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SUMMARY

The aim of this work is a comparative study of the electro-

mechanical transient phenomena and of the stability limits of
.synchronous power systems, wvhen they are mainly intérconnected by

B.Ce transmission lines, but when one of the a.c. lines is repladed

L 23

by the d.c. one,

A thorough survey of the recent literature on h,v.d.c.
technology has been made in order to be conversent with latest
developments in the field, Digital computation and numerical

analysis are used to study mathematical models of the systems under

consideration. ‘

For the h.v.d.c, system, three digital programmes have been
established to find the characteristies of the converter, to
simulate the h,v.d.c. link in the a.c. pover system and to study
the transient behaviour of the system, respectively. For the
a,c., system the Park's equations describing the behavir;\ur,of the
synchronous machines are modified to suit the digital c¢omputer,
Then two digital programmes have been written, for the a.c. system,
one to draw the swing curves and the other to find the stability
boundaries which incorporate the A,V.R. and the speed governor.

To make a comparative study of the a,c. = d,c, system and of
the equivalent a.,c., system, two new comprehensive programmes have
been established by incorporating the d.c. programme for the

transient studied in the modified a.c. programmes, One of the



digital progremmes draws the swing curves while the other finds
the stability boundaries of both the systems, with or without
A.V.R.. Thus, by performing different tests, it has been
established that from the stability point of view the a.c.=d.c.
system can be made superior to the equivalent a.,c. one, provided

that provision is made for increasing the power through the d.c.

line when a fault is sensed.
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CEAPTER I

INTRODUCTION



l1-1 Growth of Energy Consump_tion

The story of man's origin and continuing existence has been
a story of capturing and storing energy, and subsequently converting
it into certain desired forms., Out of all the basic forms of
pover which have been utilized so far by man in his day=to=day life;
electrical energy heads the list, mainly because of its ease of
control and transmission. Hence, the primary sources like wind,
wvater power and fossil fuels (coal, 0il and gas) are being converted
into electrical energy which is, in turn, being deployed to serve
our needs. Recently, there has been added another basic source of
energy on earth - the "fission-reaction" of uranium or thorium. It
is hoped we may be able in the foreseeable future to have a
controlled "fusion™ on the earth, which may then be the major source
of pover in the world. i

In the present technological age the importance of electrical
energy has been enhanced so much that its per-capita consumption may
safely be taken as an index for the socio=economic development of any
country. In view of the growth in the consumption rate of electrical
energy, many speculations regarding the projected sources and uses
of energy in the foreseeable future have been made. One of the best
of these forays into the future has been made by Brown, Bonner and
Weirl. The forecast is based on the hypothesis that there will be

a population of seven billion on earth in the foreseeable future,

and that the annual energy requirements for this civilisation, outside
food production, will be 633 x 10’ megawatt-years, for a "steady-state"
civilisation. This would represent a 650 per cent increase in per

capita consumption of energy when compared with the present figure,



and a total energy consumption increase of some 18-fold. At this

rate the present fossil fuel reserves would last only for 35 years.,

1-2 Economics of Flectrical Energy

Speculations regarding the future consumption of electrical
energy, though based on rough estimates, indicate the ever-increasing
demand of electrical power., To face the challenge, all the
available sources of energy are to be tapped, and the improved
techniques of generation and transmission are being investigated to
utilise these sources to their full capacity. At the same time
world-wide research has been organized to harness light element
fusion reaction for cheap power production.

Up to this time, however, water is considered to be the cheapest
source of electrical energy; hence, hydroelectric generating stations
are installed wherever a suitable head with a sufficient quantity of
vater is available., Another choice is thermogeneration, and in this
case also, the power plants are installed where the fuel is
economically available, These generating stations, individually or
collectively, suﬁily the power to the long distant load centres
through the high=voltage (H.V) or extra=high-voltage (E.H.V.)

transnission lines.

l=2=] Extraiﬁigh-VoltaEe

In the transmission of electrical energy the power losses in the
line are a function of impedence and the square of the currenty thus,
raising the voltage lovers the current proportionately, thereby
reducing the cost of the conductor for bover trensmission at a certain

‘vercentage of power loss, Hence, extra=high-voltages are being



economically applied to transmit the bulk power from the generation

sources to the distant load centres. The significance of E.H.V.
transmission is better appreciated when it is considered that one
500-KV line could replace six 230-KV lines as far as loading capability

* 2
18 concerned.

