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AbstractWe have developed a mathematical model which reproduces a broad range of observablesin several galaxies, within the same physical framework.We present an observationally constrained model of mass out�ow for galactic discs,derived from star formation rate. This is used to supplement a model of the non-linear,mean-�eld, α2Ω galactic dynamo in the presence of shear. Out�ows a�ect the magneticpitch angles unexpectedly. This resolves a long standing problem in non-linear dynamotheory, marking a fundamental improvement in the degree of agreement with observa-tions.The mean-�eld equations are reduced using a modi�ed version of the no-z approxi-mation, to allow for observed �aring of gaseous galactic discs, leaving us with a �aredthin-disc model. We have explored two non-linearities to describe the α-e�ect. We userecent spatially dependent observations of various galaxy properties to evolve the dy-namo equations in time. We present results of the steady state magnetic �eld for bothnonlinearities and demonstrate that observables such as local magnetic �eld strength andmagnetic pitch angle can be closely reproduced, using optimum, physically acceptablevalues of out�ow velocity.We apply the model to a number of well observed galactic systems with similar kine-matic properties and discuss several sensitivities of the model whilst modifying data setswithin the ranges of observational uncertainty.
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Chapter 1Introduction
1.1 BackgroundAstrophysical dynamo theory is certainly not a new interest amongst both physicists andmathematicians, having been studied since the early part of the 20th century.In 1919, Sir Joseph Larmor hypothesised that an astrophysical body such as the Suncould possess a self exciting magnetic �eld, motivated by the realisation that withoutany sort of regenerative and maintaining mechanism, magnetic �elds naturally decay.We wish to apply such thinking to larger astrophysical systems, in particular, spiralgalaxies.Many spiral galaxies have well observed magnetic �elds (e.g. Beck et al. (1996);Fletcher (2011)) and in recent times, with the advent of more technologically advancedobservational instrumentation and data analysis methods, the understanding of the mag-netic properties of these massive astrophysical structures has signi�cantly increased. Atthe same time, new observations have been made that reveal the properties of the inter-stellar gas in nearby spiral galaxies at a comparable resolution (e.g. Walter et al. (2008),a study of H i in nearby galaxies, and Chemin et al. (2009), including observations of H iin M31).This new wealth of observational data is an invaluable asset, and facilitates the op-portunity for scientists to start to combat long standing problems, fundamental questionssuch as how galaxies are created, how long they have existed, and equally deep questionssuch as how they share dynamics with so many other very similar galaxies, and as this2



Chapter 1. Introductionwork will discuss, how are they able to maintain a magnetic �eld which in theory shouldhave decayed billions of years ago.1.2 What is a galaxy?A galaxy is a collection of stars, dark matter and dust, gas, magnetic �elds and cosmicrays, where the latter (those from dark matter to cosmic rays) are collectively known asthe interstellar medium or ISM. The most common types of galaxy in the universe areelliptical, dwarf and disc galaxies.Elliptical galaxies have little gas content, and typically do not have active star formingregions. These galaxies have small-scale magnetic �elds, but no discernable large-scalemagnetic �eld. Dwarf galaxies are active regions of star formation, which give rise togalactic out�ows. They are regularly weakly rotating, or do not rotate at all, howeverstill possess global magnetic �elds. Disc galaxies are active, evolving systems, with largevolumes of interstellar gas, dust, magnetic �elds and star formation. In this thesis weonly discuss disc galaxies.Disc galaxies generally comprise of three parts: a roughly spherical central bulge; a�ared disc, which can be of the order of 0.1 to several kpc thick, which is made up ofstellar material and gas; and the halo, which consists of stellar material, gas, dust anddark matter. The halo will typically be ellipsoidal in shape and can have a polar diameterin the order 15 − 20 kpc. This surrounding halo of hot gas is supplied by out�ows ofsupernova remnant heated gas from the disc, in a process known as the galactic fountain.The interstellar gas typically constitutes 10�15% of the mass in a galactic disc (Fer-rière, 2001). It consists of a number of relatively distinct phases, outlined in Table 1.1.Chemically, in terms of numbers of particles, about 90% of the gas in the ISM is hydro-gen, and a further 9% is helium. About half the mass in the ISM is con�ned to smalldense clouds, accounting for only 1 − 2% of the interstellar volume. These clouds fallinto three categories; cold, dense molecular clouds, which can be observed by proxy viathe CO emission line, then di�use, transparent atomic clouds, and clouds which containa mix of molecular and atomic gases, which can all be observed directly by the H i 21cmline, lying between the two other types of cloud in terms of visibility.Galaxies are gravitationally bound, dynamically evolving systems. The typical orbitalperiod of the Sun with respect to the galactic centre is 2.5×108yr (Bissantz et al., 2003).All galaxies rotate di�erentially, and this is well known from observations of gas velocity.Contrary to Kepler's laws, which would have the rotation velocity of the disc decrease3



Chapter 1. IntroductionComponent Temp. (K) Density (cm−3)Molecular clouds 10− 20 102 − 106Cold atomic medium 50− 100 20− 50Warm atomic medium 6000 − 10000 0.2− 0.5Warm ionised medium 8000 0.2− 0.5Hot ionised medium 106 0.0065Table 1.1: ISM hydrogen phase descriptions from Ferrière (2001).Density refers to the number of molecules/atoms/ions per unit vol-ume.inversely in proportion to the square root of galactocentric radius, r, galaxies typicallyhave a �attened rotational velocity pro�le (from this point we will refer to this as therotation curve) in the outer regions of the disc. It is thought that this is a result of thedark matter content in galaxies.

Figure 1.1: Sketch of a typical spiral galaxy and its components.The large scale magnetic �eld is concentrated within the �ared disc, so we wish topay this particular attention.
4



Chapter 1. Introduction1.3 Galactic magnetic �eldsGalactic magnetic �elds are well observed and studied (e.g. Beck et al. (1996)). Theyexist on both large (> 1 kpc) and small scales (< 100 pc) and are observable indirectly atoptical and radio wavelengths, though most information is sourced from radio continuumdata (Beck et al., 1996).Measuring magnetic �eldsCertain aspect of magnetic �elds in galaxies can be observed using a number of di�erentmethods.Synchrotron EmissionThe strengths and directions of the total and regular magnetic �elds in galaxies canbe ascertained from measurements of total and linearly polarised synchrotron radiationproduced by the interaction of cosmic rays with the magnetic �elds. The cosmic raysare relativistic electrons, with a particular energy density. It is assumed that there is arelation between this energy density and the energy density of the magnetic �eld (Becket al., 1996). The degree of polarisation of the synchrotron emission can be used to givean estimate of the regular magnetic �eld strength perpendicular to the direction of theemission, i.e. in the plane of the sky.Faraday RotationWhen a linearly polarised radio wave passes through a plasma with a magnetic �eld,its plane of polarisation is rotated in proportion to the intensity of the component ofthe magnetic �eld parallel to the direction of travel of the wave. This is called Faradayrotation, and gives another method with which to measure the strength of the regularmagnetic �eld. The ratio of rotation angle to the wavelength of the observed radiowave is called the Faraday rotation measure, RM, which is sensitive to the strength anddirection of the regular magnetic �eld. The RM is extremely useful as its sign allowsa clear de�nition of the two directions of the magnetic �eld to be obtained. This alsodictates that the method is sensitive to such phenomena as �eld reversals (Beck et al.,1996).
5



Chapter 1. IntroductionOptical polarisationLight is scattered by dust grains which are aligned by magnetic �elds. This light becomespartially polarised perpendicular to the magnetic �eld (Weilebinski, 1990). One drawbackto this method of observing the magnetic �eld in a galaxy is that it can only provideinformation on the orientation of the �eld, not its strength.Zeeman splittingThe most direct method of measuring magnetic �elds is the Zeeman e�ect (Weilebinski,1990).An atom or molecule has a magnetic moment, and the e�ect arises when this magneticmoment is coupled with an external magnetic �eld (Heiles et al., 1993). The externalmagnetic �eld removes the degeneracy in states with nonzero angular momentum. Thissplits transitions into a number of components in two categories; circularly polarisedcomponents and eliptically polarised components. It is the amplitudes of the circularlypolarised components that are used to measure the angle between the magnetic �eld andthe line of sight (Heiles et al., 1993). The information gained from the Zeeman e�ectallows us to understand the magnetic �elds in molecular clouds.Measuring magnetic �eld structureIn spiral galaxies, magnetic �elds follow spiral patterns, with typical strengths of a few
µG, contained both within the spiral arms, and in the inter-arm regions. They havesimilar energy densities to small scale turbulence, and the gas thermal energy.We introduce the cylindrical polar coordinate system we shall use throughout thisstudy, where directions are azimuthal, φ, radial, r and vertical, z.An important observable quantity in galactic magnetic �eld studies is the magneticpitch angle, p, de�ned via

tan (p) =
Br

Bφ
,a measure of the angle the total magnetic �eld vector makes with the azimuthal vector.Observed pitch angles are non-zero and the pitch angle is recognised as a very importantquantity for the diagnosis of the origin of galactic magnetic �elds. The only knownmechanism which can produce non-zero radial and azimuthal magnetic �eld componentsis the dynamo, via the α and Ω e�ects discussed later in this chapter.If there was a magnetic �eld of µG magnitude present around the time of the forma-tion of the galaxy, and no mechanism to maintain this �eld, then the decay of the �eld6



Chapter 1. Introductionwould be governed by the nature of the gas in the system. The magnetic di�usion timecan be estimated as
td =

h20
ηt

, (1.1)where h0 is the typical scale height of the gaseous component of the disc, and ηt is theturbulent magnetic di�usivity of the gas. Our galactic coordinate system is cylindricaland has vertical, z, azimuthal, φ, and radial, r components. For a typical scale heightof h0 = 500pc, and a turbulent magnetic di�usivity coe�cient of ηt = 1 × 1026 cm2 s−1(Moss et al., 2000; Shukurov et al., 2006), td ≈ 108yr, on the order of 1/100 the age of atypical spiral galaxy. This suggests that the magnetic �eld should have decayed naturallylong ago, and the observed magnetic �elds should not exist.1.4 What is a dynamo?The premise of a dynamo mechanism is relatively simple (Parker, 1955); a body ofelectrically conductive �uid in the presence of a magnetic �eld1 is considered (in thespeci�c case of a galaxy, this �uid is the interstellar medium.). A �ow of material exists,such that the magnetic �eld is ampli�ed, and this ampli�cation sustains the �ow.In mean-�eld dynamo theory, we study the large scale part of the magnetic �eld,under the assumption that we can distinguish between large and small scale components
B = B + b, and the evolution of the �eld is governed by the mean-�eld equation formagnetic induction

∂B

∂t
= ∇×

(

u× b
)

+∇×
(

U ×B
)

+ η∇2B,with time, t, magnetic di�usivity, η, the velocity vector, U = U + u, and the magnetic�eld, B. The small scale components term will later be interpreted as contributing tothe α-e�ect which will be introduced shortly. An assumption made is that η is constantwith respect to position2.The dynamo functions by producing azimuthal magnetic �elds from radial ones, then1An initial condition imperative to the success of a dynamo is a �seed �eld� a magnetic �eld whichis then ampli�ed by the dynamo. In this work, we do not discuss the initial creation of these seed �elds,but see Widrow (2002) for a detailed description of the various mechanisms by which seed �elds can beproduced.2This is not necessarily the case, however, in the thin disc approximation we shall be using for thisstudy, where the di�usion is taken at the mid-plane, it can be taken as constant (Moss et al., 1998).7



Chapter 1. Introductionback again, creating a self sustaining magnetic �eld. The mechanisms for these conver-sions of the magnetic �eld components are known as the Ω and α e�ects.1.5 The galactic dynamoThe galactic dynamo has been an active area of research for a number of decades (Ruz-maikin et al., 1988; Beck et al., 1996). The idea is to take a thin disc with a very weakseed magnetic �eld. Taking this approximation allows the dynamo to be considered in asmaller number of dimensions (typically one, occasionally two) and dictates via the weak�eld that motions in the disc can be considered independent from the magnetic �eld,known as the kinematic limit (Kulsrud & Zweibel, 2008). The magnetic �eld is evolvedonly via the magnetic induction equation, with a set of realistic galactic parameters.Both αΩ and α2Ω dynamos have been considered, primarily in �at geometries.1.6 The Ω-e�ectWe begin with a disc, with a net poloidal magnetic �eld, Bp = (Br, 0, Bz), where sub-scripts r and z denote the radial and vertical components in cylindrical polar geometry.This magnetic �eld has a dominant component in the radial direction compared to thevertical direction, which is not the case for a spherical system such as a star, or a planet.So, we consider this �eld as being radial (Fig. 1.2). We also reserve the subscript φ torepresent the azimuthal component, Baz = (0, Bφ, 0)The Ω-e�ect describes how the di�erential rotation of the disc transforms this radial�eld into an azimuthal one.

8



Chapter 1. Introduction

Figure 1.2: Sketch of a galactic disc, with an initial net radial mag-netic �eld, denoted by the parallel lines. The vertical line denotesthe axis of rotation.Upon a di�erential rotation of the disc, the magnetic �eld lines begin to �wind up�as in Fig. 1.3.

Figure 1.3: Di�erential rotation of the galactic disc, shown by theazimuthal arrowed lines, winding up the magnetic �eld lines andstretching them, thus converting Br into Bφ.After a period of time, this winding up of the �eld reaches the extreme where theresult is an essentially azimuthal magnetic �eld (Fig. 1.4). For a dynamo to work,9



Chapter 1. Introductiona mechanism is required to convert this azimuthal �eld back into a radial �eld. Thismechanism is the α-e�ect.

Figure 1.4: Net azimuthal magnetic �eld resulting from the windingup of the radial magnetic �eld by the di�erential rotation of thegaseous disc into a tightly wound spiral.1.7 The α-e�ectThe α-e�ect is one of the most widely debated topics in astrophysical dynamo theory.Such a mechanism for the return of an azimuthal magnetic �eld to a radial �eld hasnot been directly observed within a galactic context, however laboratory dynamos havedemonstrated the α-e�ect (Muller & Stieglitz, 2002). There is no large scale e�ect such asdi�erential rotation to describe such mechanisms, so we must look to small scale motionsto qualitatively discuss what is happening.We progress from our recently acquired azimuthal �eld, and make the assumption thatbuoyant small-scale turbulent motions, or bubbles and superbubbles in the ISM createdby supernova remnants (Ferrière, 1993), are su�cient to create loops in the magnetic�eld lines (Fig. 1.5).
10



Chapter 1. Introduction

Figure 1.5: Small scale turbulent motions create loops in the mag-netic �eld lines.The Coriolis force twists these rising loops (Fig. 1.6), producing a radial �eld com-ponent. This radial �eld is unlike the original state, in that there are parts of the �elddirected radially inwards, and some directed radially outwards. The radial �eld of one ofthe signs is lost to the halo by means of a vertical out�ow. The Ω-e�ect can convert theremaining disc radial �eld into an azimuthal one, and so a cycle of �eld ampli�cation iscreated: a dynamo.

11



Chapter 1. Introduction

Figure 1.6: As a result of the Coriolis force, the loops are twisted.The summation of the �eld in these loops results in a multi-directional radial magnetic �eld. One of the radial components islost to the halo by means of a galactic out�ow.1.8 Magnetic helicityMagnetic helicity is a description of how twisted a magnetic �eld is. If we imagine asimple unaltered loop of magnetic �eld, we would say it has no helicity, however, if wetake that loop and twist it so it would appear as a �gure of 8, we would then say thatthe magnetic �eld has a certain helicity.

Figure 1.7: (a). Un-altered loop of magnetic �eld. (b). Same loopof magnetic �eld, �xed in position at the bottom, and twisted atthe top, to create helicity.Density of magnetic helicity can be described mathematically as χ = A · B (Sub-ramanian & Brandenburg, 2006), where A is a vector potential of the magnetic �eld,
B = ∇×A. 12



Chapter 1. IntroductionThe conservation of magnetic helicity in a system with closed boundaries could posea problem for mean-�eld theory. The large-scale magnetic �eld generated by the dynamohas a non-zero net magnetic helicity. This is accompanied by an increase in oppositesigned magnetic helicity at smaller scales. This leads to early suppression of the α-e�ect, and hence switches o� the regular magnetic �eld growth before the equipartitionmagnetic �eld strength is reached (Brandenburg & Subramanian, 2005).Open boundaries could allow for the possible advection of the small- scale magnetichelicity out of the system and so alleviate the problem (Blackman & Field, 2000). Thissolution is attractive in the case of disc galaxies, where the strongest regular �elds arefound, and presumably generated, in the disc which is embedded in an extended hot,ionised halo. The origin of the halo gas is the heating of disc gas by supernovae, makingit buoyant and so producing a �ow across the disc- halo interface. Recent developmentsin galactic dynamo theory have led to a physically enriched description of the α-e�ectin galaxies, by allowing for the transport of small-scale magnetic helicity out of theactive dynamo layer in the disc into the galactic halo (Shukurov et al., 2006; Sur et al.,2007). This mechanism can alleviate the drastic quenching of the α-e�ect, and thus thesaturation of the large-scale magnetic �eld strength at levels far below those observeddue to the build up of small-scale magnetic helicity.Shukurov et al. (2006) and Sur et al. (2007) derived an equation for the evolution ofthe α-e�ect that allows for the advection of small-scale magnetic helicity and showed thatfor plausible parameters describing out�ows from the disc, either as a galactic fountainor galactic wind, the coupled non-linear system of equations describing the evolution ofthe magnetic �eld B and α can lead to �eld strengths of about 1/10 of the equipartitionvalue (Sur et al. (2007) showed this 1/10 magnitude strength, and later, we demonstratemagnetic �eld strengths of the order 1/5 equipartition).We will extend the generic model of Shukurov et al. (2006) and Sur et al. (2007) bycoupling the equation describing the dynamical evolution of the α-e�ect with a modelfor galactic out�ows driven by supernovae, that depends upon the star-formation rate:an observable quantity. This model will then be applied to speci�c nearby galaxies.1.9 Organisation of the thesisThe aim of this thesis is to:
• Develop a new model for galactic dynamos, incorporating an out�ow from thedisc to the halo, motivated by the advection of small-scale magnetic helicity as a13



Chapter 1. Introductionmechanism to alleviate catastrophic quenching of the dynamo;
• Investigate the e�ect of the out�ow on the observable radial pro�les of magnetic�eld strength and magnetic pitch angle, providing new results so that direct com-parisons can be made between the new magnetic �eld simulations and pitch anglesimulations, and the observed values of these quantities already in existence;
• Apply the new dynamo models to several nearby galaxies, using observationallyconstrained inputs such as rotation curve, gas density pro�les and disc scale heights,and compare the outputs to observed parameters of the regular magnetic �eld inthese galaxies.In Chapter 2, we introduce the governing equations of the mean-�eld dynamo and out�owmodels. In Chapter 3, we review some generic dynamo models via the reproduction ofprevious works but with some additions to explore some of the possibilities in terms ofmodi�cation of parameters, boundary conditions etc. In Chapter 4, we apply our model,with the inclusion of recent observational data, to the galaxy M31, and explore the e�ectsof the out�ow on the magnetic �eld strength and magnetic pitch angle. In Chapters 5to 7, we apply the model to the galaxies; M33, M51 and NGC6946, again exploring thee�ects of galactic out�ows on the magnetic �eld strength and magnetic pitch angle. Themain conclusions are summarised in Chapter 8.Magnetic �elds in galaxies have been studied for decades, and still are not thoroughlyunderstood. The exact nature of the magnetic �elds we observe remains, even thoughmuch advancement has been made in the area, somewhat of a conundrum. The aim ofthis thesis is to help in the continued advancement in the theory surrounding this topic,to bring our understanding of such fascinating astronomical phenomena slightly closerto completion.���
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Chapter 2Derivation of the model for agalactic dynamo
2.1 Derivation of the Model Equations2.1.1 Thin disc approximationWe will model the thin galactic disc using the no-z approximation (Subramanian &Mestel, 1993; Moss, 1995). The thin disc approximation assumes that ∂/∂z � ∂/∂r �
1/r (∂/∂φ). This method has been used in models of galactic dynamos in the past (Mosset al., 2000; Phillips, 2001; Sur et al., 2007). We will also consider only axisymmetricgalactic discs, i.e. taking 1/r (∂/∂φ) = 0, thus ignoring secondary e�ects of spiral armsand other intermediate-scale structures. We consider the disc component of a galaxy,and approximate thusly. We assume cylindrical polar geometry of a disc of half-thickness
h0 = 0.5 kpc, and a radius (dependent on the galaxy) of R0 = 20kpc, resulting in a discaspect ratio of λ = h0/R0 ' 1/40. We ultimately take Bz = 0, however only aftermaking use of those derivates of Bz that can be sensibly evaluated. We aim to solve themean �eld magnetic induction equation for dynamo action

