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1. Chen Abstract 

Abstract 

This project alms to determine the fracture toughness of thin coated systems by 

nanoindentation. The development of techniques for the assessment of coating toughness 

lags behind the determination of Young's modulus and hardness of thin coatings. No 

universal model or technique has been agreed to estimate coating toughness. With the 

development of complex coating stacks (e.g. multilayered coated systems) and the 

presence of variable crack patterns, the difficulty of generating a solution by stress analysis 

based models is dramatically increased. Therefore, there is an urgent need for the 

development of models to deal with complex coatings and varied cracking patterns. The 

most successful models in this respect are energy-based. 

In this thesis the existing models and techniques to assess coating toughness and adhesion 

have been critically reviewed. The stress analysis based models usually require empirical 

fitting parameters and they only deal with specific crack patterns. In contrast, the energy 

based models can deal with different cracking patterns without empirical constants; but 

they usually require that the crack propagates during loading cycle only, whilst, stress 

analysis based models do not have such a restriction. 

Several new models have been developed to assess coating toughness in this work. Two of 

them are based on excursions in load-displacement (P-c5) curves resulting from fracture 

during nanoindentation. The first model (Wcdp method) is based on extrapolating the plot 

of total work during indentation versus displacement. Compared to a literature model 

based on extrapolating P-c5 curve, this approach removes the influence on fracture 

dissipated energy from plastic deformation of the substrate. The second is a modified 

model to estimate the limiting value of coating toughness which could equally give the 

upper and lower boundary for toughness from nanoindentation performed under load 

control and displacement control, thus improving on the initial boundary model by 

Toonder et al which could only provide an upper boundary of coating toughness for 

nanoindentation under displacement control. However, it is often observed that fracture 

does not result in an excursion in the P-c5 curve, which requires a different modelling 

approach. The third model (Wirr-W p model) developed addresses this problem. All the 

previous models address through-thickness fracture which is widely observed in 

nanoindentation testing of hard coatings. In addition, another energy based method is 
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1. Chen Abstract 

proposed to estimate the adhesion of coatings by analysing the extra linear recovery of 

unloading curve associated with the rebound of the coating during unloading. 

Models were validated by experiments carried out by a range of nanoindentation 

techniques. The low load tests were performed by a Hysitron Triboindenter fitted with a 

sharp cube comer tip and a Berkovich tip. The maximum penetration was in the range of 

40-400nm. Higher load tests were performed using a Nanoindenter II ™ fitted with a 

Berkovich tip in the range of lOmN-SOOmN. Atomic force microscopy (AFM) , high­

resolution scanning electron microscopy (SEM) and reflected light microscopy have been 

employed to investigate the fracture behaviour. 

To examme the models developed in this work, two different coated systems were 

investigated: one is multilayer optical coatings (total thickness <SOOnm) including ITO, 

Sn02, ZnO, and TiOxNy on glass, which is the case of harder coating on hard (but 

relatively softer) substrate and they are the main samples investigated in this project; the 

other is a Ij.lm fullerene-like CNx coating on various ceramic substrates such as SiC, Si, 

and Ah03, which is the case of hard (but relatively softer) coating on a harder substrate. 

Some common brittle bulk materials (e.g. Si) were also tested to examine the applicability 

of the models. Reasonable toughness values for both coated systems and bulk materials 

have been obtained by the new models developed in this work. 

To gain more insight into the fracture mechanisms of coated systems, the threshold of 

fracture is also an important issue to be addressed. The loading rate may influence the 

critical load for fracture in brittle materials. It was observed that within the penetration rate 

range used in this study (lO-40nmls) the higher the penetration rate the higher was the 

threshold for cracking in the optical multilayer coatings on glass indented by a cube comer 

tip. When analysing the P-J curves at different loading rates, significantly different 

behaviour was observed for ITO and Sn02 coatings which is possibly due to a pressure­

induced phase transformation in these coatings. 
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Chapter 1: Introduction 

1.1. Introduction and objectives 

Multilayer coated systems (e.g. solar control coatings on glass which consist of a 

selective absorbing layer, antireflection layers and barrier layers) are widely used in 

industrial applications. Whatever the application, the coating lifetime which is 

controlled by the mechanical properties of the coated system, is a key issue that 

industry needs to address. In many cases, the life-limiting failure modes are produced 

during handling or by contact damage in service. Therefore, it is necessary to analyse 

and understand the mechanical response of these coating/substrate systems in a range 

of contact conditions. 

The work in this thesis was motivated by the challenges in the development of the 

latest generation of solar control coatings for architectural glass. Current coatings 

show low transmission in the infrared (almost down to the theoretical limit) but tend 

to fail due to mechanical damage or the effects of environmental exposure. 

Therefore, it is very important to understand the mechanical behaviour of the 

coatings. 

In the last 2 decades, nanoindentation techniques have been widely applied to 

investigate the mechanical properties of bulk materials and coatings at sub-micron 

scale or even at nanoscale [(Oliver and Pharr, 1992),(Page et aI., 1992),(Page and 

Hainsworth, 1993),(Tuck et aI., 2001, Bull, 2005),(Malzbender et aI., 2002)]. With 

regard to the determination of hardness and elastic modulus of the coatings, there are 

many well-established techniques and models available [e.g.(Korsunsky et aI., 

1998),(Korsunsky and Constantinescui, 2006),(Bull, 2001)] . In contrast, the 

determination of the coating toughness from nanoindentation is less well-developed. 

However, it is crucial to understand the fracture behaviour (such as fracture 
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toughness, fracture initiation) of hard coatings in particular in the case of thin hard 

films. For solar control coatings, fracture produces very visible damage which is 

unacceptable to users and thus improving fracture resistance properties is a key part of 

coating development. Some models (stress based models and energy based models) 

and techniques [e.g. (Li et aI., 1997),(Malzbender and de With, 2000),(den Toonder et 

aI., 2002)] have been advanced to assess coating toughness. However, these have been 

developed in a range of systems and as the coatings are becoming more complex 

(such as multilayer stacks) and the coatings are becoming very thin (tens of 

nanometeres or less) the suitability of the existing methods is questionable. There is 

thus a great challenge in the assessment of coating toughness and interfacial 

toughness, which this work aims to address. 

The work in this thesis is aimed at further understanding the fracture mechanisms of 

coated systems during nanoindentation. Thus different aspects have been investigated 

such as how to analyse the effect of different crack patterns, and how the loading rate 

influences the fracture behaviour. The coated systems investigated here include the 

main components of solar control coatings on glass as well as CNx coatings on 

various hard substrates (e.g. SiC). These two coated systems have several applications 

in industry which brings them into the scope of this work. For example, the former 

coatings are applied to architectural glass for their optical properties and the latter 

have a good tribological property which enables their use as protective layer for hard 

disk drives. Further, these two sets of materials are representative of different coated 

systems. The former set is a harder coating on hard (but relatively softer) substrate, 

whilst, the other is a hard coating on harder substrate. Both of them are brittle. In 

addition, some common brittle bulk materials (such as Si, Ge, SiC) have been 

investigated to validate the models developed in this study. 

