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ABSTRACT 

During the last two decades there has been considerable development of sensorless 

vector controlled induction motor drives for high performance industrial applications. 

Such control strategies reduce the drive's cost, size and maintenance requirements while 

increasing the system's reliability and robustness. Parameter sensitivity, high 

computational effort and instability at low and zero speed can be the main shortcomings 

of sensorless control. Sensorless drives have been successfully applied for medium and 

high speed operation, but low and zero speed operation is still a critical problem. Much 

recent research effort is focused on extending the operating region of sensorless drives 

near zero stator frequency. 

Several strategies have been proposed for rotor speed estimation in sensorless 

induction motor drives based on the machine fundamental excitation model. Among 

these techniques Model Reference Adaptive Systems (MRAS) schemes are the most 

common strategies employed due to their relative simplicity and low computational 

effort. Rotor flux-MRAS is the most popular MRAS strategy and significant attempts 

have been made to improve the performance of this scheme at low speed. Artificial 

Intelligence (AI) techniques have attracted much attention in the past few years as 

powerful tools to solve many control problems. Common AI strategies include neural 

networks, fuzzy logic and genetic algorithms. 
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The mam purpose of this work is to show that AI can be used to improve the 

sensorless performance of the well-established MRAS observers in the critical low and 

zero speed region of operation. This thesis proposes various novel methods based on AI 

combined with MRAS observers. These methods have been implemented via simulation 

but also on an experimental drive based around a commercial induction machine. 

Detailed simulations and experimental tests are carried out to investigate the 

performance of the proposed schemes when compared to the conventional rotor flux­

MRAS. Various schemes are implemented and tested in real time using a 7.5 kW 

induction machine and a dSP ACE DS 1103 controller board. The results presented for 

these new schemes show the great improvement in the performance of the MRAS 

observer in both open loop and sensorless modes of operation at low and zero speed. 
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CHAPTER 1 

INTRODUCTION AND SCOPE OF THE THESIS 

1.1 Introduction 

Recently, controlled AC drives have been extensively employed in various high 

performance industrial applications. This has been conventionally achieved by using DC 

drives with their simple control structure. AC machines are generally inexpensive, 

compact and robust with low maintenance requirements compared to DC machines but 

require complex control [I, 2]. However, recent advances in power electronics, control 

techniques and signal processing have led to significant developments in AC drives. 

Induction Motors (IMs) and Permanent Magnet Synchronous Motors (PMSMs) are 

increasingly replacing traditional DC motors in a wide range of applications where a fast 

dynamic response is required. The majority of the AC drives used in industry are those 

employing squirrel-cage IMs. This motor is characterised by a simple and rugged 

structure, low cost, high efficiency and high reliability [2]. 

Variable speed 1M drives can be generally classified into low performance and high 

performance controlled drives. Scalar control is used for low performance drives where 

only the magnitude and frequency of the stator voltage or current is regulated. The most 

common scalar control technique is the constant VoltslHertz (V It) control in which the 

magnitude of the stator voltage is adjusted in proportion to the demand stator frequency 
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in order to keep the stator flux constant [3]. The basic idea of this method is to control 

the speed of the rotating magnetic field by changing the supply frequency. 

V If 1M drives offer moderate dynamic performance and are therefore used in 

applications where high speed precision is not required such as fans, pumps and simple 

elevators [4]. When high performance dynamic operation is required, these control 

techniques become unsatisfactory. 

High performance 1M drives can be implemented either by vector control or Direct 

Torque Control (DTC) strategies [2]. In these types of control, the instantaneous values 

of the motor torque and the magnetic field are regulated in the steady state and in 

transient operating conditions. The proper application of these control techniques allows 

the 1M to achieve similar dynamic performance to that of a separately excited DC motor. 

The rapid evolution of high speed power electronic converters, digital signal processors 

and inexpensive, powerful microcontrollers allow the spread of these control strategies in 

many industrial applications. The block diagram of a closed loop 1M drive is shown in 

Fig. 1.1. 

One of the more recent developments in the control of 1M drives is the elimination of 

the speed sensor mounted on the motor shaft. This technology is usually referred to as 

"sensorless control" where the motor speed is estimated rather than measured. However, 

the drive will still usually need current and perhaps voltage sensors to achieve the control 

task [2]. 

3-phase 
AC supply 

Rectifier Bridge 3-phase Inverter 

I 
I 

DC Link 

D~ L...-----.--...DSP ~-_ 
~~ 

PC 

Fig. 1.1 Block diagram of a closed loop induction motor drive 



Chapter 1 Introduction and Scope of the Thesis 3 

1.2 Sensorless Control of Induction Motor Drives 

Sensorless vector controlled 1M drives are being vigorously developed for high 

performance industrial drive systems. Such control reduces the drive's cost, size and 

maintenance requirements while increasing the system's reliability, robustness and noise 

immunity [1, 3]. Moreover, using a speed sensor in a hostile environment is not practical. 

Parameter sensitivity, high computational effort and instability at low and zero speed can 

be the main shortcomings of sensorless control [5]. 

Sensorless drives have been successfully applied in medium and high speed regions, 

but low and zero speed operation is still a critical problem specially for sensorless 1M 

drives [1]. In fact, some applications such as cranes, traction drives and presses are 

required to maintain the desired torque down to zero speed [6]. Much recent research 

effort is focused on extending the operating region of sensorless drives near zero stator 

frequency [5, 7]. 

Several strategies have been proposed for rotor speed estimation in sensorless 1M 

drives [1, 2]. In general, these methods fall into two main categories: fundamental 

excitation and spectral analysis techniques [1, 8]. A broad classification of 

methodologies applied to speed sensorless AC drives is shown in Fig. 1.2. The two main 

techniques used for sensorless control are described in the following sections. 

Estimation Techniques 
I 

~ 
Spectral 
Analysis 

Fundamental Model 

• Observers 

Rotor High-Frequency Rotor Slot Inverter Rotor 
Saliency at Signal Injection Harmonics Switching Flux 

Fundamental Scheme 
Frequency 

i 
Back-
EMF 

Scheme 

Extended Unscented Extended Adaptive 
Kalman Kalman Luenberger Speed 
Filter Filter Observer Observer 

i • + 
MRAS Artificial Open Loop 

I Intelligence Estimators 

l ~ 
Reactive Stator 
Power Current 

Scheme Scheme 

Artificial Fuzzy Genetic 
Sliding Neural Logic Algorithms 
Mode Networks 

Observer 

Fig. 1.2 Classification of speed estimation techniques for sensorless control 
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1.2.1 Spectral Analysis Strategies 

These algorithms benefit from a rotor position-dependence feature present in many 

AC motors to extract the rotor speed or position information. The estimation strategy is 

based on saliency introduced by special geometrical effects which are naturally present in 

PMSM [1]. However, this technique can be inappropriate for machines with cylindrical 

rotor design such as 1M. Therefore non model-based strategies for sensorless 1M drives 

can use other specific effects such as slot harmonics, magnetic saturation and transients 

caused by inverter switching to exploit the machine anisotropic properties [1, 9]. 

Magnetic saturation in 1M can be introduced by injecting a high frequency signal into the 

machine stator windings [1, 3]. 

U sing these techniques shows low parameter dependency with an improved low and 

zero speed performance if signal injection techniques are used [3]. However, rotor 

saliency- based schemes with fundamental excitation is machine specific and may not be 

suitable for standard machines because it requires special rotor design [1]. High­

frequency signal injection techniques are highly complicated and their design is not 

general since it needs to match the properties of the specific machine drive [9]. 

Furthermore, these methods may introduce audible noise and torque ripple to the motor 

[8]. Therefore the focus of this research is on model-based techniques that can be applied 

to any type of machine [1]. 

1.2.2 Fundamental Model-Based Strategies 

These strategies make use of the instantaneous values of stator voltages and currents 

to estimate flux linkage and motor speed from the machine fundamental model. These 

methods usually utilize a d-q model to describe the machine equations by assuming 

sinusoidal flux distribution and neglecting space harmonics [1]. These schemes usually 

work well above 2% of the base speed [1]. A block diagram of a model-based sensorless 

AC drive is shown in Fig. 1.3. 

The main problems associated with the low speed operation of model-based 

sensorless drives are related to machine parameter sensitivity, stator voltage and current 

acquisition, inverter nonlinearity and flux pure integration problems [1, 5]. Since all 

model-based estimation techniques rely on rotor induced voltages, which are very small 
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and even vanish at zero stator frequency, these techniques usually fail at or around zero 

speed due to lost observability [1, 5, 9]. 

* wr_--I~ 

* 'flr ---I~ 
Controller Inverter 

Estimator 

Fig. 1.3 Block diagram of a model based sensorless AC drive 

Fundamental model-based estimation strategies can be generally grouped into open 

loop estimators, observer-based schemes, Model Reference Adaptive Systems (MRAS) 

and Artificial Intelligence (AI) based methods. MRAS observers are well-established 

sensorless techniques that have attracted much attention due to their simplicity and direct 

physical interpretation. However, improving the performance of these schemes at very 

low speed remains challenging. 

Recently various AI-based techniques have been successfully applied to electric 

drives. In general increased robustness against parameter variations and improved 

performance are expected when these methods are employed [10], which encourages the 

application of these techniques to improve sensorless control. 

1.3 Artificial Intelligence for Electric Drives 

AI techniques have gained much interest over the past few years. These strategies 

consist of expert systems, artificial Neural Networks (NNs), Fuzzy Logic (FL), fuzzy­

neural networks and Genetic Algorithms (GAs) [10, 11]. The main idea of AI is to mimic 

natural human intelligence in the form of a computer program to tackle problems that are 

hard to solve by traditional methods. While expert systems and FL are rule-based 

techniques emulating the behaviour of human experience, NNs directly mimic the human 

brain with capability of generalization and learning [11]. The GA is a stochastic search 

technique that mimics the mechanism of natural selection. GA is considered as an 
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evolutionary computing technique, which is a rapidly emerging area of AI. It has been 

recognized as an effective and powerful technique to solve optimization and search 

problems. 

Compared to classical control strategies, AI techniques eliminate the need for 

mathematical models which are often complicated and rely on several assumptions with 

some parameters that may be difficult to measure [10]. Therefore, more robustness with 

respect to parameter variation is expected when using such schemes [10]. Moreover, due 

to their adaptive capabilities these techniques may lead to improved performance when 

combined with conventional methods. Several books have been published in the area of 

AI applications in power systems and electric drives· [10, 12-14]. Various AI -based 

schemes used for control applications have been studied by the author and presented 

previously [15, 16]. A detailed comparison of different AI applications in the control of 

1M drives from this present work has been recently published by the author [17]. 

Broadly, AI techniques have found widespread applications in the field of variable speed 

drives in the following areas [10, 18]: 

• Replacement of conventional speed, position and current controllers [19-22] 

• Tuning of conventional PI controllers [15, 23] 

• Improving the performance of conventional controllers [16, 24, 25] 

• Parameter and state estimation of DC and AC machines [10, 18, 26-30] 

• Fault detection and condition monitoring [31] 

• Efficiency optimization for AC drives [32] 

• Machine design optimization [33, 34] 

1.4 Scope and Novelty of the Thesis 

The research reported in this thesis investigates the operation of speed sensorless 

vector controlled 1M drive using MRAS speed observer. Particular attention is given to 

the low and zero speed regions of operation where the performance of the conventional 

observer usually deteriorates. An experimental evaluation of the performance of the 

conventional rotor flux-based MRAS scheme at very low and zero speed has been 

presented by the author in [35]. Despite considerable research effort, it is still 

problematic for MRAS-based sensorless schemes to provide a satisfactory response in 

this region of operation. Therefore the main intent of this work is to develop new hybrid 
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AI-MRAS schemes that are capable of achieving better performance at and around zero 

stator frequency. The main motivation is to exploit the effectiveness of AI techniques to 

overcome the problems associated with the classical methods. This research presents 

entirely new applications of AI in MRAS-based speed sensorless 1M drives. 

Conventionally, a simple fixed gain linear PI controller is employed to generate the 

estimated rotor speed in rotor flux-MRAS. Not much interest has been devoted to 

considering other types of adaptation mechanisms to minimize the speed tuning signal. 

An attempt to fill in this research gap is described by proposing alternative adaptation 

schemes using FL and Sliding Mode (SM) strategies. Results of such schemes have been 

published by the author [36]. To solve the problems of rotor flux-MRAS, a novel scheme 

is proposed employing a NN rotor flux observer which serves as a reference model for 

the MRAS observer. Promising results at low stator frequency are obtained from this 

scheme and have also been published by the author [37, 38]. Finally, another new 

approach to produce improved low speed performance is presented using aNN-based 

stator current-MRAS observer considering different rotor flux estimators. Operations at 

low speed and at regeneration have been studied and the test results have again been 

reported [39]. 

Various novel methods based on AI are implemented and their superiority at zero and 

low speed regions is proven through numerous and rigorous tests. All the proposed 

schemes have been simulated and experimentally validated based on 7.5 kW 1M and a 

dSPACE DS 1103 controller board. 

1.5 Publications 

The results of the research presented in this thesis are principally based on number of 

published/submitted articles to international conferences and journals. A list of these 

publications is given below: 

• S. M. Gadoue, D. Giaouris, and J. W. Finch, "Sensorless Control of Induction 

Motor Drives at Very Low and Zero Speed Using Neural Network Flux 

Observers," IEEE Transactions on Industrial Electronics, Submitted. 
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• S. M. Gadoue, D. Giaouris, and J. W. Finch, "Artificial intelligence-based speed 

control of DTC induction motor drives-A comparative study," Electric Power 

Systems Research, vol. 79, no. 1, pp. 210-219, January 2009. 

• S. M. Gadoue, D. Giaouris, and J. W. Finch, "Performance Evaluation of a 

Sensorless Induction Motor Drive at Very Low and Zero Speed Using a MRAS 

Speed Observer," in Proc. The third IEEE International Conference on Industrial 

and Information Systems, (ICllS), India, 2008. 

• S. M. Gadoue, D. Giaouris, and J. W. Finch, "A Neural Network Based Stator 

Current MRAS Observer for Speed Sensorless Induction Motor Drives," in Proc. 

IEEE International Symposium on Industrial Electronics, (ISlE), Cambridge, UK, 

2008, pp. 650-655. 

• S. M. Gadoue, D. Giaouris, and J. W. Finch, "A new fuzzy logic based adaptation 

mechanism for MRAS sensorless vector control induction motor drives," in Proc. 

4th lET Conference on Power Electronics, Machines and Drives, (PEMD), York, 

UK, 2008, pp. 179-183. 

• S. M. Gadoue, D. Giaouris, and J. W. Finch, "Genetic Algorithm Optimized PI 

and Fuzzy Sliding Mode Speed Control for DTC Drives," in Proc. World 

Congress on Engineering, (WCE), London, UK, 2007, pp. 475-480. 

• S. M. Gadoue, D. Giaouris, and J. W. Finch, "Low speed operation improvement 

of MRAS sensorless vector control induction motor drive using neural network 

flux observers," in Proc. 32nd Annual Conference on IEEE Industrial 

Electronics, (IECON), Paris, France, 2006, pp. 1212-1217. 

• S. M. Gadoue, D. Giaouris, and J. W. Finch, "Tuning of PI speed controller in 

DTC of induction motor based on genetic algorithms and fuzzy logic schemes," 

in Proc. 5th International Conference on Technology and Automation, (ICTA), 

Thessaloniki, Greece, 2005, pp. 85-90. 
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1.6 Layout of the Thesis 

The main body of the thesis is organized into eight chapters. In chapter one an 

introduction to speed sensorless 1M drives is given and different AI applications in 

electric drives are highlighted. Chapter two provides a literature review on speed 

observers employed for sensorless control. More emphasis is given to applications of 

MRAS speed estimators and AI-based strategies. Chapter three covers induction machine 

modelling, vector control strategy and speed estimation using the conventional rotor 

flux-MRAS. In chapter four, a detailed description of the experimental setup used in the 

project is given. Chapter five describes two novel adaptation mechanisms for rotor flux­

based MRAS observer based on FL and SM strategies. The two methods are compared to 

the conventional PI controller and all schemes are validated through simulation and 

experimental tests. Chapter six presents a new rotor flux-based MRAS scheme using NN 

flux observer. A brief introduction to NN is given followed by a detailed description of 

its application for rotor flux estimation compared to conventional observers. The 

capability of the proposed scheme to produce an improved performance is illustrated and 

verified through a detailed experimental comparison with the classical MRAS observer. 

Chapter seven describes a new approach for speed estimation based on a stator current­

MRAS scheme. The stator current observer equations are derived and represented by a 

linear NN. Various rotor flux observers required for the stator current estimation are 

tested and compared based on simulations and experimental tests. Chapter eight gives 

conclusions and suggestions for future work. 



Chapter 2 MRAS and AI for Sensorless Control- A Literature Review 

CHAPTER 2 

MODEL REFERENCE ADAPTIVE SYSTEMS AND 

ARTIFICIAL INTELLIGENCE FOR SENSORLESS 

CONTROL-A LITERATURE REVIEW 

2.1 Introduction 

10 

Sensorless control techniques for 1M drives have been widely investigated over the 

last two decades. The great advantages offered by sensorless control including 

compactness and robustness make it attractive for many industrial applications specially 

those operating in hostile environments. Among several strategies proposed for 

sensorless 1M drives, MRAS are the most popular schemes employed due to their simple 

implementation and smaller computational effort. However, these schemes usually fail to 

provide a satisfactory response at low stator frequency. Much research interest has been 

devoted to improve the performance of MRAS-based sensorless schemes in this region 

of operation. 

In recent years, AI techniques, particularly artificial NNs, have received much 

attention as potential tools to solve system identification problems. In addition, these 

techniques can be combined with conventional strategies to obtain an improved 
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performance. As a result, various AI-based schemes have been introduced for sensorless 

control applications. 

This chapter provides a comprehensive review of different model-based strategies 

employed for sensorless control of 1M drives with particular focus given to MRAS and 

AI techniques. Problems affecting low speed operation of MRAS schemes are discussed 

and different methods employed in the literature to tackle these problems are illustrated. 

2.2 Model-Based Sensorless Strategies 

Many different methodologies have been developed for rotor speed estimation of 1M 

using the machine fundamental model. In these strategies, monitored stator voltages and 

currents are used to extract the rotor speed information from the machine equations. 

Speed estimators can be implemented either in open loop or closed loop [2, 9]. The 

difference between the two types is the absence of a correction term in the open loop 

estimator [2]. 

Open-loop estimators are based directly on the machine dynamic model and do not 

employ any forms of feedback. Pure integration problems and voltage measurement 

noise represent two main deficiencies that can affect the estimation accuracy of these 

schemes especially at low speed [40]. In addition, open loop estimators are generally 

sensitive to parameter variations which significantly affects their performance in both 

transient and steady state [2, 9]. By contrast closed loop estimators, usually referred to as 

observers [2], use an error signal between measured and estimated quantities to adjust 

their response [1, 2]. This can lead to considerably improved dynamics and enhanced 

robustness [9]. 

According to the plant's form of representation, observers can be classified into 

deterministic and stochastic. Luenberger and Kalman observers are the most commonly 

employed non-linear estimators. While the extended Luenberger observer (ELO) can be 

applied to nonlinear, time-varying deterministic system, the extended Kalman filter 

(EKF) is applied to nonlinear, time-varying stochastic systems [2]. Adaptive observers 

have been also proposed for flux and speed estimation [41]. In both ELO and EKF 

observers, the rotor speed is treated as a state variable which differs from the full-order 

adaptive state observer where the speed is considered as a parameter [2]. The advantage 

ofELO and EKF is that they can combine parameter and state estimation [42]. 
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The EKF has been extensively applied to rotor speed estimation of sensorless 1M 

drives [43-46]. The algorithm is based on a mathematical model representing the 

machine dynamics taking into account plant and measurement noise. The EKF has the 

advantages of considering modelling errors and inaccuracy as well as measurement 

errors in addition to accurate speed estimation over a wide speed range but not at zero­

speed [2]. The problems associated with the EKF are the intensive computational effort, 

the lack of design and tuning criteria, the instability due to linearization and the 

dependency on the machine model accuracy [1, 47]. Moreover, biasing problem may 

take place due to the mismatch between assumed stochastic noise characteristics and real 

noise in addition to improper adjustment of covariance matrices [1, 2, 47]. Noise 

covariance matrices are usually tuned experimentally by a trial and error method which 

may not lead to an optimal performance. As a result optimization of the EKF has been 

the subject of recent researches to obtain the best performance of the filter [45. 46]. Shi et 

al. [45] proposed a GA to optimize the noise covariance and weight matrices of the EKF 

to ensure accurate speed estimation. Recent research proposed the Simulated Annealing 

(SA) algorithm for EKF optimization [46]. 

Akin et al. [47] proposed another form of Kalman filter: The unscented Kalman filter 

(UKF) which eliminates derivation and Jacobian matrices calculation while avoiding 

linearization [47]. However low speed tests, where measurement noise dominates, were 

not reported [1]. 

The ELO has been applied for joint rotor flux and rotor speed estimation for 

deterministic systems where noise is not taken into account [42]. Compared to EKF, its 

design is relatively flexible with less computational effort and it has the capability of 

producing unbiased estimates [2]. However, the ELO has weak observability 

characteristics for joint rotor flux and speed estimation in the low and zero speed region 

of operation [2]. Therefore other types of deterministic observers, such as those based on 

SM, have been developed. 

Sliding Mode Control (SMC) is known for its capability to cope with bounded 

disturbance as well as model imprecision. It is also said to be insensitive to parameter 

variations and external disturbances and can provide fast dynamic response [8, 24, 48] 

which make it ideal for the robust nonlinear control of 1M drives [49]. Mathematical 

basics, design procedures and applications of SMC in electric drives have been described 
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in details by Utkin [49]. SM observers have been proposed to solve the problem of speed 

estimation in 1M drives [8, 24, 48, 50]. Reported tests include ±100 rpm, ± 1500rpm 

(±5% and ±100% of rated speed) trapezoid speed command and ±900 rpm speed reversal 

[8]. Furthermore, a SM flux observer has been also employed as an adaptive model with 

MRAS [51]. Acceleration from 100-350 rpm and deceleration from 350-100 rpm were 

used to test the proposed scheme but no zero speed tests were shown. 

Owing to their inherent simplicity and effectiveness, MRAS schemes [7, 28, 51-54] 

have received great attention for sensorless control applications [1, 7, 55]. Armstrong et 

al. [56] provided a detailed comparison between rotor flux-based MRAS and EKF speed 

observers. Less computational complexity was shown for MRAS with a ratio of 1 :20 

compared to the EKF [1]. For that reason particular interest has been shown in the 

literature to the study of these schemes when applied to sensorless 1M drives. 

2.3 MRAS for Sensorless Control 

Adaptive control may be defined as a control system that "can modify its behaviour 

in response to changes in the dynamics of the process and the character of the 

disturbances" [57]. Adaptive control can be realized by different strategies such as: gain 

scheduling, model reference adaptive control, self-tuning regulators and dual control 

[57]. Model Reference Adaptive Control (MRAC) is one of the most attractive adaptive 

control techniques used for motor control and state estimation applications. A block 

diagram of the MRAC system is shown in Fig. 2.1. 
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Fig.2.1 Block diagram ofMRAC 
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Originally, MRAC was proposed to solve control problems where the desired 

performance specifications are given by a reference model that provides the ideal 

response of the plant to a given command. The error between the reference model output 

Ym and plant output YP is driven to zero by a proper alteration mechanism that adjusts the 

controller parameters. Based on the same mechanism the MRAC approach can be also 

applied to parameter and state estimation. 

MRAS schemes have been commonly employed for sensorless control applications. 

Depending on the output states that form the error function various MRAS observers 

have been introduced in the literature based on rotor flux, back EMF and reactive power 

[2, 53, 54]. Rotor flux MRAS, principally developed by Schauder [53], is the most 

established MRAS strategy and much effort has aimed at improving its performance. 

This scheme suffers from machine parameter sensitivity (specially stator resistance), flux 

pure integration problems which may cause dc drift and initial condition problems [2], 

stator voltage and current acquisition problems and inverter nonlinearity [1, 5]. These 

problems may limit the observer's performance at low and zero speed [54]. Applied to a 

vector control 1M drive, a good performance above 2 Hz stator frequency has been 

reported by Schauder [1, 9, 53]. Speed reversal through zero could be possible providing 

fast transient is applied. However operation at zero speed for longer period is not 

satisfactory due to incorrect flux estimation [2, 3]. 

To avoid the problems associated with rotor flux schemes, Peng and Fukao [54] 

proposed a MRAS scheme based on the back EMF vector. This scheme avoids using a 

pure integration in the reference model and hence has neither drift nor initial conditions 

problems. However, the reference model is still sensitive to stator resistance variation 

and may have stability problems at low stator frequency [7]. In addition, it shows low 

noise immunity due to stator current differentiation and poor dynamic performance at 

low stator frequency [55]. 

