is on the 

dynamic behaviour of the system (by way of state space modelling) rather than minimizing 
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the chosen number of multivariate model dimensions. The concept of state space modelling is 

based on describing a system in terms of k first-order difference equations that are combined 

into a first-order vector–matrix difference equation as shown as follows: 

 x(t+1)=Fx(t)+Gu(t)+w(t)               (2.34) 

 y(t)=Hx(t)+Au(t)+Bw(t)+e(t)               (2.35) 

 where x, u and y are the system states, inputs and outputs respectively, while F, G, H 

and A are their corresponding transformation matrices. The terms w and e denote noise 

processes that are each assumed to be independent and identically distributed.  

 In conjunction to this, the study proposed by Treasure et al., (2004) on applying 

subspace identification in describing the dynamic states of process variables for monitoring 

also cannot be applied in this study, because the scope is different in context. Perhaps, their 

approaches can be fully utilized when the fundamentals of this new system have been 

thoroughly developed and analyzed (this is the main focus concerned in this work).     

 Unlike PCA, PLS, FCA and CVA, the main function of Independent Component 

Analysis (ICA), on the other hand, is to decompose the multivariate data into independent 

sub-components which are presumably to be individually non-Gaussian distributed. The 

assumption made by ICA is that every observed data, X can be expressible in terms of linear 

combinations between the unknown independent variables and unknown transformation 

matrices as shown as follows: 

  X = WS + E,                       (2.36) 

 Where,  W = transformation matrix,  

   S = hidden space matrix  

   E = residual matrix 

 Therefore, the objective is to find these latent matrices that correspond to the original 

value considered. Hence, ICA has a major implication on the interpretation of the variable 

correlation assumption, and that is, it radically de-correlates the original linear model.  A 

number of works in process monitoring have been developed with regard to this technique 

such as Lee et al., (2004b), Lee et al., (2004c), Yoo et al., (2004) and Kano et al., (2004). 
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Even though it was claimed by those works that ICA can give superior performance over 

PCA, however, Lee et al., (2004b) accepted the fact that this technique suffers some technical 

difficulties, where there is no standardized method which can be used confidently for 

conducting the component selection (in contradiction to PCA, where the component ranking 

can be easily obtained, by relating to the descending order of eigenvalue magnitudes). Thus, 

this issue may introduce more complexity, especially when concerning on the effort of 

minimizing the number of components chosen. Hence, similar to CVA, this technique is 

actually relevant for consideration but it should be performed perhaps on the next advanced 

level of monitoring.  

 In contrary to the previous methods, the purpose of Partial Correlation Analysis 

(PCarrA) technique is to determine the correlation between two variables while keeping the 

other variable constant. Partial correlation is the correlation of two variables while rigidly 

controlling another or more other variables. DeVor et al., (1992) has explained that the partial 

correlation presents the incremental predictive effect of one process variable based from the 

collective effect of all others, while the main objective is always to find a set of variable 

combination that produce the largest incremental predictive power.  

If the two variables of interest are y and x and the control variables are z1, z2 ... zn, then 

the corresponding partial correlation coefficient is 
znzzyx

r
...,2,1

 as denoted in Equation (2.37).  
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Where, 
znzzzyx

r
,,3,2,1 K

= partial coefficient of y and x after when z1 until zn are controlled. 

 
znzzyx

r
,,3,2 K

= partial coefficient of y and x after when z2 until zn are controlled. 

znzzyz
r

,,3,21 K
= correlation coefficient between y and z1 when z2 until zn are 

controlled. 

znzzxz
r

,,3,21 K
= correlation coefficient between x and z1 when z2 until zn are 

controlled. 

From Equation (2.37), this correlation is identified by separating process variables into 

a number of subgroup, in which one or more variables are held constant before determining 

the correlation among the other variables.  
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 PCorrA has been applied by Ibrahim, (1997) for developing Active SPC technique. The 

method is similar to those applications used in the feedforward Automatic Process Control 

(APC) and it was applied to a nonlinear simulated Continuous Stirred Tank Reactor (CSTR).  

 In another interesting direction, Albazzaz et al., (2005) have explored the practicality of 

using Multidimensional Visualization (MDV) for process monitoring. One of the obvious 

advantages of MDV against the conventional PCA-based system is that it breaks the 

limitation of dimensional representation of Euclidean space. In this new technique, the 

Euclidean space axes are transformed into a set of parallel axes arrangements where each 

variable is represented by one parallel axis. The points are then plotted as series of lines 

passing through the parallel axes. Thus, any deviation in terms of these lines from the normal 

density area will be then identified indicating fault situation. The only problem that matter is 

that, the technique does not correspond to any form of variable association. Besides, the 

method is also merely applicable for off-line application only. Therefore, even though the 

idea of MDV is quite impressive, but the current technical limitation does not provide 

sufficient credit for promoting the method as the main alternative solution in combating the 

issue considered in this study.  

 Although it is generally understood that each of the methods has its own strength and 

capability, nevertheless, the limitation that relates to the problem of the context proposed in 

this study forced this work to find another option.  As a result, multidimensional scaling 

(MDS) has been found to be relevant and possess the potential elements to be explored 

further in the light of the scopes specified (discussed in details in Section 2.4).      

2.3.4  Issue 4: Fault Diagnosis 

Fault diagnosis provides the sense of urgency in finding the true underlying problem that 

pertains to the signal detected. As explained earlier, this may involve two main stages, firstly, 

identifying the potential faulty variables through contribution plots, and later, specifically 

diagnosing those variable candidates in truly specifying the correct faulty variable(s). The 

identification procedures have been discussed as previously, therefore, this sub-section 

focuses on the review on the diagnosing techniques only. Nonetheless, the scope of 

discussion is narrowed down directly on the essential elements that relate between fault 

detection and diagnosis methods.    
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 From the literature, fault diagnosis methods can be broadly categorized into two main 

groups – quantitative and qualitative methods. Three main mechanisms reviewed under the 

quantitative-based tool are decomposition technique, pattern recognition and single channel 

event (SCE) index. Mason and Young, (2002) proposed using the decomposition technique, 

that divides the principal components into its individual original entities. However, these 

entities, in terms of variables, subject to be restricted by one another, thus the terms 

conditional and unconditional were introduced. On the other hand, pattern recognition 

focuses on differentiating the outputs into several specified classes that are characterized by 

the input conditions. Such works have been developed by Akbaryan and Bishnoi, (2001) 

specifically focusing on analyzing noisy input patterns for fault diagnosis. Devillez et al., 

(2004) introduced integrated fuzzy logic and classification system (a kind of pattern 

recognition techniques) that deals in finding the appropriate current states that should reflect 

the identified functioning operating modes. Singhal and Seborg, (2006) have analyzed a 

number of similarity-based parameters for matching measure application and applied to the 

Tennessee Eastman (TE) challenge process, where several successful classification 

performances were also developed. In a rather similar approach to this (in terms of objective), 

Yoon and MacGregor, (2001) utilized fault signature method for fault diagnosis. Their 

approach constitutes of quantitative comparison in terms of movement angle between the 

current and known fault vectors that obtained from the fault library. Unlike the previous 

methods which are all vector driven, SCE employs the values of T
2
 and SPE statistics in 

calculating the diagnostic index (Ramaker et al., 2006). Another major difference is that this 

approach is solely applicable for sensor failure management only and each variable possesses 

their unique set of indices.  

 All of these techniques (except pattern recognition) show that their individual approach 

takes into consideration the previous information on fault detection, either in terms of vector 

or statistics measure, in delivering the diagnosis solution. It is therefore, the new monitoring 

system proposed in this study should also, in a similar manner, provide these basic elements, 

however, not necessarily in the same technical formulation and methodology. More 

importantly, the new multivariate model that suggested must somehow designed to be 

flexible and transformable that relates between the monitoring statistic or vector values (in 

the latent space) and the original variables (in the higher order dimension domain) for ease of 

signal interpretation and fault isolation.             
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 Qualitative methods, however, specifically use knowledge-based system (KBS) and 

have introduced another extra advantage rather than diagnosis solution alone. In particular, 

the technique incorporates intelligent supervision mechanism which can execute fault 

detection, identification and diagnosis simultaneously and automatically with or without 

human intervention. Examples of such methods are given in the works of Norvilas et al., 

(2000) for continuous systems and Undey et al., (2003. 2004) for batch processes. The 

method was also proven functioning effectively for industrial monitoring (Skoglund et al., 

2005; Chew et al., 2007). In particular, a KBS basically consists of process specific 

knowledge (quantitative and qualitative) and inference engine. Thus, unlike the idea of 

quantitative diagnostic tool, KBS directly accesses to the current process information in order 

to validate the abnormal event diagnosis. In other words, MSPM provides the basic detection 

scheme, whereas KBS supplies the related information, in terms of isolating fault causes and 

supervising corrective actions pertaining to the detected situation, through the real time 

searching and heuristic algorithms. Hence, the connection between MSPM and KBS can be 

perceived as loose or passive in relative to the quantitative techniques.            

2.3.5  Issue 5: Data Formulation 

Firstly, data formulation involves expanding the scopes of the data used in monitoring. 

Normally, off-line process history data of normal operating measurements are utilised to 

develop the multivariate model. There are also other forms of multivariate data model have 

been proposed for monitoring, for examples, state space model (discussed previously), 

external information in terms of batch-specific and run-specific data (Ramaker et al., 2002) as 

well as subspace identification (Treasure et al., 2004) in studying specifically the dynamical 

process behaviour. While in another instance, the information extracted from multivariate 

sensor (MacGregor et al., 2005) focuses on investigating the implications of monitoring and 

control impact by way of integrating molecular properties information and multivariate 

process data.   Reis and Saraiva, (2006), on the other hand, utilizes heteroscedastic latent 

variable (HLV) in handling missing as well as uncertainty data. Lastly, the data-driven 

quality improvement (DDQI) technique proposed by Kano et al., (2008) combines optimized 

operating condition and quality measurement knowledge for monitoring. As a whole, this 

particular direction accentuates on the preliminary step before applying the multivariate 

technique.        
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 The challenges forwarded by all these works are truly relevant. Nonetheless, the 

emphasis is limited according to the scopes of this study (corresponding to only the first and 

second steps of Figure 2.1) and they do not significantly change the original interpretation on 

the typical variable correlation measures (even though this study recognizes the contribution 

they have made in improving the monitoring performance). Thus, the main issue addressed in 

this study will be still unsolved as a result of adopting all of these techniques. Perhaps, these 

methods are more suitable to be considered in the next step of monitoring development level. 

2.3.6  Issue 6: Automation System 

The implementation of automatic monitoring system, on the other hand, comes at the last 

stage, where all the necessary monitoring elements have been well established (detection, 

identification, diagnosis and control are proven working) and ready for the real time 

industrial applications. In the case of PCA as an example, Kourti et al., (1996) have discussed 

some of the basic benefits and issues regarding of their real industrial experiences. In a rather 

extensive review, Miletic et al., (2004) have shared their knowledge on building an on-line 

monitoring system in the real time environment, where the technical and non-technical issues 

were raised and addressed.  

 In addition to this, Venkatasubramaniam et al., (2003a; 2003b; 2003c) have conducted 

a comprehensive study in comparing between various kinds of monitoring systems that are 

available including quantitative, qualitative and process history-based techniques. Their 

findings lead them to conclude that every method has their own individual and unique 

strengths and also weaknesses. Therefore, they proposed a hybrid system in order to 

overcome the limitations, and at the same time, reinforce the strength of every individual 

method. In other words, the hybrid-based system allows all the techniques to complement 

each other in terms of their individual advantages. In conjunction, they also suggested that 

this newly integrated system should also be supported by an intelligent supervisory system 

that suitable for large scale industrial applications.        

2.4 MDS as An Alternative Solution for MSPM System 

A brief description of MDS is presented in the first chapter covering its functionality, 

potentials and challenges with regard to the specified problem. This section, on the other 

hand, further discusses on the rationality of using MDS for MSPM system improvement that 

support the arguments made previously. The discussion, firstly presents the general concept 
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of MDS as well as the specific mathematical background of classical multidimensional 

scaling (CMDS) as a core technique in the MDS group. Then, the reviews on using the MDS 

techniques in different kinds of monitoring systems are described. Next, a brief explanation 

on the interpretation and challenges of applying MDS in the light of JPMC is provided. 

Finally, a summary is given highlighting the justification on ‘closing the gap’ that specifically 

connected to the issue addressed in Chapter 1.        

2.4.1 Conceptual Background of MDS 

MDS has served various purposes and one of those relates to the exploratory data technique. 

The term exploratory basically connects to the analysis on the general structure of that 

particular multivariate data under investigation which later contributes to the establishment of 

conceptual perception and understanding. As far as this matter is concerned, the task involves 

reducing the high dimensional multivariate data into a lower dimensional model 

configuration that is much simpler for visual interpretation and sensible for further 

evaluation. From the literature survey, most of the early applications of MDS are originated 

from the field of social science, for instance, Torgerson, (1967) has briefly stated that: 

 “Given a set of stimuli, which vary with respect to an unknown number of dimensions, 

determine (a) the minimum dimensionality of the set, and (b) projections of the stimuli (scale 

values) on each of the dimensions involved.”  

    The term ‘stimuli’ or stimulus are referred to those intangible entities that are 

significant to the non-technical research areas such as psychology and education. With regard 

to engineering applications, then, stimulus could be replaced by any measure of variables that 

could be directly computed using the appropriate devices wherever they are required.  

Kruskal and Wish, (1978), on the other hand, has defined MDS more towards to object-

proximities-oriented basis: 

 “MDS, then, refers to a class of techniques. These techniques use proximities among 

any kind of objects as input........The chief output is a spatial representation, consisting of a 

geometric configuration of points, as on a map.” 

 The word ‘points’ in that statement, indicate to the objects as the prime input, whereby 

this could be referred as those inanimate things such as observation numbers, materials or 
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systems.  In the later years, there was a trend, where, several authors have referred those 

‘proximities’ as synonyms to ‘distance’ such as:   

 

i. Chatfield & Collins, (1980) 

“MDS is essentially concerned with finding a configuration of points (or 

individuals or objects) from information about the ‘distances’ between the 

points.”   

ii. Coxon, (1982) 

“MDS refers to a family of models by means of which information contained in a 

set of data is represented by a set of points in a space. These points are arranged 

in such a way that geometrical relationships such as ‘distance’ between the points 

reflect the empirical relationships in the data.”   

iii. Cox, & Cox, (1994) 

“A narrow definition of MDS is the search for a low dimensional space, usually 

Euclidean, in which points in the space represent the objects .......and such that the 

distances between the points in the space, match as well as possible the original 

dissimilarities.”   

iv. Borg, & Groenen, (1997) 

“MDS is a method that represents measurements of similarity (or dissimilarity) 

among pairs of objects as distances between points of a low-dimensional 

multidimensional space”. 

v. Takane, (2003) 

“MDS is a data analysis technique to locate a set of points in a multidimensional 

space in such a way that points corresponding to similar stimuli are located close 

together, while those corresponding to dissimilar stimuli are located far apart.” 

vi. Cox, (2005) 

“MDS covers a variety of techniques, aimed at representing objects (or 

individuals) by a configuration of points in a space, usually Euclidean,..........., 
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objects which are ‘similar’, in some sense, are expected to have their respective 

points in the space close to each other, while objects which are dissimilar would 

have their points further apart.” 

 In analysing those definitions, three important elements have been identified with 

regard to MDS – dissimilarity scales (proximities), spatial configuration and measure of 

fitness. With respect to dissimilarity measure, this particular factor is typically used as the 

correlation concept, whereby the points in a reduced dimensional space are arranged such that 

their distances correspond to the distances among the original data points in the original data 

space. In other words, the dissimilarity between two objects is a measure of ‘how dissimilar’ 

they are upon each other. The final form of dissimilarity measures is always written in a 

matrix structure as shown in the following: 
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 Where,  = dissimilarity matrix with size m by m.  

   δm,m= element of dissimilarity matrix at row m and column m.  

Apart from dissimilarity measure, another important element, which is essential in 

developing any set of MDS score, is spatial configuration. According to Torgerson, (1967), 

any of geometric spaces could potentially be used as the basic spatial model for a MDS 

procedure. However, he also claimed that the Euclidean space in terms of Cartesian 

coordinates is possibly the only one which has been extensively utilised in this regard. This is 

perhaps, it possess several advantages as listed as follows: 

i. It is the most familiar. 

ii. Graphical representation is convenient.  

iii. It has a strong theoretical and conceptual simplicity. 

iv. It has direct and simple mathematical properties.  
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A Cartesian coordinate system is a set of pair wise perpendicular straight lines 

(coordinate axes). Each axis has the same units and all axes intersect at one point, the origin, 

O. If   is a Cartesian  coordinate matrix, then, it actually denotes that: 

i. a set of nE points in mE-dimensional space, or  

ii. the coordinates of the nE-points relative to mE-Cartesian coordinate axes.  

 In addition, Green and Carroll, (1976) have stated that a Euclidean space of mE-

dimensions is the collection of all nE-component vectors for which the operations of vector 

addition and multiplication by a scalar are permissible.  Moreover, for any two vectors in the 

space, there is a non-negative number, called the Euclidean distance between the two vectors. 

In particular, the Euclidean distance between two points, i and j in XE is the length of a 

straight line connecting points i and j in XE. As far as the Euclidean space is concerned, 

certain properties must be obeyed during which, the transformation process is taken place as 

shown as follows (Coxon, 1982): 

i. Non-negativity and equivalency 

a.  for all points i and j.          

b.  if and only if i coincides with j.          

ii. Symmetry:   for all points i and j.   

iii. Triangle Inequality 

a.  for all points i,j and k (point k lies on line ij).     

b.  for all points i,j and k (point k lies off line ij).      

c. This clearly excludes the possibility that  for any case.      

Lastly, MDS models also require a set of fitness measure when comparing the 

redeveloped and original data configuration. According to Torgerson, (1967), this is basically 

means that if the distance model yields absolute distances conceptually, it is also meaningful 

to ask whether the distances is really exist in a real space, which subject to the number of 

dimensional space that chosen.  

Coxon, (1982), has divided the measure of fits into two separate forms (in both 

terms,  and are the redeveloped and original dissimilarity measure respectively): 
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i. The difference , which represents the basis of ‘badness-of-fit’, 

since the greater the discrepancy between a solution and the data, the greater will 

be the differences. 

ii. The scalar product , which forms the basis of ‘goodness-of-fit’, since 

the greater the covariance between data and the solution, the greater will be the 

scalar products, the better configuration is developed.     

As far as those descriptions are concerned, the extensions of MDS concept can be 

summarized as follow: 

i. Normally, points in the space represent the objects rather than stimulus or 

variables. Yet, it doesn’t mean that the variables cannot be plotted alternatively. 

ii. Dissimilarity scales are fundamental for data input, whereby, Euclidean distance 

usually being chosen for distance model. Yet, other measures of distances are also 

allowable to be analyzed in this respect, despite that, the Cartesian coordinate is 

still important to be applied.   

iii. The multidimensional space is still critically to be the subject for optimization, 

whereby, a low-dimensional space is usually being the main objective.  

2.4.2 Mathematical Fundamentals of MDS 

Generally, there are two basic methods of MDS namely as classical multidimensional scaling 

(CMDS) and non-metric multidimensional scaling (NMDS) that are popularly utilised 

(Torgerson, 1967; Coxon, 1982; Green et al., 1989; Cox and Cox, 1994; Borg and Groenen, 

1997; Cox, 2005). The first uses metric-based approach, whereas the second applies non-

metric mechanism (as the name implied). This study adopts only the first method because it 

holds a strong relationship with PCA. In particular, the fundamental of this procedure is 

originated from the Young –Householder Theorem, (1938).  