In order to investigate the fracture behaviour at different scales, low load 

nanoindentation tests( <SmN) by a Hysitron Triboindenetr fitted with a sharp cube 

comer tip and high load nanoindentation tests (up to SOOmN) by Nanoindenter II 

fitted with a Berkovich tip were performed. Although, many indenter geometries are 

available such as spherical, conical, Berkovich, Vickers, Cube comer and North star 

etc, the cube comer tip is commercially available and is very suitable for fracture 
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assessment at low load because it could significantly reduce the threshold for fracture 

compared to the more common Berkovich indenter (e.g.(Pharr, 1998),(Harding et aI., 

1995)) which is why it was selected to investigate fracture at low loads where less 

plastic deformation of the substrate occurs. 

1.2. Motivation 

In solar control coatings on glass, transit scratches are observed during the delivery of 

the glass from the coating plant to the assembler of double glazing units. (Fig. 1. 1 ). 

transit scratches are caused by the sliding of polymer intervelant balls over the surface 

during transit. High tensile stresses generated at the trailing edge of an essentially 

Hertzian elastic contact generate through-thickness cracks which can divert along the 

interface; these cracks do not tend to propagate into the glass substrate. Thus the 

coating toughness and interface toughness are key parameters dictating coating 

performance. 

Figure 1.1. SEM image of a transit failure in solar control coatings on glass. 
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What is more, if current mechanical performance models (e.g. the Bull model [(Bull 

et aI., 2004),(G-Berasategui et aI., 2004)]) which are based on energy dissipation) 

used to predict the hardness and Young's modulus of the complex coated systems are 

to be improved, it is necessary to understand the fracture behaviour and include the 

effect of cracks in the model. 

The moti vation for the development of new models to assess coating toughness in this 

study is that the conventional indentation models (e.g.(Anstis et aI., 1981» and the 

existing energy based models [e.g. (Li and Bhushan, 1998), (Malzbender et aI., 2000)] 

do not work well with the very thin coatings used for optical or computer hard disk 

applications in this study. 

In this thesis, different models have been developed to assess coating toughness based 

on observations of different types of fracture. Also, the fracture initiation point is 

discussed together with the influence of loading rate on the fracture behaviour. 

1.3. Structure of this thesis 

The body of this thesis is split into the following 4 parts. 

I. Introducing and analysing the problems. 

The literature review is mainly covered by chapters 2 to 4. Chapter 2 introduces the 

problems of fracture assessment by indentation and critically reviews the existing 

models and techniques for the assessment of coating toughness. Chapter 3 explains 

why nanoindentation techniques are powerful tools and introduces their application to 

coating mechanical property assessment. Chapter 4 describes the experimental tools 

used for solving the problems. A complete review for all existing literature in this 

field is beyond the scope of this thesis and the literature review is concentrated on the 

most representative methods and techniques. 
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II. Energy based models 

Chapters 5 to 8 introduce new models to assess the coating toughness and adhesion 

measurement. Chapter 5 presents an energy based model to assess coating toughness 

in the case of the fracture resulting in an excursion in the load-displacement curve. 

Chapter 6 presents a new boundary model to estimate the upper and lower limit of 

coating toughness, which also requires an excursion in the load-displacement curve. 

Chapter 7 proposes a model to deal with the situation that the fracture does not cause 

any excursion in load-displacement curve. Chapter 8 outlines a method to assess 

adhesion based on extra elastic linear recovery in unloading curve. The results 

obtained by various methods are compared. 

III. Loading rate influence on fracture mechanisms 

Chapter 9 explores the possible mechanisms to account for rate-dependent fracture 

behaviour and highlights this behaviour in Sn02 and ITO coatings. 

IV. Conclusions and further work 

In Chapter 10, some conclusions about the toughness results for various coatings are 

drawn and some brief comments about the suitability of the models developed in this 

study are made. To generate further understanding and insight into fracture 

mechanisms, further work regarding both experimental techniques and modelling is 

suggested. 
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Chapter 2: Assessment of fracture toughness of coated 

materials by nanoindentation 

2.1. Introduction 

For Bulk brittle materials and sufficiently thick brittle coatings, the indentation 

methods to measure the toughness have been well-established [(Lawn et aI., 1980), 

(Anstis et aI., 1981)]. However, due to limitations of their thickness, complex 

composition and structure, it is tricky to find a universal method to measure the 

fracture toughness of thin films. Many efforts have been made to address this. This 

chapter will summarize and compare these methods so that the optimised methods 

could be selected according to the actual coated systems and testing conditions 

required. Due to the advantage of simplicity and economy in testing, indentation 

(nanoindentation) techniques have been widely used to assess coating toughness. The 

existing models used to estimate the coating toughness can be divided mainly into two 

catalogues, i.e. stress analysis based models and energy based models. With the 

development of new coated systems and different demands for the mechanical 

properties of coated systems, the adhesion between the coating and substrate is also an 

important issue to be addressed. Therefore, the main approaches to measure adhesion 

such as the pull-off test, bending test, bulge test, superlayer test, and scratch and 

indentation tests are also reviewed with the emphasis on indentation. 

2.2. Models and techniques to assess the indentation fracture 
toughness of coating 

In the indentation testing of brittle bulk materials there are five major types of cracks 

depending on the load, material, environment conditions and indenter (Cook and 

Pharr, 1990), which are summarized in the following: 
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(a) Cone (b)Palmqvist 

(d) Lateral 

a) Cone Cracks: typically generated by flat punch indenters or spherical ones. 

Related only to the elastic defonnation, they initiate in a ring crack because of 

the high tensile stresses near the edge of the contact. With increasing load, the 

maximum tensile stresses distribute around a cone producing a cone crack. 

b) Palmqvist cracks: related to the plastic defonnation of the material when 

indented with sharp indenters or blunt indenters at high loads, beyond the 

Hertzian regime. They are created parallel to the axis of the load starting from 

the edge of the plastic impression left by the indenter, which are driven by 

tensile hoop stress. These usually occur in the materials which are much 

tougher than glass. 

c) Median cracks: also propagate parallel to the axis of the load but are created 

beneath the plastic defonnation zone due to the wedging action of a conical or 

pyramidal indenter. 

d) Lateral cracks: are also created beneath the plastic defonnation zone and 

propagate initially almost parallel to the surface of the material before turning 

upwards to the surface and fonning a chip. They usually originate during the 

unloading cycle (for most ceramics), although for some glasses they also 

appear during the loading cycle. 
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e) Half Penny cracks: This type of crack may be formed on unloading starting 

from a radial crack running downwards or a median crack running upwards or 

a mixture between the two of them. 