Another MRAS technique based on instantaneous reactive power has been proposed 

III [54] offering robustness against stator resistance variation while avoiding pure 

integration [2]. However, this scheme exhibits an unstable nature at some operating 

conditions when passing through the regenerating mode [7, 58, 59]. Moreover, back 

EMF and reactive power quantities vanish at low and zero speed [55]. 
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Wu et al. [58] provided a detailed study and comparison between back EMF and 

reactive power based-MRAS speed observers. In this study a verification of the 

instability features of reactive power based-MRAS scheme was reported. 

As a result a rotor flux-based MRAS observer was found to be the most effective 

solution compared to other MRAS schemes. This scheme also provides an estimation of 

the rotor flux angle that can be used for direct field orientation [55]. Different methods 

reported in the literature to improve rotor flux-MRAS performance are reviewed in the 

next sections. 

2.3.1 Parameter Sensitivity 

Since the speed estimation is based on the machine model it is highly sensitive to 

machine parameter variations. During drive operation motor parameters change 

continuously due to temperature, frequency and magnetic saturation. Stator and rotor 

resistances change with temperature and frequency, mutual inductance changes with 

magnetic saturation and the leakage inductances can change with the operating current. 

Temperature variation depends on the machine power losses. The stator and rotor 

copper losses are affected when the motor is operating with variable load whereas the 

core loss variation depends on the machine flux level. Development of a thermal model 

describing the machine thermal behaviour or implementation of a temperature sensor to 

detect resistance variation is not precise. This is partly due to the existence of fans used 

for cooling that have nonlinear characteristics between cooling flow rate and machine 

speed. Furthermore the motor thermal time constant itself changes with speed and is 

decreased as the speed increases [60]. 

Stator resistance variation with temperature, which can be up to 50% [1, 9], is a very 

serious problem at low speed [61]. Since the fundamental component of the stator 

voltage becomes very low, the stator resistance drop becomes comparable to the applied 

voltage [3]. Hence continuous adaptation of the stator resistance is required to maintain 

stable operation at low speed [62]. On the other hand incorrect rotor resistance affects the 

steady state speed estimation accuracy [60, 61]. The effect of machine parameter 

variation on the performance of MRAS observer has been studied in many works [56, 

61]. Armstrong et al. [56] provided a detailed study of the performance of the rotor flux-
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based MRAS observer with 20%-200% variations in the machine parameters at 95.5 

rpm. 

Various schemes have been proposed for combined rotor speed and stator resistance 

identification using MRAS [7, 59, 62-64]. Zhen and Xu [63] used a mutual MRAS 

scheme with interchangeable reference and adaptive models. This scheme was used for 

rotor speed and stator resistance estimation in a position sensorless vector control 1M 

drive. A reference model is defined which does not employ a pure integration, is free 

from the stator leakage inductance variations but depends on the stator resistance. Speed 

estimation stops briefly when the reference speed does not change and the estimated 

speed becomes stable. The two observers then switch their functions for stator resistance 

estimation to take place based on another adaptation mechanism. To allow accurate rotor 

speed and stator resistance estimation an online adaptation of the rotor time constant is 

incorporated. Speed commands of 75 rpm and ±1200rpm have been used to test the 

proposed scheme. However, the two estimation algorithms are not concurrent and the 

drive has no speed information during stator resistance identification [64]. 

To avoid these problems Vasic and Vukosavic [62, 64] introduced a simultaneous 

estimation of rotor speed and stator resistance based on a parallel MRAS observer. In this 

scheme conventional Voltage Model (VM) and Current Model (CM) flux observers are 

used as reference and adaptive models respectively for rotor speed estimation as in [53]. 

The two observers switch roles for stator resistance identification. Using Popov's 

hyperstability theory two adaptation mechanisms are deduced for simultaneous 

estimation of rotor speed and stator resistance. Unlike [63], this scheme does not require 

a steady state condition to estimate the stator resistance and can be activated during 

transients. Successful estimation was obtained when the scheme was tested at reference 

speeds of 0.5, 1 and 4Hz with ±20% detuning in the stator resistance. Additionally, 

operation at zero speed for a short time was realized with accurate estimation of stator 

resistance. It was also shown that incorrect rotor time constant has a negligible effect on 

stator resistance identification but significantly affects rotor speed estimation. 

Another approach was employed in [59] for rotor speed and stator resistance 

estimation applied to vector control 1M drive. In this scheme, the q-axis rotor flux in the 

synchronous reference frame is used as a tuning signal for rotor speed estimation. A 

simple PI controller is used to drive the q-axis rotor flux component to zero in order to 
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obtain the rotor speed. Another adaptation algorithm for stator resistance identification is 

defined based on the d-axis rotor flux error between CM and VM. The scheme is tested 

at speed commands of 20 rpm, 50 rpm and ±1200rpm speed reversal. Further tests are 

shown for reference speed changes from 8-80 rpm and then back to 8 rpm at 50% rated 

load with 30% detuning in the rotor time constant. This detuning may cause steady state 

error in the estimated speed but was claimed to keep the system stability unaffected. 

Rashed and Stronach [7] proposed a new stable MRAS rotor speed and stator 

resistance estimator. The adaptation algorithm for the rotor speed estimation is the sum 

of cross product modulus and dot product of estimated rotor flux and error in estimated 

back EMF vectors. Another adaptation algorithm for stator resistance identification is 

derived based on the error in the air gap active power. Estimator gains are designed based 

on Routh-Hurwitz criteria to ensure stability at different operating modes including low 

speed. A frequency injection technique is applied to observe the motor speed at zero 

speed operation. To examine the sensorless drive performance in the regenerating mode, 

the scheme was tested with ±5 rad/s and 3 to -2 rad/s speed reversals at 50% rated load. It 

was shown that rotor speed exhibits some oscillations but the drive is stable. Another ±20 

rad/s speed reversal test at no load was performed showing satisfactory steady state 

performance but not during transients. 

2.3.2 Pure Integration Problems 

Pure integration for flux represents a crucial difficulty that may cause dc drift and 

initial condition problems [2, 5, 65]. Low-Pass Filters (LPFs) with low cut-off frequency, 

typically 1-3 Hz [1, 3], have been proposed to replace the pure integrator [3, 6, 28]. 

However, a LPF behaves like an integrator only at frequencies higher than the filter cut­

off frequency as shown in Fig. 2.2 [1, 3]. Therefore, using a LPF introduces phase and 

gain errors and delays the estimated speed relative to the actual, which may affect the 

dynamic performance of the drive [51, 66]. In addition this may lead to inaccurate speed 

estimation below the filter cut-off frequency [2, 3]. 

To overcome this problem Karanayil et al. [66] introduced a Programmable Cascaded 

LPF (PCLPF) to replace the pure integration by small time constant cascaded filters to 

attenuate the dc offset decay time. In [67] another technique is used where the rotor flux 

is estimated by defining a modified integrator having the same frequency response as the 
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pure integrator at steady state. Gao et al. [68] proposed a nonlinear feedback integrator 

for drift and dc offset compensation used for VM flux observer. This modified VM is 

incorporated into a rotor flux-based MRAS structure as in [53] and the proposed scheme 

is tested when applied to a vector control 1M drive. Tests at 5 rpm and 900 rpm at no­

load and 50% load have been carried out to examine the proposed scheme at open loop. 

Extensive testing has been performed for the sensorless mode of operation including 

speed transient from 9rpm to 900 rpm at no-load and 25% load, ±6rpm and ±9rpm speed 

reversal at 10% and 850/0 load respectively. Disturbance rejection performance for 80% 

and 75% load at 9rpm and -9rpm respectively was also investigated. The scheme shows 

satisfactory performance down to around 0.2 Hz including regeneration but becomes 

unstable below this frequency. It was claimed that the estimated speed contains a steady 

state error of about 5 rpm which can be improved by incorporating an online stator 

resistance identification scheme. 
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Fig. 2.2 Bode diagram for approximation of ideal integration by a LPF 

Further research [65, 69] has tried to entirely replace the VM by other flux observers 

which may reduce the scheme's simplicity. Both schemes employed the same MRAS 

structure as in [53] based on PI minimization of the cross product of flux estimates. In 
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[65] a state observer with current error feedback is used to generate the reference values 

for the rotor flux in a MRAS observer. Experimental tests have been conducted at 1000 , 

50 and 25 rpm at no-load, ±200rpm speed reversal and load torque application with 50% 

mismatch in the rotor resistance. Better performance was obtained using the new scheme 

compared to the conventional MRAS. Lascu et al. used a similar approach in [69] for 

classical DTC and space vector modulation (SVM) DTC. In this modified MRAS 

scheme, the reference model employs a full-order stator and rotor flux observer 

containing both VM and CM with an adaptive model based on the CM. Hence the speed 

observer employs the CM twice: in the reference model (expressed in the rotor flux 

oriented reference frame) and in the adaptive model (expressed in the stator reference 

frame). The limit of this scheme was claimed to be 30 rpm. However, measured speed is 

not shown for this test and no zero speed tests were reported for this scheme [52]. 

Another modification to the classical MRAS presented in [53] was applied in [55] 

using a closed loop flux observer (MRAS-CLFO) that employed a coupling controller 

between the two flux estimates, VM and CM. Using the closed-loop topology provides 

the VM open loop integration with the necessary feedback and hence no LPF is required 

in the VM [52]. However, as frequency approaches zero the cross product between flux 

estimates also approaches zero and the speed estimation is lost. Therefore, a machine 

mechanical model was used to compensate for this effect but this may increase the 

observer's complexity and requires accurate values for the mechanical parameters. 

2.3.3 Stator Voltage Acquisition and Inverter Nonlinearity 

Stator voltage measurement comes up due to sensorless control. The stator voltage 

signal is crucial for model based strategies. The most accurate stator voltage acquisition 

is that measured across the machine terminals. However, this cannot be used easily since 

it requires a very high sampling rate [5]. Low pass filtering the PWM voltage waveform 

may solve the problem at medium and high speed but not at low speed, where the effects 

of filter gain and phase error cause the performance to deteriorate. Another nonlinear 

filtering method known as the synchronous integrator technique can aid a solution [70]. 

This technique is based on integrating the PWM voltage signal and resetting at the end of 

the PWM period. This provides the actual volts-seconds applied to the machine terminals 

over the PWM period. Using this technique should give better measurement including all 
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inverter nonlinearities [70]. However it is not desirable to employ voltage sensors for 

industrial applications [8]. Another possible alternative is to use the reference voltages, 

available in the control unit, since they are harmonic free. However, at low speed these 

reference voltages deviate substantially from the actual machine voltages due to inverter 

nonlinearities and dead time effects. Therefore, Holtz and Quan [71] have modelled the 

inverter nonlinearities including voltage drops across the switches and the threshold 

voltage. As a consequence, better acquisition of the stator voltage is obtained from the 

reference voltage of the PWM inverter at very low speed. 

2.4 Artificial Intelligence for Sensorless Control 

In recent years, AI techniques have been advocated for different electric drives 

applications. In the next sections different applications of AI in sensorless control of 1M 

are highlighted. Emphasis is given to the most commonly employed AI strategies, NN 

and FL techniques. 

2.4.1 Applications of Artificial Neural Networks 

Artificial NNs have been recognized as a potential solution for many real world 

problems. Compared to conventional programming, they have the capability of solving 

problems that do not have algorithmic solution. Therefore they are found to be suitable to 

tackle problems that suit human reasoning, such as pattern recognition. NNs have been 

introduced to solve many problems related to prediction, classification, control and 

identification. A latest comprehensive review of NN applications in the field of power 

electronics and motor drives is covered in [11]. One of the major advantages of NN s is 

their ability to learn from experience to improve their performance and to adapt to 

changes in the environment [10]. In addition they show good capability in dealing with 

incomplete information or noisy data. NNs are frequently used as universal function 

approximators to represent these functions with weighted sums of nonlinear terms. This 

is useful when representing some systems which do not have an accurate mathematical 

model [10]. In the last few years, NNs have found widespread applications in sensorless 

control of 1M drives. 

NN assisted MRAS schemes are discussed in the literature [2, 28, 52, 72]. Its basic 

idea is to replace the adaptive model of the classical MRAS by an online trained NN as a 
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state estimator. This strategy avoids using a mathematical adaptive model and the 

adaptation mechanism is integrated into the network tuning law [2]. However, since these 

proposed schemes have similar structure to that proposed by Schauder in [53], they 

would be affected by machine parameter variation and pure integration problems. 

Ben-Brahim et al. [28, 73] proposed a two-layer linear NN to represent the 

conventional adaptive CM using a simple forward Euler integration method. In this 

representation the rotor speed is proportional to one of the NN weights. The reference 

model is the conventional VM but the pure integrator is replaced by a LPF with a low 

cut-off frequency. The rotor flux is estimated based on the two models and the error 

between the two estimates is used for online tuning of the network weights using a 

backpropagation algorithm. Hence the rotor speed information can be obtained. The NN 

adaptive model is working in the simulation mode where the delayed estimated flux 

components from the adaptive model are fed-back to the NN. The proposed observer's 

performance is verified experimentally without mentioning its low and zero-speed 

behaviour, no information about the lowest speed limit was given [52]. 

In [74] a EKF is proposed to adjust the NN weights of the scheme described in [28]. 

This has the advantage of using a variable learning rate which is constant in the 

backpropagation algorithm, leading to fast convergence. A ±500rpm speed reversal test 

at no-load is shown for the proposed scheme. However, the EKF algorithm requires 

higher computational burden compared to backpropagation. 

An evolution to the scheme proposed in [28] has been presented in [52, 72] where an 

Adaptive linear NN (ADALINE) is employed in the adaptive model using a modified 

Euler integration to represent the CM. The neural network adaptive model is employed in 

the prediction mode and not in the simulation mode as in [28, 73]. In the prediction mode 

the delayed estimated flux components from the reference model, not the adaptive model, 

are fed-back to the NN. The same reference model described in [28, 73] has been 

employed. The training of the NN is performed online using Ordinary Least-Squares 

(OLS) algorithm. Since the' problem to be solved is linear, Cirrincione and Pucci [52] 

claimed that using this linear least-square algorithm is more suitable to estimate the rotor 

speed compared to the backpropagation algorithm used in [28]. Using the OLS algorithm 

avoids problems of backpropagation such as initialization, convergence and local 

minimal problems. Therefore the new speed observer scheme is characterized by fast 
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convergence and low speed estimation error in both transient and steady-state. 

Furthermore it showed better performance in low and zero speed operation compared to 

the backpropagation scheme described in [28]. The proposed scheme is tested with ±50 

rad/s and ± 10 rad/s speed reversals and the lowest speed shown was 5 rad/s. Zero speed 

no-load test for 60 s time interval shows a more stable response than [28]. 

Kim et al [75] proposed another NN -based speed observer where the speed is an 

output quantity and not integrated into the NN weights as in [28, 52]. In this approach a 

conventional rotor flux-based MRAS scheme with voltage reference model and current 

adaptive model is used to estimate the rotor flux. The error between the two estimates is 

used to adjust the weights of a three-layer NN speed observer using an online 

backpropagation algorithm. The proposed neural observer is partially recurrent and 

consists of three inputs: the reference flux magnitude, the estimated flux magnitude and a 

delay term of the observed rotor speed. The hidden layer consists of five neurons with 

sigmoid activation functions and the single neuron output layer generates the estimated 

value of the rotor speed. The scheme is verified experimentally and has shown 

satisfactory performance at low-speed operation with a step speed command of 10 rpm. 

Further tests at 1000 rpm, ±500 rpm speed reversal at no-load and disturbance rejection 

at 500 rpm are also shown. However, pure integration and parameter sensitivity problems 

associated with this type of MRAS scheme are not discussed. In addition the speed 

observer performance at zero-speed operation is not mentioned. 

Neural networks have been also combined with MRAS for online stator and rotor 

resistance estimation for speed sensorless indirect vector control 1M drive [76]. An 

MRAS scheme based on rotor flux is used to track the rotor resistance variation online. 

In this scheme the flux VM is used as a reference model whereas a two layer NN mimics 

the adaptive CM as in [28]. To avoid pure integration in the reference model, a three­

stage PCLPF is used for rotor flux synthesizer from the VM. A backpropagation training 

algorithm is used online to adjust the NN weights which contain the rotor time constant 

information. However, precise knowledge of stator resistance is required for accurate 

rotor resistance estimation. Therefore another stator current-based MRAS scheme has 

been employed for stator resistance identification [76]. In this scheme the reference 

model comprises the measured stator current components. A recurrent NN stator current 

observer is used as an adaptive model where the stator resistance is one of the NN 
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weights. A backpropagation learning algorithm is used to train the NN online to update 

the value of the stator resistance. A conventional CM is used for rotor flux estimation. 

With accurate stator and rotor resistance estimation, rotor speed identification could be 

realized using machine state equations. The proposed scheme was tested at 1000 rpm, 

± 1 000 rpm and ± 150 rpm speed reversal and satisfactory performance at low speed has 

been reported. 

Campbell and Sumner [60] described a sensorless 1M drive using a recurrent NN to 

detect the thermal variations of the stator resistance at different operating conditions. 

This is performed based on machine current, estimated speed and an additional feed-back 

path representing the past estimated value of the stator resistance. In this scheme the 

motor speed is estimated based on rotor flux-based MRAS strategy. The training signals 

are generated from the real drive when the motor is running at different speeds with 

various load torque such that the stator resistance variation can be obtained. A small DC 

voltage is used each time to measure the stator resistance when the machine is brought 

back to standstill. The training of the NN has been performed off-line using a 

backpropagation algorithm. Rotor resistance is also updated assuming the same 

percentage change as the stator resistance. Operation at low and zero speed has been 

investigated by testing the proposed scheme for load disturbance rejection at 100 rpm, 

deceleration to rest at rated load and finally zero speed operation at rated load. Better low 

speed operation was achieved when this NN open loop model is combined with the 

MRAS observer. 

A linear NN has also been presented as an adaptive filter used for signal integration 

to eliminate the offset in the flux integration for the VM flux observer [72, 77]. Since just 

one weight is updated online the proposed algorithm is characterised by simple structure 

and low computational burden. The NN algorithm has been tested experimentally on a 

scalar and vector control 1M drive. 

Vas [10] discussed in details NN applications in open loop speed estimation of IM 

drives. An 8-9-7-1 multilayer feedforward NN is proposed as a speed observer with 

present and delayed stator voltage and current components as inputs and rotor speed as 

output. The proposed neural speed observer was successfully tested to estimate the speed 

of a supply-fed unloaded machine during run-up with less than 3x 10-
3 

estimation error. 

The same network has been reported to correctly estimate rotor speed at different loads. 
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Another 8-12-10-4 network was proposed for the simultaneous estimation of rotor speed, 

electromagnetic torque and d-q stator flux components in the stator reference frame with 

the same inputs as the previous network. The neural observer was tested for an unloaded 

supply-fed induction motor during run-up and satisfactory results have been obtained 

even in the presence of machine parameter variation. Moreover, a three-layer 

feedforward NN with 16 neurons in the hidden layer was presented to estimate the rotor 

speed in a speed-sensorless rotor flux oriented 1M drive from the present and past 

samples of stator voltage and current. Reference stator voltage, available in the control 

unit, was used instead of the actual voltage. The number of neurons in the hidden layer is 

chosen by trial and error. The activation functions in the hidden and output layers are tan­

sigmoid and linear respectively. The training data of the network was obtained by 

running the vector drive with a random command speed signal with a speed sensor used 

to provide the target values for the network training. The trained NN was tested in a 

vector drive subjected to different speed references including low speed and reversal 

commands at various loads and satisfactory response was obtained. 

Heredia et al. [4] used a 2-10-2 three-layer feedforward NN for speed and torque 

estimation for open loop Vlf controlled 1M drive using stator current and VoltlHz ratio as 

inputs. A test with 1000 rpm and a constant load seen during training has been carried 

out. Further tests with speed change and loads not seen during training were shown and 

good estimation accuracy was obtained in all the tests. 

Wavelet NN (WNN) was proposed as a new approach for rotor speed estimation in 

1M drives [78]. WNN combines the features of time-frequency localization property of 

wavelets and learning capability of NN. This can improve the performance of NN by 

increasing the convergence speed in addition to avoiding local minima. In [78], a three­

layer WNN was trained to identify the nonlinear relationship between rotor speed and 

stator current. The network training was performed using supervised backpropagation 

and the speed identifier was simulated in a DTC 1M drive. However, no experimental 

tests were shown for this scheme. 

Neural networks can also be applied for stator and rotor flux estimation in 1M drives. 

Two multilayer NN architectures have been proposed in [10]. The first network estimates 

the rotor flux modulus and position from present and past samples of stator voltage and 

current. The other NN generates the same outputs from present and past samples of stator 
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current and rotor speed to mimic the classical CM flux observer. Simoes and Bose [26] 

employed a three layer NN with 20 neurons in the hidden layer for rotor flux and electric 

torque estimation. The inputs to the network are the d-q components of the stator flux 

and stator current. Training data are obtained by simulating the drive system and the 

training is performed off-line using backpropagation algorithm. Nevertheless, oscillatory 

performance was obtained from the NN observer compared to conventional mathematical 

model estimators [10]. However, if stator flux and current are known rotor flux and 

electric torque can be obtained directly from machine equations without using a NN [10]. 

Another 5-8-8-2 multilayer feedforward NN has been proposed to estimate the stator flux 

from stator voltage, current and speed signals [27]. The drawback of this technique is the 

requirement of flux and speed sensors to achieve proper training of the network. 

2.4.2 Applications of Fuzzy Logic 

Fuzzy Logic Control (FLC) is achieved by converting the linguistic control strategy 

of human experience and knowledge into an automatic control strategy. Therefore no 

mathematical model of the controlled system is needed. FLC has been found to be 

excellent in dealing with systems that are imprecise, non-linear, or time-varying and with 

uncertain or unknown parameter and structure variation. FL is a well-established 

technique used in many industrial control applications. Unlike NN strategy, few attempts 

have been made to apply FL for sensorless control. 

Lopez et al. [40] described a scheme where a FL system is proposed to perform an 

intelligent mixing between an Open Loop (OL) and a Steady-State (SS) estimator by 

proper weighting the output of each one according to the motor operating condition. A 

high weight is assigned to the OL estimator during transients and to the SS estimator in 

the steady state. The final estimated speed is obtained by averaging these weighted speed 

values. Another application of FL was described in [40] to improve the performance of 

OL estimators. This is performed by using an adaptive filter with a variable cut-off 

frequency selected by a FLC depending on the operating condition. During transients the 

FLC selects a high cut-off frequency to decrease the effect of the filter delay. In the 

steady state, where the delay effect is not important, lower values of cut-off frequency 

are selected to eliminate the ripple in the estimated speed. Simulation and experimental 
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results are shown for a step response to rated speed and for a load torque step with 

moderate performance shown. 

A fuzzy self-tuning identifier was proposed to solve speed estimation problems for 

vector control 1M drive [79]. The scheme has a similar structure as the rotor flux-based 

MRAS observer in [28, 53] with a VM as a reference model. A fuzzy self-tuning 

identifier integrating a three-layer network is employed for the adaptive model. The 

backpropagation algorithm is used online to minimize the error between reference and 

estimated rotor flux by adjusting the fuzzy identifier membership functions. Hence the 

output of the fuzzy model is forced to follow the desired reference and an estimate of the 

rotor speed can be obtained. The scheme was tested for a step speed command of 500 

rpm and for a command change from 500rpm to 900 rpm and back to 500 rpm. However 

no results are shown for speed estimation performance at low speed. 

Lian and Hung [80] proposed a fuzzy observer for rotor flux and rotor speed 

estimation for 1M. Observer gains were obtained by solving a set of linear matrix 

inequalities. Tests with a sinusoidal reference speed were shown. However, parameter 

variation and low speed problems were not mentioned. 

2.5 Conclusion 

This chapter has provided a detailed review of different model based techniques 

applied to speed sensorless 1M drives with most emphasis given to MRAS and AI 

strategies. Different problems affecting the low speed operation of MRAS observers have 

been illustrated. Various methods employed in the literature to improve the rotor flux­

based scheme's performance have been carefully reviewed. Different applications ofNN 

and FL techniques for sensorless control have been also highlighted. It appears that, 

despite much attempt and progress, operation at very low speed for MRAS-based 

sensorless 1M drives is still challenging and needs more investigation. 



