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During the last two decades there has been considerable development of sensorless
vector controlled induction motor drives for high performance industrial applications.
Such control strategies reduce the drive’s cost, size and maintenance requirements while
increasing the system’s reliability and robustness. Parameter sensitivity, high
computational effort and instability at low and zero speed can be the main shortcomings
of sensorless control. Sensorless drives have been successfully applied for medium and
high speed operation, but low and zero speed operation is still a critical problem. Much
recent research effort is focused on extending the operating region of sensorless drives
near zero stator frequency.

Several strategies have been proposed for rotor speed estimation in sensorless
induction motor drives based on the machine fundamental excitation model. Among
these techniques Model Reference Adaptive Systems (MRAS) schemes are the most
common strategies employed due to their relative simplicity and low computational
effort. Rotor flux-MRAS is the most popular MRAS strategy and significant attempts
have been made to improve the performance of this scheme at low speed. Artificial
Intelligence (AI) techniques have attracted much attention in the past few years as
powerful tools to solve many control problems. Common Al strategies include neural

networks, fuzzy logic and genetic algorithms.
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The main purpose of this work is to show that Al can be used to improve the
sensorless performance of the well-established MRAS observers in the critical low and
zero speed region of operation. This thesis proposes various novel methods based on Al
combined with MRAS observers. These methods have been implemented via simulation
but also on an experimental drive based around a commercial induction machine.
Detailed simulations and experimental tests are carried out to investigate the
performance of the proposed schemes when compared to the conventional rotor flux-
MRAS. Various schemes are implemented and tested in real time using a 7.5 kW
induction machine and a dSPACE DS1103 controller board. The results presented for
these new schemes show the great improvement in the performance of the MRAS

observer in both open loop and sensorless modes of operation at low and zero speed.
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CHAPTER 1

INTRODUCTION AND SCOPE OF THE THESIS

1.1 Introduction

Recently, controlled AC drives have been extensively employed in various high
performance industrial applications. This has been conventionally achieved by using DC
drives with their simple control structure. AC machines are generally inexpensive,
compact and robust with low maintenance requirements compared to DC machines but
require complex control [1, 2]. However, recent advances in power electronics, control
techniques and signal processing have led to significant developments in AC drives.
Induction Motors (IMs) and Permanent Magnet Synchronous Motors (PMSMs) are
increasingly replacing traditional DC motors in a wide range of applications where a fast
dynamic response is required. The majority of the AC drives used in industry are those
employing squirrel-cage IMs. This motor is characterised by a simple and rugged
structure, low cost, high efficiency and high reliability [2].

Variable speed IM drives can be generally classified into low performance and high
performance controlled drives. Scalar control is used for low performance drives where
only the magnitude and frequency of the stator voltage or current is regulated. The most
common scalar control technique is the constant Volts/Hertz (V/f) control in which the

magnitude of the stator voltage is adjusted in proportion to the demand stator frequency
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in order to keep the stator flux constant [3]. The basic idea of this method is to control
the speed of the rotating magnetic field by changing the supply frequency.

V/f IM drives offer moderate dynamic performance and are therefore used in
applications where high speed precision is not required such as fans, pumps and simple
elevators [4]. When high performance dynamic operation is required, these control
techniques become unsatisfactory.

High performance IM drives can be implemented either by vector control or Direct
Torque Control (DTC) strategies [2]. In these types of control, the instantaneous values
of the motor torque and the magnetic field are regulated in the steady state and in
transient operating conditions. The proper application of these control techniques allows
the IM to achieve similar dynamic performance to that of a separately excited DC motor.
The rapid evolution of high speed power electronic converters, digital signal processors
and inexpensive, powerful microcontrollers allow the spread of these control strategies in
many industrial applications. The block diagram of a closed loop IM drive is shown in
Fig. 1.1.

One of the more recent developments in the control of IM drives is the elimination of
the speed sensor mounted on the motor shaft. This technology is usually referred to as
“sensorless control” where the motor speed is estimated rather than measured. However,
the drive will still usually need current and perhaps voltage sensors to achieve the control

task [2].

Rectifier Bridge 3-phase Inverter
_ DC Link . Encoder
JurL
3-phase _J_ 4 ) M Load
AC supply —_ ‘
_
A A A
Controller |
]
ya AN
L I
PC

Fig. 1.1 Block diagram of a closed loop induction motor drive
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1.2 Sensorless Control of Induction Motor Drives

Sensorless vector controlled IM drives are being vigorously developed for high
performance industrial drive systems. Such control reduces the drive’s cost, size and
maintenance requirements while increasing the system’s reliability, robustness and noise
immunity [1, 3]. Moreover, using a speed sensor in a hostile environment is not practical.
Parameter sensitivity, high computational effort and instability at low and zero speed can
be the main shortcomings of sensorless control [5].

Sensorless drives have been successfully applied in medium and high speed regions,
but low and zero speed operation is still a critical problem specially for sensorless IM
drives [1]. In fact, some applications such as cranes, traction drives and presses are
required to maintain the desired torque down to zero speed [6]. Much recent research
effort is focused on extending the operating region of sensorless drives near zero stator
frequency [9, 7].

Several strategies have been proposed for rotor speed estimation in sensorless IM
drives [1, 2]. In general, these methods fall into two main categories: fundamental
excitation and spectral analysis techniques [1, 8]. A broad classification of
methodologies applied to speed sensorless AC drives is shown in Fig. 1.2. The two main

techniques used for sensorless control are described in the following sections.

Estimation Techniques

' '

Spectral Fundamental Model
Analysis ,
Observers MRAS Artificial Open Loop
' Intelligence Estimators
Rotor  High-Frequency Rotor Slot Inverter | Rotor Back-  Reactive Stator
Saliency at Signal Injection Harmonics Switching | Flux EMF  Power Current
Fundamental Scheme  Scheme Scheme Scheme

B e A A A TR

Fuzzy Genetic

Extended  Unscented Extended Adaptive Sliding  Neural  Logic Algorithms
Kalman Kalman Luenberger Speed Mode  Networks
Filter Filter Observer Observer Observer

Fig. 1.2 Classification of speed estimation techniques for sensorless control
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1.2.1 Spectral Analysis Strategies

These algorithms benefit from a rotor position-dependence feature present in many
AC motors to extract the rotor speed or position information. The estimation strategy is
based on saliency introduced by special geometrical effects which are naturally present in
PMSM [1]. However, this technique can be inappropriate for machines with cylindrical
rotor design such as IM. Therefore non model-based strategies for sensorless IM drives
can use other specific effects such as slot harmonics, magnetic saturation and transients
caused by inverter switching to exploit the machine anisotropic properties [1, 9].
Magnetic saturation in IM can be introduced by injecting a high frequency signal into the
machine stator windings [1, 3].

Using these techniques shows low parameter dependency with an improved low and
zero speed performance if signal injection techniques are used [3]. However, rotor
saliency- based schemes with fundamental excitation is machine specific and may not be
suitable for standard machines because it requires special rotor design [1]. High-
frequency signal injection techniques are highly complicated and their design is not
general since it needs to match the properties of the specific machine drive [9].
Furthermore, these methods may introduce audible noise and torque ripple to the motor
[8]. Therefore the focus of this research is on model-based techniques that can be applied

to any type of machine [1].

1.2.2 Fundamental Model-Based Strategies

These strategies make use of the instantaneous values of stator voltages and currents
to estimate flux linkage and motor speed from the machine fundamental model. These
methods usually utilize a d-¢ model to describe the machine equations by assuming
sinusoidal flux distribution and neglecting space harmonics [1]. These schemes usually
work well above 2% of the base speed [1]. A block diagram of a model-based sensorless
AC drive is shown in Fig. 1.3.

The main problems associated with the low speed operation of model-based
sensorless drives are related to machine parameter sensitivity, stator voltage and current
acquisition, inverter nonlinearity and flux pure integration problems [1, 5]. Since all

model-based estimation techniques rely on rotor induced voltages, which are very small
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and even vanish at zero stator frequency, these techniques usually fail at or around zero

speed due to lost observability [1, 5, 9].

*

¥V —
* Controller |——™ Inverter
l//r —P]

w

A

ig Estimator r

Fig. 1.3 Block diagram of a model based sensorless AC drive

Fundamental model-based estimation strategies can be generally grouped into open
loop estimators, observer-based schemes, Model Reference Adaptive Systems (MRAS)
and Artificial Intelligence (AI) based methods. MRAS observers are well-established
sensorless techniques that have attracted much attention due to their simplicity and direct
physical interpretation. However, improving the performance of these schemes at very
low speed remains challenging.

Recently various Al-based techniques have been successfully applied to electric
drives. In general increased robustness against parameter variations and improved
performance are expected when these methods are employed [10], which encourages the

application of these techniques to improve sensorless control.

1.3 Artificial Intelligence for Electric Drives

Al techniques have gained much interest over the past few years. These strategies
consist of expert systems, artificial Neural Networks (NNs), Fuzzy Logic (FL), fuzzy-
neural networks and Genetic Algorithms (GAs) [10, 11]. The main idea of Al is to mimic
natural human intelligence in the form of a computer program to tackle problems that are
hard to solve by traditional methods. While expert systems and FL are rule-based
techniques emulating the behaviour of human experience, NNs directly mimic the human
brain with capability of generalization and learning [11]. The GA is a stochastic search

technique that mimics the mechanism of natural selection. GA is considered as an
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evolutionary computing technique, which is a rapidly emerging area of Al It has been
recognized as an effective and powerful technique to solve optimization and search
problems.

Compared to classical control strategies, Al techniques eliminate the need for
mathematical models which are often complicated and rely on several assumptions with
some parameters that may be difficult to measure [10]. Therefore, more robustness with
respect to parameter variation is expected when using such schemes [10]. Moreover, due
to their adaptive capabilities these techniques may lead to improved performance when
combined with conventional methods. Several books have been published in the area of
Al applications in power systems and electric drives [10, 12-14]. Various Al-based
schemes used for control applications have been studied by the author and presented
previously [15, 16]. A detailed comparison of different Al applications in the control of
IM drives from this present work has been recently published by the author [17].
Broadly, Al techniques have found widespread applications in the field of variable speed
drives in the following areas [10, 18]:

» Replacement of conventional speed, position and current controllers [19-22]

= Tuning of conventional PI controllers [15, 23]

» Improving the performance of conventional controllers [16, 24, 25]

= Parameter and state estimation of DC and AC machines [10, 18, 26-30]

» Fault detection and condition monitoring [31]

» Efficiency optimization for AC drives [32]

= Machine design optimization [33, 34]

1.4 Scope and Novelty of the Thesis

The research reported in this thesis investigates the operation of speed sensorless
vector controlled IM drive using MRAS speed observer. Particular attention is given to
the low and zero speed regions of operation where the performance of the conventional
observer usually deteriorates. An experimental evaluation of the performance of the
conventional rotor flux-based MRAS scheme at very low and zero speed has been
presented by the author in [35]. Despite considerable research effort, it is still
problematic for MRAS-based sensorless schemes to provide a satisfactory response in

this region of operation. Therefore the main intent of this work is to develop new hybrid
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AI-MRAS schemes that are capable of achieving better performance at and around zero
stator frequency. The main motivation is to exploit the effectiveness of Al techniques to
overcome the problems associated with the classical methods. This research presents
entirely new applications of Al in MRAS-based speed sensorless IM drives.

Conventionally, a simple fixed gain linear PI controller is employed to generate the
estimated rotor speed in rotor flux-MRAS. Not much interest has been devoted to
considering other types of adaptation mechanisms to minimize the speed tuning signal.
An attempt to fill in this research gap is described by proposing alternative adaptation
schemes using FL and Sliding Mode (SM) strategies. Results of such schemes have been
published by the author [36]. To solve the problems of rotor flux-MRAS, a novel scheme
is proposed employing a NN rotor flux observer which serves as a reference model for
the MRAS observer. Promising results at low stator frequency are obtained from this
scheme and have also been published by the author [37, 38]. Finally, another new
approach to produce improved low speed performance is presented using a NN-based
stator current-MRAS observer considering different rotor flux estimators. Operations at
low speed and at regeneration have been studied and the test results have again been
reported [39].

Various novel methods based on Al are implemented and their superiority at zero and
low speed regions is proven through numerous and rigorous tests. All the proposed
schemes have been simulated and experimentally validated based on 7.5 kW IM and a
dSPACE DS1103 controller board.

1.5 Publications
The results of the research presented in this thesis are principally based on number of
published/submitted articles to international conferences and journals. A list of these

publications is given below:

= S. M. Gadoue, D. Giaouris, and J. W. Finch, "Sensorless Control of Induction
Motor Drives at Very Low and Zero Speed Using Neural Network Flux

Observers," IEEE Transactions on Industrial Electronics, Submitted.
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S. M. Gadoue, D. Giaouris, and J. W. Finch, "Artificial intelligence-based speed
control of DTC induction motor drives—A comparative study," Electric Power

Systems Research, vol. 79, no. 1, pp. 210-219, January 2009.

S. M. Gadoue, D. Giaouris, and J. W. Finch, "Performance Evaluation of a
Sensorless Induction Motor Drive at Very Low and Zero Speed Using a MRAS
Speed Observer," in Proc. The third IEEE International Conference on Industrial
and Information Systems, (ICIIS), India, 2008.

S. M. Gadoue, D. Giaouris, and J. W. Finch, "A Neural Network Based Stator
Current MRAS Observer for Speed Sensorless Induction Motor Drives," in Proc.
IEEE International Symposium on Industrial Electronics, (ISIE), Cambridge, UK,
2008, pp. 650-655.

S. M. Gadoue, D. Giaouris, and J. W. Finch, "A new fuzzy logic based adaptation
mechanism for MRAS sensorless vector control induction motor drives," in Proc.
4th IET Conference on Power Electronics, Machines and Drives, (PEMD), York,
UK, 2008, pp. 179-183.

S. M. Gadoue, D. Giaouris, and J. W. Finch, "Genetic Algorithm Optimized PI
and Fuzzy Sliding Mode Speed Control for DTC Drives," in Proc. World
Congress on Engineering, (WCE), London, UK, 2007, pp. 475-480.

S. M. Gadoue, D. Giaouris, and J. W. Finch, "Low speed operation improvement
of MRAS sensorless vector control induction motor drive using neural network
flux observers," in Proc. 32nd Annual Conference on IEEE Industrial

Electronics, (IECON), Paris, France, 2006, pp. 1212-1217.

S. M. Gadoue, D. Giaouris, and J. W. Finch, "Tuning of PI speed controller in
DTC of induction motor based on genetic algorithms and fuzzy logic schemes,”
in Proc. Sth International Conference on Technology and Automation, (ICTA),
Thessaloniki, Greece, 2005, pp. 85-90.
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1.6 Layout of the Thesis

The main body of the thesis is organized into eight chapters. In chapter one an
introduction to speed sensorless IM drives is given and different Al applications in
electric drives are highlighted. Chapter two provides a literature review on speed
observers employed for sensorless control. More emphasis is given to applications of
MRAS speed estimators and Al-based strategies. Chapter three covers induction machine
modelling, vector control strategy and speed estimation using the conventional rotor
flux-MRAS. In chapter four, a detailed description of the experimental setup used in the
project is given. Chapter five describes two novel adaptation mechanisms for rotor flux-
based MRAS observer based on FL. and SM strategies. The two methods are compared to
the conventional PI controller and all schemes are validated through simulation and
experimental tests. Chapter six presents a new rotor flux-based MRAS scheme using NN
flux observer. A brief introduction to NN is given followed by a detailed description of
its application for rotor flux estimation compared to conventional observers. The
capability of the proposed scheme to produce an improved performance is illustrated and
verified through a detailed experimental comparison with the classical MRAS observer.
Chapter seven describes a new approach for speed estimation based on a stator current-
MRAS scheme. The stator current observer equations are derived and represented by a
linear NN. Various rotor flux observers required for the stator current estimation are
tested and compared based on simulations and experimental tests. Chapter eight gives

conclusions and suggestions for future work.
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CHAPTER 2

MODEL REFERENCE ADAPTIVE SYSTEMS AND
ARTIFICIAL INTELLIGENCE FOR SENSORLESS
CONTROL-A LITERATURE REVIEW

2.1 Introduction

Sensorless control techniques for IM drives have been widely investigated over the
last two decades. The great advantages offered by sensorless control including
compactness and robustness make it attractive for many industrial applications specially
those operating in hostile environments. Among several strategies proposed for
sensorless IM drives, MRAS are the most popular schemes employed due to their simple
implementation and smaller computational effort. However, these schemes usually fail to
provide a satisfactory response at low stator frequency. Much research interest has been
devoted to improve the performance of MRAS-based sensorless schemes in this region
of operation.

In recent years, Al techniques, particularly artificial NNs, have received much
attention as potential tools to solve system identification problems. In addition, these

techniques can be combined with conventional strategies to obtain an improved
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performance. As a result, various Al-based schemes have been introduced for sensorless
control applications.

This chapter provides a comprehensive review of different model-based strategies
employed for sensorless control of IM drives with particular focus given to MRAS and
Al techniques. Problems affecting low speed operation of MRAS schemes are discussed

and different methods employed in the literature to tackle these problems are illustrated.

2.2 Model-Based Sensorless Strategies

Many different methodologies have been developed for rotor speed estimation of IM
using the machine fundamental model. In these strategies, monitored stator voltages and
currents are used to extract the rotor speed information from the machine equations.
Speed estimators can be implemented either in open loop or closed loop [2, 9]. The
difference between the two types is the absence of a correction term in the open loop
estimator [2].

Open-loop estimators are based directly on the machine dynamic model and do not
employ any forms of feedback. Pure integration problems and voltage measurement
" noise represent two main deficiencies that can affect the estimation accuracy of these
schemes especially at low speed [40]. In addition, open loop estimators are generally
sensitive to parameter variations which significantly affects their performance in both
transient and steady state [2, 9]. By contrast closed loop estimators, usually referred to as
observers [2], use an error signal between measured and estimated quantities to adjust
their response [1, 2]. This can lead to considerably improved dynamics and enhanced
robustness [9].

According to the plant’s form of representation, observers can be classified into
deterministic and stochastic. Luenberger and Kalman observers are the most commonly
employed non-linear estimators. While the extended Luenberger observer (ELO) can be
applied to nonlinear, time—varying deterministic system, the extended Kalman filter
(EKF) is applied to nonlinear, time-varying stochastic systems [2]. Adaptive observers
have been also proposed for flux and speed estimation [41]. In both ELO and EKF
observers, the rotor speed is treated as a state variable which differs from the full-order
adaptive state observer where the speed is considered as a parameter [2]. The advantage

of ELO and EKF is that they can combine parameter and state estimation [42].
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The EKF has been extensively applied to rotor speed estimation of sensorless IM
drives [43-46]. The algorithm is based on a mathematical model representing the
machine dynamics taking into account plant and measurement noise. The EKF has the
advantages of considering modelling errors and inaccuracy as well as measurement
errors in addition to accurate speed estimation over a wide speed range but not at zero-
speed [2]. The problems associated with the EKF are the intensive computational effort,
the lack of design and tuning criteria, the instability due to linearization and the
dependency on the machine model accuracy [1, 47]. Moreover, biasing problem may
take place due to the mismatch between assumed stochastic noise characteristics and real
noise in addition to improper adjustment of covariance matrices [l, 2, 47]. Noise
covariance matrices are usually tuned experimentally by a trial and error method which
may not lead to an optimal performance. As a result optimization of the EKF has been
the subject of recent researches to obtain the best performance of the filter [45. 46]. Shi et
al. [45] proposed a GA to optimize the noise covariance and weight matrices of the EKF
to ensure accurate speed estimation. Recent research proposed the Simulated Annealing
(SA) algorithm for EKF optimization [46].

Akin et al. [47] proposed another form of Kalman filter: The unscented Kalman filter
(UKF) which eliminates derivation and Jacobian matrices calculation while avoiding
linearization [47]. However low speed tests, where measurement noise dominates, were
not reported [1].

The ELO has been applied for joint rotor flux and rotor speed estimation for
deterministic systems where noise is not taken into account [42]. Compared to EKF, its
design is relatively flexible with less computational effort and it has the capability of
producing unbiased estimates [2]. However, the ELO has weak observability
characteristics for joint rotor flux and speed estimation in the low and zero speed region
of operation [2]. Therefore other types of deterministic observers, such as those based on
SM, have been developed.

Sliding Mode Control (SMC) is known for its capability to cope with bounded
disturbance as well as model imprecision. It is also said to be insensitive to parameter
variations and external disturbances and can provide fast dynamic response [8, 24, 48]
which make it ideal for the robust nonlinear control of IM drives [49]. Mathematical

basics, design procedures and applications of SMC in electric drives have been described
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in details by Utkin [49]. SM observers have been proposed to solve the problem of speed
estimation in IM drives [8, 24, 48, 50]. Reported tests include £100 rpm, +£1500rpm
(£5% and +£100% of rated speed) trapezoid speed command and £900 rpm speed reversal
[8]. Furthermore, a SM flux observer has been also employed as an adaptive model with
MRAS [51]. Acceleration from 100-350 rpm and deceleration from 350-100 rpm were
used to test the proposed scheme but no zero speed tests were shown.

Owing to their inherent simplicity and effectiveness, MRAS schemes [7, 28, 51-54]
have received great attention for sensorless control applications [1, 7, 55]. Armstrong et
al. [56] provided a detailed comparison between rotor flux-based MRAS and EKF speed
observers. Less computational complexity was shown for MRAS with a ratio of 1:20
compared to the EKF [1]. For that reason particular interest has been shown in the

literature to the study of these schemes when applied to sensorless IM drives.

2.3 MRAS for Sensorless Control

Adaptive control may be defined as a control system that “can modify its behaviour
in response to changes in the dynamics of the process and the character of the
disturbances” [57]. Adaptive control can be realized by different strategies such as: gain
scheduling, model reference adaptive control, self-tuning regulators and dual control
[57]. Model Reference Adaptive Control (MRAC) is one of the most attractive adaptive
control techniques used for motor control and state estimation applications. A block

diagram of the MRAC system is shown in Fig. 2.1.
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Fig.2.1 Block diagram of MRAC
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Originally, MRAC was proposed to solve control problems where the desired
performance specifications are given by a reference model that provides the ideal
response of the plant to a given command. The error between the reference model output
ym and plant output y, is driven to zero by a proper alteration mechanism that adjusts the
controller parameters. Based on the same mechanism the MRAC approach can be also
applied to parameter and state estimation.

MRAS schemes have been commonly employed for sensorless control applications.
Depending on the output states that form the error function various MRAS observers
have been introduced in the literature based on rotor flux, back EMF and reactive power
[2, 53, 54]. Rotor flux MRAS, principally developed by Schauder [53], is the most
established MRAS strategy and much effort has aimed at improving its performance.
This scheme suffers from machine parameter sensitivity (specially stator resistance), flux
pure integration problems which may cause dc drift and initial condition problems [2],
stator voltage and current acquisition problems and inverter nonlinearity [1, 5]. These
problems may limit the observer’s performance at low and zero speed [54]. Applied to a
vector control IM drive, a good performance above 2 Hz stator frequency has been
reported by Schauder [1, 9, 53]. Speed reversal through zero could be possible providing
fast transient is applied. However operation at zero speed for longer period is not
satisfactory due to incorrect flux estimation [2, 3].

