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Abstract 

The aims of this study were to undertake the first comprehensive in vitro, in vivo and 

clinical investigation into the effects of the PARP-1 inhibitor, AG014699, in human 

cancers defective in homologous recombination (HR) DNA double strand break (DSB) 

repair. 

HR deficient cells were 9-fold more sensitive to AG014699 than HR proficient cells 

(mean LC50 = 3.26 µM vs. 29.68; P < 0.0001), confirming the theory of synthetic 

lethality. BRCA1 methylated UACC3199 breast cancer cells were also sensitive to 

AG014699 with mean LC50 significantly lower than the HR proficient cells (7.6 M vs. 

29.68; P = 0.002). AG014699 inhibited PARP activity by > 95% and induced DNA DSBs in 

all 11 cell lines studied. Evidence of HR (by Rad51 foci) was observed only in cells with 

functional BRCA1/2. 

A prolonged schedule of AG014699 (10 mg/kg daily for five days of a seven-day cycle 

for six cycles) more effectively delayed the growth of BRCA2 mutated xenografts than 

a ten day AG014699 schedule (tumour growth delay (TGD) = 27.5 vs. 12.5 days; P = 

0.02). AG014699 significantly delayed UACC3199 tumour growth compared to 

untreated controls (mean time to relative tumour volume 5 = 35.8 vs. 25.2 days; P = 

0.05); confirming in vitro findings that BRCA1 methylated cancer cells are sensitive to 

PARP inhibition.  

Clinical trial data from 38 patients demonstrated that AG014699 is non-toxic and 

efficacious with a clinical benefit rate of 34%. Higher baseline PARP-1 activity was 

associated with response to AG014699.   

The major findings of these studies are: the confirmation of the selective cytotoxicity 

of PARP inhibitors in BRCA mutated cancers; the results in UACC3199 cells which 

suggest that cancers with other HR defects could benefit from single agent PARP 

inhibitors, and finally the concept that length of exposure to (not just degree of) PARP 

inhibition is important for single agent anti-tumour activity. Furthermore, these data 

have formed the basis for a major amendment to the clinical trial; the result of which is 

eagerly awaited. 
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Chapter One 

 

1. Introduction 

1.1 Introducing the cancer, PARP and BRCA story 

More than one in three of us will develop cancer at some point in our lives and despite 

advances in treatment over the last twenty years, cancer remains the most common 

single cause of mortality in the UK (www.cancerresearch.org/cancerstats). The major 

shortcomings of existing anti-cancer agents are that their efficacy is limited by toxicity, 

specificity and the development of drug resistance. The search for new targeted, less 

toxic treatments and methods to improve the specificity and effect of existing 

therapies is a major focus of cancer research.  

Many current chemotherapy agents work by damaging a cell’s ability to repair or 

replicate its DNA. These include: alkylators, topoisomerase I and II inhibitors and DNA 

cross-linking agents (DeVita et al., 2008). Cancer cells, by definition, are characterised 

by genomic instability, recently described as an ‘enabling characteristic’ in the 

‘Hallmarks of Cancer’ update (Hanahan and Weinberg, 2011). That is to say they have 

developed ways to adapt pre-existing DNA damage signalling and repair pathways to 

enable them to survive DNA damage and evade cell death. One novel approach then, 

in the treatment of cancer, is to potentiate the DNA damaging effect of chemotherapy 

agents by also targeting the mechanisms by which this DNA damage is repaired. To put 

it simply: to combine a DNA damaging agent with a DNA repair inhibitor.  

One such novel target is the nuclear enzyme Poly(ADP-ribose)polymerase-1(PARP-1). 

PARP-1 is essential to the repair of single strand DNA breaks (SSBs) via the base 

excision repair/single strand break repair (BER/SSBR) pathway (Schreiber et al., 2006). 

Inhibiting PARP-1 has been shown to potentiate the cytotoxic effects of ionising 

radiation and DNA damaging chemotherapy agents such as the alkylators and 

topoisomerase inhibitors (Calabrese et al., 2004; Delaney et al., 2000).  The first PARP 

inhibitor to enter anti-cancer clinical trials was AG014699 (Pfizer, Global Research 

Development).  



  Chapter One - Introduction 

2 
 

At this time there was no data to support single agent use; and so AG014699 was 

combined in a phase I study with the oral monofunctional alkylating agent 

temozolomide (Plummer et al., 2008).   

In 2005, two Nature papers reported that cells deficient in the Breast Cancer 

Susceptibility (BRCA) genes 1 and 2 were exquisitely sensitive to single agent PARP 

inhibition; being 100-1000 -fold more sensitive than BRCA heterozygote or wild type 

cell lines (Bryant et al., 2005; Farmer et al., 2005). This observation, made 

independently by two laboratories using different BRCA1/2 deficient models and 

different chemical classes of PARP inhibitors suggested that the sensitivity of these 

cells was due to PARP inhibition. Mutations in either BRCA1 or 2 result in defective 

DNA double strand break (DSB) repair by Homologous Recombination (HR) and are 

associated with a high lifetime risk of breast and ovarian cancer (Gudmundsdottir et 

al., 2006). It is hypothesized that PARP inhibitors can induce ‘synthetic lethality’ in cells 

with BRCA1/2 mutations, which are defective in HR DNA repair by inactivating the 

BER/SSBR pathway. ‘Synthetic Lethality’ is the process by which cancer cells are 

selectively targeted by the inactivation of two genes or pathways when inactivation of 

either gene or pathway alone is non-lethal (Kaelin, 2005). The term was first used in 

the 1940s by geneticists but the suggestion that ‘synthetic lethality’ could be a useful 

strategy in anti-cancer treatment did not arise until the late 1990s (Friend and Oliff, 

1998). 

 Clinical trials of single agent PARP inhibitors in BRCA mutation carriers with advanced 

ovarian or breast cancer began in 2005, with results of the olaparib phase I and II 

studies now reported (Fong et al., 2009; Audeh et al., 2010; Tutt et al., 2010). These 

‘proof of principle’ early phase studies demonstrated that the PARP inhibitor, olaparib, 

is active and well tolerated in selected BRCA mutation carrier populations. Results of 

other classes of single agent PARP inhibitor studies are awaited. 

There is now evidence that cells lacking other components of the HR repair pathway or 

where the BRCA genes have been silenced by epigenetic changes are sensitive to PARP 

inhibitors (Ashworth, 2008). Given that a substantial proportion of sporadic cancers 

may harbor such defects, a phenotype known as ‘BRCAness’ or HR deficiency (HRD), a 

wider therapeutic use for PARP inhibitors is emerging. Clinical trials in selected 

populations are already underway (www.clinicaltrials.gov).  

http://www.clinicaltrials.gov/
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Chapter one of this thesis sets out to provide the background information and 

scientific rationale for this body of work investigating the role of the potent, selective 

PARP-1 inhibitor, AG014699, in the treatment of cancers defective in HR DNA repair. 

1.2 DNA damage and repair mechanisms 

The accurate and efficient repair of DNA damage is essential for normal cellular 

function and the maintenance of genomic stability (Hoeijmakers, 2001). In humans 

acquired or inherited defects in DNA repair can result in an increased lifetime risk of 

cancer (Hoeijmakers, 2009). The integrity of DNA faces continual threat from a variety 

of agents. These can be classified into two groups. Firstly, endogenous sources which 

occur as the by-products of normal cellular metabolism. For example, reactive oxygen 

and nitrogen species, oestrogen and cholesterol metabolites and reactive carbonyl 

species are all generated by normal cellular activity and can damage DNA (De Bont et 

al., 2004). Spontaneous reactions within the DNA micro-environment such as 

hydrolysis can also result in damage to bases such as deaminations (Lindahl et al., 

1993).  Secondly, DNA can be damaged by exogenous physical and chemical stressors 

such as ultra-violet (UV) light, cigarette smoke and chemotherapy agents.  

 In humans over 130 genes have been identified that are associated with DNA repair 

and these genes can be sub-grouped, by function, into five distinct DNA repair 

pathways (Christmann et al., 2003). They are the excision repair mechanisms: Base 

excision repair (BER), Nucleotide excision repair (NER) which consists of two branches: 

global genome and transcription coupled NER; Mismatch repair (MMR) and finally the 

double strand DNA break repair mechanisms: Non-homologous end joining (NHEJ) and 

Homologous recombination (HR). Each pathway, shown in figure 1.1, has evolved to 

deal with a specific type of DNA damage, although there is some overlap in their 

functions (Hoeijmakers, 2001).  
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Figure 1.1: DNA damage and repair mechanisms in man (adapted from JHJ Hoeijmakers, 2001). 

MMC = mitomycin C, Cis-Pt = cisplatin, UV = ultra-violet light. 

 

1.2.1 Base excision repair/ Single strand break repair 

Base excision repair or single strand break repair, as it is otherwise known, is the main 

mechanism by which damaged bases and SSBs are repaired (Bernstein et al., 2002). 

The main function of the BER/SSBR pathway is to protect cells from endogenous DNA 

damage caused by hydrolysis, reactive oxygen species and other by-products of normal 

cellular metabolism that modify base structure. Such internal DNA damage occurs at 

high frequency with > 104 depurinations per cell per day (Lindahl et al., 1999). 

BER/SSBR also repairs damage induced by external agents such as cigarette smoke, 

alkylating chemotherapy agents and ionising radiation.  It consists of two sub-

pathways; short patch repair which replaces single nucleotides and long patch repair 

which replaces 2-15 nucleotides. The key steps are summarised in the following 

section and illustrated in figure 1.2 
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1.2.1.1 Recognition, base removal and incision (steps I-II) 

BER/SSBR can be initiated by the recognition of the damaged base by one of at least 11 

known DNA glycosylases. The glycosylases are divided into type I and II, distinguished 

by function. Glycosylase I enzymes remove modified bases out of the helix creating an 

apurinic/apyrimidinic (AP) site. This occurs by the action of the Apel AP endonuclease - 

Ref -1 which makes a 5’ nick in the DNA backbone leaving a 5’deoxyribose-5-

phosphate (5’dRP) and 3’OH. The type II glycosylases also remove bases but in addition 

cleave the AP site via endogenous 3’ endonuclease activity resulting in a SSB. 

1.2.1.2 The role of PARP in BER (step III onwards) 

The nuclear enzyme PARP-1 detects DNA strand breaks via its two zinc fingers. PARP-1 

binds with high affinity to and is in turn activated by the DNA SSB. Once PARP-1 is 

activated it catalyses the successive transfer of ADP-ribose units from the substrate 

nicotinamide adenine dinucleotide (NAD+) to a variety of acceptor nuclear proteins 

including itself as shown in figure 1.3 . This produces linear and/or branched polymers 

of poly ADP-ribose (PAR). The reaction requires the catalysis of the glycosylic bond 

between the C-1’ atom of ribose and the nicotinamide of the NAD+ and the formation 

of a new glycosylic bond with the nucleophilic acceptor. Residues of glutamic acid, 

aspartic acid and lysine act as receptors for poly(ADP-ribosyl)ation on the target 

proteins (Schreiber et al., 2006). This ‘poly(ADP-ribosyl)ation’ creates a negatively 

charged target at the SSB which attracts the other DNA damage repair enzymes to the 

site forming the BER multi-protein complex. This complex is made up of PARP-1, the 

scaffold protein XRCC1 (x-ray repair cross-complementing 1), DNA ligase III and the 

DNA polymerase pol β. Following ADP-ribosylation PARP-1 has reduced affinity for 

DNA and is released, opening up the chromatin and allowing access to the damaged 

site to the other repair complex proteins. This process involving PARP-1 is required for 

both short and long patch repair. The PAR polymers are subsequently degraded by the 

poly(ADP-ribose)glycohydrolase (PARG). The structure of PARP-1 and its other DNA 

repair functions are discussed later in this chapter in section 1.4. 
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Figure 1.2: The BER/SSBR pathway (adapted from JHJ Hoeijmakers, 2001) showing the role of 
PARP-1 in both short and long patch repair. XRCC1 (X-ray repair cross-complementing 1), PARP 
(poly(ADP-ribose) polymerase), APE-1 (Apel endonuclease- Ref -1), PCNA (Proliferating cell 
nuclear antigen), FEN1 (Flap endonuclease 1). Further figure explanations are provided in the 

main text under the corresponding Roman numerals. 
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1.2.1.3 Short patch repair (steps IV-VI) 

In mammals short patch BER/SSBR is the dominant pathway. As shown in figure 1.2, 

the DNA pol β replaces the missing nucleotide using the complimentary strand as a 

template and removes the 5’-terminal baseless sugar residue via its lyase activity. The 

XRCC1-DNA ligase 3 complex then seals the nick with XRCC1 acting as a scaffold 

protein.  

1.2.1.4 Long patch repair (steps VII-IX) 

In long patch repair the process is more complex with the synthesis of more than one 

nucleotide required for repair. This synthesis  is achieved by DNA pol β, pol δ/ε and the 

proliferating cell nuclear antigen (PCNA). Flap endonuclease 1 (FEN1) acts to remove 

the DNA flap and DNA ligase 1 is responsible for sealing.  

 

 

Figure 1.3: The role of PARP-1 in SSB repair pathway (Drew and Calvert, 2007).             
Following DNA damage PARP-1 is activated and binds to the exposed single strand break (SSB). 
Once bound it catalyses the successive transfer of ADP-ribose units from the substrate 
nicotinamide adenine dinucleotide (NAD+) to a variety of acceptor nuclear proteins. This 
creates multiple linear or branched polymers of poly(ADP-ribose). This ‘poly(ADP-ribosyl)ation’ 
creates a negative charge at the SSB which recruits the other enzymes required for successful 
long or short patch SSB repair: XRCC1 (X-ray repair cross-complementing 1), DNA ligase III and 

the DNA polymerase pol B (shown).  
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1.2.1.5 Human disorders of BER/SSBR 

There are no known human disorders associated with inherited BER/SSBR deficiencies. 

In fact, inactivation of BER/SSBR core proteins in mouse models results in embryonic 

lethality (Schreiber et al., 2002) emphasising the importance of this pathway in 

genomic maintenance and cell survival.  

However, polymorphisms in the BER/SSBR genes do exist and are linked with increased 

cancer risk and response to chemotherapy. For example, polymorphisms in the PARP-1 

encoding gene - ADPRT (adenosine diphosphate ribosyl transferase) and the XRCC1 

gene are linked with an increased risk of lung adenocarcinoma in smokers (Zhang et 

al., 2005). In addition; XRCC1 polymorphisms have been shown to predict the response 

to oxaliplatin- based chemotherapy in patients with advanced colon cancer 

(Stoehlmacher et al., 2001). 

1.2.2 Double strand DNA break (DSB) response 

DSBs are regarded as the most lethal of the DNA lesions and if left un-repaired can 

result in genomic instability, carcinogenesis and ultimately cell death (Hoeijmakers et 

al., 2001). They occur as a result of direct damage to both strands of DNA from 

exogenous agents like ionising radiation or chemotherapy (e.g. the topoisomerase 

inhibitors) (Helleday et al., 2008) or as part of normal physiology e.g. to permit genetic 

recombination during meiosis (Neale et al., 2006) and the rearrangements needed for 

the development of immunoglobulin genes during V(D)J (variable, diversity and 

joining) recombination (Leavy., 2010). It is now known that a significant number of 

DSBs arise during DNA replication when a replication fork encounters an un-repaired 

SSB; and that the HR pathway and PARP-1 have a vital role in repairing such collapsed 

replication forks (Bryant et al., 2009; Helleday et al., 2007). 

The two major proteins involved in DSB detection are the ataxia-telangiectasia 

mutated (ATM) and ATM Rad53 related (ATR) proteins, both members of the 

phosphadtidylinositol 3-kinase-like family (Bakkenist et al., 2004). ATM and ATR sense 

the DSB and trigger the activation of multiple genes involved in either HR or NHEJ 

repair, cell cycle arrest, and in some circumstances apoptosis. Substrates for ATM 

phosphorylation include: BRCA1, p53, the check-point kinases CHK1 and CHK2, 

Fancona anaemia protein FANCD2, the histone H2AX and the Mre-11-Rad50-NBS1 

(Nijmegen breakage syndrome) (MRN) complex. ATR is known to phosphorylate CHK1, 
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BRCA1 and the DNA helicase BLM1 (Lord et al., 2006).  It was originally thought that 

ATM and ATR acted independently in their response to DNA damage. With ATM 

activated in response to DSB arising from ionising radiation (IR), and ATR 

phosphorylating its substrates following DNA damage induced by stalled replication 

forks or insults such as UV light and DNA damaging chemotherapy agents. However, 

recent evidence suggests that ATM and ATR work together; with reports of both ATM 

and ATR required for ionising radiation-induced CHK1 phosphorylation and ATM 

regulating the activity of ATR in response to DSBs (Jazayeri et al., 2006). 

The role of both ATM and ATR in halting cell cycle progression prior to DSB repair is 

essential to avoid the passage of deleterious genetic mutations through to daughter 

cells at mitosis. This cell cycle arrest is facilitated by the activation of CHK1 and CHK2, 

which results in cell cycle arrest at the G2/M and S phase check-points. If the DNA 

damage is considered too severe for effective repair then apoptotic cell death can 

ensue. This apoptosis is triggered by CHK2 via the phosphorylation of E2F1, PML and 

p53 (Zhou et al., 2004).  

The two primary DSB repair mechanisms in humans are NHEJ and HR. These two 

pathways operate independently but do share some common proteins. Which 

pathway is used to repair the DNA damage depends principally on the origin of the 

DSB and the stage in the cell cycle in which the DSB occurs (Takata et al., 1998). HR is 

an error-free pathway which is dependent on the proximity of the sister chromatid and 

so only takes place in late S and the G2 phases of the cell cycle (O’Driscoll et al., 2006). 

NHEJ, as the name suggests, simply joins together two ends of broken DNA and 

therefore does not require the synthesis of a complementary template and so can 

occur at any stage in the cell cycle. However, its main action occurs prior to replication 

in G0 and G1 (Chu et al., 1997). 
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 1.2.3 DNA DSB repair: Non-homologous end joining 

Non-homologous end joining is the main mechanism in mammalian cells by which 

DSBs are repaired (Chu et al., 1997). It is an error-prone pathway and may result in the 

deletion or insertion of base pairs. The core protein components of NHEJ (shown in 

figure 1.4) are DNA-PK (DNA - protein kinase), DNA ligase IV, X-ray cross 

complementation group 4 (XRCC4) and the nuclease Artemis (Collis et al., 2005). DNA-

PK, the main NHEJ player, is a nuclear serine/threonine protein kinase that consists of 

a catalytic subunit (cs) (DNA-PKcs) and a DNA binding/regulatory subunit (Ku). 

Following a DSB, NHEJ is thought to be initiated by the heterodimer of Ku (Ku70 + 

Ku80) which binds to both DNA ends (Bernstein et al., 2002). The Ku heterodimer then 

recruits DNA-PKcs, which is in turn activated. The complex of Ku + DNA-PKcs now 

becomes the active protein kinase – DNA-PK. This brings together the ends of the DSB 

for processing prior to re-ligation. This processing is thought to be carried out by a 

number of proteins. For example, the MRN complex has exo/endonuclease and 

helicase activity to remove the excess DNA at the 3’ flaps. Whilst FEN1 is recruited to 

remove the 5’ overhangs, the protein Artemis is recruited and, acting in a complex 

with DNA-PK, primes the site of damage via its endo/exonuclease activity, resecting 

DNA at both the 3’ and 5’ flaps.  New DNA ends are synthesised by a DNA polymerase 

thought to be pol µ and finally, ligation is achieved by the actions of XRCC4 and DNA 

ligase 4 (Christmann et al., 2003) 

DNA-PK has been a target for anti-cancer drug developers for some years. NU7441, a 

2-N morholino-8-dibenzothiophenyl-chromen 4, is a potent and selective DNA-PK 

inhibitor developed at Newcastle University in collaboration with KuDOS 

pharmaceuticals (now owned by Astrazeneca) (Zhao et al., 2006). Inhibition of DNA-PK 

by NU7441 has been shown to enhance the cytotoxicity of ionising radiation and 

doxorubicin in DNA-PK proficient but not deficient hamster and human cancer cell 

lines (Tavecchio et al., 2011). Interestingly, Tavecchio et al demonstrated that 

inhibiting DNA-PK with NU7441 resulted in reduced HR activity, as represented by 

reduced Rad51 foci formation, suggestive of DNA-PK activity within the HR repair 

process. NU7441 is still in pre-clinical drug development but it is envisaged that DNA-

PK inhibitors will enter early phase clinical trials in the next few years.  
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1.2.4 DNA DSB repair: Homologous recombination 

Homologous recombination plays a major role in repairing DSBs that arise as a result of 

replication fork stalling following un-repaired SSBs (Helleday et al., 2007). HR can be 

subdivided into two pathways; Gene Conversion (GC), illustrated in figure 1.4, and 

Single Strand Annealing (SSA). GC is the predominant pathway but they share common 

beginnings. It was always proposed that HR is initiated by the MRN complex (Falck et 

al., 2005) which recruits ATM to the site of DNA damage but the precise mechanism 

behind this was unknown. However, it was recently discovered that the MRN complex, 

in processing the DSB end, creates multiple short single strand (ss) DNA 

oligonucleotides which in turn stimulate ATM (Jazayeri et al., 2008). Once activated, 

ATM phosphorylates a number of proteins including: BRCA1, the histone H2AX, CHK1 

and 2 and the MRN complex itself. Following this phosphorylation, the MRN complex 

resects, via its exo/endonuclease activity, the sequence of DNA damage exposing 

single strand overhangs of DNA at the 3’ ends on either side of the DSB. This process is 

thought to also involve BRCA1 (Zhong et al., 1999). Next, Rad51, one of the major 

players in HR, facilitates the assembly of a helical nucleoprotein filament known as the 

pre-synaptic filament (shown in figure 1.4 II). This is thought to also involve the Rad51 

related proteins (XRCC2, XRCC3, Rad51B, C and D). Paradoxically, this process is made 

more difficult by another component of HR, the replication protein A (RPA). RPA, an 

abundant ssDNA-binding protein, competes to bind to the sites of exposed ssDNA 

(Sung et al., 2006). Biochemical and chromatin immunoprecipitation experiments have 

shown that the Rad52 protein and the heterodimeric Rad55-Rad57 complex help to 

overcome the inhibitory effects of RPA on the filament formation (Sung et al., 1997).  

In addition recent data has shown that BRCA2 facilitates Rad51 in displacing RPA from 

the exposed ssDNA (Jensen et al., 2010). Rad51 localises to the site of DSB with the 

help of BRCA2 which binds directly to Rad51 via its eight conserved BRC repeat zones 

transporting it into the nucleus. It is proposed that this BRCA2-Rad51 complex binds to 

the exposed single stranded DNA and this binding then enables the loading of Rad51 

onto the break and the formation of the pre-synaptic filament (Yang et al., 2002).  
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Figure 1.4: DNA DSB repair pathways (adapted from JHJ Hoeijmakers, 2001). Homologous 
recombination (Gene Conversion): (I) Following DSB DNA excised by the MRN complex and 
Rad51 localises to DSB via BRCA2. (II) Rad51 and related proteins assemble the pre -synaptic 
filament. (III) Rad51 and Rad54 identify homologous sequence of DNA and facilitate invasion 
into break site and new sequence of DNA is synthesised. (IV) Exchanged ends, (Holliday 
junctions), are rejoined by resolvases. Non-Homologous end joining (NHEJ): (V) Heterodimer of 
Ku (Ku70 + Ku80) binds to exposed DNA initiating NHEJ. (VI) The active protein kinase – DNA-
PK (Ku + DNA-PKcs) brings the ends of DSB for processing prior to re-ligation. (VII) MRN 
complex, FEN1 and Artemis remove excess DNA ends. New DNA synthesised by a DNA 
polymerase and ligation occurs via XRCC4 and DNA ligase 4. DSB = double strand break, MRN = 
Mre-11-Rad50-NBS, XRCC2/3/4 = X-ray cross complementation group 2/3/4, V(D)J = Variable, 

diversity and joining, BRCA1/2 = breast cancer susceptibility 1/2. 
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Rad51 with the help of Rad54 identifies a homologous sequence of intact DNA and 

facilitates its invasion into the site of break. This then acts as a template for a new 

identical sequence of DNA to be synthesised. Finally the exchanged ends, known as 

Holliday junctions, are rejoined by resolvases (Constantinou et al., 2001). Recent work 

has also suggested that BRCA2 also has a role in regulating the DNA-binding activity of 

Rad51 holding it in an inactive state when it is not needed (Davies et al., 2001; Esashi 

et al., 2007). 

If the DSB occurs within matching sequences of DNA it can be repaired by the process 

of SSA. A much less complex pathway; it involves the matching of homologous 

sequences on either side of the DSB followed by the deletion of the intermediate non-

complementary sequence. The process is facilitated by RPA and Rad52 and is 

dependent on functioning BRCA1. However, it does not require the full repertoire of 

HR genes in particular it is Rad51- independent. SSA is likely to generate errors and 

considered only an alternative pathway in the absence of functioning Rad51 mediated 

HR (Helleday et al., 2007). 

It is clear that the BRCA1 and BRCA2 proteins play major roles in the HR repair process. 

Therefore it would be logical to hypothesise that deficiencies within either BRCA1 or 2 

genes could result in defective HR. There are a number of human syndromes 

associated with mutations within genes involved in the HR process. These are shown in 

table 1.1.  The most common and best described is the Hereditary Breast Ovarian 

Cancer syndrome (HBOCS). This occurs mainly as a result of inheriting a mutation 

within either the BRCA1 or 2 genes and is associated with a high risk of developing 

breast and ovarian cancer.  

Mutations within other genes have been identified which are associated with an 

increased lifetime risk of breast and/or ovarian cancer. These include CHEK2 (CHEK2 

Breast Cancer Case –Control Consortium., 2004), PTEN (Lynch et al., 1997) and most 

recently Rad51D (Loveday et al., 2011).  
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Human syndrome 

 
Gene 
 

  
Chromosome  

  
Cancer  risk 

 
Reference 

 
HBOC 

 
BRCA1 
BRCA2/FANCD1 

  
17q21 
13q12 

 
Breast  
Ovary 
Prostate 
Fallopian Tube 
Primary peritoneal 
Pancreas 
 

 
King et al., 2003 

 
Fanconi anaemia 
 

 
Other FANC 
genes 
(A,C,D2,E,F,G,) 
 
 
 

  
16q24.3 
9q22.3 
3p25.3 
6p21-22 
9p13 
 

 
Acute myeloid leukaemia 
Head and neck cancers 
Squamous cell carcinoma 

 
Kennedy et al., 2006 

Nijmegen breakage syndrome NBS1  8q21 Lymphomas Demuth et al., 2007 

Bloom syndrome BLM   15q26 Leukaemia’s 
NHL 
Breast 
 

Hickson, 2003 

Rothmund-Thomson syndrome RECQL4   8q24.3 Osteosarcoma 
 

Hickson, 2003  

 

Table 1.1: Human syndromes with mutations within genes associated with Homologous recombination and increased risk of cancer. BRCA = bre ast cancer 
susceptibility, HBOC = hereditary breast and ovarian cancer syndrome, FANC = Fanconi, NBS1 = Nijmegen breakage syndrome, BLM = Bloom, NHL= non-hodgkins 

lymphoma.
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1.3 The BRCA1 and 2 tumour suppressor genes 

The BRCA1 gene was first identified in 1990 by Mary King’s group working at Berkeley, 

California, USA. The name BRCA was originally chosen to stand for Berkeley California 

but was later changed to represent Breast cancer susceptibility (Hall et al., 1990). The 

gene was subsequently cloned in 1994 by Myriad Genetics (Miki et al., 1994). Around 

the same time in 1994, the BRCA2 gene was discovered by Stratton and Wooster 

working at the Institute of Cancer Research, London, UK (Wooster et al., 1994). The 

identification of these genes was a significant breakthrough in the management of 

breast and ovarian cancer families. It enabled the introduction of risk assessment, 

genetic counselling and BRCA mutational analysis.  

The BRCA1 gene, located on chromosome 17q21, encodes a large, predominantly 

nuclear protein (1863 amino-acid) with an estimated molecular weight of 220kDa 

(Venkitaraman et al., 2002). It consists of multiple functional domains including an N-

terminal RING, 2 nuclear localisation signals (NLSs) and 2 C-terminal BRCA1 carboxyl 

terminal (BRCT) domains of ~ 110 residues.  The BRCA2 gene, located on chromosome 

13q12.3, and later identified to also be the Fanconi Anaemia gene FANCD1, encodes a 

larger 3418 amino acid protein with an estimated molecular weight of 384kDa 

(Venkitaraman, 2002). An important feature of the BRCA2 protein is the eight copies of 

the 30-80 amino acid repeats – BRC, known to be the main binding sites for Rad51 

(Bertwistle et al., 1998).   

The structures of both proteins are shown in figure 1.5. Although the BRCA1 and 

BRCA2 proteins have different functions involving multiple cellular pathways, both 

share important regulatory roles in co-ordinating the response and repair of DNA 

damage. Consequently loss of these functions can result in genomic instability and 

increased risk of carcinogenesis, as observed in carriers of germline BRCA mutations 

carriers (Venkitaraman, 2009). To understand why inheriting defective BRCA1 and 2 

genes can confer such a devastating risk of cancer on an individual it is important to 

review in detail the roles of these proteins play in normal cellular life in particular in 

DNA repair. 
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Figure 1.5: Schematic representation of the BRCA1 and BRCA2 proteins. NLS = nuclear 

localisation signal, BRCT = BRCA1 carboxyl terminal. 

 

1.3.1 Functions of BRCA1 

BRCA1 is predominantly a nuclear protein but it is able to shuttle freely between the 

cytoplasm and nucleus in order to carry out its variety of cellular functions which 

include: DNA damage signalling response and repair, transcriptional regulation and cell 

cycle check-point control. 

1.3.1.1 BRCA1 and DNA damage response and repair 

One of the earliest observations to suggest a role in DNA repair for BRCA1 was its co-

localisation with Rad51 in the nuclear foci of mitotic and meiotic cells (Scully et al., 

1997). Since then studies have shown that not only does BRCA1 play a vital role in the 

repair of DNA DSBs but also in the initial detection of the DNA damage. The BRCA1 

protein acts as part of a large complex known as the BRCA1- associated genome 

surveillance complex (BASC). BASC is thought to act as a sensor for DNA damage and 

includes: the MRN complex, mismatch repair proteins (MSH2, MSH6 and MLH1), BLM 

syndrome helicase and ATM (Gudmundsdottir et al., 2006). Once DNA DSB damage has 

been sensed the BRCA1 protein plays a vital role in its repair via HR, as discussed in 

section 1.2.4. However, there is evidence that BRCA1 plays a role in the other 

mechanisms of DNA repair in particular NER and NHEJ. BRCA1 has been shown to 
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regulate the global genomic repair (GCR) sub-pathway of NER. The proposed 

mechanism is via direct transcriptional control of the NER genes : XPC, DDB2 and 

GADD45 (Hartman et al., 2002). There is also a growing body of evidence suggesting 

that BRCA1 may regulate a component of NHEJ. NHEJ is an error-prone pathway but 

more recently the existence of an additional potentially more mutagenic sub-pathway 

has been proposed (Durant et al., 2005). This sub-pathway is thought to operate 

independently of DNA-PK and is strongly dependent on Mre11 and Rad50. It rejoins 

chromosomal DNA ends with imperfect micro-homology creating non-random 

deletions of up to 300 base pairs. This process, which could be highly mutagenic, has 

been named micro-homology-mediated end joining (MMEJ). Studies have shown that 

BRCA1 can suppress MMEJ by inhibiting Mre11 activity (Zhuang et al., 2006). This 

proposal is supported by the observation that BRCA1 deficient cells demonstrate an 

increased tendency to generate large deletions during NHEJ repair.  

1.3.1.2 BRCA1 and cell cycle control 

The ability to control the timing and sequence of cell cycle events following DNA 

damage is essential for maintaining genomic stability. This function is governed by a 

family of cyclin-dependent kinases and their endogenous inhibitors acting at cell cycle 

check-points. BRCA1 is rapidly phosphorylated after DNA damage and plays a key role 

in this cell cycle regulation. Firstly, BRCA1 has been shown, via a number of p53 

dependent and independent pathways, to stimulate the transcription of the 

p21WAF1/CIP1 promoter of the p21 gene leading to G1/S cycle arrest (Chai et al., 1999). 

This activation of p21WAF1/CIP1 transcription is dependent on the phosphorylation status 

of BRCA1. Secondly, BRCA1 is thought to be involved in intra-S phase checkpoint 

activation. Following damage by IR, activation of the intra-S phase checkpoint requires 

the phosphorylation of BRCA1 by ATR (Tibbetts et al., 2000). BRCA1 has also been 

shown to up-regulate the expression of the cyclin-dependent kinase inhibitor p27KIP1, 

which results in intra-S phase arrest (Williamson et al., 2002). 

The CHK1 and CHK2 kinases acting downstream of ATM and ATR are responsible for 

maintaining the G2-M check-point. In response to IR BRCA1 is phosphorylated by CHK2 

and subsequently BRCA1 deficient cell lines have been reported to be unable to 

activate G2/M arrest in response to IR (Aprelikova et al., 2001).  Finally, BRCA1 is 

known to be a transcriptional regulator of several genes involved in the regulation of 
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the G2/M check-point. The strongest evidence for this comes from its regulation of 

GADD45, which activates the checkpoint by inhibiting the activity of cyclin B-cdc2 

complex (Mullan et al., 2001). 

1.3.1.3 BRCA1 and transcriptional regulation 

BRCA1 can regulate transcription by its direct interaction with the core component of 

transcription; RNA polymerase II and its co-activation or co-repression of a number of 

known transcription factors (Irminger-Finger et al., 1999). Two such transcription 

factors are the oestrogen receptor-alpha (ERα) and the tumour suppressor protein 

p53.  

Given the fact that carriers of BRCA1 mutations have a high lifetime risk of developing 

breast and ovarian cancer, both oestrogen responsive tissues, the relationship of 

BRCA1 to ERα is the focus of much research (Gorski et al., 2009). Studies have shown 

that BRCA1 is able to induce ERα mRNA expression and negatively regulate ERα 

signalling pathways (Fan et al., 1999). BRCA1 has also been reported to inhibit the 

induction of over 90% of the known oestrogen-inducible genes (Xu et al., 2005). One 

such gene is vascular endothelial growth factor (VEGF), which is important for the 

angiogenesis required to sustain cancer cells. Confirming this is the observation that 

VEGF is severely impaired in the presence of exogenous, wild type BRCA1 and not 

mutated BRCA1 (Kawai et al., 2002).  

In response to cellular stress p53, known as the ‘guardian of the genome’, is activated 

to induce target genes involved in DNA repair, cell-cycle arrest and apoptosis. BRCA1 

has been shown to interact with the C-terminus of p53. This interaction results in a re-

direction from the activation of pro-apoptotic target genes to those involved in cell-

cycle arrest and DNA repair (Chai et al., 1999). Interestingly, mutations in p53 are 

common in BRCA-mutated cancers and that this loss of p53 function may be important 

to mediate tumourigenesis (Parant et al., 2003).  

1.3.2 Functions of BRCA2 

The main function of BRCA2 is its role in HR mediated DNA DSB repair through its 

direct interaction with Rad51 (discussed earlier in this chapter in section 1.2.4). Loss of 

BRCA2 can result in the repair of DSBs via error-prone pathways and subsequent 

genomic instability (Tutt et al., 2001). Furthermore, cells deficient in BRCA2 have 
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impaired formation of Rad51 foci following exposure to DNA damage (Yuan et al., 

1999; Drew et al., 2011b). 

In addition to its role in DNA DSB repair, BRCA2 may have a role as a regulator of cell 

cycle progression at the mitotic check-point. BRCA2 associates with the DNA binding 

protein BRAF35 and both proteins co-localise on mitotic chromosomes. Injections of 

antibodies which block either BRCA2 or BRAF35 into cells were shown to block 

progression through mitosis (Marmorstein et al., 2001).  

In summary the BRCA1 and 2 proteins are essential to the mechanism of HR DSB repair 

and major players in the maintenance of genomic stability. It is therefore not 

surprising that carriers of mutations within the BRCA genes have a high lifetime risk of 

developing cancer. 

1.3.3 BRCA1/2 mutations and the risk of cancer 

Inheriting a mutation in either of the BRCA1 or 2 genes confers a high lifetime risk of 

developing breast and/or ovarian cancer. The lifetime risk of breast cancer in female 

BRCA1 mutation carriers has been reported to be as high as 84% and between 60-80% 

in BRCA2 mutation carriers (King et al., 2003). In men, breast cancer is rare, accounting 

for < 1% of all cases, but in BRCA mutation carriers the lifetime risk is estimated to be 

between 58 and 100 times that of the general male population (Brose et al., 2002; 

Liede et al., 2004). The life-time risk of developing ovarian cancer is lower and 

estimated at 40-50% and 10-20% for BRCA1 and BRCA2 mutation carriers respectively 

(Ford et al., 1994).  

The frequency of carrying a germline BRCA1 or 2 mutation in the general population is 

thought to be between 0.1 – 0.8% (Risch et al., 2006). However in patients with breast 

and/or ovarian cancer it is estimated that between 10-15% will be associated with 

carrying a BRCA1 or 2 germ-line mutation (Stratton et al., 1997; Venkitaraman et al., 

2002).  

Carriers of the mutations are not limited to a particular population but specific groups 

with high prevalence have been identified, such as women of Ashkenazi Jewish 

descent (Stuewing et al., 1997). The autosomal dominant mode of genetic 

transmission means that both the male and female children of a carrier have a 50% 
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chance of inheriting the mutation in their germline. One defective allele is sufficient to 

predispose to cancer, but the somatic loss of function of the second allele is required 

in cancer cells confirming the classic Knudson two hit hypothesis for tumour 

suppressor genes (Knudson, 1971).  

Breast and ovarian cancer are the most commonly observed but an increased risk of 

other cancers including: prostate, pancreatic, fallopian tube and primary peritoneal 

carcinoma has been documented (Brose et al., 2002, The Breast Cancer Linkage 

Consortium (BCLC)., 1999). Primary peritoneal carcinoma (PPC) can arise from an 

occult ovarian cancer focus or de novo in the peritoneal mesothelium. In one study 

follow-up of women who had undergone prophylactic bilateral oophrectomies 

reported a frequency of PPC of 2-4%; occurring more often in BRCA1 than BRCA2 

carriers (Casey et al., 2005). Primary fallopian tube carcinoma is unusual in the general 

population but life-time risk in BRCA1/2 carriers is reported to be more common at 3% 

(Brose et al., 2002). In male BRCA 1 mutation carriers, the prostate is the commonest 

cancer site. In a study by the BCLC an elevated risk of prostate cancer was observed in 

carriers < 65 years old but not in those > 65yrs (Thompson et al., 2002). This is 

probable explained by the fact that prostate cancer risk increases with age in all men. 

Pancreatic cancer is more common in BRCA2 carriers. They have a younger than 

average age of disease onset and the estimated lifetime risk is thought to be as high as 

5% (BCLC, 1999). Pancreatic cancer risk in BRCA1 carriers is less well established.  

The risk of childhood cancer is not increased in BRCA mutation carriers except in the 

uncommon situation where an individual inherits mutated BRCA2 genes from both 

parents resulting in Fanconi anaemia (Kennedy et al., 2006).  

1.3.4 Tissue specificity of BRCA-related cancers 

Why BRCA1/2 gene mutation carriers are so highly predisposed to cancers of the 

breast and ovary is not fully understood. However several theories exist attempting to 

part-explain this phenomenon. Firstly, these cancers arise in oestrogen-dependent 

epithelial tissues. BRCA1 is known to regulate transcription (see section 1.3.3) and 

inhibit oestrogen receptor signalling; loss of this function could result in un-controlled 

cell proliferation in these tissues and ultimately cancer (Fan et al., 1999). Another 

proposal is that BRCA function somehow protects cells from the local effects of 
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mutagenic oestrogen metabolites thus preventing genomic instability. For example, in 

vivo studies in Brca1 and Brca2 heterozygous mice report alterations in the mammary 

gland and ovarian tissue architecture following exposure to the highly oestrogenic 

compound diethylstilbestrol (Bennett et al., 2000).  

It is often hypothesised that breast and ovarian tissues are highly proliferative and that 

it is this cell-turnover that increases the chances of mutation and subsequent 

tumourigenesis. This theory however is questionable as cancers of the highly 

proliferative gastrointestinal tract and lymphoid tissue are not commonly seen in BRCA 

mutation carriers.   

Elledge and Amon propose an alternative reason for this tissue specificity which they 

coined the ‘suppressor hypothesis’. This suppressor hypothesis suggests that BRCA-

mutated cancers do not arise in other tissues because they cannot tolerate the loss of 

BRCA heterozygosity required for cancer development and that breast and ovarian 

tissues can. They suggest a variety of reasons for this including a protective anti -

apoptotic effect of oestrogen (Elledge and Amon, 2002). 

Another proposal is that there must be something specific about breast and ovarian 

tissues that makes them more dependent on the function of BRCA1 and 2 than other 

tissues or that loss of another essential gene product co-exists within these tissues 

resulting in the high risk of cancer. One such gene is the tumour suppressor gene p53. 

Studies have shown that the additional loss of p53 in mice already deficient in Brca1 

accelerates the formation of tumours (Xu et al., 1999). p53 is mutated in almost 100% 

of all high grade serous ovarian cancers (Ahmed et al., 2010) and it may be that in the 

presence of a germ-line BRCA mutation this may be enough to promote cancer. 

In summary it is likely that the tissue specificity of BRCA mutated cancers is due to 

multiple genetic and environmental factors. 

1.3.5 Management options for BRCA1/2 mutation carriers 

Over the past ten years the main focus for those identified as BRCA mutation carriers 

has been cancer prevention through prophylactic surgery and early cancer detection 

through screening.  
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1.3.5.1 Prophylactic surgery 

Prophylactic bilateral salpingo-oophorectomy (BSO) reduces the risk of ovarian cancer 

by up to 95% and in pre-menopausal women the risk of breast cancer by around 50%. 

Prophylactic bilateral mastectomy (BM) reduces the risk of breast cancer by 90% 

(Domchek et al., 2006b). National guidelines in the UK recommend that women 

undergo prophylactic BSO by age 40-45 and support various strategies for reducing 

breast cancer risk including BM (National Comprehensive Cancer Network, 

www.nccn.org). BRCA mutation carriers face difficult decisions in terms of whether and 

when to opt for prophylactic surgery and the support of a multi-disciplinary team 

including clinical psychologists should be offered to all patients. As surgery does not 

totally eliminate cancer risk these patients also require long-term follow-up including 

the management of BSO- induced premature menopause.  

1.3.5.2 Screening 

The purpose of any cancer screening programme is to detect cancer early enough to 

enable interventions that will have an impact on patients survival. Any such 

programme also has to be acceptable in terms of financial and patient costs. The 

National Breast Screening Programme (NBSP) invites women in the UK to attend for a 

mammogram every three years between the ages of 47 and 73 

(www.cancerscreening.nhs.uk). The NBSP is considered to be worthwhile with a recent 

report that between 5.7 and 8.8 breast cancer deaths are prevented for every 1000 

women screened and between 2 and 2.5 lives saved per every over-diagnosed patient, 

that is someone treated for a cancer that might never have revealed itself in their life-

time (Duffy et al., 2010). However, the questions for BRCA mutation carriers are; how 

early to start screening and with what modality? Women with BRCA mutations 

develop cancer at an earlier age than the national screening programme would pick up 

and at a time when X-ray mammography is less sensitive due to denser breast tissue. 

Following the results of a large multi-centre cohort study (the MARIBS trial) which 

demonstrated the superiority of it magnetic resonance imaging (MRI) over 

mammography in detecting breast cancer in 649 women aged between 35 and 49; it is 

now recommended that screening should start at age 30 and consist of a combination 

of annual MRI and mammogram (Leach et al., 2005).  

http://www.nccn.org/
http://www.cancerscreening.nhs.uk/
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There is no evidence that screening for ovarian cancer using trans -vaginal ultrasound 

(TVU) scanning and blood monitoring of the tumour marker CA125 (cancer antigen 

125) saves lives and as a result there is no UK national screening programme for 

ovarian cancer. However, within the UK, women are currently being offered screening 

as part of a national trial known as the UK Familial Ovarian Cancer Screening Study 

(UKFOCSS). UKFOCSS offers women annual TVS and four monthly CA125 

measurements. The study is now closed to recruitment and results are expected in 

2013. If this shows a benefit then surveillance may be offered on a national level. But 

until then the main option to prevent ovarian and fallopian tube cancer for BRCA 

mutation carriers remains surgery. 

1.3.5.3 Chemoprevention 

The use of the oral contraceptive pill (OCP) as chemoprevention, to reduce the risk of 

ovarian cancer and delay the need for BSO in younger women wishing to have families 

has been explored in this population. In 1998 one study involving 207 BRCA1/2 

mutation carriers with ovarian cancer and 161 of their sisters, acting as case-controls, 

reported a 60% reduction in the risk of ovarian cancer with the use of the OCP for at 

least six years (Narod et al., 1998). One major concern with this preventative strategy 

is the associated increased risk of breast cancer with the prolonged use (> 4 years) of 

the OCP (Brohet et al., 2007). In addition, chemoprevention has not been shown to be 

as effective as BSO in preventing ovarian cancer and therefore the use of OCP outside 

of a clinical trial is not recommended in the UK. The potential use of PARP inhibitors as 

chemoprevention will be discussed later in this chapter.  

1.3.6 Medical treatments of BRCA mutated cancers 

Surveillance and surgery will not prevent all BRCA1/2 carriers developing cancer and 

many will already have cancer at the time their mutation status is diagnosed. The 

current management of BRCA mutation associated cancer is identical to the treatment 

of the non-hereditary forms of the same staged-matched cancer. However, data are 

emerging to suggest that they should be treated as a distinct disease entity.  For 

example, it is clear that BRCA mutated cancers show increased sensitivity to some 

chemotherapy regimens. Several in vitro studies have demonstrated that BRCA1 and 2 

deficient cells are more sensitive than their wild type controls to the platinum 

analogue cisplatin and less sensitive to anti-microtubule agents such as the taxanes 
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(Bhattacharyya et al., 2000; Tan et al., 2008; Tassone et al., 2003).  Preliminary patient 

data are now emerging to support this theory. A retrospective study of 102 BRCA1 

mutation carriers receiving neoadjuvant chemotherapy for breast cancer showed an 

increased complete pathological response rate to cisplatin compared to the more 

standard regimens of CMF (cyclophosphamide, methotrexate and 5-fluorouracil) and 

AT (doxorubicin and docetaxel) (Byrski et al., 2009). A small study by Tan et al. also 

demonstrated higher complete response rates (81.8% vs. 43.2%; P = 0.004) and 

improved overall survival to first line platinum based chemotherapy in 22 ovarian 

cancer patients with germline BRCA1/2 mutations over a matched non-hereditary 

control group. Improved responses were also seen in the BRCA mutation carriers who 

received second and third line chemotherapies (Tan et al., 2008). Interestingly, an 

improved response to platinum has also been reported in ovarian cancers with 

reduced BRCA1 mRNA expression (Quinn et al., 2007). This retrospective study 

analysed BRCA1 mRNA levels in 70 sporadic ovarian cancers. The results showed that 

women with low to intermediate levels had a significantly increased median survival 

following treatment with platinum based chemotherapy than those with high BRCA1 

mRNA expression (57.2 vs. 18.2 months; P = 0.0017). Of note, the BRCA1 mutation 

status of patients in this study was unknown; thus the reduced levels of BRCA1 

expression observed could be attributed to BRCA1 germline mutations but additionally 

somatic mutations or gene promoter methylations.   

These data suggest that BRCA mutation carriers have a better outcome following 

treatment for cancer and that it is associated with an increased response to the 

platinum chemotherapy agents. This question of increased platinum sensitivity in 

BRCA-related breast cancer will hopefully be answered by a current randomised 

clinical trial. This randomised phase II trial, conducted by the Breakthrough Breast 

Cancer Research Centre in conjunction with Cancer Research UK (CRUK) 

(www.brcatrial.org) is randomising patients with a known BRCA1/2 mutation at first 

presentation of metastatic/advanced disease to six cycles of the platinum- carboplatin 

or standard treatment with the anti-microtubule agent-docetaxel. 

Recently a novel strategy for treating these germline BRCA mutated cancers has 

emerged; to use small molecule inhibitors that target the nuclear enzyme Poly(ADP-

ribose polymerase-1 (PARP-1). This is discussed in detail in section 1.5.3. 

http://www.brcatrial.org/
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1.4 PARP-1 and the PARP family 

The discovery of the first poly(ADP-ribose) polymerase (PARP) began over forty years 

ago when in 1963 researchers in Paul Mandel’s laboratory observed the synthesis of a 

new polyadenylic acid after adding nicotinamide mononucleotide to rat liver extracts 

(Chambon et al., 1963). Shortly after this discovery independent research groups 

demonstrated that this new polymer, named poly(ADP-ribose), was made up of two 

ribose moieties and two phosphate units (Chambon et al., 1966; Nishizuka et al., 1967; 

Sugimura et al., 1967). The enzyme that could generate large amounts of this 

poly(ADP-ribose) was later purified and designated the name ADP-ribosyl transferase 

(ADPRT) (Okayama et al., 1977).   By 1980 it was discovered that ADPRT was activated 

by single and double strand DNA breaks (Benjamin and Gill., 1980) and seminal work 

by Sydney Shall’s group demonstrated that it was not only involved in DNA repair but 

inhibiting it with 3-aminobenzamide (3-AB) enhanced the cytotoxic effects of 

methylating agents in leukaemic mice cells (Durkacz et al., 1980). Durkacz et al. were 

the first to suggest that inhibitors of ADPRT could act as chemosensitizers. ADPRT was 

later renamed PARP (De Murcia and Menissier de Murcia., 1994) and there are now 17 

members of the PARP super-family (Rouleau et al., 2010). A true PARP is defined as an 

enzyme that is able to transfer ADP-ribose units from NAD+ (nicotinamide adenine 

dinucleotide) to acceptor proteins, including itself, resulting in the formation of 

multiple branched and linear poly(ADP-ribose) (PAR) chains. A process known as 

‘poly(ADP-ribosyl)ation’ and shown in figure 1.3 (Schreiber et al., 2006).  Using this 

definition only PARP-1, 2, 3, 4, 5 and 5a would be true PARPs. PARP-1, 2 and 3 are the 

only members known to be activated by DNA damage with PARP-1 playing the 

dominant role in DNA repair (Ame et al., 1999; Ame et al., 2004) and the main focus of 

this thesis.  

1.4.1 Structure of PARP-1 

The PARP-1 gene is located on chromosome 1, position q41-42, and encodes the 1014 

amino acid, 113KDa, PARP-1 protein (Auer et al., 1989). PARP-1 is an abundant nuclear 

enzyme that is expressed in all nucleated human cells except neutrophils (Oei et al., 

1994). It is reported to be over-expressed in some cancers (Alderson, 1990). PARP-1, as 

shown in figure 1.6, consists of three principle domains.  

 



  Chapter One - Introduction 

26 
 

 

 

 

Figure 1.6: Schematic representation of the PARP-1 protein showing the three domains.       

ZnF = zinc fingers, NLS = nuclear localisation zone, BRCT = BRCA1 carboxyl terminal  

 

Firstly, at the amino-terminal region, is the DNA binding domain, which consists of two 

zinc fingers and a nuclear localisation signal (NLS). These zinc fingers are essential to 

the sensing and binding of PARP-1 to DNA single and double strand breaks (De Murcia 

and Menissier de Murcia., 1994). A third PARP-1 zinc finger (not shown) has recently 

been identified using spectroscopic and crystallographic analysis; its role is not 

proposed in DNA binding but in the coupling of the activities of the DNA binding and 

the catalytic domains (Langelier et al., 2008). The second domain of PARP-1 is the 

auto-modification zone which is located centrally within the enzyme (Tao et al., 2009). 

It contains 15 glutamate residues which enable the enzyme to poly(ADP-ribosyl)ate 

itself. Interestingly, this domain also contains a BRCT motif which is a protein-protein 

interaction zone that is found in other DNA repair pathways. The third and final 

domain is the catalytic domain which is located at the C-terminus. It is the most 

conserved region between species and is aptly referred to as the PARP ‘signature’ (De 

Murcia and Menissier de Murcia, 1994). This region acts to bind the substrates of 

PARP-1 (Kurosaki et al., 1987). ADP-ribose tranferase activity is limited to a 40 KDa 

region at the far C terminus of the enzyme and loss of this 45-amino acid section 

results in total absence of enzyme activity (Simonin et al., 1990). 

1.4.2 Functions of PARP-1 

One of the main roles of PARP-1 is in the repair of DNA SSBs via the BER/SSBR 

pathway, as discussed in section 1.2.1. Its other functions are discussed here in 

particular its role in DNA DSB repair 
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1.4.2.1 PARP-1 and DSB repair  

It has been known for many years that PARP-1 is activated by DSBs (Benjamin and Gill, 

1980) but its exact role in their repair is only just emerging.  The observations that 

PARP-1 activity is required to rapidly recruit Mre-11, NBS1 and ATM to sites of DSBs 

suggest a role for PARP-1 in mediating the HR repair pathway (Haince et al., 2007; 

Haince et al., 2008). Furthermore Bryant et al. recently published in vitro data showing 

that PARP-1 binds to and is activated by stalled replication forks arising from un-

repaired SSBs; PARP-1 acts together with Mre-11 to re-start the collapsed replication 

fork and enable HR repair of the damaged DNA (Bryant et al., 2009).  

PARP-1 may also have a function within the NHEJ pathway. For example, work by 

Ruscetti and colleagues demonstrated that PARP-1 can modify the protein-kinase 

activity of, the crucial NHEJ protein, DNA-PK (Ruscetti et al., 1998). In particular that, in 

the presence of NAD+, PARP-1 can ADP-‘ribosylate’ and stimulate DNA-PK, which can 

in-turn phosphorylate PARP-1. Consistent with this observation are reports, based on 

studies using PARP and DNA-PK inhibitors in cells lacking either PARP-1 or DNA-PKcs 

that PARP-1 co-operates with DNA-PK to repair ionising radiation-induced DSBs 

(Mitchell et al., 2009). Results of other studies have proposed that PARP-1 participates 

in an alternative ‘DNA-PK/Ku independent’ NHEJ pathway which may operate as a 

back-up to the classical pathway. For example, Wang et al have shown that PARP-1 

directly competes with Ku to bind to DNA DSBs and with the aid of XRCC1 and DNA 

ligase III is able to repair the damage. This mechanism is however prone to error and 

the generation of genomic instability (Wang et al., 2006). 

Further supporting the role of PARP-1 in NHEJ DSB repair is the evidence that the 

combined use of a PARP-1 and a DNA-PK inhibitor is synergistic in terms of 

radiosensitization and the fact that inactive PARP-1 inhibits DNA-PK activity and vice 

versa (Veuger et al., 2003; Veuger et al., 2004). 

1.4.2.2 PARP-1 and gene transcription 

Gene expression profiling of PARP-1 -/- mice cells (Simbulan-Rosenthal et al., 1997) and 

MCF7 human breast cancer cells treated with PARP-1 short hairpin RNAs (Frizzell et al., 

2009) shows PARP-1 to be implicated in the transcription of many genes. These studies 

reveal that loss of PARP-1 results in the down-regulation of the expression of multiple 
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genes which can be divided by their function into four main groups: cell cycle control, 

DNA damage response, chromosomal processing and assembly and finally, those 

involved in the response to inflammation and oxidative stress.  

1.4.2.3 PARP-1 response to inflammation and capase-independent cell death 

Results from several studies have shown that PARP-1 is involved in the inflammatory 

response to acute conditions such as cerebral ischaemia, septic shock, and myocardial 

infarction; and in chronic inflammatory diseases such as diabetes mellitus (Oliver et al., 

1999; Schreiber et al., 2006). Over ten years ago, Burkart and colleagues observed that 

PARP-1 -/- mice and mice treated with PARP-1 inhibitors were resistant to developing 

type one diabetes mellitus following exposure to the pancreatic   islet cell toxin 

Streptozocin. They concluded that NAD+ depletion caused by the massive over-

activation of PARP-1 was the main mechanism behind the islet cell destruction and 

that this process was blocked in the mice with non-functional PARP-1 (Burkart et al., 

1999). Studies investigating the response to acute cerebral ischaemia reported that 

following inflammatory stress or reperfusion large numbers of DNA SSBs were 

generated by the synthesis of nitric oxide (NO) from endothelial cells and 

macrophages. These DNA SSBs resulted in over-activation of PARP-1, depletion of 

NAD+, generation of free radicals by mitochondria and ultimately necrotic cell death 

(Szabo and Dawson, 1998). It is now known that in response to inflammation PARP-1 

activates the nuclear factor-B (NF-B) and the AP-1 transcription factors (Hassa et al., 

2003). This results in the release of pro-inflammatory mediators including inducible 

nitric oxide synthase (iNOS) generates NO and reactive oxygen species that cause DNA 

SSBs. It is proposed that free PAR formed from the over-activated PARP-1 and PARP-2 

is somehow transmitted to the mitochondria resulting in a reduction of the 

mitochondrial membrane potential and the release of apoptosis inducing factor (AIF) 

and endonuclease G (EndoG) into the nucleus. This, in combination with overwhelming 

NAD+ and adenosine tri-phosphate (ATP) depletion, leads to cell death. This process of 

PARP-1-mediated, capase-independent cell death could be exploited for therapeutic 

benefit. If PARP-1 could be inactivated either pharmacologically or genetically in acute 

conditions such as myocardial infarction and acute brain injury or in chronic diseases 

such as diabetes mellitus in theory it should be possible to reduce the inflammatory 

response and improve patient outcome. 
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1.4.3 PARP-1 activity 

PARP-1 enzyme activity is reported to be higher in cancer tissue than normal tissue. 