Chapter 3 Model Reference Adaptive Systems for Vector Control Induction Motor Drive 27 

CHAPTER 3 

MODEL REFERENCE ADAPTIVE SYSTEMS 

FOR VECTOR CONTROL INDUCTION MOTOR DRIVE 

3.1 Introduction 

Induction motors are the workhorse for industrial applications due to their 

ruggedness, simplicity and low cost. 1M drives have replaced DC drives in many high 

performance applications due to the advances in control strategies such as vector and 

direct torque control. Fast development of power electronics and microprocessors has 

provided an economic way for implementation of these control techniques. Therefore an 

accurate model that well represents the induction machine is required to allow proper 

design of the control and observer system. This chapter first presents the mathematical 

model of the induction machine using space vector and two-axis theory. This model is 

then used to understand the dynamic performance of the machine using vector control. 

Finally, rotor speed estimation using a MRAS strategy is investigated using the induction 

machine model to formulate the rotor flux based speed observer. 

This chapter is divided into three parts. The first part presents the dynamic modelling 

of the induction machine using space vector theory and state space representation. The 

second part investigates the dynamic behaviour of the 1M under rotor field orientation. 



Chapter 3 Model Reference Adaptive Systems for Vector Control Induction Motor Drive 28 

The final part is concerned with modelling of rotor flux MRAS observer for speed 

sensorless 1M drives. 

3.2 Dynamic Modelling of the Induction Machine 

The 1M equivalent circuit is used to calculate the machine quantities such as stator 

current, motor torque and power factor under steady state operating conditions and 

running from a balanced sinusoidal supply. However, this equivalent circuit cannot be 

used for transient analysis or when the motor is fed from a non sinusoidal supply which 

is the case with converter fed machines. To allow the analysis of the transient and the 

steady state performance of the machine when supplied from any type of supply, a 

dynamic model of the machine will be defined based on space vector theory [2]. This is 

related to the two-axis theory of electric machines. In this analysis, the three phase 

variables are described by an equivalent two phase representation which simplifies the 

machine equations. 

In a three phase induction machine, the space vector of the stator current in the 

stationary reference frame fixed to stator can be defined as [2]: 

-;- 2(. . 2.) 
Is = - 1 sA + al sB + a 1 sC 

3 

where: 

.2" r;::; 
}- 1 -v3 

a=e 3 =--+ j-
2 2 

.4" r;::; 
a2 =e}3 = -!- j:£i 

2 2 

(3.1) 

(3.2) 

In (3.1), isA, isB and isc are the three phase currents that flow in three phase windings 

displaced by 1200 from each other and producing sinusoidal distributed magneto-motive 

force (mmi). Resolving the stator current space vector in (3.1) into its real and imaginary 

parts yields the two axis components of the stator current vector in the stator reference 

frame as shown in Fig. 3.1 [2]. 

2 1 1 
isD = 3isA -3isB -3isc (3.3) 

1 1 
isQ = fj isB - fj isc 
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isD and isQ are the actual currents that flow in the two-phase stator windings sD and sQ 

which are quadrature in space [2]. The stator current space vector can be written in polar 

and rectangular form as: 

(3.4) 

In a matrix form such a transformation from three phase to two phase can be written as: 

1 
1 1 

isA 

[::~] =~ 
--

2 2 
isB J3 J3 

0 isC 2 2 

(3.5) 

sQ 

,-

\$ 

~--~~----~----~sD 

lsD a-aXIS 

Fig. 3.1 Stator current space vector and its two-axes components 

The transformation from two phase quantities into three phase quantities can be written 

as: 

isA = isD 

1 J3 . . + . 
lsB = - 2 1sD T1sQ 

(3.6) 

1 J3 
isc = - 2 isD -TisQ 

This transformation can be expressed in a matrix form as: 
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0 
lsA 

1 J3 [iSD] lsB 2 2 
(3.7) 

lsQ 
lsC 1 J3 

2 2 

For vector control implementation, a transformation between stator (D-Q) and 

excitation (d-q) frames is required as shown in Fig. 3.2 where Be is the rotor flux position. 

The stator coordinates are fixed to stator and therefore are stationary while the excitation 

(synchronous) frame coordinates rotates synchronously with the stator magnetic field. 

sQ 

~~--------~----~--~sD 

Fig. 3.2 Transformation between stationary and synchronous frames 

The transformation from the stator frame to the synchronous frame is given by [2]: 

I: = isd + j isq = Iff e -jOe = CisD + j isQ)e -jOe 
(3.8) 

The superscripts sand e stand for the stator and excitation reference frames while the 

subscript s stands for the stator quantities. The transformation defined in (3.8) can be 

written in matrix form as: 

[~Sd] = [ co.sBe sin Be] [~SD] 
lsq -smBe cos Be lsQ 

(3.9) 

while the transformation from synchronous frame to stator frame is given by: 
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Jff =isD+ jisQ=J: e JOe = Cisd+ jisq)eJOe (3.10) 

In matrix form: 

- sin t1e] [~Sd] 
COSt1e lsq 

(3.11 ) 

Similarly, the stator voltage and flux space vectors expressed at the stator reference 

frame are: 

- 2( 2 ) v s = 3" v sA + av sB + a v sC 
(3.12) 

=vsD + jVsQ 

- 2( 2 ) If's = 3" If'sA + a If' sB + a If'sc 
(3.13) 

= If'sD + jlf'sQ 

In a similar manner to the definition of the stator current space vector expressed in 

the stator reference frame, the space vector of the rotor current in a reference frame fixed 

to rotor, shown in Fig. 3.3, can be expressed as: 

-;- 2(. . 2.) 
lr = - Ira + azrb + a Ire 

3 (3.14) 

J,. = 1J,.leJar =ira + jirp 

ira and irp are the actual currents that flow in the two-phase rotor windings ra and rfi 

which are quadrature in space and t1r is the rotor position [2]. 

sQ 

/. 
,,'\ 

................•...... ,., .... 

~~ ________ ~~----~sD 

Fig. 3.3 Rotor current space vector and its two-axes components 
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A set of differential equations based on Faraday's and Kirchoff's laws is used to 

describe the induction machine mathematical model. Detailed mathematical modelling of 

the induction machine is given in Appendix A. Using space vector notation the stator and 

rotor voltage equations can be written as: 

d-s 
-s -R ZS +JL 
Vs - s s dt (3.15) 

(3.16) 

The superscripts sand r stand for the stator and rotor reference frames while the 

subscripts sand r stand for the stator and rotor quantities. 

Equations (3.15) and (3.16) can be written in d-q coordinates established in the stator 

reference frame as: 

R 
. dlf'sD 

vsD = slsD + dt 

. dlf'sQ 
vsQ = RslsQ + dt 

R 
. dlf'rd 

Vrd = rlrd + dt + Wrlf'rq 

. dlf'rq 
Vrq = Rrlrq +~-Wrlf'rd 

where the stator and rotor flux linkages are given by: 

If'sD = LsisD + Lmird 

If'sQ = Lsi sQ + Lmirq 

If'rd = LmisD + Lrird 

If'rq = LmisQ + Lrirq 

(3.17) 

(3.18) 

The voltage equations of the induction machine in the stator reference frame can be 

written in terms of stator and rotor current space vectors as: 

,,; = {Rs + Lsp )1; + LmPl; 

,,; = {Rr + Lr P )1; + LmPl; - jWr (Lml; + Lrl; ) 

where P is the differential operator. 

(3.19) 

(3.20) 
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In matrix form using space vector notation these equations can be written as: 

(3.21) 

A convenient way to solve estimation and control problems usmg computer 

simulation is to use a state space model. In this representation, shown in Fig. 3.4, the 

machine dynamic model is described by a set of first order differential equations. 

u .. + ... X 1 X y .. -- B - --.. C 
s 

~~ 

+ 

A .... ... 

Fig. 3.4 State space model 

By writing the stator and rotor voltage equations in terms of stator current and rotor 

flux space vectors, a state space representation of the induction machine can be obtained. 

For a squirrel-cage 1M, these equations can be written as: 

O 1 f-s L ~ s) -s . -s 
= -\lfIr - m1s + Plflr - jOJrlflr 

Tr 

where a is the leakage coefficient given by: 

2 
a = 1- Lm 

LsLr 

and Tr is the rotor time constant given by: 

T = Lr 
r R 

r 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

The state space representation of the 1M in the stator reference frame with the stator 

currents and the rotor flux linkages components as state variables can be written as: 
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-at 

PlsD 

pisQ 
0 

= 
Plflrd Lm 

Plflrq Tr 

0 

0 1 
0 a2 a30Jr 

isD 
aLs 

1 
-al - a30Jr a2 

isQ 
0 

+ aLs [VSD] (3.26) 1 IfIrd vsQ 0 -OJr 0 0 
Tr IfIrq 

Lm 1 
OJr 0 0 

Tr Tr 

where: 

R I-a 
al =_s +--

aLs aTr 

Lm 
(3.27) a2 = 

aLsLrTr 

Lm 
a3 = 

aLsLr 

The machine model can be written using the standard state space notation as: 

X(t) = AX(t) + BU(t) 
(3.28) 

yet) = CX(t) 

where: 

X(t) = [isD isQ IfIrd IfIrq ]T 

U(t) = [VSD vsQ]T 

yet) = [isD . ]T IsQ 

1 
0 -al 0 a2 a30Jr 

aLs 

0 
1 

0 -al - a30Jr a2 

c=[~ 0 0 ~] aLs 
A= B= 

Lm 1 
0 0 

1 0 
0 - OJr 

Tr Tr 

Lm 1 
0 0 0 OJr 

Tr Tr 
(3.29) 

As shown in Appendix A, the electromagnetic torque for a machine with P pole pairs is 

given by: 

3 Lm (. .) 
Te = - p- IfIrd1sQ -lfIrq1sD 

2 Lr 

(3.30) 
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3.3 Principles of Vector Control 

The main objective of vector control is to make the dynamic performance of the 

induction machine similar to that of a separately excited DC machine. This can be 

achieved by orienting the synchronous frame axes so that the d-axis is aligned with the 

rotor flux space vector as shown in Fig. 3.5. Therefore this control technique is also 

referred to as Rotor Flux Oriented (RFO) control. 

sQ 

~ _____ --L __ -'--_---I~ sD 

Fig. 3.5 Principle of rotor flux orientation 

The main concept of vector control can be explained by considering the mathematical 

model of the squirrel-cage 1M in d-q coordinates expressed in the synchronous reference 

frame: 

vsd = Rsisd + P'I'sd -we'l'sq 

Vsq = Rsisq + P'I'sq +we'l'sd 

o = Rrird + P'I'rd - wsl'l'rq 

o = Rrirq + P'I'rq + wsl'l'rd 

where the rotor flux components are given by: 

'l'rd = Lmi sd + Lrird 

'l'rq = Lmisq + Lrirq 

(3.31 ) 

(3.32) 

(3.33) 

Under the rotor flux orientation conditions, the rotor flux is aligned on the d-axis of the 

synchronous frame, and the rotor flux components can be written as: 
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IJIr = IJIrd 

IJIrq = 0 PlJlrq = 0 

Substituting (3.34) into the rotor voltage equations of (3.31) and (3.33) yields: 

Rrird + PlJlrd = 0 

From (3.37): 

. Lm. 
Irq = --lsq 

Lr 

36 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

Substituting (3.38) into (3.36) yields the expression for the slip frequency command: 

From (3.35): 

. 1 
'rd = -R PlJlrd 

r 

Substituting (3.40) into (3.32) yields the rotor flux dynamics: 

Tr PIJI rd + IJI rd = Lmi sd 

Under steady state conditions: 

PlJlrd = 0 

Substituting (3.42) into (3.40) and (3.41) yields: 

IJI rd = Lmisd 

From which the slip angular frequency Wsl in (3.39) can be written as: 

1 isq 
wsl = we - wr = 'T' -.-

1r 'sd 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

The slip frequency can be also calculated from the reference values of the stator current 

components represented in the rotor flux oriented reference frame as follow [2]: 

* 1 isq 
wsl =--*-

Tr isd 
(3.46) 

The rotor flux position Be can be written as: 
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(3.47) 

Under field orientation conditions, substituting (3.34) into (3.30) yields the 

electromagnetic torque equation which become analogous to that of a DC machine and 

can be written as: 

T - 3 Lm . 
e - - P-lflrd1sq 

2 Lr 

This can be written as: 

Te = Krlflrdisq 

where Kr is the torque constant given by: 

Kr=lpLm 
2 Lr 

(3.48) 

(3.49) 

(3.50) 

Equations (3.44) and (3.49) are similar to that of a separately excited DC machine 

where isd and isq are analogous to the field and armature current respectively. Control of 

1M is performed in the synchronous frame so that the sinusoidal variables appear as DC 

quantities in the steady state. Flux and torque control is achieved by separately 

controlling the d-axis and q-axis components of the stator current space vector in the 

synchronous frame respectively. Usually the rotor flux is kept constant by a constant isd 

command and the torque is controlled directly by adjusting the isq command yielding fast 

dynamic response of the drive. 

Implementation of vector control requires the accurate knowledge of the rotor flux 

angle Be. This angle represents the position of rotor flux space vector with respect to the 

D-axis of the stationary reference frame. The method of detection of this angle yields two 

types of vector control: direct and indirect method. 

Direct field orientation relies on the direct measurement of the rotor flux position. 

Traditionally, this was performed by fixing flux sensors in the air gap such as search 

coils or Hall-effect sensors. Currently, flux observers are used extensively for this 

purpose where the rotor flux position is estimated from monitored stator current and 

voltage as shown in Fig. 3.6(a). 

On the other hand, in the indirect field orientation, the machine mathematical model 

is used for slip calculation, based on (3.46), which when added to the rotor position 
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yields the rotor flux angle as shown in Fig. 3.6(b). Indirect technique is commonly used 

because it is simple and does not require flux sensors or flux observers. However, it is 

highly sensitive to rotor time constant variation which may deteriorate the drive 

performance. The block diagram of indirect vector control 1M drive is shown in Fig. 3.7. 

... .. 
Rotor flux 

... observer .. 

* isq ---------, 

* 'l'rd 

A 

'l'rd ... .. 
A 

'l'rq", .. 

(a) 

(b) 

A 

-1 'l'rq tan -A-

'l'rd 

+ 

Be 

1 

P 

Fig. 3.6 Types of rotor flux orientation schemes (a) Direct method (b) Indirect method 

PI Speed 
Controller 

Slip 
calaculation 

* 
PI Current Vsd 

Controller 

* Vsq 

isd 

is 

* VsD 

t/(}e 
* vsQ 

isD 

-jB. e e 

* vsA 

2/3 
PWM 

dqto 
Inverter 

abc 

isA 

3/2 isB 
abc to 

dq isC 

Fig. 3.7 Block diagram of indirect vector control 1M drive 

Shaft 
Encoder 
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3.4 Model Reference Adaptive System for Induction Motor 

The model reference adaptive system is one of the most successful adaptive control 

techniques applied to motor control and parameter estimation. Fig. 3.8 shows a classical 

MRAS observer structure used for parameter identification which consists of a reference 

model, an adaptive model, and an adaptation mechanism. The basic concept of MRAS is 

the presence of a reference model which determines the desired states e R and an 

adaptive (adjustable) model which generates the estimated values of the states eA' The 

error between these states is fed to an adaptation mechanism to generate an estimated 

value of the parameter A which is used to adjust the adaptive model. This process 

continues till the error G between the two outputs tends to zero [2]. Modelling a MRAS 

observer for speed estimation of 1M is demonstrated in the following sections. 

Input 
signals 

-

-'" 

~ 

Reference 
Model 

Adaptive 
Model 

A 

OR 

+ r 

~ 
-

°A 

r 

Adaptation 
Mechanism 

Fig. 3.8 Basic configuration of a MRAS observer 

3.4.1 Rotor Flux MRAS Modelling for Speed Estimation 

The design of a MRAS estimator for speed estimation of 1M drives requires the 

definition of two models having similar outputs. One model, termed the reference model, 

should be independent of the rotor speed while the other, the adaptive model, is speed 

dependent. In the following section a MRAS observer based on rotor flux is derived 

using the d-q model of the induction machine. 

The stator voltage equations of the induction machine (3.22) can be written in d-q 

coordinates established in the stator reference frame as: 



Chapter 3 Model Reference Adaptive Systems for Vector Control Induction Motor Drive 40 

-R . L' Lm vsD - s'sD + l1 sP'sD + -Plflrd 
Lr 

-R . L' Lm vsQ - slsQ + l1 sP1sQ + -Plflrq 
Lr 

(3.51) 

Similarly, the rotor voltage equations (3.23) can be written in the same coordinates as: 

O 
1 Lm. 

= -lfIrd - -lsD + Plflrd + Wrlflrq 
Tr Tr 

0 - 1 Lm . 
- -lfIrq --lsQ + Plflrq - wrlflrd 

Tr Tr 

(3.52) 

Rotor flux components in the stationary reference frame are the common outputs 

from equations (3.51) and (3.52). Moreover, (3.51) is free from a rotor speed term while 

(3.52) has speed dependent terms. Therefore these equations can be used to setup a 

model reference adaptive system with rotor flux as output state and rotor speed as 

adopted parameter. 

The reference model can be formulated by rearrangmg (3.51) to generate the 

reference value of the rotor flux components. This is usually expressed by the VM that 

represents the stator voltage equations. These rotor flux components are obtained from 

the monitored stator voltage and current components and can be written using d-q 

representation as [2, 53]: 

Plflrd = Lr (VsD - RsisD -aLspisD) 
Lm 

Plflrq = Lr (vsQ - RsisQ - aLspisQ ) 
Lm 

(3.53) 

An adaptive model generating estimate values of the rotor flux based on the rotor 

speed information can be established by rearranging equation (3.52). This is usually 

represented by the eM that describes the rotor voltage equation. Estimated rotor flux 

components are expressed in terms of stator current components and the estimated rotor 

speed and are given by [2, 53]: 

" Lm . 1" ,," 
PIfI rd = T, 1 sD - T, IfI rd - wrlfl rq 

r r (3.54) 

" Lm . 1" ,," 
Plflrq = -lsQ --lfIrq +wrlflrd 

Tr Tr 

Equations (3.53) and (3.54) form the classical rotor flux MRAS speed observer 

described in [53] that can be applied to an 1M as shown in Fig. 3.9. An adaptation 
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scheme generates the value of the estimated speed used so as to ... h minImIZe t e error 

between the reference and estimated fluxes. Design of this adaptation mechanism will be 

explained in detail in the following section. 

~ 

Induction 
vsD 

... Motor --- vsQ 

~ + 
.. Ij/rd 

--.. 
Reference Model 

.. (Voltage Model) Ij/rq -- 1 
Error CO) 

generation 

t j 

Ij/rd .. -- Adaptive Model 
A 

po 
(Current Model) Ij/ra 

mr Adaptation .... 
Mechanism 

Fig. 3.9 Rotor flux-MRAS speed observer for 1M 

Due to the presence of speed dependent cross coupling components in the d-q axis 

flux loops in (3.54), eM implementation using a stationary reference frame 

representation as in (3.54) may lead to stability problems [81]. To eliminate this mutual 

coupling, an implementation in the rotor reference frame can be used [68, 81]. In the 

rotor reference frame, the rotor flux space vector can be written as: 

(3.55) 

Using the rotor voltage equation in the rotor reference frame from (3.16) with zero rotor 

voltage for a squirrel-cage machine gives: 

Substituting (3.56) into (3.55) yields: 

-r L -:r 7' -r 
lfI r = m1 s -.1 r PlfI r 

(3.56) 

(3.57) 
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Rearranging (3.57) yields the expression for the rotor flux space vector in the rotor 

reference frame: 

-r Lm-;r 
III - 1 
'f'r -1+7: s rP 

(3.58) 

Equation (3.58) is used to implement the eM in the rotor reference frame which , 

different from (3.54), yields real eigenvalues at -lITr . Stator reference frame 

implementation of the eM using rotor frame representation is shown in Fig. 3.10. The 

stator current space vector is transformed from the stator to rotor reference frame using 

the following transformation as described in Appendix A: 

-;r -;s - jB 
Is = Is e r (3.59) 

The rotor flux in the stator reference frame is obtained by transforming the rotor flux 

space vector in the rotor reference frame back to the stator reference frame: 

If!: = If!; e j B r (3.60) 

r-------------l 
7S 

1
7r 

Lm 
-r I -s 

IS 
e- jBr 'S +=~ 1 'fir 'fir 

- .. ej(}r 
I Tr 1-- ... 

p 

I - I ~ 

I 1 I 
I 

-
Tr I 

L _____________ ~ 
Rotor reference frame 

OJr 1 Or 
-
p 

Fig. 3.10 eM implementation using rotor reference frame representation 

3.4.2 Design of Adaptation Mechanism for MRAS Observer 

One of the main approaches employed to design MRAS observers is based on the 

hyperstability theory. This technique allows the stability analysis of feedback systems 

that can be represented by a feedforward and feedback blocks as shown in Fig. 3.11 [2]. 

The input to the linear feedforward subsystem is U and its output is e. The output of the 

nonlinear feedback subsystem is Wand U = - W. The adaptation mechanism is 

designed based on Popov's hyperstability theory where the transfer function matrix of 

the linear feedforward subsystem is strictly positive real and the nonlinear feedback 
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t 

subsystem satisfies Popov's integral inequality JeT W dt ~ - y; where y; is a positive 
o 

constant [53, 82]. Detailed description of hyperstability theory is complicated and is 

beyond the scope of this work. More details can be found in Landau [83] where 

procedures of MRAS design using hyperstability approach is demonstrated. 

u--w - _JIIO Linear time-invarient e ... 
F eedforward subsystem 

J~ - W 

Nonlinear time-varient ... 
Feedback subsystem 

~ 

Fig. 3.11 Equivalent of a nonlinear feedback system 

Design of the adaptation mechanism for MRAS using this concept will ensure overall 

stability and convergence of the estimated speed to the desired value with suitable 

dynamics [53]. For the derivation of the adaptation mechanism it is valid to initially 

consider the rotor speed as constant parameter of the reference model [53]. To transform 

the MRAS observer into an equivalent feedforward and feedback subsystems consider 

the state error equation of the system. This can be obtained by subtracting the outputs of 

reference and adaptive models. 

(3.61) 

Defining an error vector e : 

e = [cd &q]T (3.62) 

Differentiating (3.61) and substituting from (3.54) gives: 

1 ~ ) ~ 
Ped = --&d - O1req - (01r - O1r IfJrq 

Tr (3.63) 
1 ~ ) ~ 

peq = --&q +01red +(01r -01r IfJrd 
Tr 

These equations can be written in standard matrix form as: 
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Equation (3.64) is similar to the nonlinear feedback system shown in Fig. 3.11 and can 

be written as: 

p&=A&-W (3.65) 

where: 

1 

Tr 
-mr 

A= 
1 (3.66) 

mr 
Tr 

MRAS representation in the general form of a nonlinear feedback system is shown in 

Fig. 3.12. It can be shown that the feedforward transfer function matrix of the linear 

subsystem is strictly positive real [53]. 

-W 

Linear subsystem 
1-------1 

u=-w + 1 & 

p I 
I 

________ J 
+ 

Nonlinear time-varient subsystem ,------------------1 
I 1 I 
I p I 

I [" ] I I ~:q I 
I -~rd mr I 
L...- __________________ _ 

Fig. 3.12 Representation ofMRAS as a nonlinear feedback system 

Defining an adaptation law as follow [53]: 

t 
mr = <1>2(&) + J<I>1 (&) dr 

o 

To satisfy Popov's integral inequality: 

(3.67) 
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t 

JBTW dt ~ -ro2 (3.68) 
o 

Substituting from (3.62), (3.66) and (3.67) into (3.68) yields the following inequality: 

t t 

J(Bdlforq -Bqlford )(OJr - <P2 (B) - J <PI (B) dr)dt ~ - r; 
o 0 

This inequality can be satisfied using the following functions [53]: 

<PI (B) = k2 (Bqlford - Bdlforq) = Kj('I'rqlford - 'l'rdlforq) 

<P2 (B) = kl (Bqlford - Bdlforq) = K p ('I'rqlford - 'I' rdlfo rq) 

(3.69) 

(3.70) 

where <P2 (B) and <PI (B) are the proportional and integral parts of the adaptation law 

respectively. Defining the speed tuning signal Bm as the cross product between reference 

and adaptive model output vectors which can be written as: 
"'- "'-

B m = 'I' rq'l' rd - 'I' rd'l' rq (3.71) 

This speed tuning signal is minimized by a PI controller which generates the estimated 

value of the rotor speed as shown in Fig. 3.l3. Estimated rotor speed can be expressed as: 

'l'rq 
"'-

'l'rd 

Error generation 
,------------1 
I I 
I I 
I I 
I x I 

I 
IBm 

I 
I 
I 
I 

"'- x I 
'I' rq ---;'--I~ I 

I I ------------_. 