To avoid the problems associated with rotor flux schemes, Peng and Fukao [54]
proposed a MRAS scheme based on the back EMF vector. This scheme avoids using a
pure integration in the reference model and hence has neither drift nor initial conditions
problems. However, the reference model is still sensitive to stator resistance variation
and may have stability problems at low stator frequency [7]. In addition, it shows low
noise immunity due to stator current differentiation and poor dynamic performance at
low stator frequency [55].

Another MRAS technique based on instantaneous reactive power has been proposed
in [54] offering robustness against stator resistance variation while avoiding pure
integration [2]. However, this scheme exhibits an unstable nature at some operating
conditions when passing through the regenerating mode [7, 58, 59]. Moreover, back

EMF and reactive power quantities vanish at low and zero speed [55].
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Wu et al. [58] provided a detailed study and comparison between back EMF and
reactive power based-MRAS speed observers. In this study a verification of the
instability features of reactive power based-MRAS scheme was reported.

As a result a rotor flux-based MRAS observer was found to be the most effective
solution compared to other MRAS schemes. This scheme also provides an estimation of
the rotor flux angle that can be used for direct field orientation [55]. Different methods

reported in the literature to improve rotor flux-MRAS performance are reviewed in the

next sections.

2.3.1 Parameter Sensitivity

Since the speed estimation is based on the machine model it is highly sensitive to
machine parameter variations. During drive operation motor parameters change
continuously due to temperature, frequency and magnetic saturation. Stator and rotor
resistances change with temperature and frequency, mutual inductance changes with
magnetic saturation and the leakage inductances can change with the operating current.

Temperature variation depends on the machine power losses. The stator and rotor
copper losses are affected when the motor is operating with variable load whereas the
core loss variation depends on the machine flux level. Development of a thermal model
describing the machine thermal behaviour or implementation of a temperature sensor to
detect resistance variation is not precise. This is partly due to the existence of fans used
for cooling that have nonlinear characteristics between cooling flow rate and machine
speed. Furthermore the motor thermal time constant itself changes with speed and is
decreased as the speed increases [60].

Stator resistance variation with temperature, which can be up to 50% [1, 9], is a very
serious problem at low speed [61]. Since the fundamental component of the stator
voltage becomes very low, the stator resistance drop becomes comparable to the applied
voltage [3]. Hence continuous adaptation of the stator resistance is required to maintain
stable operation at low speed [62]. On the other hand incorrect rotor resistance affects the
steady state speed estimation accuracy [60, 61]. The effect of machine parameter
variation on the performance of MRAS observer has been studied in many works [56,

61]. Armstrong et al. [56] provided a detailed study of the performance of the rotor flux-
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based MRAS observer with 20%-200% variations in the machine parameters at 95.5
rpm.

Various schemes have been proposed for combined rotor speed and stator resistance
identification using MRAS [7, 59, 62-64]. Zhen and Xu [63] used a mutual MRAS
scheme with interchangeable reference and adaptive models. This scheme was used for
rotor speed and stator resistance estimation in a position sensorless vector control IM
drive. A reference model is defined which does not employ a pure integration, is free
from the stator leakage inductance variations but depends on the stator resistance. Speed
estimation stops briefly when the reference speed does not change and the estimated
speed becomes stable. The two observers then switch their functions for stator resistance
estimation to take place based on another adaptation mechanism. To allow accurate rotor
speed and stator resistance estimation an online adaptation of the rotor time constant is
incorporated. Speed commands of 75 rpm and +£1200rpm have been used to test the
proposed scheme. However, the two estimation algorithms are not concurrent and the
drive has no speed information during stator resistance identification [64].

To avoid these problems Vasic and Vukosavic [62, 64] introduced a simultaneous
estimation of rotor speed and stator resistance based on a parallel MRAS observer. In this
scheme conventional Voltage Model (VM) and Current Model (CM) flux observers are
used as reference and adaptive models respectively for rotor speed estimation as in [53].
The two observers switch roles for stator resistance identification. Using Popov’s
hyperstability theory two adaptation mechanisms are deduced for simultaneous
estimation of rotor speed and stator resistance. Unlike [63], this scheme does not require
a steady state condition to estimate the stator resistance and can be activated during
transients. Successful estimation was obtained when the scheme was tested at reference
speeds of 0.5, 1 and 4Hz with £20% detuning in the stator resistance. Additionally,
operation at zero speed for a short time was realized with accurate estimation of stator
resistance. It was also shown that incorrect rotor time constant has a negligible effect on
stator resistance identification but significantly affects rotor speed estimation.

Another approach was employed in [59] for rotor speed and stator resistance
estimation applied to vector control IM drive. In this scheme, the g-axis rotor flux in the
synchronous reference frame is used as a tuning signal for rotor speed estimation. A

simple PI controller is used to drive the g-axis rotor flux component to zero in order to
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obtain the rotor speed. Another adaptation algorithm for stator resistance identification is
defined based on the d-axis rotor flux error between CM and VM. The scheme is tested
at speed commands of 20 rpm, 50 rpm and £1200rpm speed reversal. Further tests are
shown for reference speed changes from 8-80 rpm and then back to 8 rpm at 50% rated
load with 30% detuning in the rotor time constant. This detuning may cause steady state
error in the estimated speed but was claimed to keep the system stability unaffected.
Rashed and Stronach [7] proposed a new stable MRAS rotor speed and stator
resistance estimator. The adaptation algorithm for the rotor speed estimation is the sum
of cross product modulus and dot product of estimated rotor flux and error in estimated
back EMF vectors. Another adaptation algorithm for stator resistance identification is
derived based on the error in the air gap active power. Estimator gains are designed based
on Routh-Hurwitz criteria to ensure stability at different operating modes including low
speed. A frequency injection technique is applied to observe the motor speed at zero
speed operation. To examine the sensorless drive performance in the regenerating mode,
the scheme was tested with £5 rad/s and 3 to -2 rad/s speed reversals at 50% rated load. It
was shown that rotor speed exhibits some oscillations but the drive is stable. Another +20
rad/s speed reversal test at no load was performed showing satisfactory steady state

performance but not during transients.

2.3.2 Pure Integration Problems

Pure integration for flux represents a crucial difficulty that may cause dc drift and
initial condition problems [2, 5, 65]. Low-Pass Filters (LPFs) with low cut-off frequency,
typically 1-3 Hz [1, 3], have been proposed to replace the pure integrator [3, 6, 28].
However, a LPF behaves like an integrator only at frequencies higher than the filter cut-
off frequency as shown in Fig. 2.2 [1, 3]. Therefore, using a LPF introduces phase and
gain errors and delays the estimated speed relative to the actual, which may affect the
dynamic performance of the drive [51, 66]. In addition this may lead to inaccurate speed
estimation below the filter cut-off frequency [2, 3]. |

To overcome this problem Karanayil ef al. [66] introduced a Programmable Cascaded
LPF (PCLPF) to replace the pure integration by small time constant cascaded filters to
attenuate the dc offset decay time. In [67] another technique is used where the rotor flux

is estimated by defining a modified integrator having the same frequency response as the
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pure integrator at steady state. Gao et al. [68] proposed a nonlinear feedback integrator
for drift and dc offset compensation used for VM flux observer. This modified VM is
incorporated into a rotor flux-based MRAS structure as in [53] and the proposed scheme
is tested when applied to a vector control IM drive. Tests at 5 rpm and 900 rpm at no-
load and 50% load have been carried out to examine the proposed scheme at open loop.
Extensive testing has been performed for the sensorless mode of operation including
speed transient from 9rpm to 900 rpm at no-load and 25% load, +6rpm and +9rpm speed
reversal at 10% and 85% load respectively. Disturbance rejection performance for 80%
and 75% load at 9rpm and -9rpm respectively was also investigated. The scheme shows
satisfactory performance down to around 0.2 Hz including regeneration but becomes
unstable below this frequency. It was claimed that the estimated speed contains a steady
state error of about 5 rpm which can be improved by incorporating an online stator

resistance identification scheme.
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Fig. 2.2 Bode diagram for approximation of ideal integration by a LPF

Further research [65, 69] has tried to entirely replace the VM by other flux observers
which may reduce the scheme’s simplicity. Both schemes employed the same MRAS

structure as in [53] based on PI minimization of the cross product of flux estimates. In
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[65] a state observer with current error feedback is used to generate the reference values
for the rotor flux in a MRAS observer. Experimental tests have been conducted at 1000,
50 and 25 rpm at no-load, £200rpm speed reversal and load torque application with 50%
mismatch in the rotor resistance. Better performance was obtained using the new scheme
compared to the conventional MRAS. Lascu et al. used a similar approach in [69] for
classical DTC and space vector modulation (SVM) DTC. In this modified MRAS
scheme, the reference model employs a full-order stator and rotor flux observer
containing both VM and CM with an adaptive model based on the CM. Hence the speed
observer employs the CM twice: in the reference model (expressed in the rotor flux
oriented reference frame) and in the adaptive model (expressed in the stator reference
frame). The limit of this scheme was claimed to be 30 rpm. However, measured speed is
not shown for this test and no zero speed tests were reported for this scheme [52].
Another modification to the classical MRAS presented in [53] was applied in [55]
using a closed loop flux observer (MRAS-CLFO) that employed a coupling controller
between the two flux estimates, VM and CM. Using the closed-loop topology provides
the VM open loop integration with the necessary feedback and hence no LPF is required
in the VM [52]. However, as frequency approaches zero the cross product between flux
estimates also approaches zero and the speed estimation is lost. Therefore, a machine
mechanical model was used to compensate for this effect but this may increase the

observer’s complexity and requires accurate values for the mechanical parameters.

2.3.3 Stator Voltage Acquisition and Inverter Nonlinearity

Stator voltage measurement comes up due to sensorless control. The stator voltage
signal is crucial for model based strategies. The most accurate stator voltage acquisition
is that measured across the machine terminals. However, this cannot be used easily since
it requires a very high sampling rate [5]. Low pass filtering the PWM voltage waveform
may solve the problem at medium and high speed but not at low speed, where the effects
of filter gain and phase error cause the performance to deteriorate. Another nonlinear
filtering method known as the synchronous integrator technique can aid a solution [70].
This technique is based on integrating the PWM voltage signal and resetting at the end of
the PWM period. This provides the actual volts-seconds applied to the machine terminals

over the PWM period. Using this technique should give better measurement including all
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inverter nonlinearities [70]. However it is not desirable to employ voltage sensors for
industrial applications [8]. Another possible alternative is to use the reference voltages,
available in the control unit, since they are harmonic free. However, at low speed these
reference voltages deviate substantially from the actual machine voltages due to inverter
nonlinearities and dead time effects. Therefore, Holtz and Quan [71] have modelled the
inverter nonlinearities including voltage drops across the switches and the threshold
voltage. As a consequence, better acquisition of the stator voltage is obtained from the

reference voltage of the PWM inverter at very low speed.

2.4 Artificial Intelligence for Sensorless Control

In recent years, Al techniques have been advocated for different electric drives
applications. In the next sections different applications of Al in sensorless control of IM
are highlighted. Emphasis is given to the most commonly employed Al strategies, NN
and FL techniques.

2.4.1 Applications of Artificial Neural Networks

Artificial NNs have been recognized as a potential solution for many real world
problems. Compared to conventional programming, they have the capability of solving
problems that do not have algorithmic solution. Therefore they are found to be suitable to
tackle problems that suit human reasoning, such as pattern recognition. NNs have been
introduced to solve many problems related to prediction, classification, control and
identification. A latest comprehensive review of NN applications in the field of power
electronics and motor drives is covered in [11]. One of the major advantages of NNs is
their ability to learn from experience to improve their performance and to adapt to
changes in the environment [10]. In addition they show good capability in dealing with
incomplete information or noisy data. NNs are frequently used as universal function
approximators to represent these functions with weighted sums of nonlinear terms. This
is useful when representing some systems which do not have an accurate mathematical
model [10]. In the last few years, NNs have found widespread applications in sensorless
control of IM drives.

NN assisted MRAS schemes are discussed in the literature [2, 28, 52, 72]. Its basic

idea is to replace the adaptive model of the classical MRAS by an online trained NN as a
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state estimator. This strategy avoids using a mathematical adaptive model and the
adaptation mechanism is integrated into the network tuning law [2]. However, since these
proposed schemes have similar structure to that proposed by Schauder in [53], they
would be affected by machine parameter variation and pure integration problems.

Ben-Brahim et al. [28, 73] proposed a two-layer linear NN to represent the
conventional adaptive CM using a simple forward Euler integration method. In this
representation the rotor speed is proportional to one of the NN weights. The reference
model is the conventional VM but the pure integrator is replaced by a LPF with a low
cut-off frequency. The rotor flux is estimated based on the two models and the error
between the two estimates is used for online tuning of the network weights using a
backpropagation algorithm. Hence the rotor speed information can be obtained. The NN
adaptive model is working in the simulation mode where the delayed estimated flux
components from the adaptive model are fed-back to the NN. The proposed observer’s
performance is verified experimentally without mentioning its low and zero-speed
behaviour, no information about the lowest speed limit was given [52].

In [74] a EKF is proposed to adjust the NN weights of the scheme described in [28].
This has the advantage of using a variable learning rate which is constant in the
backpropagation algorithm, leading to fast convergence. A +500rpm speed reversal test
at no-load is shown for the proposed scheme. However, the EKF algorithm requires
higher computational burden compared to backpropagation.

An evolution to the scheme proposed in [28] has been presented in [52, 72] where an
Adaptive linear NN (ADALINE) is employed in the adaptive model using a modified
Euler integration to represent the CM. The neural network adaptive model is employed in
the prediction mode and not in the simulation mode as in [28, 73]. In the prediction mode
the delayed estimated flux components from the reference model, not the adaptive model,
are fed-back to the NN. The same reference model described in [28, 73] has been
employed. The training of the NN is performed online using Ordinary Least-Squares
(OLS) algorithm. Since the'problem to be solved is linear, Cirrincione and Pucci [52]
claimed that using this linear least-square algorithm is more suitable to estimate the rotor
speed compared to the backpropagation algorithm used in [28]. Using the OLS algorithm
avoids problems of backpropagation such as initialization, convergence and local

minimal problems. Therefore the new speed observer scheme is characterized by fast
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convergence and low speed estimation error in both transient and steady-state.
Furthermore it showed better performance in low and zero speed operation compared to
the backpropagation scheme described in [28]. The proposed scheme is tested with +50
rad/s and +10 rad/s speed reversals and the lowest speed shown was 5 rad/s. Zero speed
no-load test for 60 s time interval shows a more stable response than [28].

Kim et al [75] proposed another NN-based speed observer where the speed is an
output quantity and not integrated into the NN weights as in [28, 52]. In this approach a
conventional rotor flux-based MRAS scheme with voltage reference model and current
adaptive model is used to estimate the rotor flux. The error between the two estimates is
used to adjust the weights of a three-layer NN speed observer using an online
backpropagation algorithm. The proposed neural observer is partially recurrent and
consists of three inputs: the reference flux magnitude, the estimated flux magnitude and a
delay term of the observed rotor speed. The hidden layer consists of five neurons with
sigmoid activation functions and the single neuron output layer generates the estimated
value of the rotor speed. The scheme is verified experimentally and has shown
satisfactory performance at low-speed operation with a step speed command of 10 rpm.
Further tests at 1000 rpm, £500 rpm speed reversal at no-load and disturbance rejection
at 500 rpm are also shown. However, pure integration and parameter sensitivity problems
associated with this type of MRAS scheme are not discussed. In addition the speed
observer performance at zero-speed operation is not mentioned.

Neural networks have been also combined with MRAS for online stator and rotor
resistance estimation for speed sensorless indirect vector control IM drive [76]. An
MRAS scheme based on rotor flux is used to track the rotor resistance variation online.
In this scheme the flux VM is used as a reference model whereas a two layer NN mimics
the adaptive CM as in [28]. To avoid pure integration in the reference model, a three-
stage PCLPF is used for rotor flux synthesizer from the VM. A backpropagation training
algorithm is used online to adjust the NN weights which contain the rotor time constant
information. However, precise knowledge of stator resistance is required for accurate
rotor resistance estimation. Therefore another stator current-based MRAS scheme has
been employed for stator resistance identification [76]. In this scheme the reference
model comprises the measured stator current components. A recurrent NN stator current

observer is used as an adaptive model where the stator resistance is one of the NN
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weights. A backpropagation learning algorithm is used to train the NN online to update
the value of the stator resistance. A conventional CM is used for rotor flux estimation.
With accurate stator and rotor resistance estimation, rotor speed identification could be
realized using machine state equations. The proposed scheme was tested at 1000 rpm,
+1000 rpm and £150 rpm speed reversal and satisfactory performance at low speed has
been reported.

Campbell and Sumner [60] described a sensorless IM drive using a recurrent NN to
detect the thermal variations of the stator resistance at different operating conditions.
This is performed based on machine current, estimated speed and an additional feed-back
path representing the past estimated value of the stator resistance. In this scheme the
motor speed is estimated based on rotor flux-based MRAS strategy. The training signals
are generated from the real drive when the motor is running at different speeds with
various load torque such that the stator resistance variation can be obtained. A small DC
voltage is used each time to measure the stator resistance when the machine is brought
back to standstill. The training of the NN has been performed off-line using a
backpropagation algorithm. Rotor resistance is also updated assuming the same
percentage change as the stator resistance. Operation at low and zero speed has been
investigated by testing the proposed scheme for load disturbance rejection at 100 rpm,
deceleration to rest at rated load and finally zero speed operation at rated load. Better low
speed operation was achieved when this NN open loop model is combined with the
MRAS observer.

A linear NN has also been presented as an adaptive filter used for signal integration
to eliminate the offset in the flux integration for the VM flux observer [72, 77]. Since just
one weight is updated online the proposed algorithm is characterised by simple structure
and low computational burden. The NN algorithm has been tested experimentally on a
scalar and vector control IM drive.

Vas [10] discussed in details NN applications in open loop speed estimation of IM
drives. An 8-9-7-1 multilayer feedforward NN is proposed as a speed observer with
present and delayed stator voltage and current components as inputs and rotor speed as
output. The proposed neural speed observer was successfully tested to estimate the speed
of a supply-fed unloaded machine during run-up with less than 3x107 estimation error.

The same network has been reported to correctly estimate rotor speed at different loads.
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Another 8-12-10-4 network was proposed for the simultaneous estimation of rotor speed,
electromagnetic torque and d-g stator flux components in the stator reference frame with
the same inputs as the previous network. The neural observer was tested for an unloaded
supply-fed induction motor during run-up and satisfactory results have been obtained
even in the presence of machine parameter variation. Moreover, a three-layer
feedforward NN with 16 neurons in the hidden layer was presented to estimate the rotor
speed in a speed-sensorless rotor flux oriented IM drive from the present and past
samples of stator voltage and current. Reference stator voltage, available in the control
unit, was used instead of the actual voltage. The number of neurons in the hidden layer is
chosen by trial and error. The activation functions in the hidden and output layers are tan-
sigmoid and linear respectively. The training data of the network was obtained by
running the vector drive with a random command speed signal with a speed sensor used
to provide the target values for the network training. The trained NN was tested in a
vector drive subjected to different speed references including low speed and reversal
commands at various loads and satisfactory response was obtained.

Heredia et al. [4] used a 2-10-2 three-layer feedforward NN for speed and torque
estimation for open loop V/f controlled IM drive using stator current and Volt/Hz ratio as
inputs. A test with 1000 rpm and a constant load seen during training has been carried
out. Further tests with speed change and loads not seen during training were shown and
good estimation accuracy was obtained in all the tests.

Wavelet NN (WNN) was proposed as a new approach for rotor speed estimation in
IM drives [78]. WNN combines the features of time-frequency localization property of
wavelets and learning capability of NN. This can improve the performance of NN by
increasing the convergence speed in addition to avoiding local minima. In [78], a three-
layer WNN was trained to identify the nonlinear relationship between rotor speed and
stator current. The network training was performed using supervised backpropagation
and the speed identifier was simulated in a DTC IM drive. However, no experimental
tests were shown for this scheme.

Neural networks can also be applied for stator and rotor flux estimation in IM drives.
Two multilayer NN architectures have been proposed in [10]. The first network estimates
the rotor flux modulus and position from present and past samples of stator voltage and

current. The other NN generates the same outputs from present and past samples of stator
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current and rotor speed to mimic the classical CM flux observer. Simoes and Bose [26]
employed a three layer NN with 20 neurons in the hidden layer for rotor flux and electric
torque estimation. The inputs to the network are the d-¢ components of the stator flux
and stator current. Training data are obtained by simulating the drive system and the
training is performed off-line using backpropagation algorithm. Nevertheless, oscillatory
performance was obtained from the NN observer compared to conventional mathematical
model estimators [10]. However, if stator flux and current are known rotor flux and
electric torque can be obtained directly from machine equations without using a NN [10].
Another 5-8-8-2 multilayer feedforward NN has been proposed to estimate the stator flux
from stator voltage, current and speed signals [27]. The drawback of this technique is the

requirement of flux and speed sensors to achieve proper training of the network.

2.4.2 Applications of Fuzzy Logic

Fuzzy Logic Control (FLC) is achieved by converting the linguistic control strategy
of human experience and knowledge into an automatic control strategy. Therefore no
mathematical model of the controlled system is needed. FLC has been found to be
excellent in dealing with systems that are imprecise, non-linear, or time-varying and with
uncertain or unknown parameter and structure variation. FL is a well-established
technique used in many industrial control applications. Unlike NN strategy, few attempts
have been made to apply FL for sensorless control.

Lopez et al. [40] described a scheme where a FL system is proposed to perform an
intelligent mixing between an Open Loop (OL) and a Steady-State (SS) estimator by
proper weighting the output of each one according to the motor operating condition. A
high weight is assigned to the OL estimator during transients and to the SS estimator in
the steady state. The final estimated speed is obtained by averaging these weighted speed
values. Another application of FL was described in [40] to improve the performance of
OL estimators. This is performed by using an adaptive filter with a variable cut-off
frequency selected by a FLC depending on the operating condition. During transients the
FLC selects a high cut-off frequency to decrease the effect of the filter delay. In the
steady state, where the delay effect is not important, lower values of cut-off frequency

are selected to eliminate the ripple in the estimated speed. Simulation and experimental
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results are shown for a step response to rated speed and for a load torque step with
moderate performance shown.

A fuzzy self-tuning identifier was proposed to solve speed estimation problems for
vector control IM drive [79]. The scheme has a similar structure as the rotor flux-based
MRAS observer in [28, 53] with a VM as a reference model. A fuzzy self-tuning
identifier integrating a three-layer network is employed for the adaptive model. The
backpropagation algorithm is used online to minimize the error between reference and
estimated rotor flux by adjusting the fuzzy identifier membership functions. Hence the
output of the fuzzy model is forced to follow the desired reference and an estimate of the
rotor speed can be obtained. The scheme was tested for a step speed command of 500
rpm and for a command change from 500rpm to 900 rpm and back to 500 rpm. However
no results are shown for speed estimation performance at low speed.