 Thus, the following descriptions lay out the mathematical derivation on the 

transformation of the original multivariate data, X, that can be reproduced back into a new 

form of compressed multivariate model, XE, particularly using the detailed procedures of 

CMDS and that also explains the previous theorem. As the technique uses the metric-based 

approach, the original data is subject to be standardized and works on the ground of 

Euclidean space (Green et al., 1989). The standard CMDS procedures considered in this 
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study is originally proposed by Cox and Cox, (1994), Borg and Groenen, (1997), and Cox, 

(2005), where the focus is on constructing the scores in terms of sample distribution. 

Nevertheless, it has been radically modified for developing the scores by means of variable 

configurations (which has been particularly emphasized in this study) as the following: 

 

Step 1.  Determination of a squared dissimilarity matrix, 
2
Δ based on Xm×n (m: 

variables, n: samples). The size of 
2
Δ  is ‘m’ by ‘m’.  

Step 2.  Computation of a double-centred matrix, B∆, on
2
Δ . This is important in order 

to relocate the origin of 
2
Δ into the centre (Torgerson, 1967) so that a unique 

set of score configuration can be obtained eventually.  

Step 3.  Decompose B∆ into eigen basic structure by using singular value 

decomposition (SVD) method.         

Step 4.  Development of multivariate scores based on Cartesian coordinates, XE. 

In Step 1, the squared dissimilarity matrix, 
2
Δ , is determined simply by using a 

particular distance measure. Two commonly used distance measures are Euclidean and City-

block distances (Cox and Cox, 1994; Cox, 2005) as shown in the following: 

 Euclidean distance: 2

1

2})({å -=
a jaiaij xxd            (2.39) 

 City-block distance: å -=
a jaiaij xx ||d                 (2.40) 

where ijd is the dissimilarity measure between objects i and j, x represents the original 

Cartesian coordinate of those objects (variables), and a is the number of axes in the original 

space.   

B∆ is then obtained by using Equation (2.41).  

 B∆=
2

1
- Jm∆

2
 Jm    where    Jm=(Im-1m1m’/m) `           (2.41)  

 where Im is an identity matrix of size m×m, while 1m is a vector of size m with all 

elements equal to 1. Additional remarks on Jm are provided in Appendix A.    

 In the following step, B∆ will be decomposed into UVU
T
 where U and V are, 

respectively, the orthonormal eigenvectors and a diagonal matrix containing the eigenvalues 
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of B∆. Finally, the reconstructed multivariate scores can be calculated by using Equation 

(2.42). 

 XE=U+V+
0.5

            (2.42) 

where V+
0.5 

is a diagonal matrix with all positive elements of v
0.5 

and U+ is the corresponding 

sets of eigenvectors.  

 The degree of relationship between the retained dimensions and the original data can be 

assessed based on Equation (2.43) (Cox and Cox, 1994). 
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 In Equation (2.43), vi is the ith eigenvalue of B∆ (arranged in descending order), p is the 

number of selected dimensions and m is the total number of variables. The higher the value of 

ρ, the stronger X is mapped or reproduced by Y in terms of its inter-distance scales.    Figure 

2.2 summarizes all the CMDS procedures discussed in this section with an example 

demonstrated by Borg and Groenen, (1997).   In particular, the redevelopment of the scores 

was performed based on the first four items which regarded to facial expression analysis as 

listed as follow: 

1.0 Item 1: Grief at death of mother (variable 1 – V1) 

2.0 Item 2: Savouring a coke (variable 2 – V2) 

3.0 Item 3:  Very pleasant surprise (variable 3 – V3) 

4.0 Item 4: Maternal love – baby in arms (variable 4 – V4) 

 According to them, 30 students (objects) were asked to rate the proximities of those 

four items initially before it was transferred and finalised into MDS distances form that used 

in Figure 2.2. The final of the new coordinates obtained from the example shown in Figure 

2.2 are shown graphically in Figure 2.3. 
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Step 2: Applying double centering. 

Step 3: Computing eigen decomposition of . 

Step 1: Defining the dissimilarity matrix. 

, so that 

   Step 4: Calculating the Cartesian coordinate matrix, X . 

Figure 2.2: A numerical example for CMDS  
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Figure 2.3: The reproduction of CMDS scores that demonstrated in Figure 2.2   

 From Figure 2.3, it can be seen that the new score coordinates reflect the original 

dissimilarity scales, ∆ (as shown in Table 2.4), that was used to build the scores.  

  Table 2.4: Dissimilarity matrix based on Euclidean scales used in Figure 2.2 

  V1 V2 V3 V4 

V1 0 4.05 8.25 5.57 

V2 4.05 0 2.54 2.69 

V3 8.25 2.54 0 2.11 

V4 5.57 2.69 2.11 0 

 In particular, from Table 2.4, it was indicated that V3 has the largest distance from V1 

(8.25) in relative to the other two points (V2 and V4). As a result, the reproduction of the 

scores in Figure 2.3 also corresponds to these situations, where the location of V3 will be 

configured far away from V1 in contra to V2 and V4. The other coordinates also follow the 

similar order particularly based on the original dissimilarity scales that applied. In reflecting 

to the interpretation of those items, it is naturally accepted and well understood that facial 

expression for someone who is grieving at death of mother (V1) will radically different from 

the facial look relating to one that enjoying a very pleasant surprise moment (V3). 

Meanwhile, those of facial expressions pertaining to savouring a coke (V2), enjoying a 

pleasant surprise scene (V3) and also maternal love (V4) should be easily rationalise as 

demonstrating close distances with each other, as they are all representing positive emotional 

attitude.  
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CMDS typically utilises ‘strain’ parameter in specifically measuring the degree of 

mapping between the new and original dissimilarity scales. Torgerson, (1967), explained that 

the term is strongly associated with scalar product moment and conceptually defined it as the 

comparison between the total variance in the original scalar product matrix, B∆  with the total 

variance of a derived scalar product matrix from the new configuration of Euclidean space 

coordinate, BE, as depicted in Equation (2.44).  

              (2.44) 

Fundamentally, the scalar product is defined as: 

       

                                     (2.45) 

 whereby,  and                                    

The scalar product also represents the magnitude or the length of a vector in Cartesian 

coordinates, in which, it may also be written as: 

                                (2.46) 

As much as the Euclidean distance is concerned, there are two ways, where, the 

relationship of the scalar product matrix of the Cartesian coordinates with the Euclidean 

distance is evident.    

Torgerson, (1967), Coxon, (1982) as well as Borg and Groenen, (1997) have used the 

cosine law to establish this association, in which the procedures are briefly shown as follows:  

i. Let be the Euclidean distances between ‘n’ points. 

ii. Then, Bi is a symmetric matrix with elements  

                (2.47) 

The element  can be interpreted as the scalar product of the vectors from point 

‘i'  to point ‘j’ and ‘k’.  
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iii.  From the law of cosine theorem,   

            cos                (2.48) 

and after some rearrangements, eventually, the scalar product is directly obtained 

by 

           cos      (2.49) 

iv. From this derivation, it obviously shows that  

  cos         (2.50) 

2.4.3 Connections between PCA and MDS  

A search was also executed for investigating the relationship between PCA and MDS. This 

relationship is viewed from the close fundamental algorithms between conventional PCA and 

CMDS procedures. Several authors have illustrated different ways in describing the 

relationship between PCA and MDS using algorithm manipulations approach. Cox and Cox,  

(1994) started the procedure by defining the scalar product matrix, B (or specifically the 

dissimilarity matrix of ),   where X is an 
 
data matrix assumed to be mean 

centred. By applying the SD operation on B, the following are obtained:   

                                                      (2.51)

       XX
T
u u            (2.52)

                     (2.53)

                    (2.54)

  where,            (2.55)

     (2.56) 

 In this particular derivation, equation (2.56) is known generally as the typical SD 

structure in the eigen structure procedure, where C represents the minor product moment of 

X and  stands for the eigenvectors of that minor product moment. However,   should be 

normalized by , as to get the true loading factors as in PCA (orthogonal), which are 

derived as follows: 

 Normalizing ,                      (2.57) 

         Therefore,                       (2.58) 
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            (2.59) 

                   (2.60)  

 Besides, Jackson, (1991) has also shown that major product moment, and minor 

product moment, , of X share the same eigenvalues. In his method of explanation, the 

major product moment is called as Q-analysis, whereas the other one is called as R-analysis. 

He also stated that Q-analysis could be used to construct the scores for variables and, on the 

other hand, R-analysis is useful normally for developing the normal observations scores. 

Those steps are shown in the following procedures: 

            SVD of      (2.61)

                       SVD of (2.62) 

 Then, the PC scores for the observations and variables are given individually by:    

                (2.63)

                                       (2.64)  

 In analysing this procedure, it can be noted that PCA is capable of plotting scores either 

for observations or variables by way of algorithm scaling. Even though, the usual PC scores 

are normally computed by: 

                   (2.65) 

 In using equation (2.65), it can be shown that PCA has its direct connection with 

CMDS. At the beginning, after being performed under SD structure, then, the first PC score 

is given by: 

                                                                 (2.66) 

 By inserting equation (2.57) into equation (2.66): 

                                           

                                       

                              (2.67) 

 which validates that equation (2.67) is the typical matrix multiplication to obtain the 

new score coordinates as in CMDS. The presented procedures are valid only for the first PC 
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scores, therefore, the same procedures should be performed for other dimension scores. This 

shows that, by initiating some modifications on the MDS algorithm, the results will lead to 

the similar outcomes as in PCA.    

 In addition, another way to find the PC scores is by using the SVD on X instead of   

as given by the following equations: 

                            SVD of         (2.68)

 where,     T = Q      (2.69) 

 Therefore, the usual PC scores can be computed by: 

     Q                 (2.70) 

 In particular, equation (2.68) could also be related back to the minor product moment of 

X, which is shown as follows: 

 Minor product moment;  C X
T
X     (2.71)  

 Therefore,           (2.72)                

                                                                    (2.73) 

                                                                     (2.74)

2.4.4 Previous Works on MDS-based Monitoring Systems 

The original work of using MDS for process monitoring was presented by Cox, (2001) and 

also described in Cox, (2003). In both of the works, even though MDS was introduced rather 

superficially but the idea was very inspiring because it spurs a new perspective in 

understanding the nature on the variable correlations. In his works, two different methods, by 

way of score configurations, were proposed. In particular, the first summarized the 

multivariate data by means of observation-sample profiles just exactly similar to the PCA 

outputs. Thus, whenever a fault situation occurred, the corresponding abnormal samples will 

either deviate in a great magnitude or simply gradually from the normal cluster (based on the 

dimensional scatter plot). In another approach, however, the studies have introduced the 

variable scores instead, specifically in providing the status of monitoring progression. In this 

particular approach, the variables that correspond to the particular malfunction condition are 

also responding in the same way as the previous method, but with one unique advantage. 
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Unlike to the former method, the movements made by those abnormal variable scores are not 

just restricted in showing the magnitude of deviation, but more importantly it is also actually 

projecting the information on violation of the normal variables’ coordination (in terms of 

multivariate scores). Thus, reproducing the scores by way of variables is more informative 

rather than the conventional score configurations (observation samples) from process 

monitoring perspective. Thus, this shows that the variable-based form of scores can also be 

potentially utilized for monitoring application. However, this study did not propose any kind 

of monitoring statistics that can be compared against the standard PCA-based monitoring 

performance.    

 In another study, Matheus et al., (2006) has applied multiple linear regression (MLR) in 

projecting the MDS scores for on-line monitoring system. They used the topographic 

mapping and clustering operation as the basis for fault detection mechanism. As similar to the 

previous work, this study also did not utilize any monitoring statistics as the basic measure 

for fault detection. Thus, the work is lacking in validity because it cannot be used for 

comparison with the conventional MSPM performance. Besides, there was no specific 

explanation on the assumption that they have used in developing the dissimilarity measures, 

particularly in relation to the JPMC perspective.    

 This review also has considered other techniques that could be perceived as the main 

competitors for MDS (beside of PCA). Firstly, Kano et al., (2002) proposed using the 

dissimilarity index (DISSIM method) for monitoring changes in the operating condition 

based on sample distribution profile. A fault is detected when the proposed monitoring index 

violates its control limit setting. Nonetheless, in comparison to MDS as well as PCA, this 

technique is not actually a tool for data compression (Kano et al., 2002), where the index is 

calculated directly from the input data. Therefore, once a fault event is detected, the 

interrogation has to deal with the complexity of high dimensional data. Lee et al., (2004), on 

the other hand, introduced hierarchical clustering strategy to differentiate various operation 

modes through k-means clustering. Even though the idea can be connected to the concept of 

T
2
, nevertheless, the approach cannot be used in extracting the information on the variable 

correlations (SPE). Therefore, this survey finds that MDS is the closets and comparable 

technique to the PCA method, where the justifications are given in the next subsection.        
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2.4.5 Justification of Applying MDS in the MSPM Framework 

This sub-section basically explains on how the MDS approach can be fitted into the elements 

set by JPMC. First of all, MDS has the ability to reproduce the scores either in terms of 

observation sample or variable configurations as proved by Cox, (2001) and Cox, (2003). The 

former has used the dissimilarity scales by way of sample observation correlations whereas 

the latter utilizes the dissimilarity measures by means of variable relationships. In 

corresponding to the third element of JPMC, which suggests that any monitoring system 

should be executed and reflected from the ground of variable correlations, thus, the second is 

perhaps the most suitable technique that should be chosen in this respect. Compared to the 

fundamental of conventional system, MDS, particularly by using the second approach, uses 

dissimilarity scales instead of variance-covariance basis. Enforcing of using the first 

approach, however, creates two undesirable situations. Firstly, the dissimilarity scales in 

terms of observation sample structure cannot be directly used in analyzing the variable 

correlations (as typically being developed by the previous works on using MDS for 

monitoring). Even so, another transformation function should be used and validated in 

establishing the relationship between the observation dissimilarity scales and variable 

dissimilarity measures, thus this introduces more complexity (sometimes conflicts) into the 

algorithms.          

 The second reason is that the variable scores can be used directly in obtaining the 

monitoring statistics which are similar in concept to T
2
 and SPE. In particular, T

2
 basically 

provides the magnitude of deviation of the scores with respect to the mean (in the reduced 

dimensional PC space). In the case of MDS, however, measuring the distance of the deviated 

variable scores from the origin of the score plots or from the other means (such as individual 

points of NOC scores) may also deliver the same kind of information with regard to T
2
. 

Besides, one of the main advantages of variable-score-based approach is that the changes in 

the score structure also depict changes in the variable correlations. Therefore, measuring the 

consistency of the dissimilarity scales between the current and NOC configurations can also 

be regarded as providing the similar information provided by the SPE objective. Hence, this 

suggestion addresses the first element of JPMC rules.  

 The main problem of applying the variable-score-based approach is that it cannot 

directly construct the distribution profile (because the scores themselves are indicating points 

of variables and not on sample distributions). Besides, the scores cannot be projected directly 

based on the variable vectors because the original MDS algorithms do not provide any kind 
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of loading factor as normally utilised by PCA. Moreover, the creation of dissimilarity scales 

is very rigid as it necessitates the monitored data to be embedded in the form of a matrix with 

the same size as the original NOC data. Thus, all these drawbacks seem quite problematic 

especially when dealing with the on-line measurement data. In order to overcome all of these 

limitations, the moving window (MW) mechanism suggested by Kano et al. (2000; 2001; 

2002) is proposed as the solution. The advantage of this approach lies in its ability to 

constantly construct the monitored data matrix of the same size as the original NOC data by 

using a moving window of the process operation data. Consequently, the relationships 

between the current and the previous data can also be utilized for dynamic monitoring (even 

though this is not the main issue concerned in this study). As a result, after analyzing a few 

samples, a set of moving-window-based samples that originated from the variable-score-

based configurations can be established and perhaps may eventually generate the distribution 

profile that required for setting the control limits specification. Thus, this can be later 

employed as the basis in responding to the second element suggested by JPMC.  

 The final element of JPMC states that the system should be able to conduct fault 

identification and diagnosis following the detected fault event. As discussed earlier, the 

proposed scheme of monitoring progression based on the MDS approach should be 

performed by means of quantitative comparison between the current variable scores location 

and the original NOC scores configuration. This comparison can be objectively viewed as an 

‘error’ measure, thus the concept of SPE formulation (or simply ‘squared errors’) is relevant 

in this context. As far as this matter is concerned, the contribution plot technique via SPE as 

shown in Equation 2.21 can be applied at the same time. Besides, MDS is also able to 

produce the scores which constitute of vectors and also facilitate for monitoring statistics 

calculation (as explained earlier). Thus, this method can also be potentially integrated with 

other quantitative or qualitative diagnosis tools for the purpose of diagnosis application. 

2.5 Summary 

It this chapter, the background of the conventional as well as the recent developments of 

MSPM are critically reviewed. Besides, some earlier studies on using MDS for monitoring 

are also discussed. Justifications are then forwarded to support the proposition on embedding 

the MDS technique into the MSPM frameworks. More specifically, the variable-score-based 

approach is selected as the main methodology that is also consistent with the elements 

required by JPMC.  
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CHAPTER 3 

  

CASE STUDIES AND PCA BASED MONITORING PERFORMANCES 

 

3.1  Introduction 

A simulated Continuous Stirred Tank Reactor with Recycle (CSTRwR) system is used to 

demonstrate the proposed MDS based monitoring systems and compare with the 

conventional PCA based monitoring performances. The system has been used by Zhang 

(2006) to demonstrate the improved fault diagnosis technique by using multiple neural 

networks. The simulation was developed in Zhang, (1991) under normal and various faulty 

operating conditions based on a mechanistic model in the form of differential and algebraic 

equations of material balance, energy balance, and reaction kinetics (as presented in 

Appendix B). Some of the equations are in nonlinear form due to nonlinearities in reaction 

kinetics and valves. In the subsequent discussions, Section 3.2 describes the CSTRwR 

process including the NOC and various sets of fault cases, while Section 3.3 summarise the 

whole chapter.        

3.2  CSTRwR System 

3.2.1 Process Descriptions 

The schematic diagram of a simulated CSTRwR is shown in Figure 3.1 (Zhang, 2006). This 

system conducts an irreversible heterogeneous catalytic exothermic reaction between reactant 

A and product B. The process is installed with three separate control loops, which consists of 

tank temperature, tank level and recycling flow variables, in order to maintain the product 

concentration. In particular, the cold water flow is adjusted through a cascade system 

corresponding to the changes in the reactor temperature. The reactor level, on the other hand, 

is maintained by controlling the flow rate of product. Lastly, the product composition in the 

reactor is indirectly controlled by manipulating the recycle flow rate. There are ten on-line 
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measured process variables and three controller outputs have been identified for monitoring 

as listed in Table 3.1 (Zhang, 2006).    

 

Figure 3.1: CSTRwR system 

Table 3.1: List of variables in the CSTRwR system for monitoring 

Process Instruments 

No. Variables  Variable Names No. Variables  Variable 

Names 

1 V1 Tank temperature 11 V11 Controller 1 

2 V2 Tank level 12 V12 Controller 3 

3 V3 Feed temperature 13 V13 Controller 2 

4 V4 Inlet flow rate  

- 

5 V5 Recycle flow rate   

6 V6 Outlet flow rate  

7 V7 Cooling water flow 

rate  

8 V8 Product concentration 

9 V9 Feed concentration 

10 V10 Heat exchanger 

entrance pressure 

 3.2.2 NOC Samples and PCA Monitoring Performances 

In the first phase of monitoring, a set of NOC data containing 100 samples of steady state 

data was obtained from simulation (the profiles are provided in Appendix C). Before 

applying the PCA procedures, each of the variables in the NOC data was standardized to zero 

mean and unit variance. Figure 3.2 shows the accumulated data variances explained against 

the number of principal components (PCs). The result shows that almost 70%, 80% and 90% 

of the total variances are represented by using 3, 5 and 7 PCs respectively. In other words, the 
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higher number of PCs being selected, the more data variances are captured by the PCA 

model. This indirectly indicates that the process tends to be non-linear as a relatively large 

number of PCs are required to represent sufficiently high data variations. PCA models with 3, 

5 and 7 PCs are developed based on the particular set of NOC data.  