K 
K; 

+­
P P 

"'-OJr 

Fig. 3.13 Adaptation mechanism for MRAS observer 

3.5 Conclusion 

(3.72) 

This chapter has presented the induction machine dynamic modelling using space 

vector theory. Transformations from three phase to two phase and between different 

reference frames have been discussed. Accordingly, a two-axis state space representation 

of the 1M in the stator frame has been also developed. The machine equations, expressed 



Chapter 3 Model Reference Adaptive Systems for Vector Control Induction Motor Drive 46 

in the synchronous frame, have been then used to explain the principles of vector control 

strategy. Rotor speed estimation of the 1M using MRAS approach has been presented. 

Reference and adaptive models that form the rotor flux-MRAS observer have been 

defined based on machine equations. Finally, the design of an appropriate adaptation 

mechanism using hyperstability criterion has been demonstrated. 
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CHAPTER 4 

THE EXPERIMENTAL SYSTEM 

4.1 Introduction 

To allow practical testing of the schemes developed in this project an implementation 

in real time is required. An experimental platform based on a 7.5 kW induction machine 

and dSP ACE DS 11 03 controller board is used to validate the proposed schemes. This 

experimental setup should allow the analysis of both open loop and sensorless modes of 

operation. The test rig, which has been developed in another work [84], consists mainly 

of an induction machine, AC drive, DC machine, DC drive, microprocessor-based 

control system and various interface circuits. The architecture of the experimental system 

is shown in Fig. 4.1. The main components of the experimental system are described in 

details in the following sections. 

4.2 The Induction Machine 

A 7.5 kW, 415 V, 50 Hz, 4-pole delta connected three phase squirrel-cage induction 

machine, manufactured by Brook Hansen, is used as the tested machine. To obtain the 

equivalent circuit parameters of the machine a set of tests has been carried out as 
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described in [85]. These tests consist of DC, no-load and locked rotor tests. The DC test 

is used to calculate the stator resistance value, while the no-load test is used to calculate 

the magnetizing inductance and the core and mechanical losses. Finally the locked rotor 

test is used to calculate the stator and rotor leakage inductances and the rotor resistance. 

The parameters for the delta connected machine obtained from these tests are given in 

Table 4.1. 

415 V, 50 Hz 
3-phase 
supply 

Table 4.1 

I 

Rectifier Bridge 
DC Link 

3-phase Inverter 

D~~ 
TMS320F240 

DSP • 
\ 

Host PC DS 11 03 DSP Control Board 

Fig. 4.1 Experimental system architecture 

Equivalent circuit parameters for the delta connected machine 

~achinepararneter Value 

Rs 2.33 n 
Rr 2.11 n 
LIs 13.54 mH 

Llr 13.54 mH 

Lm 309.67 mH 

15 kW 4-quadrant 
DC Drive 

The parameters for the delta connected machine can be transformed into star 

. Zdelta Th . I t 
equivalent parameters using the delta-star conversIon Z star = 3 . e star eqmva en 

parameters for the induction machine are given in Table 4.2. 
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Table 4.2 

Star Equivalent parameters 

Machine parameter Value 
Rs 0.7767 Q 
Rr 0.703 Q 
LIs 4.51 mH 
Llr 4.51 mH 
Lm 103.22 mH 

These parameters are converted to their equivalent dynamic two-axis model using 

appendix equation (A.32) [70]. The d-q axis parameters of the induction machine are 

given in Table 4.3. 

Table 4.3 

Two-axis model parameters 

Machine parameter Value 
Rs 0.7767 Q 
Rr 0.703 Q 
Ls 107.73 mH 
Lr 107.73 mH 
Lm 103.22 mH 

4.3 The AC Drive 

The AC drive power electronics consists mainly of a rectifier, DC link circuit and an 

inverter. The rectifier is a Semikron SKD51114 50A 3-phase diode bridge which consists 

of six uncontrolled diodes. The rectifier output voltage is smoothed through a 0.75 mH, 

40 A choke, placed on the AC side, and DC link capacitors consisting of two 4700 J-lF, 

400V capacitors connected in series. Two balancing resistors of 22 kQ each are 

connected across the capacitors to ensure voltage sharing. To limit the inrush current 

when the system is first switched on, a 56Q-50W aluminium housed wire wound resistor 

is used. A relay is placed in parallel with the inrush resistor to provide a short circuit path 

when the capacitor is charged to prevent power loss in the resistor during normal 

operation. A system is provided to prevent excessive increase in the DC link voltage 

when the motor is braking. This is achieved by using a SKAIl 00 DC link brake chopper 
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that switches on a resistor to dissipate the regeneration power and reduce the capac itor 

charge and hence decrease the DC link voltage. The DC link circuit is shown in Fig. 4.2 . 

Relay 

+ 
Inrush 
resistor 

4700llF 22kO Brake 
400V chopper 

Rectifier Inverter 
output 

4700llF input 

400V 22kO Brake 
resistor 

Fig. 4.2 DC link circuit 

The drive inverter uses Semikron SKM50GB123D 1200V, 50A half bridge IGBT 

power modules. The switching pattern of the IGBT's is supplied through a Semikron 

SKHI22B dual gate driver. Tasks achieved by the gate driver include isolation between 

power and control circuits, short circuit protection, error outputs and programmable dead 

time generation. The inverter outputs are connected to the induction machine through 

current sensors. A photograph of the experimental hardware is shown in Fig. 4.3. 

Fig. 4.3 Photograph of the experimental hardware 



Chapter 4 The Experimental System 51 

4.4 The DC Machine and the DC Drive 

A 9 kW, 240 V, 37.5 A DC load machine is coupled to the induction machine shaft 

and is used as a load for the 1M. The DC machine is connected in a separately excited 

configuration to allow separate control of the torque and speed. A 15 kW four quadrant 

DC drive from the Control Techniques "Mentor" range is used to control the DC 

machine to provide different levels of loading on the induction machine up to full load. 

4.5 The Microprocessor Control System 

To control the 1M a dSPACE DS1103 control board is used which consists of a 

Power PC 604e processor running at 400 MHz, and a Slave Texas Instruments 

TMS320F240 DSP [86]. Used with the dSPACE Real-Time Interface (RTI) and Matlab 

Real Time Workshop (RTW) the Simulink model is automatically converted into C-code 

which is compiled and downloaded to the control board program memory. This provides 

a fast and easy way to implement and test control schemes in real time. RTI consists of a 

set of 1/0 interface blocks which connects the Simulink model to the real world. 

Experiment control is performed by ControlDesk which is used to monitor different 

signals and tune parameters. Interfaced with Simulink, ControlDesk performs the 

necessary experiment tasks using a graphical interface. 

The analogue input signals from the test rig to the dSP ACE system are the three 

phase current waveforms, the DC link voltage (VDc) and current. The three phase current 

waveforms and the DC link voltage are sampled through 4 x 16 bit ADCs where as the 

DC link current waveform is sampled through 1 x 12 bit ADC. The load torque reference 

is generated from one of the eight 16 bit DAC channels. 

The output from the dSPACE system gives the PWM signals for the inverter AC 

drive power electronics using a sinusoidal PWM technique. This output is provided from 

the PWM outputs of the slave TMS320F240 DSP. This signal is passed through a gate 

driver board before being applied to the inverter switches. The PWM switching 

frequency is 15 kHz with a dead time period of 1.5 fls. 

To allow exchange of information between the control board and the power circuit, 

the dSPACE system is interfaced to the power stage via cards including a current sensing 
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circuit, DC link circuit, PWM circuit and gate driver board. Signal amplification and 

filtering and protection circuits are included into these interface cards. 

LEM LA55P Hall effect current sensors were used to measure the three motor line 

currents with a conversion ratio of 1000: 1. The sensor output is connected to a 100 n 

resistor to be transformed to measurable voltage signal of 0.1 V/ A. The current sensing 

circuit is provided with an over-current protection using comparators. In case of over­

current an error signal is sent to the gate driver to turn off the inverter I GBT' s. 

A potential divider is used to measure the DC link voltage giving an output of less 

than 5V at the maximum DC link voltage. The potential divider output is passed through 

an ISO 124 voltage isolation amplifier and then a LPF RC filter is used to remove high 

frequency switching signals. The final output is obtained through a unity gain buffer 

amplifier. 

A LAH50P current sensor is used to measure the DC link current with a conversion 

ratio of 2000: 1. Using a 200 n resistor the current signal is converted to a voltage signal 

of 0.1 VIA. 

The actual motor speed is measured by a Hohner 5000 pulses/revolution incremental 

optical encoder attached to the shaft of the induction machine. The encoder signal is 

interfaced to the dSP ACE system via an incremental encoder interface. The rotor speed 

measurement is to allow standard encodered vector control operation and is employed as 

a reference for sensorless operation. A photograph of the whole laboratory system is 

shown in Fig. 4.4. 

Fig. 4.4 Laboratory photograph of the experimental setup 
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4.6 Dead Time Compensation 

Dead time is a time delay inserted in the switching signals of a PWM inverter to 

avoid short circuit of the DC link if two switches of the same arm are "on" at the same 

time. Dead time causes distortion in the output voltage waveform by introducing 

unwanted harmonic components making the output voltages deviate from the reference 

voltages [87, 88]. The effect becomes more severe in the low speed region of operation. 

Therefore a simple dead time compensator similar to [87, 89] is implemented. The block 

diagram of the rotor flux oriented control scheme with dead time compensation is shown 

in Fig. 4.5. 

* IJIr 

Vector Control 
2 phase to 3-

phase 
transfonnation v;c 

~'"-----+---+------~ 

isA ----t~ 

isB Dead Time 
isC Compensation 
VDC----t~ L--____ --' 

PWM 
Inverter 

Fig. 4.5 Block diagram for vector control implementation with dead time compensation 

4.7 Conclusion 

This chapter has presented the experimental setup used to validate the developed 

schemes based on a 7.5 kW induction machine and dSPACE DSl103 control board. The 

main components of the hardware and software configurations of the experimental 

system have been described. Finally, the compensation of dead time effects in the 

inverter has been presented. 
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CHAPTER 5 

DESIGN OF ADAPTATION MECHANISM FOR ROTOR 

FLUX-BASED MRAS 

Two novel adaptation schemes are proposed to replace the classical PI controller used in 

model reference adaptive speed estimation schemes which are based on rotor flux. The 

first proposed adaptation scheme is based on SM theory. A new speed estimation 

adaptation law is derived using Lyapunov theory to ensure estimation stability as well as 

fast error dynamics. The other adaptation mechanism is based on a FL strategy. A 

detailed comparison between the new and conventional schemes is carried out in both 

open loop and sensorless modes of operation. Various simulation and experimental tests 

are performed to examine the performance of different schemes when the vector control 

1M drive is working at very low speed. 

5.1 Introduction 

PI controllers are widely used in industrial control systems applications. They 

have a simple structure and can offer a satisfactory performance over a wide range of 

operation. Therefore, the majority of adaptation schemes described in the literature for 
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MRAS speed observer employ a simple fixed gain linear PI controller to generate the 

estimated rotor speed as shown in Fig. 5.1. However, due to the continuous variation in 

the machine parameters and the operating conditions in addition to the nonlinearities 

present in the inverter, fixed gain PI controllers may become unable to provide the 

required performance. Not much attention has been devoted to study other types of 

adaptation mechanisms used to minimize the speed tuning signal to obtain the estimated 

speed. 

In this chapter this point is addressed by presenting two novel nonlinear adaptation 

mechanisms to replace the classical PI controller used in the conventional rotor flux 

based-MRAS speed observer. A novel nonlinear adaptation scheme based on SM theory 

is proposed to improve the speed estimation performance. The new speed estimation 

adaptation law, which ensures estimation stability and fast error dynamics, is derived 

based on Lyapunov theory. Furthermore, a FLC is proposed as another nonlinear 

optimizer to minimize the speed tuning signal used for the rotor speed estimation. The 

performance of the new and conventional schemes is compared based on detailed 

simulation and experimental tests in both open loop and sensorless modes of operation. 

Focus is given to operation at low speed which represents a critical region of operation 

for MRAS observer. 

V sD--------.t 
vsQ-----.t 
i.sD --,.------.t 
ISQ ---,--t----.t 

Reference Model 
(vM) 

L-_____ -' 

Adaptive Model 

"'rd 

"'rq 

ljIrd 

(CM) 1--_'" r2.q ____ ----' 

PI 
Controller 

Fig. 5.1 Classical rotor flux MRAS with PI adaptation mechanism 

5.2 Sliding Mode Adaptation Mechanism for MRAS Observer 

Different SM strategies have been proposed to control 1M drives [24, 25, 90]. Such 

strategies show robustness against motor parameter variation, better external 
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disturbance rejection, stability and fast dynamic response. However, one of the major 

drawbacks of the conventional SM strategy is the chattering in the steady state. In this 

section a new application of SMC is introduced as an adaptation mechanism for error 

minimization in MRAS speed observer to generate the estimated rotor speed. 

5.2.1 Introduction to Sliding Mode Control 

SMC is a Variable Structure Control (VSC) method with a high frequency 

discontinuous control action which switches between several functions depending on the 

system states [49]. This action forces the states of the system to slide on a predefined 

hypersurface (a surface embedded in the state space). The principle of SMC is to define a 

switching control law to drive the state trajectory onto a switching surface and to 

maintain this trajectory sliding on this surface for all subsequent time [91]. The sliding 

mode consists of a reaching phase where the state trajectory is driven to the surface s = 0 

and reaches it in a finite time, followed by a sliding phase where it slides on the 

switching surface to an equilibrium point, as shown in Fig. 5.2 [24]. Usually the states Xl 

and X2 are chosen to be the error function and its derivative or integral and in this case 

the equilibrium point is (0, 0). The control law is defined based on Lyapunov theory to 

guarantee the motion of the state trajectory towards the sliding surface [91]. This is done 

by choosing a hitting control gain to maintain the derivative of Lyapunov function 

always negative definite [92]. 

State trajectory 

Fig. 5.2 The sliding mode principle 
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5.2.2 Sliding Mode MRAS Observer 

The classical SM strategy applied for control applications is modified to fit with the 

speed estimation problem. Hence a novel SM rotor flux MRAS (MRAS-SM) is 

developed to replace the conventional constant gain PI controller. A new speed 

estimation adaptation law for the SM scheme is derived based on Lyapunov theory to 

ensure stability and fast error dynamics. Defining the speed tuning signal as in (3.71): 

" " 
8 m = 'I' rq'l' rd - 'I' rd'l' rq 

Defining a switching surface s as: 

s = 8m + f k8 m dt k > 0 

(5.1) 

(5.2) 

Such that the error dynamics at the sliding surface s = 0 will be forced to exponentially 

decay to zero. When the system reaches the sliding surface, this gives: 

S = 8m + k8 m = 0 (5.3) 

and the error dynamics can be described by: 

(5.4) 

The SM control law can be found using Lyapunov theory and defining the Lyapunov 

function candidate [92]: 

1 2 
v=-s (5.5) 

2 

According to Lyapunov theory, if the function v is negative definite, this will ensure 

that the state trajectory will be driven and attracted toward the sliding surface s and once 

reached, it will remain sliding on it until the origin is reached asymptotically [92]. The 

time derivative of Lyapunov function in (5.5) can be calculated as: 

v = s S <=>S(8m + k8m) 

Differentiating (5.1), yields: 

8m = 'iJrqljlrd + 'I'rq~rd - 'iJrdljlrq - 'I'rd~rq 

Substituting the eM (3.54) into (5.7) yields: 

. ." ." Lm . 1 " 
8 m = 'I'rq'l'rd - 'I'rd'l'rq + r.lsD'I'rq - r:'I'rd'l'rq 

r r 

Lm. 1" "(,, ") 
- -I sQ'I' rd + --;;;- 'I'rq'l' rd - OJr \'1' rq'l' rq + 'I' rd'l' rd 

Tr .I r 

By letting: 

(5.6) 

(5.7) 

(5.8) 
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fi =' " -'" Lm . 1 " Lm . 1 " 
1 'I' rqlJl rd 'I' rdlJl rq + Tr I sDIJI rq - 1:'1' rdlJl rq - T I sQIJI rd + -y 'I' rq'l' rd 

f2 = IJIrqljlrq + IJIrdljlrd 

Equation (S.8) can be written as: 

Em = fi - wr f2 

and (S.3) can be written as: 

S = fi + kcm - wr f2 

Substituting (5.12) into (S.6) yields: 

v = s{fi + kC(1) - Wr f2) 

This derivative is negative definite if: 

<0 fors >0 

(fi + kCm - Wr f2) = 0 for s = 0 

> 0 fors <0 

This can be ensured if: 

" fil + kc,., 
OJr = W' + M sign(s) M> 0 

f2 

where the sign function is defined as: 

. () {-1 for s < O} sign s = 
+1 fors > 0 

r r r 

S8 

(S.9) 

(S.10) 

(S.ll) 

(S.12) 

(S.13) 

(S.14) 

(S.lS) 

(S.l6) 

Equation (5.15) represents the switching law of the SM controller and could be written in 

general form as: 

(S.17) 

where ueq is the equivalent control which defines the control action that keeps the state 

trajectory on the sliding surface, Us is the switching control which depends on the sign of 

the switching surface and M is the hitting control gain which makes (5.6) negative 

definite [92]. No design criterion is assigned to choose the value of M; however, its value 

should be selected high enough to make the manifold s = 0 in (S.2) attractive [Sl, 92]. 

Therefore the control law defined in (S.15) will guarantee the existence of the switching 

surface s in (5.2) and when the error function cm reaches the sliding surface, the system 
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dynamics will be governed by (5.4) which is always stable [93]. The expressions for the 

equivalent and the switching control functions can be written as: 

fi + kcOJ 
ueq = 12 (5.18) 

Us = M sign(s) M > 0 (5.19) 

The presence of the functionJ2 in the denominator of the equivalent control ueq may 

cause problems in the estimation performance of the proposed scheme if its value 

approaches zero. This problem can be avoided by allowing magnetizing of the machine 

before starting up and by adding a positive small value to h. The use of the sign function 

in the SM control (5.15) causes high frequency chattering due to the discontinuous 

control action which represents a severe problem when the system state is close to the 

sliding surface [92]. The block diagram of the novel MRAS observer employing SM 

adaptation mechanism (MRAS-SM) is shown in Fig. 5.3. Simulation and experimental 

results of this scheme will be given in section 5.4. 
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I I 
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I ueq 
~-------------------------~ 

Sliding Mode Controller 

Fig. 5.3 MRAS-SM speed observer 

5.3 Fuzzy Logic Adaptation Mechanism for MRAS Observer 

Various applications of FL have shown a fast growth in the last few years. FLC has 

become popular in the field of industrial control applications for solving control, 

estimation and optimization problems [10]. In this section FL is proposed to replace the 

PI controller used for error minimization in the conventional MRAS speed observer. 
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5.3.1 Introduction to Fuzzy Logic 

Design of classical control schemes needs an accurate model of the process to be 

controlled. These models could be deterministic assuming perfect model or stochastic 

including uncertainty and noise. However, experienced engineers may be able to control 

a process without needing a mathematical model based on their familiarity with its 

physical characteristics and their practical experience. FL mimics human reasoning to 

create controllers without any prior information about the mathematical model of the 

controlled system. This is achieved by converting the linguistic control strategy of human 

experience and knowledge into an automatic control strategy. Hence FL deals with 

linguistic variables which are in the form of words rather than numbers [94]. The idea of 

FL has been first introduced in 1965 by Zadeh [95] and has become an interesting field 

of control engineering. However, a lack of design techniques is considered as one of the 

major drawbacks of FLC. The most frequently used FL system is the Mamdani-type [94] 

which consists of three main parts: fuzzification, inference engine and defuzzification 

[10]. A detailed description ofFLC principles is provided in Appendix B. 

5.3.2 Fuzzy Logic MRAS Observer 

FL technique has been applied to solve optimization problems for 1M drives [30, 96-

99]. It has been proposed to replace PI controllers in different error minimization 

applications [100, 101]. For the MRAS speed observer, the mechanism of the estimation 

of the rotor speed can be regarded as an optimization problem where the PI controller is 

generating a quantity, the estimated speed, in such a way as to minimize a specified error, 

which is the speed tuning signal in (5.1), in a feedback loop. Therefore, FLC can replace 

the conventional PI controller to solve the optimization problem. 

The proposed FLC is a Mamdani -type rule base where the inputs are the speed tuning 

signal 8
m 

in (5.1) and its change ~8m which can be defined as: 

(5.20) 

In the z-domain this can be written as: 

(5.21) 
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These two inputs are multiplied by two scaling factors k and k t' I Th 
e d respec lve y. e 

output of the controller is multiplied by a third scaling factor ku to generate the actual 

value of the rate of change of the estimated speed. Finally, a discrete integration is 

performed to get the value of the estimated speed. Hence a PI-Type FLC is created with 

structure as shown in Fig. 5.4 [102, 103]. The expression for the estimated speed can be 

written as: 

(5.22) 

In the z-domain this can be written as: 

(5.23) 

liO) I liO)n 
ke I Inference ""wm Fuzzifica- r----- Engine ~ Defuzzif- r-----.-

tion ication 

kAz-l) ""liO)n 

~ ... 
Z ~ 

Fuzzy 
Rule 
Base 

Fig. 5.4 Block diagram of PI-Type fuzzy logic controller 

The choice of the values of the scaling factors greatly affects the performance of the 

FLC. A trial and error technique is usually used to tune these gains to ensure optimal 

performance of the controller [99]. Each variable of the FLC has seven membership 

functions. The following fuzzy sets are used: NB= NEGATIVE BIG, NM= NEGATIVE 

MEDUIM, NS= NEGATIVE SMALL, ZE= ZERO, PS= POSITIVE SMALL, PM= 

POSITIVE MEDUIM, PB= POSITIVE BIG. The universe of discourse of the inputs and 

outputs of the FLC are chosen between -0.1 and 0.1 with triangular membership 

functions as shown in Fig. 5.5. Table 5.1 shows the fuzzy rule base with 49 rules [99]. 

FLC is modelled using the Matlab Fuzzy Logic Toolbox graphical user interface (GUI) 

as described in Appendix B [94]. The overall MRAS speed observer with FL speed 

estimation mechanism (MRAS-FL) is shown in Fig. 5.6. 
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Table 5.1 

L' I b ~ PI T fu mgUlstlc ru ease or -ype zzy OglC controller 

~ NB NM NS 
Aero 

ZE PS PM PB 

NB NB NM NM NS NS NS ZE 
NM NM NM NS NS NS ZE PS 
NS NM NM NS NS ZE PS PM 
ZE NB NM NS ZE PS PM PM 
PS NS NS ZE PS PS PM PM 

PM NS ZE PS PS PS PM PM 

PB ZE PS PS PM PM PB PB 

NB PB NB PB 

__ -----L--1_.L...----1-------L-~_1....__ _ ____. Gom __ --.1_L------1-----I._.L..--'----L--____ I1c{J) n 
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Fig. 5.5 Fuzzy controller input and output membership functions (a) error (b) error 

change ( C) change in the estimated speed (d) surface 
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To examine the performance of the different adaptation mechanisms, simulation and 

experimental tests are carried out in both open loop and sensorless modes of operation. 

The three schemes, PI, FL and SM, are tested at different operating points when an 

indirect vector control 1M drive is working at low speed. The PI speed and current 

controllers of the vector control drive are designed experimentally by a method based on 

Ziegler-Nichols as described in [104]. Parameters of different schemes are tuned 

online during experiments as will be explained later. These parameters are also used in 

the simulation stage. Simulation and experimental results are given in the following 

sections. 

5.4.1 Simulation Results 

As a first step of study, simulations of the proposed schemes were carried out to 

verify their ability to provide satisfactory speed estimation performance. The 4-pole 

induction machine, with parameters given in Table 4.3, was modelled using the d-q axis 

theory as described in chapter 3. The mechanical rotor speed mrm can be obtained from 

the mechanical model described by: 

(5.24) 
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where the mechanical rotor speed OJrm is related to its electrical value OJ b . r y. 

OJ 
OJ = -----.L rm p 

64 

(5.25) 

In (5.24), J is the motor moment of inertia that was obtained from a "run-down" test 

[105] and found to be approximately 0.22 Kg.m-2 and B is the friction coefficient that 

was found experimentally to be approximately 0.04 N.m/rad/s. These approximate values 

of the mechanical parameters are found to make the simulation results agree with the 

experimental results that will follow later. 

The indirect vector control 1M drive was developed in Matlab-Simulink environment 

using Simulink library blocks. The motor is directly fed from the reference voltages and 

hence an ideal inverter and pulse width modulator were assumed. The reference model of 

the MRAS observer was solved using pure integration and hence drift and initial 

condition problems were not considered in the simulation. 

5.4.1.1 Open Loop Simulation 

The performance of the proposed schemes was first investigated with open loop 

operation. The schematic of the open loop estimator simulation is shown in Fig. 5.7 

where the MRAS observer output is not fed back into the drive system and the drive is 

working in encodered mode. The actual speed calculated from the mechanical model 

(5.24) is used for speed control and field angle calculation. 