Lian and Hung [80] proposed a fuzzy observer for rotor flux and rotor speed
estimation for IM. Observer gains were obtained by solving a set of linear matrix
inequalities. Tests with a sinusoidal reference speed were shown. However, parameter

variation and low speed problems were not mentioned.

2.5 Conclusion

This chapter has provided a detailed review of different model based techniques
applied to speed sensorless IM drives with most emphasis given to MRAS and Al
strategies. Different problems affecting the low speed operation of MRAS observers have
been illustrated. Various methods employed in the literature to improve the rotor flux-
based scheme’s performance have been carefully reviewed. Different applications of NN
and FL techniques for sensorless control have been also highlighted. It appears that,
despite much attempt and progress, operation at very low speed for MRAS-based

sensorless IM drives is still challenging and needs more investigation.
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CHAPTER 3

MODEL REFERENCE ADAPTIVE SYSTEMS
FOR VECTOR CONTROL INDUCTION MOTOR DRIVE

|
|
I

3.1 Introduction

Induction motors are the workhorse for industrial applications due to their
ruggedness, simplicity and low cost. IM drives have replaced DC drives in many high
performance applications due to the advances in control strategies such as vector and
direct torque control. Fast development of power electronics and microprocessors has
provided an economic way for implementation of these control techniques. Therefore an
accurate model that well represents the induction machine is required to allow proper
design of the control and observer system. This chapter first presents the mathematical
model of the induction machine using space vector and two-axis theory. This model is
then used to understand the dynamic performance of the machine using vector control.
Finally, rotor speed estimation using a MRAS strategy is investigated using the induction
machine model to formulate the rotor flux based speed observer.

This chapter is divided into three parts. The first part presents the dynamic modelling
of the induction machine using space vector theory and state space representation. The

second part investigates the dynamic behaviour of the IM under rotor field orientation.
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The final part is concerned with modelling of rotor flux MRAS observer for speed

sensorless IM drives.

3.2 Dynamic Modelling of the Induction Machine

The IM equivalent circuit is used to calculate the machine quantities such as stator
current, motor torque and power factor under steady state operating conditions and
running from a balanced sinusoidal supply. However, this equivalent circuit cannot be
used for transient analysis or when the motor is fed from a non sinusoidal supply which
is the case with converter fed machines. To allow the analysis of the transient and the
steady state performance of the machine when supplied from any type of supply, a
dynamic model of the machine will be defined based on space vector theory [2]. This is
related to the two-axis theory of electric machines. In this analysis, the three phase
variables are described by an equivalent two phase representation which simplifies the
machine equations.

In a three phase induction machine, the space vector of the stator current in the

stationary reference frame fixed to stator can be defined as [2]:

;2. . .
ig :'g(’sA +aigp +a21SC) (3.1
where:
27
51,43
a=e =——+j—
2 72 (3.2)
Ar
2 JT 1 \/5
a =ée :————]—
2 2

In (3.1), is4, isp and isc are the three phase currents that flow in three phase windings
displaced by 120° from each other and producing sinusoidal distributed magneto-motive
force (mmf). Resolving the stator current space vector in (3.1) into its real and imaginary
parts yields the two axis components of the stator current vector in the stator reference
frame as shown in Fig. 3.1 [2].

2 1 1.

L2 11
sp =3isa ™ 3isB T 3IsC (3.3)

: 1 1 .
sQ = :/?ZSB_TE'ZSC
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isp and isp are the actual currents that flow in the two-phase stator windings sD and sQ

which are quadrature in space [2]. The stator current space vector can be written in polar

and rectangular form as:

- T 'as o .
Ls :\ls‘ej =Igp T JisQ (3.4

In a matrix form such a transformation from three phase to two phase can be written as:

1 1
. I |
isD :z 5 5 ,'SA
isQ 3 \/§ \/5 sB (3.5)
0 — ——|i
2 2 |UsC
sQ
b
Q Vs
0
k7 ,-SQA
a
- »sD
igp a-axis
&
¥
J

Fig. 3.1 Stator current space vector and its two-axes components

The transformation from two phase quantities into three phase quantities can be written

as:
isA = isD
1 V3. (3.6)

isp="75isD" 5 1sQ

I V3,

IsC 2isD——2—lsQ

This transformation can be expressed in a matrix form as:
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1 0
i
isA _l ﬁ isD
o8 2 2 |lis (3.7)
IsC 1 V3
L 2 2 .

For vector control implementation, a transformation between stator (D-Q) and
excitation (d-q) frames is required as shown in Fig. 3.2 where 6, is the rotor flux position.
The stator coordinates are fixed to stator and therefore are stationary while the excitation

(synchronous) frame coordinates rotates synchronously with the stator magnetic field.

sQ

o

3-amS

Fig. 3.2 Transformation between stationary and synchronous frames

The transformation from the stator frame to the synchronous frame is given by [2]:
(3.8)

e . .. 38 —jO,_ _ . ., —-70
Ig —lsd+]lsq—lsse J e_(lsD+.]lsQ)e I%e

The superscripts s and e stand for the stator and excitation reference frames while the

subscript s stands for the stator quantities. The transformation defined in (3.8) can be

written in matrix form as:

isa| | cost, sin@, ||isp (3.9)
Isq -sinf, cosb, ||is0

while the transformation from synchronous frame to stator frame is given by:
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i§ =isp+isp=1s €% =(isa+ jisg) e/’ (3.10)

In matrix form:

IsD _ cosl, —sinb, ||isq
IsQ sinf, cosf, ||ig (3.11)

Similarly, the stator voltage and flux space vectors expressed at the stator reference

frame are:

_ 2 )
Vs =—(vsq +avgp +a vyo)
3 (3.12)

=VsD T JVs0

7 2(W +aysp +a*ysc)
= A
K 3 S. sB sC (3.13)

=VsD + J¥so
In a similar manner to the definition of the stator current space vector expressed in
the stator reference frame, the space vector of the rotor current in a reference frame fixed

to rotor, shown in Fig. 3.3, can be expressed as:

- 2. . 2.
i, =—(i,, +aiy+a‘i.)
r3 ra rb rc (3.14)

T T 194 . ..
I, =|zr|ej " =hg T Ihp
ire and i,p are the actual currents that flow in the two-phase rotor windings ra and rf

which are quadrature in space and 8, is the rotor position [2].

Y A

-

- sD

Fig. 3.3 Rotor current space vector and its two-axes components
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A set of differential equations based on Faraday’s and Kirchoff's laws is used to

describe the induction machine mathematical model. Detailed mathematical modelling of

the induction machine is given in Appendix A. Using space vector notation the stator and

rotor voltage equations can be written as:

_ s dy)
s _
Vs = Ryis + dts (3.15)
_ o dy,
¥ ¥
Vp =Ry + dt’ (3.16)

The superscripts s and » stand for the stator and rotor reference frames while the

subscripts s and r stand for the stator and rotor quantities.

Equations (3.15) and (3.16) can be written in d-g coordinates established in the stator

reference frame as:

. d
vsp = Risp + V;;D

. dy
Vso = Rssz + dj‘Q

J (3.17)

Vg = Rpfpg + Vrd T Oy

. dy
Vrg = Ryipg + _Frq —WpYrd
where the stator and rotor flux linkages are given by:
Wsp = Lsisp + Lipirq
YsQ = LsisQ + Lmirq (3.18)

Yed = Lyisp + Lyipg
Yrg = LmisQ + Lrirq

The voltage equations of the induction machine in the stator reference frame can be

written in terms of stator and rotor current space vectors as:
7S = (Ry + Lep)ES + Ll (3.19)
vy = (Rr * L,-p)l? + Ly pis — jooy (Lm’—s;v + Lr’Trs) (3.20)

where p is the differential operator.
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In matrix form using space vector notation these equations can be written as:

vs |_| RstLsp Lyp iy
- _ S 3.21
\7;? (P"]a’r)Lm Rr"'(p_jwr)l‘r ’_t:g -

A convenient way to solve estimation and control problems using computer
simulation is to use a state space model. In this representation, shown in Fig. 3.4, the

machine dynamic model is described by a set of first order differential equations.

U + <X | 1
~ 5 B X0 1 X g ¢ LY
S

A [

Fig. 3.4 State space model

By writing the stator and rotor voltage equations in terms of stator current and rotor
flux space vectors, a state space representation of the induction machine can be obtained.

For a squirrel-cage IM, these equations can be written as:

VS = Ry +aLgpi; + l[:—mpz/7;g (3.22)
r
1 : s . —
0= —T—( 7 = Ly )+ Py — jo, iy (3.23)
,

where o is the leakage coefficient given by:

2
o=1- L (3.24)
L,L,
and 7, is the rotor time constant given by:
1. -Lr (3.25)
r R,.

The state space representation of the IM in the stator reference frame with the stator

currents and the rotor flux linkages components as state variables can be written as:
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-q 0 ap a3w, L 0
| Pisp |
Piso
P¥Yrd
LP‘/’rq |

—da —azw, a . 0 -
'sQ oL {VSD

st} (3.26)

o
|
|
|
E
o

o 3 ‘5“ o

a» = L—m (3.27)
2" 6L, LT, '
L
az = L
oL¢L,
The machine model can be written using the standard state space notation as:

X(f) = AX(f) + BU(?) (3.28)
Y(0) = CX(r)

where:
. : ]T
X =|isp isg VYrd Yrq
U@) =[vsp st]T
. . ]T
Y(#)=|isp IsQ

[ i 1
—-aq 0 a) azw, El— 0
A
1
A = B = S C =
L_m 0 ——1— -, 0 0100
T, T,
0 LT—’" w, - —Tl— 0 0
L r r L .
(3.29)

As shown in Appendix A, the electromagnetic torque for a machine with P pole pairs is

given by:

3. L . .
T,=-pP-" (Wraisg — '/’rq’sD)
2 L,

(3.30)
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3.3 Principles of Vector Control

The main objective of vector control is to make the dynamic performance of the
induction machine similar to that of a separately excited DC machine. This can be
achieved by orienting the synchronous frame axes so that the d-axis is aligned with the

rotor flux space vector as shown in Fig. 3.5. Therefore this control technique is also

referred to as Rotor Flux Oriented (RFO) control.

Y

Fig. 3.5 Principle of rotor flux orientation

The main concept of vector control can be explained by considering the mathematical
model of the squirrel-cage IM in d-¢ coordinates expressed in the synchronous reference
frame:

Vsd = Rylgg + PVsd — VeVsq
Vsq = Rsisqg + PWsq + De¥sd

(3.31)
0 = Ryipg + P¥rd ~ Psi¥rg
0 =Rylpg + PYrq + Osi¥'rd
where the rotor flux components are given by:
Wrd = Lmisd * Lyird (332)
(3.33)

Wrqg = Lmisq + Lyiyg
Under the rotor flux orientation conditions, the rotor flux is aligned on the d-axis of the

synchronous frame, and the rotor flux components can be written as:
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Yy =Vyd
Yrg = 0 pqu =0 (3.34)

Substituting (3.34) into the rotor voltage equations of (3.31) and (3.33) yields:

Ryiyg + pyrg =0 (3.35)
Rrirq togy,y =0 (3.36)
Lmisq + Lrirq =0 (3.37)
From (3.37):
: Ly, .
lg = ——Lﬁlsq (3.38)

Substituting (3.38) into (3.36) yields the expression for the slip frequency command:

Wy = L isq (3.39)
TrWrd
From (3.35):
) |
'rd =~ 5" PVrd (3.40)
r

Substituting (3.40) into (3.32) yields the rotor flux dynamics:

T, pYrd +Wrd = Lyigq (3.41)
Under steady state conditions:
PYrg =0 (3.42)
Substituting (3.42) into (3.40) and (3.41) yields:
iy =0 (3.43)
Vrd = Limisa (3.44)
From which the slip angular frequency wy in (3.39) can be written as:

R (3.45)

Ds] = Wg — Wy T i
r lsd

The slip frequency can be also calculated from the reference values of the stator current
components represented in the rotor flux oriented reference frame as follow [2]:

1 isq (3.46)

*
T, isd

Wg) =

The rotor flux position 8, can be written as:
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1 sq
6,=6, + j dt (3.47)
r Isd

Under field orientation conditions, substituting (3.34) into (3.30) yields the
electromagnetic torque equation which become analogous to that of a DC machine and
can be written as:

3 L,

T, ==_p-m
e2L

Yrd ’sq (3.48)

This can be written as:
T, = KT‘//rdisq (3.49)

where K7 is the torque constant given by:

3 L
K,=>p=m
T30, (3.50)

Equations (3.44) and (3.49) are similar to that of a separately excited DC machine
where iy and i5, are analogous to the field and armature current respectively. Control of
IM is performed in the synchronous frame so that the sinusoidal variables appear as DC
quantities in the steady state. Flux and torque control is achieved by separately
controlling the d-axis and g-axis components of the stator current space vector in the
synchronous frame respectively. Usually the rotor flux is kept constant by a constant iy
command and the torque is controlled directly by adjusting the i, command yielding fast
dynamic response of the drive.

Implementation of vector control requires the accurate knowledge of the rotor flux
angle 6,. This angle represents the position of rotor flux space vector with respect to the
D-axis of the stationary reference frame. The method of detection of this angle yields two
types of vector control: direct and indirect method.

Direct ficld orientation relies on the direct measurement of the rotor flux position.
Traditionally, this was performed by fixing flux sensors in the air gap such as search
coils or Hall-effect sensors. Currently, flux observers are used extensively for this
purpose where the rotor flux position is estimated from monitored stator current and
voltage as shown in Fig. 3.6(a).

On the other hand, in the indirect field orientation, the machine mathematical model

is used for slip calculation, based on (3.46), which when added to the rotor position
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38
yields the rotor flux angle as shown in Fig. 3.6(b). Indirect technique is commonly used

because it is simple and does not require flux sensors or flux observers. However, it is
b
highly sensitive to rotor time constant variation which may deteriorate the drive

performance. The block diagram of indirect vector control IM drive is shown in Fig. 3.7

— 1 d
v Tra,, ,\
_S Rotor flux A tan~] Yrq Op
ig___y|  Observer Yrq Vg >
(a)
k)
isq d
* *
1 1 d
Yrd | — |5
Ly,

(b)
Fig. 3.6 Types of rotor flux orientation schemes (a) Direct method (b) Indirect method

*

.* *
r 1 'sd + PI Current vsi VsD S
Ly \ Controller - sé ‘J
- 2/3 * o M
ei 9e dq to vSB PWM ;
x| Inverter
* * v* v* abc v
“ﬁ_i@» PISpeed ||'S9+< 7| | PICurrent| 59 sQ >
i Controller Controller
Y P Is4
] I
'sd . sD| 3p i 5
; e’ 6 | ; |abcto [«
> <L dq i
Yy » sC
Slip
calaculation Shaft
Encoder
Dyl
Pf 1
+
P
I o, N

Fig. 3.7 Block diagram of indirect vector control IM drive
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3.4 Model Reference Adaptive System for Induction Motor

The model reference adaptive system is one of the most successful adaptive control
techniques applied to motor control and parameter estimation. Fig. 3.8 shows a classical
MRAS observer structure used for parameter identification which consists of a reference
model, an adaptive model, and an adaptation mechanism. The basic concept of MRAS is

the presence of a reference model which determines the desired states 6p and an

adaptive (adjustable) model which generates the estimated values of the states 6 4 The

error between these states is fed to an adaptation mechanism to generate an estimated
value of the parameter A which is used to adjust the adaptive model. This process
continues till the error ¢ between the two outputs tends to zero {2]. Modelling a MRAS

observer for speed estimation of IM is demonstrated in the following sections.

Reference
Model
Input
signals
Adaptive
L
Model
1 y
Adaptation
Mechanism

Fig. 3.8 Basic configuration of a MRAS observer

3.4.1 Rotor Flux MRAS Modelling for Speed Estimation

The design of a MRAS estimator for speed estimation of IM drives requires the
definition of two models having similar outputs. One model, termed the reference model,
should be independent of the rotor speed while the other, the adaptive model, is speed
dependent. In the following section a MRAS observer based on rotor flux is derived

using the d-g model of the induction machine.

The stator voltage equations of the induction machine (3.22) can be written in d-q

coordinates established in the stator reference frame as:
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) . L
vsp = Rgigp +oLgpisp + L_mp'//rd
¥

. : L (3.51)
vsg = Rsisg +0Lspisg + L—mpqu
r

Similarly, the rotor voltage equations (3.23) can be written in the same coordinates as:

1 L, .
0= 7 Vrd =7 IsD T PYrd t OrYrg
r r
(3.52)
0= L, .
- Trqu —TrlSQ +PVrg — OpWyg

Rotor flux components in the stationary reference frame are the common outputs
from equations (3.51) and (3.52). Moreover, (3.51) is free from a rotor speed term while
(3.52) has speed dependent terms. Therefore these equations can be used to setup a
model reference adaptive system with rotor flux as output state and rotor speed as
adopted parameter.

The reference model can be formulated by rearranging (3.51) to generate the
reference value of the rotor flux components. This is usually expressed by the VM that
represents the stator voltage equations. These rotor flux components are obtained from
the monitored stator voltage and current components and can be written using d-q
representation as [2, 53]:

PYrd = f—r(vsD — Riisp _O'LspisD)

g (3.53)

PYrg = “L%("SQ — Rsisg - GLspisQ)
An adaptive model generating estimate values of the rotor flux based on the rotor
speed information can be established by rearranging equation (3.52). This is usually
represented by the CM that describes the rotor voltage equation. Estimated rotor flux

components are expressed in terms of stator current components and the estimated rotor

speed and are given by [2, 53]:

A Lm . 1 A A A
PV¥Yrd = T IsD _FWrd —WOpYyq
r r (3.54)
Piing = isg =g + 0
- T B ¢ r¥Yr
rq Tr sQ Tr q

Equations (3.53) and (3.54) form the classical rotor flux MRAS speed observer
described in [53] that can be applied to an IM as shown in Fig. 3.9. An adaptation
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scheme generates the value of the estimated speed used so as to minimize the error
between the reference and estimated fluxes. Design of this adaptation mechanism will be

explained in detail in the following section.

isD -
. Induction il VsD
50 - Motor < Vs0
. Wr d
Reference Model
> (Voltage Model) Yrq
Error )
generation
V7rd T
— ™ Adaptive Model
| | (Current Model) Vrg
@y Adaptation
Mechanism

Fig. 3.9 Rotor flux-MRAS speed observer for IM

Due to the presence of speed dependent cross coupling components in the d-g axis
flux loops in (3.54), CM implementation using a stationary reference frame
representation as in (3.54) may lead to stability problems [81]. To eliminate this mutual
coupling, an implementation in the rotor reference frame can be used [68, 81]. In the
rotor reference frame, the rotor flux space vector can be written as:

Wl = Lyil +Li (3.55)

Using the rotor voltage equation in the rotor reference frame from (3.16) with zero rotor

voltage for a squirrel-cage machine gives:

py; =R (3.56)

Substituting (3.56) into (3.55) yields:

oy = Lyiy — TPV (3.57)
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Rearranging (3.57) yields the expression for the rotor flux space vector in the rotor

reference frame:

—Fr Lm sr

= i
Yr 1+T,p s (3.58)

Equation (3.58) is used to implement the CM in the rotor reference frame which,

different from (3.54), yields real eigenvalues at —1/7,. Stator reference frame

implementation of the CM using rotor frame representation is shown in Fig. 3.10. The
stator current space vector is transformed from the stator to rotor reference frame using
the following transformation as described in Appendix A:

T s =7
ir =150 (3.59)
The rotor flux in the stator reference frame is obtained by transforming the rotor flux

space vector in the rotor reference frame back to the stator reference frame:

—s _—r j@
v, =y, e/’r (3.60)
- ]
=S 7 —r —
7S SRR L + I v, | vy
> -je, S “m = r 0 r
A I - | +
| 1 |
| T, - |
L - - _
Rotor reference frame
o, 9,
—L

1
p

Fig. 3.10 CM implementation using rotor reference frame representation

3.4.2 Design of Adaptation Mechanism for MRAS Observer

One of the main approaches employed to design MRAS observers is based on the
hyperstability theory. This technique allows the stability analysis of feedback systems
that can be represented by a feedforward and feedback blocks as shown in Fig. 3.11 [2].
The input to the linear feedforward subsystem is U and its output is &. The output of the
nonlinear feedback subsystem is W and U=-W. The adaptation mechanism is
designed based on Popov’s hyperstability theory where the transfer function matrix of

the linear feedforward subsystem is strictly positive real and the nonlinear feedback
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t
subsystem satisfies Popov’s integral inequality | e'Wdt> —73 where yg is a positive
0

constant [53, 82]. Detailed description of hyperstability theory is complicated and is
beyond the scope of this work. More details can be found in Landau [83] where

procedures of MRAS design using hyperstability approach is demonstrated.

Linear time-invarient €
Feedforward subsystem

Nonlinear time-varient
Feedback subsystem

Fig. 3.11 Equivalent of a nonlinear feedback system

Design of the adaptation mechanism for MRAS using this concept will ensure overall
stability and convergence of the estimated speed to the desired value with suitable
dynamics [53]. For the derivation of the adaptation mechanism it is valid to initially
consider the rotor speed as constant parameter of the reference model [53]. To transform
the MRAS observer into an equivalent feedforward and feedback subsystems consider
the state error equation of the system. This can be obtained by subtracting the outputs of
reference and adaptive models.
£d =Vrd _'f;rd (3.61)
g =VYrq ~V¥Yrq

Defining an error vector & :

e=|ey £ [ (3.62)
Differentiating (3.61) and substituting from (3.54) gives:

1 A\
Péq = —'T—gd —WrEg — (wp — @ Wrq

4 (3.63)

1 ~ ~
Péq =g+ OrEq +(wp — O Wrd
¥

These equations can be written in standard matrix form as:
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R
PEd T, "HWeq| |-y A
[pg :l: r 1 [8 jl-}-[ A rq](wr_wr) (364)
q ®, - q Yrd
L Tr_

Equation (3.64) is similar to the nonlinear feedback system shown in Fig. 3.11 and can

be written as:

pe=Ae-W (3.65)
where:

1 ]

- o ;
A=| 77 { w:[ 4 }(a)r—d),) (3.66)

@ U ~Yrd

-
L Ti‘_

MRAS representation in the general form of a nonlinear feedback system is shown in
Fig. 3.12. It can be shown that the feedforward transfer function matrix of the linear

subsystem is strictly positive real [53].

Linear subsystem

Fig. 3.12 Representation of MRAS as a nonlinear feedback system

Defining an adaptation law as follow [53]:

t
@, = Dy (&) + [D1(¢) dT (3.67)
0

To satisfy Popov’s integral inequality:
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t
T
o .