                     

0 2 4 6 8 10 12 14
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of principal components

V
a
ri
a
n
c
e
 e

x
p
la

in
e
d
 (

C
o
v
a
ri
a
n
c
e
)

Accumulated Variance vs Principal Components

 

Figure 3.2: Accumulated data variations explained by different PCs for the CSTRwR 

 Then, monitoring limits were calculated for the T
2 

and SPE statistics for both the PCA 

models. Figure 3.3 shows the T
2 

and SPE statistics from the PCA model with 3, 5 and 7 PCs 

on the NOC data. The results show that all the T
2
 monitoring statistics are below the 

monitoring limits, whereas only small amount of SPE statistics are slightly higher than the 

99% control limit. This means that the three PCA models are truly represent the normal 

operation behaviour.  

 In order to evaluate the robustness of the monitoring limits, another set of NOC data 

(the second set of NOC) containing of 50 samples were also collected. The monitoring 

statistics are depicted in Figures 3.4 respectively for the 3, 5 and 7 PCs models.  The results 

from Figure 3.4 show that all the monitoring statistic progressions are also below the control 

limits. Thus the developed PCA models successfully classify the new NOC data as being 

normal. These findings indicate that the monitoring systems do not give false alarms when 

applied to unseen NOC data. It was also observed that there was no significant difference 

between the trends in both of the PCA models, as far as NOC data is concerned.  
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Figure 3.3: Progressions of T
2 

(left) and SPE (right) of PCA models with 3 PCs (top), 5 PCs 

(middle), and 7 PCs (bottom) on the original NOC data  
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Figure 3.4: Progressions of T
2 

(left) and SPE (right) of PCA models with 3 PCs (top), 5 PCs 

(middle), and 7 PCs (bottom) on the testing NOC data  
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3.2.3 Fault Cases and PCA Monitoring Performances 

The system also subjects to be affected from several malfunction conditions as summarized 

in Table 3.2.  

Table 3.2: List of abnormal operations in CSTRwR 

Fault Cases Fault Causes 

1 Pipe 1 blockage 

2 External feed-reactant flow rate too high 

3 Pipe 2 or 3 is blocked or pump fails 

4 Pipe 10 or 11 is blocked or control valve 1 fails low 

5 External feed-reactant temperature abnormal 

6 Control valve 2 fails high 

7 Pipe 7, 8, or 9 is blocked or control valve 2 fails low 

8 Control valve 1 fails high 

9 Pipe 4, 5, or 6 is blocked or control valve 3 fails low 

 10 Control valve 3 fails high 

11 External feed-reactant concentration too low 

 For each fault presented in Table 3.2, both abrupt and incipient faults are considered. 

An abrupt fault indicates a sudden change (or step change) in a process variable or parameter 

and typically it maintains over the operation time until the cause is completely removed. 

Detecting this kind of malfunctions should be easy for any multivariate monitoring system as 

the deviations are usually very obvious. On the other hand, an incipient fault depicts a kind of 

fault that gradually deviates from the normal setting. Thus, the monitoring system typically 

takes a while to detect these particular abnormal behaviours. In particular, all the faults were 

introduced at sample 2 and the sampling time was fixed at 4 seconds. As examples, six cases, 

which are abrupt fault 6 (F6a), incipient fault 6 (F6i), abrupt fault 9 (F9a), incipient fault 9 

(F9i), abrupt fault 11 (F11a) and incipient fault 11 (F11i), are selected to demonstrate the 

monitoring performance using the PCA-based systems.  

 In the first kind of abnormal operations, which corresponded to both F6a and F6i, the 

root of the problem is coming from the sudden or gradual increase in terms of cooling water 

flow rate – variable 7 (as shown in the middle diagrams of Figure 3.5). As a result, this then 

affects the behaviour in the temperature condition in the tank (variable 1), where gradual 

reduction has been observed (as shown in the top diagrams of Figure 3.5) because the 

increase in cooling water flow rate. In particular, the magnitude of change for abrupt case is 

greater than the incipient scenario. As a result, controller 2 has responded by decreasing the 
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signals (valve 2 – forced to open), where the valve is either fully shut (abrupt case – bottom 

left) or gradually closing (incipient case – bottom right) for controlling the amount of cold 

water fed into the heat exchanger (as shown in the bottom diagrams of Figure 3.5).   

 

Figure 3.5: The behaviours of fault number 6 based on trends of variables 1 (top charts), 7 

(middle charts) and 13 (bottom charts)  

 Figures 3.6 and 3.7 present the results of process monitoring with regard to F6a and F6i 

respectively. In analysing the overall performance, all the three PCA models developed have 

detected this particular fault successfully. Regarding F6a (Figure 3.6), the progressions on 

SPE statistics are very efficient, where the fault can be detected as fast as at 3 sampling time. 

The similar trend can be also observed on T
2 

progressions, but the trend is not consistent, 

where there are few samples have returned to the normal region some time later after 

detection. Anyway, the overall performance has indicated abnormal signal from sample 3 

until 20 as both statistics work complementary. Nonetheless, the detection time for incipient 

fault 6 is generally slow (Figure 3.7). In particular, the detection time for F6i based on 3, 5 

and 7 PCs is 42, 36 and 23 through SPE statistics progressions. The overall trend suggests 

that the more PCs adopted by PCA, the detection time tends to be faster. It is also observed 

that the T
2
 statistic has failed detecting the specified case based on the number of samples 

utilised. Thus, the overall detection for F6i is totally depended on the SPE outputs.            
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Figure 3.6: Progressions of T
2 

(left) and SPE (right) of PCA models with 3 PCs (top), 5 PCs 

(middle), and 7 PCs (bottom) for F6a data of CSTRwR 
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Figure 3.7: Progressions of T
2 

(left) and SPE (right) of PCA models with 3 PCs (top), 5 PCs 

(middle), and 7 PCs (bottom) for F6i data of CSTRwR 

 The second type of faults, which related to both F9a and F9i, involves blockage in the 

recycle streams (pipeline 4, 5 or 6 in Figure 3.1), where the impact can be clearly seen on the 

tank temperature condition, by which, it has indicated gradual increment in magnitude (top 

diagrams in Figure 3.8). This is because the amount of cold materials that recycled into the 
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tank is decreased. In consequence of this particular changing on the tank temperature, 

controller 2 has responded by opening the cold water fed valve (valve 2 – forced to open) 

accordingly, as can be observed by the increasing signals on controller 2 (middle diagrams in 

Figure 3.8). At the same time, controller 3 has also acted by opening the recycle stream valve 

(valve 3 – forced to open) to allow more materials enter into the tank for compensating the 

blockage effect. This effect is very obvious on the abrupt fault case, where the controller 3 

signal has increased to 100% (valve 3 is fully opened), whereas the signal is slowly 

increasing during controlling the incipient fault (valve 3 is opened gradually) as indicated in 

the bottom diagrams in Figure 3.8).               

 

Figure 3.8: The behaviours of fault number 9 based on trends of variables 1 (top charts), 13 

(middle charts) and 12 (bottom charts) of CSTRwR system for abrupt (left diagrams) and 

incipient (right diagrams) fault categories 

 Figures 3.9 and 3.10 show, respectively, the monitoring results of F9a and F9i. Figure 

3.9  demonstrates that all the models have detected F9a efficiently at sampling time 3, 

obviously through the SPE statistic. From Figure 3.10, however, the detection time for F9i is 

also found generally sluggish. In particular, models with 3, 5 and 7 PCs has detected F9i at 

the sampling time 31, 26 and 16 respectively also solely based on SPE statistic (in this case, 

T
2
 has once again has failed in detection as similar to the F6i case previously).  
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Figure 3.9: Progressions of T
2 

(left) and SPE (right) of PCA models with 3 PCs (top), 5 PCs 

(middle), and 7 PCs (bottom) for F9a data of CSTRwR 
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Figure 3.10: Progressions of T
2 

(left) and SPE (right) of PCA models with 3 PCs (top), 5 PCs 

(middle), and 7 PCs (bottom) for F9i data of CSTRwR 
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 Lastly, Figure 3.11 presents the nature of the third fault behaviour that associated to 

F11a and F11i. The graph shows that there is a sudden or gradual decrease in magnitude in 

the concentration of input stream (variable 9) as indicated in the top diagrams in Figure 3.11. 

The change is then affecting on the product concentration (variable 8) by denoting decreasing 

trending as shown in the bottom diagrams in Figure 3.11.   

 

Figure 3.11: The behaviours of fault number 11 based on trends of variables 9 (top charts), 

and 8 (bottom charts) of CSTRwR system for abrupt (left diagrams) and incipient (right 

diagrams) fault categories 

 The monitoring performances with respect to F11a and F11i are shown in Figure 3.12 

and 3.13 respectively. From Figure 3.12, both of the statistics have managed detected F11a 

efficiently at sampling time 3. Figure 3.13, on the other hand, has depicted that F11i can be 

detected much faster compared to the previous cases. In particular, the detection time is found 

to be at sampling time 5 for PCA models 3 and 5, whereas PCA model 7 has detected slightly 

later, which is at sampling time 11 through SPE statistic. The T
2 

progressions also have 

shown detections but in much slower period, regardless of the models that applied.        
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Figure 3.12: Progressions of T
2 

(left) and SPE (right) of PCA models with 3 PCs (top), 5 PCs 

(middle), and 7 PCs (bottom) for F11a data of CSTRwR 
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Figure 3.13: Progressions of T
2 

(left) and SPE (right) of PCA models with 3 PCs (top), 5 PCs 

(middle), and 7 PCs (bottom) for F11i data of CSTRwR 
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3.3  Summary 

A CSTRwR system was utilised as the case study for monitoring evaluation. In general, this 

particular unit operation represents a system where a set of variables are monitored and the 

impact of the disturbances on the process is quite observable as well as the trend persists over 

the time of operation. Besides, this chapter has also discussed the PCA models which are 

developed according to the original NOC data obtained from simulation. In addition, the 

monitoring limits are also verified to be reliable for monitoring (tested through the second set 

of NOC data). This chapter also demonstrates various fault detection performances using the 

PCA technique. The generic trend shows that PCA is very efficient in detecting any of abrupt 

fault cases, whereas the same models may have some difficulties (slower detection) in 

dealing with the incipient faults. All these results will be used against the outcomes of the 

proposed CMDS systems for evaluation. The following subsequent chapters focus on the 

comparative analysis of monitoring performances between the proposed methods and the 

linear PCA based monitoring systems developed in this chapter. As the proposed frameworks 

are divided into three main bases, therefore, each chapter will be dedicated specifically to one 

of these generic procedures respectively.      
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CHAPTER 4 

  

FRAMEWORK I: MDS-BASED MSPM SYSTEM USING MOVING WINDOW 

CMDS PROJECTION 

4.1  Introduction 

This chapter presents the methodology and results of the first framework, which is based on 

the standard CMDS procedures (sCMDS-MSPM). This study assumes that, whenever a fault 

situation occurred, those faulty variables have the tendency of freeing themselves from the 

normal cluster. Therefore, this method is mainly trying to identify those behaviors by the use 

of two proposed monitoring statistics. In particular, the execution can be performed by 

monitoring the movement of individual variables from the global origin of the scores as well 

as measuring the changes in terms of inter-distances magnitude among of the variables. The 

true advantage of CMDS as opposed to PCA in this application actually lies on its ability to 

preserve the association among the objects (or ‘variables’ in this context) within the new 

reduced dimensional space, where it is strictly configured and mapped based on the original 

dissimilarity scales. Thus, analysis on the scores from the other non-selected dimensions can 

be avoided (as normally performed through SPE). Besides, this unique feature will in turn, 

perhaps support the system to be effectively implemented in less dimensionality against the 

linear PCA for monitoring. 

 The remainder of this chapter is divided into three sections. Section 4.2 describes the 

proposed CMDS based monitoring procedures. The results of the proposed approach on the 

case studies, as well as its critical reflection, are presented in Section 4.3. Lastly, a summary 

is given in Section 4.4.  

4.2 Methodology   

The sCMDS-MSPM procedures are generally divided into two main phases – phases I and II 

as depicted in Figure 4.1. From Figure 4.1, the first phase relates to the model development 
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using normal operating condition (NOC) data (off-line modelling) whereas the second phase 

facilitates for monitoring of the new process data (on-line monitoring).  

 

4.2.1 Phase I Procedures 

The following discussions are related to steps 1 to 4 in Figure 4.1. Firstly (1
st
 step), a set of 

NOC data, nm´X (m: variables, n: samples), are identified off-line based on the historical 

process data archive. The data are then standardized to zero mean and unit variance (because 

the data involves variables with various units). In contrast to the first step of Figure 2.1, the 

NOC data is then divided into two sets (after standardization), where the first (XNOC1) will be 

used in developing the optimized NOC scores and the second (XNOC2) will be integrated with 

XNOC1 for identifying the monitoring limits. This is important as the variables’ scores 

structure cannot be directly used in providing the distribution model information. 

 In the 2
nd

 step, the first set of the NOC data is then compressed and converted into a set 

of variable score configuration in the reduced dimensional domain by using the standard 

CMDS procedures as discussed in Chapter 2. The developed CMDS-NOC scores, YNOC, will 

be in the form of m by p (m: number of variables; p: number of compressed dimensions) and 

assumed (with certain degree of proximity – equation 2.27) as representing the original 

correlations among of the monitored variables. When integrating to XNOC2 (for the projection 

1. Collection and standardization 

of historical NOC data 

2. Development of off-line NOC 

and MWOS-NOC scores by 

means of variables (CMDS) 

3. Formulation of monitoring 

statistics based on NOC scores 

5. Collection and standardization 

of the new process data 

6. Development of on-line 

MWOS-new-data scores by 

means of variables (CMDS) 

7. Formulation of monitoring 

statistics based on MWOS scores 

8. Fault detection, analysis, and 

fault identification 

4. Calculation of control limits 

and false alarm analysis 

PHASE II  PHASE I  

Figure 4.1. CMDS-based MSPM framework 
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of the other NOC scores), a moving-window mechanism is applied and known as moving-

window-observation sample of NOC (XMWOS-NOC). In particular, this mechanism is operated 

such that the newly measured sample is added to the data frame by taking the oldest sample 

out from the data window. In this way, the size of the XMWOS-NOC matrix will be maintained 

at m by n over the time, especially when a new sample becomes available. Later, the standard 

CMDS procedures are applied to develop the scores for XMWOS-NOC, which is YMWOS-NOC (in 

the later discussions the term YsCMDS will be used instead of YMWOS-NOC as to generalize the 

equation application especially when considering all the other faulty operation samples).  

 The 3
rd

 step basically involves computing the monitoring statistics. The first parameter 

(Sm1) is shown mathematically in Equation 4.1 as well as illustrated in Figure 4.2.  

Statistic 1 for magnitude of deviation (Sm1): Changes in Euclidean distance from the global 

origin. 
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where i is the variable index, j is the dimension index, p is the number of 

PCs, sCMDSy represents MWOS scores coordinates , and 1NOCy  represents the original NOC 

scores coordinates.  

 

Figure 4.2: Illustration of Sm1 based on the plots of NOC scores vs MWOS-NOC scores (left 

diagram); NOC scores vs MWOS-fault scores (right diagram) 
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 It generally relates to the sum of squared errors in terms of Euclidean distance of each 

score from the global origin between the YsCMDS and YNOC1 configurations. Yunus and Zhang 

(2010a) mentioned that this measure for symbolizing the SPE instead of T
2 

because it has 

similarity with SPE in terms of mathematical formulation structure, nonetheless, it was later 

realized that the parameter is strongly connected to the measure of distance from a single 

reference point rather than on variable association information.  

 In each of the plots in Figure 4.2, an imaginary boundary (dashed-circle) can be drawn 

as representing the boundary of the normal score cluster. The left diagram shows that both 

score configurations (original NOC and MWOS-NOC) are very close together, thus, 

depicting the normal operation behaviour. Nonetheless, whenever a fault occurred (right 

diagram), those faulty variables will either move drastically or gradually away from the 

normal cluster, as shown by ‘V3’, and this trend can be easily picked up by Sm1.  

  The objective of the second statistic (Sr), however, is to measure the consistency of the 

current variables’ association according to the specified original NOC model. This can be 

easily executed by way of measuring the sum of squared errors in terms of dissimilarity 

measures between the YsCMDS and YNOC1 scores coordinates as defined in Equation 4.2. 

Statistic for relationship (Sr): Sum of squared errors in terms of dissimilarity measures. 
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where i and j are respectively the index for rows and columns of the dissimilarity matrix, m is 

the number of variables, sCMDSd  is the dissimilarity matrix of the MWOS scores, and 1NOCd  is 

the dissimilarity matrix of the first NOC scores.  

 The same configuration of Figure 4.2 is used again in illustrating the idea of Sr as 

shown in Figure 4.3, where distances from variable ‘V2’ to other variables are shown. From 

the right diagram of Figure 4.3, when ‘V3’ is deviated from the normal cluster, the impact on 

Sr can be obviously seen by indicating a relatively large distance from ‘V2’ compared to the 

same original measure as indicated in the left diagram of Figure 4.3. In another instance, the 

abnormal condition shown by ‘V4’ in the right diagram of Figure 4.3, can also be detected by 

Sr, where the distance between ‘V4’ and ‘V2’ is comparatively smaller than the same original 
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measure depicted in the left diagram in Figure 4.3. These trends show that either ‘V3’ or ‘V4’ 

is contributing or being affected by the fault.    

 

Figure 4.3: Illustration of Sr based on the plots of NOC scores vs MWOS-NOC scores (left 

diagram); NOC scores vs MWOS-fault scores (right diagram) 

 All of these monitoring statistics can be assumed following the chi-squared distribution 

as discussed in Nomikos and MacGregor, (1995) because they are all using the similar 

equation structure which is based on ‘sum of squared errors’ and the “error” terms can be 

reasonably assumed to follow normal distribution. The monitoring limits for each of the 

statistics are calculated using Equation 4.3 (4
th

 step). 
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where α equals to 0.05 and 0.01 for warning (95%) and control (99%) limits respectively, m  

and ν are respectively representing the means and variances for each of the statistics.  

  Once all of these procedures are carried out, false alarm rate (FAR) analysis is 

conducted to evaluate the robustness of the monitoring statistics (Chiang et al., 2001). 

Equation 4.4 is used to obtain the FAR results where the aim is to get a very low FAR. High 

FAR indicates that the developed limit settings are unsuitable to be used for monitoring, and 

therefore, another approach should be initiated to optimize the situation. Hence, the window 

size settings are utilized for the optimization purpose. In other words, different window sizes 

will be implemented for each of the algorithms to vary the monitoring outputs.      
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samples NOC ofamount  Total

limit 99%  thebeyond locatedset  NOC in the statistics ofamount  Total
=FAR             (4.4) 

 

4.2.2  Phase II Procedures 

In the procedures of on-line monitoring, which are pertaining to steps 5 to 8 in Figure 4.1, on-

line measured data are collected and standardised using the means and standard deviations for 

the NOC data and subsequently transformed into the MWOS structures as described in step 2 

(5
th

 step). The multivariate scores (6
th 

step) as well as monitoring statistics (7
th

 step) are 

computed following the same procedures described in the previous section. Finally, real time 

monitoring is performed by observing the progression of all monitoring statistics on the 

Shewhart-type multivariate monitoring chart (8
th 

step). A fault is directly detected whenever 

one of the monitoring statistics exceeds the specified 99% monitoring limit based on a 

consecutive number of samples.  