∂B

∂t
= ∇×

(

U ×B + E − ηJ
)

, (2.1)where U , B and J=∇ × B are the mean velocity �eld, magnetic �eld, and currentdensity respectively. Summed with their respective �uctuating quantities, the total ofthese quantities is B=B + b, etc. E = u × b is the mean electromotive force arisingfrom small-scale velocity �uctuations, and can be written as (Krause & Rädler, 1980;15



Chapter 2. Derivation of the model for a galactic dynamoRuzmaikin et al., 1988)
E = αB − ηtJ ,where α represents the α-e�ect, and ηt is the turbulent magnetic di�usivity. The ohmicmagnetic di�usivity, η (an inherent property of the gas in the system), is considerablysmaller than ηt, so Eq. (2.1) can be approximated as

∂B

∂t
= ∇×

(

U ×B + αB − ηtJ
)

. (2.2)The velocity vector can be written in terms of its three components, U = (Ur, Uφ, Uz).From here we only deal with mean quantities and drop the B,U notation. A valuableexpansion is that of the current density
∇× (∇×B) = ∇ (∇ ·B)−∇2B.We lose the �rst term as a consequence Maxwell's equation, ∇·B = 0, i.e. that magnetic�eld lines are solenoidal. This reduces Eq. (2.2) to
∂B

∂t
= ∇× (U ×B + αB) + ηt∇2B, (2.3)Where ηt is assumed to be constant with respect to position, similarly to our assumptionof the constant nature of η. We can use the identity
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,where i can be substituted with any of the three components in the cylindrical frame ofreference. We expand the Laplacian
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Chapter 2. Derivation of the model for a galactic dynamoand from this, we can write Eq. (2.2) in full as
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We ignore the vertical magnetic �eld component as Bz � Br, Bφ, however retain termsincluding Bz in the radial and azimuthal magnetic �eld component equations, in ac-cordance with the previously mentioned derivates of Bz which may not be of negligiblemagnitude. We are left with the radial and azimuthal components of the mean-�eldequation
∂Br

∂t
=

1
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, (2.4)
∂Bφ

∂t
=
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. (2.5)In a reduction to the no-z, axisymmetric set of equations, we need to proceed carefully.Firstly, we look at the expression which describes the solenoidal condition for magnetic�eld lines, ∇ ·B = 0, which has to be maintained,
∇ ·B =
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= 0. (2.6)Taking only the axisymmetric solutions, i.e. ∂/∂φ = 0, we deduce that
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(rBr) .17



Chapter 2. Derivation of the model for a galactic dynamoThis a�ects the radial component of Eq. (2.4), where, without careful attention, wewould have disregarded the term involving ∂Bz/∂z as being of negligible magnitudewhen removing the vertical �eld component. With this taken into consideration, andupon removal of the non- axisymmetric components, Eqs. (2.4) and (2.5) become
∂Br
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, (2.7)
∂Bφ
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. (2.8)In our models we consider the azimuthal velocity due to di�erential rotation only, so
Uφ = rΩ (r), with Ω (r), the rotation rate measured in km s−1 kpc−1. This modi�cationleads to a change in the expression for the azimuthal �eld component, as a result of Eq.(2.6)
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, (2.11)Now the full, dimensional, equations describing the evolution of Br and Bφ are
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Chapter 2. Derivation of the model for a galactic dynamo
∂Bφ

∂t
= − ∂
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)

. (2.13)Now we write the equations in the no-z approximation. The use of a vertical wavenumber,
k ≈ 1/h and considering solutions of the form eikz leads us to replace our �rst and secondvertical derivatives with 1/h (r) and −1/h2 (r) respectively. We can rewrite Eqs. (2.12)and (2.13) leaving us with the dimensional form of the mean-�eld dynamo equation inthe axisymmetric, no-z approximation
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. (2.15)These two expressions form the basis of this work. Note that we have retained the termsinvolving the radial velocity component. We have done this so that we can investigatethe sensitivity of the model to radial �ows later on.2.1.2 Non-dimensionalisationIt is now convenient, for computational and interpretational reasons, to write the equa-tions in dimensionless form. This means writing the various quantities in the expressionsin terms of a dimensional component (taken as a constant, here denoted with the sub-script �0�) and a dimensionless function of radius, of the order 1. In this particular casewhere we are considering a 1-dimensional system, this dimensionless component is a lo-cally varying array, for example, with a �ared disc of scale height h (r), typically witha value of h0 = 500pc, we can rede�ne h (r) = h0h
∗ (r), which leaves us with a dimen-sionless array, h∗ (r) of the order unity. Our other scalings include α (r) = α0α

∗ (r),
Ω (r) = Ω0Ω

∗ (r), Ui (r) = Ui0U
∗

i (r) and B (r) = B0B
∗ (r). From this point onwardshowever, we shall drop the `∗' notation for dimensionless quantities, and shall leave themas, for example h (r).When applied with the time scaling t0 = h20/ηt to all the quantities in Eqs. (2.14)19



Chapter 2. Derivation of the model for a galactic dynamoand (2.15), we obtain
∂Br

∂t
= −Ur0h0

ηt

h0
R0

Ur

r

∂

∂r
(rBr)−

Uz0h0
ηt

Uz

h
Br −

α0h0
ηt

α

h
Bφ

+
h20
R2

0

∂

∂r

(

1

r

∂

∂r
(rBr)

)

− Br

h2
, (2.16)
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. (2.17)Note we have removed B0 from these expressions as it cancels from each term. This sepa-ration into dimensional and dimensionless variables introduces a number of dimensionlesscombinations of parameters

RUr =
Ur0h0
ηt

, RUz =
Uz0h0
ηt

, Rα =
α0h0
ηt

, Rω =
Ω0h

2
0

ηt
, λ =

h0
R0

, (2.18)which govern the �ow velocity1, the α- e�ect, and the Ω-e�ect respectively. We alsode�ne the disc aspect ratio, λ. We analogously de�ne local, radially varying dimensionlessnumbers,
RUi

(r)=RUi
Ui(r)h(r) , Rα (r)=Rαα(r)h(r) , Rω (r)=RωΩ(r)h2(r) ,with the exception that the disc aspect ratio, like the time scaling, is a constant value,and not spatially dependent2. The local dynamo number, D (r), is given by

D (r) = RαRω = RαRωα (r)G (r)h3 (r) , (2.19)where G (r) = rdΩ/dr is the local shear. We are left with the non-dimensional versions1From this point onwards, we shall use two separate versions of this constant, RUr
and RUz

which willbe used in the terms involving radial and vertical �ows respectively. We do this to allow us to separatelyinvestigate e�ects of the individual velocities.2The constant nature of the disc aspect ratio is required for the derivation of the equations, and thetime scaling we have used. As a result there is no inclusion of any disc �aring in the disc aspect ratio.
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Chapter 2. Derivation of the model for a galactic dynamoof our basic equations,
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, (2.21)where G = r∂Ω/∂r is the shear rate.2.2 The α-e�ectWe now introduce the two versions of the non-linear α-e�ect which we will be using.2.2.1 α-quenchingThe numerical quenching model is a long established method for preventing permanentexponential growth of magnetic �elds in mean- �eld dynamos (Moss et al., 1998; Panesar& Nelson, 1992). It has a simple expression

α =
α0

1 +B2/B2
eq

, (2.22)where α0 is a typical velocity of the order 1 km s−1, B is the magnetic �eld strength,and Beq =
√

4πρu2 is the equipartition magnetic �eld strength, a function of the density,
ρ, and turbulent velocity, u, of gas in the disc, de�ned via the magnetic energy density
B2/8π = (ρu2)/2.This quantity becomes important when B2/B2

eq ≈ O(1), i.e. when the �eld becomesstrong. When B grows to a su�cient magnitude, the value of α is quenched, and thegrowth of the �eld diminishes to zero. This is called the saturated state, and shall bereferred to for both the numerically quenched, and dynamically quenched models of thealpha e�ect.In a modi�cation to the above model, we follow the approach taken by Moss et al.(1998), where the rotation of the disc and �aring are incorporated into the model to21



Chapter 2. Derivation of the model for a galactic dynamomake it physically more realistic (but still highly simpli�ed)
α (r) =

l2Ω (r)

h (r)

1

1 +B2/B2
eq

, (2.23)where l is a typical length scale. This approach is used purely as a numerical form ofquenching, and apart from the addition of the rotation and �aring, has little physicalbackground.2.2.2 Dynamical αThe second model we evaluate describes the dynamical evolution of α, which has itsorigins in a model developed by Brandenburg & Subramanian (2005) for the evolution ofmagnetic helicity, and more recently modi�ed by Sur et al. (2007) to allow for a verticaladvection of magnetic helicity across the disc-halo boundary.The model involves recognising α as the sum of kinetic and magnetic components, i.e.,
α=αk+αm, where the subscripts k and m represent the kinetic and magnetic quantitiesrespectively and

αk = −1

3
τu · ∇ × u, αm =

1

3
ρ−1τj · b, (2.24)with τ , the correlation time of the small scale velocity �eld u, and ρ, the local gas volumedensity.As in the quenching model, the α-e�ect is a�ected by the growth of the magnetic�eld. αk ∝ l2Ω/h (Krause & Rädler, 1980), and is constant with respect to time inour model, so αm must be constrained to be a�ected by the magnetic �eld similarly.Catastrophic quenching, as described in Sur et al. (2007), which hinders the evolution ofthe dynamo, can be avoided if the �ux of magnetic helicity is non-zero. We introduce atransport equation for the helicity density (Subramanian & Brandenburg, 2006)

∂χ

∂t
+∇ · F = −2E ·B − 2ηj · b, (2.25)with χ, the helicity density of the small scale magnetic �eld, b, and F , the helicity �uxdensity. The left hand side of the expression concerns the evolution with time and theremoval of helicity from the disc, whereas the right hand side involves the generation ofhelicity.We shall use a simple version of �ux

F = χU ,22



Chapter 2. Derivation of the model for a galactic dynamowhich can be physically described by saying we have a helicity density, and are using a�ow U of some sort to move it. αm can be related to χ via
αm ' 1

3
τ
1

l20

χ

ρ
. (2.26)With the identity ηt = 1/3τu2, we can rewrite the helicity density as

χ = ρu2αm

l20
ηt
. (2.27)With all but αm being constant with respect to time in this model, we can substitutethis into Eq. (2.25)
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)

. (2.28)It can be shown with the combination of Eqs. (2.26) and (2.27), and with the introductionof a reference magnetic �eld B2
eq = ρu2, that the evolution of αm can be written (Suret al., 2007)
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)

−∇ · (αmU) , (2.29)where l0 describes a typical length scale for the turbulence, here l0=0.1 kpc. The choiceof using Beq as our reference magnetic �eld strength is an important one. It gives us asomewhat simple yet still illustrative impression of what we expect the magnetic �eldshould look like in a gaseuos disc. It should be expected to be a measure of the upperlimit of the magnitude of the magnetic �eld, demonstrating how any simulations shouldbehave. Rm = ηt/η ' 1 × 105 is the magnetic Reynolds number. The �rst term in Eq.(2.29) describes the amount of small-scale helicity created by the mean �eld dynamo.If nothing is done with this term, α is rapidly quenched. The second term, αm/Rm isnegligible as a result of the magnitude of Rm. The �nal term is the advection term, whichis used to remove the helicity created in the �rst term, and hence preventing catastrophicquenching.Upon expansion of Eq. (2.29), and again taking the axisymmetric, no-z approxima-tion, with a negligible magnetic �eld component in the z direction, and using the velocitypro�le, U = (0, rΩ,Uz), we are left with
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Chapter 2. Derivation of the model for a galactic dynamoWe have taken Ur (r) = 0 here, however we will use radial in�ows later, and this willresult in another term in Eq. (2.30). It was noted in Sur et al. (2007) that the term J ·Bvanishes under the no-z approximation. Under the axisymmetric no-z approximation,this term reduces to
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,which vanishes when it is assumed that Bz is negligible in relation to the other twocomponents of magnetic �eld strength. In reality, this would not be the case, and theother terms would also not vanish, as the vertical derivatives would be di�erent for eachof the terms, so a move away from the no-z approximation is necessary.It was shown in Appendix A of the same paper that a suitable approximation to theterm to retain realism takes the form

J ·B ' −3

8
(|πD|)1/2 BrBφ, (2.31)where we make the modi�cation whereby we use radially dependent quantities ratherthan mean values for the magnetic �eld components. We non-dimensionalise Eqs. (2.30)and (2.31), and rewrite them using the no-z approximation and take B0 = Beq
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. (2.32)We have used generic cases for much of our initial work, particularly in the case of�ows. Here we present some physical �ow models for the enrichment of our model. Wediscuss both vertical out�ows and radial in�ows.2.3 Physical models for vertical and radial �ows2.3.1 A physical model for UzWe consider the assumption made in Sur et al. (2007) that material can be advectedvertically from the galactic disc, and we adopt the mechanism of supernova explosionsto facilitate this. We also consider a model of fountain �ow of Shukurov et al. (2006) todescribe the return of some of the magnetic material to the disc; and the e�ects of thison the dynamo. 24



Chapter 2. Derivation of the model for a galactic dynamoWe employ a model for vertical out�ow developed by Shu et al. (2005), based onmodels of the ISM and supernovae evolution (McKee & Ostriker, 1977; Efstathiou, 2000)in which such advection is analytically postulated in terms of a wind. The model describeshow such phenomena are related to observables such as gas density, star formation rateand structure within the galactic disc.We do not follow from the beginning the model of Shu et al. (2005), as it has beenshown that in some spiral galaxies (including our main study target, M31), the connectionbetween the gas density in the disc and the star formation rate can be non-trivial andinconsistent (Kennicutt, 1989; Tabatabaei & Berkhuijsen, 2010). We hence begin fromthe star formation rate, which is an observable quantity.We make the assumption that the star forming gas in the galaxy exists in the formof cold gas clouds surrounded by a warm ISM (McKee & Ostriker, 1977). The cold gaspopulates a certain fraction of the disc, given as a ratio of the cold gas density to themean gas density, the cold gas volume �lling factor, fc.The star formation rate volume density is
ρ̇∗ = µ̇∗/2hCO, (2.33)with hCO, the scale height of the molecular hydrogen gas, where star formation takesplace, and µ̇∗ the star formation rate surface density. From this we can infer a supernovaexplosion rate (Efstathiou, 2000)

S−13 = 1013
ρ̇∗
Mps

yr−1pc−3, (2.34)where Mps is the mass of star formation required for one supernova explosion, taken tobe 125M� (Shu et al., 2005).An expanding supernova explosion evaporates the surrounding ISM, and moves thelocal warm gas in the system. We adopt the evaporation parameter (a measure of the ef-�ciency of a potential supernova explosion to evaporate the surrounding ISM) normalisedto the value close to the solar neighbourhood (Efstathiou, 2000; Shu et al., 2005),
fΣ = 21.5

(

fc
e−1

)−1
( γ

2.5

)

(

φk

0.01

)−1( al
pc

)2

,which incorporates the �lling factor of the cold gas, fc (we assume to be constant (Mc-Kee & Ostriker, 1977)), and the ratio of the supernova explosion wave velocity to theisothermal sound speed of the hot gas, γ, as used in Shu et al. (2005), φk is the e�ciency25



Chapter 2. Derivation of the model for a galactic dynamoof conduction, of the order 0.1, and al is the lower limit of cloud radius. The hot cavitieswhich result from the expansion of the supernovae remnants closely resemble bubbles.Should the kinetic energy in these bubbles be great enough, they can push through theISM in bulk, and the sum of these events can be classi�ed as an out�ow, wind or fountain.The hot phase temperature of the supernova explosion can be written as
T = 6.6× 105K

(

S−13E51
fΣ
γ

)0.29

, (2.35)with E51, the energy released by a supernova explosion. The isothermal sound speed ofthe moving gas can be calculated using Ui = 37T
1/2
5 km s−1 (Efstathiou, 2000), where

T5 is the hot phase temperature measured in units of 105K, which, when consideringconservation of speci�c enthalpy, gives a terminal wind speed Uwind =
√
2.5Ui (Shuet al., 2005), which can be rewritten using Eq. (2.35)

Uwind = 5.18 × 103
(

µ̇∗

hCO

)0.15 (fΣ
γ

)0.15

km s−1. (2.36)This wind model accounts for large scale vertical motions within the disc, being of theorder of several hundred km s−1. On its own this model would quickly remove magneticmaterial from the disc, on timescales considerably smaller than the age of the galaxy. Amodi�cation to the mechanism is required to explain what happens next.We adopt a model suggested in Section 2 of Shukurov et al. (2006), whereby the hotexpanding gas from the supernova is travelling at these high velocities. The rising gascrosses the disc-halo boundary, and cools. Once it has lost enough heat it contracts andloses the kinetic energy which drove it upwards. It falls back to the disc in the form of thesmall clouds we had at the beginning of the model. This mechanism is labelled fountain�ow. The return of some of the magnetic material to the disc prevents the dynamo frombeing subcritical in its evolution, and allows the magnetic �eld to grow.This mass weighted velocity is de�ned via
Uz = fhUwind

ρh
ρ
, (2.37)with fh, the volume �lling factor of the hot gas, typically of the order 0.2 at the galacticmidplane (Korpi et al., 1999), ρh ' 1.7 × 10−27g cm−3 and ρ ' 1.7 × 10−25g cm−3, themean hot and interstellar gas densities respectively. With this taken into account, we

26



Chapter 2. Derivation of the model for a galactic dynamocan de�ne our out�ow velocity
Uz = 10km s−1

(

µ̇∗

hCO

)0.15 (fΣ
γ

)0.15

. (2.38)We require a mass weighting because not all of the magnetic material is removed fromthe disc; most is considerably more dense. Our out�ow model removes the hot ionisedcomponent, which is carried by the blast of the supernova. The ratio of the densitiesde�nes how much of the �eld is connected to the hot gas.With fΣ/γ being made up of a number of generalised constants (McKee & Ostriker,1977; Shu et al., 2005), we are left with a rather elegant expression for the out�ow velocityin terms of only the star formation rate density and the molecular hydrogen scale height.It is surprising yet encouraging that we can end up with such a simple seeming solutionfollowing a considerable amount of working with a number of astrophysical quantities.2.3.2 Interpretation of the vertical out�ow modelOne of the interesting and important outcomes from the testing of the model was thevariation in pitch angle with the alteration of RUz . As shown in Fig. 4.11 (panel c), asthe value of RUz is increased, the magnitude of the magnetic pitch angle also increases,in what would appear by eye to be a relatively linear fashion.This can be explained by analysing the dynamo equations in the steady state. Wereduce the mean �eld dynamo equations (Eqs. 2.20 and 2.21) by removing the radialderivative terms, setting Uz (r) = 1, h (r) = 1, G = 1 and by neglecting radial di�usionin the steady state
0 = −RααBφ −Br −RUzBr, (2.39)

0 = RααBr −Bφ −RUzBφ +RωBr. (2.40)It is clear that the terms involving the out�ow are of the same form in each equation, sowe can take our analysis further to investigate
Br

