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Biomechanical models of the fingers are used to gain a greater understanding of their 

internal loading which will help guide clinicians treat injuries and pathologies.  These 

models require accurate measurement of body kinematics, external reaction forces and 

anthropometry.  The aim of this PhD was to gain a greater understanding of the 

predicted internal loading using biomechanical finger models and propose 

improvements in the kinematic and anatomical measurements required as their inputs.     

Through sensitivity analysis, correlations between uncertainty in the anthropometry and 

kinematics with predicted internal loading were found.  This showed that the predicted 

internal loading was most sensitive to changes in the moment arm of the flexor 

digitorum profundus tendon. 

A new method of motion capture of the fingers using functionally defined joint centres 

was assessed.  This method required the subject to complete a set of calibration 

movements.  Subjects with an injury or pathology may have significantly reduced 

mobility, therefore an analysis was carried out to quantify the effect of reducing the 

available movement to that of a subject with pathological mobility.  This resulted in 

errors of less than 5% in the predicted internal loading.  It was important to note 

however, that in the extreme cases of deformity and lack of mobility this functional 

technique would not be suitable.   

Finally, a combined method of ultrasound and stereo-photogrammetry to measure the 

in-vivo moment arm of the flexor digitorum profundus was developed, enabling non-

invasive subject specific measurements.  Measurement made using this technique found 

moment arms within the range of previous studies but they were found to alter the 

predicted internal loading by up to 84%.  This demonstrated the importance of subject 

specific measurement.  Although this was only a pilot study with a single subject it 

showed how this technique could be applied not just to the fingers but to other parts of 

the body where subject specific measurements of moments arms are important. 
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Chapter 1. Introduction 

1.1 Motivation 

The ability to understand the internal loading on the human body can be of great 

assistance to clinicians, engineers and any other person involved in the prevention and 

treatment of musculoskeletal disorders.  Kinematic analysis and musculoskeletal 

modelling of the fingers is substantially less developed than analysis of the lower limb.  

Although techniques and models have been proposed, there is still plenty of room for 

critical analysis of these studies and improvements to be made.  The main thing that 

struck me through my initial research was the potential for great variation in predicted 

internal loading depending on the model used and accuracy of experimental 

measurement.  This led to my research not only being focused on improving the 

accuracy of experimental measurement as input to musculoskeletal models, but also on 

the ability to quantify the errors and express them in terms relevant to real clinical 

applications. 

1.2 Biomechanical models and their inputs 

The first attempts at directly measuring joint forces were in the 1960’s using an 

instrumented hip joint prosthesis (Stokes, 1981).  The original wired systems have since 

been superseded by more modern wireless systems (Westerhoff et al., 2009).  The direct 

measurement of muscle and tendon loading is difficult due to the invasive nature of the 

procedures (Erdemir et al., 2007).  Previous studies have used buckle transducers (Komi 

et al., 1987) and the less invasive optical fibre methods (Finni et al., 1998) to measure 
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in-vivo loading for the Achilles tendon.  Force transducers have also been applied to the 

flexor tendons of hand (Schuind et al., 1992).  The disadvantage of these invasive 

techniques is that there was compromise in the range of positions that the subject could 

adopt and movement may have been affected by the local anaesthetic.     

Addressing these problems of direct measurement, the field of musculo-skeletal 

modelling has emerged.  This is the science of calculating internal forces from non-

invasive external measurements.  The idea of simplifying the human form to something 

more easily understood using scientific and mathematical techniques is not new and was 

first explored by Giovanni Borelli (1608-1679).  His studies aimed to explain the 

mechanics of human and animal movement through comparison with machines.  This 

principle of translating complex biological systems into simplified models is still 

maintained today. 

When applied to the musculoskeletal system, models can be classified as two 

techniques.  The first referred to as ‘Forward Dynamic’, calculates the kinematics and 

external forces applied to a body, from known muscle forces.  The second referred to as 

‘Inverse Dynamic’ uses measured kinematics and external reaction forces to calculate 

resultant joint moments, contact forces and soft tissue loading.  This second technique 

and the accurate measurement of its inputs is the main focus of this thesis.  

There are three primary inputs to an inverse dynamic model.  The first is the body 

kinematics, these are the body segment positions, orientations and accelerations relative 

to a known datum point.  The second is the external forces, also referred to as ground 

reaction forces applied to the body segments.  By modelling the body as a chain of 

linked segments these forces are used along with the kinematics to calculate the 

moments and forces acting on each joint as a result of external forces.  The third input is 

the soft tissue architecture data i.e. the size and position of all the muscles, tendons and 

ligaments relative to the joints as well as information about the joint and bone geometry. 

The solution of the equations to find the required muscles activations are indeterminate 

due to the load sharing between muscles and the antagonistic muscle action (Erdemir et 

al., 2007).  This normally means a criterion has to be defined that represents the 

neurological control of the muscles.  This takes the form of a cost function that will 

minimise a given function of muscle stress. 
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The accurate measurement of any one of these inputs is important in gaining an accurate 

estimation of the internal loading.  

1.3 Aims and objectives 

The first objective of this study was to gain an understanding of the errors in predicted 

muscle, tendon and joint forces from existing musculoskeletal models of the finger.  

This was done by comparison of existing models and also a sensitivity analysis of the 

model to variations in experimental input.  This could be variation in kinematics, 

external reaction force and anthropometric measurement.   

The second objective was to use these findings to develop and assess new methods of 

experimental measurement for both kinematics and subject specific anatomy.  The 

kinematic analysis was to provide as accurate a measurement as possible whilst 

minimising any restriction on the subjects’ movements.  In the measurement of subject 

specific anatomy it was of great importance to be able to measure non-invasively and 

preferably with the subject able to maintain movement of the fingers.  This should 

enable the subject to maintain movement and force be applied to their finger whilst 

undergoing measurement. 

1.4 Thesis Outline 

Chapter 2 introduces and summarises the relevant anatomy of the hand, the concept of 

biomechanical models, their inputs and the use of inverse dynamics. 

Chapter 3 is a study of influential model factors and the model sensitivity to changes in 

experimental input.  The results from this chapter are used to assess the techniques of 

kinematic and anatomical measurement used in Chapters 5, 6 and 8. 

Chapter 4 introduces the general principles and methods of motion capture.  A review of 

available methods of motion analysis is made including specific application to the hand 

and fingers. 

Chapter 5 introduces a new method of motion capture of the fingers using small 

hemispherical markers.  A comparison is made between two methods of functional joint 

axis definition. 
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Chapter 6 uses the methods developed in Chapter 5 and assesses the influence of the 

calibration range of motion on the accuracy.   

Chapter 7 reviews the methods of measuring tendon and muscle moment arms.  A 

comparison of published moment arms for the flexor digitorum profundus tendon is 

made. 

Chapter 8 proposes a new method of measuring finger tendon moment arms using 

combined ultrasound and stereo-photogrammetry.  This includes a description of the 

full calibration procedure for spatial synchronisation of an ultrasound image in the 

photogrammetric reference frame. 

Chapter 9 concludes the thesis with a summary of the findings with suggestions and 

potential for future work discussed. 
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Chapter 2. Anatomy and biomechanical modelling of the finger 

 

The hand is the most important human organ for carrying out dextrous tasks.  Without it 

we would not be able to grasp and manipulate tools, a crucial part in the evolution 

process that separates humans from the rest of the animal kingdom.  The hand consists 

of bones, ligaments, muscles and tendons, resulting in a complex multi-articular body.  

The kinematics of the thumb and fingers are a function of muscle and tendon forces and 

joint geometry.  Biomechanical models are a way of representing the hand anatomy in 

such a way as to provide quantitative assessment of movement and internal loading.  

Before any model can be constructed, first the underlying anatomy must be understood. 

2.1 Anatomy of the hand 

The bones and joints of the wrist and hand are visualised in Figure 2.1.  Starting from 

the wrist, there are the proximal carpal bones that articulate on the distal surface of the 

radius bone of the forearm.  The scaphoid and the lunate are the two carpal bones that 

directly articulate with the radius.  The triquetrum and pisiform are the other two 

proximal carpal bones providing support.  The distal carpal bones consist of the 

trapezium, trapezoid, capitate and hamate.  These provide the articular surfaces for the 

metacarpal bones.   
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Figure 2.1:  Bones and joints of the hand.  Figure adapted from www.anatomytv.com. 

The metacarpals are numbered one to five starting from the radial side.  Therefore the 

number one refers to the thumb, two to the index finger, three to the middle finger, four 

to the ring finger and five to the little finger.  The orientation of the first metacarpal 

gives it unique articulation relative to the others, providing us with our opposable 

thumbs.  Metacarpals two to five provide the support and shape to the palm region of 

the hand.  

At the distal end of each metacarpal lie the proximal phalanges one to five linked by the 

metacarpo-phalangeal (MCP) joints.  For the thumb, the distal phalanx joins to the 

proximal phalanges via an interphalangeal joint.  For the other fingers the middle 

phalanx joins to the proximal phalanx via proximal interphalangeal (PIP) joint.  On 

these fingers the distal phalanx joins to the middle phalanx via the distal interphalangeal 

(DIP) joint. 

All of the interphalangeal joints and the MCP joint are classed as synovial.  The MCP 

joints are additionally classed as condyloid joints, meaning they are biaxial allowing 

two degrees of freedom (DoF), one about the flexion/extension and the other about the 

abduction/adduction axis.  The supporting muscle, tendon and ligament structures do 
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not allow this joint to rotate about the supination/pronation axis.  The PIP and DIP 

joints are classed as hinges.  This means they are uniaxial allowing only one degree of 

freedom about the flexion/extension axis.  Although predominantly restricted by the 

bone geometry this single degree of freedom is also maintained by the collateral 

ligaments. 

There is no significant muscle mass on the phalanges themselves, with no muscle 

insertions more distal than the proximal phalanx.  This both keeps the mass of the 

fingers to a minimum and ensures there is no significant change in thickness with 

muscle contraction, maximising the fingers’ and dexterity.  The muscles providing 

control to the fingers are located in the forearm, these are connected to the fingers via 

long tendons.   

The modelling undertaken in this study was predominantly focused on the index finger, 

so only the muscle and tendon structure for this finger is described fully (Figure 2.2 and 

Figure 2.3).   

 

Figure 2.2:  Dorsal view of the right hand showing muscles and tendons.  Figure 

adapted from www.anatomytv.com. 

Dorsal interosseous

Extensor indicis

Extensor digitorum

communis

Extensor hood



 

Chapter 2. Anatomy and biomechanical modelling of the finger 

10 

 

 

Figure 2.3:  Palmer view of the right hand showing muscles and tendons.  Figure 

adapted from www.anatomytv.com. 

Three muscles act across the MCP joint; the dorsal interosseous (DIR), palmar 

interosseous (PIU) and the lumbrical (LUR).  The DIR has its origin on the metacarpal 

shaft and insertion on the extensor hood distal to the MCP joint.  It also has an insertion 

at the base of the proximal phalanx.  It provides an abduction and flexion moment 

across the MCP joint.  Due to its insertion in the extensor hood it also extends the two 

interphalangeal joints.  The LUR and PIU origins are on the metacarpal shaft and 

insertion on the proximal phalanx, they also has an insertion on the ulnar and radial 

aspect of the extensor hood respectively.  This means as it flexes the MCP joint is also 

extends the interphalangeal joints as well as adducting the MCP joint.  The LUR origin 

is on the flexor digitorum profundus (FDP, described later) and insertion on the 

extensor hood.  It flexes the MCP joint while extending the interphalangeal joints. 

There are two flexor muscles located in the forearm, the flexor digitorum profundus 

(FDP) and flexor digitorum superficialis (FDS).  Both of these divide into four tendons 

of the same name.  These pass through the carpal tunnel and provide flexion of fingers 

two to four.  The FDP inserts on the distal phalanx of the finger and flexes the two 

Palmar inerosseous

Flexor digitorum

profundus

Flexor digitorum

superficialis

Lumbrical
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interphalangeal joints, the MCP joint and the wrist.  The FDS inserts on the middle 

phalanx of the finger and flexes the PIP, MCP and wrist joints.    

For the index finger there are two extensor muscles in the forearm, the extensor 

digitorum communis (EDC) and the extensor indicis (EIT), the second is only present 

for this finger.  The EDC splits into three tendons that make up the tendon extensor 

hood acting across the interphalangeal joints.  Acting across the PIP joint are the radial, 

ulnar and central bands (RLB, ULB and CET).  These apply an extension moment at 

this joint and provide stability.  The radial and ulnar bands re-join to form the terminal 

band of the extensor tendon (TET).  This crosses the DIP joint and it has an insertion on 

the dorsal side of the distal phalanx, providing an extension moment across this joint.  

The EIT inserts into the proximal end of the extensor hood.  A summary of all the 

muscle/tendon units and the joints which they cross is given in Table 2.1. 

 

 

Table 2.1:  List of muscle and tendon units with their abbreviations and the joints that 

they cross. 

 

 

 

 

Functional unit Abreviation Acting across

Flexor Digitorum Profundus FDP DIP,PIP&MCP

Flexor Digitorum Superficialis FDS PIP&MCP

Central Band of the Extensor Tendon CET PIP

Radial Band of the Extensor Tendon RLB PIP

Ulnar Band of the Extensor Tendon ULB PIP

Terminal Band of the Extensor Tendon TET DIP

Extensor Indicis EIT MCP

Dorsal Interosseous DIR MCP

Extensor Digitorum Communis EDC MCP

Palmar Interosseous PIU MCP

Lumbrical LUR MCP
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The kinematics of finger flexion are characterised by the presence of the pulleys that 

constrain the movement of the flexor tendons (Figure 2.4).  By examining a simple two 

dimensional linkage model the role of these pulleys can be understood (Figure 2.5).  

The four segments shown are each connected by pin joints with segment 1 fixed.  In 

Position A all the segments are aligned.  A flexible string of length lo connects segment 

four with the fixed wall.  The length of the string is now shorted so the linkage is held in 

Position B.  If there are no additional constraints on the string it will have a new length 

lD i.e. the required shortening of the string is: 

          (2.1) 

We can now consider the case where the string is constrained at each pin joint.  This 

constraint means that the distance between the string and joint perpendicular to the 

segment long axis is fixed.  In this case the new length lP is equal to the sum of l1, l2, l3 

and l4.  The required shortening of the string is: 

          (2.2) 

From the figure it is clear that lP > lD, therefore the required shortening of the string will 

be less when the constraint is applied. 

 

Figure 2.4:  Annular pulleys of the index finger of the right hand shown in the palmar 

view.  Figure adapted from www.anatomytv.com. 
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The pulleys of the fingers constrain the flexor tendons to follow a path similar to that 

shown by the solid line in Position B.  It will not be identical as the pulley mechanism 

of the finger is more complex than that shown.  In reality many of the pulleys act in 

pairs either side of joint rather than the simplified case shown.  The pulleys give the 

hand its functional abilities in several ways.  They don’t allow the tendons to ‘bow-

string’ across the palm, if this was the case then we would have no ability to grasp 

objects.  As the tendons act as described above, less tendon excursion is needed to flex 

the finger joints.  This results in a shorter muscle body allowing it to be positioned more 

proximal on the forearm.  Minimal weight in the distal part of the upper limb gives 

optimal functional ability. 

The presence of pulleys means higher forces are needed to apply or resist an external 

load.  This is because the effective moment arm of the tendon across each joint is kept 

low, rather than allowed to increase as the joint is flexed.  This means stronger (thicker) 

muscle bodies are required to flex the fingers.  This suits the musculature of the body 

with shorter thicker muscles positioned proximally on the forearm.     

 

Figure 2.5:  Demonstrating the function of the pulley system.  String starts with length 

lo in Position A.  If no constraints were present the string would shorten to length lD to 

achieve Position B.  With the inclusion of the constraints the string need only shorten to 

length lP where lP > lD. 
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2.2 Biomechanical models 

Biomechanical models of the hand are used as a way of predicting the internal loading.  

The anatomy described needs to be represented in such a way that this can be done in a 

quantitative way.  Due to the nature of activities carried out by the hand, a three-

dimensional (3D) modelling approach is normally required.  All models simplify the 

anatomy of the hand to a linked chain of segments that can articulate relative to each 

other (Figure 2.6).  Each articulation is controlled by a joint of set kinematic properties 

(hinge, ball etc) and there will be a number of actuators acting across it.  These actuators 

represent the muscles, tendons and ligaments acting across a given joint and they are 

represented by their line of action and moment arm.  From these, the moment they apply 

across the joint as a function of tension in the actuator can be calculated.    

 

 

Figure 2.6:  All models represent the hand as a linked chain of segments.  The muscles, 

tendons and ligaments are simplified to their line of action and moment arm acting 

across the joints. 
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The first established hand models were those proposed by Landsmeer (Landsmeer, 

1961) considering the hand in the simplified two dimensional (2D) case.  3D models of 

the hand have been developed for a variety of applications in the past (Qin et al., 2010; 

Wu et al., 2008; Vigouroux et al., 2007; Vigouroux et al., 2006; Sancho-Bru Joaquin et 

al., 2003; Sancho-Bru et al., 2001; Fowler and Nicol, 2000; Biggs and Horch, 1999; 

Valero-Cuevas et al., 1998; Esteki and Mansour, 1997; Brook et al., 1995; An et al., 

1979).  The model proposed by An et al (1979) was the first to use 3D moment arms for 

each muscle/tendon unit.  An et al (1979) defined their model properties on the average 

measurements taken from cadaveric hands.  This work has provided a basis for many 

models proposed subsequently.  Some of these studies (Wu et al., 2008; Esteki and 

Mansour, 1997; Brook et al., 1995) were in the development of simulation models; 

these were in principle inverse dynamic models that either simulated a movement input 

or a force input to the finger.  The resultant muscle/tendon tensions were then 

calculated.  Wu et al (2008) used commercial modelling software (AnyBody) to model 

low impact tapping to improve treatment of repetitive strain injury.   Estiki and Mansour 

(1997) used a whole hand model to simulate grip types and subsequently evaluate 

surgical outcomes for patients with tetraplegia.  Brook et al (1995) developed a model 

of the index finger based the previous study of An et al (1979), and as with Wu et al 

(2008) this was compared with electromyography (EMG) data from the literature.  

 Other studies required a subject to carry out either a set of tasks or exercises.  By taking 

measurements of the kinematics and external reaction forces, using the principle of 

inverse dynamics, the kinetics could be calculated.  Vigouroux et al (2006 and 2007), 

studied high loading cases encountered in rock climbing.  Climbers are known to suffer 

acute injuries to both the tendons and pulley mechanism of the fingers.  The model used 

was based heavily on the previous work of An et al (1979) and Brook et al (1995).  In 

these cases the hand was in a static pose, although the physical reality would require 

dynamic loading.  Sancho-Bru et al (2001 and 2003) also used static measurements to 

represent a dynamic situation both for a free flexion and a high loading case.  Valero-

Cuevas et al (1998) used a phantom robot to track the movement and loading on the 

thumb dynamically.  Fowler and Nicol (2000) used photogrammetric techniques similar 

to those used in gait analysis using clusters of retro-reflective markers to track hand 

movement.  Combined with a load cell mounted into objects simulating simple tasks, 

accurate finger position and finger tip loading could be used as input to their model.  



 

Chapter 2. Anatomy and biomechanical modelling of the finger 

16 

 

Their model differed significantly from most others due to the inclusion of three DoF at 

the PIP joint (instead of one DoF about the flexion/extension axis only).   

Biomechanical models are used to predict internal loading of the hand as this is either 

very difficult or not practical to measure directly.  Studies have been made on cadaveric 

hands to calculate both the failure strength and predicted load using certain grip types 

(Schöffl et al., 2009).  Every model includes a cost function that represents muscle 

coordination and neurological control, making it not possible to use cadavers to validate 

models.  It has been possible to use direct invasive techniques (Schuind et al., 1992), 

however as discussed in Chapter 1, there was compromise in the range of positions and 

movement of the subject.  EMG measurements have been used to validate models 

(Valero-Cuevas et al., 1998) and can also be used as an input to constrain them 

(Vigouroux et al., 2007).  Accurate EMG measurement requires the insertion of fine-

wire probes into one or more of the extrinsic muscles.  This is both painful for the 

subject and the calculation of muscle activation from EMG response is subject to error.  

The combination of these factors means that most models have been validated through 

comparison with other studies in which the subject carried out a similar set of activities. 
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2.3 Model inputs 

As mentioned in Chapter 1, the measurement of any of the three model inputs is 

important in achieving an accurate calculation of the internal loading.  These are the 

body kinematics, anthropometric measures and the external reaction force.  This section 

briefly describes these three inputs and their measurement.  Body kinematics and 

anthropometric measurement are covered with more detail in Chapters 4 and 7. 

2.3.1 Body kinematics 

Body kinematics are the spatial position and orientation of body segments in terms of 

displacement, velocity and acceleration.  In the case of the hand models considered in 

this thesis the relevant body segments are the phalanges and metacarpals of the hand. 

The body kinematics are combined with the external reaction forces to determine the 

body kinetics.  This procedure to calculate the forces and moments between the body 

segments is known as inverse dynamics (as described in Section 2.4).   

To calculate the body kinematics some form of motion capture must be carried out.  In 

general these can be classed as video or inertial based.  Photographic methods of 

measuring body segment position cannot strictly be classed at kinematic measurements 

as they only give a static position.  They have however been used for the hand by 

several authors assuming static equilibrium to calculate the required moments and 

moments between the body segments (Vigouroux et al., 2006; Vergara et al., 2003).   

Inertial based systems rely on accelerometers and gyroscopes to determine the 

accelerations and orientation of sensors attached to the subject.  These can be 

transformed into velocities and displacements by integrating the acceleration signals.  

This method of motion capture is becoming more popular especially for gait analysis 

applications because of its cost relative to photogrammetric techniques and the lack of 

restriction on the subject to stay within a laboratory environment (Kavanagh and Menz, 

2008).  The size of the sensors means that this type of technique has yet to be used to 

track small body segments such as the fingers of the hand. 

Video based systems use a camera or set of cameras to measure the position of the body 

segments either directly or using special markers.  Marker based photogrammetric 

systems are the most common form of motion analysis to determine human kinematics 

(Andriacchi and Alexander, 2000).  Either active or passive markers are tracked by an 
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array of specialised cameras and their positions reconstructed in a 3D workspace.  This 

method is well established in the field of biomechanics and has been used in application 

to the hand in numerous studies (Metcalf et al., 2008; Carpinella et al., 2006; Cerveri et 

al., 2005; Degeorges et al., 2005; Su et al., 2005; Miyata et al., 2004; Zhang et al., 2003; 

Fowler and Nicol, 1999b; Rash et al., 1999; Chiu et al., 1998). 

2.3.2 Anthropometric data 

The anthropometric data are used to define the mechanical properties of the articulated 

linkage that the finger is modelled as.  This includes information about the bone 

geometry such as the size of each bone, the location of the axes of rotation and the 

position and size of any soft tissues relative to bones.  The soft tissues of relevance are 

the muscles, tendons and ligaments.   

For use in biomechanics models it is ultimately the calculation of the unit-force moment 

applied by each of these tissues across a given joint that is important.  To calculate this 

it is necessary to measure or otherwise predict the moment arm and the line of action of 

each muscle or tendon.  The moment arm can be thought of as the leverage across the 

joint and is equal to the perpendicular distance from the line of action of the 

muscle/tendon to the joint centre.  The line of action is the direction of pull of this 

muscle/tendon.  There is potential for confusion between the ‘unit-force moment’ and 

the ‘moment arm’ as some authors may not make a distinction between the two.  In this 

thesis the terms will only be referred to as they are described above.     

Using simple 2D mechanics the moment about a pin joint produced by a force applied, 

equals the product of the force applied and the distance to the pin joint perpendicular to 

this force.  Using the properties of the cross (vector) product this can be generalised in 

3D for the moment (M) applied by any force of magnitude (T) and direction (e) applied 

a distance (r) from a point of rotation.  The moment applied by the force is calculated 

as:    

             
            

      

  
(2.3) 

In this case r is the moment arm of the tendon and e is the line of action.  This is shown 

with relevance to a finger joint in Figure 2.7.  



 

Chapter 2. Anatomy and biomechanical modelling of the finger 

19 

 

 

Figure 2.7:  Showing the moment arm (r) and line of action (e) of a tendon crossing a 

joint.    

Location of the bone features and axes of rotation relative to known landmarks is 

important in a number of ways.  Depending on the method of motion analysis, the 

locations of the axes of rotation are used to define the kinematics of each body segment.  

Additionally these locations are also required for calculating the force path used in the 

inverse dynamic analysis (see section 2.4). 

The unit-force moment of each muscle, tendon or ligament unit is used to solve the 

equilibrium equations described in section 2.4.  This unit-force moment is calculated 

either from the moment arm or from both the moment arm and line of action.  The 

moment arm can be thought of as the leverage across a joint, and the line of action, the 

direction of the force applied.   

All anthropometric data ultimately rely on some form of anatomical measurement.  

These methods of anatomical measurement can be divided into two categories, invasive 

and non-invasive.  In the case of live humans it is not possible to carry out invasive 

measurement, so this is carried out only on cadaver specimens.  Non-invasive 

techniques normally require some form of medical imaging such as X-ray, computed 

tomography (CT), magnetic resonance imaging (MRI) or ultrasound.  Such imaging can 

be carried out both on live subjects and cadavers.   
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A full description of measurement and calculation of these parameters is presented in 

Section 7.1. 

2.3.3 External reaction forces 

The third input to a biomechanical model is the external reaction force.  This is used in 

the inverse dynamic analysis to calculate the body kinetics. 

The conventional way of determining these forces is to use a force transducer.  This can 

either be rigidly mounted in the laboratory, such as a force plate designed to measure 

the foot contact forces as a subject walks, or as a smaller transducer mounted in an 

object that the subject can pick up or otherwise interact with.   

A force transducer can be capable of measuring between one and six forces and 

moments.  If it is classed as mono-axial (Figure 2.8 (a)) it will measure force in only 

one direction, normally perpendicular to the transducer surface.  A tri-axis transducer 

(Figure 2.8 (b)) is able to measure the force in three orthogonal directions i.e. the force 

perpendicular to the surface and the two shear forces.  A six axis transducer (Figure 2.8 

(c)) will measure these three forces and the moments about each of the three axes. 

Mono-Axial force transducers have been used in several studies related to the hand 

(Vigouroux et al., 2008; Schweizer, 2001; Valero-Cuevas et al., 1998).  A low-friction 

thimble placed over the finger was used by Valero-Cuevas et al (1998) to ensure only a 

perpendicular force was applied to the surface of a mono-axial force transducer.  This 

experiment was not intended to represent a real situation but instead to eliminate shear 

forces (that would normally be present) to provide accurate input to a biomechanical 

model.  Power grips used in the sport of rock climbing have been of interest to 

researchers due to the high loads present in the fingers.  Schweizer (2001) used a mono-

axial transducer to measure maximal force in these grip types.  Because mono-axial 

transducers are smaller than tri-axial and six axis transducers they can be placed in an 

arrangement so as to create as true to life loading situation at possible.  This was utilised 

by Vigouroux et al (2008) to examine load sharing across fingers with four transducers 

mounted in close proximity.  To measure the force with a tri-axial force sensor the same 

authors were only able to measure the loading at a single finger (Vigouroux et al., 

2006). 
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Figure 2.8:  A mono-axial force transducer (a) with only the force perpendicular to the 

surface measured.  A tri-axial transducer (b) measuring the perpendicular force and the 

two shear forces.  A six axis transducer (c) measuring the three forces and the moments 

about each of these axes. 

To get the most accurate measurement of the external reaction force a six axis force 

transducer needs to be used.  The additional information gained from measuring the 

moments about each axis allows the exact position of the point of application of the 

force to be calculated.  