For example, increased PAR formation compared to levels in adjacent non-cancerous, 

normal tissue has been documented in colon carcinoma (Hirai et al., 1983), 

hepatocellular carcinoma (Nomura et al., 2000), melanoma, basal skin carcinoma (Ikai 

et al., 1980) and in cervical cancer (Fukushima et al., 1981). In addition, it has recently 

been proposed that PARP-1 activity is hyper-activated in BRCA deficient cancers 

(Gottipati et al., 2010) and that this may in part explain the mechanism behind their 

sensitivity to PARP inhibitors suggesting an over-reliance on the BER/SSBR. 

Endogenous PARP activity levels have been shown to vary between cancer patients 

(Zaremba et al., 2011) and it has recently been suggested that PARP activity levels may 

prove a useful biomarker to determine which patients will be sensitive to PARP 

inhibitor therapy (Redon et al., 2010).  

1.4.4 PARP-1 expression 

The PARP-1 protein is constitutively expressed in all nucleated human cells except 

neutrophils (Schreiber et al., 2002) and higher levels have been reported in cancer 

tissue compared with non-malignant tissues. For example, significantly higher levels of 

PARP-1 protein in hepatocellular carcinoma compared to normal liver (Shimizu et al., 

2004) and increased mRNA PARP-1 levels in early stage colorectal adenocarcinomas vs. 

adenomas (Nosho et al., 2006) have been observed.   

1.4.5 Genetic factors influencing PARP-1 activity and expression 

Changes within the PARP-1 gene are thought to play a role in determining PARP-1 

activity, expression and the risk of cancer in humans (Zaremba et al., 2009). To date, 

66 PARP-1 single nucleotide polymorphisms (SNPs) have been reported in man 

(http://snp500cancer.nci.nih.gov). The T2444C SNP results in a valine to alanine 

(V762A) change in codon 762 of exon 17 (Cottet et al., 2000). This amino acid exchange 

is located within the catalytic domain of the PARP-1 enzyme and is reported to result 

in a 30-40% reduction in PARP-1 catalytic activity (Lockett et al., 2004; Wang et al., 

2007). The variant form has also been associated with increased risk of prostate cancer 

(Locket et al., 2004), squamous oesophageal carcinoma, lung cancer in Chinese 

smokers (Hao et al., 2004; Zhang et al., 2005) and thyroid cancer (Chiang et al., 2008). 

Polymorphisms within the promoter region of the gene may influence PARP-1 

http://snp500cancer.nci.nih.gov/
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expression. For example, a microsatellite polymorphic DNA fragment consisting of a 

variable number of CA repeats [(CA) 11 – (CA) 20] has been identified which may 

contribute to the regulation of PARP-1 expression (Fougerousse et al., 1992; Oei and 

Shi, 2001). 

1.5 The development of PARP inhibitors 

It has long been recognised that inhibiting PARP-1 in patients could have great 

therapeutic potential in the treatment of many diseases such as ischaemic events 

(cerebrovascular and myocardial infarction), diabetes and cancer. This has been the 

focus worldwide of over 20 medicinal chemistry programmes with a peak in 

development between the years 2001 and 2005 (Ferraris, 2010), see figure 1.7.  

The first PARP inhibitor, 3-aminobenzamide (3-AB), was identified over thirty years ago 

following the observation that nicotinamide and 5-methylnicotinamide competed with 

NAD+ as a PARP substrate (Purnell and Whish, 1980). 3-AB causes 96% PARP inhibition 

but requires millimolar intracellular concentrations to achieve this. Furthermore it 

lacks specificity as it is also inhibits de novo purine synthesis (Milam and Cleaver, 

1984). 

 

Figure 1.7: Worldwide PARP-1 medicinal chemistry programmes (Ferraris, 2010). Information 

acquired from the current patent and publication data. 

 

These short-comings in 3-AB led to the development of more potent, more specific 

inhibitors, which inhibit PARP-1 by the same mechanism: competitive inhibition of 

NAD+. In 2003, the first PARP-1 inhibitor entered anti-cancer clinical trials. It was the 
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potent tricyclic indole PARP-1 inhibitor, AG014699 (Pfizer) (Plummer et al., 2008).  

There are now at least nine PARP-1 inhibitors in anti-cancer clinical trial development, 

shown in table 1.2. The PARP inhibitory potency of these compounds is indicated by 

IC50 and Ki values. IC50 is the concentration required to inhibit PARP activity by 50%; Ki 

is the dissociation constant of the enzyme. As shown in table 1.2, some of these 

inhibitors are reported to inhibit PARP-1 and PARP-2 

1.5.1 AG014699 

The studies undertaken for submission of this thesis investigate the role of the PARP 

inhibitor AG014699. As previously stated, AG014699 was the first PARP inhibitor to 

enter anti-cancer clinical trials. It was developed by the laboratories of Roger Griffin 

and Bernard Golding at Newcastle University in collaboration with Cancer Research UK 

and Agouron Pharmaceuticals (now owned by Pfizer). The structures of the lead 

compounds discussed below are shown in figure 1.8. In the early 1990s, the initial 

interest of the Newcastle group was in two core series; the quinazolinones and the 

benzamidazole carboxamides (from which the clinical candidate was later generated) 

(Ferraris, 2010). By the late 1990s, it was clear that the benzamidazole carboxamides 

were the more potent core structures (Ki = 95 nM). The substitution of aryl groups at 

the para position of this core structure resulted in better interactions with the Tyr889 

and Tyr 907 within the nicotinamide binding site of the PARP-1 protein. This led to 

improved potency of the compound and the generation of the first lead compound – 

NU1085 (Ki = 6 nM). NU1085 was confirmed to be more potent than previous 

compounds in its ability to enhance the cytoxicity of temozolomide and topotecan in a 

panel of human cancer cell lines (Delaney et al., 2000).  Despite its early promise, 

NU1085 was found to be poorly water soluble and so the search for a clinical candidate 

continued. In order to address the issue of aqueous solubility, the groups at Agouron 

and Newcastle identified a series of [5, 6, 7]tricyclicimidazole lactams. Optimisation of 

these imidazole lactams led to the discovery of the lead PARP-1 inhibitor - AG014361 

(Shalitzky et al., 2003). AG014361 shared a feature common to other PARP inhibitors in 

development at the time, a secondary or tertiary amine, as shown by the light grey 

circle in figure 1.8 on the compound. It was this amine that was responsible for the 

improved potency (Ki = 5.8 nM) and water solubility of AG014361.  AG014361, at 

concentrations as low as 0.4 M, was later shown to potentiate the anti-tumour 
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effects of temozolomide causing complete tumour regressions in SW620 colorectal 

cancer cell line xenografts (Calabrese et al., 2004). Agouron’s final lead candidate, 

AG014699, emerged from a series of [5, 6, 7]tricyclic indole lactams. AG014699 was 

selected to be the clinical candidate after it was shown to be the most potent PARP-1 

inhibitor in terms of anti-tumour activity in combination with temozolomide in 

xenograft models, reported to be at least ten times more potent than AG014361 

(Thomas et al., 2007). AG014699 is the phosphate salt of the tricyclic indole AG014447, 

with the structure 8-fluoro-2-(4-methylaminomethyl-phenyl)-1,3,4,5-tetrahydro-

azepino[5,4,3-cd]indol-6-one illustrated in figure 1.8. AG014699 is a water soluble 

yellow solid with a molecular weight of 421.36. Crystallographic analysis demonstrates 

AG014699 binds within the NAD+ binding domain of PARP via 3 hydrogen bonds. The Ki 

determined using 32P-NAD+ incorporation into polymer by purified full-length human 

PARP, is 1.4 nM.  

Metabolism of AG014699 is thought to be predominantly via cytochrome (CY) P2D6, 

CYP1A2 and CYP3A4 (unpublished data by Pfizer Inc). Pharmacokinetic studies 

performed as part of the phase I study of AG014699 in cancer patients with advanced 

solid malignancies have shown the drug to have linear pharmacokinetics with C max at 

the end of the infusion and a mean terminal half-life of 9.5 hours (Plummer et al., 

2008). The mean volume of distribution was 212 L indicating extensive tissue 

distribution with only 11% mean recovery of dose in the urine 24 hours post-dose 

suggesting that the major route of drug elimination is not renal.                                                                                                   
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Figure 1.8: The structures of the lead PARP inhibitors developed by Newcastle University and Agouron (adapted from Ferraris, 2010). K i = dissociation constant of 

the inhibitor, PF50 = potentiation factor at 50% survival. 
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Agent Company Potency Phase Therapeutic intention References 

Olaparib 
(AZD2281) 

AstraZeneca IC50 = 5 nM (PARP-1)                    
IC50 = 1 nM (PARP-2) 

II BRCA mutated breast + ovarian cancer, 
TNBC, HGSOC, combination with 
chemotherapy in solid tumours  

Fong et al., 2009; Tutt et al., 2010; Audeh et al., 2010;  
Giaccone et al., 2010; Lederman et al., 2011 

Iniparib              
(BSI-201) 

BiPar ND III Triple negative breast cancer in 
combination with chemotherapy 

O’Shaughnessey et al., 2009; O’Shaughnessey et al., 2011 

Veliparib         
(ABT-888) 

Abbott Ki = 5.2 nM (PARP-1)                        
Ki = 2.9 nM (PARP-2) 

II Solid tumours, BRCA mutated breast and 
ovarian cancers, MM, brain tumours  

Giaccone et al., 2010; Ji  et al., 2010; Kummar et al., 2010; 
Isakoff et al., 2010; LoRusso et al.,2011 

AG014699          Pfizer Ki = 1.4 nM (PARP-1) II MM in combination with TMZ, BRCA 
mutated advanced breast + ovarian cancer  

Plummer et al., 2006; Plummer et al., 2008; Drew et al., 
2011a 

MK-4827 Merck  IC50 = 3.2 nM (PARP-1)                  

IC50 = 4 nM (PARP-2) 

I Solid tumours, BRCA mutated breast + 

ovarian cancer, TNBC 

Schelman et al., 2011 

INO-1001 Inotek ND II MM  in combination with TMZ Bedikian et al., 2009 

CEP-9722 Cephalon IC50 = 20 nM (PARP-1)                  
IC50 = 6 nM (PARP-2) 

I Advanced solid tumours in combination 
chemotherapy 

 

BMN673 Biomarin ND I Advanced solid tumours  

E7016 Eisai ND I Advanced solid tumours in combination 
chemotherapy 

 

Table 1.2: PARP inhibitors in anti-cancer clinical trial development, 2011. ND = not determined 
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1.6 The role of PARP inhibitors in the treatment of cancer  

PARP inhibitor development pipelines are pursuing two therapeutic applications: (1) 

PARP inhibitors as potentiators of chemotherapy and radiotherapy; and (2) PARP 

inhibitors as single agents, selectively killing cells with defects in DNA repair pathways 

such as those with BRCA1/2 mutations. The pre-clinical evidence to support these two 

strategies will now be reviewed.  

1.6.1 PARP inhibitors as chemopotentiators 

1.6.1.1 The monofunctional alkylating agents 

The first suggestion that PARP inhibitors could be used in the treatment of cancer as 

chemosensitisers came from seminal work by Durkacz and colleagues demonstrating 

that the weak PARP inhibitor 3-AB enhanced the cytotoxicity of DNA methylating 

agents in mouse leukaemia cells (Durkacz et al., 1980). Monofunctional DNA 

methlyating agents are the most potent activators of PARP-1 (and -2) and they include 

dacarbazine and temozolomide (TMZ).  Both these chemotherapies undergo 

metabolism within the plasma to the active metabolite 5-(3-methyltriazeno)-

imidazole-4-carboxamide (MTIC). MTIC is able to methylate DNA at the O6- and N7- 

position of guanine and the N3 position of adenine (Denny et al., 1994), with the most 

lethal lesion being the O6-methyl guanine. PARP-1 (and PARP-2) through BER/SSBR are 

required to repair this damage rapidly.  It would therefore seem logical to assume that 

inhibiting these enzymes results in the increase in the cytotoxicity of MTIC.  Evidence 

to support this are the observations that PARP-1 knockout mice and cells derived from 

them are hypersensitive to DNA methylating agents (Menissier de Murcia et al., 1997; 

Masutani et al., 2000) and knockdown of PARP-1 in melanomas increases their 

sensitivity to TMZ, which can further be increased by co-treatment with a PARP 

inhibitor (Tentori et al., 2008; Tentori et al., 2010). To date several classes of PARP 

inhibitors in combination with TMZ have demonstrated potent anti-cancer activity not 

only in brain tumours and melanomas but a variety of different models. For example, 

Calabrese and colleagues showed that AG14361, (Ki < 5.8 nM; a fore-runner to the 

clinical candidate AG014699) enhanced the cytotoxicity of TMZ  in the human colon 

cancer, mismatch repair (MMR)-defective LoVo xenografts by 3-fold and caused 
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complete regressions in mice bearing human colon cancer MMR-proficient SW620 

xenografts (Calabrese et al., 2004). Veliparib (ABT-888), a PARP inhibitor currently in 

clinical evaluation, has been shown to enhance the anti-tumour activity of TMZ in a 

variety of tumour models including human breast and prostate xenografts; models of 

metastasis to lung, brain and bone and sub-cutaneous xenografts of ovarian, 

pancreatic and non small cell lung cancers (Donawho et al., 2007, Palma JP et al., 

2009). 

1.6.1.2 The topoisomerase I inhibitors 

The topoisomerase 1 inhibitors irinotecan and topotecan (both semisynthetic 

derivatives of camptothecin) play a major role in the treatment of many cancers 

including colo-rectal, ovarian and small cell lung cancer. Topoisomerase 1 (TOP1) is an 

important cellular enzyme which is able to form transient complexes with DNA 

catalysing the cleavage, unwinding and religation of DNA to reduce the torsional strain 

caused by transcription and replication. TOP1 cleaves and religates single strands of 

DNA. The TOP1 inhibitors bind to and stabilise these TOP1 – DNA complexes (cleavable 

complexes) in their broken state. The collision of a cleavable complex and the 

advancing replication fork results in the formation of a double strand break and 

possible cell death. The anti-tumour activity of these inhibitors requires cells to be 

replicating and TOP1 to be active. In fact, response to the topoisomerase I inhibitors is 

directly proportional to amount of topoisomerase activity within cells (Pommier, 

2006).  

As early as 1987 it was shown, in the murine lymphocytic leukaemic cell line L1210, 

that inhibiting PARP with 3-AB could potentiate the effects of camptothecin (Mattern 

et al., 1987). Following this, Bowman et al reported that PARP activity was stimulated 

by camptothecin in L1210 cells and inhibition of PARP with NU1025 increased both 

camptothecin-induced DNA breaks and cytotoxicity to a similar extent, suggesting the 

two events were related (Bowman et al., 2001).                                                                    

In addition the PARP inhibitors NU1025 and NU1085 were shown to increase the 

cytotoxicity of topotecan up to 5-fold in a panel of human breast, colon, lung and 

ovarian cancer cell lines (Delaney et al., 2000).  In vivo studies have now confirmed the 

findings of these in vitro studies; the PARP inhibitor AG14361 increased irinotecan-

induced tumour growth delay by 2 to 3-fold in human colon cancer xenografts  
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(Calabrese et al., 2004) and the PARP inhibitor GPI 15427 enhanced irinotecan anti-

tumour activity in colon cancer models (Tentori et al., 2006).  

Several mechanisms have been proposed to explain the potentiation of TOP1 poisons 

by PARP inhibitors. One hypothesis is that PARP is involved in the repair of TOP1 

associated DNA damage. AG14361 has been shown to delay the repair of 

camptothecin-induced DNA breaks and this could not be explained by differences in 

levels of TOP1 activity as no difference was detected in the nuclear extracts from 

AG14361-treated compared to control cells (Smith et al., 2005).  In addition, the 

Chinese hamster ovary EM9 cell line, which lacks the BER scaffold protein XRCC1, has 

been shown to be hypersensitive to camptothecin (Caldecott and Jeggo 1991). This 

suggests that XRCC1 plays a role in the repair of TOP1 inhibitor-induced DNA damage 

and perhaps PARP-1 participates in this process by recruiting XRCC1 to the site of the 

TOP1-DNA -associated break.  

Another explanation for the potentiation of TOP1 poisons by PARP inhibitors is that 

PARP inhibitors can in some way modulate the activity of TOP1. PARP-1 is known to 

poly(ADP-riboslate) TOP1 and down-regulate its activity (Krupitaza et al., 1989). 

Therefore, inhibiting PARP-1 will result in an up-regulation of TOPI, increased DNA 

breakage and ultimately an increase in sensitivity to topoisomerase I poisons. 

Supporting this hypothesis is the observation that following DNA damage, poly(ADP-

ribosylation) of TOP1 inhibited its activity, or its association with automodified PARP-1,  

inhibited TOP1 activity. TOP1 was re-activated by 1 mM benzamide (Bauer et al., 2001; 

Yung et al., 2004).   

1.6.1.3 The platinums 

The platinum analogues cisplatin and carboplatin act by covalently binding to DNA to 

form intra-strand and inter-strand DNA cross-links. These DNA adducts then inhibit 

DNA synthesis, function and ultimately its transcription. Carboplatin and cisplatin form 

the backbone of treatment for many cancers including ovarian cancer, small and non-

small cell lung cancers, germ cell tumours and head and neck cancers (Chu E and 

DeVita V., 2010). PARP-1 has recently been identified as a platinum-DNA damage 

response protein (Zhu et al., 2010). However, reports as to whether PARP inhibitors 

can actually enhance the cytotoxic effects of the platinums are conflicting (Bernges 

and Zeller, 1996; Nguewa et al., 2006). What is clear from the literature is that any in 
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vitro chemopotentiation seen is cell line dependent. For example, cells lacking 

homologous recombination function are hypersensitive to cisplatin and PARP 

inhibition. Synergistic cytotoxicity of the PARP inhibitor AZD2281 (now olaparib) in 

combination with cisplatin was observed in BRCA2-deficient cells, but not with BRCA2-

proficient cells (Evers et al., 2008).  In a recent study, triple negative breast cancer cells 

(TNBC) were hypersensitised to cisplatin and gemcitabine following siRNA knockdown 

of PARP-1 and this chemopotentiation was not seen in non-TNBC cells (Hastak et al., 

2010). Results from experiments undertaken for this thesis (presented in chapter four) 

show that the PARP inhibitor AG014699 enhances the cytotoxicity of carboplatin by 

461% in BRCA2 defective CAPAN-1 xenografts (Drew et al., 2011). The interaction 

between PARP inhibitors and platinums is still not fully understood but these studies 

suggest it may be connected to an underlying defect in HR. 

1.6.2 PARP inhibitors as radio-potentiators 

About a third of all cancer patients will require radiotherapy as part of their treatment 

(cancerresearchuk.org/cancerstats). Radiotherapy induces DNA damage by multiple 

mechanisms including base damage and single and double-strand DNA breaks, damage 

that is dependent on PARP activity for its repair. The idea that PARP inhibitors could be 

used to improve the efficacy of radiotherapy is over 25 years old. It was in the mid-

1980s that one of the first studies was published demonstrating that the 3-AB could 

enhance the effects of ionising radiation in Chinese hamster cell lines (Ben-Hur et al., 

1985). Since then, numerous in vitro and in vivo studies (reviewed in Powell et al., 

2010) using different classes of PARP inhibitors have shown that PARP inhibitors 

enhance the cytotoxicity of radiation in a number of tumour types including colorectal 

cancers (Calabrese et al., 2004) and gliomas (Dungey et al., 2009; Russo et al., 2009). 

More recently work by Anthony Chalmers’s group has shown that this radio-

potentiation is enhanced in rapidly proliferating cells and cells defective in DNA DSB 

repair compared to normal tissue (Laiser et al., 2010). These data support a role for 

combining radiotherapy and PARP inhibitors in patients with cancer and clinical trials 

are finally underway (www.clinicaltrials.gov) with results eagerly awaited. 

http://www.clinicaltrials.gov/
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1.6.3 PARP inhibitors as single agents in BRCA-mutated cancers…concept of synthetic 

lethality 

In 2005, two Nature papers reported that cells deficient in BRCA1 and 2 were 100-1000 

-fold more sensitive to PARP inhibitors than BRCA1/2 heterozygote or wild type cell 

lines (Bryant et al., 2005; Farmer et al., 2005). Bryant et al. used the PARP inhibitors 

NU1025 and AG14361, both forerunners to AG014699. They demonstrated reduced 

survival of V-C8 (BRCA2 deficient Chinese hamster) cell lines after continuous exposure 

to the NU1025 or 24 hours exposure to AG14361. In mice xenografts, 3 out of 5 V-C8 

tumours responded to a 5 day dosing of AG14361 with one mouse showing complete 

remission and no sign of tumour at autopsy. In addition, they reported an induction in 

γH2AX foci formation (representing DNA DSBs) and Rad51 foci formation (indicating 

functional HR repair) in the XRCC1 deficient EM9 (Chinese hamster ovary) cell lines. In 

the V-C8 cells, an increase in γH2AX foci formation but not Rad51 was observed 

following exposure to NU1025.  

In the sister Nature paper, Farmer et al. demonstrated the sensitivity of both BRCA1 

and BRCA2 deficient cell lines to the specific inhibition of PARP-1 by two small 

molecule inhibitors KU0058684 and KU0058948 (Farmer et al., 2005). They 

demonstrated that 24 hours exposure to the PARP inhibitor resulted in permanent 

G2/M cell cycle arrest or apoptosis. They also reported a three-fold increase in 

sensitivity over the DNA damaging agent cisplatin for BRCA1/2 deficient cells.  

Both groups independently concluded that BRCA deficient cells were sensitive to PARP 

inhibition and that monotherapy with a PARP inhibitor could selectively kill BRCA 

deficient cancer cells by a mechanism of ‘synthetic lethality’.  

Synthetic lethality describes the relationship between two genes when loss of either 

gene i.e. BRCA or PARP is viable but loss of both genes i.e. PARP and BRCA is lethal 

(Kaelin, 2005). The proposed mechanism for the synthetic lethality of PARP inhibitors 

in BRCA deficient cells is as follows: PARP inhibition leads to the accumulation of DNA 

single-strand breaks that result in un-repaired stalled replication forks and ultimately 

double-strand breaks. These DNA DSBs are normally repaired by the HR pathway (JHJ 

Hoeijmakers, 2001). In HR-defective cells, i.e. those with BRCA1/2 mutations, these 

DSBs are left un-repaired or are repaired in an error-prone way by alternative NHEJ 
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DNA repair; both outcomes can result in genomic instability and ultimately cell death. 

Whereas in cells with functional HR, i.e. those with heterozygous mutations or wi ld 

type BRCA, DSBs will be accurately and efficiently repaired and inhibiting PARP will not 

result in cell death. This process is illustrated in figure 1. 9.  

The safety of inhibiting PARP in BRCA mutant carriers was previously investigated in a 

study by Drew and colleagues using BRCA2 heterozygous (129/C57BL6/DBA) mice 

(Drew et al., 2011b). BRCA2 heterozygote mice and wild type controls were treated 

with either AG014699 (25 mg/kg) i.p. once daily on days 1-5 of a 21 day cycle for six 

cycles or control saline (10ml/kg) i.p. once daily on days 1-5 of a 21 day cycle for six 

cycles. Results show, with a follow-up of 365 days, no difference in mean body weight 

or survival between the four groups suggesting that inhibiting PARP in patients may be 

safe. 

 The use of PARP inhibitors to exploit this ‘synthetic lethality’ in patients with BRCA1/2 

-mutated cancer is a novel and exciting strategy. It may result in anti-tumour activity 

without normal tissue toxicity – the ultimate aim of any anti-cancer treatment. 
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Figure 1.9: Synthetic lethality of PARP inhibitors in BRCA deficient cancer cells. SSB = single 
strand break, SSBR/BER = single strand break repair/base excision repair, DSB = double strand 

break, HR = homologous recombination 
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1.6.4 PARP inhibitors as single agents in sporadic HR defective cancers 

The majority of cancers are not attributed to hereditary germline mutations in the 

BRCA1 and 2 genes (Venkitaraman, 2002), and so a key question is whether single 

agent PARP inhibitors can be used to treat patients within the larger cancer 

population? There is increasing evidence that HR deficiency (HRD) can occur in 

sporadic cancers resulting in sensitivity to PARP inhibition. For example, it is now 

known that high grade serous ovarian carcinomas (HGSOC), in addition to mutated p53 

(Bell et al., 2005; Ahmed et al., 2010), frequently harbour BRCA1/2 dysfunction 

(Hennessy et al., 2010; Press et al., 2008). Press et al reported that germline or somatic 

BRCA1 or 2 mutations or epigenetic loss of BRCA1 (through promoter CpG island 

methylation) occurred in 60% of high grade serous ovarian cancer cases.  Dysfunction 

of BRCA1 is also reported in basal-like breast cancers (BLBC) and triple negative breast 

cancers (TNBC) which are phenotypically similar to BRCA1 breast cancers with 

oestrogen receptor negativity and high nuclear grade (Cleator et al., 2007; Turner et 

al., 2007; Lee et al., 2011). Turner et al reported that BLBC have reduced mRNA BRCA1 

expression and increased expression of ID4, a negative regulator of BRCA1.   

BRCA2 gene methylation is rarely reported but over-expression of the BRCA2 

interacting protein EMSY can result in repression of BRCA2 function which may, 

although this remains uncertain, include its role in HR DNA repair. EMSY over-

expression has been observed in up to 13% of breast cancers and 17% of high-grade 

ovarian cancers (Hughes-Davies et al., 2003) suggesting another group which may 

benefit from PARP inhibition.  

Pre-clinical studies have shown that cells lacking other components of the HR pathway 

such as Rad51, ATR, and CHK2 are sensitive to PARP inhibitiors (McCabe et al., 2006).  

Furthermore mutations within the ATR and CHK2 genes have been reported in some 

cancers (Swift et al., 1991; Miller et al., 2002). Cells deficient in the phosphatase and 

tensin homolog (PTEN) have recently been shown to be sensitive to PARP inhibitors 

(Mendes-Pereira et al., 2009) and PTEN is commonly deleted in sporadic cancers with 

the highest frequencies reported in endometrial cancer (Salmena et al., 2008).   

Hypoxia within cancer cells drives genomic instability and metastasis and can result in 

resistance to conventional therapies. It has been reported that hypoxic 
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microenvironments within cancer cells can lead to reduced expression of essential HR 

proteins (Bindra et al., 2005; Chan et al., 2008). A recent study by Chan and colleagues 

demonstrated that this hypoxia-induced HR dysfunction can be exploited by the use of 

PARP inhibitors (Chan et al., 2010). They observed increased cytotoxicity and 

accumulation of H2AX and 53BP1 foci in hypoxic cells with the addition of PARP 

inhibitor; an effect partially reversed by Rad51 over-expression. In addition, hypoxic 

gassing resulted in growth inhibition of PARP -/- murine embryonic fibroblasts (MEF) 

but not in PARP +/+ MEF cells. In vivo studies confirmed this in vitro work; tumours from 

mice treated with PARP inhibitors displayed increased H2AX and cleaved caspase-3 

expression in Rad51-deficient, hypoxic sub-regions; indicating increased DNA damage 

and apoptosis in a HR-defective environment. This concept that under hypoxic 

conditions PARP inhibitors can be lethal has been termed ‘contextual synthetic 

lethality’. Given that all cancers are likely to have hypoxic regions this suggests that 

PARP inhibitors may have an even broader role in the treatment of cancer.  

Another mechanism by which cancers could become sensitive to PARP inhibitors is to 

disrupt their HR repair machinery artificially by the addition of another targeted DNA 

response/repair agent. The discovery that CDK1-mediated phosphorylation of BRCA1 is 

required in order for BRCA1 to form repair foci led to the investigation of the effects of 

combining of CDK1 inhibitors and PARP inhibitors. In a recent study Johnson and 

colleagues tested the combination of the PARP inhibitor AG014699 and a CDK1 

inhibitor (Johnson et al., 2011). Following treatment with the PARP-CDK1 inhibitor 

combination, they observed reduced colony formation and reduced Rad51 formation 

in BRCA- wild type cells and tumour regressions in BRCA-wild type xenografts. No 

increase in toxicity was seen in the mice. Previous studies have shown that PARP 

inhibitors alone are non-toxic to BRCA wild type models (Bryant et al., 2005; Farmer et 

al., 2005; Drew et al., 2011). However these recent findings suggest that combining 

PARP inhibitors with CDK1 inhibitors could extend the therapeutic scope into non-

BRCA mutated cancer populations. 
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1.7 Results of PARP inhibitor anti-cancer clinical trials 

At the time this PhD was instigated there were only two PARP inhibitors in the clinical 

trial stage of development (AG014699 and olaparib) and no clinical trial results fully 

published. However, the last 5 years have seen a major leap forward in the 

development of these novel agents with at least nine inhibitors in various stages of 

clinical trial development, see table 1.2. The results of any published trials will be 

reviewed here. 

1.7.1 PARP inhibitors in combination with chemotherapy 

The pre-clinical data (discussed in section 1.6.1) demonstrating the potent anti-cancer 

activity in a variety of cancer models of combining PARP inhibitors with the 

monofunctional, alkylating agent TMZ provided the rationale for the first in-human 

PARP inhibitor study. The phase I trial of  AG014699 in combination with TMZ in 

patients with advanced solid tumours began at the Northern Centre for Cancer 

Treatment, Newcastle, UK in 2003 (Plummer et al., 2008). In the trial a test dose of 

single agent AG014699 was given on cycle one D -7 to allow safety, pharmacokinetic 

(PK) and pharmacodynamic (PD) evaluation of the investigational agent before it was 

combined with TMZ. The study was driven by a PD end-point which was to establish a 

PARP inhibitory dose (PID) of AG014699, before attempting to evaluate the maximum 

tolerated dose (MTD) of the combination. PID was defined as ‘the dose of AG014699 at 

which PARP activity in peripheral blood lymphocytes (PBLs ) was reduced to less than 

50% of the baseline activity value at 24 hours after the first dose’ (Plummer et al., 

2008). The PID was established at 12 mg/m2.  No dose-limiting toxicities (DLTs) of 

single agent AG014699 were reported and the DLT of the combination was 

myelosuppression (a recognised normal tissue DLT of TMZ).  Sustained PARP inhibition 

was demonstrated in PBLs and tumour biopsies; this combination was taken forward 

into a phase II study in metastatic melanoma. This phase II trial reported enhanced 

TMZ-induced myelosuppression when combined with PARP inhibitory doses of 

AG014699 (Plummer et al., 2006). A 25% dose reduction in the TMZ to 150 mg/m2 was 

therefore required for the regimen to be tolerated. Importantly, the study reported an 

increase in the response rate and median time to progression compared to historical 

reports of TMZ alone. These data have yet to be confirmed in a large phase III trial.  
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Since these first in-human studies, multiple phase I/II trials using different PARP 

inhibitors with different chemotherapy combinations have recruited patients and 

some results have been reported in abstract data and are discussed here.  

The Phase Ib combination study of the intravenous PARP inhibitor INO-101 

(Inotech/Genetech) and TMZ in patients with malignant melanoma reported in 2009 

(Bedikian et al., 2009).  DLTs were myelosuppression and elevated transaminases with 

the MTD established in combination with full dose TMZ.  No PD data were reported so 

it is not clear what degree of PARP inhibition was achieved and as only 12 patients with 

metastatic melanoma were treated across the dose ranges it is not possible to 

comment of any improved efficacy. Interestingly, since these results were published 

Genentech has suspended further recruitment to this trial and returned the rights for 

INO-101 to Inotech, who are currently pursuing a role for their PARP inhibitors in 

retinal diseases (Ferraris, 2010).  

The chemo-sensitising potential of the AstraZeneca (AZ) PARP inhibitor, olaparib, is 

being investigated in a number of on-going combination phase I trials including with: 

carboplatin, topotecan, dacarbazine, doxorubicin, gemcitabine and irinotecan 

(www.clinicaltrials.gov). The National Cancer Institute (NCI) sponsored combination 

study of olaparib with cisplatin and gemcitabine reported DLT of myelosuppression at 

the first dose level explored. Investigators were subsequently forced to de-escalate to 

establish tolerable PARP inhibitory doses of olaparib with gemcitabine at 400 mg/m2 

and cisplatin at 40 mg/m2. The study was undertaken in non-heavily pre-treated 

patients (Giaccone et al., 2010). Similarly the phase I combination study of topotecan 

and olaparib reported DLTs of neutropenia and thrombocytopenia at doses of 

topotecan 1 mg/m2/daily for 3 days and olaparib 100 mg twice daily. Further dose 

levels were not explored due to the myelosuppression (Samol et al., 2011). The phase I 

study of olaparib with dacarbazine also observed neutropenia and thrombocytopenia 

as DLTs establishing a recommended phase II dose of olaparib 100 mg twice daily with 

dacarbazine 600 mg/m2 (Khan et al., 2011). 

Preliminary results from four combination studies of the Abbott PARP inhibitor, 

veliparib (ABT-888), with topotecan, metronomic cyclophosphamide, TMZ or 

irinotecan have been reported (Ji et al., 2010; Kummar et al., 2010; Isakoff et al., 2010; 

http://www.clinicaltrials.gov/
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LoRusso et al., 2011). In the topotecan study, a DLT of myelosuppression was observed 

at the first dose level and the MTD established with the PARP inhibitory dose was 

topotecan 0.6 mg/m2 days 1-5 (Ji et al., 2010). The cyclophosphamide – veliparib 

combination study did not reach MTD and activity was reported in only a small number 

of BRCA mutated ovarian and triple negative breast cancers (Kummar et al., 2010). The 

TMZ – veliparib study investigated efficacy of the combination in metastatic breast 

cancer and again myelosuppression was seen resulting in a dose reduction of the PARP 

inhibitor Isakoff et al, 2010). In the irinotecan combination study, DLTs were diarrhoea 

and neutropenia, and a MTD of irinotecan 100 mg/m2 (LoRusso et al., 2011). 

A major theme is emerging from these PARP inhibitor-combination studies; enhanced 

normal tissue toxicity, in particular myelosuppression, is a predictable and common 

problem. This increased toxicity may limit the dose and choice of chemotherapy used 

and thus the clinical application of these PARP inhibitor combinations. 

1.7.2 PARP inhibitors as single agents in BRCA mutated cancers 

The first clinical trials investigating PARP inhibitors as single agents in BRCA mutated 

cancers commenced in 2005. The first to report was the pivotal phase I study of the 

oral PARP inhibitor, olaparib (Fong et al., 2009). The study was conducted in patients 

with advanced solid tumours (n=60) and enriched for BRCA1 or BRCA2 mutation 

carriers (n=23). Olaparib was well tolerated in all patients, including those with 

germline BRCA mutations. DLTs were myelosuppression and central nervous system 

side effects with the MTD of 400 mg olaparib twice daily.  PARP inhibition was 

confirmed in surrogate and tumour tissue, and responses were seen in a number of 

patients with BRCA mutations. Anti-tumour activity was reported in both BRCA1 and 2 

mutation carriers which included patients with breast, ovarian or prostate cancer.  

Of the 19 evaluable BRCA mutation carriers, 12 (63%) had a clinical benefit to 

treatment (defined as radiologic or tumour marker response or disease stabilisation ≥ 

four months). Responses were seen in the 100 mg, 200 mg and 400 mg dosing cohorts. 

No responses were observed in non-BRCA mutation carriers. The study incorporated 

an expansion phase which focused specifically on patients with BRCA1/2 mutations, 

and efficacy in a total of 50 patients with ovarian cancer was recently reported, with a 

clinical benefit rate of 46% (Fong et al., 2010). Olaparib was subsequently taken 
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forward in separate phase II BRCA-mutated breast and ovarian cancer studies. Both 

trials investigated response and toxicity in sequential cohorts of patients, who had 

progressed following at least one chemotherapy regimen, treated with olaparib 400 

mg or 100 mg twice daily (the lowest PARP inhibitory dose with clinical activity from 

the phase I) on a 28 day cycle.  The breast cancer study recruited 54 BRCA1 or 2 

mutation carriers (Tutt et al., 2010). In the 400 mg dose group (n=27) an objective 

response rate (ORR) of 41% (11/27) was seen with a progression free survival (PFS) of 

5.7 months. Response rate was lower (22%) in the 100 mg group (n=27).  The ovarian 

cancer study enrolled 57 BRCA1 or 2 mutation carriers with recurrent epithelial ovarian 

cancer, primary peritoneal or fallopian tube carcinoma (Audeh et al., 2010).  In the 400 

mg dose group (n=33) ORR was 33% (11/33) and again ORR was lower (13%) in the 100 

mg group (n=24) suggesting that the degree of PARP enzyme inhibition may be 

important. The toxicity profile in both studies was acceptable with the most common 

toxicities being grade 1 or 2: nausea, vomiting, fatigue and anaemia (ovarian study 

only). The breast cancer study involved patients who had been heavily pre-treated 

with chemotherapy and the overall response rate compares well with that seen with 

standard chemotherapy regimens in the advanced setting (20-30%). The ovarian study 

included both platinum sensitive and resistant patients and response to olaparib was 

seen across both groups. It is however important to note that not all patients 

responded to olaparib and that these are small studies with no randomised control  

arms and where the two dosing cohorts were not designed to be statistically 

compared. Furthermore, with any early phase II results, confirmation of these results is 

needed in larger phase III trials.  

These are however proof of concept studies, the first to report single agent activity of 

a PARP inhibitor in breast and ovarian cancer with defective homologous 

recombination DNA repair through BRCA mutation, which is an exciting breakthrough 

in the treatment of cancer.   

In addition to olaparib there are a number of PARP inhibitors in development for this 

indication (see table 1.2). Preliminary results of some of these studies have been 

presented this year at the 2011 American Society of Clinical Oncology (ASCO) annual 

meeting. A phase I study of the oral Merck PARP inhibitor, MK-4827, in patients with 

advanced solid tumours enriched for BRCA mutated cancers reported a partial 
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response rate of 20% (12/60) (Schelman et al., 2011). The study established a MTD of 

300 mg daily continuous dosing. Interim results of the Phase II trial investigating the 

single agent activity of the PARP inhibitor, AG014699, (Pfizer) in patients with BRCA-

mutated breast and/or ovarian cancer were also presented at ASCO 2011 (Drew et al., 

2011a) and are presented in chapter five of this  thesis.  

1.7.3 PARP inhibitors as single agents in the wider cancer population 

The data discussed in section 1.6.5 suggests that there is a wider role for PARP 

inhibitors in the treatment of cancer. Clinical studies are now underway investigating 

the efficacy of PARP inhibitors in non-germline BRCA-mutated cancers, in particular 

triple negative breast cancer and high grade serous ovarian cancer.  

1.7.3.1 PARP inhibitors and high grade serous ovarian cancers 

In order to investigate the role of the oral PARP inhibitor olaparib in non-germline 

BRCA mutant cancers Gelmon et al embarked on a four-arm phase II correlative study 

recruiting (1) HGSOC patients with BRCA mutations and (2) HGSOC patients with 

unknown BRCA status (3) BRCA- mutated breast cancer and (4) triple negative breast 

cancer patients with unknown BRCA status (Gelmon et al., 2011). All patients received 

continuous olaparib dosing at 400 mg twice daily. All patients underwent BRCA 

mutation testing as part of the study. Results recently reported demonstrated a 

response rate, as assessed by the Response Evaluation Criteria in Solid Tumours 

(RECIST), of 24% in the patients with non germline BRCA mutated HGSOC.      

Responses in the confirmed BRCA mutation ovarian cancer patients was 41%, similar to 

that reported in the seminal phase II olaparib study (Audeh et al., 2010). Responses 

were seen in both the platinum sensitive and resistant patients. Interestingly, no 

responses were observed in the two breast cancer arms of the study which conflicts 

the data from Tutt et al showing that BRCA mutated breast cancer is sensitive to 

olaparib (Tutt et al., 2010). The Gelmon study required biopsy samples to be taken 

before and after olaparib treatment in order to assess BRCA mutation status and 

epigenetic changes to BRCA1 and these results are eagerly awaited. It should be noted 

however that this is the first study to show single agent PARP inhibitor activity in non-

germline BRCA mutated cancers, indicating that sporadic high grade serous ovarian 

cancers could be targeted with PARP inhibitors due to an underlying BRCA defect and 

that accurate sub-classification of these cancers is essential to guide treatment. 
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The role of PARP inhibitors as maintenance therapy in HGSOC is currently being 

investigated with interim results of a phase II study recently announced (Ledermann et 

al., 2011). The study randomised patients with platinum sensitive, (defined by the 

protocol), high grade serous ovarian cancer on a 1:1 basis to olaparib 400 mg twice 

daily or placebo until disease progression. Preliminary results showed a significant 

benefit in progression-free survival (8.4 vs. 4.8 months; P < 0.00001) favouring the 

maintenance olaparib. Overall survival data are not yet mature and are awaited.  

1.7.3.2 PARP inhibitors and basal-like, triple negative breast cancers 

Gene expression profiling has clustered breast cancer into five distinct molecular 

subgroups, one of which is the basal-like breast carcinoma (BLBC) (Perou et al., 2000). 

The majority lack expression of the oestrogen receptor (ER), progesterone receptor 

(PR) and HER2/neu receptor.  Triple negative breast cancers, by definition, lack ER, PR 

and HER2/neu expression and make up around 15% of all breast cancers.  Although the 

terms BLBC and TNBC are often used interchangeably, it is important to note that the 

overlap is not complete. As there is no universal agreement on distinguishing triple 

negative BLBC from TNBC, clinical trials recruiting patients are likely to be 

heterogeneous for both groups.  

In the phase II study previously discussed Gelmon et al reported no single agent 

activity with the PARP inhibitor olaparib in 15 patients with triple negative breast 

cancer (Gelmon et al., 2011) and at present there is no evidence of single agent activity 

in TNBC using this approach. However, remarkable data were presented at ASCO 2009 

of a chemotherapy-PARP inhibitor combination trial, using the PARP inhibitor BSI-201 

(now known as Iniparib) in patients with TNBC (O’Shaughnessey et al., 2009). This 

randomised phase II study, recently reported, investigated iniparib in combination with 

carboplatin and gemcitabine in metastatic TNBC (O’Shaughnessey et al., 2011a). The 

study randomised 120 patients to receive gemcitabine (1000 mg/m2) plus carboplatin 

(AUC2) days 1 and 8 +/- iniparib given days 1, 4, 8, 11 of a 21 day cycle. Results showed 

an increased ORR (52 vs. 32%, p=0.02), median PFS (5.9 vs. 3.6 months, p<0.01) and OS 

(12.3 vs. 7.7 months, p=0.01) with the addition of the PARP inhibitor. These data 

represented a significant result in a breast cancer sub-group with limited targeted 

treatment options.  However, what was not clear from the study was the underlying 

mechanism for potentiation of the chemotherapy response. The original hypothesis 
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was that iniparib, as a PARP inhibitor, was potentiating the chemotherapy by inhibiting 

repair of the chemotherapy-induced DNA damage. However, in contrast to other 

combination studies (discussed in section 1.5.1), no increased toxicity was seen in the 

iniparib plus chemotherapy arm. At the time this trial was reported it raised many 

questions about the lack of toxicity. Was the lack of toxicity due to the intermittent 

dosing of the inhibitor or the lower than standard dose of carboplatin used (AUC2) or 

that the PARP inhibitor was not enhancing the chemotherapy but acting via 

independent mechanisms?  It may even be possible that the intermittent 

chemotherapy, by providing exogenous DNA damage is potentiating the PARP 

inhibitory properties of iniparib. Some of the questions surrounding iniparib were 

answered earlier this year at ASCO 2011 with the reporting of the phase III study of 

this combination. In the phase III trial 519 patients were randomised 1:1 to receive 

gemcitabine (1000 mg/m2) plus carboplatin (AUC2) days 1 and 8 with or without the 

PARP inhibitor given days 1, 4, 8, 11 of a 21 day cycle (O’Shaughnessey et al., 2011b). 

Before the results were presented the study team announced that they had new data 

to confirm that Iniparib was ‘not acting as a PARP inhibitor’ at the concentrations 

achieved in the study population and that iniparib acts by arresting cell cycle at the 

G2/M checkpoint. The trial also failed to meet its primary endpoint and did not show a 

significant benefit in terms of improved OS in patients receiving iniparib plus the 

chemotherapy. Data presented by independent researchers at the same meeting 

proposed that iniparib has numerous off-PARP targets including inhibition of the 

enzyme caspase-3 (Maegley et al., 2011). What is certain is that the mechanism of 

action of iniparib is still unclear and requires further investigation and that this study 

does not add to the case for the use of PARP inhibitors in TNBC.  

1.8 Predictive biomarkers for defective HR 

It is clear that many cancers harbour defects in the HR DNA repair pathway and that 

many cancer patients outside of the BRCA mutation carrier population could benefit 

from PARP inhibitor therapy. The problem is how to identify them given the 

heterogeneous mechanisms by which sporadic cancers can develop defective 

homologous recombination. The development of assays to determine homologous 

recombination deficiency (HRD) is the next big challenge for researchers.  
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Sequencing all cancers for mutations within the individual genes known to be involved 

in HR is one method. However, this is likely to be costly and time-consuming. It also 

limits the search to genes already known to be involved in HR and it will not detect 

HRD secondary to epigenetic silencing. One alternative method is to use gene 

expression arrays to determine a BRCA-like profile in tumours. Konstantinopoulos et al 

identified a 60 gene signature of BRCAness using a publicly available micro-array 

dataset that included 61 patients with epithelial ovarian cancers including those with 

germline BRCA mutations. In a further 70 patient population enriched for sporadic 

cancers this BRCAness profile was shown to correlate with response to PARP inhibitors, 

response to platinums and the ability to form Rad51 foci (Konstantinopoulos et al., 

2010). More recently, Mulligan et al used DNA-microarray technology to profile a 

cohort of breast cancers enriched for BRCA mutants and thus DNA damage response 

and HR deficient (Mulligan et al., 2011). They were able to identify a 44 gene signature 

of the DNA damage response deficient molecular subtype. This signature was then 

validated retrospectively using independent breast cancer data sets and shown to be 

able to predict response to DNA damaging anthracycline chemotherapy. This method 

could be useful to predict response to PARP inhibitors.  

Another approach is to measure Rad51 foci by immunofluoresence. Based on in vitro 

data presented in chapter three of this thesis, Mukhopadhyay et al investigated Rad51 

focus formation as a marker of HRD in primary ovarian cancer cell cultures 

(Mukhopadhyay et al., 2010). The inability to form foci following AG014699 was 

observed in 16 out of 24 cultures and this correlated with ex vivo sensitivity to 

AG014699 with a negative predictive value of 100% and positive predictive value of 

93%. These primary cultures were not developed from known BRCA1/2 mutation 

carriers, highlighting again the extent of HRD in the sporadic cancer population.   

Another option to measure Rad51 foci is in tumour biopsies after ex vivo damage. For 

example, in a small study Willers and colleagues measured Rad51 foci following ex vivo 

irradiation in core breast cancer biopsies (Willers et al., 2009).  No increase in Rad51 

foci was seen in four out of the seven cancers suggesting an underlying HRD. 

Interestingly, three of these tumours were triple negative breast cancers, a phenotype 

that associated with BRCA1 deficiency (Turner et al., 2007). There are problems with 

these approaches: in the study by Mukhopadhyay et al it is the need to obtain viable, 
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replicating cells; in Willer’s study there are technical difficulties in inducing DNA 

damage ex vivo. These assays may not be practical in the normal clinical practice out 

with a translational study. 

In the UK most patients with a confirmed diagnosis of cancer will have had the 

diagnosis made by immunohistochemistry (IHC) analysis of formalin fixed paraffin 

embedded (FFPE) tumour blocks.  IHC of FFPE tissue is another option to help identify 

HR defects. This approach is practical in terms of the availability of tumours but maybe 

very time consuming in terms of the number of proteins that would potentially need to 

be measured. Nevertheless, expression of BRCA1 by IHC has been shown to correlate 

with mRNA BRCA1 expression in such FFPE samples and may prove a simple and useful 

indicator of HR function (unpublished data Dr Judith Carser, Queens University, 

Belfast). In a recent study by Gottipati and colleagues investigating HR competence in 

BRCA2 deficient CAPAN-1 cells and PARPi- resistant revertant clones, hyperactivated 

PARP was observed in the cells with HRD; IHC could be a useful way to detect this 

(Gottipati et al., 2010). 

Finally, the use of circulating tumour cells (CTCs) may eventually prove a useful tool in 

the selection of patients with HRD for PARP inhibitor therapy.  For example, induction 

of γH2AX after treatment with DNA damaging agents has been demonstrated in CTCs  

and studies evaluating Rad51 foci formation are ongoing (Wang et al., 2010). The 

advantage of CTCs is that the actual tumour can be assessed rather than surrogate 

tissues with only minimal invasion such a venepuncture. Such methods are likely to be 

more acceptable to patients and enable serial measurements of biomarkers before 

and after treatments.  

To summarise many of these assays are still in the early stages of development and 

some may prove too expensive or too impractical to use. In addition, these assays will 

require further evaluation and validation within prospective clinical trials before they 

can be adopted as predictive tools directing treatment decisions in patients.  
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1.9 Resistance to PARP inhibitors 

The results from the reported clinical trials of PARP inhibitors in selected cancer 

patient populations are encouraging but it is important to note that not all patients 

respond and most responders eventually develop resistance (Fong et al., 2009; Fong et 

al., 2010). While it may seem premature to determine resistance mechanisms early in 

the development of these novel agents, mechanism-based resistance has frequently 

been found to occur with targeted therapy as it has with chemotherapy. 

Understanding why this happens is important if the clinical outcomes of these novel 

agents are to be improved. Recent studies in cancer cell lines have demonstrated that 

second mutations in the BRCA1 or BRCA2 genes can lead to resistance to PARP 

inhibitors (Edwards et al., 2008; Sakai et al., 2008; Sakai et al., 2009). Secondary 

mutations may restore BRCA function and HR DNA repair in the face of PARP inhibition 

in order to maintain genomic integrity. Edwards and colleagues developed a model for 

drug resistance by producing cells from the BRCA2-deficient cell line CAPAN-1 that 

were insensitive to PARP inhibitors (Edwards et al., 2008). CAPAN-1 cells are derived 

from a pancreatic epithelial tumour arising in a carrier of a c.6174delT BRCA2 

frameshift mutation (Goggins et al., 1996).  They lack a wild-type BRCA2 and the 

c.6174delT allele encodes a truncated protein of 2,002 amino acids (approximately 224 

kDa), compared with the wild-type 3,418–amino acid protein (approximately 390 kDa). 

The mutant protein lacks two whole BRC repeats, the DNA binding/DSS1 interaction 

domain (DBD) and the C-terminus, which contains the TR2 RAD51 binding domain and 

nuclear localization sequences (Esashi et al., 2007).  CAPAN-1 cells are thus unable to 

form damage-induced Rad51 foci and are extremely sensitive to treatment with potent 

PARP inhibitors (Drew et al., 2011; MacCabe et al., 2006).  

The PARP inhibitor–resistant (PIR) clones developed following exposure to the potent 

PARP inhibitor KU0058948 by Edwards et al were shown to be are highly resistant 

(>1,000-fold) (Edwards et al., 2008).  PIR clones are also cross-resistant to the DNA 

cross-linking agent cisplatin, but not to the microtubule stabilizing drug docetaxel.  

Platinum chemotherapy is a well-established strategy in the treatment of ovarian 

cancer, including patients with BRCA1 or BRCA2 mutations. Clinical observations 

suggest that BRCA1/2 mutation ovarian cancer patients respond better to platinum 

therapy, in contrast to patients with no family history of the disease, although 
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resistance does eventually occur (Tan et al., 2008). In addition, systemic chemotherapy 

with the platinums may exert their BRCA1/2-selective effects through similar 

mechanisms to PARP inhibitors.  In view of these findings, the BRCA2 gene was 

sequenced in tumours from patients bearing the BRCA2 c.6174delT mutation whose 

ovarian carcinomas were resistant to carboplatin chemotherapy (Sakai et al., 2009). 

These studies revealed deletions in the BRCA2 gene, which restored the open reading 

frame. This suggests that a specific mutation (c.6174delT) in BRCA2 and sensitivity to 

therapeutics in cell lines and patients can be reversed by intragenic deletion. Similar 

results have been reported for BRCA1 mutated tumours in patients treated with 

platinum based chemotherapy (Swisher et al., 2008). Although resistance to both 

platinums and PARP inhibitors can be mediated by secondary mutations, restoring 

BRCA function, it is likely that the mechanism of resistance is more complex. It is 

important to note that the clinical data have shown that PARP inhibitor resistance does 

not equate to platinum resistance. For example, not all platinum-sensitive ovarian 

cancer patients were sensitive to PARP inhibition and anti-tumour activity was seen in 

platinum-resistant patients in the first single agent trial of olaparib in BRCA1/2 

mutation carriers (Fong et al., 2009). However, post-hoc analysis of the data from all 

50 ovarian cancer patients treated in this study (including the expansion phase) 

showed a significantly higher clinical benefit rate (69.2%) in patients who were 

platinum-sensitive compared to those who were resistant (45.8%) or refractory 

(23.1%), (Fong et al., 2010). It is not clear how much of an issue this will be in clinical 

practice and we await the results of the on-going studies and the mature data from 

those already concluded.  

2.0 Project aims 

This aims of this research project were to investigate through in vitro, in vivo and 

clinical studies the effects of the PARP-1 inhibitor AG014699 in human cancers 

defective in homologous recombination DNA DSB repair. The project focuses 

particularly on cancers defective in the tumour suppressor genes BRCA1 and BRCA2. 

Detailed objectives for each study are found at the beginning of the three results 

chapters. 
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Chapter Two 

2. Materials and Methods 

2.1 General laboratory chemicals and materials 

All chemicals were obtained from Sigma (Poole, Dorset, UK) unless otherwise stated. 

Sterile plasticware for use in tissue culture experiments was supplied by Fisher 

Scientific (Manchester, UK). The PARP inhibitor AG014699 was supplied by Pfizer GRD 

(La Jolla, California, USA). AG014699 was dissolved in dimethyl sulfoxide (DMSO) to 

give a stock solution of 10 mM and stored at – 200C for in vitro studies. For use within 

in vivo experiments it was dissolved in sterile water to give a 1 mg/ml (2.4 mM) 

solution. The sources of other reagents and materials are described, as appropriate, in 

the text. 

2.2 Good Clinical Laboratory Practice 

Laboratory work, undertaken for the phase II PARP-BRCA PH2/052 clinical trial, 

presented in chapter five, was performed in keeping with the principles of the 

International Conference on Harmonisation- Good Clinical Practice (ICH-GCP) 

(www.ich.org).  To ensure that these standards were achieved the project work and 

the laboratory systems were assessed regularly by in-house audits and a two-day study 

audit by CRUK.  

2.3 Culture of cell lines 

Cell lines were maintained in exponential growth in tissue culture grade flasks, petri 

dishes and 6 well plates at 37°C in a humidified incubator atmosphere of 5% CO2 and 

95% air (SANYO; Illinois, USA). All cells were handled separately with their own unique 

reagents, under sterile conditions, in class II tissue culture cabinets. Cells were cultured 

in Roswell Park Memorial Institute (RPMI) 1640 media supplemented with 10% foetal 

bovine serum, penicillin (100 U/ml), and streptomycin (1.0 mg/ml) unless otherwise 

stated. Adherent cells were brought into suspension for sub-culture by aspirating off 

the medium, washing twice with phosphate buffered saline (PBS), followed by five 
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minute incubation with 0.25% trypsin solution in PBS.  Cell cultures were confirmed 

mycoplasma negative by regular testing using the MycoAlert mycoplasma detection kit 

(Lonza; Rockland, Maine, USA). 

2.3.1 Cell lines 

A panel of 11 cell lines, including nine human cancer cell lines, with differing HR repair 

status were selected for use within the in vitro experiments presented in chapter 

three. These cell lines have been subsequently authenticated by an in-house NICR 

programme. Details for each cell line are provided below and a summary is provided in 

table 3.1 of chapter three to aid interpretation of results.  In addition to these cell lines 

two cell lines were cultured for use within PD assays. The mouse lymphocytic 

leukaemic cell line, L1210, was used as quality control (QC) samples for the PARP 

activity assay described in section 2.9. The human lymphoblast cell line, K562, was 

used for QC samples for the PARP-1 expression assay described in section 2.10.  Both 

L1210 and K562 are grown in suspension in RPMI 1640 media supplemented with 10% 

foetal bovine serum, penicillin (100 U/ml), and streptomycin (1.0 mg/ml) and originally 

supplied by the American Type Culture Collection (ATCC). 

2.3.1.1 MCF7 

Breast adenocarcinoma cells derived from the pleural fluid of a 69 year old Caucasian 

female. BRCA 1 hemizygous/BRCA2 wild type, p53 wild type and oestrogen receptor 

positive adherent cells with a doubling time of approximately 28 hours. Original 

supplier: ATCC (Manassas, Virginia, USA). 

2.3.1.2 MDA-MB-231 

Breast adenocarcinoma adherent cell line derived from the pleural fluid of a 51 year 

old Caucasian female. It is hemizygous for BRCA1 and the remaining non-mutated 

allele contains two non-pathogenic single-nucleotide polymorphisms. Original supplier: 

ATCC. 

2.3.1.3 MDA-MB-436 

Breast adenocarcinoma adherent cell line derived from the pleural fluid of a 43 year 

old Caucasian female. BRCA1 mutated (5396 +IG>A), BRCA2 wt type (Elstrodt et al., 

2006). An adherent cell line grown in RPMI 1640 –Leibovitz medium (50:50 vol/vol) 
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supplemented with 4 mM L-glutamine, 10% fetal bovine serum, penicillin (100 U/ml) 

and streptomycin (1.0 mg/ml). Original supplier: ATCC. 

2.3.1.4 HCC1937 

Primary breast carcinoma adherent cell line derived from 23 year old Caucasian 

female. Mutated BRCA1 (5283insC), wild type for BRCA2 (Tomlinson et al., 1998), 

oestrogen and progesterone receptor negative. Original supplier: ATCC. 

2.3.1.5 HCC1937 – BRCA1 

Primary breast carcinoma adherent cell line derived from 23 year old Caucasian female 

(HCC1937) with transfected wild type BRCA1 (Tassone et al., 2003). Original supplier: 

ATCC. 