Bφ
= − Rαα

1 +RUz

≡ − 1 +RUz

Rα +Rω
, (2.41)where the middle term is the result for Eq. 2.39, and the right hand side is the result forEq. 2.40. It is worth noting that it does not matter whether we assume α-quenching ora dynamical α, the outcome is the same.If RUz is increased, the out�ow removes more of the magnetic material from the disc,and hence a greater source of Br is required. More of the azimuthal component, Bφ is27



Chapter 2. Derivation of the model for a galactic dynamotherefore comverted to radial magnetic �eld, and as a result, Br/Bφ increases.If we now take α to be constant in the steady state, we can rearrange Eq. 2.41 tosolve for Rα, and �nd a quadratic relation
R2

α +RωRα − (1 +RUz)
2 = 0, (2.42)which has the solutions

Rα = −1

2
Rω ± 1

2

√

R2
ω + 4 (1 +RUz)

2. (2.43)Then, upon substituting this back into Eq. (2.41), we obtain the relation
Br

Bφ
= −

Rω +

√

R2
ω + 4 (1 +RUz)

2

2 (1 +RUz)
, (2.44)leading to what we observe in Fig. 2.1. We have taken the positive square root in Eq.(2.43) as the negative solution gives physically unrealistic values signi�cantly deviatedfrom the model outputs.
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Figure 2.1: An analytical representation of the ratiobetween radial and azimuthal magnetic �eld compo-nents with varying RUz
, given by Eq 2.44 (solid line).Green circles show the results for the α-quenchingmodel and red circles show the results for the dy-namical α model.The ratio of magnetic �eld components is a�ected less by an increase in the magnitudeof the out�ow when using the dynamical α model.28



Chapter 2. Derivation of the model for a galactic dynamo2.3.3 A physical model for UrWe have developed a model for vertical out�ows in Chapter 2, and it is also possible toascertain such a physically derived model for radial in�ows.The model takes its basis from the gas density in the disc, and the star formationrate. We make the assumption that in regions of high star formation, local gas will beused for star forming. Outside these regions, where star formation is low, gas will �owinwards towards the centre of the disc to feed the regions of star formation rate. It couldbe pictured that this is the case in the M31 galaxy, where a region of high gas densityand star formation at r ' 10 kpc from the galactic centre exists. Outside this region, starformation and gas density are both relatively small; analogous with theories of galaxyand star formation from clouds of gas, it could be assumed that at an earlier time, thegas in M31 was much more evenly distributed throughout the disc. Not dissimilar fromtheories of density �uctuations in the cosmic microwave background being connectedwith galaxy formation, density �uctuations could have led to the ring of high densityin M31, and the surrounding regions of gas would have fed the higher density region.This de�nes how we are looking at the in�ow here, we are assuming surrounding gaseousregions are feeding regions of star formation.We begin with the continuity equation
∂ρg
∂t

+∇ ·
(

ρgU
)

= −ρ̇∗, (2.45)where ρg is the volume gas density and ρ̇∗ is the volume star formation rate density.We make the assumption that mass is conserved, so ∂ρg/∂t = 0. Eq. 2.45 can thus berewritten
1

r

∂

∂r
(rρgUr) = −ρ̇∗, (2.46)when we make the assumption that we are only solving for Ur, and in our axisymmetricthin disc approximation, the other two terms vanish. Solving for Ur, we obtain

Ur =
1

rρg

∫ r

0

−r′ρ̇∗
(

r′
)

dr′. (2.47)���
29



Chapter 3Veri�cation and application of thedynamo modelBefore we begin discussing the galaxies we wish to study, we brie�y look at a numberof generic and simple observationally constrained models which have been previouslystudied. This is useful for two reasons: in order to verify the code we shall use later, andin order to develop some understanding of how di�erent components of the �ow a�ectthe dynamo generated magnetic �eld. We begin with a paper by Moss et al. (2000),looking at the role of radial velocities. We then consider the role of out�ows from thedisc, that were included in the generic galaxy model of Sur et al. (2007), and �nally adynamo model for the Andromeda galaxy M31 developed by Moss et al. (1998).The codeThroughout these studies, we will be using our own code to solve the equations. We runa relatively simple third order Runge-Kutta time stepping loop to advance the modelin time, and use second order forward �nite di�erence methods to resolve derivatives inspatial dimensions. The code is written in Python. This method has proven very usefulfor using a lot of observational data easily, and collating a lot of results from single runsimulations.3.1 �Accretion and galactic dynamos�: Moss et al. (2000)In this study the evolution of a simple αΩ dynamo was tested, with and without α-quenching, for a range of radial �ows. The aim was to explore whether radial �ows wouldsuppress or enhance mean-�eld dynamo action in thin discs, following a suggestion in30



Chapter 3. Veri�cation and application of the dynamo model
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Figure 3.1: Left panel : Angular velocity calculated using the Brandt law, Eq. (3.3), with
Ω0 = 30 kms−1kpc−1, and rω = 0.2R0. Right panel : Rotation curve for the Brandt rotation lawcalculated via Uφ = rΩ (r).Chiba & Lesch (1994), that an in�ow would enhance the mean magnetic �eld of a barredgalaxy. The paper by Moss et al. (2000), as we shall see, dispels such a hypothesis, byshowing that the magnetic �eld would be suppressed with the inclusion of in�ows.The dimensionless equations solved were a version of our Eqs. (2.20) and (2.21)

∂Br

∂t
= −λRUr

Ur

r

∂

∂r
(rBr)−RααBφ −Br + λ2 ∂

∂r

[

1

r

∂

∂r
(rBr)

]

, (3.1)
∂Bφ

∂t
= −λRUr

∂

∂r
(UrBφ) +RωrBr

∂Ω

∂r
−Bφ + λ2 ∂

∂r

[

1

r

∂

∂r
(rBφ)

]

, (3.2)with the exception that in this model, there is no �aring of the disc, i.e. h (r) = h0.This model di�ers considerably from the generalised dynamo system introduced in theprevious chapter. Along with the �attening of the gaseuos disc, we consider a systemwithout vertical out�ows, and we consider α to be constant with respect to radius. Wealso consider the αΩ dynamo whereby the term involving α in the expression for theazimuthal magnetic �eld component is removed (the dynamo model in Chapter 2 wasthe α2Ω dynamo).Moss et al. (2000) used the dimensional Brandt rotation law
Ω (r) =

Ω0
[

1 + (r/rω)
2
]1/2

, (3.3)which is a commonly used generic description for the rotation of galactic discs. It31



Chapter 3. Veri�cation and application of the dynamo modeldescribes the angular velocity of the disc, Ω (r), allowing for the �attening of the rotationcurve, Uφ, in the outer regions of the disc, where rω determines the radius at which Uφ�attens (Fig. 3.1).Using the values of Moss et al. (2000) of h = 500pc, R0 = 10 kpc, Ω0 = 30km s−1kpc−1,
α0 = 0.65 km s−1 and ηt = 1.0× 1026cm2s−1, we obtain an associated di�usive timescaleof t0 = 7.5 × 108 yr, and dimensionless values of λ = 0.05, Rα = 1.0, and Rω = 10.0,which can be considered typical values for galactic discs.The linear growth rate of the magnetic �eld is given by

Γ =
d ln |B|

dt
,where |B| =

√

B2
r +B2

φ and Br and Bφ are averages over all radii. The growth ratedescribes how the magnetic �eld evolves over time.The boundary conditions adopted by Moss et al. (2000) at the inner boundary are
Br = Bφ = 0 when the inner boundary is at rmin = 0 (we shall call this type a `zero'boundary condition), and ∂Br/∂r = ∂Bφ/∂r = 0 (we shall call this type a `�at' boundarycondition), when rmin 6= 0. We apply �at boundary conditions throughout at the outerradius. Here, in addition to reproducing the results of Moss et al. (2000), we shallinvestigate the e�ect that changing the inner boundary condition can have on the results.Fig. 3.2 shows the results of this �rst test. We observe magnetic �eld growth at theexpected growth rate of 0.8 (Moss et al., 2000), for both sets of boundary conditions,with the run using �at boundary conditions taking slightly longer to reach that rate. Wealso notice very similar magnetic pitch angles, p, with the exception of a slight openingof the angle in the inner regions of the disc for the �at boundary conditions, where the�eld pro�les di�er, depending on the type of boundary condition.The locality of the �eld growth is of interest as it is related to the local dynamonumber, which is not constant. We calculate the local dynamo number for this model

D (r) = RαRωr
∂Ω

∂r
, (3.4)and see in Fig. 3.3, that the magnitude of the dynamo number is largest around r/R0 =

0.3. This can be explained by the high value of ∂Ω/∂r at this radius, as is apparent inFig. 3.1.So, we have successfully reproduced the expected growth rate of 0.8 in order tovalidate our code, and got a small insight into some other aspects of the dynamo model,namely, how the inner boundary condition can alter the magnetic pitch angle and the32



Chapter 3. Veri�cation and application of the dynamo model
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Figure 3.2: Upper left panel : Radial and azimuthal magnetic �eld components, with no in�ow,i.e. RUr
= 0. Upper right panel : The pitch angle of the magnetic �eld, with RUr

= 0. Lowerpanel : Growth rate of the magnetic �eld with RUr
= 0. The dash-dot line represents the Γ = 0.8growth rate found by Moss et al. (2000), using zero boundary conditions. In all panels, zero(solid lines) and �at (dashed lines) boundary conditions are used. Time is measured in units of
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Chapter 3. Veri�cation and application of the dynamo model
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Figure 3.3: Local dynamo number, calculated usingEq. (3.4). Note its negative magnitude as a result ofthe gradient of Ω (r) always being negative.growth rate. We also see that the �eld growth can be strongly localised due to variationsin the local dynamo number, even for this idealised (smooth) galaxy model.3.1.1 The e�ect of an in�owThe next step we take in advancing the model is to include a small radial in�ow, super-imposed on the stronger galactic rotation.We introduce the radial velocity component
Ur = −0.05

r
exp

(

r

re

)

, (3.5)where re is a term of order unity used to enhance or suppress the exponential.Here, we take slightly more realistic values for the parameters, and choose Rα = 1.0,
Rω = 20.0 and λ = 1/30, which are closer to parameters for a galaxy such as theAndromeda Nebula1.Firstly, we set RUr = 0, and show the results in Fig. 3.4.The magnetic �eld pro�le in this case, in contrast to Fig. 3.2, is more stronglyconcentrated around r/R0 = 0.3, and the magnitude of the azimuthal magnetic �eld islarger in proportion to the radial component than it was in the setup of Fig. 3.2. Thisa�ects the pitch angle, reducing its magnitude by about 7◦.1Note that there is a small error in Moss et al. (2000), where re = 1/3 is speci�ed but re = 3 is used,and tabulated results refer to Rω = 10, whereas the text to Rω = 2034



Chapter 3. Veri�cation and application of the dynamo model
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Figure 3.4: Upper left panel : Radial and azimuthal magnetic �eld components, with Rω = 20and RUr
= 0. Upper right panel : The pitch angle of the magnetic �eld, with Rω = 20 and

RUr
= 0. Lower panel : Growth rate of the magnetic �eld, with Rω and RUr

= 0. The dash-dotline represents the original Γ = 0.8 growth rate quoted in Moss et al. (2000). In all panels �atboundary conditions are shown as solid lines and zero boundaries using dashed lines.
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Chapter 3. Veri�cation and application of the dynamo model
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Figure 3.5: Upper left panel : Radial and azimuthal magnetic �eld components, with Rω = 20and RUr
= 4. Upper right panel : The pitch angle of the magnetic �eld, with Rω = 20 and

RUr
= 4. Lower panel : Growth rate of the magnetic �eld, with Rω and RUr

= 4. The dash-dotline represents the original Γ = 0.8 growth rate quoted in Moss et al. (2000). In all panels �atboundary conditions are shown as solid lines and zero boundaries using dashed lines.We obtain a growth rate of Γ = 1.61, just over twice that of the �rst run. We canattribute this to the doubling of Rω, and the reduction of λ which reduces the e�ect ofthe di�usive term in the equations, further enhancing the ability of the magnetic �eld togrow.3.1.2 Switching on the in�owNow we switch on the in�ow. We use the same parameters as we did in Section 3.1.1,and set RUr = 4. The results are shown in Fig. 3.5.The magnetic �eld is now con�ned to a smaller region towards the centre of the disc,and is of considerably smaller magnitude. Physically, including the in�ow has moved the36



Chapter 3. Veri�cation and application of the dynamo modelmagnetic material inwards towards the centre of the disc. These results match those ofMoss et al. (2000). Note we are not reproducing the growth rates from Table 1. of Mosset al. (2000), which used a separate set of values of RU . We also notice a small increasein the pitch angle as a result of switching on the in�ow.3.1.3 α-quenchingWe now introduce α-quenching to the model to investigate the e�ects on the evolutionof the dynamo.We include a model of numerical α-quenching similar to models we have alreadydiscussed
α ∝ 1

1 +B2
,and also reset RUr = 0. Otherwise, the parameters chosen are the same as in Section3.1.2. The results are shown in Fig. 3.6.We obtain very di�erent results with α quenching, in each of the magnetic �eldstrength, magnetic pitch angle and the growth rate. It can be seen that the magnetic�eld is now more evenly distributed throughout the disc.We also observe a large decrease in the magnetic pitch angle throughout the entiredisc, since the azimuthal �eld grows at a quicker rate than the radial component. Asthe �eld grows, the term involving Rα in the equation for the radial �eld decreases inmagnitude, leading to a slower growth rate of Br, and hence smaller pitch angles.The growth rate undergoes the largest change in this regime. In the previous exampleswith the constant α, we observed permanent growth, however, here it is not the case.As we can see from the lower panel of Fig. 3.6, after a period of growth as in the othermodel, the growth rate decreases to zero and never recovers. This is exactly as we expectthe non-linearity of the α- quenching to evolve. The magnetic �eld grows, quenching α,until a steady state is reached, where both B and α have saturated, and no more growthoccurs.3.1.4 In�ow with α-quenchingFinally, we switch on the in�ow with RUr = 4, the value we used in Section 3.1.2. Theresults shown in Fig. 3.7 are the same as those shown in Moss et al. (2000).Again, as in Section 3.1.2, we observe a concentration of the magnetic �eld towardsthe inner regions of the disc in the presence of an in�ow. We also see the decrease in themagnitude of the magnetic �eld components.37
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Figure 3.6: Upper left panel : Radial and azimuthal magnetic �eld components, with RUr
= 0and α-quenching. Upper right panel : The pitch angle of the magnetic �eld, with RUr

= 0 and
α-quenching. Lower panel : Growth rate of the magnetic �eld, with RUr

= 0 and α- quenching.In all panels �at boundary conditions are shown as solid lines and zero boundaries using dashedlines.
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Chapter 3. Veri�cation and application of the dynamo model
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Figure 3.7: Left panel : Radial and azimuthal magnetic �eld components, with RUr
= 4 and

α-quenching. Right panel : The pitch angle of the magnetic �eld, with RUr
= 4 and α-quenching.Lower panel : Growth rate of the magnetic �eld, with RUr

= 4 and α- quenching. In all panels�at boundary conditions are shown as solid lines and zero boundaries using dashed lines.
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Chapter 3. Veri�cation and application of the dynamo modelThe magnetic pitch angle has a very di�erent pro�le in this example. Outside theinner region, the magnetic �eld does not grow, and hence the α-e�ect cannot be quenched,and as a result, the pitch angle takes similar values to that of the earlier example wherethere was no α-quenching and no in�ow.We have now completed our reproduction of this work, and have gained a good insightinto how the model works mathematically. We have veri�ed our code, and shown it towork for a generic model with a number of parameter changes and modi�cations. Wehave seen that boundary conditions have some e�ect on the growth rate of the magnetic�eld, and the pitch angle, although this is strongly localised to the boundary regionsand does not propagate through the rest of the disc. We have also shown that non-azimuthal �ows a�ect the magnetic pitch angle, an interesting result which will becomemore important shortly.3.2 �Galactic dynamos supported by magnetic helicity �uxes�:Sur et al. (2007)Now we follow the work of Sur et al. (2007), where magnetic helicity advection was usedto model the evolution of the α-e�ect. Again, we shall reproduce their main results, inorder to validate our code, but we will also critically discuss some of the results in orderto gain useful insight for the interpretation of our own model in Chapters 4 to 7.In contrast to the last section, where we considered a radial in�ow, here the modelconcerns vertical advection out of the galactic disc. This model is again treated ratherdi�erently to the previous two models. We do not vary quantities with radius here,choosing to only focus on the generalised evolution of the terms. We take the kineticcomponent of the α-e�ect, αk to be constant and equal to 1, and evolve the magneticcomponent, αm in time. As we are not varying quantities with radius, disc �aring is notconsidered, and here we are only considering vertical �ows, not radial ones.We assume a constant vertical velocity, Uz pro�le which does not vary with radius.With this taken into account we can rewrite Eqs. (2.20), (2.21) and (2.32) for the mean-�eld dynamo and magnetic component of the α-e�ect
∂Br

∂t
= − 2

π
Rα (1 + αm)Bφ −

(

RUz +
π2

4

)

Br, (3.6)
∂Bφ

∂t
= RωBr −

(

RUz +
π2

4

)

Bφ, (3.7)40
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∂αm

∂t
= −RUzαm −C

[

(1 + αm)
(

B
2

r +B
2

φ

)

+(1 + αm)
1/2 3 (−πD)1/2

8Rα
BrBφ +

αm

Rm

]

, (3.8)where C = 2 (h0/l0)
2, and the terms involving RUz in this case are those which include thevertical component of velocity, Uz, instead of those which included the radial componentin the previous section.Another modi�cation to this model regards the replacement of z- derivatives withratios to derive the no-z equations. In Eqs. (3.6)-(3.8), instead of replacing the secondvertical derivatives with −1/h2, we use −π2/4h2, and replace α with (2/π)α. This wasdone following work done by Phillips (2001), in which it was shown that these coe�cientsenhanced the accuracy of no-z dynamo models, bringing results closer to asymptoticresults for equivalent models. We shall discuss this result further in Section 3.2.1.The initial conditions are

Br = 0, Bφ = 10−3, αm = −10−3.The dynamo number, D = RαRω is constant in this model, and the critical dynamonumber, Dcr is
Dcr = −π