Substituting from (3.62), (3.66) and (3.67) into (3.68) yields the following inequality:

t t
({(edeﬁrq & Vra) @y — Do (&)~ [ () dr)dt > - y2 (3.69)
0

This inequality can be satisfied using the following functions [53]:

Dy(&) = ko (eq¥rd —Ea¥rq) = KiWrgWrd —¥ra¥irg)

D2(8) = ki(qPra ~Ealirg) = K pWrgiia ~Vraing) o7
where ®@,(¢)and ®;(¢)are the proportional and integral parts of the adaptation law
respectively. Defining the speed tuning signal &, as the cross product between reference
and adaptive model output vectors which can be written as:

Eo =Vrg¥rd ~Vrd¥rq (3.71)
This speed tuning signal is minimized by a PI controller which generates the estimated

value of the rotor speed as shown in Fig. 3.13. Estimated rotor speed can be expressed as:

) K;
&, = (K +?’) £y (3.72)

Error generation

1
| |
| |
Yrq —> y '
A | |
Vid —1TP + [
| | . -
| fo gl g K| Oy
| | p p
| - |
Yird —:-—P :
R X
Yrq ——»: :
|

Fig. 3.13 Adaptation mechanism for MRAS observer

3.5 Conclusion

This chapter has presented the induction machine dynamic modelling using space
vector theory. Transformations from three phase to two phase and between different
reference frames have been discussed. Accordingly, a two-axis state space representation

of the IM in the stator frame has been also developed. The machine equations, expressed
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in the synchronous frame, have been then used to explain the principles of vector control
strategy. Rotor speed estimation of the IM using MRAS approach has been presented.
Reference and adaptive models that form the rotor flux-MRAS observer have been
defined based on machine equations. Finally, the design of an appropriate adaptation

mechanism using hyperstability criterion has been demonstrated.
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e

CHAPTER 4

THE EXPERIMENTAL SYSTEM

4.1 Introduction

To allow practical testing of the schemes developed in this project an implementation
in real time is required. An experimental platform based on a 7.5 kW induction machine
and dSPACE DS1103 controller board is used to validate the proposed schemes. This
experimental setup should allow the analysis of both open loop and sensorless modes of
operation. The test rig, which has been developed in another work [84], consists mainly
of an induction machine, AC drive, DC machine, DC drive, microprocessor-based
control system and various interface circuits. The architecture of the experimental system
is shown in Fig. 4.1. The main components of the experimental system are described in

details in the following sections.

4.2 The Induction Machine
A 7.5 kW, 415 V, 50 Hz, 4-pole delta connected three phase squirrel-cage induction
machine, manufactured by Brook Hansen, is used as the tested machine. To obtain the

equivalent circuit parameters of the machine a set of tests has been carried out as
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described in [85]. These tests consist of DC, no-load and locked rotor tests. The DC test
is used to calculate the stator resistance value, while the no-load test is used to calculate
the magnetizing inductance and the core and mechanical losses. Finally the locked rotor
test is used to calculate the stator and rotor leakage inductances and the rotor resistance.

The parameters for the delta connected machine obtained from these tests are given in

Table 4.1.

15 kW 4-quadrant

‘ . DC Drive
Rectifier Bridge . 3-phase Inverter
DC Link ¥
415V, 50 Hz ' Encoder
3-phase — - - / M el DC
supply . : Machine
VYY)
A A
LjPWM__J ADC | DAC
)
- Y vy b
TMS320F240 | | PowerPC
= D\ DSP ™ 400 MHz
/ N
[ ]
Host PC DS1103 DSP Control Board
Fig. 4.1 Experimental system architecture
Table 4.1
Equivalent circuit parameters for the delta connected machine
Machine parameter Value
R 233 Q
R, 2.11 Q
Ly 13.54 mH
Ly 13.54 mH
Ly, 309.67 mH

The parameters for the delta connected machine can be transformed into star

: z .
equivalent parameters using the delta-star conversion z gy, = delta  The star equivalent

3

parameters for the induction machine are given in Table 4.2.
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Table 4.2

Star Equivalent parameters

Machine parameter Value
R 0.7767 Q
R, 0.703 Q
Lls 451 mH
Ly 4.51 mH
Ly, 103.22 mH

These parameters are converted to their equivalent dynamic two-axis model using

appendix equation (A.32) [70]. The d-g axis parameters of the induction machine are

given in Table 4.3.

Table 4.3

Two-axis model parameters

Machine parameter Value

R 0.7767 Q
R, 0.703 Q
Ly 107.73 mH
L, 107.73 mH
Ly 103.22 mH

4.3 The AC Drive

The AC drive power electronics consists mainly of a rectifier, DC link circuit and an
inverter. The rectifier is a Semikron SKD51/14 50A 3-phase diode bridge which consists
of six uncontrolled diodes. The rectifier output voltage is smoothed through a 0.75 mH,
40 A choke, placed on the AC side, and DC link capacitors consisting of two 4700 pF,
400V capacitors connected in series. Two balancing resistors of 22 k€ each are
connected across the capacitors to ensure voltage sharing. To limit the inrush current
when the system is first switched on, a 56Q-50W aluminium housed wire wound resistor
is used. A relay is placed in parallel with the inrush resistor to provide a short circuit path
when the capacitor is charged to prevent power loss in the resistor during normal
operation. A system is provided to prevent excessive increase in the DC link voltage

when the motor is braking. This is achieved by using a SKAI100 DC link brake chopper
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N

0

that switches on a resistor to dissipate the regeneration power and reduce the capacitor

charge and hence decrease the DC link voltage. The DC link circuit is shown in Fig. 4.2.

Relay
E— NN ]
Inrush
T resistor A
4700 uF_|_ 22kQ Brake
400V | chopper
Rectifier Inverter
tput i
outpu 4700 uF input
400V — 22kQ) § Brake
resistor
(-} {-]

Fig. 4.2 DC link circuit

The drive inverter uses Semikron SKM50GB123D 1200V, 50A half bridge IGBT
power modules. The switching pattern of the IGBT’s is supplied through a Semikron
SKHI22B dual gate driver. Tasks achieved by the gate driver include isolation between
power and control circuits, short circuit protection, error outputs and programmable dead
time generation. The inverter outputs are connected to the induction machine through

current sensors. A photograph of the experimental hardware is shown in Fig. 4.3.

Fig. 4.3 Photograph of the experimental hardware
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4.4 The DC Machine and the DC Drive
A 9 kW, 240 V, 37.5 A DC load machine is coupled to the induction machine shaft

and is used as a load for the IM. The DC machine is connected in a separately excited
configuration to allow separate control of the torque and speed. A 15 kW four quadrant
DC drive from the Control Techniques “Mentor” range is used to control the DC

machine to provide different levels of loading on the induction machine up to full load.

4.5 The Microprocessor Control System
To control the IM a dSPACE DS1103 control board is used which consists of a

Power PC 604e processor running at 400 MHz, and a Slave Texas Instruments
TMS320F240 DSP [86]. Used with the dSPACE Real-Time Interface (RTI) and Matlab
Real Time Workshop (RTW) the Simulink model is automatically converted into C-code
which is compiled and downloaded to the control board program memory. This provides
a fast and easy way to implement and test control schemes in real time. RTI consists of a
set of I/O interface blocks which connects the Simulink model to the real world.
Experiment control is performed by ControlDesk which is used to monitor different
signals and tune parameters. Interfaced with Simulink, ControlDesk performs the
necessary experiment tasks using a graphical interface.

The analogue input signals from the test rig to the dSPACE system are the three
phase current waveforms, the DC link voltage (Vpc) and current. The three phase current
waveforms and the DC link voltage are sampled through 4 x16 bit ADCs where as the
DC link current waveform is sampled through 1x12 bit ADC. The load torque reference
is generated from one of the eight 16 bit DAC channels.

The output from the dSPACE system gives the PWM signals for the inverter AC
drive power electronics using a sinusoidal PWM technique. This output is provided from
the PWM outputs of the slave TMS320F240 DSP. This signal is passed through a gate
driver board before being applied to the inverter switches. The PWM switching
frequency is 15 kHz with a dead time period of 1.5 us.

To allow exchange of information between the control board and the power circuit,

the dSPACE system is interfaced to the power stage via cards including a current sensing
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circuit, DC link circuit, PWM circuit and gate driver board. Signal amplification and
filtering and protection circuits are included into these interface cards.

LEM LASSP Hall effect current sensors were used to measure the three motor line
currents with a conversion ratio of 1000:1. The sensor output is connected to a 100 Q
resistor to be transformed to measurable voltage signal of 0.1 V/A. The current sensing
circuit is provided with an over-current protection using comparators. In case of over-
current an error signal is sent to the gate driver to turn off the inverter I[GBT’s.

A potential divider is used to measure the DC link voltage giving an output of less
than 5V at the maximum DC link voltage. The potential divider output is passed through
an [SO124 voltage isolation amplifier and then a LPF RC filter is used to remove high
frequency switching signals. The final output is obtained through a unity gain buffer
amplifier.

A LAHS50P current sensor is used to measure the DC link current with a conversion
ratio of 2000:1. Using a 200 Q resistor the current signal is converted to a voltage signal
of 0.1 V/A.

The actual motor speed is measured by a Hohner 5000 pulses/revolution incremental
optical encoder attached to the shaft of the induction machine. The encoder signal is
interfaced to the dSPACE system via an incremental encoder interface. The rotor speed
measurement is to allow standard encodered vector control operation and is employed as
a reference for sensorless operation. A photograph of the whole laboratory system is

shown in Fig. 4.4.

Fig. 4.4 Laboratory photograph of the experimental setup
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4.6 Dead Time Compensation

Dead time is a time delay inserted in the switching signals of a PWM inverter to
avoid short circuit of the DC link if two switches of the same arm are “on” at the same
time. Dead time causes distortion in the output voltage waveform by introducing
unwanted harmonic components making the output voltages deviate from the reference
voltages [87, 88]. The effect becomes more severe in the low speed region of operation.
Therefore a simple dead time compensator similar to [87, 89] is implemented. The block
diagram of the rotor flux oriented control scheme with dead time compensation is shown

in Fig. 4.5.

* % *
_l,r_> VsD > Ved+ .
* Vector Control | ,* 2 phase to 3- Sy g PWM

__a)r__> __S_Q_> phase sB —

transformation |,* Inverter

VeC + +
+
isA —>

isg —»  Dead Time
isc —»| Compensation
Vpc—»

Fig. 4.5 Block diagram for vector control implementation with dead time compensation

4.7 Conclusion

This chapter has presented the experimental setup used to validate the developed
schemes based on a 7.5 kW induction machine and dSPACE DS1103 control board. The
main components of the hardware and software configurations of the experimental
system have been described. Finally, the compensation of dead time effects in the

inverter has been presented.
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Two novel adaptation schemes are proposed to replace the classical PI controller used in
model reference adaptive speed estimation schemes which are based on rotor flux. The
first proposed adaptation scheme is based on SM theory. A new speed estimation
adaptation law is derived using Lyapunov theory to ensure estimation stability as well as
fast error dynamics. The other adaptation mechanism is based on a FL strategy. A
detailed comparison between the new and conventional schemes is carried out in both
open loop and sensorless modes of operation. Various simulation and experimental tests
are performed to examine the performance of different schemes when the vector control

IM drive is working at very low speed.

5.1 Introduction
PI controllers are widely used in industrial control systems applications. They
have a simple structure and can offer a satisfactory performance over a wide range of

operation. Therefore, the majority of adaptation schemes described in the literature for
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MRAS speed observer employ a simple fixed gain linear PI controller to generate the
estimated rotor speed as shown in Fig. 5.1. However, due to the continuous variation in
the machine parameters and the operating conditions in addition to the nonlinearities
present in the inverter, fixed gain PI controllers may become unable to provide the
required performance. Not much attention has been devoted to study other types of
adaptation mechanisms used to minimize the speed tuning signal to obtain the estimated
speed.

In this chapter this point is addressed by presenting two novel nonlinear adaptation
mechanisms to replace the classical PI controller used in the conventional rotor flux
based-MRAS speed observer. A novel nonlinear adaptation scheme based on SM theory
is proposed to improve the speed estimation performance. The new speed estimation
adaptation law, which ensures estimation stability and fast error dynamics, is derived
based on Lyapunov theory. Furthermore, a FLC is proposed as another nonlinear
optimizer to minimize the speed tuning signal used for the rotor speed estimation. The
performance of the new and conventional schemes is compared based on detailed
simulation and experimental tests in both open loop and sensorless modes of operation.
Focus is given to operation at low speed which represents a critical region of operation

for MRAS observer.

YsD Vrd
VsQ———| Reference Model

'sD > (VM)

50 >

X

> Adaptive Model
- )

PI
Controller

S
A

Fig. 5.1 Classical rotor flux MRAS with PI adaptation mechanism

5.2 Sliding Mode Adaptation Mechanism for MRAS Observer
Different SM strategies have been proposed to control IM drives [24, 25, 90]. Such

strategies show robustness against motor parameter variation, better external
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disturbance rejection, stability and fast dynamic response. However, one of the major
drawbacks of the conventional SM strategy is the chattering in the steady state. In this
section a new application of SMC is introduced as an adaptation mechanism for error

minimization in MRAS speed observer to generate the estimated rotor speed.

5.2.1 Introduction to Sliding Mode Control
SMC is a Variable Structure Control (VSC) method with a high frequency

discontinuous control action which switches between several functions depending on the
system states [49]. This action forces the states of the system to slide on a predefined
hypersurface (a surface embedded in the state space). The principle of SMC is to define a
switching control law to drive the state trajectory onto a switching surface and to
maintain this trajectory sliding on this surface for all subsequent time [91]. The sliding
mode consists of a reaching phase where the state trajectory is driven to the surface s = 0

and reaches it in a finite time, followed by a sliding phase where it slides on the

switching surface to an equilibrium point, as shown in Fig. 5.2 [24]. Usually the states x;
and x, are chosen to be the error function and its derivative or integral and in this case

the equilibrium point is (0, 0). The control law is defined based on Lyapunov theory to
guarantee the motion of the state trajectory towards the sliding surface [91]. This is done
by choosing a hitting control gain to maintain the derivative of Lyapunov function

always negative definite [92].

S
&,

Sqlfé Lo

Reaching phase

\ — X1
\ Ny
\ g o
e‘s’e

State trajectory

Fig. 5.2 The sliding mode principle
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5.2.2 Sliding Mode MRAS Observer

The classical SM strategy applied for control applications is modified to fit with the
speed estimation problem. Hence a novel SM rotor flux MRAS (MRAS-SM) is
developed to replace the conventional constant gain PI controller. A new speed
estimation adaptation law for the SM scheme is derived based on Lyapunov theory to
ensure stability and fast error dynamics. Defining the speed tuning signal as in (3.71):
€ =WrgWrd ~Vrd¥rg (5.1)
Defining a switching surface s as:
s=€q+ [kepdt k>0 (5.2)
Such that the error dynamics at the sliding surface s =0 will be forced to exponentially
decay to zero. When the system reaches the sliding surface, this gives:
=4y +key =0 (5-3)
and the error dynamics can be described by:
¢, = —ke, (54)
The SM control law can be found using Lyapunov theory and defining the Lyapunov
function candidate [92]:

| )
. 5.5
2s (5.5)

According to Lyapunov theory, if the function v is negative definite, this will ensure
that the state trajectory will be driven and attracted toward the sliding surface s and once
reached, it will remain sliding on it until the origin is reached asymptotically [92]. The
time derivative of Lyapunov function in (5.5) can be calculated as:
y=s§ s(é, +hey) (5.6)

Differentiating (5.1), yields:

€ = '/'/rq‘/’;rd + l:/’rq'/’)rd ~Yra¥ rq ~ '/’rd‘/A/rq (.7)
Substituting the CM (3.54) into (5.7) yields:
. A A L,. 1 .
€ =Vrg¥rd ~Vrd¥rqg + T’sD'/’rq - F‘/’rd Yrq
r r (5.8)
0 +-Brgra = or W +¥raira)
~PisoWrd + 7 Vrq¥rd ~ OrWrq¥rq T ¥rd¥rd
T, T,

By letting:
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Fo=g A+_l_4_,,i. 1. L, . 1.
1 =Vrg¥rd ~¥rd¥rq T LsDY'rq _TWrdl//rq —TISQWrd +FquWrd (5.9)
r r r r
fr= qu‘/;rq +YrqWrg (5.10)
Equation (5.8) can be written as:
(o =N - f (5.11)
and (5.3) can be written as:
$=fitke, -, 1) (5.12)
Substituting (5.12) into (5.6) yields:
v=s(fi +key— b, 15) (5.13)
This derivative is negative definite if:
<0 fors>0
(fi+key—dpfy) =0 fors=0 (5.14)
>0 fors<0

This can be ensured if:

@r=m+Msign(s) M>0 (5.15)
p)
where the sign function is defined as:
-1 <0
sign(s) = fors (5.16)
+1 fors>0

Equation (5.15) represents the switching law of the SM controller and could be written in
general form as:

@, =Upg + U (5.17)
where u,, is the equivalent control which defines the control action that keeps the state

trajectory on the sliding surface, u, is the switching control which depends on the sign of

the switching surface and M is the hitting control gain which makes (5.6) negative
definite [92]. No design criterion is assigned to choose the value of M; however, its value
should be selected high enough to make the manifold s = 0 in (5.2) attractive [51, 92].
Therefore the control law defined in (5.15) will guarantee the existence of the switching

surface s in (5.2) and when the error function &, reaches the sliding surface, the system
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dynamics will be governed by (5.4) which is always stable [93]. The expressions for the

equivalent and the switching control functions can be written as:

y = fi +keg
¢ H (5.18)
ug, = Msign(s) M>0 (5.19)

The presence of the function f; in the denominator of the equivalent control u,, may
cause problems in the estimation performance of the proposed scheme if its value
approaches zero. This problem can be avoided by allowing magnetizing of the machine
before starting up and by adding a positive small value to f5. The use of the sign function
in the SM control (5.15) causes high frequency chattering due to the discontinuous
control action which represents a severe problem when the system state is close to the
sliding surface [92]. The block diagram of the novel MRAS observer employing SM
adaptation mechanism (MRAS-SM) is shown in Fig. 5.3. Simulation and experimental

results of this scheme will be given in section 5.4.
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Sliding Mode Controller

Fig. 5.3 MRAS-SM speed observer

5.3 Fuzzy Logic Adaptation Mechanism for MRAS Observer

Various applications of FL have shown a fast growth in the last few years. FLC has
become popular in the field of industrial control applications for solving control,
estimation and optimization problems [10}]. In this section FL is proposed to replace the

PI controller used for error minimization in the conventional MRAS speed observer.
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5.3.1 Introduction to Fuzzy Logic

Design of classical control schemes needs an accurate model of the process to be
controlled. These models could be deterministic assuming perfect model or stochastic
including uncertainty and noise. However, experienced engineers may be able to control
a process without needing a mathematical model based on their familiarity with its
physical characteristics and their practical experience. FL mimics human reasoning to
create controllers without any prior information about the mathematical model of the
controlled system. This is achieved by converting the linguistic control strategy of human
experience and knowledge into an automatic control strategy. Hence FL deals with
linguistic variables which are in the form of words rather than numbers [94]. The idea of
FL has been first introduced in 1965 by Zadeh [95] and has become an interesting field
of control engineering. However, a lack of design techniques is considered as one of the
major drawbacks of FLC. The most frequently used FL system is the Mamdani-type [94]
which consists of three main parts: fuzzification, inference engine and defuzzification

[10]. A detailed description of FLC principles is provided in Appendix B.

5.3.2 Fuzzy Logic MRAS Observer

FL technique has been applied to solve optimization problems for IM drives [30, 96-
99]. It has been proposed to replace PI controllers in different error minimization
applications [100, 101]. For the MRAS speed observer, the mechanism of the estimation
of the rotor speed can be regarded as an optimization problem where the PI controller is
generating a quantity, the estimated speed, in such a way as to minimize a specified error,
which is the speed tuning signal in (5.1), in a feedback loop. Therefore, FLC can replace
the conventional PI controller to solve the optimization problem.

The proposed FLC is a Mamdani-type rule base where the inputs are the speed tuning

signal £, in (5.1) and its change Ag,, which can be defined as:
Ay (k) = £,y (k) — £, (k- 1) (5.20)

In the z-domain this can be written as:

A&, (z) = (i_—l—)ga,(z) (5.21)
Z
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These two inputs are multiplied by two scaling factors k, and k; respectively. The
output of the controller is multiplied by a third scaling factor k, to generate the actual
value of the rate of change of the estimated speed. Finally, a discrete integration is
performed to get the value of the estimated speed. Hence a PI-Type FLC is created with

structure as shown in Fig. 5.4 [102, 103]. The expression for the estimated speed can be

written as:
i, (k)= @, (k1) + Ad,. (k) (5.22)
In the z-domain this can be written as:
b, (2) =| — |Ad, (2)
= — z
(2)=| = |Ady (5.23)
£
@ ke €wn
Inference Ad AG
Fuzzifica- Engine p| Defuzzif- |~ 7 >z @ >
tion r__» ication ku 21 -
A
kq(z-1) ﬁ"ﬂ
a y
Fuzzy
Rule
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Fig. 5.4 Block diagram of PI-Type fuzzy logic controller

The choice of the values of the scaling factors greatly affects the performance of the
FLC. A trial and error technique is usually used to tune these gains to ensure optimal
performance of the controller [99]. Each variable of the FLC has seven membership
functions. The following fuzzy sets are used: NB= NEGATIVE BIG, NM= NEGATIVE
MEDUIM, NS= NEGATIVE SMALL, ZE= ZERO, PS= POSITIVE SMALL, PM=
POSITIVE MEDUIM, PB= POSITIVE BIG. The universe of discourse of the inputs and
outputs of the FLC are chosen between -0.1 and 0.1 with triangular membership
functions as shown in Fig. 5.5. Table 5.1 shows the fuzzy rule base with 49 rules [99].
FLC is modelled using the Matlab Fuzzy Logic Toolbox graphical user interface (GUI)
as described in Appendix B [94]. The overall MRAS speed observer with FL speed
estimation mechanism (MRAS-FL) is shown in Fig. 5.6.
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Table 5.1

Linguistic rule base for PI-Type fuzzy logic controller

Eo
A&,

NB NB NM NM NS NS NS ZE
NM NM NM NS NS NS ZE PS
NS NM NM NS NS ZE PS PM
ZE NB NM NS ZE PS PM PM
PS NS NS ZE PS PS PM PM
PM NS ZE PS PS PS PM PM
PB ZE PS PS PM PM PB PB

NB NM NS ZE PS PM PB

Son Agyn
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Fig. 5.5 Fuzzy controller input and output membership functions (a) error (b) error

change (c) change in the estimated speed (d) surface
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Fig. 5.6 MRAS-FL speed observer
5.4 Results

To examine the performance of the different adaptation mechanisms, simulation and
experimental tests are carried out in both open loop and sensorless modes of operation.
The three schemes, PI, FL and SM, are tested at different operating points when an
indirect vector control IM drive is working at low speed. The PI speed and current
controllers of the vector control drive are designed experimentally by a method based on
Ziegler-Nichols as described in [104]. Parameters of different schemes are tuned
online during experiments as will be explained later. These parameters are also used in
the simulation stage. Simulation and experimental results are given in the following

sections.

5.4.1 Simulation Results
As a first step of study, simulations of the proposed schemes were carried out to
verify their ability to provide satisfactory speed estimation performance. The 4-pole

induction machine, with parameters given in Table 4.3, was modelled using the d-q axis

theory as described in chapter 3. The mechanical rotor speed @,,, can be obtained from

the mechanical model described by:

AWy, (5.24)

T, = J %™ + Ba,,



Chapter 5 Design of Adaptation Mechanism for Rotor Flux-Based MRAS 64

where the mechanical rotor speed ,,, is related to its electrical value w, by:
I
rm = "p (5.25)

In (5.24), J is the motor moment of inertia that was obtained from a “run-down” test
[105] and found to be approximately 0.22 Kg.m? and B is the friction coefficient that
was found experimentally to be approximately 0.04 N.m/rad/s. These approximate values
of the mechanical parameters are found to make the simulation results agree with the
experimental results that will follow later.