2.3.1.6 UACC3199 

Primary breast carcinoma, adherent cell line with ≥ 60% BRCA1 promoter methylation, 

which has been shown to result in reduced BRCA1 gene copy number and 

chromosome 17 aneusomy as observed in BRCA1 mutated breast cancer cells (Wei et 

al., 2005). Cell line obtained from the University of Arizona Cancer Research Centre, 

Tucson, USA. The methylation status of BRCA1 in these cells was confirmed by Valerie 

Deregowski (University of Leuven, Belgium) by methylation-specific polymerase chain 

reaction.  

2.3.1.7 CAPAN-1 

Pancreatic adenocarcinoma cells derived from liver metastasis of a 40 year old 

Caucasian male. BRCA2 mutated (6174 delT allele encoding truncated BRCA2 protein; 

other BRCA2 allele is lost), BRCA1 wt type (Goggins et al., 1996).  Adherent cell line 

grown in RPMI 1640 media supplemented with 15% foetal bovine serum, penicillin 

(100 U/ml), and streptomycin (1.0 mg/ml). Original supplier: ATCC. 

2.3.1.8 OSEC1 

Immortalized human ovarian surface epithelial, adherent cell line; heterozygous for 

the BRCA2 mutation 4630insA and wild type for BRCA1. Both OSEC cell lines were 

provided by Richard Edmondson and immortalised with the catalytic subunit of 
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telomerase (hTERT) and a temperature-sensitive form of SV40 large T antigen 

(unpublished data Richard Edmondson, Newcastle University, UK). 

2.3.1.9 OSEC2 

Immortalized human ovarian surface epithelial, adherent cell line; wild type for both 

BRCA1 and 2 (Davies et al., 2003).  

2.3.1.10 AA8 

Chinese hamster ovary cell line wild type for XRCC3 (Pierce et al., 1999); provided by 

Prof Penny Jeggo at the University of Brighton, UK. 

2.3.1.11 IRS-1SF 

Chinese hamster ovary cell line deficient in the HR gene XRCC3 (Pierce et al., 1999); 

provided by Prof Penny Jeggo at the University of Brighton, UK. 

2.4 Preparation of clinical samples from the phase II BRCA-PARP trial  

2.4.1 Preparation of peripheral blood lymphocytes from whole blood for 

pharmacodynamics assays 

Peripheral blood lymphocytes (PBL) were extracted from whole blood for analysis of 

PARP-1 activity and expression. For PARP-1 activity blood samples (10 ml x 4 or x 8 for 

stage one patients) were collected on day (D)1 prior to treatment, at the end of 

infusion, 4 hours post and 24 hours post AG014699 (which is the D2 pre-dose sample). 

For assessment of PARP-1 expression a single 10 ml whole blood sample was taken 

within two weeks prior to starting AG014699. Blood was collected into potassium 

ethylenediaminetetraacetic acid (EDTA) vacutainer tubes (BD, Oxford, UK), stored 

immediately on ice and PBL isolated by lymphopreparation using pre-prepared 

Lymphoprep™ tubes (Axis-shield; Cambridgeshire, UK) within one hour of sampling. 

Each Lymphoprep™ tube contains 10 ml of Lymphoprep™ solution contained below a 

porous membrane disc. 10 ml of chilled PBS was freely added to the Lymphoprep™ 

tube followed by 10 ml of whole blood. The tube is then centrifuged for 10 minutes 

(min) at 1100 relative centrifugal force (RCF) in a horizontal rotor (swing-out head) 

centrifuge at 4°C. After centrifugation, the PBL cells form a distinct band at the 

sample/medium interface. This band of PBL was then collected from the interface 
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using a Pasteur pipette (Axis-shield; Cambridgeshire, UK) and transferred to a 50 ml 

Cellstar tube (Greiner Bio-one; Gloucestershire, UK) and placed on ice. The PBL were 

then diluted by the addition of 20 ml of ice cold PBS and centrifuged for 10 min at 500 

RCF in a horizontal rotor (swing-out head) centrifuge at 4°C. The supernatant was then 

discarded and the cell pellet re-suspended in 2 ml of pre-chilled freezing medium 

consisting of RPMI1640 medium supplemented with 10% foetal calf serum, 10% DMSO 

and x1 strength Halt protease inhibitor cocktail (Pierce; Il linois, USA). Finally, the PBL 

are then placed in 2 separate 1.8 ml cyrotubes (Nunc, supplied by Fisher Scientific; 

Loughborough, UK) and stored at –70oC prior to use.   

 

Figure 2.1: Extraction of peripheral blood lymphocytes (PBL) from whole blood using 
Lymphoprep™ tubes. 
 

2.4.2 Preparation of plasma from whole blood for pharmacokinetic assay 

Blood samples (5 ml x 9 or x 18 for stage one patients) were collected at the following 

time-points: D1 pre-AG014699, end of infusion, 1-3 hours post AG014699; D2 pre-

AG014699; D4 pre-AG014699, end of infusion, 1-3 hours post AG014699 and D5 pre-

AG014699 and D5 end of infusion. Blood was collected into heparinised vacutainer 

tubes (BD, Oxford, UK) and plasma separated within 30 min of sampling by 
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centrifugation at 1000 RCF at room at 4°C. The plasma supernatant was removed and 

separated into 2 x 1 ml samples and stored in 1.8 ml cyrotubes (Nunc, supplied by 

Fisher Scientific; Loughborough, UK) at - 20oC prior to use. 

2.4.3 DNA purification from whole blood for genotyping assays 

For each patient a single sample of whole blood (5 ml) was collected into potassium 

ETDA vacutainer tubes (BD, Oxford, UK) and stored at – 200C prior to use. Samples 

were then thawed at room temperature and DNA extracted using the QIAamp DNA 

Blood Maxi (50) kit, (Qiagen; West Sussex, UK). The concentration (ng/µl) of the eluted 

DNA was determined using the Nanodrop N-D 1000 spectrophotometer system 

(Nanodrop Technologies; Delaware, USA) operating on Nanodrop 3.0.1 software. DNA 

aliquots were then stored as working and stock solutions at 40C and – 200C 

respectively. Working stock solutions were diluted using ultra-high purity (UHP) sterile 

water to give a concentration = 10 ng/µl.  

2.5 Clonogenic cell survival assay 

2.5.1 Background principles 

The clonogenic cell survival assay allows a measurement of cell survival after exposure 

to pharmacological agents. The assay measures viable cells that have undergone at 

least 5-6 rounds of replication to produce a colony and have therefore survived the 

drug exposure. All cell lines listed in section 2.3.1 (with the exception of the HCC1937 

and HCC1937-BRCA1) were used in this assay. 

2.5.2 Assay 

Exponentially proliferating cells were plated into six-well plates and incubated for 48 

hours to allow cells to reach their optimum proliferation rate. AG014699 at 0, 0.1, 1.0, 

10.0, 30.0, 50.0, or 100 μM in 1% DMSO was added to the wells and incubated for 24 

hours. Control cells received no AG014699 but were treated with medium containing 

1% DMSO for 24 hours. Cells were harvested and cultured in drug-free medium in 90-

mm Petri dishes for up to 21 days, depending on the proliferation rate of the individual 

cell line. Colonies were fixed in methanol and acetic acid (3:1 vol/vol), stained with 

methyl violet 10B, and counted with an automated colony counter (Oxford Optronix; 

Oxford, UK).  
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2.5.3 Analysis of results 

Data are expressed as the percentage of colonies in AG014699-treated cultures 

compared with that in control cultures. The concentration that results in death of 50% 

of cell population (LC50) was calculated for each cell line in each independent 

experiment. Each assay contained triplicate samples for each concentration. Results 

represent data from at least three independent experiments. Graphs were produced 

and statistical analysis performed using the GraphPad prism software version 4.0 

(GraphPad Software Inc; La Jolla, California, USA) 

2.6 Sulforhodamine B Assay for Cell Growth Inhibition 

2.6.1 Background principles 

The HCC1937 and HCC1937-BRCA1 cell lines have poor cloning efficiency and were not 

appropriate for the clonogenic cell survival assay. As an alternative, cell growth 

inhibition was measured using the sulforhodamine B (SRB) protein dye assay (Vichai 

and Kirtikara, 2006). This assay determines cell density by measuring cellular protein 

content. Adherent cells are incubated in 96-well plates for a given period of time in 

media containing a range of concentrations of the drug under investigation. Cell 

monolayers are then fixed in trichloroacetic acid and stained for 30 minutes in SRB 

protein dye. After removal of excess dye the protein-bound dye is dissolved in a Tris-

base solution ready for optical density determination (at 520 nm) using a microplate 

spectrophotometer system.  This method enables large numbers of samples to be 

investigated in a short period of time. In addition to the HCC1937 and HCC1937-BRCA1 

cell lines, the MDA-MB-231 cells were also evaluated with this assay so that a direct 

comparison could be made between results from the clonogenic survival assay and the 

SRB assay.  

2.6.2 Assay 

Cells were seeded into 96-well plates at 2000 cells per well and allowed to attach 

overnight. AG014699 at 0.0, 1.0, 10.0, 30.0, 50.0, or 100 μM in 1% DMSO was added, 

and cells were incubated for 120 hours at 37°C, fixed in 50% (wt/vol) trichloroacetic 

acid, and stained with 0.4% SRB solution (diluted in 1% acetic acid) for 30 minutes. 

Absorbance of sulforhodamine B was measured at 520 nm with a SpectroMax 250 
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microplate spectrophotometer system (MDS Analytical Technologies; Toronto, ON, 

Canada) to determine cell density.  

2.6.3 Analysis of results 

The concentration required to produce 50% inhibition of cell growth (GI50) based on 

absorbance measurement was calculated for each cell line in each independent 

experiment. Each assay contained triplicate samples for each concentration. Results 

represent data from at least three independent experiments. Graphs were produced 

and statistical analysis performed using the GraphPad prism software version 4.0 

(GraphPad Software Inc, La Jolla, California, USA) 

2.7 DNA Double strand break determination by γH2AX 

immunofluorescence assay 

2.7.1 Background Principles 

H2AX is one of three types of histone H2A molecules found in eukaryotic cells. 

Phosphorylation by ATM or DNA-PK of H2AX is an early step in the cellular response to 

DNA DSBs. Within 1-3 minutes of a DSB the unique carboxy-terminal tail of H2AX 

serine 139 is phosphorylated forming γH2AX foci (Rogakou et al., 1998). The γH2AX 

foci localise to sites of DSBs and one γH2AX focus is thought to correspond to one DSB 

within the cell nucleus (Rogakou et al., 1999, Paull et al., 2000). This assay uses 

immunocytochemistry to detect the γH2AX foci. A primary antibody specific to γH2AX 

is used, this is then combined with a secondary fluorescent antibody and a DNA 

counter-stain to allow the nucleus of each cell to be visualised by microscopy.  

2.7.2 Cell preparation and assay 

Cells were grown to 50-70% confluence to the day of experiment on sterile circular 

glass cover-slips (22 mm diameter, 1 mm thickness) in 60 mm petri dishes. For cells 

exposed to AG014699; the medium was aspirated and replaced with medium 

containing, at final concentration, 1 or 10 μM AG014699 at time zero on the day of 

experiment. Cells were then incubated for 24 hours at 370C. Cells treated with X-ray 

irradiation were irradiated with 2 Gy (2.5 Gy/min at 310 kV, 10 mA) using the Gulmay 

Medical RS320 Irradiation system (Gulmay Medical Limited; Surrey, UK). Ionising 
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radiation was used as a positive control in all experiments. Cells were returned to the 

incubator for the described length of time before fixation. The cover-slips containing 

cells were then washed twice in 2 ml cold PBS in 6 well plates and subsequently fixed 

in chilled 100% methanol at −200C for 10 min. The cells were then re-hydrated by 

washing in PBS for two 10 minute washes. Fixed control, AG014699-treated, or 

irradiated cells then were blocked for 1 hour at room temperature in KCM buffer (120 

mM KCl, 20 mM NaCl, 10 mM Tris–HCl at pH 8.0, 1 mM EDTA, 0.1% Triton X-100, 2% 

bovine serum albumin, and 10% milk powder). The cells were then incubated 

overnight at 40C in Upstate primary mouse monoclonal IgG1 anti-phospho-histone 

H2A.X Ser 139, clone JBW301 antibody (Millipore; Billerica, Massachusetts, USA) 

diluted 1:400 in the KCM blocking buffer described above. Following incubation with 

the primary antibody the cover-slips were transferred to 6 well plates and washed in 

KCM with 0.1% (v/v) Triton X-100 for three 10 minute washes on a platform shaker. 

Next the cover-slips were incubated in the dark for 1 hour at room temperature in 

secondary fluorescent antibody Alexa Fluor 546 goat anti-mouse IgG (Invitrogen; 

Paisley, UK) diluted 1:200 in blocking buffer. Cells were then washed as described 

above in KCM with 0.1% (v/v) Triton X-100 but shielded from light and with the 

addition of one extra 5 min wash. Following this cover-slips were mounted onto slides 

using Vectorshield hard set mounting medium with DAPI (Vector Laboratories; 

Peterborough, UK), which counter-stains the DNA.  

2.7.3 Analysis 

Images were obtained using Leica DMR microscope and RT SE6 Slider camera 

Advanced Spot software version 3.408 (Diagnostic Instruments Inc; Sterling Heights, 

Michigan, USA).  γH2AX foci were manually quantified in 30 nuclei from three different 

areas of each treatment slide. This method of quantification has been shown to be 

reliable and reproducible (Mukhopadhyay et al., 2010). Graphs were produced and 

statistical analysis performed using the GraphPad prism software version 4.0 

(GraphPad Software Inc, La Jolla, California, USA) 
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2.8 Rad51 focus formation immunofluoresence assay 

2.8.1 Background Principles 

As already discussed in chapter one section 1.2.4 the Rad51 recombinase protein, 

structurally related to the E. coli RecA protein, is a pivotal player in the HR DSB repair 

pathway. In response to DNA damage Rad51 forms nuclear complexes that can be 

detected using microscopy as individual foci. These foci are seen at high levels in cells 

with intact HR pathways following damage with ionizing radiation (IR) and co-localise 

over time with sites of H2AX phosphorylation at the sites of DNA damage (Paull et al., 

2000). Thus the formation of Rad51 foci following DNA damage could serve as a 

biomarker of HR function and to be able to quantify them could enable HR proficient 

and deficient cells to be identified.  

2.8.2 Cell preparation and assay 

The method used was similar to the γH2AX immunofluoresence assay with the 

following changes: Primary antibody used was anti-Rad51 rabbit polyclonal antibody 

(Calbiochem; Merck Serono Ltd, Middlesex, UK) diluted 1:400 with blocking buffer and 

incubated overnight at 40C. Secondary antibody used was Alexa Fluor 488 goat anti-

rabbit IgG (Invitrogen; Paisley, UK) diluted 1:100 in blocking buffer and incubated in 

the dark for two hours at room temperature. For all assays the concentration of 

AG014699 was 10 µM and dose of IR treatments was 2 Gy. 

2.8.3 Analysis 

Images were obtained using Leica DMR microscope and RT SE6 Slider camera with 

Advanced Spot software version 3.408 (Diagnostic Instruments Inc; Sterling Heights, 

Michigan, USA). Rad51 foci were manually counted in 30 nuclei from three different 

areas as described above. Graphs were produced and statistical analysis performed 

using the GraphPad prism software version 4.0 (GraphPad Software Inc, La Jolla, 

California, USA). 
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2.9 PARP activity assay 

2.9.1 Background principles  

PARP activity after treatment with AG014699 is measured using the GCP validated 

immunoblot PARP assay used in the Phase I and II clinical trials of AG014699 in 

combination with TMZ (Plummer et al., 2006, Plummer et al., 2008). The assay 

measures PARP activity by quantifying the amount of PAR synthesized during a 

maximum PARP enzyme stimulation step in which cells are exposed to blunt-ended 

oligonucleotide in the presence of excess NAD+ for a six minute period. The 

oligonucleotide simulates DNA strand breaks. The reaction is then stopped by the 

addition of an ice-cold concentrated AG014699 ‘stop solution’. Samples are 

subsequently placed on ice. A known number of cells (between 2000 and 10,000) are 

then blotted onto a membrane which is then exposed to a primary anti-PAR antibody. 

Bound primary antibody is subsequently exposed to secondary antibody conjugated to 

horse-radish peroxidise. On exposure to chemiluminesence detection reagent, light is 

emitted from areas of the blot containing the primary-secondary antibody complexes 

in proportion to the amount of PAR present. This chemiluminescence is detected and 

expressed as ‘luminescent arbitrary units’ (LAU). It is important to note that this LAU 

value reflects the PAR produced during the reaction step plus the PAR already present 

in the cell prior to the assay. Therefore for each sample a control sample of un-reacted 

cells is also loaded onto the immunoblot. The LAU value for these control samples is 

then subtracted from the former result to give the maximum-stimulated PARP activity 

for the cells. During the validation of this assay a large inter-assay variability was 

observed (unpublished data Dr Chris Jones, Newcastle University, UK), making it 

questionable to compare PARP activity directly between blots using the LAU values. To 

combat this and standardise results between assays the following serially diluted 

standards of PAR: 25, 5, 1, 0.2, 0.04 and 0 pmol ADP-ribose monomer are loaded onto 

the immunoblot at the same time as the cell samples. In addition, for the clinical trial, 

each individual patient’s samples were run on the same blot in order to assess changes 

in PARP activity accurately over time following AG014699. 
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2.9.2 Buffers and solutions 

The isotonic buffer comprised of 36 mM Hepes, 130 mM potassium chloride, 0.57 mM 

dextran, 2.0 mM ethylglyceroltetraacetic acid (EGTA), 2.31 mM magnesium chloride 

and 223 mM sucrose all dissolved in distilled water and pH adjusted to 7.8. The 

solution was then stored at 40C and given an expiry date of three months. The reaction 

buffer consisted of 100 mM Tris.HCl and 120 mM magnesium chloride dissolved in 

distilled water and pH adjusted to 7.8. The solution was stored at 40C and given an 

expiry date of three months. Tris/ Ethylenediaminetetraacetic acid (EDTA) solution 

comprised of 10 mM Tris and 1 mM EDTA dissolved in distilled water; stored at room 

temperature for a maximum of three months.  The stop solution was prepared fresh 

on the day of each experiment by diluting 25 μl of 10 mM AG014699 into 20 ml of PBS 

to give a 12.5 μM AG014699 solution. This was then stored on ice until required in the 

assay. Blocking buffer again made fresh on the day of the assay consisted of PBS with 5% 

Marvel milk powder (Premier Foods; St Albans, Hertfordshire, UK) and 0.05% Tween-

20. 

2.9.3 Preparation of 7 mM NAD+ 

2.5 mg of solid NAD+ (stored at -200C) was weighed on the day of experiment and 

dissolved in 500 µl of distilled water. A 10 µl aliquot of this solution was diluted further 

1:100 with distilled water, transferred into a silica cuvette and the optical density read 

at 260 nm against a control of distilled water using the Lambda 2 Spectrometer (Perkin 

Elmer; Fremont, USA). The molarity of the stock solution was calculated using the 

equation: 1 mM = 18 OD (optical density). The stock solution was subsequently diluted 

in distilled water to give a 7 mM solution.  

2.9.4 Preparation of oligonucleotide 

A pellet of synthesised oligonucleotide with the sequence CGGAATTCCG (Invitrogen; 

Paisley, UK) was dissolved in 10 mM Tris/EDTA and heated to 600C in a water bath. Re-

annealing of the DNA was achieved by cooling the solution to 240C by 10C per minute 

by the addition of ice to the water bath. The solution was then diluted 1:50 with 

Tris/EDTA and the optical density read at 260 nm against a blank cuvette containing 

Tris/EDTA. 1 optical density is equal to 50 µg/ml double stranded oligonucleotide. 

Using this calculation the original oligonucleotide solution was diluted with 10 mM 



  Chapter Two – Materials and Methods 

67 
 

Tris/EDTA to give a 200 µg/ml solution. The solution was then transferred to 

microtubes in 250 µl aliquots and stored at -200C. On the day of experiment one 

aliquot was thawed at room temperature and then stored on ice until required. 

2.9.5 Preparation of PAR standards  

Purified PAR, branched and linear polymers of an average 25 (3-300) monomers,  

(Biomol; Plymouth Meeting, Pennsylvania, USA) was supplied as a 10 µg/ml solution 

where 1 µg is equivalent to 1850 pmol of ADP-ribose monomer and stored at -800C. On 

the day of the experiment one aliquot of PAR was thawed at room temperature and 

292 µl of distilled water added resulting in a 25 pmol ADP-ribose monomer/100 µl 

solution. This was then serially diluted in 200 µl distilled water to give the following 

standards: 25, 5, 1, 0.2, 0.04 and 0.00 pmol. 100 µl of each standard was then mixed 

with 300 µL PBS. For the zero PAR standard 100 µl of distilled water was mixed with 

PBS. These standards were stored on ice until needed. 

2.9.6 Preparation of cell line samples 

Cells were grown to 50-75% confluence on the day of experiment in 35 mm x 10 mm 

Petri dishes containing 10 ml of media. For each cell line the following treatments were 

compared: no treatment (DMSO control) and 10 µM AG014699. On the day of 

experiment medium was aspirated and replaced by medium containing 10 µM 

AG014699 or DMSO for the no treatment control samples. Cells were then incubated 

in this medium for 30 minutes. Following this, cells were washed in PBS x 2, 

trypsinised, re-suspended in 10 ml of medium in universal containers and centrifuged 

at 500 g for 5 min at 40C. The media was then aspirated and the cell pellet placed 

immediately on ice. The cell pellet was then re-suspended in 20 ml ice-cold PBS and 

centrifuged at 500 g for 5 min at 40C twice. The supernatant was discarded and the cell 

pellet re-suspended in 50 µl of ice-cold 0.15 mg/ml digitonin for 5 minutes to 

permeabilise the cells. 450 µL of ice-cold isotonic buffer was then added to the 

permeabilised cells. Permeabilised cells were then counted using an improved 

Neubauer haemocytometer (Weber Scientific, Teddington, UK) after diluting 6 µl of 

cell suspension 1:1 with trypan blue. The cell suspensions were then diluted using 

isotonic buffer to give a final concentration of between 2000-10,000 cells per 60 µl and 

placed back on ice.  
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2.9.7 Preparation of clinical trial samples 

Extraction of peripheral blood lymphocytes (PBL) from whole blood for use within this 

assay is described in section 2.4.1. On the day of the experiment the relevant patients’ 

PBL were removed from -800C storage and thawed at room temperature. The sample 

was then transferred into a clean eppendorf and centrifuged at 500 g for 5 minutes at 

4oC. The supernatant was removed and discarded and the cell pellet re-suspended in 1 

ml of ice-cold PBS. After vortexing the sample was then centrifuged again at 500 g for 5 

minutes at 4oC. The supernatant was discarded and the cell pellet re-suspended in 1 ml 

of ice-cold PBS and washed and centrifuged again as above. Following the second wash 

the supernatant was discarded and the cell pellet re-suspended in 50 µl of ice-cold 

0.15 mg/ml digitonin for 5 minutes to permeabilise the cells. The next steps were 

identical to that described above for the cell line preparation, resulting in a cell 

suspension of PBL of between 2000-10,000 cells per 60 µl. This was then placed back 

on ice and used within one hour of preparation. 

2.9.8 Quality control samples 

As described in section 2.3.1 L1210 cells were used as QC samples in all assays. L1210 

were cultured and stored as necessary in 1 ml aliquots of media (with 10% DMSO) 

containing 1 x 106 cells at -800C. Each time a new batch of L1210 cells was used they 

were tested against the previous batch to ensure that there was no significant inter-

batch difference in the amount of PAR the cells contained. For each assay one aliquot 

of L1210 cells was used and prepared as described in section 2.9.7. 

2.9.9 PARP reaction 

For each sample triplicate reaction tubes were prepared containing 30 µl of Reaction 

Buffer, 5 µl 7 mM NAD+ and 5 µl of oligonucleotide. The reaction tubes and eppendorf 

tubes containing the cell suspensions were warmed to 260C in a shaking water bath. 

After 7 min the cell suspensions were vortexed and 60 µl of each pipetted into the 

reaction tubes. After exactly 6 min for each tube the reaction was stopped by the 

addition of 400 µl of ice-cold 12.5 µM AG014699 and the reaction tubes placed on ice. 
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2.9.10 Immunoblot technique 

Two layers of filter paper followed by a membrane of Hybond N (Amersham 

Biosciences, UK), all pre-soaked in PBS, were placed onto the base plate of 48-well 

purpose built manifold. The top plate of the manifold was screwed down tightly to 

align the wells over the membrane. Following completion of the PARP reaction, 400 µl 

of each reaction tube cell suspension was gently blotted on to each well using a p1000 

Gilson pipette. For each reacted cell suspension sample, an equivalent number of un-

reacted cells from the original cell suspension were loaded onto the membrane, in 

order to give the baseline PAR levels in the cells prior to the reaction. The PAR 

standards and quality control reacted L1210 cells were also loaded. The blotting 

pattern for each assay was recorded in the relevant laboratory books. Suction was 

then applied to the manifold using a Vacusafe aspirator (Integra Biosciences, 

Switzerland) until all the contents of each well had been absorbed onto the membrane. 

400 µl of 10% trichloroacetic acid / 2% sodium pyrophosphate was then pipetted into 

each well and drawn through the membrane using suction. This step was repeated 

using 800 µl 70% ethanol as a fixative. The membrane was then removed from the 

manifold and following 3 x 5 min PBS washes placed in a blocking solution of 5% 

Marvel milk powder (Premier Foods; St Albans, Hertfordshire, UK) and 0.05% Tween-

20 in PBS known as PBS-MT for one hour at room temperature. 

2.9.11 Primary and secondary antibody incubations 

The membrane was then incubated overnight at 40C in mouse monoclonal anti- PAR 

antibody 1.5 mg/ml, donated by Professor Alex Bürkle (University of Konstanz, 

Germany from an established hybridoma clone supplied by Dr Takashi Sugimura, 

National Cancer Centre Research Institute, Tokyo, Japan) diluted 1:1000 in PBS-MT. 

Following this the membrane was then washed in PBS-T to remove any unbound 

primary antibody and incubated in the secondary antibody polyclonal goat anti -mouse 

HRP-conjugated (DAKO; Ely, Cambridgeshire, UK) diluted 1:1000 in PBS-MT for 1 hour 

at room temperature. Following secondary antibody incubation the membrane was 

washed for 1 hour in PBS-T with 5 min changes of the wash. 
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2.9.12 Detection and analysis of chemiluminescence: 

Following the final PBS-T wash, ECL western blotting detection fluid (GE Healthcare; 

Buckinghamshire, UK), (2.5 ml of reagent A + 2.5 ml of reagent B), was pipetted onto 

the membrane ensuring all blotted areas were covered. After one minute the 

membrane was transferred to a dark box and an image of the membrane was acquired 

using a Fuji LAS 3000 camera and imaging software system (Raytest, Sheffield, UK). The 

membrane was placed on the tray in position four; the camera was set to ‘pro’ mode 

to detect chemiluminescence with the iris set to 0.85. A flat frame was applied and 

exposure set to five minutes. The image was then analysed using Aida Image Analyser 

software version 3.28.001 (Raytest; Sheffield, UK). Circular regions were marked out 

over the image corresponding to each blotted well and the luminescence quantified to 

give a result of LAU/mm2 per well. An example of this is shown in figure 3.5 of chapter 

three. The LAU/mm2 values for the un-reacted cells were then subtracted from the 

equivalent reaction cell values giving a result of the PAR produced during the reaction 

step. A standard curve, using non-linear regression, was created using the LAU/mm2 

for the PAR standards using GraphPad prism software version 4.0 (GraphPad Software 

Inc, La Jolla, California, USA). The resulting equation was then used to calculate the 

amount of PAR in each cell sample. PARP activity was then calculated as a % of the 

untreated control samples for each concentration of AG014699 or in the case of the 

clinical samples for each time-point following the AG014699 dosing. 

2.10 PARP-1 expression assay 

2.10.1 Background principles 

Western blotting is a technique developed more than thirty years ago for the detection 

of specific proteins or amino acid sequences (epitopes) in a given cell or tissue extract 

(Burnette, 1981). The process involves the transfer of electrophorectically separated 

proteins from a sodium dodecyl sulphate (SDS)-polyacrylamide gel to a solid 

nitrocellulose membrane. This membrane is then probed with specific monoclonal or 

polyclonal primary antibodies which detect specific epitopes. These bound primary 

antibodies are then detected by secondary antibodies or other immunological agents 

whose interaction can be detected by chemiluminescence or autoradiography. 
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2.10.2 Buffers and solutions 

Laemelli Buffer minus mercaptoethanol and bromophenol blue (LB-ME-BB) consisted 

of 250 nM Tris-HCl (pH = 6.8), 5% SDS and 40% Glycerol. The solution was deemed 

stable for six months. Running buffer (x 1 strength) was prepared on the day of the 

experiment by diluting 100 ml of commercially available Tris/Glycine/SDS running 

buffer (x 10 strength) (BioRad; Hertfordshire, UK) with 900 ml deionised water. 

Transfer buffer (x 2 strength) was prepared on the day of the assay by diluting 160 ml 

of commercially available Novex-Tris Glycine transfer buffer (x 25 strength) (Invitrogen; 

Paisley, UK) with 1840 ml deionised water. Loading dye comprised 52.5 mM 

dithiothreitol and 1% bromophenol blue dissolved in water (pH = 6.8). Blocking buffer 

consisted of PBS with 0.05% Tween-20 and 5% milk powder (Premier Foods; St Albans, 

Hertfordshire, UK). 

2.10.3 Preparation of the PBL lysates 

On the day of the assay the relevant patients’ PBL samples (previously stored in 

freezing medium) were removed from – 800C thawed at room temperature, 

transferred to 1.5 ml eppendorfs and centrifuged at 40C, 500 G for five minutes. The 

supernatant was then removed and discarded. Next 100 l of LB-ME-BB was added to 

the cell pellet together with Pierce protease inhibitor cocktail (x 1 strength), (Pierce; 

Illinois, USA).  

The cell pellet was then resuspended by vortexing and pipetting and placed on ice for 

30 minutes. During this 30 minute period each eppendorf was vortexed every five 

minutes. The lysate was then sonicated (20 microns amplitude) on ice for three times 

five second periods using a Vibra-Cell sonicator (Vibracell; Connecticut, USA). The 

sonicated lysate was then centrifuged at 14000 g for seven minutes at room 

temperature. The supernatant was then transferred to a clean 1.5 ml eppendorf and 

placed on ice. 

2.10.4 Preparation of QC lysates 

For each experiment two aliquots of the K562 cells (cultured as described in section 

2.3.1) were removed from – 800C storage thawed at room temperature and lysates 
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prepared as described in section 2.10.3. The only difference to this was that only 50 l 

not 100 l of LB-ME-BB was added to the cell pellet after the initial centrifugation step. 

2.10.5 BCA protein assay 

In order to determine the amount of protein loaded onto the gel for each sample a 

bioinchoninic acid (BCA) protein assay using the Pierce BCA assay (Pierce; Illinois, USA) 

was performed with each Western Blot. The assay is based on the reduction of Cu2+ to 

Cu+ by peptide bonds in an alkaline medium. BCA chelates with Cu+ in a ratio of 2:1 

forming a purple coloured reaction product. Absorbance of this product can then be 

measured on a MRXTC II Plate Reader (Dynex Technology INC; Virginia, USA) at 570 nm. 

A stock solution of 2 mg/ml bovine serum albumin (BSA) was prepared by diluting 

0.04g BSA in 20 ml LB-ME-BB.  This stock was then diluted, as described in table 2.1, to 

produce the following BSA standard concentrations: 2.00, 1.50, 1.00, 0.50, 0.25, 0.125, 

0.0625 and 0.00 mg/ml.  These standards were then loaded in quadruplicate onto a 96-

well plate as shown in table 2.2.  5 l of each patient and 5 l of each QC sample were 

then transferred to clean labelled eppendorfs containing 45 l of LB-ME-BB to give a 

1:10 dilution. 

10 l of each sample was then loaded in quadruplicate onto the 96-well plate. Next 

190 l of the BCA reagent, mixed as per the manufacturer’s instructions, was added to 

each well. The plate was then incubated at 370C for 30 minutes. The absorbance was 

then measured on the MRXTC II Plate Reader (Dynex Technology INC; Virginia, USA. 

The known concentration of each BSA standard was then plotted against the 

corresponding mean absorbance result at 570 nm. Linear regression analys is was then 

used to calculate the unknown protein concentrations from each patient and QC 

sample. This result was then multiplied by ten to account for the original dilution of 

the sample in LB-ME-BB. For each BCA assay to be valid the R2 must be > 0.9. 
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BSA standard 

(mg/ml) 

Volume (µL) of 2 mg/ml 

stock 

Volume (µL) LB-ME-

BB 

Total Volume 

(µL) 

2.00 500.00 0.00 500.00 

1.50 375.00 125.00 500.00 

1.00 250.00 250.00 500.00 

0.50 125.00 375.00 500.00 

0.25 62.50 437.50 500.00 

0.125 31.25 468.75 500.00 

0.0625 15.63 484.37 500.00 

0.00 0.00 500.00 500.00 

  
Table 2.1: Dilution of 2 mg/ml BSA stock to create the eight BSA standards 
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2.00 

  

2.00 2.00 2.00 Sample 1 Sample 1 Sample 1 Sample 1 Sample 2 Sample 2 Sample 2 Samples 

2 

1.50  

  

1.50 1.50  1.50  Sample 3 Sample 3 Sample 3 Sample 3 Sample 4 Sample 4 Sample 4 Sample 4 

1.00 

  

1.00 1.00 1.00 Sample 5 Sample 5 Sample 5 Sample 5 Sample 6 Sample 6 Sample 6 Sample 6 

0.50 

  

0.50 0.50 0.50 Sample 7 Sample 7 Sample 7 Sample 7 Sample 8 Sample 8 Sample 8 Sample 8 

0.25 

  

0.25 0.25 0.25 Sample 9 Sample 9 Sample 9 Sample 9 Sample 

10  

Sample 

10 

Sample 

10 

Sample 

10 

0.125 

  

0.125 0.125 0.125 Sample 

10 

Sample 

10 

Sample 

10 

Sample 

10 

Sample 

11 

Sample 

11 

Sample 

11 

Sample 

11 

0.0625 

  

0.0625 0.0625 0.0625 Sample 

12 

Sample 

12 

Sample 

12 

Sample 

12 

Sample 

13 

Sample 

13 

Sample 

13 

Sample 

13 

0.00 

  

0.00 0.00 0.00 Sample 

14 

Sample 

14 

Sample 

14 

Sample 

14 

Sample 

15 

Sample 

15 

Sample 

15 

Sample 

15 

 

 

BSA Standards (mg/ml) Patient and QC samples 

Table 2.2: Loading pattern of standards and samples for BCA assay on the 96-well plate  
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2.10.6 Preparation of PARP-1 standards for electrophoresis 

10 µg/ml PARP-1 standards (Biomol; Exeter, UK) were stored in 15 µl aliquots at – 800C. 

On the day of experiment one vial was removed from storage and placed on ice to 

thaw. To prepare the lower concentrations of the standard curve 2 µl of this PARP-1 

aliquot was removed and mixed by pipetting with 18 µl of LB-ME-BB in a clean 

eppendorf to give a 1:10 dilution. The PARP-1 standards were then made up as shown 

in table 2.3 and placed on ice until needed.  

Volume (µL) of 10 
µg/ml PARP-1 

stock 

Volume (µL) of 1:10 µg/ml       

PARP-1 stock 

Volume (µL) 

of LB-ME-BB 

Final PARP-1 
standard (ng) in 15 

µL volume 

6.00 0.00 9.00 40.00 

3.80 0.00 11.20 25.00 

1.50 0.00 13.50 10.00 

0.00 7.50 7.50 5.00 

0.00 3.70 11.30 2.50 

0.00 0.00 15.00 0.00 

 
Table 2.3 Preparation of PARP-1 standards for electrophoresis 
 

2.10.7 Preparation of cell lysates for electrophoresis 

Cell lysates were diluted in LB-ME-BB with calculations adjusted for the addition of 4 x 

load dye (2.10.2) to each sample. One volume of load dye (x 4) was added to three 

volumes of each sample such that the load dye became x 1 strength for use on the gel. 

When possible both the QC, K562, samples and the patient PBL lysates were loaded at 

30 μg total soluble protein (TSP) protein in a maximum volume of 15 µl per well. In the 

previous validation of this assay it was noted that this level of protein should not be 

exceeded or the signal could become saturated. Once diluted to the required 

concentration the samples were placed into a boiling water bath, for five minutes to 

enable protein denaturation and exposure of the epitope. Samples were then 

immediately loaded into appropriate wells of the gels as described in section 2.10.8. 
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2.10.8 Gel electrophoresis 

One CriterionTM pre-cast (4-20% Tris-HCL) gel (BioRad; Hertfordshire, UK) was removed 

from its case, the white cover slip from the bottom of the gel removed and the gel 

washed briefly in distilled water. The gel was then placed in a BioRad CriterionTM gel rig 

(BioRad; Hertfordshire, UK) and the gel comb removed. The inner well reservoir was 

then immediately filled with the Tris/Glycine/SDS running buffer (x 1), described in 

section 2.10.2, followed by the outer reservoir which was filled to the marked fill line. 

If two gels were run simultaneously the second gel was prepared as above. The gel was 

then loaded from left to right as follows: the first lane was loaded with 4 μl of the 

protein molecular weight marker –MagicMark (Invitrogen; Paisley, UK). MagicMark 

was stored at -20oC and only required defrosting prior to use. 10 µL of each PARP-1 

standard was then loaded in duplicate, followed by duplicate patient samples and 

finally duplicate QC samples. Once loading was completed the top was placed on the 

tank and the BioRad Power Pac 300 (BioRad; Hertfordshire, UK) was set to run for two 

hours at a constant voltage (V) of 100 V. 

2.10.9 Western Blotting technique 

Prior to blotting, two CriterionTM material pads (BioRad; Hertfordshire, UK), two filter 

paper sheets (Whatman; Kent, UK) and one Hybond-C nitrocellulose membrane 

(Amersham Biosciences; Buckinghamshire, UK) all cut to 14 cm x 9 cm, were pre-

soaked in (x 2) Novex transfer buffer. After the gel had run for two hours at 100 V, the 

power was switched off and the gel casing removed. The lower protruding lip of the 

gel was discarded and the pre-cast gel case opened using a flat bladed knife. The top 

10 mm comb section of the gel was then also removed using the blade. The gel was 

then ready for transfer onto the nitrocellulose membrane in the BioRad CriterionTM 

Blotter (BioRad; Hertfordshire, UK). One material pad was placed on the inner side of 

the black section of the transfer case, followed by one filter paper and then the gel. 

The nitrocellulose membrane was then placed on top of the gel (with the upper right 

corner cut), followed by the second piece of filter paper and the second material pad. 

Any air bubbles between the material pads, gel and filter papers were removed by the 

use of a mini-roller. The cassette was then closed and placed into the transfer tank, 

ensuring that the black side of the cassette was closest to the black side of the transfer 

rig. If a second gel was run in section 2.10.8 the procedure was repeated. Finally the 

transfer rig was filled with x 2 transfer buffer and allowed to run for two hours at 100 V. 
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To prevent over-heating during the transfer an ice pack was placed into the rig and the 

rig itself was placed into a container of ice. 

2.10.10 Primary and secondary antibody incubations  

Following transfer the membrane was removed from the cassette and briefly blotted 

dry on tissue paper. It was then transferred to a clean tray, ensuring that the cut right 

hand corner was in place, and blocked for one hour at room temperature under gentle 

agitation with 25 ml of PBS-MT blocking buffer. Next the primary antibody Anti PARP-1 

C2-10 (Trevigen; Maryland, USA) was applied to the membrane diluted 1:2000 in 20 ml 

PBS-MT overnight at 40C using a rotation shaker. The next day the membrane was 

rinsed in three five minute washes of PBS-T (25 ml per wash), before transfer to a 

clean blocking tray and the application of the secondary antibody. The secondary 

antibody - polyclonal goat anti-mouse IgG HRP secondary antibody (Dako; 

Cambridgeshire, UK) was diluted 1:1000 in 20 ml PBS-MT and mixed for one hour with 

gentle agitation on a rotation shaker at room temperature. Following this the 

membrane was finally washed at for one hour at room temperature in PBS-T with 

frequent changes of wash (approximately every five minutes). 

2.10.11 Detection and analysis of chemiluminescence 

Next the membrane was thoroughly drained by holding the edge against absorbent 

paper to remove excess moisture and placed on a sheet of cling film protein transfer 

side up. Then 5.85 ml of solution A was combined with 150 µl of solution B from the 

ECL PlusWestern Blot Detection Kit (GE Healthcare; Buckinghamshire, UK) and mixed 

using vortexing. The entire surface of the membrane was then covered with ECL Plus 

detection fluid and exposed for five minutes. Any excess fluid was drained onto 

absorbent paper and the membrane wrapped in clean cling film, removing any air 

bubble by the use of a roller. The membrane was then transferred to the Fuji LAS 3000 

camera and imaging software system (Raytest, Sheffield, UK). ). The membrane was 

placed on the tray in position two; the camera was set to ‘pro’ mode to detect 

chemiluminescence with the iris set to 0.85. A flat frame was applied and exposure set 

to ten minutes. The image was then analysed using Aida Image Analyser software 

version 3.28.001 (Raytest; Sheffield, UK). Rectangular regions were marked out over 

the image corresponding to each of the PARP-1 standards, QCs and visible patient 

samples as shown in figure 3.7 of chapter three and the luminescence quantified to 
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give a result of LAU per each area (mm2). A standard curve, using non-linear 

regression, was created using the LAU/mm2 for the PARP-1 standards using GraphPad 

prism software version 4.0 (GraphPad Software Inc, La Jolla, California, USA). The 

resulting equation was then used to calculate the amount of PARP-1 (ng) in each cell 

sample. Using the results of the BCA protein assay, this value could then be expressed 

as a value of ng PARP-1 detected per µg of TSP. Patient samples were run in duplicate 

wells on two separate assays and their mean value (ng per µg TSP) calculated as above.  

It was proposed that on completion of the Western blotting assay for all patients 

within the trial, the expression values would be compiled and patients PARP-1 activity 

stratified into five groups based on the scoring system described in table 2.4. The 

rationale behind this was that a semi quantitative scale would limit data errors from 

both intra and inter assay variability, whilst still providing absolute numerical values on 

an individual patient’s expression level. 

0 No signal visible after exposure of the membrane or variability of the generated 

replicates resulting in a CV > 50. 

1 Patients mean expression value falls into the lowest quartile of values 

2 Patients mean expression value falls into the second quartile of expression values  

3 Patients mean expression value falls into the third quartile of expression values  

4 Patients mean expression value falls into the highest quartile of expression values  

   
Table 2.4: Semi-quantitative system for scoring PARP-1 expression levels in patients. CV = 
coefficient of variation. 
 

2.11 Development and validation of an analytical method for the 

determination of AG014447 in human plasma. 

2.11.1 Background Principles 

AG014447 is the parent drug of AG014699 and it is AG014447 that is detected in 

human plasma following administration of AG014699. The AG014699 pharmacokinetic 

(PK) studies for the phase I and II combination TMZ studies were performed by 

Quintiles Preclinical Services, Edinburgh, UK on behalf of Pfizer. However, for this 
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BRCA-PARP phase II study, PK analysis was to be performed in-house. One of the 

objectives of this research fellowship and thesis was to develop and validate an 

analytical method to determine the concentration of the analyte AG014447 in human 

plasma using protein precipitation extraction followed by high performance liquid 

chromatography (LC) with tandem Mass Spectrometry (MS). Validation of this assay to 

GCLP standards was performed by testing an assessment of linearity, range, accuracy 

and recovery, intra and inter-assay precision, lower limit of detection, specificity and 

freeze/thaw stability of AG014447. The assay method is described below. The 

validation report is not included as part of this thesis. 

2.11.2 Analytical system 

The analytical system used was the API4000 LC/MS/MS from Applied Biosystems 

(California, USA) with a series 200 Micro pump, autosampler and Peltier column oven, 

all from Perkin Elmer (Beaconsfield, UK). The column used was the Gemini 3u C18 

110A, 20 x 4 mm supplied by Phenomenex (Macclesfield, UK). A Phenomenex guard 

column (C18 (ODS Octadecyl), 4mm L x 2.0mm) was also used for every run and 

changed after every fifty patient samples. Analysis was performed us ing Analyst 

software version 1.5 (Applied Biosystems; California, USA) 

2.11.3 Preparation of mobile phases 

Prior to use the deionised water and the acetonitrile (Fisher Scientific; Loughborough, 

UK) used to make the mobile phases were filtered through 0.45 µm phenex filter 

membranes using the Phenomenex filtration apparatus (Macclesfield, UK). Mobile 

phase A (10:90 acetonitrile: water + 0.1% formic acid) was prepared by adding 50 ml of 

acetonitrile to 450 ml of deionised water in a 1000 ml measuring cylinder plus 0.5 ml 

formic acid (Fisher Scientific; Loughborough, UK). The solution was then mixed, 

transferred to a 500 ml Duran bottle (Duran group; Wertheim, Germany) and given an 

expiry date of seven days. Mobile phase B (65:35 acetonitrile:water + 0.1% formic acid) 

was prepared by adding 325 ml of acetonitrile to 175 ml deionised water in a 1000 ml 

measuring cylinder followed by 0.5 ml formic acid. The solution was mixed, transferred 

to a 500 ml Duran bottle with an expiry date of seven days. The needle-wash (solution 

C) was prepared by adding 250 ml acetonitrile to 250 ml deionised water in a 1000 ml 

measuring cylinder to give a 50: 50 mix. The solution was then mixed, stored in a 500 

ml Duran bottle and stable for one month. 
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2.11.4 Preparation of AG014447 and deuterated d7-AG014447 stock solutions 

AG014447 and its corresponding internal standard (IS) deuterated d7-AG014447 were 

supplied by Pfizer. Compounds were all weighed out using a Mettler 5 place balance 

(Mettler-Toledo; Leicester, UK). AG014447 1mg/ml stock solution was made by 

weighing out 2 mg AG014447 and dissolving in 2 ml of 100% methanol and stored, 

protected from light, at -200C. Internal standard d-7 AG014447 200 μg/ml stock 

solution was prepared by weighing out 2 mg and dissolving in 10 ml of 100% methanol. 

This was then separated into 1 ml aliquots and stored, protected from light, at -200C. 

2.11.5 Preparation of AG014447 standard curve  

For each analytical run a new standard curve was prepared on the day of experiment. 

The following eight concentrations of AG014447 were prepared in duplicate:  2, 4, 10, 

20, 50, 100, 250 and 500 ng/ml by diluting the 1 mg/ml stock solution in blank plasma 

(supplied by the Blood Bank Service, Newcastle-upon-Tyne, UK) shown in table 2.5. 

The standard curve was determined from the plasma standards by linear regression 

with a 1/x2 weighting of the analyte to IS area ratios using the Analyst programme 

version 1.5. 

1000ng/ml 447 
(ml) 

100ng/ml 447 
(ml) 

10ng/ml 447 
(ml) 

Volume plasma 
(ml) 

Final 
concentration 

AG014447 
(ng/ml) 

0.50   0.50  500.00 

0.25   0.75 250.00 
0.10   0.90  100.00 

 0.50  0.50  50.00 
 0.20  0.80  20.00 

 0.10   0.90  10.00 
  0.40  0.60  4.00 

  0.20  0.80  2.00 

 
Table 2.5: Preparation of AG014447 standard curve 
 

2.11.6 Preparation of QC samples 

For use within each analytical run QC samples for the three concentrations: lowest QC 

(LQC) 2 ng/ml, medium QC (MQC) 50 ng/ml and the highest QC (HQC) 500 ng/ml were 

prepared. These were made up in advance of use and stored at – 200C (stable for five 

months). New batches were tested to ensure consistency with the preceding batch 

prior to use within patient sample analysis. On the day of a run triplicate QCs for each 
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concentration were removed from - 200C and thawed at room temperature. In 

addition to the nine QCs a single blank plasma sample, containing only the IS and a 

double blank sample of plasma only were also prepared. 

2.11.7 Preparation of samples 

On the day of the run 200 μl of each sample (blank plasma, standards, QCs, patient 

samples) were pipetted into 1.5 ml labelled microtubes. To each sample 10 μl of the IS 

at concentration 100 ng/ml was added except to the double blank plasma.  

Some patient samples required dilution 1:10 with blank plasma prior to extraction 

process depending on the dose of AG014699 administered and the sampling time-

point to ensure that the results lay within the standard curve (2 ng/ml to 500 ng/ml). 

Protein precipitation was achieved by the addition of 0.4 ml acetonitrile to each 

sample whilst vortexing. The samples were then centrifuged at 12,000 RCF for 5 min in 

a Heraeus biofuge15 centrifuge (Heraeus Sepatech GmbH; Osterode, Germany). The 

supernatant was then transferred to a labelled 12 x 75 mm borosilicate tube (Fisher 

Scientific; Loughborough, UK) and evaporated to dryness in nitrogen at 40oC using a 

Zymark evaporator (Caliper Life Sciences; Cheshire, UK). The residue was then 

reconstituted in 180 μl of mobile phase A (described above), vortexed and placed in 

autosampler limited volume inserts ready to be run on the LC/MS/MS. 

2.11.8 Order of sample injections 

For each analytical run the samples were tested in the sequence shown in figure 2.2. 

An un-extracted AG014447 sample was always tested before any clinical samples were 

removed from -200C to ensure that the LC/MS/MS system was operational that the 

analyte could be detected to a similar sensitivity to previous runs. 
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Figure 2.2: Flow diagram showing the sequence in which samples were run on the LC/MS/MS 
for each analytical run 
 
 

2.11.9 Preparation of carry over prevention samples 

To eliminate carry-over of the analyte between high and low concentrations, three 

samples of mobile phase A were run after the highest standard (500 ng/ml), the 

highest QC samples and any anticipated high patient samples, for example the end of 

infusion time-points.  

2.11.10 LC/MS/MS conditions 

Mobile phase: pump A - 10:90 acetonitrile: water + 0.1% formic acid, pump B - 65:35 

acetonitrile: water + 0.1% formic acid. Needle wash – 50:50 acetonitrile: water. 

Retention time of the analyte was 2.33 minutes. The time-table used for the gradient 

elution is shown in table 2.6. The settings for the mass spectrometer for analyte 

detection and the parameters for the mass spectrometer environment are shown in 

table 2.7 
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Step Time (min) Flow rate 
(ml/min) 

Gradient % Mobile 
phase A 

% Mobile 
phase B 

1 0.00 0.50 1 100.00 0.00 

2 1.00 0.50 1 100.00 0.00 
3 1.50 0.50 1 0.00 100.00 

4 2.00 0.50 1 0.00 100.00 
5 2.50 0.50 1 100.00 0.00 

6 6.00 0.50 1 100.00 0.00 

 
Table 2.6: Chromatography gradient of mobile phases across the column  
 
 

Compound Q1 mass Q3 mass Dwell (msec) DP (volts) CXP 

AG014447 324.00 293.20 150.00 41.00 14.00 

IS 331.30 297.10 150.00 51.00 10.00 
Parameter 

Collison gas (CAD) 5.00 
Curtain gas (CUR) 50.00 

Ion source gas 1 65.00 
Ion source gas 2 50.00 

Ion spray voltage (IS) 5500.00 

Temperature 500.00 
 
Table 2.7: Mass spectrometer parameters 
 

2.12 Taqman® Real-Time PCR genotyping 

2.12.1 Background Principles  

To determine the single nucleotide polymorphisms (SNPs) within the CYP2D6 gene (*2 

and *4) associated with the metabolism of AG014699 (Plummer et al., 2008) and the 

PARP-1 gene (T2444C) associated with reduced enzyme activity (Lockett et al., 2004; 

Wang et al., 2007), genotyping was performed using Taqman® Real-time Polymerase 

chain reaction (PCR). All reagents and equipment described in this section were 

purchased from Applied Biosystems (Warrington, UK), unless otherwise stated. The 

Real-time and ‘allelic discrimination’ runs were performed on the ABI 7500 Fast System 

operating 7500 Fast system software (Applied Biosystems; Warrington, UK). Taqman® 

Real-time PCR for each SNP under investigation was performed by incubating the DNA 

template with Taqman® genotyping master mix and the specific SNP genotyping assay 

mix which contained two fluorescent probes: VIC and FAM. During the extension cycle 

of PCR these reporter probes are cleaved off specific target sequences and fluoresce. 

This fluorescence is subsequently detected using the ‘allelic discrimination’ software 
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on ABI 7500 Fast system. The programme is set for the VIC probe to denote the 

presence of the wild-type (wt) allele and the FAM probe to denote variant (v) alleles. 

Therefore for any given SNP, wild-type homozygotes (wt/wt) fluoresce only VIC, 

variant homozygotes (v/v) fluoresce only FAM and any heterozygotes (wt/v) will 

contain equal amounts of both VIC and FAM fluoresence. An example of this ‘allelic 

discrimination’ process is shown in figure 2.3. Specific primers for the SNPs under 

investigation were obtained ready for use from Applied Biosystems. The details of 

these ‘off the shelf’ genotyping assays are found in table 2. 8.  

Gene SNP  Taqman® Genotyping assay 

PARP-1 T2444C 
rs 113640 

X 40 assay C_1515368_1 

CYP2D6 C245R (*2) 
rs 16947 

X 20 assay C_27102425_10 

G1846A (*4) 
rs 3892097 

X 20 assay C_27102431_10 

 
Table 2.8: Details of the Taqman® Genotyping assays used for the specific SNPs.  
 

2.12.2 Preparation of the DNA template 

DNA was purified from patients’ whole blood (method described in section 2.4.3) and 

stored at 40C as 10 ng/l working solutions. For each genotyping assay 1 µl of each 

patient’s working solution was added to the reaction mixture. Sample testing was not 

duplicated unless the primary results were inconclusive. 

2.12.3 Preparation of the PCR plate 

All reactions were run on 96-well MicroAmp Fast Optical 0.1 ml PCR plates. The plates 

were loaded with one DNA sample per patient; in addition, three no DNA template 

controls (NTC) and any available known genotype controls for validation were also run. 

Each well of the plate was loaded to contain 1 µl of sample DNA, x1 Taqman® 

Genotyping PCR Master Mix and x1 Genotyping Assay mix (as per table 2.9) made up 

to a total volume of 25 µl with sterile UHP water. The NTC were made as above but 

without the sample DNA. The plate was then sealed with MicroAmp Optical adhesive 

film (to avoid evaporation of reagents during PCR) and centrifuged at 1500g for one 

minute at 40C. 4.2.7. The plate was then immediately loaded into the ABI 7500 Fast 

machine. If there was any delay in loading the plate was stored at 40C whilst waiting 

for machine. 
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2.12.4 PCR 

For all real-time assays the default conditions on the ‘Absolute Quantitation’ plate 

documents were selected. The conditions were: initial hold at 950C for 10 minutes 

followed by a total of 40 cycles at 950C for 15 seconds then 600C for one minute. 

  

 

 
Figure 2.3: Taqman® Real-time PCR allelic discrimination results chart of analysis of the PARP-1 
SNP T2444C (rs 113640, C-1515368) for the BRCA-PARP clinical trial patients.  
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2.12.5 Data analysis 

Following PCR amplification an end-plate read was performed using the Applied 

Biosystems Sequence Detection System. The Sequence Detection System software 

uses the fluorescence measurements made during the plate read to plot fluorescence 

values based on the signals within each well. These plotted fluorescence signals 

indicate which alleles are present in each well and thus the genotype for each patient 

sample can be determined.  

The frequencies of the genotypes were tested in accordance with the principles of 

Hardy-Weinberg. The validity of each assay was confirmed by cross -checking the 

results of known genotype controls. 
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Chapter Three 

3. In vitro studies of the effect of AG014699 in a panel of human 

cell lines with differing BRCA status 

3.1 Introduction 

Assumptions regarding the selective cytotoxicity of single agent PARP inhibitors to 

Homologous Recombination deficient models have been based on studies in non-

cancerous, genetically naïve, BRCA1/2-negative embryonic stem cells; BRCA2-deficient 

Chinese hamster lung fibroblasts and genetically modified human cell lines using the 

potent PARP inhibitors AG14361, KU0058684 and KU0058948 (Bryant et al., 2005; 

Farmer et al., 2005).  In contrast, results of experiments examining the sensitivity of 

human cancer cell lines to single agent PARP inhibitors have been conflicting. For 

example, Gallmeier et al reported that the BRCA2-defective human pancreatic cancer 

CAPAN-1 cells were not sensitive to PARP inhibition (Gallmeier et al., 2005) whereas 

McCabe et al did demonstrate sensitivity of CAPAN-1 cells to the PARP inhibitors 

KU0058684 and KU0058948 (McCabe et al., 2005). In addition, De Soto et al observed, 

in a panel of human breast cancer cell lines, that the BRCA1 negative cell lines: 

HCC1937 and SUM1315MO2, were not significantly more sensitive to the PARP 

inhibitors 3-Aminobenzamide, NU1025 and AG14361 compared to non BRCA mutated 

controls (MCF7 and MDA-MB-231) (De Soto et al., 2006).   

A possible explanation for the conflicting data is that some of these studies were 

conducted using less potent PARP inhibitors than the current clinical candidates.  

Another theory is that these experiments were conducted with human cancer cells 

originating from naturally occurring BRCA1/2 mutations and that the lack of sensitivity 

may reflect the ability of cancer cells to adapt to mutation defects to promote survival; 

a recently recognised enabling characteristic of cancer cells (Hanahan and Weinberg, 

2011).  

Therefore tumours from patients with BRCA1/2 mutations may not be as exquisitely 

sensitive to PARP inhibitors as reported by the pivotal 2005 Nature publications 
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(Bryant et al., 2005; Farmer et al., 2005). In view of the conflicting pre-clinical data, a 

comprehensive study of the therapeutic potential of the PARP inhibitor AG014699 in 

human cancer cell lines with differing BRCA/ HR status and an investigation into the 

mechanism behind any observed selective sensitivity was undertaken.   