2

(

RUz +
π2

4

)2

, (3.9)obtained from Eqs. (3.6) and (3.7) in their steady states, with αm = 0. For RUz = 0,the critical dynamo number is D = −9.6. The parameter values are Rα = 1, Rm = 105,
Rω = −15, and C = 50, as used by Sur et al. (2007). The value of Rω is negative in thismodel because the shear was taken to be of order unity as radial derivatives were notconsidered.Figure 3.8 demonstrates perfect agreement with Sur et al. (2007), and allows us togain more insight into what happens in the model. As discussed before, we see thatfor either zero or very low values of RUz , the magnetic �eld grows linearly, until αmbecomes of signi�cant magnitude. Then, as a result of the small vertical velocities notbeing able to remove enough small scale magnetic helicity from the disc, −αm increases inmagnitude until the dynamo is subcritical, and the magnetic �eld decays to a minimumvalue, several orders of magnitude less than we might expect from observations. As
α = αk +αm = 1+αm here, if | −αm| grows too large, then α decreases below a criticalvalue, αcrit, whereby below this value, the dynamo number is subcritical.It is only when RUz is increased, that we begin to see enough magnetic helicity being41
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, with B0 = 5µG Right Panel : Evolution of the magnetic component of the α-e�ectas a function of time, for the same model, for the same values of RUz

in the left panel, with
α0 = 1kms−1. Time is measured in di�usion times, td ' 107yr.removed from the disc to allow the magnetic �eld to saturate at higher levels, and we�nd an optimum value of RUz = 0.3, as in Sur et al. (2007). Above this value, themagnetic �eld is removed more rapidly, and the �eld saturates at a lower magnitude.As we increase RUz further, in this case only as high as 0.8, we see that even the lineargrowth phase of the �eld is prohibited, and it simply decays.An important result is the level of saturation of the magnetic �eld. Fig 3.8 showsthe magnetic �eld saturating at roughly 1/10 of the equipartition �eld strength, ratherthan at the equipartition level as observations of some galaxies suggest. This was aresult noted in Sur et al. (2007), and earlier obtained in Shukurov et al. (2006). In Suret al. (2007), it was noted that another �ux of magnetic helicity, the Vishniac-Cho �ux(Vishniac & Cho, 2001) was expected to be present alongside the advective �ux, andthis would lead to higher saturation levels, of the order Beq. We do not include theVishniac-Cho �ux in our model, so in future sections involving the dynamical α, we willexpect to see saturation of the magnetic �eld at levels much lower than equipartition.The possibility of including the Vishniac-Cho �ux would be a good next step in theinvestigation of these models; however due to its increased level of complexity we do notinclude it in the remainder of this study. In the cases where we �nd much lower thanequipartition saturation, we will normalise our results appropriately in order to comparewith observations. This low level of saturation could also have its roots in terms such asthe approximation for J ·B, where coe�cients of magnitude 2 may be missing. Thesefactors of two arise when considering how the problem is tackled. Various groups use42
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Rω λ rω Γ (1/h2) Γ (π2/4h2)5 0.025 0.2 0.32 -1.145 0.05 0.2 0.26 -1.21410 0.05 0.2 0.81 -0.66310 0.01 0.2 0.93 -0.53610 0.10 0.2 0.63 -0.83810 0.05 0.1 0.64 -0.83010 0.05 0.4 0.88 -0.58725 0.05 0.2 1.91 0.441Table 3.1: Reproduction of the growth rates of Phillips (2001), for the linear evolution of themean �eld equations, in their original form (column 4), and with the replacement of the secondderivatives in z with π2/4h2 (column 5). The dimensional time scaling used in the evolutionofthe model was t0 = h2

0
/ηt.slightly di�erent methods for judging the α-e�ect, and from this there are a number ofdi�erent outcomes, and factors of 2 between groups occasionally surface.3.2.1 Modi�cations to the no-z approximation for galactic dynamosWe mentioned in the previous section a set of coe�cients introduced by Phillips (2001)in order to increase the accuracy of no-z dynamo models. In this section we discuss thisfurther by again, using a version of Eqns. (2.20) and (2.21) with a couple of simpli�ca-tions.Again, we solve the simple no-z mean �eld equations with RUr,z = 0 and h (r) = 1

∂Br

∂t
= −RααBφ −Br + λ2

(
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∂r

[
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∂
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(rBr)
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, (3.10)
∂Bφ
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= RωrBr
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∂r
−Bφ + λ2

(

∂
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[

1

r

∂

∂r
(rBφ)

])

, (3.11)using the Brandt rotation curve de�ned by Eq. (3.3).We �rstly set Rα = 1, and vary Rω and λ, using constant α (no numerical quenching),for the no-z model without and with the coe�cient of π2/4 preceding the second z-derivatives, and show the linear growth rates in columns 4 and 5 of Table 3.1. We �nda perfect agreement with the results in Phillips (2001).However, a notable di�erence between the two models not previously discussed is theability of the dynamo to operate. We see in the model without the π2/4 coe�cients, thatfor a large range of parameter choices, the magnetic �eld grows, whereas in the model43



Chapter 3. Veri�cation and application of the dynamo model
Rα αω αω (π2/4) α2ω α2ω (π2/4)0.00 o o o o0.25 + o + o0.50 + o + o0.75 + o + o1.00 + o + o1.25 + o + +1.50 + + + +1.75 + + + +2.00 + + + +2.25 + + + +2.50 + + + +2.75 + + + +3.00 + + + +Table 3.2: Demonstration of the values of Rα required for the onset of dynamo action. A�o� represents decaying solutions, and a �+� denotes solutions where either the solutions growcontinuously or remain positive or zero. The columns headed with π2/4 show the results whenthis coe�cient is used to replace ∂2/∂z2with the coe�cient, only high values of Rω permit the growth rate to remain above zero.To put this into context, we now consider the galaxy M31. Based on observed quan-tities, suitable parameters for this model would be Rω ' 19 and λ ' 0.02 (refer toChapter 4 for further discussion on these parameters). We also use the observed M31rotation curve Chemin et al. (2009), and use standard α-quenching. We use Rα ' 0.7,corresponding to a value of α0 = 0.5 km s−1.For the αΩ dynamo as modelled above, and without the π2/4 coe�cient suggested,we obtain a linear growth rate of 1.32. However, with the coe�cient included, we obtain agrowth rate of −0.139, suggesting that the dynamo model would fail for the M31 galaxy.Before we disregard the coe�cients based on a single run, we must conduct furtherinvestigations to assess the issue. In order to address this point, we perform a set ofruns for both the αΩ, and α2Ω models. Having done a number of runs with varying Rωand λ, we now �x these to the values we have introduced for the M31 galaxy. Now, theparameter we vary will be Rα, in order to see when the onset of dynamo action occurs.We show the results of this test in Table. 3.2, and Fig. 3.9.These results give a much greater insight into the working of both models. We see thatboth αΩ and α2Ω dynamos have very similar thresholds of Rα for the onset of dynamoaction. Our problem arises when we include the π2/4 coe�cient in the equations. Forboth models, it increases the threshold to Rα = 1.25 and Rα = 1.0 for the αΩ and44
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Figure 3.9: Left panel : Normalised radial and azimuthal magnetic �eld components (solid anddashed lines respectively), for the model using the Brandt rotation curve, and Rα = 1.0. Rightpanel : Normalised radial and azimuthal magnetic �eld components (solid and dashed lines re-spectively), for the model using the M31 rotation curve, and Rα = 0.5.
α2Ω models respectively. These values correspond to values of α0 ≥ 0.81 km s−1 and
α0 ≥ 0.65 km s−1 respectively. This is restrictive in that for the model we will studywhen dealing with real galaxies, we shall be using a value of α0 = 0.5 km s−1, below thethreshold we observe here.For this reason, we choose not to include the modi�ed coe�cients from this pointonwards. This gives us more �exibility in choosing what we already understand to be aloosely de�ned quantity.We must also note that there is a small typing error in the paper by Phillips (2001).In the �nal set of updated dynamo equations (not numbered), the π2/4 coe�cients areplaced wrongly on the terms involving λ, instead of those which involved the secondderivatives in z.3.3 The Magnetic �eld of M313.3.1 �The nature of the magnetic belt in M31�: Moss et al. (1998)Finally in this chapter we look at a dynamo model for the galaxy M31 by Moss et al.(1998). This work focussed on the reproduction of the observed concentration of regularmagnetic �eld in a ring at a radius of 10 kpc (Pooley, 1969; Berkhuijsen, 1977; Berkhuijsenet al., 1983; Beck, 1982; Beck & Graeve, 1982; Beck et al., 1980, 1989, 1996, 1998), usingthe observed rotation curve and disc scale height of Braun (1991), and the H i and COgas density observations from Cram et al. (1980) and Dame et al. (1993) respectively, all45



Chapter 3. Veri�cation and application of the dynamo modelshown in Fig. 3.10.Moss et al. (1998) did not use the no-z model for a thin disc dynamo, but used a2-dimensional model involving z as well as r. We wish to see if our no-z model canreproduce the main features of their M31 model, and then to examine how the derivedmagnetic �eld changes as a result of new observational data on the rotation curve andgas density distribution of M31.Firstly, we note the di�erences to the models discussed previously. Now we use a�ared disc
h (r)

1 kpc
=

{

0.2 (1 + r/16 kpc) for r ≤ 16 kpc,

0.4 + 0.016 (r/ kpc− 16) for r > 16 kpc,
(3.12)which was derived by Moss et al. (1998) from observations of the H i disc of M31 (Braun,1991). This model is not that of an exponential disc, but rather two linear �ts to theobservational data. There are two �ts because outside 16 kpc the disc appears, from thelimited number of data points available, to increase in scale height more rapidly thanwithin this radius. The disc aspect ratio for M31 is λ ' 0.02 at R = 25kpc, and λ = 0.03at R = 10kpc, so the degree of �aring is small.This model uses numerical α-quenching, and α is derived from the rotation of thedisc and the turbulent length scale

α =
l2Ω

h

1

1 +B2/B2
eq

, (3.13)with the reference equipartition �eld strength
Beq =

(

4πρv2
)1/2

. (3.14)The local dynamo number can now be calculated
D (r) = RαRωr

∂Ω

∂r
Ω (r)h3 (r) , (3.15)including the disc �aring h (r). In dimensionless form, and now that ∂Ω/∂r is notconstant, there is a much stronger shear within the inner regions of the disc, where theangular velocity gradient is large. Taking h0 = 0.5 kpc, the dimensionless pro�le for thescale height lies within the range 0.4 ≤ h (r) ≤ 1.1, resulting in 0.064 ≤ h3 (r) ≤ 1.33,and so reducing the magnitude of the local dynamo number signi�cantly within the innerregions, as in Table 3.3. This means that the dynamo is not dominated by the shear46
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Figure 3.10: Upper left panel : Angular velocity as a function of radius, taken from Fig. 2 in Mosset al. (1998), a �t to the observations of Braun (1991). Upper right panel : Azimuthal velocityas a function of radius, derived from the angular velocity, using Uφ = rΩ (r). Lower left panel :Local dynamo number, as calculated from Eq. (3.15), corresponding with the solid curve in Fig.2 of Moss et al. (1998). Lower right panel : Gas surface density as a function of radius, convertedfrom Fig. 1 of Moss et al. (1998), who derived the pro�le from the H i density observations ofCram et al. (1980), the CO density observations of Dame et al. (1993), and the H i scale heightobservations of Braun (1991).
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Chapter 3. Veri�cation and application of the dynamo modelRadius [kpc] D (r)3 -3910 -718 -5Table 3.3: Values of the local dynamo number calculated from Eq. (3.15).
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Figure 3.11: Left panel : Total steady state magnetic �eld strength obtained from the model ofMoss et al. (1998) for M31 with no vertical out�ow. Right panel : Local pitch angle calculatedfrom the same model. Grey boxes denote observations from Fletcher et al. (2004).within the inner few kpc.The initial conditions used in the original work included magnetic �eld reversals inthe disc. Here, we retain the initial conditions we used in Section 3.2, and note thatthis change in seed �eld does not have an e�ect on the radial pro�les of �eld strengthand pitch angle that we shall discuss. We use zero conditions at the inner boundary, i.e.
Br (r = 0) = Bφ (r = 0) = 0.Fig. 3.11 shows the results of this model for M31, using Rα = 0.771 and Rω = 19.284(which correspond to values of α0 = 0.5 km s−1, Ω0 = 25km s−1 kpc−1 and ηt = 1.0 ×
1026cm2s−1 respectively). In contrast to the generic models from Sections 3.1 and 3.2,we now obtain a much more featured magnetic �eld pro�le, with magnitudes in theorder of the observational data. As found by Moss et al. (1998), there is a peak in themagnetic �eld strength in the range 8 ≤ r ≤ 12 kpc, which is observed in the disc ofM31, which corresponds with the ring of high gas density in M31. The grey boxes in Fig.3.11 show observations of the regular magnetic �eld and pitch angle with correspondinguncertainties from Fletcher et al. (2004). The boxes show a much less prominent peakin the magnetic �eld strength, so it is possible that there is some missing element of the48



Chapter 3. Veri�cation and application of the dynamo modelmodel.This point becomes clearer when examining the magnetic pitch angles shown in Fig.3.11 (right panel). The pitch angles are in very good agreement with the 2D model ofMoss et al. (1998), demonstrating the ability of the no-z approximation to accuratelymodel a thin disc. However, the model pitch angles are generally 5 − 10◦ smaller thanobserved.3.3.2 New gas density pro�leSince 1998, new observations of the gas density pro�le of M31 have been made. It isimportant to see if any di�erences in the pro�les change the results of this model.We include the H i surface density pro�le from Chemin et al. (2009), and combinewith the CO pro�le taken from Nieten et al. (2006). To combine the pro�les, we convertthe CO emission intensity pro�le from Fig 9. of Nieten et al. (2006), using XCO = 1.9×
1020 mol cm−2

(

K kms−1
)−1, which can be written asΣCO = 3.04ICO M�pc

−2
(

K kms−1
)−1,converting the CO surface density into an atomic hydrogen density equivalent, so we cancombine with the H i data. There are di�erences to the total gas surface density presentin the data Moss et al. (1998) used (Fig. 3.10, lower right panel). The peak in the region

8 ≤ r ≤ 12 kpc is wider in the observations of Chemin et al. (2009), and the maximum iscloser to r ' 12 kpc than the r ' 10 kpc peak present in the previous observations. It isalso a higher peak, about 3M�pc
−2 greater than the previous data. There is also moregas in the region 0 ≤ r ≤ 7 kpc in the new observations.
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Figure 3.12: Un- smoothed gas surface density, acombination of CO and H i, taken from Nieten et al.(2006) and Chemin et al. (2009) respectively.49
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Figure 3.13: Left panel : Local magnetic �eld strength as calculated using the new combineddensity pro�le of H i of Chemin et al. (2009) and CO of Nieten et al. (2006) from Fig. 3.12.Right panel : Local pitch angle calculated from the model with the new density pro�le. Dashedlines denote the results using the gas density pro�le of Moss et al. (1998). Grey boxes denoteobservations with corresponding uncertainties from Fletcher et al. (2004).We can deduce what e�ect this new pro�le will have on the dynamo. The densityenters the model as part of the equipartition �eld strength, Beq, which in turn is partof the α- quenching nonlinearity. With a higher equipartition strength, we would expectto see the magnetic �eld reach higher values before it saturates, and as we now have aconsiderably higher density in the inner regions of the disc, we would expect that therewill be signi�cant magnetic �eld in this area.Fig. 3.13 shows what is expected, with larger magnetic �eld strengths in the innerregions of the disc, a large contrast to the results in Fig. 3.11 (left panel). The pitchangle is not a�ected by the change of density pro�le.3.3.3 New rotation curveWe use the recent rotation curve of Chemin et al. (2009) to gauge the sensitivity of themodel to changes in Uφ (r). There are small di�erences in the local dynamo number tothe curve using the original rotation curve in Fig. 3.14. We use a smoothed versionof the rotation curve given in Chemin et al. (2009), and will be discussed in Chapter4. This smoothed curve gives a much less featured local dynamo number, and a widerpeak in the inner regions of the disc. More of the local dynamo number is smaller inmagnitude than the estimated critical dynamo number of Dcr = −9.6 of the model ofSur et al. (2007); however without the derivative coe�cients used in that paper, thecritical dynamo number would be Dcr = −1, allowing the magnetic �eld to grow mostly50
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Figure 3.15: Left panel : Local magnetic �eld strength as calculated using the new rotation curveof Chemin et al. (2009). Right panel : Local pitch angle calculated using the new rotation curve.Dashed lines denote the results using the rotation curve of Braun (1991). Grey boxes denoteobservations with corresponding uncertainties from Fletcher et al. (2004).
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Figure 3.16: Left panel : Local total magnetic �eld strength as calculated using the α- quenchingmodel of Moss et al. (1998). Values of RUz
are 0.0, 1.0 and 1.5 (solid, dashed and dottedrespectively). Right panel : Local pitch angle calculated from the model. Values of RUz

are 0.0,1.0 and 1.5 (solid, dashed and dotted respectively). Grey boxes denote observations (with errorestimates) from Fletcher et al. (2004).
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Chapter 3. Veri�cation and application of the dynamo modelent and signi�cant. For RUz = 0 the original result of Fig. 3.11 is reproduced, and whenthe magnitude of the out�ow is increased, the magnitude of the steady state magnetic�eld is decreased. As this is a constant out�ow throughout the disc, the magnetic �eldis reduced by the same factor in all regions of the disc. We would expect this not to bethe case should the out�ow vary with position, with lower local values of out�ow leadingto lower reductions in the steady state �eld. We also would expect higher values of RUzto lead to the magnetic �eld decaying quicker than being ampli�ed, therefore B → 0(Shukurov et al., 2006; Sur et al., 2007).Perhaps surprisingly, the pitch angle is also altered by the inclusion of the out�ow.
RUz = 1.0 increases the pitch angle by a factor of nearly 2; large enough to bring themodel results into much better agreement with the observations. This is an importantresult.The nature of the magnetic belt in M31: SummaryIn this section we have demonstrated the ability of the no-z model to reproduce theresults of the 2D model of Moss et al. (2000) with high accuracy, and demonstratedthe sensitivity of the model to the introduction of di�erent sets of observational data.Changes in the rotation curve can change the magnetic �eld pro�le and the magneticpitch angle.Changing the gas density a�ects the structure and magnitude of the magnetic �eldand has little or no e�ect on the pitch angle. Alterations in the rotation velocity lead toboth changes in the magnetic �eld and the pitch angle.Updating the density and rotation curves to more recent pro�les does not signi�cantlyimprove the comparison with the observed magnetic �eld, in particular the pitch angles.This would suggest that there is something missing from the model.In Chapter 4 we will investigate the e�ects of out�ows on the model, to attempt toimprove the comparison with observational data.���
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Chapter 4The Andromeda GalaxyM31NGC224

Image credit: NASA/JPL-Caltech/UCLA4.1 IntroductionThe Andromeda nebula (M31, NGC224) is the nearest spiral galaxy to the Milky Waygalaxy. It lies at a distance of 780± 40 kpc (Stanek & Garnavich, 1998), and is inclinedat an angle of 74◦ ± 1◦ (Chemin et al., 2009) (where 0◦ would be face on). Even thoughits large inclination presents observers with some di�culty, its proximity means thatit is one of the most observed and studied galaxies. The abundance of observational54



Chapter 4. The Andromeda Galaxy (M31/NGC224)information allows for detailed testing of models such as the one we have developed inChapter 2. We use a physically motivated description of the α-e�ect, with magnetichelicity conservation in the disc alleviated by a galactic out�ow. We will compare thiswith a standard α-quenching model. This is the most physically rich galactic dynamomodel for a speci�c galaxy developed to date.M31 is very well suited for our purposes since all of the important input parametersfor our model, including their variation with galactic radius, are known from observations:the rotation curve (Sofue et al., 1999; Chemin et al., 2009), gas density (Nieten et al.,2006; Chemin et al., 2009) and scale height (Braun, 1991), and star formation rate(Tabatabaei & Berkhuijsen, 2010). In addition the magnetic �eld of M31 has beenstudied extensively using radio polarization observations since these became possible over30 years ago. The properties of the regular magnetic �eld of M31 are better known thanthose of any other spiral galaxy as a result of a comprehensive series of radio observingprogrammes and careful modelling of the full set of radio data.Early maps of the total radio emission from M31 such as the λ11cm survey of Berkhui-jsen & Wielebinski (1974), which trace the combined distribution of cosmic ray electronsand total magnetic �eld, discovered that the emission is concentrated in a bright ringcentered at a radius of r ' 10kpc that is several kpc wide. Subsequent radio polarizationobservations (Beck et al., 1978; Beck, 1982; Beck et al., 1989), among the earliest resolvedpolarization studies of nearby spiral galaxies, showed that this ring hosts a strong regular�eld (with the regular and random �eld components of equal strength in the ring) thatis basically axisymmetric and predominantly azimuthal i.e. that it has a small pitchangle which does not vary much with azimuth. These basic properties of the regular �eldwere con�rmed by Faraday rotation measurements (Berkhuijsen et al., 2003). Fletcheret al. (2004) �tted a parameterized model of regular �eld to all of the available polariza-tion maps, simultaneously taking into account depolarization, which returned the �eldstrength and pitch angle as a function of radius and azimuth. Their results showed thatthe regular �eld can be described by a single axisymmetric azimuthal mode (i.e. m = 0in azimuth) in the radial range 8 − 14kpc, and a predominantly axisymmetric mode,perturbed by a weaker doubly periodic (i.e. m = 2) mode, between 6 and 8kpc. Theregular �eld strength only mildly peaks at r = 10kpc and the magnitude of the pitchangles tend to decrease with increasing radius.This very simple regular magnetic �eld structure is an ideal test for our new dy-namo model as its rotational symmetry means that we need only to retain r and t asour independent variables. Of course in order to study more detailed properties of themagnetic �eld of M31 φ and z dependence will need to be restored. Thus our model55