The vector control drive started with 100 rpm reference speed at no-load; at t=5s a 

50% load was applied followed by a reference speed change to 50 rpm at t=8s. 

Simulation results for the MRAS estimator with the three adaptation mechanisms are 

shown in Figs. 5.8-5.12. Results show the superiority of the proposed adaptation 

mechanisms, FL and SM, over the conventional PI controller. The transient response of 

the two proposed schemes is faster than the PI controller. The minimum speed tuning 

signal was obtained from the SM scheme as shown in Fig. 5.11. However, the speed 

response features large chattering. The switching surface (5.2) of the SM scheme is 

shown in Fig. 5.12 with chattering around zero. During transients, the speed tuning signal 

obtained from the FL scheme is decaying to zero faster than the PI scheme. 

Consequently, the FL scheme shows better transient response compared to the PI 

scheme. 
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Fig. 5.9 Open loop response ofMRAS estimator for 50% load disturbance rejection (a) 
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Fig. 5.10 Open loop response of MRAS estimator for reference speed change at 50% 
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5.4.1.2 Closed Loop Simulation 

After developing confidence with open loop operation, closed loop operation of the 

proposed schemes was considered. The schematic of the closed loop estimator simulation 

is shown in Fig. 5.13 where the MRAS observer output is fed back into the drive system 

and the drive is working in sensorless mode. 
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Fig. 5.13 Structure of closed loop MRAS estimator simulation 

The closed loop simulation results for the MRAS estimator with the three adaptation 

mechanisms are shown in Figs. 5.14-5.18. The sensorless drive started with a speed 

command of 50 rpm at no-load followed by a 25% load torque applied at t=5s and a 

speed reversal command from 50 rpm to -50 rpm at 25% load. As for open loop 

operation, SM scheme still shows minimum speed tuning signal and FL scheme shows 

faster transient dynamics compared to the PI scheme. 
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Fig. 5.16 Closed loop response of MRAS estimator for ±50 rpm speed reversal , 25% load 
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Fig. 5.17 Speed tuning signal for MRAS estimator closed loop simulation (a) PI and FL 
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5.4.2 Experimental Results 

Extensive experimental tests were carried out to compare the three adaptation 

schemes; PI, FL and SM using an indirect vector control 1M drive. The tests were 

performed in both open loop and sensorless modes of operation. The inverter switching 

frequency is 15 kHz and the vector control is executed with the same sampling 

frequency. The observer and the speed control loop have a sampling frequency of 5 kHz 

and the speed measurement is executed with a sampling frequency of 250 Hz. 

During practical implementation of the MRAS scheme it was found necessary to 

cascade a low cut-off frequency High Pass Filter (HPF) at the outputs of the VM to 

remove integrator drift and any initial condition problems. The cut-off frequency should 

be selected as low as possible since the purpose is just to remove the DC component and 

therefore a value of 1 Hz was chosen. Reference voltages which are available in the 

control unit are used to avoid the need to measure the real stator voltages and will be 

used for the VM flux observer in (3.53). 

To use the FLC in real time with the dSP ACE card and Simulink, a two dimensional 

look-up table is generated from the FL toolbox in Matlab with a step size of 0.0005 for 

the inputs. The FLC implementation using a look-up table is shown in Fig. 5.19 where 

the saturation limits for the input saturation blocks are set to 0.1 and -0.1. Experimental 

results from the tests are shown in the following sections. 

Saturation 

Look-up 
Table (2-D) 

Fig. 5.19 FLC implementation using look-up tables 

5.4.2.1 Open Loop Performance 
The three adaptation mechanisms were tested in open loop when the drive is operated 

as an encodered vector control, i.e. the encoder speed is used for speed control and rotor 

flux angle estimation. The drive was subjected to different reference speed changes at 

various load torque levels. The PI controller gains can be selected as high as possible but 

are limited by the noise [2]. PI gains of Kp = 10; Kj = 100, obtained by trial and error, 
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were shown to provide an optimal performance for the conventional MRAS observ er. 

These gains will be used throughout this work. To allow a fair comparison FLC gains 

were tuned in such a way as to obtain similar steady state performance as PI controller 

and are found to be: ke = 0.01; kd= 1; ku= 5. 

A LPF is used to reduce the chattering in the estimated speed obtained from the SM 

scheme. This LPF is found also useful to remove the spikes that may appear in the 

estimated speed due to the differentiation of fluxes in (5.9). The choice of the cut-off 

frequency for this LPF affects the observer performance. Using small values reduces the 

speed ripples but introduces more delay in the estimated speed. A cut-off frequency of 30 

rad/s was found to be a good compromise between speed ripples and dynamic response. 

The parameters of the SMC are: k= 1000; M= 0.1 and are obtained by trial and error. 

At low speed a steady state error in the estimated speed is observed for the MRAS 

observer using the three adaptation schemes. This is mainly due to the stator resistance 

mismatch between the motor and the observer. Moreover, since dead time effects cannot 

be completely removed even by complicated compensation schemes [5], the reference 

voltages used for the VM did not match the actual stator voltages across the machine 

terminals which represents another source for the steady state error in the estimated 

speed. 

Figs. 5.20-5.24 show the speed estimation performance of both schemes for 25% load 

torque disturbance rejection at 60 rpm and for speed change from 30 rpm to 100 rpm at 

25% load. Other results are shown in Figs. 5.25-5.29 for 50% disturbance rejection at 

100 rpm and for speed reversal from -60 rpm to 100 rpm at 62.5% load. Figs. 5.30-5.32 

show the results of a reference speed change from 50 rpm to 100 rpm at rated load. FL 

and SM schemes show better transient response compared to the PI scheme, due to an 

optimal speed tuning signal during transients. The switching surface of the SM scheme 

(5.2) corresponding to the unfiltered speed is shown for the different operating 

conditions. These figures show that the manifold s = 0 is attractive causing fast error 

dynamics. 
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Fig. 5.20 Speed estimation performance for open loop 25% load torque disturbance 

rejection, 60 rpm (a) MRAS-PI (b) MRAS-FL (c) MRAS-SM 
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Fig. 5.21 Speed tuning signal for 25% load torque disturbance rejection, 60 rpm (a) PI 

and FL (b) SM 
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Fig. 5.22 Speed estimation performance for 30 rpm to 100 rpm reference speed change, 

25% load (a) MRAS-PI (b) MRAS-FL (c) MRAS-SM 
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Fig. 5.23 Speed tuning signal during reference speed change for PI and FL schemes 
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5.4.2.2 Sensorless Performance 

In these tests the vector control drive is working in the closed loop sensorless mode, 

where the estimated speed is used for both speed control and rotor flux orientation . The 

three schemes are compared when the drive is running with different operating 

conditions at very low speed. 

Sensorless performance of all schemes is shown in Figs. 5.33-5.37 where the drive is 

subjected to a reference speed change from -30 rpm to -60 rpm at no load and 25% load 

torque application at 100 rpm. Other test results are shown in Figs. 5.38-5.42 for ±50 rpm 

speed reversal at 12.5% load and 37.5% load disturbance rejection at 50 rpm. Compared 

to the PI scheme, FL and SM still show a faster response during transients. Moreover, the 

FL scheme shows faster response compared to the SM scheme due to the need for LPF 
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for the SM scheme. An optimal speed tuning signal was obtained for the FL scheme 

compared to the PI scheme as shown in Figs. 5.39 and 5.42(a). 

-1 0 r------,------.----,------.--------r:-======~ 

-20 

E -30 
0.. .... 

'-" 

-g -40 
(1) 
0.. 
~ -50 
o 
(5 
~ -60 

-70 

_._. _.- Reference speed 

--Measured speed 
-- Estimated speed 

_80 L----L----~--~----~--~----~----~--~ 

45 45 .5 46 46.5 47 47.5 48 48.5 49 
Time (s) 

(a) 

-10 ,--~--~-~--~-~========~ 

-20 

r--. 

8 -30 
0.. .... 
'-' 

] -40 
(1) 

0.. 
~ -50 
o ...... 
o 
~ -60 

-70 

_._.-.- Reference speed 

--Measured speed 

-- Estimated speed 

-8~L5 ----45L.-5 ---4~6----4~6-.5----4L7----47L.5----4~8--~4~8.~5--~49 

Time (s) 

(b) 

-10 ~-~-~=---.----~--7===~========~ 
_._._.- Reference speed 

-20 --Measured speed 

r--. 

8 -30 -e-
'-' 

] -40 
(1) 

0.. 

~ -50 
o ...... 
o 
~ -60 

-70 

-- Estimated speed 

-804L5----L----L----~--~--~4~7~5---4~8~~4~8 .~5--~49 
45.5 46 46.5 47 . 

Time (s) 

(c) 

Fig. 5.33 Sensorless performance at no load (a) MRAS-PI (b) MRAS-FL (c) MRAS-SM 



Chapter 5 Design of Adaptation Mechanism for Rotor Flux-Based MRAS 

0.2 

-g -0 .1 
<1) 

0.. 
r./J 

45 

0.01 

~ 0.005 c:: 
co 
en 
OJ) 
c:: 
c:: 0 
::l ...... 

-0 
<1) 
<1) 

0.. 
r./J -0.005 

-0.01 
45 

45 .5 46 46.5 

-I 

45.5 46 46 .5 

47 
Time (s) 

(a) 

..1.1 
'''-1' 

47 
TIme (s) 

(b) 

47.5 

... 
"I 

47 .5 

--MRAS-PI 
--MRAS-FL 

48 48 .5 49 

, L 

'I ~r 

48 48.5 49 

87 
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5.5 Conclusion 

In this chapter two novel nonlinear adaptation mechanisms are proposed to replace 

the fixed gain PI controller which is conventionally used for rotor flux MRAS observer. 

One of these schemes is based on SM theory where a novel speed estimation adaptation 

law is derived based on Lyapunov theory to ensure estimation stability with fast error 

dynamics. The second scheme is based on a FL strategy working in a nonl inear 

optimization mode. Parameter tuning of the PI and FL schemes has been performed in 

such a way as to obtain similar steady state performance. A rigorous simulation and 

experimental comparison between the three schemes have been carried out using an 

indirect vector control 1M drive. Application of the new schemes shows better transient 

performance as well as better load torque disturbance rejection in both open loop and 

closed loop sensorless modes of operation. More specifically, due to the need of low pass 

filtering of the estimated speed obtained from the SM approach, the FL strategy shows a 

faster response than the SM scheme. However, the application of the new adaptation 

schemes does not considerably improve the steady state performance which will be the 

purpose of the following chapter. 
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A new method is described which considerably improves the performance of rotor flux­

MRAS based sensorless drives in the critical low and zero speed region of operation. It is 

applied to a vector controlled 1M drive and is experimentally verified. The new technique 

uses a NN as a rotor flux observer to replace the conventional VM. This makes the 

reference model free of pure integration and less sensitive to stator resistance variations. 

This is a radically different way of applying NNs to MRAS schemes. The data for 

training the NN is obtained from experimental measurements based on the eM avoiding 

voltage and flux sensors. This has the advantage of considering all the drive 

nonlinearities. Both open loop and sensorless operations for the new scheme are 

investigated and compared with the conventional MRAS speed observer. The 

experimental results show the great improvement in the speed estimation performance 

for open and closed loop modes of operation including zero speed. 

6.1 Introduction 
Classical rotor flux MRAS observer employs a VM to produce the reference values 

of the rotor flux. However, VM flux observer suffers from stator resistance sensitivity, 

stator voltage acquisition problem and flux open loop integration which may cause dc 
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drift and initial condition problems [1, 5]. These problems limit the performance of the 

MRAS observer in the low and zero speed region of operation. 

Neural Networks, with their learning and generalization capabilities, have attracted 

much attention in the last two decades. They have been used before with MRAS schemes 

as described in chapter 2. However, a completely novel application of the NN for MRAS 

schemes is described in this chapter. This new MRAS scheme employs a NN rotor flux 

observer to entirely replace the conventional VM (and not the eM as described in [28, 

52]) to improve the sensorless drive performance at low and zero speed. A multilayer 

feedforward NN estimates the rotor flux from present and previous samples of the 

terminal voltages and currents. The training data for the NN is obtained from 

experimental measurements giving a more accurate model that includes all the drive 

nonlinearities. An experimental implementation of the new NN MRAS observer is 

described. The new NN scheme is compared with the conventional, which employs a 

VM for flux estimation, in both the open loop and closed loop sensorless modes for an 

indirect vector control 1M drive. The drive performance is tested when running at very 

low and zero speed at various load levels. Experimental results confirm the great 

improvement in the performance of the new NN MRAS speed observer. 

6.2 Artificial Neural Networks 

Artificial NNs are based on the basic model of the human brain with capability of 

generalization and learning. They are frequently used as universal nonlinear function 

approximators to represent functions with weighted sums of nonlinear terms [106]. 

Multilayer feedforward NNs have shown a great capability to model complex nonlinear 

dynamic systems [27]. Generally, the advantages of applying NN over mathematical 

model-based techniques are fault tolerance, parallel processing, fast implementation 

speed, noise-immunity, generalization capability and insensitivity to inaccurate inputs [4, 

107, 108]. On the other hand, lack of design techniques and computational effort 

requirement are the main drawbacks of NN. The following sections briefly describe 

various network topologies and training methods. 
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6.2.1 Structure of Artificial Neural Networks 

Stimulated by the structure of the brain, a NN consists of a set of highly 

interconnected processing units, called nodes or units. Each unit is designed to mimic its 

biological counterpart, the neuron [11]. Each accepts a weighted set of inputs and 

responds with an output. NN resembles the biological neuron in acquiring knowledge by 

learning from examples and storing this information within inter-neuron connection 

strengths called weights. Fig. 6.1 shows an artificial neuron which consists basically of a 

summer and an activation function [11, 109]. 

Internal 
Inputs 

PI ----I~ 

P2 --.. t--~ 

P3--~~ 

Pn--l~ 

b 

net 
f(net) 

Activation 
function 

Fig. 6.l Structure of the artificial neuron 

y 

The inputs to the neuron are PI, P2, P3 , .... , Pn with corresponding weights 

W W W 
W which act in such a way as to increase or decrease the input signals to 

b 2, 3,····' n 

the neuron. Sometimes a threshold term b is added to the inputs. All inputs are multiplied 

by their corresponding weights and added together to form the net input to the neuron 

called net. The mathematical expression for net can be simply written as: 

n +b (6.1) 
net = LWiPi +b = wIPI +w2P2 +w3P3 + ....... +wnPn 

i=1 

The neuron behaves as activation or mapping functionf(net)to produce an output Y 

which can be expressed as: 

n 
Y = f{net) = f(LwiPi +b) 

i=l 

(6.2) 
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where/is the neuron activation function or the neuron transfer function. Common neuron 

activation functions are: Linear, threshold, log-sigmoid and tan-sigmoid as shown in Fig. 

6.2 [11]. In all these cases the net neuron input is mapped into values between 0 and 1 or 

-1 to 1 where g is the gain that adjusts the slope of the sigmoid functions [10, 11]. All 

these functions are squashing since they limit the neuron output to asymptotic levels 

[11]. Using nonlinear activation functions allows nonlinear input-output mapping ofNN 

which can permit nonlinear function approximation. 
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Fig. 6.2 Common neuron transfer functions (a) Linear (b) Threshold (c) Log-Sigmoid 

(d) Tan-Sigmoid 
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The most common type of NN is the multilayer feedforward network which consists 

of a group of interconnected neurons organised in layers: input layer, hidden layer and 

output layer where each layer consists of a group of neurons as shown in Fig. 6.3. It is 

feedforward because signals propagate only in a forward direction from the input nodes 

to the output nodes and no signals are allowed to be fed-back among the neurons [108]. 

The number of hidden layers, number of neurons in each layer totally depends on the 

complexity of the problem being solved by the network. This structure is commonly used 

in system identification and nonlinear function approximation applications. 

Another architecture of NN is the recurrent network which differs from the 

feedforward structure by having feedback connections which propagate the outputs of 

some neurons back to the inputs of other neurons to carry out repeated computations on 

the signal as shown in Fig. 6.4 [108]. 
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Y3 

Fig. 6.3 Architecture of multilayer feedforward neural network 
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Delay 
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Fig. 6.4 Structure of recurrent neural network 

6.2.2 Learning Techniques 

The artificial NN resembles the human brain in learning through training and data 

storage. A training process is performed to enable the NN to understand the model to be 

represented. Based on learning strategy two popular techniques can be described: 

supervised and unsupervised learning. Supervised learning is frequently used in the 

majority of NN applications. Training can be performed either online or off-line. For 

online training, the NN weights are continuously updated during operation rather than 

being constant with off-line training. 

6.2.2.1 Supervised Learning 

In this type of learning a teacher is present during the learning process and the NN is 

trained through a given input! target data which includes input pattern associated with the 

corresponding target or desired pattern [11]. These training data form a pool of examples 

used to train the NN in order to learn a specific behaviour. The presence of desired 

output(s) for each input in the training pattern makes this type of learning supervised. 
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During the learning process, the NN output is compared with the target value and a 

network weight correction via a learning algorithm is performed in such a way as to 

minimize an error function between the two values [27, 60]. This is an optimization 

problem in which the learning algorithm is searching for the optimal weights that can 

represent the solution to the approximation problem. The block diagram of the training 

process is shown in Fig. 6.5. 

Non-Linear Target ... 
Function 

Input + 
error 

\ -

.. Neural Network 
Network Output 

\ Learning 
Algorithm 

Fig. 6.5 Block diagram of neural network training using supervised learning 

A commonly used error function is the Mean-Squared Error (MSE) which represents 

the average error between the network's output and the target value over all the example 

pairs. Backpropagation is a gradient descent algorithm usually used to update the 

network weights during training to improve the network performance. This is achieved 

by minimizing a performance function, the MSE, which moves the network weights 

along the negative of the gradient of the performance function. This algorithm can be 

used to train multilayer feedforward NNs either online or off-line. 

6.2.2.2 Unsupervised Learning 

In this type of learning, no desired or target is available to the network and only the 

input pattern is present, i.e. there is no teacher to learn the network. The system must 

learn by discovering and adapting to structured features in the input pattern [108, 109]. 

This is done by adapting to statistical regularities or clustering of patterns from the input 

training samples [108]. 
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6.3 Neural Network MRAS Observer 

To overcome the problems associated with the conventional rotor flux-MRAS 

observer NN is introduced as rotor flux observer to replace the conventional VM used in 

the classical scheme. This represents an entirely new application of NN to MRAS 

schemes. A multilayer feedforward NN is used to estimate the rotor flux components 

from current and previous samples of the stator voltages and currents. Compared to a 

VM flux observer, the NN does not employ pure integration and is less sensitive to motor 

parameter variations as will be shown later. Compared to other conventional schemes 

that make use of a LPF for flux estimation, the NN observer does not employ any 

filtering. This avoids delaying the estimated speed and prevents estimation errors below 

the filter cut-off frequency. The training of this network was performed using 

experimental data. This avoids using search coils which are not a suitable way to obtain 

flux measurements in most applications [106]. The outputs from the CM are used as 

target values for the NN to provide harmonic-free signals and an accurate output at low 

speed. Hence the MRAS scheme effectively uses two versions of the CM: one based on 

(3.54) and one based on the trained NN. This greatly improves the performance of the 

speed estimator as will be experimentally proved later. The offline trained NN will be 

used as a reference model for the MRAS observer to form a NN MRAS scheme as 

shown in Fig. 6.6. 

IfIr 

NN Flux Observer 

Adaptive Model Vir 
(Current Model) 

PI Controller 

Fig. 6.6 Proposed NN MRAS speed observer 

Since the performance of the conventional MRAS scheme improves at higher speeds, 

NN is suggested to replace the VM only in the low speed region. This will dramatically 
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reduce the number of training samples and consequently the training time in addition to 

reducing the NN size. At high speed conventional MRAS employing VM can be used. 

Experimental testing of the classical MRAS observer shows deterioration of the 

performance in ±100 rpm speed region but operation outside this range was satisfactory. 

Therefore the task of the proposed scheme is to improve the performance in the critical 

± 1 00 rpm region. First a NN scheme is developed which is suitable for general purpose 

1M drives where rated load is not required for low speed operation. In such applications 

the load torque is related to the rotor speed and hence a small load torque is needed at 

low speed. The possibility of extending the scheme to cope with low speed, rated load 

applications has also been discussed. 

6.4 Neural Network Rotor Flux Observer 

Multilayer feedforward NNs have shown great capabilities for nonlinear function 

approximation applications. Various attempts to model machine flux from measured 

quantities such as stator voltages, currents and motor speed have been discussed [10,27, 

29, 106]. In this section a multilayer feedforward NN will be presented that estimates the 

rotor flux components from the present and past samples of the terminal voltages and 

currents. The NN is trained to match the performance of the CM which is free from stator 

resistance dependency and dc drift problems. 

It has been shown that any nonlinear function can be represented by a three layer NN, 

i.e. input, hidden and output layers, with a given number of neurons in each layer and 

that the accuracy of the approximation depends on the number of neurons in the hidden 

layer [10, 11]. Here an 8-25-2 multilayer feedforward NN, shown in Fig. 6.7, is used to 

estimate the rotor flux components in the stationary reference frame. To obtain good 

estimation accuracy, the inputs to the network are the present and past values of the d-q 

components of the stator voltage and current in the stationary reference frame. 

Compensated versions of the reference voltages are used, as discussed in chapter 4. 

Better performance can be obtained by increasing the number of inputs to include voltage 

and current samples from more than one time step in the past. However, this may require 

larger training data and will need more computational effort to achieve good 

approximation accuracy. 
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One of the major drawbacks of NN strategy is the lack of design techniques. Hence 

the number of neurons in the hidden layer is chosen by a trial and error technique to 

compromise between computational complexity, if a larger number is selected, and 

approximation accuracy, if a smaller number is selected [27]. This degree of trial and 

error may increase the training process time. The output layer of the NN consists of two 

neurons representing the rotor flux components in the stationary reference frame. Since 

the case is approximating a nonlinear function with bipolar input/output pattern, 

hyperbolic tangent (Tan-Sigmoid) activation functions, Fig. 6.2(d), is used in both hidden 

and output layers [11]. In this case, the neuron transfer function can be written as: 

( ) 
1- exp(-net·) 

y . = tanh net· = } 
} } 1 + exp( -net j) 

(6.3) 

6.4.1 Neural Network Training 

The first step for NN development is to obtain the training data. Generation of the 

training set is crucial since it should adequately represent the problem to be solved by the 

NN. Training data can be obtained by using simulation tools or through experiments. 

However, experimental data is more suitable for NN to produce realistic outputs [110]. 

Therefore the training data for the NN flux observer are obtained from the experimental 
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system. This is achieved by running the encodered vector control drive with different 

operating conditions in the low speed region 100 rpm to -100 rpm including the zero 

speed. Various load levels ranging from 0 to 25% of rated load are used to suit low 

speed, low torque applications such as fans, centrifugal pumps and blowers. Small and 

large references speed changes were applied to the drive during the training phase to 

include all the possible operating conditions. The reference voltages and measured stator 

currents are transformed from 3-phase (a, b, c) to 2 phase (d, q) for the NN training data. 

A LPF with 40 rad/s cut-off frequency was used to remove drift and noise from the 

reference stator voltage signals. The present and past samples of filtered stator voltages 

and stator currents components are obtained which will be used as inputs to the NN 

model. Even using direct flux sensing via search coils [27], noise and rotor slot harmonic 

effects on the measurements require that a LPF be used. 

The outputs from the CM, which are obtained from stator currents components and 

encoder speed, are used as target values for the NN. This is an effective way to obtain the 

correct values of the rotor flux since the obtained signals are relatively noise and 

harmonic-free including all the drive nonlinearities. Moreover, the CM flux observer 

produces accurate flux estimation at low speed [69]. The block diagram of the training 

data acquisition from the experimental system is shown in Fig. 6.8. 

* 'II, 

Vector 
Control 

PWM 
Inverter 

Training Data 

-eM 
'II, 

Current 
Model 

Fig. 6.8 NN Training data acquisition from experimental system 

Since the measurements are generated at different scales for voltage, current and flux, 

scaling of the data variables is necessary to increase the numerical stability of the data 
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processing [110]. Furthermore, the scaling level is determined by the type of activation 

function being used. With hyperbolic tangent sigmoid function used in the hidden layer 

of the NN, training data has to be normalized to lie in the range between -1 to 1. The 

training is performed off-line with Matlab-Simulink using the Levenberg-Marquardt 

training algorithm which is faster than the gradient descent backpropagation algorithm 

but needs a large memory [11 , 27]. This algorithm is considered to be the fastest for 

training moderate size feedforward NN with weights up to several hundreds [Ill] . 