Six axis force transducers can be bought ‘off the shelf’ or bespoke made to suit specific 

applications (Fowler and Nicol, 1999a).  It is possible to mount transducers in a way so 

as to simulate every-day tasks such as opening a jar, twisting a tap, holding a kettle or 

turning a key (Figure 2.9).  The ability to produce smaller and smaller six axis force 

transducers has allowed some researchers to mount multiple transducers into an object 

small and light enough to be picked up (Gislason et al., 2009).  This allowed accurate 

force measurements to be taken from all three fingers and the thumb simultaneously.  

The rig was still bulky however and required compromise on how the subject could 

handle it.    
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Figure 2.9:  A six axis force transducer mounted to simulate opening a jar (a), twisting 

a tap (b), holding a kettle (c) or turning a key (d).  Adapted from Fowler and Nicol 

(1999a). 
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2.4 Inverse dynamic modelling 

In this thesis the application of inverse dynamic models is of significant interest.  

Inverse dynamics relies on the principle that the finger is modelled as a linked chain of 

rigid segments.  Firstly the magnitude and direction of the external loads applied to the 

finger are measured along with the position and orientation of each individual segment.  

By setting up a series of Newton-Euler equilibrium equations for each segment the 

moments and forces at each joint can be calculated.   

Subsequently, the force and moment equilibrium equations for each joint can be written 

in the generalised form (Chao et al., 1989): 

   

 

   

      

 

   

        (2.4) 

          

 

   

    

 

   

             (2.5) 

where 

   = magnitude of the force applied by tendon/muscle i (N). 

   = unit vector of the direction of   .  

   = magnitude of the external reaction force j (N). 

   = unit vector of the direction of   . 

  = the joint reaction force vector (N). 

   = moment arm of the tendon/muscle i (mm). 

   = position of the external reaction force j (mm). 

  = passive moments applied across the joint (Nmm). 

There are a total of n tendon forces crossing the joint with a total of m external reaction 

forces. 
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The parameters    and    are known from the body anthropometric data as detailed in 

Chapter 7.  The parameters   ,    and    are found using the kinematic analysis and the 

external reaction measurement.  The passive moments across the joint M are a result of 

friction and ligament forces that are not dependent on any muscle activation.  The 

moment equilibrium equation (2.5) is solved to find Ti, this can then be used to solve the 

force equilibrium equation (2.4) to find joint reaction forces. 

There will be equilibrium equations for each joint included in the model with the tendon 

tensions Ti common between them, meaning they must all be solved simultaneously.  

Additionally, all models include constraints on how the values of Ti relate to each other 

based on the subject anatomy. 

The tension in the TET (TTET) is constrained to the tensions in the RLB and ULB by: 

                        (2.6) 

An example of how this is represented in a model can be seen in Figure 3.2.  Some 

models such as those proposed by Fowler and Nicol (2000)  and Chao et al (1989) take 

the value of the alpha coefficients as αRLB = αULB = 1, whereas others such as Brook et 

al (1993) describe these coefficients as cosine terms depending on the angle of 

convergence of RLB and ULB. 

To describe how tension is transferred to and shared between bands of the extensor 

hood (RLB, ULB and CET) another three constraint equations are defined.  Chao et al 

(1989) described these relationships with fixed coefficient values shown by: 

                            

                          (2.7) 
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These are based on available anatomical knowledge.  Brook et al (1995) proposed a 

method subsequently in which variable alpha coefficients were used.  This was 

subsequently used by Vigouroux et al (2006) in their model: 

                          

                        (2.8) 

                                                

These coefficients were constrained to take a value between 0 and 1.  The optimal value 

was determined simultaneously to solving the constraint equations for Ti.      

The total number of unknowns (V) will depend on the model and will be the sum of the 

unknown tendon/muscle tensions and any unknown alpha coefficients.  The number of 

constraint equations (U) will depend on the model used.  In every model V > U,  i.e. the 

system is indeterminate.  This means there is more than one solution of T that will meet 

the constraints.  Methods have been described using reduction of variables (Chao et al., 

1989), however it is more common to use optimisation methods.  An additional 

constraint is applied to the solution of T in the form of a cost function (2.9).  This cost 

function represents the neurological control applied to the muscles and it is optimised to 

find its minimum value.   

              (2.9) 

It is normally a function of the stress, calculated as the tendon/muscle force divided by 

its cross sectional area (CSA).  It can be expressed in terms of either a minimal overall 

stress:  

    
  

    
 
 

 

 

   

 (2.10) 

or by minimising the maximum stress σ, so that: 

  

    
  ,  i = 1,...,n. (2.11) 

The choice of which cost function to use is important and authors have proposed that 

the optimisation schemes vary depending on the activity being carried out.  Sancho-Bru 
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et al (2001) states that minimising the overall stress, represented minimal muscle 

fatigue.  However this scheme was also used by Vigouourx et al (2006), for a maximal 

loading case.  Brook et al (1993) also used this scheme, although no justification was 

made.  Fowler and Nicol (2000) proposed that for static loading cases the minimal 

maximum stress would provide the best model.  This shows that the argument for what 

cost function for a given application is best remains unresolved.  An investigation on the 

effect of cost function on model outcome forms a part of this thesis in Chapter 3. 
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Chapter 3. Influential model factors and sensitivity analysis 

 

The work presented in this chapter has been accepted for publication in ‘The 

Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering 

in Medicine’ with the title “Sensitivity of a biomechanical model of the finger to errors 

in experimental input” (Warlow and Johnson, 2012). 

As was introduced in Chapter 2 a number of models of the hand and fingers have been 

proposed and the challenges facing their validation summarised.  In this chapter an 

analysis was carried out to determine the significance of using different models for 

predicting internal loading, and the sensitivity of these models to changes in 

experimental input.   

The study was split into two parts.  For the first, the results from two different models of 

the index finger of the right hand were compared using identical sets of experimental 

data (body kinematics and external reaction force).  Identical sets of data were used to 

ensure any significant differences in results were from the models alone.  This 

comparison was done to show how and why results (i.e. resultant tendon tension and 

internal loading) can be quite different between models.  The range of validity for each 

model was determined with regard to joint angle.   From these analyses the most 

appropriate model for further use in this thesis was chosen and modifications proposed 

to improve its range of validity.   
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For the second part of the study, the appropriately chosen model was used and a 

sensitivity analysis to changes in input was carried out.  The relationship between model 

outputs and errors in body kinematic and anthropometric measurement was established.  

These correlations are used later in Chapters 5 and 6 to assess the performance of the 

proposed method of kinematic analysis and in Chapter 8 to assess the effect of using 

subject specific muscle/tendon moment arms in the model. 

3.1 Model selection 

All models are a simplification of reality, including only what the researcher deems to 

be necessary components.  To provide contrast between those that included different 

levels of complexity, two different models were used.  The first, proposed by Fowler 

and Nicol (Fowler and Nicol, 2000) will be referred to as ‘Model A’.   The second, 

referred to as ‘Model B’, as proposed by Vigouroux et al (Vigouroux et al., 2006) was 

based on the normative model developed by An et al (1979).   

Each model represented the phalanges and metacarpal as a linked chain of rigid 

segments.  To ensure valid comparison between models a consistent definition of 

anatomical coordinate systems (ACSs) needed to be established.  The positions and 

orientations of these axes were in accordance with the International Society of 

Biomechanics (ISB) recommendations (Wu et al., 2005) and are shown in Figure 3.1.  

For each segment the y-axis was directed proximally defining the long axis.  The x-axis 

was directed palmarly and with the y-axis defined the sagittal plane of the segment.  The 

z-axis was perpendicular to this plane and directed radially (it was coincident with the 

flexion axis of rotation at the interphalangeal joints).   

The location of the segment origins was chosen to match those proposed Fowler et al 

(2001).  The origin of each phalanx segment was coincident with the joint centre located 

proximally to the segment.  The origin of the metacarpal segment was coincident with 

the joint centre located distally to the segment.  This convention was chosen to suit the 

requirements of this study.  If required it would be straightforward to express this origin 

in the position midway between the head and base of each segment (as proposed in the 

ISB recommendations (Wu et al., 2005)).   
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Figure 3.1:  Position and orientation of the ACSs of the phalanges and metacarpal of 

the right hand.  For the each phalanx (d = distal, m = middle, p = proximal) the origin 

of each ACS was positioned at the joint centre at the proximal end of the segment.  The 

metacarpal (mc) origin was coincident with the joint centre located distally to the 

segment.  The x-axis was directed palmarly, the y-axis directed proximally and the z-

axis directed radially for each segment. 

Model A included three segments representing the distal, middle and proximal 

phalanges, as shown in Figure 3.2.  Joining these were the distal interphalangeal (DIP) 

and proximal interphalangeal (PIP) joints.  The DIP joint was defined as a one degree of 

freedom (DoF) hinge about the flexion/extension (z) axis.  The PIP joint modelled with 

three DoF about the flexion/extension (z) axis, the abduction/adduction (x) axis and the 

pronation/supination (y) axis.  Acting across these joints were actuators representing six 

muscle/tendon functional units.  These are described as functional units as they cannot 

be regarded as independent muscles and tendons.  This is of particular relevance in the 

extensor hood where the extensor tendon is considered as a set of functional units bound 

by inter-dependent physical constraints.  The flexor tendons were the flexor digitorum 

profundus (FDP) and the flexor digitorum superficialis (FDP).  The extensor tendon was 

separated into four functional units, the central band (CET), the radial band (RLB), the 

ulnar band (ULB) and the terminal band (TET).  Only the FDP and TET acted across 

the DIP joint.  The remaining four actuators acted across the PIP joint in addition to the 

FDP that crossed both joints.  At the PIP joint radial and ulnar collateral ligaments 

(RCL and UCL) were included to provide joint stability.   
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Figure 3.2:  Model A.  Functional tendon/muscle units crossing the DIP and PIP joints.  

The force in the TET was defined by the equation:   

                (3.1) 

This comes from equation (2.6), where FTET  is the force in the terminal extensor tendon 

and FULB and FRLB are the forces in the ulnar and radial bands respectively.  In this case 

the alpha coefficients of equation (2.6) have the value of one (αRLB = αULB = 1). 

The moment arms and lines of action for each functional unit were measured by 

magnetic resonance imaging (MRI) (Fowler et al., 2001).  The measurements were 

made from a single 29 year old female subject with the hand in five positions.  By 

normalising to the middle phalanx length these measurements could be scaled to our test 

subject (the reasons for using this as a scaling factor are discussed in Section 7.2).  To 

transform these properties to suit joint angles not identical to those imaged, the actuator 

properties were either interpolated or extrapolated as a function of flexion angle.  

Interpolation was used when the required joint angle lay between those that were 

previously measured and extrapolation was used when the joint angle lay out with the 

range of those previously measured.  The cost function used to find the muscle 

activation minimised the overall maximum tendon stress (An et al., 1984).  This is 

equivalent to equation (2.11). 

In addition to the segments used in Model A, Model B included the metacarpal and the 

metacarpo-phalangeal (MCP) joint (Figure 3.3).  The DIP joint was defined identically 

to Model A.  The PIP joint howevdr, was modelled with only one DoF about the 
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flexion/extension (z) axis.  The MCP joint was modelled as a two DoF universal joint 

able to rotate about the flexion/extension (z) and abduction/adduction (x) axes.  The 

same six functional units as used in Model A crossed the DIP and PIP joints.  The FDP 

and FDS crossed the MCP joint as well as an additional four functional units.  These 

were: the dorsal interosseous (DIR), which attached to the radial side of the proximal 

phalanx, and the extensor digitorum communis (EDC), palmer interosseous (PIU) and 

lumbrical (LUR).  The model properties for both Models A and B are summarised in 

Table 3.1and Table 3.2.    

 

Figure 3.3:  Model B: Functional tendon/muscle units crossing the DIP, PIP and MCP 

joints.   

 

 

Table 3.1:  Joints included in each model and the degrees of freedom given to them.  A 

value of one was given if the degree of freedom at the given joint was included and zero 

if not.   
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Functional unit Abbreviation Acting across Included 

in model 

flexor digitorum profundus FDP DIP, PIP & MCP A & B 

flexor digitorum superficialis FDS PIP & MCP A & B 

central band of the extensor tendon CET PIP A & B 

radial lateral band of the extensor tendon RLB PIP A & B 

ulnar lateral band of the extensor tendon ULB PIP A & B 

terminal extensor tendon TET DIP A & B 

dorsal interosseous DIR MCP B 

extensor digitorum communis EDC MCP B 

palmar interosseus PIU MCP B 

lumbrical LUR MCP B 

 

Table 3.2:  Tendon/muscle functional units included in each model and the joints 

across which they act.   

 As was mentioned in Chapter 2, the force balance throughout the extensor mechanism 

for Model B was governed by equation (3.2), developed from the original equations 

proposed by Chao et al (1989). 

                         

                       (3.2) 

                                                

Where TRLB, TULB, TEDC, TPIU, TLUR and TCET were the tensions in each relevant 

functional unit.  The coefficients αEDC, αPIU and αLUR defined the balance of tension in 

the extensor hood.  Each α coefficient could take any value between 0 and 1.  These 

values were optimised simultaneously with the actuator tensions.  In addition to the 

muscle/tendon functional units detailed in Table 3.2 the radial and ulnar collateral 

ligaments (RCL and UCL) of the MCP were included to provide stability at this joint.   

The moment arms and lines of action were taken from the cadaveric study carried out 

by An et al (1979).  These measurements were taken with the hand in a neutral position.  

To obtain the moment arms and lines of action for the hand in any given pose, 

appropriate coordinate transformations were carried out.  The cost function used in this 

model minimised the total muscle stress, equivalent to equation (2.10). 
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3.2 Methods 

The aim of this study was to establish the influential model factors both through 

comparison of models and sensitivity analysis.  The experimental procedure described 

in Section 3.2.1 was used to carry out the comparison described in Section 3.2.2 and the 

sensitivity analysis described in Section 3.2.3.  I programmed both models using 

MATLAB (The MathWorks), based on the published models described in Section 3.1.     

3.2.1 Experimental Procedure 

Two sets of experimental data were collected.  Both used a six axis force transducer 

(AMTI Inc, U.S.A) to measure the external reaction force at the finger tip.  This was 

mounted in a rig to measure the force at the tip of a single finger (Figure 3.4).  A plate 

was rigidly attached to the load surface of the transducer with a 15x20mm pad for the 

finger to press against.  The transducer was fixed to a base plate to which a rigid rest 

was attached.  This rest allowed the other fingers of the hand to lie next to the measured 

finger without applying any load to the transducer.  This meant the subject did not have 

to unnaturally hold their other fingers flexed or extended to keep them away from the 

transducer.  The rest was wide enough that any finger could be measured with the others 

laying on the rest.  Attached to the base plate were three 10mm retro-reflective spheres.  

These defined a cluster technical frame (CTF) fixed in space relative to the transducer.  

The transducer position and orientation were calibrated relative to the CTF using four 

hemispherical markers placed on the pad and rest.  These markers were placed at known 

fixed locations relative to the transducer, therefore providing the calibration.  During the 

experiment these four additional markers were removed leaving only three defining the 

CTF to locate the position and orientation of the transducer.  This meant the whole rig 

could be moved in the photogrammetric frame without the need for re-calibration.  The 

base plate could be adjusted vertically relative to an elbow rest fixed to the base of the 

rig (Figure 3.5).  This set up allowed basic grip types to be tested.  As it was a 

comparison between models and their sensitivity to inputs being carried out, it was not 

considered of great importance to simulate a range of day-to-day hand grip situations.  It 

was more important to have a repeatable accurate measure and this set-up was deemed 

suitable. 
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Figure 3.4:  Force transducer rig. 

 

Figure 3.5:  Force transducer rig showing the elbow rest and the height adjustable 

transducer. 

Transducer

Base plate

CTF markers

Pad

Rest

Calibration markers



 

Chapter 3. Influential model factors and sensitivity analysis  

35 

 

For the model comparison a set of data was collected by experiment 1.  One subject was 

tested; a right handed male aged 24 years.  The finger kinematics were measured using a 

stereo-photogrammetric system (Vicon U.K. Ltd) with a sampling frequency of 100Hz.  

Eight 4mm diameter retro-reflective markers were attached directly to the skin in 

accordance with a previous study (Su et al., 2005).  The method of joint angle definition 

followed that specified by this author.  For this part of the study two hand positions 

were tested with three repetitions of each: the first with the fingers in an ‘open handed’ 

position, as show in Figure 3.6(a), the second, shown in Figure 3.6(b) with the fingers in 

a ‘closed’ position such that the PIP joint was highly-flexed and the DIP joint hyper-

extended.  This second position was tested by Vigouroux et al (2006), and is 

representative of a high loading case.  The subject was required to apply a force 

vertically downward on the pad with their index finger.  The forearm was vertical and 

the elbow flexed at ninety degrees and supported by an elbow rest.  The subject was 

asked to apply a force that was comfortable for them to maintain for up to five seconds.  

Three repetitions of each grip type were made and a period of approximately two 

seconds of constant force from each trial was used for analysis. 

 

Figure 3.6:  The two hand positions tested in experiment 1.  Open hand psotiion shown 

on the left with typical joint angles of ϕDIP = 30° to 40°, ϕPIP = 30° to 40° and ϕMCP = -

10° to 10°.  Closed position shown in the right with typical joint angles of ϕDIP = -15° to 

-25°, ϕPIP = 100° to 120° and ϕMCP = -15° to 15°.   
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A second set of data was collected by experiment 2.  These data were used to carry out a 

sensitivity analysis only on Model B, the reasons for this are discussed in Section  3.4.  

One subject was tested; a right handed male aged 26 years.  The finger kinematics were 

measured using a stereo-photogrammetric system (Vicon U.K. Ltd).  For this 

experiment a set of 12x4mm hemispherical markers were attached to the index finger of 

the right hand.  This was in accordance with the procedure described in Chapter 5 for 

definition of the ACSs using the phalanx transformation technique (PTT).  The accuracy 

afforded by this technique allowed a valid sensitivity analysis to be carried out.  For this 

experiment only the open hand grip type was tested (Figure 3.6(a)) with the subject 

required to apply a range of finger tip forces with a total of twenty repetitions.   

3.2.2 Model comparison 

Identical sets experimental data (kinematics and external reaction forces) were used as 

input to each model.  The metrics for the initial comparison were the tensions in the 

muscle/tendon functional units common to both models.  These were the FDP, FDS, 

CET, RLB, ULB and TET.  Any significant difference between models was determined 

statistically using a two sample t-test.   Significant difference was determined within a 

95% confidence interval. 

Additional configurations of the models were run to identify the effect of the cost 

function and anthropometric measurements on the results.  As described in Section 2.4 

it is common to use a cost function that either minimises overall stress (mean stress) or 

the single largest stress (min max).  For Model A the cost function was adjusted from a 

‘min max’ to ‘mean stress’ and for Model B cost function was adjusted from ‘mean 

stress’ to ‘min max’.  Any significant effect of the cost function was determined using a 

two sample t-test. 

The anthropometric data used differed between each model, with Model A using data 

measured from the MRI of a single subject (Fowler et al., 2001) and Model B using a 

set of data measured from cadaveric specimens (An et al., 1979).  To gauge the 

influence of these different ways of measuring the subject anatomy Model A was run 

using the cadaveric data and Model B run using the MRI data.  Whether this change had 

a significant effect on the models was determined using a two sample t-test. 
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3.2.3 Sensitivity analysis 

As is detailed in Chapter 2, there are three primary inputs to biomechanics models; body 

kinematics, anthropometric measures and the external reaction force.   

Small changes in the magnitude of external reaction force will have little effect on 

results as all internal forces are normalised to the vertical component of this external 

force.  The error of concern in this study therefore, is in the location of the centre of 

pressure (CoP).  This relies on accurate measurement of not only the forces, but also the 

moments applied to the transducer.  Although the transducer was calibrated to measure 

moments to within 1N (<1% load), this accuracy cannot be relied upon.  However, in 

the experiments carried out in my work, the error in location of this CoP relative to the 

finger can be considered part of the error in the measurement of body kinematics.  For 

this reason sensitivity analysis was carried out only to body kinematics and to 

anthropometric measurement.   

The body kinematics analysis required the artificial displacement of the joint centres.  

The anthropometric analysis involved the adjustment of the moment arms of each 

functional unit.  The unit-force moment used in the inverse dynamic modelling 

described in Section 2.3.2 directly correlates to the moment arm. 

A new set of experimental data was collected for the sensitivity analyses to utilise the 

more accurate methods of kinematic analysis developed in Chapter 5.  Using the PTT 

meant full definition of the ACS of each phalanx and metacarpal of the index of the 

finger of the right hand could be defined as per Figure 3.1. 

For the body kinematics sensitivity analysis the assumed location of each joint centre 

(DIP, PIP and MCP) was displaced to simulate errors in their measurement.  These 

displacements were applied systematically in the palmar/dorsal, proximal/distal and 

radial/ulnar directions at the three joints.  Each displacement was made independently 

of the others, therefore interaction effects were not calculated.  This was not deemed 

necessary at this stage as only the primary effects were of interest within the scope of 

this thesis.  To provide results that could be generalised and compared with other 

subjects in the future, the displacements were defined in terms of percentage of middle 

phalanx length, chosen as a scaling factor because it has been used for this purpose in 

previous studies (Wu et al., 2010; Fowler et al., 2001).  The middle phalanx length was 
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the length of the middle phalanx of the index finger, defined as the distance between the 

functionally defined DIP and PIP joints.  

The maximum displacement for each joint in each direction was 20% of middle phalanx 

length and the displacement step size was 1% of middle phalanx length.  The step size 

was the amount that each joint centre was displaced between each trial in the sensitivity 

analysis.  These percentages were chosen to achieve approximately a 5mm maximum 

displacement.  This ensured that even the most extreme errors in ACS position were 

taken into account (as calculated in Chapter 5 and 6).  

For the anthropometric data sensitivity analysis, the moment arms of a total of thirteen 

functional units acting across the three joints were adjusted.  There were a total of 

thirteen (rather than the ten detailed in Table 3.2) as the FDP crosses all three joints 

(DIP, PIP and MCP) and the FDS crossed two joints (PIP and MCP).  As with the body 

kinematics analysis, the components of the moment arms were adjusted in the 

palmar/dorsal, proximal/distal and radial/ulnar directions at the three joints.  Again all 

adjustments were made independently, and expressed as a percentage of middle phalanx 

length. A maximum percentage of 20% was chosen to ensure the likely maximum errors 

in the functional unit with the largest moment arm were covered.  This percentage was 

applied to every functional unit in every direction.  It was decided to be systematic in 

the application of the adjustments despite this resulting in some unrealistically large 

changes for some functional units.   

In addition to the tensions in each functional unit, the joint reaction force (JRF) was also 

calculated.  This force was calculated be re-arranging equation (2.4) to:  

     

 

   

      

 

   

    (3.3) 

where, 

   = the magnitude of the force applied by tendon/muscle i (N), 

   = unit vector of the direction of   ,  

   = the magnitude of the external reaction force j (N), 
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   = unit vector of the direction of    , 

  = the JRF vector (N). 

Equation (3.3) gives the JRF vector for each individual joint.   

3.3 Results 

3.3.1 Model comparison 

Both models only found valid solutions (all tensions < 1kN) for the ‘open handed’ grip 

type.  These results averaged across the grip time are shown in Figure 3.7 with the error 

bars indicating ± standard deviation.  The mean total flexor tension (sum of the FDP and 

FDS) differed between models by 31-44N (29-32%) and the mean total extensor tension 

(sum of the CET, RLB, ULB and TET) differed by 102-149N (74-79%).  These 

differences were found to be significantly different (p < 0.05) for all tendon units across 

all trials. 

No valid solutions were found using either model with the ‘closed handed’ grip type.  

This is discussed further in Section 3.4.  This meant that direct comparison between 

models could only be done for the ‘open handed’ grip type. 

The results of altering the cost function in each model are shown in Figure 3.8.  For 

Model A it was found that the cost function had a significant effect on the tension in all 

the functional units except the FDP and RLB.  For model B the cost function was found 

to have a significant effect on all tensions. 

When altering the anthropometric data used in each model is was impossible to run 

Model A using the data from the cadaveric study (measured by An et al (1979)) and 

produce valid results.  This was because of the increased complexity of Model A (see 

Section 3.4).  For this reason it was only possible to apply the alternative 

anthropometric data (i.e. that measured using MRI by Fowler et al (2001)) to Model B 

shown in Figure 3.9.  This change was found to have a significant effect on all tensions 

apart from in the CET. 
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Figure 3.7:  Mean calculated tensions for three trials of the ‘open handed’ grip type.  

Error bars represent ±1 Standard Deviation.  Functional units: flexor digitorum 

profundus (FDP), flexor digitorum superficialis (FDS), central band of the extensor 

tendon (CET), radial lateral band of the extensor tendon (RLB), ulnar lateral band of 

the extensor tendon (ULB), terminal extensor tendon (TET). 
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Figure 3.8:  Effect of the cost function on calculated tensions.  The two cost functions 

were minimising the maximum tension (MinMax) and minimising the overall tension 

(Mean).  Functional units: flexor digitorum profundus (FDP), flexor digitorum 

superficialis (FDS), central band of the extensor tendon (CET), radial lateral band of 

the extensor tendon (RLB), ulnar lateral band of the extensor tendon (ULB), terminal 

extensor tendon (TET). 
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Figure 3.9:  Effect of altering the anatomy on the calculated tensions from Model B.  

The original anatomy was that measured by An et al (1979) and the alternate was that 

measured by Fowler et al (2001).  Functional units: flexor digitorum profundus (FDP), 

flexor digitorum superficialis (FDS), central band of the extensor tendon (CET), radial 

lateral band of the extensor tendon (RLB), ulnar lateral band of the extensor tendon 

(ULB), terminal extensor tendon (TET). 
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3.3.2 Sensitivity analysis  

To enable the model output results to be averaged across the twenty trials recorded, the 

tensions in the functional units and the JRF were normalised to the vertical component 

of the external reaction force (i.e. the largest force) to give nJRF.  The magnitude of 

these tensions is shown in Figure 3.10 and is referred to as the baseline output.  The 

normalised mean JRF was 4.6 with a standard deviation of 0.5. 

The results of the sensitivity to joint centre location are shown in Figure 3.11 and Figure 

3.12.  The horizontal axis of the plots are split into three divisions representing a 

specific joint.  These are split into three further subdivisions representing displacement 

in palmar/dorsal (+/- x), proximal/distal (+/- y) and radial/ulnar (+/- z) directions of the 

ACS.  The vertical axes show the change in the mean JRF from the baseline output.  To 

improve clarity the outputs have been divided into flexors and extensors (shown in the 

top and bottom plots of Figure 3.11).  Figure 3.12 shows the change in nJRF for each of 

the individual joints (DIP, PIP and MCP) from the baseline output.  Additionally the 

mean nJRF is presented in the bottom plot.  It can be observed that the profile and 

magnitude for each joint is very similar, closely following the mean nJRF profile and 

therefore only this mean force is considered further.  

 

Figure 3.10:  Baseline magnitude of the normalised tension in each tendon functional 

unit and the mean nJRF.  Error bars represent ± 1 standard deviation.  Functional 

units: flexor digitorum profundus (FDP), flexor digitorum superficialis (FDS), central 

band of the extensor tendon (CET), radial lateral band of the extensor tendon (RLB), 

ulnar lateral band of the extensor tendon (ULB), terminal extensor tendon (TET), 

lumbrical (LUR), dorsal interosseous (DIR), palmer interosseous (PIU), extensor 

digitorum communis (EDC).   
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At the DIP joint the outputs were predominantly sensitive to changes in the 

proximal/distal direction.  All the outputs generally follow a linear correlation with this 

change. FDP and CET had a positive correlation whilst the RLB, ULB, TET and EDC 

had a negative correlation.  The mean nJRF followed a more complex relationship with 

a negative correlation in the distal (–y) direction and a less pronounced positive 

correlation in the proximal (+y) direction. 