 A systematic as well as comprehensive analysis is conducted to compare the 

monitoring results of sCMDS and linear PCA based monitoring systems. The following 

performance indicators are compared, the total number of detected cases and total number of 

fastest detection cases, which are both depended on the fault detection time (FDT) outputs. 

Both of these performance factors are important as to identify the credibility of the individual 

system in tackling various abnormal cases. In short, if the proposed system can detect 

equivalently or closely by way of the number of cases relative to the conventional method, it 

basically means that the proposed framework is practically working.   

 On the other hand, FDT can be regarded as the number of samples between the time a 

fault was introduced in the process and a monitoring index (either Sm1 or Sr) exceeded the 

99% control limit for the first time (subject to the pre-specified condition, in terms of 

consecutive number of samples, that defining the fault detection execution). Thus, the term is 

actually referring to a measure of rapidity of the system in detecting the fault or promptness 

according to Chiang et al., (2001). There is also another indicator that can be utilised for 

analyzing the monitoring performance, which is known as missed detection rate (Chiang, et 

al., 2001). This measure is defined as the ratio of faulty samples being detected and the total 

number of faulty samples. Nonetheless, this study believes that this particular parameter 
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shares the similar conceptual objective as with the FDT, which is to identify the sensitivity of 

the monitoring system in detecting the faults, but both are different in terms of mechanisms. 

This measure is importantly required however, especially when considering the dynamic 

trends of the monitoring progressions. Thus, if the proposed methods can achieve quicker 

detection, it basically means that the assumed framework has the potential to be subjectively 

efficient compared to the traditional system.              

    There are also other performance factors that can be utilized for analysis, particularly in 

comparing between the monitoring system performances. As an example, 

Venkatasubramaniam et al., (2003) have proposed ten characteristics that are desirable for 

any process monitoring which include quantitative and qualitative measures. Among those 

criteria, quick detection (short FDT) and robustness (less FAR) have been particularly 

addressed in this study, and both are quantifiable. While others seemed to be either more on 

diagnosis oriented such as isolable capability, classification error estimate and explanation 

facility or simply very subjective in definition such as those concerning modelling, storage 

and computational requirements. There are also other factors which are relevant for 

consideration such as novelty identification, adaptability in dealing various operation modes 

and also multiple fault diagnostic capability. However, these three factor are more suitably to 

be considered in the next phase of advanced monitoring, due to the nature of complexity as 

well as constraints of the environment that those factors are emphasizing and struggling to 

solve (which are contextually different from the issues focused in this work). Therefore, the 

two monitoring performance factors  together with FAR are the main outcomes that sufficient 

for evaluation corresponding to the specified objectives which have been set in this study.             

 The contribution plot technique is proposed to identify the potential variables that 

possibly connected to the detected problem as given in Equation (4.5).  

  ( ) ( )å
=

=
m

i
jij XStatisticsCMDS

1

                                 (4.5) 

Where,  (CMDS Statistics)j = CMDS statistics (Sm1 or Sr) at a particular sampling 

time ‘j’.  

(Xi)j = contribution of the ith variable to CMDS statistics at a particular 

sampling time ‘j’.   
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 Equation (4.5) is applicable to both statistics proposed. Thus, once the system has 

detected a fault, fault identification will be conducted by using contribution plot approach on 

the corresponding statistic or statistics that detected the fault. This is performed iteratively 

from the instance of first detection until a definite period of time, whereby the trend of 

deviations persists permanently.  

4.3 Results and Analysis   

This section presents the performances of CMDS based monitoring system on various faults 

and compares with those from a a linear PCA based monitoring system. In particular, FAR, 

the total number of cases detected, and the total number of fastest detection cases of both 

monitoring systems are compared.  

 The same sets of NOC data which have been used in developing the PCA models, was 

used in constructing the sCMDS NOC model. As described in the previous section, the NOC 

data were divided into two groups, XNOC1 and XNOC2 (each contains 50 samples).  The first 

(XNOC1) was used in developing the NOC scores and the second (XNOC2) were integrated with 

XNOC1 for identifying the monitoring limits. The result on the accumulated portion of data 

variance explained by the dimensions (pertaining to XNOC1) is given in Figure 4.4. 
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Figure 4.4. Accumulated portion of data variation explained by the dimensions of the CMDS 

model of XNOC1 

 Figure 4.4 indicates that the MDS model with 3, 5 and 7 dimensions represent around 

75%, 90%  99% of the data variation respectively, which are similar to the PCA models. 
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Nonetheless, the interpretation on these ratios is different. From the CMDS point of view, the 

ratios provide the sense of proximity of the reconstructed scores with respect to the measures 

of dissimilarity scales (in terms of variable inter-distance measures) instead of variances. It 

basically means that, the model representing 90% of data variation is perceived to be more 

accurate compared to the one representing 75% of data variation as far as the original 

dissimilarity scales are concerned. Therefore, this condition cannot be used to justify 

concretely that the higher percentage model should perform better in detecting faults in 

relative to the smaller dimensional model. However, those three dimension settings were used 

in this study to analyze and compare their performance.  

 The overall results of FAR analysis on all the cCMDS methods have shown zeros rates. 

This indicates that the established monitoring limits should be robust in the monitoring 

operation. The results are also comparable to those of linear PCA based monitoring systems 

presented in Chapter 3.  

Tables 4.1 and 4.2, on the other hand, present the overall monitoring performances in 

terms of fault detection time (FDT) of both sCMDS and PCA systems based on 3, 5 and 7 

dimensions/PCs settings corresponding to abrupt and incipient fault cases respectively. In all 

the cases, the faults were detected such that at least 3 successive samples of either monitoring 

statistics were located above their 99% control limits.  In both tables, the fastest detection 

time is indicated in bold.   

 From Table 4.1, the overall performances have shown that all the PCA models have 

managed detecting all of the abrupt fault cases.  This similar performance is also shared by 

the sCMDS method which particularly applies the Euclidean distance regardless of the 

dimensions and window sizes used. The results on using City-block distance is also 

productive (100% detection based on dimension settings of 3 and 7 and adopting window size 

15), even though the other application specifications have demonstrated slightly lower 

number of detections. In addition, all of the PCA models have denoted that they are both 

effective as well as efficient, where all the abrupt fault cases can be detected as fast as at 3 

samples (except case 7 based on dimensions 3 and 5). Regarding sCMDS, the best 

performance is produced by methods that implementing Euclidean distance and window size 

15 (altogether 8 cases with fast detection) for all dimensions that applied. In analysing the 

results based on those 3 cases where sCMDS based systems did not produce fastest 
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detections, the FDT based on sCMDS is not much longer compared to PCA. The generic 

City-block results, on the other hand, show low number of fastest detection cases, 

nonetheless, the delayed FDT of City-block in relative to the PCA and Euclidean outcomes 

are minor. Thus, the overall performance of sCMDS can be perceived as comparable to linear 

PCA.  

        Table 4.2 shows that the monitoring systems based on PCA and sCMDS with  Euclidean 

distance have successfully detected all the incipient fault cases that investigated (100 % 

detection) consistently regardless of the application settings. As similar to the previous 

discussion on abrupt faults, the performance of sCMDS based monitoring system with City-

block distance is conditional, where the models with 5 and 7 dimensions have shown 100% 

detection with window size 15, whereas others have produced 10 cases detected (which is 

only one case undetected). However, the significant impact of using sCMDS can be observed 

particularly based on the total number of fastest detection case, where the best performance is 

all dominated by sCMDS with Euclidean distance and window size 5 for every dimension 

cosidered. In particular, 8 out of 11 cases that are detected are found to be the fastest 

detection, which is hugely different from those cases of PCA as well as City-block. In 

analysing the results in detail, majority of the cases have shown that the difference in FDT 

between the monitoring systems based on sCMDS with Euclidean distance and PCA are 

found very large. This observation suggests that sCMDS has an important advantage over 

linear PCA particularly in dealing with slow or incipient faults.  
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 Those cases that discussed individually in Chapter 3 are utilised again for illustration in 

this chapter. Figures 4.5 and 4.6 present the monitoring statistic progressions for F6a and F6i 

respectively.  From Figure 4.5, it can be seen that the overall results on F6a demonstrated that 

both statistics are effective as well as efficient, where this particular fault can be detected as 

early as at sampling time 3. In compared to PCA, both methods are found to have equal 

performance based on this particular case. With regard to F6i, however, Figure 4.6 has 

depicted that both statistics are significantly productive, where this particular fault can be 

efficiently detected at sampling time 5. This is significant improvement compared to PCA, 

where the FDTs are found to be generally more than 20 sampling time as shown in Chapter 3.  
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Figure 4.5: Monitoring progression of Sm1(left) and Sr (right) on F6a based on sCMDS models 

using 3 dimensions (top), 5 dimensions (middle), and 7 dimensions (bottom) 
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Figure 4.6: Monitoring progression of Sm1(left) and Sr (right) on F6i based on sCMDS models 

using 3 dimensions (top), 5 dimensions (middle), and 7 dimensions (bottom) 
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 Fault identification is carried out through contribution analysis. Figures 4.7 and 4.8 

shows the corresponding contribution plots of sCMDS based monitoring system with 

Euclidean distance and window size 5 for F6a and F6i respectively.  In particular, all 

contribution plots in Figure 4.7 indicate that variables 7 and 13 have the most significant 

contributions to the monitoring statistics under F6a at sampling time 10. Prior to this, variable 

7 has been seen as the main sole contributor to the fault particularly from sampling time 3 

until 9, whereas both variables 7 and 13 have been sustained to be strongly connected to the 

fault from sampling time 10. This fault leads to an increase in the cooling water flow rate 

(variable 7) which results in a reduction in reactor temperature. The reactor temperature 

control system then attempts to reduce the cooling water flow rate in order to maintain the 

reactor temperature by reducing controller 2 output (variable 13).   

 Meanwhile, the contribution plots in Figure 4.8 have indicated variable 13, as the only 

main contributor to F6i. This can be observed clearly through Sm1 (top diagrams in Figure 

4.8) at sampling time 20 and this is consistent until to the last sample (the results based on 

earlier sampling time have shown no clear trending). Unfortunately, the progression of Sr 

cannot identify the specific trend clearly based on the similar period of time that taken by Sm1. 

It is also interesting to observe that variable 7 did not importantly connect to F6i as depicted 

in the F6a case previously. This finding suggests that the nature of dynamic behaviour of 

fault number 6 is slightly dissimilar between the abrupt and incipient cases, despite the fact 

that both have a similar root of malfunction situation. In addition, the trend of identification is 

exactly similar regardless of number of dimensions that applied.    
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Figure 4.7: Contribution plots of Sm1 (top) and Sr  (bottom) for F6a with 3 dimensions 

(Diagram A), 5 dimensions (Diagram B) and 7 dimensions (Diagram C) 
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Figure 4.8: Contribution plots of Sm1 (top) and Sr  (bottom) for F6i with 3 dimensions 

(Diagram A), 5 dimensions (Diagram B) and 7 dimensions (Diagram C) 
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 Figures 4.9 and 4.10 denote the monitoring statistic progressions for F9a and F9i 

respectively for sCMDS based monitoring system with Euclidean distance and window size 

5. All the plots in Figure 4.9 show that the fault can be detected at sampling time 3. These 

performances are also comparable to those results of PCA (Chapter 3). Therefore, as similar 

to the previous case (F6a), both monitoring methods can be regarded as giving equal 

performance in detecting F9a. The results in Figure 4.10, however, show that sCMDS based 

monitoring systems give significantly better performance than PCA based monitoring system 

for F9i detections. As denoted in Table 4.2, the best FDT that provided by PCA is 14, 

whereby sCMDS managed to detect the same fault as fast as after 3 sampling time. 

Moreover, the results of PCA solely depend on the SPE progression, whereby T
2
 has failed in 

all models. Nevertheless, both monitoring statistics of sCMDS are not just capable in 

detecting F9i, but more importantly performed at equal time of detection. This observation 

suggests that the basic concept of Sm1 and Sr supports each other.           

  The results on fault identification of F9a as well as F9i are also determined in parallel 

to the outcomes of fault detection that adopted sCMDS schemes discussed previously as 

shown in Figures 4.11 and 4.12. All those contribution plots in Figure 4.11 have signified 

variables 5 and 12 as the main contributors for F9a particularly at sampling time 5 and 

onwards (the results of contribution plot at earlier samples have only indicated variable 5 that 

particularly connected to the problem, and besides, the magnitude of variable 12 has been 

also found gradually increased over time).   In the second case, however, it is solely variable 

12 which has been found importantly related to F9i, and that can be observable through 

sampling time 10 based on Sm1 progression (top diagrams in Figure 4.12). This is another 

example to show that the dynamic trending between abrupt and incipient fault is slightly 

different.   This particular trending has been also observable on the later sampling time, 

whereby the earlier progressions cannot be identified as clear as at sampling time 10.  That 

particular pattern cannot be seen, however, on the Sr plot based on the similar period of time 

(bottom diagrams in Figure 4.12). In reflecting to the descriptions of the faults that presented 

in Chapter 3, the trends that depicted on those contribution plots of Figures 4.11 and 4.12 are 

explainable. This fault will lead to a reduction in the recycle flow rate (variable 5). The 

recycle flow controller then attempts to increase recycle flow rate by increasing the controller 

output (variable 12).  It is also noticed that the pattern of deviation is not significantly 

affected by increasing the number of dimensions.  
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Figure 4.9: Monitoring progression of Sm1(left) and Sr (right) on F9a based on sCMDS using 3 

dimensions (top), 5 dimensions (middle), and 7 dimensions (bottom) 
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Figure 4.10: Monitoring progression of Sm1(left) and Sr (right) on F9i based on sCMDS using 

3 dimensions (top), 5 dimensions (middle), and 7 dimensions (bottom) 
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Figure 4.11: Contribution plots of Sm1 (top) and Sr  (bottom) for F9a with 3 dimensions 

(Diagram A), 5 dimensions (Diagram B) and 7 dimensions (Diagram C) 
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Figure 4.12: Contribution plots of Sm1 (top) and Sr  (bottom) for F9i with 3 dimensions 

(Diagram A), 5 dimensions (Diagram B) and 7 dimensions (Diagram C) 
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 Lastly, Figures 4.13 and 4.14 summarize the results for F11a and F11i respectively 

from sCMDS based monitoring systems with Euclidean distance and window size 5. F11a 

can be detected by all models directly at sampling time 3, which is 1 sampling time after the 

fault was introduced in the process. The similar performance was also shared by PCA which 

has been discussed in Chapter 3. Thus, both approaches can be perceived as giving equivalent 

performance with regard to monitoring on this particular case. In analysing the results of 

F11i, however, sCMDS has again demonstrated very impressive performances. In particular, 

all models have managed detecting F11i as efficient as at sampling time 5 through both 

statistics, which is 3 sampling time delay after the fault introduced into the process. The 

linear PCA based monitoring system can also produce the equal fault detection performance 

through utilising 3 or 5 PCs. For this particular fault, both PCA and sCMDS based 

monitoring systems give similar performance.  

 The results of fault identification based on the contribution plot technique are shown in 

Figures 4.15 and 4.16 for abrupt and incipient fault cases respectively.  All plots have 

denoted that variable 9 (inlet concentration) as the main contributor to the problem. These 

findings are determined compatible to the nature of the faults that described in Chapter 3. 

More importantly, the cause of the faults can be identified much earlier compared to the 

faults that discussed previously. In particular, the root problem of F11a and F11i can be 

identified as efficient as at sampling time 3 and 5 respectively (which is equal to the time of 

detection).  All of these identifications can be performed effectively based on both statistics 

in connection to F11a, whereas this behaviour can be only delivered by Sm1 with regard to 

F11i.  Again, increasing number of dimensions does not provide any advantage as the trend 

for all dimensions that selected are almost identical from one to another.   
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Figure 4.13: Monitoring progression of Sm1(left) and Sr (right) on F11a based on sCMDS 

using 3 dimensions (top), 5 dimensions (middle), and 7 dimensions (bottom) 
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Figure 4.14: Monitoring progression of Sm1(left) and Sr (right) on F11i based on sCMDS 

using 3 dimensions (top), 5 dimensions (middle), and 7 dimensions (bottom) 
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Figure 4.15: Contribution plots of Sm1 (top) and Sr  (bottom) for F11a with 3 dimensions 

(Diagram A), 5 dimensions (Diagram B) and 7 dimensions (Diagram C) 
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Figure 4.16: Contribution plots of Sm1 (top) and Sr  (bottom) for F11i with 3 dimensions 

(Diagram A), 5 dimensions (Diagram B) and 7 dimensions (Diagram C) 
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4.4 Results Discussion  

4.4.1 The Impact of Dissimilarity Measures on The Monitoring Outcomes   

This sub-section addressing the first question presented in Section 1.2 of Chapter I. Two 

dissimilarity measures have been used in this chapter to develop the relationships among the 

variables through the structure of MDS. Through analysing the results on the total number of 

detected cases for both distance measures, the overall trend suggests that  that the 

performance of City-block can be considered comparable to the Euclidean scale.   

 The generic outcomes of the total number of fastest detection cases, on the other hand, 

signifies that majority of the cases show that Euclidean distance measure is superior to the 

City-block distance measure. In considering all of these findings, this study suggests that 

using the Euclidean distance measure is advantageous compared to City-block distance 

measure. The basic reason is that CMDS fundamentally uses the Euclidean space in 

developing the scores. Thus, all the scores corresponding to the City-block measure are 

actually representing a set of embedded Euclidean distances instead of the real City-block 

distance. Consequently, measuring the variables relationships’ consistency in terms of City-

block distance measure, between the original NOC set and the MWOS models introduce 

more complexity as well as lacking in its originality.   

4.4.2 The Impact of using New Monitoring Statistics on The Monitoring Outcomes   

This sub-section is corresponding to the second question presented in Section 1.2 of Chapter 

1. Two new monitoring statistics were introduced as a result of using different approach as 

well as structure in developing the multivariate scores. When considering the overall 

performance on CSTRwR, the suggested statistics found to be efficiently as well as 

effectively working as expected. Nonetheless, the results were not consistent all the time, 

where a number of ND observed from Tables 4.1 and 4.2.  

 This study cannot directly or concretely provide the right answer for this situation. 

However, this study suspects that this could be due to the inconsistency in terms of specifying 

the consistent sets of eigenvectors during score development.  In general, eigenvectors are 

subject to be rotated and reflected at the same time as a result of continuous changing of the 
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samples by using the moving window mechanism. The impact of this situation can be seen 

based on a hypothetical example shown in Figure 4.17.        
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Figure 4.17: NOC scores (‘o’) vs MWOS-new scores (‘x’) 

 Figure 4.17 shows the new coordinates of ‘V1’, ‘V2’ and ‘V3’ are overlapping with the 

original coordinates. On the other hand, the new locations of ‘V4’ and ‘V5’ (‘x’ marks) have 

been flipped by the horizontal axis, and as a result, relocating to the opposite direction of the 

original configuration. This can happen as a result of sCMDS algorithm has to apply 

recurring different sets of eigenvector measures every time during the score projection. In 

other words, sCMDS may employ different settings of eigenvectors (which have been rotated 

and flipped), even though it involves NOC data. The negative impacts will be severed upon 

the second statistics (variable relationships) as the new locations of ‘V4’ and ‘V5’ will 

increase the Sr values. Thus, this could be the main situation that contributes to the 

occurrences of ND rates because the squared errors on NOC samples cannot be calculated as 

minimum as possible in the first phase of monitoring.   