Moreover, it has an efficient implementation in Matlab software [Ill]. A 5000 

input/output pattern was used to train the NN. After the training the MSE between targets 

and NN outputs decays to a satisfactory level (4 .5 x 10-4
) after about 2200 epochs as 

shown in Fig. 6.9. The training lasts for less than one hour on a Pentium ® IV PC 

running at 3 GHz with 512 MB of RAM. 

o 
10 

-4 
10 

o 500 

Performance is 0.000451238 

1000 
Epochs 

1500 

Fig. 6.9 NN performance during training 

6.4.2 Neural Network Flux Observer Testing 

2000 

Extensive experimental tests were carried out to test the performance of the NN 

observer in various operating conditions not seen during training to ensure the 

generalization capability of the NN model. As shown in Fig. 6.10 the trained NN is 

tested and compared with the conventional VM by running the encodered vector control 

in the low speed region under different loading conditions. The outputs of the VM and 

the NN flux observer will be compared with the output of the CM which represents the 

accurate value of the rotor flux. Compared to the VM, the NN matches the CM extremely 
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well in both transient and steady state conditions even when the drive is operating at low 

speed. 

Fig. 6.11 (a) shows the performance of the two rotor flux observers, the VM and the 

NN, compared to that of the CM when the encodered drive is performing a speed change 

from 100 rpm to 50 rpm at no load. More results are shown in Figs. 6.1 l (b)-6 .1 l (c) for 

operation at 20 rpm with 10% load and -40 rpm with 20% load. Attenuation and phase 

delay take place in the VM mainly due to the filter effect where as NN output closely 

track the CM output at this very low speed . 
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Fig. 6.11 NN observer experimental testing (a) 100 rpm to 50 rpm no load (b) 20 rpm at 

10% load (c) -40 rpm at 20% load 

6.5 Simulation Results 

To further validate the NN observer, simulation tests were conducted to evaluate its 

performance when parameter variation takes place. Therefore a multilayer feedforward 

NN with similar structure of that introduced in the previous section has been created. The 

training data are obtained by simulating the vector control drive when running with 

different operating conditions in the low speed region. Using the same training algorithm 

as in the previous section a MSE between targets and NN outputs of 3.17 x 10-4 has been 

achieved. 



Chapter 6 Neural Network-Based Rotor Flux MRAS Speed Observer 108 

To test the NN observer sensitivity to parameter variation, simulations have been 

conducted with variations in Rs and Rr. These two parameters are the most crucial 

parameters that affect speed estimation especially at low speed. The performance of both 

observers is compared to the actual rotor flux output from the motor model when the 

vector control drive is working in encodered mode. Performance of VM and NN flux 

observers for 250/0 and 50% increase in Rs is shown in Figs. 6.12(a)-6.l2(b). NN shows 

less sensitivity to Rs variation than the VM. NN observer also shows good performance 

with 500/0 Rr variation as shown in Fig. 6.12(c). 
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Fig. 6.12 NN observer simulation testing (a) Rs 25% variation (b) Rs 50% variation (c) Rr 

50% variation 

These results show that the NN can fairly handle the parameter variation problem 

with a good level of robustness. Consequently, for integrated drive applications, where 

the inverter and machine are sold as one unit, the NN observer can be trained on the 

actual inverter-machine combination. The NN should be able to cope with changes from 

these nominal parameters for other drives in the production line which is due to the 

manufacturer's tolerance. 

However, in a mass-production environment, where the inverter can be used with 

several sizes of motors, the application of this technique is more difficult. In this case, a 

standard NN scheme becomes unsuitable unless the training is performed during 

commissioning for each inverter-machine combination. This may present a drawback of 

the proposed method. However, this could be overcome by using a range of previously 

trained networks where an appropriate one can be selected according to the machine 

nameplate rating. 

6.6 Experimental Results 

Once the NN is trained it is shown that it accurately matches the CM. Furthermore, 

NN gives a fast execution speed due to its parallel processing [11 , 27]. Hence it is 

possible to replace the VM with the proposed NN. To further experimentally validate the 

proposed NN MRAS scheme, shown in Fig. 6.6, open loop and closed loop sensorless 

operation will be compared for the new and conventional rotor flux schemes. 
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6.6.1 Open Loop Operation 

The new scheme was tested in open loop with the drive operated as an encode red 

vector control. The open loop performance of the conventional and the new NN MRAS 

speed observers is compared. PI controller gains of each scheme are tuned separately for 

optimal performance to allow a comparison between best performance of each scheme. 

Figs. 6.13-6.14 show the open loop performance of both schemes for a ±30 rpm speed 

reversal at 10% load and a 200/0 load torque disturbance rejection at 25 rpm. The NN 

MRAS observer demonstrates better transient and steady state performance and less 

sensitivity to machine parameters than the conventional scheme. 

Low speed operation up to rated load can be achieved by extending the training range 

of the NN observer by applying various loads ranging from 0 to 100% rated load over the 

same speed region using the same training procedure described in section 6.4.1. After the 

training the MSE between targets and NN outputs decays to 0.0011. Results for 62.5% 

load torque rejection at 30 rpm, rated load rejection at 25 rpm and ±25 rpm speed 

reversal at rated load are shown in Figs. 6.15-6.17. NN MRAS scheme shows superior 

performance to that of the classical scheme with a negligible steady state error at higher 

loads up to rated load. 

As discussed previously in chapter 5, the steady state error in the estimated speed at 

low speed for the conventional MRAS observer is mainly due to the stator resistance 

mismatch between the motor and the observer and dead time effects that cannot be 

completely removed even by complicated compensation schemes [5]. Hence the 

reference voltages used for the VM do not match the actual stator voltages across the 

machine terminals. Using the new NN MRAS scheme completely removes the steady 

state error in the estimated speed and improves the load torque disturbance rejection 

performance of the speed observer at very low speed. This improvement in the 

performance can be explained based on the fact that the NN estimates a flux, similar to 

the eM flux, which is not directly depending on the actual stator voltage, unlike the 

situation with using the VM in the conventional scheme. Moreover, no filters are needed 

in the flux observer without a pure integrator present in the NN model in addition to less 

sensitivity to parameter variation. As a result, the new NN MRAS scheme shows much 

better performance compared to the conventional MRAS observer at very low speed. 
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Fig. 6.13 Open loop ± 30 rpm speed reversal , 10% load. Speed: (a) Conventional MRAS 

(b) NN MRAS. Model outputs: (c) Conventional MRAS (d) NN MRAS 
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Fig. 6.14 Open loop 200/0 load disturbance rejection, 25 rpm. Speed: (a) Conventional 

MRAS (b) NN MRAS. Model outputs: (c) Conventional MRAS (d) NN MRAS 
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Fig. 6.15 Open loop 62.5% load disturbance rejection, 30 rpm. Speed: (a) Conventional 

MRAS (b) NN MRAS. Model outputs: (c) Conventional MRAS (d) NN MRAS 
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Fig. 6.16 Open loop rated load disturbance rejection, 25 rpm. Speed: (a) Conventional 

MRAS (b) NN MRAS. Model outputs: (c) Conventional MRAS (d) NN MRAS 
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6.6.2 Sensorless Operation 

In the following tests, the 1M drive is working as sensorless indirect rotor flux 

oriented. The encoder speed is used for comparison purposes only. Tests are conducted 

in the low speed and at or around the zero speed region based on some recommended 

benchmark tests [68, 112, 113]. Experimental results for the tests carried out using the 

NN described in 6.4.1 are given in this section. 

Test 1: Stair case speed transients from 100rpm to Orpm to 100 rpm: 

In this test the sensorless vector control drive is subjected to stair case speed demand 

from 100 rpm to zero speed in a series of five steps of 20 rpm each and then back up 
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again to 100 rpm at no load. The performance of both schemes is shown in Fig. 6.18. The 

performance of the conventional MRAS deteriorates around the zero speed with speed 

oscillations. A steady state error between the estimated and actual speed is shown in this 

region of operation. NN MRAS observer shows better performance in the whole speed 

region. The steady state error between the estimated and actual speed has been removed 

with better performance around the zero speed without any oscillations. Sensorless 

performance around and at zero speed is shown in Fig. 6.19. MRAS model outputs are 

given for both schemes. With right field orientation, the NN and CM outputs match 

together without oscillation where as unstable behaviour is observed for the convent ional 

MRAS outputs, the VM and CM. Better speed tuning signal is obtained from the NN 

MRAS scheme. 
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Test 2: Stair case speed transients from 100rpm to Orpm to -100 rpm: 

In this test the sensorless vector control drive is subjected to a stair case speed 

demand from 100 rpm to zero speed in a series of five 20 rpm steps continuing to -1 00 

rpm at no load. The performance of both schemes is shown in Fig. 6.20. Similar to test 1 

stable operation is obtained for the NN MRAS scheme around zero speed with negli gible 

steady state error in the low speed region. Operation around and at zero speed is 

demonstrated in Fig. 6.21 where NN MRAS model outputs, NN and CM, show excellent 

tracking performance compared to the conventional scheme model outputs, YM and CM. 

Consequently, NN MRAS scheme shows better speed tuning signal and estimated rotor 

flux position which is due to accurate speed estimation performance. NN MRAS scheme 

shows better and stable sensorless performance when the test is performed at 12.5% load 

as shown in Fig. 6.22. Operation at very low positive and negative speed around zero 

speed with 12.5% load is illustrated in Fig. 6.23. It is shown the performance of the 

sensorless drive has been greatly improved at this critical region of operation with a 

stable speed tuning signal. Stable performance in the regeneration mode of operation is 

shown by NN MRAS compared to oscillatory response from the conventional scheme. 
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Fig. 6.21 Sensorless performance around and at zero speed, no load. Model outputs (a) 

conventional MRAS (b) NN MRAS. Rotor flux position (c) conventional MRAS Cd) NN 

MRAS. Tuning signal (e) conventional MRAS (f) NN MRAS 
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Fig. 6.23 Sensorless performance around and at zero speed, 12.5% load. Speed (a) 

conventional MRAS (b) NN MRAS. Tuning signal (c) conventional MRAS (d) NN MRAS 

Test 3 Take off from zero speed to 100 rpm after 30 sec at zero: 

This tests the drive capability to maintain field orientation at zero stator frequency 

followed by an application of a finite reference speed at no load. The results of this 

benchmark test are shown in Fig. 6.24. Unstable operation at zero speed was observed 

for the conventional MRAS with oscillation around zero speed. This performance affects 

field orientation and model outputs leading to unstable speed tuning signal. NN MRAS 

proves its ability to hold the zero speed at no load without any oscillations and the motor 

shaft is stationary. Therefore sensorless zero speed operation at no load is possible using 

NN MRAS scheme with stationary model flux outputs. Consequently, better field 

orientation angle and speed tuning signal are obtained. Both schemes succeed in taking 

off to 100 rpm after 30 s at zero speed. 
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Fig. 6.24 Sensorless performance for test 3. Speed response (a) Conventional MRAS (b) 

NN MRAS. Model outputs (c) Conventional MRAS (d) NN MRAS. Rotor flux position (e) 

Conventional MRAS (f) NN MRAS. Tuning signal (g) Conventional MRAS (h) NN MRAS 

Test 4: Speed step down from 20 rpm to 0 rpm in three steps each of 10 rpm: 

This tests the performance of the sensorless drive at very low and zero speed at 

different loads. The results of this test at 10% load are shown in Fig. 6.25. At a reference 

speed of 20 rpm, the NN MRAS scheme was stable, showing less steady state error 

compared to the conventional. At such speeds and below, the conventional MRAS fails 

to provide stable operation giving large oscillations. NN MRAS shows better 

performance at this very low speed region with a very small steady state error at zero 

speed. Better performance is obtained from NN MRAS scheme when the test is 
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performed at 200/0 load as shown in Fig. 6.26. Results of zero speed sensorless operation 

at different load levels are summarized in Table 6.1. 
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Fig. 6.25 Sensorless performance for test 4, 10% load. Speed response: (a) conventional 
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Fig. 6.26 Sensorless performance for test 4, 20% load. Speed response: (a) conventional 

MRAS (b) NN MRAS. Rotor flux position: (c) conventional MRAS (d) NN MRAS 

Table 6.1 

Summary of zero speed sensorless results 

Zero speed Zero speed Zero speed 
No load 10% load 20% load 

Conv. 
Unstable Unstable Unstable 

MRAS 

Zero steady state 3 rpm steady state 7 rpm steady state 
NNMRAS error error error 
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Test 5: Sensorless load torque disturbance rejection: 

This test examines the load torque disturbance rejection capability of the sensorless 

drive. In general, load disturbance application may affect the machine parameters and 

increase the level of nonlinearity. Both schemes have been tested when a 20% load 

torque is applied at 50 rpm. The NN MRAS shows better dynamic and steady state 

performance with negligible steady state error between the actual and estimated speed as 

shown in Fig. 6.27. Furthermore, NN MRAS scheme shows better rotor field orientation 

performance with synchronous frame q-current component similar to that obtained from 

(3.48) for perfect field orientation. Inaccurate speed estimation causes wrong field 

orientation for the conventional scheme. More results are shown in Fig. 6.28 for a 20% 

load torque rejection at -50 rpm. NN MRAS scheme still shows better performance with 

less steady state error due to good tracking between NN and eM observers. 
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Fig. 6.27 Sensorless performance for test 5, 20% load at 50rpm. Speed response (a) 

conventional MRAS (b) NN MRAS. isq (c) Conventional MRAS (d) NN MRAS. 
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Test 6: Sensorless speed reversal at load: 

This last test shows the drive performance for a very low speed reversal under load 

torque. A ±25 rpm speed reversal demand was applied to the drive when working at 10% 

load. Better performance with negligible steady state error was obtained from NN MRAS 

observer compared to the conventional MRAS scheme as shown in Fig. 6.29. This is due 

to excellent matching between NN MRAS model outputs, NN and eM, during transient 

and steady state. When the test is performed at 25% load, large speed oscillations are 

obtained from the conventional scheme compared to a stable performance for the NN 

MRA which leads to better field orientation and stable speed tuning signal. The results of 

this test, shown in Fig. 6.30, demonstrate the improvement of the sensorless performance 

in the regenerating mode of operation using NN MRAS scheme. A summary of 

sensorless results at different operating conditions is given in Table 6.2. 
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Fig. 6.29 Sensorless performance for test 6, ±25 rpm reversal, 10% load. Speed: (a) 

conventional MRAS (b) NN MRAS 
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Table 6.2 

Summary of sensorless results 

20 rpm 10 rpm 50 rpm -25 rpm -25 rpm 
10%) load 10% load 200/0 load 10% load 25% load 

Conv. 
10 rpm 3 rpm 5 rpm 

steady state Unstable steady state steady state Unstable 
MRAS 

error error error 
4 rpm 3 rpm 1 rpm Negligible 7 rpm 

NNMRAS steady state steady state steady state steady state steady state 
error error error error error 
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6.7 Conclusion 

This chapter has presented an entirely new application of a NN to give an improved 

MRAS speed observer scheme suitable for speed sensorless 1M drives. A multilayer 

feedforward NN estimates the rotor flux components from present and past samples of 

reference stator voltages and measured currents. The new scheme makes use of the off­

line trained NN observer as a reference model in MRAS scheme. Training data is 

obtained from experiments without the need for search coils. Using the new NN scheme 

for flux estimation eliminates the need for pure integration with less sensitivity to stator 

resistance variations. A NN scheme suitable for applications that require low torque at 

low speed such as a general purpose 1M drives is first developed. A further NN extension 

to suit low speed rated load applications such as elevators and conveyors is also 

discussed. 

Results obtained from a systematic set of benchmark experimental tests using a 7.5 

kW 1M drive system prove the great improvement of the sensorless drive performance 

around and at zero speed. Open loop tests show that the steady state error in the 

estimated speed has been totally removed compared to the conventional observer using a 

VM. Closed loop sensorless operation is greatly improved at very low and zero speed 

especially at no load without using voltage sensors. Experimental and simulation results 

reveal some interesting features of NN and show that the network has good potential for 

use as an alternative to VM used in classical MRAS speed observer. 
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CHAPTER 7 

NEURAL NETWORK-BASED STATOR CURRENT MRAS 

OBSERVER 

A novel MRAS speed observer for 1M drives based on stator current is presented. The 

measured stator currents are used as reference model for the MRAS observer to avoid the 

use of a pure integrator. A two-layer NN stator current observer is used as the adaptive 

model which requires the rotor flux information. This can be obtained from the voltage 

or current models but instability and dc drift can downgrade the overall observer 

performance. To overcome these problems an off-line trained multilayer feedforward NN 

is proposed here as a rotor flux observer. Speed estimation performance of the new 

MRAS scheme using the different rotor flux observers is studied and compared with the 

conventional rotor flux MRAS when applied to an indirect vector control 1M drive. 

Promising results have been obtained when using the NN flux observer with better low 

speed performance and stability in the regenerating mode of operation. 

7.1 Introduction 
Recently a stator current MRAS scheme has been introduced for stator resistance 

identification for 1M drives [76]. In this scheme the reference model comprises the 

measured stator current components. This makes the reference model free of pure 
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integration problems and insensitive to motor parameter variations. A two layer linear 

NN stator current observer is used as an adaptive model where the stator resistance is one 

of the NN weights. A backpropagation learning algorithm is used to train the NN online 

to update the value of the stator resistance. A conventional CM is used for rotor flux 

estimation. 

In this chapter the NN based MRAS observer described in [76] is used for online 

motor speed identification instead of stator resistance estimation. The NN weight 

corresponding to motor speed is updated online using the backpropagation learning 

algorithm in such a way as to minimize the error between the measured and estimated 

currents. Rotor flux is needed for the stator current estimation in the adaptive model and 

conventionally a CM flux observer has been employed. However, as will be shown, the 

use of such a model gives instability in the regenerating mode of operation. Therefore the 

off-line trained multilayer feedforward NN proposed in chapter 6 is suggested to solve 

the flux estimation problem. By using this NN the flux estimation is independent of the 

rotor speed and does not require the use of pure integration. Superior results have been 

obtained from the NN flux observer scheme in terms of stator resistance sensitivity and 

stability over the whole speed control range. 

7.2 Neural Network Stator Current MRAS Scheme 

For the stator current MRAS observer, the reference model will consist of the 

measured stator currents [76], and hence the 1M itself will work as a reference model. 

This has the advantages of avoiding pure integration and the estimator is less sensitive to 

parameters. A stator current observer can be represented by a linear two layer NN where 

the motor speed is expressed as one of its weights. A backpropagation learning algorithm 

is used in order to minimize the error in current estimation and hence generating the 

estimated speed. 

7.2.1 Neural Network Stator Current Observer 

As described in chapter 3, the rotor flux can be expressed either based on stator 

equations (3.53) or rotor equations (3.54). Rearranging (3.53) gives: 
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.1 . - R . Lm 
aLsplsD - vsD - slsD - -P'l'rd 

Lr (7.1) 

.1 • - R . Lm aLsp1sQ - vsQ - slsQ - -P'I'rq 
Lr 

(7.2) 

Substituting (3.54) into (7.1) and (7.2) yields: 

-L . - R . Lm { 1" "Lm.} a s pi sD - v sD - sl sD - - - - 'l'rd - illrlf/ rq + -1 sD 
Lr ~ ~ 

(7.3) 

.1 • _ R . Lm { 1" "Lm.} aLsP'sQ - vsQ - slsQ - - - -'I'rq + illr'l'rd + -lsQ 
Lr Tr Tr 

(7.4) 

Hence the d-q stator current equations in the stator reference frame can be written as: 

(7.5) 

2 
.1 • _ R . Lm " Lm " Lm· 

aLsP1sQ - vsQ - slsQ + --'I'rq - -illr'l'rd - --lsQ 
LrTr Lr LrTr 

(7.6) 

Equations (7.5) and (7.6) represent the stator current observer. The discrete form of (7.5) 

and (7.6) can be obtained by using the backward difference method as [2]: 

(7.7) 

~ isQ(k) - isQ(k -1) 
p1sQ = T (7.8) 

where Tis the sampling time. Substituting (7.7) and (7.8) into (7.5) and (7.6) yields: 

" {TR TL2}" TLm " (k 1) isD(k) = 1-_s - m isD(k -1) + 'fIrd-
aLs aLsLrTr aLsLrTr (7.9) 

+ TLm illrljlrq(k-l)+~VSD(k-l) 
aLsLr aLs 

tsQ(k) = {1- TRs _ TL~ }isQ(k -1) + TLm IjIrq(k -1) 
aLs aLsLrTr aLsLrTr (7.10) 

_ TLm illrljlrd(k-l)+~VsQ(k-l) 
aLsLr aLs 

Defining the following weights: 
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W2 = 
erLsLrTr 

TLm 
w3 = OJr 

erLsLr 

T 
w4=­

erLs 

Substituting (7.11) into (7.9) and (7.10) yields: 

tsD(k) = wltsD(k -1)+ W2lPrd(k -1)+ W3lPrq(k -1)+ W4VsD(k -1) 

tsQ(k) = wltsQ(k -1)+ W2lPrq(k -1)- W3lPrd(k -1)+ W4VsQ(k -1) 
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(7.11 ) 

(7.12) 

(7.13) 

Equations (7.12) and (7.13) can be represented by a two layer linear NN with weights 

as defined in (7.11) as shown in Fig. 7.1 [76]. This NN will represent the adaptive model 

for the stator current MRAS scheme where W3, which contains the rotor speed 

information, is adjusted online in such a way as to minimize the error between actual and 

estimated currents. 

Z·l 

"rd(k-l) --~ 

(a) 
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Z-l 

tj!rq(k-l) --.... 

(b) 

Fig. 7.1 NN-based stator current observer (a) d-axis (b) q-axis 

7.2.2 Rotor Speed Estimation Algorithm 

To derive the weight adjustment law of the NN stator current observer, define the 

energy function E to be minimized: 

1 2 
E = 2 Ei (k) 

(7.l4) 

where: 

" 
E i (k) = ls (k) -ls (k ) 

= [ i sD (k) - tsD (k) i sQ (k) - tsQ (k) ] T = [ & in (k) & iQ (k) ] T 

(7.15) 

" and where ls and ls are the measured and the estimated stator current vectors which can 

be defined as: 

's(k) = [isD(k) iSQ(k)]T 
(7.l6) 

fs(k) = [isD(k) tSQ(k)]T 
(7.l7) 

To obtain a minimum squared error between actual and estimated stator current the 

weight adjustment has to be proportional to the negative of the error gradient with respect 

to the weight as [2]: 

(7.18) 
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Using the chain rule (7.18) can be written as: 

" 
__ BE_ _ _ BE B1s(k) 

" 
B1s(k) Ow3 Ow3 (7.19) 

By using the definition of E given in (7.14), the term ~E which is present in the right 
Bis(k) 

hand side of (7.19) can be expressed as: 

BE 1 B [- ~]2 
~ = ~ is(k) - is(k) 

Bis(k) 2 Bis(k) 

= - [ Is (k) - is (k) ] = -E i T (k) 

(7.20) 

Based on stator current observer equations (7.12) and (7.13) the other term of the right 

" 
. Bl (k) 

hand SIde of(7.19) ~3 can be expressed as: 

" 

a~) = ["'rq(k -I) - "'rd(k -1) Jr (7.21) 

Substituting (7.20) and (7.21) into (7.19) yields: 

- ~ = El (k).[ "'rq(k -1) - "'rd(k -I) Jr 
(7.22) 

= GiD(k)ljJrq(k -1) - GiQ(k) IjJrd (k -1) 

The mathematical expression for the weight adjustment law (7.18) can be written as [2]: 

(7.23) 

where 17 is a positive constant called the learning rate. Large values of 17 may accelerate 

the NN learning and consequently leads to fast convergence but may cause oscillations in 

the network output where as low values can cause slow convergence. Therefore, the 

value of 17 has to be chosen carefully to avoid instability [2]. The new weight can be 

written as [2]: 

w3(k) = w3(k -1) + ~w3(k) (7.24) 

To ensure accelerated convergence, the last weight change is added to the weight update 

as [2]: 

W3 (k) = w3 (k -1) + ~w3 (k) + a ~w3 (k -1) (7.25) 
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where a is a positive constant called the momentum constant. Due to simple structure of 

the NN stator current observer, the weight adjustment can be performed online and the 

motor speed can be estimated from the weight W3 as: 

OJ, (k) = aLsL, w3 (k) 
TLm 

7.3 Rotor Flux Estimation Problem 

(7.26) 

Since rotor flux estimation is required for the stator current MRAS scheme, a VM 

and eM flux observers can be used. However, the VM was shown to be unsuitable for 

low speed operation as described in chapter 6. Therefore the eM can be used to avoid the 

low speed problems but it shows poor stability margins as it will be shown later. The 

block diagram of the NN-based stator current MRAS scheme using a eM rotor flux 

observer is shown in Fig. 7.2. 