The indirect vector control IM drive was developed in Matlab-Simulink environment
using Simulink library blocks. The motor is directly fed from the reference voltages and
hence an ideal inverter and pulse width modulator were assumed. The reference model of
the MRAS observer was solved using pure integration and hence drift and initial

condition problems were not considered in the simulation.

5.4.1.1 Open Loop Simulation

The performance of the proposed schemes was first investigated with open loop
operation. The schematic of the open loop estimator simulation is shown in Fig. 5.7
where the MRAS observer output is not fed back into the drive system and the drive is
working in encodered mode. The actual speed calculated from the mechanical model
(5.24) is used for speed control and field angle calculation.

The vector control drive started with 100 rpm reference speed at no-load; at £=5s a
50% load was applied followed by a reference speed change to 50 rpm at =38s.
Simulation results for the MRAS estimator with the three adaptation mechanisms are
shown in Figs. 5.8-5.12. Results show the superiority of the proposed adaptation
mechanisms, FL and SM, over the conventional PI controller. The transient response of
the two proposed schemes is faster than the PI controller. The minimum speed tuning
signal was obtained from the SM scheme as shown in Fig. 5.11. However, the speed
response features large chattering. The switching surface (5.2) of the SM scheme 1s
shown in Fig. 5.12 with chattering around zero. During transients, the speed tuning signal
obtained from the FL scheme is decaying to zero faster than the PI scheme.

Consequently, the FL scheme shows better transient response compared to the Pl

scheme.
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Fig. 5.7 Structure of open loop MRAS estimator simulation
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5.4.1.2 Closed Loop Simulation

After developing confidence with open loop operation, closed loop operation of the
proposed schemes was considered. The schematic of the closed loop estimator simulation

is shown in Fig. 5.13 where the MRAS observer output is fed back into the drive system

and the drive is working in sensorless mode.
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Fig. 5.13 Structure of closed loop MRAS estimator simulation

The closed loop simulation results for the MRAS estimator with the three adaptation
mechanisms are shown in Figs. 5.14-5.18. The sensorless drive started with a speed
command of 50 rpm at no-load followed by a 25% load torque applied at #=5s and a
speed reversal command from 50 rpm to -50 rpm at 25% load. As for open loop
operation, SM scheme still shows minimum speed tuning signal and FL scheme shows

faster transient dynamics compared to the PI scheme.
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5.4.2 Experimental Results

Extensive experimental tests were carried out to compare the three adaptation
schemes; PI, FL and SM using an indirect vector control IM drive. The tests were
performed in both open loop and sensorless modes of operation. The inverter switching
frequency is 15 kHz and the vector control is executed with the same sampling
frequency. The observer and the speed control loop have a sampling frequency of 5 kHz
and the speed measurement is executed with a sampling frequency of 250 Hz.

During practical implementation of the MRAS scheme it was found necessary to
cascade a low cut-off frequency High Pass Filter (HPF) at the outputs of the VM to
remove integrator drift and any initial condition problems. The cut-off frequency should
be selected as low as possible since the purpose is just to remove the DC component and
therefore a value of 1 Hz was chosen. Reference voltages which are available in the
control unit are used to avoid the need to measure the real stator voltages and will be
used for the VM flux observer in (3.53).

To use the FLC in real time with the dSPACE card and Simulink, a two dimensional
look-up table is generated from the FL toolbox in Matlab with a step size of 0.0005 for
the inputs. The FLC implementation using a look-up table is shown in Fig. 5.19 where
the saturation limits for the input saturation blocks are set to 0.1 and -0.1. Experimental

results from the tests are shown in the following sections.

£y Saturation > ﬁ + a,
—>

+ Look-up
ks Table (2-D) z

1 Saturation

z

—

Fig. 5.19 FLC implementation using look-up tables

5.4.2.1 Open Loop Performance

The three adaptation mechanisms were tested in open loop when the drive is operated
as an encodered vector control, i.e. the encoder speed is used for speed control and rotor
flux angle estimation. The drive was subjected to different reference speed changes at
various load torque levels. The PI controller gains can be selected as high as possible but

are limited by the noise [2]. PI gains of K, = 10; K; = 100, obtained by trial and error,
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were shown to provide an optimal performance for the conventional MRAS observer.
These gains will be used throughout this work. To allow a fair comparison FLC gains
were tuned in such a way as to obtain similar steady state performance as PI controller
and are found to be: k.= 0.01; k;,= 1; k,= 5.

A LPF is used to reduce the chattering in the estimated speed obtained from the SM
scheme. This LPF is found also useful to remove the spikes that may appear in the
estimated speed due to the differentiation of fluxes in (5.9). The choice of the cut-off
frequency for this LPF affects the observer performance. Using small values reduces the
speed ripples but introduces more delay in the estimated speed. A cut-off frequency of 30
rad/s was found to be a good compromise between speed ripples and dynamic response.
The parameters of the SMC are: k= 1000; M = 0.1 and are obtained by trial and error.

At low speed a steady state error in the estimated speed is observed for the MRAS
observer using the three adaptation schemes. This is mainly due to the stator resistance
mismatch between the motor and the observer. Moreover, since dead time effects cannot
be completely removed even by complicated compensation schemes [5], the reference
voltages used for the VM did not match the actual stator voltages across the machine
terminals which represents another source for the steady state error in the estimated
speed.

Figs. 5.20-5.24 show the speed estimation performance of both schemes for 25% load
torque disturbance rejection at 60 rpm and for speed change from 30 rpm to 100 rpm at
25% load. Other results are shown in Figs. 5.25-5.29 for 50% disturbance rejection at
100 rpm and for speed reversal from -60 rpm to 100 rpm at 62.5% load. Figs. 5.30-5.32
show the results of a reference speed change from 50 rpm to 100 rpm at rated load. FL
and SM schemes show better transient response compared to the PI scheme, due to an
optimal speed tuning signal during transients. The switching surface of the SM scheme
(5.2) corresponding to the unfiltered speed is shown for the different operating

conditions. These figures show that the manifold s = 0 is attractive causing fast error

dynamics.
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5.4.2.2 Sensorless Performance

In these tests the vector control drive is working in the closed loop sensorless mode,
where the estimated speed is used for both speed control and rotor flux orientation. The
three schemes are compared when the drive is running with different operating
conditions at very low speed.

Sensorless performance of all schemes is shown in Figs. 5.33-5.37 where the drive is
subjected to a reference speed change from -30 rpm to -60 rpm at no load and 25% load
torque application at 100 rpm. Other test results are shown in Figs. 5.38-5.42 for £50 rpm
speed reversal at 12.5% load and 37.5% load disturbance rejection at 50 rpm. Compared
to the PI scheme, FL and SM still show a faster response during transients. Moreover, the

FL scheme shows faster response compared to the SM scheme due to the need for LPF
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for the SM scheme. An optimal speed tuning signal was obtained for the FL scheme

compared to the PI scheme as shown in Figs. 5.39 and 5.42(a).
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5.5 Conclusion

In this chapter two novel nonlinear adaptation mechanisms are proposed to replace
the fixed gain PI controller which is conventionally used for rotor flux MRAS observer.
One of these schemes is based on SM theory where a novel speed estimation adaptation
law is derived based on Lyapunov theory to ensure estimation stability with fast error
dynamics. The second scheme is based on a FL strategy working in a nonlinear
optimization mode. Parameter tuning of the PI and FL schemes has been performed in
such a way as to obtain similar steady state performance. A rigorous simulation and
experimental comparison between the three schemes have been carried out using an
indirect vector control IM drive. Application of the new schemes shows better transient
performance as well as better load torque disturbance rejection in both open loop and
closed loop sensorless modes of operation. More specifically, due to the need of low pass
filtering of the estimated speed obtained from the SM approach, the FL strategy shows a
faster response than the SM scheme. However, the application of the new adaptation
schemes does not considerably improve the steady state performance which will be the

purpose of the following chapter.
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NEURAL NETWORK-BASED ROTOR FLUX MRAS
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A new method is described which considerably improves the performance of rotor flux-
MRAS based sensorless drives in the critical low and zero speed region of operation. It is
applied to a vector controlled IM drive and is experimentally verified. The new technique
uses a NN as a rotor flux observer to replace the conventional VM. This makes the
reference model free of pure integration and less sensitive to stator resistance variations.
This is a radically different way of applying NNs to MRAS schemes. The data for
training the NN is obtained from experimental measurements based on the CM avoiding
voltage and flux sensors. This has the advantage of considering all the drive
nonlinearities. Both open loop and sensorless operations for the new scheme are
investigated and compared with the conventional MRAS speed observer. The
experimental results show the great improvement in the speed estimation performance

for open and closed loop modes of operation including zero speed.

6.1 Introduction
Classical rotor flux MRAS observer employs a VM to produce the reference values
of the rotor flux. However, VM flux observer suffers from stator resistance sensitivity,

stator voltage acquisition problem and flux open loop integration which may cause dc
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drift and initial condition problems [1, 5]. These problems limit the performance of the

MRAS observer in the low and zero speed region of operation.

Neural Networks, with their learning and generalization capabilities, have attracted
much attention in the last two decades. They have been used before with MRAS schemes
as described in chapter 2. However, a completely novel application of the NN for MRAS
schemes is described in this chapter. This new MRAS scheme employs a NN rotor flux
observer to entirely replace the conventional VM (and not the CM as described in [28,
52]) to improve the sensorless drive performance at low and zero speed. A multilayer
feedforward NN estimates the rotor flux from present and previous samples of the
terminal voltages and currents. The training data for the NN is obtained from
experimental measurements giving a more accurate model that includes all the drive
nonlinearities. An experimental implementation of the new NN MRAS observer is
described. The new NN scheme is compared with the conventional, which employs a
VM for flux estimation, in both the open loop and closed loop sensorless modes for an
indirect vector control IM drive. The drive performance is tested when running at very
low and zero speed at various load levels. Experimental results confirm the great

improvement in the performance of the new NN MRAS speed observer.

6.2 Artificial Neural Networks

Artificial NNs are based on the basic model of the human brain with capability of
generalization and learning. They are frequently used as universal nonlinear function
approximators to represent functions with weighted sums of nonlinear terms [106].
Multilayer feedforward NNs have shown a great capability to model complex nonlinear
dynamic systems [27]. Generally, the advantages of applying NN over mathematical
model-based techniques are fault tolerance, parallel processing, fast implementation
speed, noise-immunity, generalization capability and insensitivity to inaccurate inputs [4,
107, 108]. On the other hand, lack of design techniques and computational effort
requirement are the main drawbacks of NN. The following sections briefly describe

various network topologies and training methods.
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6.2.1 Structure of Artificial Neural Networks

Stimulated by the structure of the brain, a NN consists of a set of highly
interconnected processing units, called nodes or units. Each unit is designed to mimic its
biological counterpart, the neuron [11]. Each accepts a weighted set of inputs and
responds with an output. NN resembles the biological neuron in acquiring knowledge by
learning from examples and storing this information within inter-neuron connection

strengths called weights. Fig. 6.1 shows an artificial neuron which consists basically of a

summer and an activation function [11, 109].

P
4 b
%
p2 w,
net y
f(net) —»
Internal w3
Inputs >
Activation
function
Qe
\ Pn

Fig. 6.1 Structure of the artificial neuron

The inputs to the neuron are pj,P2,P3-Pn with corresponding weights
W{, Wy, W3,...., W Which act in such a way as to increase or decrease the input signals to

the neuron. Sometimes a threshold term b is added to the inputs. All inputs are multiplied
by their corresponding weights and added together to form the net input to the neuron

called net. The mathematical expression for nef can be simply written as:

n
net = ZWipi+b=W1p1+W2p2 +W3p3+ ....... +Wnpn+b (61)
i=1

The neuron behaves as activation or mapping function f (net)to produce an output y

which can be expressed as:

Y= flnet)= F(Ewipi +b) 62)
i=1
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where f'is the neuron activation function or the neuron transfer function. Common neuron

activation functions are: Linear, threshold, log-sigmoid and tan-sigmoid as shown in Fig.
6.2 [11]. In all these cases the net neuron input is mapped into values between 0 and 1 or
-1 to 1 where g is the gain that adjusts the slope of the sigmoid functions [10, 11]. All
these functions are squashing since they limit the neuron output to asymptotic levels

[11]. Using nonlinear activation functions allows nonlinear input-output mapping of NN

which can permit nonlinear function approximation.

—'2

i y—{+1 ifnet>0}

y=net -1 if net<0
1 +1
net
» net —>
-1 1
(a) (b)
4 y
A 1
y=——7— A _ 1-exp(— g net)
1+exp(— g net) y= tanh(net)— 1+exP("g net)
H—_— — — — Hpf— — — — =
0.5 » net
——p net e |
© (d)

Fig. 6.2 Common neuron transfer functions (a) Linear (b) Threshold (¢) Log-Sigmoid
(d) Tan-Sigmoid
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The most common type of NN is the multilayer feedforward network which consists

of a group of interconnected neurons organised in layers: input layer, hidden layer and
output layer where each layer consists of a group of neurons as shown in Fig. 6.3. It is
feedforward because signals propagate only in a forward direction from the input nodes
to the output nodes and no signals are allowed to be fed-back among the neurons [108].
The number of hidden layers, number of neurons in each layer totally depends on the
complexity of the problem being solved by the network. This structure is commonly used
in system identification and nonlinear function approximation applications.

Another architecture of NN is the recurrent network which differs from the
feedforward structure by having feedback connections which propagate the outputs of
some neurons back to the inputs of other neurons to carry out repeated computations on

the signal as shown in Fig. 6.4 [108].

Threshold Threshold

Input Layer Hidden Layer Output Layer

Fig. 6.3 Architecture of multilayer feedforward neural network
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Fig. 6.4 Structure of recurrent neural network

6.2.2 Learning Techniques

The artificial NN resembles the human brain in learning through training and data
storage. A training process is performed to enable the NN to understand the model to be
represented. Based on learning strategy two popular techniques can be described:
supervised and unsupervised learning. Supervised learning is frequently used in the
majority of NN applications. Training can be performed either online or off-line. For

online training, the NN weights are continuously updated during operation rather than

being constant with off-line training.

6.2.2.1 Supervised Learning

In this type of learning a teacher is present during the learning process and the NN is
trained through a given input/ target data which includes input pattern associated with the
corresponding target or desired pattern [11]. These training data form a pool of examples
used to train the NN in order to learn a specific behaviour. The presence of desired

output(s) for each input in the training pattern makes this type of learning supervised.
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During the learning process, the NN output is compared with the target value and a
network weight correction via a learning algorithm is performed in such a way as to
minimize an error function between the two values [27, 60]. This is an optimization
problem in which the learning algorithm is searching for the optimal weights that can
represent the solution to the approximation problem. The block diagram of the training

process is shown in Fig. 6.5.

Non-Llpear Target
Function
+
Input error
—»
Neu

) ral Network

Network Output

Learning

Algorithm

Fig. 6.5 Block diagram of neural network training using supervised learning

A commonly used error function is the Mean-Squared Error (MSE) which represents
the average error between the network's output and the target value over all the example
pairs. Backpropagation is a gradient descent algorithm usually used to update the
network weights during training to improve the network performance. This is achieved
by minimizing a performance function, the MSE, which moves the network weights
along the negative of the gradient of the performance function. This algorithm can be

used to train multilayer feedforward NNs either online or off-line.

6.2.2.2 Unsupervised Learning

In this type of learning, no desired or target is available to the network and only the
input pattern is present, i.e. there is no teacher to learn the network. The system must
learn by discovering and adapting to structured features in the input pattern [108, 109].
This is done by adapting to statistical regularities or clustering of patterns from the input

training samples [108].
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6.3 Neural Network MRAS Observer

To overcome the problems associated with the conventional rotor flux-MRAS
observer NN is introduced as rotor flux observer to replace the conventional VM used in
the classical scheme. This represents an entirely new application of NN to MRAS
schemes. A multilayer feedforward NN is used to estimate the rotor flux components
from current and previous samples of the stator voltages and currents. Compared to a
VM flux observer, the NN does not employ pure integration and is less sensitive to motor
parameter variations as will be shown later. Compared to other conventional schemes
that make use of a LPF for flux estimation, the NN observer does not employ any
filtering. This avoids delaying the estimated speed and prevents estimation errors below
the filter cut-off frequency. The training of this network was performed using
experimental data. This avoids using search coils which are not a suitable way to obtain
flux measurements in most applications [106]. The outputs from the CM are used as
target values for the NN to provide harmonic-free signals and an accurate output at low
speed. Hence the MRAS scheme effectively uses two versions of the CM: one based on
(3.54) and one based on the trained NN. This greatly improves the performance of the
speed estimator as will be experimentally proved later. The offline trained NN will be
used as a reference model for the MRAS observer to form a NN MRAS scheme as

shown in Fig. 6.6.

- NN Flux Observer

Adaptive Model
(Current Model)

PI Controller

Fig. 6.6 Proposed NN MRAS speed observer

Since the performance of the conventional MRAS scheme improves at higher speeds,

NN is suggested to replace the VM only in the low speed region. This will dramatically
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reduce the number of training samples and consequently the training time in addition to
reducing the NN size. At high speed conventional MRAS employing VM can be used.
Experimental testing of the classical MRAS observer shows deterioration of the
performance in +100 rpm speed region but operation outside this range was satisfactory.
Therefore the task of the proposed scheme is to improve the performance in the critical
+100 rpm region. First a NN scheme is developed which is suitable for general purpose
IM drives where rated load is not required for low speed operation. In such applications
the load torque is related to the rotor speed and hence a small load torque is needed at
low speed. The possibility of extending the scheme to cope with low speed, rated load

applications has also been discussed.

6.4 Neural Network Rotor Flux Observer

Multilayer feedforward NNs have shown great capabilities for nonlinear function
approximation applications. Various attempts to model machine flux from measured
quantities such as stator voltages, currents and motor speed have been discussed [10, 27,
29, 106]. In this section a multilayer feedforward NN will be presented that estimates the
rotor flux components from the present and past samples of the terminal voltages and
currents. The NN is trained to match the performance of the CM which is free from stator
resistance dependency and dc drift problems.

It has been shown that any nonlinear function can be represented by a three layer NN,
i.e. input, hidden and output layers, with a given number of neurons in each layer and
that the accuracy of the approximation depends on the number of neurons in the hidden
layer [10, 11]. Here an 8-25-2 multilayer feedforward NN, shown in Fig. 6.7, is used to
estimate the rotor flux components in the stationary reference frame. To obtain good
estimation accuracy, the inputs to the network are the present and past values of the d-q
components of the stator voltage and current in the stationary reference frame.
Compensated versions of the reference voltages are used, as discussed in chapter 4.
Better performance can be obtained by increasing the number of inputs to include voltage
and current samples from more than one time step in the past. However, this may require
larger training data and will need more computational effort to achieve good

approximation accuracy.



Chapter 6 Neural Network-Based Rotor Flux MRAS Speed Observer 103

vsp (k)
vplk-1)
vso(k)
vso(k—1)
isp(k)
isp (k1)
iso (k)

iso(k-1)

Input Layer Hidden Layer Output Layer
8 Inputs 25 Neurons 2 Outputs

Fig. 6.7 Neural network rotor flux observer

One of the major drawbacks of NN strategy is the lack of design techniques. Hence
the number of neurons in the hidden layer is chosen by a trial and error technique to
compromise between computational complexity, if a larger number is selected, and
approximation accuracy, if a smaller number is selected [27]. This degree of trial and
error may increase the training process time. The output layer of the NN consists of two
neurons representing the rotor flux components in the stationary reference frame. Since
the case is approximating a nonlinear function with bipolar input/output pattern,
hyperbolic tangent (Tan-Sigmoid) activation functions, Fig. 6.2(d), is used in both hidden
and output layers [11]. In this case, the neuron transfer function can be written as:

1 —exp(—net J-)

y; = tanh{pet ;)= 63)

I 1+ exp(—net j)

6.4.1 Neural Network Training
The first step for NN development is to obtain the training data. Generation of the

training set is crucial since it should adequately represent the problem to be solved by the
NN. Training data can be obtained by using simulation tools or through experiments.
However, experimental data is more suitable for NN to produce realistic outputs [110].

Therefore the training data for the NN flux observer are obtained from the experimental
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system. This is achieved by running the encodered vector control drive with different
operating conditions in the low speed region 100 rpm to -100 rpm including the zero
speed. Various load levels ranging from 0 to 25% of rated load are used to suit low
speed, low torque applications such as fans, centrifugal pumps and blowers. Small and
large references speed changes were applied to the drive during the training phase to
include all the possible operating conditions. The reference voltages and measured stator
currents are transformed from 3-phase (a, b, c) to 2 phase (d, q) for the NN training data.
A LPF with 40 rad/s cut-off frequency was used to remove drift and noise from the
reference stator voltage signals. The present and past samples of filtered stator voltages
and stator currents components are obtained which will be used as inputs to the NN
model. Even using direct flux sensing via search coils [27], noise and rotor slot harmonic
effects on the measurements require that a LPF be used.

The outputs from the CM, which are obtained from stator currents components and
encoder speed, are used as target values for the NN. This is an effective way to obtain the
correct values of the rotor flux since the obtained signals are relatively noise and
harmonic-free including all the drive nonlinearities. Moreover, the CM flux observer
produces accurate flux estimation at low speed [69]. The block diagram of the training

data acquisition from the experimental system is shown in Fig. 6.8.
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\ \ J ‘
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Training Data <————J

Fig. 6.8 NN Training data acquisition from experimental system

Since the measurements are generated at different scales for voltage, current and flux,

scaling of the data variables is necessary to increase the numerical stability of the data
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processing [110]. Furthermore, the scaling level is determined by the type of activation
function being used. With hyperbolic tangent sigmoid function used in the hidden layer
of the NN, training data has to be normalized to lie in the range between -1 to 1. The
training is performed off-line with Matlab-Simulink using the Levenberg-Marquardt
training algorithm which is faster than the gradient descent backpropagation algorithm
but needs a large memory [11, 27]. This algorithm is considered to be the fastest for
training moderate size feedforward NN with weights up to several hundreds [111].
Moreover, it has an efficient implementation in Matlab software [111]. A 5000
input/output pattern was used to train the NN. After the training the MSE between targets
and NN outputs decays to a satisfactory level (4.5 x 10™*) after about 2200 epochs as
shown in Fig. 6.9. The training lasts for less than one hour on a Pentium ® [V PC

running at 3 GHz with 512 MB of RAM.
Performance is 0.000451238

0
10

_

-4
10

Training MSE
S,

0 500 1000 1500 2000
Epochs

Fig. 6.9 NN performance during training

6.4.2 Neural Network Flux Observer Testing

Extensive experimental tests were carried out to test the performance of the NN
observer in various operating conditions not seen during training to ensure the
generalization capability of the NN model. As shown in Fig. 6.10 the trained NN is
tested and compared with the conventional VM by running the encodered vector control
in the low speed region under different loading conditions. The outputs of the VM and
the NN flux observer will be compared with the output of the CM which represents the
accurate value of the rotor flux. Compared to the VM, the NN matches the CM extremely
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well in both transient and steady state conditions even when the drive is operating at low
speed.