4.4.3 The Impact of Applying Various Window Settings on The Monitoring Outcomes 

This sub-section is trying to deliver the answer based on the third question presented in 

Section 1.2 of Chapter 1. Besides of using the sCMDS algorithms, three arbitrary window 

size settings were applied on each of the proposed systems. The analysis was made under the 

assumption that reducing the window size can be regarded as the effort of decreasing the 

dependency on the original NOC data behaviour upon the new samples. As a consequence, 
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the main behaviour of the MWOS samples is simply influenced by both of the sample sets 

and not severely dependable on the original sample set character. It was believed that, if such 

situation can be produced, a random behaviour of NOC data can be achieved and, eventually, 

the monitoring statistics comply to the chi-squared distribution assumption and more precise 

control limits can be produced.   At the same time, it is also believed that this approach may 

help the system to be more sensitive during fault detection operation.  From the results, the 

FAR outputs on the CSTRwR cases have been shown to be zero. The overall results of total 

number of detected cases show that the impact on using various window settings was not that 

obvious because those three window sizes used proved in detecting all cases (subject to the 

type of scales applied). However, using smaller window size may help the monitoring system 

to gain faster detection (total number of detection cases) especially on those cases that slowly 

detected by PCA (incipient faults).   

4.4.4The Impact of Applying Smaller Dimensionalities on The Monitoring Outcomes 

This sub-section is pertaining to the last question presented in Section 1.2 of Chapter 1. This 

is the key to the particular motive of this study. In particular, the linear-PCA was criticized 

for being as problematic as the technique involves a high number of PCs for effectively 

modelling non-linear processes. In other words, the conventional method requires relatively 

large number of PCs for capturing the variations of the original process data and eventually it 

can detect the faults in faster pace as well as in a more productive manner compared to the 

performance of monitoring systems with smaller number of PCs. These assumptions were 

verified based on the results observed on the CSTRwR cases.  

 However, the generic performance of the sCMDS system generally suggests that there 

is no significant improvement in terms of the fault detection outcomes as a result of applying 

more dimensionalities into the monitoring model. In fact, there were cases still undetected by 

using higher dimensions (Tables 4.1 and 4.2). Although this can be perceived as a kind of 

improvement to some extents, but the inconsistency is permanent and cannot be removed by 

simply adopting more dimensionalities.   

 Unlike to the conventional approach, CMDS uses the variable themselves as the main 

score objects in the reduced dimensional space. At the same time, the inter-distance measures 

are also utilised to represent the conceptual association among the variables. Therefore, the 
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only information that is transferred from the original data space to the latent space is on the 

structure of variable configuration instead of sample variances (corresponds to the traditional 

concept). Thus, increasing the number of dimensions will only contribute in enhancing the 

variable correlations (numerically) relative to the original and not on the nature of the sample 

distribution. The main benefit of this approach is that the variable correlations can be 

designed at any scales of dimensions, but preferably in a lesser quantity. This has been 

proven in the case of CSTRwR, where all of the specified cases can be detected by all the 

Euclidean-based sCMDS systems using dimension 3. Besides, the incipient faults can still be 

detected relatively faster than PCA using only three dimensions. Nonetheless, the optimum 

amount of sufficient number of dimensions which can be configured with the number of 

variables and window size applied is still unknown. Thus, the current method of specifying 

the number of dimensions which is based on the ratio of eigenvalues will be maintained.  

4.5 Summary  

This chapter presents the results of using sCMDS for monitoring with respect to different sets 

of settings demonstrated on the CSTRwR system. The outcomes were also compared 

quantitatively with the performances from the linear PCA based monitoring system. It was 

shown that sCMDS has proven working comparative to the PCA based monitoring system 

performance particularly based on abrupt fault cases. However, sCMDS has been shown to 

give faster detection than the monitoring performance of linear PCA model based monitoring 

systems with regard to incipient fault cases. Nonetheless, there were some minor 

inconsistencies observed based on the sCMDS results. Thus, the following chapter presents 

another type of CMDS-based framework, which is an enhanced strategy compared to the 

current method.  
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CHAPTER 5 

  

FRAMEWORK II: MDS-BASED MSPM SYSTEM USING MOVING WINDOW 

CMDS PROCRUSTES ANALYSIS PROJECTION 

 

5.1   Introduction 

This chapter presents the methodology as well as monitoring results of framework II, 

Classical Multidimensional Scaling-Procrustes Analysis-based (CMDS-PA) MSPM system. 

The results of framework I discussed in Chapter 4 suggested that an improvement should be 

made on the sCMDS algorithms in order to obtain higher degree of consistency in the fault 

detection outcomes. It was assumed that those inconsistencies are generated from the 

variation in terms of eigenvector measures, which eventually may modify the correct 

reconfiguration of MWOS-NOC scores as well as the corresponding limits that developed. 

Thus, an enhanced technique, which focuses on standardized PA transformation factors, is 

proposed in order to improve the previous CMDS monitoring framework results. The 

background idea of this approach is to emulate the approach of loading factors obtained from 

the PCA algorithms.   

      One of the main techniques available in the domain of MDS that addresses specifically 

the score reconfiguring procedures is known as Procrustes Analysis (PA). According to Cox 

and Cox (1994), PA can be regarded as one-to-one mapping technique that matches from a 

set of configurations to another by producing a measure of fitness. Cox (2001) has utilized 

PA for matching two configuration sets (one was produced by CMDS, while another has 

been developed through Non-metric MDS) for monitoring, and the results show that the 

mapped configuration closely matched the targeted set. Therefore, the aim of the second 

framework is to utilize PA transformation functions and CMDS to develop the scores as well 

as evaluating the impacts of the approach on the fault detection performance.     



105 

 

 This chapter is organized as follows. Section 5.2 explains the detail procedures of the 

proposed methodology while Section 5.3 presents the monitoring results on the CSTRwR, 

taking into account the comparative performance between PCA and the first framework. 

Finally, a summary is presented to summarize the key findings.     

5.2   Methodology 

The detail procedures of this framework are illustrated in Figure 5.1.  

 

 Compared to framework I (Figure 4.1), the main differences are on steps 2, 3, 6 and 7, 

where the projection of the scores will be executed through applying CMDS and PA 

procedures at the same time.  

5.2.1  Phase I Procedures 

After executing the first step, the second step basically involves multivariate score 

development. Firstly, the standard CMDS algorithms are applied to both sets of the original 

NOC scores, XNOC1 and XNOC2, to produce multivariate scores for the first set, YNOC1 and 

multivariate scores for the second set, YNOC2 respectively. Then, the PA procedures are 

applied as described in the following (Borg and Groenen, 1997):            

1. Collection and standardization 

of historical NOC data 

2. Development of off-line NOC 

and MWOS-NOC scores by 

means of variables (CMDS-PA) 

3. Formulation of monitoring 

statistics based on MWOS-NOC 

scores 

5. Collection and standardization 

of the new process data 

6. Development of on-line 

MWOS-new-data scores by 

means of variables (CMDS-PA) 

7. Formulation of monitoring 

statistics based on MWOS-new 

scores 

8. Fault detection, analysis, and 

fault identification 

4. Calculation on control limits 

and false alarm analysis 

PHASE II  PHASE I  

Figure 5.1. CMDS-PA-based MSPM framework 
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i.  Computation of the minor product moment between the first NOC scores, YNOC1 

(originated from XNOC1), and the second NOC scores, YNOC2 (originated from 

XNOC2).   

CPA=YNOC1
T
JmYNOC2          (5.1) 

where Jm is given in Equation 2.41.  

ii. Decomposition of CPA into the eigen basic structures.   

CPA=PPAVPAPPA
T 

            (5.2) 

where PPA and  VPA are the eigenvectors and eigenvalues matrices of CPA 

respectively. 

iii. Identification of the optimal rotation matrix: 

 R = PPA PPA
T
            (5.3) 

iv. Identification of the optimal dilation scale:  

s=(trYNOC1
T
Jm YNOC2R)/(tr YNOC2

T
JmYNOC2)      (5.4) 

v. Identification of the optimal translation vector: 

t=(YNOC1-s YNOC2R)
T
1/m, m=number of variables    (5.5) 

vi. The reproduction of MWOS-NOC scores projected by PA for sample ‘k’ is given 

by: 

YPA-NOC(k)=s YMWOS-NOC(k)R+1t
T 

      (5.6) 

    Where YMWOS-NOC(k) = new scores of MWOS-NOC samples at time k.   

 These particular CMDS-PA procedures are slightly different compared to the 

algorithms proposed in Yunus and Zhang (2010b; 2010c).  The procedures are described as 

follow: 

i.  Computation of the minor product moment between the reconstructed NOC matrix, 

Y and the modified NOC matrix, Xmod: CPA=Y
T
JmXmod            (5.7) 

    where Jm is from Equation 2.41 and Xmod is a modified NOC data with size m by p.     

ii. Application of the eigen decomposition on CPA by way of CPA=PPAVPAPPA
T 

   (5.8) 

where PPA and  VPA are respectively eigenvector and eigenvalues matrices of CPA. 
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iii. Calculation of the optimal rotation matrix, R =   PPA PPA
T
.            (5.9) 

iv. Calculation of the optimal dilation scale, s=(trY
T
JXmod R)(trXmod

T
JXmod).       (5.10) 

v. Calculation of the optimal translation vector, t=(Y-sXmodR)
T
1/m.          (5.11) 

vi. The final transformed model of NOC is given by 

 YPA(k)=sXMWOS-mod(k)R+1t
T 

                      (5.12) 

  Where, XMWOS-mod(k) = MWOS-NOC samples at time k.   

 As provided in Equations 5.7 to 5.12, both of these previous works were focusing on 

transformation between one set of NOC scores in the reduced dimensional space (Y) and 

series of the original MWOS-NOC data which is structurally modified by the use of average 

function (Xmod). The purpose of using the averages is to smooth out measurement noise. Thus, 

the main drawback of this former approach can be spotted by the changes in the original data 

behaviour, where the data were forced by forming a line configuration instead of a cluster 

(based on a plot in two dimensional bases). In contrast, the one described in this chapter takes 

into the consideration the transformation between two sets of NOC scores in the compressed 

dimensional space, where no structural adjustment is imposed initially. Hence, the true data 

behaviour of both data sets is preserved accordingly by forming clustering objects which are 

relevant to the assumption made. 

 The next step concerns with the monitoring statistic formulation. In particular, 

framework II utilizes the second type of the first statistic (Sm2) which is shown in Equation 

5.13 representing the sum of squared errors in terms of projected variables in the reduced 

dimensional space between YPA and YPA-NOC1 configurations.  

Statistic 2 for means (Sm2): Sum of squared errors in terms of projected variables in the 

reduced dimensional space. 
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     (5.13) 

 The use of Sm2 instead of Sm1 is imperative because it suits to the main objective of PA 

implementation. More specifically, PA tries to match between two sets of configurations such 
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that the locations of the second set can be modified according to the coordinates of the 

targeted set. In contra to this approach, the scores in the first framework are developed totally 

depending on the mapping between two different sets of dissimilarity (distances) measures 

instead of coordinates. Thus, the only effective way to measure the scale of fitness by using 

the PA approach is by analyzing the magnitude of Sm2, which is graphically shown in Figure 

5.2.  

 

Figure 5.2: Illustration of Sm2 based on the plots of NOC scores vs MWOS-NOC scores (left 

diagram); NOC scores vs MWOS-fault scores (right diagram) 

 The left graph of Figure 5.2 depicts that all the MWOS scores are relatively close in 

terms of coordination compared to the original NOC scores. The reason is basically similar to 

the previous discussion in Chapter 4. As for the right diagram of Figure 5.2, on the other 

hand, the runaway impacts that are represented by ‘V3’ and ‘V4’ can be easily highlighted by 

the use of Sm2. In particular, Sm2 will be affected by having a large magnitude corresponding 

to both cases. Therefore, Sm2 has a significant advantage as opposed to Sm1, particularly 

concerning on the ‘V4’ faulty condition. Anyway, both Sm1 and Sm2 share the same basic 

information, where they relate to the concept of magnitude of deviation of the current sample 

(represented by a group of samples through MWOS mechanism) from the pre-defined points 

(centre) of NOC scores.   

 The same statistic Sr from Equation 4.2 is utilized again in this framework. Basically, 

this parameter measures the sum of squared errors in terms of dissimilarity measures between 

the YPA-NOC and YNOC1 configurations, which conceptually analysing the consistency of 
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variables correlations. The particular Sr version applied for framework II is shown in 

Equation (5.14).  

[ ]å åå ÷
÷
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ijNOCPAijPAr dS
1

2

1

)(1)( d  ; i ≠ j    (5.14)  

Besides, the monitoring limits are also developed by using equation 4.3 and that is based on 

the chi-squared distribution. The false alarm analysis (FAR) analysis will be also conducted 

for evaluating the statistic robustness.     

5.2.2  Phase II Procedures 

The phase II procedures basically follow the same order as in the first framework in Chapter 

4. Anyway, the projecting algorithms for the new sample scores employed by CMDS-PA 

have been improved from sCMDS procedures, particularly through adapting the PA 

technique as shown in Equation 5.15.  

YPA-new(k)=sYMWOS-new(k)R+1t
T 

     (5.15) 

where, YPA-new(k) = reproduction of the scores projected by PA for MWOS-

new sample ‘k’. 

 YMWOS-new(k) = multivariate scores of MWOS sample ‘k’ developed 

by CMDS.  

The monitoring statistics Sm2 (Equation 5.13) and Sr (Equation 5.14) are used. The fault 

detection outcomes were also assessed using the previous performance indicators – total 

number of detected cases and total number of fastest detection cases.  

 Two approaches of contribution plot techniques are proposed in this framework in 

order to gain the generic insight of the probable variables that might contribute to the 

detected signal. The first applies similar conception as in framework I as indicated in 

Equation 5.16.  

  ( ) ( )å
=

=-
m

i
jij XStatisticsPACMDS

1

                              (5.16) 

Where,  (CMDS-PA Statistics)j = CMDS statistics (Sm2 or Sr) at a particular sampling 

time ‘j’.  
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(Xi)j = contribution of the ith variable to CMDS-PA statistics at a particular 

sampling time ‘j’.   

 Equation 5.16 is applied to both statistics that proposed. On the other hand, another 

approach is based on differential contribution as denoted in Equation (5.17).  

( ) ( ) ( )[ ]
jinormalPACMDSifaultPACMDSj onContributionContributi )()( -- -=dc           (5.17) 

Equation 5.17 basically shows the difference in terms of monitoring statistic 

contributions between the abnormal and normal operation samples of CMDS-PA statistics. In 

particular, dc (differential contribution) is a vector that contains ‘m’ number of errors 

corresponding to the monitored process variables. Meanwhile, ‘i’ is an index for process 

variables, whereas ‘j’ pertains to sampling time. The term ‘ContributionCMDS-PA(fault)’ refers to 

Sm2 or Sr individually, under which, the current operation contains faulty condition, whereas 

‘ContributionCMDS-PA(new)’, on the other hand, relates to any of NOC statistics of CMDS-PA. 

The main intention of employing the differential contribution plot is to gain faster 

identification time against the conventional technique. In other words, it is believed that that 

those variables which indicate large magnitude in dc value may have strong relationships 

with the detected signal, either contributing or being affected by the malfunction condition.  

Both of these techniques of fault identification are executed once the detection signal is 

initiated by the proposed CMDS-PA monitoring system. The analysis will be conducted from 

the first sample of detection to a point, where the trend of deviation indicated by large 

magnitude bar(s) is (are) consistent over the time. All of these steps were implemented in the 

CSTRwR case study that discussed previously in Chapter 3.    
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5.3  Results and Analysis  

The focus of this section is to conduct a generic overview on the quantitative comparison of 

fault detection performances between the current framework and PCA based monitoring 

system as well as taking into consideration the performances from framework I. All the 

malfunction cases used in Chapter 4 are utilised again to demonstrate the capability of 

framework II. The results are then summarized, whereby the reflections on the outcomes are 

provided at the end.   

 As explained in the previous chapter, the original NOC data was divided into two parts 

(each contained 50 samples), XNOC1 and XNOC2, where the first has been used to develop the 

NOC score model (YNOC1) by using the standard CMDS algorithms. It has been explained in 

the previous chapter that CMDS models with 3, 5 and 7 dimensions were developed to 

represent around 75%, 90% and 99% proximity to the original dissimilarity measures. Then, 

the standard CMDS procedures were again used to construct the scores for XNOC2, which 

eventually produces YNOC2. Once this was completed, the PA procedures were applied in 

order to identify those transformation factors R, s and t between YNOC1 and YNOC2.  The 

moving window mechanism was then applied integrating both XNOC1 and XNOC2. Three 

window sizes, 5, 10 and 15 were selected to introduce random variations in the NOC 

sampling distribution. Then, MWOS-NOC scores were obtained through the standard CMDS 

procedures. Later, Equation 5.6 is applied for PA projection. Through applying equations 

5.13 and 5.14, series of monitoring statistics were then established that extracted from the 

reproduction of the scores based on the PA technique.  

 Eventually, a set of control limits were then computed and a new set of NOC data 

(testing NOC set, XNOC-Test with size of 50 samples by 13 variables) was then used to assess 

the robustness of the control limits. The overall results show that FAR values on the testing 

NOC data are zero with regard to all model settings. This indicates that the established 

monitoring limits should be robust in the monitoring operation as similar to the previous 

framework.  
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Tables 5.1 and 5.2, present the overall monitoring performances in terms of fault 

detection time (FDT) of both CMDS-PA and PCA systems based on 3, 5 and 7 

dimensions/PCs settings corresponding to abrupt and incipient fault cases respectively. In all 

of the cases, the faults were detected such that at least 3 successive samples of either 

monitoring statistics were located above their 99% control limits.  Both tables have also 

highlighted the most effective as well as fastest detection time in bold for every case that 

analysed.   
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 From Table 5.1, the overall performances have shown that all the PCA models have 

effectively detected all of the specified abrupt fault cases investigated. Interestingly, all of the 

CMDS-PA methods (for all dimension and window size settings) are also successfully 

achieved the similar performance as equal to the linear PCA performance.  Therefore, both 

methods can be viewed as performing equally in terms of detection capability with regard to 

abrupt fault cases. Comparing to the first CMDS method (Chapter 4), the results from 

CMDS-PA is relatively better, because not all of the sCMDS methods previously can produce 

100% detection on those abrupt fault cases. Nonetheless, Table 5.2 also indicates that the best 

performance based on the total number of the fastest detection cases is still won by PCA, but 

the differences between PCA and CMDS-PA results are found hugely decreased as compared 

to sCMDS. In particular, 10 out of 11 detected cases are determined very efficient (through 

applying Euclidean distance and window size 5), which is 1 case lower than PCA. The 

generic trend of city-block results has also shown considerable improvement compared to 

sCMDS performance, but still not as good as that based on the Euclidean distance. All in all, 

the overall monitoring performance of CMDS-PA can be perceived as effective as well as 

efficient and equivalent to the overall PCA outcomes based on the abrupt fault cases.  

 Further improvements have also been observed from Table 5.2 which is for incipient 

fault performances. Almost all the CMDS-PA methods can perform 100% detection, 

excluding one method using the City-block distance. This can be regarded as one major 

achievement as the number of detected cases is greatly increased compared to the results of 

sCMDS based monitoring systems in the previous chapter. Besides, the total number of NDs 

is also considerably reduced compared to the first framework. In conjunction to this, the total 

number of fastest detection cases is also found slightly increased from those of sCMDS, but 

subjected to the monitoring system with Euclidean distance and window size 5. In analysing 

the same performance factor, CMDS-PA based monitoring system is also shown to be 

significantly superior to PCA based monitoring system.  More importantly, PCA generally 

took more than 10 sampling times to detect the changes for many cases, whereas CMDS-PA 

(with Euclidean distance and window size 5) may merely apply less than 5 sampling times 

for detection, hence, a huge gap in terms of efficiency capability between the two can be 

clearly noticed. In analysing all of these trends, CMDS-PA can be viewed as to be 

performing better than PCA in terms of detecting the incipient faults.  
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The cases that specifically discussed in Chapters 3 and 4 are utilised again for detailed 

evaluation. Figures 5.3 and 5.4 show the monitoring statistic progressions for F6a and F6i 

respectively that specifically applied Euclidean distance and window size 5. Regarding F6a, 

Figure 5.3 shows that all the CMDS-PA models can efficiently detect the fault as early as 

after 1 sampling time (sampling time 3) from the time when the fault was introduced in the 

process (which is at sampling time 2) through both of the proposed monitoring statistics . 