At the PIP joint the outputs were sensitive to changes in the palmar/dorsal and 

proximal/distal directions only.  The CET had a positive correlation, whilst the FDP, 

RLB, ULB, TET and EDC had a negative correlation with changes in the palmar (+x) 

direction.  The other outputs had little sensitivity to changes in this direction.  The FDP, 

FDS, RLB, ULB, TET and EDC had a positive correlation whilst the PIU and CET had 

a negative correlation with changes in the proximal (+y) direction.  The mean nJRF 

followed a negative correlation to changes the palmar (+x) direction and a positive 

correlation to changes in the proximal (+y) direction. 

At the MCP joint the outputs were sensitive to the changes in all three directions.  The 

FDP, RLB, ULB, TET and EDC had a positive correlation whilst the FDS had a 

negative correlation with changes in the palmar (+x) direction.  The FDS and CET had a 

positive correlation whilst the FDP, RLB, ULB, TET and EDC had a negative 

correlation with changes in the proximal (+y) direction.  The FDS had a positive 

correlation whilst the FDP, DIR, RLB, ULB, TET and EDC had a negative correlation 

with changes in the radial (+z) direction.  The mean nJRF had a positive correlation 

with changes in the palmar (+x) direction and a negative correlation with changes in the 

proximal (+y) and radial (+z) directions. 

The results of the sensitivity analysis to the anthropometric data are shown in Figure 

3.13.  The figure is split into three plots, showing the sensitivity to adjustments of the 

moment arms at the three joints.  The horizontal axes of each plot are spit into sections 

representing each functional unit crossing the joint, these are again split into sections 

representing the adjustment in the three axial directions (as in Figure 3.11 and Figure 

3.12).  From this plot it was evident that the model outputs are most sensitive to any 

changes in the moment arm of the FDP. There was also sensitivity to changes in the 

moment arm of the FDS, DIR and EDC although these were less pronounced.  

Adjustments in all other functional units had little effect on the outputs.   
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Figure 3.11:  Sensitivity of the normalised magnitude of the tension in the tendon 

functional units to displacement of the joint centres.  Displacement = 20% of the middle 

phalanx length in palmar/dorsal (+/- x), proximal/distal (+/- y) and radial/ulnar (+/- z) 

directions.  The top graph shows sensitivity of the flexor tendon units and the bottom 

graph the extensor tendon units. 
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Figure 3.12:  Sensitivity of the nJRF of each individual joint and the mean nJRF to 

displacement of the joint centres.  Displacement = 20% of the middle phalanx length in 

palmar/dorsal (+/- x), proximal/distal (+/- y) and radial/ulnar (+/- z) directions.   
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Figure 3.13:  Sensitivity of the mean nJRF to change in the moment arms of each 

functional unit at each joint.  The top graph represents sensitivity to changes at the DIP 

joint, the middle graph to changes at the PIP joint and the bottom graph to changes at 

the MCP joint.  Displacement = 20% of the middle phalanx length in palmar/dorsal (+/- 

x), proximal/distal (+/- y) and radial/ulnar (+/- z) directions.   
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3.4 Discussion 

The first part of this chapter was concerned with examining the difference in outputs 

calculated using two different phalangeal models.  A single set of experimental inputs 

were used to ensure no inter-subject or experimental error would affect the results.  If 

more subjects were available additional comparison could have been made between the 

models, however the conclusions reached in this chapter are independent of any subject 

specific factors.  

With both models, no valid solutions were found when the hand was in the ‘closed grip’ 

position.  Both models relied on some form of anatomical measure, either from 

cadaveric specimens or MRI.  The cadaveric data were presented in a neutral position, 

therefore transformations had to be applied to find the appropriate moment arms and 

lines of action for the hand position measured by the experiment.  The MRI data exist 

only at discrete hand positions, therefore interpolations and extrapolations needed to be 

made to fit the hand position measured by the experiment.  Using either of these 

methods can result in inaccurate calculation of the moment arms and lines of action 

when any of the finger joints are highly flexed or extended.  This is shown in Figure 

3.14 for the cadaver study carried out by An et al (1979).  The unit-force moments about 

the z (flexion/extension) axis are shown for each functional unit crossing the PIP joint.  

When the angle of flexion goes beyond 100° the unit-force moment flips from flexion to 

extension or vice-versa which is not representative of reality.  Similar effects were 

observed for the MRI data measured by Fowler et al (2001) at the DIP joint.   For the 

‘closed grip’ type the DIP was hyper-extended from -15° to -25° and the PIP highly 

flexed from 100° to 120°.  This meant the moment arms were outside the valid range as 

demonstrated in Figure 3.14 resulting in unrealistically high tensions being calculated.   
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Figure 3.14:  Unit-force moment about the flexion/extension axis of the PIP joint for the 

five function units crossing calculated from the cadaver dataset of An et al (1979). 

A way of increasing these models’ range of validity without additional experimental 

measurement would be to apply corrections to these invalid moment arms.  A method 

has been proposed (Landsmeer, 1961) using two-dimensional models to represent the 

muscles and tendons.  The extensors were modelled as wrapping around the articular 

surface of the joint.  The flexors were modelled as running through a tendon sheath.  

For the PIP joint, the moment arms calculated using these models were smaller than 

those found by An et al (1979) , however they continued to be valid even when the joint 

had gone beyond 100° of flexion.  A way of increasing the range validity of the 

cadaveric measurement would be to use the cadaveric data as measured to the point that 

the flexion or extension is out of the range of validity.  At this point the models 

proposed by Landsmeer (1961) can be used with coefficients matched to produce a 

smooth transition between methods.   

As only the results of the ‘open grip’ type were valid, just this grip was used for model 

comparison and sensitivity analysis.  The cost function used to calculate tendon tensions 

was found to have a significant effect on most outputs.  When the minimal maximum 

stress constraint was applied, there was a greater contribution from the CET providing 

joint stabilisation, but there was little effect on the magnitude of the other tensions.  The 

type of activity being carried out will influence the neurological control of the balance 

between muscle forces, therefore it was difficult to determine which cost function was 

best.  As it was a static test, it would be more likely that the minimum overall maximum 

tendon stress used by Model A would be more applicable.  What is clear from the 
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results was that although cost function is important there are other model factors that 

had a greater effect on the results. 

A comparison was made using alternate sets of anthropometric data as input to each 

model.  Originally model A used the data from the MRI study (Fowler et al., 2001) and 

Model B used those from the cadaver study (An et al., 1979).  No feasible solutions 

were found when running Model A using the data from the cadaveric study.  The 

authors of Model A produced a more complex model by including more anatomical 

structures and DoF at the PIP joint.  The additional complexities given to this joint in 

Model A meant any inaccuracy in subject anatomy or external measurement was likely 

to result in no feasible solution being found.  Solutions were found for Model B using 

alternate anatomy and this change in anatomy was found to have a significant effect.  

Despite the significant effect of the anatomy there were still greater differences between 

the models from other factors.   

It is my opinion that the difference between models was predominantly due to the way 

the PIP joint was modelled.  The increased DoF and additional ligament structures at the 

PIP joint used in Model A require a measurement of kinematics and anatomy beyond 

what was possible in my experiment.  It resulted in very large antagonistic muscle 

forces that in my opinion were un-realistic.  Therefore it was decided the results of this 

model are unlikely to be as viable as those from Model B.  It was this Model B that was 

taken forward and used for the sensitivity analysis. 

As discussed in Section 3.2.3 it was decided to carry out sensitivity analysis to changes 

in the position of the joint centres and to changes in the moment arms of each functional 

unit.  This would give an indication of what inputs were the most important to 

accurately predict the internal loading of the finger.  From Figure 3.9 it has already been 

observed that changes in the anatomy had a significant effect.  The sensitivity analysis 

aimed to quantify this fully, as well as the effect of displacements in locations of the 

joint centres. 

For the joint position sensitivity analysis it was found that at the DIP joint the outputs 

were sensitive to changes in the proximal/distal directions and less sensitive to changes 

in the palmar/dorsal directions of the distal phalanx ACS.  Figure 3.15 shows the 

orientation of the distal phalanx ACS relative to the external reaction force was such 

that this force acted almost entirely in the dorsal (-x) direction.  This meant that any 
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change in the location of the joint centre in the palmar/dorsal direction had very little 

effect on the joint moment and subsequently tendon tension.   

 

Figure 3.15:  Showing the position and orientation of each phalanx ACS relative to the 

external reaction force.  The x-axis is represented by a blue line and the y-axis is 

represented by the red.  

The model only included a DoF about the z-axis (flexion/extension) for the DIP joint, 

therefore any change in the radial/ulnar direction would not affect the model outputs 

despite altering the moment about the x (abduction/adduction) and y-axes 

(pronation/supination).  This left only displacement in the proximal/distal direction 

having any large effect.  The tension in the FDP had a positive correlation with the 

displacement.  From Figure 3.15 it is evident that decreasing or increasing the distance 

between the distal phalanx ACS origin and the external reaction force in the y direction 

would directly correlate with an increase and decrease in the moment at this joint.  As 

the only flexor crossing this joint was the FDP, the tension in this changed to ensure the 

moment equilibrium across the DIP joint was maintained.  As the moment across the 

PIP joint was unaffected by changes in the location of the DIP joint any change in the 
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FDP tension had to be counterbalanced by a change in the FDS to maintain equilibrium.  

This change in the flexor tendons had a knock on effect on the extensors to maintain 

stability across all three joints.  The RLB, ULB, TET and EDC followed very similar 

trends as they are constrained by equations (3.1) and (3.2).  The correlation of these 

tensions with displacement in the proximal/distal direction was not entirely linear.  

Displacement in a proximal (+y) direction had less effect than displacement in the 

negative direction.  This could be caused by an increase in FDP tension and reduction in 

FDS tension resulting in less stabilising force being required at the MCP joint compared 

to a decrease in FDP and increase in FDS. 

 The mean nJRF had a negative correlation with the displacement in the y direction, but 

only for a negative displacement.  This correlation occurred because the increase in 

magnitude of force in the TET was greater than the decrease in the FDP (the only two 

functional units that cross the DIP joint).  For a positive displacement in the y direction 

the correlation became more positive as the change in magnitude of extensors was less 

marked, as discussed above. 

At the PIP joint the orientation of the middle phalanx meant there was a sensitivity to 

displacement in both the palmar/dorsal and proximal/distal directions of the middle 

phalanx ACS.  Like the DIP joint there was no change with displacement in the 

direction of the z-axis (flexion/extension) due to there only being one DoF at this joint.  

The orientation of the middle phalanx (Figure 3.15) meant that a displacement of the 

joint centre in a dorsal (-x) direction or in a proximal (+y) direction would result in an 

increased moment at the joint.  This was reflected in a corresponding increase in tension 

in the flexor tendons and change in the extensor tension to maintain joint stability. As 

the majority of the functional units followed the same pattern of correlation the mean 

nJRF followed this also.   

At the MCP joint there was sensitivity to displacements in the direction of all three axes 

of the proximal ACS.  The orientation of the proximal phalanx (Figure 3.15) meant that 

as for the PIP joint, a displacement of the joint centre along the x-axis 

(abduction/adduction) in a negative direction resulted in an increase in joint moment.  

Unlike the PIP joint however this moment is kept in equilibrium by an increase in the 

FDS and DIR rather than the FDP (which in fact decreased).  This decrease in the FDP 

subsequently resulted in a decrease in the TET and therefore the EDC.  In total this 
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amounted to a net decrease in the mean nJRF which is an opposite effect to that 

observed at the PIP.  As the external reaction force was almost aligned with the y-axis 

(proximal/distal) of the proximal phalanx ACS, displacement in this direction had little 

effect on tensions or external reaction force.  In this orientation of the hand, 

displacement of the MCP joint in the radial (+z) direction resulted in the moment about 

the x-axis (abduction/adduction) decreasing i.e. the required abduction moment 

decreased.  This correlated with the change in the DIR which has a far greater abduction 

moment than a flexion moment across the MCP joint.  This functional unit had the most 

significant sensitivity to changes in the radial/ulnar direction and correspondingly the 

mean nJRF followed a similar trend to the DIR. 

These correlations can be used to generate coefficients between errors in the location of 

the joint centre and error in the internal loading.  It has been shown in this study that 

these coefficients will be a result of the specific orientation of the joint segments 

relative to the external reaction force.  Therefore if any other grip types were to be 

tested additional sensitivity analysis would need to be carried out. 

The sensitivity of mean nJRF to changes in the anatomy showed that for this grip type 

the moment arm of the FDP was the most significant.  In general, for this functional 

unit, decreases in the moment arm in the palmar (+x) direction and increases in the 

proximal (+y) direction of each ACS will decrease the unit-force moment.  This meant a 

larger tension would be required and therefore the mean nJRF increased.  It was 

observed that the four most highly loaded functional units (FDP, FDS, DIR and EDC) 

in Figure 3.10 had the most sensitivity to the moment arm displacement (Figure 3.13).  

Therefore it can be concluded that sensitivity to displacement of the moment arm 

correlates with the baseline output.  Because some functional units had a low magnitude 

of tension such as the LUR a change in tension of as little as 1N would result in a very 

large percentage change.  For this reason errors were only considered in absolute terms 

rather than percentage.   
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3.5 Conclusions 

This chapter was split into two parts, the first to compare models and assess their 

validity and the second to carry out a sensitivity analysis.  Two sets of experimental 

data were collected, one for each part.  It was found that the models chosen were not 

suitable for analysis of grip types where the joints were either highly-flexed or 

extended.  This was due to limitations in the anthropometric data available.  This would 

need to be collected over a wider range of joint angles to produce a valid model.  The 

most significant difference between models was deemed to be the way the PIP joint was 

modelled with Model A using a much more complex joint.  This was likely to result in 

unrealistically high forces in the extensor mechanism to stabilise this joint.  It was 

therefore decided to only use Model B in further analyses. 

The body kinematics sensitivity analysis showed strong correlations between tension in 

each functional unit and the displacement in the three joint locations.  This can be used 

to assess the viability of any method of kinematic analysis where the error in location of 

the joint centres can be quantified. 

The anthropometric data sensitivity analysis showed that the largest sensitivity resulted 

from changes in the most highly loaded functional units.  This meant that for this grip 

type accurate measurement of the FDP, FDS, DIR and EDC moment arms was critical. 
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Chapter 4. Principles of motion capture and its application to the 

hand and fingers 

 

 “Human movement analysis aims at gathering quantitative information about the 

mechanics of the musculo-skeletal system during the execution of a motor task” 

(Cappozzo et al., 2005) 

This statement summarises the principless of motion capture experiments.  Qualitative 

assessment of a subject’s movement would be what an observer might do in recognising 

somebody with a limp or struggling to lift a bag.  This kind of assessment has and 

continues to be useful for clinicians, physiotherapists, sports coaches and more.  They 

can use their knowledge and expertise to assess a subject’s ability without any need for 

additional metrics.  The aim of modern motion analysis is to provide a way of 

quantitative assessment.  A quantitative analysis gives a means of standardising 

assessment, eliminating the variation that would exist between human observers.  It also 

can provide more information than can be measured or judged by eye.  This can be used 

in conjunction with the observers’ experience and knowledge to provide a more 

thorough analysis.  

The earliest known instance of applying scientific principles to an animal locomotion 

problem was the set of photographs taken by Eadward Muybridge (1830-1904) of a 

galloping horse in 1877.  Since then the field of motion capture has come a long way 
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with many sophisticated methods of defining human body kinematics using advanced 

computing power and instrumentation (Andriacchi and Alexander, 2000). 

Body kinematics are the spatial position and orientation of body segments in terms of 

displacement, velocity and acceleration.  As described in Chapter 2 we can use the 

known body kinematics in combination with known external reaction forces and body 

anthropometric data to predict internal loading using biomechanical models.   

4.1 Notation Glossary 

The following defines the notation used for describing rotation and translations between 

coordinate systems in this thesis. 

A letter contained within curly brackets represents a coordinate system such as     and 

   . 

A single capital letter in bold font represents a square matrix, either a 3x3 or a 4x4.  A 

3x3 matrix will either define a set of rotations between two coordinate systems or define 

a set of orthogonal axes.  In a set of axes, an x, y or z subscript represents a vector 

defining a single axis of the set.  A 4x4 matrix represents a full transformation (rotation 

and translation) between two coordinate systems.  Preceding superscripts and subscripts 

are used to define which coordinate systems a transformation matrix refers to.  For 

example, the orientation matrix   
  defines the rotation from coordinate system     to 

system    .   

A bold font lower case letter represents a three dimensional (3D) positional coordinate 

or a 3D vector.  As with the matrices, a preceding superscript defines what coordinate 

system this quantity is defined in.  For example,    defines the position c in the 

coordinate system    .  

A lower case letter not in bold font with an x, y or z subscript represents the individual 

components of a vector or 3D position coordinate.  For example cx, cy, and cz represent 

the x, y, and z components of the position c. 

A trailing superscript gives additional information about an axis undergoing basic 

rotations.  Trailing superscripts of ' or '' represent the axes of a coordinate system after 

the first and second rotations respectively.    
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To keep equations simple and un-cluttered some subscripts and superscripts may be 

(although not always) excluded if they are the same for each matrix, vector or position 

in that equation.  

4.2 Defining position and orientation of body segments 

In some cases an observer may only be interested in a single angle between body 

segments.  Assuming planar motion this can be achieved using two dimensional (2D) 

motion capture to determine the long axis of each segment of interest.  In current human 

motion analysis however, knowledge of the 3D kinematics of the body segments is 

considered standard.  

3D kinematic analysis relies on a set of reference frames being defined and the rotations 

and translations between them known.  These rotations and translations can either be 

defined relative to a fixed global reference frame or local technical frames (Cappozzo et 

al., 2005).  This allows the motion of one segment to be considered with reference to 

those adjacent to it, or it may be considered with reference to a fixed reference frame.  

A global fixed reference frame would be used if the subject was walking across a force 

plate or otherwise interacting with an object fixed in the lab environment.  It is also 

possible to have a local fixed reference frame, for example in upper arm motion it is 

normal to define motion relative to the thorax technical frame which is fixed if the 

subject is assumed to be stationary (Masjedi, 2009).  

4.2.1 Definition of anatomical coordinate systems 

Given the assumption that body segments are ‘rigid’ i.e. that the underlying bone is a 

rigid structure, it can be assumed that all distances and relative positions of points on a 

single segment will remain invariant (Woltring, 1991).  With this assumption a set of 

Cartesian axes fixed to the underlying bone can be defined.  This creates an anatomical 

coordinate system (ACS) for each body segment.  With each segment given its own 

ACS the relative position and rotation of each segment is known with regard either to 

other body segments (used in inertial analysis) or to a global reference frame (used in 

photogrammetric analysis).      

One of the major advantages of defining ACSs is that inter and intra subject 

repeatability is improved (Cappozzo et al., 2005).  If the ACSs between two different 

studies are the same or at least well defined then work carried out between different 
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institutions and research groups can be easily compared and assessed.  To this end it has 

been attempted to recommend a standard definition of body segment ACSs as 

international standards (Wu et al., 2005; Wu et al., 2002).  The ACSs recommended in 

these standards are defined relative to anatomical landmarks.   

Research carried out prior to the publication of these recommendations may not adhere 

to the standards.  This may be simply because there were no recommendations in place, 

or the definition chosen suited the research being carried out at the time.  This is of 

particular relevance to the hand and fingers as the ACS used by An et al (1979) differs 

from the recommendations, both in orientation of the axes and location of the segment 

origin.  As this work is key in the field, later research has often taken the definition of 

these ACSs as standard, whilst others have opted to take a convention more in-line with 

those recommended by Wu et al (2005).  Although this does make comparison between 

studies more problematic, as long as their conventions are defined clearly by the author, 

transformations can be made to a common convention.  The conventions used in this 

thesis are defined in Section 3.1.  They have been chosen with thought both to the 

current recommendation but also to the requirements of my research.   

4.2.2 Vector transformation 

A coordinate or vector in any Cartesian coordinate system can be referred to in another 

system by the application of a set of rotations and translations.  This process is known 

as coordinate or vector transformation.  A position    defined in coordinate system     

can be expressed in the coordinate system     by applying the transformation: 

     
      . (4.1) 

This is shown in Figure 4.1.   
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Figure 4.1:  Position p expressed in two coordinate systems     and    , and the 

transformation between them. 

The rotation between coordinate frames is given by the orientation matrix: 

   

        
        

        

        
        

        

        
        

        

  
   (4.2) 

and the translation vector: 

   

  
 

  
 

  
 

    (4.3) 

Each element of this rotation matrix is the cosine of the angle between the two axes 

specified in the subscript of θ.  From this it can be deduced that if each axis of both 

coordinate systems align then this matrix will become the identity matrix.  In a practical 

sense for its calculation, the columns of this matrix consist of the normalised direction 

vectors of the axes of coordinate system     expressed in coordinate system    . 

Multiplication of    by this matrix rotates its reference frame to the coordinate system 

    , however it is still expressed relative to the origin of system    .  To transform it 
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fully the translation    must be applied.  This translation is the origin of coordinate 

system     expressed in system    . 

In practice it is more common to express equation (4.1) in terms of a single 

transformation instead of separate calculations for rotations and translations.  In this 

case the equation becomes: 

     
   . (4.4) 

The construction of these matrices is shown in: 

 
 
 
 
 

  
 

  
 

  
 

  
 
 
 
 

  
  

   

    

 

 
 
 
 
 

  
 

  
 

  
 

  
 
 
 
 

. (4.5) 

The position vectors each have an additional element of value 1.  This is included for 

this calculation only and is ignored when using the positions in any other calculation.  

4.2.3 Euler and Cardan angles 

Through the procedure described above the rotations and translations between any two 

body segments can be fully defined.  For 3D kinematic analysis of the human body 

where each segment is constrained by those adjacent to it, these movements are best 

described by a series of basic rotations.  This allows rotations to be described in a 

language consistent with human anatomy.  These three basic rotations occur about the x, 

y and z-axes of magnitude α, β and γ respectively shown in Figure 4.2.  The three basic 

rotation matrices are: 

    
   
            
           

 ,  

    
           

   
            

 , (4.6) 

    
            
           
   

 . 
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Figure 4.2:  Basic rotations about the x-axis, y-axis and z-axis. 

These rotations are applied sequentially and assume that the two bodies are initially 

aligned (i.e. the orientation matrix is equal to the identity matrix I) and all rotations 

occur about axes fixed to the articulating (normally distal) segment.  Because these axes 

are fixed to the articulating segment the second and third rotations will occur about 

intermediate local reference frames denoted by the notation (') and ('') respectively.  An 

example of a sequence of rotations (xy'z'') between systems     and     is shown in 

Figure 4.3.  Because matrix multiplication is non-commutative the result is entirely 

dependent on the sequence of rotations.  The final orientation matrix is defined by post 

multiplying the initial identity matrix by each basic rotation matrix in turn.  For the 

rotation sequence xy'z'' the orientation matrix will be: 

  
                 

         
         
         

   (4.7) 
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Figure 4.3:  Sequence of rotations.  Firstly about 
B
x, secondly about y' and thirdly 

about z''. 

This process works in both directions such that an orientation matrix can be 

decomposed to give the individual rotations.  Using the rotation sequence shown in 

equation (4.7) the decomposition would yield:   

        
    
    

   

             (4.8) 

        
    
    

  
 

Because matrix multiplication is non commutative, without knowing the order of the 

rotations it is impossible to decompose the orientation matrix to its basic angles.  

Additionally it has been shown that the sequence of rotation will have a significant 

effect on the resultant angles (Cappozzo et al., 2005).  It is therefore important to 

consider the sequence and convention with regard to the joint being examined.  

The convention is that rotation sequences can be defined with the terminal rotation 

about the same axis as the first rotation (Euler sequence) or with each rotation about 

individual axes (Cardan sequence).  There are six possible Euler sequences (xy'x'', 

xz'x'', yx'y'', yz'y'', zx'z'' and zy'z'') and six possible Cardan sequences (xy'z'', xz'y'', yz'x'', 

yx'z'', zx'y'' and zy'x'').  The rotation sequence is chosen to best suit the application to 

which it is to be applied, both to accurately represent how a body might be rotating and 

to avoid gimbal lock.   
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Gimbal lock occurs when the second rotation is of a magnitude close to 90°.  As is 

demonstrated in Figure 4.4, when the rotation about y' (β) approaches this value, the 

axis z'' aligns with the original 
B
x.  This means rotations about z'' are not unique and can 

result in unrealistically large magnitudes of α and γ.  This is also demonstrated in 

equation (4.7) as the value of      will approach zero, producing a singularity 

condition. 

To ensure avoidance of gimbal lock and for the best description of specific joint 

kinematics, the most suitable rotation sequence is chosen for the description of specific 

joints. 

 

Figure 4.4:  Gimbal lock occurs when the second rotation is of a magnitude close to 

90°.  In this case the third axis of rotation (z'') aligns with the first (
B
x).  This can result 

in large rotations α and γ which are not representative of reality. 

4.3 Available methods of kinematic analysis 

Methods of kinematic analysis can be generally classed as photographic/video based or 

inertial based.  This section gives a brief overview of these two methods and the reasons 

for the selection of stereo-photogrammetry for the experimental work done in this 

thesis.  

4.3.1 Photographic and video methods 

Photographic/video based methods use cameras to locate the spatial position and 

orientation of markers or body segments within a known reference frame.  These can be 

divided into marker based and markerless systems.  A marker based system detects 

highly reflective or light emitting markers attached to a subject.  The position and 

orientation of the body segments can be inferred from the location of these markers.  A 
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markerless system tracks the body segments directly from photographic or video 

images.  This allows data to be collected using non-specialised equipment (Addis and 

Lawson, 2010).  Although it does have its advantages in cost and flexibility, markerless 

tracking systems are not currently accurate enough for most biomechanical modelling 

applications.  Both marker based and markerless systems can provide pseudo-static 

(photographic) or dynamic (video) data.  For biomechanical applications video based 

systems are considered the standard.  The science of using two or more cameras to 

determine the 3D position of a body is known as stereo-photogrammetry and is the most 

common form of kinematic analysis for biomechanical applications (Mundermann et 

al., 2006).  Various commercial hardware and software products are available (Vicon, 

U.K.; Qualisys, Sweden and Motion Analysis, USA) for these applications.  

4.3.2 Inertial methods 

Inertial based systems use devices containing a number of sensors including 

accelerometers, gyroscopes and magnetometers mounted together to measure the 

orientations and accelerations of individual body segments.  These systems are all 

dynamic systems and often do not require the subject to be in a laboratory environment.  

However to calculate the velocity and displacement of body segments integrations must 

be performed on the acceleration data.  There are commercial enterprises providing 

these kinds of sensors (Xsens, Netherlands; METAmotion, USA and Animazoo, U.K.).   

4.3.3 Method selection 

The experimentation required in my work could all be carried out in a laboratory 

environment with accuracy being paramount.  Additionally the ACS could be defined 

with the attachment of small (4mm diameter) lightweight markers compared to more 

bulky inertial sensing units.  These factors combined meant that stereo-photogrammetry 

was deemed the most suitable for the biomechanical analysis done in this thesis. 
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4.4 Stereo-photogrammetric motion capture 

By definition stereo-photogrammetry is the determination of the position of an object in 

3D space by its location in two or more photographic images.  In practice in a 

biomechanical context it is common to use an array of infra-red cameras to track retro-

reflective markers fixed to an object or subject.  This is the most widely available and 

accurate way of measuring the position and orientation of body segments.  Therefore 

within this thesis the term stereo-photogrammetry will refer to the use of this type of 

camera and marker.  As well as in a biomechanics context these techniques are also 

used in the films, gaming and arts sectors as a way of tracking human movement.   