3.2 Objectives 

The aims of this study were as follows: 

 To investigate the effect of AG014699 on cell viability and growth using clonogenic 

cell survival assays and sulforhodamine B assays. 

 To determine baseline levels of PARP-1 activity in cell lines and investigate the 

effect of AG014699 on PARP-1 activity.  

 To test the hypothesis that DNA double strand breaks accumulate in cells after 

exposure to AG014699 and that Homologous Recombination functions only in the 

BRCA1/2 proficient cell lines. 

3.3 Materials and Methods 

Materials and methods for the assays listed are described in full in chapter two. 

Deviations from these methods and their reasoning’s are detailed in the individual 

assay results sections.  

A panel of 11 mammalian cell lines were used in this study, characteristics of which are 

detailed in chapter two, Materials and Methods. A summary is provided here in table 

3.1 as an aide-memoire. The panel included two paired HR proficient and deficient cell 

line models; the human BRCA1 mutant breast cancer HCC1937 cell line and the BRCA1 

corrected counterpart HCC1937-BRCA1; and the Chinese hamster ovary (CHO) cell line 

AA8 and its XRCC3-deficient derivative IRS-1SF. The panel also included the 

immortalised human ovarian surface epithelial (OSE) BRCA2 heterozygote cell line, 

OSEC1, and the immortalised human OSE BRCA wt type OSEC2 cell line. 
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Cell line HR/BRCA  status Origin  

MCF7  BRCA 2 wt type, BRCA1 hemizygous  Breast carcinoma cells derived from pleural fluid  

MDA -MB -231  BRCA2 wt type, BRCA1 hemizygous  Primary breast carcinoma cells  

OSEC-2  BRCA1/2 wt type  Ovarian surface epithelial cells  

OSEC-1  BRCA2 heterozygote (4630insA ,exon 11), BRCA1 wt type  Ovarian surface epithelial cells  

UACC3199  Epigenetically silenced BRCA1 by promoter methylation  Primary breast carcinoma cells  

MDA -MB -436  BRCA1 mutated (5396 +IG>A), BRCA2 wt type Breast carcinoma cells derived from pleural fluid  

HCC1937  BRCA1 mutated (5283insC), BRCA2 wt type  Ductal breast carcinoma  

HCC1937 – BRCA1  Transfected wild type BRCA1 , BRCA2 wt type Ductal breast carcinoma  

CAPAN -1  BRCA2 mutated  (6174delT), BRCA1 wt type  Pancreatic adenocarcinoma cells derived from a liver metastasis  

IRS-1SF XRCC3 deficient Chinese Hamster Ovarian surface epithelial cells 

AA8 XRCC3 wt type Chinese Hamster Ovarian surface epithelial cells 

Table 3.1: Cell line characteristics 



  Chapter Three - in vitro studies 

90 
 

3.4 Results 

To make for easier discussion of the results, cells with BRCA1/2 or XRCC3 mutations 

are grouped by the term ‘HR deficient’ (HR-) and cells with wt type BRCA1/2, XRCC3 or 

heterozygous for BRCA1/2 are grouped ‘HR proficient’ (HR+). As the level of BRCA1 

function in the UACC3199 (BRCA1 methylated) cell line is not known, results for this 

cell line were analysed separately. 

3.4.1 Clonogenic cell survival and Growth inhibition in response to AG014699 

For these studies cells were exposed to increasing concentrations of AG014699 ranging 

from 0.00 to 100.00 µM. Methods for which are described fully in chapter two, 

Materials and Methods. Results are illustrated in figure 3.1 and LC50 values 

summarized in table 3.2. These clonogenic cell survival assays were undertaken jointly 

by Yvette Drew and Suzanne Kyle. 

Clonogenic cell survival assays demonstrated that BRCA mutated human cancer cell 

lines are significantly more sensitive to AG014699 than human cell lines with wild type 

or heterozygote BRCA (mean LC50 = 4.0 ± 2.9 vs. mean LC50 = 25.1 ± 9.2; P < 0.0001). 

Reviewing the data for all nine cell lines tested, the known HR- cells (CAPAN-1, IRS-1SF 

and MDA-MB-436) were 9-fold more sensitive to AG014699 than the HR+ cell lines 

(AA8, MCF7, MDA-MB-231, and OSEC2) (P=0.0001, unpaired t-test).  

Of note, the UACC3199 cell line, with epigenetically silenced BRCA1, had 3-fold greater 

sensitivity than the HR proficient cells (P=0.002, unpaired t-test) and a mean LC50 

within the range of the HR deficient cells (0.9 – 8.3 M). Using the mean LC50 

concentrations of each cell line there was a significant difference between all 3 groups 

- the HR deficient cells, the BRCA1 methylated UACC3199 cells and the HR proficient 

cells (LC50 = 3.3 μM vs. LC50 = 7.6 μM vs. LC50 = 29.7, P <0.0001, 1 way ANOVA), see 

figure 3.2. 

The most sensitive human cancer cell line to AG014699 was the BRCA1 mutated MDA-

MB-436 cell line (LC50 = 1.3 μM). 

 



  Chapter Three - in vitro studies 

91 
 

Encouragingly, the sensitivity of the BRCA2 heterozygote, OSEC1 cells (mean LC50 = 

44.8 μM) was within the range observed in the HR proficient cells (16.2 – 58.6 µM) and 

interestingly, less sensitive than the BRCA2 wt type OSEC2 cell line (mean LC50 = 31.6 ± 

11.1 μM). These results infer that PARP inhibition is non-toxic to heterozygote models 

and thus may be safe in BRCA mutation carrier patients.  

 

 
 
 
 
Figure 3.1: Clonogenic survival assays of cells treated with 24 h AG014699 (data presented 0.0-
10.0 µM). Solid symbols/lines = HR proficient’ cells, open symbols/dashed lines = ‘HR deficient’ 
cells. Data are the mean and SEM values for each concentration from ≥ 3 independent 
experiments.   
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Cell line 
 

Mean IC50 M ± SD Mean % survival at  

10 M AG014699 
MCF7 20.2 ±  3.5 66.8 
MDA-MB-231 21.9 ±  2.6 71.2 
OSEC1 44.8 ± 14.3 82.7 
OSEC2 31.6 ± 11.1 83.2 

AA8 50.7 ± 6.9 114.4 
UACC3199 7.6 ± 1.2 43.9 
MDA-MB-436 1.3 ± 0.6 18.3 
CAPAN-1 5.5 ± 2.5 34.4 

IRS-1SF 1.4 ± 0.4 00.5 
 

Table 3.2: Mean IC50 and % Survival at 10 M AG014699 data for cell lines from the clonogenic 
cell survival assays.  
 
 
 

 
 
Figure 3.2: Box and whiskers plot (minimum to maximum) with + showing mean LC50 data for 
the HR proficient, HR deficient and the UACC3199 BRCA1 methylated cell lines. P value 
calculated using 1 way ANOVA demonstrates a significant difference between the 3 groups 
(P=0.0001). 
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The HCC1937 and HCC1937-BRCA1 cell lines had poor cloning efficiency and were not 

appropriate for the clonogenic cell survival assay. As an alternative, the 

sulforhodamine B (SRB) protein dye assay was used to determine cell growth in 

response to AG014699. MDA-MB-231 cells were also evaluated in the SRB assay to 

provide a direct comparison between results from the two cell viability assays. Using 

the SRB assay, BRCA1 deficient HCC1937 cells were significantly more sensitive to 

AG014699 than the BRCA1 complemented HCC1937-BRCA1 cell line (mean GI50 = 10.5 

μM vs. 16.7 μM, P=0.001, unpaired t-test) and the sensitivity of the HCC1937-BRCA1 

cell line was similar to that of the MDA-MB-231 (mean GI50 = 16.5 μM), shown in figure 

3.3. Comparing the two assays the results for the MDA-MB-231 cell line were similar 

with a mean LC50 = 21.9 μM and a mean GI50 = 16.5 μM.  

 

 
 
Figure 3.3: SRB cell growth assays of HCC1937, HCC1937-BRCA1 (blue) and MDA MB 231 cells 
treated with AG014699 (0 - 100µM) for 6 days, data presented for 0.00-30.00 µM. Data are 
mean and SEM values from 3 independent experiments.  
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Cell line 
 

Mean GI50 M ± SD Mean % growth at  

10 M AG014699 
MDA-MB-231 16.5 ±  0.7 63.7 
HCC1937 10.5 ± 0.7 50.3 
HCC1937-BRCA1 16.7 ± 1.1 64.0 
 
Table 3.3: Mean GI50 and % Growth at 10 µM AG014699 data for three cell lines from the SRB 
assays 

 

These experiments demonstrate that HR deficient human and non-human cells of 

cancerous and non- cancerous origin are much more sensitive to AG014699 induced 

cytotoxicity than HR proficient cells of similar origin.  These data suggest that this 

increase in AG014699-induced toxicity is secondary to the HR deficiency and the 

underlying mechanism behind this is investigated in the subsequent experiments.  

Reviewing the LC50 and GI50 data in tables 3.2 and 3.3 respectively, the cut off of 50% 

survival following the exposure of cells to 10 μM AG014699 discriminated between 

those cells with functional HR (>50% survival) and cells with dysfunctional HR (< 50% 

survival) and for this reason a dose of 10 μM AG014699 was chosen for use in 

subsequent experiments. 

3.4.2. Baseline PARP-1 activity and inhibition in response to 10 µM AG014699 

To investigate whether differences in cell line sensitivity to AG014699 were secondary 

to variations in baseline levels of PARP activity or the degree of AG014699-induced 

PARP inhibition we used the validated PAR formation immunoblot assay (Plummer et 

al., 2008). The assay, described in chapter two, Materials and Methods, detects 

maximally stimulated PARP activity as pmol PAR. An example of an immunoblot and a 

typical PAR standard curve are shown in figures 3.4 and 3.5 respectively. PARP activity, 

based on detected pmol PAR, was calculated from the non-linear regression equation. 

Inhibition of activity following AG014699 was then expressed as % of the un-treated 

control value. Un-stimulated PARP activity i.e. endogenous PAR levels for each line was 

also calculated from cell samples that did not undergo the reaction as described in the 

chapter two, section 2.9.1. 
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Figure 3.4: PAR formation immunoblot. Wells 1-6 = PAR standards (pmol) 25, 5, 1, 0.2, 0.04, 
0.00. Wells 7-9 = QC L1210 samples. Well 10 = background. Wells 11-17 = a single patient time-
point with 11-13 being the control reacted samples, 14-16 the reacted cells + AG014699 and 
well 17 = the un-reacted sample showing the endogenous PAR present. 
 
 
 

 
 
 
Figure 3.5 A standard curve showing the non-linear relationship between PAR standards and 
the luminescent arbitrary units (LAU) for a given area detected by the Fuji -LAS imaging system. 
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For this study, cells in culture were pre-exposed to 10 μM AG014699 or control (DMSO) 

for 30 minutes and maximum stimulated PARP activity subsequently assessed. PARP 

activity is expressed as pmol PAR per 106 cells. Results for all cell lines are summarised 

in table 3.4. 

There was a large variation in the baseline levels of PARP enzyme activity between the 

cell lines. For all cell lines mean endogenous baseline PARP activity was 157.40 pmol 

PAR per 106 cells. This ranged from as low as 27.67 up to 594.70 pmol PAR per per 106 

cells, with a CV of 101%. As expected the baseline (maximum stimulated) PARP activity 

levels were higher but there was less inter-cell variation with a mean of 4507.00 pmol 

PAR per per 106 cells, range 881.70 to 8760.00 pmol and CV of 42%. There was a trend 

towards higher baseline endogenous PARP activity in the HR- cell lines compared to 

the HR+ cell lines but this was not statistically significant (mean = 210.2 vs. 112.8 pmol 

PAR per 106 cells, P = 0.34, un-paired t-test). In addition higher activity was seen in the 

HR- cells in a sub-group analysis of the human cancer cell lines but no statistical 

significance (mean = 246.2 vs. 146.2 pmol PAR per 106 cells, P = 0.52), (figure 3.6).  

The results for baseline maximum stimulated activity showed a similar trend with 

higher baseline PAR in the HR- cells (mean = 5046.00 vs. 3968.00 pmol PAR per 106 

cells, P = 0.15, un-paired t-test) and the subset analysis of the HR-human cancer cells, 

but again levels of statistical significance were not met, see figure 3.7. 

To determine whether there was any relationship between the baseline PARP activity 

and sensitivity to AG014699 (represented as LC50), a Pearsons correlation analysis was 

performed. Results, shown in figure 3.8, demonstrate no significant relationship 

between the two parameters (R2 = 0.05, P = 0.32). 
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Figure 3.6: Floating bars showing maximum to minimum and mean values (line) of baseline 
endogenous PARP activity  levels by pmol PAR per 106 cells in HR proficient and HR deficient 
cells for A: all cell lines and B: human cancer cell lines only. Line = mean value and P values 
calculated using un-paired t-test shows no significant difference between the groups. 
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Figure 3.7: Floating bars showing maximum to minimum and mean values (line) of baseline 
maximum stimulated PARP activity  levels by pmol PAR per 106 cells in HR proficient and HR 
deficient cells for A: all cell lines and B: human cancer cell lines only. Line = mean value and P 

values calculated using un-paired t-test shows no significant difference between the groups. 
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Figure 3.8: Relationship between baseline PARP activity and AG014699 sensitivity (log10 LC50). 
 

A dose of 10 M AG014699 resulted in > 95% inhibition of PARP activity in all cell lines 

(mean = 96.6%) with no significant difference observed in the degree of inhibition 

between the HR + and the HR- cell lines. Results for certain cell lines are shown visually 

with an immunoblot example in figure 3.9 and the absolute % activity for all cell lines is 

shown graphically in figure 3.10. 

 

Figure 3.9: PAR formation immunoblot showing the affect on PAR levels by reduced 
luminescence following AG014699 treatment in MCF7 and OSEC1 cell lines. 
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Figure 3.10: PARP activity following a 30 min exposure to 10 µM AG014699. Data expressed as % 
activity compared to the un-treated control are the mean (+ SEM) of three independent 
experiments. Note maximum value on y axis is 10% 
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Cell line HR  
status 

Mean PARP activity pmol PAR per 106 cells ± SD 
 

PARP inhibition (%)  
over baseline levels 

(maximum stimulated) Endogenous baseline Maximum stimulated 
Control 

Maximum stimulated 

+ 10 M AG014699 
MCF7 + 75.30 ± 72.20 3901.00 ± 994.00 76.00 ± 73.60 98.05 
MDA-MB-231 + 132.00 ± 31.20 2047.00 ± 1648.00 65.70 ± 21.60 96.79 
OSEC1 + 27.70 ± 27.50 3500.00 ± 2357.00 145.30 ± 214.50 95.85 
OSEC2 + 168.50 ± 21.90 3884.00 ± 2066.00 77.30 ± 79.20 98.01 

AA8 + 42.00 ± 9.20 5633.00 ± 2589.00 72.30 ± 58.60 98.72 
HCC1937-BRCA1 + 231.30 ± 75.40 6373.00 ± 94.30 294.00 ± 86.40 95.39 
UACC3199 - 135.30 ± 20.40 4688.00 ± 1867.00 136.00 ± 14.00 97.10 
HCC1937 - 594.70 ± 157.80 5615.00 ± 2874.00 352.00 ± 230.40 93.73 
MDA-MB-436 - 192.30 ± 51.90 2649.00 ± 975.60 131.00 ± 47.50 95.05 

CAPAN-1 - 62.70 ± 27.10  5830.00 ± 1395.00 106.70 ± 75.00 98.17 
IRS-1SF - 66.00 ± 56.90 5532.00 ± 2125.00 68.30 ± 43.00 98.77 

 
 
 
Table 3.4: Summary data for PARP activity expressed as pmol PAR per 106 cells for all 11 cell lines. SD = standard deviation. Homologous Recombination (HR) 
status + denotes cells with proficient HR and – denotes deficient HR. 
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3.4.3 DNA double strand break formation in response to AG014699 

To determine whether DNA double strand breaks (DSBs) accumulate after exposure to 

AG014699, DSBs were measured using the γH2AX focus Immunofluoresence assay, 

described in chapter two, section 2.7. Time-course experiments were undertaken to 

measure γH2AX foci after cell lines were treated with 10 μM AG014699 in 1% DMSO or 

vehicle control (1% DMSO) for up to 24 hours in culture medium at 37oC.  In addition, 

as a positive control for DNA damage, cells were exposed to 2 Gy (2.5 Gy/minute at 

310 kV and 10 mA) of x-ray irradiation followed by incubation for 30 minutes in culture 

medium at 37oC.   

Results show a very rapid accumulation of DNA DSBs in all cell lines within the first 

hour following exposure to AG014699. Examples of the full time-course for the MCF7, 

UACC3199, MDA-MB-436 and CAPAN-1 cell lines are shown in figure 3.11.     

In contrast, exposure to 2 Gy ionising radiation (IR) resulted in a peak of γH2AX foci at 

30 minutes and disappearance of all foci by 8 hours indicating that DSB repair had 

occurred. The majority of the repair occurred during the first two hours. An example of 

these time-courses for the MCF7 human breast cancer cell line is included in figure 

3.11.  

Results for all 11 cell lines comparing the fold-change in γH2AX after 24 hours of 

AG014699 over the un-treated controls are shown in figure 3.13.  24-hours of 10 μM 

AG014699 resulted in a mean increase of 6-fold (range 1.9-10.2) in H2AX foci 

compared with untreated control cells. Fold change was calculated by dividing the 

mean number foci per 30 nuclei in treated cells by the mean number of foci per 30 

nuclei in control cells. There was no difference between the fold-change between the 

HR+ and the HR– cells when comparing the paired cell lines.  

Of note, the number of H2AX foci after 10 μM AG014699 counted were similar to that 

measured in the cells exposed to 2 Gy IR, see figure 3.14, highlighting the fact that 

AG014699 causes significant DNA damage. This point is also made visually by the 

fluorescent microscopy images of H2AX foci in MCF7 cells following DNA damage 

from IR and AG014699 in figure 3.12. 
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Figure 3.11: γH2AX foci time-course experiments in MCF7, UACC3199, MDA-MB-436 and 
CAPAN-1 cells following continuous exposure to 10 µM AG014699. For comparison, a time -
course experiment following 2 Gy in MCF7 cells is shown. Results are the mean no. of cells with 
≥ 5 foci per nucleus from three independent assays. 

 
 
 

 
 
 
3.12: Immunofluoresence images for control, 2 Gy IR plus 30 minutes incubation and 24 hours 

of 10 M AG014699 treated MCF7 cells. Nuclei are stained blue with DAPI and γH2AX foci 
detected fluoresce in red.  
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Figure 3.13: γH2AX foci following continuous exposure to 24h 10 µM AG014699. Data are fold 
change in foci + SEM for each cell line in 3 independent assays.  
 

 
 

 
Figure 3.14: γH2AX foci following continuous exposure to 24h 10 µM AG014699 and following 
2 Gy + 30 minutes. Data are mean fold change in foci in 3 independent assays.  
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3.4.4 Rad51 foci formation assay as a marker of Homologous recombination 

following AG014699 

Localisation of Rad51 foci at DNA double strand breaks is an essential step in the HR 

repair pathway (Shinohara et al., 1992). The presence of nuclear Rad51 foci is 

considered a marker of functional homologous recombination in cells. To determine 

whether cells were able to repair AG014699-induced DNA DSB by HR, Rad51 foci were 

detected using the immunofluoresence assay described in chapter two, section 2.8. 

Cells were treated with 10 μM AG014699 in 1% DMSO or no drug (vehicle control; i.e. 

1% DMSO) for 24 hours in culture medium at 37o C or 2 Gy IR plus 2 hours incubation 

at 37o C. An incubation of 2 hours following 2 Gy IR was chosen for these experiments 

as previous time-course experiments had demonstrated peak of Rad51 foci two hours 

following DNA damage with IR (unpublished data Yvette Drew, Newcastle University, 

UK). 

Results show the number of Rad51 foci significantly increased in response to 

AG014699-induced DNA damage in cells with no known defect in HR but not in HR 

deficient cells. Examples of fluorescent microscopy images for control, 2 Gy IR plus two 

hours incubation and 24 hours 10 M AG014699 treated MCF7 cells are shown in 

figure 3.15 below. Fold changes in the numbers of nuclear Rad51 foci in the human 

cancer cell lines in response to the three treatments are illustrated in figure 3.16 

 

 

 

Figure 3.15: Immunofluoresence images for control, 2 Gy IR and AG014699 treated MCF7 cells. 
Nuclei stained blue with DAPI and Rad51 foci fluoresce in green.  
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Figure 3.16: Fold-change in Rad51 foci in selected cell lines following; 24h 10 µM AG014699, 
2Gy IR + 2 h incubation over un-treated controls. Data for each cell line (as labelled) is mean 
fold-change + SEM from 3 independent assays. 
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Results for all cell lines following treatment with AG014699 are seen in figure 3.17. The 

data demonstrate a statistically significant increase (mean increase = 3.8-fold, P<0.001) 

in the number of Rad51 foci compared with corresponding untreated control cells in 

the cell lines with functional HR (MCF7, MDA-MB-231, OSEC-2, AA8 and HCC1937-

BRCA1) and in cells heterozygous for BRCA2 (OSEC1). However, AG014699 exposure 

did not cause a significant increase in Rad51 foci in the BRCA1/2 mutated MBA-MB-436, 

CAPAN-1 and HCC1937 cells, the BRCA1 epigenetically silenced UACC3199 cells, or the 

XRCC3-mutated IRS-1SF cells (mean change = 1.0-fold).  

 

Figure 3.17: Rad51 foci Immunofluoresence following continuous exposure to 24h 10 µM 
AG014699. Data are fold change in foci + SEM for each cell line in 3 independent assays.  
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The cell lines were subsequently separated into two groups based on their ability (yes 

or no) to increase nuclear Rad51 levels by ≥ 2-fold over baseline levels following 

AG014699 corresponded exactly to the original HR – and HR+ groupings; with the 

UACC3199 cell line falling into the ‘No’ group. There was, as expected, a difference in 

the sensitivities to AG014699 between the two groups with mean LC50 = 4.6 M in the 

No group significantly lower than the mean LC50 = 29.7 M in the yes group.  

These data suggest that changes in nuclear Rad51 foci in response to AG014699 could 

be used a biomarker of functional HR and should be further investigated. 

 

 
 

 
 
Figure 3.18: Box and whiskers plot of LC50 of AG014699 by cell lines ability to increase Rad51 

foci by ≥ 2-fold in response to 10 M AG014699. The line represents the median values. 
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3.5 Discussion 

Several important observations have emerged from these studies. Firstly, the results of 

cytotoxicity assays demonstrate that PARP inhibition is selectively toxic to human 

cancer cell lines with mutated BRCA1/2 confirming the concept of synthetic lethality. 

In addition, these data demonstrate that inhibiting PARP-1 is synthetically lethal to 

non-germline BRCA mutated cells i.e. those with epigentically silenced BRCA1 or cells 

deficient in XRCC3, suggesting a wider therapeutic role for these novel agents. The 

immunofluorescence studies have shown that DNA damage accumulates with on-going 

AG014699 exposure highlighting the mechanism of action of PARP inhibitor-induced 

cytotoxicity. Results of PARP activity assays confirm that this selective toxicity is not 

due to differences in degree of PARP enzyme inhibition. Finally, Rad51 

immunofluorescence assays have demonstrated that a ≥ 2-fold increase change in 

Rad51 foci after AG014699 can discriminate between HR proficient and deficient cells 

suggesting that this may be useful as a biomarker in patients and requires further 

investigation.  

3.5.1 AG014699 is synthetically lethal in BRCA1/2 mutated and epigenetically 

silenced BRCA1 

Human cancer cell lines with mutated BRCA1 and BRCA2 are sensitive to PARP inhibitor 

therapy. These results support those previously published showing selective sensitivity 

to PARP inhibitors in non-cancer, non-human BRCA1/2-deficient models (Bryant et al., 

2005; Farmer et al., 2005) and contrast with previous studies that failed to show such 

sensitivity in human cancer models (Gallmeier and Kern, 2005; De Soto et al., 2006). 

The BRCA1 mutant MDA-MB-436 cells were the most sensitive human cancer cell line 

to AG014699-induced cytotoxicity. They also formed the lowest number of Rad51 foci 

in response to AG014699, suggesting that these cells had the most profound HR 

deficiency. The highlight of these cytotoxicity experiments is the discovery that BRCA1 

methylated UACC3199 breast cancer cells were sensitive to AG014699 with mean LC50 

significantly lower than the HR proficient cells (7.6 M vs. 29.7; P = 0.002).  

 

The methylation status of BRCA1 in these cells had been confirmed by Valerie 

Deregowski (University of Leven, Belgium) by methylation-specific polymerase chain 
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reaction and a defect in HR is suggested by the observation in these studies that 

prolonged exposure to AG014699 failed to induce a significant increase in Rad51 foci.  

 

These UACC3199 data are highly relevant as they suggest that PARP inhibitors could 

have therapeutic potential in sporadic, non-germline BRCA mutated tumours with 

epigenetic changes in the HR genes. BRCA1 dysfunction by epigenetic gene silencing 

has been reported in 18% of high grade serous ovarian cancers (HGSOC) (Press et al., 

2008) and reduced BRCA1 mRNA expression is known to be a common feature of triple 

negative breast cancers (Turner et al., 2007). Clinical trials of PARP inhibitors in these 

populations are on-going (www.clinicaltrials.gov).  A phase II study investigating the 

single agent role of the PARP inhibitor olaparib recently reported a response rate, as 

assessed by the RECIST; of 24% in the patients with non-germline BRCA mutated 

HGSOC (Gelmon et al., 2011). In addition, PARP inhibitors as maintenance therapy in 

HGSOC is currently being investigated with the interim results of a phase II study 

recently announced (Ledermann et al., 2011). The study randomised patients with 

platinum sensitive (defined by the protocol) HGSOC on a 1:1 basis to olaparib 400 mg 

twice daily or placebo until disease progression. Preliminary results showed a 

significant benefit in progression-free survival (8.4 vs. 4.8 months; P < 0.00001) 

favouring the maintenance olaparib.  

To date no single agent activity has been seen in patients with triple negative breast 

cancer and this may mean that the degree of BRCA1 dysfunction is not enough to 

induce HRD. However the results of further studies are awaited.  

The results of in vivo studies investigating the anti-tumour effect of AG014699 on BRCA 

deficient animal models, including UACC3199 xenografts, are presented and discussed 

in chapter four. 

3.5.2 PARP activity and response to AG014699 

In order to further investigate the underlying mechanisms behind the selective 

sensitivity of HR defective cells to AG014699, levels of baseline PARP activity and PARP 

enzyme inhibition following AG014699 were determined. Results for all 11 cell lines 

showed an increase in the mean baseline PARP activity of the HR deficient vs. the HR 

proficient cell lines but this did not reach statistical significance (P = 0.34). Data for the 

human cancer cell lines showed a higher mean activity in the HR deficient cells vs. 

http://www.clinicaltrials.gov/
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proficient cells but again this was non-significant (P = 0.52). Data for the paired human 

breast cancer HCC1937 and HCC1937-BRCA1 cell lines however did show a significant 

difference in endogenous PAR levels with higher levels seen in the HR deficient 

HCC1937 line (mean = 594.7 vs. 231.3 pmol PAR per 106 cells, P = 0.02, un-paired t-

test). These data suggest that PARP activity might be higher in HR deficient cells and is 

supported by the recent report by Gottipati et al that PARP-1 is hyperactivated 

(measured by baseline PAR levels) in BRCA2 deficient replicating cells. The authors 

proposed that HR defective cells may have an over-reliance on PARP-1 and that this 

may, in part, explain their increased sensitivity to PARP inhibitors (Gottipati et al., 

2010).  

PARP activity levels have been measured in patient samples in a number of PARP 

inhibitor clinical trials to determine the efficiency of PARP inhibitors. A recent review 

of these studies proposed that baseline PARP activity levels may be able to determine 

which patients are sensitive to these agents and prove a useful biomarker of HR 

function (Redon et al., 2010).  Results of baseline PARP activity and patient response to 

AG014699 from the phase II BRCA-PARP study are presented and discussed in chapter 

five of this thesis.  

Following a dose of 10 M AG014699 profound inhibition of PARP-1 (>95%) was 

achieved in all cell lines; demonstrating that the PARP inhibitor freely permeated cells, 

binds to and inactivates PARP-1, and that the PARP inhibition persists during cell 

permeabilization and subsequent PARP enzyme stimulation. There was no statistically 

significant difference in the degree of PARP inhibition across the cell lines. This 

suggests that the difference in sensitivity seen in the cytotoxicity assays is unlikely to 

be due to differences in drug delivery or binding and more likely due to differences in 

pathways downstream of PARP enzyme inhibition.  

3.5.3 The mechanism of AG014699 selective cytotoxicity 

The proposed mechanism of selective AG014699 toxicity in HR defective cells is that 

PARP-1 inhibition leads to accumulation of DNA single-strand breaks which during 

replication are converted to DNA double-strand breaks, represented by H2AX foci. In 

HR competent, BRCA1/2-proficient cells, these double-strand breaks will eventually be 

repaired by the error-free HR repair pathway, accompanied by Rad51 foci formation. 

However, in HR-deficient cells, repair does not occur resulting in the accumulation of 
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double-strand breaks and cell death. To investigate this, H2AX and Rad51 foci 

immunofluoresence experiments were undertaken. Results of H2AX 

immunofluoresence assays demonstrate an increase in H2AX foci in all 11 cell lines 

treated with 24 hours 10 µM AG014699 compared with the untreated control cells. 

Results of time-course experiments seen in figure 3.10 confirm that DNA DSBs do 

accumulate with continuous AG014699 exposure with little resolution despite 

functional HR. 

The variation in the absolute numbers of H2AX foci seen between cell lines could be 

secondary to differences in DNA content, S-phase cell fraction, and cell-number 

doubling times between individual cell lines. It is less likely as a result of differences in 

HR status because no difference was found in control cells for the parental BRCA1-

mutated HCC1937 and the BRCA1-corrected HCC1937–BRCA1 cell lines (mean no. foci 

per nucleus = 11.5 ± 3.4 vs. 6.5 ± 0.7, P = 0.12, un-paired t-test).   

The data presented in figure 3.13 shows that a 24-hour exposure to 10 μM AG014669 

induces a level of DNA DSBs similar to that caused by 2 Gy IR.  This raises the question 

could continuous PARP inhibition in BRCA mutation carrier patients be dangerous 

resulting in an accumulation of DNA damage and subsequent genomic instability?  

Encouragingly, the cytotoxicity data from these studies have not shown the BRCA1/2 

heterozygous cell lines to be sensitive to short-term AG014699 exposure. In addition, 

early clinical trials using the continuous dosing schedule of the PARP inhibitor, olapa rib, 

have reported the drug to be well tolerated; although long-term safety data from 

these studies is not yet available (Fong et al., 2009; Tutt et al., 2010; Audeh et al., 2010; 

Gelmon et al., 2011).   

3.5.4 Rad51 as a biomarker of HR 

Rad51 foci formation was assessed in all 11 cell lines following a 24 hour exposure to 

AG014699 or 2 Gy IR plus 2 hour incubation.  Results following AG014699, presented in 

figure 3.13, show that all cell lines have some level of baseline nuclear Rad51 foci but a 

significant increase is only seen in the HR proficient cells, confirming the proposed 

mechanism of PARP inhibitor-induced synthetic lethality.  
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The UACC3199, BRCA1 methylated, cells also failed to increase Rad51 foci significantly 

in response to AG014699 suggesting that the sensitivity to AG014699 observed in 

clonogenic assays is most likely secondary to defective HR.   

A ≥ 2-fold increase in Rad51 foci after AG014699 appears to discriminate between the 

HR proficient and deficient cells. This observation was further tested in a clinical study 

of 25 primary cell cultures derived from ascites from ovarian cancer patients with 

unknown HR status. The study demonstrated that a 2-fold or greater increase in Rad51 

foci following ex vivo treatment with AG014699 could predict subsequent sensitivity to 

the PARP inhibitor AG014699 in cytotoxicity assays with 100% positive predictive 

value. The authors concluded that Rad51 should be further investigated as biomarker 

for HR (Mukhopadhyay et al., 2010).  

However, the use of Rad51 as a biomarker to predict for HR function is problematic. 

For example, these studies have shown the presence of Rad51 foci in the control, un-

treated cells of the known HR – cell lines. This confirms published work by Tarsounas 

et al demonstrating that Rad51 foci form in un-irradiated CAPAN-1 cells. Using laser-

scanning cytometry to determine cell cycle stage, they unequivocally showed the 

Rad51 foci to be S-phase replication associated (Tarsounas et al., 2003).  In addition, 

Henry-Mowatt et al demonstrated that Rad51 localises to chromatin and plays a role in 

the progression of stalled replication forks when they encounter DNA lesions during S 

phase (Henry-Mowatt et al., 2003). These studies show that Rad51 foci form not only 

as part of the HR response to DNA damage but also in a BRCA2-independent manner 

as part of the normal cell cycle.  Interestingly, data for the HR-, BRCA1 mutant 

HCC1937 cell lines shows a significant increase in Rad51 foci following IR over un-

treated controls (mean = 40.33 vs. 12 foci per nucleus, P < 0.0001, un-paired t-test) 

and no significant increase in Rad51 foci following exposure to 10 M AG014699. One 

possible explanation for this is that these foci were all S-phase related and not part of 

the DNA damage HR repair process. Another is that radiation-induced DNA damage is 

heterogeneous and can result in base modifications, inter-strand crosslinks, single 

strand and double strand breaks and recent work by Petermann et al demonstrates 

that IR -induced DNA damage can contribute to the formation of replication-induced 

DSB which can be detected as Rad51 foci (Petermann et al., 2010).  
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These studies all suggest that two distinct Rad51 mediated pathways exist; one 

involved in HR the other localising to the exposed single strand DNA ends during 

replication and that the presence of nuclear Rad51 foci per se cannot be used to reflect 

functional HR.  What is needed are functional assays that can assess changes in Rad51 

foci in real time following DNA damage. But there are problems with these approaches, 

the most obvious is the need to obtain viable, replicating cells; another is the technical 

difficulties in inducing DNA damage ex vivo. In the end such assays may not be 

practical in the normal clinical practice out with a translational study. 

3.6 Conclusions 

To conclude, these in vitro studies demonstrate that the PARP inhibitor AG014699 is 

selectively toxic to cancers defective in HR DNA repair. They have shown that DNA 

DSBs accumulate following treatment with AG014699 and that a subsequent failure to 

activate HR repair underlies this selective toxicity. No significant differences were seen 

in the degree of PARP inhibition or baseline PARP activity levels between the cell lines 

to account for the selective cytotoxicity.  In addition these data have shown the 

epigenetically silenced BRCA1 UACC3199 cell line to be sensitive to PARP inhibition 

suggesting a wider role for PARP inhibitors in cancers defective in homologous 

recombination repair in the absence of germline BRCA mutations. 
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Chapter Four 

4. In vivo studies of the effects of AG014699 in BRCA deficient 

xenografts 

4.1 Introduction 

Data presented in chapter three of this thesis and recently published (Drew et al., 

2011b) have shown that AG014699 is selectively toxic to human cancer cell lines with 

mutations within the BRCA1 and 2 genes. This supports the theory of synthetic 

lethality and adds weight to the original reports demonstrating PARP inhibitor 

sensitivity in non-cancerous and non-human cell lines (Bryant et al., 2005; Farmer et 

al., 2005).  The results of experiments presented in chapter three also highlight that 

cells with defects in the HR repair pathway, other than by BRCA mutation, i.e. by 

methylation of BRCA1 or loss of XRCC3, can also be sensitive to PARP inhibition by 

AG014699.  

At the time this work was undertaken published in vivo data supporting the theory of 

the synthetic lethality of PARP inhibitors in BRCA defective cancers were limited. In 

2005 Bryant et al  had reported that treatment of tumours derived from BRCA2 

deficient V-C8 Chinese hamster lung fibroblast cell line with the PARP inhibitor 

AG14361 [5 days intra-peritoneal (i.p.)] resulted in 3/5 responses including one 

complete remission. There were no responses in the BRCA2 complimented (V-C8+B2) 

xenografts (Bryant et al., 2005), suggesting that anti-tumour activity with AG14361 

occurs only in the xenografts with defective DNA repair capacity. In the sister Nature 

paper Farmer et al investigated the role of the PARP inhibitor KU0058684 in preventing 

the formation of teratocarcinomas in athymic mice after transplantation of BRCA2 

deficient embryonic stem (ES) cells or BRCA2 proficient ES cells. A significant reduction 

was observed in the number of tumours formed in the BRCA2 deficient ES cell lines 

compared to the proficient ES cells. It should be noted that these studies have 

limitations; they used only BRCA2 deficient models and tested non-human and non-

cancerous cell lines. It may be difficult to reproduce these results in genetically more 
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complex models such as human cancers. Therefore the question remained 

unanswered: can PARP inhibitors selectively kill human cancers with BRCA mutations? 

De Soto and colleagues set out to answer this question by investigating the effects of 

different PARP inhibitors on both BRCA1 -/- and BRCA1 +/+ human breast cancer 

xenografts (De Soto et al., 2006). They first compared the in vitro sensitivity of a panel 

of 12 cell lines, including BRCA1-/-, BRCA1+/- and BRCA1 +/+ embryonic stem (ES) cells, 

three murine mammary tumour cell lines and four human breast cancer cell lines with 

differing BRCA1 status, to the PARP inhibitors AG14361, NU1025 and 3-AB. The human 

breast cancer cell lines were MCF7 (BRCA1+/+), MDA-MB-231 (BRCA1+/-), HCC1937 

(BRCA1-/-) and SUM1315M02 (BRCA1-/-). Using clonogenic cell survival and growth 

inhibition assays they observed that the BRCA1-/- mutant ES cells were significantly 

more sensitive to the PARP-1 inhibitor AG14361 than the wild type or heterozygous 

BRCA1 ES cells. The mouse mammary cell lines displayed a similar result, with the 

BRCA1-/- mutant cell being the most sensitive to AG14361. However it was not 

significantly more sensitive than its BRCA1 complemented controls and it was much 

less sensitive to PARP inhibition than the BRCA1-/-mutant ES cell line. Finally the human 

breast cancer cell lines failed to show any selective toxicity by BRCA1 status to 

AG14361-induced PARP-1 inhibition. These findings were confirmed in the in vivo 

studies when nude mice with human breast cancer xenografts of differing BRCA1 

status were exposed to three consecutive days of AG14361 (30 mg/kg) i.p. starting on 

D2, 9 and 16. The authors concluded that non-cancerous, non-human genetically naïve 

BRCA mutant cells were selectively sensitive to PARP-1 inhibitors but not BRCA1 

mutated human cancers. They proposed that this was because human cancers have 

acquired resistance through secondary mutations and suggested that PARP inhibitors 

as single agents do not have a therapeutic role in the treatment of BRCA-mutated 

cancers.  

In view of the limited and conflicting published data, studies were undertaken as part 

of this thesis to develop xenograft models of the BRCA1 mutated human breast cancer 

cell line MDA-MB-436, the BRCA2 mutated human, pancreatic carcinoma cell line 

CAPAN-1 and the BRCA1 methylated breast cancer cell line UACC3199, to investigate 

both the anti-tumour effects and the toxicity of differing schedules of the potent, 

specific PARP-1 inhibitor AG014699 in these models. UACC3199 cells were investigated 
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in order to confirm or refute the in vitro data presented earlier that UACC3199 cell 

lines are also sensitive to PARP inhibition.  

Additionally, in vitro studies have shown BRCA mutant cells to be hypersensitive to 

platinum agents (Bhattacharyya et al., 2000). Therefore the cisplatin analogue, 

carboplatin, was also used to act as a positive control and to investigate combined 

PARP inhibitor anti-tumour activity. 

4.2 Objectives 

The aims of this study were as follows: 

 To establish xenograft models in mice using the following human cancer cell 

lines mutated BRCA1 (MDA-MB-436), mutated BRCA2 (CAPAN-1) and 

epigenetically silenced BRCA1 (UACC3199). 

 To investigate the anti-tumour activity and toxicity of AG014699 in these 

xenografts.  

 To determine whether different scheduling of AG014699 in the above 

xenograft models could affect anti-tumour activity. 

 To investigate the activity of AG014699 combination with carboplatin 

4.3 Materials and Methods 

4.3.1 General animal husbandry 

CD-1 nude mice (female and aged 10–12 weeks) from Charles River laboratories 

(Wilmington, MA) were used in all xenograft experiments. These mice were 

maintained and handled in isolators under specific pathogen-free conditions, with five 

mice per cage and 20 cages per isolator. All experiments involving mice were reviewed 

and approved by the relevant institutional animal welfare committee and then per-

formed according to the UK Coordinating Committee on Cancer Research Guidelines 

for the Welfare of Animals in Experimental Neoplasia and UK law. For these 

experiments, mice were treated with drug or control vehicle between the hours of 

09.00 and 11.00. Treatments were all administered by i.p. injection in the animal’s 

home cage within the animal facility. Mice were killed by cervical dislocation for the 
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following reasons: tumour size was greater than 10 × 10 mm, weight loss was more 

than 15% of baseline, or the study ended as defined a priori. 

4.3.2 Cell line implantation 

MDA-MB-436, CAPAN-1, and UACC3199 xenografts in CD-1 nude mice were used to 

test the efficacy of AG014699 because these models represent BRCA1-mutated, 

BRCA2-mutated, and BRCA1-silenced tumours, respectively. Further characteristics of 

these cell lines and including details of their respective BRCA mutation are found in 

table 3.1 in chapter three. 

Exponentially growing MDA-MB-436, CAPAN-1 and UACC3199 cells were re-suspended 

in phosphate-buffered saline at a concentration of 1 × 107 cells per 50 μl. 50 l of the 

cell suspension was then injected subcutaneously into one site on the right flank of 

each mouse. When sufficient mice (to allow five mice per treatment group) had 

palpable tumours (i.e. ≥5 x 5 mm), the mice were randomly assigned, to avoid bias, to 

treatment groups. Investigators were not blinded to the treatment groups.  

This work was undertaken by Dr Yvette Drew and Dr Evan Mulligan under the 

supervision of Mr Huw Thomas. Details of the individual experiments undertaken for 

each xenograft model are listed below. 

4.3.3 UACC3199  

Treatment groups for mice bearing UACC3199 xenograft tumours in experiment one 

were as follows: control normal saline (10 ml/kg) administered once daily for 10 days, 

AG014699 (25 mg/kg) administered once daily for 10 days or a single dose of 

carboplatin (75 mg/kg) administered on day 1.  Treatment groups in experiment two 

were as follows: control normal saline (10 ml/kg) administered once daily for 5 days of 

a 7-day cycle for six cycles, AG014699 (10 mg/kg) administered once daily for 5 days of 

a 7-day cycle for six cycles or a single dose of carboplatin (75 mg/kg) on day 1. 

4.3.4 MDA-MB-436 

Treatment groups were as follows: control normal saline (10 ml/kg) administered once 

daily for 5 days of a 7-day cycle for six cycles, AG014699 (10 mg/kg) administered once 

daily for 5 days of a 7-day cycle for six cycles or a single dose of carboplatin (75 mg/kg) 

on day 1. 
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4.3.5 CAPAN-1 

The six treatment groups were as follows: (i) control normal saline (10 ml/kg) daily for 

10 days, (ii) AG014699 (10 mg/kg) once a day for 10 days, (iii) AG014699 (10 mg/kg) 

once daily for 5 days of a 7-day cycle for six cycles (iv) a single dose of carboplatin (75 

mg/kg) on day 1, (v) a combination of carboplatin (75 mg/kg) on day 1 and AG014699 

(10 mg/kg) once a day for 10 days or (vi) a combination of carboplatin (75 mg/kg) on 

day 1 with AG014699 (10 mg/kg) once a day for 5 days of a 7-day cycle for six cycles. 

4.3.6 Rationale for dose and schedule of AG014699 

The initial schedule and dose of AG014699 selected for these in vivo experiments was 

25 mg/kg i.p. once daily for ten consecutive days. A dose of 25 mg/kg in mice has been 

shown (unpublished data by Huw Thomas, Newcastle University, UK) to give 

equivalent plasma drug concentrations to that measured in patients who received a 12 

mg/m2 dose of AG014699 in the phase II combination study (Plummer et al., 2006). 

This dose, when given intermittently i.e. D1-5 of a 21 D cycle for six cycles, has also 

been shown to be safe and non-toxic in BRCA2+/- transgenic mice (Drew et al., 2011). 

At the time these experiments began a more prolonged or even a continuous dosing 

schedule of AG014699 had not been considered. It was not until preliminary data from 

these in vivo experiments and clinical efficacy data from the PARP-BRCA phase II 

clinical trial became available that this was proposed. These interim data suggested 

that longer, more sustained PARP inhibition might be necessary to improve the anti -

tumour activity of AG014699 in BRCA-defective cancers. Therefore subsequent 

experiments investigated the prolonged AG014699 regimen of 10 mg/kg once daily for 

5 days of a 7 day cycle for six cycles.  

4.3.7 Use of carboplatin 

The cytotoxic platinum analogue carboplatin was developed in the late 1980s at the 

Institute for Cancer Research, London, UK (Harrap, 1985). It acts by covalently binding 

to DNA to form intra-strand and inter-strand DNA cross-links. These DNA adducts then 

inhibit DNA synthesis, function and ultimately its transcription. Carboplatin forms the 

backbone of treatment for many cancers including ovarian cancer, small and non-small 

cell lung cancers, germ cell tumours and head and neck cancers (Chu E and DeVita V., 

2010). It is postulated that a patient’s BRCA status may modulate their subsequent 

response to the platinum agents. Pre-clinical studies have shown that cancer cell lines 
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with mutations in either the BRCA1 or BRCA2 genes are more sensitive to the platinum 

analogue - cisplatin than their wild type matched controls (Bhattacharyya et al., 2000; 

Tan et al., 2008; Tassone et al., 2003). Tassone and colleagues demonstrated that the 

BRCA1 mutated human breast cancer cell line HCC1937 was significantly more 

sensitive to cisplatin than MCF7 (BRCA1 wild type) and the MDA-MB-231 (BRCA1 

heterozygote) cell lines. In addition, the HCC1937 cancer cell line was shown to be less 

sensitive or even resistant to the anti-microtubule agent paclitaxel (Tassone et al., 

2003). Small retrospective studies in patients with ovarian cancer (discussed in chapter 

one, section 1.3.6) also suggest that BRCA mutation carriers respond better to 

carboplatin than non-carriers (Tan et al., 2008).  

This question of platinum sensitivity and taxane resistance in BRCA mutation carriers 

has not yet been proven in a randomised clinical trial setting. However, a phase II trial 

is currently ongoing randomising patients with BRCA1/2 mutated breast cancer at first 

presentation of metastatic disease to six cycles of carboplatin or standard treatment 

with the anti-microtubule agent docetaxel (www.brcatrial.org).  

In light of all these data, it was considered important to investigate carboplatin in 

these experiments. Firstly, to act as a positive control for DNA damage, secondly to 

enable any observed anti-tumour effects of the PARP inhibitor AG014699 to be directly 

compared with a cytotoxic to which these xenografts should be sensitive, and finally to 

investigate anti-tumour effect and toxicity of the combination. 

4.3.8 Anti-tumour response assessment 

Mice were weighed and tumour volumes determined daily from two-dimensional 

calliper measurements using the equation: 

 a2 × b/2, where a = width and b = length of the tumour.  

Tumour data are presented in the results section as the dimension-less parameter, 

relative tumour volume (RTV). For example, RTV1 is the tumour volume on the first 

day of treatment (day 0), RTV2 is two times larger than RTV1; RTV3 is three times 

larger than RTV1 and so on. Tumour growth delay (TGD) was measured in days using 

the formula:  
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TGD = Time to specified RTV in treatment group (days) – Time to specified RTV in control group 

(days) 

Any additional effect of combining AG014699 to the cytotoxic carboplatin on tumour 

growth delay (TGD) was assessed by measuring % Enhancement (E) using the formula:    

 % E = [(TGD of the combination treatment/TGD of cytotoxic alone) × 100] - 100. 

4.3.9 Statistical analysis 

Values relating to the comparison of means are generated using un-paired t-tests for 

comparisons of two means or one way analysis of variance (ANOVA) for comparisons 

of greater than two means.  All statistical tests were considered significant if the P 

value < 0.05. Statistical tests were two-sided. 

 

4.4 Results 

All in vivo data and statistical analysis are summarised in table 4.1 and results of 

individual experiments are analysed and discussed in the relevant text. To facilitate 

interpretation of these results a key is provided in figure 4.1 below. Each symbol and 

line pair represents a different treatment arm and is used consistently throughout the 

figures in this chapter. The only exception is  in figure 4.8 and 4.9 where the D 1-10 

schedule of AG14699 is dosed at 10 mg/kg rather than 25 mg/kg. 

 

Figure 4.1:  Key for in vivo experimental treatment arms. 
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4.4.1 Epigenetically silenced BRCA1 UACC3199 xenografts: experiment one 

Of the 30 mice implanted with epigenetically silenced BRCA1 UACC3199 cells, only 15 

developed tumours by day 40. These 15 mice were then randomly assigned to the 

following treatment groups (five mice per group): normal saline control (10 ml/kg D1-

10), AG014699 (25 mg/kg daily for D1-10) or carboplatin (single dose of 75 mg/kg on 

D1). The fifteen tumours that developed did so at different rates with a lag time from 

implantation to palpable tumour (≥ 5 mm x 5 mm) ranging from 21 to 32 days. Due to 

this variable lag time, there was an up to seven-fold variation in the individual tumour 

volumes (range = 33 mm3 – 242 mm3) when the treatments were initiated on day one. 

However, the mean tumour volumes of the five mice in each treatment group: control 

(99 mm3), AG014699 (105 mm3) and carboplatin (122 mm3) did not differ significantly 

(99 vs. 105 vs. 122 mm3; P = 0.87). Following day one of treatment, the UACC3199 

tumours in all three groups grew relatively slowly; the control tumours reached only a 

mean RTV of 2.63 at day 10. However, because of the large range of tumour volumes 

at day one, by day 12 at least 2/5 mice in each group had to be killed because their 

individual tumour burden was greater than the specified 10 × 10 mm. For this reason 

and to make for more accurate comparisons of the results, only the data collected up 

to and including day 12 are presented here. Results for the RTV over time of each 

individual mouse within each treatment group are shown in figure 4.2 with mean data 

for each treatment arm presented in figure 4.3. 

RTV at day 10 in the AG014699-treated group was significantly less than that in the 

saline-treated control mice (RTV = 1.55 vs. 2.63; P = 0.02). Reviewing the data shown in 

figure 4.3 it appears that during the 10-day dosing period of AG014699 tumour growth 

is retarded or even arrested, with no significant change in mean RTV at D10 from the 

mean RTV at D2 (RTV D10 = 1.55 vs. RTV D2 = 1.27; P = 0.44). However, as the graph 

shows, when AG014699 treatment was stopped tumour growth increased significantly; 

comparing mean RTV at D12 with D10 (RTV D10 = 1.55 vs. RTV D12 = 2.80; P = 0.02).  

In response to carboplatin (75 mg/kg D1) no difference in tumour growth was 

observed until D9 when a slowing of tumour growth was detected. Mean RTV on D10 = 

1.72, but this was not significantly different from the mean RTV in the control group at 

the same time-point (RTV D10 = 1.72 vs. RTV D10 = 2.63; P = 0.13). 
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This experiment demonstrated that AG014699 suppressed UACC3199 tumour growth 

only during the dosing period. One possible explanation for this is that PARP enzyme 

inhibition was not sustained for long enough in this experiment allowing recovery of 

PARP activity and tumour re-growth. Therefore a more prolonged AG014699 schedule 

was subsequently evaluated. 
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Figure 4.2: Experiment one: UACC3199 xenograft tumour growth in CD-1 nude mice. Growth, 
calculated as the relative tumour volume (RTV) after each treatment, is shown as a function of 
time from the start of treatment. A: Saline control 10 ml/kg i.p. D 1-10, B: AG014699 25 mg/kg 

i.p. D 1-10 and C: Carboplatin 75 mg/kg D1. 
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Figure 4.3: Experiment one: UACC3199 xenografts mean tumour growth in CD-1 nude mice. 
Results are mean RTV + SEM. Solid circles and line = saline vehicle alone; open circles and solid 
line = AG014699 (25 mg/kg per day for 10 days); open triangles and dashed line = carboplatin 

(single dose of 75 mg/kg on day 1). 

 

4.4.2 Epigenetically silenced BRCA1 UACC3199 xenografts: experiment two 

In this study, 40 mice were implanted with UACC3199 cells. Treatment was 

commenced 42 days later when nine mice had confirmed tumours (i.e. when there 

were sufficient mice for at least three per treatment group). Mice were randomised to 

the following treatment groups: normal saline control (10 ml/kg daily for 5 days of a 7-

day cycle for six cycles), AG014699 (10 mg/kg daily for 5 days of a 7-day cycle for six 

cycles; known as the prolonged schedule), or as in experiment one; carboplatin (75 

mg/kg) single dose on D1.  Comparing the groups, growth of the xenografts was more 

consistent than the previous experiment, with up to five-fold variation in the individual 

tumour volumes (range = 15 mm3 – 79 mm3) when treatments were initiated on day 

one. In addition, there was no significant difference in the mean tumour volumes of 

each treatment group on day one (control = 38 mm3 vs. AG014699 = 55 mm3 vs. 

carboplatin = 45 mm3; P = 0.31).  
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Figure 4.4: Experiment two: UACC3199 xenografts tumour growth in CD-1 nude mice. RTV is 
shown as a function of time from the start of treatment. A: Saline control 10 ml/kg i.p. D 1-5 of 
a 7 day cycle for 6 cycles, B: AG014699 10 mg/kg i.p. D 1-5 of a 7 day cycle for 6 cycles and C: 

Carboplatin 75mg/kg D 1. 
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Results for the RTV over time of each individual mouse within each treatment group 

are shown in figure 4.4 with mean data for each treatment arm presented in figure 4.5. 

The mean time to RTV5 in saline-treated control mice was 25.2 days and this was 

extended by 37% to 34 days in the AG014699-treated mice, representing a significant 

tumour growth delay of 9.1 days over untreated controls (P = 0.05). For the 

carboplatin-treated mice, the time to RTV5 increased by 45%, again representing a 

significant 10.4-day tumour growth delay (P = 0.02) (figure 4.5 and table 4.1). 

Importantly, treatment with AG014699 appeared to be non-toxic to these mice, with 

the maximum weight loss among treated mice being 6.6% compared to 3% in control 

mice. Carboplatin caused marginal toxicity, with the maximum weight loss being 9.6%. 

 

 

Figure 4.5: Experiment two: UACC3199 xenografts mean tumour growth in CD-1 nude mice. 
Results are mean RTV +SEM. Solid circles and line = saline vehicle alone; open circles and 
dashed line = AG014699 (10 mg/kg D1-5 every 7 days for 6 cycles); open triangles and dashed 

line = carboplatin (single dose of 75 mg/kg on day 1). 
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4.4.3 BRCA1 mutated MDA-MB-436 xenografts  

In light of the data from the UACC3199 xenografts, which suggested that greater anti-

tumour activity may be seen following a more sustained PARP inhibition, the 

prolonged schedule of AG014699 was chosen for the studies with MDA-MB-436 

xenografts. Unfortunately, only 15 out of 50 mice that were implanted with MDA-MB-

436 cells developed tumours. This poor xenograft take rate (30%) meant that only 

three treatment arms were possible in this experiment and so the AG014699 schedule 

was compared to a matched saline control group and a single dose of Carboplatin (75 

mg/kg) on D1 group. It had been intended to compare both the schedules of 

AG014699 tested in the UACC3199 studies. Treatment for all three arms began 44 days 

after implantation. On day one of treatment there was an up to a nine-fold variation in 

the volumes of the individual tumours (range 14 mm3 – 135 mm3). However there was 

no significant difference comparing the mean tumour volume of each treatment group 

(control = 46 mm3 vs. AG014699 = 70 mm3 vs. carboplatin = 44 mm3; P = 0.48). 

The results for individual mice within each treatment group are shown in figure 4.6 

with mean data presented in figure 4.7 and summary data in table 4.1. These data 

demonstrate that AG014699 significantly delayed tumour growth with mice reaching 

RTV4 in 29 days when compared to tumours in untreated control mice, which reached 

RTV4 after 19 days (P = 0.03). Of note, in the AG014699-treated group, one mouse had 

a transient complete tumour regression (i.e. no detectable tumour) between days 15 

and 17. The MDA-MB-436 tumours were extremely sensitive to carboplatin treatment 

(see figure 4.6 C), with complete tumour regressions observed in three mice; one on 

days 17–50, the second on days 20–34 and the third mouse experiencing a sustained 

durable complete tumour regression from day 15 until it was killed at the end of the 

study. Time to RTV4 in the tumours of the remaining two mice were 57 and 63 days; 

giving a mean RTV4 of 60 days,  significantly higher than that seen in the untreated 

control group (60 vs. 19 days; P = 0.001). 

AG014699 was again found to be non-toxic in this study, with the maximum weight 

lost in AG014699-treated mice being 4% and compared to 6.4% in control mice. Carbo-

platin, however, caused considerable toxicity, with maximum weight loss being 13%. 
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Figure 4.6: MDA-MB-436 xenografts tumour growth in CD-1 nude mice.  RTV is shown as a 
function of time from the start of treatment. A: Saline control 10 ml/kg i.p. D 1-5 of a 7 day 
cycle for 6 cycles, B: AG014699 10 mg/kg i.p. D 1-5 of a 7 day cycle for 6 cycles and C: 

Carboplatin 75mg/kg D 1. 
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Figure 4.7: MDA-MD-436 xenografts mean tumour growth in CD-1 nude mice. Results are 
mean RTV +SEM. Solid circles and line = saline vehicle alone; open circles and dashed line = 
AG014699 (10 mg/kg D1-5 every 7 days for 6 cycles); open triangles and dashed line = 

carboplatin (single dose of 75 mg/kg on day 1). 