This performance is also similar in comparison to those based on PCA and sCMDS that are 

discussed in Chapters 3 and 4 respectively.  The monitoring outcomes of CMDS-PA for F6i 

are also found relatively analogous to sCMDS as indicated in Figure 5.4. In particular, the 3 

dimensions model performed at equal rate of detection, while dimensions 5 and 7 have shown 

slightly quicker detection, which is one sampling time faster through Sr. Nonetheless, the 

performances of Sm2 demonstrate poorer condition in relative to sCMDS, whereby slow 

detection periods are observed for all dimensions. Anyway, this particular drawback is 

compensated by the results of Sr, whereby both statistics work complementary. More 

importantly, all of these monitoring trends are significantly greater in performance when 

compared to the PCA results particularly based on F6i result.  

 The results of fault identification through utilising the contribution plot technique for 

F6a and F6i are presented in Figures 5.5 and 5.6 respectively. Regarding F6a (Figure 5.5), 

variables 7 (cooling water flow rate) and 13 (controller 2) have been found to be significant 

based on both types of contribution plot methods. In particular, the differential contribution 

plots have identified that particular trend initially by 2 sampling time earlier (sampling time 

4) than those of conventional contribution plot results (sampling time 6) through Sm2. The 

trend has been found consistently enlarged until to the last sample by using both approaches. 

This fault leads to an increase in the cooling water flow rate (variable 7) which results in a 

reduction in reactor temperature. The reactor temperature control system then attempts to 

reduce the cooling water flow rate in order to maintain the reactor temperature by reducing 

controller 2 output (variable 13).  
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Figure 5.3: Monitoring progression of Sm2(left) and Sr (right) for F6a from monitoring 

systems based on CMDS-PA using 3 dimensions (top), 5 dimensions (middle), and 7 

dimensions (bottom) 
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Figure 5.4: Monitoring progression of Sm2 (left) and Sr (right) for F6i from monitoring 

systems based on CMDS-PA using 3 dimensions (top), 5 dimensions (middle), and 7 

dimensions (bottom) 
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Figure 5.5: Conventional contribution plots (left) and differential contribution plots (right) for 

F6a from monitoring systems based on CMDS-PA using 3 dimensions (diagram A), 5 

dimensions (diagram B), and 7 dimensions (diagram C) 
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Figure 5.6: Conventional contribution plots (left) and differential contribution plots (right) for 

F6i from monitoring systems based on CMDS-PA using 3 dimensions (diagram A), 5 

dimensions (diagram B), and 7 dimensions (diagram C) 
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 With respect to F6i (Figure 5.6), on the other hand, the results have shown that only 

variable 13 has been identified strongly contributing to the problem, and this was clearly 

indicated initially by the differential contribution plot at sampling time 7 (based on 3 

dimensions and Sr statistic). Nonetheless, this particular magnitude of deviation has been 

observed increasing in downward direction instead of upward increment because the variable 

13 score has been rearranged to be located far from the NOC variable location but still within 

the normal cluster initially. This trend has been observed consistent until sampling time 17 

(the later samples have shown it started growing upwards until to the last sample). Other 

dimension applications have shown slower time of identification, but are still much quicker 

than the contribution plot outcomes (the first identification was seen at sampling time 45).    

 Figures 5.7 and 5.8 illustrate the trend of monitoring statistic progressions for F9a and 

F9i respectively of the CMDS-PA based monitoring system with Euclidean distance and 

window size 5. As similar to the performance of sCMDS, all models of CMDS-PA have 

detected F6a efficiently at sampling time 3 as indicated in Figure 5.7 through all monitoring 

statistics.  The results are also comparable to the PCA performance with regard to the same 

fault data. Thus, CMDS-PA, sCMDS and PCA share similar outcomes based on F6a. 

Regarding F9i however, slight improvement over sCMDS has been noticed particularly 

relating to models with 5 and 7 dimensions as depicted from Figure 5.8. In particular, both of 

the models have detected F6i at 1 sampling time earlier (sampling time 4) than sCMDS 

(sampling time 5) based on Sr.  

 The results of fault identification using contribution plot technique for F9a and F9i are 

shown respectively in Figures 5.9 and 5.10. All the plots have indicated variable 12 

(controller 3 – recycle flow control) that is undoubtedly linked to both F9a and F9i. In the 

case of F9a (Figure 5.9), both of the conventional and differential contribution plots have 

initially picked up the trend from sampling time 4 and this particular behaviour has been 

observed and sustained until the last sample. In particular, both statistics have signified the 

trend by using the conventional technique, whereas the trend was firstly observed by Sr 

through the differential contribution method (whereby both statistics have gradually indicated 

the deviation behaviour at the later samples). This abnormal condition is also believed to be 

related to variable 5 (which is also having a comparatively large in bar magnitude particularly 

based on F6a plots). All of these situations are occurred as a result of blockage that happened 

in the recycle stream pipelines. This fault will lead to a reduction in the recycle flow rate 
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(variable 5). The recycle flow controller then attempts to increase recycle flow rate by 

increasing the controller output (variable 12). Compared to sCMDS, these identifications can 

be performed at earlier stage, which is 1 sampling time faster based on both  statistics.  

 On the other hand, the clear identification for F9i (Figure 5.10) has  to be performed at 

a much delayed period relative to sCMDS, specifically at sampling 40 based on Sr and using 

conventional contribution plot technique. However, the differential contribution plot results 

have produced better identification time than the conventional technique, whereby the bar 

corresponding to variable 12 has been noticed increased gradually starting from sampling 

time 25, and that is applicable for all dimension settings as well as through Sr.       
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Figure 5.7: Monitoring progression of Sm2(left) and Sr (right) for F9a based on CMDS-PA 

using 3 dimensions (top), 5 dimensions (middle), and 7 dimensions (bottom) 
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Figure 5.8: Monitoring progression of Sm2(left) and Sr (right) for F9i based on CMDS-PA 

using 3 dimensions (top), 5 dimensions (middle), and 7 dimensions (bottom) 
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Figure 5.9: Conventional contribution plots (left) and differential contribution plots (right) for 

F9a from monitoring systems based on CMDS-PA using 3 dimensions (diagram A), 5 

dimensions (diagram B), and 7 dimensions (diagram C) 
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Figure 5.10: Conventional contribution plots (left) and differential contribution plots (right) 

for F9i from monitoring systems based on CMDS-PA using 3 dimensions (diagram A), 5 

dimensions (diagram B), and 7 dimensions (diagram C) 
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 Finally, Figures 5.11 and 5.12 depict the monitoring outcomes for F11a and F11i 

respectively based on CMDS-PA based monitoring systems using Euclidean distance and 

window size 5. As can be observed in every other abrupt fault case previously, F11a can be 

also detected efficiently at sampling time 3 by all models as shown in Figure 5.11. The results 

are found absolutely analogous to those performances of sCMDS and PCA.  The monitoring 

trends of F11i (Figure 5.12) are also determined to be almost identical in relation to sCMDS 

as well as PCA.  In particular, this particular fault can be detected as early as at sampling time 

5 (delayed by 3 sampling time from the time of fault introduction) through Sr.    

 Figures 5.13 and 5.14 summarised the performances of fault identification by utilisation 

of both contribution plot methods pertaining to F11a and F11i respectively. From both of the 

figures, all models have significantly specified variable 9 (inlet concentration) as the cause to 

both F11a and F11i through both conventional as well as differential contribution plot 

methods. In particular, both statistics have managed to identify F11a as early as at sampling 

time 3 (Figure 5.13). Meanwhile, the identification time of F11i was also found efficient, 

particularly at sampling times 7 and 8 using conventional and differential contribution plots 

respectively, but selective in terms of statistics (Figure 5.14). More specifically, the 

conventional and differential techniques have identified the abnormal behaviour through Sm2 

and Sr respectively for all dimensions. It is also noticed in further analyses that this particular 

abnormal condition has been progressively multiplied over the period of operation in every 

plot eventually. This finding strongly reflects to the true nature of responses of both cases that 

presented in Chapter 3, whereby, the concentration of inlet stream has been found either 

suddenly or gradually decreased and sustained over the time.  In compared to sCMDS, 

CMDS-PA has been determined performing at equal rate for F11a , while in the case of F11i, 

the identifications of CMDS-PA have been found slightly slower.   
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Figure 5.11: Monitoring progression of Sm2(left) and Sr (right) for F11a based on CMDS-PA 

using 3 dimensions (top), 5 dimensions (middle), and 7 dimensions (bottom) 
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Figure 5.12: Monitoring progression of Sm2(left) and Sr (right) for F11i based on CMDS-PA 

using 3 dimensions (top), 5 dimensions (middle), and 7 dimensions (bottom) 
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Figure 5.13: Conventional contribution plots (left) and differential contribution plots (right) 

for F11a from monitoring systems based on CMDS-PA using 3 dimensions (diagram A), 5 

dimensions (diagram B), and 7 dimensions (diagram C) 
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Figure 5.14: Conventional contribution plots (left) and differential contribution plots (right) 

for F11i from monitoring systems based on CMDS-PA using 3 dimensions (diagram A), 5 

dimensions (diagram B), and 7 dimensions (diagram C) 
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5.4  Results Discussion  

As similar to the previous discussion in Chapter 4, the objective of this section is mainly to 

explain the results of CMDS-PA from the perspective of the issues presented in the first 

chapter, where it also considers the perspective implication of the current method compared 

to the results of framework I.  

5.4.1 The Impact of Dissimilarity Measures on The Monitoring Outcomes   

This sub-section addresses the first question presented in Section 1.2 of Chapter 1. In Chapter 

4, it was mentioned that Euclidean distance measure is advantageous compared to the City-

block distance measure, and the results of CMDS-PA also holds the same suggestion, where 

this scenario can be obviously seen based on the number of fastest detection cases. However, 

this particular algorithm considers that the capability of monitoring system using City-block 

distance measure in detecting the fault is quite similar to that using the Euclidean distance 

measure regardless of the window sizes or dimensionalities applied.  

5.4.2 The Impact of using New Monitoring Statistics on The Monitoring Outcomes   

This sub-section is corresponding to the second question presented in Section 1.2 of Chapter 

I. As a result of integrating CMDS with PA, a different set of statistic pertaining to the 

magnitude of deviation  has been used in contrary to sCMDS (as explained in the 

methodology section), while the concept of Sr is still valid. From the demonstration on the 

NOC cases of CSTRwR system, the overall performance was found very excellent, where all 

the FAR outputs were relatively low. Besides, all the specified malfunction events can be 

detected effectively as well as efficiently, which are comparable to PCA.    

Table 5.3: Monitoring limits specified for Sr based on sCMDS and CMDS-PA methods 

Sr 

Limits 

sCMDS CMDS-PA 

Dimension 

3 

Dimension 

5 

Dimension 

7 

Dimension 

3 

Dimension 

5 

Dimension 

7 

95% 3930 4576 5038 1287 1374 1622 

99% 4442 5137 5647 1439 1545 1829 

 However, this study has also found that the impact of using PA transformation 

functions can be clearly observed based on the Sr control limits. In particular, Table 5.3 

shows the control limits for Sr calculated from both of framework I and II procedures 
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previously, which are individually specified according to Euclidean distance and window size 

5. The results denote that the control limits based on CMDS-PA for all models were 

significantly lower than those of sCMDS limits. Hence, this finding suggests that the inter-

distance measures that projected by the standardized transformation factors of PA have 

effectively modified the sCMDS scores such that the new inter-distance measures (CMDS-

PA scores) are much closer to the NOC1 dissimilarity scale configurations. In other words 

the squared errors in terms of dissimilarity scales between the scores of CMDS-PA and 

NOC1 has been reduced from those of sCMDS errors. This comparison is made exclusively 

based solely on Sr because the fundamental of Sm1 is totally different from Sm2 (although both 

statistics are used for representing the magnitude of deviation from a specified target).  

5.4.3 The Impact of Applying Various Window Settings on The Monitoring Outcomes 

This sub-section is trying to deliver the answer based on the third question presented in 

Section 1.2 of Chapter 1. It was explained in the previous chapter that by reducing the 

window size, it may contribute to initiate quicker in detection time. From the results of Table 

5.2 on using Euclidean distance, this assumption has been obviously verified especially on 

the incipient fault cases, where great amount of abnormal situations have been detected much 

faster when using smaller window size. On the other hand, this assumption may not be that 

significant when using the City-block distance, where only those results of higher dimensions 

indicate such behaviour.  

5.4.4The Impact of Applying Smaller Dimensionalities on The Monitoring Outcomes 

This sub-section is pertaining to the last question presented in Section 1.2 of Chapter 1. In 

theory, increasing the number of dimensions will help basically to redevelop the CMDS 

scores such that they can emulate closely the original dissimilarity. Nonetheless, this does not 

imply that it will increase the capability of the system in detecting the fault as other factors 

are also significantly influencing the monitoring performance. In fact, increasing the 

dimensionality may also introduce more complexity on the system in maintaining the score 

redevelopment accuracy given that the number of variables is very large as illustrated in 

Table 5.3 previously. The results from Table 5.3 have denoted that the magnitudes of errors 

(limits) are almost linearly increased with the increment of dimensions.  Thus, utilizing a 
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reasonable lower dimensional-model for monitoring should be the primary objective (subject 

to the complexity of the system as well as the size of moving window selected).  

 In reflecting to the overall outcomes of CMDS-PA, even there were improvements in 

terms of performance factors that depicted in Tables 5.1 and 5.2 especially when more 

dimensions were used, the previous proposition on the dimensionality selection should be 

persistently held instead. Otherwise, the similar problem situation suffered by PCA will be 

also affecting the CMDS monitoring system applications. Thus, optimizing between model 

dimensionality, window size and number of variables should be further investigated, where a 

justified lower dimension model can be used for establishing an effective as well as efficient 

CMDS-based process monitoring system.  

5.5 Summary  

The main intention of this chapter is mainly to present the whole monitoring results based on 

the application of CMDS-PA approach. This method has been proposed in order to improve 

the sCMDS monitoring performance by standardizing the projection of the scores using PA 

transformation factors. In brief, the PA transformation factors have been formulated based on 

the correlation between two sets of CMDS NOC scores.  Unlike sCMDS, these factors are 

used to modify the original scores in such a way the new scores can emulate closely the 

dissimilarity scales of NOC1. The overall results on the CSTRwR cases have shown 

significant improvements, where higher number of detected cases as well as faster detection 

has been achieved compared to both sCMDS and PCA. Furthermore, the number of NDs has 

been reduced greatly as compared to sCMDS. In general, both CMDS-PA and PCA have 

demonstrated equal performance based on abrupt fault cases, whereas CMDS-PA was found 

better in terms of sensitiveness (detection speed) than PCA in dealing with incipient fault 

cases.  
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CHAPTER 6 

  

FRAMEWORK III: MDS-BASED MSPM SYSTEM USING MOVING WINDOW 

DYNAMICAL CMDS-PA PROJECTION 

6.1   Introduction 

This chapter presents the procedures as well as monitoring results based on the dynamical 

CMDS-PA-based MSPM system (CMDS-dPA), which is the last framework proposed in this 

study. In Chapter 4, the method focuses on developing the scores using exclusively the 

standard CMDS procedures. However, the method suffers from inconsistency in terms of 

score reproduction accuracy which leads to failure in detecting some of the specified 

abnormal cases (NDs) that are investigated. As a result, CMDS-PA was proposed (framework 

II), with the goal to enhance the mapping by applying PA procedures, and the outcomes have 

shown that those inconsistencies have been eliminated. Another important as well as positive 

implication was that the control limits for Sr have been reduced to some extent, which 

fundamentally means that closer mapping between the new and model configurations are 

obtained by way of dissimilarity scales.  

 However, the detailed analyses on some of the cases (such as F6i and F9i) have 

demonstrated slow detection particularly based on the Sm2 monitoring statistic. Although this 

can be considered as slightly minor as this limitation can be directly complemented by using 

Sr (which are consistently efficient), but the gaps between the detection time of Sr and Sm2 

(referring to F6i and F9i) were found somewhat high. Thus, it has become the pure intention 

of this study to execute another algorithm in order to enhance the monitoring outcomes of 

CMDS-based system, specifically from this particular angle of perspective. In other words, 

the main aim of this particular framework is that, while it can maintain the FDT as to be 

considerable lower than those of linear PCA performances through Sr, but it must also attain 

faster detection on Sm2. It is believed that this can be performed through dynamic projection 

mechanism on the MWOS scores by the use of PA transformation procedures. This is simply 

achievable because the dynamic mapping may apply various sets of transformations factors, 
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and this will provide great advantage to the CMDS method in modifying the MWOS scores 

to be configured as closely as possible to the NOC1 coordination. This will then, perhaps, 

reduce the errors between both sets of configurations, where much lower control limits can be 

established, and eventually, it can contribute perhaps to achieve quicker fault detection as 

well as identification.  

 This chapter is structured into four main sections, including the first as the introduction. 

The two subsequent sections present the detail methodology and the corresponding results 

respectively. The last section concludes this chapter.   

6.2   Methodology 

The fundamental approach of this framework is shown as in Figure 6.1.  

 

 Compared to framework I (Figure 4.1) and framework II (Figure 5.1), the main 

differences are on steps 2, 3, 6, and 7, where the projection of the scores will be executed by 

dynamic mapping through CMDS and PA applications at the same time. Unlike CMDS-PA, 

CMDS-dPA utilizing different sets of PA transformation factors in reconfiguring between the 

MWOS and NOC1 scores.   

1. Collection and standardization 

of historical NOC data 

2. Development of off-line NOC 

and MWOS-NOC scores by 

means of variables (CMDS-dPA) 

3. Formulation of monitoring 

statistics based on MWOS-NOC 

scores 

5. Collection and standardization 

of the new process data 

6. Development of on-line 

MWOS-new-data scores by 

means of variables (CMDS-dPA) 

7. Formulation of monitoring 

statistics based on MWOS-new 

scores 

8. Fault detection, analysis, and 

fault identification 

4. Calculation on control limits 

and false alarm analysis 

PHASE II  PHASE I  

Figure 6.1. CMDS-dPA-based MSPM framework 
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6.2.1  Phase I Procedures 

In the beginning (step 1), the original NOC scores are divided into two sets, XNOC1 and 

XNOC2, after the standardization process. Then, in step 2, the standard CMDS algorithms are 

applied just on the first set of the NOC samples to represent the NOC score model, YNOC1. 

Next, the moving window mechanism is applied integrating both of the NOC data sets in 

producing the MWOS-NOC samples, where various window sizes are adopted. Thus, there 

will be ‘n’ number of samples of MWOS-NOC data produced at the end of the procedures. 

Each of these MWOS-NOC data will then has to apply the standard CMDS procedure in 

order to obtain the reproduction of the MWOS-NOC scores, YMWOS-NOC.  As the main 

intention is to obtain close approximation between two sets of score configurations, each of 

these MWOS-NOC scores will be used to get the unique sets of transformation functions 

individually by using the following PA procedures (Borg and Groenen, 1997):             

i.   Computation of the minor product moment between the first NOC scores, YNOC1 

(originated from XNOC1), and the MWOS-NOC scores, YMWOS-NOC(k)  (originated 

from MWOS-XNOC(k)).   

CPA(k)=YNOC1
T
Jm YMWOS-NOC(k)          (6.1) 

where Jm is given in Equation 2.41 and k = 1,2,....n. 

ii. Decomposition of CPA into the eigen basic structures.   