Recognising the economical feasibility of E.H.V.
transmission, the International Electrotechnical Commission (I.E.C.)
at its 1963 meeting in Venice, Italy, included 500/525=KV and 700-

T750/765-KV in its list of approved voltages.

1-2-2 Integrated System
. . o * T‘“-
To achieve an economical and reliable large-scale operation,
pover stations are interconnected so that their combined load can be

treated as a unit system. The areas of mutual benefit that are

usually‘exploited in interconnection and pooling are as given below:

l. Shared generation reserves.

2. Large economical generating units,
3. Load diversity.

4, High transmission voltage.

and, Se The benefit of economy energy exchange.
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The "Pacific Northwest-Southwest Intertie" project ° is one of

the best examples of an integrated system. It will connect directly

snd indirectly almost all the major power systems in eleven western
states of America, thus providing a grid system at optimum electrical
efficiency. After the completion of the dams in Canada, this

integrated system will deliver L600-MW of power and will comprise

four E.H.V. lines in addition to several other supporting lines.




Two of the long lines will be 800-KV d.c lines, the other two major
lines will be 500=-KV a.c lines and the remaining lines of the system
will be a short 800-KV d.c line, two short 500-KV tie lines, two

345-KV a.c lines and two relatively short 230-KV a.c lines,

1-3 Stability Problems

In the_integrated system, 1f one of the pover stations fails
the others share its load, thus reducing the pover reserve required
for reliable running of the system. But, the question wvhether or
not the system can survive the first few seconds of loss of generation,
vhile maintaining its stability, is to be answered by another set of
calculations. For this study, which is the subject of this thesis,
the dynamic performance of the system immediately following the
disturbance 1s computed and the state of the system is found. The
system is said to be stable, if it is operating or tending towards
the state where the mechanical input pover is equal to the electrical
outp;xt pover plus losses. If following a disturbance the system

no longer satisfies the above conditions, the system is said to be

wmstable.

1-3-1 Disturbances in the System

The disturbances which could cause insta.bilit‘y of the system
are grouped as:?
1. Changes in network parameters.
2. Changes in electrical loading.
3. Changes in generated power

and, 4. Accidental short-circuits and other electrical

faults.



The effects of all the four types of disturbances can be

taken into account while designing the system, but the last one,
in bringing about sudden and unexpected changes, is of great importance

from the stability point of view.

1-3-2 Stability Studies

The first quantitative evaluations of stability problems were
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made by the long-hand method. In this method some assumptions ;

were made to simplify the system equations, and the results thus
obtained were only a guide to the actual performance of the system.

The use of a "Network-Analyaer'Jl for the solution of the
system equations marked the first improvement in the study of
stability problems. 1In this case results are obtained by representing
the physical quantities of the network l;y the physical components in
the netwvork-analyser eircuit. However, the representation of the
synchronous machines is primitive, it being simulated as a voltage

behind the synchronous reactance.

An alternative approach to solving the system equations is by
simulating the entire physical system, where synchronous-machines are

represe;xted by micro-machines, and the network is simulated by a

72

network analyser, To overcome the difficulties of scaling the

electrical and magnetic quantities for micro-machines many ingeneous
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methods have been put forward -, but the problems of control and

metering of these machines have limited their use to research equipment

only.

T4

Aldred and others' introduced the application of a "D.C Electronic

Analogue Computer" to stability problems. In this approach, a full



representation of the system is possible, and simultaneous non-linear
differential equations can be solved in a more comprehensive way
than before; but the method is limited by operational difficulties,

such as component accuracy, drift of amplifiers, and its complex

setting and checking operation.