 

4.4.4 BRCA2 mutated CAPAN-1 xenografts 

All 40 CD-1 nude mice implanted with CAPAN-1 cells developed tumours. This 100% 

take rate meant that multiple schedules of AG014699 could be directly compared 

within the same controlled study. Thus, 15 days after implantation, mice were 

randomly assigned to one of the following six treatment groups: saline control (10 

mL/kg) daily for 10 days, AG014699 (10 mg/kg) once a day for 10 days, AG014699 (10 

mg/kg) once daily for 5 days of a 7-day cycle for six cycles, a single dose of carboplatin 

(75 mg/kg) on day 1, a combination of carboplatin (75 mg/kg) on day 1 with AG014699 

(10 mg/kg) once a day for 10 days, or a combination of carboplatin (75 mg/kg) on day 1 

with AG014699 (10 mg/kg) once a day for 5 days of a 7-day cycle for six cycles. 

On day one of treatment there was an up to a six-fold variation in the size of the 

individual tumours, with volumes ranging from 10 mm3 to 61 mm3. Statistical analysis 

of the mean tumour volume of each treatment group showed no significant 

differences between the groups except when comparing the AG014699 prolonged 
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schedule (45 mm3) with the combination of carboplatin (75 mg/kg) day 1 and 

AG014699 (10 mg/kg) once a day for 10 days arm (23 mm3; P > 0.05). 

Results for individual mice from each treatment group are shown in figure 4.8 with 

mean data presented in figure 4.9. The data for mean RTV presented in figure 4.9 is 

presented as two figures (A and B) to make for easier visual interpretation.  

The most toxic regimen in terms of weight loss was Carboplatin in combination with 

the prolonged AG014699 course which resulted in maximum weight loss of 6.3% 

compared to < 5% seen in the other groups.  

The mean time to RTV4 in the saline-treated control group was 11.5 and this is 

consistent with previous published reports (Van der Heijden et al., 2005). 

 A single dose of carboplatin (75 mg/kg) on D1) resulted in one complete tumour 

regression and a statistically significant longer mean time to RTV4 of 18 days (P = 0.03) 

compared with that of the control mice.  

Treatment with AG014699 for 10 days resulted in an approximate doubling of the 

mean time to RTV4 to 24 days equivalent to a 12.5-day growth delay and significantly 

different from the controls (P = 0.02). This TGD was further improved when the longer 

schedule of AG014699 was applied. The prolonged schedule of AG014699 resulted in a 

27.5-day growth delay compared with the control mice (i.e. time to RTV4 of 39 days vs. 

11.5 days; P = 0.02). These results generate the hypothesis that degree of PARP 

inhibition and duration of PARP inhibition are both important for tumour cell kill. 

The best anti-tumour responses were seen in the combination of AG014699 and 

Carboplatin treatment arms. Carboplatin combined with AG014699 (10 mg/kg) once 

daily for 10 days resulted in two complete tumour regressions (one at day 28 and the 

other at day 35) and a significant tumour growth delay of 27.5 days over the control 

group (mean time to RTV4 = 39 days ; P = 0.04). The most effective regimen in terms of 

longer time to RTV4 was the carboplatin with AG014699 given on the prolonged 

schedule.  
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Figure 4.8: CAPAN-1 xenograft tumour growth as RTV in CD-1 nude mice. A: Control (saline daily for 10 days). B: Carboplatin (75 mg/kg on day 1). C: AG014699 (10 
mg/kg daily for 10 days). D: AG014699 (10 mg/kg daily for days 1-5 of a 7-day cycle for six cycles, prolonged schedule). E: Combination therapy with carboplatin 

(75 mg/kg on day 1) + AG014699 (10 mg/kg daily for 10 days). F: Combination therapy with carboplatin (75 mg/kg on day 1) + AG014699 prolonged schedule. 
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Figure 4.9 CAPAN-1 xenografts mean tumour growth in CD-1 nude mice. Results are mean RTV 
+SEM. A: Solid circles and solid line = saline control; open circles and solid line = AG014699 (10 
mg/kg D1-10); open circles and dashed line = AG014699 (10 mg/kg D1-5 every 7 days for 6 
cycles) B: Solid circles and solid line = saline control; open triangles and dashed line = 
carboplatin (single dose of 75 mg/kg on day 1); solid triangles and solid line = carboplatin 
(single dose of 75 mg/kg on day 1) + AG014699 (10 mg/kg D1-10); solid triangles and dashed 
line = carboplatin (single dose of 75 mg/kg on day 1) +AG014699 (10 mg/kg D1-5 every 7 days 

for 6 cycles 
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This regimen resulted in two complete tumour regressions (one at day 7 and the other 

at day 12) and a mean tumour growth delay of 36.5 days in the remaining tumours. 

This gave a mean RTV4 = 48 which is significantly higher than the untreated control 

group (mean time to RTV4 = 48 days vs. 11.5 days; P = 0.01).  

The addition of AG014699 (in both schedules) to carboplatin resulted in greater 

tumour growth delay than the use of carboplatin alone as measured by % 

Enhancement (E). With the ten day AG014699 schedule resulting in 323% increase in 

efficacy and the more prolonged AG014699 schedule of treatment over six weeks a 

461% increase, see table 4.1. 
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Xenograft and treatment Mean time (D) to 
RTV4 (95%CI) 

Mean time (D) to 
RTV5 (95%CI) 

Mean TGD (D) Enhancement 
(%) 

No. CRs P 

(A) UACC3199       

Control saline (10 ml/kg D1-5 every 7D x6)  25.2 (14-36) N/A  0/5  

AG014699 (10 mg/kg D1-5 every 7D x 6)  34.25 (25-46) 9.1  0/5 0.05 

Carboplatin (75 mg/kg D1)  35.60 (26-44) 10.4  0/5 0.02 

(B) MDA-MB-436       

Control saline (10 ml/kg D1-5 every 7D x6) 19 (9.4-25)  N/A  0/5  

AG014699 (10 mg/kg D1-5 every 7D x6) 29 (13-45)  10  1/5 0.03 

Carboplatin (75 mg/kg D1) 60 (57, 63)*  41  3/5  

(C) CAPAN-1       

Control saline (10 ml/kg D1-5 every 7D x6) 11.5 (4-20)  N/A  0/5  

AG014699 (10 ml/kg D1-10)  24 (7-44.8)  12.5  0/5 0.02 

AG014699 (10 mg/kg D1-5 every 7D x6) 39 (27-50)  27.5  0/5 0.02 

Carboplatin (75 mg/kg D1) 18 (1-35)  6.5  1/5 0.03 

AG014699 (10 ml/kg D1-10)  + Carboplatin (75 mg/kg 
D1) 

39 (22.8-55.4)  27.5 323 2/5  

AG014699 (10 ml/kg D1-5 every 7D x 6) + Carboplatin 
(75 mg/kg D1) 

48 (10.9-86.3)  36.5 461 2/5 0.01† 

 

Table 4.1: Summary of in vivo efficacy data, following treatment with: saline control, AG014699 or Carboplatin. Data are mean and 95% CI unless < 3 tumours 
were available for evaluation* due to tumour regressions. P values are shown comparing treatments to un-treated controls, with the exception of † which 

compares the combination treatment to carboplatin alone. D = days, CI = confidence interval, CR = Complete remission. 
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4.5 Discussion 

Three important observations have emerged from these studies. Firstly, a prolonged 

exposure to the PARP inhibitor AG014699 is needed for single agent anti-cancer 

activity. Secondly, inhibiting PARP-1 is synthetically lethal to epigentically silenced 

BRCA1 xenograft models confirming the in vitro data presented in the previous 

chapter. Thirdly, that the platinum analogue carboplatin has anti-tumour activity in 

BRCA1 and 2 defective xenografts as a single agent and in combination with 

AG014699. 

4.5.1 Schedule of AG014699 matters 

These xenograft studies have shown that the PARP inhibitor AG014699 has activity 

against BRCA defective cancers and that duration of exposure, in addition to dose, of 

the PARP inhibitor is important in terms of its single agent anti-tumour effect.  

The UACC3199 experiments investigated two schedules of AG014699:  (1) 10 mg/kg D1 

-10 and (2) 10 mg/kg D1-5 every 7 days for 6 weeks. Reviewing both sets of data, 

summarised in table 4.1, it appears that the longer and more sustained inhibition of 

PARP provided by the prolonged schedule two resulted in better anti-tumour effect. 

This effect was also seen in the CAPAN-1 experiments, which investigated the same 

two single agent schedules of AG014699. The results, shown in figures 4.8C and 4.8D 

and table 4.1, are clear; the prolonged regimen of AG014699 resulted in a longer TGD 

and a significantly longer time to RTV4 than the ten day AG014699 dosing schedule. 

This is illustrated further in figure 4.10 which shows the data for both schedules head 

to head together with the exposure to AG014699. 

Interestingly, single agent AG014699 (in both schedules) was shown to be at least as 

equivalent to a single dose of carboplatin in the UACC3199 and CAPAN-1 studies. In 

addition, the anti-cancer activity of AG014699 came at a lower cost in terms of toxicity 

than the carboplatin. 

 These data suggest that PARP inhibitors should be evaluated against carboplatin in 

randomised clinical trials of selected cancer patients.  

Results of the BRCA1 mutated MDA-MB-436 in vivo experiments, shown in figures 4.6 

and 4.7, demonstrate that MDA-MB-436 tumours are sensitive to the anti-cancer 
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activity of AG014699. Treatment with the prolonged schedule resulted in significant 

delays in tumour growth; with tumours reaching RTV4 in 29 days compared to 19 days 

in tumours of untreated control mice. These data support the in vitro findings in which 

the MDA-MB-436 cell lines were the most sensitive to AG014699 in clonogenic cell 

survival assays (mean IC50 = 1.3 M). 

The low implantation rate of the UACC3199 and the MDA-MB-436 cell lines meant that 

multiple treatment arms in these experiments were not possible and that the two 

schedules of AG014669 were not investigated within the same controlled experiment. 

This limits the interpretation of the results; in addition one might question the 

accuracy of any comparison of the results. However, the studies in the CAPAN-1 

xenografts were tested within the same controlled experiment and these results 

demonstrate superiority of the prolonged AG014699 schedule, confirming the 

hypothesis that prolonged exposure to AG014699 is better.  

The scientific explanation for this greater anti-tumour effect is that single agent PARP 

inhibitor cytotoxicity is dependent on cells replicating. That is, for unrepaired SSBs to 

become DSBs or lethal stalled replication forks, cells must go through S-phase of the 

cell cycle. If PARP is inhibited for short periods of time only a fraction of the total 

cancer cell population will have passed through S-phase and been affected. However, 

if the time of PARP inhibitor exposure is prolonged, the greater percentage of the cells 

will have been in S-phase during the PARP enzyme inhibition and the greater the cell 

kill. Therefore, during schedule two of AG014699 dosing it is proposed that PARP-1 is 

fully inhibited for five days allowing the accumulation of DNA double strand breaks, 

stalled replication forks and cell death. The 48 hours without treatment is then not 

enough time for PARP enzyme activity levels to recover to 100% and the damage to 

cells continues. PARP activity is furthered inhibited when the treatment cycle re-starts. 

Whereas in the simple ten day dosing regimen (schedule one) full recovery of PARP 

enzyme function and loss of the synthetic lethality will eventually occur. This theory 

may also explain the lack of selective cytotoxicity of AG14361 in BRCA1 mutated breast 

cancer xenografts presented by De Soto and colleagues as intermittent (30 mg/kg i.p. 

for 3 days on D2, 9 and 16) AG14361 dosing was used (De Soto et al., 2006). 
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What is not known is how long it takes for PARP enzyme activity to recover following a 

single dose of AG014699. Pharmacodynamic studies in mice measuring changes to 

PARP activity levels over time after AG014699 doses are planned and the results will 

greatly inform future clinical studies. 

 

 

Figure 4.10: ‘Schedule matters’: CAPAN-1 xenograft mean tumour growth represented by 
mean RTV following treatment with:  AG014699 (10 mg/kg D1-10) = solid grey circles + grey 
line; AG014699 (10 mg/kg D1-5 every 7 days for 6 cycles) = solid red circles + red line. The 
treatment periods for the AG014699 arms are represented by the corresponding coloured 

lines along the x-axis. 

 

This observation that ‘schedule matters’ as well as dose is also important as it may in-

part explain the lack of patient responders to AG014699 in the current phase II PARP-

BRCA clinical trial.  The intermittent dosing regimen (D 1–5, every 21 days) of 

AG014699 was selected as it was previously shown to be safe in combination with 

temozolomide in the phase I trial (Plummer et al., 2008). These in vivo data strongly 

suggest that continuous not intermittent dosing may be needed for greater efficacy in 

BRCA mutation carrier population. These results also provide further justification to 

amend the current clinical trial. This is discussed further in chapter five (section 5.5.6).  

 



  Chapter Four – in vivo studies 

139 
 

4.5.2 AG014699 is synthetically lethal in epigenetically silenced BRCA1 

The clinical application of PARP inhibitors as single agents was originally thought to be 

limited to cancers harbouring germ-line BRCA mutations and phase I/II clinical trials 

have since confirmed the activity of the PARP inhibitor olaparib in this patient 

population (Fong et al., 2009; Audeh et al., 2010; Tutt et al., 2010). However, it is now 

proposed that PARP inhibitors may be a therapeutic option in non-BRCA mutated 

cancers which have other defects within the HR repair pathway (discussed in chapter 

one section 1.6.4).  

The breast cancer cell line UACC3199 has epigenetically silenced BRCA1 through 

promoter gene methylation (Wei et al., 2005). In chapter three (section 3.4.1) of this 

thesis, in vitro data demonstrate that UACC3199 cells are sensitive to AG014699 and 

have impaired ability to form Rad51 foci following DNA damage, suggesting that they 

are HR defective. Results of in vivo UACC3199 experiments presented here (see figure 

4.5 and table 4.1) demonstrate that AG014699 significantly delays tumour growth 

compared to untreated controls. Interestingly, this TGD of 11 days was the same as 

that seen following a single dose of carboplatin (75 mg/kg) on D1. AG014699 was less 

toxic, in terms of maximum weight loss, than the carboplatin (6.6% vs. 9.6%). These 

findings confirm the in vitro data and add further weight to the proposal that PARP 

inhibitors could have a wider clinical application. 

Defective HR DNA repair through epigenetic silencing of BRCA1 or other mechanisms is 

now known to occur commonly in sporadic cancers; in particular high grade serous 

ovarian carcinomas (HGSOC) (Press et al., 2008) and triple negative breast cancers 

(Turner et al., 2007). In a recent study of sporadic epithelial ovarian cancers 

Mukhopadhyay and colleagues demonstrated a failure to form Rad51 foci (an indicator 

HR function) following exposure to AG014699 in 67% (16/24) of primary cultures. This 

failure of Rad51 foci induction correlated with ex vivo sensitivity to AG014699 

(Mukhopadhyay et al., 2010). In another study, Graeser et al observed a low Rad51 

score in 26% of breast cancer core biopsies taken 24 hours after the first cycle of neo-

adjuvant chemotherapy (Graeser et al., 2010). These two studies highlight that HR 

dysfunction is common in non-BRCA germline mutated cancers and perhaps more 

prevalent in ovarian than triple negative breast cancers. Clinical data is now emerging 

to support this; reports of a phase II study investigating the PARP inhibitor olaparib 
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showed encouraging activity in non-BRCA mutated HGSOC with response rates of 24% 

(11/46 patients) (Gelmon et al., 2011). Disappointingly, no responses have been 

reported in the 15 patients with non-BRCA mutated triple negative breast cancer.   

In summary it is clear from these in vitro and in vivo studies that BRCA1 methylated 

breast cancer cells (UACC3199) are sensitive to the PARP inhibitor AG014699 and 

future clinical studies of this novel agent should include patients without non-germ-

line BRCA mutated cancers. 

4.5.3 Carboplatin as a single agent and in combination with AG014699 

These studies have shown that single agent carboplatin is active in BRCA deficient 

xenografts. The MDA-MB-436 cell line was the most sensitive to AG014699 in vitro, 

had the lowest fold change in Rad51 foci following AG014699 and was the most 

sensitive to carboplatin in these in vivo studies confirming that these cells harbour a 

severely defective HR phenotype. These experiments also demonstrate that combining 

AG014699 with carboplatin is better than either treatment alone in BRCA2 mutant 

models. In the CAPAN-1 xenografts the most effective regimen, defined by longer time 

to RTV4, was the prolonged AG014699 schedule in combination with carboplatin (75 

mg/kg) on D1. This resulted in two complete tumour regressions and a mean tumour 

growth delay of 36.5 days in the remaining tumours.  

These results confirm the findings of a number of studies which have investigated the 

efficacy of the PARP inhibitor-platinum combination; in mice bearing BRCA1- and p53-

deleted transplanted mouse mammary tumours (Rottenberg et al., 2008) and in mice 

bearing autochthonous BRCA2- and p53-deleted mouse mammary tumours using the 

PARP inhibitor AZD2281 (now known as olaparib) (Hay et al., 2009), which 

demonstrated that the combination of cisplatin and a PARP inhibitor resulted in 

prolonged recurrence-free and overall survival compared with mice treated with either 

drug alone. The rationale for combining AG014699 with a platinum analogue is further 

supported by work by Evers and colleagues who demonstrated selective cytotoxic 

synergy between cisplatin and the PARP inhibitor AZD2281 (now olaparib) in BRCA2-

deficient but not proficient mammary mice tumour cell lines (Evers et al., 2008).  

Reviewing these results and the published literature (chapter one, section 1.6.1) it 

appears that prolonged, higher doses of PARP inhibitors are required as single agents 
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to exploit the synthetic lethality concept but that in combination with cytotoxics these 

doses may be too toxic for patients where only shorter, less potent PARP inhibiton is 

tolerated. For example, in the case of AG014699, chemopotentiation in vivo studies 

have reported that concentrations as low as 0.1 M AG014699 are able to cause > 

100% enhancement of temozolomide induced tumour growth delay and that the 

maximum tolerated dose in combination of AG014699 was 1mg/kg (Thomas et al., 

2007). However, these studies have shown that higher AG014699 doses (10mg/kg) are 

needed to produce single agent activity and therapeutic concentrations (around 3.9 

M); such doses were found by Thomas et al to be lethal in combination with 

temozolomide.  

Clinical studies are now underway investigating the safety and efficacy of combining 

PARP inhibitors with chemotherapy including the platinum agents both to act as 

chemosensitisers and to exploit the HR defective phenotype. One of the problems 

these trials will face is which dosing schedule of the PARP inhibitor to use in order to 

get the balance right between efficacy and toxicity. 

4.6 Conclusions 

To conclude, these studies provide the first evidence that UACC3199 tumour 

xenografts are sensitive to single agent AG014699, confirming the in vitro data 

presented in chapter three suggesting that PARP inhibitors may be a therapeutic 

option in non-BRCA mutated cancers. Secondly, the data in the CAPAN-1 tumours 

directly comparing the two schedules of AG014699 shows that TGD is significantly 

longer with a prolonged continuous dosing schedule of the PARP inhibitor. These 

results have impacted on the current CRUK PARP-BRCA clinical trial where AG014699 is 

given only intermittently on D1-5 allowing PARP enzyme recovery during the 

remainder of the 21 day cycle. These data have provided valuable weight to support 

the amendment of this multi-centre UK study which is now open to recruitment 

(October 2011) to investigate an oral continuous AG014699 dosing schedule. Finally, 

these experiments have shown that carboplatin has anti-tumour activity in BRCA 

defective xenografts and may be a therapeutic option in BRCA mutation carrier 

patients either in combination with a PARP inhibitor or as a single agent and these 

issues are the subjects of on-going clinical trials. 
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Chapter Five 

5. Pharmacodynamic, Pharmacokinetic, Pharmacogenomic and 

Clinical outcomes of AG014699 in patients; results of the Phase 

II PARP-BRCA clinical trial 

5.1 Introduction 

A better understanding of the molecular biology of cancer is leading to the 

identification of distinct cancer sub-types, new anti-cancer targets and as a result more 

individualised patient treatment approaches through the development of targeted 

agents (Schilsky et al., 2010). An example of this in action can be seen in the 

development of PARP inhibitors. Since the discovery of the first PARP; PARP-1, over 40 

years ago (Chambon et al., 1963), the abundant nuclear enzyme has emerged as an 

important novel target in cancer therapy. The first inhibitor of PARP, 3-AB, was 

identified in 1980 (Durkacz et al., 1980). Pre-clinical studies using the next generation 

of more potent more specific inhibitors suggested that the main anti-cancer role of 

PARP inhibitors would be as chemotherapy and radiotherapy potentiators (Delaney et 

al., 2000; Calabrese et al., 2004). Thus the first inhibitor to enter anti-cancer clinical 

trials was AG014699 (Pfizer GRD) in a phase I combination study with the oral, 

alkylating agent temozolomide in 2003. At this time this trial was conceived there were 

no data to support single agent AG014699 activity in the treatment of cancer.  

However, whilst this early phase combination AG014699 study was recruiting, two 

Nature papers reported results from two independent research groups showing that 

cells deficient in the BRCA1 and 2 genes were 100-1000 - fold more sensitive than 

heterozygote or wild type cell lines to PARP inhibitor monotherapy (Bryant et al., 2005; 

Farmer et al., 2005). Bryant et al demonstrated reduced survival in BRCA2 deficient 

cells to the PARP inhibitors NU1025 and AG14361, both forerunners to AG014699.    In 

the sister paper, Farmer et al demonstrated sensitivity of both BRCA1 and 2 deficient 

cell lines to two small molecule PARP-1 inhibitors-: KU0058684 and KU0058948, both 

forerunners to olaparib. Both groups concluded that BRCA deficient cells were 

sensitive to PARP inhibition by the proposed mechanism of ‘synthetic lethality’ 
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discussed in chapters one and three. Encouragingly both groups showed that PARP 

inhibition was non-toxic to models with restored BRCA function. These data suggested 

that, in patients, PARP inhibitors could selectively kill BRCA deficient tumours sparing 

normal tissue. 

Proof of concept clinical trials investigating the efficacy and safety of PARP inhibitors as 

single agents in BRCA mutated cancers commenced shortly after these studies were 

published in 2005.  The first study, a phase I dose escalation study of the oral, potent 

PARP-1 and 2 inhibitor olaparib (previously known as AZD2281/KU0059436) was 

actually on-going at the time of the 2005 Nature publications (Fong et al., 2009). It was 

however a standard phase I dose escalation study open to patients with advanced solid 

malignancies. On reviewing the BRCA-PARP in vitro and in vivo data (Bryant et al., 

2005; Farmer et al., 2005) the study was promptly amended to enrich for BRCA1 or 

BRCA2 mutation carriers (n=23). Two major findings came out of this study; results 

discussed in detail in chapter one, section 1.6.3. The first, that olaparib was well 

tolerated in patients, including those with the germ-line BRCA mutations. The second, 

that olaparib had anti-tumour activity only in the mutation carriers. The study 

incorporated an expansion phase, which focused specifically on patients with BRCA1/2 

mutations. Efficacy in a cohort of 50 patients all with BRCA1/2 mutated ovarian cancer 

was recently reported a clinical benefit rate of 46% for olaparib (Fong et al., 2010).  

As a result olaparib was taken forward into two separate phase II studies investigating 

the response in BRCA mutated breast and ovarian cancers respectively. Both these 

trials have demonstrated that olaparib is active in BRCA mutated cancers; confirming 

the phase I findings (Audeh et al., 2010; Tutt et al., 2010). The breast cancer study 

involved patients who had been heavily pre-treated with chemotherapy and the 

overall response rate compared well with that seen with standard chemotherapy 

regimens in the advanced setting (20-30%). The ovarian study included both platinum 

sensitive and resistant patients and response to olaparib was seen across these two 

groups. The greater response rates in patients receiving the 400 mg twice daily dose in 

both studies suggested that the degree of PARP inhibition is important.  

It is also important to note that not all BRCA1/2 mutation carriers responded to 

olaparib and that resistance to PARP inhibition has recently been reported through 

mechanisms of secondary genetic mutations of BRCA1 or BRCA2 restoring their 
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functions (discussed in chapter one section 1.7, Edwards et al., 2008; Sakai et al., 2008 

and 2009). The DNA repair capacity judged by homologous recombination status was 

not investigated in these studies and it is not yet clear how often such genetic 

reversions could occur in patients.  

Therefore, as with any early phase trial results; confirmation is required in larger phase 

III trials and it is prudent to await the results of other on-going trials investigating other 

classes of PARP inhibitor. 

One such study is the phase II Cancer Research UK (CRUK) trial of the activity of the 

intravenous PARP-1 inhibitor, AG014699, in patients with BRCA1 or 2 mutated locally 

advanced/metastatic breast cancer or advanced ovarian cancer (known as the PARP-

BRCA PH2/052 trial). At the time of writing, the PARP-BRCA PH2/052 study is ongoing. 

The protocol has recently been amended to investigate an oral, continuous dosing 

regimen, the reasons for which will be discussed in later on in this chapter. The 

pharmacokinetic, pharmacodynamic and pharmacogenomic assays developed and 

performed on the clinical samples collected within this study fall within the remit of 

this thesis.  Results are presented and discussed in this chapter together with any 

available clinical outcome data.  

5.1.1 The Phase II PARP-BRCA PH2/052 clinical trial  

This is a national, multi-centre, phase II study of the PARP-1 inhibitor AG014699 in 

patients with BRCA1 or 2 mutated locally advanced/metastatic breast cancer or 

advanced ovarian cancer. The study is being conducted by CRUK in collaboration with 

Pfizer GRD and the Northern Institute for Cancer Research, Newcastle upon Tyne. The 

participating cancer centres are the Beatson West of Scotland Cancer centre, Glasgow, 

University College London Cancer Trials Centre, The Christie Hospital, Manchester, St 

James University Hospital, Leeds, The Northern Centre for Cancer Care, Newcastle-

upon-Tyne, Plymouth Oncology Centre and Birmingham University Hospital. The study 

is being conducted under full ethical approval and all laboratory work for the primary 

and secondary objectives undertaken to Good Clinical Practice (GCP). The study is 

registered with the European Clinical Trials database (EudraCT no. 2006-002348-27). 
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5.1.1.1 Trial eligibility criteria 

The study is open to patients with confirmed germline BRCA1 and or 2 mutations and 

locally advanced/metastatic breast cancer or advanced ovarian cancer. A summary of 

the main inclusion and exclusion criteria are shown in table 5.1. 

5.1.1.2 Trial design and end-points 

The trial is an open label, single arm study of AG014699 given over a 30 minute 

intravenous infusion on day (D) one to five every 21 days for six cycles.  The primary 

end-points of the study are: response rate and toxicity. Response is measured by the 

Response Evaluation Criteria in Solid Tumours (RECIST) (Eisenhauer et al., 2009) and 

assessed following every two cycles of AG014699. Toxicity is recorded at every patient 

visit and coded by the Common Terminology Criteria for Adverse Events (CTCAE) version 

3.0. Secondary end-points: Time to progression (TTP), Overall survival (OS), PARP-1 

activity and AG014447 pharmacokinetics following AG014699. Tertiary end-points 

include the analysis of PARP-1 expression and the genotyping of single nucleotide 

polymorphisms (SNPs) within genes involved in the metabolism of AG014699 

(CYP2D6*2, *4) and PARP-1 activity (PARP-1 T2444C).  

At study conception it was not known whether a difference in response to AG014699 

would be seen between the patients with BRCA1 or 2 mutations and between those 

with breast or ovarian cancer. Therefore the study was designed to recruit patients 

into four subgroups of 14 patients each: BRCA1 ovary, BRCA1 breast, BRCA2 ovary and 

BRCA2 breast to allow response to be assessed. If one response was seen in the 14 

then this was considered to be significant and the null hypothesis of the drug being 

inactive in this sub-group could be rejected.  

At the time of study design, no safety data on the use of PARP inhibitors in this patient 

population were available. Therefore in order to address concerns about potential 

toxicity in patients the study was conducted in two stages.   

Stage one consisted of two cohorts; cohort one in which three BRCA1 and three BRCA2 

mutation carriers received a daily dose of 4 mg/m2 for five days for the first cycle.  In 

the previous phase I study a 4 mg/m2 dose was shown to inhibit PARP-1 but with 

recovery of enzyme activity within 24 hours (Plummer et al., 2008). If no dose limiting 

toxicity (DLT) was observed these patients received subsequent cycles at a daily dose 
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of 12 mg/m2 for five days.  In cohort two, three BRCA1 and three BRCA2 mutation 

carrier patients received 12 mg/m2 AG014699 for 5 days for the first cycle and if no 

DLT was observed patients were dose escalated to receive subsequent cycles at a dose 

of 18 mg/m2.  

In Stage two of the study patients received 18mg/m2 for the first cycle and all 

subsequent cycles unless a dose reduction was required as per the protocol. Patients 

who were responding to and tolerating AG014699 treatment after six cycles were 

permitted to continue on study at the discretion of the investigators.  
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Inclusion criteria: 

 
Proven carriers of a known mutation in BRCA1 or BRCA2  
Histologically documented locally advanced or metastatic breast cancer or advanced ovarian 
cancer 
Patients with ovarian cancer who have ≤ 3 prior chemotherapies and in whom > 2 months have 
elapsed since their last treatment with a carboplatin- or cisplatin-containing regimen 
Patients with breast cancer who have had  ≤ 3 prior chemotherapy regimens  
Measurable disease as measured by X-ray, Computerised Tomography (CT), or Magnetic 
resonance imaging (MRI) scan as defined by the Response Evaluation Criteria in Solid Tumours 
(RECIST) criteria.   
Life expectancy ≥ 12 weeks 
World Health Organisation (WHO) performance status of 0 or 1 
Written informed consent and be capable of co-operating with treatment and follow-up 
≥ 18 years  
Haematological and biochemical indices within the ranges shown below: 

 Haemoglobin ≥9.0 g/dl, Neutrophils ≥1.5 x 109/L, Platelets  ≥100 x 109/L 

 Serum bilirubin  ≤1.5 x upper normal limit  

 Alanine amino-transferase  or aspartate amino-transferase ≤ 2.5 x upper limit of normal,  
or ≤ 5 if liver metastases present 

 Glomerular Filtration Rate ≥50 ml/min  
 

Exclusion criteria: 
 
Radiotherapy (except for palliative reasons), endocrine therapy, immunotherapy or 
chemotherapy during the previous 4 weeks before start of study drug (six weeks for nitrosoureas 
and Mitomycin-C) 
Any unresolved toxicities > Grade 1 Common Terminology Criteria for Adverse Events (CTCAE) 
from previous treatments, except for alopecia. 
Known brain metastases 
Pregnant or breast feeding patients. Female patients who have a negative serum or urine 
pregnancy test before enrolment and agree to use two highly effective forms of contraception 4 
weeks before entering the trial, during the trial and for 6 months afterwards are considered 
eligible.   
Male patients with partners of child-bearing potential (unless they agree to use one form of 
highly effective contraception during the trial and for 6 months afterwards). 
Major thoracic and/or abdominal surgery in the preceding 4 weeks from which the patient has 
not recovered. 
At high medical risk because of non-malignant systemic disease including active uncontrolled 
infection. 
Current malignancies at other sites, with the exception of adequately treated cone-biopsied in 
situ carcinoma of the cervix uteri and basal or squamous cell carcinoma of the skin and 
concurrent breast and ovarian carcinoma.   
Patients with active or unstable cardiac disease or history of myocardial infarction within six 
months.   

 
Table 5.1: PARP-BRCA PH2/05 trial eligibility criteria 
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5.1.2 Pharmacodynamic, Pharmacokinetic and Pharmacogenomic end-points 

5.1.2.1 PARP-1 activity  

In this study PARP-1 enzyme activity levels were measured in patients’ peripheral 

blood lymphocytes (PBL) using the GCLP validated PAR formation immunoblot assay 

described in chapter two, section 2.9. Baseline pre-AG014699 PARP-1 activity levels 

were determined to investigate differences in endogenous (un-stimulated) PARP 

activity or maximum stimulated PARP activity between patients and to investigate if 

any relationship exists between PARP activity and the clinical response to AG014699, 

patient’s age and PARP-1 protein expression levels. Maximum stimulated PARP-1 

activity was also quantified in response to AG014699 to determine the efficiency of on-

target effect of the PARP inhibitor and to relate this to the pharmacokinetic evaluation 

of AG014699.  

5.1.2.2 PARP-1 expression 

To determine whether inter-patient variation in levels of PARP-1 activity could be 

attributed to differences in PARP-1 expression and to compare results of this patient 

population with other published data sets; PARP-1 expression levels were measured 

from patients’ PBL using the validated semi-quantitative Western blotting assay 

described in chapter two, Materials and Methods, section 2.10.  

5.1.2.3 PARP-1 T2444C single nucleotide polymorphism genotyping 

For this study, the T2444C SNP was determined from DNA extracted from whole blood 

using the PARP-1 TaqMan Real-time PCR genotyping assay kit (c1515368-1, rs number 

113640; Applied Biosystems, Warrington, UK) as described in chapter two, Materials 

and Methods, section 2.12. Results of patient’s endogenous baseline PARP-1 activity 

were then correlated with the T2444C SNP results. 

5.1.2.4 Pharmacokinetics of AG014699 

The pharmacokinetics of AG014447 (the free base of AG014699) was determined from 

plasma extracted from patient’s whole blood using LC/MS/MS.  The method, 

developed and validated to GCLP for this research study, is described in chapter two, 

section 2.11. The PK sampling schedule for this study permitted only limited analysis 

but would allow for relationships between the AG014699 pharmacokinetics and 

pharmacodynamic and clinical response data to be investigated. 
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5.1.2.5 CYP2D6 single nucleotide polymorphism genotyping 

Cytochrome P450 2D6 (CYP2D6, debrisoquine/asparteine hydroxylase) is a member of 

the Cytochrome P450 super-family. It is involved in the metabolism of ~ 25% of all 

commonly prescribed drugs (Sistonen et al., 2007) and including AG014699 (Pfizer 

GRD). CYP2D6 gene is highly polymorphic and over 75 major alleles have been 

identified to date (www.cypalleles.ki.se). Single nucleotide polymorphisms within 

CYP2D6 can result in increased, decreased or abolished gene function. This can result 

in complete deficiency up to excessive metabolism of a given drug resulting in either 

excess toxicity or lack of efficacy.   For this study, the CYP2D6*2 and *4 were 

determined from DNA extracted from whole blood using TaqMan Real-time PCR 

genotyping assay kits (Applied Biosystems, Warrington, UK) listed and described in 

chapter two, Materials and Methods, section 2.12. Results were then used to 

investigate any association between toxicity and response to AG014699. 

5.2 Objectives 

The end-points of the phase II PARP-BRCA PH2/052 trial are detailed above but the 

objectives for the specific studies carried out for this thesis are as follows: 

 Pharmacodynamic (PD) endpoints: To investigate the effects of AG014699 on 

PARP-1 activity and investigate baseline PARP-1 activity and PARP-1 expression 

levels in patients. 

 Pharmacokinetic (PK) endpoints: To establish and validate a method to determine 

the concentration of AG014447, the active drug of the pro-drug AG014699, in 

human plasma samples.  

 Pharmacogenomic (PG) endpoints: To determine the SNPs within the genes 

associated with the metabolism of AG014699 (CYP2D6) and PARP-1 activity (PARP-

1). 

 Clinical endpoints: To determine the response rate, time to progression, overall 

survival and toxicity following AG014699 in this patient population 

 

 To investigate any possible relationships between the above parameters 

 

http://www.cypalleles.ki.se/
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5.3 Materials and Methods 

Materials and methods for the listed assays are described in full in chapter two, 

Materials and Methods. Any deviations from these methods for specific experiments 

are detailed in the individual results sections below. Preparations of the clinical 

samples for analysis within the listed assays are also described in chapter two. The 

schedules of the different clinical samples taken for use within this study are detailed 

in figure 5.1. All stage one patients, who were dose escalated between, cycle one and 

two, underwent PK and PD blood sampling on both these cycles whereas stage two 

patients underwent PD and PK sampling in cycle one only.  

 

 

 
 
Figure 5.1: Summary of the schedule of clinical samples taken as part of the PARP-BRCA 
PH2/052 phase II trial. Stage two patients had pharmacokinetic (PK) and pharmacodynamic 
(PD) sampling in C1 only. Pre = pre-treatment, EOI = end of infusion, PBL = peripheral blood 
lymphocytes, LC/MS = liquid chromatography mass spectrometry, C = cycle, D = day, SNP = 
single nucleotide polymorphisms. n=actual number of patients/ biopsies at the time of writing.  
 

n = 38 

n = 1 
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5.4 Results 

5.4.1 Patient demographics 

Between January 2007 and September 2010 38 patients were entered into the study. 

Baseline characteristics are shown in table 5.2. It was initially envisaged that accrual of 

the 56 patients would take approximately 24 months, with an average of 2-3 patients 

recruited per month. However recruitment has been slower than predicted. Possible 

reasons include the restriction on the prior number of chemotherapies permitted in 

the breast cancer patients (this has been addressed in a recent protocol amendment) 

and the restriction of excluding non-UK residents. The low number of BRCA2 ovarian 

cancer patients recruited may reflect the lower risk of developing ovarian cancer in 

BRCA2 mutation carriers (Ford et al., 2004).  

The mean age of the 38 patients is 51.4 years which is lower than the reported average 

age at diagnosis of breast cancer (61 years) and ovarian cancer (63 years) patients 

(www.cancerresearch.uk.org/cancerstats). This is not surprising given that one of the 

hallmarks of BRCA mutation carriers is the early age at cancer presentation (King et al., 

2003).  

Patients were all of good performance status and had received a median number of 

two prior chemotherapies.  

For reporting of results patients are identified by their specific study number e.g. 40-

001; where the first number represents the treatment centre i.e. 40 is Newcastle and 

the second number is the patient recruitment number. Two additional patients were 

recruited to stage one, cohort two; one to replace patient 40-007 who withdrew due 

to clinical evidence of disease progression during cycle one. The second additional 

patient arose due to two patients at different treatment centres being given the 

information about the study at the same time and it was considered unethical to 

withdraw the offer of treatment. 

 

 

 

http://www.cancerresearch.uk.org/cancerstats
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Patient baseline characteristics n=38  

 
Patient no. (%) 

 
Sex – no. (%)  
Female  
Male  

 
 

38 (100) 
0 (0) 

 
Age - yr  
Mean  
Range  

 
 

51.4 
28 - 72 

 
Tumour type – no. (%)  
Breast  
Ovarian  

 
 

16 (42) 
22 (58) 

BRCA mutation/ Tumour type –no. (%)  

BRCA1 breast 

BRCA2 breast 
BRCA1 ovary 

BRCA2 ovary 

 

5 (13) 

11 (29) 
16 (42) 

6 (16) 

 
WHO PS – no. (%) 
0 
1 

 
 

10 (26) 
28 (74) 

 
Mean no. (range) prior chemotherapies  

 

 
2 (1 – 4) 

 
Table 5.2 Baseline patient characteristics for the PARP-BRCA PH2/052 phase II trial 
 

5.4.2 Patients baseline PARP-1 characteristics 

5.4.2.1 PARP-1 activity in Peripheral Blood Lymphocytes 

PBL samples were collected for all 38 patients, but the samples for baseline PARP-1 

activity, as described in figure 5.1, were obtained in 35 patients. The main reason for 

not obtaining a result for a given patient was that either the blood sampling was not 

possible at a given time-point or blood was taken but insufficient PBL were harvested 

to enable results to be generated. PARP-1 activity was assessed using the validated 

immunoblot assay described in chapter two, Materials and Methods and is expressed 

as pmol of PAR formation per 104 PBL. Examples of an immunoblot and PAR standard 

curve are shown in figures 3.5 and 3.6 respectively in chapter three.  

Patients’ baseline PARP-1 activity was obtained from the cycle one, D1 PBL sample 

which was taken immediately prior the first AG014699 dose. This time-point enables 
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the amount of PARP-1 activity to be assessed in the un-stimulated, un-reacted sample, 

which represents the endogenous PARP activity and secondly the amount of PARP 

activity in the sample after maximum stimulation of the enzyme after the addition of 

oligonucleotide in the assay reaction.  

 Results for all 35 patients for endogenous un-stimulated PARP activity are shown in 

figure 5.2. This shows low levels of PARP-1 activity with a mean value = 0.097 pmol 

PAR per 104 PBL (median = 0.05 pmol PAR, range = 0.00-0.75 pmol PAR per 104 PBL) 

and a large variation between patients (coefficient of variation (CV) = 146.5%). 

Interpreting these data is difficult as the majority of results lie at the lower end of the 

standard curve and no published data is yet available for comparison of endogenous 

PBL PARP-1 activity measured in similar populations or even in non-BRCA mutated 

cancer populations or healthy volunteers using these methods.   

Results for the pre-treatment PARP-1 activity samples after maximum enzyme 

stimulation for the 35 patients are shown in figure 5.3 and table 5.3. Similar to the 

endogenous PARP-1 activity data, a large inter-patient variation is seen (range = 0.38 – 

40.26 pmol PAR per 104 PBL, CV = 144.7%). Mean PARP-1 activity = 6.80 pmol PAR per 

104 PBL and median = 2.71 pmol PAR per 104 PBL.  This is almost double the PARP-1 

activity levels reported by Zaremba et al. (Zaremba et al., 2011) of a large cohort of 

118 cancer patients with unknown BRCA status where a mean baseline PARP-1 activity 

after maximum enzyme stimulation = 3.60 pmol PAR per 104 PBL was seen.  

A large variation in PARP-1 activity was also seen in Zaremba’s study (CV = 129.9%, 

range = 0.10 – 26.00 pmol PAR per 104 PBL) confirming that PARP-1 activity varies 

markedly between individuals. 
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Figure 5.2: Mean endogenous PARP-1 activity in pre-AG014699 treatment PBL samples.  
Error bars = SEM. 
 
 

 

Figure 5.3: Mean maximum stimulated PARP-1 activity in pre-AG014699 treatment PBL 
samples. Error bars = SEM.  
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5.4.2.2 PARP-1 protein expression in Peripheral Blood Lymphocytes 

PBL samples for PARP-1 protein expression were collected for 30 of the 38 patients. 

The main reason for not obtaining a result for a given patient was that either the blood 

sampling was not possible at the specified time-point or blood was taken but 

insufficient PBL were harvested to enable results to be generated. PARP-1 expression 

was assessed using the semi-quantitative Western Blotting assay described in chapter 

two, section 2.10 and is expressed as ng PARP-1 per g of total protein loaded.  

Analysis of PARP-1 expression results, shown in figure 5.4 and table 5.3; demonstrate 

mean PARP-1 expression of 0.21 ng per g and a median of 0.16 ng per g protein 

loaded. Like PARP-1 activity levels, a large variation is seen between subjects with CV = 

92.5% and range of 0.00 to 0.93 ng per g protein. These results are similar to data 

reported by Zaremba et al. where a mean PARP-1 expression of 0.23 ng per g protein 

was seen in a population of 118 cancer patients (Zaremba et al., 2011). 

 

 
Figure 5.4: Mean baseline PARP-1 protein expression in pre-AG014699 PBL samples. 
Error bars = SEM. 
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5.4.2.3 PARP-1 activity vs. PARP-1 expression 

To determine whether any relationship exists between PARP-1 protein expression and 

maximum stimulated PARP-1 enzyme activity; results from both assays were analysed 

after log 10 transformation as both data sets were positively skewed. Results shown in 

figure 5.5 demonstrate a weak but non-significant correlation with increased protein 

expression and increased PARP-1 activity (R2 = 0.14, P = 0.06, Pearsons correlation 

coefficient).  

 

Figure 5.5: Relationship between log 10 PARP-1 expression and activity  
 

5.4.2.4 PARP-1 activity and PARP-1 expression vs. age 

Studies investigating a link between PARP-1 activity, expression and longevity have 

been conflicting.  Grube and Burkle demonstrated that poly(ADP-ribosylation) capacity 

decreases with age in both rats and humans. In addition they showed that maximally 

stimulated PARP activity in PBL of 13 mammalian species directly correlated with 

species-specific life span with a 5-fold difference between the longest lived (man) and 

shortest lived (rat) species tested (Grube and Burkle., 1992).  
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Figure 5.6: Relationship between (A) log 10 PARP-1 activity (B) log 10 PARP-1 expression and age 
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In contrast to this, Muiras et al reported significantly higher maximum stimulable PARP 

activity in a population of 49 French centenarians vs. 51 younger controls aged 20-70 

years (Muiras et al., 1998).  

Analysis of the data from this study using a Pearson correlation coefficient does not 

show any significant relationship between log10 PARP-1 activity (R2 = 0.02, P = 0.47) or 

log10 PARP-1 expression (R2 = 0.02, P = 0.42) and age. See figure 5.6 

5.4.2.5 PARP-1 T2444C genotyping 

Whole blood samples for analysis of the PARP-1 T2444C SNP were received for 31 out 

of 38 patients. The main reason for not obtaining a result for a given patient was that 

the blood sample was not taken due to error at the treatment centre. DNA was 

extracted from whole blood and analysed using the Taqman kit as described in chapter 

two, Materials and Methods. Results for all 31 patients are shown in table 5.3 together 

with the corresponding pre-AG014699 PARP-1 activity levels. The frequencies of the 

genotypes were as follows: major genotype (T/T) 77.4%, the heterozygote genotype 

(T/C) 19.4% and the minor variant genotype (C/C) 3.2%. The minor allele frequency of 

13% is consistent with the published data reports of between 5-33% and the allele 

frequency was consistent with Hardy Weinberg Equilibrium (X2 = 0.60, P= 0.44). Only 

one patient (35-013) was found to have the C/C variant genotype and interestingly this 

patient had the second lowest PARP-1 activity of the group at 0.43 pmol PAR per 104 

PBL, see figure 5.7. However as this was the only C/C patient it was not possible to do 

further statistical comparisons of this single result but analysis of PARP-1 activity data 

by genotype grouping (T/T vs. [T/C + C/C]) shows a trend towards lower PARP-1 activity 

with the variant C allele but this did not reach statistical significance (P = 0.17, un-

paired t-test).   
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Figure 5.7: PARP-1 activity by PARP-1 T2444C genotype 
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Patient 

study no. 
T2444C SNP Baseline endogenous 

PARP-1 activity  

(mean pmol PAR per 
10

4 
PBL) 

Baseline maximum 
stimulated PARP-1 

activity 
(mean pmol PAR per 10

4 

PBL) 

Baseline PARP-1 
protein expression  

(ng/g protein) 

40-001 T/C 0.00 3.75 0.93 

40-002 T/C 0.06 6.38 0.64 

40-003 T/T 0.08 4.18 0.16 

40-004 T/C 0.10 1.69 0.10 

40-005 T/C 0.34 1.19 0.11 

40-006 T/T 0.30 3.22 0.06 

40-007 T/T 0.03 2.24 0.11 

40-008 T/T 0.22 1.50 0.12 

20-009 T/T 0.09 21.13 0.24 

35-010 T/T 0.05 5.32 * 

35-011 T/T 0.01 1.21 * 

20-012 * 0.04 1.32 * 

35-013 C/C 0.04 0.43 0.17 
40-014 T/T 0.11 36.56 0.21 

35-015 * 0.00 2.34 * 

20-016 T/T 0.03 0.36 * 

35-017 T/T 0.03 2.42 0.14 

40-018 T/T 0.07 5.27 0.16 

20-019 T/T 0.03 2.71 0.00 

35-020 T/T 0.05 3.04 0.11 

35-021 T/C 0.05 0.56 0.05 

40-022 T/T 0.15 4.77 0.57 

36-023 T/T 0.75 9.05 * 

35-024 T/T 0.09 0.70 0.07 

36-025 T/T 0.07 1.34 0.11 

06-027 * 0.04 20.00 0.29 

52-028 T/T 0.03 0.93 0.36 

40-029 T/C 0.06 5.93 0.18 

35-030 T/T 0.05 40.26 0.28 

35-031 T/T 0.20 16.97 0.15 
52-032 T/T * * 0.18 

06-033 * 0.01 1.19 0.16 

35-034 * * * * 

35-035 T/T * * 0.24 

52-036 * * * * 

35-037 T/T 0.01 2.35 0.18 

35-038 T/T 0.00 14.05 0.09 

 
 
Table 5.3: PARP-1 T2444C SNP genotyping results with patients’ C1 baseline endogenous 
PARP-1 activity, maximally stimulated pre-AG014699 PARP-1 activity levels and pre-AG014699 
PARP-1 protein levels.  
* indicates result unavailable due to sample not being taken or insufficient sample to do 
analysis. 
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5.4.3 PARP-1 activity in PBL in response to AG014699  

Blood samples were taken, as described in section 5.3.1, to assess PARP-1 activity 

levels in PBL pre- and post-AG014699. A complete set of samples (four time-points per 

cycle) were received for 26 patients but providing the pre-AG014699 sample was taken 

it was possible to assess the affect of AG014699 on the remaining time-points. This 

was possible for 33 patients and results, expressed as % PARP-1 activity of the pre-

AG014699 baseline sample, for all 33 patients are shown in table 5.4, with summary 

data provided in table 5.5. The D2 pre-dose blood sample was intended to be taken 

approximately 24 hours post the D1 dose of AG014699. It is therefore referred to in 

the text, graphs and tables as D1 24h time-point. 

As explained in section 5.1.1, in cohort one of stage one, six patients (3 with BRCA1 

and 3 with BRCA2 mutations) received the first cycle of AG014699 at a daily dose of 4 

mg/m2.  All six patients subsequently received the second cycle at the higher dose of 

12 mg/m2 as no DLT was observed. PARP-1 activity results for this cohort, expressed as 

a % of the pre-treatment levels, are shown in figure 5.8. A single dose of 4 mg/m2 

AG014699 resulted in profound suppression of PARP-1 activity with mean activity 

levels at 30 min (end of infusion sample) of 2.2% of baseline.  However some recovery 

was seen at 24h with mean PARP-1 activity up to 31.5% of baseline levels.   

Data for the same six patients following a single dose of 12 mg/m2 AG014699 shows 

mean PARP activity levels of 1.3% at 30 min and less recovery of activity at 24 h (mean 

= 3.8%). These are the first examples of intra-patient dose escalation of a PARP-1 

inhibitor and show a dose dependent effect of PARP-1 enzyme inhibition at the 24 

hour time-point. 

In cohort two of stage one a further six patients (3 with BRCA1 and 3 with BRCA2 

mutations) were treated with AG014699 at a daily dose of 12 mg/m2 for cycle one and 

all (except patient 40-007 who withdrew from study due to early disease progression) 

were dose escalated to 18 mg/m2 for subsequent cycles as no DLT was observed. As 

patient 40-007 would not be assessable for response an additional patient was 

recruited to this cohort. Results for all seven patients are shown in figure 5.9. 
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Patient 

study no. 

Dose 

AG014699 
(mg/m

2
) 

 

Mean PARP-1 

activity (± SD) pmol 
PAR per 10

4 
PBL 

% PARP-1 activity of D1 pre-dose levels 

D1 pre-dose D1 EOI D1 4 hours D1 24 hours  

40-001 4 
12 

3.75 ± 0.20 
11.71 ± 0.29 

0.90 ± 0.40 
0.23 ± 0.21 

0.33 ± 0.58 
3.27 ± 0.55 

95.67 ± 4.19 
0.00 ± 0.00 

40-002 4 
12 

6.38 ± 1.92 
1.79 ± 0.14 

0.23 ± 0.21 
2.03 ± 0.55 

7.17 ± 0.76 
8.20 ± 0.30 

29.03 ± 2.20 
10.43 ± 0.98 

40-003 4 
12 

4.18 ± 0.20 
7.70 ± 0.23 

1.17 ± 0.12 
1.00 ± 0.20 

6.63 ± 0.75 
* 

11.00 ± 1.04 
6.17 ± 0.29 

40-004 4 

12 

1.69 ± 0.13 

18.16 ± 0.40 

10.23 ± 1.36 

3.17 ± 0.12 

5.23 ± 0.42 

5.83 ± 0.42 

38.40 ± 3.50 

0.00 ± 0.00 

40-005 4 
12 

1.19 ± 0.23 
0.40 ± 0.01 

0.30 ± 1.23 
0.00 ± 0.00 

0.00 ± 0.00 
0.00 ± 0.00 

7.91 ± 0.51 
0.00 ± 0.00 

40-006 4 
12 

3.22 ± 0.33 
13.01 ± 0.32 

1.13 ± 1.96 
* 

29.17 ± 5.31 
* 

6.80 ± 0.85 
6.17 ± 0.29 

40-007† 12 2.24 ± 0.12 1.46 ± 0.14 6.36 ± 1.51 3.22 ± 0.24 

40-008 12 
18 

1.50 ± 0.05 
2.48 ± 0.10 

1.18 ± 2.05 
10.97 ± 3.51 

20.61 ± 7.17 
17.09 ± 1.95 

147.89 ± 16.85 
30.58 ± 2.11 

20-009 12 
18 

21.13 ± 0.51 
21.94 ± 1.01 

12.22 ± 1.20 
3.87 ± 0.29 

10.70 ± 0.27 
* 

12.97 ± 0.58 
7.53 ± 0.38 

35-010 12 

18 

5.32 ± 0.49 

18.28 ± 1.38 

18.97 ± 3.07 

18.17 ± 1.57 

26.47 ± 0.49 

22.83 ± 0.90 

31.37 ± 3.19 

32.13 ± 0.15 

35-011 12 
18 

1.21 ± 0.17 
9.22 ± 1.47 

7.32 ± 1.07 
3.77 ± 0.51 

20.72 ± 0.09 
6.67 ± 0.42 

44.09 ± 3.50 
15.3 ± 0.10 

35-017 12 
18 

2.42 ± 0.08 
6.81 ± 0.14 

0.39 ± 0.21 
33.61 ± 0.93 

8.60 ± 0.52 
16.24 ± 0.75 

2.74 ± 0.20 
13.94 ± 0.22 

40-018 12 
18 

5.27 ± 0.28 
2.92 ± 0.16 

7.09 ± 1.06 
2.42 ± 0.06 

2.36 ± 0.12 
2.73 ± 0.10 

1.84 ± 0.12 
8.43 ± 1.34 

20-012 18 1.32 ± 0.12 4.37 ± 0.83 16.83 ± 1.36 4.73 ± 0.51 

35-013 18 0.43 ± 0.01 2.03 ± 1.04 0.00 ± 0.00 1.37 ± 1.31 

40-014 18 36.56 ± 10.90 11.13 ± 0.75 16.77 ± 1.27 56.13 ± 3.05 

35-015 18 2.34 ± 0.18 2.11 ± 0.13 1.23 ± 0.15 6.63 ± 0.06 

20-016 18 0.36 ± 0.04 0.22 ± 0.38 11.98 ± 1.32 1.16 ± 1.01 

20-019 18 2.71 ± 0.05 0.00 ± 0.00 * 1.90 ± 0.32 

35-020 18 3.04 ± 0.05 3.30 ± 0.35 * 14.80 ± 0.89 

35-021 18 0.56 ± 0.08 52.59 ± 1.77 42.74 ± 1.60 32.24 ± 3.21 

40-022 18 4.77 ± 0.25 11.90 ± 1.17 21.91 ± 3.00 34.63 ± 2.45 

36-023 18 9.05 ± 0.78 5.52 ± 0.37 5.02 ± 0.36 * 

35-024 18 0.70 ± 0.01 43.23 ± 5.89 42.93 ± 1.55 481.00 ± 83.96
◊
 

36-025 18 1.34 ± 0.03 31.90 ± 3.82 19.87 ± 1.10 39.20 ± 2.51 

06-027 18 20.00 ± 0.56 3.09 ± 0.28 4.72 ± 0.12 3.86 ± 0.20 

52-028 18 0.93 ± 0.11 17.77 ± 6.19 1.34 ± 1.74 0.00 ± 0.00 
40-029 18 5.93 ± 0.27 * 5.16 ± 0.56 3.85 ± 0.37 

35-030 18 40.26 ± 0.71 7.17 ± 0.48 21.09 ± 0.54 5.47 ± 0.45 

35-031 18 16.97 ± 3.38 49.81 ± 2.58 46.24 ± 10.22 43.69 ± 0.33 

06-033 18 1.19 ± 0.11 16.87 ± 1.67 33.09 ± 1.75 26.87 ± 0.42 

35-037 18 2.35 ± 0.42 3.46 ± 0.36 1.28 ± 0.27 2.79 ± 0.33 

35-038 18 14.05 ± 2.43 9.22 ± 1.05 12.20 ± 2.56 6.33 ± 0.24 

 
Table 5.4: PARP-1 activity in response to AG014699 expressed as % PARP-1 activity of the un-
treated control samples. * indicates that result unavailable due to sample not being taken or 
insufficient sample to do analysis. EOI = end of infusion, SD = standard deviati on, CV = 
coefficient of variation 
†Patient withdrew from study after C1 due to disease progression. 
◊ Result excluded from further analysis but reported 
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Dose level No. Patients Mean % PARP activity of baseline ± SD   (%CV) 

D1 EOI D1 4 hours D1 24 hours 

4 mg/m
2
  6 2.37  ±   3.89   

(167.31) 
8.09  ±  10.78    
(133.30) 

31.47  ±  33.94  
(107.84) 

12 mg/m
2
 13 4.59  ±  5.87    

(127.98) 
10.28   ±  8.59     
(83.53) 

20.53  ±  40.51  
(197.33) 

18 mg/m
2
 24 13.94  ±  

15.79(113.27) 

16.09  ±  14.04    

(87.28) 

16.40   ± 16.19    

(98.71) 

 
Table 5.5: PARP-1 activity in response to AG014699: summary statistics.  
 