CPA(k)=PPA(k)VPA(k)PPA(k)
T 

           (6.2) 

where PPA(k) and  VPA(k) are the eigenvectors and eigenvalues matrices of  

CPA(k) respectively at MWOS sampling time k. 

iii. Identification of the optimal rotation matrix: 

R(k) = PPA(k) PPA(k)
T
            (6.3) 

iv. Identification of the optimal dilation scale:  

s(k)=(trYNOC1
T
Jm YMWOS-NOC(k)  R(k))/(tr YMWOS-NOC(k) 

T
Jm YMWOS-NOC(k))   (6.4) 

v. Identification of the optimal translation vector: 

 t(k) =(YNOC1-s YMWOS-NOC(k) R(k))
T
1/m, m = number of variables    (6.5) 

vi. The final equation for scores projection is given by: 

YdPA(k)=s(k) YNOC-MWOS(k)R(k)+1t(k)
T 

        (6.6) 
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 In contrary to framework II, each matrix of the MWOS-NOC samples in framework III 

produces different sets of PA transformation factors (s(k), R(k), and t(k)) which are unique 

according to each of the MWOS-NOC matrix and this is where the term ‘dynamic’ is 

referring to. It is assumed that, the reconstructed YdPA(k) will have a set of modified 

configurations which are significantly closer to YNOC1 relative to YPA(k) from framework II 

(described in Chapter 5).    

 In step 3, framework III utilizes the same monitoring statistics as in framework II, 

which are Sm2 and Sr. This is simply because both share the same monitoring assumption. 

Thus, those corresponding statistics for CMDS-dPA are provided in Equations 6.7 and 6.8 

respectively.  
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 In particular, both methods try to find a configuration that matches to the prescribed 

coordination of the original NOC scores (due to the application of PA) instead of depending 

on the dissimilarity measure (framework I). As similar to the first and second frameworks, 

these statistics are assumed to follow chi-squared distribution as in equation 4.3 (step 4), 

where false alarm rates (FAR) will be subsequently analysed.     

 6.2.2  Phase II Procedures 

After standardization (step 5), the projection of the scores is also conducted dynamically 

according to the first phase procedure. In similar to step 2, moving window mechanism is 

applied in step 6 to integrate both NOC and the new samples (MWOS-new samples), 

whereby different sizes of window sizes are applied.  These MWOS-new samples will then 

individually execute the standard CMDS procedures and producing the MWOS-new scores, 

YMWOS-new. Then, each of these MWOS-new scores will find the PA transformation factors 

separately as described in the following procedures (Borg and Groenen, 1997):           
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i.   Computation of the minor product moment between the first NOC scores, YNOC1 

(originated from XNOC1), and the MWOS-new scores, YMWOS-new(k)  (originated from 

XMWOS-new(k)).   

CPA(k)=YNOC1
T
Jm YMWOS-new(k)                (6.9) 

where Jm is given in Equation 2.41 and k = 1,2,....n. 

ii. Decomposition of CPA into the eigen basic structures.   

CPA(k)=PPA(k)VPA(k)PPA(k)
T 

                 (6.10) 

where PPA(k) and  VPA(k) are the eigenvectors and eigenvalues matrices of  

CPA(k) respectively at MWOS sampling time interval-k. 

iii. Identification of the optimal rotation matrix: 

R(k) = PPA(k) PPA(k)
T
                  (6.11) 

iv. Identification of the optimal dilation scale:  

s(k)=(trYNOC1
T
Jm YMWOS-new(k)  R(k))/(tr YMWOS-new(k) 

T
Jm YMWOS-new(k))        (6.12) 

v. Identification of the optimal translation vector: 

 t(k) =(YNOC1-s YMWOS-NOC(k) R(k))
T
1/m, m = number of variables         (6.13) 

vi. The final reproduction of scores for the new samples is given by: 

YdPA(k)=s(k) YMWOS-new(k)R(k)+1t(k)
T 

            (6.14) 

 Again, the fundamental difference at this stage between frameworks II and III is on the 

scheme in reproducing the scores, whereby previously it was conducted through one-off 

projection (as in the PCA projection score). In other words, the redevelopment of the scores 

of CMDS-dPA will apply different sets of transformation factors (s(k), R(k), and t(k)) for different 

sets of MWOS samples as opposed to CMDS-PA (whereby only 1 set of transformations 

factors was used), Both of the statistics Sm2 and Sr are calculated in step 7 for each of the YdPA 

scores. This particular monitoring system is also assessed based on two main performance 

factors, (similar to the previous chapters), which are the total number of detected cases and 

total number of fastest detection cases.   
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 As similar to framework II, this particular framework has also applied two types of 

contribution plots (conventional and differential) for fault identification. The first is shown as 

in Equation 6.15, while the second is presented by Equation 6.16.  

  ( ) ( )å
=

=-
m

i
jij XStatisticsdPACMDS

1

                             (6.15) 

Where,  (CMDS-dPA Statistics)j = CMDS-dPA statistics (Sm2 or Sr) at a particular 

sampling time ‘j’.  

(Xi)j = contribution of the ith variable to CMDS-dPA statistics at a particular 

sampling time ‘j’.     

( ) ( ) ( )[ ]
jinormaldPACMDSifaultdPACMDSj onContributionContributi )()( -- -=dc          (6.16) 

In particular, dc (differential contribution) is a vector that contains ‘m’ number of error 

magnitudes corresponding to those variables involved. Meanwhile, ‘i’ is of the index for 

process variables, whereas ‘j’ relates to sampling time. The term ‘ContributionCMDS-dPA(fault)’ 

refers to Sm2 or Sr of those CMDS-dPA faulty samples, whereby the parameter of 

‘ContributionCMDS-dPA(normal)’ associates to those of NOC statistics obtained through CMDS-

dPA.   

Both of these techniques of fault identification are executed once a fault is detected by 

the CMDS-dPA system. The analysis will be conducted from the first sample of detection 

until the trend of deviations is sustained over the period of operation. All of these steps were 

implemented in the CSTRwR case study that discussed previously in Chapter 3.    
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6.3  Results and Analysis  

The same sets of NOC data used in the previous chapters were employed again in this 

approach. In particular, 3, 5 and 7 dimensional models were developed to represent around 

75%, 90% and 99% proximity to the original dissimilarity scales. Besides, three window 

sizes, 5, 10 and 15 were selected. . The projection of the scores as well as monitoring 

statistics was executed according to the CMDS-dPA procedures explained earlier. The results 

of FAR on the original NOC as well as the testing NOC set have shown zero rates, which 

implied that the statistics were highly robust. Tables 6.1 and 6.2, present the overall FDT on 

the CMDS-dPA as well as PCA system based on models with 5 and 7 dimensions/PCs 

respectively. The condition on the fault detection scheme was also similar to the previous 

approaches, which is at least 3 successive samples of either monitoring statistics located over 

the corresponding 99% control limit.    
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 As opposed to the FDT results presented in Chapters 4 and 5, Tables 6.1 and 6.2 only 

show monitoring results using 5 and 7 dimensions. The overall performances of using 3 

dimensions were unsatisfactory. However, the results of FDT on abrupt fault cases that 

depicted in Table 6.1 have proved that both CMDS-dPA and PCA are equivalent in terms of 

detection capability, where both can achieve 100% detection. It is also observed that, PCA 

has maintained it consistent efficient performance by producing the fastest detection for all 

cases that detected, but nevertheless, the CMDS-dPA also has generated somewhat similar 

potential. Although, there were only 8 instances out of 11 detected cases that determined to 

be efficient, and that through applying settings of dimensions 5 and Euclidean distance, but 

the FDT delays (correspond to those cases that are considered as inefficient in relative to 

PCA – faults number 2a, 7a and 8a) between this particular CMDS-dPA scheme and PCA is 

too close, which is generally less than 5. In realizing this, both the new and conventional 

methods can be also perceived as equal in performance with regard to the second factor. 

Thus, the overall results of fault detection for abrupt fault cases have shown that CMDS-dPA 

and PCA are generally identical, and this finding is also in consistent to the nature of 

performances that demonstrated by the previous works (sCMDS and CMDS-PA).      

      The performances of CMDS-dPA on the incipient fault cases that presented in Table 

6.2 also have signified interesting potentials.  In particular all the CMDS-dPA methods have 

successfully detected all the malfunction events that analyzed in similar to the PCA 

achievement (100% detection). Nonetheless, CMDS-dPA has demonstrated superior 

performance over PCA with regard to the second performance factor, particularly by two 

means. Firstly, the total number of fastest detection cases of CMDS-dPA is considerably 

greater than the PCA results, and that through utilizing Euclidean distance and window size 5 

(8 or 7 versus 1). Secondly, the FDT gaps between the two methods have been found very 

large (more or less than 20 sampling time) in many cases of the incipient fault category. 

Thus, the overall analysis based on the context of Table 6.3 has suggested that the 

performances of CMDS-dPA are relatively outstanding in compared to PCA. Unlike PCA, 

this generally indicates that CMDS-dPA is naturally advantageous especially for cases where 

the deviation of the faults grow slowly over the time of operation          

 In evaluating the results in rather great details, all the cases that are discussed 

individually in Chapters 4 and 5 are employed again. In particular, all of the results are based 

on applications that utilised Euclidean distance and window size 5. Firstly, Figures 6.2 and 
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6.3 depict the statistic progressions for F6a and F6i respectively. Figure 6.2 shows that F6a 

can be efficiently detected at sampling time 3, which is one sampling time after the fault 

occurred in the process. This performance is found in agreement to those performances of 

sCMDS as well as CMDS-PA. The results of F6i as indicated in Figure 6.3 also demonstrate 

an enhanced performance in relative to PCA. In particular, the best performance is shown by 

using CMDS model with 7 dimensions, where this particular fault can be detected as early as 

after 2 sampling time through Sr. More interestingly, the performance of Sm2 also has detected 

F6i with an enhanced speed compared to the previous results of using CMDS-PA on a same 

basis.   

 The fault identification process has been performed through both conventional and 

differential contribution plots, but only the second was perfectly working for this particular 

framework. Figures 6.4 and 6.5 present the contribution plots for F6a and F6i respectively. 

The plots are corresponded to those applications that are shown in Figures 6.2 and 6.3 

previously. In particular, all plots (both statistics) in Figure 6.4 have shown that variables 7 

and 13 are importantly corresponded to F11a particularly started from sampling time 6 (the 

contribution plots based on earlier samples have indicated only on variable 7). This finding is 

almost comparable to CMDS-PA identification, even though it is delayed by two sampling 

time. Further evaluations on the later samples have indicated that the bar relating to variable 

13 has increased gradually.  This fault leads to an increase in the cooling water flow rate 

(variable 7) which results in a reduction in reactor temperature. The reactor temperature 

control system then attempts to reduce the cooling water flow rate in order to maintain the 

reactor temperature by reducing controller 2 output (variable 13).  

 The plots in Figure 6.3, on the other hand, have only indicated that variable 13 is 

significantly associated to F11i. This can be clearly observed starting from sampling time 40 

and 42 respectively for models with 5 and 7 dimensions through both statistic progressions, 

whereby this particular trend was observed consistently increased over the time of operation 

in all plots afterwards. The results of earlier samples have shown no clear or permanent 

deviation pattern specifically.  In comparing to the results of CMDS-PA previously, the 

CMDS-dPA outcomes have shown relatively slower identification. This is perhaps as a result 

of the impact of dynamic PA projection, whereby CMDS-dPA requires a great magnitude of 

deviations to clearly signify the specific deviation behaviour correctly.        
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Figure 6.2: Monitoring progression of Sm2(left) and Sr (right) for F6a based on CMDS-dPA 

using 5 dimensions (top) and 7 dimensions (bottom) 

 

Figure 6.3: Monitoring progression of Sm2 (left) and Sr (right) for F6i based on CMDS-dPA 

using 5 dimensions (top) and 7 dimensions (bottom) 
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Figure 6.4: Differential contribution plots for F6a from monitoring systems based on CMDS-

dPA using 5 dimensions (diagram A) and 7 dimensions (diagram B) 

 

Figure 6.5: Differential contribution plots for F6i from monitoring systems based on CMDS-

dPA using 5 dimensions (diagram A) and 7 dimensions (diagram B) 
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 The trends of statistic progressions based on F9a and F9i are shown in Figures 6.6 and 

6.7 respectively which are from the CMDS-dPA approach using Euclidean distance and 

window size 5. In particular, the detection on F9a has been conducted efficiently as expected, 

which is at sampling time 3, through all the statistics that proposed as indicated in Figure 6.5. 

This result also has been found comparable to those monitoring performances from PCA, 

sCMDS and also CMDS-PA. The outcomes with regard to F9i also demonstrated intriguing 

performance, whereby the fault can be detected slightly faster by 1 sampling time in 

compared to sCMDS as well as CMDS-PA, and that through Sr and using dimension 7. It is 

also observed that the Sm2 progressions for F9i have been also somewhat improved, whereby 

the detection can be executed in substantially shorter period in relative to CMDS-PA but 

longer than sCMDS. In contrary to PCA, this performance can be considered as excellent 

because the conventional method can merely detecting this particular fault generally more 

than 20 sampling time (refer to Table 6.3).        

 The results of fault identification were once again successfully conducted through 

differential contribution plot instead of conventional approach. The corresponding fault 

identifications of F9a and F9i are summarized in Figures 6.8 and 6.9 respectively. From 

Figure 6.8, all plots (both statistics) have indicated that variables 5 and 12 may have induced 

or affected strongly by F9a. The particular behaviour was observed started from sampling 

time 4 (sampling time 3 has clearly depicted solely on variable 5) and it has kept increasing 

(particularly on variable 12) over the time of operation. This fault will lead to a reduction in 

the recycle flow rate (variable 5). The recycle flow controller then attempts to increase 

recycle flow rate by increasing the controller output (variable 12). 

 Meanwhile, the contribution plots for F11i have only signified variable 12 as the sole 

contributor to the problem. This particular pattern was observed initially from sampling time 

35 for both dimension applications as well as statistics (the results from earlier samples have 

shown no clear sign). The study has also learnt that the bar corresponding to variable 12 

keeps enlarging linearly with the time of operation (corresponding to both statistics and 

dimensions applied). This observation is also found somewhat later than those of CMDS-PA 

identifications, and the reason could be related to the dynamic of PA projection that 

explained earlier.  
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Figure 6.6: Monitoring progression of Sm2(left) and Sr (right) for F9a based on CMDS-dPA 

using 5 dimensions (top) and 7 dimensions (bottom) 

 

Figure 6.7: Monitoring progression of Sm2 (left) and Sr (right) for F9i based on CMDS-dPA 

using 5 dimensions (top) and 7 dimensions (bottom) 
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Figure 6.8: Differential contribution plots for F9a from monitoring systems based on CMDS-

dPA using 5 dimensions (diagram A) and 7 dimensions (diagram B) 

 

 

Figure 6.9: Differential contribution plots for F9i from monitoring systems based on CMDS-

dPA using 5 dimensions (diagram A) and 7 dimensions (diagram B) 
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 Lastly, Figures 6.10 and 6.11 show the statistic progressions for F11a and F11i 

respectively. These results are based on using the Euclidean distance and window size 5. The 

results from Figure 6.10 have proved that CMDS-dPA is totally efficient, whereby F11a has 

been detected clearly at sampling time 3 through all the statistics that proposed. This 

performance is also identical to those performances of PCA, sCMDS as well as CMDS-dPA. 

In contra to the trend that denoted by previous abnormal cases, CMDS-dPA has demonstrated 

equivalent detection time, as illustrated in Figure 6.9, in relative to the previous CMDS 

monitoring systems with regard to F11i case. In general, the F11i event has been detected 

specifically at sampling time 5 through Sr. The progression of Sm2 is also found almost 

comparable to the previous performances of CMDS methods.    

  The fault identification results were also successfully obtained through the differential 

contribution plots rather than conventional technique. The results are shown in Figures 6.12 

and  6.13 for F11a and F11i respectively. In contra to the previous cases, the root of the F11a 

problem was identified very efficiently particularly at the instance of detection, which is at 

sampling time 3 through both statistics (and this particular behaviour was also seen sustained 

throughout the operation in the later samples). More specifically, all plots have indicated 

variable 9 (inlet concentration) as having the largest bar, which is obviously connected to 

F11a. Meanwhile, the identification for F11i was also somewhat efficient, which is at 

sampling time 8 (3 sampling time delayed from the time of detection), also through both 

statistics. In particular, the bar connecting to variable 9 starts to be the largest among the 

others, and it stays on growing during the later samples. The result is also generally 

comparable to those of CMDS-PA performances based on this particular case.         

 From the analysis of fault identification on the three specified cases, it is realized that 

framework III has a unique characteristic against the second CMDS framework. In general, 

the conventional contribution plot has failed to recognize the difference between the 

abnormal operation samples with the original NOC model based on the CMDS-dPA method. 

This is perhaps because the dynamic projection performed by PA is strongly modifying the 

outlier location (fault variables), such that, the new configurations are transformed and 

matched as exactly as possible to the original NOC coordinates. Fortunately, the outcomes of 

differential contribution plot technique have successfully identified the changes, but with a 

rather slower period compared to CMDS-PA.  
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Figure 6.10: Monitoring progression of Sm2(left) and Sr (right) for F11a based on CMDS-dPA 

using 5 dimensions (top) and 7 dimensions (bottom) 

 

Figure 6.11: Monitoring progression of Sm2(left) and Sr (right) for F11i based on CMDS-dPA 

using 5 dimensions (top) and 7 dimensions (bottom) 
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Figure 6.12: Differential contribution plots for F11a from monitoring systems based on 

CMDS-dPA using 5 dimensions (diagram A) and 7 dimensions (diagram B) 

 

 

Figure 6.13: Differential contribution plots for F11i from monitoring systems based on 

CMDS-dPA using 5 dimensions (diagram A) and 7 dimensions (diagram B) 
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6.4 Results Discussion  

6.4.1 The Impact of Dissimilarity Measures on The Monitoring Outcomes   

This sub-section addressing the first question presented in Section 1.2 of Chapter I. From the 

previous results, Euclidean distance measure has been shown to be advantageous over City-

block distance measure. The overall results based on the CMDS-dPA also indicate the same 

finding especially based on the FDT rates results. Thus, the original perspective is still 

preserved.    

6.4.2 The Impact of using New Monitoring Statistics on The Monitoring Outcomes   

This sub-section is corresponding to the second question presented in Section 1.2 of Chapter 

I. One major drawback identified from framework I was that there were a number of 

occurrences with regard to ND events. Thus, one of the speculated factors which believed 

contributed to the problem was based on the inconsistency of the sCMDS algorithms in 

projecting the scores (because it uses different eigenvector settings in the projection 

procedures). This effect was then removed or smoothened by the use of PA transformation 

factors in framework II. In particular, all of the scores (regardless of their individual 

eigenvector settings) are enforced to be standardized through the PA procedures and the 

results indicated that the squared errors in terms of dissimilarity scales were greatly reduced. 

Although the overall results have demonstrated major improvement, the detail analysis has 

indicated minor limitation, and that is slow progression especially on Sm2 as well as fault 

identification. Thus, this particular framework was proposed to enhance the capability of 

CMDS on that particular aspect. 

 The control limits calculated for Sm2 and Sr of CMDS-PA and CMDS-dPA procedures 

are shown in Table 6.3 and 6.4 respectively.   