Induction Motor 
(Reference Model) 

Neural Network is 

Current Observer 
(Adaptive Model) 

+ 

OJ, 
~ _________ ~ Learning Algorithm 

Current Model 

Fig. 7.2 NN-based stator current MRAS speed observer using eM flux observer 

As will be shown in the next section the use of a eM to estimate the rotor flux causes 

instability at the regenerating region. To overcome this problem another way to estimate 

the rotor flux needed for the stator current MRAS scheme is proposed here which uses an 

off-line trained NN. To estimate the rotor flux components in the stationary reference 

frame the multilayer feedforward NN proposed in chapter 6 can be used. The block 

diagram of the stator current MRAS scheme employing a NN for rotor flux estimation is 
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shown in Fig. 7.3. In this scheme two NN are used, an online trained linear NN for stator 

current estimation and an offline trained nonlinear NN for rotor flux estimation. 

Induction Motor 
(Reference Model) 

Neural Network 
Current Observer 
(Adaptive Model) 

+ 

'--_________ w..L'--I Learning Algorithm 

Iff, 

Neural Network 
Flux Observer 

Fig. 7.3 NN-based stator current MRAS speed observer with NN flux observer 

7.4 Simulation Results 

To test the NN-based stator current MRAS observer performance, the 7.5 kW 

induction machine with parameters given in Table 4.3 is simulated using Matlab­

Simulink. The drive is running under indirect vector control with different reference 

speed and various loading levels. The NN described in section 6.5 will be used for the 

simulation study. The stator current MRAS scheme using the three rotor flux observers, 

VM, eM and NN, is tested for sensitivity to stator resistance variation for reference 

speed changes and load torque application. Furthermore, speed estimation performance is 

investigated at different operating conditions in the low speed region of operation 

including the regenerating mode. In the following simulations the estimated speed (7.26) 

is compared with the actual speed calculated from the mechanical model (5.24). Rotor 

flux and stator current estimates are compared with their actual values obtained from the 

machine state space model (3.26). 

7.4.1 Sensitivity to Stator Resistance Variation 

The purpose of this test is to compare the speed estimation performance of the 

MRAS observer for motor parameter variation. The vector control drive is run with a 

25% increase in the motor stator resistance and sUbjected to a reference speed change 
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from 50 rpm to 75 rpm at no load at t =5s followed by a 25% load torque application at 

t=8s. The speed estimation performance using the three different rotor flux observers is 

shown in Fig. 7.4. 
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Fig. 7.4 NN stator current MRAS speed estimation performance with 25% increase in Rs 

(a) VM flux observer (b) eM flux observer (c) NN flux observer 
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Due to the presence of Rs in the stator current observer equations (7 .9)-(7.10), speed 

estimation for all schemes is affected by the variation in Rs. The effect of Rs change on 

the YM is more serious and causes oscillations in the estimated speed due to the presence 

of Rs in the flux estimation equation as well. Although Rs is not present in the eM 
observer equation, the flux estimation is still affected since the model makes use of the 

estimated speed which deviates from the actual. The NN flux observer shows less 

sensitivity to Rs variations compared to the YM without being dependent on the estimated 

speed. Therefore it shows good speed estimation performance close to that obtained 

when using a CM. The rotor flux and stator current estimation performance using the 

three observers during speed change and load torque disturbance rejection is shown in 

Figs. 7.5-7.8. As can be seen the VM is the most affected by the Rs variation compared to 

the CM and NN observers. 
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Fig. 7.5 Rotor flux estimation performance during speed change with 25% increase in Rs 

(a) VM flux observer (b) eM flux observer (c) NN flux observer 
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Fig, 7,6 Stator current estimation performance during speed change with 25% increase in 

Rs (a) VM flux observer (b) eM flux observer (c) NN flux observer 
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Fig. 7.7 Rotor flux estimation performance during disturbance rejection with 25% 
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Fig. 7.8 Stator current estimation performance during disturbance rejection with 25% 

increase in Rs (a) VM flux observer (b) eM flux observer (c) NN flux observer 

7.4.2 Stability in the Regenerating Mode 

In this test the stability of the stator current MRAS schemes is tested in the 

regenerating mode of operation. In this region of operation the motor is running at 

negative speed with a positive load torque applied. Unstable performance was obtained 

using the eM flux observer in the regenerating mode. Results showing this unstable 

behaviour are obtained when the drive is subjected to a speed reversal command from 40 

rpm to -40 rpm at 25% load torque with nominal machine parameters. The speed 

estimation performance of the stator current MRAS scheme using the eM and NN rotor 

flux observers is shown in Fig. 7.9. 
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Fig. 7.9 NN stator current MRAS speed estimation performance in the regenerating 

mode (a) eM flux observer (b) NN flux observer 

Since rotor flux estimation usmg a eM depends on the estimated speed, any 

deterioration in the speed estimation is fed back to the flux observer causing instability in 

the regenerating mode of operation. Using a NN for rotor flux estimation gives stable 

speed estimation performance in the regenerating mode since flux estimation is 

independent of the estimated speed. Rotor flux and stator current estimation performance 

using the two observers, eM and NN, is shown in Figs. 7.10-7.11. Deterioration of rotor 

flux estimation affects the stator current tracking causing instability of the speed 

estimation using the eM flux observer. By contrast the NN flux observer follows the 

actual flux which improves stator current tracking leading to stable speed estimation 

performance. 
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7.5 Experimental Results 

In this section the new stator current MRAS scheme based on CM and NN flux 

observers will be experimentally demonstrated to overcome the problems of the 

conventional rotor flux MRAS scheme. As illustrated in chapter 6, the NN flux observer 

is trained to match the performance of the CM which is free from stator resistance 

dependency and dc drift problems. Once the NN is trained it was shown that it accurately 

matches the CM. However, unlike the CM, the NN is able to estimate the values of the 

rotor flux components without needing the rotor speed information. Hence it is possible 

to use the proposed NN for rotor flux estimation in the new MRAS scheme. To further 

experimentally validate the proposed schemes open and closed loop sensorless operations 

will be compared for the new and conventional schemes. The speed estimation 

performance is investigated at different operating conditions in the low speed region of 

operation including the regenerating mode. 

7.5.1 Open Loop Operation 

The new schemes were tested in open loop with the drive operated as an encodered 

vector control. The open loop performance of the conventional rotor flux MRAS and the 

new stator current MRAS speed observers is compared. The two structures of the new 

scheme will be compared: Current MRAS-CM using CM flux observer and Current 

MRAS-NN using NN rotor flux observer that was described in section 6.4.1. Estimated 

speed and currents will be compared with measured rotor speed and stator currents. 

The sampling time for the NN stator current observer is 1/5000s with ,,=0.0005 and 

a=O.OO 1. These values have been obtained experimentally by trial and error to ensure 

optimal performance of the NN-based stator current schemes and were also used in the 

simulation stage. The estimated speed from stator current MRAS schemes is obtained 

through a LPF with 30 radls cut-off frequency. Figs. 7.12-7.14 show the open loop 

performance of all schemes for -40 rpm to 40 rpm speed reversal, 40 rpm to 20 rpm 

speed change at no load and a 25% load torque disturbance rejection at 30 rpm. Both 

stator current schemes demonstrate better transient and steady state performance 

compared to the conventional rotor flux MRAS where the use of the VM is dependant on 

the stator voltage. Hence errors between actual and reference stator voltage at low speed 
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worsen the speed estimation performance. On the other hand, NN and CM based 

schemes are not directly affected by stator voltage errors for flux estimation and hence 

have better performance at low speed with less steady state error. 
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Fig. 7.12 Open loop -40 rpm to 40 rpm reversal , no load (a) Stator current MRAS-CM 

(b) Stator current MRAS-NN 
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However, stability problems of the stator current MRAS-CM occur in the 

regenerating mode. Stable operation is obtained using the stator current MRAS-NN 

scheme which still shows a better response compared to the conventional rotor flux 

MRAS scheme. Results of speed and rotor flux estimation are shown in Fig. 7.15 for a 

series of step speed change from 30 rpm to -30 rpm to -60 rpm to 60 rpm at 25% load. 

More results for operation at regeneration using eM and NN flux observers are 

shown in Fig. 7.16 for ±100 rpm speed reversal at 20% load torque. NN provides stable 

flux estimation compared to eM leading to better stator current and rotor speed 

estimation. 
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Fig. 7.15 Open loop performance at regeneration. Speed (a) Stator current MRAS-CM 

(b) Stator current MRAS-NN. Rotor flux (c) CM (d) NN 
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Fig. 7.16 Open loop ±100 rpm speed reversal, 20% load. Speed (a) Stator current MRAS­

CM (b) Stator current MRAS-NN. Rotor flux (c) CM (d) NN. Current (e) CM (f) NN 
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Results at rated load for the stator current MRAS-NN scheme can be obtained by 

using the extended version of the NN flux observer described in chapter 6 where the 

training range covers the full torque region. Figs. 7.17-7.18 show the speed estimation 

performance of the stator current MRAS observer, using CM and NN flux observers, for 

rated load disturbance rejection at 40 rpm and reference speed change from 40 rpm to 10 

rpm at rated load. Compared to conventional rotor flux MRAS, both new schemes show 

better performance at very low speed and rated load with less steady state error in the 

estimated speed. 
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Fig. 7.17 Open loop rated load disturbance rejection, 40 rpm (a) Stator current MRAS­

CM (b) Stator current MRAS-NN 
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Fig. 7.18 Open loop 40 rpm to 10 rpm speed change, rated load (a) Stator current MRAS­

CM (b) Stator current MRAS-NN 

7.5.2 Sensorless Operation 

In this section the proposed stator current based MRAS schemes are tested In 

sensorless mode of operation following the same procedure described in chapter 6. 

Results are given for the NN that was developed in section 6.4.1. 

Test 1: Stair case speed transients from 100rpm to Orpm to 100 rpm: 

This sensorless test, described in chapter 6, was performed at no load. The 

performance of NN-stator current MRAS scheme, based on CM and NN flux observers, 

is shown in Fig. 7.19. Both stator current MRAS schemes show better low and zero 

speed performance compared to the conventional rotor flux MRAS scheme shown in Fig. 
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6.l8 (a) but not as good as that of the NN-based rotor flux MRAS shown in Fig. 6.18 (b). 

Moreover, the NN flux observer shows better flux estimation at zero speed compared to 

the CM observer. Consequently, better stator current estimation and zero speed 

performance is obtained from the stator current MRAS-NN. Rotor flux and stator current 

estimation performances for CM and NN-based schemes around and at zero speed are 

shown in Fig. 7.20. 
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Fig. 7.20 Performance around and at zero speed at no load. Rotor flux estimation (a) CM 

(b) NN. Stator current estimation (c) CM-based scheme (d) NN-based scheme 

Test 2: Stair case speed transients from 100rpm to Orpm to -100 rpm: 

To examine the sensorless performance of the stator current-based schemes at 

regeneration, this test is performed at 12.5% load. The performance of CM and NN based 

schemes is shown in Fig. 7.21. Stator current MRAS-CM scheme shows instability in the 

regenerating mode of operation. On the other hand, stator current MRAS-NN scheme 

shows stable operation as well as better speed response compared to that of the 

conventional rotor flux MRAS scheme shown in Fig. 6.22(a). Stable rotor flux estimation 

is obtained from NN at regeneration compared to that of the CM as shown in Fig. 7.22. 

However, the performance of the NN-based rotor flux MRAS scheme shown in Fig. 6.22 

(b) is the most satisfactory among the different schemes with less steady state error in the 

whole speed region. 
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Fig. 7.21 Sensorless performance for test 2, 12.5% load. Speed response: (a) Stator 

current MRAS-CM (b) Stator current MRAS-NN 
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Test 3: Take off from zero speed to 100 rpm after 30 sec at zero: 

The results of this test at no load are shown in Fig. 7.23 . Both schemes show better 

zero speed performance compared to the conventional rotor flux MRAS scheme. Stator 

current MRAS-NN shows better zero speed performance compared to stator current 

MRAS-CM scheme. However, in contrast to the NN-based rotor flux MRAS scheme, the 

stator current-based scheme can not completely hold zero speed at no load . Thi s can be 

explained based on the fact that the rotor speed information in the stator current signal is 

lost at zero speed. Both schemes succeed in taking off to 100 rpm after 30s at zero speed. 

~ 100 E 
0-.... 

'--' 
"'d 

<1) 

g, 50 
Vl .... 
o -o 
~ 0 

_._._.- Reference speed 

--Measured speed 

--Current MRAS-CM 

-50 ~---L----~----L---~----~----L---~--~45 
5 10 15 20 25 30 35 40 

TIme (s) 

(a) 



Chapter 7 Neural Network-Based Stator Current MRAS Observer 

~ 100 E 
0. .... 

'-" 
"0 
v 
& 50 
Vl .... 
o ...... 
o 
~ 0 

_._.-. - Reference speed 

--Measured speed 
--Current MRAS-NN 

I 

j 
-50 ~---L----~--~-----L----L-__ -L ____ ~ __ ~ 

5 10 15 20 25 
Time (s) 

(b) 

30 35 40 45 

l7l 

Fig. 7.23 Sensorless performance for test 3, no load (a) Stator current MRAS-CM (b) 

Stator current MRAS-NN 

Test 4: Speed step down from 20 rpm to 0 rpm in three steps each of 10 rpm: 

The results of this test at 10% load are shown in Fig. 7.24 (a)-(b) where stator 

current-based MRAS schemes show superior performance compared to that of the 

conventional rotor flux MRAS shown in Fig. 6.25 (a). Better zero speed performance is 

obtained from the stator current MRAS-NN scheme compared to the CM-based scheme. 

Rotor flux estimation performance of eM and NN observers is shown in Fig. 7.24 (c)-

(d). 
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Fig. 7.24 Sensorless performance for test 4, 10% load. Speed (a) Stator current MRAS­

CM (b) Stator current MRAS-NN. Rotor flux (c) CM (d) NN 
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Test 5: Sensorless load torque disturbance rejection: 

Sensorless performance of the stator current-based schemes for 20% load torque 

disturbance rejection at 50 rpm is shown in Fig. 7.25 with better performance compared 

to that of the conventional rotor flux MRAS shown in Fig. 6.27 (a) . To examine the 

sensorless performance in regeneration, both stator current-based MRAS schemes are 

subjected to a 200/0 load torque application at -50 rpm. Results shown in Fig. 7.26 reveal 

that the instability obtained from the stator current MRAS-CM in the regenerating mode 

is completely removed by using the NN flux observer. Fig. 7.27 shows the rotor flux 

estimation performance of the CM and NN observers at regeneration. 
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Test 6: Sensorless speed reversal at load: 

175 

Results for a sensorless ±25 rpm speed reversal demand at 10% load are shown in 

Fig. 7.28. Stator current MRAS observers show better performance compared to that of 

the conventional rotor flux MRAS shown in Fig. 6.29 (a). 

When the test is performed at 25% load, unstable performance is obtained from the 

eM-based scheme compared to a stable performance for the NN-based scheme as shown 

in Fig. 7.29. eM and NN flux estimation performance is shown in Fig. 7.30. Moreover, 

stator current MRAS-NN shows better performance compared to that obtained from the 

conventional rotor flux MRAS shown in Fig. 6.30 (a). However, this performance for 

regeneration is inferior to that of the NN-based rotor flux MRAS shown in Fig. 6.30 (b). 
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Fig. 7.28 Sensorless performance for test 6, ±25 rpm reversal , 10% load (a) Stator current 

MRAS-CM (b) Stator current MRAS-NN 
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7.6 Conclusion 

177 

This chapter has presented a novel NN-based stator current l\1RAS observer for speed 

sensorless 1M drives. A stator current observer is formulated based on machine equations 

and is represented by a two layer linear NN. Rotor flux estimation is required for the 

MRAS speed observer. Using a VM for rotor flux estimation causes problems at low 

speed due to stator resistance sensitivity and the pure integration for flux. A CM can be 

used instead to estimate the rotor flux from the measured stator currents and the 

estimated speed, which shows less sensitivity to stator resistance variation. However, the 

stator current MRAS scheme using the eM flux observer shows instability in the 

regenerating mode of operation. A multilayer feed forward NN is proposed to overcome 
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this problem for rotor flux estimation from present and past samples of the stator voltage 

and current. Using the NN flux observer gives less sensitivity to stator resistance 

variations compared to the VM and since the flux estimation is independent of the rotor 

speed; stable operation has been obtained for regeneration. 

The stator current MRAS schemes have been validated by simulations and 

experimentally in open loop and sensorless modes of operation. Results show the 

improvement in the sensorless performance using the stator current MRAS-NN scheme. 

However, the performance of the NN-based rotor flux MRAS scheme described in 

chapter 6 is still superior to that obtained from the stator current MRAS-NN, especially 

at zero speed. 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

8.1 Introduction 

The research developed in this thesis has focused on the application of AI techniques 

for speed sensorless vector control 1M drives. The main objective was to investigate 

different strategies using AI to improve the performance of sensorless drives which are 

based on MRAS observers. Particular focus was given to the critical low and zero speed 

regions of operation. Various AI-based schemes have been developed and tested as 

suitable means of producing a satisfactory performance at and around zero speed. The 

aim of this chapter is to summarise the investigations and findings of this research, 

present conclusions and recommend various possibilities for future studies. 

8.2 Discussion and Conclusions 

As described in chapter 1, the presence of a speed sensor in an 1M drive may affect 

the reliability and the cost of the drive system. Therefore sensorless control methods are 

shown to offer great advantages. These techniques can be generally grouped into 

fundamental excitation and signal injection methods. Attention was given to fundamental 

model-based strategies where stator voltages and currents are used to estimate the flux 

linkage and the motor speed. However, these techniques usually fail at or around zero 
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speed. AI has been presented as a powerful strategy that can overcome classical control 

problems. These techniques consist mainly of neural networks, fuzzy logic and genetic 

algorithms. 

Particular attention was given to MRAS speed observers due to their simple structure 

and low computational effort. The main problems associated with such observers are 

parameter sensitivity, pure integration problems and inverter nonlinearity. Various 

methods presented in the literature to solve these problems have been reviewed in 

chapter 2. A survey of different applications of AI techniques in sensorless 1M drives 

was also discussed. 

Mathematical modelling for the machine, controller and observer was presented in 

chapter 3. A state space representation of the 1M in the stator reference frame, with the 

stator currents and the rotor flux linkages components as state variables, has been 

developed based on the d-q axes theory. Principles of vector control were also illustrated 

based on the motor model expressed in the synchronous reference frame. The machine 

dynamic equations have been used to formulate the conventional rotor flux-based MRAS 

observer originally developed by Schauder [53]. This scheme is the most common 

MRAS strategy extensively employed for sensorless control. An appropriate adaptation 

mechanism for rotor speed estimation was derived based on Popov's hyperstability 

theory. This derivation reveals that a PI controller can be used to generate an estimate of 

the rotor speed by minimizing a speed tuning signal. The experimental platform 

employed to test the proposed schemes in real time was described in chapter 4. This 

system is based on a 7.5 kW induction machine, a DC load machine and a dSPACE 

DS 1103 controller board. 

A classical fixed-gain PI controller is conventionally used in rotor flux based-MRAS 

speed observers. Not much concern has been given to study alternative mechanisms for 

speed tuning signal minimization. Therefore the purpose of chapter 5 was to fill this gap 

by proposing two novel adaptation mechanisms based on SM and FL strategies. For the 

SM scheme, a new speed estimation adaptation law was derived based on Lyapunov 

theory to ensure estimation stability and fast error dynamics. On the other hand, a 

Mamdani PI-Type FLC was proposed for speed tuning signal minimization to produce 

an estimate of the rotor speed. Hence two new rotor flux-based MRAS observers were 

described, MRAS-SM and MRAS-FL schemes. 
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Simulations were carried out to test the proposed schemes using a standard indirect 

vector control 1M drive. An ideal environment was assumed during simulation stage 

which included an idealised inverter and PWM and ideal integration for flux. Simulation 

results in open and closed loop showed that better transient performance was obtained 

from both novel schemes compared to the conventional PI controller. The SM adaptation 

mechanism showed the smallest speed tuning signal. However, its performance is 

characterised by large chattering due to the need for a sign function in the adaptation law. 

Faster response was obtained from the FL scheme compared to the PI controller due to 

an optimal speed tuning signal during transients. 

Experimental tests were conducted to examine the new adaptation mechanisms in 

real time with particular interest devoted to low speed operation. Flux pure integration 

problems were avoided by using a HPF at the outputs of the VM. Compensated reference 

voltages were used to avoid the need to measure the real stator voltages. PI and FL gain 

tuning was performed in such a way as to obtain similar steady state performance. A LPF 

was used at the output of the MRAS-SM to reduce the chattering in the estimated speed. 

Parameters of the SM scheme were obtained by trial and error to ensure optimal 

performance. Results obtained showed the improvement in the transient performance of 

the rotor flux-based MRAS observer at low speed. Both new schemes demonstrated 

better transient performance as well as better load torque disturbance rejection in both 

open loop and closed loop sensorless modes of operation. The need for a LPF in the 

MRAS-SM introduced delay in the estimated speed allowing better performance for 

MRAS-FL. However, the application of the novel schemes did not produce any 

modifications in the steady state performance of the estimator because a conventional 

VM is used. Improving the MRAS estimator steady state performance was raised and 

treated in chapter 6 using NN. 

The main problems associated with the conventional VM are stator resistance 

sensitivity, the stator voltage acquisition problem, and flux open loop integration which 

may cause dc drift and initial condition problems. Using a conventional VM in rotor 

flux-based MRAS limits the performance of the observer at low and zero speed. NNs 

have been well-established as universal nonlinear function approximators. Multilayer 

feedforward NNs have shown a great capability to model complex nonlinear dynamic 

systems. Therefore a multilayer feedforward NN has been proposed for rotor flux 
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estimation from present and past samples of terminal voltages and currents. Training data 

for the NN was obtained from experimental measurements to take account of all the drive 

nonlinearities. Outputs from the CM, instead of search coils, were used as target values 

for the NN to provide harmonic-free signals and accurate outputs at low speed. A NN 

suitable for general purpose 1M drives applications was developed. In some types of such 

applications, such as fans and centrifugal pumps, rated load is not required at low speed. 

The training of the NN was performed off-line with Matlab-Simulink using the 

Levenberg-Marquardt training algorithm. Extensive simulation and experimental tests 

have been carried out to test the performance of the NN observer. Compared to a VM 

flux observer, the NN avoids using either a pure integrator or a low pass filter which 

eliminates integrator drift and initial condition problems giving less sensitivity to motor 

parameter variations. Therefore a great improvement in the flux estimation performance 

at low speed was achieved using aNN. 

The off-line trained NN was used as a reference model, instead of the VM, for the 

rotor flux MRAS observer to form a new NN MRAS scheme. This represents a 

completely different way of applying NNs to MRAS schemes. Numerous experimental 

tests were carried out to investigate the performance of the proposed scheme in both open 

loop and sensorless modes of operation. Results obtained from open loop tests showed 

the significant improvement in the transient and the steady state performance of the 

MRAS estimator at low speed. Another NN suitable for low speed rated load 

applications, such as elevators and conveyors, was also developed and tested in open 

loop. Results showed the improved low speed performance obtained from the NN MRAS 

scheme up to rated load. Sensorless performance of the NN MRAS scheme developed for 

general purpose applications was examined based on a systematic set of benchmark 

experimental tests. A detailed comparison between the performance of the proposed NN 

MRAS and the conventional rotor flux MRAS schemes has been conducted using an 

indirect vector control drive. Tests were carried out at different operating conditions at 

low speed including speed change, load disturbance rejection and speed reversal with 

load. One of the most substantial achievements of this study was that zero speed no-load 

sensorless operation has been successfully accomplished. Moreover, speed oscillations 

and instability at very low and zero speed, with and without load, obtained from the 
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conventional MRAS scheme have been completely removed using NN MRAS. This 

great improvement in the performance was achieved without using any voltage sensors. 

The application of the proposed NN MRAS scheme for both integrated drive and 

mass-production purposes was also discussed. The scheme can be applied to integrated 

drive applications where the machine and inverter form one unit. In this case the NN 

observer is trained on the actual machine-inverter combination and it should be able to 

handle manufacturer's tolerance within the production line. 

However, for a mass-production environment the application of this scheme is more 

difficult since a training phase is needed during commissioning for each inverter­

machine combination. A possible solution to this problem is to use a number of pre­

trained networks where the suitable one can be selected according to the machine rating. 

Finally, a MRAS speed observer based on stator current was presented in chapter 7. 