4.4.1 Reference frames 

In a basic sense the location of markers attached to a body can directly give a 

measurement of the position of the body.  For example, if a joint angle were required, 

markers could be placed on a joint centre and on those two adjacent to it.  The joint 

angle could then be calculated as the angle between these three markers.  This method 

however has several draw-backs.  The markers must be accurately located on the joint 

centre consistently.  There is also likely to be significant skin movement artefact (the 

movement of soft tissue relative to the skeleton) around the joint centres (Cappozzo et 

al., 1996).  Finally, with this method it is only possible to calculate a joint angle about a 

single degree of freedom as nothing is known about the orientation of the body 

segments.  This makes performing further analyses such as inverse dynamics likely to 

incur large errors.  It is therefore normal to try and fully define the ACS of each 

segment to ensure the most accurate measurement of the subject kinematics.  This is 

done by defining every object, body segment and force with its own unique reference 

frame.  Each of these reference frames can be expressed relative to each other using the 

transformation techniques described in Section 4.2.2. 
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Figure 4.5:  A motion analysis laboratory with fixed global frames.  Examples of these 

are the photogrammetric frame fixed using a calibration object and dynamometer 

frames fixed to force plates.  Adapted from Cappozzo et al (2005).   

There are a number of common global reference frames.  In stereo-photogrammetry the 

photogrammetric global frame is defined relative to a calibration object.  Dynamometer 

frames can be defined and are fixed to a force measurement device such as a force plate 

or transducer.  A motor task frame is relevant to how the subject moves or interacts with 

their surrounding environment.  The axes of a motor task frame will most often align 

with direction of travel and/or gravity.  All global frames are normally fixed relative to 

each other (Figure 4.5).  Local technical frames can be fixed to subjects or objects and 

can move relative both to the global reference frames and also to each other.  In stereo-

photogrammetry these local frames are fixed to a group of markers known as a cluster 

technical frame (CTF) shown in Figure 4.6.  A CTF usually has to have at least three 

markers to define it.  They can consist of less than three if some other information about 

the object/segment orientation is known or assumed.  Often more than three markers are 

used either to provide a redundancy in case of marker loss or occlusion.  Additional 

markers can also be used to give a more accurate measure of and to compensate for skin 

movement artefact (Taylor et al., 2005). 
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Figure 4.6:  Using sets of three non-collinear markers to define local technical frames 

fixed to body segments.  Adapted from Cappozzo et al (2005).   

The procedure for defining a CTF relative to a cluster of three markers is as follows.  

The three markers must be non-collinear i.e. it is not possible to draw a straight line 

through all three markers.  The angle between markers ABC (Figure 4.7) should be as 

close to 90° as possible.  This reduces the sensitivity of the CTF orientation to 

deformation of the marker cluster.  One of the markers is chosen as the origin marker; in 

this case marker B.  A second marker is chosen to define the primary axis (x); in this 

case marker A.  This axis is equal to the normalised vector (   ) between these two 

markers.  A second normalised vector (   ) is then defined as that from marker B to C.  

The z-axis is the normal to the plane on which vectors     and     lie.  This z-axis is 

calculated as the normalised vector v3 which is the cross product of vectors     and    .  

Finally the y-axis is equal to     calculated by taking the cross product of     and    .     
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Figure 4.7:  Calculation of a CTF from three non-collinear markers. 

4.4.2 Defining anatomical frames relative to the CTFs 

Once each CTF has been constructed, their relation to the underlying ACSs must be 

determined.  If the markers are placed over known landmarks, the position of the 

underlying anatomy can be inferred directly from these.  This can be either a direct 

relationship with a single marker, or by construction of a virtual marker derived from 

the relative position of two or more markers (Cappozzo et al., 2005).  These methods 

are susceptible to a number of errors.  It relies on the assessor to place the markers both 

accurately and in a repeatable way on the anatomical landmarks.  These positions can be 

highly susceptible to skin movement artefact (Cappozzo et al., 1996) as well as not 

necessarily being optimal to reduce marker occlusion and restriction on the subject.  In 

order to address some of these issues it is common to position the markers in such a way 

to minimise both occlusion and skin movement artefact.  This means that the position 

and orientation of the underlying ACS needs to be determined using a separate 

calibration procedure.  This can be done using anatomical pointing, functional definition 

or a combination of the two.  Problems with repeatability are reduced as this calibration 

procedure removes any direct relationship between location of an individual marker and 

the anatomy. 
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Figure 4.8:  Anatomical pointing using a calibrated pointer to define positions relative 

to the CTFs. 

Anatomical pointing involves the use of a calibrated pointer with at least two markers 

(A and B) fixed to it (Figure 4.8).  In this case the distance to the point (d) from marker 

A is known.  The unit vector (  ) between markers A and B is calculated as: 

   
     

     
  (4.9) 

The position of the point (p) is therefore known in the photogrammetric frame 

according to the equation: 

       . (4.10) 

This pointer can then be used to point at known anatomical positions, defining them in 

the relevant CTF.  These positions are then used to construct the ACS relative to the 

CTF.  Although this makes the ACS independent of marker placement inaccuracy, it is 

still susceptible to other factors.  The assessor must be able to locate the landmarks in a 

A

B

d

n

p

̂



 

Chapter 4. Principles of motion capture and its application to the hand and fingers  

70 

 

repeatable and accurate way.  Even then, there are a number of assumptions about how 

the underlying anatomy relates to these external landmarks.  This results in a lack of 

repeatability and precision in location of the ACS (Della Croce et al., 2005).  This is of 

particular relevance to joint centres and axes of rotation.  The location of rotation 

centres for various joints can be defined relative to other bony landmarks using cadaver 

dissection and medical imaging such as computed tomography (CT) and magnetic 

resonance imaging (MRI).  This approach, known as the predictive approach uses 

empirical relations between the externally located landmarks and the relevant joint 

centres (Ehrig et al., 2006).  Assuming that these axes of rotation can be accurately 

located relative to externally palpable landmarks for a cadaver or imaged subject, there 

are still difficulties in transforming these axes to the general subject.  Assumptions are 

made about anatomical similarity between subjects and anthropometric scaling is used 

to determine the position of the axes for each joint relative to external landmarks for a 

specific subject.  These assumptions are not always valid particularly when the subject 

has some kind of injury or deformity that results in abnormal anatomy (Della Croce et 

al., 2005).  Additionally most of these datasets are based on adult studies so may not be 

applicable to studies of children (Harrington et al., 2007).  Therefore the only way of 

getting a true measure of the axes of rotation for the joints of a specific subject non-

invasively would be obtain relevant imaging (such as MRI).  This is often not practical, 

for reasons of expense, time and resource. 

Alternative methods of determining the joint axes have been proposed known as 

‘functional methods’.  Instead of relying on the relation between joint axes and palpable 

landmarks, they use the relative motion of joint segments to define them.   

Functional methods for defining the axes of rotation of machines were first described 

for 2D kinematics in the 19
th

 century (Reuleaux, 1876).  Assuming one body remains 

fixed, a perpendicular to the line joining two positions of a point located on the rotating 

body is defined.  Multiple perpendiculars are found in this way and the apex of these 

perpendiculars defines the centroid.  This method has been applied in a biomechanics 

context with regard to the ankle joint (Maganaris et al., 1998) shown in Figure 4.9.  This 

method only works in 2D and requires a manual definition of the perpendiculars, 

therefore more complex methods have been developed making use of the data available 

with 3D motion analysis.  These modern techniques can be classed into either fitting or 

transformation methods.   
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Figure 4.9:  Showing the method of  (Maganaris et al., 1998).  Two reference points 

were marked in relation to the Talus.  The intersections of the perpendicular bisectors 

to the lines connecting the points A and A' and points B and B' defined the centre of 

rotation. 

Fitting methods depend on transforming a marker or group of markers attached to a 

given segment into the CTF of an adjacent segment.  The trajectories of these markers 

are then fitted onto the surface of concentric spheres (for spherical joints) or cylinders 

(for one degree of freedom hinge joints) as shown in Figure 4.10.  The properties of 

these spheres or cylinders are optimised to find the best fit to the marker trajectories.  

Variations of this technique have been proposed by several authors (Halvorsen, 2003; 

Zhang et al., 2003; Gamage and Lasenby, 2002; Piazza et al., 2001; Halvorsen et al., 

1999; Leardini et al., 1999; Shea et al., 1997). 

Transformation methods rely on two rigid CTFs being fully defined on adjacent 

segments.  They then assume there will be a common axis that remains invariant in both 

CTFs throughout the movement of the joint (Figure 4.11).  Like the fitting methods 

there have been many variations of these techniques proposed (Ehrig et al., 2007; Ehrig 

et al., 2006; Schwartz and Rozumalski, 2005; Marin et al., 2003; Woltring et al., 1985). 

The selection of the technique appropriate for calculation of hand and finger kinematics 

is covered fully in Chapter 5. 
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Figure 4.10:  Fitting technique.  For a spherical joint as shown, a set of concentric 

spheres is fitted to a set of marker trajectories.  For a hinge joint the trajectories would 

be fitted to a cylinder.  

 

 

 

Figure 4.11: Transformation methods assume a fixed axis (a) or a centre of rotation 

between two coordinate systems     and    . 
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4.4.3 Advantages and disadvantages of stereo-photogrammetric motion capture 

As mentioned previously stereo-photogrammetric motion capture is considered the gold 

standard method of human kinematic analysis.  As it has become established over the 

last few decades, a huge pool of expertise and knowledge has been acquired globally.  

The hardware and software developed by the established commercial companies allows 

it to be used by almost anyone (within financial reason) with only a few hours training.  

This availability has meant a huge amount of research has been done not only using the 

systems but on improving the techniques of how they are used.  There a number of both 

commercial (Anybody, Denmark) and freeware tools (OpenSIMM, USA) available for 

post processing the data. 

Spatial accuracy achieved is always improving with the reconstruction of marker 

positions being well within the required precision for biomechanical analysis (error 

<0.1mm).  Additionally it is possible to reconstruct markers as small as 3mm in 

diameter (Metcalf et al., 2008).  This allows the placement of more than one marker on 

small segments such as individual phalanges of the fingers (Buczek et al., 2011; Cerveri 

et al., 2005).   A major problem with this (and other) types of motion capture is the 

presence of skin movement artefact.  This is something which affects all data collected 

using skin mounted markers (or sensors) as the soft tissue deforms over the underlying 

skeletal structure.  It has been shown that location of the markers is of vital importance 

in reducing this artefact (Cappozzo et al., 1996).  Despite the knowledge acquired about 

skin deformation at different parts of the body it will always inherently be part of the 

data collected using stereo-photogrammetry and must therefore be accounted for. 

Stereo-photogrammetry captures spatial information only, therefore if the velocities and 

accelerations of markers or body segments are also needed, differentiation of the data 

must be carried out.  This can incur large errors due to noise in the data.  It is therefore 

important that appropriate filtering is applied.  For inertial systems it is the opposite 

with only the accelerations of body segments recorded requiring integration of the data 

to acquire velocities and displacements.  The errors incurred, occur from the estimate of 

the constants of integration calculated from assumed orientations and positions of 

segments at given reference points (Veltink et al., 2003).  Depending on what data are 

required the user must assess what outputs they require from the kinematic analysis and 

therefore which technique would be most appropriate. 
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Stereo-photogrammetric capture requires the subject to be within a designated capture 

volume.  This is traditionally in a motion capture laboratory, although it is possible to 

set up the systems in any suitable location using tri-pods or other ways of rigidly 

mounting the cameras.  For reconstruction, a marker must be visible to at least two 

cameras (although accuracy is increased with three or more), therefore occlusion can be 

a serious problem if there are any obstructions in the capture volume such as other 

subjects or objects that the subject is interacting with.  This means the location of the 

cameras must be chosen carefully and can restrict the type of movement that can be 

captured.  

Another major drawback of these systems is the cost.  A basic system can cost a 

laboratory $300,000 (Simon, 2004), which will rise significantly for additional cameras 

and peripherals such as force plates.  This restricts its use to well financed institutions 

such as universities, research hospitals and large production companies (for the gaming 

and film industry).  

In conclusion stereo-photogrammetry is still considered the best option for capturing the 

movement of small body segments (such as hands and fingers).  For the applications in 

my work, accurate spatial location of the body segments is of great importance and only 

stereo-photogrammetry can achieve this.  The system available (Vicon T-Series and 

MX-14 Series) allows the capture of small markers placed on the phalanges, making it 

the best experimental method to use in my work.  
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4.5 Methods of hand and finger motion capture 

Techniques using photographic measurements in both two (Vigouroux et al., 2006) and 

three dimensions (Vergara et al., 2003) have been proposed to measure the required 

inputs for biomechanical models (Figure 4.12).  Their principal disadvantage is that 

they rely on photographs rather than video data, restricting them to pseudo-static 

applications.  However, there have been a number of methods developed for tracking 

finger and hand motion using stereo-photogrammetry.  Some of these use only one or 

two markers attached to each phalanx.  Those techniques using less than three markers, 

have limitations in that they are more susceptible to skin movement artefact and 

repeatability problems due to marker placement error.  It is common in these cases to 

place the markers directly on anatomical landmarks, which can have a significant effect 

on the skin movement artefact (Cappozzo et al., 1996).   

 

 

 

Figure 4.12:  Markers drawn onto the dorsal surface of the hand and captured using 

still photography as used by Vegara et al (2003). 
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Marker placement error and its effect on repeatability is a particular concern when the 

joint angles are calculated directly from the marker positions (Carpinella et al., 2006; 

Rash et al., 1999).  As a way of reducing this and skin movement artefact, some authors 

defined anatomical axes based on the relative position of markers (Metcalf et al., 2008; 

Su et al., 2005; Miyata et al., 2004; Zhang et al., 2003; Chiu et al., 1998).  Authors such 

as Metcalf et al (2008) took advantage of improvements in the motion capture 

technology and used markers as small as 3mm in diameter (Figure 4.13).  These relied 

on there being a degree of flexion/extension of the joints to provide a valid definition of 

the ACS.  This meant that with the hand in a neutral pose (with close to zero flexion at 

each joint) this definition could become inaccurate.   

 

 

 

Figure 4.13:  Advances in motion capture technology has allowed the use of small 

hemispherical markers with diameters as small as 3mm as used by Metcalf et al (2008).  
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Other authors reduced errors by using clusters of three non-collinear markers attached to 

each phalanx and the dorsal surface of the hand to create CTFs rigidly attached to each 

segment (Figure 4.14) (Degeorges et al., 2005; Fowler and Nicol, 1999b).  These 

techniques restricted the movement of the subject due to the markers standing proud of 

the surface of the hand.  To address this, sets of non-collinear markers have also been 

attached directly to the skin without using clusters (Figure 4.15) (Buczek et al., 2011; 

Cerveri et al., 2005).  Using these methods the underlying anatomy was defined using 

either purely anatomical landmarks (Buczek et al., 2011; Degeorges et al., 2005) or a 

combination of anatomical landmarks and functional definition (Cerveri et al., 2005; 

Fowler and Nicol, 1999b).  The concept of using a functional approach has been applied 

to other parts of the body such as the lower limb (Andriacchi and Alexander, 2000).  

The use of CTFs rigidly attached to each segment reduced the susceptibility to marker 

placement repeatability errors, allowing the observer to attach markers to positions least 

likely to be affected by skin movement artefact.     

 

Figure 4.14:  Tri-pods have been used to mount sets of three non-collinear markers to 

each phalanx as used by Fowler and Nicol (1999b). 
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Figure 4.15:  Utilising small markers, Buczek et al (2011) defined technical frames 

fixed to each phalanx without the need for tri-pods. 

The previous studies that used functional methods for finding the axes of rotation of the 

fingers used both fitting and transformation techniques.  For finding the axes of rotation 

of the interphalangeal joints, Cerveri et al (2005) used a fitting technique referred to as 

cylinder axis fit and for the centre of rotation of the metacarpo-phalangeal (MCP) joint 

an algebraic sphere fit method.  Fowler and Nicol (1999), used an established axis 

transformation technique (Woltring et al., 1985) for calculation of both the 

interphalangeal joints and the MCP joint.   

The next two chapters describe and assess a new method of kinematic analysis of the 

fingers.  This new method combines techniques used previously both for the fingers and 

other limbs using functional methods of axis definition.  
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Chapter 5. Accuracy of a new method of finger motion capture using 

functional joint centres 

 

The work presented in this chapter and the next has been accepted for publication in 

‘The Proceedings of the Institution of Mechanical Engineers, Part H: Journal of 

Engineering in Medicine’ with the title “A technique for motion capture of the finger 

using functional joint centres and the effect of calibration range of motion on its 

accuracy” (Warlow and Lawson, 2012). 

A key aim of this thesis is to both establish a reliable method of kinematic analysis of 

the fingers and to be able to assess its accuracy.  Additionally, it was desirable to keep 

the restriction on the subject to a minimum.  The ability to put a level of confidence on 

any measurement was of great importance when considering the sensitivity of the 

biomechanical models to errors in input as discussed in Chapter 3.   

This and the following chapter introduce and assess both a new marker set suitable for 

stereo-photogrammetric motion capture of the hand and two techniques for defining the 

anatomical coordinate systems (ACSs) functionally.  These techniques draw from the 

literature adapting what has been developed for both the upper and lower limbs, 

combining them using state of the art motion capture technology.  The marker set used 

allowed the definition of a cluster technical frame (CTF) on each relevant body segment 
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whilst minimising any impairment on its movement by keeping the mass and protrusion 

from the skin surface to a minimum.   

The first technique for defining the joint axes functionally, referred to as the phalanx 

transformation technique (PTT), applied the theories of the axis transformation 

technique (ATT) (Ehrig et al., 2007) and centre transformation technique (CTT) (Ehrig 

et al., 2006), originally developed for the knee and hip.   

The second technique, referred to as the phalanx fitting technique (PFT), was based on 

the geometric axis fit technique (Shakarji, 1998). 

By assessing the practicality of the marker set proposed and the accuracy achievable 

using both the PTT and PFT it was possible to determine whether a transformation or 

fitting technique was most appropriate for functional definition of the phalanx ACSs.  

The accuracy in the definition of each joint axis was measured in terms of displacement 

error.  To provide clinical relevance, it was important to show how these errors would 

impact on the output from a biomechanical model.  The results found in Chapter 3, 

correlating joint displacement error with error in joint reaction force (JRF) were used to 

do this.   

5.1 Methods 

5.1.1 Experimental procedure 

Thirteen subjects (seven male and six female) were recruited to take part in the 

experiment (age: 24 ± 3 years; height: 1.77 ± 0.08 m; mean ± SD).  A six camera Vicon 

T20 motion capture system (Vicon, U.K.) was used with a sampling rate of 100Hz.   

A total 12 hemispherical markers, 4mm in diameter were attached in groups of three to 

each phalanx of the index finger and the dorsal surface of the right hand (Figure 5.1).  

For this study only the index finger was examined as it was the accuracy achieved using 

the specified marker set and the difference between the two mathematical techniques 

that was of interest rather than differences between fingers.  The markers were attached 

using water soluble adhesive and the total mass of the 12 markers was 0.3g.  The 

markers were attached in groups of three, in a non-collinear arrangement to define a 

CTF fixed to each phalanx and the dorsal surface of the hand.   
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Figure 5.1:  Position of markers P1-9 attached to the three phalanges of the right index 

finger and markers M1-3 attached to the dorsal surface of the hand.  Positions S1-S8 

were pointed using a calibrated pointer.  The proximally directed axis of the distal 

phalanx was defined on the radial and ulnar side by the positions S1-S6.  The 

approximate centres of the distal and proximal interphalangeal (DIP and PIP) joints 

were defined as the average of S5S6 and S7S8 respectively.   

For calculation of the axis of rotation (AoR) at the interphalangeal joints and the centre 

of rotation (CoR) at the metacarpo-phalangeal joint each subject was required to 

perform five repetitions of a set of calibration movements.  These were; a full 

flexion/extension of the distal and proximal interphalangeal (DIP and PIP) joints, and 

full flexion/extension and abduction/ adduction of the metacarpo-phalangeal (MCP) 

joint.  These movements defined the functional joint centres in each CTF relevant for 

the joint of interest.  Along with the pointed positions S1-8, these could then be used to 

define the ACSs relative to each CTF.   

The errors at each joint calculated when using either the PTT or PFT were then 

compared.  The null hypothesis tested was that the errors would be the same for either 

technique (95% confidence interval).  Additionally the absolute position of the ACS 

could be compared as the same experimental data were used for either technique.  The 

null hypothesis tested was that the position of each ACS would be the same using either 

technique and that any difference would be within experimental error. 
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5.1.2 Definition of anatomical coordinate systems 

The process of defining the anatomical coordinate systems was identical for both the 

PTT and PFT.  Firstly, anatomical positions were defined in the phalanx CTFs using a 

calibrated pointer.  This procedure is common in lower limb motion analysis (Cappozzo 

et al., 2005).  The pointer consisted of a rod 250mm long with markers positioned 

25mm and 50mm from the pointed end (Figure 5.2).  The positions S1-S8 were pointed 

with the hand in a neutral pose (Figure 5.1).  The positions S5- S8 were positioned at 

the apex of the flexion crease on both the radial and ulnar side of the interphalangeal 

joints.  S5-S8 were used to find the mid-point of the finger at either joint.  The positions 

S1 and S2 were positioned midway between the dorsal and palmar surface of the finger 

5mm proximal to the finger tip.  The positions S3 and S4 bisected the lines created by 

S1S5 and S2S6.  The positions S1-S6 were then used to define the long axis of the distal 

phalanx. 

 

Figure 5.2:  Calibrated pointer used to define the positions S1-S8. 

The positions and orientations of each ACS were identical to those defined in Figure 

3.1.  An explanation of these coordinate systems can be found in Section 3.1.   

The pointed positions (S1-S8) were combined with the functional axes to define the 

ACS for each segment.  The AoR found from the calibration movements were of 

infinite length, therefore it was necessary to find the point on this line closest to the 

centre of each phalanx to define its centre.  The centres were defined by finding the 

point on these AoR closest to the mean of positions S5 and S6 for the DIP joint and 

positions S7 and S8 for the PIP joint.  The MCP was defined as a CoR, therefore no 

anatomical pointing was needed.   The AoR themselves defined the z-axes of the distal, 

middle and proximal phalanges.  As described previously the y-axis of the distal 

phalanx was defined using the positions S1-S6.  The y-axes of the middle and proximal 
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phalanges were defined as the line linking the distal and proximal joint centres of that 

segment.  A condition was placed on the y-axes in that they had to be perpendicular to 

the existing z-axis.  The dorsally directed x-axes were taken as the cross product of the z 

and y-axes for each segment. 

5.1.3 Phalanx transformation technique (PTT)  

The DIP and PIP joints were modelled as having one degree of freedom acting as a 

hinge about the flexion/extension axis.  The MCP joint is thought to have two degrees 

of freedom, one about the flexion/extension axis and one about the abduction/adduction 

axis.  For the purposes of defining a functional joint centre however, it was modelled as 

a spherical joint.   

The ATT (Ehrig et al., 2007) was used to find the interphalangeal joints’ AoR.  This 

method assumed there was a common AoR a between two adjacent segments.  A point 

c laying on the axis could then be defined in one of the CTFs adjacent to the joint of 

interest.  This same point can also be defined in the other adjacent CTF as   .  Using the 

known rotations R and translations t between the two CTFs the two points should 

adhere to the relationship: 

         (5.1) 

as shown in Figure 5.3.  Using this relationship, a constraint function fATT was defined 

as:  

                        

 

   

  
(5.2) 

Where N was the total number of capture frames.  The valid solutions of    and c were 

non-unique as they could be positioned anywhere along the axis a, therefore this 

equation was expressed as a least squares problem and solved using singular value 

decomposition (SVD) (Ehrig et al., 2007), see Appendix A.  This found solutions of the 

normal vector defining the AoR in each relevant CTF defined as    and a.  Once the 

axes were defined, unique solutions of     and c were found using the average positions 

of S5S6 and S7S8 for the DIP and PIP joints respectively as described in Section 5.1.2. 
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Figure 5.3:  The phalanx transformation technique.  CTFs were defined on each 

phalanx and the transformation between them defined as rotations R and translations t.  

Any position c laying on the common AoR a can be expressed in the other CTF by the 

relationship        . 

Each of the DIP and PIP joints’ AoR were then defined in the global frame    
 
   

 
 

  
 
   

 
 .  For each individual time frame the mean value of these axes and origins in the 

global (photogrammetric) coordinate system were taken as the ACS flexion/extension 

axis (a
g
) and origin (c

g
) (Figure 5.4).  The distance from these mean origins to the two 

original joint centres in the adjacent CTFs is indicative of the precision of the joint 

definition.  It is proposed however, that in the absence of more detailed anatomical 

study, the distance can be used to predict the error in joint position, as stated by Ehrig et 

al (2011).  Therefore, error for any given capture frame was expressed by:   

     
 
   

      (5.3) 

The error was averaged across the entire range of calibration by taking the mean of the 

absolute magnitude of each component, as expressed by: 
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where N was the total number of capture frames.  In this manner the errors at the two 

interphalangeal joints (     and     ) were calculated as being equal to     .   

The MCP joint was found using the CTT (Ehrig et al., 2006).  In the same manner as the 

ATT, rigid body transformations were defined between CTFs fixed to segments 

adjacent to the joint (proximal segment and metacarpal segment).  The constraint 

function defined as fCTT was identical to equation (5.2).  Instead of a fixed AoR used by 

the ATT however, a fixed CoR was assumed meaning that    and c had unique solutions.  

The equation could therefore be solved using an optimisation routine.  This was carried 

out using an interior-point algorithm in the optimisation toolbox available in MATLAB 

(The MathWorks).  As with the interphalangeal joints, these joint centres were 

expressed in the global frame (  
 
   

 
  and the mean taken as the ACS origin.  The 

error (    ) was calculated in an identical manner as the error at the interphalangeal 

joints.  Computation for a set of calibration movements was between 2-5 seconds.   

 

Figure 5.4:  Calculation of joint centre position.  The joint centres in the global frame 

(  
 

 and   
 

) were calculated from their positions in each cluster technical frame.  The 

joint centre was then taken as the mean of these two values.  The precision and 

subsequently error e was then taken as half the discrepancy between the two original 

joint centres.   
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5.1.4 Phalanx fitting technique (PFT)  

The PFT used the geometric axis fit technique (Ehrig et al., 2007; Shakarji, 1998) to 

find the DIP and PIP AoR.  As with the PTT, this method assumed there was a fixed 

AoR a between two adjacent segments.  The markers from one segment were 

transformed into the CTF of the adjacent segment (Figure 5.5).  A set of constraints was 

then defined to find the AoR based on the marker trajectories.  The first constraint 

assumed that the marker would move in a plane, the normal to which was the AoR a.  A 

vector was defined, starting at a distance d from the centre c1 along the vector a and 

finishing at trajectory position p.  To meet the planar constraint, this was perpendicular 

to a (i.e. cos90
o
 = 0) and could therefore be expressed mathematically using the 

properties of the scalar product: 

               (5.5) 

A second constraint was used to fix the distance r between the centre c1 and the marker 

trajectory p.  Using the properties of the cross product it can be shown that:  

                     (5.6) 

This holds assuming the vector (p - c1) is approximately perpendicular to a (i.e. 

sin(~90
o
) = 1).  n is the normal vector to the plane defined by a and (p – c1).  Because a 

and n are unit vectors and ‖p – c1‖ = r then the constraint becomes: 

              (5.7) 

This can be re-arranged and combined with (5.5) to give the constraint: 

                                  (5.8) 

There are a total of M markers fixed to a segment and N capture frames.  Therefore the 

complete constraint function for all markers and frames is given by: 

                            

                    
 
                  

 
 

 

   

 

   

  

(5.9) 
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Figure 5.5:  The markers on one phalanx are all transformed into the cluster technical 

frame fixed to that adjacent to it, to give the trajectories p.  The markers were then 

assumed to rotate around a common AoR a.  A constraint equation was defined using: p 

that defines the position of any given marker, c1 the point defining a unique solution of 

a, d the distance from c1 in the direction a that gives the point with minimal 

perpendicular distance to the marker, and r the radii of the marker trajectory from 

vector a. 