2.2.1. Stress analysis based models 

2.2.1.1 Half-penny like radial crack 

Experimental observations found that the toughness KIc of indented materials was 

proportional to applied load P multiplied by crack length, c, raised to the power of 

-1.5, in the case of well-developed radial/median crack system (half-penny like 

cracking) caused by indentation. Combining stress analysis based on the model of the 

analogous expanding spherical cavity problem and simplistic dimensional analysis, 

Lawn et al (Lawn et aI., 1980) developed the following expression to assess the 

toughness of ceramics and glass, 

(2.1) 

where ;vR is a calibration coefficient which depends on indenter geometry and crack 

pattern; the exponent m is usually treated as V2, and E and H are Young's modulus and 

hardness, respectively. For well developed radial cracking produced by a Vickers or 

Berkovich indenter, ;vR =0.016±0.004 (Anstis et aI., 1981). There is a considerable 

uncertainty (±25%) in the constant itself, leading to an inherent uncertainty in the 

calculated toughness. For median cracking, the coefficient ;vR will be lower for bulk 

materials (Lawn et aI., 1980) and coatings as well (Malzbender et al., 2000) which 

indicates that median cracking tends to occur at higher loads. This was observed by 

Cook and Pharr (Cook and Pharr, 1990). With the decrease of indenter semi-angle (8), 

;vR increases since it is proportional to (cot 0)2/3 which was derived based on the 

expanding cavity model by (Lawn et aI., 1980) and was verified by indentation in 

different brittle materials (Jang et aI., 2004). Such geometry dependent phenomena 
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have been verified in different tip angles in the range of 35 .3 0 to 75 0 (lang et al. , 

2004). 

c 

(a) (b) 

Fig. 2.1. (a) Schematic of well developed radial cracking caused by indentation with a 
Vickers indenter, (b) radial crack in glass. 

E and H can be easily measured by nanoindentation and crack length c can be 

determined by SEM, AFM or reflected light microscopy. The simplicity and 

reliability of this method leads to its convenience of application and thus it becomes a 

common method for bulk materials indented at high loads. However, it requires the 

crack to be sufficiently developed (i.e. c > > 2ac , where ac is the contact impression 

radius as depicted in Fig. 2.1) which accordingly requires a high load. For thin films , 

high loads lead to large penetration which may result in plastic deformation in the 

substrate. In such cases, the initial residual stress field to drive the fracture may be 

disturbed by the interface and substrate so that the fracture shape will also change. 

This reduces the reliability of the conventional indentation method. 
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Harding et al (Harding et aI., 1995) found that the threshold for cracking could be 

dramatically lowered by using a sharper tip such as a cube comer tip. At a fixed load, 

the cube comer tip deforms a greater volume of material than a Berkovich indenter 

(by more than 3 times) which leads to much higher stress intensity. It was suggested 

that a cube comer indenter could reduce the critical load for fracture by more than 10 

times for most brittle materials (Pharr, 1998). In addition to the advantage of reducing 

the critical load, at the same penetration the more confined plastic deformation 

compared to a Berkovich indenter is also a merit of a cube comer tip which could 

eliminate the influence from the substrate (Stein, 2005), (Chen and Bull, 2006b). 

Therefore, it is preferable to use a cube comer tip when assessing the toughness of 

thin films [e.g.(Harding et aI., 1995) , (Pharr, 1998), (Li et aI., 1997), (Chen and Bull, 

2006c)]. However, different researchers reported different values of the coefficient 

~: for a cube comer tip in Eq.(2.1). If it is assumed that ~vR is related to tip angle (8) 

2 

only (;: = ;: (cot 8)3 , where ;: is a constant ), it can be expected to have a value of 

0.0335; however, 0.0319 (Pharr et aI., 1993), 0.032 (Li and Anderson, 2004), 

0.036(Harding et aI., 1995), 0.04 (Pharr, 1998), and 0.0535 (Scharf et aI., 1997) have 

been reported as different values for the constant. 

The different materials tested by different authors are a very important factor in this. 

As analysed by Anstis et al (Anstis et aI., 1981) and Lawn et al (Lawn et aI., 1980), 

Eq.(2.1) did not take account of pile-up and sink-in. For many ceramics the relatively 

high HIE leads to sink-in during nanoindentation, while, pile-up tends to occur in 

materials with low HIE. If the materials display the conventional plasticity, the pile-up 

may generate at high stress concentrators at slip steps even if the HIE is not very low. 

Both pile-up and sink-in will disturb the cracking dimensions and shape; also they 

may influence the residual stress field. The different magnitude of sink-in and pile-up 

between different materials may thus cause the variations from Eq.(2.1) as well. 

Another possible reason is that the flaw size and distribution may vary significantly 

with different materials and surface treatments. When the indenter becomes sharper, 

individual defects may playa vital role in the fracture mechanism. In addition, when 

indenting hard materials a sharp tip is much easier to wear or even be broken which is 

a very important issue if performing indentations by a cube comer tip. 
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Although some problems exist, Eq.(2.1) has still been widely used to estimate the 

fracture toughness of relatively thick coatings (>10~m). Due to the mismatch between 

the coatings and their substrates and the different coating processes used, it is 

inevitable that pre-existing residual stress will occur which has not been considered in 

Eq. (2.1). This residual stress may be small compared to indentation stress but it 

becomes significant for systems with big thermal expansion mismatch in coating and 

substrate deposited at high temperature. In order to solve this problem, a modified 

expression considering residual stress (can be pre-existing surface stress in bulk 

materials or residual stress in coatings) has been suggested [(Marshall and Lawn, 

1977), (Malzbender and de With, 2000c), (Emiliani, 1993)], 

(2.2) 

However, it should be noted that the constant 1t is crack geometry dependent and 

corresponds to well-developed half-penny crack. It can be expected that both the 

stress field and crack shape will be disturbed by the substrate. Malzbender et al 

(Malzbender and de With, 2000c) argued that the radial cracks are mainly confined to 

the surface of coating so that the influence of substrate on stress field can be ignored. 

Such an assumption seems to be reasonable for their relatively thick coatings (2~m 

and 4 ~m in thickness in (Malzbender and de With, 2000c) tested at low load). 

Plotting ;vR (E / H)1I2 P / C 3/2 versus 2(c /1[)1I2 both toughness (the intercept with the 

ordinate axis) and residual stress (the slope) can be obtained. When the substrate 

effect becomes more important, a shape factor initially defined by Broek (Broek, 1997) 

can be introduced to account for crack shape modification. Therefore, Eq. (2.2) can be 

modified as, 

(2.3) 

Z=1.12Jff die 
(3.7Z'/8) + (.7Z'1 8)(d / e)2 

(2.4) 

Where d is the depth of the radial crack. Although it is difficult to accurately measure 

the crack depth, den Toonder et al (den Toonder et aI., 2002) argued that the fracture 
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toughness can be obtained without the knowledge of Z and Z is only important when 

determining the residual stress. 

Eq.(2.2) works well for a coating with significant residual stress compared to its 

toughness such as organic-inorganic hybrid coatings with thickness of more than 3Jlm 

on glass (Malzbender et aI., 2000) and Si02- filled methyltrimethoxysilane coatings 

with thickness of more than 2Jlm on glass (Malzbender and de With, 2000c). 

Otherwise, the scatter in data for ;vR (E / H)1I2 P / C312 and 2(c / Jr) 11 
2 leads to Eq. (2.3) 

losing its merit. In addition, it needs to be pointed out that the sol-gel coatings on float 

glass are a case of hard coatings on a much harder substrate and there is no reason to 

believe that models will equally apply to systems with different material combinations. 

With harder coatings on a softer substrate (e.g. harder ceramics on glass, ceramics on 

metal or polymer), plastic deformation of the substrate may occur during the 

propagation or even initiation of a radial crack in the coating and an additional 

bending stress will be imposed on coating which totally changes the initial fracture 

mechanism which Eqs.(2.1) to (2.3) rely on. The mismatch between coatings and 

substrate will also influence the stress field when it propagates into the interface 

regIOn. 