Fig. 6.11(a) shows the performance of the two rotor flux observers, the VM and the
NN, compared to that of the CM when the encodered drive is performing a speed change
from 100 rpm to 50 rpm at no load. More results are shown in Figs. 6.11(b)-6.11(c) for
operation at 20 rpm with 10% load and -40 rpm with 20% load. Attenuation and phase

delay take place in the VM mainly due to the filter effect where as NN output closely
track the CM output at this very low speed.
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Fig. 6.10 Schematic of NN observer testing
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Fig. 6.11 NN observer experimental testing (a) 100 rpm to 50 rpm no load (b) 20 rpm at
10% load (c) -40 rpm at 20% load

6.5 Simulation Results

To further validate the NN observer, simulation tests were conducted to evaluate its
performance when parameter variation takes place. Therefore a multilayer feedforward
NN with similar structure of that introduced in the previous section has been created. The
training data are obtained by simulating the vector control drive when running with
different operating conditions in the low speed region. Using the same training algorithm
as in the previous section a MSE between targets and NN outputs of 3.17 x 10" has been

achieved.
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To test the NN observer sensitivity to parameter variation, simulations have been
conducted with variations in R; and R,. These two parameters are the most crucial
parameters that affect speed estimation especially at low speed. The performance of both
observers is compared to the actual rotor flux output from the motor model when the
vector control drive is working in encodered mode. Performance of VM and NN flux
observers for 25% and 50% increase in R; is shown in Figs. 6.12(a)-6.12(b). NN shows
less sensitivity to R; variation than the VM. NN observer also shows good performance

with 50% R, variation as shown in Fig. 6.12(c).
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Fig. 6.12 NN observer simulation testing (a) R, 25% variation (b) R, 50% variation () R,
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These results show that the NN can fairly handle the parameter variation problem
with a good level of robustness. Consequently, for integrated drive applications, where
the inverter and machine are sold as one unit, the NN observer can be trained on the
actual inverter-machine combination. The NN should be able to cope with changes from
these nominal parameters for other drives in the production line which is due to the
manufacturer’s tolerance.

However, in a mass-production environment, where the inverter can be used with
several sizes of motors, the application of this technique is more difficult. In this case, a
standard NN scheme becomes unsuitable unless the training is performed during
commissioning for each inverter-machine combination. This may present a drawback of
the proposed method. However, this could be overcome by using a range of previously
trained networks where an appropriate one can be selected according to the machine

nameplate rating.

6.6 Experimental Results

Once the NN is trained it is shown that it accurately matches the CM. Furthermore,
NN gives a fast execution speed due to its parallel processing [11, 27]. Hence it is
possible to replace the VM with the proposed NN. To further experimentally validate the
proposed NN MRAS scheme, shown in Fig. 6.6, open loop and closed loop sensorless

operation will be compared for the new and conventional rotor flux schemes.
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6.6.1 Open Loop Operation

The new scheme was tested in open loop with the drive operated as an encodered
vector control. The open loop performance of the conventional and the new NN MRAS
speed observers is compared. PI controller gains of each scheme are tuned separately for
optimal performance to allow a comparison between best performance of each scheme.
Figs. 6.13-6.14 show the open loop performance of both schemes for a £30 rpm speed
reversal at 10% load and a 20% load torque disturbance rejection at 25 rpm. The NN
MRAS observer demonstrates better transient and steady state performance and less
sensitivity to machine parameters than the conventional scheme.

Low speed operation up to rated load can be achieved by extending the training range
of the NN observer by applying various loads ranging from 0 to 100% rated load over the
same speed region using the same training procedure described in section 6.4.1. After the
training the MSE between targets and NN outputs decays to 0.0011. Results for 62.5%
load torque rejection at 30 rpm, rated load rejection at 25 rpm and +25 rpm speed
reversal at rated load are shown in Figs. 6.15-6.17. NN MRAS scheme shows superior
performance to that of the classical scheme with a negligible steady state error at higher
loads up to rated load.

As discussed previously in chapter 5, the steady state error in the estimated speed at
low speed for the conventional MRAS observer is mainly due to the stator resistance
mismatch between the motor and the observer and dead time effects that cannot be
completely removed even by complicated compensation schemes [5]. Hence the
reference voltages used for the VM do not match the actual stator voltages across the
machine terminals. Using the new NN MRAS scheme completely removes the steady
state error in the estimated speed and improves the load torque disturbance rejection
performance of the speed observer at very low speed. This improvement in the
performance can be explained based on the fact that the NN estimates a flux, similar to
the CM flux, which is not directly depending on the actual stator voltage, unlike the
situation with using the VM in the conventional scheme. Moreover, no filters are needed
in the flux observer without a pure integrator present in the NN model in addition to less
sensitivity to parameter variation. As a result, the new NN MRAS scheme shows much

better performance compared to the conventional MRAS observer at very low speed.



Chapter 6 Neural Network-Based Rotor Flux MRAS Speed Observer

T

601 e Reference speed |

40+ — Measured speed
e . — ConvMRAS

|

-

Motor speed (rpm)
(e)

40+ \ \/ AN e ]
.60} L
21 215 22 22.5 23 23.5 24
Time (s)
(a)
60 Pty Reference speed |
m — Measured speed | |

[\°]
(@)
T

Motor speed (rpm)
(e)

21 21.5 22 22.5 23 23.5 24
Time (s)

(b)

,_.
—_ n

=
n

d-axis rotor flux (Wb)

21 215 22 22.5 23 23.5 24
Time (s)

(©)



Chapter 6 Neural Network-Based Rotor Flux MRAS Speed Observer 112

1.5

1

0.5

d-axis rotor flux (Wb)

1

_1.5 | 1 1 I
21 21.5 22 22.5 23 23.5 24
Time (s)
(d)
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Fig. 6.17 Open loop +25 rpm speed reversal, rated load. Estimated speed: (a) Conventional
MRAS (b) NN MRAS. Model outputs: (¢) Conventional MRAS (d) NN MRAS

6.6.2 Sensorless Operation

In the following tests, the IM drive is working as sensorless indirect rotor flux
oriented. The encoder speed is used for comparison purposes only. Tests are conducted
in the low speed and at or around the zero speed region based on some recommended
benchmark tests [68, 112, 113]. Experimental results for the tests carried out using the

NN described in 6.4.1 are given in this section.

Test 1: Stair case speed transients from 100rpm to Orpm to 100 rpm:
In this test the sensorless vector control drive is subjected to stair case speed demand

from 100 rpm to zero speed in a series of five steps of 20 rpm each and then back up
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again to 100 rpm at no load. The performance of both schemes is shown in Fig. 6.18. The
performance of the conventional MRAS deteriorates around the zero speed with speed
oscillations. A steady state error between the estimated and actual speed is shown in this
region of operation. NN MRAS observer shows better performance in the whole speed
region. The steady state error between the estimated and actual speed has been removed
with better performance around the zero speed without any oscillations. Sensorless
performance around and at zero speed is shown in Fig. 6.19. MRAS model outputs are
given for both schemes. With right field orientation, the NN and CM outputs match
together without oscillation where as unstable behaviour is observed for the conventional
MRAS outputs, the VM and CM. Better speed tuning signal is obtained from the NN
MRAS scheme.
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Fig. 6.18 Sensorless performance for test 1, no load. Speed response: (a) convent
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Test 2: Stair case speed transients from 100rpm to Orpm to -100 rpm:

In this test the sensorless vector control drive is subjected to a stair case speed
demand from 100 rpm to zero speed in a series of five 20 rpm steps continuing to -100
rpm at no load. The performance of both schemes is shown in Fig. 6.20. Similar to test |
stable operation is obtained for the NN MRAS scheme around zero speed with negligible
steady state error in the low speed region. Operation around and at zero speed is
demonstrated in Fig. 6.21 where NN MRAS model outputs, NN and CM, show excellent
tracking performance compared to the conventional scheme model outputs, VM and CM.
Consequently, NN MRAS scheme shows better speed tuning signal and estimated rotor
flux position which is due to accurate speed estimation performance. NN MRAS scheme
shows better and stable sensorless performance when the test is performed at 12.5% load
as shown in Fig. 6.22. Operation at very low positive and negative speed around zero
speed with 12.5% load is illustrated in Fig. 6.23. It is shown the performance of the
sensorless drive has been greatly improved at this critical region of operation with a
stable speed tuning signal. Stable performance in the regeneration mode of operation is

shown by NN MRAS compared to oscillatory response from the conventional scheme.
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MRAS. Tuning signal (¢) conventional MRAS (f) NN MRAS
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Fig. 6.23 Sensorless performance around and at zero speed, 12.5% load. Speed (a)

conventional MRAS (b) NN MRAS. Tuning signal (c) conventional MRAS (d) NN MRAS

Test 3 Take off from zero speed to 100 rpm after 30 sec at zero:

This tests the drive capability to maintain field orientation at zero stator frequency
followed by an application of a finite reference speed at no load. The results of this
benchmark test are shown in Fig. 6.24. Unstable operation at zero speed was observed
for the conventional MRAS with oscillation around zero speed. This performance affects
field orientation and model outputs leading to unstable speed tuning signal. NN MRAS
proves its ability to hold the zero speed at no load without any oscillations and the motor
shaft is stationary. Therefore sensorless zero speed operation at no load is possible using
NN MRAS scheme with stationary model flux outputs. Consequently, better field
orientation angle and speed tuning signal are obtained. Both schemes succeed in taking

off to 100 rpm after 30 s at zero speed.
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Test 4: Speed step down from 20 rpm to 0 rpm in three steps each of 10 rpm:

This tests the performance of the sensorless drive at very low and zero speed at

different loads. The results of this test at 10% load are shown in Fig. 6.25. At a reference

speed of 20 rpm, the NN MRAS scheme was stable, showing less steady state error

compared to the conventional. At such speeds and below, the conventional MRAS fails

to provide stable operation giving large oscillations. NN MRAS shows better

performance at this very low speed region with a very small steady state error at zero

speed. Better performance is obtained from NN MRAS scheme when the test is
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performed at 20% load as shown in Fig. 6.26. Results of zero speed sensorless operation

at different load levels are summarized in Table 6.1.
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Fig. 6.26 Sensorless performance for test 4, 20% load. Speed response: (a) conventional
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Table 6.1
Summary of zero speed sensorless results
Zero speed Zero speed Zero speed
No load 10% load 20% load
lf’jIORIXIS Unstable Unstable Unstable
Zero steady state 3 rpm steady state 7 rpm steady state
NN MRAS error error error
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Test 5: Sensorless load torque disturbance rejection:

This test examines the load torque disturbance rejection capability of the sensorless
drive. In general, load disturbance application may affect the machine parameters and
increase the level of nonlinearity. Both schemes have been tested when a 20% load
torque is applied at 50 rpm. The NN MRAS shows better dynamic and steady state
performance with negligible steady state error between the actual and estimated speed as
shown in Fig. 6.27. Furthermore, NN MRAS scheme shows better rotor field orientation
performance with synchronous frame g-current component similar to that obtained from
(3.48) for perfect field orientation. Inaccurate speed estimation causes wrong field
orientation for the conventional scheme. More results are shown in Fig. 6.28 for a 20%
load torque rejection at -50 rpm. NN MRAS scheme still shows better performance with

less steady state error due to good tracking between NN and CM observers.
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Test 6: Sensorless speed reversal at load:

This last test shows the drive performance for a very low speed reversal under load
torque. A £25 rpm speed reversal demand was applied to the drive when working at 10%
load. Better performance with negligible steady state error was obtained from NN MRAS
observer compared to the conventional MRAS scheme as shown in Fig. 6.29. This is due
to excellent matching between NN MRAS model outputs, NN and CM, during transient
and steady state. When the test is performed at 25% load, large speed oscillations are
obtained from the conventional scheme compared to a stable performance for the NN
MRA which leads to better field orientation and stable speed tuning signal. The results of
this test, shown in Fig. 6.30, demonstrate the improvement of the sensorless performance
in the regenerating mode of operation using NN MRAS scheme. A summary of

sensorless results at different operating conditions is given in Table 6.2.
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Table 6.2

Summary of sensorless results

20 rpm 10 rpm 50 rpm -25 rpm -25 rpm
10% load | 10% load | 20% load 10% load 25% load
Gl 10 rpm 3 rpm 5 rpm
“ steady state | Unstable | steady state | steady state Unstable
RS error error error
4 rpm 3 rpm 1 rpm Negligible 7 rpm
NN MRAS | steady state | steady state | steady state | steady state | steady state
error error error error error
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6.7 Conclusion

This chapter has presented an entirely new application of a NN to give an improved
MRAS speed observer scheme suitable for speed sensorless IM drives. A multilayer
feedforward NN estimates the rotor flux components from present and past samples of
reference stator voltages and measured currents. The new scheme makes use of the off-
line trained NN observer as a reference model in MRAS scheme. Training data is
obtained from experiments without the need for search coils. Using the new NN scheme
for flux estimation eliminates the need for pure integration with less sensitivity to stator
resistance variations. A NN scheme suitable for applications that require low torque at
low speed such as a general purpose IM drives is first developed. A further NN extension
to suit low speed rated load applications such as elevators and conveyors is also
discussed.

Results obtained from a systematic set of benchmark experimental tests using a 7.5
kW IM drive system prove the great improvement of the sensorless drive performance
around and at zero speed. Open loop tests show that the steady state error in the
estimated speed has been totally removed compared to the conventional observer using a
VM. Closed loop sensorless operation is greatly improved at very low and zero speed
especially at no load without using voltage sensors. Experimental and simulation results
reveal some interesting features of NN and show that the network has good potential for

use as an alternative to VM used in classical MRAS speed observer.
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CHAPTER /

NEURAL NETWORK-BASED STATOR CURRENT MRAS
OBSERVER

————————— e —
—— e L — T R eSS =

A novel MRAS speed observer for IM drives based on stator current is presented. The
measured stator currents are used as reference model for the MRAS observer to avoid the
use of a pure integrator. A two-layer NN stator current observer is used as the adaptive
model which requires the rotor flux information. This can be obtained from the voltage
or current models but instability and dc drift can downgrade the overall observer
performance. To overcome these problems an off-line trained multilayer feedforward NN
is proposed here as a rotor flux observer. Speed estimation performance of the new
MRAS scheme using the different rotor flux observers is studied and compared with the
conventional rotor flux MRAS when applied to an indirect vector control IM drive.
Promising results have been obtained when using the NN flux observer with better low

speed performance and stability in the regenerating mode of operation.

7.1 Introduction
Recently a stator current MRAS scheme has been introduced for stator resistance
identification for IM drives [76]. In this scheme the reference model comprises the

measured stator current components. This makes the reference model free of pure
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integration problems and insensitive to motor parameter variations. A two layer linear
NN stator current observer is used as an adaptive model where the stator resistance is one
of the NN weights. A backpropagation learning algorithm is used to train the NN online
to update the value of the stator resistance. A conventional CM is used for rotor flux
estimation.

In this chapter the NN based MRAS observer described in [76] is used for online
motor speed identification instead of stator resistance estimation. The NN weight
corresponding to motor speed is updated online using the backpropagation learning
algorithm in such a way as to minimize the error between the measured and estimated
currents. Rotor flux is needed for the stator current estimation in the adaptive model and
conventionally a CM flux observer has been employed. However, as will be shown, the
use of such a model gives instability in the regenerating mode of operation. Therefore the
off-line trained multilayer feedforward NN proposed in chapter 6 is suggested to solve
the flux estimation problem. By using this NN the flux estimation is independent of the
rotor speed and does not require the use of pure integration. Superior results have been
obtained from the NN flux observer scheme in terms of stator resistance sensitivity and

stability over the whole speed control range.

7.2 Neural Network Stator Current MRAS Scheme

For the stator current MRAS observer, the reference model will consist of the
measured stator currents [76], and hence the IM itself will work as a reference model.
This has the advantages of avoiding pure integration and the estimator is less sensitive to
parameters. A stator current observer can be represented by a linear two layer NN where
the motor speed is expressed as one of its weights. A backpropagation learning algorithm
is used in order to minimize the error in current estimation and hence generating the

estimated speed.

7.2.1 Neural Network Stator Current Observer
As described in chapter 3, the rotor flux can be expressed either based on stator

equations (3.53) or rotor equations (3.54). Rearranging (3.53) gives:
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oL, pisp =vep — Rgi _Im
sPlsD = VsD — KslsD I, PYrd (7.1)
L piso = Ri L
OLsPlsQ = VsQ — KslsQ _L_rp'//rq (7.2)
Substituting (3.54) into (7.1) and (7.2) yields:
. . L 1 . n L, .
oL pisp = vsp — Rsigp _‘ini{_?Wrd — W g +‘Tﬂ’sD} (7.3)
r r r
: . L 1. n L, .
O'Lsp’sQ =VsQ ~ Rs’sQ - Inl{‘"}_‘/’rq TOW, g+ Tm’sQ} (7.4)
r r r

Hence the d-q stator current equations in the stator reference frame can be written as:

. . Ly . L, . I3 .
oLspisp =vsp — Rsigp + T Yrd +_L_wr‘//rq T IsD (7.5)
r-r r rer
. . Ly . L, . I .
ol pisg = vsp — Rsigp +ﬁz//rq ——Ija)rz//rd —ﬁ-sz (7.6)

Equations (7.5) and (7.6) represent the stator current observer. The discrete form of (7.5)

and (7.6) can be obtained by using the backward difference method as [2]:

s iplk)—ipk-1
pl-sD:lsD() ]l:vD( ) (77)

. i (k)—io(k—1
pisQ:lSQ() ;SQ( ) (7.8)

where T is the sampling time. Substituting (7.7) and (7.8) into (7.5) and (7.6) yields:

2
A R, T2 |- L, .
ity =d1-—s  Tim F (k1) (k1)
sp(6) { ol O'LSL,Tr}SD( Mot LT, ' (7.9)
L, . T
2 g (k=) + —vyp (k-1
O'Ls Lr rV/rq( ) O'Ls sD( )
2
. TR, TI%, | L, .
Foy=41-"2s _ _Tom G 1)+ ——m (k1)
o) { oLy O'LerTr}SQ( oLsL,T; " (7.10)
L, . T
- w071 (k—1)+——v,o(k—1)
or ., r¥rd k= Dr oo

Defining the following weights:
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o1 TR, TL,
: oL, olgL,T,
"2 LTLLmT
Ol
S (7.11)
TL,,
w3 = Wy
olgL,
o T
4 oLy
Substituting (7.11) into (7.9) and (7.10) yields:
st (k) = WI;SD (k - 1)+ Wolrd (k - 1) + w3‘/?rq (k - 1)+ W4VsD (k - 1) (7.12)
is (k) = wiis g (k = )+ wasi g (k = 1) = g (k = 1)+ wvs o (k - 1) (7.13)

Equations (7.12) and (7.13) can be represented by a two layer linear NN with weights
as defined in (7.11) as shown in Fig. 7.1 [76]. This NN will represent the adaptive model
for the stator current MRAS scheme where w;, which contains the rotor speed
information, is adjusted online in such a way as to minimize the error between actual and

estimated currents.

z! -

st (k ~-1)

l/;rd (k -1)

— st(k)

rg (e =1) —— > @—

vsp(k—1)

(a)
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Fig. 7.1 NN-based stator current observer (a) d-axis (b) g-axis

7.2.2 Rotor Speed Estimation Algorithm

To derive the weight adjustment law of the NN stator current observer, define the

energy function E to be minimized:

E =la,2(k) (7.14)
2

where:

£ (k) = 7y (k) —i5 k) 015

; 2 . 2 T T

i@ =i (®) isp® -isp®]T =[ein®) zig®)]

and where i; and z?S are the measured and the estimated stator current vectors which can
be defined as:

L) =[isp () isg®)] (7.16)

L) =[fp® fow] (7.17)

To obtain a minimum squared error between actual and es
f the error gradient with respect

timated stator current the

weight adjustment has to be proportional to the negative 0

to the weight as [2]:

Aws oc —-2E- (7.18)
ows3
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Using the chain rule (7.18) can be written as:

_OE ___3E 2iy(k)
ows  Bi (k) Ows (7.19)

By using the definition of E given in (7. 14), the term ?E which is present in the right
dis (k)

hand side of (7.19) can be expressed as:

L2 [iw-iw]
dig(k) 20i,(k) (7.20)

= — |75 (k) — i (k)] =—g;7 (k)

Based on stator current observer equations (7 -12) and (7.13) the other term of the right

hand side of (7.19) % can be expressed as:
3

dig(k) |- .

958 [, tk=1) —pg (k1] (7.21)
Ows

Substituting (7.20) and (7.21) into (7.19) yields:

~ == e W) [P k-1 ~irg kD]

ows
= &ip (k) g (k 1)~ £19 (k) frpg (k — 1)
The mathematical expression for the weight adjustment law (7.18) can be written as [2]:

ok
A3 () == owy (7.23)
= n{8ip (k) firg (k= 1) = £19 (k) (k ~ 1)}

where 7 is a positive constant called the learning rate. Large values of # may accelerate

(7.22)

the NN learning and consequently leads to fast convergence but may cause oscillations in
the network output where as low values can cause slow convergence. Therefore, the
value of # has to be chosen carefully to avoid instability [2]. The new weight can be
written as [2]:

w3 (k) = wy(k—1)+ Aw3 (k) (7.24)
To ensure accelerated convergence, the last weight change is added to the weight update
as [2]:

w3 (k) = wy(k—1)+ Aws (k) + a Awz (k- 1) (7.25)
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where o is a positive constant called the momentum constant. Due to simple structure of
the NN stator current observer, the weight adjustment can be performed online and the
motor speed can be estimated from the weight w; as:

oLsL,

w, (k) = w3 (k) (7.26)

m

7.3 Rotor Flux Estimation Problem

Since rotor flux estimation is required for the stator current MRAS scheme, a VM
and CM flux observers can be used. However, the VM was shown to be unsuitable for
low speed operation as described in chapter 6. Therefore the CM can be used to avoid the
low speed problems but it shows poor stability margins as it will be shown later. The
block diagram of the NN-based stator current MRAS scheme using a CM rotor flux

observer is shown in Fig. 7.2.