Chapter 4. The Andromeda Galaxy (M31/NGC224)will be strongly constrained by observable inputs and will generate output parameters,the magnetic pitch angle and strength pro�les, that can be compared directly to theobservationally determined magnetic �eld.Earlier attempts to construct dynamo models for speci�c galaxies, including M31,tended to use only the rotation curve as a unique characteristic of the galaxy (Ruzmaikinet al., 1985; Baryshnikova et al., 1987; Krasheninnikova et al., 1989). In the case of M31this led to the prediction that its regular magnetic �eld would be concentrated in a ring ata radius of r ' 10kpc (Ruzmaikin & Shukurov, 1981); this prediction was then con�rmedby observations (Beck, 1982) and is an early illustration of both the success of the mean�eld galactic dynamo theory and the utility of M31 as an object with which to comparetheory to observation! Although these models could reproduce some of the observedmagnetic features, they all tended to struggle to reproduce the observed magnetic pitchangles, which have long been recognized to be a very sensitive diagnostic of the regular�eld (Ruzmaikin et al., 1988). The model of Moss et al. (1998) for M31, discussed in theprevious Chapter, used the observed rotation curve, gas density and scale height (takinginto account the �ared gaseous disc), but while the concentration of magnetic �eld ina ring centered at 10 kpc radius was reproduced, the magnitude of the pitch angles ofthe �eld were everywhere much smaller than observed: in other words the modelled �eldwas much more azimuthal than the observed �eld. In this Chapter we show that addingan observationally constrained out�ow alleviates this problem in M31, producing a veryclose correspondence between the modelled and observed pitch angles.Application of the out�ow with recent observationsIn Sections 3.3.2 and 3.3.3, we introduced new observations to see how these would a�ectthe results obtained by Moss et al. (1998). We �rst show the results of the calculationsusing the combined gas density pro�le of Chemin et al. (2009) and Nieten et al. (2006) inthe model of Section 3.3.1, with our constant out�ow, and show the results in Fig. 4.2,where, for the �rst time in this study we have taken the total magnetic �eld obtainedfrom the simulation and split it into its radial and azimuthal components, giving a directview of how the magnetic �eld is structured in terms of the coordinate system.Again, with RUz = 0, the original results from Fig. 3.13 are obtained, and the appli-cation of the constant out�ow has a signi�cant e�ect on the magnitude of the magnetic�eld strength, and the magnitude of the magnetic pitch angle. Setting RUz = 1.0 reducesthe magnitude of the steady state azimuthal magnetic �eld pro�le again by a factor ofnearly 2, enough to give a good agreement with the observational values. This increase in56
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(

K kms−1
)−1, where ICO is the intensity of COemission measured in K kms−1, from Nieten et al. (2006), and recent observations byChemin et al. (2009) of the H i surface density, ΣHi, which we introduced in Section3.3.1. We perform a similar smoothing to the one used for the disc scale height. Thiscombination gives the gas surface density shown in Fig. 4.5. We obtained the stellarsurface density, Σ∗ (dashed line in Fig. 4.5) from a chemical evolution model based ongas density given in Marcon-Uchida et al. (2010).
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Figure 4.5: Gas surface density (solid line) calculatedas a combination of the H i observations from Cheminet al. (2009) (green dashed line), and the convertedCO intensity pro�le from Nieten et al. (2006) (reddotted line). The stellar surface density is shown bythe red dashed line (Marcon-Uchida et al., 2010). Thetotal gas surface density is a smoothed version of thecurve in Fig 3.12.An interesting point arising from the new gas density data within the inner 8 kpc ofthe galaxy in the presence of multiple peaks. In previous observations (H i observationsof (Dame et al., 1993)), there is a strong peak at around 10-12kpc, and in the rest of thedisk, the density is much lower. This is not the case in the new data. There are two veryclear peaks in gas density only slightly weaker than that of the main ring at 10 kpc, andit is suggested by Chemin et al. (2009) that these are consistent with ring-like structuresin the inner regions of the disc.The total gas surface density, Σg = ΣHi +ΣCO can be used to calculate the equipar-tition �eld strength using Eq. (3.14), where ρg can calculated via
ρg =

ΣHi
2hHi + ΣCO

2hCO

, (4.1)and we use v = 10kms−1 as an estimate for the turbulent velocity (Ferrière, 2001). Wede�ne ρ0 in terms of a single hydrogen atom per unit volume, ρ0 = 1.67 × 10−24g cm−3.We obtain a value of B0=4.61µG at r = 12kpc, and use this as the reference equipartition�eld strength.
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Chapter 4. The Andromeda Galaxy (M31/NGC224)4.2.3 Rotation curveThe rotation curve derived from observations of M31 has undergone several changes inrecent decades as observational methods and instrumentation have advanced. We discussthe most signi�cant of these di�erences in this section.In the dynamo model used by Moss et al. (1998), discussed in Section 3.3.1, therotation curve used was taken from observations of H i gas by Braun (1991). This rotationcurve, shown in Fig. 4.6 (left panel) has a systematic negative gradient in the slope of
Uφ (r) beyond the inner regions of the disk, out to a galactocentric radius of around
25 kpc.More recent observations of H i by Sofue et al. (1999) and Chemin et al. (2009) showa �atter pro�le in Uφ, as shown in Fig. 4.6 (upper right and middle left panels) (Thevelocity measurements are divided into the two spiral arms of M31; approaching, andreceding; as Chemin et al. (2009), whereas the study of Sofue et al. (1999) did notdi�erentiate between the arms).The uncertainties in the observations, which are of the order 10 km s−1 (Chemin et al.,2009), mean that small scale features in Fig. 4.6 may not be real.The curve obtained in Chemin et al. (2009) is globally in reasonably good agreementwith the curve from Sofue et al. (1999), as shown in Fig. 4.6. We see that the curve ofSofue et al. (1999) is slightly less featured, and does not extend as far out into the disc asin the observations of Chemin et al. (2009). Another notable di�erence is the behaviourof the curve in the inner 3 kpc. As discussed by Chemin et al. (2009), the inner disc ofM31 may be warped, so obtaining accurate rotation velocities from the observations isextremely di�cult. As the observational data on the magnetic �eld is poor in this region,we have a small amount of �exibility in how we handle the information we have.The �rst thing we do with the rotation curve is to reduce the radial range in whichwe are working. Our main concern with respect to M31 is the region of the disk in therange 6�14 kpc. This is where the surface gas density peaks, and is also the region wherewe have reliable information about the regular magnetic �eld. Also, of the observationaldata we are using, only the rotation curve extends to such large radii, with the otherquantities tending to extend to between 20 and 25 kpc: we take R0 = 25kpc as ourmaximum radius. Hence we reduce the working range of the rotation curve to 25 kpc,as shown in Fig. 4.6 (middle right panel). Contrary to the radial in�ow based modelof Moss et al. (2000), we no longer use an inner boundary. We allow the disc to extendinwards to r = 0, but this must be handled carefully numerically.We have chosen to use �at boundary conditions at the central point, which renders61
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Figure 4.6: Upper left panel : The rotation curve of M31 taken from Braun (1991) (see Fig. 3.10).Upper right panel : The averaged rotation velocity of M31 as given by Chemin et al. (2009). Theapproaching spiral arm (dotted line) and the receding spiral arm (dashed line) are averaged. Notethe di�erences in radial axes; the data in the upper right and middle left panels extends to 40 kpc.Middle left panel : Average rotation velocity of Chemin et al. (2009) (solid line), and the rotationcurve of Sofue et al. (1999) (dashdot line). Middle right panel : Rotation curve using solid bodyrotation within 2 kpc, either rotation curve for 2-3 kpc and that of Chemin et al. (2009) outside3 kpc. Lower left panel : Our smoothed rotation curve (solid line) and the rotation curve fromthe middle right panel (dashed line). Lower right panel : Our smoothed rotation curve (solidline) and those of both spiral arms as in the upper right panel. The dashdot line denotes thelocal shear (right axis). 62



Chapter 4. The Andromeda Galaxy (M31/NGC224)the gradient equal to zero at r = 0. We believe this to be the best way of retainingrealism in the results whilst allowing for as natural an evolution of the magnetic �eld aspossible. The �attening of the curve at r = 0 discourages the increase towards in�nitieswhere r is extremely small.In the inner regions of the disk (r < 3 kpc), there is a convenient intersection of therotation curves of Sofue et al. (1999) and Chemin et al. (2009) around r = 3kpc, so itcan be assumed that the observations at that radius are reliable. This is a good pointin the curve in which to �x an e�ective inner boundary, beyond which we will use therotation curve of Chemin et al. (2009).It would appear that the data of Sofue et al. (1999) could be used within 3 kpc,however this causes problems. In the very inner regions, where the curve drops awayvery steeply, ∂Ω/∂r becomes extremely large, and hence also the dynamo number.Given the discrepancies between the various rotation curves at small radii, and theabsence of information about the regular magnetic �eld in the centre of M31, we shall as-sume that the rotation of the disc for r < 2 kpc is that of a solid body. This simply meanstaking the velocity from this point and decreasing it linearly to zero with decreasing r,as shown in Fig. 4.6 (middle right panel).Finally we apply a cubic spline interpolation too make a modest smoothing, andobtain a new curve, which retains the main features of the curve of Chemin et al. (2009)whilst removing a lot of the smaller scale variations that we do not consider to be reliablecomponents of the large-scale rotation of the galaxy. The result is shown in Fig. 4.6 (lowerpanels; red solid line).We now have a smooth pro�le describing the rotational velocity of the galaxy, whichretains the main features of the observations, and combines observations in the innerregions of the galaxy with those from previous studies. Using the observations of theatomic hydrogen disc scale height, h (r), and rotational velocity Uφ = rΩ (r) we are ableto derive the local dynamo number from Eq. (2.19), shown by the solid line in Fig. 4.7,as a direct comparison with the method and result found by Moss et al. (1998).
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Chapter 4. The Andromeda Galaxy (M31/NGC224)values for star formation rate cannot be obtained using the standard Kennicutt- Schmidtlaw. Further investigation beyond the scope of this study is required to discover themechanism by which the properties of the galaxy contribute to the star formation. Itis for these reasons that we developed the out�ow model of Section 2.3.1 from the starformation rate rather than the gas density pro�les.
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Chapter 4. The Andromeda Galaxy (M31/NGC224)
Physical Quantity Mean ValueHot phase temp. 1.1× 106KIsothermal sound speed 121 km s−1Wind velocity 191 km s−1Mass weighted out�ow velocity 0.38 km s−1Table 4.1: Mean values of the physical quantities described in thedevelopment of the wind model, derived from the observations ofstar formation rate, and gaseous disc scale height, through Eqs.(2.35)- (2.38).
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Figure 4.9: Left panel : Mass weighted vertical velocity pro�le as calculated using the wind modeldescribed by Eq. (2.38), for the optimum value of RUz
= 1.5. The red dashed line within 6 kpcdenotes the possible out�ow pro�le if the Hα observations of Tabatabaei & Berkhuijsen (2010)are taken to be representative of star formation. Outside the region of observed star formation(r > 17 kpc), we reduce the magnitude of the out�ow exponentially. Right panel : Radial in�owvelocity pro�le as calculated using the wind model described by Eq. (2.47), based on the reddashed line in the left panel and the solid line beyond r = 6kpc to the end of the observed starforming region at r = 17 kpc. The in�ow velocity pro�le was not used in the dynamo calculations.
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Chapter 4. The Andromeda Galaxy (M31/NGC224)a little under half that of the active region in the region 0 < r < 6 kpc, and reduceexponentially in the region 17 < r < 24.5 kpc.4.3 Results4.3.1 Galactic parametersFor both the α-quenching and dynamical α models we adopt the following parametersfor non-dimensionalisation, characteristic of the observed pro�les. We take h0 = 0.5 kpc,
Ω0 = 25km s−1 kpc−1, and α0 = 0.5 km s−1. We take ηt = 1.0 × 1026cm2s−1, l0 =

0.1 kpc, and use R0 = 24.5 kpc to be the disc radius in which our observations lie. Theseparameters are used to derive the dimensionless parameters Rω = 19, and Rα = 0.8.We consider values of RUz in the range 0 < RUz < 2.5 which corresponds to values of
0.0 < U0 < 1.62 km s−1, in order to calibrate the mass weighted out�ow velocity.4.3.2 Comparison with observationsWe compare our results with the radial pro�les of regular magnetic �eld strength andpitch angle from Fletcher et al. (2004). As well as comparing the dynamo model outputwith the observations directly, we average the model over 2 kpc rings, similar to theway the observations are treated, and uncertainties can be deduced from the mean andstandard deviation. This gives the opportunity to compare the outputs of the model, inparticular the magnetic �eld strength and pitch angles directly with the observationaldata.4.3.3 Dynamos with α-quenchingWe present the results for the α-quenching model in Fig. 4.10. We �nd a higher thanobserved magnitude of the regular magnetic �eld for low RUz and for high RUz a weaker�eld.The optimum value is RUz = 1.5, which allows the �eld pro�le to rest comfortablywithin the observational ranges. Fig. 4.10 (panel b) shows the radial and azimuthalmagnetic �eld pro�les, as well as averages over 2 kpc sections for both quantities inthe region 6 < r < 14 kpc, where the observations of the regular magnetic �eld ofFletcher et al. (2004) lie. There is very good agreement in both the radial and azimuthalcomponents of the magnetic �eld, with larger values of the magnetic �eld towards theinner regions of the disc, and lower values beyond r = 14kpc. This good �t with theobservations is re�ected in the r.m.s. magnetic �eld strength, which has been averaged67



Chapter 4. The Andromeda Galaxy (M31/NGC224)in 2 kpc rings throughout the disc. this opens the opportunity for future observations tobe tested against the model outputs in the regions not covered in Fletcher et al. (2004).The pitch angle of the magnetic �eld for the α-quenching model is shown in Fig. 4.11(panel c) and is in good agreement with the observations for RUz = 1.5. We �nd thatfor equal values of RUz , the outputs for the α- quenching and dynamical α models arein excellent agreement. The pitch angle of the magnetic �eld for the dynamical α modelshown in Fig. 4.11 (panel c) shows a good agreement with the observations. We �ndthat for the optimum value of RUz = 1.5, the pitch angle closely �ts the observations ofFletcher et al. (2004) (see the lower panel for the averaging over 2 kpc rings throughoutthe disc), with the exception of the dip in the observed pitch angles in the region 8 <

r < 10 kpc. There is a drop in the model output, but it is not of the magnitude of theobservations. It is possible that this may be a result of the smoothing we performedwith the observational data used in the simulation. The agreement between the two αnonlinearities is very encouraging; from this we can suggest that both models are suitablerepresentations of each other, whilst taking into account di�erent aspects of the dynamo.4.3.4 Dynamos with a dynamical αWe again use the parameters and observations outlined above, and allow the simulationto continue until a steady state in the magnetic �eld strength is achieved. We �nd thatsimilarly to the dynamical α model of Sur et al. (2007), the magnetic �eld saturatesmuch lower than the equipartition magnetic �eld strength. As a result we multiplythe dimensionless output B (r) by a factor of 5.5B0 to normalise to the observationsof Fletcher et al. (2004). This factor of 5.5 is simply a chosen number, but could beexplained in refernce to what was discussed earlier about various simpli�cations in thedynamo having a detrimental e�ect on the outcome of a simulation. The inclusion ofthe Vishniac-Cho �ux at this point may allow the magnetic �eld to grow to a largermagnitude.Figs. 4.11 (panel a) and 4.10 (panel a) show a strong similarity between the magnetic�eld pro�les of the dynamical α and α- quenching models for the optimum value of
RUz = 1.5. For lower values, the magnetic �eld strength is weaker, and at higher values,the magnetic �eld is also weaker.
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Figure 4.10: (a) Azimuthal (positive lines) and radial (negative lines) magnetic �eld components,for the α-quenching model, for RUz
= 0.0, 1.5 and 2.5 (dashed, solid and dotted lines respec-tively). (b) Azimuthal and radial magnetic �eld pro�les (positive and negative lines respectively)from the α-quenching model using RUz

= 1.5. The dashed line represents averaging over regionsof width 2 kpc within the range 6 < r < 14 kpc, with the dotted line being a single standarddeviation from the mean. (c) Pitch angles for the α-quenching model. Solid lines show theoptimum value of RUz
= 1.5. Dashed and dotted lines denote the results for RUz

= 0.0, and 2.5respectively. (d) Pitch angle obtained using RUz
= 1.5, averaged over 2 kpc sections throughoutthe disc, with the dotted boxes denoting a single standard deviation either side of the mean, tocorrespond with the observations. The grey boxes in all panels denote observational values fromFletcher et al. (2004).
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Figure 4.11: (a) Azimuthal (positive lines) and radial (negative lines) normalised magnetic �eldcomponents for the dynamical α model, for RUz
= 0.3, 1.5 and 2.5 (dashed, solid and dottedlines respectively). (b) Total values of the magnetic �eld strength, for the dynamical α model,for RUz

= 0.3, 1.5 and 2.5 (dashed, solid and dotted lines respectively). (c) Pitch angles for thedynamical α model. Solid lines show the optimum value of RUz
= 1.5. The dotted line denotesthe result for RUz

= 2.5. The dashed line shows the pitch angle using RUz
= 0.3. (d) Pitch angleobtained from the dynamical α model using RUz

= 1.5, averaged over 2 kpc sections throughoutthe disc, with the dotted boxes denoting a single standard deviation either side of the mean, tocorrespond with the observations. The grey boxes in all panels denote observational values fromFletcher et al. (2004).
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Chapter 4. The Andromeda Galaxy (M31/NGC224)4.3.5 Time evolution of the magnetic �eldWe calculate the linear growth rate of the total magnetic �eld,
Γ =

dln|B|
dt

. (4.2)There is a similarity in the evolution of the magnetic �eld pro�les for the α-quenchingand dynamical α models as a function of time, demonstrated in Fig. 4.12.
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Figure 4.12: Linear growth rates calculated using Eq.(4.2) for the α-quenching and dynamical α models(solid and dashed lines respectively).In both models, we observe a relatively quick initial growth phase. During thisperiod in both models, the shear dominates the growth, and the magnetic �eld growsexclusively in the region of the disc where the angular velocity is high, i.e. 0 < r .