Furthermore, when the coating thickness decreases, well-developed radial cracking 

may not be observed (e.g. for 400nm Solar control coatings on glass in (Chen and 

Bull, 2006c); 500nm Si02 filled methyltrimethoxysilane coatings on glass in 

(Malzbender and de With, 2000c). In such cases, the usefulness of the above 

equations will be in doubt. For example, Laugier (Laugier, 1987) and Nihara (Nihara 

et aI., 1982) reported that the linear relation between KIc and Pic 312 stopped when 

c<2.5ac. However, Jang et al (Jang et aI., 2004) argued that such a scaling relationship 

is still maintained even for small crack in Si (100). Aslo, Scholz et al (Scholz et aI., 

2004) found that such a scaling relationship remained even when the radial crack 

length was down to 1. lac for typical ceramics such as fused silica, sapphire etc. 

For a radial crack confined within the contact region, Tanaka et al (Tanaka, 1984) 

argued that the coefficient in Eq. (2.1) should be bigger if the crack was not 

sufficiently developed. Extrapolating the experimental results by Scholz et al (Scholz 
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et aI., 2004), a smaller coefficient can be expected. These deviations between different 

research workers may demonstrate that the accuracy of Eq.(2.1) will also be 

influenced by contact scale, microstructure and materials properties. Alternatively, 

for a sub-threshold crack, a model relating the toughness to the hardness and strength 

of the material was presented by Jung et al (Jung et aI., 2004) and reasonable 

estimations were obtained for common brittle materials such as soda-lime glass, Si, 

and sapphire. The disadvantage is that it gives numerical results and the constants in 

the model are empirical varying with materials (Jung et aI., 2004). 

If it is assumed that Eq. (2.1) holds for small crack lengths (i.e. c>ac, but not by 

much), the difficulty to accurately measure the crack length will be a major issue so a 

method to estimate crack length in the absence of any imaging system was suggested 

by Field et al (Field et aI., 2003) based on the concept of crack opening displacement 

and utilizing the feature of a pop-in in the load-displacement curve. For a typical 

pyramid indenter, the crack opening displacement (COD) OCOD can be given by, 

(2.5) 

Where <p is the face-to-centre angle of the tip, and hex is the extra penetration caused 

by the entry of the indenter into the crack. Field et al (Field et aI., 2003) suggested 

that hex can be estimated as the difference between the actual displacement with pop­

in and the extrapolated displacement without pop-in (i.e. hm2-hml is regarded to be hex 

as depicted in Fig. 2.2). 
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Fig. 2.3. Schematic of a pop-in in a load-displacement curve. 
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Fig. 2.4 Schematic of a triangular pyramid indenter wedging open radial/median crack in the 
brittle material surface. 

By geometrical analysis for a pyramid indenter (see Fig.2.4) with crack length c, the 

distance from crack tip to the indentation centre is given by, 

c = (h -h) + 1lEr hex cot <p tan 30° 
m2 ex cot <p 

4pD 
(2.6) 
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Where Er is reduced Young's modulus; p is the pressure at the centre of the crack, and 

D is a constant. 

Since p is likely to be proportional to the Meyer's hardness, HM (Mencik, 1996), 

Eq.(2.6) can be rewritten as follows, 

(2.7) 

Where Q is a combined constant which can be obtained by curve fitting the 

relationship between c and hex. 

Reasonable results were reported and it was found that Q was similar (with a 

difference of -10%) for two different materials in (Field et aI., 2003). Although it is 

not sufficiently justified to assume a valued constant Q, it leads to the possibility to 

extend the method to other bulk materials whose cracks are not easily measured even 

at high load and avoids the time consuming work of imaging the cracks. Further, it 

leads to the possibility of calculating the threshold of radial crack formation if a 

favourable initiating microcrack did not significantly delay the pop-in. However, data 

is relatively scattered in these plots, in particular for fused silica. For materials that 

have significant densification below the indenter, the stresses adjacent to the indenter 

will be reduced thus leading to a decrease of crack length, therefore, the conventional 

indentation method based on measurement of radial crack length will result in a gross 

over-prediction of fracture toughness (Marshall and Lawn, 1979) which is also the 

reason that Anstis et al (Anstis et aI., 1981) emphasised the precautions necessary to 

be taken when the indented specimen has an open-network structure. Unfortunately, 

the fused silica selected to obtain Q in (Field et aI., 2003) falls into this category, 

which restricts in the reliability of the value of Q. 

Another important issue that needs to be highlighted is the interaction between 

different crack types. A cone crack can appear prior to radial/median cracking and it 

provides a confining bound for the development of radial or median crack systems. 

Also it is possible that lateral cracks will accompany radial cracking and the 
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expansion of the lateral cracking will affect the propagation of the radial cracking. 

Usually, lateral cracks occur at the end of the unloading cycle, by which time crack 

systems are fully developed and constrain the lateral cracks, 

Radial crack 

Lateral crack 

Hence, 

Rather than, 

Radial crack 

Lateral crack 

For some coated systems with relatively poor adhesion, delamination at the interface 

may be associated with radial fracture in the coatings before the radial cracks can 

extend which will seriously affect the residual stress field to drive the radial cracks 

and thus the final dimension of the radial crack. In such cases, Eqs.(2.1) to (2.3) 

become invalid or at least less reliable depending on the extent of the effect. Further, 

for some coated systems indented by a Berkovich indenter even at high load, only 
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ring-like cracks, or picture frame cracks are observed (e.g.(Page and Hainsworth, 

1993» in which case, all the models above cannot work. 

In order to avoid the constraint of crack length impacted by other factors such as 

densification, another COD method was proposed requiring no knowledge of crack 

length. It only requires that the crack in quasi-equilibrium (crack propagation stops 

ignoring the slow crack growth effect) which is the case immediately after indentation 

with sharp tips (Marshall and Lawn, 1979).With the aid of the solution of the near-tip 

displacement field (Lawn, 1993), a numerical solution of crack driving force can be 

obtained. Reasonable results were obtained for soda-lime glass (Burghard et aI., 

2004). This method avoids the influence of densification only if the displacement 

field is not changed appreciably but can provide the intrinsic toughness. 

Crack Opening Displacement has been directly correlated with fracture toughness 

(Fett, 2002), (Kruzic and Ritchie, 2003). Based on linear elastic fracture mechanics, 

the near-tip stress intensity K tip for a crack related to the crack opening displacement 

(COD) is given by Fett (Fett, 2002), 

4K b
llz 

[( JlIZ ( J
3

/

Z 
( J

5

/
Zl 

u(r)= ;;, A 1-: +B 1-: +C 1-: J (2.8) 

Where r, b, a are the radial position of the crack tip, the contact radius, and the crack 

length, respectively, as measured from the indent centre. Here the constants A, B, C 

are given by, 

_ (7raJlIZ A- -
2b 

a 
B ::::: 0.011 + 1.81791n­

b 

a 
C::::: -0.6513 + 2.121ln­

b 

(2.9) 
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Usually K tip is regarded as the material toughness. Compared to the conventional 

indentation method (CIM), this approach was argued to be non-empirical. CIM is 

sensitive to R-curve behaviour (i.e. increasing toughness with crack growth(Lutz et aI., 

1994)) because of extrinsic toughening mechanisms such as crack bridging (Briard et 

aI., 2005) whilst this effect will not influence the COD method. Since hardness is not 

required in the approach, unlike CIM, it is not expected to be influenced by 

indentation size effect (ISE) unusually observed in ceramics (Bull, 2003),(Bull et aI., 

1989). But this method was found to be influenced by the secondary radial cracking 

which releases some of the residual stress thus affecting the COD of the main radial 

crack (Kruzic and Ritchie, 2003). 