Vs >l Induction Motor Iy
(Reference Model)
+
Z-l
7! i
| Neural Network s

N Current Observer
Z »1  (Adaptive Model)

1

Learning Algorithm

v, o Current Model -

Fig. 7.2 NN-based stator current MRAS speed observer using CM flux observer

As will be shown in the next section the use of a CM to estimate the rotor flux causes
instability at the regenerating region. To overcome this problem another way to estimate
the rotor flux needed for the stator current MRAS scheme is proposed here which uses an
off-line trained NN. To estimate the rotor flux components in the stationary reference
frame the multilayer feedforward NN proposed in chapter 6 can be used. The block

diagram of the stator current MRAS scheme employing a NN for rotor flux estimation 1s
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shown in Fig. 7.3. In this scheme two NN are used, an online trained linear NN for stator

current estimation and an offline trained nonlinear NN for rotor flux estimation.
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— s
(Reference Model)
+
. z
Neural Network 's
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1% > (Adaptive Model)
> A

r | Learning Algorithm

1%
Neural Network
Flux Observer d

Fig. 7.3 NN-based stator current MRAS speed observer with NN flux observer

7.4 Simulation Results

To test the NN-based stator current MRAS observer performance, the 7.5 kW
induction machine with parameters given in Table 4.3 is simulated using Matlab-
Simulink. The drive is running under indirect vector control with different reference
speed and various loading levels. The NN described in section 6.5 will be used for the
simulation study. The stator current MRAS scheme using the three rotor flux observers,
VM, CM and NN, is tested for sensitivity to stator resistance variation for reference
speed changes and load torque application. Furthermore, speed estimation performance is
investigated at different operating conditions in the low speed region of operation
including the regenerating mode. In the following simulations the estimated speed (7.26)
is compared with the actual speed calculated from the mechanical model (5.24). Rotor

flux and stator current estimates are compared with their actual values obtained from the

machine state space model (3.26).

7.4.1 Sensitivity to Stator Resistance Variation
The purpose of this test is to compare the speed estimation performance of the
MRAS observer for motor parameter variation. The vector control drive is run with a

25% increase in the motor stator resistance and subjected to a reference speed change
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from 50 rpm to 75 rpm at no load at # =5s followed by a 25% load torque application at

=8s. The speed estimation performance using the three different rotor flux observers is

shown in Fig. 7.4.
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Due to the presence of R; in the stator current observer equations (7.9)-(7.10), speed
estimation for all schemes is affected by the variation in R;. The effect of R, change on
the VM is more serious and causes oscillations in the estimated speed due to the presence
of R, in the flux estimation equation as well. Although R; is not present in the CM
observer equation, the flux estimation is still affected since the model makes use of the
estimated speed which deviates from the actual. The NN flux observer shows less
sensitivity to R, variations compared to the VM without being dependent on the estimated
speed. Therefore it shows good speed estimation performance close to that obtained
when using a CM. The rotor flux and stator current estimation performance using the
three observers during speed change and load torque disturbance rejection is shown in

Figs. 7.5-7.8. As can be seen the VM is the most affected by the R; variation compared to
the CM and NN observers.
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Fig. 7.5 Rotor flux estimation performance during speed change with 25% increase in R,

(a) VM flux observer (b) CM flux observer (c) NN flux observer
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Fig. 7.7 Rotor flux estimation performance during disturbance rejection with 25%

increase in R, (a) VM flux observer (b) CM flux observer (c) NN flux observer

20_ T T T T T T T I

Actual
Estimated

I, (A)

72 74 176 718 8 82 84 86 88
Time (s)

(a)

20F ‘ ' ' ' | ' = Al j
ed

Estimat

L (A)




Chapter 7 Neural Network-Based Stator Current MRAS Observer 154

T

20 7

| Actual

‘ ~ Estimated

L (&)

72 74 76 718 8 82 84 86 88
Time (s)

(c)
Fig. 7.8 Stator current estimation performance during disturbance rejection with 25%

increase in R, (a) VM flux observer (b) CM flux observer (c) NN flux observer

7.4.2 Stability in the Regenerating Mode

In this test the stability of the stator current MRAS schemes is tested in the
regenerating mode of operation. In this region of operation the motor is running at
negative speed with a positive load torque applied. Unstable performance was obtained
using the CM flux observer in the regenerating mode. Results showing this unstable
behaviour are obtained when the drive is subjected to a speed reversal command from 40
rpm to -40 rpm at 25% load torque with nominal machine parameters. The speed

estimation performance of the stator current MRAS scheme using the CM and NN rotor

flux observers is shown in Fig. 7.9.
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Fig. 7.9 NN stator current MRAS speed estimation performance in the regenerating

mode (a) CM flux observer (b) NN flux observer

Since rotor flux estimation using a CM depends on the estimated speed, any
deterioration in the speed estimation is fed back to the flux observer causing instability in
the regenerating mode of operation. Using a NN for rotor flux estimation gives stable
speed estimation performance in the regenerating mode since flux estimation is
independent of the estimated speed. Rotor flux and stator current estimation performance
using the two observers, CM and NN, is shown in Figs. 7.10-7.11. Deterioration of rotor
flux estimation affects the stator current tracking causing instability of the speed
estimation using the CM flux observer. By contrast the NN flux observer follows the
actual flux which improves stator current tracking leading to stable speed estimation

performance.
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7.5 Experimental Results

In this section the new stator current MRAS scheme based on CM and NN flux
observers will be experimentally demonstrated to overcome the problems of the
conventional rotor flux MRAS scheme. As illustrated in chapter 6, the NN flux observer
is trained to match the performance of the CM which is free from stator resistance
dependency and dc drift problems. Once the NN is trained it was shown that it accurately
matches the CM. However, unlike the CM, the NN is able to estimate the values of the
rotor flux components without needing the rotor speed information. Hence it is possible
to use the proposed NN for rotor flux estimation in the new MRAS scheme. To further
experimentally validate the proposed schemes open and closed loop sensorless operations
will be compared for the new and conventional schemes. The speed estimation
performance is investigated at different operating conditions in the low speed region of

operation including the regenerating mode.

7.5.1 Open Loop Operation

The new schemes were tested in open loop with the drive operated as an encodered
vector control. The open loop performance of the conventional rotor flux MRAS and the
new stator current MRAS speed observers is compared. The two structures of the new
scheme will be compared: Current MRAS-CM using CM flux observer and Current
MRAS-NN using NN rotor flux observer that was described in section 6.4.1. Estimated
speed and currents will be compared with measured rotor speed and stator currents.

The sampling time for the NN stator current observer is 1/5000s with #=0.0005 and
0=0.001. These values have been obtained experimentally by trial and error to ensure
optimal performance of the NN-based stator current schemes and were also used in the
simulation stage. The estimated speed from stator current MRAS schemes is obtained
through a LPF with 30 rad/s cut-off frequency. Figs. 7.12-7.14 show the open loop
performance of all schemes for -40 rpm to 40 rpm speed reversal, 40 rpm to 20 rpm
speed change at no load and a 25% load torque disturbance rejection at 30 rpm. Both
stator current schemes demonstrate better transient and steady state performance
compared to the conventional rotor flux MRAS where the use of the VM is dependant on

the stator voltage. Hence errors between actual and reference stator voltage at low speed
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worsen the speed estimation performance. On the other hand, NN and CM based
schemes are not directly affected by stator voltage errors for flux estimation and hence

have better performance at low speed with less steady state error.
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Fig. 7.12 Open loop -40 rpm to 40 rpm reversal, no load (a) Stator current MRAS-CM
(b) Stator current MRAS-NN
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Fig. 7.14 Open loop 25% load disturbance rejection, 30 rpm (a) Stator current MRAS-
CM (b) Stator current MRAS-NN

However, stability problems of the stator current MRAS-CM occur in the
regenerating mode. Stable operation is obtained using the stator current MRAS-NN
scheme which still shows a better response compared to the conventional rotor flux
MRAS scheme. Results of speed and rotor flux estimation are shown in Fig. 7.15 for a
series of step speed change from 30 rpm to -30 rpm to -60 rpm to 60 rpm at 25% load.

More results for operation at regeneration using CM and NN flux observers are
shown in Fig. 7.16 for £100 rpm speed reversal at 20% load torque. NN provides stable

flux estimation compared to CM leading to better stator current and rotor speed

estimation.
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Results at rated load for the stator current MRAS-NN scheme can be obtained by
using the extended version of the NN flux observer described in chapter 6 where th;
training range covers the full torque region. Figs. 7.17-7.18 show the speed estimation
performance of the stator current MRAS observer, using CM and NN flux observers, for
rated load disturbance rejection at 40 rpm and reference speed change from 40 rpm to 10
rpm at rated load. Compared to conventional rotor flux MRAS, both new schemes show

better performance at very low speed and rated load with less steady state error in the

estimated speed.
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7.5.2 Sensorless Operation
In this section the proposed stator current based MRAS schemes are tested in
sensorless mode of operation following the same procedure described in chapter 6.

Results are given for the NN that was developed in section 6.4.1.

Test 1: Stair case speed transients from 100rpm to Orpm to 100 rpm:

This sensorless test, described in chapter 6, was performed at no load. The
performance of NN-stator current MRAS scheme, based on CM and NN flux observers,
is shown in Fig. 7.19. Both stator current MRAS schemes show better low and zero

speed performance compared to the conventional rotor flux MRAS scheme shown in Fig.
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6.18 (a) but not as good as that of the NN-based rotor flux MRAS shown in Fig. 6.18 (b).
Moreover, the NN flux observer shows better flux estimation at zero speed compared to
the CM observer. Consequently, better stator current estimation and zero speed
performance is obtained from the stator current MRAS-NN. Rotor flux and stator current

estimation performances for CM and NN-based schemes around and at zero speed are

shown in Fig. 7.20.
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Fig. 7.20 Performance around and at zero speed at no load. Rotor flux estimation (a) CM

(b) NN. Stator current estimation (c) CM-based scheme (d) NN-based scheme

Test 2: Stair case speed transients from 100rpm to Orpm to -100 rpm:

To examine the sensorless performance of the stator current-based schemes at
regeneration, this test is performed at 12.5% load. The performance of CM and NN based
schemes is shown in Fig. 7.21. Stator current MRAS-CM scheme shows instability in the
regenerating mode of operation. On the other hand, stator current MRAS-NN scheme
shows stable operation as well as better speed response compared to that of the
conventional rotor flux MRAS scheme shown in Fig. 6.22(a). Stable rotor flux estimation
is obtained from NN at regeneration compared to that of the CM as shown in Fig. 7.22.
However, the performance of the NN-based rotor flux MRAS scheme shown in Fig. 6.22
(b) is the most satisfactory among the different schemes with less steady state error in the

whole speed region.
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Fig. 7.22 Sensorless rotor flux estimation at regeneration for test 2, 12.5% load (a) CM
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Test 3: Take off from zero speed to 100 rpm after 30 sec at zero:

The results of this test at no load are shown in Fig. 7.23. Both schemes show better
zero speed performance compared to the conventional rotor flux MRAS scheme. Stator
current MRAS-NN shows better zero speed performance compared to stator current
MRAS-CM scheme. However, in contrast to the NN-based rotor flux MRAS scheme, the
stator current-based scheme can not completely hold zero speed at no load. This can be
explained based on the fact that the rotor speed information in the stator current signal is

lost at zero speed. Both schemes succeed in taking off to 100 rpm after 30s at zero speed.
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Test 4: Speed step down from 20 rpm to 0 rpm in three steps each of 10 rpm:

The results of this test at 10% load are shown in Fig. 7.24 (a)-(b) where stator
current-based MRAS schemes show superior performance compared to that of the
conventional rotor flux MRAS shown in Fig. 6.25 (a). Better zero speed performance is
obtained from the stator current MRAS-NN scheme compared to the CM-based scheme.

Rotor flux estimation performance of CM and NN observers is shown in Fig. 7.24 (c)-

(d).
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Test 5: Sensorless load torque disturbance rejection:

Sensorless performance of the stator current-based schemes for 20% load torque
disturbance rejection at 50 rpm is shown in Fig. 7.25 with better performance compared
to that of the conventional rotor flux MRAS shown in Fig. 6.27 (a). To examine the
sensorless performance in regeneration, both stator current-based MRAS schemes are
subjected to a 20% load torque application at -50 rpm. Results shown in Fig. 7.26 reveal
that the instability obtained from the stator current MRAS-CM in the regenerating mode
is completely removed by using the NN flux observer. Fig. 7.27 shows the rotor flux

estimation performance of the CM and NN observers at regeneration.
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Fig. 7.25 Sensorless performance for test 5, 20% load at 50rpm (a) Stator current MRAS-
CM (b) Stator current MRAS-NN
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Test 6: Sensorless speed reversal at load:

Results for a sensorless 25 rpm speed reversal demand at 10% load are shown in

Fig. 7.28. Stator current MRAS observers show better performance compared to that of

the conventional rotor flux MRAS shown in Fig. 6.29 (a).

When the test is performed at 25% load, unstable performance is obtained from the

CM-based scheme compared to a stable performance for the NN-based scheme as shown

in Fig. 7.29. CM and NN flux estimation performance is shown in Fig. 7.30. Moreover,

stator current MRAS-NN shows better performance compared to that obtained from the

conventional rotor flux MRAS shown in Fig. 6.30 (a). However, this performance for

regeneration is inferior to that of the NN-based rotor flux MRAS shown in Fig. 6.30 (b).
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This chapter has presented a novel NN-based stator current MRAS observer for speed

sensorless IM drives. A stator current observer is formulated based on machine equations

and is represented by a two layer linear NN. Rotor flux estimation is required for the

MRAS speed observer. Using a VM for rotor flux estimation causes problems at low

speed due to stator resistance sensitivity and the pure integration for flux. A CM can be

used instead to estimate the rotor flux from the measured stator currents and the

estimated speed, which shows less sensitivity to stator resistance variation. However, the

stator current MRAS scheme using the CM flux observer shows instability in the

regenerating mode of operation. A multilayer feedforward NN is proposed to overcome
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this problem for rotor flux estimation from present and past samples of the stator voltage

and current. Using the NN flux observer gives less sensitivity to stator resistance
variations compared to the VM and since the flux estimation is independent of the rotor
speed; stable operation has been obtained for regeneration.

The stator current MRAS schemes have been validated by simulations and
experimentally in open loop and sensorless modes of operation. Results show the
improvement in the sensorless performance using the stator current MRAS-NN scheme.
However, the performance of the NN-based rotor flux MRAS scheme described in
chapter 6 is still superior to that obtained from the stator current MRAS-NN, especially

at zero speed.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

B

8.1 Introduction

The research developed in this thesis has focused on the application of Al techniques
for speed sensorless vector control IM drives. The main objective was to investigate
different strategies using Al to improve the performance of sensorless drives which are
based on MRAS observers. Particular focus was given to the critical low and zero speed
regions of operation. Various Al-based schemes have been developed and tested as
suitable means of producing a satisfactory performance at and around zero speed. The
aim of this chapter is to summarise the investigations and findings of this research,

present conclusions and recommend various possibilities for future studies.

8.2 Discussion and Conclusions

As described in chapter 1, the presence of a speed sensor in an IM drive may affect
the reliability and the cost of the drive system. Therefore sensorless control methods are
shown to offer great advantages. These techniques can be generally grouped into
fundamental excitation and signal injection methods. Attention was given to fundamental
model-based strategies where stator voltages and currents are used to estimate the flux

linkage and the motor speed. However, these techniques usually fail at or around zero
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speed. Al has been presented as a powerful strategy that can overcome classical control

problems. These techniques consist mainly of neural networks, fuzzy logic and genetic
algorithms.

Particular attention was given to MRAS speed observers due to their simple structure
and low computational effort. The main problems associated with such observers are
parameter sensitivity, pure integration problems and inverter nonlinearity. Various
methods presented in the literature to solve these problems have been reviewed in
chapter 2. A survey of different applications of Al techniques in sensorless IM drives
was also discussed.

Mathematical modelling for the machine, controller and observer was presented in
chapter 3. A state space representation of the IM in the stator reference frame, with the
stator currents and the rotor flux linkages components as state variables, has been
developed based on the d-q axes theory. Principles of vector control were also illustrated
based on the motor model expressed in the synchronous reference frame. The machine
dynamic equations have been used to formulate the conventional rotor flux-based MRAS
observer originally developed by Schauder [53]. This scheme is the most common
MRAS strategy extensively employed for sensorless control. An appropriate adaptation
mechanism for rotor speed estimation was derived based on Popov’s hyperstability
theory. This derivation reveals that a PI controller can be used to generate an estimate of
the rotor speed by minimizing a speed tuning signal. The experimental platform
employed to test the proposed schemes in real time was described in chapter 4. This
system is based on a 7.5 kW induction machine, a DC load machine and a dSPACE
DS1103 controller board.

A classical fixed-gain PI controller is conventionally used in rotor flux based-MRAS
speed observers. Not much concern has been given to study alternative mechanisms for
speed tuning signal minimization. Therefore the purpose of chapter 5 was to fill this gap
by proposing two novel adaptation mechanisms based on SM and FL strategies. For the
SM scheme, a new speed estimation adaptation law was derived based on Lyapunov
theory to ensure estimation stability and fast error dynamics. On the other hand, a
Mamdani PI-Type FLC was proposed for speed tuning signal minimization to produce
an estimate of the rotor speed. Hence two new rotor flux-based MRAS observers were

described, MRAS-SM and MRAS-FL schemes.
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Simulations were carried out to test the proposed schemes using a standard indirect

vector control IM drive. An ideal environment was assumed during simulation stage
which included an idealised inverter and PWM and ideal integration for flux. Simulation
results in open and closed loop showed that better transient performance was obtained
from both novel schemes compared to the conventional PI controller. The SM adaptation
mechanism showed the smallest speed tuning signal. However, its performance is
characterised by large chattering due to the need for a sign function in the adaptation law.
Faster response was obtained from the FL scheme compared to the PI controller due to
an optimal speed tuning signal during transients.

Experimental tests were conducted to examine the new adaptation mechanisms in
real time with particular interest devoted to low speed operation. Flux pure integration
problems were avoided by using a HPF at the outputs of the VM. Compensated reference
voltages were used to avoid the need to measure the real stator voltages. PI and FL gain
tuning was performed in such a way as to obtain similar steady state performance. A LPF
was used at the output of the MRAS-SM to reduce the chattering in the estimated speed.
Parameters of the SM scheme were obtained by trial and error to ensure optimal
performance. Results obtained showed the improvement in the transient performance of
the rotor flux-based MRAS observer at low speed. Both new schemes demonstrated
better transient performance as well as better load torque disturbance rejection in both
open loop and closed loop sensorless modes of operation. The need for a LPF in the
MRAS-SM introduced delay in the estimated speed allowing better performance for
MRAS-FL. However, the application of the novel schemes did not produce any
modifications in the steady state performance of the estimator because a conventional
VM is used. Improving the MRAS estimator steady state performance was raised and
treated in chapter 6 using NN.

The main problems associated with the conventional VM are stator resistance
sensitivity, the stator voltage acquisition problem, and flux open loop integration which
may cause dc drift and initial condition problems. Using a conventional VM in rotor
flux-based MRAS limits the performance of the observer at low and zero speed. NNs
have been well-established as universal nonlinear function approximators. Multilayer
feedforward NNs have shown a great capability to model complex nonlinear dynamic

systems. Therefore a multilayer feedforward NN has been proposed for rotor flux
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estimation from present and past samples of terminal voltages and currents, Training data

for the NN was obtained from experimental measurements to take account of all the drive
nonlinearities. Outputs from the CM, instead of search coils, were used as target values
for the NN to provide harmonic-free signals and accurate outputs at low speed. A NN
suitable for general purpose IM drives applications was developed. In some types of such
applications, such as fans and centrifugal pumps, rated load is not required at low speed.
The training of the NN was performed off-line with Matlab-Simulink using the
Levenberg-Marquardt training algorithm. Extensive simulation and experimental tests
have been carried out to test the performance of the NN observer. Compared to a VM
flux observer, the NN avoids using either a pure integrator or a low pass filter which
eliminates integrator drift and initial condition problems giving less sensitivity to motor
parameter variations. Therefore a great improvement in the flux estimation performance
at low speed was achieved using a NN.

The off-line trained NN was used as a reference model, instead of the VM, for the
rotor flux MRAS observer to form a new NN MRAS scheme. This represents a
completely different way of applying NNs to MRAS schemes. Numerous experimental
tests were carried out to investigate the performance of the proposed scheme in both open
loop and sensorless modes of operation. Results obtained from open loop tests showed
the significant improvement in the transient and the steady state performance of the
MRAS estimator at low speed. Another NN suitable for low speed rated load
applications, such as elevators and conveyors, was also developed and tested in open
loop. Results showed the improved low speed performance obtained from the NN MRAS
scheme up to rated load. Sensorless performance of the NN MRAS scheme developed for
general purpose applications was examined based on a systematic set of benchmark
experimental tests. A detailed comparison between the performance of the proposed NN
MRAS and the conventional rotor flux MRAS schemes has been conducted using an
indirect vector control drive. Tests were carried out at different operating conditions at
low speed including speed change, load disturbance rejection and speed reversal with
load. One of the most substantial achievements of this study was that zero speed no-load
sensorless operation has been successfully accomplished. Moreover, speed oscillations

and instability at very low and zero speed, with and without load, obtained from the
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conventional MRAS scheme have been completely removed using NN MRAS. This

great improvement in the performance was achieved without using any voltage sensors.

The application of the proposed NN MRAS scheme for both integrated drive and
mass-production purposes was also discussed. The scheme can be applied to integrated
drive applications where the machine and inverter form one unit. In this case the NN
observer is trained on the actual machine-inverter combination and it should be able to
handle manufacturer’s tolerance within the production line.

However, for a mass-production environment the application of this scheme is more
difficult since a training phase is needed during commissioning for each inverter-
machine combination. A possible solution to this problem is to use a number of pre-
trained networks where the suitable one can be selected according to the machine rating.

Finally, a MRAS speed observer based on stator current was presented in chapter 7.
This scheme avoids problems associated with the VM by using measured stator currents
as reference model for the MRAS estimator. This makes the reference model, which is
represented by the machine itself, free of pure integration problems and insensitive to
motor parameter variations. A two layer linear NN stator current observer was derived
and used as an adaptive model for the MRAS observer where the rotor speed is expressed
as one of its weights. At each sampling period the error between the measured and
estimated currents is minimized using backpropagation algorithm to update the value of
the rotor speed online.

The NN-based stator current observer requires rotor flux estimation. The use of a VM
causes problems at low speed due to stator resistance sensitivity and the need for pure
integration for flux. A CM can be also used for rotor flux estimation from measured
stator currents and estimated speed. However, the MRAS scheme employing the CM for
flux estimation showed instability in the regenerating mode of operation. To overcome
these problems, the multilayer feedforward NN developed in chapter 6 was proposed for
flux estimation. Using the NN flux observer gives less sensitivity to stator resistance
variation compared to the VM and since the flux estimation is independent of the rotor
speed, stable operation was obtained for regeneration.

Simulations were carried out to test the stator current MRAS estimator performance
for sensitivity to stator resistance variation and for stability at regeneration. Speed

) ) . . . i was
estimation performance with a 25% increase In the motor stator resistance wa
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investigated for the scheme using VM, CM and NN flux observers. All three schemes

were affected by this variation due to the presence of R; in the stator current observer
equations. However, the MRAS scheme employing VM was found to be the most
affected with oscillations in the estimated speed. This is due to the existence of R; in the
flux observer equation. Using the NN flux observer showed less sensitivity to R;
variation compared to the VM and consequently better speed estimation performance
was obtained. Operation with regeneration was investigated for the stator current MRAS
estimator using a +40 rpm speed reversal at 25% load at nominal machine parameters.
Unstable performance for regeneration was obtained using the CM. This is due to the
need for the estimated speed for flux estimation and hence any deterioration in the speed
estimation is fed back to the flux observer causing instability. By contrast, using a NN
flux observer gives stable operation since flux estimation is independent of the estimated
speed.