The optimal solution of this constraint function that minimised fgeom was found using an 

interior-point algorithm within the optimisation toolbox available in MATLAB (The 

MathWorks) using a multi-start algorithm to ensure the global optimum was found.  

Computation for a set of calibration movements was between 5-10 seconds.   

Unlike the methods described by (Shakarji, 1998) and (Ehrig et al., 2007), the AoR 

were calculated twice, both in the CTF distal and proximal to the joint of interest.  This 

meant that in a similar way to the PTT two equivalent centres were calculated for each 

joint enabling an estimate of errors in their position.    

The MCP joint position and error were found using the CTT (Ehrig et al., 2006) in an 

identical manner to the PTT using equation (5.2).   

Using the PFT, both the interphalangeal joints and the MCP joint were all found using 

optimisation methods.  This allowed additional constraints to be added regarding the 

length of the finger segments.  Assuming that the phalanges are rigid, the distance 

between each joint will be minimal throughout the entire calibration movement.  A cost 
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function was defined as the standard deviation in both the middle and proximal phalanx 

lengths.  This was included in the optimisation procedure.  

5.1.5 Application to a biomechanical model   

In Chapter 3, the relationship between errors in the position of the joint centres and 

errors in the output from a biomechanical model were quantified.  This enabled the 

generation of coefficients to express errors in predicted JRF as a function of the 

displacement error at each joint centre (eDIP, ePIP and eMCP).  These errors in joint centre 

position were estimated using both the PTT and PFT.  Combining these with the 

coefficients it was possible to calculate the error in terms of JRF expressed as eJRF.    

5.2 Results 

The components and total magnitude of the joint errors using the PTT and PFT are 

shown in Table 5.1 and visualised in Figure 5.6.  The results shown are those averaged 

across the 13 subjects.  At the interphalangeal joints the total magnitudes of the errors 

(||eDIP|| and ||ePIP||) were significantly different between techniques (p < 0.05) with the 

PFT errors being larger.  In terms of the components there was only a significant 

difference in ex and ey.  At the MCP joint there was no significant difference in ||eMCP|| 

between techniques.  The total magnitude of errors averaged across all three joints was 

0.6mm and 1.1mm for the PTT and PFT respectively.   

The errors expressed in terms of eJRF were calculated resulting in an error of 2.2% for 

the PTT of 2.2% and 6.3% for the PFT. 

 

ex ey ez ‖e‖ 

PTT PFT PTT PFT PTT PFT PTT PFT 

eDIP (mm) 0.1 0.4 0.1 0.6 0.3 0.4 0.3 0.9 

ePIP (mm) 0.2 0.4 0.1 1.1 0.9 1.1 0.9 1.7 

eMCP (mm) 0.3 0.4 0.2 0.3 0.5 0.3 0.7 0.7 

Table 5.1:  The error at each joint (eDIP, ePIP and eMCP) for the mean of thirteen 

subjects, expressed in component form (ex, ey and ez) and total magnitude (‖e‖) for all 

subjects.  Errors shown for both the PTT and PFT. 
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Figure 5.6:  The error at each joint (eDIP, ePIP and eMCP) for the mean of thirteen 

subjects, expressed in component form (ex, ey and ez) and total magnitude (‖e‖) for all 

subjects.  Errors shown for both the PTT and PFT, error bars represent ± standard 

deviation. 

The difference between each ACS origin calculated using either the PTT or PFT was 

tested for statistical significance.  Because the position of each origin was expressed in 

Cartesian coordinates each component was compared meaning a total of three 

comparisons for each segment origin.  The metacarpal origin was not included as it was 

coincident with the origin of the proximal phalanx.  It was found there was no 

significant difference between the PTT and PFT in the position of any ACS origin 

calculated.  This difference between each ACS origin was also compared with the 

cumulative error of the PTT and PFT.  This comparison is shown in Figure 5.7 .  This 

shows that for each component at each joint the difference in ACS origin is within the 

cumulative experimental error. 
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Figure 5.7:  Comparison between the cumulative error and the difference in each ACS 

origin calculated using with the PTT or PFT.      
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5.3 Discussion 

This chapter has assessed the application of a skin-mounted marker set consisting of 

12x4mm hemispherical markers to define the kinematics of the index finger.  Two 

methods of defining the ACS using functional techniques were used.  Two were used so 

both a fitting and transformation technique could be assessed in the context of finger 

kinematics.  The same experimental input could be used for either technique allowing a 

direct comparison to be made.  The accurate determination of the ACSs is an important 

input to biomechanical models, therefore the effect of ACS accuracy on the 

biomechanical model was analysed.   

No invasive or imaging procedures had to be used to determine the ACS accuracy.  This 

meant the procedure could be carried out on multiple subjects within a standard motion 

analysis lab without the need for additional apparatus.   

Previous authors have tried to assess the accuracy in their methods of motion capture 

using different methods.  Repeatability of measured joint angles has been used 

(Degeorges et al., 2005), however this does not provide a measure of accuracy adequate 

for most biomechanical modelling applications.  A mechanical linkage of known 

dimensions has also been used (Fowler and Nicol, 1999b).  But such a linkage does not 

take into account skin movement artefact known to have an effect on accuracy (Taylor 

et al., 2010; Taylor et al., 2005; Andriacchi et al., 1998; Cappozzo et al., 1996; Peters et 

al.).  For assessment of the functional techniques used to define the ACS numerical 

simulations have been used (Ehrig et al., 2007; Ehrig et al., 2006; Cerveri et al., 2005).  

These studies applied noise to simulate both skin movement artefact and experimental 

measurement uncertainty.  With all simulations however, the way errors were 

introduced may not necessarily be an accurate representation of reality.     

In this study the joint errors were assumed to be equal to half the magnitude of the 

discrepancy between segment origins calculated in adjacent CTFs.  Discrepancy in 

origin was computationally identical to the residuals fATT or fCTT depending on which 

joint was being considered.  These residuals have been shown to correlate with joint 

error with a coefficient of 0.5 (Ehrig et al., 2011), hence confirming this assumption. 

The total magnitude of the joint errors across the three joints using the PFT was almost 

double that of the PTT at 1.1mm compared to 0.6mm.  This was predominantly due to 
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the difference at the inter-phalangeal joints.  A significant difference in error magnitude 

was found at these joints whereas at the MCP joint there was no significant difference.  

Similar results between techniques at the MCP joint were expected as the same 

mathematical technique (CTT) was used to find it in each case. 

It is my opinion that the difference in techniques is due to the PTT using the position of 

all six markers on adjacent segments simultaneously, rather than one at a time as with 

the PFT.  It would be of future interested to examine the deformation of the CTF on 

each phalanx as this would give further insight into the errors, this was out with the 

scope of my present study however.   

Looking at the components of the error at the interphalangeal joints in more detail there 

was only a significant difference in the ex and ey components (dorsal and proximal 

directions) and not in the ez components (radial direction).  Figure 5.6 shows that for the 

PFT there were similar magnitudes of error in each component, however for the PTT 

the component ez was larger than the other two.  This meant that error magnitudes were 

similar between techniques for this component.  The reasons for the errors of this 

component being larger than the others when using the PTT can be understood by 

considering how these joint centres were calculated.  Because the AoR calculated 

initially was of infinite length, the average position of S5S6 and S7S8 were used to 

adjust the position of the joint centre to the middle of each phalanx (see Section 5.1.2).  

These adjustments were made along the AoR i.e. in the direction of the z-axis.  This 

means the adjustment will affect the error in this direction only.  Because the errors 

using the PTT were in general smaller, this effect was only obvious when this technique 

was used. 

The reliance on anatomical pointing to locate the AoR correctly, meant that neither 

technique was purely functional.  To my knowledge there is currently no way of fully 

defining segment ACSs without some form of input regarding anatomical positions.  A 

direction of future research could be to be able to fully define the AoR without the need 

for any anatomical reference points.  

The MCP joint was defined in a purely functional manner, therefore the slight increase 

in ez compared to the other components was due to other factors, such as the limitation 

of assuming a spherical MCP joint for the kinematic model (discussed further in 

Chapter 6).   
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No patterns were seen in the components of error at the MCP joint.  The difference in 

the error components was due to the addition of the length constraint in the PFT.  This 

did not have a significant effect on the magnitude of the error however, and did not 

significantly affect the position of the joint centre. 

When transformed into percentage errors in the output of a biomechanical model (eJRF) 

the difference in techniques was more marked.  Using the PFT the percentage error was 

almost three times larger at 6.3% compared to 2.2% for the PTT.  This error in predicted 

JRF did not relate to the total magnitude of the joint errors (1.1mm for the PFT was less 

than two times larger than 0.6mm for the PTT) in a linear manner.  This was because 

errors were dependent on the magnitudes of each individual component (ex, ey, ez) at 

each joint.     

The positions of the ACSs defined using either technique were compared to ascertain if 

within experimental uncertainty, each technique was finding the same joint centres.  The 

use of identical experimental input made this comparison possible and found that all 

three independent segment origins, each expressed in two adjacent CTFs, were 

statistically the same and within experimental uncertainty when calculated using either 

technique. 

The accuracy of these techniques compared favourably with previous functional 

methods of definition. For assessment of the hip joint, Leardini et al (1999)  found that 

functional methods estimated the joint centre within 13mm of the geometric centre 

found using X-Ray.  Using the optimal common shape technique Taylor et al (2010) 

were able to estimate the hip joint centre to within 3.5mm.  My study modelled the 

MCP as a spherical joint and the errors were 0.7mm for both techniques.  For a hinge 

joint Schwartz and Rozumalski (Schwartz and Rozumalski, 2005) estimated the joint 

centre to within 3.8mm.  In my study the interphalangeal joints were defined as hinges 

with errors of 0.3-0.9mm for the PTT and 0.9-1.7mm for the PFT.  It is important to 

note however that large skin artefacts are expected in the lower limb.  Therefore the 

decrease in errors in my study was more due to the difference in anatomy encountered 

rather than a vast improvement in motion capture.  Buczek et al (2011) noted that there 

would be greater skin artefact especially around the MCP joint when the subject gripped 

a cylinder.  As my study did not involve the subject interacting with any objects this 

could not be quantified.  However it would be assumed that because the ACS are all 
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defined in two adjacent segment CTFs then skin movement artefact would be reduced 

as much as possible.   

 

5.4 Conclusions 

In conclusion it has been shown that the proposed marker set, calibration movements 

and techniques used to calculate the segment ACSs, provide a useful tool for accurate 

calculation of finger kinematics in comparison with previously proposed techniques.  Of 

the two I tested, the PTT was both more accurate in measurement of joint positions and 

biomechanical model outputs.  This improvement when using a transformation 

technique compared to fitting technique has been observed previously (Ehrig et al., 

2007; Ehrig et al., 2006).  Some subjects, including those with injuries or pathologies 

such as arthritis, may have a significantly reduced range of motion (RoM) of the joints 

(Chung et al., 2009; Jennings and Livingstone, 2008; Goodson et al., 2007; Lluch, 2006; 

Chung et al., 2004; Goldfarb and Stern, 2003).  These pathologies can also significantly 

deform the joint altering the position and kinematics of the joints’ rotational axes.  The 

influence of reduced RoM on accuracy has not been covered in this chapter, however it 

is of great relevance to the clinical application of these techniques and will be studied in 

Chapter 6.  
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Chapter 6. Effect of calibration range of motion on the accurate 

definition of functional joint centres of the fingers 

 

In the previous chapter, a marker set for finger motion capture and two techniques 

defining the anatomical coordinate systems (ACSs) functionally were proposed.  It was 

found that in application to the fingers, the phalanx transformation technique (PTT) 

resulted in the smallest errors.  As with all functional methods of joint definition, the 

subject was required to undertake a series of calibration movements (flexion/extension 

and abduction/adduction of joints) defining the axes and centres of rotation (AoR and 

CoR).  For the most accurate joint definition, a large range of motion (RoM) was 

preferred as this minimised error from measurement noise and skin movement artefact.  

Some subjects however, like those with injuries or pathologies such as arthritis, may 

have a significantly reduced RoM or even fixed flexion/extension or ulnar drift at the 

metacarpo-phalangeal (MCP) joint (Chung et al., 2009; Jennings and Livingstone, 2008; 

Goodson et al., 2007; Lluch, 2006; Chung et al., 2004; Goldfarb and Stern, 2003).  It is 

therefore important to understand the influence of reduced RoM on the accuracy of joint 

definition. 

Most methods of functional joint definition described in the literature assume either a 

constant AoR or CoR, depending on which joint was being defined.  This is not strictly 

true, as it is known that the cam profile of the metacarpal head results in a non-constant 

CoR at the MCP joint (Pagowski and Piekarski, 1977).  At the interphalangeal joints, 
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the AoR is also thought to change as the joint is flexed and extended  (Holcomb et al., 

1958).  Therefore in reality functional joint centres defined assuming a constant AoR or 

CoR are in fact the mean positions of a set of instantaneous axes and centres of rotation 

(IAoR and ICoR).   

The aim of this chapter is to examine the effect of the calibration RoM on the accurate 

definition of the joint centres of the fingers.  Errors were found in terms displacement, 

and to provide clinical relevance they were also expressed in terms of percentage error 

in predicted internal loading.  Analysis was carried out to define the IAoR and ICoR as 

a function of joint angle.   

6.1 Methods 

6.1.1 Experimental procedure and definition of anatomical coordinate systems 

The same experimental data collected for the work carried out in Chapter 5 were used 

for the analyses in this chapter.  The ACSs were defined in an identical manner using 

functional joint centres and anatomical pointing.  This chapter considered only the 

application of the PTT to find the functional ACSs.  

6.1.2 Reduced arc analysis 

For calculation of the AoR and CoR each subject was required to make a set of 

calibration movements.  These were a full flexion/extension of the two interphalangeal 

joints, full flexion/extension and abduction/ adduction of the MCP joint.   

The methods of calculating the joint centres relied on the subject being able to carry out 

the calibration movements to as full an extent as possible.  Potentially, subjects of future 

interest may have a significantly reduced RoM, therefore the calibration data were 

adapted to simulate a reduced RoM (Figure 6.1).  New sets of calibration data were 

created with arcs reduced from a magnitude equal to |θf| to a magnitude of zero in 

decrements of 2°.  A new type of error was defined (eROM), equal to the vector between 

the original joint centre and those defined with the reduced arc (φ).   
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Figure 6.1:  The full arc of flexion/extension was defined as θf.  For reduced arc 

analysis the magnitude was reduced by decrements of 2° to give φ.  Simulations were 

made with the arc φ fixed about three locations.  These were the point of greatest 

extension (φI), the point of greatest flexion (φII) and the centre of the original arc (φIII). 

The total joint error (etotal) was expressed as the sum of this error and the original error:   

                  (6.1) 

The worst case scenario was taken i.e. the sign of ePTT was chosen to ensure the largest 

value of etotal. 

When reducing the RoM it was important to consider where φ was relative to the 

original θf.  The subject could have a reduced RoM with the finger at an extended 

position, flexed position or somewhere between these two extremes.  Simulations were 

made with three types of reduced arc: φI, φII, and φIII, type I with the minimum 

magnitude at full extension, Type II with the minimum at full flexion and Type III with 

the minimum in the middle of θf.   

6.1.3 Multiple arc analysis 

The PTT assumed a constant AoR at the interphalangeal joints and a constant CoR at 

the MCP joint.  Although a good approximation for finding the functional joint axes it 
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was not strictly true.  A further analysis was therefore made to calculate the change in 

position of the IAoR and ICoR throughout finger flexion.  New arcs of calibration data 

where created from the original arc θf (Figure 6.2).  Each of these arcs defined as φi, 

with i = 1,...,Q had equal magnitude and were centred about different angles of flexion.  

Each arc centre was separated by angle ψ.  Taking the magnitude of each smaller arc as 

|φi|, the magnitude of the original arc as |θf| and the separation angle ψ, Q was defined 

as: 

  
         

 
    

(6.2) 

Q was rounded down to the closest integer.   

For each joint the IAoR or ICoR were found for every φi.  eROM and ePTT were 

calculated, however they had different properties than when used for the reduced arc 

analysis.  The measurement inaccuracy was independent of joint angle so the ePTT 

primarily gave a measure of the change in skin movement artefact with degree of 

flexion.  The eROM gave a measure of the difference between the IAoR or ICoR from 

their positions calculated using the full arc.  This was used to calculate coefficients 

(cROM) to transform from the mean AoR and CoR to the IAoR and ICoR as a function of 

flexion angle.  These were calculated for the restricted arc θr.  The magnitude of this arc 

was calculated using:  

               (6.3) 

Because θf was fixed, the magnitude |θr| decreased as the magnitude |φ| increased.  A 

balance was established to ensure |φ| was large enough to provide accurate measurement 

of the IAoR and ICoR, but not so large as to greatly reduce |θr|.   
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Figure 6.2:  To find the instantaneous axes and centres of rotation the full arc θf was 

divided into a number of restricted arcs φi.  These were all of equal magnitude and their 

centres separated by equal division ψ. 

A criterion was used to determine if |φ| was large enough.  The mean error of eROM was 

calculated across the whole of θr as the sum of all the eROM divided by Q: 

      
      

 

 

   

  

(6.4) 

This was then compared to the equivalent etotal for the given subject.  This was then used 

to define the criterion: 

                           (6.5) 

6.1.4 Application to a biomechanical model 

As carried out in Chapter 5, all errors could be expressed in terms of the predicted joint 

reaction force (JRF) as eJRF. 
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6.2 Results 

6.2.1 Reduced arc analysis 

For the reduced arc analyses, the magnitudes ||ePTT||, ||eROM|| and ||etotal|| are shown in 

Figure 6.3, Figure 6.4 and Figure 6.5 respectively.  For the interphalangeal joints’ RoM 

all the errors followed similar profiles as the RoM decreased.  For the MCP joints, the 

errors increased until the RoM reached around 10-20°, where the magnitude started to 

decrease.   

Considering the interphalangeal joints, the largest magnitude of ||ePTT|| was observed for 

the Type II reduction with smaller magnitudes observed for the Type I and III 

reductions.  Looking at the magnitude of ||eROM||, Type I and II reductions had similar 

magnitudes with the Type III reduction yielding the smallest errors.  The magnitude of 

||eROM|| was in general larger than ||ePTT||.  ||etotal|| reflects this with the smallest errors 

observed for the Type III reduction and the Type II reduction was the largest.  

Considering the MCP joint, the largest magnitude of ||ePTT|| was observed for the Type I 

reduction with smaller magnitudes observed for the Type II and III reductions.  

Considering ||eROM||, the Type I reduction still yielded the largest errors, but there was 

more distinction between Type II and III with the smallest observed for Type II 

reduction.  As with the interphalangeal joints the larger magnitude of errors was 

observed for ||eROM||.  This meant a similar difference in magnitude of errors was 

observed for ||etotal|| as was observed for ||eROM||.  
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Figure 6.3:  ||ePTT|| for Type I, II and II reductions at the three joints. 
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Figure 6.4:  ||eROM|| for Type I, II and II reductions at the three joints. 
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Figure 6.5:  ||etotal|| for Type I, II and II reductions at the three joints. 
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In Figure 6.6, the mean of the Type I and II reductions were compared with numerical 

simulation studies (Ehrig et al., 2007; Ehrig et al., 2006).  These numerical simulations 

followed an exponential profile at all joints.  At the distal interphalangeal (DIP) joint the 

PTT had a smaller ||etotal|| than the numerical simulations.  At the proximal 

interphalangeal (PIP) joint, ||etotal|| was similar between studies.  This similarity 

remained until a RoM of approximately 45°.  At this point errors in the numerical 

simulation rose rapidly.  This pattern was repeated at the MCP joint with a similar 

magnitude observed until a RoM of 45°.  

Using the mean etotal of the Type I and II reductions eJRF was calculated as shown in 

Figure 6.7.  This error for a reduced RoM given as an example of the restriction on a 

subject with rheumatoid arthritis (Goodson et al., 2007) is shown in Table 6.1.  

Additionally, the magnitude ||etotal|| averaged across the three joints is shown.  The mean 

value of eJRF doubled in comparison to the un-restricted case to eJRF = 4.4%.  The 

standard deviation also increased to 2.7%.  From these increases it could be assumed 

that in general, errors in the predicted internal loading would be <7%.   

 

Table 6.1:  Summary table of the magnitude of the errors in joint position ||etotal|| 

averaged across all three joints and the errors in predicted internal reaction force eJRF.  

These were calculated as a mean and standard deviation for the 13 subjects.  Shown are 

the results for the unrestricted calibration RoM and for a simulated RoM of a subject 

suffering from rheumatoid arthritis.  

 

 

 

RoM restriction at joint (°)
average ||etotal|| 

across all joints (mm) 
eJRF (%)

DIP PIP MCP mean S.D. mean S.D.

- - - 0.6 0.2 2.2 0.7

58 66 50 1.4 0.5 4.4 2.7restricted

un-restricted
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Figure 6.6:  Mean ||etotal|| Type I and II reductions compared with the numerical 

simulations (Ehrig et al., 2007; Ehrig et al., 2006). 
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Figure 6.7:  eJRF calculated from the mean etotal of the Type I and II reductions. 
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6.2.2 Multiple arc analysis 

Figure 6.8 shows the magnitude of ||ePTT|| averaged across all subjects with the 

magnitude |φ| = 30°.  The horizontal axis represents the flexion angle about which the 

arc φi was centred.  For the interphalangeal joints ||ePTT|| increased as the flexion angle 

increased.  The PIP joint had a greater ||ePTT|| compared to the DIP.  A relatively flat 

profile was observed for the analysis of the MCP joint. 

It was hypothesised that eROM was a product of the joint geometry, it was therefore not 

suitable to average these results across subjects.  In this chapter only the eROM results 

from a single subject are presented in full (Figure 6.10).  The full results from the other 

subjects can be found in Appendix B.   

 

 

Figure 6.8:  ||ePTT|| from multiple arc analysis averaged across all subjects.  The 

horizontal axis represents the centre of the calibration arc.  Each line represents the 

change in ||ePTT|| with centre of calibration arc for a given joint. 
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To assess the appropriate magnitude |φ| required, the components of eROM for differing 

|φ| at the DIP joint for the subject are shown in Figure 6.9.  As |φ| was increased from 

20° to 50°, |θr| decreased as per equation (6.3), however the scatter in the data also 

decreased, resulting in an almost linear relationship between angle and |φ|.  This plot in 

combination with the validity criterion (equation (6.5)) was used to find the most 

suitable magnitude of |φ|.  The result of this for each subject and each joint with a 

magnitude of |φ| = 30° are shown in Table 6.2.  A black inequality (<) indicates that the 

criterion was met and a red inequality (>) indicates that it was not.  For the DIP joint 10 

out of 13 subjects met the criterion.  For the PIP joint all subjects met the criterion.  For 

the MCP joint only one subject met the criterion.  Of all values of |φ|, 30
o
 was deemed 

to be the most appropriate balance between valid data whilst maintaining a large enough 

|θr|.   

 

Figure 6.9:  eROM from multiple arc analysis for a single subject for the DIP joint.  The 

magnitude |φ| varied from 20° to 50°. 
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Table 6.2:  Comparison of the mean error of all arcs (    ) for a magnitude |φ| = 30° 

with the total error (etotal) for a full RoM.  Shown for all subjects. 

. 

After determining a magnitude of 30° as most suitable, the components of eROM were 

calculated for multiple arcs at each joint (Figure 6.10).  It is important to note that the 

criterion was not met for the MCP joint. 

Joint

Subject ē ROM  (mm) e total  (mm) ē ROM  (mm) e total  (mm) ē ROM  (mm) e total  (mm)

1 0.0 < 0.2 0.4 < 1.4 3.1 > 1.0

2 0.2 < 0.3 0.1 < 1.6 0.7 > 0.5

3 0.1 < 0.2 0.3 < 0.5 1.6 > 0.4

4 0.4 > 0.3 0.2 < 1.2 1.5 > 0.7

5 0.2 < 0.2 0.2 < 0.9 4.1 > 0.8

6 0.1 > 0.1 0.2 < 0.6 1.8 > 0.4

7 0.1 < 0.4 0.0 < 0.4 0.7 > 0.3

8 0.2 < 0.5 0.2 < 0.6 3.1 > 1.0

9 0.4 > 0.3 0.1 < 0.8 0.6 > 0.5

10 0.1 < 0.3 0.1 < 0.3 3.0 > 0.9

11 0.6 > 0.3 0.3 < 1.4 1.5 > 0.4

12 0.1 < 0.5 0.2 < 1.3 0.5 < 0.6

13 0.4 < 0.5 0.4 < 0.8 0.5 > 0.3

DIP PIP MCP
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Figure 6.10:  eROM from multiple arc analysis for a single subject at all joints with a 

magnitude |φ| = 30°.  Each plot represents the eROM changing with centre of calibration 

arc for a given joint. 

 

 

0 10 20 30 40 50
-5

0

5

DIP angle (
o
)

0 20 40 60 80 100
-5

0

5

PIP angle (
o
)

e
R

O
M

 (
m

m
)

0 10 20 30 40 50 60
-5

0

5

MCP angle (
o
)

 

 

e
ROM,x

e
ROM,y

e
ROM,z



Chapter 6. Effect of calibration range of motion on the accurate definition of functional 

joint centres of the fingers 

111 

 

In more detailed analysis of the profiles and considering only the interphalangeal joints, 

similar trends were observed between each joint with the eROM,x decreasing, eROM,y 

increasing and eROM,z remaining relatively constant.  Assuming a linear relationship, 

coefficients could be calculated to transform from the average AoR to the IAoR 

presented in Table 6.3 for all 13 subjects.  These transformations were calculated in the 

relevant segment ACS.  In general as the joint angle increased the IAoR moved along 

the proximally directed axis in a positive direction (increasing eROM,y) and along the 

palmerly directed axis in a negative direction (decreasing eROM,x) i.e. it moved 

proximally and dorsally with increased flexion.  This is visualised in Figure 6.11. 

 

Table 6.3:  Coefficients to transform between the average and instantaneous axis of 

rotation of the interphalangeal joints for each subject. 

 

 

c ROM,x c ROM,y c ROM,z c ROM,x c ROM,y c ROM,z

1 -0.02 0.03 0.01 0.01 0.11 -0.01

2 -0.04 -0.03 0.01 0.02 0.04 0.00

3 -0.04 0.01 0.01 0.01 0.08 0.01

4 -0.05 -0.01 -0.02 0.00 0.09 0.01

5 0.00 0.04 0.00 0.01 0.07 0.00

6 -0.06 0.03 -0.01 0.02 0.06 0.01

7 0.01 0.01 -0.01 -0.04 0.06 0.00

8 0.02 0.02 -0.01 -0.01 0.08 0.00

9 -0.07 -0.01 0.00 -0.02 0.11 0.01

10 -0.01 -0.02 0.00 -0.03 0.00 0.00

11 -0.02 0.03 0.03 -0.01 0.07 0.00

12 -0.04 -0.01 -0.01 -0.02 0.03 0.01

13 0.05 0.08 -0.02 0.03 0.10 -0.03

Transformation coefficients  c ROM  (mm/°)

DIP PIPSubject
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Figure 6.11:  Visualisation of the change in position of the IAoR with flexion angle in 

the sagittal plane. 