Main radial crack 

/ Secondary radial crack 

Fig. 2.5 Schematic of main radial crack and secondary radial crack produced during 
indentation. 

Also, the COD method will also be influenced by subsurface fracture (such as lateral 

cracking) which may reduce the opening displacement of the radial crack. This 

method is not very suitable for nanoindentation at low loads in which case the COD is 

of the order of a few nanometers. The measurement uncertainties will lead to large 

errors when plotting COD versus the distance from the crack tip. 
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. 
Clearly, there is need to reduce the errors in all of the previous methods. A strength 

method was also proposed by Chantikul at al (Chantikul et aI., 1981) based on 

indentation which could avoid some of the systematic errors in Eq. (2.1) and it also 

eliminated the need for fracture imaging. By combining indentation and strength tests 

(see (Chantikul et aI., 1981)) the following expression to determine toughness can be 

derived, 

(2.10) 

R r 3/2j:R]1I4 . Where 17v = l(256/ 27)(nSJ.) '='v • Here n IS a crack-geometry factor which takes 

into account free-surface effects, cracking interactions such as the lateral-radial 

cracking interaction mentioned previously, and the deviation from penny-like shape. 

It can be seen that the constant 17: in Eq. (2.10) still relies on ;vR from Eq. (2.1), 

which indicates that all the errors in ;vR will be introduced into 17:. Therefore, it 

cannot be expected that this method will significantly improve the accuracy compared 

to Eq.(2.1). In addition, it requires an indentation at the centre of the tensile face of a 

bend test piece and only one result can be obtained for a single specimen, which is a 

possible reason that the method is not as popular as the CIM by Eq. (2.1). In addition, 

this method is very difficult to apply to thin coatings. 

In addition to half-penny (or approximately half-penny) crack patterns, palmqvist 

radial cracks are also observed for stiff and hard bulk materials such as WC [e.g. 

(Laugier, 1985)]. These usually occur at high load for much tougher materials 

compared to glass. Palmqvist cracks tend to appear during loading, initiating at 

comers due to the high stress concentration and are driven by the hoop tensile stress. 

In this case, the proportional relationship between toughness K[c and p/c1
.
5 as shown 

in Eq.(2.1) is still valid, however, the exponent of EIB was found to be 2/3 and an 

additional term depending on the crack dimension over contact size (c/ac) is required 

to get reasonable toughness values. The c/ac term will affect the proportional 

coefficient (Dukino and Swain, 1992). It was found that the toughness values of a 

range of ceramics based on the half-penny cracking pattern and the Palmqvist radial 

morphology did not deviate too much (within 10%) (Dukino and Swain, 1992). Since 
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this kind of crack tends to occur at relatively high loads in relatively tough bulk 

materials, it is not suitable to be considered for the assessment of thin coatings 

because a high load cannot be used without a substrate influence. However, this 

model can be treated as another explanation for the lower coefficient in Eq. (2.1) in 

the case of smaller crack which supports the arguments of Scholz et al (Scholz et aI., 

2004) regarding the constants when the radial cracks are not fully developed as 

discussed previously. 

Fig.2.6 Schematic of palmqvist radial crack. 

2.2.1.2 Lateral cracking 

For lateral cracking, based on the expanding cavity model as used in the analysis of 

radial/median crack pattern (Lawn et aI., 1980) and a simple plate theory, Marshall et 

al (Marshall et aI., 1982) proposed a model to relate the toughness of brittle bulk 

materials to the critical load where lateral cracks occur during unloading. 

(2.11) 

Here Po is threshold load for lateral cracking; Ao and Jo are dimensionless constants, 

Ao =3/4 and Jo =1200; e is the half-included angle for an indenter (Marshall et aI., 

1982). 
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Fig. 2.7. Schematic of lateral crack. 

Under certain circumstance, this method can be extended to assess the interfacial 

failure of a coated system which will be discussed in Chapter 8. 

2.2.2 Energy based models 

2.2.2.1 Assessment of coating toughness based on features In the 

indentation load-displacement curve 

2.2.2.1.1 Models based on individual P-O curve 

With the development of complex coating stacks (e.g. multilayered coated systems) 

and the presence of variable crack patterns, the difficulty of generating a solution by 

stress analysis based models is dramatically increased. Therefore, there is an urgent 

need for the development of models to deal with complex coatings and varied 

cracking patterns. The most successful models in this respect are energy-based which 

are critically reviewed in this section. 

A widely used energy-based model was initially proposed by Li et al (Li et aI., 1997, 

Li and Bhushan, 1998) based on extrapolating the loading curve when there is a step 

associated with through-thickness fracture in it. In this model the load-displacement 

curve is extrapolated from the step start point (assumed to be the onset of fracture) to 
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its end point, and the difference between the extrapolated curve and the measured 

curve is regarded as the fracture dissipated energy. For convenience, this method will 

be denoted as the ld-dp method in this thesis. 

With regard to through thickness cracking in carbon films on silicon substrate during 

nanoindentation, three different stages have been described (Li et aI., 1997) (See Fig. 

2.8 as well): 

I. First ring-like through-thickness crack formation. 

The tensile stresses at the contact edge are very high hence the first ring­

like through thickness cracks form. In this stage the film under the indenter 

is separated from the rest of the film via this first crack. A discontinuity 

would occur in the load-displacement curve given sufficient load and 

displacement resolution. 

II. Delamination and buckling. 

In this stage, nanoindentation fracture is mainly produced by the lateral 

volume expansion and residual compression stresses of the material under 

the indenter. After the first stage, the film under the indenter is separated 

from the rest of the film and sticks to the indenter. The indentation is no 

longer with a sharp indenter but a blunt 'indenter-film'. As the indenter 

pushes, the film around it is pressed laterally and when the pressure is 

larger than a critical value, delamination can occur. This does not produce 

a step in the load-displacement curve, but a sudden change in slope can be 

observed because of the decrease of the stiffness. 

Ill. Second ring-like through thickness crack formation and spalling. 

As the indenter penetration increases, the height of the buckle increases, 

when this height reaches a critical value, a second ring-like through 

thickness crack and spalling at the edge of the buckled film is produced. 
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Figure 2.8. Schematic drawing of the different stages in nanoindentation fracture for carbon 
coatings on silicon. 

The fracture toughness is related to the released elastic strain energy during fracture, 

U, the film thickness, t, the total length of the crack in the film plane 2 nCR , Young's 

modulus of the film, E, and Poisson's ratio of the film, v, and it is given by, 

(2.12) 
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Fig. 2.9. Schematic of the ld-dp method to determine the fracture dissipated energy, 1.e. 
area ACD. See text. 