Experimental tests were conducted to validate the proposed stator current MRAS
scheme when compared to the conventional rotor flux-MRAS. The two structures of the
new scheme have been compared: Current MRAS-CM using CM flux observer and
Current MRAS-NN using NN rotor flux observer. Both stator current-based schemes
showed better transient and steady state open loop speed estimation performance at low
speed. This is mainly due to the use of an improved reference model free of pure
integration and insensitive to parameter variation in addition to accurate flux estimation
obtained from the CM and NN observers. Stability problems have been illustrated
experimentally for the current MRAS-CM scheme in regeneration which were avoided
using the NN for flux estimation.

Sensorless tests demonstrated the improvement in the low speed performance using
stator current MRAS estimator compared to the conventional rotor flux scheme. Better
zero speed operation was given but which is still not as good as that obtained from the
NN-based rotor flux MRAS. The stator current-based schemes can not completely hold
zero speed at no load. Current MRAS-NN demonstrated better zero speed performance
compared to the current MRAS-CM due to better flux estimation obtained from the NN
at zero speed. Instability in regeneration was demonstrated for sensorless operation using
the current MRAS-CM. The NN flux observer showed stable estimation performance

leading to stable operation at regeneration.
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In conclusion, neural networks have shown great capabilities to significantly improve

the performance of sensorless IM drives which are based on MRAS observers in the
critical low and zero speed region. A multilayer feedforward NN has been developed for
rotor flux estimation from present and past samples of the stator voltage and current. This
NN was proposed as a reference model for rotor flux-based MRAS and for rotor flux
estimation in a stator current-based MRAS. Both schemes have been experimentally
implemented and tested in both open loop and sensorless modes of operation.
Experimental tests have focused on the operation at low and zero speed which represent a
challenging region of operation for sensorless drives. A considerable enhancement in the
performance was demonstrated using the proposed NN-based schemes compared to the
conventional rotor flux-MRAS. However, the performance of the NN-based rotor flux
MRAS scheme described in chapter 6 was found to be superior to that obtained from the

stator current MRAS-NN introduced in chapter 7.

8.3 Recommendations for Future Work

The work developed in this thesis has shown completely new applications of Al
techniques applied to speed sensorless IM vector control drives. Different adaptation
mechanisms have been proposed to replace the classical PI controller. The tuning of
different parameters has been carried out online by trial and error. A systematic method
could be considered for parameter tuning such as use of a GA or SA. Moreover, other
optimization algorithms may be considered for minimizing the speed tuning signal.

One of the major contributions of this work was to improve the performance of the
sensorless drive, which is based on MRAS observer, at very low and zero speed. This has
been achieved by replacing the conventional VM with a multilayer NN. Computational
burden required by NN compared to a simple mathematical equation of the VM may
impose a drawback of the proposed strategy. Therefore, it will be interesting if an
investigation is carried out to study other NN structures and topologies to replace the
VM. Furthermore, other Al-based strategies that require less computational effort can be

also investigated and compared with the NN developed in this work.
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APPENDIX A

DYNAMIC MODELLING OF INDUCTION MACHINE

A.1 Space Vector Representation of Induction Machine

In a three phase induction machine, the space vectors of the stator current, voltage

and flux in the stationary reference frame fixed to stator can be defined as:

s 2 . . 2.
Iy = ‘3‘(’sA +aigp +a”igc)

(A1)
=igp + JisQ
_ 2 2
Vs :g(vsA +avgg +a vyc) (A.2)
=Vsp + JVsQ
_ 2 2
Vs =3 Wsataysp ta Vsc) (A3)
=ysp +J¥s0
where:
27
I3 1 .3
a=e S
2 2 (A4)
A
2 J5 1 3
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Using Faraday’s and Kirchoff’s laws the stator voltage equation of the three phase
machine can be written as:

— P dy sy
Vs = Rgigq + dt (A.5)
: dy
vsp = Rigp + ij (A.6)
_ d
vsc = Rsige +Ld-;C_ (A.7)

Substituting equations (A.5), (A.6) and (A.7) into (A.2) yields the stator voltage equation

in the stator reference frame:

— 2 . dl// A . d . d
Vg = 5((Rs’sA + d: ) +a(Rgicp +—L;:B)+a2(RszsC + V:{;C )) (A.8)
_ 2 : . 2. dysgy . dysp  o2dyge
Vo =—| R,(ig4 +aip+ + (324 4+ 52 4 3 9
s 3( sUsq taigg +a isc)+( dr a dr a 2t ) (A.9)

Recalling (A.1) and (A.3), Equation (A.9) yields the stator voltage equation in the stator
reference frame using space vector notation which can be written as:

—S
VS = R +5I:;’TS (A.10)

The superscript s and the subscript s stand for the stator reference frame and the stator

quantities respectively.
Similar to the definition of the space vectors of the stator quantities in the stator

reference frame, the space vectors of the rotor quantities in a reference frame fixed to

rotor can be expressed as:

P - %(z‘ra raiy +a%i,) (A1)
5, =2 2 (A.12)
Vv, = E(V”“ +av,, +av,;)
T 2 (A.13)
Yr :g‘(l//ra tay,p +a Yr)
The rotor voltage equations of the three phase machine can be written as:

Wra (A.14)

Vig = Rpipg + d
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_p dy

Vrb = Rylpp + d (A.15)
R ay

Vre = Rplpe + d (A.16)

Substituting equations (A.14), (A.15) and (A.16) into (A.12) yields the rotor voltage

equation in the rotor reference frame:

_ 2 . dy . dy, 2,,. d
v, —5((Rr1m + dtra)+a(errb + dtr Yt+a“(R,i,. + Ztrc )) (A.17)
_ 2 : : 2. dy dy d
Vy =—| R (iyg +aiy +a”i,,)+ (22 + rb | g2 Wre
r 3( r\ra rb re) +( dt a dat a dt ) (A.18)

Recalling (A.11) and (A.13), Equation (A.18) yields the rotor voltage equation in the

rotor reference frame using space vector notation which can be written as:

dg,
dt

v, =R, + (A.19)

The superscript » and the subscript r stand for the rotor reference frame and the rotor
quantities respectively.

For mathematical modelling and control of the induction machine it is required to
write down the machine equation in the same reference frame. Therefore the
transformation between stator reference frame (D-Q) and another (d-q) frame is

considered as shown in Fig. A.1.

Fig. A.1 Transformation between D-Q and d-q reference frames
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Resolving igy and ig, on the D-Q axis yields:

ip = igq €080, —igysinb,

isQ = isd SN0, +1igq COS 6, (A.20)
This transformation can be written as:

s . .. _ze j@ . .. j

Iy _lsD+JlsQ—ls e] ez(lsd-‘_]lsq)ejge (A21)

where the superscript e stands for the d-q reference frame, which will be defined later as
the synchronous frame.

(A.21) can be written in matrix form as:

isD| cosf, —sinb, ||isa
isp| |sinfd. cosb isq (A-22)
And vice versa the transformation from stationary to d-q reference frame is given by:

ze
Ig

isd _ cosf, sinb, ||isD (A.24)
isq —sinf, cosb, |liso '

Similarly, stator quantities can be written in a reference frame fixed to rotor as:

=isd ™t jisq =is 6—19" =(ispt jisQ)e_jee (A.23)

=i e

5 =v5 g 0 (A.25)
Wy =Vs e /b

Rotor quantities can be written in a reference frame fixed to stator as:

s =7 O

v =v! /0 (A.26)
ws =7y &%

The rotor voltage equation (A.19) can be written in the stator reference frame based

on the described transformations as:

, e dl_¢ =i
Ve e /0 =R.ie jor +E(wrse 10’) (A.27)

Let by _ , , which is the angular rotor speed, equation (A.27) can be written as:
dt
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jo,

— Joy, Je”

-j6r _ -Jjo, ]9 dV/
v e =R Z¥r
rire T ke ’ (A.28)

e -j6 .
Eliminating the term e /“7 from (A.28) yields the rotor voltage equation in the stator

reference frame:

— T dl//
e (A.29)

Resolving (A.10) and (A.29) into their real and imaginary parts yields the induction

motor mathematical model in d-q coordinates established in the stator reference frame:

: dy
vsp = Rgisp + de
d
vso = Rsisg + WSQ
(A.30)
Ved = Rplpg +—— dl// rd T,y
dt 1
. dyy
Vrq = Rpirg +—dt_ ~OrYrd
The stator and rotor flux linkages are given by:
WS :LSZTS +LmlTr (A.31)
Yy = Lyis + Lyiy
Ly =L, + L (A32)

L. =L,+L,

where Lg, L,are the stator and rotor self inductances, L,,is the mutual inductance

and Lj;, L, are the stator and rotor leakage inductances respectively.

Equation (A.31) can be written in d-¢ format in the stator reference frame as:

wsp = Lsisp + Limird
wsg = Lsisg + Linirg (A.33)

Wrd = Lmisp + Lyirg
Yrq = Liisg + Lyirg

Substituting (A.31) into (A.10) and (A.29) yields the stator and rotor voltage equations in

the stator reference frame in terms of stator and rotor currents:

_ - A.34
vy = (R +Lip)is + L, piy (A.34)
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vy =(R, + Lrp)’Trs + Ly, pis — jo, (Lm’Tss + Lr’Trs)

where p is the differential operator.

(A.35)

These equations can be expressed in matrix form as:

vy ___[ Rg+Lgp L,p s
7| p=jo )l R +(p—joo, )L, || 73 (A.36)

Equations (A.34) and (A.35) can be written in the d-q reference frame fixed to stator as:
VsD = (Rs + Lsp)isD + Ly piyg

VsQ = (Rs + Lsp)isQ + meirq

Vrd = Ly Pisp + 0, Lyigo + (Rr + L, p)i.g + @pLyiyg
Vrg = =OpLiyisp + Ly pigg — @, Lyipg + (R, + Lrp)irq

(A37)

A.2 State Space Model of Induction Machine

In this section a state space model of the induction machine in the stator reference

frame is developed. The rotor current can be expressed in terms of the rotor flux From

(A.31)as:

T 1 — Iy

i, =?(w, — L) (A.38)
¥

Substituting (A.38) into (A.34) yields the following in the stator reference frame:

- L a <
Vs = (Rs +Lsp)is +z’lp(¥, —Lmls)

r
2

_ L - L, _
Vg = Ryig +(Lg —’LLn‘)pls +z&p'/’r (A39)
r 7
v. =R, + L(1 L%n ) i +—ljl W,
Vg = sls+ 5 Ler ps Lrp r

Defining o as the leakage coefficient given by:

Ly, (A.40)
LL,

oc=1-

Equation (A.39) can be written as:

_ - L, _ A41)
Vg = Rgig +0Lg pis +im_p'/’r (
’

Equation (A.41) can be written in d-q form as:
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L,

vsp = Rgigp +oLgpisp +— I, PYrd (A42)
L,

vsg = Rsisg +0Lspisg +—— P!//rq (A.43)

Substituting (A.38) into (A.29) and using zero rotor voltage for a squirrel-cage machine

yields:

_ 1 —_— - dl/7r . —_—
0= 77~ Lis)+ =4 = Jon¥ (A44)
where 7, is the rotor time constant given by:

Lr

T, =—
r=R (A.45)
Rearranging (A.44) gives:
_ L, 1_ . _
Py, = Tr’s - Tr*/’r + jo, Yy (A.46)

Equation (A.46) can be written in d-q form as:

Ly, . 1
P¥rd = _Tﬂ’sD —FWrd WOrY rq (A.47)
r
L, 1
P¥rq = ’sQ V’rq + OpYrd (A.48)

r

Substituting (A.47) into (A.42) yields:

Ly Lp 1
vep = Ryisp +oLspPisp ¥ M (—Figp =7 Vrd ~0Yrq) (A.49)
L, T, T,
Separating pisp 8ives:
2
1 L, L, L, (A.50)
isD =" —(Rs + Py, Oy ,
P'sD oL, \:VSD (Rs + LT, —)isp LT, Yrd I, r rq}
Using the definition of o in (A.40) equation (A.50) can be written as:
L,
_vsp _(Rs L ... S (ASD)
pisp =0~ Gr - oT, 7D oL LT, oLy
Similarly, substituting (A.48) into (A.43) and separating Ppigq gives:
e (K |1 —Dyigo + Lm y ©Y'rd (A.52)
pisg =1 "G, Q¥ LT, oL,

oLy, oLy ol,
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Equations (A.51), (A.52), (A.47) and (A.48) can be used to represent the induction

machine model in state space form in d-g coordinates established in the stator reference
frame as:

i 0w e, % 0
piSD-I —isD-l o 1
Piso 0 T T@er @Y 0
=l L . 914 oLs || *sD (A.53)
I R et R |
Lpl//rq r Tr W?‘
0 — CO,. - O 0
L r Tr B L i
where:
a = Ry +1—0'
oL, o,
Lm
a fruns
2 oL LT, (A.54)
a3 = Lm
oLyL,

A.3 Space Vector Voltage Equations in the General Reference Frame

In a general reference frame which rotates with a general speed wg with direct and
quadrature axes x, ¥, as shown in Fig. A.2 , the space vector of stator voltage, current
and flux can be written as:

‘—’sg =V T Vsy

2 =i + iy, (A.55)

lg
Wy =Wex TIVsy

Using the frame transformation the stator quantities can be written as:

55 =vE %

. —o jO

is=i8eE (A.56)
—8 —g jeg
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sQ

P
,

Fig. A.2 Application of the general reference frame

Substituting (A.56) into (A.10) gives the stator voltage equations in the general reference

frame:

vE e’ % - RSisgej O +%(¢7§ej eg) (A.57)
do, ) )

Let = = w g equation (A.57) can be written as:

v§ jeg = Rgi gejeg dy;: + jo g 78e7% (A.58)

e e e 160 . .
Eliminating ¢’”8 equation (A.58) can be written as:

o dyd .
58 = RJE + 75+ jogpé (A.59)
dt
Similarly the rotor quantities in the general reference frame can be written as:

VE =V + iy
7 . s .60
i8 =i+ Jin (A.60)
‘/7rg =Yy + Wry

Using frame transformation the rotor quantities can be written as:

g (00

v, =voe
040, A6l
’r —’rg J( ) ( )
g (656

_Wr
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Substituting (A.61) into (A.19) yields the rotor voltage equations in the general reference
frame:

_ (8, — _ i _ .
78 e]( ¢ —6r) =Rrirgej(98 6,) +i(§_u—,.gej(93—6’))

dt

. _ (A.62)
_ 6,6 —g j(0,-0 i, - g ;
Vrg e./( g r) — errgej( g ) +e](9g 0,) dl/;;‘ +j(a)g _a)r)ﬁl_rgej(eg_gr)

e (6,6 .

Eliminating e’ 0z =6,) equation (A.58) can be written as:
_ _, dyf . _
vE=R,if + "’t’ + j(wg ~0)WFF (A.63)
The stator and rotor flux linkages in the general frame are given by:
l17sg = Ls’ng + Lm’Trg (A.64)

V—/rg = Lmisg + Lr’Trg
The stator and rotor voltage equations in the synchronous reference frame can be

obtained by substitutingwg = e, which is the synchronous speed, and wg —@, =@y,

which is the slip speed, into (A.59) and (A.63):

N 7

=R+ "’ts + jopE (A.65)
. dgf .

€ = R,if +—th— + jogipt (A.66)

Equations (A.65) and (A.66) can be written in d-g coordinates established in the
synchronous reference frame as:
Vsd = Rsisd + PVsd ~— PeVsq
Vsq = Rgigy + PWsq + @eV'sd

0 =Ryipg +PYrd ~Dsl¥rq

0 =Ryipg +PVrqg tOsiVrd

(A.67)

The stator and rotor flux linkages in the synchronous reference frame can be written as:
Wsd = Lsisd T Liira

Ysq = Lgisq + Liirg (A.68)
Wrd = Lmisd + Lrird

Yrg = Lygisq * Lyiyg
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A.4 Power and Torque Relations using d-q Representation

The three phase input power to the induction machine can be written in terms of the

three phase voltages and currents as:
Py =vgqisq +VsBisp T VsClsC (A.69)
By expressing the three phase quantities by the equivalent two phase quantities. the

expression for the input power can be written as:

1 V3 | NER
P; = vspisp +(_5VSD T VSQ}(—*ISD +——is0

1 1
+ —EVSD 5 D——ISQ

1 3

3 3 1 3 :
P; =vspisp + 4VsD’sD 4 ——VsDisQ ~ VsQ’sD + VsQ’sQ += vsD’sD t— A VsD'sQ
3 . 3 :
+TVSQISD +ZVSQZSQ

3 ) .
b= E(VlesD + st’sQ)
(A.70)

To prove the inverse transformation from three-phase to two-phase consider the input

power expression in the d-¢ coordinates and substitute the three phase variables instead

of the two phase quantities:

3 ) .
P = '2'(vsD’sD +st’sQ)
(2 L, L (21, L, L. )
__‘v — — — ——— —— —
3 3 sA 3 sB 3 sC 3 sA 3 sB 3 sC

= Vsdlsd +VsBisB‘*'VsCisC

(A.71)

In general, the expression for active and reactive power of the induction machine

using d-q representation can be written as:
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3L =3
Si = ’5 (VS ls‘s)
3 : : g
:5{(VSD+]VSQ)(1SD_JISQ)} (A72
72)
= 2{{vspisp +vspiso )+ i Vsgisp ~vspiso) |
2 sQ*sD ~ VsD'sQ
=P+ jQi
where 3 stands for the complex conjugate.
The expressions for input active and reactive power can be written as:
3 : :
b = E(vlesD + st’sQ)
; ( | | (A.73)
Q; = 5 VsQ'sD _vsD’sQ)
The mechanical power can be written as:
3 , :
Prmech = E(erd’rd +erq’rq) (A.74)

where e, is the space vector of the rotor EMF induced in the rotor windings which can
be expressed as:

e, =epd tjerg

e, =—jo iy =—J0rW g+ JVrg (A.75)
ey = wr‘//rq'ja’r'//rd

Substituting (A.75) into the mechanical power equation yields:

3 : :
Prech =Ea)r(!//rqzrd—l//rdqu) (A.76)

The electromagnetic torque, for a machine with P pole pairs, can be obtained by

dividing the mechanical power by the mechanical rotor speed @ym as follow:

d > j =2 P, X, ATT
Te:—M=_2-P(qulrd—wrdqu)_—_2_Pvlrxzr ( )
Wrm
where the mechanical rotor speed is related to the electrical speed by:
= @r (A.78)
@Drm~ p

The torque expression obtained is similar in all reference frames. BY using other

machine variables, the electromagnetic torque can be also expressed as:
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3 - 3 . :

Te _—-EPl//r X1, —EP(qulrd_Wrdqu)

3 T Ky 3 . . ' '
T, :_EPLmls X1, =EPLm(lsqlrd_lsdqu)

2 3 (A.79)
Te =—§PIS XYs :_P(Wsdisq_WSqiSd)
T :_EP‘_L_ﬂls W 3 Lm

e 9 Lr r 5 L (Wrdlsq l/jrqlsd)
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APPENDIX B

FUZZY LOGIC CONTROL

B.1 Principles of Fuzzy Logic
The most frequently used FL system is the Mamdani-type which consists of three

main parts: fuzzification, inference engine and defuzzification.

B.1.1 Fuzzification

Since FL is based on linguistic variables, the first step performed by FLC is to map
all inputs to fuzzy sets and to assign membership values for each input to these different
sets. This process is called fuzzification where each point from the input space (universe
of discourse) is assigned a membership value u (degree of membership) between 0 for no
membership and 1 for full membership to a given fuzzy set. A common example is the

set of hot temperatures where the universe of discourse consists of different temperatures

between 15 degrees to 35 degrees as shown in Fig. B.1.
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Membership Membership
Value Value
A; u
HOT HOT
lpFr-———--- T lr———--
[
|
|
|
|
|
|
Temperature ! Temperature
0 —> 0 ' — >
15 25 35 15 25 35
(a) (b)

Fig. B.1 Hot temperature example representation (a) Classical crisp set (b) Fuzzy set

Using well-defined (crisp) approach a description of a hot temperature can be given
to any temperature higher than 25 degrees. However it is unreasonable to define a
temperature of 24 degrees to be not hot. This can be overcome by a fuzzy approach using
a continuous curve, a membership function, passing from non-hot to hot to define how
much a given temperature belongs to the HOT set. Hence 25 degrees has 100%
membership to the Fuzzy set HOT where as 24 degrees and 16 degrees have 90% and
10% membership values respectively. This is different from Boolean logic where any
point in the universe of discourse should be inside (full membership) or outside (no
membership) the set.

There are many types of membership functions; some are smooth such as Gaussian
and Sigmoid and others are non-smooth such as triangular and trapezoidal as shown in
Fig. B.2. The choice of suitable membership function is not unique. However, simple

membership functions such as triangular and trapezoidal are used in various applications

due to their linear characteristics.
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0.5+ 0.5+
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0 —>
Input Inp?
(a) (b)
U
A u
1+ 1
1 4+—
0.8+
0.8
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0.54
0.2—_" 02-1'——
0 > >
Input Input
(©) (d)

Fig. B.2 Fuzzy membership functions (a) Triangular (b) Trapezoidal (c) Gaussian (d)
Sigmoid

B.1.2 Fuzzy Inference Engine

The fuzzy inference engine is used to generate the fuzzy outputs by connecting the
fuzzified inputs to the output fuzzy sets based on linguistic rules. This mimics human
reasoning which can be described by an If-Then expression: If x is 4; and/or y is B, then z
is C;where x and y are the first and the second fuzzy inputs respectively and 4; and B, are

the membership functions for each input, z is the controller output C; is the membership

function of the output.
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B.1.3 Defuzzification

The last step of the FLC is the defuzzification process where the output fuzzy set is
transformed back to a real value. Different methods can be used for the defuzzification
such as: maximum, mean of maxima, centre of area and centre of gravity.

Usually scaling factors are used in the input and the output of the FLC to normalize
the value of the controller input and to de-normalize the controller output. More often the
tuning of these parameters is performed off-line using any optimization technique such as
GAs. After the tuning process these parameters remain constant during the normal
operation of the controller. To improve the controller performance and robustness these
parameters can be alerted online. If such an on-line tuning of scaling factors, fuzzy rules
or membership functions is performed the controller becomes an adaptive fuzzy

controller.

B.2 Fuzzy Logic Modelling

FLC can be modelled using the Matlab Fuzzy Logic Toolbox graphical user interface
GUI as shown in Fig. B.3 (). This allows an easy way to build the FLC graphically. Five
primary GUI tools are provided to help building and editing the FLC: Fuzzy Inference
System (FIS) editor, membership function editor, rule editor, rule viewer and surface
viewer. These GUI tools are dynamically linked so that any change in one will affect the
others. The FIS editor is used to determine number and names of inputs and outputs,
membership function editor defines shapes of different membership functions and inputs-
outputs range, rule editor is used for editing the FL rules. Rule viewer and surface viewer

are read-only tools and are used to look at the FIS characteristics. Modelling of FLC

described in chapter 5 in Simulink is shown in Fig. B.3(b).
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Fig. B.3 Fuzzy logic modelling using Matlab (a) Building model with Fuzzy logic

toolbox (b) Simulink model
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