This scheme avoids problems associated with the VM by using measured stator currents 

as reference model for the MRAS estimator. This makes the reference model, which is 

represented by the machine itself, free of pure integration problems and insensitive to 

motor parameter variations. A two layer linear NN stator current observer was derived 

and used as an adaptive model for the MRAS observer where the rotor speed is expressed 

as one of its weights. At each sampling period the error between the measured and 

estimated currents is minimized using backpropagation algorithm to update the value of 

the rotor speed online. 

The NN -based stator current observer requires rotor flux estimation. The use of a VM 

causes problems at low speed due to stator resistance sensitivity and the need for pure 

integration for flux. A CM can be also used for rotor flux estimation from measured 

stator currents and estimated speed. However, the MRAS scheme employing the CM for 

flux estimation showed instability in the regenerating mode of operation. To overcome 

these problems, the multilayer feedforward NN developed in chapter 6 was proposed for 

flux estimation. Using the NN flux observer gives less sensitivity to stator resistance 

variation compared to the VM and since the flux estimation is independent of the rotor 

speed, stable operation was obtained for regeneration. 

Simulations were carried out to test the stator current MRAS estimator performance 

for sensitivity to stator resistance variation and for stability at regeneration. Speed 

estimation performance with a 25% increase in the motor stator resistance was 
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investigated for the scheme using VM, CM and NN flux observers. All three schemes 

were affected by this variation due to the presence of Rs in the stator current observer 

equations. However, the MRAS scheme employing VM was found to be the most 

affected with oscillations in the estimated speed. This is due to the existence of Rs in the 

flux observer equation. Using the NN flux observer showed less sensitivity to Rs 

variation compared to the VM and consequently better speed estimation performance 

was obtained. Operation with regeneration was investigated for the stator current MRAS 

estimator using a ±40 rpm speed reversal at 25% load at nominal machine parameters. 

Unstable performance for regeneration was obtained using the CM. This is due to the 

need for the estimated speed for flux estimation and hence any deterioration in the speed 

estimation is fed back to the flux observer causing instability. By contrast, using a NN 

flux observer gives stable operation since flux estimation is independent of the estimated 

speed. 

Experimental tests were conducted to validate the proposed stator current MRAS 

scheme when compared to the conventional rotor flux-MRAS. The two structures of the 

new scheme have been compared: Current MRAS-CM using CM flux observer and 

Current MRAS-NN using NN rotor flux observer. Both stator current-based schemes 

showed better transient and steady state open loop speed estimation performance at low 

speed. This is mainly due to the use of an improved reference model free of pure 

integration and insensitive to parameter variation in addition to accurate flux estimation 

obtained from the CM and NN observers. Stability problems have been illustrated 

experimentally for the current MRAS-CM scheme in regeneration which were avoided 

using the NN for flux estimation. 

Sensorless tests demonstrated the improvement in the low speed performance using 

stator current MRAS estimator compared to the conventional rotor flux scheme. Better 

zero speed operation was given but which is still not as good as that obtained from the 

NN-based rotor flux MRAS. The stator current-based schemes can not completely hold 

zero speed at no load. Current MRAS-NN demonstrated better zero speed performance 

compared to the current MRAS-CM due to better flux estimation obtained from the NN 

at zero speed. Instability in regeneration was demonstrated for sensorless operation using 

the current MRAS-CM. The NN flux observer showed stable estimation performance 

leading to stable operation at regeneration. 
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In conclusion, neural networks have shown great capabilities to significantly improve 

the performance of sensorless 1M drives which are based on MRAS observers in the 

critical low and zero speed region. A multilayer feedforward NN has been developed for 

rotor flux estimation from present and past samples of the stator voltage and current. This 

NN was proposed as a reference model for rotor flux-based MRAS and for rotor flux 

estimation in a stator current-based MRAS. Both schemes have been experimentally 

implemented and tested in both open loop and sensorless modes of operation. 

Experimental tests have focused on the operation at low and zero speed which represent a 

challenging region of operation for sensorless drives. A considerable enhancement in the 

performance was demonstrated using the proposed NN-based schemes compared to the 

conventional rotor flux-MRAS. However, the performance of the NN-based rotor flux 

MRAS scheme described in chapter 6 was found to be superior to that obtained from the 

stator current MRAS-NN introduced in chapter 7. 

8.3 Recommendations for Future Work 

The work developed in this thesis has shown completely new applications of AI 

techniques applied to speed sensorless 1M vector control drives. Different adaptation 

mechanisms have been proposed to replace the classical PI controller. The tuning of 

different parameters has been carried out online by trial and error. A systematic method 

could be considered for parameter tuning such as use of a GA or SA. Moreover, other 

optimization algorithms may be considered for minimizing the speed tuning signal. 

One of the major contributions of this work was to improve the performance of the 

sensorless drive, which is based on MRAS observer, at very low and zero speed. This has 

been achieved by replacing the conventional VM with a multilayer NN. Computational 

burden required by NN compared to a simple mathematical equation of the VM may 

impose a drawback of the proposed strategy. Therefore, it will be interesting if an 

investigation is carried out to study other NN structures and topologies to replace the 

VM. Furthermore, other AI-based strategies that require less computational effort can be 

also investigated and compared with the NN developed in this work. 
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APPENDIX A 

DYNAMIC MODELLING OF INDUCTION MACHINE 

A.l Space Vector Representation of Induction Machine 

In a three phase induction machine, the space vectors of the stator current, voltage 

and flux in the stationary reference frame fixed to stator can be defined as: 

-;- 2 (. . 2.) 
Is = - 1 sA + al sB + a 1 sC 

3 (A. I) 

= isD + jisQ 

_ 2( 2 ) 
Vs = - vsA +avsB +a vsc 

3 
(A.2) 

=vsD + jVsQ 

_ 2( 2) 
If! s ="3 If! sA + a If! sB + a If! sC (A.3) 

= If! sD + jlf! sQ 

where: 

(A.4) 
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Using Faraday's and Kirchoffs laws the stator voltage equatl·on f h h 
o t e tree phase 

machine can be written as: 

R · dlflsA 
vsA = slsA +-~ 

dt (A.5) 

R · dlflsB v sB = slsB +---=--...:::.=-
dt (A.6) 

R 
. dlflsc 

vsC = slsC +-=-=-
dt (A.7) 

Substituting equations (A.5), (A.6) and (A.7) into (A.2) yields the stator voltage equation 

in the stator reference frame: 

Vs = 23 ((RsisA + d~SA ) + a(RsisB + dlfl sB) + a 2 (Rsisc + dlfl SC») 
t m m (A.8) 

Vs = 2 (Rs (isA + aisB + a 2isc ) + (dlfl sA + a dlfl sB + a2 dlfl sC ») 
3 dt dt dt 

(A.9) 

Recalling (A.1) and (A.3), Equation (A.9) yields the stator voltage equation in the stator 

reference frame using space vector notation which can be written as: 

d - s 
-s _ R -;-s lfIs 
Vs - sis +--

dt 
(A.I0) 

The superscript s and the subscript s stand for the stator reference frame and the stator 

quantities respectively. 

Similar to the definition of the space vectors of the stator quantities in the stator 

reference frame, the space vectors of the rotor quantities in a reference frame fixed to 

rotor can be expressed as: 

-;- 2 (. . 2.) 
lr = - Ira + alrb + a Ire 

3 
(A.ll) 

- 2( 2 ) vr =- vra +avrb +a vre 3 
(A.12) 

- 2( 2 ) lfIr =- lfIra +alflrb +a lfIre 
3 

(A.I3) 

The rotor voltage equations of the three phase machine can be written as: 

R
· dlflra 

vra = r1ra + 
dt 

(A.14) 
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(A.lS) 

- R' dlflrc vrc - r1rc +--
dt (A.I6) 

Substituting equations (A.14), (A. IS) and (A.16) into (A.12) yields the rotor voltage 

equation in the rotor reference frame: 

vr = 23 ((Rrira + d~ra)+a(Rrirb + dlflrb)+a2(Rrirc + dlflrc)J 
t dt dt (A.I7) 

v = 2 (R (i + ai b + a2i ) + (d
lflra + a dlflrb + a2 dlflrc)J 

r 3 r ra r rc dt dt dt (A.I8) 

Recalling (A.ll) and (A.13), Equation (A.18) yields the rotor voltage equation in the 

rotor reference frame using space vector notation which can be written as: 

d - r 
-r-R -;-r ~ vr - rlr + 

dt 
(A.19) 

The superscript r and the subscript r stand for the rotor reference frame and the rotor 

quantities respectively. 

For mathematical modelling and control of the induction machine it is required to 

write down the machine equation in the same reference frame. Therefore the 

transformation between stator reference frame (D-Q) and another (d-q) frame is 

considered as shown in Fig. A.I. 

Fig. A.I Transformation between D-Q and d-q reference frames 
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Resolving isd and isq on the D-Q axis yields: 

isD = isd cos Be - isq sin Be 

isQ = isd sin Be + isq cos Be 

This transformation can be written as: 
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(A.20) 

(A.21 ) 

where the superscript e stands for the d-q reference frame, which will be defined later as 

the synchronous frame. 

(A.21) can be written in matrix form as: 

(A.22) 

And vice versa the transformation from stationary to d-q reference frame is given by: 

sin Be J [~SDJ 
cosBe lsQ 

Similarly, stator quantities can be written in a reference frame fixed to rotor as: 

-;r -;s -j() 
Is = Is e r 

-r -s - j() 
vs =vs e r 

-r _ -s - j() 
IfIs -lfIs e r 

Rotor quantities can be written in a reference frame fixed to stator as: 

I; = 1; ej()r 

:v: =:V; ej()r 

(A.23) 

(A.24) 

(A.25) 

(A.26) 

-s -r j() 
IfIr=lfIre r 

The rotor voltage equation (A.19) can be written in the stator reference frame based 

on the described transformations as: 
(A.27) 

Let dBr = m which is the angular rotor speed, equation (A.27) can be written as: 
dt r' 
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(A.28) 

Eliminating the term e - jOr ~ (A 28) lrom . yields the rotor voltage equation in the stator 

reference frame: 

(A.29) 

Resolving (A.10) and (A.29) into their real and imaginary parts yields the induction 

motor mathematical model in d-q coordinates established in the stator reference frame: 

R 
. dlJlsD 

vsD = slsD +--'-=--
dt 

. dlJl sQ 
vsQ = RslsQ +-d~t::::"" 

R' dlJlrd 
vrd = r1rd + dt +wrlJlrq 

. dlJlrq 
Vrq = Rrlrq + -wrlJlrd 

dt 

The stator and rotor flux linkages are given by: 

IJI s = Lsls + Lmlr 

IJI r = Lmls + Lrlr 

Ls = Lm + Lis 

Lr = Lm +Llr 

(A.30) 

(A.3l) 

(A.32) 

where L
s

' Lr are the stator and rotor self inductances, Lm is the mutual inductance 

and Lis' Llr are the stator and rotor leakage inductances respectively. 

Equation (A.31) can be written in d-q format in the stator reference frame as: 

IJI sD = Lsi sD + Lmird 

IJI sQ = Lsi sQ + Lmirq 

IJIrd = LmisD + Lrird 

(A.33) 

IJIrq = LmisQ + Lrirq 

Substituting (A.31) into (A.1 0) and (A.29) yields the stator and rotor voltage equations in 

the stator reference frame in terms of stator and rotor currents: 
(A.34) 
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v; = {Rr + Lr P )J; + LmpJ; - jWr (Lm~S + LrJ; ) 

where p is the differential operator. 

These equations can be expressed in matrix form as: 
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(A.35) 

(A.36) 

Equations (A.34) and (A.35) can be written in the d-q reference frame fixed to stator as: 

VsD = {Rs + Lsp )isD + Lmpird 

vsQ = (Rs + Lsp)isQ + Lmpirq 

vrd = LmpisD + wrLmisQ + {Rr + Lr P )ird + wrLrirq 

Vrq = -wrLmisD + LmPisQ - wrLrird + (Rr + Lr P )irq 

A.2 State Space Model of Induction Machine 

(A.37) 

In this section a state space model of the induction machine in the stator reference 

frame is developed. The rotor current can be expressed in terms of the rotor flux From 

(A.31) as: 

- 1 ( - ) ir = - IfIr - Lmis 
Lr 

Substituting (A.38) into (A.34) yields the following in the stator reference frame: 

Vs = (Rs + Lsp )Js + Lm P(IfIr - LmJs) 
Lr 

_ -;- .r;, -;- Lm -
Vs = Rsls +(Ls --)p1s +-L Plflr 

Lr r 

_ -;- L~ -;- Lm -
Vs = Rsls + Ls(l- L )p1s +T Plflr 

Ls r r 

Defining 0' as the leakage coefficient given by: 

JJ 
0'=1- m 

LsLr 

Equation (A.39) can be written as: 

_ -;- -;- Lm -
Vs = Rsls +O'LsPls +T Plflr 

r 

Equation (A.41) can be written in d-q form as: 

(A.38) 

(A.39) 

(A.40) 

(A.41 ) 
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R . L' Lm 
vsD = slsD +a sPlsD +-Plflrd 

Lr 
(A.42) 

- R . L' Lm vsQ - slsQ +a sP1sQ +-Plflrq 
Lr 

(A.43) 

Substituting (A.38) into (A.29) and using zero rotor voltage for a squirrel-cage machine 

yields: 

O I (~ L -;-) dVir . -
= - \lfIr - m1s + -- - JWrlflr 

Tr dt 

where Tr is the rotor time constant given by: 

T _ Lr 
.lr -

Rr 

Rearranging (AA4) gives: 

_ Lm-;- I - .-
Plflr = -Is - -lfIr + JWrlfl r 

Tr Tr 

Equation (AA6) can be written in d-q form as: 

Lm . I 
PIfI rd = T I sD - 1', IfI rd - wrlfl rq 

r r 

Substituting (AA7) into (AA2) yields: 

. . Lm Lm. I _ ) 
vsD = RslsD +aLsPlsD +-(-lsD -rlflrd Wrlflrq 

Lr Tr r 

Separating pisD gives: 

pisD =_I_[VSD -(Rs + 4n )isD + LL: IfIrd + ~m wrlflrql 
aLs LrTr r.l r r 

Using the definition of a in (AAO) equation (A.50) can be written as: 

R I-a Lm Lm 
pi D = vsD _(_s +--)isD + L L 1', IfIrd + L L Wrlflrq 

s aLs aLs aTr a s r r a s r 

Similarly, substituting (AA8) into (AA3) and separating pisq gives: 

vsQ Rs I-a). + Lm IfI - Lm wrlflrd 
pi Q =--(-+- lsQ L 1', rq L L 

s aLs aLs aTr aLs r r a s r 

(A.44) 

(A.45) 

(A.46) 

(A.47) 

(A.48) 

(A.49) 

(A.50) 

(A.51) 

(A.52) 
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Equations (A.51), (A.52), (A.47) and (A.48) can be used to represent the induction 

e s a or relerence machine model in state space form in d-q coordinates established 'in th t t ~ 

frame as: 

-al 

pisD 

pisQ 
0 

-
Pljlrd Lm 

PIjI rq Tr 

0 

where: 

R I-a al =_s_+ __ 
aLs aTr 

L 
a - m 2-

aLsLrTr 

L 
a - m 3-

aLsLr 

0 

-al 

0 

Lm 

Tr 

a2 a3 0Jr 
1 

0 

isD 
aLs 

1 
- a30Jr a2 

isQ 
0 

+ 
aLs [VSD 1 (A.53) 

1 IJIrd vsQ 
-OJr 0 0 

Tr IJI rq 
1 

OJ, 0 0 
Tr 

(A.54) 

A.3 Space Vector Voltage Equations in the General Reference Frame 

In a general reference frame which rotates with a general speed OJg with direct and 

quadrature axes x, y, as shown in Fig. A.2 , the space vector of stator voltage, current 

and flux can be written as: 

-g . 
Vs = vsx + jVsy 

-=-g - . .. 
Is - Isx + )lsy 

-g . 
IjI s = IjI sx + jljl sy 

Using the frame transformation the stator quantities can be written as: 

-s -g jOg 
Vs = Vs e 

IS -lg e jOg 
s - s 

-s -g jOg 
IjIs = IjIs e 

(A.55) 

(A.56) 
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sQ 

y 

~ ________ ~-L--~----~sD 

Fig. A.2 Application of the general reference frame 

Substituting (A.56) into (A.lO) gives the stator voltage equations in the general reference 

frame: 

_g jOg _ R -;g jOg d (-g jOg) 
Vs e - sIs e +- If's e 

dt 

dB 
Let ~ = W g equation (A.57) can be written as: 

dt 

Eliminating ejOg equation (A.58) can be written as: 

-g R -;g dljif . -g v = 1 +--+JW III s s s dt g'f'S 

Similarly the rotor quantities in the general reference frame can be written as: 

-g - . 
vr - vrx + JVry 

il = irx + jiry 

-g . 
If'r = If'rx + Jlf'ry 

Using frame transformation the rotor quantities can be written as: 

-r -g j(Og-Or) 
vr = vr e 

-;r -:g j(Og-Or) 
lr = 'r e 

-r -g j(Og -Or) 
If'r = lJfr e 

(A.57) 

(A.58) 

(A.59) 

(A.60) 

(A.61) 
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Substituting (A.61) into (A.19) yields the rotor voltage equations in the general reference 

frame: 

(A.62) 

El
' ., j(()g-()r) . lmmatmg e equatIOn (A.58) can be written as: 

-g _ R 7g dIfi!.( -g Vr - rlr +--+) Wg -wr)lJIr 
dt 

(A.63) 

The stator and rotor flux linkages in the general frame are given by: 

_g _ 7g 7g 
IJI s - Lsis + Lm1r (A.64) 

IJI! = Lm1l + Lrll 

The stator and rotor voltage equations in the synchronous reference frame can be 

obtained by substitutingwg = We' which is the synchronous speed, and Wg -Wr = Wsl' 

which is the slip speed, into (A.59) and (A.63): 

-e R 7e dVi: . -e 
Vr = rlr + dt + }WsllJlr 

(A.65) 

(A.66) 

Equations (A.65) and (A.66) can be written m d-q coordinates established in the 

synchronous reference frame as: 

v sd = Rsi sd + PIJI sd - welJl sq 

Vsq = RSisq + PlJIsq +WelJlsd 

o = Rrird + PlJlrd -WsllJlrq 

(A.67) 

o = Rrirq + PlJlrq + wsllJlrd 

The stator and rotor flux linkages in the synchronous reference frame can be written as: 

If! sd = Lsisd + Lmird 

IJI sq = Lsisq + Lmirq 

IJIrd = Lmisd + Lrird 

IJIrq = Lmisq + Lrirq 

(A.68) 
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A.4 Power and Torque Relations using d-q Representation 

The three phase input power to the induction machine can be written in terms of the 

three phase voltages and currents as: 

(A.69) 

By expressing the three phase quantities by the equivalent two phase quantities. the 

expression for the input power can be written as: 
• 

(A.70) 

To prove the inverse transformation from three-phase to two-phase consider the input 

power expression in the d-q coordinates and substitute the three phase variables instead 

of the two phase quantities: 

(A.71) 

In general, the expression for active and reactive power of the induction machine 

using d-q representation can be written as: 
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3 L -;-:1) 
Sj = 2 \Vsls 

= ~ {(VSD + jVsQ )VSD - JisQ) } 

= ~ {(VSDiSD +VsQisQ)+ j(VsQiSD -VSDisQ)} 

=Pi + jQi 

where :1 stands for the complex conjugate. 

The expressions for input active and reactive power can be written as: 

P; = ~ (VSDiSD + vSQisQ) 

Qi = ~ (VsQiSD -VSDiSQ) 

The mechanical power can be written as: 

Pmech = ~ (erdird +erqirq ) 

207 

(A.72) 

(A.73) 

(A.74) 

where e
r 

is the space vector of the rotor EMF induced in the rotor windings which can 

be expressed as: 

er = erd + jerq 

er =-jOJrlflr =-jOJr(lfIrd+ jlfl rq) 
(A.75) 

e r = OJ r IfI rq - j OJ r IfI rd 

Substituting (A.75) into the mechanical power equation yields: 

3 (A.76) 
Pmech = 2Wr(1jI rqird-1jI rdirq) 

The electromagnetic torque, for a machine with P pole pairs, can be obtained by 

dividing the mechanical power by the mechanical rotor speed mrm as follow: 

T - P mech _ 'i P ( . - .) - _'i P- xi e - - 2 IjI rq1rd IjI rdlrq - 2 IfIr r 
Wrm 

(A.77) 

where the mechanical rotor speed is related to the electrical speed by: 

(A.78) 
Wr 

Wrm=p 

The torque expression obtained is similar in all reference frames. By using other 

machine variables, the electromagnetic torque can be also expressed as: 



Appendix A Dynamic Modelling of Induction Machine 208 

(A.79) 
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APPENDIXB 

FUZZY LOGIC CONTROL 

B.l Principles of Fuzzy Logic 
The most frequently used FL system is the Mamdani-type which consists of three 

main parts: fuzzification, inference engine and defuzzification. 

B.l.l Fuzzification 
Since FL is based on linguistic variables, the first step performed by FLC is to map 

all inputs to fuzzy sets and to assign membership values for each input to these different 

sets. This process is called juzzijication where each point from the input space (universe 

of discourse) is assigned a membership value Jl (degree of membership) between 0 for no 

membership and 1 for full membership to a given fuzzy set. A common example is the 

set of hot temperatures where the universe of discourse consists of different temperatures 

between 15 degrees to 35 degrees as shown in Fig. B.1. 
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Membership 
Value 

fJ. 

1 -----
HOT 

Temperature o '--__ --J. ___ ---;. 

15 25 35 

(a) 

Membership 
Value 

fJ. 

1 
HOT 

Temperature 
O~------!.----~ 

15 25 35 

(b) 
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Fig. B.l Hot temperature example representation (a) Classical crisp set (b) Fuzzy set 

Using well-defined (crisp) approach a description of a hot temperature can be given 

to any temperature higher than 25 degrees. However it is unreasonable to define a 

temperature of 24 degrees to be not hot. This can be overcome by a fuzzy approach using 

a continuous curve, a membership function, passing from non-hot to hot to define how 

much a given temperature belongs to the HOT set. Hence 25 degrees has 100% 

membership to the Fuzzy set HOT where as 24 degrees and 16 degrees have 90% and 

10% membership values respectively. This is different from Boolean logic where any 

point in the universe of discourse should be inside (full membership) or outside (no 

membership) the set. 

There are many types of membership functions; some are smooth such as Gaussian 

and Sigmoid and others are non-smooth such as triangular and trapezoidal as shown in 

Fig. B.2. The choice of suitable membership function is not unique. However, simple 

membership functions such as triangular and trapezoidal are used in various applications 

due to their linear characteristics. 
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Fig. B.2 Fuzzy membership functions (a) Triangular (b) Trapezoidal (c) Gaussian (d) 

Sigmoid 

B.t.2 Fuzzy Inference Engine 

2 I I 

The fuzzy inference engine is used to generate the fuzzy outputs by connecting the 

fuzzified inputs to the output fuzzy sets based on linguistic rules. This mimics human 

reasoning which can be described by an Jf-Then expression: If x is Ai and/or y is B; then z 

is C j where x and yare the first and the second fuzzy inputs respectively and A; and B; are 

the membership functions for each input, z is the controller output C j is the membership 

function of the output. 
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B.1.3 Defuzzification 

The last step of the FLC is the defuzzification process where the output fuzzy set is 

transformed back to a real value. Different methods can be used for the defuzzification 

such as: maximum, mean of maxima, centre of area and centre of gravity. 

Usually scaling factors are used in the input and the output of the FLC to normalize 

the value of the controller input and to de-normalize the controller output. More often the 

tuning of these parameters is performed off-line using any optimization technique such as 

GAs. After the tuning process these parameters remain constant during the normal 

operation of the controller. To improve the controller performance and robustness these 

parameters can be alerted online. If such an on-line tuning of scaling factors, fuzzy rules 

or membership functions is performed the controller becomes an adaptive fuzzy 

controller. 

B.2 Fuzzy Logic Modelling 

FLC can be modelled using the Matlab Fuzzy Logic Toolbox graphical user interface 

GUI as shown in Fig. B.3 (a). This allows an easy way to build the FLC graphically. Five 

primary GUI tools are provided to help building and editing the FLC: Fuzzy Inference 

System (FIS) editor, membership function editor, rule editor, rule viewer and surface 

viewer. These GUI tools are dynamically linked so that any change in one will affect the 

others. The FIS editor is used to determine number and names of inputs and outputs, 

membership function editor defines shapes of different membership functions and inputs­

outputs range, rule editor is used for editing the FL rules. Rule viewer and surface viewer 

are read-only tools and are used to look at the FIS characteristics. Modelling of FLC 

described in chapter 5 in Simulink is shown in Fig. B.3(b). 
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