This was slightly modified by den Toonder et al by considering the effective coating 

thickness and the number of chippings (den Toonder et aI., 2002). Thus, the 

toughness is, 

K[C = 
UtraE 

(2.13) 

t 
since the crack may propagate at an angle of B rather than where t 

sinfJ 

exactly perpendicular to the coating/substrate interface. B can be measured by 

microscopy (e.g. Fig. 2.10). 
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Fig.2.10. SEM image and the measurement of cracking propagation angle by optical 
profilmeter for a l/lm CNx on Si(lOO) indented by a Berkovich tip at 500mN. (Femandez­
Palacio et al., 2004) 

However, through thickness fracture may change the stress field around the indenter 

and thus change the elastic-plastic behaviour of the coated system. This influence has 

been completely ignored in this model. The actual coating cannot survive to the 

extrapolated load and during fracture event the indenter still does the work which is 

mainly dissipated by elastic plastic deformation. There is no distinct relation between 

the actual fracture dissipated energy and the energy enclosed in area ACD. It was also 

argued elsewhere (den Toonder et aI., 2002) that the area ACD in Fig. 2.9 is not the 

actual energy dissipated by fracture. Therefore, this model has been further developed 

in this thesis based on analysing the total work versus displacement curve (Wcdp 

method). The method to determine fracture events is explained in Figure 2.11. First, it 

is proposed to extrapolate the initial Wt-dp curve from the cracking start point A to 

the cracking end point C, to get the work difference CD (with the units of J) after 

fracture; then extrapolate the Wcdp curve after cracking backward to the cracking 

start point and thus obtaining the work difference AB (with the units of J) at the onset 

of fracture. AB represents the work caused by different elastic-plastic deformation 

behaviour of the material before and after fracture whereas CD represents the total 

work difference caused by the presence of cracking which consists of the change of 

elastic-plastic deformation behaviour between the uncracked system and cracked 

system plus the fracture dissipated energy. The difference between the two (i.e . CD 

minus AB in Fig.2.ll) will be the fracture dissipated energy. 
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Fig.2.11 Schematic of extrapolating the total work vs. displacement curve before and after 
cracking to determine the fracture dissipated energy CD-AB. 

Evidence of underestimation of the coating toughness by the ld-dp method for softer 

coatings on harder and stiffer substrates such as sol-gel coatings on glass has been 

reported (Malzbender et aI., 2000). Malzbender et al (Malzbender and de With, 2000c) 

attributed this deviation to the different stress intensity in directions perpendicular and 

parallel to the interface. Correcting their results by mUltiplying by a factor of 2 \12 (Hu 

et aI. , 1988) , leads to a reasonable agreement with other methods, however, it is 

doubtful that the crack propagation occurs in the manner that this would imply. Chips 

can be formed by different mechanisms such as by fracture of material detached by 

buckling at regions of tensile stress, radial cracking which deflects along the interface, 

or lateral cracking along the interface which propagates upwards to the surface. Only 

for the second mechanism is this model valid. Otherwise, the complex crack 

extension path may make it difficult to apply such an approach. However, when the 

Wt-dp method was utilized, reasonable results can be obtained (see details in Chapter 

5). 

The disadvantage of the Wt-dp method is that two-step extrapolation may lead to 

more fitting errors. 
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2.2.2.1.2 Models based on a range of P-o curves 

An alternative energy based model was proposed by Malzbender and de With 

(Malzbender and de With, 2000a) based on plotting the irreversible work Wirr over the 

total work done by indenter Wt at a range of loads. For thicker sol-gel coatings on 

glass in (Malzbender and de With, 2000a), a slope change of the curve of Wirr versus 

applied load (Wirr -P ) curve was observed when delamination occurred. At higher 

loads, a step occurred in the P-~ curve which leads to a jump in the Wirr-P curve 

which is found to correlate with the chipping. The irreversible work is obtained from 

a completed loading-unloading curve at a given load. The difference between the 

energy at a given delamination dimension rd to the extrapolated energy for the plastic 

deformation of coatings before delamination, ~ ~~ (see Fig. 2.12) was assumed to 

be the energy dissipated by delamination. The difference between the irreversible 

work of the delaminated coated system and the chipped system, ~ ~~r (as depicted 

in Fig. 2.12) is regarded to be the energy dissipated by chipping. 

The energy release rate for delamination Gintis given by, 

(2.14) 

and the interfacial toughness K int is given by, 

(2.15) 

where Eint is the interfacial modulus which is given by (Hutchinson and Suo 1992) 

(2.16) 

Where Ec and Es are the Young's modulus of coating and substrate, respectively. 
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Fig.2.12 Schematic of irreversible energy dissipated as a function of applied load when 
different fracture events occur during indentation. After (Malzbender and de With, 2000a). 

For chipping, the toughness can be gIven by a similar formula replacing the 

delamination area in Eq.(2.14) with chipping area (3 X 2mt ). Here t is a so- called 

effective thickness of coating as mentioned in the previous section, the factor 3 

accounts for the fact that usually three chips appear simultaneously when a three­

sided pyramid tip is used, and r is the radial dimension of the crack. However, caution 

needs to be used since for some coated system, one or two chips were observed rather 

than three. 

It was argued (Malzbender and de With, 2000a) that this method is more accurate 

than the ld-dp method. When extrapolating the irreversible work before delamination, 

it is assumed that the relationship between the extent of the plastic deformation and 

the applied load will maintain the same linear relationship independent of applied load 

if no delamination occurs. However, once radial cracking occurs the deformation 

pattern may change with an increase of load in a coated system. Furthermore, the 

threshold load for delamination in a 2Jlm sol-gel coating (composition H see details in 

initial paper (Malzbender and de With, 2000a) is about 100mN where the indentation 

depth of about 1.8Jlm is comparable to the coating thickness which means the 

substrate has already begun to influence the plastic deformation of the whole coated 
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system. With a further increase of the load, the extent of the defonnation of the 

substrate will also change significantly. Therefore, the model will drop in accuracy 

and it can be expected that the method will significantly overestimate the interfacial 

toughness for a softer coating on a hard substrate (e.g. sol-gel coatings on glass in 

(Malzbender and de With, 2000a)). The energy release rate for delamination in some 

sol-gel coatings (i.e.Coating A and B in (Malzbender and de With, 2000a)) is 

calculated to be between 11 and 290 J/m2
, which is unrealistically high for such 

coatings with relatively poor adhesion and it was much higher than results « 4J/m2) 

in the literature determined by other methods (Malzbender and de With, 2000c). In 

order to eliminate the substrate influence (and the change of apparent Young's 

modulus and hardness caused by cracking and delamination), it was further suggested 

by Malzbender et al to estimate the fracture dissipated energy by extrapolating the 

plots of ~ ~~ and ~ ~~r versus the inverse of coating thickness to infinite coating 

thickness (Malzbender and de With, 2000a). In this way a reasonable approximation 

(same order of magnitude) of interfacial toughness can be achieved. Also, the fracture 

toughness of coatings with composition A is 0.06 ± 0.02 MPam 0.5 by this approach 

which is close to previous reported values. However, the toughness for coatings with 

composition B is 3.4 ± 2.5 MPam 0.5 which is still significantly overestimated 

compared to their previous results of 0.18 MPam 0.5 . The measurement error is thus 

relatively big (up to 75%) and the approach cannot be regarded as reliable. Since 

different fracture behaviour is observed for the same coating composition with 

different thickness not only for sol-gel coating (Malzbender et aI., 2000) but also PVD 

coatings such as ITO on glass, it is unlikely that any method which does not attempt 

to account for this will give good results. It has also been argued elsewhere that for a 

given coating the fracture toughness can increase or decrease with coating thickness 

[(Harry et aI., 1998), (Volin sky et aI., 2002),(Volinsky et aI., 2003)]. It is difficult to 

separate out this effect. 