Table 6.3: Monitoring limits specified for  Sm2 based on Euclidean scale and window size 5 

Sm2 Limits 
CMDS-PA CMDS-dPA 

Dimension 5 Dimension 7 Dimension 5 Dimension 7 

95% 1.44 1.42 0.77 0.74 

99% 1.57 1.53 0.86 0.82 
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Table 6.4: Monitoring limits specified for Sr based on Euclidean scale and window size 5  

Sr Limits 
CMDS-PA CMDS-dPA 

Dimension 5 Dimension 7 Dimension 5 Dimension 7 

95% 1375 1622 3373 3355 

99% 1545 1829 3861 3841 

 It is obviously shown from Table 6.3 that the control limits or the squared errors in 

terms of resultant vector lengths between the MWOS-NOC and NOC1 scores have been 

greatly reduced by adopting the CMDS-dPA procedures. It basically means that the dynamic 

projections of framework III have effectively modified the CMDS scores to be mapped as 

exactly as possible to the intended NOC1 configuration. Nonetheless, this has produced 

negative implication on Sr, whereby the dissimilarity scales have been distorted to some 

degree in compared to CMDS-PA as shown in Table 6.4, where higher monitoring limits 

were obtained.  In short, the dynamic mapping of PA has directly modified the 

configuration of the scores to be matched as closely as possible to the original measure, but 

not exactly on dissimilarity scales. Therefore, significant distortions on Sr should be 

anticipated. 

 However, in analysing all of these responses from the perspective of monitoring 

performances indicated in Table 6.1 and 6.2 previously, CMDS-dPA however, can still 

productively maintain the excellent monitoring performances. It means that even though the 

errors on Sr are increased based on the CMDS-dPA approach, but it has the potential to be 

consistently performed as good as the other two methods in terms of detection capability. 

More importantly, the trend of Sm2 has been improved generally, particularly by producing 

faster progression rate, and this could be related to the reduced magnitude of control limits 

that denoted in Table 6.3.    

6.4.3 The Impact of Applying Various Window Settings on The Monitoring Outcomes  

This sub-section is trying to deliver the answer based on the third question presented in 

Section 1.2 of Chapter 1. It was assumed that the faults can be detected at a dramatic faster 

rate by using small window size because the projection does not hold the behaviour of the 

original data very strongly in relative to using a large window scale. In responding to this 

issue, CMDS-dPA has demonstrated quite convincingly as well as strongly to the motive.  In 
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particular, more fast detections have been denoted from the results of using smaller window 

size in compared to larger window size.  

6.4.4The Impact of Applying Smaller Dimensionalities on The Monitoring Outcomes 

This sub-section is pertaining to the last question presented in Section 1.2 of Chapter 1. One 

of the unique behaviours which can be learnt from the performance of CMDS-dPA is that it 

cannot perform productively when smaller number of dimensions is selected. This study 

believes that this particular trend is related to the impact of using dynamic mapping during 

projection of the scores that affecting to the nature of progression in Sm2 as well as Sr.  

 From Chapter 5, it was known that CMDS-PA has improved the original monitoring 

limits for the inter-distance scales of sCMDS method by producing much lower values than 

previously. However, CMDS-PA cannot effectively adjust the individual score location 

individually because it applies a standardized set of transformation factors. This is why 

CMDS-PA can still detect the specified faults by using lower dimensions model very 

efficiently as well as effectively because the original score structure is still undisturbed.     

 Regarding CMDS-dPA, the reverse mechanism is actually operated, where a good 

range of Sm2 can be now obtained eventually, but unfortunately this will has to sacrifice a 

considerable amount of accuracy in terms of inter-distance scales as the main effect (Table 

6.5). The quality of fitness that generated by CMDS-dPA for both models should be 

perceived as equal because each has exclusively inherited from the scales of monitoring 

limits that obtained from the sCMDS measures. Nonetheless, the modification effect was 

very strong when using lower number of dimensions because the level transformation 

complexity in dynamically modifying the new scores has been reduced to certain degree. This 

eventually, has produced a significant distortion on the dissimilarity scales that resulted in 

higher specification values for the new monitoring limits on Sr. Besides, it has also 

effectively control the abnormal operation scores individually, and consequently, some of the 

faulty events cannot be detected using the 3 dimensions model. However, the dynamic 

mapping using higher dimension model can still productively detecting the faults because the 

magnitude of transformation complexity is increased, whereby modification on the scores 

cannot be conducted effectively. As a result, the data which contain abnormal operation 
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condition may strongly hold the original faulty condition, and this can be easily picked up by 

CMDS-dPA for detection.   

6.5 Summary  

The methodology and overall results on using the CMDS-dPA approach (the third proposed 

framework) have been presented in this chapter. The method was developed in responding to 

the problem of CMDS-PA, where slow progressions on Sm2 and fault identification have been 

observed. In particular, various sets of PA transformation factors have been developed 

instead of relying solely on one specified set of functions. Thus, CMDS-dPA has embedded 

dynamic projection algorithms into the framework, and thus, the projected scores can be 

reproduced much closer configuration compared to the original NOC setting (this was proven 

based on the reduction magnitude of control limits pertaining to Sm2). The overall monitoring 

results have shown that CMDS-dPA has maintained the efficient as well as effective 

detection capability, which is comparable to PCA on the basis of abrupt fault performances, 

while outstandingly superior over PCA particularly concerning on the incipient fault cases. It 

was really fascinating to observe that CMDS-dPA can be confidently speeding up the 

progression of Sm2 as well as identification process while sustaining the efficient detection 

through Sr. All of these have been verified through the specific discussion conducted on F6i 

F9i and F11i cases.    
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CHAPTER 7 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

7.1 Conclusions 

New MSPM techniques based on the CMDS approach have been proposed in this study. The 

CMDS based process monitoring systems were developed such that they comply with the set 

of criteria proposed by Jackson (1991) and embedded into the typical procedures of MSPM 

framework, which traditionally uses the linear PCA-based technique. Three CMDS based 

process monitoring frameworks were proposed in responding to the current issues on the 

unsuitability of applying linear PCA for monitoring highly non-linear processes, where a 

huge number of principal components are always necessary for building up the multivariate 

model. This study explores using CMDS as an alternative for process monitoring. In the 

proposed monitoring frameworks, increasing the number of dimensions will only contribute 

in enhancing the proximity of the developed scores to be in accordance to the pre-defined 

dissimilarity scales but not for fault detection enhancement as normally implemented in the 

PCA-based approach. Thus, the work was conducted by analyzing critically on the 

monitoring performance in both relative of high and low dimensional setting applications. 

Understanding on the monitoring outcomes trending based on various sets of dimensional 

settings is essential to verify the credibility of the assumption that mentioned earlier.     

 It was also realized from the very beginning, despite that both CMDS and PCA 

techniques  have very close similarity in terms of functionality as well as outcomes, but both 

are also fundamentally different in various aspects. Thus, embedding the CMDS approach 

into the existing MSPM frameworks was also found to be very challenging especially when 

dealing with various technical issues such as variable relationship structure, monitoring 

statistics and score projection techniques. Therefore, on top of the initial issue on the 

dimension selectivity, the other three influencing elements were also simultaneously 



159 

 

addressed during designing of the new monitoring systems. Therefore, there are four main 

issues which should be addressed by the study, particularly in embedding the CMDS 

techniques into the existing MSPM frameworks.           

 All the proposed new techniques were demonstrated by using various sets of abnormal 

operations obtained from a CSTRwR system. The results show that all the proposed methods 

were validated to be working in comparable to PCA as well as have demonstrated significant 

improvement in certain cases. This means that the basics of the proposed systems are 

matched to the criteria proposed by Jackson (1991) fundamentally as well as practically 

working within the frameworks of MSPM. However the level of accomplishment of the 

developed systems, in terms of process monitoring performances, differs from one 

framework to another as described in the following discussions.  

 The first issue is pertaining on finding the proper approach in describing the new 

structure of monitored variables. In all of the proposed frameworks, the core relationship 

measure among the monitored process variables is developed based on the dissimilarity 

measure (or may also be named as inter-distance measure), where the main object of the 

scores are the monitored variables themselves. In particular, two variables are located near 

together in the reduced dimensional space if they are connected strongly, or otherwise, they 

are placed far apart also within that of new reduced dimensional space. The justification on 

using variables-based instead of observation-based dissimilarity measures have been 

explained thoroughly in Chapters 4, 5 and 6.   From the results, all frameworks have clearly 

shown that the Euclidean distance was found comparatively advantageous over the City-

block distance.  The main reason is that City-block adopts Euclidean embedded distance 

instead of the real City-block measure because the scores are developed based on Euclidean 

space.   

 The second issue is related to designing on the monitoring statistics which 

fundamentally corresponds to the original concept of T
2
 and SPE. As the CMDS approach 

utilizes different basis (relative to PCA) in developing the scores, thus, the new monitoring 

parameters are also technically different by its mathematical formulation (while the aims are 

still consistent to the original definition used by MSPM). As a result, two new monitoring 

statistics have been proposed in connection to T
2
 and SPE respectively. Regarding the first 

statistics, two types of parameters are then proposed, whereby the first measures the squared 



160 

 

errors deviation from the global origin of the scores (Sm1), whereas the second implies the 

deviation in terms of squared errors summation of individual resultant vector length between 

the new and original NOC scores (Sm2). The first has been used exclusively in the first 

framework because the scores are assumed to be developed around the centre (while trying to 

be consistent according to the original dissimilarity scales of MWOS samples) instead of 

maintaining around a set of specified coordinates. Meanwhile, the second is used in both 

frameworks II and III because the scores that initially developed by CMDS are forced to be 

reconfigured according to a pre-defined set of score coordination (NOC). The second statistic 

calculates the squared difference by means of dissimilarity scale between the current and the 

original NOC configuration, and it is applied in all of the proposed frameworks. From the 

results, both were found to be productive in terms of detecting the faults.   

 The third issue is focusing on finding the appropriate mechanisms when dealing with 

the on-line monitoring operation. As far as the scopes of this study are concerned, three 

separate CMDS projection algorithms have been proposed. The first (sCMDS) uses the 

standard CMDS procedures, where the basic of eigenvalue and eigenvector matrices are 

utilized. The second approach (CMDS-PA) integrates the standard CMDS and PA procedures 

for the on-line score projection. The main difference is that the second method employs the 

PA functions as means analogous to loading function of PCA (in terms of approach) in 

constructing the new sample scores. This second framework has improved in terms of inter-

distance measures as compared to sCMDS. As to enhance the reproduction of the scores by 

way of score coordinates, another framework (CMDS-dPA) is proposed where the functions 

of PA are determined dynamically. As a result, much closer coordination between the new 

and targeted set of NOC data is obtained (Sm2 results), but Sr become deteriorated to certain 

degree. In analyzing all of the results, this study suggests that CMDS-PA is superior to the 

other two methods, where higher quality of performance has been achieved either by means 

of total number of cases detected or total number of cases with fastest detection. This finding 

also indirectly promotes that any CMDS-based fault detection mechanism that adopts 

reconfiguring by way of dissimilarity measure with a set of standardized transformation 

functions (CMDS-PA) should be considered as primary rather than projection based on 

individual score coordination (CMDS-dPA). In addition, all of these frameworks applied 

three sets of window settings for tuning the fault detection operation. In a typical monitoring 

situation, it is always desirable where, the faults can be detected effectively as well as 
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efficiently with highly robustness. Using a relative small window helps in creating random 

variation (which follow chi squared distribution model) on the MWOS-NOC data by 

lessening the rigidity behavior on the moving window samples in relative to a huge window 

size. At the same time, it may help in detecting the faults much faster. The results show that, 

the assumption was proven working regardless of frameworks used. Nevertheless, this study 

did not provide any specific measure in specifying the appropriate number of reduced 

window size that suitable for a given set of variables.   

 The last issue is the key to the fundamental success of this study. It is argued that 

CMDS can effectively as well as efficiently monitor the process with lesser dimensions 

compared to PCA. From the generic overview on the results, CMDS has the relative 

advantage over PCA in terms of quick detection especially for the incipient fault cases, while 

both methods seemed to be almost equal regarding on the abrupt fault situations. This 

perspective is obviously applied for sCMDS and CMDS-PA regardless of the dimension 

settings, while CMDS-dPA seemed to require higher dimensions as to become affective as 

well as efficient. In short, CMDS can potentially work productively in lesser dimensions 

through sCMDS or CMDS-PA. As far as this study is concerned, the typical procedure of 

specifying the number of dimensions, which is based on the eigenvalue ratio, should be 

modified to allow other influential factors such as measure of fitness (either in terms of 

dissimilarity scales or score configuration mapping) as well as window size for making their 

respective impact to be effective. In other words, while a relative lower dimensional model is 

always desirable, this has to be justified together with the other correlated settings. 

Unfortunately, this important aspect cannot be delivered by this study as it requires different 

set of study scopes.      

 In addition, this study also has shown that the proposed MDS based monitoring 

methods work in harmony with the conventional monitoring system. It means that the 

original intention is not to replace linear PCA based monitoring method, but to enhance the 

MSPM method as a whole system that relevant for any kind of processes as well as coping 

for any context of variables. This is inspired by argument made by Venkatasubramian et al., 

(2003) where they stated that a new paradigm of process monitoring system should be on 

inculcating a hybrid-based system for complementary as well as effectively absorbs the full 

benefits each of the monitoring techniques that available rather than operated as an individual 

with lots of limitations.  
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7.2 Recommendations for further works 

Further investigations corresponding to the current works can be executed in order to explore 

widely on the proposed techniques. Firstly, the current CMDS method utilizes the variable-

based dissimilarity measure for mainly describing the variable relationship structure. 

However, Cox, (1994) has successfully associated the scalar product in terms of major 

product moment (observation-based dissimilarity structure) with the minor product moment 

matrix (variance-covariance structure) by using series of single decomposition modification. 

By having this, any observation-based dissimilarity scales can be easily transformed into the 

typical structure of PCA technique. As a result, the typical procedure of conventional system 

can be implemented, where the structure of the variable correlations is initially scaled or 

modified by the dissimilarity measures as similar to the procedures of multi-scale PCA. The 

potential of this approach should be analyzed in details in order to understand its impact on 

the monitoring performance. 

 The next suggestion would be to apply other MDS techniques such as non-metric MDS 

for process monitoring. In performing such works, the proposed statistics can be also utilized 

or modified which reflect the principles and tools of the new technique that applied. In certain 

extent, new monitoring parameters can be also introduced, but should be corresponded to the 

original concept of T
2
 and SPE.  

 As the proposed method has some common similarities with the PCA background such 

as in terms of its mathematical relationship, application as well as monitoring criteria, hence, 

various developments on the CMDS monitoring technique can be also proposed which 

emulates the route of PCA extensions. In particular, those areas of multi-recipes (multi-

modes), multi-scales and dynamic process monitoring should be explored substantially.   

 One of the main advantages of CMDS over PCA from the aspect of mathematical 

solution is that it can directly deal with both quantitative as well as qualitative data. In many 

industrial processes, several factors such as product qualities, types of raw materials, human 

factors, instrument capabilities, control and safety schemes are in qualitative form. These and 

several other qualitative based elements can be also importantly considered for strengthening 

the monitoring outcomes. 
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 Finally, this study has been originally concerned on continuous process and purposely 

applied for fault detection and identification only. Thus, the proposed methods should be also 

expanded in dealing with various types of industrial-based cases, batch processes as well as 

pushed even harder especially in addressing the issues of fault diagnosis and control. In 

addition, as CMDS is generally flexible in terms of its formulation, it can be also exposed on 

various applications associated with any of hybrid-intelligent-based monitoring systems. 

Moreover, the proposed system also should be critically compared, in terms of monitoring 

performances, with other extended-PCA techniques, such as dynamic PCA, non-linear-PCA 

or even ICA, as to evaluate its potential monitoring impact.     
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APPENDIX A 

Remarks on Double Centring Equation 

According to Torgerson (1967), let X* be the new centroid-based Cartesian coordinates 

transformed from D. This translation can be performed by defining:  

c = (1’X)/n               (A1) 

where, c = 1×m row vector of column means of X 

 1 = n×1 column vector of elements equal to 1  

 n = number of objects  

Therefore, the centred X* can be simply produced by subtracting the column means 

from elements of original X: 

          X* = X - 1c                (A2) 

= X - (11’X)/n  

= X(I-11’/n) 

= XJ; hence, J = (I-11’/n) 

 where, I = identity matrix 

 1 = n×1 column vector of elements equal to 1  

  n = number of objects 
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APPENDIX B 

Modelling of the CSTRwR System 

The CSTR system with recycle (CSTRwR) is taken from (Zhang, 1991) where it is used to 

test several fault diagnosis systems. A dynamic simulated model of the CSTRwR system is 

developed, where several assumptions have been made and they include: 

i) Perfect mixing takes place in the reactor. 

ii) Perfect heat exchange takes place in the heat exchanger. 

iii) The reactant and the product have the same density and specific heat.  

The model is developed based on mass and heat balances in the process and the model 

equations are listed as follows:  

      (B1) 

      (B2) 

      (B3) 

   (B4) 

     (B5) 

    (B6) 

       (B7) 

       (B8) 

       (B9) 

       (B10) 

       (B11) 

        (B12) 
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    (B13) 

       (B14) 

    (B15) 

 where 

  H  = level in the reactor (cm) 

  T   = temperature in the reactor (
0
C) 

  A  = cross-sectional area of the reactor (cm
2
) 

    = flow rate of input reactant (cm
3
/sec) 

   = flow rate of the recycled reactant (cm
3
/sec) 

   = flow rate of the liquid leaving the reactor (cm
3
/sec) 

  Ca = composition of reactant in the reactor  

  Cb = composition of product in the reactor 

  Ca0 = compossition of reactant in the input stream 

  ra = reaction rate (g/sec) 

  Hr = reaction heat constant (KJ/g) 

   = temperature of input reactant (
0
C) 

  T2 = temperature of the recycled reactant after heat exchanged (
0
C) 

  ρ = density of the reactant (g/cm
3
) 

  C = specific heat of the reactant (J/g
0
C) 

  ρ0 = density of the solvent (g/cm
3
) 

  C0 = specific heat of the solvent (J/g
0
C) 

  Kr = reaction rate constant (g/sec) 

  ar = constant peculiar to reaction (g/sec) 

  br = constant peculiar to reaction (
0
C) 

  K2 = restriction parameter of valve 3 (cm
4
/g

1/2
sec) 

  A2 = fractional opening of valve 3 

  P = pressure of liquid leaving the pump (g/cm
3
) 

  Q4 = flow rate of the product (cm
3
/sec) 

  K4 = restriction parameter of valve 1 (cm
4
/g

1/2
sec) 

  A4 = fractional opening valve 1 

  P0 = pressure at the bottom of the reactor (g/cm
2
) 
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  ∆P = pressure increase caused by pump (g/cm
2
) 

  T5 = temperature of cold water entering heat exchanger (
0
C) 

  Q5 = flow rate of cold water entering heat exchanger (cm
3
/sec) 

  K5 = restriction parameter of valve 2 (cm
4
/g

1/2
sec) 

  A5 = fractional opening valve 2 

  P5 = pressure of feed cold water to the heat exchanger (g/cm
2
) 

 

 The controllers used are PI controllers of the form  

   

 where, u(t), e(t), K and Ti are the control signal, error signal, controller gain and 

integration time respectively.  The parameters of the controllers as well as the set points of 

the controlled variables are presented extensively in Zhang, (1991).  
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APPENDIX C 

NOC DATA PROFILES 

The simulated NOC data is corrupted with simulated measurement noises. The noises are 

normally distributed with zero mean. The standard deviations of the noises are given in Table 

C1.  

Table C1: Standard deviations of measurement noises  

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 

0.08 0.06 0.13 0.59 0.60 1.62 0.95 0.001 0.002 0.04 0.40 0.19 0.23 

 

 

Figure C1: Process profiles of tank temperature (top-left), tank level (top-right), feed 

temperature (middle-left), inlet flow rate (middle-right), recycle flow rate (bottom-left) and 

outlet flow rate (bottom-right) of NOC data  
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Figure C2: Process profiles of cooling water flow rate (top-left), product composition (top-

right), feed composition (bottom-left) and heat exchanger entrance pressure (bottom-right) of 

NOC data  

 

Figure C3: Process profiles of controller 1(top), controller 3 (middle) and controller 2 

(bottom) of NOC data  
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