 

As explained, all patients in stage one (with the exception of patient 40-007) 

underwent PD sampling for PARP-1 activity in cycle one and two of the study. It was 

therefore possible to investigate whether an individual’s baseline PARP-1 activity (D1 

pre-dose levels) varied between the first and second cycle of treatment. Figure 5.10 

shows the % change in baseline PARP-1 activity levels from the D1 pre-dose sample of 

cycle one to the D1 pre-dose time-point of cycle two for all 12 patients. In 75% of 

patients (9/12) there was an increase in the C2 D1 pre-dose PARP-1 activity compared 

to the C1 levels. The mean fold-change was for all patients a 2.12 increase over 

baseline. This could be consistent with known intra-subject variability of PARP-1 levels 

which has been reported as up to 1.9-fold over three blood samples during a period of 

72 hours (MD thesis data Chris Jones, Newcastle University, UK, 2006). However it may 

represent an induction of PARP-1 activity following recovery after inhibition by the 

AG014699. It would be interesting to investigate whether the same phenomenon 

occurred with PARP-1 protein expression levels. 
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Figure 5.8: PARP-1 activity in response to AG014699 cohort one, stage one patients. Grey lines and symbols represent the 4 mg/m2 dose and the 
green symbols and lines are the 12 mg/m2 dose level. 
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Figure 5.9: PARP-1 activity in response to AG014699 cohort two, stage one patients. Green lines and symbols represent the 12 mg/m2 dose and the 
blue symbols and lines the 18 mg/m2 dose level. 



  Chapter Five – Clinical studies  

166 
 

 
 

 
Figure 5.10: Intra-patient % change in PARP-1 activity after dose escalation (from C1 D1 pre-
dose to C2 D1 pre-dose levels). Patients who received 4mg/m2 for C1 are represented by the 
grey symbols and patients who received 12mg/m2 in cycle one are shown in green symbols. 

 

Patients in stage two of the study received 18 mg/m2 daily dosing of AG014699 for all 

cycles. PARP-1 activity data for these patients, in addition to those in cohort two, stage 

one, who were also treated at 18 mg/m2 in C2, are shown in figure 5.11A. Five patients 

had significantly less inhibition of PARP-1 activity at the EOI time-point than the rest of 

the group (mean % activity over baseline = 42.22 vs. 7.53; p < 0.001, un-paired t-test) 

and their individual results are plotted in figure 5.11B. In all five of these patients 

PARP-1 activity levels did fall further at the 4 h time-point (mean activity = 33.6 %) but 

in 3/4 patients (no sample received for patient 35-024) PARP-1 activity levels of > 30% 

of baseline were seen at the D2 pre-dose time-point.  

Overall for stage two patients dosed at 18 mg/m2, the D2 pre-dose sample shows a 

mean PARP-1 activity of 16.44% of baseline; demonstrating that AG014699 results in 

profound PARP-1 inhibition in PBL 24 h after the last dose. However, as figure 5.11A 

highlights in a number of patients recovery to > 30% of baseline is seen at this time-

point. The impact of this in terms of clinical response to AG014699 will be reviewed 

later. Interestingly no correlation between the degree of AG014699 induced inhibition 
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of PARP-1 activity and baseline (maximum stimulated) levels of PARP-1 activity was 

seen in these patients at any of the time-points, see figure 5.12. 

A wide inter-patient variation in inhibition of PARP-1 activity by AG014699 was seen at 

all time-points and dose levels with % CV shown in table 5.4.  

For all three dose cohorts the mean PARP activity ~ 24 h (D2 pre-dose sample) after a 

single dose of 4, 12 and 18 mg/m2 AG014699 was 31.47%, 20.53% and 16.40% 

respectively. Figure 5.13A shows a clear dose-response relationship between mean % 

PARP-1 enzyme inhibition at this time-point and increasing doses of AG014699. 

Interestingly this is not seen at the earlier time-points with the degree of inhibition at 

18 mg/m2 similar to or less than that at the other dose levels, even when you remove 

the data points for those patients identified in figure 5.11. This may suggest that higher 

AG014699 doses result in prolongation of PARP-1 inhibition rather than more 

profound inhibition. 
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Figure 5.11: PARP-1 activity in response to AG014699 stage two patients (A) Scatter-plot 
showing the effect of 18 mg/m2 dose of AG014699 on PARP-1 activity in PBL in 24 patients. 5 
Patients with the highest EOI activity levels are shown with study number next to the 
corresponding plots. (B) Data for the five patients identified in A 
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Figure 5.12: Relationship between patients baseline PARP activity and levels after AG014699 
exposure. Data shows no relationship between PARP-1 activity levels at the end of infusion (A), 
4 h (B) and 24 h (C) post dose of AG014699 and a patients’ baseline pre-treatment PARP-1 
activity levels. Correlation calculated using Pearsons coefficient. 
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Figure 5.13: (A) Mean % PARP-1 activity for each time-point of each dosing level (represented 
by the coloured bars). Data show a dose-response at the D2 pre-dose sample with reduction in 
PARP-1 activity with increasing dose of AG014699. Error bars represent the SEM. (B) The same 
data minus the five patients identified in figure 5.11. 
 

5.4.4 Pharmacokinetics of AG014699 

The pharmacokinetics of AG014447 (the free base of AG014699) was determined from 

plasma extracted from patient’s whole blood using LC/MS/MS, as described in chapter 

two, section 2.11.  The blood sampling schedule and preparation of plasma are 

described in section 5.3.2. A complete set of samples (9 time-points per cycle) was 

received for 28 patients. However, sufficient samples were received from 35 patients 
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and are included in this pharmacokinetic study. Results, expressed as concentration of 

AG014447 in ng/ml, for the individual sampling time-points for all 35 patients are 

shown in Table 5.6, with summary data presented in Table 5.7.   

As described in section 5.4.3 this is the first clinical trial to include intra-patient dose 

escalation of a PARP-1 inhibitor. Based on data from the previous phase I study of 

AG014699 in combination with temozolomide (Plummer et al., 2008) the maximum or 

peak concentration of AG014699 after administration (Cmax) occurred at the end of the 

30 minute infusion. Figure 5.14 shows the Cmax values on D1, 4 and 5 for each dose 

level and demonstrates a linear pharmacokinetics with increasing AG014699 dose, 

although there was considerable inter-patient variability.  

 

 

 
Figure 5.14: Box plot and whiskers plot showing the Cmax AG014447 (ng/ml) for each time-
point in each AG014699 doing cohort. Lines represent median values. 
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Separate graphs for D1, D4 and D5 Cmax AG014447 for each of the three dose levels are 

shown in Figure 5.15.  

Linear regression analysis demonstrates a significant relationship (P < 0.001) between 

increasing dose of AG014699 and Cmax for all three days tested. Mean Cmax AG014447 

on D1 were 246.1 ng/ml, 676.5 ng/ml and 859.7 ng/ml for the 4 mg/m2, 12 mg/m2 and 

18 mg/m2 dose levels respectively.  

This is comparable with the published phase I study data set with mean Cmax values on 

D1 of 134 ng/ml, 551 ng/ml and 837 ng/ml for the 4 mg/m2, 12 mg/m2 and 18 mg/m2 

cohorts respectively (Plummer et al., 2008). For the 18 mg/m2 dosing cohort Cmax was 

highest on D4 but this was not significantly different to the Cmax values for D1 and 5 (P 

= 0.22, one way analysis of variance). 
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Figure 5.15: Linear regression analysis showing the relationship of AG014699 dose and Cmax 

(ng/ml) on (A) D1, (B) D4 and (C) D5.  
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Patient study 
no. 

Dose 
AG014699 
(mg/m

2
) 

 

[AG014447] ng/ml 

D1 pre-dose D1 EOI D1 1-3 hrs D2 pre-dose D4 pre-
dose 

D4 EOI D4 1-3 hrs D5 pre-
dose 

D5 EOI 

40-001 4 
12 
 

0.00 
0.00 

168.00 
844.00 

7.98 
22.70 

0.25 
2.06 

2.60 
4.05 

91.90 
627.00 

29.90 
77.20 

1.52 
4.37 

161.00 
569.00 

40-002 4 
12 

 

0.00 
0.00 

311.00 
658.00 

21.20 
83.50 

4.32 
11.80 

5.77 
21.20 

305.00 
538.00 

58.10 
182.00 

6.95 
22.00 

280.00 
301.00 

40-003 4 
12 
 

0.00 
0.00 

222.60 
883.0 

37.90 
121.60 

9.75 
39.80 

17.70 
78.10 

370.00 
* 

97.40 
* 

19.90 
* 

334.00 
* 

40-004 4 
12 

 

0.00 
0.00 

89.30 
488.00 

20.00 
83.50 

6.09 
26.40 

10.60 
27.30 

242.00 
748.00 

63.10 
224.00 

10.90 
35.90 

176.00 
* 

40-005 4 
12 
 

0.00 
0.00 

335.00 
1356.00 

62.90 
275.00 

13.80 
37.30 

22.70 
38.10 

334.00 
893.00 

119.00 
320.00 

26.60 
38.50 

395.00 
699.00 

40-006 4 
12 

 

0.00 
* 

347.00 
* 

24.50 
* 

6.07 
* 

* 
* 

* 
* 

* 
* 

14.90 
* 

180.00 
* 

40-007* 12 
 

0.00 773.00 108.00 35.70 64.40 736.00 297.00 60.90 913.00 

40-008 12 
18 
 

0.00 
0.00 

348.00 
606.00 

55.70 
131.00 

7.90 
19.70 

6.80 
24.80 

292.00 
711.00 

96.90 
198.00 
 

9.93 
28.10 

194.00 
1655.00 

20-009 12 

18 
 

0.00 

0.00 

430.00 

708.00 

226.00 

368.00 

27.20 

25.80 

33.40 

60.40 

340.00 

886.00 

272.00 

328.00 

35.10 

45.90 

488.00 

1234.00 
 

35-010 12 
18 
 

0.00 
0.00 

538.00 
461.00 

137.00 
129.00 

18.40 
29.30 

35.00 
62.70 

3410.00† 
815.00 

97.60 
195.00 

31.80 
85.70 

348.00 
558.00 
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Patient study 
no. 

Dose 
AG014699 
(mg/m

2
) 

[AG014447] ng/ml 

D1 pre-dose D1 EOI D1 1-3 hrs D2 pre-dose D4 pre-

dose 

D4 EOI D4 1-3 hrs D5 pre-

dose 

D5 EOI 

35-011 12 

18 

0.00 

0.00 

754.00 

342.00 

86.20 

109.00 

24.50 

24.40 

33.80 

68.20 

325.00 

706.00 

83.50 

156.00 

38.80 

36.40 

549.00 

1000.00 
 

20-016 12 
18 

0.00 
0.00 

698.00 
979.00 

* 
387.00 

17.20 
76.80 

25.70 
46.50 

1110.00 
2010.00 

218.00 
418.00 

31.50 
66.10 

661.00 
877.00 

 
35-017 12 

18 

0.00 

0.00 

344.00 

431.00 

139.00 

170.00 

19.60 

31.80 

32.50 

74.10 

568.00 

445.00 

207.00 

280.00 

44.80 

64.80 

884.00 

589.00 
 

40-018 12 
18 

0.00 
0.00 

681.00 
811.00 

93.80 
120.00 

28.10 
42.30 

32.00 
84.60 

457.00 
490.00 

134.00 
298.00 

44.30 
76.10 

656.00 
885.00 

 
20-012 18 0.00 

 

622.00 259.00 18.30 27.30 920.00 302.00 29.00 1095.00 

35-013 18 0.00 
 

894.00 307.00 61.70 70.90 1180.00 464.00 94.20 745.00 

40-014 18 0.00 407.00 40.60 2.99 4.56 655.00 157.00 3.71 362.00 

35-015 18 0.00 679.00 203.00 369.00 395.00 1385.00 675.00 434.00 1600.00 

20-019 18 0.00 703.00 192.00 35.40 44.90 * * 42.80 784.00 

35-020 18 0.00 883.00 248.00 24.30 49.50 2400.00 441.00 69.80 967.00 

35-021 
 
 
 

18 0.00 985.00 158.00 27.40 65.70 455.00 222.00 56.10 653.00 
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Patient study 
no. 

Dose 
AG014699 
(mg/m

2
) 

[AG014447] ng/ml 

D1 pre-dose D1 EOI D1 1-3 hrs D2 pre-dose D4 pre-

dose 

D4 EOI D4 1-3 hrs D5 pre-

dose 

D5 EOI 

40-022 18 0.00 1460.00 173.00 53.30 85.90 1390.00 368.00 81.70 854.00 

36-023 18 0.00 1760.00 624.00 62.60 91.40 1680.00 747.00 1780.00
◊
 * 

35-024 18 0.00 444.00 102.00 5.55 3.96 300.00 100.00 3.18 276.00 

36-025 18 0.00 1770.00 121.00 6.46 12.20 423.00 131.00 11.30 620.00 

06-027 18 0.00 930.00 157.00 53.70 92.20 1360.00 348.00 81.00 538.00 

52-028 18 0.00 279.00 92.30 17.70 34.80 298.00 213.00 41.10 355.00 

40-029 18 0.00 1666.00 280.00 66.80 95.00 1600.00 645.00 108.00 1920.00 

35-030 18 0.00 740.00 103.00 18.70 82.80 812.00 128.00 47.30 280.00 

35-031 18 0.00 1050.00 273.00 88.10 118.00 2480.00 589.00 110.00 1260.00 

52-032 18 0.00 1350.00 270.00 118.00 162.00 808.00 * 209.00 691.00 

06-033 18 0.00 691.00 344.00 78.00 134.00 1140.00 586.00 74.30 837.00 

35-035 18 0.00 700.00 191.00 83.00 83.50 1120.00 386.00 112.00 1140.00 

35-037 18 0.00 1000.00 353.00 44.50 * 1620.00 48.30 143.00 877.00 
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Patient study 
no. 

Dose 
AG014699 
(mg/m

2
) 

[AG014447] ng/ml 

D1 pre-dose D1 EOI D1 1-3 hrs D2 pre-dose D4 pre-
dose 

D4 EOI D4 1-3 hrs D5 pre-
dose 

D5 EOI 

35-038 18 0.00 348.00 157.00 20.50 75.00 354.00 14.80 53.80 391.00 

 

Table 5.6: Concentration of AG014447 (ng/ml) for the 35 patients in both Stage 1 and 2. * indicates that result unavailable due to sampl e not being taken or 
insufficient sample to do analysis †◊ Spurious results were confirmed in repeated assays but removed from further PK analysis 
 
 
 

Dose level No. Patients Mean concentration AG014447 (ng/ml) ± SD   (%CV) 

D1 pre-dose D1 EOI D1 1-3h D2 pre-dose D4 pre-dose D4 EOI D4 1-3h D5 pre-dose D5 EOI 

4 mg/m
2
  6 0.00 246.10 

103.30 
(42) 

 

29.08 
19.14 
(66) 

6.71 
4.64 
(69) 

11.87 
8.31 
(70) 

268.60 
109.30 
(41) 

73.50 
34.96 
(48) 

13.46 
9.03 
(67) 

254.30 
97.12 
(38) 

 

12 mg/m
2
 14 0.00 676.50 

271.20 
(40) 
 

119.30 
70.16 
(59) 

22.77 
11.41 
(50) 

33.26 
20.00 
(60) 

837.00 
846.00 
(101) 

184.10 
86.00 
(47) 

33.16 
15.37 
(46) 

569.30 
227.80 
(40) 

 

18 mg/m
2
 28 0.00 846.40 

423.30 

(50) 
 

216.50 
122.80 

(57) 

53.79 
68.04 

(127) 

79.63 
73.19 

(92) 

1053.00 
614.20 

(58) 

324.50 
200.40 

(62) 

142.40 
331.10 

(232) 

853.40 
419.90 

(49) 

 
Table 5.7: Summary the PK AG014447 statistics for the three dose levels  
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5.4.5 Effects the of Pharmacokinetics of AG014699 on inhibition of PARP-1 activity 

To determine whether any relationship exists between the PK of AG014699 and extent 

of PARP-1 enzyme inhibition paired sample sets of PK and PD (where available) for 

each patient treated within each dose level were investigated.  

The results of PARP-1 enzyme inhibition at the D1 EOI and D1 24 hour time-points 

were analysed together with the D1 Cmax (EOI) and D2 pre-dose plasma levels of 

AG014447 using Pearson correlation coefficients. The D1 EOI and D2 pre-dose data 

sets for PARP-1 activity were not normally distributed (positive skew) and therefore a 

log transformation was performed prior to application of the correlation.   

In the 4 mg/m2 cohort an inverse relationship was observed between the 

concentration of AG014447 and the levels of PARP-1 enzyme activity; with a trend 

towards higher levels of plasma concentration AG014447 being associated with lower 

PARP-1 activity. The strongest association was with the D1 Cmax AG014447 and the D1 

EOI PARP-1 activity (R2 = 0.62, P = 0.06) and the D2 pre-dose concentration of 

AG014447 and the 24 hour PARP-1 activity levels (R2 = 0.63, P = 0.06). These results, 

presented in figure 5.16, did not reach statistical significance but this may have been 

secondary to the small sample size. Not unexpectedly, the relationship between PARP-

1 activity at D1 24 hours and the D1 Cmax AG014447 showed the lowest correlation (R2 

= 0.50, P = 0.12). 

In the 12 mg/m2 cohort again a trend towards lower PARP-1 activity with higher 

plasma concentrations of AG014447 at the D2 pre-dose paired time-points was seen 

but any relationship was weak and not statistically significant (R2 = 0.34, P = 0.10), see 

figure 5.17.  

At the highest dose level 18 mg/m2 cohort no significant relationship was observed 

between the degree of PARP-1 activity and the plasma concentration of AG014447 in 

any of the data sets, see Figure 5.18.  
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Figure 5.16: Relationship between concentration of AG014447 and PARP-1 enzyme activity for 
the 4 mg/m2 cohort (A) log10 PARP-1 activity D1 vs. Cmax AG014447 D1. (B) log10 PARP-1 activity 
D2 pre-dose vs. Cmax AG014447 D1. (C) log10 PARP-1 activity D2 pre-dose vs. [AG014447] D2 
pre-dose. R2 and P values calculated using Pearson correlation coefficient. 
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Figure 5.17: Relationship between concentration of AG014447 and PARP-1 enzyme activity for 
the 12 mg/m2 cohort. (A) log10 PARP-1 activity D1 vs. Cmax AG014447 D1. (B) log10 PARP-1 
activity D2 pre-dose vs. Cmax AG014447 D1.(C) log10 PARP-1 activity D2 pre-dose vs. [AG014447] 
D2 pre-dose. R2 and P values calculated using Pearson correlation coefficient. 
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Figure 5.18: Relationship between concentration of AG014447 and PARP-1 enzyme activity for 
the 18 mg/m2 cohort.(A) log10 PARP-1 activity D1 vs. Cmax AG014447 D1.(B) log10 PARP-1 
activity D2 pre-dose vs. Cmax AG014447 D1.(C) log10 PARP-1 activity D2 pre-dose vs. [AG014447] 
D2 pre-dose. R2 and P values calculated using Pearson correlation coefficient. 
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5.4.6 Pharmacokinetics of AG014699 in a tumour biopsy  

As part of the Phase II PARP-BRCA study ethical approval to obtain single on-study 

tumour biopsies was obtained. Patient 40-014, with BRCA1 mutated ovarian cancer, 

had a vaginal vault recurrence at the time of study referral and consented to this 

additional biopsy. Patient 40-014 was treated within stage two of the trial and received 

all doses of AG014699 at a dose of 18 mg/m2. Unfortunately, due to the availability of 

the gynae-oncology surgical team the biopsy could not be taken until the patient’s 

second cycle of AG014699 treatment. The biopsy therefore did not coincide with the 

peripheral blood PK or PD sampling, which occurred, for this patient, in C1 only. The 

sample was taken 240 min following the start of the AG014699 infusion on C2 D4. The 

tumour was immediately snap frozen in liquid nitrogen and stored at -800 C until 

homogenisation and analysis using LC/MS/MS assay as described in chapter two, 

section 2.11. The concentrations of the analyte (AG014447) detected were multiplied 

by four to account for the dilution of the sample that occurred during the 

homogenisation step  Results are shown in figure 5.19 together with the patient’s 

plasma concentrations of AG014447 for C1. AG014447 was detectable in the tumour 

homogenate at a concentration of 692 ng/ml. This concentration compares to a 

plasma concentration of 157 ng/ml on the D4 + 92 min time-point in cycle 1 and 

demonstrates good tumour penetration and accumulation relative to plasma of 

AG014699 following intravenous administration. 
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Figure 5.19: Concentration of AG014447 (ng/ml) in Patient 40-014 plasma (P) and tumour (T) samples following 18 mg/m2 in cycle (C) one day (D) 1 and 4 for 
plasma and C2 D4 for the tumour homogenate. 
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5.4.7 Pharmacogenomics of AG014699 metabolism 

A single whole blood sample was scheduled to be taken for each patient prior to 

commencing the first cycle of AG014699 for use in genotyping assays. DNA was 

extracted as described in section 5.3.3 and subsequently analysed using TaqMan Real-

time PCR genotyping assay kits (Applied Biosystems, Warrington, UK) as described in 

chapter two, Materials and Methods, section 2.4.3. Whole blood samples for analysis 

of the CYP2D6 *2 and CYP2D6*4 SNP were received for 31 out of the 38 patients. The 

main reason for not obtaining a result for a given patient was that the blood sample 

was not taken at the treatment centre.  

5.4.7.1 CYP2D6*2 

Results for all 31 patients are shown in table 5.8 together with the corresponding PK 

results. The frequencies of the genotypes were as follows: major genotype (T/T) 12.9%, 

the heterozygote genotype (T/C) 38.7% and the minor variant genotype (C/C) 48.4%. 

The minor allele frequency of 68% is not in Hardy Weinberg Equilibrium (P = 0.52) and 

the frequency of the variant genotype higher than that reported in other Caucasian 

populations (20-35%), (Sistonen et al., 2007; Ramon y Cajal et al., 2010). However this 

result is difficult to interpret given the small sample size of this study. Figure 5.20 

shows the D1 Cmax (A) and D2 pre-dose concentrations of AG014447 (B) by CYP2D6*2 

genotype result.  

5.4.7.2 CYP2D6*4 

CYP2D6*4 is the most common inactivating mutation found in Caucasian populations. 

It is reported to occur at a frequency of between 12 – 23% in European populations 

(Sistonen et al., 2007; Ramon y Cajal et al., 2010). Results for all 31 patients are shown 

in table 5.8 together with the corresponding PK results. The frequencies of the 

genotypes were similar to that reported in previous population studies (see above) and 

as follows: major genotype (G/G) 77.4%, the heterozygote genotype (G/A) 12.9% and 

the minor variant genotype (A/A) 9.7%. The minor allele frequency is 16% and 

consistent with Hardy Weinberg Equilibrium (P = 0.004). Figure 5.20 shows the D1 Cmax 

(A) and D2 pre-dose concentrations of AG014447 (B) by CYP2D6*4 genotype result. 
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Patient no. CYP2D6*2 
 

CYP2D6*4 D1 Cmax [AG014447]  
ng/ml 

D2 pre-dose[AG014447] 
ng/ml 

40-001 C/C G/A 844.00 2.06 

40-002 T/T G/G 658.00 11.80 

40-003 T/C G/G 883.00 39.80 

40-004 C/C A/A 488.00 26.40 

40-005 T/C G/G 1356.00 37.30 

40-006 C/C G/G * * 

40-007 T/C G/G 773.00 35.70 

40-008 C/C G/G 606.00 19.70 

20-009 C/C G/G 708.00 25.80 

35-010 T/C G/G 461.00 29.30 

35-011 T/C G/G 342.00 24.40 
35-013 T/C G/G 894.00 61.70 

40-014 C/C A/A 407.00 2.99 

20-016 C/C G/A 979.00 76.80 

35-017 C/C G/G 431.00 31.80 

40-018 T/C G/G 811.00 42.30 

20-019 T/T G/G 703.00 35.40 

35-020 C/C G/A 883.00 24.30 

35-021 T/T G/G 985.00 27.40 

40-022 T/C G/G 1460.00 53.30 

36-023 T/C G/G 1760.00 62.60 

35-024 C/C G/G 444.00 5.55 

36-025 C/C G/A 1770.00 6.46 

52-028 T/T G/G 279.00 17.70 

40-029 C/C G/G 1666.00 66.80 

35-030 C/C A/A 740.00 18.70 

35-031 T/C G/G 1050.00 88.10 

52-032 T/C G/G 1350.00 118.00 

35-035 C/C G/G 700.00 83.00 
35-037 T/C G/G 1000.00 44.50 

35-038 C/C G/G 348.00 20.50 

 

Table 5.8: CYP2D6 genotyping results together with patients corresponding pharmacokinetic 
results.  
* Sample not taken. 
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Figure 5.20: Box and whiskers plots showing concentration of AG014447 at D1 Cmax (A) and D2 
pre-dose (B ) by CYP2D6 *2 and *4 genotype. P values are results of ANOVA comparing all 
three groups.  
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5.4.8 Clinical Outcomes of the Phase II trial 

Between January 2007 and September 2010 38 patients were enrolled into the study 

and results for these patients are evaluated here. Final results of the completed study 

will be reported at a later date. 

5.4.8.1 AG014699 administered 

All 38 patients received at least one complete 21 day cycle of AG014699. In stage one 

of the study six patients received one cycle of AG014699 at the 4 mg/m2 dose level and 

14 patients (including the previous six) received a cycle at the 12 mg/m2 level. In the 

second stage of the trial 31 patients (including seven from stage one cohort two) 

received at least one cycle of AG014699 at 18 mg/m2. To the end of September 2010 a 

total of 201 AG014699 cycles were administered within the study. The median number 

of treatment cycles per patient was five (range = 1-21). Six patients were dose-

escalated from 4 mg/m2 to 12 mg/m2 and seven patients were dose-escalated from 12 

mg/m2 to 18 mg/m2 as per study protocol. No patients received a dose reduction. No 

treatment cycles were delayed due to AG014699-related toxicity. 

5.4.8.2 Toxicity 

All 38 patients received at least one dose of AG014699 and were therefore assessable 

for toxicity. Toxicity was categorised and coded by the CTCAE version 3.0. Over-all 

AG014699 was well tolerated in this patient population with no dose-limiting toxicities 

observed in any stage of the study. This adds to the findings of the phase I study of 

AG014699 in combination with temozolomide, in which no toxicity from test doses of 

single-agent AG014699 were reported (Plummer et al., 2008).  

AG014699 had an acceptable safety profile with drug-related toxicity mainly grade 1 

and 2. The most commonly reported AG014699-related grade 1/2 non-haematological 

toxicities being: fatigue (16/38, 42.1% of patients), nausea (28.9%) and diarrhoea 

(21.1%). Haematological toxicities were not expected based on the previous studies of 

single doses of AG014699. However, possibly related grade 2 anaemia was reported in 

patient 40-007 during cycle one and possibly related grade 2 lymphopenia, grade 1 

neutropenia and grade 1 thrombocytopenia were seen in patient 40-001 during C18. 

No patient withdrew from the study due to toxicity.  
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Two patients died within 28 days of last study drug treatment and both deaths were 

deemed to be unrelated to AG014699. Patient 40-007 died of disease progression on 

study and patient 52-032, with heavily pre-treated metastatic breast cancer, died of 

hepatic failure. All recorded adverse events (AEs) to date are listed in Table 5.9. 
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Body system Adverse event CTCAE category Number of episodes  (Number of patients : % of total number of patients) 

All AEs Related AEs Grade 3/4/5 Related AEs 

Auditory/Ear Auditory/Ear (other) 

Tinnitus 

1   (1: 2.6%) 

1   (1: 2.6%) 

0   (0: 0%) 

1   (1: 2.6%) 

0   (0: 0%) 

0   (0: 0%) 

Blood/Bone marrow Anaemia 

Lymphopenia 

Neutropenia 

Thrombocytopenia 

1   (1: 2.6%) 

2   (2: 5.3%) 

2   (2: 5.3%) 

1   (1: 2.6%) 

1   (1: 2.6%) 

1   (1: 2.6%) 

1   (1: 2.6%) 

1   (1: 2.6%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

Cardiac arrhythmia Palpitations 

Sinus bradycardia 

Sinus tachycardia 

Vaso-vagal episode 

1   (1: 2.6%) 

1   (1: 2.6%) 

1   (1: 2.6%) 

1   (1: 2.6%) 

1   (1: 2.6%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

Cardiac General  Hypertension 2   (1: 2.6%) 2   (1: 2.6%) 0   (0: 0%) 

Constitutional Symptoms Fatigue 

Fever 

Insomnia 

Rigors/chills 

Weight gain 

Weight loss 

36   (20: 52.6%) 

6   (5: 13.2%) 

3   (3: 7.9%) 

1   (1: 2.6%) 

1   (1: 2.6%) 

4   (4: 10.5%) 

31   (18: 47.3%) 

2   (2: 5.3%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

3   (2: 5.3%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

Death Death-disease progression NOS 1   (1: 2.6%) 0   (0: 0%) 0   (0: 0%) 
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Body system Adverse event CTCAE category Number of episodes  (Number of patients : % of total number of patients) 

All AEs Related AEs Grade 3/4/5 Related AEs 

Dermatology/Skin Alopecia 

Bruising 

Dermatology-other 

Erythema multiforme 

Infection site reaction 

Pruritus 

Rash 

3   (2: 5.3%) 

3   (3: 7.9%) 

8   (5: 13.2%) 

2   (2: 5.3%) 

13   (6: 15.8%) 

12   (3: 7.9%) 

2   (2: 5.3%) 

3   (2: 5.3%) 

0   (0: 0%) 

3   (2: 5.3%) 

0   (0: 0%) 

8   (3: 7.9%) 

12   (3: 7.9%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

Endocrine Hot flashes 1   (1: 2.6%) 0   (0: 0%) 0   (0: 0%) 

Gastrointestinal  Anorexia 

Constipation 

Dehydration 

Diarrhoea 

Distension 

Dry mouth 

Dysphagia 

Flatulence 

GI-other 

Heartburn 

8   (8: 21.1%) 

16   (10: 26.3%) 

2   (1: 2.6%) 

25   (14: 36.8%) 

14   (11: 28.9%) 

3   (3: 7.9%) 

1   (1: 2.6%) 

1   (1: 2.6%) 

4   (3: 7.9%) 

4   (4: 10.5%)  

4   (4: 10.5%) 

2   (2: 5.3%) 

0   (0: 0%) 

15   (8: 21.1%) 

0   (0: 0%) 

1   (1: 2.6%) 

0   (0: 0%) 

0   (0: 0%) 

2   (1: 2.6%) 

1   (1: 2.6%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 
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Body system Adverse event CTCAE category Number of episodes  (Number of patients : % of total number of patients) 

All AEs Related AEs Grade 3/4/5 Related AEs 

Gastrointestinal  Mucositits 

Nausea 

Obstruction GI-Colon 

Obstruction GI-Small bowel  

Taste alteration 

Teeth 

Ulceration-stoma 

Vomiting 

2   (1: 2.6%) 

31   (18: 47.4%) 

2   (1: 2.6%) 

1   (1: 2.6%) 

1   (1: 2.6%) 

1   (1: 2.6%) 

1   (1: 2.6%) 

30   (14: 36.8%) 

0   (0: 0%) 

14   (11: 28.9%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

6   (5: 13.2%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

Haemorrhage/Bleeding Haem GU-urinary 

Haem GU-vagina 

Haemorrhage-other 

1   (1: 2.6%) 

8   (3: 7.9%) 

2   (2: 5.3%) 

0   (0: 0%) 

1   (1: 2.6%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

Hepatobiliary/Pancreas Liver dysfunction 1   (1: 2.6%) 0   (0: 0%) 0   (0: 0%) 

Infection All systems 26   (19: 50.0%) 2   (2: 5.3%) 0   (0: 0%) 

Lymphatics Lymphatics-other 

Limb oedema 

1   (1: 2.6%) 

8   (6: 15.8%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

Metabolic/Laboratory ALT 

ALP 

Creatinine 

3   (3: 7.9%) 

3   (2: 5.3%) 

1   (1: 2.6%) 

1   (1: 2.6%) 

2   (1: 2.6%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 
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Body system Adverse event CTCAE category Number of episodes  (Number of patients : % of total number of patients) 

All AEs Related AEs Grade 3/4/5 Related AEs 

Neurology Dizziness 

Mood-Anxiety 

Mood-Depression 

Sensory neuropathy 

16   (10: 26.3%) 

3   (3: 7.9%) 

1   (1: 2.6%) 

9   (6: 15.8%) 

13   (7: 18.4%) 

0   (0: 0%) 

1   (1: 2.6%) 

4   (3: 7.9%) 

0   (0: 0%) 

0   (0: 0%) 

1   (1: 2.6%) 

0   (0: 0%) 

Ocular/Visual Dry eye 

Vitreous haemorrhage 

1   (1: 2.6%) 

1   (1: 2.6%) 

1   (1: 2.6%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

Pain Pain-Abdomen 26   (15: 39.5%) 3   (2: 5.3%) 0   (0: 0%) 

Pulmonary/Upper 
respiratory 

Cough 

Dyspnoea 

Pleural effusion 

9   (8: 21.1%) 

8   (4: 10.5%) 

2   (2: 5.3%) 

1   (1: 2.6%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

Renal/Genitourinary Ureteric obstruction 

Urinary frequency 

3   (1: 2.6%) 

1   (1: 2.6%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

Syndromes Flu-like symptoms 1   (2.6%) 0   (0: 0%) 0   (0: 0%) 

Vascular Phlebitis 

Thromboembolism 

1   (1: 2.6%) 

3   (2: 5.3%) 

1   (1: 2.6%) 

0   (0: 0%) 

0   (0: 0%) 

0   (0: 0%) 

 

Table 5.9: Adverse events listings for the PARP-BRCA Phase II Trial 
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5.4.8.3 Response Rate 

The primary end-point of the clinical trial was best objective response rate (ORR) as 

measured by the RECIST. At the time of writing this thesis, 35 of the 38 patients 

recruited had received two complete cycles of AG014699 and were eligible for a 

response evaluation. The three non-evaluable patients were: patient 40-007 who had 

clinical evidence of disease progression after C1; patient 20-026 who required ureteric 

stenting after C1 and patient 52-032 who withdrew their consent on C2 D3 of 

treatment. Therefore, for these 35 patients the ORR was 6% (2/35; patient 40-005 and 

35-010). However, almost half the patients (49%, 17/35) achieved stable disease after 

two cycles, with 29% of all patients (10/35) achieving disease stabilisation for greater 

than four months and three patients remaining on study for over 54 weeks. This gives 

a clinical benefit response (CBR) rate of 34% (12/35). Interestingly this CBR rate was 

spread across all stages of the study and not limited to patients receiving the higher 18 

mg/m2 AG014699 doses. 16 patients had evidence of disease progression after two 

cycles of AG014699 and were withdrawn from the study. Data for the best overall 

response (expressed as % change in target lesions from pre-treatment values) was 

available in 33 of the 35 patients and is shown by waterfall plot in figure 5.21. 

 
 
Figure 5.21: Waterfall plot showing best RECIST response to AG014699 expressed as % change 
in target lesions over baseline measurements. The grey bars represent patients with 
progressive disease, the white bars patients with stable disease and the yellow bars patients 
with a partial response. Data shown are results for 33 patients.  
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The two patients who had partial responses to AG014699 were patients 40-005 

(BRCA2 breast) and 35-010 (BRCA1 ovary). Patient 40-005 had a partial response at C4 

and a time to progression (TTP) of 173 days. She remained on study until radiological 

evidence of disease progression occurred shortly after C8. Patient 35-010 had a partial 

response at C8, a TTP of 421 days with evidence of disease progression after C20.  The 

PD and PK data for these patients were subsequently reviewed and compared with the 

results for the rest of the study population. Patient 40-005 was found to have 

significantly higher endogenous PARP-1 activity (mean = 0.34 vs. 0.09 pmol PAR per 

104 PBL; P = 0.0001, un-paired t-test with Welch correction) but significantly lower 

levels of PARP-1 protein expression (mean = 0.11 vs. 0.21 ng per g total protein; P = 

0.008, un-paired t-test with Welch correction). These data are difficult to interpret 

given that no differences were seen in PARP-1 activity or expression levels in the other 

partial responder patient 35-010. 

To investigate whether the results of PD, PK end-points and baseline tumour 

characteristics differed between responders and non-responders in the whole study 

population, patients were divided into three outcome groups: those that had a partial 

response after 2 cycles and/or disease stabilisation for ≥ four months i.e. had a CBR 

(n=12); those who had SD after C2 but for less than four months (n=7) and finally those 

patients who developed PD after C2 i.e. at the first response assessment (n=16). Figure 

5.22 shows the patients divided into these three groups, colour coded by dose level 

cohort.  

5.4.8.4 Response to AG014699 and baseline PARP-1 characteristics 

Results for baseline PARP-1 characteristics (endogenous i.e. un-stimulated, PARP-1 

activity and baseline protein expression) by response to AG014699 are shown as box-

plots in figure 5.23. Patients in the CBR group had a significantly higher pre-treatment 

baseline PARP-1 activity than those who failed to respond to AG014699 (mean log10 

activity = 0.69 vs. 0.23 pmol PAR per 104 PBL, P = 0.03, un-paired t-test). However this 

difference was not seen with the endogenous PARP-1 activity levels (Figure 5.23B) 

PARP-1 protein levels were higher in the CBR group than the SD and PD groups (mean 

log10 expression = -0.66 vs. -0.74 vs. -0.89 ng per g total protein) but there was no 

significant statistical difference between the groups (P = 0.06, using one way ANOVA) 

(figure 5.23C). 
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Figure 5.22: Response to AG014699 by dose cohort. Grey bars denote patients in cohort 1, 
stage 1; green bars patients in cohort 2, stage 1 and the blue bars represent stage 2 patients. 
PD = progressive disease after two cycles, SD = stable disease after two cycles but for < four 
months and CBR = partial response after C2 and/or disease stabilisation for ≥ four months.  
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Figure 5.23: Box and whiskers plots showing (A) Pre-treatment PARP-1 levels, (B) Endogenous 
PARP-1 levels and (C) PARP-1 expression by clinical response to AG014699. 
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5.4.8.5 Clinical response to AG014699, PARP-1 inhibition and AG014699 PK  

Results for PARP-1 activity at the D1 EOI and D2 pre-dose time-points together with 

their corresponding PK samples were grouped into the same three response 

outcomes: CBR, SD and PD. Box plots for each data set are shown in figure 5.24.  

Although the best responders (CBR group) had the lowest mean D1 EOI PARP-1 activity 

levels (0.67 pmol PAR per 104 PBL) this did not differ significantly from the other two 

groups (SD = 1.03 pmol PAR, PD = 0.68 pmol PAR; P = 0.47 1 way ANOVA).  

A similar picture was seen at the D2 pre-dose PARP-1 activity levels (figure 5.24B) with 

no significant difference between the three groups. Analysis of the concentration of 

AG014699 at these time-points revealed no difference in the plasma concentrations 

between the clinical response groups (figure 5.24C+D). In fact the mean D1 C max values 

were almost identical with CBR = 813.3 ng/ml, SD = 858.6 ng/ml and PD = 831.4; P = 

0.97 1 way ANOVA).  

Interestingly mean D2 pre-dose levels of AG014447 were lowest in the CBR group 

(32.11 ng/ml) but not significantly different from the SD (41.93 ng/ml) and PD (61.96 

ng/ml) results. 
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Figure 5.24: Box and whiskers plots of results of pharmacodynamic and kinetic assays by clinical outcome group. A: D1 EOI PARP-1 activity, B: 
D2 pre-dose PARP-1 activity, C: [AG014447] D1 EOI and D: D2-pre-dose AG014447 levels. P values calculated using 1 way ANOVA. 
 



  Chapter Five – Clinical studies 

199 
 

5.5 Discussion 

The purpose of this study was to investigate the efficacy and toxicity of AG014699 in 

patients with advanced breast or ovarian cancer and known mutations within 

BRCA1/2. In addition, to evaluate pharmacodynamic, pharmacokinetic and 

pharmacogenomic endpoints and investigate their relationships, if any, to the clinical 

outcomes. And finally, to investigate whether using the data generated can more 

accurately predict which patients will respond to AG014699 and best apply this to 

future studies.  

At the time of writing the phase II PARP-BRCA PH2/052 trial is still on-going. Data 

presented and discussed in this chapter are for the first 38 patients recruited and 

treated up to the 30th September 2010. 

5.5.1. Patient recruitment and demographics 

It was initially envisaged that accrual of the 56 required patients would take 24 

months, with an average of 2-3 patients recruited per month. However recruitment 

has been slower than predicted; one possible reason for this is the restriction on the 

prior number of chemotherapies permitted in the metastatic breast cancer (MBC) 

patients. Oncologists treating MBC have an armamentarium of at least four systemic 

chemotherapies to use often before they will refer patients for early studies testing 

novel agents. This restriction on prior treatment has since been removed in a recent 

protocol amendment and hopefully will result in an increase in recruitment of MBC 

patients. Other possible reasons for the slow recruitment are: the presence of 

competing PARP inhibitor studies and the restriction of excluding non-UK residents, 

which of course reduces the pool of BRCA1/2 carrier patients. In contrast, the olaparib 

early phase studies recruited quickly and were conducted internationally including 

cancer centres specialising in the treatment of patients with familial cancers (Fong et 

al., 2009; Audeh et al., 2010; Tutt et al., 2010).  

For the 38 patients discussed in this chapter all were female with 16 (42%) having 

breast cancer and 22 (58%) ovarian cancer. 21 (55%) of the patients had a BRCA1 

mutation and 17 (45%) carried a BRCA2 mutation. The low number of BRCA2 ovarian 

cancer patients (n=6) may reflect the lower risk of developing ovarian cancer in BRCA2 

mutation carriers (Ford et al., 2004). Patients mean age was 51.4 years with a range of 
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28 to 72 years. This mean age is at least ten years lower than the reported average age 

at diagnosis of breast (61 years) and ovarian cancer (63 years) 

(www.cancerresearchuk.org/cancerstats) and not unexpected given that BRCA 

mutation carriers present at an earlier age with cancer (King et al., 2003). 

Patients were all of a good performance status (WHO 0-1) and had received a mean 

number of two prior chemotherapies. All the ovarian cancer patients had received 

prior platinum therapy, either as carboplatin or cisplatin. The study excluded platinum 

refractory ovarian cancer patients at design because the investigators surmised that 

cancers resistant to the platinums may also be insensitive to PARP inhibitors. Since the 

study was designed this theory has been confirmed by reports of cisplatin therapy 

inducing secondary mutations in known BRCA2 mutation carriers resulting in 

restoration of BRCA2 protein function and platinum resistance (Sakai et al., 2009). In 

addition Fong et al. reported that there was a positive correlation between greatest 

response to the PARP inhibitor olaparib and the longer the patient’s platinum-free 

interval (PFI) (Fong et al., 2010). Unfortunately information on the PFI of the 22 

ovarian cancer patients in this study is not available but would be useful when 

discussing the individual’s response to AG014699.  

5.5.2. Baseline PARP-1 characteristics 

The baseline PARP-1 activity was determined in the C1D1 pre-dose blood sample 

(obtained for 35 (92%) of patients) and enabled assessment of both endogenous PARP 

activity i.e. that which was not stimulated in the PARP activity assay by the addition of 

oligonucleotide and the substrate NAD+ and the maximum stimulated PARP-1 activity 

in the PBL prior to addition of the PARP inhibitor.  

Results for all 35 patients show low levels of endogenous PARP activity, with a mean 

value = 0.097 pmol PAR per 104 PBL and a large variation between patients (CV = 

146.5%). The majority of results are read from the lower end of the standard curve 

which questions the accuracy of measuring such low LAU values. Loading more than 

10,000 PBL into each well would result in a higher LAU signal and this could be 

considered for future work. As yet no published data are available for comparison of 

endogenous PBL PARP-1 activity in similar populations or even in non-BRCA cancer 

population or healthy volunteers using these methods.   

http://www.cancerresearchuk.org/cancerstats
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For all patients the mean baseline maximum stimulated PARP activity was 6.80 pmol 

PAR per 104 PBL. Again a large variation in activity was seen between individuals; range 

0.38 – 40.26 pmol PAR per 104 PBL and % CV = 145%.  

Two other studies have measured baseline maximum stimulated PARP activity in 

cancer patients and healthy volunteers using the same PD assay (Jones, MD thesis 

2006; Zaremba et al., 2011). Both these studies showed a large variation in baseline 

PARP activity levels between subjects. This may be because a true inter individual 

variation in PARP activity exists but the limitation of the immunoblot assay must also 

be considered. As discussed in chapter two: section 2.9, samples from individual 

patients were all analysed on the same blot to eliminate  the known inter-assay 

variability and enable accurate comparisons of PARP activity levels in response to 

AG014699.  However it was only possible to load a maximum of two patients’ samples 

on any given blot. Therefore in comparing the PARP activity results for the whole study 

population multiple blots are being compared and although the inter-assay variability 

was well within the range (20-30%) considered acceptable for biological assays it may 

have contributed the large variation seen.  

In addition data from Chris Jones (MD thesis, Newcastle University, UK) shows that 

activity levels vary up to 1.9-fold within the same subject in any given 72 hour period 

and this also has implications for this study where patients PARP activity in respons e to 

AG014699 is measured over a 24 hour period. Interestingly, a mean PARP activity in 

this PARP-BRCA PH2/052 study population of 6.80 pmol is almost double that reported 

in Zaremba’s study of 118 cancer patients with unknown BRCA status (mean = 3.60 

pmol). One could argue that this is simply a result of the inter-assay variability. 

However one possible explanation for this finding is that PARP is hyper-activated in 

patients with BRCA mutations, suggesting an up-regulation of the BER pathway to 

compensate for defective HR. This theory has also been proposed by Gottipati et al 

who demonstrated that PARP activity is increased in BRCA2-defective hamster cell 

lines (V-C8) compared to their BRCA2-complimented counter-parts (V-C8 + B2) 

(Gottipati et al., 2010). In addition, they showed that PAR was over-expressed in the 

BRCA- deficient human pancreatic cancer cell line, CAPAN-1, when compared to the 

BRCA2-proficient human pancreatic cancer cell line BXPC3. No increase in DNA single 

strand breaks were seen in these BRCA2-defective cell lines to account for this increase 
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in PARP activity. The authors speculated that this up-regulation of or over-dependence 

on PARP-1 could be the underlying mechanism behind the sensitivity of BRCA-

defective cells to PARP inhibitors. But there are differences between the current study 

and that undertaken by Gottipati et al. For example, they measured un-stimulated 

activity as opposed to maximally stimulated PARP activity; they used BRCA defective 

cell lines instead of the surrogate tissues (PBL) and finally activity was determined 

through a different pharmacodynamic assay; therefore extrapolation to results 

presented here for this study is difficult.  

Interestingly though in Gottipati’s study increased levels of PARP activity (defined by 

PAR polymer quantification) correlated well with increased sensitivity to PARP-1 

inhibition by 4 amino-1.8-naphthalimide (ANI) and they suggested that PAR levels 

could potentially be used as a biomarker to select out patients that might benefit from 

PARP inhibitor therapy. In a recent review of clinical biomarkers Redon et al also 

suggested as endogenous PARP activity levels vary between patients they may prove a 

useful biomarker to determine which patients will be sensitive to PARP inhibitors 

(Redon et al., 2010).  

Review of the data presented in this chapter failed to show a link between endogenous 

PARP activity levels and clinical response to AG014699 (Figure 5.22A). However, the 

baseline mean maximum stimulated PARP-1 activity levels were significantly higher in 

those patients who responded to AG014699, defined by CBR, than those patients who 

had PD after two cycles (mean log10 activity = 0.69 vs. 0.23 pmol PAR per 104 PBL, P = 

0.03, un-paired t-test). This might suggest that PARP enzyme dynamic function in 

response to DNA damage can be used as a predictor of PARP inhibitor response. 

However, this will, of course, require further investigation in larger studies. In addition 

the use of PARP activity as a marker of potential PARP inhibitor sensitivity in patients 

might be problematic given that it is reported that baseline PARP activity can vary 

within the same individual in any 72 hour period up to two-fold (Chris Jones, MD 

thesis, Newcastle University, UK, 2006). 

Results for baseline PARP-1 protein expression were obtained for 30 (79%) patients 

and presented in section 5.4.2. Again as for PARP activity levels a large inter-patient 

variation was seen (% CV = 93%). Mean protein expression for the whole study 

population = 0.21 ng per g and this was the same as that reported by Zaremba (mean 
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PARP-1 expression 0.21 ng per g) suggesting that PARP-1 expression is not increased 

in BRCA defective populations.  

One might speculate that higher PARP-1 protein expression would correlate with 

increased PARP-1 enzyme activity. The data in this chapter show a trend towards 

higher activity with increased protein expression but the correlation is weak and not 

statistically significant using Pearsons correlation coefficient (R2 = 0.14, P = 0.06) (see 

figure 5.5).  

The data from this study also failed to demonstrate a relationship between age and 

either PARP-1 activity or expression. This may be due to the small numbers of patients 

sampled in the clinical trial population. Other studies investigating this have reported 

conflicting results about the link between PARP-1 activity and age (Grube and Burkle, 

1992; Muiras et al., 1998). More recently a negative correlation between increasing 

PARP activity and age in cancer patients was observed in Zaremba’s study (Zaremba et 

al., 2011). 

As discussed in section 5.1.2 lower PARP-1 activity is associated with the T2444C single 

nucleotide polymorphism within the PARP-1 gene. The amino acid substitution of 

valine to alanine in the catalytic domain of PARP-1 protein can result in an up to 40% 

reduction in PARP-1 activity (Lockett et al., 2004; Wang et al., 2007). Genotyping was 

performed on DNA extracted from 31 of the 38 study patients and only 1 patient (35-

013) was homozygous for the variant SNP (C/C). This patient had the second lowest 

baseline PARP activity and as this was a single result further statistical analysis was not 

possible. The pooled data for the T/C and the C/C patients had a lower mean activity 

than that of the T/T group but this did not reach statistical significance. Again the small 

sample size may be impeding the statistical analysis of the results.  

Interestingly, in terms of clinical response, patient 35-013 did not respond to 

AG014699 with disease progression after only two cycles. 

5.5.3 PARP activity in response to AG014699 

PARP activity following treatment with AG014699 was investigated in 33 of the 38 

study patients. Six patients received a cycle of AG014699 at a dose of 4 mg/m2; 13 

received at least one cycle at 12 mg/m2 and 24 patients were given at least one cycle 

of AG014699 at the 18 mg/m2 dose level. 12 patients were dose-escalated either from 



  Chapter Five – Clinical studies 

204 
 

4 mg to 12 mg/m2 or from 12 mg to 18 mg/m2. This enabled assessment of the degree 

of PARP inhibition to different doses of AG014699 and the effect of intra-patient dose-

escalation in BRCA patients to be investigated. Results, presented in section 5.4.3, 

show that AG014699 is a potent clinical inhibitor of PARP with a mean % inhibition 

over pre-treatment values at the end of the infusion being 97.6, 95.4 and 86.1% for the 

4 mg/m2, 12 mg/m2 and 18 mg/m2 dose levels respectively. The data also shows that 

24 hours following a single dose of AG014699 PARP-1 activity remains well below 50% 

of baseline levels, even at the lowest dose cohort of 4 mg/m2 with a mean inhibition of 

69% seen. 

However the most striking PD observation from these studies is that increasing the 

dose of AG014699 does not always result in a greater degree of PARP-1 enzyme 

inhibition. Reviewing the individual patient plots in Figures 5.8, 5.9, 5.11 and the 

summary data presented in Figure 5.13 it is clear that increasing the dose of AG014699 

results in not greater but prolonged duration of PARP-1 inhibition. A clear dose-

response is seen in the D2 pre-dose (24 hour) sample where the 18 mg/m2 schedule 

results in lower recovery of PARP-1 activity than the lower dose levels. Given that the 

current schedule of AG014699 within this study is five days of treatment every 21 days 

the prolongation of inhibition may be as important as the degree of inhibition in order 

to illicit a clinical response.  

Of note no correlation was seen between the degree of PARP-1 enzyme inhibition 

achieved at all three time-points post AG014699 and the baseline pre-treatment 

levels. 

5.5.4 Pharmacokinetics of AG014699 

Plasma samples to determine the PK of AG014447, the free base of AG014699, were 

received in 35 of the 38 patients. The results, presented in section 5.4.4, show that 

AG014699 displays linear pharmacokinetics with increasing dose. There was 

considerable inter-patient variability for each time-point, but the data set is 

comparable with the published results for the phase I study (Plummer et al., 2008). 

Interestingly, no statistically significant correlations were observed between the 

plasma concentration of AG014699 and the degree of PARP-1 enzyme inhibition and 

any dose level or time-point. A trend towards higher AG014699 concentration and 

lower PARP-1 activity was seen at the 4 mg/m2 and 12 mg/m2 dose levels, but not at 
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the highest dose 18 mg/m2. This may suggest that above a certain concentration of 

AG014699 no further PARP-1 inhibition can be achieved and the dose dependent 

effect is lost.  

The study protocol included the option of patients volunteering for an on-study 

tumour biopsy. This would enable the assessment of PARP-1 activity in the actual 

tumour as opposed to surrogate PBL and to measure the accumulation, if any, of 

AG014699 in tumour tissues. The common sites of metastatic disease in this cancer 

patient group potentially would mean biopsies of liver/lung or peritoneal deposits 

which are invasive and not without risk therefore the up-take for additional biopsy was 

low. In fact only one patient (40-014) who presented with a vaginal vault recurrence 

consented to biopsy, which was taken 240 minutes from the start of the AG014699 

infusion on D2 of C2. PD analysis of PARP-1 activity levels was not performed as no 

pre-treatment sample was available to compare the result with. However, a high 

concentration of drug was measured within the tumour (692 ng/ml), demonstrating 

that AG014699 penetrates and accumulates in tumour cells following intravenous 

administration. 

5.5.5 CYP2D6 genotyping 

Results for the CYP2D6*2 and CYP2D6*4 are presented in section 5.4.7. At this stage in 

the trial it is difficult to draw firm conclusions about the effects of the SNPs on the 

pharmacokinetics of AG014699 given the small study population of 31 patients. 

Further analysis will need to be performed with the results of the whole study 

population. 

5.5.6 Clinical outcomes 

AG014699 was well tolerated in this patient population with no dose-limiting toxicities 

seen. At the time of study design it was not known whether inhibiting PARP-1 in 

BRCA1/2 mutation carriers would be toxic to normal tissues and these results are 

reassuring.  

Perhaps the most disappointing finding of this study is the low objective response rate 

(6%) to AG014699. This is considerably lower than that reported in the phase II studies 

of olaparib in similar patient populations, where response rates of between 13 -41% 

were seen (Audeh et al., 2010; Tutt et al., 2010).  
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There are a number of possible explanations for this low response rate. Firstly, recent 

studies in cancer cell lines have demonstrated that second mutations in BRCA1 or 

BRCA2 genes can lead to resistance to PARP inhibitors (Edwards et al., 2008; Sakai et 

al., 2008; Sakai et al., 2009). Secondary mutations restoring BRCA function and HR DNA 

repair in the face of PARP inhibition may arise in order to maintain genomic integrity. 

In one study, a model for drug resistance was first developed by producing cells from 

the BRCA2-deficient human pancreatic cancer cell line, CAPAN-1, that were insensitive 

to PARP inhibitors (Edwards et al., 2008). The PARP inhibitor–resistant (PIR) clones 

developed following exposure to the PARP inhibitor KU0058948 (Farmer et al., 2005) 

are highly resistant (>1,000-fold). PIR clones are also cross-resistant to the DNA cross-

linking agent cisplatin, but not to the microtubule stabilizing drug docetaxel. 

KU0058948 and cisplatin both exert their effects on BRCA-deficient cells by increasing 

the frequency of un-repaired DSBs in the absence of effective HR, suggesting that the 

resistance of PIR clones to KU0058948 might be because of restored HR. cDNA and 

genomic DNA sequencing from PIR clones revealed the presence of novel BRCA2 alleles 

with deletions surrounding and incorporating the c.6174delT mutation, leading to the 

restoration of an open reading frame and sufficient functional BRC repeats and C -

terminal domains to restore HR repair functions.  

Platinum chemotherapy is a well-established strategy in the treatment of ovarian 

cancer, including patients bearing BRCA1 or BRCA2 mutations. Clinical observations 

suggest that BRCA1/2 mutation carriers with ovarian cancer tend to respond better to 

platinum therapy, in contrast to patients with no family history of the disease (Tan et 

al., 2008). Systemic chemotherapy with the platinum agents may exert BRCA1/2-

selective effects through similar mechanisms to PARP inhibitors. To investigate this 

further, the BRCA2 gene was sequenced in tumours from patients bearing the BRCA2 

c.6174delT mutation whose ovarian carcinomas had become resistant to carboplatin 

chemotherapy. These studies revealed deletions in the BRCA2 gene, which restored 

the open reading frame; implying that a specific mutation (c.6174delT) in BRCA2 and 

sensitivity to platinums  in both cell lines and patients could potentially be reversed by 

an intragenic deletion (Edwards et al., 2008; Sakai et al., 2009). A similar phenomenon 

has also been reported in BRCA1 mutated, cisplatin resistant ovarian cancers (Swisher 

et al., 2008). 
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In the current study population, 16 patients developed disease progression at the first 

assessment of response (after C2); suggesting primary PARP inhibitor resistance. Of 

these patients, 11 (69%) had platinum pre-treated ovarian cancer. Unfortunately, data 

is not available for their PFI and whether any of these patients would be defined as 

platinum resistant. However it is not yet clear if BRCA1/2 mutations, other than those 

reported in the studies mentioned above, can be reverted by secondary intragenic 

mutation and whether secondary mutations resulting in PARP inhibitor resistance will 

be something we see in clinical practice. But it could explain why some patients failed 

to respond to AG014699 in this study. 