6.3 Discussion 

The influence of calibration RoM on accurately predicting the position of each ACS 

was important in assessing the applicability of the proposed marker set and PTT.  This 

is of particular relevance to those with an injury or pathology that may reduce the RoM 

they have in the fingers.   

6.3.1 Reduced arc analysis 

From the reduced arc analysis at the interphalangeal joint, all reduction types resulted in 

similar shaped ||ePTT||, ||eROM|| and ||etotal|| profiles, although with different magnitudes.   

Assuming any instrumentation errors and those resulting from joint kinematics were 

equal between reduction types, any difference in ||ePTT|| would indicate a difference in 

skin movement artefact.  Therefore, examination of the ||ePTT|| profiles allowed a 

quantification of the skin movement artefact.  The most skin movement artefact 

occurred when the joints were highly flexed, due to the skin being stretched across the 

dorsal side of the joint.  This agreed with what was observed in Figure 6.3, with the 

largest ||ePTT|| observed with Type II reduction i.e. when the joint tended towards full 

flexion.  From examination of ||ePTT|| for the Type I and Type III reductions it can be 

concluded that there was little difference in skin artefact between them.        
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eROM provided a measure of the displacement between the joint centre calculated using 

the full RoM and that calculated using the reduced arc.  It can be assumed that this 

displacement would be largest at the extremes of the RoM because that calculated from 

the full RoM would lie approximately in the middle of all calculated centres.  This 

could be observed in the magnitude of ||eROM|| in Figure 6.4, with the smallest error 

observed for the Type III restriction.   

The profiles of ||etotal|| more closely followed the profiles of ||eROM|| rather than ||ePTT||.  

This was because the magnitude of ||eROM|| was in general larger than ||ePTT||.   

Now considering the MCP joint, the results and conclusions were different than at the 

interphalangeal joints.  ||ePTT|| provided a measure of skin movement artefact as it did for 

the interphalangeal joints.  This time however the largest magnitude was observed when 

applying the Type I reduction. As this joint could extend more than the interphalangeal 

joints there was more skin movement artefact at full extension as the skin wrinkled on 

the dorsal surface i.e. largest error with Type I reduction.   

When considering ||eROM|| it would have been expected that the least error would occur 

with the Type III reduction.  This was not the case however and the smallest magnitude 

was observed for the Type II reduction.  As with the interphalangeal joints the greater 

magnitude of this type of error was reflected in the ||etotal|| profiles.  With the current 

assumption of a CoR at this joint, these error patterns cannot be explained.  The 

limitations of the CoR model become apparent when analysing the errors in this level of 

detail.  This is discussed further in Section 6.3.2 when analysing the results of the 

multiple arc analysis. 

These results showed that the specific RoM available for calibration (φI, φII, and φIII) 

will have an effect on the results, not just the magnitude of RoM.  These specifics must 

be considered, particularly if the subject is restricted to a RoM with the fingers in a 

flexed position. 

||eROM|| had the greatest effect on ||etotal|| and this error was in general largest at the two 

extremes of motion (at least at the interphalangeal joints).  Therefore, for further 

analyses, the mean of ||etotal|| for the Type I and II reductions was taken.  

Considering the interphalangeal joints, this mean ||etotal|| at the DIP joint was less than at 

the PIP joint.  This can be understood by considering the marker set used.  Markers P1 
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and P2 were attached directly to the finger nail and P3 was attached 2mm proximal to it 

(Figure 5.1).  Due to the rigidity of the nail, these attachment locations had a small 

amount of skin movement artefact and subsequently a reduced ||etotal||.   

In comparison with the numerical simulations (Ehrig et al., 2007; Ehrig et al., 2006), at 

the DIP joint ||etotal|| had a similar profile although with a reduced magnitude.  As has 

been discussed previously, the skin artefact at the DIP joint was minimal due to the 

marker locations.  Although the magnitude of ||etotal|| was similar to the numerical study 

at the PIP joint the profiles differed.  As noted previously the error profile will change 

depending on which arc of motion was used.  The numerical simulations used a 

Gaussian distribution for the errors from measurement inaccuracy and skin artefact, 

rather than one that considered the degree of flexion.  This could account for the 

difference between this study and the numerical simulation. 

||etotal|| was calculated as a displacement, however to make this work of clinical 

relevance it was important to understand how these displacements would affect the 

outputs of biomechanical models.  Therefore the effect on the mean JRF was examined.  

To give an indication of this technique’s applicability to an arthritic patient, the typical 

ranges of motion of a rheumatoid subject were applied (Goodson et al., 2007) to all the 

joints simultaneously.  This was done as it was expected that a subject would have 

reduced RoM at more than one joint.  Because many of the tendons cross multiple 

joints, eJRF was influenced simultaneously by errors at more than one joint.  An error at 

one joint could have an opposite effect on eJRF than at another joint.  The results 

indicated that eJRF was typically <7%.  This was compared with <4% error found when 

the subject had a full RoM.  Considering the other errors inherent in the models 

(discussed in Chapter 3), this was deemed an acceptable margin of error.   

6.3.2 Multiple arc analysis 

Multiple arc analysis determined how the IAoR and ICoR changed with joint angle and 

additionally provided a further assessment of how the skin movement artefact changed 

with degree of flexion.   

From analysis of ||ePTT|| in Figure 6.8, similar patterns of skin movement artefact were 

observed as with the reduced arc analysis.  This pattern was an increase in ||ePTT|| at the 

interphalangeal joints with flexion angle, with a greater magnitude at the PIP joint.  At 
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the MCP joint, ||ePTT|| was relatively constant throughout both flexion and abduction.  

The reduced arc analysis indicated that there would be an increase in ||ePTT|| as the joint 

was extended, but this was not clear with this multiple arc analysis.  As is discussed 

later the multiple arc analysis was not valid for the current method of determining the 

MCP joint functional axis.  Therefore a lack of correlation between analyses was not 

unexpected. 

Discussed in Section 6.3.1, eROM represented the displacement between the joint centre 

calculated using the full RoM and those centres calculated using each |φ|.  Using this 

relationship the validity criterion was established as per equation (6.5).  Using this 

criterion the multiple arc analysis was only valid at the interphalangeal joints and not at 

the MCP joint.  The results of the reduced arc analysis also indicated that the errors at 

the MCP joint did not behave as expected.  This suggested that the assumption of a 

functional CoR at the MCP joint was not strictly true.  As it was in reality a two degree 

of freedom joint, modelling it with two AoR would perhaps have given more accurate 

results.  It would certainly warrant further research to model this joint differently.  

These compromises only became apparent when examining the errors in this level of 

detail and therefore further development of this joint model was deemed outside the 

scope of the study. 

The interphalangeal joints predominantly flexed in the saggital plane and the normal to 

this was the radially directed z-axis.  The change in IAoR was expected to be principally 

within this saggital plane, therefore the component eROM,z was expected to be minimal as 

observed in Figure 6.10 and Table 6.3.  Although the transformation coefficients were 

unique for every subject and cannot be averaged across subjects, a general trend was 

observed across subjects.  This showed eROM,x decreasing and eROM,y increasing as the 

flexion angle increased.  In terms of anatomical axes, this meant the position of the 

IAoR moved proximally and dorsally as the joints were flexed.   

At either interphalangeal joint the radius of the distal phalanx joint surface is larger than 

the proximal surface.  In addition the cam profile of the proximal articular surface 

means an increase in radius of the joint contact surface as the joint was flexed.  The 

resulting rolling and sliding motion resulted in the non-constant AoR.  The results of 

this study predict how this IAoR will change with joint flexion.  It should be noted 

however that the magnitude of this change in IAoR is very high (>5mm for the PIP 
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joint).  Measurement inaccuracies and deformation of the CTFs could be the cause of 

this.  It is likely that more accurate results could be obtained using rod clusters of the 

style described by Fowler and Nicol (1999).  As explained at the start of the previous 

chapter, it was a requirement that there be as little restriction on the subject as possible 

hence the use of the surface mounted hemispherical markers in my study.  

6.4 Conclusions 

The standard deviation in the mean JRF was 0.5 (Section 3.3.2), therefore an acceptable 

level of accuracy would be if errors are kept within this boundary.  It has been shown 

therefore, the proposed marker set and PTT will provide acceptable definition of the 

functional joint centres and ACSs, even when the subject has a significantly reduced 

RoM at one or more joints.  The position of the IAoR of the interphalangeal joints as a 

function of flexion angle has also been predicted and shown to move proximally and 

dorsally with joint flexion.   

The assumption of a CoR at the MCP joint was shown to be flawed when the errors 

were analysed in detail.  This does not mean it cannot be used however, as errors were 

deemed to still remain within acceptable limits.  It would be interesting however to 

conduct further analyses using different kinematic models of this joint. 
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Chapter 7. Measurement of tendon and muscle moments 

 

At any articulating joint in the human body there will be tendons, ligaments or muscles 

that apply forces and moments across it.  Ligaments can apply a passive force only i.e. 

they are not attached to muscles and instead apply a force proportional to strain due to 

their elasticity.  These provide stabilising forces and constrain the kinematics of the 

joint.  Direct reference to ligaments is often excluded from biomechanical models, 

instead the joint constraints and kinematics are defined in such as way as to include 

their influence.  For this reason only the measurement of moment arms and lines of 

action for muscles and tendons are considered in this chapter. 

The parameter ultimately used in biomechanical models is what is referred to in this 

thesis as the unit-force moment (see Section 2.3.2).  Depending on the method of 

measurement it may only be the moment arm of a muscle or tendon that is measured.  

This is the case for excursion methods (Section 7.1.2) where it is assumed that the 

moment acts purely around the axis of rotation of the joint.  In this case it is not possible 

to measure the line of action and it is assumed to be perpendicular to the joint axis.   

Accurate measurement of the anatomy is important in being able to calculate the forces 

and moments applied by the muscles and tendons.  As was demonstrated in Chapter 3, 

models can be sensitive to any variation in moment arm particularly in highly loaded 

elements.  This chapter will review the current methods available for measuring these 
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anatomical parameters.  Their advantages and disadvantages will be discussed as well as 

suggestions for further research which leads onto the work covered in Chapter 8.  

7.1 Methods of determining moment arms and lines of action 

Methods of determining the moment arms and/or lines of action of muscles and tendons 

can be divided into four categories (Masjedi, 2009); geometric methods, excursion 

methods, direct load methods and origin insertion methods.  All rely on some form of 

direct anatomical measurement, whether that is from a previously published dataset or 

directly in a subject specific case.   

7.1.1 Geometric (measurement relative to joint centre) 

Geometric methods are based on the principle of identifying the moment arm and line 

of action relative the joint axes.  Once these two parameters are defined the unit-force 

moment can be calculated.  This method relies on medical imaging such as X-Ray, 

computed tomography (CT), magnetic resonance imaging (MRI) or ultrasonography. 

It is common to use MRI to measure the moment arms and lines of action as 

demonstrated by Rugg et al (1990) for measurement of the Achilles and tibialis anterior 

tendons of the lower limb.  In this case the centre of rotation (CoR) of the ankle joint 

was determined using the two dimensional (2D) Reuleaux method (Reuleaux, 1876), 

where at least two scans need to be made with different degrees of ankle flexion.  This 

method has been used for subsequent studies of the Achilles tendon moment arm 

(Figure 7.1) (Fath et al., 2010; Maganaris et al., 2000; Maganaris et al., 1998) and also 

for the tendons of the hand (Wilson et al., 1999).  A problem associated with the use of 

MRI is the amount of time it takes to scan a subject (Blemker et al., 2007), making it 

difficult to image subjects under loaded or dynamic conditions.  By only scanning in 2D 

however, fast scan times can be achieved such as the 2 second scan used by Maganaris 

et al (1998).  This gives the potential to measure the moment arms under load which is 

known to have an effect on their magnitude (Maganaris et al., 2000). 
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Figure 7.1:  Measurement of the Achilles tendon moment arm relative to the geometric 

joint centre using MRI.  Adapted from Maganris et al (2000). 

Magnanaris et al (2000) compared their geometric method using MRI with a tendon 

excursion method using ultrasonography (discussed in Section 7.1.2).  They highlighted 

the issue of assuming a planar motion of the ankle joint.  The joint CoR can be 

misplaced both through this assumption and also if the CoR does not align with the scan 

plane.  A similar study was carried out by Fath et al (2010) comparing a geometric 

method using MRI and an excursion method using ultrasound to measure moment arms 

of the Achilles tendon.  They found similar results to Maganaris et al (2000) with up to 

25% larger moment arms when using a geometric method compared to the excursion.  

Although the limitations of the geometric method were recognised, most of this 

discrepancy was attributed to contraction of the tendon during flexion.  This is known to 

affect the results of the excursion experiments. 

There have been studies to measure the muscle and tendon moment arms of the fingers 

using geometric MRI methods (Fowler et al., 2001; Kier and Wells., 1999; Wilson et 

al., 1999).  
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Wilson et al (1999) compared both a 2D and three dimensional (3D) geometric method 

with a tendon excursion method.  These all used parameters measured from MRI and 

only for the flexor digitorum profundus (FDP) across the third metacarpo-phalangeal 

(MCP) joint.  For the 3D geometric method the CoR was found functionally using 

helical axes.  The 2D geometric method used the method of Reuleaux.  They found 

much greater variation in the moment arms when using the 2D method compared to the 

3D, explained by increased variation in the definition of the CoR.  The scan times 

necessary for the 3D geometric method were as long as 9.5 minutes.  This made it 

difficult for the subject to maintain a completely still hand for the duration.  

Fowler et al (2001) used a 3D geometric technique to measure the moment arms of all 

the muscles and tendons of the index finger crossing the distal interphalangeal (DIP), 

proximal interphalangeal (PIP) and MCP joints (Figure 7.2).  3D MRI was used, with 

the bones, muscles and tendons manually digitised in each image slice.  In this case 

each joint CoR was defined geometrically using the curvature of the articulating joint 

surfaces.  The authors made the assumption that there was sliding only at the joints 

(although they acknowledged that this may not actually have been the case) and the 

CoR will therefore lie at the centre of curvature.  Measurements were taken from a 

single subject over a range of joint angles.  The aim of this study was to show proof of 

concept for a technique of measuring subject specific inputs to a biomechanical model, 

hence measuring every muscle/tendon of the index finger.  Although these data were not 

intended to be used as a reference set of moment arms and lines of action they do 

compare well with previous excursion studies by An et al (1983) and origin/insertion 

methods by An et al (1979).  Kier et al (1999) used similar methods, but only examined 

the tendons in the carpal tunnel.   

Although MRI has the advantage of generating 3D images non-invasively it is not 

without its drawbacks.  There is a large cost commitment associated with imaging a 

subject (Wilson et al., 1999).  Due to the long scan times, the subject must be able to 

remain motionless for the entire scan time.  This can exclude subjects with tremors or 

other movement disorders which may prevent this.  It also makes measurement under 

loaded conditions difficult. 
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Figure 7.2: MRI used by Fowler et al (2001) to measure the position of finger tendons 

relative to the geometric joint centres to give moment arms and lines of action. 

Another factor that is hardly mentioned in papers using MRI is the difficulty in imaging 

tendon and bone.  MRI measures the time it takes for water molecules to re-align after a 

magnetic field is applied.  The proximity of larger protons will affect this relaxation 

time (T2 relaxation time), hence how an image is created.  Conventional MRI is only 

able to detect a signal from protons that have a T2 relaxation time in excess of 10ms 

(Benjamin et al., 2008; Robson et al., 2004; Henkelman et al., 2001).  This means that 

signals from tissues with these short relaxation times will not be detected as the signal 

will have decayed before the MRI system can switch to its receiving mode (Tyler et al., 

2007).  The type of tissues that typically has a majority of short T2 components includes 

tendons and bone (Gatehouse and Bydder, 2003).  These tissues will have either a very 

low or no signal and appear as dark spaces on a scan (Tyler et al., 2007; Robson and 

Bydder, 2006; Gatehouse and Bydder, 2003).  This can have a clinical benefit as it can 

provide a consistent background against which abnormalities that increase T2 relaxation 

time can be identified.  However for the identification of bone, tendon and ligament 

locations useful for the construction of a biomechanical model, this inability to be able 

to clearly identify the tissues is a major drawback (Blemker et al., 2007).   

The signal from collagen has a direction dependence on the term (3cos²θ - 1) with θ 

being the orientation of the fibres in the magnetic field (Gatehouse and Bydder, 2003).  

Therefore a maximum value will be reached when θ ≈ 55°, also known as the ‘magic 
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angle’.  At this angle it is possible to obtain increased signal from tendons.  Although it 

is possible to use this procedure using standard pulse sequences its applicability is 

limited due to the need for orientation of the fibres to be very specific.  For example in 

the flexed digits of the hand, it would be impossible to orientate the fibres of all tendons 

at this angle simultaneously. 

Another method of imaging tissues with a short T2 relaxation time is by using ultra-

short echo time (UTE) pulse sequences.  This technique enables very short echo times 

to be obtained in the region of 50-250μs (Gatehouse and Bydder, 2003).  This is up to 

200 times shorter than conventional sequences.  These techniques have successfully 

been used for examination of cartilage (Gold et al., 1998), Achilles tendon (Robson et 

al., 2004; Gatehouse and Bydder, 2003; Gold et al., 2001) and tissue attachment points 

(Benjamin et al., 2008).  These studies have mainly been focused on the detection of 

abnormality in the tissues.  However they have enabled a clearer view of the short T2 

tissues, allowing their location to be much more clearly established compared to more 

conventional methods.  This could potentially allow for much more reliable subject 

specific biomechanical models to be produced with a better knowledge of bone, tendon 

and ligament location.      

Of the available non-invasive, non-harmful imaging techniques, B-mode 

ultrasonography can provide clear imaging of tendon and muscle (Fry et al., 2004).  

Additionally its low cost and ability to provide real-time images makes it a useful tool.  

For measurement of muscle and tendon moment arms it has predominantly been used in 

the excursion method (Fath et al., 2010; Ito et al., 2000; Maganaris et al., 2000).  One 

study has used B-mode ultrasonogrpahy to measure the moment arms and lines of 

action using the geometric method for measurement of the Achilles tendon (Manal et 

al., 2010).  Their study used a combination of ultrasound and stereo-photogrammetry to 

measure the tendon line of action relative to the ankle CoR (Figure 7.3).  Markers 

placed on the medial and lateral malleoli were used to identify the CoR relative to these 

external landmarks.  Markers were also placed on the probe head to track its position in 

the same reference frame.  The centre line (line of action) of the tendon could them be 

digitised in the ultrasound image and transformed into the same coordinate system as 

the CoR and hence the moment arm calculated.  There are areas of their study that could 

be improved however.  Firstly, the methods of defining the ankle CoR is susceptible to 

error.  Because the markers are placed directly on anatomical landmarks, the position of 
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the CoR is susceptible to greater skin movement artefact, repeatability issues and 

assumptions about where the CoR lies relative to these external landmarks.  It would be 

more accurate to use marker cluster technical frames and investigate the possibility of 

defining the CoR functionally to reduce these errors.  Only two markers were used to 

locate the probe in the photogrammetric frame.  It is not clear therefore how the 

orientation of the probe could be defined without making assumptions about how it was 

held by the investigator.  Assumptions were made about how the scan plane was 

positioned and orientated relative to the probe body, this cannot be assumed and an 

additional calibration should have been carried out (Prager et al., 1998).  Despite the 

compromises in this specific experiment, this method has the advantage of being able to 

measure the instantaneous moment arms as no range of joint flexion is needed.  This 

gives the potential to measure the moment arms under dynamic and loaded conditions 

which are known to have an effect (Blemker et al., 2007; Tsaopoulos et al., 2006; 

Maganaris, 2004; Maganaris et al., 2000; Keir and Wells, 1999).  The cost involved is 

also significantly less than using MRI techniques.        

 

Figure 7.3:  Ultrasound image of the Achilles tendon in the sagittal plane used by 

Manal et al (2010).  The tendon position is measured in the ultrasound image frame and 

combined with the joint centre measured in the stereo-photogrammetric frame to 

calculate the moment arm.  
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7.1.2 Excursion 

The excursion method is based on the principle that the moment arm can be derived 

from measurement of the change in joint angle with excursion (displacement) of the 

tendon (Landsmeer, 1961).  Using the principle of virtual work the moment arm (M) 

can be expressed as: 

  
  

  
 (7.1) 

where x is the tendon displacement and φ is the joint angle.  Excursion methods assume 

that the actuator acts perpendicular to the joint, therefore the unit-force moment is 

identical to the moment arm. 

Excursion methods have the advantage over geometric and origin insertion methods in 

that they do not require the position of the CoR to be known.  They do require the 

assumption of planar motion at the joint however (Tsaopoulos et al., 2006), which can 

introduce errors for joints with more complex kinematics.  A range of motion is 

required to be able to measure the moment arm in this way.  There are a number of 

ways of measuring both the excursions and joint angles.  As with the geometric 

methods, medical imaging such as MRI and ultrasound have been used to measure these 

parameters (Fath et al., 2010; Ito et al., 2000; Maganaris et al., 2000; Wilson et al., 

1999).  Invasive procedures on cadavers have also been used to measure the moment 

arms of the finger muscles and tendons (Franko et al., 2011; Buford et al., 2005; An et 

al., 1983) as shown in Figure 7.4.  

Wilson et al (1999) measured the excursion of the FDP tendon crossing the third MCP 

joint using MRI.  Two bony landmarks were identified on either side of the joint and the 

tendon length between them calculated.  This was repeated with the joint at a different 

degree of flexion to give the excursion.  It is not clear how the joint angle was 

measured.  This method relies on accurate identification of the bony landmarks in each 

image as well as accurate measurement of the joint angle.  Despite this, the authors 

found the results to be very repeatable in comparison with 2D and 3D geometric 

methods.  Interestingly Wilson et al (1999) found the opposite to the studies of 

Maganaris et al (2000) and Fath et al (2010).  In these cases the excursion method gave 

larger moment arms than the geometric methods.  This was assumed to be due to the 

averaging of the moment arm across a range of joint angles for the excursion method. 
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Figure 7.4:  Tendon excursion on a cadaver specimen.  The tendons are connected to 

cables attached to a transducer capable of measuring excursion.  In this way as the 

joints are flexed excursion is measured.  Adapted from Buford et al (2005). 

Maganaris et al (2000) used ultrasound to measure the excursion of the tibialis anterior 

muscle/tendon and compared this with a geometric method.  The excursion was not 

measured directly in the tendon, instead the pennation angle at the muscle/tendon 

boundary was measured and the excursion calculated from this.  With the muscle at rest 

there was little difference between the geometric and excursion methods.  At maximum 

voluntary contraction however the two methods differed.  The geometric method 

recorded an increase in moment arm, which is what would be expected as the tendon 

pulls away from the joint.  The excursion method produces very similar results to the ‘at 

rest’ case, likely due to stretching of the tendon.  The excursion method is based on the 

principle of virtual work and therefore any stretching of the tendon will invalidate it, 

leading the author to conclude that it is not applicable to tendons in a loaded condition. 

Ito et al (2000) also measured the moment arm of the tibialis anterior.  They attempted 

to counter the problem produced by tendon stretch by ensuring that the subject was 

applying the same amount of force through the different joint angles.  Their results were 
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comparable with Maganaris et al (2000) and Fath et al (2010) with the loaded 

conditions yielding higher moment arms than the at rest condition. 

Fath et al (2010 measured the displacement of the muscle/tendon junction directly.  This 

was used to measure the moment arm of the Achilles tendon and compared with a 

geometric method.  Results were similar to Maganaris et al (2000) with the geometric 

method yielding higher moment arms than excursion. 

To date the methods of excursion for measurement of moment arms examined either 

pennation angle or the location of the muscle tendon junction.  Recently methods have 

been developed to measure the excursion of the FDP at wrist level (Korstanje et al., 

2010a).  This used an automated speckle tracking technique that automated the process 

of measuring tendon excursion (Korstanje et al., 2010b).  The use of an automated 

system can reduce repeatability error and the authors’ suggested an error of only 1.3%.  

Also no anatomical landmarks need to be identified to measure relative displacement.  

As with the previous excursion studies, the results suggested larger excursions (i.e. 

larger moment arms) occurred when the tendon was loaded.  

An et al (1983) carried out a study using seven cadaveric hands to measure moment 

arms of the index finger.  The same principle of virtual work used was used.  To 

measure the tendon displacement the dissected hand was placed in a rig capable of 

measuring the joint angles and tendon displacements using potentiometers.  The ability 

to measure in a controlled environment made it possible to reduce experimental errors 

and the authors proposed a correlation between joint thickness and tendon moment 

arms.  The study by Burford et al (2005) used similar techniques, this time looking only 

at the moment arms crossing the MCP joint.  To achieve this, the interphalangeal joints 

were fixed at 0° flexion.  The authors were able to measure how the moment arm 

changed with joint angle, unlike other excursion studies that presented only averaged 

data.  Because the moment arm is known to change with the degree of flexion this is an 

important consideration.  Franko et al (2011) again used cadavers to examine only the 

digital flexors.  This was done across all joints of all five digits.  Regression equations 

were calculated to relate moment arms to joint angle. 

The use of cadaver specimens does have its drawbacks.  The load on the tendon is 

known to have an effect on the moment arm, and this is difficult to simulate in a 

laboratory environment.  Assumptions also have to be made about how the data can be 
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scaled from subject to subject, which may not necessarily be valid (Bisi et al., 2011; Ito 

et al., 2000).  This is of particular relevance to subjects that may have anatomy 

significantly different from any cadaver study, such as children or those with pathology 

and deformities.  

7.1.3 Origin-insertion 

The origin-insertion method is based on the principle that the muscle or tendon will take 

the most direct path between two specified attachments points.  In the case of it being 

under tension this can be thought of as a taught string and the moment arms and line of 

action can be calculated relative to the axes of rotation.  In some cases it may be more 

representative to use via points and wrapping surfaces to better represent the path of a 

particular muscle or tendon (Marsden and Swailes, 2008).  These can be visualised as 

shown in Figure 7.5.  In principle all origin-insertion methods can be classed as 

modelling techniques as they do not measure the moment arms directly, instead making 

assumptions about via points and wrapping surfaces.  Some are quite simple such as that 

proposed for the fingers by An et al (1979).  Others are more complex and use 

measurements of human anatomy to build models using software such as AnyBody and 

SIMM (Scheys et al., 2008; Blemker et al., 2007; Arnold et al., 2000).  These software 

tools are designed to produce subject specific models.  They can be used by scaling 

existing models based on cadaveric studies, or subject specific models can be built 

using medical imaging such as MRI as shown in Figure 7.6 (Blemker et al., 2007).  It 

has been shown that using subject specific models based on MRI can result in 

significantly different moment arms than those based on anthropometric scaling (Scheys 

et al., 2008).  This provides an argument for the use of subject specific modelling using 

MRI, but as with all the other techniques described, MRI is not without its drawbacks as 

discussed previously. 
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Figure 7.5: Muscles and tendons of the shoulder represented by their lines action 

calculated from their origin points, insertion points and wrapping objects. 

 

Figure 7.6: Using MRI to build a subject specific anatomical model.  Adapted from 

Blemker et al (2007). 
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An et al (1979) studied ten cadavers to produce a dataset of all the muscles and tendons 

of the right hand.  The data are presented for the hand in a neutral position, therefore 

rigid body transformations need to be carried out to calculate the moment arms at 

different degrees of flexion.  These data have formed the basis of subsequent modelling 

analyses of the fingers (Vigouroux et al., 2006), and have been used in assessing more 

complex models including wrapping surfaces (Wu et al., 2010).  The effect of including 

wrapping surfaces compared to via points has been examining in relation to the hand 

(Kociolek and Keir, 2011).  This study, along with that of Wu et al (2010), highlighted 

the issues of using both wrapping and via point techniques.  Particularly at the extreme 

ranges of motion, there can be large and unrealistic changes in moment arms.  This was 

also noted in Chapter 3.  This is a limitation to using such methods in application to the 

hand. 