This method requires many tests at a number of different loads which is quite time 

consuming and it requires the same coatings with different thickness which is not 

economic for practical application. It is also important to note that the WiTT method is 

only valid in the case of a feature in p-~ curve otherwise no obvious characteristic 
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change is observed which invalidates the method (see such example for inorganic­

organic coating on glass in (Etienne-Calas et aI., 2004)). 

Another approach based on plotting irreversible work versus load has been proposed 

(Nakonechna et aI., 2004). It was suggested that the position of the mrr jumps (i.e. 

L1Wirr) on the Wirr-P curve correlates with the evidence of the first crack in 

micrographs, and reasonable results for toughness were reported. However, there are 

lots of events in a plot of Wirr-P after the critical load (see Fig.2.13 which makes it 

difficult to repeat the calculations for different crack dimensions. Therefore, the 

method actually depends on detecting the first event associated with a measurable 

crack dimension which may not be easily done, the extension of the cracks 

subsequently to the find position at the end of the test is not known in all cases. 

4 lOS 

cz=20Apm 

ct"13.80 pml 

100 200 300 400 SOO 600 700 800 
Load on Sample (mN] 

Fig. 2.13. Irreversible work (Wirr) versus load (P) for a gradient film AITiSiN. ~ Wirr is 
regarded to be fracture dissipated energy by the first crack. After (Nakonechna et aI., 2004). 

32 



Chapter 2: Assessment of fracture toughness of coated materials by nanoindentation 

2.2.2.2. Limiting values of coating toughness 

Given the doubt about the method proposed by Li et aI, den Toonder et al (den 

Toonder et aI., 2002) proposed so-called bound methods to determine the upper and 

lor lower bound for fracture toughness from nanoindentation carried out under load 

control and displacement control. The approach assumes the load (P) scales with 

displacement squared (If) in the loading part and in the unloading procedure before 

cracking and after cracking. At the same time, it is supposed that fully elastic 

behaviour (i.e. final depth Jj =0) or fully plastic behaviour (i.e. Jj =Jm, Jm is the 

maximum depth) in the coated system before and after crack events determines the 

lower bound (i.e. area OAB in Fig. 2.14) or upper bound (i.e. area ABDC in Fig.2.14) 

for fracture dissipated energy under load control, which is given by (den Toonder et 

aI.,2002), 

for load control (2.17) 

where Pm is the critical load for a step caused by fracture, and J1, J2 are the 

indentation penetration before and after the fracture event (see Fig. 2.14), respectively. 

For displacement control, only the upper limit for fracture dissipated energy (i.e. area 

OST in Fig. 2.15) is obtained, 

for displacement control (2.18) 
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Fig.2.14. Schematic of the lower bound method by den Toonder et al under load control. The 
areas OAB and ACDB are regarded as the lower and upper bound of fracture dissipated 
energy, respectively. 

The fact that plastic deformation dominates or fracture occurs leads to the result that 

the final depth cannot be zero. In real situations, therefore, it may significantly deviate 

from the assumptions above. Also, it is not reasonable to regard the area DAB (see 

Fig.2.14) as the lower bound of fracture dissipated energy. Actually, the area DAB is 

the upper bound of fracture dissipated energy under the assumption of fully elastic 

behaviour. It is incorrect to assume the area enclosed by ABDC (see Fig.2.14) is the 

maximum irreversible work for the indenting procedure, because the area ABDC is 

the work done by indenter which can be elastic, plastic deformation plus other factors. 

There is no reason to argue that the work done by indenter for a ductile material will 

be the upper limit of fracture dissipated energy. For displacement control, with the 

assumption of a fully elastic behaviour as mentioned previously the area DST in Fig. 

2.15 will be the maximum elastic strain energy which could supply the fracture 

dissipated energy. However, for actual coated systems, the fracture occurs at 

relatively high load where the plastic deformation may have been well-developed, it is 
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necessary to derive a more general expression to describe the upper bound for the 

fracture dissipated energy. 
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Fig.2.1S. Schematic of the upper bound method by den Toonder et al under displacement 
control. The area of OST is regarded as the upper bound of fracture dissipated energy. 

Thus a modified bound model has been developed in this thesis. The key point is to 

estimate the final depth rather than assuming it equals zero and the lower limit can be 

obtained by assuming the final depth does not change due to the presence of the 

fracture event. If unloading the curve at point B, the associated final depth should be 

between the ~f and ~m because it is obvious that the residual depth will not recover 

during the further indentation (usually the reversible plasticity is ignored). The upper 

limit of the fracture dissipated energy can be obtained by assuming the final depth 

after fracture is equal to the penetration where the excursion stops (i.e. all the stored 
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elastic strain energy supplies fracture dissipated energy). By this approach the upper 

and lower bound of coating toughness can be obtained for nanoindentation under load 

control and displacement control as well. The areas EAB and EABF in Fig. 2.16 are 

the lower and upper bound of fracture dissipated energy for indentation under load 

control; areas ABB and ABG in Fig. 2.17 are the lower and upper bound of fracture 

dissipated energy for indentation under displacement control. Actually, the lower and 

upper bound in this thesis is referred to the lower and upper limits of the upper bound. 

A more detailed discussion is provided in Chapter 6. 
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Fig.2.16. Schematic of the lower bound method developed in this work under load control. 
The areas EAB and EABF are regarded as the lower and upper bound of fracture dissipated 
energy, respectively. 
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Fig.2.17. Schematic of the upper and lower bound methods developed in this work under 
displacement control. The areas ABB and ABO are regarded as the lower and upper bound of 
fracture dissipated energy, respectively. 

2.2.2.3 Energy based models in the case of no obvious excursion in the 

P-8 curve 

All the energy based models introduced in previous sections are based on features in 

the load-displacement curve associated with fracture, otherwise, no slope change or 

jump in the plot of Wirr-P and Wrdp can be observed. However, it is not unusual that 

fracture does not cause an excursion in the load-displacement curve. For example, for 

the Solar control coatings (with the main components of being ITO, ZnO, Sn0 2 and 

TiOxNy) on glass indented by a Berkovich indenter, a number of picture-frame cracks 

have been observed in the SEM whilst no obvious slope change or excursions have 

been observed in the load-displacement curve even from high load tests (500mN) 

using a Nanoindenter II. (see Fig. 2.18). 
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Fig. 2.18 (a) SEM image of picture frame cracks in a 400nm ZnO coating on glass indented 
by a Berkovich tip at 500mN and (b) its associated load-displacement curve. No excursion in 
the P-o curve was observed. 