Another possible explanation for the poor ORR is that these patients had unfavourable 

PARP-1 baseline characteristics or that the dose regimen did not result in optimum 

plasma levels of AG014699 or inhibition of PARP. Review of patients PARP baseline 

activity shows that patients who failed to respond i.e. the PD group had significantly 

lower PARP activity levels than those in the CBR group (0.23 vs. 0.69 pmol PAR per 104 

PBL, P = 0.03).This may imply that these patients are less reliant on the BER pathway 

and less sensitive to PARP inhibitors. Of note, PARP-1 protein expression levels were 

not significantly different between the three response groups. There was also no 

significant difference between the degree of PARP-1 enzyme inhibition and the peak 

plasma or trough concentrations of AG014699 regardless of whether or not patients 

benefited from treatment. In fact, most patients had excellent inhibition of PARP 

activity as measured by the PD assay. However it is important to note again that these 

baseline PARP characteristics were determined from PBL and not BRCA-defective 

tumour samples. 

The most likely explanation for the lack of clinical response to AG014699 seen in this 

study is the scheduling used. The drug is administered on days one to five of a 21 day 

cycle potentially  allowing over two weeks for PARP-1 activity levels to be restored or 

even up-regulated as suggested in Figure 5.10. The in vivo data presented in chapter 

four adds weight to this this theory. In the UACC3199 xenografts experiment one, the 

anti-tumour effect of AG014699 was lost after ten days once the treatment was 

stopped, whereas greater tumour growth delay occurred in experiment two with a five 

day treatment repeated every seven days for six weeks. These data also fit with the 

more favourable response rates seen in olaparib studies where the drug is 
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administered on a continuous, oral basis (Fong et al., 2009; Audeh et al., 2010; Tutt et 

al., 2010). Informed by the preliminary trial data and the in vivo results, the PARP-BRCA 

clinical trial was amended to permit an additional PD PARP activity sampling time-point 

on D15.  This additional sample would assess PARP activity during the non-treatment 

period (10 days after the last dose of AG014699). To date, four recently recruited 

patients (data not included in this thesis) have had this D15 sample taken. Results for 

these four patients’ PARP activity, expressed as % of baseline levels, are shown in 

figure 5.25 (personal communication from James Murray, Newcastle University, UK). 

As the figure shows, in the majority of patients, by D15 PARP activity levels have 

almost fully recovered with the mean % activity of 77%. This suggests that once the 

five days of AG014699 treatment is complete, the PARP enzyme activity recovers and 

so any potential for synthetic lethality is lost; emphasising the point that for single 

agent activity, duration of PARP inhibition may be equally as important as the degree 

of inhibition. 

The administration of an intravenous drug like AG014699 on a continuous basis to 

patients would be difficult, requiring the insertion of central venous catheters and a 

treatment commitment that may be unacceptable to many patients.   

 

 
Figure 5.25: Mean % PARP activity in response to AG014699 over time for four patients. EOI = 
end of infusion, H = hours, D = day 
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However the recent development by Pfizer GRD of an oral formulation of AG014699 

has allowed the protocol for the current study to be amended to test the safety and 

efficacy of a continuous dosing schedule. This will hopefully result in increased 

response rates and clinical benefit to patients. 

5.5.7 Conclusions 

In summary, this study has shown that AG014699 is a potent inhibitor of PARP-1 that is 

well tolerated in BRCA-mutation carriers with minimal normal tissue toxicity. Despite 

the poor ORR a considerable number of patients (34%) have derived a CBR from 

AG014699 even in its current intermittent schedule; with three patients remaining on 

treatment for greater than 12 months. Given the low reported toxicity rate of single 

agent AG014699 this could be considered an acceptable outcome in patients whose 

only alternative is likely to be systemic cytotoxic chemotherapy. Higher baseline PARP-

1 activity levels were seen in the CBR group and this requires confirmation by testing 

the whole study population. Finally, results of the amended PARP-BRCA study, 

investigating the continuous scheduling of oral AG014699, are eagerly awaited. 
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Chapter Six 

6. Summary and future directions 

These studies represent the first comprehensive in vitro, in vivo and clinical 

investigation into the effects of the PARP-1 inhibitor, AG014699, in human cancers 

defective in homologous recombination DNA double strand break repair. The major 

findings of the preclinical experiments and the phase II clinical trial are summarised 

below. 

6.1 Summary 

Cell survival data presented in chapter three demonstrate that BRCA mutated human 

cancer cells are significantly more sensitive to AG014699 than human cell lines with 

wild type or heterozygote BRCA (mean LC50 = 3.96 ± 2.90 vs. mean LC50 = 25.09 ± 9.17; 

P < 0.0001). These results support the theory of PARP- BRCA synthetic lethality and 

confirm that AG014699 is active in BRCA deficient human cancer models. Interestingly, 

BRCA1 mutant human cells (MDA-MB-436) were more sensitive than the BRCA2 

mutant (CAPAN-1) human cancer cell line (mean LC50 = 1.33 ± 0.59 vs. mean LC50 = 5.54 

± 2.51; P = 0.03). This difference is not explained by higher levels of PARP enzyme 

inhibition in the MDA-MB-436 cells following exposure to 10 M AG014699. The MDA-

MB-436 cells however did form the lowest numbers of Rad51 foci after AG014699 and 

were the most sensitive cell line to AG014699 of the whole panel; suggesting they 

harbour the most defective HR pathway. However, this observation is based on the 

comparison of only two human cell lines and it should be noted that the HCC1937 

BRCA1 deficient breast cancer line, although not assessed by the same assay appear 

less sensitive than the CAPAN-1 cells. Furthermore, differences in patients’ response to 

AG014699 by BRCA mutation have not been observed in the clinical trial data (see 

chapter five, section 5.4.8.3) and no difference in response rate by mutation status has 

been reported in any of the olaparib clinical trials (Fong et al., 2009; Audeh et al., 2010; 

Tutt et al., 2010).  However, it is likely that a spectrum of HRD deficiency exists 

between BRCA mutant cancers; simply reflecting their genetic diversity. 
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The proposed mechanism for the synthetic lethality of PARP inhibitors in BRCA 

deficient cells is that PARP inhibition leads to the accumulation of DNA single-strand 

breaks which result in stalled replication forks and ultimately double-strand breaks. As 

DNA DSBs are normally repaired by the HR pathway, in HR-defective cells, these DSBs 

are left un-repaired or are repaired in an error-prone way by NHEJ. Both outcomes can 

result in genomic instability and ultimately cell death. To test this theory, 

immunofluoresence assays of H2AX and Rad51 foci formation were undertaken in the 

panel of 11 cell lines. Results of these experiments support this hypothesis showing 

that following AG014699-induced PARP inhibition, all cell lines regardless of HR status 

accumulate DNA damage (H2AX foci). But only the HR proficient cell lines are able to 

significantly increase nuclear Rad51 foci over baseline levels. The change in Rad51 

numbers which discriminated the HR proficient cells from the HR deficient ones was 

found to be a ≥ 2-fold increase.  

Both the in vitro and in vivo experiments described in chapters three and four 

respectively have shown that the BRCA1 methylated UACC3199 human breast cancer 

cell line is sensitive to PARP inhibition. The mean LC50 of 7.60 M was significantly 

lower than in the HR proficient cell lines (mean LC50 = 29.68 M; P < 0.0001). 

UACC3199 cells also failed to increase the number of Rad51 foci by ≥ 2-fold following 

AG014699. Furthermore, the UACC3199 xenografts responded to the prolonged i.p. 

AG014699 regimen, which delayed tumour growth by 9 days over un-treated controls. 

These data, together with the in vitro studies in XRCC3 deficient IRS-1SF cells 

presented in chapter thee, reinforce the theory proposed in other studies (McCabe et 

al., 2006) that it is HRD that confers sensitivity to PARP inhibition not simply germline 

BRCA mutation. The sensitivity of UACC3199 cells and xenografts to AG014699 is a 

major finding of this work as dysfunction of BRCA1, e.g. through epigenetic silencing, is 

known to occur commonly in high grade serous ovarian cancers (HGSOC) (Press et al., 

2008) and triple negative breast cancers (Turner et al., 2007). Recently reported phase 

II clinical trial data have shown that single agent olaparib has activity (24% response 

rate) in advanced non-germline BRCA mutated HGSOC (Gelmon et al., 2011). This 

together with the preliminary data, reported at ASCO 2011, showing that maintenance 

olaparib can delay disease progression in HGSOC with unknown BRCA mutation status 

(Ledermann et al., 2011) suggests that future studies of AG014699 should investigate 
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its activity in the HGSOC population. Interestingly, in the Gelmon study, no responses 

were seen in the triple negative breast cancer arm. This may be simply due to the small 

sample size (only 15 patients) or it could be that the degree of HRD in triple 

negative/basal-like breast cancers is not profound enough to result in PARP inhibitor-

induced synthetic lethality. This highlights the need for biomarkers of HR function so 

that each cancer can be tested to see if the HRD is enough to warrant treatment with 

PARP inhibitors. 

One such potential biomarker of HR function is the ability to form Rad51 foci following 

DNA damage. Data presented in chapter three, section 3.4.4 demonstrate that cells 

known to be HR deficient through BRCA1, BRCA2 or XRCC3 deficiency do not 

significantly increase the number of nuclear Rad51 foci over baseline control values in 

response to AG014699-induced DNA damage. A major strength of this work was to 

propose that this method could be used to identify cancer cells with HRD and 

subsequent candidates for PARP inhibitor therapy. This idea was subsequently tested 

in ascitic fluid-derived primary ovarian cancer cell lines with unknown HR status 

(Mukhopadhyay et al., 2010). The results showed that a ≥ 2-fold increase in the 

number of Rad51 foci following ex-vivo treatment with AG014699 predicted with a 100% 

positive predictive value subsequent PARP inhibitor sensitivity. It is clear that this assay 

warrants further investigation. However, there are obvious weaknesses in using such 

approaches. Firstly, the difficulties in obtaining replicating viable cancer cells from 

patient sources such as ascites or pleural fluid. Also, many patients do not present with 

malignant effusions during the history of their cancer. In addition, there is a risk that in 

developing primary cultures one might exhibit selection pressure on the cell 

population which may result in a HR phenotype not reflective of the patients’ primary 

tumour burden. There are also the technical difficulties of developing and establishing 

primary cultures and damaging DNA ex vivo. Another problem lies in the complexity of 

the HR pathway and that the lack of induction of Rad51 foci may not mean that HR is 

non-functional as other proteins may exist that may be able to perform similar 

functions as yet unknown. There may be no future in this assay outside of translational 

studies due to its technical difficulties. However, even if genome wide sequencing of all 

the HR genes was currently practical and affordable in normal clinical practice for 

every cancer patient, it would not be able to assess the actual function of the HR 

pathway.   
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Another challenge for the development of HRD biomarkers is the recent proposal that 

HRD can be ‘contextual’ (Chan et al., 2010). An example of this is seen hypoxia, which 

is a common feature of the tumour microenvironment. Chan and colleagues 

demonstrated that chronic hypoxia results in reduced synthesis of essential HR 

proteins with a three-fold reduction in HR capacity and increased sensitivity to DNA 

damaging chemotherapy agents and, in the more recent paper, sensitivity to PARP 

inhibition (Chan et al., 2008; Chan et al., 2010). Another potential problem is the 

reported evolution of HRD tumours to HR proficient ones through, for example, 

secondary inter-genic mutations restoring BRCA function; which has been seen in both 

BRCA1 and 2 mutant cancers (discussed in detail in section 1.9 of chapter one). It has 

also recently been reported that inactivation of NHEJ either through genetic loss or 

pharmacologic inhibition (Patel et al., 2011) and loss of 53BP1 (Bunting et al., 2010) 

can restore PARP inhibitor resistance in previously sensitive BRCA1 mutant models. 

53BP1 is a human ortholog of the yeast DNA checkpoint proteins Rad9p/Crb2) which 

has a role in DNA damage response and checkpoint control (reviewed in Aly and 

Ganesan, 2011).  In short, such phenomena would not necessarily be picked up by 

functional assays and therefore more research is needed to better select patients for 

PARP inhibitors in order to avoid non-responders and, pertinent to the current climate, 

to better allocate cancer drug resources. 

There was a large variation in both the cell line and patient populations in the levels of 

baseline PARP activity. In the cell lines mean endogenous baseline PARP activity was 

1.57 pmol PAR per 104 cells. This ranged from as low as 0.28 up to 5.95 pmol PAR per 

per 104 cells, with a CV of 101%. As expected the baseline (maximum stimulated) PARP 

activity levels were higher but there was less inter-cell variation with a mean of 45.07 

pmol PAR per per 104 cells, range 8.82 to 87.60 pmol and CV of 42%. There was a trend 

towards higher baseline PARP activity (in both endogenous and maximum stimulated 

samples) in the HR deficient cell lines but the results did not meet statistical 

significance.  For the clinical trial patient population the mean baseline (maximum 

stimulated) PARP activity was 6.80 pmol PAR per 104 PBL. This ranged from 0.38 up to 

40.26 pmol PAR per 104 PBL with a CV of 145%. Comparing these findings to data from 

Zaremba et al using the same immunoblot technique in a cohort of 118 cancer patients 

with unknown BRCA status (Zaremba et al., 2011), PARP activity appears to be higher 

in BRCA mutation carriers. Although differences in these studies may be gender related 
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as 100% of this study subjects were women. Redon and colleagues also recently 

proposed that baseline PARP activity levels in patients could help predict which 

patients would respond to PARP inhibitors (Redon et al., 2010).  

Reviewing the clinical PD data in chapter five, section 5.4.8.4, patients who responded 

to AG014699, i.e. had a clinical benefit response, had a significantly higher levels of 

mean pre-treatment (maximum stimulated) baseline PARP activity than the group of 

patients who failed to respond to AG014699 (evidence of disease progression after C2). 

This finding may be clinically as well as statistically significant; suggesting that a 

patient’s baseline PARP activity level could determine whether or not they would 

respond to AG014699.  

However, a weakness of this observation is that it represents the results of less than 40 

patients and this analysis will need to be repeated with the larger complete study 

population. In addition, it should be noted that the results of both the cell lines and 

patients data suggesting that higher baseline levels of PARP activity is seen in the 

presence of HRD is influenced by the inter-assay variability of the PARP activity assay 

as these results are derived from the analysis and comparison of multiple immunoblots 

over several months of work. 

Interestingly there was also a trend towards higher baseline PARP-1 protein expression 

in the clinical benefit responders (CBR) group compared to the non-responders but this 

did not reach levels of statistical significance.  

Analysis of the PARP-1 T2444C SNP did show a significantly lower baseline PARP 

activity with the homozygous variant but as this genotype (C/C) was only found in one 

patient (35-013) no further analysis as to whether this affected subsequent response 

to AG014699 could be made. 

During the design of the phase II clinical trial, one of the major concerns of inhibiting 

PARP-1 in BRCA mutant carriers was the potential toxicity to normal tissues. This 

concern was not unwarranted given the results presented in chapter three 

demonstrating that DNA DSBs (represented by H2AX foci) accumulated in cells lines 

continuously exposed to AG014699. This occurred in not just the BRCA mutant lines 

but in the heterozygote and wild type cells  too. In fact, in most cell lines the numbers 

of H2AX foci induced by AG014699 were similar to that seen after 2 Gy IR (see figure 
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3.13). The phase I study of olaparib also reported significant induction of γH2AX foci in 

normal tissue (eyebrow hair follicles), following PARP inhibition (Fong et al., 2009). The 

question then was if this DNA damage occurs continuously over time in patients’ 

normal tissues, could it result in genomic instability and even secondary carcinomas? 

In vivo experiments by Tong et al. reported that deficiency of PARP-1 resulted in the 

development of mammary carcinoma in female mice, suggesting that PARP-1 

dysfunction in humans may, in fact, be a risk factor for breast cancer (Tong et al., 2007). 

Reassuringly, the results of the xenograft studies, reported in chapter four, did not 

show that single agent AG014699 was toxic to mice with minimal weight loss seen and 

no evidence of secondary carcinomas.  In addition, treating BRCA2 heterozygote and 

BRCA2 wild type mice with either AG014699 25 mg/kg D1-5 i.p. every 21 days for six 

cycles or saline control was shown to make no difference in the groups in terms of the 

animals weight loss or survival after a follow-up of 365 days (Drew et al., 2011b) This 

again suggests that intermittent scheduling of AG014699 is safe.  

As patient safety is paramount in any clinical study the trial design included two safety 

cohorts (as discussed in chapter five, section 5.1.1.2) of 4 mg/m2 and 12 mg/m2 

AG014699. The results show the intermittent schedule of AG014699 18 mg/m2 (the 

highest dose level tested) to be safe and tolerable, at least in the short-term, in BRCA 

mutation carriers. Toxicity results for all 38 patients are presented in chapter five, 

section 5.4.8.2. To summarise, AG014699 had an acceptable safety profile with drug-

related toxicity mainly grade 1 and 2. The most common being fatigue, nausea and 

diarrhoea. There were no DLTs at any dose level and no patients withdrew from the 

study due to drug-related toxicity.  Whist these data are encouraging, it should be 

noted that to date no long term safety data about the use of PARP inhibitors in this 

cancer patient population are available; although three patients have so far received 

AG014699 within this study for over 54 weeks. More toxicity may manifest as the trial 

is amended and a more prolonged dosing schedule of the oral compound of AG014699 

is investigated (discussed below). 

The most disappointing result of the clinical study has been the low objective response 

rate (6%) to AG014699. This does not however down-play the CBR rate seen in 34% of 

patients; which for many patients is an acceptable outcome in the setting of minimal 

toxicity and limited treatment options. But it cannot be denied the response rate was 
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low and needs to be addressed. This low ORR is now less unexpected given the in vivo 

data presented in chapter four showing that a prolonged schedule of AG014699 

resulted in greater anti-tumour activity. Although other reasons are postulated in the 

discussion of chapter five, the in vivo data suggest that the most likely explanation for 

the lack of responders in the clinical trial is the intermittent dosing schedule of 

AG014699. PD data from the patients show that the D1-5 dosing schedule results in 

profound PARP enzyme inhibition with very little recovery seen at 24 hours post dose. 

However once dosing has stopped after D5 it is likely that PARP activity will eventually 

recover. Additional data provided recently from the new D15 PD sampling time-point 

shows (figure 5.25) that PARP activity recovers on average to 77% over baseline pre-

treatment levels by day 15.  One of two conclusions can be drawn from this clinical 

response data: one that AG014699 in this patient population is inactive or two that it is 

active but anti-tumour effect through the mechanism of synthetic lethality is reduced 

or even lost during the non-treatment period. Given the PD data showing > 90 % PARP 

enzyme inhibition during the treatment period and the results of other classes of true 

PARP inhbitors (Fong et al., 2009; Audeh et al., 2010; Tutt et al., 2010) the second 

conclusion is most likely and continuous scheduling of AG014699 needs to be 

investigated. 

In summary the major findings of these studies are: 

1. AG014699 is selectively toxic to BRCA mutated human cancers. 

2. AG014699 has anti-tumour activity in BRCA1 methylated models. 

3. The ability of cells to increase nuclear Rad51 levels by ≥ 2-fold following 

AG014699 exposure was seen only in HR proficient cell lines. 

4. There is a large variation in baseline PARP-1 activity levels in both cell lines and 

patients and activity appears to be higher in the presence of HRD. 

5. AG014699 as a single agent in BRCA mutant cancer patients is well tolerated 

and appears to be safe in the short-term. 

6. In in vivo experiments the more prolonged the exposure to AG014699-induced 

PARP inhibition the greater the anti-tumour activity suggesting that schedule 

matters in addition to the degree of PARP inhibition. 
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6.2 Future directions 

One of the major strengths of this work is that it has influenced clinical practice. The in 

vivo data and the clinical response results presented and discussed in this thesis have 

recently led to a major amendment in the PARP-BRCA CRUK phase II clinical trial to 

investigate a more prolonged schedule of AG014699. Furthermore, continuous dosing 

of AG014699 is now theoretically possible and practical in patients with the recent 

development of an oral formulation of the compound. The amended trial will 

investigate continuous AG014699 in the same patient population as the original study 

(BRCA1/2 mutated advanced breast and ovarian cancer) with dosing cohorts of 7 days, 

14 days and finally 21 days out of a 21 day cycle. The hope is that this will lead to 

increased response rates and meaningful clinical benefit to greater numbers of 

patients. Although it is almost certain that for single agent AG014699 use the more 

profound and the longer the duration of PARP enzyme inhibition the better, it is still 

not yet known to what extent and exactly for how long PARP-1 needs to be inhibited 

to achieve optimal activity. For these reasons the amended study must include more 

PD and PK sampling time-points following AG014699 dosing.  

As already summarised data presented in this thesis suggest that AG014699 may have 

therapeutic potential in patients with non-BRCA germline mutated cancers such as 

those with epigenetically silenced BRCA1. In addition, data discussed in section 1.6.4 

suggest that future target populations of single agent AG014699 should include: triple 

negative/basal-like breast cancers, high grade serous ovarian cancers and PTEN mutant 

endometrial cancers. Any such studies must include exploratory biomarkers of HRD 

and results of these assays should be correlated with clinical response in order to 

better select future patients for PARP inhibitor studies. Further investigation 

/development of the Rad51 assay should perhaps include looking for alternative 

sources of tumour cells such as that contained in FFPE tissue (something which almost 

all diagnosed cancer patients will have) and circulating tumour cells.  

In early 2011 AG014699 was acquired by Clovis Oncology from Pfizer GRD. This 

sparked the end of AG014699 as we know it and the beginning of ‘CO-338’. 

Fortunately the commitment to current AG014699 studies continues and the future 

development of the drug has been maintained. 
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The amended study is now open to recruitment with the first patient dosed on 25th 

October 2011. Whether patients can tolerate continuous dosing and whether it will 

result in greater efficacy will soon become apparent. 

Finally, in 2003 when the first patient received the first ever dose of AG014699, a new 

class of drugs entered the stage of cancer treatment. Eight years on, there are at least 

eight other PARP inhibitors in clinical trial development. The demonstration of single-

agent PARP inhibitor activity in BRCA-mutated ovarian and breast cancers, with a wider 

role being proposed in HR-defective sporadic tumours is probably the most exciting 

discovery to come of these studies. This selective targeting of cancer cells defective in 

one DNA repair pathway by inhibiting another is a major breakthrough in the 

treatment of cancer. As the clinical data mature and continuing clinical trials are 

reported, it is likely that PARP inhibitors, including CO-338, will become key players in 

the targeted treatment of cancer. 

 



  References 

219 
 

References 
 

Ahmed, A. A., Etemadmoghadam, D., Temple, J., Lynch, A. G., Riad, M., Sharma, R., 
Stewart, C., Fereday, S., Caldas, C., deFazio, A., Bowtell, D. and Brenton, J. D. 

(2010) 'Driver mutations in TP53 are ubiquitous in high grade serous carcinoma 
of the ovary', The Journal of Pathology, 221, (1), pp. 49-56. 

 
Alderson, T. (1990) 'New Targets for Cancer Chemotherapy – Poly(adpribosylation) 

processing and polyisoprene metabolism', Biological Reviews, 65, (4), pp. 623-
641. 

 
Aly, A. and Ganesan, S. (2011) 'BRCA1, PARP, and 53BP1: conditional synthetic lethality 

and synthetic viability', Journal of Molecular Cell Biology, 3, (1), pp. 66-74. 

Ame, J. C., Rolli, V., Schreiber, V., Niedergang, C., Apiou, F., Decker, P., Muller, S., Hoger, 
T., Murcia, J. M. D. and de Murcia, G. (1999) 'PARP-2, a novel mammalian DNA 
damage-dependent poly(ADP-ribose) polymerase', Journal of Biological 
Chemistry, 274, (25), pp. 17860-17868. 

 
Ame, J. C., Spenlehauer, C. and de Murcia, G. (2004) 'The PARP superfamily', Bioessays, 

26, (8), pp. 882-893. 
 
Aprelikova, O., Amy J. Pace, Bruno Fang, Beverly H. Koller, and Edison T. Liu  and 

25647-25650., J. B. C. (2001) 'BRCA1 Is a Selective Co-activator of 14-3-3 Gene 
Transcription in Mouse Embryonic Stem Cells’ Journal of Biological Chemistry, 

276, pp. 25647-25650. 
 
Ashworth, A. (2008) 'A synthetic lethal therapeutic approach: Poly(ADP) ribose 

polymerase inhibitors for the treatment of cancers deficient in DNA double-
strand break repair', Journal of Clinical Oncology, 26, (22), pp. 3785-3790. 

 
Audebert, M., Salles, B., Weinfeld, M. and Calsou, P. (2006) 'Involvement of 

polynucleotide kinase in a poly(ADP-ribose) polymerase-1-dependent DNA, 
double-strand breaks rejoining pathway', Journal of Molecular Biology, 356, (2), 
pp. 257-265. 

 
Audeh, M. W., Carmichael, J., Penson, R. T., Friedlander, M., Powell, B., Bell-McGuinn, 

K. M., Scott, C., Weitzel, J. N., Oaknin, A., Loman, N., Lu, K., Schmutzler, R. K., 
Matulonis, U., Wickens, M. and Tutt, A. (2010) 'Oral poly(ADP-ribose) 
polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and 

recurrent ovarian cancer: a proof-of-concept trial', Lancet, 376, (9737), pp. 245-
251. 

 
Auer, B., Nagl, U., Herzog, H., Schneider, R. and Schweiger, M. (1989) 'Human Nuclear 

NAD+ ADP-Ribosyltransferase(polymerizing): Organization of the Gene', DNA, 8, 
(8), pp. 575-580. 

 
Bakkenist, C. J. and Kastan, M. B. (2004) 'Phosphatases join kinases in DNA-damage 

response pathways', Trends in Cell Biology, 14, (7), pp. 339-341. 



  References 

220 
 

Bedikian, A. Y., Papadopoulos, N. E., Kim, K. B., Hwu, W.-J., Homsi, J., Glass, M. R., Cain, 
S., Rudewicz, P., Vernillet, L. and Hwu, P. (2009) 'A Phase IB Trial of Intravenous 

INO-1001 Plus Oral Temozolomide in Subjects with Unresectable Stage-III or IV 
Melanoma', Cancer Investigation, 27, (7), pp. 756-763. 

 
Bell, D. A. (2005) 'Origins and molecular pathology of ovarian cancer', Modern 

Pathology, 18, (S2), pp. S19-S32. 
 

Beneke, S., Scherr, A. L., Ponath, V., Popp, O. and Burkle, A. (2010) 'Enzyme 
characteristics of recombinant poly(ADP-ribose) polymerases-1 of rat and 

human origin mirror the correlation between cellular poly(ADP-ribosyl)ation 
capacity and species-specific life span', Mechanisms of Ageing and 

Development, 131, (5), pp. 366-369. 
 
Ben-Hur, E., Chen, C.-C. and Elkind, M. M. (1985) 'Inhibitors of Poly(adenosine 

Diphosphoribose) Synthetase, Examination of Metabolic Perturbations, and 
Enhancement of Radiation Response in Chinese Hamster Cells', Cancer 
Research, 45, (5), pp. 2123-2127. 

 
Benjamin, R. C. and Gill, D. M. (1980) 'ADP-ribosylation in mammalian cell ghosts. 

Dependence of poly(ADP-ribose) synthesis on strand breakage in DNA', The 

Journal of Biological Chemistry, 255, (21), pp. 10493-10501. 
 

Bennett, L. M., McAllister, K. A., Malphurs, J., Ward, T., Collins, N. K., Seely, J. C., 
Gowen, L. C., Koller, B. H., Davis, B. J. and Wiseman, R. W. (2000) 'Mice 

Heterozygous for a Brca1 or Brca2 Mutation Display Distinct Mammary Gland 
and Ovarian Phenotypes in Response to Diethylstilbestrol', Cancer Research, 60, 

(13), pp. 3461-3469. 
 

Bernges, F. and Zeller, W. J. (1996) 'Combination effects of poly(ADP-ribose) 
polymerase inhibitors and DNA-damaging agents in ovarian tumor cell lines 
with special reference to cisplatin', Journal of Cancer Research and Clinical 
Oncology, 122, (11), pp. 665-670. 

 
Bernstein, C., Bernstein, H., Payne, C. M. and Garewal, H. (2002) 'DNA repair/pro-

apoptotic dual-role proteins in five major DNA repair pathways: fail-safe 
protection against carcinogenesis', Mutation Research-Reviews in Mutation 
Research, 511, (2), pp. 145-178. 

 
Bertwistle, D. and Ashworth, A. (1998) 'Functions of the BRCA1 and BRCA2 genes', 

Current Opinion in Genetics & Development, 8, (1), pp. 14-20. 
 

Bhattacharyya, A., Ear, U. S., Koller, B. H., Weichselbaum, R. R. and Bishop, D. K. (2000) 
'The breast cancer susceptibility gene BRCA1 is required for subnuclear 

assembly of Rad51 and survival following treatment with the DNA cross -linking 
agent cisplatin', Journal of Biological Chemistry, 275, (31), pp. 23899-23903. 

 
 



  References 

221 
 

Bindra, R. S., Schaffer, P. J., Meng, A., Woo, J., MÅSeide, K., Roth, M. E., Lizardi, P., 
Hedley, D. W., Bristow, R. G. and Glazer, P. M. (2005) 'Alterations in DNA Repair 

Gene Expression under Hypoxia: Elucidating the Mechanisms of Hypoxia-
Induced Genetic Instability', Annals of the New York Academy of Sciences, 1059, 

(1), pp. 184-195. 
 

Bowman, K. J., White, A., Golding, B. T., Griffin, R. J. and Curtin, N. J. (1998) 
'Potentiation of anti-cancer agent cytotoxicity by the potent poly(ADP-ribose) 

polymerase inhibitors NU1025 and NU1064', British  Journal of Cancer, 78, (10), 
pp. 1269-1277. 

 
Brohet, R. M., Goldgar, D. E., Easton, D. F., Antoniou, A. C., Andrieu, N., Chang-Claude, 

J., Peock, S., Eeles, R. A., Cook, M., Chu, C., NoguÃ¨s, C., Lasset, C., Berthet, P., 
Meijers-Heijboer, H., Gerdes, A.-M., Olsson, H. k., Caldes, T., van Leeuwen, F. E. 
and Rookus, M. A. (2007) 'Oral Contraceptives and Breast Cancer Risk in the 
International BRCA1/2 Carrier Cohort Study: A Report From EMBRACE, 
GENEPSO, GEO-HEBON, and the IBCCS Collaborating Group', Journal of Clinical 
Oncology, 25, (25), pp. 3831-3836. 

 
Brose, M. S., Rebbeck, T. R., Calzone, K. A., Stopfer, J. E., Nathanson, K. L. and Weber, B. 

L. (2002) 'Cancer risk estimates for BRCA1 mutation carriers identified in a risk 

evaluation program', Journal of the National Cancer Institute, 94, (18), pp. 
1365-1372. 

 
Bryant, H. E., Petermann, E., Schultz, N., Jemth, A.-s., Loseva, O., Issaeva, N., Johansson, 

F., Fernandez, S., McGlynn, P. and Helleday, T. (2009) 'PARP is activated at 
stalled forks to mediate Mre11-dependent replication restart and 

recombination', EMBO Journal, 28, (17), pp. 2601-2615. 
 

Bryant, H. E., Schultz, N., Thomas, H. D., Parker, K. M., Flower, D., Lopez, E., Kyle, S., 
Meuth, M., Curtin, N. J. and Helleday, T. (2005) 'Specific killing of BRCA2-
deficient tumours with inhibitors of poly(ADP-ribose) polymerase', Nature, 434, 
(7035), pp. 913-917. 

 
Bunting, S. F., Callen, E., Wong, N., Chen, H. T., Polato, F., Gunn, A., Bothmer, A., 

Feldhahn, N., Fernandez-Capetillo, O., Cao, L., Xu, X. L., Deng, C. X., Finkel, T., 
Nussenzweig, M., Stark, J. M. and Nussenzweig, A. (2010) '53BP1 Inhibits 
Homologous Recombination in Brca1-Deficient Cells by Blocking Resection of 

DNA Breaks', Cell, 141, (2), pp. 243-254. 
 

Burkart, V., Wang, Z.-Q., Radons, J., Heller, B., Herceg, Z., Stingl, L., Wagner, E. F. and 
Kolb, H. (1999) 'Mice lacking the poly(ADP-ribose) polymerase gene are 

resistant to pancreatic beta-cell destruction and diabetes development induced 
by streptozocin', Nature Medicine, 5, (3), pp. 314-319. 

 
 
 
 



  References 

222 
 

Byrski, T., Gronwald, J., Huzarski, T., Grzybowska, E., Budryk, M., Stawicka, M., Mierzwa, 
T., Szwiec, M., Wianiowski, R., Siolek, M., Dent, R., Lubinski, J. and Narod, S. 

(2009) 'Pathologic Complete Response Rates in Young Women With BRCA1-
Positive Breast Cancers After Neoadjuvant Chemotherapy', Journal of Clinical 

Oncology, 28, (3), pp. 375-379. 
 

Calabrese, C. R., Almassy, R., Barton, S., Batey, M. A., Calvert, A. H., Canan-Koch, S., 
Durkacz, B. W., Hostomsky, Z., Kumpf, R. A., Kyle, S., Li, J., Maegley, K., Newell, 

D. R., Notarianni, E., Stratford, I. J., Skalitzky, D., Thomas, H. D., Wang, L. Z., 
Webber, S. E., Williams, K. J. and Curtin, N. J. (2004) 'Anticancer 

chemosensitization and radiosensitization by the novel poly(ADP-ribose) 
polymerase-1 inhibitor AG14361', Journal of the National Cancer Institute, 96, 

(1), pp. 56-67. 
 
Caldecott K. and Jeggo PP, (1991) 'Cross-sensitivity of γ-ray-sensitive hamster mutants 

to cross-linking agents. ', DNA Repair, 255, pp. 111-121. 
 
Casey, M. J., Synder, C., Bewtra, C., Narod, S. A., Watson, P. and Lynch, H. T. (2005) 

'Intra-abdominal carcinomatosis after prophylactic oophorectomy in women of 
hereditary breast ovarian cancer syndrome kindreds associated with BRCA1 
and BRCA2 mutations', Gynecologic Oncology, 97, (2), pp. 457-467. 

 
Chai, Y. L., Cui, J. Q., Shao, N. S., Reddy, E. S. P. and Rao, V. N. (1999) 'The second BRCT 

domain of BRCA-1 proteins interacts with p53 and stimulates transcription from 
the p21(WAF1/CIP1) promoter', Oncogene, 18, (1), pp. 263-268. 

 
Chambon, P., Weill, J. D., Doly, J., Strosser, M. T. and Mandel, P. (1966) 'On the 

formation of a novel adenylic compound by enzymatic extracts of liver nuclei', 
Biochemical and Biophysical Research Communications, 25, (6), pp. 638-643. 

 
Chambon, P., Weill, J. D. and Mandel, P. (1963) 'Nicotinamide mononucleotide 

activation of new DNA-dependent polyadenylic acid synthesizing nuclear 
enzyme', Biochem Biophysical Research Communications, 11, pp. 39-43. 

 
Chan, N., Koritzinsky, M., Zhao, H., Bindra, R., Glazer, P. M., Powell, S., Belmaaza, A., 

Wouters, B. and Bristow, R. G. (2008) 'Chronic Hypoxia Decreases Synthesis of 
Homologous Recombination Proteins to Offset Chemoresistance and 
Radioresistance', Cancer Research, 68, (2), pp. 605-614. 

 
Chan, N., Pires, I. M., Bencokova, Z., Coackley, C., Luoto, K. R., Bhogal, N., Lakshman, 

M., Gottipati, P., Oliver, F. J., Helleday, T., Hammond, E. M. and Bristow, R. G. 
(2010) 'Contextual Synthetic Lethality of Cancer Cell Kill Based on the Tumor 

Microenvironment', Cancer Research, 70, (20), pp. 8045-8054. 
 

Chiang, F. Y., Wu, C. W., Hsiao, P. J., Kuo, W. R., Lee, K. W., Lin, J. C., Liao, Y. C. and Juo, 
S. H. H. (2008) 'Association between polymorphisms in DNA base excision 
repair genes XRCC1, APE1, and ADPRT and differentiated thyroid carcinoma', 
Clinical Cancer Research, 14, (18), pp. 5919-5924. 

 



  References 

223 
 

Christmann, M., Tomicic, M. T., Roos, W. P. and Kaina, B. (2003) 'Mechanisms of 
human DNA repair: an update', Toxicology, 193, (1-2), pp. 3-34. 

 
Chu, G. (1997) 'Double Strand Break Repair', Journal of Biological Chemistry, 272, (39), 

pp. 24097-24100. 
 

Cleator, S., Heller, W. and Coombes, R. C. (2007) 'Triple-negative breast cancer: 
therapeutic options', Lancet Oncology, 8, (3), pp. 235-244. 

 
Collis, S. J., DeWeese, T. L., Jeggo, P. A. and Parker, A. R. (2005) 'The life and death of 

DNA-PK', Oncogene, 24, (6), pp. 949-961. 
 

The CHEK2 Breast Cancer Consortium, (2004) 'CHEK2*1100delC and Susceptibility to 
Breast Cancer: A Collaborative Analysis Involving 10,860 Breast Cancer Cases 
and 9,065 Controls from 10 Studies', American journal of human genetics, 74, 
(6), pp. 1175-1182. 

 
Constantinou, A., Davies, A. A. and West, S. C. (2001) 'Branch Migration and Holliday 

Junction Resolution Catalyzed by Activities from Mammalian Cells', Cell, 104, (2), 
pp. 259-268. 

 

Cottet, F., Blanche, H., Verasdonck, P., Le Gall, I., Schachter, F., Burkle, A. and Muiras, 
M. L. (2000) 'New polymorphisms in the human poly(ADP-ribose) polymerase-1 

coding sequence: lack of association with longevity or with increased cellular 
poly(ADP-ribosyl)ation capacity', Journal of Molecular Medicine, 78, (8), pp. 

431-440. 
 

Davies, A. A., Masson, J. Y., McLlwraith, M. J., Stasiak, A. Z., Stasiak, A., Venkitaraman, 
A. R. and West, S. C. (2001) 'Role of BRCA2 in control of the RAD51 

recombination and DNA repair protein', Molecular Cell, 7, (2), pp. 273-282. 
 
Davies, B. R., Steele, I. A., Edmondson, R. J., Zwolinski, S. A., Saretzki, G., von Zglinicki, T. 

and O’Hare, M. J. (2003) 'Immortalisation of human ovarian surface epithelium 
with telomerase and temperature-senstitive SV40 large T antigen', 
Experimental Cell Research, 288, (2), pp. 390-402. 

 
De Bont, R. and van Larebeke, N. (2004) 'Endogenous DNA damage in humans: a 

review of quantitative data', Mutagenesis, 19, (3), pp. 169-185. 

 
de Murcia, G. and de Murcia, J. M. (1994) 'Poly(ADP-ribose) polymerase: a molecular 

nick-sensor', Trends in biochemical sciences, 19, (4), pp. 172-173. 
 

De Soto, J. A., Wang, X., Tominaga, Y., Wang, R.-H., Cao, L., Qiao, W., Li, C., Xu, X., 
Skoumbourdis, A. P., Prindiville, S. A., Thomas, C. J. and Deng, C.-X. (2006) 'The 

inhibition and treatment of breast cancer with poly (ADP-ribose) polymerase 
(PARP-1) inhibitors', International Journal of Biological Science, 2, (4), pp. 179-
85. 

 



  References 

224 
 

Delaney, C. A., Wang, L. Z., Kyle, S., White, A. W., Calvert, A. H., Curtin, N. J., Durkacz, B. 
W., Hostomsky, Z. and Newell, D. R. (2000) 'Potentiation of temozolomide and 

topotecan growth inhibition and cytotoxicity by novel poly(adenosine 
diphosphoribose) polymerase inhibitors in a panel of human tumor cell lines', 

Clinical Cancer Research, 6, (7), pp. 2860-2867. 
 

Demuth, I. and Digweed, M. (2007) 'The clinical manifestation of a defective response 
to DNA double-strand breaks as exemplified by Nijmegen breakage syndrome', 

Oncogene, 26, (56), pp. 7792-7792-8. 
 

Denny, B. J., Wheelhouse, R. T., Stevens, M. F. G., Tsang, L. L. H. and Slack, J. A. (1994) 
'NMR and Molecular Modeling Investigation of the Mechanism of Activation of 

the Antitumor Drug Temozolomide and Its Interaction with DNA', Biochemistry, 
33, (31), pp. 9045-9051. 

 
DeVita VT, L. T., Rosenberg SA, DePinho RA, Weinberg RA. (2010) DeVita, Hellman and 

Rosenberg's Cancer Principles and Practice of Oncology. Lippincott Williams and 
Wilkins. 

 
Domchek, S. M., Friebel, T. M., Neuhausen, S. L., Wagner, T., Evans, G., Isaacs, C., 

Garber, J. E., Daly, M. B., Eeles, R., Matloff, E., Tomlinson, G. E., Van't Veer, L., 

Lynch, H. T., Olopade, O. I., Weber, B. L. and Rebbeck, T. R. (2006) 'Mortality 
after bilateral salpingo-oophorectomy in BRCA1 and BRCA2 mutation carriers: a 

prospective cohort study', Lancet Oncology, 7, (3), pp. 223-229. 
 

Domchek, S. M. and Weber, B. L. (2006) 'Clinical management of BRCA1 and BRCA2 
mutation carriers', Oncogene, 25, (43), pp. 5825-5831. 

 
Donawho, C. K., Luo, Y., Luo, Y., Penning, T. D., Bauch, J. L., Bouska, J. J., Bontcheva-

Diaz, V. D., Cox, B. F., DeWeese, T. L., Dillehay, L. E., Ferguson, D. C., Ghoreishi-
Haack, N. S., Grimm, D. R., Guan, R., Han, E. K., Holley-Shanks, R. R., Hristov, B., 
Idler, K. B., Jarvis, K., Johnson, E. F., Kleinberg, L. R., Klinghofer, V., Lasko, L. M., 
Liu, X., Marsh, K. C., McGonigal, T. P., Meulbroek, J. A., Olson, A. M., Palma, J. P., 
Rodriguez, L. E., Shi, Y., Stavropoulos, J. A., Tsurutani, A. C., Zhu, G.-D., 
Rosenberg, S. H., Giranda, V. L. and Frost, D. J. (2007) 'ABT-888, an Orally Active 
Poly(ADP-Ribose) Polymerase Inhibitor that Potentiates DNA-Damaging Agents 
in Preclinical Tumor Models', Clinical Cancer Research, 13, (9), pp. 2728-2737. 

 

Drew, Y. and Calvert, H. (2008) 'The Potential of PARP Inhibitors in Genetic Breast and 
Ovarian Cancers', Recent Advances in Clinical Oncology. Vol. 1138 Oxford: 

Blackwell Publishing, pp. 136-145. 
 

Drew, Y., Ledermann, J. A., Jones, A., Hall, G., Jayson, G. C., Highley, M., Rea, D., 
Glasspool, R. M., Halford, S. E. R., Crosswell, G., Colebrook, S., Boddy, A. V., 

Curtin, N. J. and Plummer, E. R. (2011a) 'Phase II trial of the poly(ADP-ribose) 
polymerase (PARP) inhibitor AG-014699 in BRCA 1 and 2-mutated, advanced 
ovarian and/or locally advanced or metastatic breast cancer', Journal of Clinical 
Oncology, 29, (15_suppl), pp. 3104. 

 



  References 

225 
 

Drew, Y., Mulligan, E. A., Vong, W.-T., Thomas, H. D., Kahn, S., Kyle, S., Mukhopadhyay, 
A., Los, G., Hostomsky, Z., Plummer, E. R., Edmondson, R. J. and Curtin, N. J. 

(2011b) 'Therapeutic Potential of Poly(ADP-ribose) Polymerase Inhibitor 
AG014699 in Human Cancers With Mutated or Methylated BRCA1 or BRCA2', 

Journal of the National Cancer Institute, 103, (4), pp. 334. 
 

Duffy, S. W., Tabar, L., Olsen, A. H., Vitak, B., Allgood, P. C., Chen, T. H. H., Yen, A. M. F. 
and Smith, R. A. (2010) 'Absolute numbers of lives saved and overdiagnosis in 

breast cancer screening, from a randomized trial and from the Breast Screening 
Programme in England', Journal of Medical Screening, 17, (1), pp. 25-30. 

 
Dungey, F. A., Caldecott, K. W. and Chalmers, A. J. (2009) 'Enhanced radiosensitization 

of human glioma cells by combining inhibition of poly(ADP-ribose) polymerase 
with inhibition of heat shock protein 90', Molecular Cancer Therapeutics, 8, (8), 
pp. 2243-2254. 

 
Durant, S. T. and Nickoloff, J. A. (2005) 'Good Timing in the Cell Cycle for Precise DNA 

Repair by BRCA1', Cell Cycle, 4, (9), pp. 1216-1222. 
 
Durkacz, B. W., Omidiji, O., Gray, D. A. and Shall, S. (1980) '(ADP-ribose)n participates 

in DNA excision repair', Nature, 283, (5747), pp. 593-596. 

 
Edwards, S. L., Brough, R., Lord, C. J., Natrajan, R., Vatcheva, R., Levine, D. A., Boyd, J., 

Reis, J. S. and Ashworth, A. (2008) 'Resistance to therapy caused by intragenic 
deletion in BRCA2', Nature, 451, (7182), pp. 1111-U8. 

 
Eisenhauer, E. A., Therasse, P., Bogaerts, J., Schwartz, L. H., Sargent, D., Ford, R., 

Dancey, J., Arbuck, S., Gwyther, S., Mooney, M., Rubinstein, L., Shankar, L., 
Dodd, L., Kaplan, R., Lacombe, D. and Verweij, J. (2009) 'New response 

evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1)', 
European Journal of Cancer, 45, (2), pp. 228-247. 

 
Elledge, S. J. and Amon, A. (2002) 'The BRCA1 suppressor hypothesis: An explanation 

for the tissue-specific tumor development in BRCA1 patients', Cancer cell, 1, (2), 
pp. 129-132. 

 
Elstrodt, F., Hollestelle, A., Nagel, J. H. A., Gorin, M., Wasielewski, M., van den 

Ouweland, A., Merajver, S. D., Ethier, S. P. and Schutte, M. (2006) 'BRCA1 

mutation analysis of 41 human breast cancer cell lines reveals three new 
deleterious mutants', Cancer Research, 66, (1), pp. 41-45. 

 
Esashi, F., Galkin, V. E., Yu, X., Egelman, E. H. and West, S. C. (2007) 'Stabilization of 

RAD51 nucleoprotein filaments by the C-terminal region of BRCA2', Nature 
Structrual and Molecular Biology, 14, (6), pp. 468-474. 

 
 
 
 



  References 

226 
 

Evers, B., Drost, R., Schut, E., de Bruin, M., van der Burg, E., Derksen, P. W. B., Holstege, 
H., Liu, X., van Drunen, E., Beverloo, H. B., Smith, G. C. M., Martin, N. M. B., Lau, 

A., O'Connor, M. J. and Jonkers, J. (2008) 'Selective Inhibition of BRCA2-
Deficient Mammary Tumor Cell Growth by AZD2281 and Cisplatin', Clinical 

Cancer Research, 14, (12), pp. 3916-3925. 
 

Falck, J., Coates, J. and Jackson, S. P. (2005) 'Conserved modes of recruitment of ATM, 
ATR and DNA-PKcs to sites of DNA damage', Nature, 434, (7033), pp. 605-611. 

 
Fan, S., Wang, J. A., Yuan, R., Ma, Y., Meng, Q., Erdos, M. R., Pestell, R. G., Yuan, F., 

Auborn, K. J., Goldberg, I. D. and Rosen, E. M. (1999) 'BRCA1 Inhibition of 
Estrogen Receptor Signaling in Transfected Cells', Science, 284, (5418), pp. 

1354-1356. 
 
Farmer, H., McCabe, N., Lord, C. J., Tutt, A. N. J., Johnson, D. A., Richardson, T. B., 

Santarosa, M., Dillon, K. J., Hickson, I., Knights, C., Martin, N. M. B., Jackson, S. 
P., Smith, G. C. M. and Ashworth, A. (2005) 'Targeting the DNA repair defect in 
BRCA mutant cells as a therapeutic strategy', Nature, 434, (7035), pp. 917-921. 

 
Ferraris, D. V. (2010) 'Evolution of Poly(ADP-ribose) Polymerase-1 (PARP-1) Inhibitors. 

From Concept to Clinic', Journal of Medicinal Chemistry, 53, (12), pp. 4561-4584.  

 
Fong, P. C., Boss, D. S., Yap, T. A., Tutt, A., Wu, P. J., Mergui-Roelvink, M., Mortimer, P., 

Swaisland, H., Lau, A., O'Connor, M. J., Ashworth, A., Carmichael, J., Kaye, S. B., 
Schellens, J. H. M. and de Bono, J. S. (2009) 'Inhibition of Poly(ADP-Ribose) 

Polymerase in Tumors from BRCA Mutation Carriers', New England Journal of 
Medicine, 361, (2), pp. 123-134. 

 
Fong, P. C., Yap, T. A., Boss, D. S., Carden, C. P., Mergui-Roelvink, M., Gourley, C., De 

Greve, J., Lubinski, J., Shanley, S., Messiou, C., A'Hern, R., Tutt, A., Ashworth, A., 
Stone, J., Carmichael, J., Schellens, J. H. M., de Bono, J. S. and Kaye, S. B. (2010) 
'Poly(ADP)-Ribose Polymerase Inhibition: Frequent Durable Responses in BRCA 
Carrier Ovarian Cancer Correlating With Platinum-Free Interval', Journal of 
Clinical Oncology, 28, (15), pp. 2512-2519. 

 
Ford, D., Easton, D. F., Bishop, D. T., Narod, S. A., Goldgar, D. E., Haites, N., Milner, B., 

Allan, L., Ponder, B. A. J., Peto, J., Smith, S., Stratton, M., Lenoir, G. M., 
Feunteun, J., Lynch, H., Arason, A., Barkardottir, R., Egilsson, V., Black, D. M., 

Kelsell, D., Spurr, N., Devilee, P., Cornelisse, C. J., Varsen, H., Birch, J. M., 
Skolnick, M., Santibanezkoref, M. S., Teare, D., Steel, M., Porter, D., Cohen, B. 

B., Carothers, A., Smyth, E., Weber, B., Newbold, B., Boehnke, M., Collins, F. S., 
Cannonalbright, L. A. and Goldgar, D. (1994) 'Risks of Cancer in Brca1-Mutation 

Carriers', Lancet, 343, (8899), pp. 692-695. 
 

Fougerousse, F., Meloni, R., Roudaut, C. and Beckmann, J. S. (1992) 'Dinucleotide 
repeat polymorphism at the human Poly (ADP-Ribose) polymerase gene (PPOL)', 
Nucleic Acids Research, 20, (5), pp. 1166. 

 



  References 

227 
 

Friend, S. H. and Oliff, A. (1998) 'Emerging Uses for Genomic Information in Drug 
Discovery', New England Journal of Medicine, 338, (2), pp. 125-126. 

 
Frizzell, K. M., Gamble, M. J., Berrocal, J. G., Zhang, T., Krishnakumar, R., Cen, Y., Sauve, 

A. A. and Kraus, W. L. (2009) 'Global Analysis of Transcriptional Regulation by 
Poly(ADP-ribose) Polymerase-1 and Poly(ADP-ribose) Glycohydrolase in MCF-7 

Human Breast Cancer Cells', Journal of Biological Chemistry, 284, (49), pp. 
33926-33938. 

 
Gallmeier, E. and Kern, S. E. (2005) 'Absence of specific cell killing of the BRCA2-

deficient human cancer cell line CAPAN1 by poly(ADP-ribose) polymerase 
inhibition', Cancer Biology & Therapy, 4, (7), pp. 703-706. 

 
Gaymes, T. J., Shall, S., MacPherson, L. J., Twine, N. A., Lea, N. C., Farzaneh, F. and 

Mufti, G. J. (2009) 'Inhibitors of poly ADP-ribose polymerase (PARP) induce 
apoptosis of myeloid leukemic cells: potential for therapy of myeloid leukemia 
and myelodysplastic syndromes', Haematologica-the Hematology Journal, 94, 
(5), pp. 638-646. 

 
Gelmon, K. A., Hirte, H. W., Robidoux, A., Tonkin, K. S., Tischkowitz, M., Swenerton, K., 

Huntsman, D., Carmichael, J., Macpherson, E. and Oza, A. M. (2010) 'Can we 

define tumors that will respond to PARP inhibitors? A phase II correlative study 
of olaparib in advanced serous ovarian cancer and triple-negative breast 

cancer', Journal of Clinical Oncology, 28, (15_suppl), pp. 3002. 
 

Gelmon, K. A., Tischkowitz, M., Mackay, H., Swenerton, K., Robidoux, A., Tonkin, K., 
Hirte, H., Huntsman, D., Clemons, M., Gilks, B., Yerushalmi, R., Macpherson, E., 

Carmichael, J. and Oza, A. (2011) 'Olaparib in patients with recurrent high-
grade serous or poorly differentiated ovarian carcinoma or triple-negative 

breast cancer: a phase 2, multicentre, open-label, non-randomised study', 
Lancet Oncology, 12, (9), pp. 852-861. 

 
Giaccone, G., Rajan, A., Kelly, R. J., Gutierrez, M., Kummar, S., Yancey, M., Ji, J. J., Zhang, 

Y., Parchment, R. E. and Doroshow, J. H. (2010) 'A phase I combination study of 
olaparib (AZD2281; KU-0059436) and cisplatin (C) plus gemcitabine (G) in adults 
with solid tumors', Journal of Clinical Oncology, 28, (15_suppl), pp. 3027. 

 
Goggins, M., Schutte, M., Lu, J., Moskaluk, C. A., Weinstein, C. L., Petersen, G. M., Yeo, 

C. J., Jackson, C. E., Lynch, H. T., Hruban, R. H. and Kern, S. E. (1996) 'Germline 
BRCA2 Gene Mutations in Patients with Apparently Sporadic Pancreatic 

Carcinomas', Cancer Research, 56, (23), pp. 5360-5364. 
 

Gorski, J. J., Kennedy, R. D., Hosey, A. M. and Harkin, D. P. (2009) 'The Complex 
Relationship between BRCA1 and ERα in Hereditary Breast Cancer', Clinical 

Cancer Research, 15, (5), pp. 1514-1518. 
 
 
 



  References 

228 
 

Gottipati, P., Vischioni, B., Schultz, N., Solomons, J., Bryant, H. E., Djureinovic, T., 
Issaeva, N., Sleeth, K., Sharma, R. A. and Helleday, T. (2010) 'Poly(ADP-Ribose) 

Polymerase Is Hyperactivated in Homologous Recombination-Defective Cells', 
Cancer Research, 70, (13), pp. 5389-5398. 

 
Graeser, M., McCarthy, A., Lord, C. J., Savage, K., Hills, M., Salter, J., Orr, N., Parton, M., 

Smith, I. E., Reis-Filho, J. S., Dowsett, M., Ashworth, A. and Turner, N. C. (2010) 
'A Marker of Homologous Recombination Predicts Pathologic Complete 

Response to Neoadjuvant Chemotherapy in Primary Breast Cancer', Clinical 
Cancer Research, 16, (24), pp. 6159-6168. 

 
The MARIBS study group, (2005) 'Screening with magnetic resonance imaging and 

mammography of a UK population at high familial risk of breast cancer: a 
prospective multicentre cohort study (MARIBS)', The Lancet, 365, (9473), pp. 
1769-1778. 

 
Grube, K. and Burkle, A. (1992) 'Poly(Adp-Ribose) Polymerase-Activity in Mononuclear 

Leukocytes of 13 Mammalian-Species Correlates with Species-Specific Life-
Span', Proceedings of the National Academy of Sciences of the United States of 
America, 89, (24), pp. 11759-11763. 

 

Gudmundsdottir, K. and Ashworth, A. (2006) 'The roles of BRCA1 and BRCA2 and 
associated proteins in the maintenance of genomic stability', Oncogene, 25, 

(43), pp. 5864-5874. 
 

Haince, J.F., Kozlov, S., Dawson, V. L., Dawson, T. M., Hendzel, M. J., Lavin, M. F. and 
Poirier, G. G. (2007) 'Ataxia Telangiectasia Mutated (ATM) Signaling Network Is 

Modulated by a Novel Poly(ADP-ribose)-dependent Pathway in the Early 
Response to DNA-damaging Agents', Journal of Biological Chemistry, 282, (22), 

pp. 16441-16453. 
 
Haince, J.F., McDonald, D., Rodrigue, A. l., Dery, U., Masson, J.-Y., Hendzel, M. J. and 

Poirier, G. G. (2008) 'PARP1-dependent Kinetics of Recruitment of MRE11 and 
NBS1 Proteins to Multiple DNA Damage Sites', The Journal of biological 
chemistry, 283, (2), pp. 1197-1208. 

 
Hall, J. M., Lee, M. K., Newman, B., Morrow, J. E., Anderson, L. A., Huey, B. and King, M. 

C. (1990) 'Linkage of early-onset familial breast cancer to chromosome 17q21', 

Science, 250, (4988), pp. 1684-1689. 
 

Hanahan, D. and Weinberg, Robert A. (2011) 'Hallmarks of Cancer: The Next 
Generation', Cell, 144, (5), pp. 646-674. 

 
Hao, B. T., Wang, H. J., Zhou, K. X., Li, Y., Chen, X. P., Zhou, G. Q., Zhu, Y. P., Miao, X. P., 

Tan, W., Wei, Q. Y., Lin, D. X. and He, F. C. (2004) 'Identification of genetic 
variants in base excision repair pathway and their associations with risk of 
oesophageal squamous cell carcinoma', Cancer Research, 64, (12), pp. 4378-
4384. 

 



  References 

229 
 

Harper, J. V., Anderson, J. A. and O'Neill, P. (2010) 'Radiation induced DNA DSBs: 
Contribution from stalled replication forks?', DNA Repair, 9, (8), pp. 907-913. 

 
Harrap, K. (1985) 'Preclinical studies identifying carboplatin as a viable cisplatin 

alternative', Cancer Treatment Reviews, 12, pp. 21-33. 
 

Hartman, A.R. and Ford, J. M. (2002) 'BRCA1 induces DNA damage recognition factors 
and enhances nucleotide excision repair', Nature Genetics, 32, (1), pp. 180-184. 