7.1.4 Direct load 

Direct load methods use the principle of moment equilibrium across a joint to calculate 

the moment arm.  Assuming a single degree of freedom and planar motion at a given 

joint, equation (2.3) can be simplified to: 

      (7.2) 

where M is the magnitude of the resultant moment and r is the moment arm in the joint 

plane and T is the magnitude of the applied force.  If the tension and moment can be 

measured then it is a simple case of calculating the moment arm from this equation.  It 

is only possible however to measure these parameters on cadaveric specimens (Figure 

7.7), as has been carried out for the fingers (Lee et al., 2008; Buford et al., 2005).  In 

both these studies the finger tip was attached to a load cell whilst tension was applied to 

the flexor tendons via a set of weights.  This technique has the advantage that it gives an 

instantaneous value for the moment arm without the need for multiple joint angles to be 

measured.  Also no knowledge of the joint axes of rotation is needed, but it relies on 

several assumptions.  The first, that there is no friction in the system that would affect 

the tension required.  This is not strictly true for the finger flexors as there is known to 

be a varying degree of friction present as the tendon slides through the pulley 

mechanism (Schweizer et al., 2003).  The second is that this method can only be 

conducted on cadaver specimens. 
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Figure 7.7:  Use of direct load to measure moment arms.  The tendons are connected to 

known loads using wires and the force at the finger tip measured.  Adapted from Buford 

et al (2005). 
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7.2 Existing finger moment arms data comparison 

As has been discussed in Chapter 3, the measurement of the anatomical parameters is of 

great importance in obtaining accurate predictions from a biomechanical model.  For the 

grip type examined in Chapter 3, it was found that the most highly loaded tendon was 

the most sensitive to any changes in the measurement of the moment arm.  In this case it 

was the FDP tendon.  As described in the previous sections several papers have 

proposed methods or provided datasets for calculating the moment arm of this tendon.  

A scaling factor has to be defined to provide comparison between studies.  It has been 

proposed to scale to either joint thickness (An et al., 1983) or middle phalanx length 

(Wu et al., 2010).  For the purpose of this thesis the middle phalanx length has been 

used as the scaling factor.  This is because it can be measured using the kinematic 

analysis techniques described in Chapter 5, unlike joint thickness which relies on a 

direct anatomical measurement.  For this scaling to be possible the appropriate 

anthropometric measures must be available.  For this reason only the papers by An et al 

(1979), An et al (1983), Fowler et al (2001), Wu et al (2010) and Kociolek and Keir 

(2011) could be compared.  Kociolek and Keir (2011) proposed a method using both 

control points (CP) similar to An et al (1979) and a method incorporating joint 

wrapping (JW) surfaces.   The moment arms for the FDP crossing the DIP, PIP and 

MCP joints is presented in Figure 7.8, Figure 7.9 and Figure 7.10.  The moment arms 

acted about the axes of the anatomical coordinate systems (ACSs) described in Chapter 

3 and shown in Figure 3.1.  For the coordinate system chosen this means that 

flexion/extension is about the z-axis (flexion positive), adduction/abduction about the x-

axis (adduction positive) and pronaton/supination about the y-axis (pronation positive).  

Thus for the finger tendons, a moment arm with a positive x component will produce a 

flexion moment, and with a positive z component it will produce an abduction moment.  

It was possible to calculate the moment arm about all three axes at all three joints using 

the data from An et al (1979) and Fowler et al (2001).  The other studies presented only 

the moment arms about the flexion/extension axis (and the adduction/abduction axis at 

the MCP joint from An et al (1983)). 

Considering the flexion moment arm of the FDP crossing all the joints, the largest 

difference was observed at the larger degrees of flexion.  This is particularly evident at 

the PIP joint where beyond 90° of flexion the moment arms of An et al (1979), Fowler 

et al (2001) and Kociolek and Kier (2011) dropped off.  Kociolek and Kier (2011) and 
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An et al (1979) both use CP methods.  As highlighted previously this can lead to 

unrealistic moment arms at the extremes of flexion angle.  This was due to the more 

distal of the two CPs from which the line of action and moment arm were calculated 

moving closer to the proximal one, until it became more proximal.  This resulted in the 

flipping of the moment arm so it actually became an extension moment arm as observed 

at the PIP joint in Figure 3.12.  In the case of Fowler et al (2001), the abnormal moment 

arms resulted from interpolation of the data from the static poses measured in their 

study. 

An important point to consider is the large variation in moment arm as measured 

between studies.  Even disregarding the anomalies encountered at high degrees of 

flexion there is still a range of 0.04, 0.19 and 0.26 x middle phalanx length in the flexion 

moment arm at the DIP, PIP and MCP joints respectively in a neutral pose.  Considering 

the results found in Chapter 3 and shown in Figure 3.12 this can change the predicted 

internal loading by over 100%. 

These results indicate that there is still much room for improvement in the measurement 

of the moment arms of the highly loading tendons of the fingers.  The work done to 

address this is described in Chapter 8. 
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Figure 7.8:  Moment arms of the FDP tendon crossing the DIP joint expressed as a 

fraction of middle phalanx length.  As measured and calculated by An et al (1979), 

Fowler et al (2001), An et al (1983), Wu et al (2010) and Kociolek and Keir (2011).   
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Figure 7.9:  Moment arms of the FDP tendon crossing the PIP joint expressed as a 

fraction of middle phalanx length.    
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Figure 7.10:  Moment arms of the FDP tendon crossing the MCP joint expressed as a 

fraction of middle phalanx length.   
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Chapter 8. Combined ultrasound and stereo-photogrammetry to 

measure tendon moment arms and lines of action 

 

In Chapter 3 I showed that predicted internal loading from biomechanical models of the 

fingers was sensitive to changes in any of the measured inputs.  The new method of 

motion capture presented in Chapter 5, both aimed to reduce errors in kinematic 

measurement and to give an estimate of the accuracy achieved.  In this thesis a simple 

open grip type (requiring flexion of the fingers) has been studied.  It has been shown 

that the biomechanical model was most sensitive to changes to the moment arm of the 

flexor digitorum profundus (FDP) tendon.  The methods of measuring and calculating 

the properties of this tendon have predominantly used cadaver based datasets, be that 

through direct measurement (Franko et al., 2011; Buford et al., 2005; An et al., 1983; 

An et al., 1979) or through a modelling approach (Kociolek and Keir, 2011; Wu et al., 

2010).  Anthropometric scaling based on middle phalanx length can then be applied to 

represent subject specific measurements.  In Chapter 7 it was observed that each of 

these methods would produce quite different moment arms using the same scaling 

factor.  These different methods could in turn affect the predicted internal loading by 

over 100%.  The only study that measured subject specific anatomy directly was that of 

Fowler et al (2001).  This method based on measuring properties from magnetic 

resonance imaging (MRI) was not without compromise however, such as the expense 

involved and difficulty in identifying the muscles, tendons and axes of rotation. 
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Manal et al (2010) proposed a method to measure the subject specific properties of the 

Achilles tendon using ultrasound and stereophotogrammetry.  As detailed in Section 

7.1.1 there were several compromises specifically in calibration of the ultrasound image 

in the photogrammetric frame and the position of the axes of rotation.  The method 

proposed in this chapter will quantify and reduce these errors to produce a valid method 

for application to the fingers.  

The aim of this chapter is to describe and assess the procedure for measuring subject 

specific moment arms and lines of action of the FDP across the distal interphalangeal 

(DIP), proximal interphalangeal (PIP) and metacarpo-phalangeal (MCP) joints of the 

index finger.  This method utilises a combination of stereo-photogrammetry and 

ultrasound.  It uses the kinematic analysis techniques described in Chapter 5 to define 

the anatomical coordinate system (ACS) of each finger segment, and ultrasound to 

locate the tendons.  Once measured these properties could be used with the model 

described in Chapter 3 and the effect of subject specific measurement quantified. 

8.1 Three-dimensional ultrasound imaging from two-dimensional scans 

The concept of using two dimensional (2D) ultrasound to build a three dimensional 

(3D) image or measurement of a subject has been around for some years.  In general 3D 

reconstruction from 2D ultrasound scanning can be classed in two ways (Fenster et al., 

2001).   

The first is referred to as feature based reconstruction.  This is where anatomical 

features are digitised in one or more 2D ultrasound images.  Using known 

transformations between the ultrasound image scan plane and global reference, the 

locations of the anatomical features can be expressed in a common global frame.   

The second is referred to as voxel based reconstruction.  In this process a full 3D image 

is reconstructed which can be viewed in a similar way to an MR or computed 

tomography image.  Again through knowledge of the transformations each pixel from a 

2D image can be reconstructed in a 3D Cartesian grid.  In this way a full 3D image can 

be re-sliced and viewed.  This technique relies on a sufficient number of 2D images in 

the required proximity to work (Tong et al., 1996).  Although voxel reconstruction 

enables the production of navigable 3D images, the precise measurement of lengths, 
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sizes and volumes could be compromised because of the interpolation routines used to 

fill in blank space in the image. 

Both feature and voxel based reconstructions require the position of the image scan 

plane in a global reference frame to be known (Fenster et al., 2001).  Leaving aside 

issues relating to calibration of the image plane with the probe head (covered later in 

Section 8.2), this requires knowledge of the spatial and temporal location of the imaging 

probe head.  The way of achieving this can be generalised into three techniques; 

Mechanical scanning, freehand scanning and 2D array scanning.  Mechanical and 

freehand techniques require the movement of the probe head of a regular 2D scanner.  

The third technique, 2D array scanning, uses a fixed transducer and electronic scanning 

to collect multiple images (Fenster et al., 2001). 

8.1.1 Mechanical scanning 

Mechanical scanning techniques refer to the use of a device to move the probe head 

along a known trajectory or arc.  Because this movement is precisely controlled, 

calculation of the relative spatial position of each image is straightforward.  Tong et al 

(1996) used a mechanical arm to produce 3D images of the prostate using a voxel 

reconstruction technique. 

8.1.2 Free-hand scanning 

Free-hand techniques allow a more flexible movement of the probe head as it is held by 

whoever is carrying out the examination.  This makes it more practical for measuring 

live subjects because the mechanical devices used to automatically manoeuvre the probe 

can be restrictive (Fenster et al., 2001).  The challenge occurs in establishing the spatial 

and temporal relationships between each 2D image.  It is most common to achieve this 

with some form of position sensing device fixed to the probe head (Fenster et al., 2001) 

and there are a number of methods available to achieve this.   

An articulating arm has been used to track the position of the probe head (Geiser et al., 

1982).  Unlike the mechanical scanning which drives the position of the probe, this arm 

used potentiometers to passively measure the position.  Although not as restrictive as 

mechanical scanning this method still limits how the probe can be manoeuvred.   

To reduce the restriction on the free movement of the probe head a number of ways of 

tracking its position without direct measurement have been proposed.  Acoustic 
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positioning has been used to track the probe head for reconstructing images of heart 

valves (Levine et al., 1989).  Limitations of acoustic positioning include the inability to 

measure orientation.   

Electro-magnetic sensors have been used for tracking the probe head and applied to 

measuring the volume of kidneys and livers (Hughes et al., 1996).  Electromagnetic 

sensors are able to measure both position and orientation (Raab et al., 1979), giving 

them an advantage over the acoustic techniques.  Commercial products are available 

(Polhemus, Fastrak) which allow real-time tracking using these sensors.   

More recently stereo-photogrammetry has been used to track the probe head position.  It 

has been applied to the measurement of gastrocnemius length using feature based 

reconstruction (Fry et al., 2003).  Subsequently the size and position of this muscle has 

also been measured using voxel reconstruction (Fry et al., 2004).  The position of the 

hip joint centre has been measured (Peters et al., 2010) and the moment arm of the 

Achilles tendon (Manal et al., 2010), both using feature based reconstruction.   Using a 

minimum of three non-collinear makers rigidly attached to the probe head, a reference 

frame can be fixed to it.  Like the electro-magnetic sensors, this allows real-time 

tracking of the probe head.  The principle advantage of this system in a biomechanics 

context is that it can be applied using equipment found in a standard gait analysis 

laboratory. 

8.1.3 Array scanning 

The third method uses 2D scanning arrays to reconstruct a 3D image.  Using a 

stationary transducer the ultrasound beam is swept across the volume to be imaged.  

Although able to produce clear voxel based reconstructed images, its application is 

limited due to its cost (Fenster et al., 2001) and its inability to scan more than a limited 

volume.   
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8.2 Calibration of the ultrasound image coordinate system 

All of the methods described above rely on the transformation between the scan plane 

and a global reference system being known.  Figure 8.1 shows the relevant coordinate 

systems.  Coordinate system     is that fixed to the ultrasound scan plane.  The origin 

of this coordinate system is located in the top left corner of the image.  The y-axis aligns 

with the scan direction i.e. away from the probe casing.  The x-axis is directed 

perpendicular to the scan direction.  The z-axis is the out of plane axis.  Positions in this 

coordinate system cannot be measured out of plane, they can only be expressed in terms 

of their x and y components.  Therefore the components of any position    will be: 

    

  

  

 
 

 . (8.1) 

Coordinate system     is fixed to whatever motion sensing device is attached to the 

probe casing.  This could be an electromagnetic, inertial or marker based coordinate 

system.  Coordinate system     is the global coordinate system fixed in the laboratory.  

In some cases there may be an additional coordinate system     fixed to the transmitter 

used for electromagnetic tracking.  If this is case then the transformation between this 

and the global coordinate system must be known.  Positions measured in the ultrasound 

frame can be expressed in the global frame by:   

     
   

   
   . (8.2) 

The calculation of the transformations   
  and   

  will depend on the tracking system 

used.  In principle the methods are similar to those of stereo-photogrammetry with 

technical frames fixed to any relevant rigid object.   
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Figure 8.1:  Coordinate systems relevant for 3D ultrasound scanning.  Coordinate 

system     fixed to the ultrasound scan plane, system     fixed to the probe casing, 

system     fixed to the transmitter (if needed) and the fixed global system    . 

The definition of the transformation between     and     is not straightforward and can 

be calculated in different ways.  In its simplest form, the transformation can be 

expressed in terms of three rotations and three translations.  The three rotations, α, β and 

γ occur about the x, y and z-axes respectively.  The rotation matrix   
  giving the 

rotation between coordinate systems     and     can be constructed using an xy'z'' 

Cardan sequence (see Section 4.2.3).  The translation between origins of the two 

coordinate systems is given by the 3D vector   .  The rotations and translations can 

then be combined into a single transformation matrix   
 .   

The rotations and translations can be found by making an assumption about how the 

scan plane aligns with the probe casing (Manal et al., 2010).  Making this assumption is 

dangerous however, as the position and orientation of the scan plane do not necessarily 
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relate to the probe casing geometry in any consistent way (Prager et al., 1998).  An 

alternative is to use a specific calibration procedure (Peters et al., 2010; Fry et al., 2004; 

Fry et al., 2003).   

Several studies have been made to review the available methods of calibration (Hsu et 

al., 2008; Rousseau et al., 2006; Prager et al., 1998).  All methods described used a 

phantom object, which was scanned, usually in a water bath.  These phantom objects 

were of known dimensions and their positions in the coordinate system     known.  

Prager et al (1998) initially set out to assess the suitability of two different wire 

calibration procedures.  They first used a cross wired calibration.  Two intersecting 

wires were submerged in a water bath with the position of the apex of the two wires in a 

known fixed position.  The wires were then scanned from a variety of directions with 

their apex being visible in the ultrasound image as shown in Figure 8.2 (a).  This gave a 

set of point locations in the scan plane coordinate system    .  These relate to a fixed 

point in the global coordinate system     and the calibration parameters were 

subsequently calculated using an optimisation procedure.  The second method assessed 

by Prager et al (1998) was referred to as a three-wire phantom.  In this case the wires 

were again submerged in a water bath, however on this occasion the wires were 

mounted in three orthogonal directions.  The probe was then moved along each of these 

wires, resulting in a cross being visible in the image (Figure 8.2 (b)).  Although it was 

easier to align the probe to image the wires rather than a cross, it relied on very accurate 

positioning of the three orthogonal wires.  It was noted that both of these methods 

required manual digitisation of the images because the signal from the wires was not 

clear enough for an automated routine to work effectively. 

The authors then proposed a new method, where instead of a separate phantom object 

the sides of the water bath were used as reference points.  By carrying out a prescribed 

set of motions and rotations the calibration parameters could be calculated by assuming 

the straight line reflections (Figure 8.2 (c)) lay on the plane formed by the x and y-axes 

of the global coordinate system.  This system had the principle advantage that the strong 

reflections from the wall of the water bath could be automatically segmented. 
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Figure 8.2:  Images obtained by Prager et al (1998) using two intersecting wires (a), 

three orthogonal wires (b) and the wall of the water bath (c). 

Rousseau et al (2006) further assessed methods of calibration both using the planar wall 

method favoured by Prager et al (1998) and a procedure known as the Medtronic 

calibration.  The Medtronic calibration used a complex phantom made of a set of 39 

nylon wires.  Rousseau et al (2006) proposed improvements to the planar wall 

procedure in the post processing which meant that digitisation of the images was 

improved.  It also negated the effects of beam width which was counteracted previously 

by use of the more complex Cambridge phantom (Prager et al., 1998).  The Medtronic 

calibration produced accurate results but because of the time consuming nature of the 

procedure the authors proposed that the improved planar wall method was more 

practical and achieved similar accuracies. 

The planar wall methods require a specific set of translations and rotations to be carried 

out to ensure the calibration parameters are properly constrained (Prager et al., 1998).  

For this reason Hsu et al (2008) carried out an assessment of point calibration 

techniques.  Instead of using the crossed wires the authors investigated the use of stylus 

type phantoms.  The principle of these was that the probe could be fixed in position and 

the phantom object moved within the scan plane whilst simultaneously being tracked 

using some form of motion capture.  Each stylus type phantom had a geometric feature 

that could be identified in the scan image.  It was found that point and spherical styluses 

were difficult to position correctly within the scan image compared to a cone type 

stylus.  The cone type stylus was easier to locate due to the clear umbrella shaped 

reflections visible when the phantom was aligned correctly.  Using the other types of 

(a) (c)(b)
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stylus, the interpretation of the image was more ambiguous.  The precision of 

measurement using the Cambridge stylus was found to be 0.6mm and the accuracy was 

estimated at 2.2mm.   

All of the techniques described above used electro-magnetic sensors to track the 

location of the probe and phantoms.  In the context of biomechanical applications it has 

been more common to use stereo-photogrammetry when calibrating the ultrasound 

image (Peters et al., 2010; Fry et al., 2004; Fry et al., 2003).  Fry et al (2003 and 2004) 

used point location calibration methods first using a cross wire method (Fry et al., 2003) 

and then using a single reflective marker (Fry et al., 2004).  Peters et al (2010) 

highlights the problems with using a scanned reflective marker because its position in a 

water bath can compromise the ability to locate it accurately.  Peters et al (2010) used a 

variation of the Cambridge stylus proposed by Hsu et al (2008).  They attempted to 

validate accuracy using a submerged reflective marker observing an accuracy of 4mm, 

worse than that previously shown by Hsu et al (2008).  This was in some part attributed 

to the difficulty in locating the reflective markers as described above. 

Another factor to consider is the scaling of pixels to millimetres in the ultrasound 

image.  A position measured on any image will be in pixels so the location    is in fact 

expressed as: 

    

   
   

 
 

 , (8.3) 

Were u and v are the x and y locations measured in terms of pixels and sx and sy are 

appropriate scaling factors (Peters et al., 2010).  Although many ultrasound scanners 

provide the information required to make this transformation, they will make 

assumptions about the speed of sound in the scanning medium.  This must be taken into 

account through accurate measurement of the temperature in the water bath (Hsu et al., 

2008).  
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8.3 Measurement of moment arms and lines of action from ultrasound images 

In my study the ultrasound probe head was tracked using a stereo-photogrammetric 

system (Vicon, U.K.) and the hand position determined using the phalanx 

transformation technique (PTT) with the marker set described in Chapter 5.  The 

ultrasound machine used was an Esaote MyLab 70 XCG, using a linear array probe-

head with a 40mm footprint (model LA435).  This allowed both still images and video 

to be collected.  The frequency range of the probe (6-18 MHz) allowed for optimal 

imaging of the flexor tendons at a shallow depth.  A gel standoff pad was considered, 

however it was found that transmission gel was more suitable for scanning the flexor 

tendons, particularly when the fingers were flexed.  The probe was held in two 

orientations, either longitudinal with the image aligned with the tendon line of action or 

in a transverse position imaging the cross section of the tendon.  

To determine the moment arm of a tendon across a particular joint a minimum of two 

images was required.  The first was the longitudinal image which was used to identify 

the line of action of the tendon.  Figure 8.3(a) shows an example of this for the FDP 

crossing the MCP joint.  The line of action of the tendon was manually digitised 

(location defined in an image) giving a normalised direction vector defined in the image 

coordinate system   .  For accurate determination of the line of action the probe had to 

be aligned exactly with the direction of the tendon.  This was done by manoeuvring the 

probe until the striations on the tendon were clearly visible.  This could be done with the 

finger flexed <20°, above this it becomes difficult to maintain the acoustic contact.  The 

second probe position was a transverse scan with the cross section of the tendon visible 

(Figure 8.3(b)).  This was used to define a point or series of points through which the 

tendon travels (   ).  In this instance it is important to align the probe so that the cross 

section is imaged as close to the joint centre as possible.  These vectors and positions 

could be transformed into the global coordinate system giving    and   .   

Using the techniques described in Chapter 5 the anatomical coordinate system (ACS) 

for each body segment could be defined relative to the markers attached to the finger.  

Therefore any joint centre could also be located in the global coordinate system.   
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Figure 8.3:  Longitudinal view of the FDP crossing the MCP joint (a), the line of action 

of the tendon indicated by the line.  Transverse view of the same tendon (b), with the 

centre of the tendon cross-section indicated by the dot. 

The procedure for calculating the moment arm was as follows.  A line of infinite length 

with direction vector    was defined to pass through the point   .  The location lying 

on this line with a minimum perpendicular distance between it and the relevant joint 

centre was then found.  The resulting vector between the joint centre and this point was 

the moment arm   .  This moment arm and line of action could then be transformed into 

the ACS relevant for the particular joint.  For the DIP joint this would be the distal 

phalanx ACS     , for the PIP joint the middle phalanx ACS      and for the MCP 

joint the proximal phalanx ACS     .  Once these transformations had been made it 

was straightforward to calculate the unit-force moment.    

8.4 Calibration of ultrasound image using the Cambridge stylus 

Calibration of the ultrasound image frame     was carried out using the Cambridge 

stylus with both the probe head and phantom tracked using stereo-photogrammetry.  

(a)

(b)
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Local technical frames were fixed to both the probe head and phantom using clusters of 

retro reflective markers. 

8.4.1 Probe head technical frame 

A U-Shaped clip was manufactured from mild steel which could be clamped over the 

narrow part of the probe (Figure 8.4).  The inside of the clip was covered with 6mm 

neoprene rubber, ensuring a firm grip of the probe casing.  Additionally it meant the clip 

could be tightened without damaging the probe.  The clip was fixed using a 5mm bolt 

tightened by hand using a wing nut.  Rigidly mounted to the clip was a nylon cylinder 

with four rods of 30mm length mounted upon it.  A 10mm marker was attached to each 

of these rods.  Three markers (A, B and C in Figure 8.4) defined the probe technical 

frame    .  The fourth marker D provided redundancy in case of occlusion of one of the 

other markers.  It also made it possible to identify the orientation of the cluster when 

labelling the raw data.  This system of using a U-clip meant the cluster could be easily 

fixed to and removed from the probe head.  As long as the probe head was not subject to 

unreasonable force (such as being dropped) the cluster remained fixed relative to the 

probe casing.  The cluster could be mounted onto probes of different dimensions by 

changing the size of the U-clip. 

 

Figure 8.4:  Local technical frame     fixed to the cluster of markers rigidly mounted 

to the probe head casing using a U-clip. 

. 
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D
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8.4.2 Cambridge phantom 

A variation of the Cambridge phantom (Hsu et al., 2008) was manufactured by our own 

workshop.  Made from stainless steel the phantom consisted of a rod 250mm long and 

13mm in diameter (Figure 8.5).  One end was machined into a twin cone and a point.   

Post manufacture, the diameter of the apex of the two cones was measured to be 2.5mm 

at a distance of 19.2mm from the tip.  The accurate measurement of these dimensions 

was crucial for the calibration of the ultrasound image.  At the other end of the rod were 

mounted three markers (A, B and C) in a non-collinear arrangement to define a technical 

frame fixed to the phantom.  A fourth marker D, lay on the centre line of the rod.  Along 

with the tip at the other end this defined the long axis of the phantom.  The tip position 

was calibrated by fixing it to a surface and rotating the rod above it.  The tip position 

could then be found using the centre transformation technique described in Section 

5.1.3. 

 

Figure 8.5:  Phantom used for calibration of the ultrasound image plane.  Three 

markers (A-C) defined the local technical frame and the fourth marker D defined the 

centre line of the rod.  One end was machined to a sharp point with a twin cone. 

A

B
C

D
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8.4.3 Calibration procedure 

With the clip attached, the ultrasound probe was fixed above a water bath with the probe 

slightly submerged in the water (Figure 8.6).  The water was maintained at 40°C 

throughout the experiment.  The tip of the phantom was then submerged in the water 

bath with the cluster of markers still above the surface.  Its position was manipulated by 

hand until the apex of the twin cones aligned with the scan-plane.  This was signified by 

the characteristic ‘umbrella’ image caused by the reflections from the curved surface of 

the phantom (Hsu et al., 2008).  The circular cross section of the phantom was also 

visible at the centre of the umbrella as seen in Figure 8.7.  By manual digitisation of the 

top of the circle the apex could be calculated by addition of the radius of the apex (in 

this case 1.25mm).  A set of a minimum of nine positions were scanned, covering the 

area of the image relevant for tendon scanning (the top two thirds of the image).  The 

capture of these positions was synchronised between the ultrasound scanner and the 

motion capture system using an infra-red light emitting diode (LED) attached to a 

pressure switch.  This switch was located on the capture button of the ultrasound base 

unit.  This LED could be located in the stereo-photogrammetric frame to provide the 

synchronisation.   

 

Figure 8.6: Probe clamped so that it just touched the surface of the water.  The 

phantom was manoeuvred so that the apex of the twin cones aligned with the scan 

plane.  
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Figure 8.7:  Umbrella shape reflection occurring when the scan plane aligns with the 

apex of the twin cones.  The circular cross section of the apex can be seen at the centre 

of the umbrella. 

The digitisation procedure enabled a set of locations    to be simultaneously located in 

both the ultrasound scan plane    and the probe technical frame    , i = 1-N with N 

being the total number of positions scanned.  If the two coordinate systems were 

assumed to align then the resulting plot would look something like that presented in 

Figure 8.8 (a).  Because the location of     was arbitrary relative to     the two sets of 

points would not align.  The set of rotations and translations must be found that give the 

appropriate transformation   
  that will satisfy the constraint: 

      
 

 
   for all i. (8.4) 

Once the points have undergone this transformation they will align.   
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Figure 8.8:  If the coordinate systems     and     are assumed to align, the points 

defined in each 
P
ai=1-N and 

U
ai=1-N) will not correspond (as shown in (a)).  The 

transformation   
  was found to minimise any difference between the sets of points.  

Once this transformation has been carried out the points will align as shown in (b). 

{P}

{U}

Pai=1-N = T Uai=1-N

{P} = {U}

Uai=1-N

Pai=1-N

T = f(α, β, γ, Pox, 
Poy, 

Poz)
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(b)
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Figure 8.8 (b) shows how this will occur once     has been transformed appropriately.  