6 kpc. The nonlinearity beings to dominate once the magnetic �eld grows to magnitudescomparable with that of the equipartition magnetic �eld strength, and in both modelswe see a reduction in the growth rate and an eventual slight decay in the �eld, thismagnitude of decay being greater in the dynamical α model. Beyond this, the growthrate of the magnetic �eld in the α-quenching model remains positive, with some pseudo-oscillatory behaviour until the magnetic �eld saturates and the growth rate becomeszero at around 12Gyr. In the dynamical model, the same saturation is observed ata comparative point in time, however the growth rate oscillates about the origin untilthis time. This oscillatory behaviour could be explained in physical terms by how themagnetic �eld is transforming between azimuthal and radial components. The strengthof the magnetic �eld increases (positive growth rate) as the Ω-e�ect winds up the �eld71



Chapter 4. The Andromeda Galaxy (M31/NGC224)lines, and then some of the magnetic material is removed from the disc by the out�ow,and the �eld strength decreases slightly (negative growth rate). This process continuesuntil the magnetic �eld is in a steady state.Fig. 4.13 demonstrates the evolution of the nonlinearity in the α-quenching model
α ∝

(

1

1 +B2/B2
eq

)

.Globally, we see a short linear, kinematic growth phase, of the order of 1Gyr. The dashedline shows that this short phase predominantly takes place in the inner regions of thedisc, Which is also demonstrated by the solid lines in Figs. 4.14 and 4.15, where we seea comparatively high growth rate within 5 kpc.
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Figure 4.13: Magnitude of the nonlinear-ity, (αk + αm) /α0, in the α-quenching model,globally averaged (solid line), then at 3, 10and 18 kpc (dashed, dashdot and dotted linesrespectively).
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Figure 4.14: Growth rate of the total magnetic�eld strength for the α-quenching model, attimes of 1.5, 5.5 and 9Gyr (solid, dashed anddotted lines respectively).
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Figure 4.15: Normalised magnitude of the total mag-netic �eld strength for the α-quenching model, attimes of 1.5, 5.5 and 9Gyr (solid, dashed and dot-ted lines respectively).As time advances, the growth of the magnetic �eld propagates through the disc. Thekinematic growth as we move out through the disc becomes weaker, but lasts longer.We see this via the saturation of the nonlinearity at a galactocentric radius of 10 kpcprior to the saturation at 18 kpc. Again, this is demonstrated in Figs. 4.14 and 4.15,where the kinematic growth phase at each radius lasts longer as we progress through thedisc. This is particularly notable in the dotted line in both Figures. At a time of 7Gyr,globally, the growth of the magnetic �eld is almost at the end of its kinematic phase. Themagnetic �eld at this point has ceased growth within ' 10 kpc, due to the saturation ofthe dynamo in the region. We observe this propagation throughout the entirety of thedisc in M31.
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Figure 4.16: Magnitude of the nonlinearity,(αk+αm)/α0, in the dynamical αmodel, glob-ally averaged (solid line), then at 3, 10 and
18 kpc (dashed, dashdot and dotted lines re-spectively).
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Figure 4.17: Growth rate of the total magnetic�eld strength for the dynamical α model, attimes of 0.3, 3.0 and 7.0Gyr (solid, dashedand dotted lines respectively).
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Figure 4.18: Normalised magnitude of the total mag-netic �eld strength for the dynamical α model, attimes of 0.3, 3.0 and 7.0Gyr (solid, dashed and dot-ted lines respectively).Figs. 4.16 to 4.18 demonstrate the time dependent growth of the nonlinearity andthe magnetic �eld for the dynamical α model
α ∝ (αk + αm) .74



Chapter 4. The Andromeda Galaxy (M31/NGC224)Fig. 4.16 shows a good general agreement with the evolution of the nonlinearity of the
α-quenching model (Fig 4.16). The exception arises in the magnitude of the nonlinearityin the various regions in the disc. In the inner regions of the disc, the nonlinearity growstowards a larger magnitude than in the other regions. Predominantly, the initial growthtakes place in the inner 5 kpc (See Fig. 4.17) in the terms including αm in Eqn. (3.11)again, in good general agreement with the α-quenching model.Both the α-quenching and dynamical α models evolve similarly and result in compa-rable magnetic �eld pro�les (see Fig. 4.19). The main di�erences in the overall evolutionof the magnetic �eld are the speed of growth, and the �nal pro�le of the magnetic�eld. The dynamical α dynamo grows quicker than the α- quenching dynamo. Theresulting azimuthal magnetic �eld pro�le is stronger in the extremities of the disc in the
α-quenching. This could be explained by the lower magnitude out�ow in those regionsremoving smaller amounts of helicity in the dynamical α model, and hence the magnetic�eld is slightly smaller in magnitude in the steady state.
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Figure 4.19: Snapshots of the azimuthal and radial magnetic �eld pro�le (positive and negative linesrespectively), obtained from the dynamical α model (solid lines), and α-quenching models, with theoptimum value of RUz
= 1.5. Dotted vertical lines de�ne the region 6 < r < 17 kpc, in which theout�ow is most prominent, and based solely on the observations of star formation of Tabatabaei& Berkhuijsen (2010). (a) The early, shear dominated strong growth phase. (b)-(d) The weaker,nonlinear growth phase.4.4 Saturation of the dynamo with constant αkGiven the uncertainty in the exact nature of the α-e�ect, we now consider a dynamical

α model where the kinetic component is αk = 1, instead of αk = l20Ω (r) /h (r), and αmvaries with time, as before. We can test the e�ects of using a constant αk with radius.76



Chapter 4. The Andromeda Galaxy (M31/NGC224)We �nd di�erences in the way the magnetic �eld evolves in the dynamical α regimebetween the use of the constant and non- constant αk. We investigate by monitoringhow the nonlinearity in each case evolves.For the nonlinearity in the dynamical model
α ∝ (αk + αm) ,where αm < 0, we observe similar global evolution to the α-quenching model, where thenonlinearity begins at the same magnitude throughout the disc (see Fig. 4.20), wherethe growth of the �eld begins kinematically, then undergoes a nonlinear growth phase,followed by saturation of the dynamo and no growth occurs afterwards.The use of a constant α with radius prevents the propagational growth from small tolarge radii found using a non-constant α.
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Figure 4.20: Magnitude of the nonlinearity inthe dynamical α model, (αk + αm) /α0, with
αk = 1, globally averaged (solid line), then at
3, 10 and 18 kpc (dashed, dashdot and dottedlines respectively).
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Figure 4.21: Growth rate of the total magnetic�eld strength for the dynamical α model with
αk = 1, at times of 0.3, 3.0 and 7.0Gyr (solid,dashed and dotted lines respectively).
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Figure 4.22: Normalised magnitude of the total mag-netic �eld strength for the dynamical α model with
αk = 1, at times of 0.3, 3.0 and 7.0Gyr (solid, dashedand dotted lines respectively).In Figs. 4.22 and 4.23 we see a di�erence to the growth in Figs. 4.18 and 4.19. Wenow see a much stronger non-kinematic growth phase whilst using αk = 1 in comparisonwith the non-constant αk. We also see a later period of growth in the outer regions ofthe disc in comparison with the non-constant model.4.5 Sensitivity to model inputsReproducing observations with theoretical models is a di�cult task, and the averagingand smoothing implemented with the observational data used in this chapter could ar-guably be having undesirable e�ects on the results obtained. In order to investigate this,we further discuss the e�ect of small variations in two sets of observational inputs; thescale height of the H i disc, and the rotation curve. These quantities are chosen as aresult of the observational data being smoothed considerably.From the disc scale height in Fig. 4.4, we see that the model �aring used is a rathersimplistic �t to the data. The �rst alternative possibility is that the disc could be �aredto a lesser extent than estimated, so we adopt the extreme of a �at disc (the dotted linein the left panel of Fig. 4.23). The second possibility is that the disc is �ared to a greaterextent than we have modelled, hence we look at an exponential disc which begins at thesame height as the main model, but then its scale height increases slightly quicker aswe move further through the disc until at the outer edge of the disc, the scale height isroughly twice that of the main model. We take both of these examples, and show the78
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Figure 4.23: Left panel : Variations in the degree of disc �aring, used as a test of the sensitivityof the model to certain parameters. The solid line is the original model we used from Fig. 4.4.The dotted line is a �at disc of scale height 230pc (chosen so that the local dynamo number inthe inner regions of the disc is comparable to that for the original �ared model [right panel]), andthe dashed curve demonstrates a more extreme degree of �aring than that of the original model.Right panel : Variations in the local dynamo number as a result of varying the disc scale heightshown in the left panel. The solid line shows the local dynamo number using the original modelfrom Fig. 4.7. The dotted line shows the result for the �at disc, and the dashed line shows theresult obtained from the disc with the highest degree of �aring.results using the dynamical α model using αk = 1, with the optimum value of RUz = 1.5.The results are shown in Fig. 4.24.The di�erence in the magnetic �eld pro�le when using di�erent scale heights is clear.With the �at disc, a lower magnitude magnetic �eld is observed, and for the more �areddisc, the magnetic �eld is stronger in the region of stronger �aring. The larger localdynamo number in the outer regions of the disc caused by the more �ared disc, shown inFig. 4.23 leads to a greater amount of growth in this region. The magnetic pitch angle isgreatly a�ected by the alteration of the scale height. For the �at disc, the magnetic �eldis much less azimuthal, and hence the magnetic pitch angle is greatly increased. Usingthe more �ared disc, the magnetic �eld becomes slightly more azimuthal and hence themagnetic pitch angle is slightly decreased in magnitude. With a �at disc, the azimuthalcomponent of the magnetic �eld is removed more from the inner regions of the disc(Eqns. 2.20 and 2.21), resulting in more of the radial component, Br being added to theinner regions, increasing the pitch angle. In a �ared disc, the balance of removal of theazimuthal component shifts towards the outer regions, and hence the radial componentdoes not increase as much, hence reducing the increase in the pitch angle.In order to investigate the sensitivity of the model to changes in the rotation curve,we adopt each of the spiral arm rotation curves introduced in Section 4.2.3 and shown79
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Figure 4.24: Left panel: Azimuthal (positive lines) and radial (negative lines) magnetic �eldcomponents for the dynamical α model, for the di�erent disc models demonstrated in Fig. 4.23(solid, dashed and dotted lines respectively). The grey boxes denote observational values ofthe regular magnetic �eld from Fletcher et al. (2004). Right panel: Pitch angles the dynamical
α model, for the di�erent disc models demonstrated in Fig. 4.23 (solid, dashed and dottedlines respectively). The grey boxes denote observational values of the regular magnetic �eld astabulated in Fletcher et al. (2004). Note that increasing only the �aring of the disc has very littlee�ect on the magnitude of the pitch angle, and we only see comparable di�erences in the veryouter regions of the disc; the di�erence between a �at disc and the �ared disc is considerable.here in Fig. 4.25. We also revert to using one disc �aring, the original model from Section4.2.1. We smooth the rotation curves of the spiral arms, resulting in interesting featuredi�erences in the local dynamo number. The results are shown in the lower panels ofFig. 4.25.We retain the results for the averaged rotation curve for comparison. There are cleardi�erences between the azimuthal magnetic �eld pro�les between the two models, andvery little di�erence in the radial �eld component. This is most likely a result of ∂Ω/∂rentering the equation for the azimuthal component. It would appear that the magnetic�eld pro�le given by the rotation curve for the northern spiral arm (shown by the dashedline) is much closer to the observational data than the rotation curve of the southernspiral arm (shown by the dotted line). However, the pitch angle given by the southernspiral arm appears to be a closer �t to the observational data. The magnetic pitch angleis a�ected by changes in the rotation curve, but still remains within the uncertainty inthe observations.
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Figure 4.25: Upper left panel : Our smoothed rotation curve (solid line) and the rotation curvesof both spiral arms as in Fig. 4.6. The dashdot line denotes the local shear. Upper right panel :Variations in local dynamo number based on the individual rotation curves of the spiral arms asgiven in the upper left panel. The solid line shows the result for the averaged rotation velocity,the dashed line gives the result for the receding arm and the dotted line shows the outcome ofusing the approaching arm. Lower left panel : Azimuthal (positive lines) and radial (negativelines) magnetic �eld components for the dynamical α model, for the di�erent rotation curvesdemonstrated in the upper left panel (The lines correspond to the arms as described above).Lower right panel : Pitch angles for the dynamical α model, for the di�erent rotation curves.The grey boxes denote observational values as tabulated in Fletcher et al. (2004).
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Chapter 4. The Andromeda Galaxy (M31/NGC224)4.6 SummaryIn this chapter, we have investigated both the α-quenching and dynamical α models withthe inclusion of a vertical out�ow for the galaxy M31.It has been shown that the observed pitch angles of the magnetic �eld can be repro-duced well, upon application of the galactic out�ow derived from observed values of starformation rate.Observations of the regular magnetic �eld strength can also be reproduced with the α-quenching model, and the dynamical α dynamo is shown to saturate at 1/5 equipartition.Upon normalisation, the dynamical α results demonstrate very good agreement with theresults using α-quenching in terms of magnetic �eld pro�le in radius.The thin disc no-z model has been shown to evolve propagationally from the centreto the outer regions of the galactic disc using both α-quenching and dynamical α models.This result can be sensitive to the treatment of the kinetic component of the α- e�ect,
αk. Using αk = 1 throughout the galactic disc (instead of using the formula, αk =

l2Ω/h) allows the magnetic �eld to grow in the outer regions of the disc (after the initial,kinematic growth phase in the inner regions of the disc) prior to the middle region
6 < r < 14 kpc, contrary to the propagational evolution described for a non-constant αk.The magnetic �eld strength and pitch angle can also be sensitive to di�erences inquantities such as the disc scale height, and the rotation curve. Increases in the degreeof disc �aring renders the magnetic �eld more azimuthal, decreasing the magnitude ofthe pitch angle of the magnetic �eld. Variations in the rotation curve a�ect the magnetic�eld when converted to the angular velocity, Ω (r), and further to ∂Ω/∂r. Increases in
∂Ω/∂r lead to increased azimuthal �eld strength, hence reducing the magnitude of thepitch angle.In this study we derive the input parameters, Rω, Rα and RUi

directly from obser-vations. We only vary however the coe�cient for the vertical �ow, and leave the othertwo alone. We have in Chapter 3 that Rα has an e�ect in that below a certain threshold,dynamo action is not possible, however further study is required to judge how sensitivethe model is to both of our untouched input variables.The method we have used to �t our simulation results to the observations, whereuseful, is not the most e�cient method of �tting; in reality it provides us with theopportunity to make only a visual judgement of the �t. It would be bene�cial in futurestudies to make use of more sophisticated numerical methods of �tting so that morequantitative data on the �t can be ascertained.��� 82



Chapter 5The Triangulum GalaxyM33NGC598

Image credit: NASA/JPL-Caltech/UCLA5.1 IntroductionThe Triangulum galaxy (M33, NGC598) lies at a distance of 840kpc, and at an inclinationof 56◦±1◦ (Tabatabaei et al., 2008). Its inclination allows for equally good determinationof the magnetic �eld components parallel and perpendicular to the line of sight of theobservations. The disc of M33 is warped, making it di�cult to judge the accuracy ofthe observations. The magnetic �eld of M33 is considered to be comprised of more than83



Chapter 5. The Triangulum Galaxy (M33/NGC598)the single, axisymmetric mode magnetic �eld of M31. It was shown by Tabatabaei et al.(2008) that not only axisymmetric m = 0, but bisymmetric m = 1 and vertical k = 1modes (k is used as a vertical wavenumber which would �t into eigenvalue solutions tothe dynamo equations, in the same way they were introduced in Chapter 2) make upthe regular magnetic �eld of M33 (with the warping of the disc being considered as apossible reason for the presence of the vertical component of the magnetic �eld). Thepitch angles of the axisymmetric m = 1 mode magnetic �eld are large (' 45◦).M33 is a galaxy with moderate gas density, and abundant in areas of high starformation, making it a good candidate for study using our models, as these propertiesare di�erent to those of M31, which has low gas density and a low star formation rate.M33 is a spiral galaxy, but unlike M31, has a weaker, discontinuous spiral pattern.5.2 Observational data5.2.1 Gaseous disc scale heightWe propose a model for the H i disc scale height given by two points of data in Section6.2 of Tabatabaei et al. (2008), taken from (Baldwin, 1981), whereby the scale height ofthe disc is 250pc at r = 3kpc and rises steadily to 650pc at r = 5kpc. We retain thedata for the inner point; however with the linear relationship we have chosen to take withthis galaxy due to having only two observed data points to deal with, the gradient wouldbe unphysical in the inner regions of the disc. We have therefore chosen to reduce thegradient slightly, so the scale height is still approximately 250 pc at r = 3kpc, does notreach 650 pc at r = 5kpc but still remains physically acceptable. The gas scale height isshown in Fig. 5.2.
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Figure 5.2: Model of the H i disc scale height of M33(solid line), derived from two points of observationaldata given in Section 6.2 of Tabatabaei et al. (2008).The dashed line shows the model molecular gas scaleheight.With the scale height of the H i gas at the inner boundary being of magnitude ≈
200 pc, there is no necessity to truncate and �atten the scale height within the innerregions of the disc. The values of the disc scale height in the inner regions are not identicalto the observational data, but follow the same general trend, and non-dimensionalisingthe disc scale height would not disproportionately reduce the local dynamo number tosub-critical values.5.2.2 Gas densitiesWe use the combination of the CO gas surface density and H i surface density, fromGratier et al. (2010). This data is in very good agreement with earlier CO and total gasdensity observations of Heyer et al. (2004). We perform an identical smoothing to thatwhich we used for the observational data in Chapter 4. This combination gives the solidline in Fig. 5.3.
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Figure 5.3: Total gas surface density (solid line) cal-culated as a combination of the H i and CO observa-tions from Gratier et al. (2010) (dashed and dottedlines respectively).There is a de�nite di�erence in the gas surface density between M33 and M31 (seeFig. 4.5 for M31): here we observe a steady decrease in density from the inner regionsto the outer regions of the disc. As a result of the equipartition �eld strength beingcalculated from the gas volume density, we expect that this will result in the strongestmagnetic �eld existing within the inner regions of the disc.We obtain a value of B0 =
√

4πρ0v2 = 8µG taken at the peak density as the referenceequipartition �eld strength.5.2.3 Rotation curveWe adopt the rotation curve from observations of CO within the inner 1 kpc of the disc,and H i outside this region of Sofue et al. (1999) and show in Fig. 5.4 (left panel).M33 rotates considerably slower (almost a factor of 2 in the maximum velocity) thanM31, and with the increase in velocity with radius being slower, ∂Ω/∂r is much smallerthan that of M31 in the inner regions of the disc. This results in a much smaller localdynamo number for M33 in the inner regions of the disc (Fig. 5.5).
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Figure 5.4: Left panel : The rotation curve of M33 taken from Sofue et al. (1999). Right panel :Dimensionless local shear rate, r|dΩ/dr| calculated using Ω (r) = Uφ/r.
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Figure 5.5: The local dynamo number given by Eq. (2.19) using
Rω = 11.3 and Rα = 0.45.With this local dynamo number, with no clearly dominant peaks in comparison withM31, we would expect the resulting magnetic �eld pro�les to be much more evenlydistributed throughout the disc. However, given the combination of this with the highgas density, the magnetic �eld pro�le should have a small overall negative gradient;however we note the pro�le is dominated primarily by Beq.5.2.4 Star formation rateWe obtain the values of star formation rate from observations of Heyer et al. (2004). M33has a considerably higher rate of star formation than M31 (some 30 times in the inner87



Chapter 5. The Triangulum Galaxy (M33/NGC598)Physical Quantity Mean ValueHot phase temp. 2.4× 106KIsothermal sound speed 174.9 km s−1Wind velocity 276.6 km s−1Mass weighted out�ow velocity 0.55 km s−1Table 5.1: Mean values of the physical quantities described in thedevelopment of the out�ow, derived from the observations of starformation rate, and gaseous disc scale height, through Eqs. (2.35)-(2.38).regions).
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Figure 5.6: The local star formation rate from observations of Heyeret al. (2004).The large values, and peak in star formation rate in the inner regions will give alarger out�ow velocity in the inner few kpc, a contrast to the pro�le of M31, which hada peak in the out�ow at around r = 12kpc.5.2.5 Out�ow modelWith the observed star formation rate density pro�le of Heyer et al. (2004) from Section5.2.4, along with the gaseous scale heights described in Section 5.2.1 we obtain meanvalues for the physical quantities described in the development of the out�ow modelfrom Section 2.3.1, shown in Table 5.1. We obtain a mass weighted out�ow velocityof the order of 0.5 km s−1 (Fig. 5.7), which we will calibrate using RUz in the dynamoequations. 88
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Figure 5.7: Left panel : Mass weighted out�ow velocity pro�le as calculated using the out�owmodel described by Eq. (2.38). Right panel : Radial velocity pro�le as calculated using the modeldescribed in Section 2.3.3.The out�ow is as expected, following the general patterns of the gas density, scaleheights and star formation rates. We have modelled the radial in�ow for this galaxyusing the model discussed in Section 2.3.3, but not used it in the dynamo calculations.Where in regions of higher star formation, the vertical out�ow is high (driven by a largersupernova explosion rate), the radial in�ow is low.5.3 Results5.3.1 Galactic parametersFor both the α-quenching and dynamical α models we adopt the following parametersfor non-dimensionalisation, characteristic of the observed pro�les used in the discussion.We take h0 = 0.5 kpc Ω0 = 14.6 km s−1 kpc−1 and l0 = 0.1 kpc, which leads to a valueof α0 = 0.29 km s−1. We take ηt = 1.0 × 1026cm2s−1, and use R0 = 8.25 kpc to bethe disc radius in which our observations lie. These parameters are used to derive thedimensionless parameters Rω = 11.3, and Rα = 0.45. We consider values of RUz in therange 0 < RUz < 2.0 in order to calibrate the out�ow velocity.5.3.2 Dynamos with α-quenchingWe use the disc scale height, rotation curve and gas densities to calculate the magnetic�eld strength and pitch angle for the α-quenching model for M33 using the parametersand observations introduced in Sections 5.2.1 to 5.3.1, and compare with observations of89