 
Hassa, P. O., Buerki, C., Lombardi, C., Imhof, R. and Hottiger, M. O. (2003) 

'Transcriptional Coactivation of Nuclear Factor-ÎºB-dependent Gene Expression 
by p300 Is Regulated by Poly(ADP)-ribose Polymerase-1', Journal of Biological 

Chemistry, 278, (46), pp. 45145-45153. 
 
Hastak, K., Alli, E. and Ford, J. M. (2010) 'Synergistic Chemosensitivity of Triple-

Negative Breast Cancer Cell Lines to Poly(ADP-Ribose) Polymerase Inhibition, 
Gemcitabine, and Cisplatin', Cancer Research, 70, (20), pp. 7970-7980. 

 
Hay, T., Matthews, J. R., Pietzka, L., Lau, A., Cranston, A., Nygren, A. O. H., Douglas -

Jones, A., Smith, G. C. M., Martin, N. M. B., O'Connor, M. and Clarke, A. R. (2009) 
'Poly(ADP-Ribose) Polymerase-1 Inhibitor Treatment Regresses Autochthonous 

Brca2/p53-Mutant Mammary Tumors In vivo and Delays Tumor Relapse in 
Combination with Carboplatin', Cancer Research, 69, (9), pp. 3850-3855. 

 
Helleday, T., Lo, J., van Gent, D. C. and Engelward, B. P. (2007) 'DNA double-strand 

break repair: From mechanistic understanding to cancer treatment', DNA 
Repair, 6, (7), pp. 923-935. 

 
Helleday, T., Petermann, E., Lundin, C., Hodgson, B. and Sharma, R. A. (2008) 'DNA 

repair pathways as targets for cancer therapy', Nature Reviews: Cancer, 8, (3), 
pp. 193-193-204. 

 
Hennessy, B. T. J., Timms, K. M., Carey, M. S., Gutin, A., Meyer, L. A., Flake, D. D., 

Abkevich, V., Potter, J., Pruss, D., Glenn, P., Li, Y., Li, J., Gonzalez-Angulo, A. M., 
McCune, K. S., Markman, M., Broaddus, R. R., Lanchbury, J. S., Lu, K. H. and 
Mills, G. B. (2010) 'Somatic Mutations in BRCA1 and BRCA2 Could Expand the 
Number of Patients That Benefit From Poly (ADP Ribose) Polymerase Inhibitors 
in Ovarian Cancer', Journal of Clinical Oncology, 28, (22), pp. 3570-3576. 

 
Henry-Mowatt, J., Jackson, D., Masson, J. Y., Johnson, P. A., Clements, P. M., Benson, F. 

E., Thompson, L. H., Takeda, S., West, S. C. and Caldecott, K. W. (2003) 'XRCC3 
and Rad51 modulate replication fork progression on damaged vertebrate 

chromosomes', Molecular Cell, 11, (4), pp. 1109-1117. 
 

Hickson, I. D. (2003) 'RecQ helicases: caretakers of the genome', Nature Reviews. 
Cancer, 3, (3), pp. 169-169-78. 

 
Hoeijmakers, J. H. J. (2001) 'Genome maintenance mechanisms for preventing cancer', 

Nature, 411, (6835), pp. 366-374. 



  References 

230 
 

Hoeijmakers, J. H. J. (2009) 'DNA Damage, Aging, and Cancer', New England Journal of 
Medicine, 361, (15), pp. 1475-1485. 

 
Hughes-Davies, L., Huntsman, D., Ruas, M., Fuks, F., Bye, J., Chin, S.-F., Milner, J., 

Brown, L. A., Hsu, F., Gilks, B., Nielsen, T., Schulzer, M., Chia, S., Ragaz, J., Cahn, 
A., Linger, L., Ozdag, H., Cattaneo, E., Jordanova, E. S., Schuuring, E., Yu, D. S., 

Venkitaraman, A., Ponder, B., Doherty, A., Aparicio, S., Bentley, D., Theillet, C., 
Ponting, C. P., Caldas, C. and Kouzarides, T. (2003) 'EMSY Links the BRCA2 

Pathway to Sporadic Breast and Ovarian Cancer', Cell, 115, (5), pp. 523-535. 
 

Irminger-Finger, I., Siegel, B. D. and Leung, W. C. (1999) 'The Functions of Breast 
Cancer Susceptibility Gene 1 (BRCA1) Product and Its Associated Proteins', 

Biological Chemistry, 380, (2), pp. 117-128. 
 
Isakoff, S. J., Overmoyer, B., Tung, N. M., Gelman, R. S., Giranda, V. L., Bernhard, K. M., 

Habin, K. R., Ellisen, L. W., Winer, E. P. and Goss, P. E. (2010) 'A phase II trial of 
the PARP inhibitor veliparib (ABT888) and temozolomide for metastatic breast 
cancer', Journal of Clinical Oncology, 28, (15_suppl), pp. 1019. 

 
Jazayeri, A., Balestrini, A., Garner, E., Haber, J. E. and Costanzo, V. (2008) 'Mre11-

Rad50-Nbs1-dependent processing of DNA breaks generates oligonucleotides 

that stimulate ATM activity', EMBO Journal, 27, (14), pp. 1953-1953-62. 
 

Jazayeri, A., Falck, J., Lukas, C., Bartek, J., Smith, G. C. M., Lukas, J. and Jackson, S. P. 
(2006) 'ATM- and cell cycle-dependent regulation of ATR in response to DNA 

double-strand breaks', Nature Cell Biology, 8, (1), pp. 37-37-45. 
 

Jensen, R. B., Carreira, A. and Kowalczykowski, S. C. (2010) 'Purified human BRCA2 
stimulates RAD51-mediated recombination', Nature, 467, (7316), pp. 678-683. 

 
Ji, J. J., Kummar, S., Chen, A. P., Zhang, Y., Putvtana, R., Kinders, R. J., Rubinstein, L., 

Parchment, R. E., Tomaszewski, J. E. and Doroshow, J. H. (2010) 
'Pharmacodynamic response in phase I combination study of ABT-888 and 
topotecan in adults with refractory solid tumors and lymphomas', Journal of 
Clinical Oncology, 28, (15_suppl), pp. 2514. 

 
Johnson, N., Li, Y.-C., Walton, Z.E., Cheng, K.A., Li, D., Rodig, S.J., Moreau, L.A., Unitt, C., 

Bronson, R.T., Thomas, H.D., Newell, D.R., D'Andrea, A.D., Curtin, N.J., Wong, 

K.-K., Shapiro, G.I. (2011) ‘Compromised CDK1 activity sensitizes BRCA-
proficient cancers to PARP inhibition’, Nature Medicine,  17, pp. 875-882. 

 
Kaelin, W. G. (2005) 'The concept of synthetic lethality in the context of anticancer 

therapy', Nature Reviews Cancer, 5, (9), pp. 689-698. 
 

Kawai, H., Li, H. C., Chun, P., Avraham, S. and Avraham, H. K. (2002) 'Direct interaction 
between BRCA1 and the estrogen receptor regulates vascular endothelial 
growth factor (VEGF) transcription and secretion in breast cancer cells', 
Oncogene, 21, (50), pp. 7730-7739. 

 



  References 

231 
 

Kennedy, R. D. and D'Andrea, A. D. (2006) 'DNA repair pathways in clinical practice: 
Lessons from pediatric cancer susceptibility syndromes', Journal of Clinical 

Oncology, 24, (23), pp. 3799-3808. 
 

Kennedy, R. D., Quinn, J. E., Johnston, P. G. and Harkin, D. P. (2002) 'BRCA1: 
Mechanisms of inactivation and implications for management of patients', 

Lancet, 360, (9338), pp. 1007-1014. 
 

Khan, O. A., Gore, M., Lorigan, P., Stone, J., Greystoke, A., Burke, W., Carmichael, J., 
Watson, A. J., McGown, G., Thorncroft, M., Margison, G. P., Califano, R., Larkin, 

J., Wellman, S. and Middleton, M. R. (2011) 'A phase I study of the safety and 
tolerability of olaparib (AZD2281, KU0059436) and dacarbazine in patients with 

advanced solid tumours', British Journal of Cancer, 104, (5), pp. 750-755. 
 
King, M. C., Marks, J. H. and Mandell, J. B. (2003) 'Breast and ovarian cancer risks due 

to inherited mutations in BRCA1 and BRCA2', Science, 302, (5645), pp. 643-646. 
 
Knudson, A. G. (1971) 'Mutation and Cancer - Statistical Study of Retinoblastoma', 

Proceedings of the National Academy of Sciences of the United States of 
America, 68, (4), pp. 820-25. 

 

Konstantinopoulos, P. A., Spentzos, D., Karlan, B. Y., Taniguchi, T., Fountzilas, E., 
Francoeur, N., Levine, D. A. and Cannistra, S. A. (2010) 'Gene Expression Profile 

of BRCAness That Correlates With Responsiveness to Chemotherapy and With 
Outcome in Patients With Epithelial Ovarian Cancer', Journal of Clinical 

Oncology, 28, (22), pp. 3555-3561. 
 

Krupitza, G. and Cerutti, P. (1989) 'ADP-ribosylation of ADPR-transferase and 
topoisomerase I in intact mouse epidermal cells JB6', Biochemistry, 28, (5), pp. 

2034-2040. 
 
Kummar, S., Chen, A. P., Ji, J. J., Allen, D., Egorin, M. J., Gandara, D. R., Lenz, H., Morgan, 

R., Newman, E. M. and Doroshow, J. H. (2010) 'A phase I study of ABT-888 (A) in 
combination with metronomic cyclophosphamide (C) in adults with refractory 
solid tumors and lymphomas', Journal of Clinical Oncology, 28, (15_suppl), pp. 
2605. 

 
Kurosaki, T., Ushiro, H., Mitsuuchi, Y., Suzuki, S., Matsuda, M., Matsuda, Y., Katunuma, 

N., Kangawa, K., Matsuo, H. and Hirose, T. (1987) 'Primary structure of human 
poly(ADP-ribose) synthetase as deduced from cDNA sequence', Journal of 

Biological Chemistry, 262, (33), pp. 15990-15997. 
 

Langelier, M.-F., Servent, K. M., Rogers, E. E. and Pascal, J. M. (2008) 'A Third Zinc-
binding Domain of Human Poly(ADP-ribose) Polymerase-1 Coordinates DNA-

dependent Enzyme Activation', The Journal of biological chemistry, 283, (7), pp. 
4105-4114. 

Leavy, O. (2010) 'V(D)J recombination: RAG recombination centres', Nature Reviews 
Immunology, 10, (6), pp. 383-383. 

 



  References 

232 
 

Ledermann, J. A., Harter, P., Gourley, C., Friedlander, M., Vergote, I. B., Rustin, G. J. S., 
Scott, C., Meier, W., Shapira-Frommer, R., Safra, T., Matei, D., Macpherson, E., 

Watkins, C., Carmichael, J. and Matulonis, U. (2011) 'Phase II randomized 
placebo-controlled study of olaparib (AZD2281) in patients with platinum-

sensitive relapsed serous ovarian cancer (PSR SOC)', Journal of Clinical Oncology, 
29, (15_suppl), pp. 5003. 

 
Lee, E., McKean-Cowdin, R., Ma, H., Spicer, D. V., Van Den Berg, D., Bernstein, L. and 

Ursin, G. (2011) 'Characteristics of Triple-Negative Breast Cancer in Patients 
With a BRCA1 Mutation: Results From a Population-Based Study of Young 

Women', Journal of Clinical Oncology, 29, (33), pp. 4373-4380. 
 

Liede, A., Karlan, B. Y. and Narod, S. A. (2004) 'Cancer risks for male carriers of 
germline mutations in BRCA1 or BRCA2: A review of the literature', Journal of 
Clinical Oncology, 22, (4), pp. 735-742. 

 
Lindahl, T. (1993) 'Instability and decay of the primary structure of DNA', Nature, 362, 

(6422), pp. 709-715. 
 
Lindahl, T. and Wood, R. D. (1999) 'Quality control by DNA repair', Science, 286, (5446), 

pp. 1897-1905. 

 
Lockett, K. L., Hall, M. C., Xu, J. F., Zheng, S. L., Berwick, M., Chuang, S. C., Clark, P. E., 

Cramer, S. D., Lohman, K. and Hu, J. J. (2004) 'The ADPRT V762A genetic variant 
contributes to prostate cancer susceptibility and deficient enzyme function', 

Cancer Research, 64, (17), pp. 6344-6348. 
 

Lord, C. J., Garrett, M. D. and Ashworth, A. (2006) 'Targeting the Double-Strand DNA 
Break Repair Pathway as a Therapeutic Strategy', Clinical Cancer Research, 12, 

(15), pp. 4463-4468. 
 
LoRusso, P., Ji, J. J., Li, J., Heilbrun, L. K., Shapiro, G., Sausville, E. A., Boerner, S. A., 

Smith, D. W., Pilat, M. J., Zhang, J., Chen, A. P., Nechiporchik, N. and Parchment, 
R. E. (2011) 'Phase I study of the safety, pharmacokinetics (PK), and 
pharmacodynamics (PD) of the poly(ADP-ribose) polymerase (PARP) inhibitor 
veliparib (ABT-888; V) in combination with irinotecan (CPT-11; Ir) in patients 
(pts) with advanced solid tumors', Journal of Clinical Oncology, 29, (15_suppl), 
pp. 3000. 

 
Loser, D. A., Shibata, A., Shibata, A. K., Woodbine, L. J., Jeggo, P. A. and Chalmers, A. J. 

(2010) 'Sensitization to Radiation and Alkylating Agents by Inhibitors of 
Poly(ADP-ribose) Polymerase Is Enhanced in Cells Deficient in DNA Double-

Strand Break Repair', Molecular Cancer Therapeutics, 9, (6), pp. 1775-1787. 
 

Loveday, C., Turnbull, C., Ramsay, E., Hughes, D., Ruark, E., Frankum, J. R., Bowden, G., 
Kalmyrzaev, B., Warren-Perry, M., Snape, K., Adlard, J. W., Barwell, J., Berg, J., 
Brady, A. F., Brewer, C., Brice, G., Chapman, C., Cook, J., Davidson, R., 
Donaldson, A., Douglas, F., Greenhalgh, L., Henderson, A., Izatt, L., Kumar, A., 
Lalloo, F., Miedzybrodzka, Z., Morrison, P. J., Paterson, J., Porteous, M., Rogers, 



  References 

233 
 

M. T., Shanley, S., Walker, L., Eccles, D., Evans, D. G., Renwick, A., Seal, S., Lord, 
C. J., Ashworth, A., Reis-Filho, J. S., Antoniou, A. C. and Rahman, N. (2011) 

'Germline mutations in RAD51D confer susceptibility to ovarian cancer', Nature 
Genetics, 43, (9), pp. 879-882. 

 
Lynch, E. D., Ostermeyer, E. A., Lee, M. K., Arena, J. F., Ji, H., Dann, J., Swisshelm, K., 

Suchard, D., MacLeod, P. M., Kvinnsland, S., Gjertsen, B. T., Heimdal, K., Lubs, 
H., Møller, P. and King, M.-C. (1997) 'Inherited Mutations in PTEN That Are 

Associated with Breast Cancer, Cowden Disease, and Juvenile Polyposis ', 
American journal of human genetics, 61, (6), pp. 1254-1260. 

 
Maegley, K. A., Bingham, P., Tatlock, J. H. and Thomas, H. D. (2011) 'All PARP inhibitors 

are not equal: An in vitro mechanistic comparison of PF-01367338 to iniparib', 
Journal of Clinical Oncology, 29, (15_suppl), pp. e13576. 

 
Marmorstein, L. Y., Kinev, A. V., Chan, G. K. T., Bochar, D. A., Beniya, H., Epstein, J. A., 

Yen, T. J. and Shiekhattar, R. (2001) 'A human BRCA2 complex containing a 
structural DNA binding component influences cell cycle progression', Cell, 104, 
(2), pp. 247-257. 

 
Masutani M, N. T., Nakamoto K, Nakagama H, Suzuki H, Kusuoka O, Tsutsumi M, 

Sugimura T. (2000) 'The response of Parp knockout mice against DNA damaging 
agents', Mutation Research, 462, pp. 159-66. 

 
Mattern, M. R., Mong, S.-M., Bartus, H. F., Mirabelli, C. K., Crooke, S. T. and Johnson, R. 

K. (1987) 'Relationship between the Intracellular Effects of Camptothecin and 
the Inhibition of DNA Topoisomerase I in Cultured L1210 Cells', Cancer Research, 

47, (7), pp. 1793-1798. 
 

McCabe, N., Lord, C. J., Tutt, A. N. J., Martin, N. M. B., Smith, G. C. M. and Ashworth, A. 
(2005) 'BRCA2-deficient CAPAN-1 cells are extremely sensitive to the inhibition 
of poly (ADP-Ribose) polymerase', Cancer Biology & Therapy, 4, (9), pp. 934-936. 

 
McCabe, N., Turner, N. C., Lord, C. J., Kluzek, K., Bialkowska, A., Swift, S., Giavara, S., 

O'Connor, M. J., Tutt, A. N., Zdzienicka, M. g. Z., Smith, G. C. M. and Ashworth, 
A. (2006) 'Deficiency in the Repair of DNA Damage by Homologous 
Recombination and Sensitivity to Poly(ADP-Ribose) Polymerase Inhibition', 
Cancer Research, 66, (16), pp. 8109-8115. 

 
Mendes-Pereira, A. M., Martin, S. A., Brough, R., McCarthy, A., Taylor, J. R., Kim, J. S., 

Waldman, T., Lord, C. J. and Ashworth, A. (2009) 'Synthetic lethal targeting of 
PTEN mutant cells with PARP inhibitors', Embo Molecular Medicine, 1, (6-7), pp. 

315-322. 
 

Menissier-de Murcia, J., Molinete, M., Gradwohl, G. r., Simonin, F. d. r. and de Murcia, 
G. (1989) 'Zinc-binding domain of poly(ADP-ribose)polymerase participates in 
the recognition of single strand breaks on DNA', Journal of Molecular Biology, 
210, (1), pp. 229-233. 

 



  References 

234 
 

Miki, Y., Swensen, J., Shattuck-Eidens, D., Futreal, P. A., Harshman, K., Tavtigian, S., Liu, 
Q., Cochran, C., Bennett, L. M., Ding, W. (1994) 'A strong candidate for the 

breast and ovarian cancer susceptibility gene BRCA1', Science, 266, (5182), pp. 
66-71. 

 
Milam, K. M. and Cleaver, J. E. (1984) 'Inhibitors of poly(adenosine diphosphate-ribose) 

synthesis: effect on other metabolic processes', Science, 223, (4636), pp. 589-
591. 

 
Miller, C. W., Ikezoe, T., Krug, U., Hofmann, W.-K., Tavor, S., Vegesna, V., Tsukasaki, K., 

Takeuchi, S. and Koeffler, H. P. (2002) 'Mutations of the CHK2 gene are found in 
some osteosarcomas, but are rare in breast, lung, and ovarian tumors', Genes, 

Chromosomes and Cancer, 33, (1), pp. 17-21. 
 
Mitchell, J., Smith, G. C. M. and Curtin, N. J. (2009) 'Poly(ADP-Ribose) Polymerase-1 

and DNA-Dependent Protein Kinase Have Equivalent Roles in Double Strand 
Break Repair Following Ionizing Radiation', International Journal of Radiation 
Oncology, Biology Physics, 75, (5), pp. 1520-1527. 

 
Muiras, M. L., Muller, M., Schachter, F. and Burkle, A. (1998) 'Increased poly(ADP-

ribose) polymerase activity in lymphoblastoid cell lines from centenarians', 

Journal of Molecular Medicine, 76, (5), pp. 346-354. 
 

Mukhopadhyay, A., Elattar, A., Cerbinskaite, A., Wilkinson, S. J., Drew, Y., Kyle, S., Los, 
G., Hostomsky, Z., Edmondson, R. J. and Curtin, N. J. (2010) 'Development of a 

Functional Assay for Homologous Recombination Status in Primary Cultures of 
Epithelial Ovarian Tumor and Correlation with Sensitivity to Poly(ADP-Ribose) 

Polymerase Inhibitors', Clinical Cancer Research, 16, (8), pp. 2344-2351. 
 

Mullan, P. B., Quinn, J. E., Gilmore, P. M., McWilliams, S., Andrews, H., Gervin, C., 
McCabe, N., McKenna, S., White, P., Song, Y. H., Maheswaran, S., Liu, E., Haber, 
D. A., Johnston, P. G. and Harkin, D. P. (2001) 'BRCA1 and GADD45 mediated 
G2/M cell cycle arrest in response to antimicrotubule agents', Oncogene, 20, 
(43), pp. 6123-6131. 

 
Mulligan, J.M., Hill, L.A., Deharo, S., McDyer, F.A., Davison, T.S., Bylesjo, M., Lindor, 

N.M., Galligan, L., Delaney, T., Halfpenny, I.A., Farztdinov, V., Goffard, N., 
Proutski, V., Keating, K.E., Mullan, P.B., Quinn, J.E., Johnston, P.G., Couch, F.J., 

Harkin, D.P., Kennedy, R.D. (2011) ‘Identification of a novel breast cancer 
molecular subgroup associated with a deficiency in DNA-damage response’, 

Journal of Clinical Oncology, 29, (15_suppl), pp. 10511. 
 

Narod, S. A., Risch, H., Moslehi, R., Darum, A., Neuhausen, S., Olsson, H., Provencher, 
D., Radice, P., Evans, G., Bishop, S., Brunet, J.-S. b., Ponder, B. A. J. and Klijn, J. G. 

M. (1998) 'Oral Contraceptives and the Risk of Hereditary Ovarian Cancer', New 
England Journal of Medicine, 339, (7), pp. 424-428. 

 
Neale, M. J. and Keeney, S. (2006) 'Clarifying the mechanics of DNA strand exchange in 

meiotic recombination', Nature, 442, (7099), pp. 153-153-8. 



  References 

235 
 

Nguewa PA, F. M., Cepeda V, Alonso C, Quevedo C, Soto M and Perez JM. (2006) 
'Poly(ADP-ribose) polymerase-1 inhibitor 3-aminobenzamide enhances 

apoptosis induction by platinum complexes in cisplatin-resistant tumour cells. 
Med Chem:2:47-53', Medicinal Chemistry, 2, pp. 47-53. 

 
Nishizuka, Y., Ueda, K., Nakazawa, K. and Hayaishi, O. (1967) 'Studies on the Polymer of 

Adenosine Diphosphate Ribose', The Journal of biological chemistry, 242, (13), 
pp. 3164-3171. 

 
Nosho K, Y. H., Mikami M, Taniguchi H, Takahashi T, Adachi Y, Imamura A, Imai K, 

Shinomura Y. (2006) 'Overexpression of poly(ADP-ribose) polymerase-1 (PARP-
1) in the early stage of colorectal carcinogenesis', European Journal of Cancer, 

42, (14), pp. 2374-81. 
 
O'Driscoll, M. and Jeggo, P. A. (2006) 'The role of double-strand break repair - insights 

from human genetics', Nature Reviews Genetics, 7, (1), pp. 45-54. 
 
Oei, S. L., Herzog, H., Hirschkauffmann, M., Schneider, R., Auer, B. and Schweiger, M. 

(1994) 'Transcriptional Regulation and Autoregulation of the Human Gene for 
Adp-Ribosyltransferase', Molecular and Cellular Biochemistry, 138, (1-2), pp. 
99-104. 

 
Oei, S. L. and Shi, Y. (2001) 'Poly(ADP-Ribosyl)ation of Transcription Factor Yin Yang 1 

under Conditions of DNA Damage', Biochemical and Biophysical Research 
Communications, 285, (1), pp. 27-31. 

 
Okayama, H., Edson, C. M., Fukushima, M., Ueda, K. and Hayaishi, O. (1977) 

'Purification and Properties of Poly(Adenosine Diphosphate Ribose) Synthetase 
- Role of Histone in Poly(Adp-Ribose) Synthesis', Journal of Biological Chemistry, 

252, (20), pp. 7000-7005. 
 
Oliver, F. J., Menissier-de Murcia, J. and de Murcia, G. (1999) 'Poly(ADP-Ribose) 

Polymerase in the Cellular Response to DNA Damage, Apoptosis, and Disease', 
The American Journal of Human Genetics, 64, (5), pp. 1282-1288. 

 
O'Shaughnessy, J., Osborne, C., Pippen, J. E., Yoffe, M., Patt, D., Rocha, C., Koo, I. C., 

Sherman, B. M. and Bradley, C. (2011) 'Iniparib plus Chemotherapy in 
Metastatic Triple-Negative Breast Cancer', New England Journal of Medicine, 

364, (3), pp. 205-214. 
 

O'Shaughnessy, J., Schwartzberg, L. S., Danso, M. A., Rugo, H. S., Miller, K., Yardley, D. 
A., Carlson, R. W., Finn, R. S., Charpentier, E., Freese, M., Gupta, S., Blackwood-

Chirchir, A. and Winer, E. P. (2009) 'A randomized phase III study of iniparib 
(BSI-201) in combination with gemcitabine/carboplatin (G/C) in metastatic 

triple-negative breast cancer (TNBC)', Journal of Clinical Oncology, 29, 
(15_suppl), pp. 1007. 

 
Palma, J. P., Wang, Y.-C., Rodriguez, L. E., Montgomery, D., Ellis, P. A., Bukofzer, G., 

Niquette, A., Liu, X., Shi, Y., Lasko, L., Zhu, G.-D., Penning, T. D., Giranda, V. L., 



  References 

236 
 

Rosenberg, S. H., Frost, D. J. and Donawho, C. K. (2009) 'ABT-888 Confers Broad 
In vivo Activity in Combination with Temozolomide in Diverse Tumors', Clinical 

Cancer Research, 15, (23), pp. 7277-7290. 
 

Parant, J. M. and Lozano, G. (2003) 'Disrupting TP53 in mouse models of human 
cancers', Human Mutation, 21, (3), pp. 321-326. 

 
Patel, A. G., Sarkaria, J. N. and Kaufmann, S. H. (2011) 'Nonhomologous end joining 

drives poly(ADP-ribose) polymerase (PARP) inhibitor lethality in homologous 
recombination-deficient cells', Proceedings of the National Academy of Sciences 

of the United States of America, 108, (8), pp. 3406-3411. 
 

Paull, T. T., Rogakou, E. P., Yamazaki, V., Kirchgessner, C. U., Gellert, M. and Bonner, W. 
M. (2000) 'A critical role for histone H2AX in recruitment of repair factors to 
nuclear foci after DNA damage', Current Biology, 10, (15), pp. 886-895. 

 
Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., Pollack, J. 

R., Ross, D. T., Johnsen, H., Akslen, L. A., Fluge, O., Pergamenschikov, A., 
Williams, C., Zhu, S. X., Lonning, P. E., Borresen-Dale, A. L., Brown, P. O. and 
Botstein, D. (2000) 'Molecular portraits of human breast tumours', Nature, 406, 
(6797), pp. 747-752. 

 
Petermann, E., Orta, M. L., Issaeva, N., Schultz, N. and Helleday, T. (2010) 

'Hydroxyurea-Stalled Replication Forks Become Progressively Inactivated and 
Require Two Different RAD51-Mediated Pathways for Restart and Repair', 

Molecular Cell, 37, (4), pp. 492-502. 
 

Pierce, A. J., Johnson, R. D., Thompson, L. H. and Jasin, M. (1999) 'XRCC3 promotes 
homology-directed repair of DNA damage in mammalian cells', Genes & 

Development, 13, (20), pp. 2633-2638. 
 
Plummer, R., Jones, C., Middleton, M., Wilson, R., Evans, J., Olsen, A., Curtin, N., Boddy, 

A., McHugh, P., Newell, D., Harris, A., Johnson, P., Steinfeldt, H., Dewji, R., 
Wang, D., Robson, L. and Calvert, H. (2008) 'Phase I Study of the Poly (ADP-
Ribose) Polymerase Inhibitor, AG014699, in Combination with Temozolomide in 
Patients with Advanced Solid Tumors', Clinical Cancer Research, 14, (23), pp. 
7917-7923. 

 

Plummer, R., Lorigan, P., Evans, J., Steven, N., Middleton, M., Wilson, R., Snow, K., 
Dewji, R. and Calvert, H. (2006) 'First and final report of a phase II study of the 

poly(ADP-ribose) polymerase (PARP) inhibitor, AGO14699, in combination with 
temozolomide (TMZ) in patients with metastatic malignant melanoma (MM)', 

Journal of Clinical Oncology, 24, (18), pp. 456S-456S. 
 

Pommier, Y. (2006) 'Topoisomerase I inhibitors: camptothecins and beyond', Nature 
Reviews Cancer, 6, (10), pp. 789-802. 

 
 



  References 

237 
 

Powell, C., Mikropoulos, C., Kaye, S. B., Nutting, C. M., Bhide, S. A., Newbold, K. and 
Harrington, K. J. (2010) 'Pre-clinical and clinical evaluation of PARP inhibitors as 

tumour-specific radiosensitisers', Cancer treatment reviews, 36, (7), pp. 566-
575. 

 
Press, J. Z., De Luca, A., Boyd, N., Young, S., Troussard, A., Ridge, Y., Kaurah, P., Kalloger, 

S. E., Blood, K. A., Smith, M., Spellman, P. T., Wang, Y., Miller, D. M., Horsman, 
D., Faham, M., Gilks, C. B., Gray, J. and Huntsman, D. G. (2008) 'Ovarian 

carcinomas with genetic and epigenetic BRCA1 loss have distinct molecular 
abnormalities', BMC Cancer, 8, pp. 12. 

 
Purnell, M. R. and Whish, W. J. (1980) 'Novel inhibitors of poly(ADP-ribose) synthetase', 

Biochemical Journal, 185, (3), pp. 775-777. 
 
Quinn, J. E., James, C. R., Stewart, G. E., Mulligan, J. M., White, P., Chang, G. K. F., 

Mullan, P. B., Johnston, P. G., Wilson, R. H. and Harkin, D. P. (2007) 'BRCA1 
mRNA Expression Levels Predict for Overall Survival in Ovarian Cancer after 
Chemotherapy', Clinical Cancer Research, 13, (24), pp. 7413-7420. 

 
Ramon y Cajal, T., Altes, A., Pare, L., del Rio, E., Alonso, C., Barnadas, A. and Baiget, M. 

(2009) 'Impact of CYP2D6 polymorphisms in tamoxifen adjuvant breast cancer 

treatment', Breast Cancer Res Treat, 119, (1), pp. 33-8. 
 

Redon, C. E., Nakamura, A. J., Zhang, Y. W., Ji, J. P., Bonner, W. M., Kinders, R. J., 
Parchment, R. E., Doroshow, J. H. and Pommier, Y. (2010) 'Histone yH2AX and 

Poly(ADP-Ribose) as Clinical Pharmacodynamic Biomarkers', Clinical Cancer 
Research, 16, (18), pp. 4532-4542. 

 
Risch, H. A., McLaughlin, J. R., Cole, D. E. C., Rosen, B., Bradley, L., Fan, I., Tang, J., Li, S., 

Zhang, S. Y., Shaw, P. A. and Narod, S. A. (2006) 'Population BRCA1 and BRCA2 
mutation frequencies and cancer penetrances: A kin-cohort study in Ontario, 
Canada', Journal of the National Cancer Institute, 98, (23), pp. 1694-1706. 

 
Rogakou, E. P., Boon, C., Redon, C. and Bonner, W. M. (1999) 'Megabase Chromatin 

Domains Involved in DNA Double-Strand Breaks in Vivo', The Journal of Cell 
Biology, 146, (5), pp. 905-916. 

 
Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. and Bonner, W. M. (1998) 'DNA 

Double-stranded Breaks Induce Histone H2AX Phosphorylation on Serine 139', 
Journal of Biological Chemistry, 273, (10), pp. 5858-5868. 

 
Rottenberg, S., Jaspers, J. E., Kersbergen, A., van der Burg, E., Nygren, A. O. H., Zander, 

S. A. L., Derksen, P. W. B., de Bruin, M., Zevenhoven, J., Lau, A., Boulter, R., 
Cranston, A., O'Connor, M. J., Martin, N. M. B., Borst, P. and Jonkers, J. (2008) 

'High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor 
AZD2281 alone and in combination with platinum drugs', Proceedings of the 
National Academy of Sciences of the United States of America, 105, (44), pp. 
17079-17084. 

 



  References 

238 
 

Rouleau, M., Patel, A., Hendzel, M. J., Kaufmann, S. H. and Poirier, G. G. (2010) 'PARP 
inhibition: PARP1 and beyond', Nature Reviews Cancer, 10, (4), pp. 293-301. 

 
Ruscetti, T., Lehnert, B. E., Halbrook, J., Le Trong, H., Hoekstra, M. F., Chen, D. J. and 

Peterson, S. R. (1998) 'Stimulation of the DNA-dependent Protein Kinase by 
Poly(ADP-Ribose) Polymerase', The Journal of biological chemistry, 273, (23), pp. 

14461-14467. 
 

Russo, A. L., Kwon, H.-C., Burgan, W. E., Carter, D., Beam, K., Weizheng, X., Zhang, J., 
Slusher, B. S., Chakravarti, A., Tofilon, P. J. and Camphausen, K. (2009) 'In vitro 

and In vivo Radiosensitization of Glioblastoma Cells by the Poly (ADP-Ribose) 
Polymerase Inhibitor E7016', Clinical Cancer Research, 15, (2), pp. 607-612. 

 
Sakai, W., Swisher, E. M., Jacquemont, C., Chandramohan, K. V., Couch, F. J., Langdon, 

S. P., Wurz, K., Higgins, J., Villegas, E. and Taniguchi, T. (2009) 'Functional 
Restoration of BRCA2 Protein by Secondary BRCA2 Mutations in BRCA2-
Mutated Ovarian Carcinoma', Cancer Research, 69, (16), pp. 6381-6386. 

 
Sakai, W., Swisher, E. M., Karlan, B. Y., Agarwal, M. K., Higgins, J., Friedman, C., Villegas, 

E., Jacquemont, C., Farrugia, D. J., Couch, F. J., Urban, N. and Taniguchi, T. (2008) 
'Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated 

cancers', Nature, 451, (7182), pp. 1116-U9. 
 

Salmena, L., Carracedo, A. and Pandolfi, P. P. (2008) 'Tenets of PTEN tumor 
suppression', Cell, 133, (3), pp. 403-414. 

 
Samol, J., Ranson, M., Scott, E., Macpherson, E., Carmichael, J., Thomas, A. and Cassidy, 

J. (2011) 'Safety and tolerability of the poly(ADP-ribose) polymerase (PARP) 
inhibitor, olaparib (AZD2281) in combination with topotecan for the treatment 

of patients with advanced solid tumors: a phase I study', Investigational New 
Drugs, pp. 1-8. 

 
Schilsky, R. L. (2010) 'OPINION Personalized medicine in oncology: the future is now', 

Nature Reviews Drug Discovery, 9, (5), pp. 363-366. 
 
Schreiber, V., Ame, J. C., Dolle, P., Schultz, I., Rinaldi, B., Fraulob, V., Menissier-de 

Murcia, J. and de Murcia, G. (2002) 'Poly(ADP-ribose) polymerase-2 (PARP-2) is 
required for efficient base excision DNA repair in association with PARP-1 and 

XRCC1', Journal of Biological Chemistry, 277, (25), pp. 23028-23036. 
 

Schreiber, V., Dantzer, F., Ame, J. C. and de Murcia, G. (2006) 'Poly(ADP-ribose): novel 
functions for an old molecule', Nature Reviews Molecular Cell Biology, 7, (7), pp. 

517-528. 
 

Schultz, N., Lopez, E., Saleh-Gohari, N. and Helleday, T. (2003) 'Poly(ADP-ribose) 
polymerase (PARP-1) has a controlling role in homologous recombination', 
Nucleic Acids Research, 31, (17), pp. 4959-4959-64. 

 



  References 

239 
 

Scully, R., Chen, J. J., Plug, A., Xiao, Y. H., Weaver, D., Feunteun, J., Ashley, T. and 
Livingston, D. M. (1997) 'Association of BRCA1 with Rad51 in mitotic and 

meiotic cells', Cell, 88, (2), pp. 265-275. 
 

Shimizu, S., Nomura, F., Tomonaga, T., Sunaga, M., Noda, M., Ebara, M. and Saisho, H. 
(2004) 'Expression of poly(ADP-ribose) polymerase in human hepatocellular 

carcinoma and analysis of biopsy specimens obtained under sonographic 
guidance', Oncology Reports, 12, (4), pp. 821-825. 

 
Shinohara, A., Ogawa, H. and Ogawa, T. (1992) 'Rad51 Protein Involved in Repair and 

Recombination in Saccharomyces-Cerevisiae Is a Reca-Like Protein', Cell, 69, (3), 
pp. 457-470. 

 
Simbulan-Rosenthal, C. M., Ly, D. H., Rosenthal, D. S., Konopka, G., Luo, R., Wang, Z.-Q., 

Schultz, P. G. and Smulson, M. E. (2000) 'Misregulation of gene expression in 
primary fibroblasts lacking poly(ADP-ribose) polymerase', Proceedings of the 
National Academy of Sciences of the United States of America, 97, (21), pp. 
11274-11279. 

 
Simonin, F., Menissier-de Murcia, J., Poch, O., Muller, S., Gradwohl, G., Molinete, M., 

Penning, C., Keith, G. and de Murcia, G. (1990) 'Expression and site-directed 

mutagenesis of the catalytic domain of human poly(ADP-ribose)polymerase in 
Escherichia coli. Lysine 893 is critical for activity', The Journal of biological 

chemistry, 265, (31), pp. 19249-56. 
 

Sistonen, J., Sajantila, A., Lao, O., Corander, J., Barbujani, G. and Fuselli, S. (2007) 
'CYP2D6 worldwide genetic variation shows high frequency of altered activity 

variants and no continental structure', Pharmacogenetics and Genomics, 17, (2), 
pp. 93-101. 

 
Skalitzky, D. J., Marakovits, J. T., Maegley, K. A., Ekker, A., Yu, X.-H., Hostomsky, Z., 

Webber, S. E., Eastman, B. W., Almassy, R., Li, J., Curtin, N. J., Newell, D. R., 
Calvert, A. H., Griffin, R. J. and Golding, B. T. (2002) 'Tricyclic Benzimidazoles as 
Potent Poly(ADP-ribose) Polymerase-1 Inhibitors', Journal of Medicinal 
Chemistry, 46, (2), pp. 210-213. 

 
Smith, L. M., Willmore, E., Austin, C. A. and Curtin, N. J. (2005) 'The Novel Poly(ADP-

Ribose) Polymerase Inhibitor, AG14361, Sensitizes Cells to Topoisomerase I 

Poisons by Increasing the Persistence of DNA Strand Breaks', Clinical Cancer 
Research, 11, (23), pp. 8449-8457. 

 
Stoehlmacher, J., Ghaderi, V., Iqbal, S., Groshen, S., Tsao-Wei, D., Park, D. and Lenz, H. 

J. (2001) 'A polymorphism of the XRCC1 gene predicts for response to platinum 
based treatment in advanced colorectal cancer', Anticancer Research, 21, (4B), 

pp. 3075-3079. 
 
Stratton, J., Gayther, SA, Russell, P, (1997) 'Contribution of BRCA1 mutations to ovarian 

cancer', New England Journal of Medicine, 336, (16), pp. 1125. 
 



  References 

240 
 

Struewing, J. P., Hartge, P., Wacholder, S., Baker, S. M., Berlin, M., McAdams, M., 
Timmerman, M. M., Brody, L. C. and Tucker, M. A. (1997) 'The Risk of Cancer 

Associated with Specific Mutations of BRCA1 and BRCA2 among Ashkenazi 
Jews', New England Journal of Medicine, 336, (20), pp. 1401-1408. 

 
Sugimura, T., Fujimura, S., Hasegawa, S. and Kawamura, Y. (1967) 'Polymerization of 

the adenosine 5'-diphosphate ribose moiety of NAD by rat liver nuclear 
enzyme', Biochimica et biophysica acta, 138, (2), pp. 438-41. 

 
Sung, P. and Klein, H. (2006) 'Mechanism of homologous recombination: mediators 

and helicases take on regulatory functions', Nature Reviews Molecular Cell 
Biology, 7, (10), pp. 739-750. 

 
Swift, M., Morrell, D., Massey, R. B. and Chase, C. L. (1991) 'Incidence of Cancer in 161 

Families Affected by Ataxiaâ€“Telangiectasia', New England Journal of Medicine, 
325, (26), pp. 1831-1836. 

 
Swisher, E. M., Sakai, W., Karlan, B. Y., Wurz, K., Urban, N. and Taniguchi, T. (2008) 

'Secondary BRCA1 mutations in BRCA1-mutated ovarian carcinomas with 
platinum resistance', Cancer Research, 68, (8), pp. 2581-2586. 

 

Szabo, C. and Dawson, V. L. (1998) 'Role of poly(ADP-ribose) synthetase in 
inflammation and ischaemia-reperfusion', Trends in Pharmacological Sciences, 

19, (7), pp. 287-298. 
 

Takata, M., Sasaki, M. S., Sonoda, E., Morrison, C., Hashimoto, M., Utsumi, H., 
Yamaguchi-Iwai, Y., Shinohara, A. and Takeda, S. (1998) 'Homologous 

recombination and non-homologous end-joining pathways of DNA double-
strand break repair have overlapping roles in the maintenance of chromosomal 

integrity in vertebrate cells', EMBO J, 17, (18), pp. 5497-5508. 
 
Tan, D. S. P., Rothermundt, C., Thomas, K., Bancroft, E., Eeles, R., Shanley, S., Ardern-

Jones, A., Norman, A., Kaye, S. B. and Gore, M. E. (2008) ‘'BRCAness" Syndrome 
in Ovarian Cancer: A Case-Control Study Describing the Clinical Features and 
Outcome of Patients With Epithelial Ovarian Cancer Associated With BRCA1 
and BRCA2 Mutations', Journal of Clinical Oncology, 26, (34), pp. 5530-5536. 

 
Tao, Z., Gao, P. and Liu, H.-w. (2009) 'Identification of the ADP-Ribosylation Sites in the 

PARP-1 Automodification Domain: Analysis and Implications', Journal of the 
American Chemical Society, 131, (40), pp. 14258-14260. 

 
Tarsounas, M., Davies, D. and West, S. C. (2003) 'BRCA2-dependent and independent 

formation of RAD51 nuclear foci', Oncogene, 22, (8), pp. 1115-1123. 
 

Tassone, P., Tagliaferri, P., Perricelli, A., Blotta, S., Quaresima, B., Martelli, M. L., Goel, 
A., Barbieri, V., Costanzo, F., Boland, C. R. and Venuta, S. (2003) 'BRCA I 
expression modulates chemosensitivity of BRCA I-defective HCC1937 human 
breast cancer cells', British Journal of Cancer, 88, (8), pp. 1285-1291. 

 



  References 

241 
 

Tavecchio, M., Munck, J., Cano, C., Newell, D. and Curtin, N. (2011) 'Further 
characterisation of the cellular activity of the DNA-PK inhibitor, NU7441, 

reveals potential cross-talk with homologous recombination', Cancer 
Chemotherapy and Pharmacology, pp. 1-10. 

 
Tentori, L., Leonetti, C., Scarsella, M., Muzi, A., Mazzon, E., Vergati, M., Forini, O., 

Lapidus, R., Xu, W., Dorio, A. S., Zhang, J., Cuzzocrea, S. and Graziani, G. (2006) 
'Inhibition of poly(ADP-ribose) polymerase prevents irinotecan-induced 

intestinal damage and enhances irinotecan/temozolomide efficacy against 
colon carcinoma', The FASEB journal, 20, (10), pp. 1709-1711. 

 
Tentori, L., Muzi, A., Dorio, A. S., Bultrini, S., Mazzon, E., Lacal, P. M., Shah, G. M., 

Zhang, J., Navarra, P., Nocentini, G., Cuzzocrea, S. and Graziani, G. (2008) 
'Stable depletion of poly (ADP-ribose) polymerase-1 reduces in vivo melanoma 
growth and increases chemosensitivity', European Journal of Cancer, 44, (9), pp. 
1302-1314. 

 
Tentori L, M. A., Dorio AS, Scarsella M, Leonetti C, Shah GM, Xu W, Camaioni E, Gold B, 

Pellicciari R, Dantzer F, Zhang J, Graziani G. . (2010) 'Pharmacological inhibition 
of poly(ADP-ribose) polymerase (PARP) activity in PARP-1 silenced tumour cells 
increases chemosensitivity to temozolomide and to a N3-adenine selective 

methylating agent. ', Current Cancer Drug Targets, 10, (4), pp. 368-383. 
 

The Breast Cancer Linkage Consortium. (1999) 'Cancer Risks in BRCA2 Mutation 
Carriers', Journal of the National Cancer Institute, 91, (15), pp. 1310-1316. 

 
Thomas, H. D., Calabrese, C. R., Batey, M. A., Canan, S., Hostomsky, Z., Kyle, S., 

Maegley, K. A., Newell, D. R., Skalitzky, D., Wang, L.-Z., Webber, S. E. and Curtin, 
N. J. (2007) 'Preclinical selection of a novel poly(ADP-ribose) polymerase 

inhibitor for clinical trial', Molecular Cancer Therapeutics, 6, (3), pp. 945-956. 
 
Thompson, D. and Easton, D. F. (2002) 'Cancer incidence in BRCA1 mutation carriers', 

Journal of the National Cancer Institute, 94, (18), pp. 1358-1365. 
 
Tibbetts, R. S., Cortez, D., Brumbaugh, K. M., Scully, R., Livingston, D., Elledge, S. J. and 

Abraham, R. T. (2000) 'Functional interactions between BRCA1 and the 
checkpoint kinase ATR during genotoxic stress', Genes & Development, 14, (23), 
pp. 2989-3002. 

 
Tomlinson, G. E., Chen, T. T. L., Stastny, V. A., Virmani, A. K., Spillman, M. A., Tonk, V., 

Blum, J. L., Schneider, N. R., Wistuba, I. I., Shay, J. W., Minna, J. D. and Gazdar, 
A. F. (1998) 'Characterization of a Breast Cancer Cell Line Derived from a Germ-

Line BRCA1 Mutation Carrier', Cancer Research, 58, (15), pp. 3237-3242. 
 

Tong, W. M., Yang, Y. G., Cao, W. H., Galendo, D., Frappart, L., Shen, Y. and Wang, Z. Q. 
(2007) 'Poly(ADP-ribose) polymerase-1 plays a role in suppressing mammary 
tumourigenesis in mice', Oncogene, 26, (26), pp. 3857-3867. 

 



  References 

242 
 

Turner, N. C., Reis, J. S., Russell, A. M., Springall, R. J., Ryder, K., Steele, D., Savage, K., 
Gillett, C. E., Schmitt, F. C., Ashworth, A. and Tutt, A. N. (2007) 'BRCA1 

dysfunction in sporadic basal-like breast cancer', Oncogene, 26, (14), pp. 2126-
2132. 

 
Tutt, A., Bertwistle, D., Valentine, J., Gabriel, A., Swift, S., Ross, G., Griffin, C., Thacker, J. 

and Ashworth, A. (2001) 'Mutation in Brca2 stimulates error-prone homology-
directed repair of DNA double-strand breaks occurring between repeated 

sequences', EMBO J, 20, (17), pp. 4704-4716. 
 

Tutt, A., Robson, M., Garber, J. E., Domchek, S. M., Audeh, M. W., Weitzel, J. N., 
Friedlander, M., Arun, B., Loman, N., Schmutzler, R. K., Wardley, A., Mitchell, G., 

Earl, H., Wickens, M. and Carmichael, J. (2010) 'Oral poly(ADP-ribose) 
polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and 
advanced breast cancer: a proof-of-concept trial', Lancet, 376, (9737), pp. 235-
244. 

 
van der Heijden, M. S., Brody, J. R., Dezentje, D. A., Gallmeier, E., Cunningham, S. C., 

Swartz, M. J., DeMarzo, A. M., Offerhaus, G. J. A., Isacoff, W. H., Hruban, R. H. 
and Kern, S. E. (2005) 'In vivo therapeutic responses contingent on Fanconi 
anemia/BRCA2 status of the tumor', Clinical Cancer Research, 11, (20), pp. 

7508-7515. 
 

Venkitaraman, A. R. (2002) 'Cancer susceptibility and the functions of BRCA1 and 
BRCA2', Cell, 108, (2), pp. 171-182. 

 
Venkitaraman, A. R. (2009) 'Linking the Cellular Functions of BRCA Genes to Cancer 

Pathogenesis and Treatment', Annual Reviews of Pathology, 4, (1), pp. 461-487. 
 

Veuger, S. J., Curtin, N. J., Richardson, C. J., Smith, G. C. M. and Durkacz, B. W. (2003) 
'Radiosensitization and DNA Repair Inhibition by the Combined Use of Novel 
Inhibitors of DNA-dependent Protein Kinase and Poly(ADP-Ribose) Polymerase-
1', Cancer Research, 63, (18), pp. 6008-6015. 

 
Veuger, S. J., Curtin, N. J., Smith, G. C. M. and Durkacz, B. W. (2004) 'Effects of novel 

inhibitors of poly(ADP-ribose) polymerase-1 and the DNA-dependent protein 
kinase on enzyme activities and DNA repair', Oncogene, 23, (44), pp. 7322-7329.  

 

Vichai, V. and Kirtikara, K. (2006) 'Sulforhodamine B colorimetric assay for cytotoxicity 
screening', Nature Protocols, 1, (3), pp. 1112-1116. 

 
Virag, L. and Szabo, C. (2002) 'The therapeutic potential of poly(ADP-ribose) 

polymerase inhibitors', Pharmacological Reviews, 54, (3), pp. 375-429. 
 

W.Neal, B. (1981) ‘”Western Blotting”: Electrophoretic transfer of proteins from 
sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and 
radiographic detection with antibody and radioiodinated protein A', Analytical 
Biochemistry, 112, (2), pp. 195-203. 

 



  References 

243 
 

Wang, M., Wu, W., Wu, W., Rosidi, B., Zhang, L., Wang, H. and Iliakis, G. (2006) 'PARP-1 
and Ku compete for repair of DNA double strand breaks by distinct NHEJ 

pathways', Nucleic Acids Research, 34, (21), pp. 6170-6182. 
 

Wang, X. G., Wang, Z. Q., Tong, W. M. and Shen, Y. (2007) 'PARP1 Val762Ala 
polymorphism reduces enzymatic activity', Biochemical and Biophysical 

Research Communications, 354, (1), pp. 122-126. 
 

Wang, L.H., Pfister, T.D., Parchment, R.E., Kummar, S., Rubinstein, L., Evrard, Y.A., 
Gutierrez, M.E., Murgo, A.J., Tomaszewski, J.E., Doroshow, J.H., Kinders, R.J., 

(2010) ‘Monitoring Drug-Induced gamma H2AX as a Pharmacodynamic 
Biomarker in Individual Circulating Tumor Cells ’, Clinical Cancer Research, 16, 

(3), pp.1073-1084. 
 
Wei, M., Grushko, T. A., Dignam, J., Hagos, F., Nanda, R., Sveen, L., Xu, J., Fackenthal, J., 

Tretiakova, M., Das, S. and Olopade, O. I. (2005) 'BRCA1 Promoter Methylation 
in Sporadic Breast Cancer Is Associated with Reduced BRCA1 Copy Number and 
Chromosome 17 Aneusomy', Cancer Research, 65, (23), pp. 10692-10699. 

 
Willers, H., Taghian, A. G., Luo, C.-M., Treszezamsky, A., Sgroi, D. C. and Powell, S. N. 

(2009) 'Utility of DNA Repair Protein Foci for the Detection of Putative BRCA1 

Pathway Defects in Breast Cancer Biopsies', Molecular Cancer Research, 7, (8), 
pp. 1304-1309. 

 
Williamson, E. A., Dadmanesh, F. and Koeffler, H. P. (2002) 'BRCA1 transactivates the 

cyclin-dependent kinase inhibitor p27 (Kip1)', Oncogene, 21, (20), pp. 3199-
3206. 

 
Wooster, R., Neuhausen, S. L., Mangion, J., Quirk, Y., Ford, D., Collins, N., Nguyen, K., 

Seal, S., Tran, T., Averill, D. (1994) 'Localization of a breast cancer susceptibility 
gene, BRCA2, to chromosome 13q12-13', Science, 265, (5181), pp. 2088-2090. 

 
Xu, J. W., Fan, S. J. and Rosen, E. M. (2005) 'Regulation of the estrogen-inducible gene 

expression profile by the breast cancer susceptibility gene BRCA1', 
Endocrinology, 146, (4), pp. 2031-2047. 

 
Xu, X., Wagner, K.-U., Larson, D., Weaver, Z., Li, C., Ried, T., Hennighausen, L., 

Wynshaw-Boris, A. and Deng, C.-X. (1999) 'Conditional mutation of Brca1 in 

mammary epithelial cells results in blunted ductal morphogenesis and tumour 
formation', Nat Genet, 22, (1), pp. 37-43. 

 
Yang, H. J., Jeffrey, P. D., Miller, J., Kinnucan, E., Sun, Y. T., Thoma, N. H., Zheng, N., 

Chen, P. L., Lee, W. H. and Pavletich, N. P. (2002) 'BRCA2 function in DNA 
binding and recombination from a BRCA2-DSS1-ssDNA structure', Science, 297, 

(5588), pp. 1837-1848. 
 
Yuan, S.-S. F., Lee, S.-Y., Chen, G., Song, M., Tomlinson, G. E. and Lee, E. Y. H. P. (1999) 

'BRCA2 Is Required for Ionizing Radiation-induced Assembly of Rad51 Complex 
in Vivo', Cancer Research, 59, (15), pp. 3547-3551. 



  References 

244 
 

Yung, T. M. C., Sato, S. and Satoh, M. S. (2004) 'Poly(ADP-ribosyl)ation as a DNA 
Damage-induced Post-translational Modification Regulating Poly(ADP-ribose) 

Polymerase-1-Topoisomerase I Interaction', The Journal of biological chemistry, 
279, (38), pp. 39686-39696. 

 
Zaremba, T., Ketzer, P., Cole, M., Coulthard, S., Plummer, E. R. and Curtin, N. J. (2009) 

'Poly(ADP-ribose) polymerase-1 polymorphisms, expression and activity in 
selected human tumour cell lines', British Journal of Cancer, 101, (2), pp. 256-

262. 
 

Zaremba, T., Thomas, H. D., Cole, M., Coulthard, S. A., Plummer, E. R. and Curtin, N. J. 
(2011) 'Poly(ADP-ribose) polymerase-1 (PARP-1) pharmacogenetics, activity and 

expression analysis in cancer patients and healthy volunteers', Biochemical 
Journal, 436, (3), pp. 671-679. 

 
Zhang, X. M., Miao, X. P., Liang, G., Hao, B. T., Wang, Y. G., Tan, W., Li, Y., Guo, Y. L., He, 

F. C., Wei, Q. Y. and Lin, D. X. (2005) 'Polymorphisms in DNA base excision 
repair genes ADPRT and XRCC1 and risk of lung cancer', Cancer Research, 65, 
(3), pp. 722-726. 

 
Zhao, Y., Thomas, H. D., Batey, M. A., Cowell, I. G., Richardson, C. J., Griffin, R. J., 

Calvert, A. H., Newell, D. R., Smith, G. C. M. and Curtin, N. J. (2006) 'Preclinical 
evaluation of a potent novel DNA-dependent protein kinase inhibitor NU7441', 

Cancer Research, 66, (10), pp. 5354-5362. 
 

Zhong, Q., Chen, C. F., Li, S., Chen, Y. M., Wang, C. C., Xiao, J., Chen, P. L., Sharp, Z. D. 
and Lee, W. H. (1999) 'Association of BRCA1 with the hRad50-hMre11-p95 

complex and the DNA damage response', Science, 285, (5428), pp. 747-750. 
 

Zhou, B. S. and Bartek, J. (2004) 'Targeting the checkpoint kinases: chemosensitization 
versus chemoprotection', Nature Reviews. Cancer, 4, (3), pp. 216-216-25. 

 
Zhu, G., Chang, P. and Lippard, S. J. (2010) 'Recognition of Platinum DNA Damage by 

Poly(ADP-ribose) Polymerase-1', Biochemistry, 49, (29), pp. 6177-6183. 
 
Zhuang, J., Zhang, J. R., Willers, H., Wang, H., Chung, J. H., van Gent, D. C., Hallahan, D. 

E., Powell, S. N. and Xia, F. (2006) 'Checkpoint kinase 2-mediated 
phosphorylation of BRCA1 regulates the fidelity of non-homologous end-

joining', Cancer Research, 66, (3), pp. 1401-1408. 



  Appendix 

245 
 

Appendix 

Selected publications: 

1. Y Drew, E Mulligan, W Vong, H Thomas, S Kahn, S Kyle, A Mukhopadhyay, ER 

Plummer, RJ Edmondson, NJ Curtin ‘Therapeutic potential of the PARP inhibitor 

AG014699 in human cancer with mutated or epigenetically silenced BRCA1 and 2’. 

(2011) Journal of the National Cancer Institute, 16: 103 (4) 334-46 

2. Y Drew, ER Plummer. ‘PARP inhibitors in cancer therapy: two modes of attack on the 

cancer cell widening the clinical applications’ (2009). Drug Resistance Updates, 

12(6):153-6.  

3. Y Drew, JA Ledermann, A Jones, G Hall, GC Jayson, M Highley, D Rea, R Glasspool, 

SER Halford, G Crosswell, S Colebrook, AV Boddy, NJ Curtin, ER Plummer, E. R. ‘Phase II 

trial of the poly(ADP-ribose) polymerase (PARP) inhibitor AG-014699 in BRCA 1 and 2-

mutated, advanced ovarian and/or locally advanced or metastatic breast cancer’ 

(2011) Journal of Clinical Oncology, 29, (15_suppl), pp. 3104. 

 

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed/19939726?itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum&ordinalpos=1
http://www.ncbi.nlm.nih.gov/pubmed/19939726?itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum&ordinalpos=1