The transformation   
  is made up of the three unknown rotations (α, β and γ) and the 

unknown translation (   ) between     and      Using an xy'z'' rotation sequence, the 

transformation matrix is:  

  
  

 
 
 
 
 

             
 

                              
 

                           
 

     
 
 
 
 

. (8.5) 

To simplify the matrix in this equation cosine terms are represented by a c and sine 

terms represented by an s.  The six unknowns that make up this transformation were 

found by minimising the cost function: 

         
 

 

   

   
 

 
  (8.6) 

using an interior-point algorithm in the optimisation toolbox available in MATLAB 

(The MathWorks). 

An initialisation of the matrix was made by manually pointing positions on the probe 

casing.  This pointing gave an initial alignment and position of     relative to    , 

ensuring a true optimal solution was found.   

8.4.4 Accuracy, precision and repeatability of calibration 

Hsu et al (2008) proposed an automated digitisation routine to define the phantom 

positions in each ultrasound image.  For this study however, it was decided to use a 

manual digitisation process.  It was therefore necessary to examine the effect of the 

observer on the digitisation.  Five observers carried out digitisation of five different sets 

of images.  Each set of images consisted of nine phantom positions.  Each observer was 

asked to repeat the process five times.   

Accuracy could not be determined specifically as no unique object could be measured 

that would not be susceptible to the same systematic errors.  As discussed earlier the 

scanning of a separate reflective marker has its own compromises.  The accuracy was 

assumed to be of a similar magnitude to that stated previously as 2.2mm (Hsu et al., 

2008).   
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By applying the calibration calculated from one set of data to the other four it was 

possible to calculate the precision of the calibration.  This was the mean discrepancy in 

position between points and found to be 0.6mm, similar to that found previously (Hsu et 

al., 2008).   

Because manual digitisation was being carried out it was important to assess how 

repeatable calibrations were by examining the inter-subject variability.  This was found 

to be on average 0.2mm.  Because this was less than the precision of the measurements 

it was concluded that the manual digitisation was adequate. 

8.5 Measurement of the flexor digitorum profundus moment arms and lines of 

action    

8.5.1 Experimental procedure 

A single subject was recruited to participate in the experiment (right handed male aged 

26 years).  An arrangement of 12 Vicon cameras (six T20 and six MX13+) was set up to 

provide a non-occluded view of the subject and probe (Figure 8.9).  It was important to 

position some of the cameras in the low positions to ensure capture of the probe 

mounted cluster.  Data were captured on a PC using Vicon Nexus software (Oxford, 

U.K.). 

 

Figure 8.9:  Set up with six T20 cameras and six MX13+ cameras.  Locations optimised 

for a subject sitting in the centre of the arena with cameras positioned low to capture 

the markers fixed to the ultrasound probe. 
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The first step of the experimental procedure was to carry out calibration of the 

ultrasound image plane.  Once this had been carried out care was taken not to disturb 

the position of the U-clip on the probe casing.  12x4mm hemispherical markers were 

attached to the dorsal surface of the right index finger in the arrangement described in 

Section 5.1.1.  Through the PTT calibration procedure the ACS were defined relative to 

these markers. 

Once these two calibration procedures had been carried out, taking approximately 20 

minutes in total, the subject was ready to be scanned.  A set of scans was taken in both 

the longitudinal position (Figure 8.10 (a)) and transverse position (Figure 8.10 (b)) 

across the MCP, PIP and DIP joints.  Still images were recorded for the longitudinal 

images with the subject’s hand in a neutral pose.  Video recordings were made for the 

transverse images with the subject moving from a neutral pose to fully flexed and then 

back to neutral.  This enabled the moment arm to be recorded for the non-flexed joint, 

the fully flexed joint and all positions between.  This procedure was repeated twice for 

each joint to ensure the full range of angles was covered.   

 

Figure 8.10: Probe scanning the tendon longitudinally (a) and transversely (b).  The 12 

markers were attached to the right hand in an identical manner as in Section 5.1.1.  

 

 

 

(b)(a)
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8.5.2 Data processing 

Data were synchronised between the ultrasound images and the Nexus programme 

using the LED signal described in Section 8.4.3.   A suite of programmes was written in 

MATLAB (The MathWorks, U.S.A.) to calculate tendon properties.  This allowed a 

visualisation of the tendon line of action relative to each body ACS as shown in Figure 

8.11. 

The subject measured in this study was the same used in the sensitivity analysis carried 

out in Chapter 3.  Therefore the FDP moment arms measured could be applied to the 

data measured in this previous chapter, enabling the effect of subject specific 

measurement of the moment arms on internal loading to be quantified.

 

Figure 8.11:  Visualisation of each segment ACS, the ultrasound scan plane     and 

the FDP in the global coordinate system    .  ACS shown; distal phalanx     , middle 

phalanx     , proximal phalanx      and metacarpal     .  The tendon is represented 

by the orange line, with a line of action      and the moment arm     . 
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8.6 Results 

Figure 8.12, Figure 8.13 and Figure 8.14 show the moment arms for the FDP using the 

combined method compared with those available in the literature as described in Section 

7.2.  All moment arms have been scaled to the middle phalanx length of the subject 

studied in Chapter 3 which was 25.4mm.   

For all three joints the combined method produced moment arms within the range of 

those proposed previously.  The one place where it deviated from this pattern was for 

high degrees of flexion at the DIP joint.  Here the moment arms using the combined 

methods got progressively larger whereas using the previous methods they tended to 

plateau or decrease.   
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Figure 8.12: Moment arm of the FDP crossing the DIP joint as a function of joint 

angle.  The blue crosses represent the individually measured moment arms and the solid 

black line the fitted trend.   
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Figure 8.13:  Moment arm of the FDP crossing the PIP joint as a function of joint 

angle.  The blue crosses represent the individually measured moment arms and the solid 

black line the fitted trend.     
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Figure 8.14:  Moment arm of the FDP crossing the MCP joint as a function of joint 

angle.  The blue crosses represent the individually measured moment arms and the solid 

black line the fitted trend.   

 

x component

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

5

1
0

1
5

2
0 1

0
1

5
2

0
2

5
3

0
3

5
4

0
4

5
5

0
5

5
6

0
-6-4-202

M
C

P
 a

n
g
le

 (
o
)

A
n

7
9
  

  
  
  

 F
o

w
le

r0
1

  
  

  
  
  A

n
8

3
  

  
  
  

  W
u

1
0
  

  
  

  
  

 K
o

ci
o

le
k

11
 C

P
  

  
  
  

  
 K

o
ci

o
le

k
11

 J
W

  
  

  
 C

o
m

b
in

ed

Moment arm (mm)

y component



Chapter 8. Combined ultrasound and stereo-photogrammetry to measure tendon 

moment arms and lines of action 

160 

 

For the combined method a 3
rd

 order polynomial was fitted to the measured results to 

enable calculation of the moment arm at any degree of flexion within the range 

measured.  This allowed the calculation of the subject specific moment arms for the 

subject tested using the open handed grip type in Chapter 3.  The relevant flexion angles 

for this grip type are shown in Table 8.1.   

Figure 8.15 and Figure 8.16 show the effect of applying these new subject specific 

moment arms to the model.  Originally the moment arms of the FDP were scaled from 

cadavers.  These are presented in comparison with the new moment arms measured 

using the combined method.  To examine the effect of a subject specific measurement 

when applied to only one of the three joints, the results are presented as five groups.  

The first group used the original cadaveric scaled anatomy applied at each joint.  The 

following three groups applied the subject specific anatomy to a joint whilst still using 

the cadaveric for the other two.  This was applied to the, MCP, PIP and DIP joints in 

turn.  The final group used the subject specific anatomy applied to all three joints. 

Apart from when applied to the DIP joint, the subject specific moment arms increased 

the predicted tension in the FDP.  In all instances however the normalised joint reaction 

force (nJRF) increased due to increases in tension in the flexor tendons.  The mean 

nJRF increase was significant (p < 0.05) in every instance, although it is evident that the 

change in moment arm at the PIP joint had the greatest effect.  Making the change to the 

moment arm at this joint in isolation increased the mean nJRF from 4.3 to 6.3.  The 

increase in nJRF when the moment arm using the subject specific anatomy was applied 

at each joint simultaneously was 3.6, increasing to 7.9.  Overall this was equivalent to 

an increase in nJRF of 84%.   

 

Table 8.1:  Flexion angles for the hand in the open hand grip positions tested in 

Chapter 3. 

 

Joint
Flexion 

angle (°)

Standard 

deviation (°)

DIP 46.6 2.9

PIP 25.3 2.9

MCP 11.7 2.9
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Figure 8.15:  Comparison between predicted actuator tensions from scaled anatomical 

data and subject specific measurements of the FDP moment arm.  For clarity the joint 

actuators have been split into flexors in the top plot and extensors in the bottom plot.  

The five bars represent; the original scaled anatomy, subject specific anatomy applied 

individually to the DIP, PIP and MCP joints and finally with it applied to all joints 

simultaneously.  Functional units: flexor digitorum profundus (FDP), flexor digitorum 

superficialis (FDS), lumbrical (LUR), dorsal interosseous (DIR), palmer interosseous 

(PIU), central band of the extensor tendon (CET), radial lateral band of the extensor 

tendon (RLB), ulnar lateral band of the extensor tendon (ULB), terminal extensor 

tendon (TET), extensor digitorum communis (EDC).  Error bars represent ±1 Standard 

Deviation. 
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Figure 8.16:  Comparison between predicted nJRF from scaled anatomical data and 

subject specific measurements of the FDP moment arm.  The four groups represent the 

joint reaction force at each individual joint and the mean.  The five bars represent; the 

original scaled anatomy, subject specific anatomy applied individually to the DIP, PIP 

and MCP joints and finally with it applied to all joints simultaneously. 

8.7 Discussion 

The aim of this study was to determine the suitability of the combined ultrasound and 

stereo-phorogrammetric technique for measuring the moment arms of the finger flexors.   

Firstly it had to be determined if the ACSs of the finger could be accurately tracked in 

the same coordinate system as positions measured in an ultrasound image.  The low 

profile of the markers used for kinematic analysis using the PTT make it suitable for use 

when the subject has to interact with other objects as it put little restriction on their 

movement.   

Unlike the previous combined method (Manal et al., 2010) the joint axes were defined 

functionally.  This meant no assumption needed to be made about how the joint axes lay 

relative to external landmarks.  Although this hasn’t been specifically investigated for 

the fingers, this assumption is known to be unsafe at other joints (Della Croce et al., 

2005).   

Tracking the ultrasound probe head was straightforward using a technical cluster rigidly 

fixed upon it.  It was important to calibrate the ultrasound image plane relative to this 

cluster (Prager et al., 1998).  From review of available methods it was decided to use the 

Cambridge stylus phantom (Hsu et al., 2008) to calibrate this image plane.  The speed 

and ease of calibration made it practical in a clinical context whilst still achieving the 

0

5

10

 

 

Original MCP PIP DIP All

DIP PIP MCP Mean

N
o
rm

al
is

ed
 m

ag
n

it
u
d

e



Chapter 8. Combined ultrasound and stereo-photogrammetry to measure tendon 

moment arms and lines of action 

163 

 

same accuracy as the more time consuming methods.  Although it was possible to use 

an automated digitisation routine, in this case it was done manually.  It was shown that 

any manual repeatability inaccuracies were less than the overall precision.  For wider 

applications automated digitisation could be used to save time, but for this small study 

the manual process was deemed adequate.  This calibration procedure was an 

improvement on that previously used by Manal et al (2010), who are the only previous 

authors to measure moment arms in this way.  The assumptions made by these authors 

in how the scan plane lies relative to the probe casing could have greatly affected their 

results. 

As shown in Chapter 7, there is significant variation in the moment arm calculated or 

measured depending on the technique used.  Additionally in Chapter 3, it was shown 

that these differences will have a significant effect on the predicted internal loading, 

hence the motivation to achieve a subject specific measurement.  Figure 8.12, Figure 

8.13 and Figure 8.14, show that the measurements made by this study lay in a similar 

region to the previous studies.  There was a wide range in possible moment arms when 

using previously published data, resulting in up to a 6.6mm difference in some cases.  

The moment arms measured using the combined method are subject to an experimental 

error of up to 2.2mm and there is significant scatter observed.  However, because of the 

wide range of moment arms possible when using previously published data, the subject 

specific measurement was considered an improvement. 

As observed in Chapter 7 some of the previous methods give erroneous results at 

extreme angles of flexion.  My combined technique attempted to address this by 

measuring the moment arms at as high degrees of flexion as possible.  Because of 

limitations in maintaining an acoustic contact with the finger it was only possible to 

measure up to 50°-55°.  This was less than was anticipated and less than the 110° of PIP 

flexion measured by Fowler et al (2001).  This is a compromise using this technique 

reducing its applicability to situations where the joint is highly flexed.  The results can 

still be extrapolated, although this would be subject to errors and should be used with 

care.   

Figure 8.15 and Figure 8.16 show that application of these subject specific moment 

arms would have a significant effect on the predicted internal loading.  The difference in 

moment arm of the FDP correlated with a change in the required tension in this tendon.  
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An increase in moment arm at the DIP resulted in reduced tension and the decreased 

moment arm at the other two joints resulted in a greater tension.  Overall the mean nJRF 

always increased due to increases in the tension in the extensors.  This was particularly 

evident when the subject specific moment arm was applied to the PIP joint.  For this 

degree of flexion (25.3°) the moment arm was decreased to 7.0mm compared to 8.3mm 

when using the original moment arm scaled from An et al (1979).  The resulting 

increase in mean nJRF was significant and when subject specific measurements were 

used at all joints resulted in an increase of over 80%.  If this predicted internal loading 

is considered true (if we were to ignore my own experimental errors), the implications 

of using subject specific anatomy are large.  The internal forces could be much greater 

than previously thought.  This could have a significant effect on the design of joint 

replacements or planning rehabilitation for a patient. 

Although the moment arms measured in my study fall within the range defined 

previously in the literature, the limitations must also be considered.  As previously 

mentioned the errors in ultrasound measurement could be over 2mm, which would 

significantly change any result.  What is of greatest concern however is the positioning 

of the probe head and identification of the tendon in the ultrasound image. 

Identification of the correct tendons should also be considered.  Sound knowledge of the 

anatomy is required to correctly identify the tendons crossing the joint.  The use of 

video rather than still images made identification of the flexor tendons easier as they 

could be identified as the subject flexed their finger.   

This method is not suitable for the extensors for two reasons.  Firstly they lie much 

closer to the skin surface making identification difficult.  Secondly and more 

importantly maintaining an ultrasound contact with the dorsal surface of the finger is 

impossible with the marker set used, this is a major drawback.  The reason for the 

continued use of this marker set is highlighted by the results in Chapter 3.  This showed 

that it was changes in the moment arm of the flexors that would have the most 

significant effect on the internal loading.  Therefore if only the FDP can be measured on 

a subject specific basis there would still be an improved prediction of the internal 

loading.  
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8.8 Conclusions 

The method described in this chapter extended the work of Manal et al (2010) to 

measure subject specific moment arms of the FDP in the finger using a geometric 

method.  The issues associated with identifying the joint axes of rotation were addressed 

by using the PTT.  The ultrasound scan plane was calibrated using the Cambridge stylus 

which has been shown to be the most accurate and useable of the methods currently 

available. 

The subject specific moment arms measured were found to be within the range reported 

in previous literature.  These previous methods relied on scaling from cadavers or some 

form of modelling to calculate the moment arms.  When applied to the biomechanical 

model the subject specific measurements were found to significantly affect the results 

increasing the mean internal loading by 84%.  If the subject had any injury or pathology 

that needed to be addressed this difference would no doubt affect the treatment plan. 

My method was not without its drawbacks.  It was only suitable for measurement of the 

flexor tendons due to the markers on the dorsal surface of the finger.  It would be 

possible to scan the dorsal surface of the hand if it was submerged in a water bath, but 

this would make it impossible to track the hand using stereo-photogrammetry.  The size 

of my study was limited to a single healthy subject.  This was enough to show proof of 

concept of the method, but a larger study would be needed to validate it fully. 

Subject specific measurement is of greatest use for abnormal subjects, e.g. those with a 

deformity, injury or pathology that makes their anatomy different.  This can also include 

children, as most datasets used for anthropometric scaling are based on adult specimens.  

Suggested future work would involve at least one of these groups.  Aims would be to 

both show its applicability and also the significance of using subject specific rather than 

scaled anatomy in predicting internal loading in these cases.    
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Chapter 9. Summary and directions of future work 

 

The overall aims of this study were first to understand the most influential factors in the 

prediction of internal loading of the fingers using a biomechanical model and their 

effect on model error.  Secondly it was to propose and assess new methods of kinematic 

analysis and subject specific anatomical measurement. 

Through comparison of two different published models it was found that the most 

significant difference between them was the way in which the proximal interphalangeal 

(PIP) joint was modelled.  A more complex model of this joint using more than a single 

degree of freedom required accurate measurement of the subject specific anatomy.  In 

the absence of such accurate measurement, tendon tensions and joint reaction forces 

(JRFs) were predicted as being unrealistically large.   

When using a model with simpler joint kinematics, the anatomical measurements were 

found to be a significant factor.  Sensitivity analysis showed that for the open handed 

grip case the most highly loaded tendons (in this case the flexor tendons) were in 

absolute terms, the most sensitive to any change in their moment arms.  The sensitivity 

analysis was also used to find coefficients to transform between errors in the position of 

the joint centres and errors in the predicated JRF.  This was used subsequently in 

assessing the suitability of a new kinematic analysis technique. 
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For kinematic analysis of the fingers a new marker set was proposed using 4mm 

hemispherical markers.  These markers had minimal protrusion from the surface of the 

hand and were of minimal weight so as to limit any restriction on the subjects’ 

movement.  Using this marker set combined with calibration movements it was possible 

to define the anatomical coordinate system of each finger segment, using functional 

axes.  Two methods of functional calibration were assessed, the first referred to the 

phalanx fitting technique (PFT) and the second as the phalanx transformation technique 

(PTT).  It was found that once the joint position errors had been transformed into those 

in predicted JRF, the errors using the PFT were 6.3% compared to 2.2% using the PTT.  

From this it could be concluded that in application to the fingers the PTT was more 

suitable.  

Both the PTT and PFT relied on the subject having some mobility of their joints so they 

could carry out the calibration movements.  This is not always possible for subjects who 

have a restriction due to an injury or pathology.  It was found that reducing the 

calibration range of motion available, to that of a subject with a range of motion (RoM) 

typical of pathological mobility, increased the errors in predicted JRF when using the 

PTT to 4.4%.  Although this gives an indication of the technique’s applicability to 

subjects with reduced RoM, it is important to understand that this technique will not be 

suitable for all subjects.  For those with severely restricted movement or fixed deformity 

it will not be possible to perform the analysis in this way. 

The final part of this thesis was the development and assessment of a method of 

measuring the moment arms and lines of action of the flexor tendons using combined 

ultrasound and stereo-photogrammetry.  It was shown that previous methods of 

measuring these properties could produce varying results, affecting the predicted JRF 

by more than 100%.  The measurements made in this study produced moment arms 

within the range of those previously proposed.  The use of these subject specific 

moment arms resulted in a significant change in the predicted JRF by up to 84%.  

Although potentially an improvement of previous methods of anthropometric scaling 

and expensive imaging methods such as magnetic resonance imaging (MRI), this 

combined technique was not without its drawbacks which are discussed in the 

recommendations for future work. 
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9.1 Direction of future work 

For understanding the limitations of this study, a set of recommendations and 

possibilities for future investigation are proposed. 

A more detailed comparison of existing finger models could be carried out including 

more model types and anatomical measurements.  In this thesis it was chosen to 

examine only two contrasting models to give an indication of the variation possible 

from the same experimental measurements.  A more comprehensive study could 

provide cross-validation between more of the models. 

Both sensitivity analyses did not include interaction effects and the errors were applied 

linearly.  This was because the aim of the study was not only to gain an understanding 

of the errors but also to identify factors that could improve the overall model accuracy.  

A more complex numerical simulation would include errors in all variables applied with 

realistic Gaussian distributions.  This would give a more robust estimate of error in the 

final prediction of internal loading, but would require significantly greater computer run 

time and statistical analysis. 

It would be of more clinical relevance if a full set of activities of daily living were 

assessed rather than a single open handed grip type.  The effect of the different models 

and any inaccuracies of measurement could then be quantified in more ‘real world’ 

applications such as those measured by Fowler and Nicol (199b). 

The marker set and method of defining the joint axes functionally has only been applied 

to a small number (13) of subjects.  A more comprehensive study involving a wider 

variety of subjects would be useful to show the applicability of this technique.  

Additionally it was only used for assessment of the index finger (digit two).  In theory it 

can be applied in a similar manner to digits three, four and five.  The thumb (digit one) 

is more complex because the metacarpal has more freedom to rotate relative to the 

carpal bones.  The kinematics of the thumb would need to be quantified in detail to 

define an appropriate method of defining the joint axes functionally. 

This study utilised small 4mm hemispherical markers.  This was to reduce any 

restriction on the subject.  It does compromise the accuracy due to cluster deformation 

however, and this could affect the results of the more detailed multiple arc analysis 

carried out in Chapter 6.  To enable greater accuracy, the cluster technical frames could 
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be defined using triads of clusters.  These rigid clusters avoid the issues such as cluster 

deformation and provide more visibility to the cameras as well as reducing skin 

movement artefact. A comparison could be made between this kind of technique and the 

surface mounted markers used in my study to quantify the compromise on accuracy due 

to using the hemispherical markers. 

Both the PTT and PFT require some form of anatomical pointing to define hinge joints.  

The ability to define this kind of joint fully without the need for any observer input 

would be worthwhile. 

It is important to note that only healthy subjects were used in this thesis, principally 

because it was concerned with method development rather than its application to a 

particular study.  Use with other subjects with pathology such as osteo or rheumatoid 

arthritis might highlight deficiencies in the method not encountered with the healthy 

group.  An attempt has been made to address this by examining the importance of the 

calibration range of motion.  But this was only a simulation, as was discussed in 

previous chapters these subjects could also have severe deformity of the joint causing a 

change in the kinematics.  A true validation can only be obtained by use with the subject 

group of interest. 

The combined ultrasound and stereo-photogrammetric technique for finding the flexor 

digitorum profundus moment arm attempted to address some of the issues highlighted 

in Chapter 3 with regard to subject specific measurement.  Although it did this to some 

extent there is still much work to be done.   

The method of image calibration required manual digitisation of the phantom position.  

Although it was shown that this would not adversely affect the results it would be time 

consuming for a larger study.  An automated technique was proposed by Hsu et al 

(2008).  It would be of interest to apply a similar technique and compare it with the 

manual digitisation method. 

It was not possible to measure the moment arms at as high degrees of flexion as was 

initially hoped.  Because of the size of the probe head it could not be held with an 

acoustic contact as the finger was highly flexed.  To address this, a system could be 

used with the hand submerged in a water bath.  A new method of defining the joint axes 
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would need to be used however as it is not possible to use retro-reflective markers 

submerged in water.   

It was discussed in Chapter 7 that there are many compromises with static imaging such 

as MRI.  The problems of static imaging and lack of clarity of muscle and tendon were 

noted.  The advantages of such methods should not be discounted however, particularly 

as the field of medical imaging is constantly improving.  The use of ultra-short echo 

time (UTE) sequencing and magic angle scanning can allow measurement of the 

required soft tissues.  The ability to measure the subject without the application of 

markers would be desirable to the clinicians.  A worthwhile avenue of future study 

would be to compare the moment arms measured using the proposed combined method 

and more traditional imaging.  This would allow cross validation of methods and 

increase the number of options available for measurement as well as increase 

confidence in the results.  

A potential application of this work would be to aid in the design of finger joint 

replacement.  The success of these replacements is not as great as those achieved at the 

larger joints in the lower limb, mainly down to failure of the component itself.  Through 

the techniques described in this thesis greater understanding of internal loading and 

joint kinematics at different stages of disease progression could be achieved.  This in 

turn could guide designs of future prosthesis. 

Many of the techniques described in this thesis although developed for the fingers could 

equally be applied to different joints of the body with little modification.  This applies 

both to the sensitivity analyses, the assessment of the kinematic analysis and combined 

ultrasound and stereo-photogrammetry.  It would be interesting to see how this work 

could be applied to larger joints more widely studied in the biomechanics community. 
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Appendix A.  Finding the axis of rotation using singular value 

decomposition 

 

As detailed in Chapter 5 Section 5.13 singular value decomposition (SVD) was used to 

find the axis of rotation (AoR).  This is identical to the technique described by Ehrig et 

al (2007).   

Assuming a common AoR a between two adjacent segments (Figure A.1).  Rigid body 

transformations between cluster technical frames (CTF) attached to segments distal and 

proximal to the joint of interest can be defined as rotations Ri and translations ti.  Using 

these, a constraint function fATT was defined as:  

                        

 

   

  
(A.1) 

where N was the total number of capture frames.  Positions on the AoR in either CTF 

proximal or distal to the joint of interest were defined as    and c respectively.  The valid 
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solutions of    and c were non-unique as they could be positioned anywhere along these 

infinite axes.   

To find the single unique solution the equation was posed as a least squares problem in 

the matrix notation: 

 
    
  

    
  

  
 
    

  
 
  

   (A.2) 

This is equivalent to the equation: 

      (A.3) 

 

Matrices U, Σ, and V were calculated using the SVD of the matrix A:  

        (A.4) 

 

The direction vectors of the AoR in each CTF (   and a) were the first and last three 

components respectively of the last column of V.  The minimal norm was then given by: 

    
  

    

  

 

   

  (A.5) 

 

The first three and last three components of x
*
 give the points    and c defining the 

unique solution in each segment’s CTF.  The sets of vectors ui and vi, i = 1,...,6 were the 

columns of matrices U and V respectively.  The entries of the main diagonal of the 

matrix Σ, gave the singular values σi, i = 1,...,6.   
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Figure A.1. The phalanx transformation technique.  CTFs were defined on each 

phalanx and the transformation between them defined as rotations R and translations t.  

Any position c laying on the common AoR a can be expressed in the other CTF by the 

relationship        . 
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Figure B.1:  eROM from multiple arc analysis for Subject 1 at all joints with a magnitude 

|φ| = 30°. 
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Figure B.2:  eROM from multiple arc analysis for Subject 2 at all joints with a magnitude 

|φ| = 30°. 
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Figure B.3:  eROM from multiple arc analysis for Subject 3 at all joints with a magnitude 

|φ| = 30°. 
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Figure B.4:  eROM from multiple arc analysis for Subject 4 at all joints with a magnitude 

|φ| = 30°. 
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Figure B.5:  eROM from multiple arc analysis for Subject 5 at all joints with a magnitude 

|φ| = 30°. 
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Figure B.6:  eROM from multiple arc analysis for Subject 6 at all joints with a magnitude 

|φ| = 30°. 
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Figure B.7:  eROM from multiple arc analysis for Subject 7 at all joints with a magnitude 

|φ| = 30°. 
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Figure B.8:  eROM from multiple arc analysis for Subject 8 at all joints with a magnitude 

|φ| = 30°. 
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Figure B.9:  eROM from multiple arc analysis for Subject 9 at all joints with a magnitude 

|φ| = 30°. 
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Figure B.10:  eROM from multiple arc analysis for Subject 10 at all joints with a 

magnitude |φ| = 30°. 
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Figure B.11:  eROM from multiple arc analysis for Subject 11 at all joints with a 

magnitude |φ| = 30°. 
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Figure B.12:  eROM from multiple arc analysis for Subject 12 at all joints with a 

magnitude |φ| = 30°. 
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Figure B.13:  eROM from multiple arc analysis for Subject 13 at all joints with a 

magnitude |φ| = 30°. 
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