Chapter 5. The Triangulum Galaxy (M33/NGC598)the regular magnetic �eld of M33 of Tabatabaei et al. (2008). For the regular magnetic�eld pro�le, shown in Fig. 5.8, we �nd higher than observed magnitude for low RUz , andwith increasing values, we see a suppression of the magnetic �eld strength, this beinggreater in the regions where the vertical out�ow is greater. The magnetic �eld saturatesat around the equipartition �eld strength in the α-quenching model, similarly to theresults for M31 in Chapter 4. It is clear from the observations of the regular magnetic�eld (Tabatabaei et al., 2008), that the regular magnetic �eld for M33 is of a magnitudemuch smaller than the equipartition �eld strength (approximately 1−2µG, in comparisonwith the peak equipartition �eld strength of 8µG calculated above).We observe an optimum value of RUz = 2.0 (chosen via the dynamical α results, whichwe will discuss in the next section), which allows the radial magnetic �eld componentto rest within the observational ranges (upon averaging in a similar way to the way wetreated the results for M31 in Chapter 4). As predicted, the magnetic �eld pro�les havepeaks in the inner regions of the disc, and decrease with a moderate gradient with radius.The out�ow for M33 reduces the saturation level of the magnetic �eld more in the innerregions, as a result of its higher magnitude in this region.5.3.3 Dynamos with a dynamical αWe again use the parameters and observations outlined above, and use the disc scaleheight, rotation curve and gas densities to calculate the magnetic �eld strength andpitch angle for the dynamical α model for M33. We adopt the optimum value of RUz =

2.0, which gives the pitch angles which most closely match the observations, shown inFig. 5.9. The �rst notable di�erence in models (see Fig. 5.8) is the magnitude ofthe regular magnetic �eld. In a similar fashion to that of M31, the dynamo in thedynamical α model saturates at a much lower level than in the α-quenching model (1/3of the equipartition �eld strength for the optimum value of RUz = 2.0). Fortunately,the results of the dynamical α model are of the magnitude of the observed values ofTabatabaei et al. (2008), with no normalisation required. This is because the observationsof Tabatabaei et al. (2008) show that M33 has a lower than equipartition magnetic �eld,in close agreement with the dynamical α model saturating at a magnitude lower thanequipartition. The pro�les of the total magnetic �eld, and the radial and azimuthalcomponents calculated using the model follow the general trend of the observations, withpeak values in the inner regions followed by lower values outside this region.
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Figure 5.8: (a) Azimuthal (positive lines) and radial (negative lines) magnetic �eld componentsfor the α-quenching model, for RUz
= 0.0, 1.0 and 2.0 (dotted, dashed and solid lines respec-tively). (b) Azimuthal and radial magnetic �eld pro�les (positive and negative lines respectively)from the α-quenching model using RUz

= 2.0. The dashed line represents averaging over regionsof width 2 kpc within the range 1 < r < 5 kpc, with the dotted line being a single standarddeviation from the mean. (c) Azimuthal (positive lines) and Radial (negative lines) magnetic�eld components for the dynamical α model, for RUz
= 0.0, 1.0 and 2.0 (dotted, dashed andsolid lines respectively). (d) Total magnetic �eld strength from the dynamical α model using

RUz
= 2.0. The grey boxes in all panels denote observational values from Tabatabaei et al.(2008).
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Figure 5.9: Pitch angles for both the α-quenching (a) and dynamical α (b) models. Solid linesshow optimum RUz
= 2.0. Dashed and dotted lines denote the results for RUz

= 1.0, and 0.0respectively. The grey boxes denote observational values of Tabatabaei et al. (2008).
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Chapter 5. The Triangulum Galaxy (M33/NGC598)5.3.4 Pitch angle of the magnetic �eldThe pitch angle of the magnetic �eld is not well reproduced with either of the α-quenchingor dynamical α models (see Fig. 5.9). We �nd pitch angles of the order 1/5 that of theobserved values, however the shape of the pitch angle pro�le is not too dissimilar fromthe observations in the regions given. This suggests that it is possible that the dynamo inM33 operates in a di�erent way to that of M31. An analytic calculation of the pitch anglewas conducted by Tabatabaei et al. (2008), which found the magnitude of the pitch angleto be in the range 15�20◦, similar magnitudes to those we have produced. Fig. 5.10 showsthat the predicted relationship between RUz and the pitch angle of the magnetic �eld,whereby the pitch angle increases with increasing RUz , is correlates with the simulatedresults, with both non-linearities operating similarly. The analytical model agrees withthe simulations, but both unfortunately di�er signi�cantly from the observations.
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Figure 5.10: An analytical representation of the ratio between radialand azimuthal magnetic �eld components with varying RUz
, givenby Eq 2.44 (solid line). Green circles show the results for the α-quenching model and red circles show the results for the dynamical

α model.5.4 SummaryIn this chapter we have presented observational data for M33, and investigated dynamomodels for both the α-quenching and dynamical α dynamo non-linearities, with theinclusion of our star formation derived galactic out�ow.The observed pro�les and magnitudes of the magnetic �eld of Tabatabaei et al. (2008)are reproduced with reasonable accuracy using the dynamical α model, which saturates93



Chapter 5. The Triangulum Galaxy (M33/NGC598)at around 1− 2µG. Both α-quenching and dynamical α models agree with the structureof the magnetic �eld, producing a peak in the inner regions of the disc, followed by amoderate decrease with radius.The magnitude of the local pitch angle of the magnetic �eld is not well produced forM33. This could possibly be attributed to the operation of the dynamo of M33 beingdi�erent to that of M31. The key di�erences to M31 are that the dynamical α givesthe correct saturated magnetic �eld strength, but does not produce large enough pitchangles. Higher azimuthal modes of the magnetic �eld are present in M33, but not M31 ,and this could contribute to a large observed pitch angle. The presence of higher modesin the observed magnetic �eld indicates that the dynamo in M33 is di�erent to the M31dynamo. This could be due to M33's higher gas density, higher star formation rate orits slower rotation. Non-axisymmetric models could prove useful and help to understandthe di�erences.The inclusion of a radial in�ow (5.7, right panel) could increase the magnitude of thepitch angle, having a similar e�ect to that of including a vertical out�ow, as discussed inSection 2.3.2 (including and increasing Ur in the analysis of the steady state equationsleads to an increase in the pitch angle). It is possible that further investigations couldresolve the issue of the currently too small pitch angles.With the observations of Tabatabaei et al. (2008) demonstrating the presence of avertical magnetic �eld component in M33, it may be that the no-z model is inappropriatefor use with this galaxy. A 2D model could possibly give results more consistent withthe observations.���
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Chapter 6The Whirlpool GalaxyM51aNGC5194

Image Credit: NASA/ESA6.1 IntroductionThe Whirlpool galaxy (M51, NGC5194) lies at a distance of 8.4Mpc (Schuster et al.,2007), seen nearly face on. It is a galaxy high in gas density. Unlike and of the othergalaxies in this study, M51 has a companion galaxy, M51b (NGC5195), with which itinteracts. This interaction leads to a high rate of star formation. M51 has a strong totalmagnetic �eld, however a weaker than equipartition regular magnetic �eld (Fletcher et al.,95



Chapter 6. The Whirlpool Galaxy (M51a/NGC5194)2011).In comparison with M31 and M33, the regular magnetic �eld is made up ofm = 0 and
m = 2 azimuthal modes. Unlike M31 and M33, M51 has a very de�nite and strong spiralstructure, with large interarm regions where magnetic �eld is known to exist; howeverin these regions, the magnitude of the magnetic pitch angle changes by about ±15◦,in comparison with the pitch angle in the magnetic arms, which are of the order 20◦(Fletcher et al., 2011).6.2 Galactic observations6.2.1 Gaseous disc scale heightWe consider a model for the H i disc scale height, based on the pro�le derived for theionised gas (free electrons) of M51 by Berkhuijsen et al. (1997). We adapt this to give anestimate of the H i disc scale height. The four data points of Berkhuijsen et al. (1997) are�tted with an exponential. We then reduce the magnitude of the scale height, to roughlyaccount for the larger density of H i than the free electrons. Issues which may arise fromsuch a reduction may include the results being di�cult to verify. Also, reducing thescale height to such an extent in the inner regions of the disc could allow the dynamo todominate in these areas, possibly masking what could be happening in the outer regionsof the disc. We adopt the �aring and scale height as shown in Fig. 6.2. The moleculargas scale height is taken to be half that of the H i scale height, to hold consistency withthe previous chapters.
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Figure 6.2: Model of the H i disc scale height of M51(solid line), derived from the free electron-derived discscale height of Berkhuijsen et al. (1997). The dashedline shows the model molecular gas scale height.The disc of M51 is shown to �are quite quickly within a radius half that of M31, morethan doubling it's height by the time it reaches r = 12kpc.6.2.2 Gas densitiesWe use the combination of the CO gas surface density and H i surface density, fromSchuster et al. (2007). We perform a similar smoothing to that which we used for all ofthe data in Chapter 4. This combination gives the solid line in Fig. 6.3.
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Figure 6.3: Total gas surface density (solid line) cal-culated as a combination of the H i and CO observa-tions from Schuster et al. (2007) (dashed and dottedlines respectively).Fig. 6.3 shows again quite a distinctive radial density distribution, with a large peakin the density in the inner regions of the disc(at least 5 times larger than the peak ofdensity for M31), and we observe a relatively quick decrease in density from the innerregions of the disc to around r = 4kpc. beyond this there is a slower decrease in densitytowards the outer regions of the disc. As a result of the equipartition �eld strengthbeing calculated from the volume gas density, we would expect that this will result inthe majority of the output magnetic �eld to exist within the very inner regions of thedisc.We obtain a value of B0 =
√

4πρ0v2 = 12µG taken at the peak density as thereference equipartition �eld strength.6.2.3 Rotation curveWe adopt the rotation curve from observations of Garcia-Burillo et al. (1993) shown inFig. 6.4.M51 rotates faster than M33, and marginally slower than M31 (the peak velocity ofM31 being of the order 250 km s−1). This results in a local dynamo number for M51comparable to that of M31 in magnitude (Fig. 6.5 for M51; Fig. 4.7 for M31).
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Figure 6.4: Left panel : The unsmoothed (dashed line) and smoothed (solid line) rotation curvesof M51 taken from Sofue et al. (1999). Right panel : Dimensionless local shear rate, r|dΩ/dr|calculated using Ω (r) = Uφ/r.
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Figure 6.5: The local dynamo number given by Eq. (2.19).Using this alongside the gas density pro�le, we would expect that the magnetic �eldwill be dominant within the inner regions of the disc, a direct contrast to M31, wherethe peak gas density in the 10 kpc ring allowed the magnetic �eld to be more evenlydistributed throughout the disc.6.2.4 Star formation rateWe obtain the values of star formation rate from Schuster et al. (2007) shown in Fig. 6.6.M51 has a considerably higher rate of star formation than M33 (some 10 times in theinner regions, so even 300 times that of M31 in the inner regions, a massive di�erence).99
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Figure 6.6: The local star formation rate from observations of Heyeret al. (2004).The peak in star formation rate towards the centre of the disc will give a largerout�ow velocity in the inner regions.6.2.5 Out�ow and in�ow modelsWith the observed star formation rate density pro�le from Section 6.2.4, along with thegaseous scale heights described in Section 6.2.1 we obtain mean values for the physicalquantities described in the development of the out�ow model from Section 2.3.1, shownin Table 6.1. We obtain a mass weighted out�ow velocity of the order of 0.7 km s−1 (Fig.5.7), which we will calibrate using RUz in the dynamo equations. We have modelled theradial in�ow for this galaxy in this instance (see Fig. 6.7, right panel); however we haveagain not used it in the dynamo calculations, showing a very large radial in�ow in theouter regions of the disc. In comparison with observations of Shetty et al. (2007), we seea slightly higher peak in the outer regions than expected, but in the rest of the disc acomparable magnitude of the radial velocity is achieved.6.3 Results6.3.1 Galactic parametersFor both the α-quenching and dynamical α models we adopt the following parametersfor non-dimensionalisation, characteristic of the observed pro�les used in the discussion.We take h0 = 0.5 kpc , Ω0 = 25km s−1 kpc−1 and l0 = 0.1 kpc, which leads to a valueof α0 = 0.5 km s−1. We take ηt = 1.0 × 1026cm2s−1, and use R0 = 12.1 kpc to be100



Chapter 6. The Whirlpool Galaxy (M51a/NGC5194)
Physical Quantity Mean ValueHot phase temp. 3.9× 106KIsothermal sound speed 226.9 km s−1Wind velocity 358.7 km s−1Out�ow velocity 0.72 km s−1Table 6.1: Mean values of the physical quantities described in thedevelopment of the out�ow, derived from the observations of starformation rate, and gaseous disc scale height, through Eqs. (2.35)-(2.38).
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Figure 6.7: Left panel : Mass weighted vertical velocity pro�le as calculated using the wind modeldescribed by Eq. (2.38). Right panel : Radial in�ow velocity pro�le as calculated using the windmodel described by Eq. (2.47). Again, the in�ow velocity pro�le was not used in the dynamocalculations.
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Chapter 6. The Whirlpool Galaxy (M51a/NGC5194)the disc radius in which our observations lie. These parameters are used to derive thedimensionless parameters Rω = 19.28, and Rα = 0.77. We consider values of RUz in therange 0 < RUz < 3.5 in order to calibrate the out�ow velocity.6.3.2 Dynamos with α-quenchingWe use the disc scale height, rotation curve and gas densities to calculate the magnetic�eld strength and pitch angle for the α-quenching model for M51 using the parametersand observations introduced in Sections 6.2.1 to 6.3.1, and compare with observations ofthe magnetic �eld of M51 of Fletcher et al. (2011). For the regular magnetic �eld pro�le,shown in Fig. 6.8, we �nd a higher than observed magnitude for low RUz , and withincreasing values, we see a suppression of the growth. The magnetic �eld saturates ataround the equipartition �eld strength in the α-quenching model, similar to simulationresults for M31 and M33. The regular magnetic �eld for M51 is of a magnitude muchsmaller than the equipartition �eld strength (approximately 2−4µG, in comparison withthe peak equipartition �eld strength of 12µG calculated above) (Fletcher, 2011).We �nd an optimum value of RUz = 3.5, which allows the radial magnetic �eld pro�leto lie within the observational ranges (upon averaging in a similar way to the way wetreated the results for M31). The magnetic �eld pro�les have peaks in the inner regionsof the disc, and decrease with a moderate gradient with radius. The out�ow for M51reduces the saturation level of the magnetic �eld more in the inner regions.6.3.3 Dynamos with a dynamical αWe again use the parameters and observations outlined above, and use the disc scaleheight, rotation curve and gas densities to calculate the magnetic �eld strength and pitchangle for the dynamical α model for M51. We adopt the optimum value of RUz = 3.5,which gives the pitch angles that are the best match to the observations of Fletcheret al. (2011) shown in Fig. 6.9. The �rst notable di�erence in models (see Fig. 6.8) isthe magnitude of the regular magnetic �eld. In a similar fashion to that of M31 andM33, the dynamo in the dynamical α model saturates at a much lower level than inthe α-quenching model (1/3 of the equipartition �eld strength for the optimum value of
RUz = 3.5). Also, in a similar fashion to M33, the results of the dynamical α modelare of the same magnitude of the observed �eld strengths obtained by Fletcher et al.(2011), with no normalisation required. The pro�les of the total magnetic �eld, and theradial and azimuthal components calculated using the model are of the same order ofmagnitude as the observations, however the positive gradient in the observations is not102
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Figure 6.8: (a) Azimuthal and radial magnetic �eld components for the α-quenching model,for RUz
= 0.0, 1.5 and 3.5 (dotted, dashed and solid lines respectively). (b) Azimuthal andradial magnetic �eld pro�les from the α-quenching model using RUz

= 3.5. The dashed linerepresents averaging over regions of width 2 kpc within the range 1 < r < 5 kpc, with the dottedline being a single standard deviation from the mean. (c) Azimuthal and Radial magnetic �eldcomponents, for the dynamical α model, for RUz
= 0.0, 1.5 and 3.5 (dotted, dashed and solid linesrespectively). (d) Total magnetic �eld strength from the dynamical α model using RUz

= 3.5.The grey boxes in all panels denote observational values from Fletcher et al. (2011).
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Figure 6.9: Pitch angles for both the α-quenching (a), and dynamical α (b) models. Solid linesshow optimum RUz
= 3.5. Dashed and dotted lines denote the results for RUz

= 1.5, and 0.0respectively. The grey boxes denote observational values of Tabatabaei et al. (2008).
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Chapter 6. The Whirlpool Galaxy (M51a/NGC5194)reproduced, as a result of the peaks in gas density and star formation rate in the innerregions of the disc.6.3.4 Pitch angle of the magnetic �eldThe pitch angle of the magnetic �eld is not well reproduced with either of the α-quenchingor dynamical α models (see Fig. 6.9). We �nd pitch angles of the order 1/2 that ofthe observed values, and the shape of the pro�le is not convincingly reproduced. Thissuggests that it is possible that the dynamo in M51 operates in a di�erent way to thatof M31, and in a similar way to M33. Fig. 6.10 shows that the predicted relationshipbetween RUz and the pitch angle of the magnetic �eld, whereby the pitch angle increaseswith increasing RUz , again, holds, with a near perfect �t to the analytic result, showinghow a simple analytic test can be used to explain the results of a much more complicatedsimulation, even when the observations are not agreed with by either the analytical orsimulated models.
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Figure 6.10: An analytical representation of the ratio between radialand azimuthal magnetic �eld components with varying RUz
, givenby Eq 2.44 (solid line). Green circles show the results for the α-quenching model and red circles show the results for the dynamical

α model.6.4 SummaryIn this chapter we have presented observational data for M51, and investigated the evo-lution of the dynamo for both the α- quenching and dynamical α dynamo models, withthe inclusion of our star formation derived galactic out�ow.105



Chapter 6. The Whirlpool Galaxy (M51a/NGC5194)It has been shown that, as for M33, we have a galaxy with a weak regular magnetic�eld, for which the dynamical α model can produce the correct �eld strength, but in thiscase not the correct pro�le. The model also produces pitch angles which are of a shape andmagnitude inconsistent with the observations. The regular magnetic �eld observationsof Fletcher et al. (2011) can be reproduced in magnitude using the dynamical α model.Both α-quenching and dynamical α models agree with the structure of the magnetic �eld,producing a peak in the inner regions of the disc, followed by a fast decreasing gradientwithin the inner 4 kpc, followed by a gradual decrease out to r = 12kpc, however bothfail to reproduce the observed increase in �eld strength with radius.The magnitude of the local pitch angle of the magnetic �eld is not well produced forM51, in a similar way to that of the results for M33. This could possibly be attributed tothe operation of the dynamo of M51, again being di�erent to that of M31. Again, highermode magnetic �elds are present in the observations of M51 (an m=2 mode is present atall radii), and this would contribute to a larger observed pitch angle at some azimuthsthan the results of the axisymmetric models suggest.���
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Chapter 7The Fireworks GalaxyNGC6946