Sher and LisaerTs

put forward s method which combines the

merits of the analogue computer with those of the network analyser;

and using this method, Aldred and CcrelesaTs at Liverpool and Humpage77
at Newcaatle upon Tyne, built the "Hybrid Analogue Network Analyser",
though independently of each other. In this computer, the detailed
representation of the synchronous machines are made in the analogue
computer, whilst the network is simulated in the network analyser,

This hybrid computer requires specially designed couplingunits to
convert both the d.c voltage levels into a.c quantities and alternating

] .

currents into their d.e¢ vector componenta.T

l=-3-3 Di gital Computation

Since the early fifties, digital computers, because of their
speed, flexibility and accuracy, have been becoming more and more
popular for stability problem studies of the power system, In Ch. (2)
a brief description of the digital computer, (English Electric leo
Marceni KDF9) used for the present work and the niumerical methods of
solving differential equations and inversion of matrix, together with |
their respective digital programmes, have been discussed,

In Ch., (5) Park's equations for the synchronous machines have
been developed, and the a.c system including speed governors and

excitation controls has been transformed into a mathmatical model,



Two digital prograrmes have been written, one for drawving the swing

curves of the synchronous machines vhen different types of faults

have been applied on the network, and the other, known as "search

programme”, for drawing automatically the stability boundaries of

the systen.,

1-4 High-Voltage-Direct-Current (h.v.d.c.) System

Recently the attention of pover engineers has been diverted to
the advantages of aschronous power transmission over long distances
by the h.v.d.c. system. The first commercial application of this
system was brought into service in 1954 between the Swedish mainland
and the island of Gotaland for delivering 20-MW at 100-KV over

a single-~conductor cable. Later on, other commercial h.v.d.cC.
systems vere commissioned, and recently in U.S.A, two long h.v.d.c.
lines of 1300-MW capacity at 800-KV each have been ineluded in the:
ambitious project of "The Pacific Northwest-Southwest Intertie".
These d.c li;es will be the first in U.S.A. and will be the longest

in the world, their individual lengths being 1375 km and 1325 km.

lalia) eration of the h.v.d.c. Systen

In the h.v.d.c. system the pover is rectified from the system
frequency to direct current, and is transported to the load centres
wvhere it is inverted back to the system frequency for distribution to
the consumers. In Ch. (3) major cmpﬁnents, operational details,
harmonic filters, reactive power demand and controls, etc., of the

converters have been discussed in some detsail.



In Che (4) a hevedec. system has been simulated and two
digital programmes have been written, one for studying the characteristics
of the converter, and the olher for observing the transient behaviour
of converter variables because of a sudden change in one of its
parameters, e.g.>reference current or a.c bus-voltages on either
end of the h.v.,d.c. system. In the digital programme all the possible
controls of the h.v.d.c. system have been included and provision for
imposing limits on the controls has been made.

In this study it has been shown that, though the h.v.d.c. system
has no significant inherent response characteristies of its own, it
can be made to respond rapidly to controls, and thus it can be

enployed most effectively during a disturbance in the system.

1-4=2 FReonomics of heVedeco. Transmission

The efficiency of h.v.d.c. transmission over a long distance
is evident in statistics on losses. When the comparisons are equal
in terms of the amount of power, distance, size of conductor and
peak voltage, a.c. losses are appreciably greater than those in a

d.c line, Also, & d.c line with two conductors and its ground
connections lpses only about half its transmission capacity when

one conductor fails, whilst in an a.c circuit, if one conductor

breaks down, all the transmission ceases. If the terminal a.c
equipment. such as a transformer fails, all the transmission is lost,
but. on the other hand, if half the terminal equipment in an h.v.d.c.
system fails, the line can still transmit power at its one-half
capacitye. The fact that the earth can temporarily be used as a

return conductor in case of the d.c line 1is an added advantage,



The terminal costs of the h.v.d.c. system are higher as

compared with those of the a.c system, but, on the other hand,
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the costs of the d.c transmission line itself is two-thirds -~ of the

a.c one.

Hence, to justify the h.v.d.c. system, the length of the
transmission distance is one of the decisive factors. B.P.A.
(Bonnev-ille Pover Authority) engineers have calculated the break-

69 It i8s reasonable to assume that as

even distance as 500 miles.
the technique continues to develop and h.v.d.c. becomes more generally
used, the cost of its terminal stations under competitive mass

production will be reduced to a greater extent than those of an a.c

gsysten,

1-5 - Comparative Study of Transient-Behaviour of

8.0~d.Cc and 1ts Egulva.lent R.Ce sttem

In Ch. (6) the parallel a.,c-d.c system and its equivalent a.c
system were studied from the transient stability point of view.
All the controls on the a.c end d.c. sides have been simulated and
tvo digital programmes written. One programse dravs the swing curves
of both the a.c~d.c and equivalent a.c. system, independently, and
the other draws the stability boundaries of both the systems.,
A comparison of the swing curves and stability boundaries establishes
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