Image Credit: Public domain.7.1 IntroductionThe Fireworks galaxy (NGC6946) lies at a distance of 5.5Mpc (Tully, 1988), and isinclined at 38◦ ± 2◦ (Boomsma et al., 2008). It is a galaxy high in gas density, andabundant in areas of high star formation, similar to M51. In contrast to M51 however,NGC6946 has a less pronounced spiral structure. This galaxy is known to host �magneticarms� that sit between the gaseous spiral arms (Ehle & Beck, 1993) and these magnetic107



Chapter 7. The Fireworks Galaxy (NG6946)arms contain strong (' 10µG) and well ordered regular magnetic �elds, with a similarrelationship between the observed regular magnetic �eld and the equipartition magnetic�eld to that observed for M31, where the regular magnetic �eld strength is comparablewith the equipartition �eld strength, in contrast to M33 and M51. NGC6946 has a strongtotal magnetic �eld (' 25µG in the inner regions of the disc) (Beck, 2007).7.2 Galactic observations7.2.1 Gaseous disc scale heightObservations of the H i disc scale height of NGC6946 are limited and somewhat uncertaindue to the probable warping of the disc in the inner regions. Beck (2007) suggested forsimplicity using a �at disc of h (r) = 100 pc. Where this could be argued to be asuitable approximation for simple dynamo models, it limits what can be ascertained interms of scienti�c understanding from results. A �at disc model would not necessarilyre�ect the physical structure of the gaseous disc, and lack of consistency between ourstudied galaxies may somewhat dilute the validity of our results. We adopt a disc �aringcomparable in nature to that for M51, as M51 has a similarly shaped gas density pro�leto that of NGC6946, and hence we can infer a similar degree of �aring to this disc model
h =

1

3
h0e

r/Lh , (7.1)where Lh is the approximate line of sight length through the disc, which for NGC6946we take as ' 9 kpc.
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Chapter 7. The Fireworks Galaxy (NG6946)
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Figure 7.2: Model of the H i disc scale height ofNGC6946 (solid line) given by Eq. (7.1). The dashedline shows the model molecular gas scale height.7.2.2 Gas densitiesWe use the combination of the CO gas surface density and H i surface density, fromCrosthwaite & Turner (2007). This data shows a very high density of molecular hydrogen,however further discussion (R. Beck, private communication) suggests that this maynot be accurate (it was discussed that possible warping of the disc of NGC 6946 maybe contributing to the somewhat questionable observational values, and that any dataconsidered would have to be treated as having a relatively large uncertainty, giving agreater freedom in the ranges of values that could be chosen), and it was decided thatwe should �atten the density in the inner regions of the disc to a more acceptable valueof 12M�pc
−2. We perform a similar smoothing to that which we used for all of the datain Chapter 4. This combination gives the solid line in Fig. 7.3.
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Chapter 7. The Fireworks Galaxy (NG6946)
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Figure 7.3: Total gas surface density (solid line) cal-culated as a combination of the H i and CO observa-tions from Crosthwaite & Turner (2007) for corrected
CO pro�le (dashed and dotted lines respectively).The peak in surface density is wider in this galaxy in comparison with the others wehave studied, and the overall pro�le remains quite high throughout the disc.We obtain a value of B0 =

√

4πρ0v2 = 5.5µG as the reference equipartition �eldstrength.7.2.3 Rotation curveWe adopt the rotation curve from observations of Sofue et al. (1999), and impose solidbody rotation in the inner regions of the disc, in a similar fashion to that of M31, andshow in Fig. 5.4.NGC6946 has quite a similar rotation curve to that of M31, with a peak in the mid-section of the disc, and a large maximum velocity. As a result, we see a similar localdynamo number for NGC6946 in the inner regions of the disc to that of M31 (Fig 7.5).
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Chapter 7. The Fireworks Galaxy (NG6946)
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Figure 7.4: Left panel : The rotation curve of NGC6946 taken from Sofue et al. (1999). Rightpanel : Dimensionless local shear rate, r|dΩ/dr| calculated using Ω (r) = Uφ/r.
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Figure 7.5: The local dynamo number given by Eq. (2.19).With this local dynamo number taken into account with the wide distribution of gasdensity, we may expect an output magnetic �eld pro�le similar in shape to that of M31,with the exception that the peak in the magnetic �eld will reside in the inner regions ofthe disc rather than the mid-section.7.2.4 Star formation rateWe obtain the values of star formation rate from Crosthwaite & Turner (2007). NGC6946has a considerably higher rate of star formation then M31 (some 70 times in the innerregions), but observations only extend to r = 8kpc. Studying the pro�le in Fig. 7.6,we should be able to follow the rate of star formation in a pseudo- exponential fashion111



Chapter 7. The Fireworks Galaxy (NG6946)Physical Quantity Mean ValueHot phase temp. 1.4× 106KIsothermal sound speed 122.5 km s−1Wind velocity 193.6 km s−1Out�ow velocity 0.49 km s−1Table 7.1: Mean values of the physical quantities described in thedevelopment of the out�ow, derived from the observations of starformation rate, and gaseous disc scale height, through Eqs. (2.35)-(2.38).towards the outer boundary we adopt of r = 17kpc.
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Figure 7.6: The local star formation rate from observations ofCrosthwaite & Turner (2007).We expect that the large peak in star formation rate will give a larger out�ow velocityin the inner regions.7.2.5 Out�ow modelWith the observed star formation rate density pro�le from Section 7.2.4, along with thegaseous scale heights described in Section 7.2.1 we obtain mean values for the physicalquantities described in the development of the out�ow model from Section 2.3.1, shownin Table 7.1. We obtain a mass weighted out�ow velocity of the order of 0.5 km s−1 (Fig.7.7), which we will calibrate using RUz in the dynamo equations.We have modelled the radial in�ow for this galaxy (see Fig. 7.7, right panel), showinga very large radial in�ow in the outer regions of the disc, similar to that of M51 (Fig.112



Chapter 7. The Fireworks Galaxy (NG6946)
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Figure 7.7: Left panel : Mass weighted vertical velocity pro�le as calculated using the wind modeldescribed by Eq. (2.37). Right panel : Radial in�ow velocity pro�le as calculated using the windmodel described by Eq. (2.47)6.7), however with a magnitude approximately 1/10 that of the M51 in�ow in the regionsof high star formation. We do not use this in�ow in the model, as the vertical out�ow isour main motivation.7.3 Results7.3.1 Galactic parametersFor both the α-quenching and dynamical α models we adopt the following parameters fornon-dimensionalisation, characteristic of the observed pro�les used in the discussion. Wetake h0 = 0.5 kpc and Ω0 = 35km s−1 kpc−1, which leads to a value of α0 = 0.7 km s−1.We take ηt = 1.0 × 1026cm2s−1, l0 = 0.1 kpc, and use R0 = 17kpc to be the disc radiusin which our observations lie. These parameters are used to derive the dimensionlessparameters Rω = 27, and Rα = 1. We consider values of RUz in the range 0 < RUz < 2.0in order to calibrate the out�ow velocity.Note on the observational dataWe adopt the observational data of Beck (2007) for NGC6946. The regular magnetic �eldstrengths are derived from the energy density of the magnetic �eld EB = B2/8π. Beck(2007) calculated the �eld strengths assuming that the disc scale height was constant.
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Chapter 7. The Fireworks Galaxy (NG6946)7.3.2 Dynamos with α-quenchingWe use the disc scale height, rotation curve and gas densities to calculate the mag-netic �eld strength and pitch angle for the α-quenching model for NGC6946 using theparameters and observations introduced in Sections 7.2.1 to 7.3.1, and compare withobservations of the magnetic �eld of NGC6946 of Beck (2007) (with a modest marginof error of ±1µG). For the regular magnetic �eld pro�les, shown in Fig 7.8 (left panel),we �nd a marginally higher than observed magnitude for low RUz , and with increasingvalues, we see a suppression of the growth. The magnetic �eld saturates at around theequipartition �eld strength in the α-quenching model for RUz = 2.0. We observe anoptimum value of RUz = 2.0 which allows the magnetic �eld pro�le to rest comfortablywithin the observational ranges.For the optimum value of RUz , the pro�le we �nd does not �t the observations quiteas well as for the dynamical non-linearity. At r = 2kpc, the model regular magnetic�eld strength is approximately twice that observed, and at 5 kpc, the model output is
0µG, contrary to the 5µG observed at that radius. In contrast to the method we usedto average the results for M31, the observations for NGC6946 are less discrete (the datapoints are 0.5 kpc apart), hence we do not apply an averaging to the model outputs.There are large �uctuations in the pro�les for the magnetic �eld components, resultingfrom the large variations in the local shear (Fig. 7.4 (right panel)), in comparison withthe other galaxies where the local variations in the shear were not quite as dramatic aswith NGC 6946.7.3.3 Dynamos with a dynamical αWe again use the parameters and observations outlined above, and use the disc scaleheight, rotation curve and gas densities to calculate the magnetic �eld strength andpitch angle for the dynamical α model for NGC6946. We adopt the optimum value of
RUz = 2.0, which gives the largest pitch angles shown in Fig. 7.9. Again, as in theother galaxies, the dynamo in the dynamical α model saturates at a much lower levelthan in the α-quenching model (1/5 of the equipartition �eld strength for the optimumvalue of RUz = 2.0). As a result, we have to normalise our results to compare withthe observations of Beck (2007), by multiplying the pro�les by a factor of 5.5. Thenormalised pro�les of the total magnetic �eld, and the radial and azimuthal componentscalculated using the model are of the correct order of magnitude as the observations,and we �nd moderate agreement in the averaging of the structure of the magnetic �eld,showing (beyond the inner regions of the disc) a general decrease in the magnetic �eld114



Chapter 7. The Fireworks Galaxy (NG6946)
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Figure 7.8: (Upper left panel): Azimuthal (positive lines) and Radial (negative lines) magnetic�eld components for the α- quenching model, for RUz
= 0.0, 1.0 and 2.0 (dotted, dashed andsolid lines respectively). (Lower left panel): Azimuthal and radial magnetic �eld pro�les (positiveand negative lines respectively) from the α-quenching model using RUz

= 2.0. (Upper rightpanel): Azimuthal (positive lines) and Radial (negative lines) magnetic �eld components for thedynamical α model, for RUz
= 0.0, 1.0 and 2.0 (dotted, dashed and solid lines respectively).(Lower right panel): Total magnetic �eld strength from the dynamical α model using RUz

= 2.0.The grey boxes in all panels denote observational values from Beck (2007).
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Chapter 7. The Fireworks Galaxy (NG6946)
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Figure 7.9: (Left panel): Pitch angles for both the α- quenching, and dynamical α models. Solidlines show optimum RUz
= 2.0. Dashed and dotted lines denote the results for Ru = 1.0, and0.0 respectively. The grey boxes denote observational values of Beck (2007). (Right panel): Fig.16 from Beck (2007): Pitch angles of the magnetic �eld vectors at 20�resolution and contours ofpolarized intensity at λ6.2 cm.
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Chapter 7. The Fireworks Galaxy (NG6946)strength with increasing radius.7.3.4 Pitch angle of the magnetic �eldIn Fig. 7.9 there are very big �uctuations in the magnetic pitch angle, in particular inthe inner 6 kpc. As the observations of the pitch angle were averaged over three regionsby Beck (2007), we can in this instance apply the method used for the averaging of themodel outputs used for M31 to average over the three regions. There is a danger hereof relying too much on the averaged results, which in this case are only divided intothree sections for the entire disc, especially when considering results which �uctuate tothe extent they do here. It could be the case that we lose a lot of clarity in the resultsand miss what could be quite useful information which could otherwise bene�t futureinvestigations. We �nd that the general trend of the pitch angle to decrease with radiusis well reproduced, in a very similar fashion to that of M31. The averaging and standarddeviation estimates sit within the observational values in all three regions, giving thebest results. Fig. 6.10 shows that the predicted relationship between RUz and the pitchangle of the magnetic �eld, whereby the pitch angle increases with increasing RUz , again,holds, with very good agreement between both nonlinearities. The right panel of Fig. 7.9shows the observational map from which the grey boxes in the left panel are based (thevalues in the grey boxes are taken directly from the text of Beck (2007), based themselveson the map) and how varied they are in the disc of NGC6946.
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Figure 7.10: An analytical representation of the ratio between radialand azimuthal magnetic �eld components with varying RUz
, givenby Eq 2.44 (solid line). Green circles show the results for the α-quenching model and red circles show the results for the dynamical

α model. 117



Chapter 7. The Fireworks Galaxy (NG6946)7.4 SummaryIn this chapter we have presented the observational data for NGC6946 of Beck (2007),and investigated the evolution of the dynamo for both the α-quenching and dynamical
α dynamo models, with the inclusion of our star formation derived galactic out�ow.The observed pro�les and magnitudes of the magnetic �eld of Beck (2007) can bereproduced in structure using the α- quenching model. The dynamical α results requireupscaling by a multiple of 5.5 to sit on the observations, in a similar fashion to theupscaling used for M31. Both α-quenching and dynamical α models agree with thestructure of the magnetic �eld, producing a peak in the inner regions of the disc, followedby a slowly decreasing gradient beyond the inner 4 kpc, followed by a gradual decreaseout to r = 17kpc (where it must be noted that the magnetic �eld pro�les produced inthe α-quenching model reduce to negligible values beyond r = 10kpc for the optimumvalue of RUz).The magnitude of the local pitch angle of the magnetic �eld is relatively well producedfor NGC6946, in a similar way to that of the results for M31. This could possibly beattributed to the evolution of the dynamo of NGC6946, being similar to that of M31.Here we have a galaxy with a strong observed regular magnetic �eld; like M31. Thedynamical α model cannot obtain the correct magnitude of magnetic �eld strength, butcan reproduce the pitch angles, just like in the case of M31.���
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Chapter 8ConclusionsWe have developed a new physically rich model for a �ared, thin-disc galactic dynamo,incorporating the e�ects of observationally derived vertical out�ows from the disc, and adynamical evolution of the α-e�ect, based on magnetic helicity conservation laws.We have adapted and combined previous models of supernova evolution and galacticwinds in the presence of magnetic �elds to derive a mass weighted vertical out�ow froma galactic disc, which can be derived directly from observations of star formation.We have demonstrated that these out�ows have a de�nite and measurable e�ect onthe strength of the magnetic �eld. It has become clear that the out�ows a�ect themagnetic �eld in terms of its components in di�erent ways. This varied e�ect on thecomponents directly a�ects the pitch angle of the magnetic �eld; an observable quantitynot previously widely studied. An increase in the strength of an out�ow from a disc isseen to increase the size of the magnetic pitch angle, hence making the magnetic �eldmore radial in its nature.There are various sensitivities to the model we have used, and we have exploredthem, investigating their e�ects. We in particular chose to investigate the sensitivity tothe �aring of the disc, an observable quantity which, as can be seen in most of the galaxieswe have studied, has some uncertainty in its nature. Evolution of the model using a �atdisc in comparison to a �ared disc shows the magnetic pitch angle to increase to valuesbeyond those observed, and also reduces the magnitude of the azimuthal magnetic �eldbelow what is observed. The degree of �aring does not have a large e�ect on the results,so the main di�erence surfaces when using a �at instead of a �ared disc. This justi�esthe use of a �ared disc in such studies.The strength of the magnetic �eld and the pro�le of the magnetic pitch angle canbe slightly sensitive to the rotation curve used in these studies. Small changes in the119



Chapter 8. Conclusionsdi�erential rotation of the disc dictate changes in the local shear rate, which directlya�ects the Ω-e�ect. A larger shear will result in an ampli�cation in the azimuthal �eld.These e�ect however are quite small, and hence the resulting e�ects on the magneticpitch angle are similarly small.In future studies, where the possiblity of studying these galaxies in more detail arises,it will be interesting to explore these sensitivites more.We have applied this model to four nearby galaxies; M31, M33, M51 and NGC6946.We have organised them di�erently in this chapter as a result of the outcome of thestudy. The galaxies fall into two categories; one where the dynamical α model producesmagnetic �eld strengths considerably smaller than the observed values, and the otherwhere the observed �eld strengths are reproduced by the model.The two galaxies where the dynamical α model produces weaker than observed mag-netic �elds are M31 and NGC6946 and are discussed here:M31We obtain a good match to the observed pitch angles and magnetic �eld pro�les de-scribed in Fletcher et al. (2004), however the more physically derived dynamical α modelsaturates at 1/5 of the equipartition magnetic �eld strength, and the magnitude of the ob-served regular magnetic �eld in M31 is approximately that of the equipartition strength.The simpler α-quenching model will always saturate at the equipartition, Beq by con-struction, so the magnetic �eld strength given by the α-quenching model is of the correctmagnitude.Without an out�ow, the pitch angle of the magnetic �eld in M31 is smaller thanobserved. With the inclusion of a physically acceptable mass weighted out�ow of onlyapproximately 0.4 kms−1, the magnetic pitch angle is increased to within the observationswith an acceptable margin of error.Both models predict a substantial magnetic �eld in the inner galaxy that is not seenin synchrotron emission observations. It is suggested that magnetic �elds in this regioncould be searched for using Faraday rotation measures.NGC6946We obtain a good match to the observed pitch angles from both dynamo models. Sim-ilarly to M31 the magnetic �eld in the dynamical α model saturates at approximately120



Chapter 8. Conclusions1/5 the equipartition magnetic �eld strength, much lower than the observed values, soan arbitrary scaling is required to match the model results with the observations.We observe a reasonable reproduction of the radial pro�le of the magnetic �eldstrengths for the region r > 4 kpc described in Beck (2007), from the α-quenching model.M31 and NGC6946 SummaryBoth M31 and NGC6946 have strong regular magnetic �elds, that from observations(Fletcher et al., 2004; Beck, 2007) are known to be roughly of the magnitude of theequipartition magnetic �eld strength. In both galaxies the dynamical α model can re-produce the observed magnetic pitch angles well, but not the �eld strength, which isbetter reproduced (for r > 4 kpc in NGC6946) by the simple α- quenching model.The other group contains our other two galaxies; M33 and M51, and is where thedynamical α model does reasonably well in reproducing magnetic �elds of the order ofmagnitude of the observations.M33In contrast to both M31 and NGC6946, for M33, the dynamical α model gives reasonablemagnetic �eld pro�les, saturating at around B ≈ 2µG in good agreement with theobservations of Tabatabaei et al. (2008), however the magnitudes of the pitch anglesof the magnetic �eld are not well produced. It is possible that higher, bisymmetricdynamo modes discussed in Tabatabaei et al. (2008) are present, which would accountfor the larger values of observed pitch angles, and cannot be obtained in our axisymmetricmodel.M51In very similar fashion to M33, for M51, the dynamical αmodel gives reasonable magnetic�eld pro�les, with good agreement in terms of magnitude (B saturates at around 1.4µG),however the magnitudes of the pitch angles of the magnetic �eld are not well produced.M33 and M51 SummaryBoth M33 and M51 have weak regular magnetic �elds, with magnitudes only a fraction ofthe equipartition �eld strength (B0 = 8µG for M33, and B0 = 12µG for M51). Both M33and M51 are very rich in gas and both have very high star formation rates in comparison121



Chapter 8. Conclusionswith the likes of M31. Perhaps this is a sign that the galactic dynamo operates andsaturates di�erently in di�erent types of galaxies.Extending beyond this thesisBeyond this work, it would be interesting to follow up the models by investigating thee�ects of radial in�ows on the galactic dynamo. It was shown that both M33 and M51may have comparatively high radial in�ows in the outer regions of the disc. It is possiblethat this could be a contributory factor in increasing the pitch angle of the magnetic �eldin these galaxies.Also, it would be interesting to see whether additional �uxes, such as the Vishniac-Cho �ux could help the magnitude of the magnetic �eld strength calculated using thedynamical α-model.Time dependent out�ows and azimuthal velocities would be an ideal way to furtherthis investigation. It would be good to see how an out�ow magnitude decreasing withtime would a�ect the magnitudes of the magnetic �eld strengths and pitch angles of thegalaxies we have studied.
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