2.2.2.3.1 Model based on change of composite hardness 

An energy based model to estimate coating toughness was first suggested by Tuck 

and Korsunsky (Tuck and Korsunsky, 2000) based on picture-frame cracks in nitride 

coatings on steel. They related the hardness increment of a coated system over the 

uncoated substrate to the coating deformation which includes plastic deformation, 

fracture and interfacial delamination. The hardness can be defined in terms of applied 

load or plastic work as follows, 

(2.19) 

(2.20) 

where P is the applied load, d is the diagonal of the Vickers indenter impression ; r is 
a dimensionless coefficient and equal to 18.544 for a Vickers indenter, and W is the 

plastic work of indentation . 
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Thus the increment of the hardness of the coated systems is given by, 

H -H = 3yWf 
s 3 

d 
(2.21) 

Where Wf = (H f Vf + GcAc + GiAi ); H, Hs and Hj are the hardness of composite, 

substrate and film, respectively; Vj is the volume of the plastic deformation zone in 

the film; Gc and Gi are the strain energy release rate of the coating and interface, 

respectively; Ac and Ai are the areas of cracks in the coating and at the interface. 

A range of indentation mechanisms for a hard coating on a soft substrate are observed 

as a function of contact scale [e.g.(Korsunsky et aI., 1998),(Tuck et aI., 2001)]. The 

indentation mechanisms for a hard coating on soft substrate can be described by (Fig. 

2.19). 

(1) Stage I: At low load, provided the indenter is sufficiently sharp, the hard 

coating is plastically deformed in a region of high compressive stress 

immediately under the indenter. With an increase of the load, the film 

undergoes membrane flexure, altering the stress distribution and postponing 

the tendency for plastic deformation of the substrate. 

(2) Stage II: A critical load is reached, and the first circumferential through 

thickness crack (i.e. picture frame crack) occurs and the membrane stress is 

relieved. When load increases further, multiple through thickness cracks form 

and the retard on substrate plastic deformation caused by film flexure is 

removed. Substrate deformation begins to become significant. 

(3) Stage III: Plastic deformation of the substrate completely dominates and the 

hardness of the composite reduces to close to the substrate hardness. 
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Figure 2.19 Schematic showing the evolution of nanoindentation response of a hard 
coating on a softer substrate where the different regimes states are indicated. After 
(Korsunsky et aI., 1998). 

Assuming that crack initiation can be described by a critical strain criterion, it can be 

expected that the spacing (s) between the parallel cracks is equal. Thus, for the 

picture-frame cracks produced by a Vickers indenter, as depicted in Fig. 2.20, the 

total crack length L is given by, 

(2.22) 

For well-established picture frame cracks, it is usually observed that do «d so that 

equation (2.22) can be simplified to L = d 2 /2s. Assuming Ac scales with the area 

under the indenter and Vj is proportional to the volume of coating under indenter, Wj 

can be expressed by, 

(2.23) 

Where Z and 'l7 are dimensionless coefficients. 
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Figure 2.20. A schematic illustration of the picture-frame crack pattern developed by a 
Vickers indentation in a coated system, after Tuck and Korsunsky (Tuck and Korsunsky, 
2000). 

For a coated system, the change of hardness can be given by another expression (Tuck 

and Korsunsky, 2000, Korsunsky et aI., 1998), 

Hf-H 
H-H = s 

s 1 + kfJX 
(2.24) 

Where k, X are dimensionless coefficients and ~ is relative indentation depth (RID),i.e. 

the ratio of penetration over coating thickness. This can be rewritten as, 

H-H s (2.25) 

where g is used to assess the transition of hardness from coating to substrate 

dominance and can be obtained by fitting the H-/3 curve (i.e. Fig. 2.21); it has units of 

hardness. 
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Finally, it is found that g is given by, 

3 
g =-ytG 

14 (2.26) 

where G = (Get / s + xc-i + 1]tH f ) 

This method requires a lot of experiments to determine the H- f3 curve to estimate the 

value of g and the procedure is relatively complex. It can be used as a good indictor of 

fracture behaviour for comparison between different coatings on the same substrate. 

However, it can not be treated as quantitive assessment because the parameter G in Eq. 

(2.26) used to estimate the coating toughness is a combined term which depends on 

different deformation mechanisms and leads to overestimation of fracture toughness 

by more than one order of magnitude (even by more than 100 in some cases). 

o 
n.om 

I d. 
0.0) 0.1 1 

Relalive ilKkllfcr displacement (RID.~) 
10 

Fig.2.21 Composite hardness versus the relatively indentation depth (B) for a 3.5~m TiN 
coatingon M2 steel substrate (Tuck and Korsunsky, 2000). 
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2.2.2.3.2 W irr-W p method 

Another energy based model to estimate coating toughness in the case of no excursion 

in P-J curve was proposed in this thesis (see Chapter 7). The key requirement is to 

obtain the plastic work during nanoindentation. The method of irreversible work 

difference (denoted as Wirr-W p) is explained as follows. 

The method of irreversible work difference (denoting as WircWp) is explained as 

follows. 

1. The load-displacement curve shows no evidence for fracture, either in the 

form of large excursions in the loading or unloading curve or smaller invisible 

excursions which lead to an increase indenter displacement at a fixed load on 

loading. This will be compared with the experimental data which shows 

evidence of cracking. 

2. Therefore, the influence of cracking on the mechanical properties of the whole 

coated system after cracking applies to the whole loading part of the 

experimental curve, i.e. averaging the crack influence on the plastic and elastic 

deformation over the whole loading cycle. This is a reasonable assumption 

since EIH remains almost constant despite the presence of fracture in the case 

that no excursion and no slope change in the P-J curve is observed. 

3. In such case the coated system can be treated as equivalent to a bulk material. 

4. Ignoring the energy dissipated by heat etc, ~ = W p + U fra + We' the 

fraction of plastic work remains the same as in the equivalent bulk materials 

i.e. ~ = Wp + W~ (where W~ = U fra + We ). The total work does not 

change because fracture only plays a role in converting some stored elastic 

energy into irreversible work. 

The irreversible work minus plastic work can be regarded to be the fracture dissipated 

energy. This will be discussed in detail in Chapter 7. 
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2.2.3 Summary 

In summary, the stress analysis based models usually reqUIre empirical fitting 

parameters and only deal with specific crack patterns. For instance, it will require 

different models when dealing with picture frame cracks, spiral cracks etc. In contrast, 

the energy based models can deal with different cracking patterns without empirical 

constants given that the specific assumptions outlined in the models can be satisfied. 

However, they usually require that the crack propagates during the loading cycle only 

and that residual stress contributions are small, whilst, stress analysis based models 

can take account of this if carefully constructed. 

2.3 Assessment of Interfacial toughness 

Prior to evaluation of interfacial toughness, it is necessary to distinguish the different 

interfacial failure mechanisms. The general failure modes that may generate adhesive 

failure in coated systems are outlined in the following 

Coating failure induced interfacial failure: 

(a) Median/radial cracks propagate to the interface and deflect (Warren et aI., 

1994, Malzbender et aI., 2000) 

(b) A periodic array of cracks growing through the film may divert to the interface 

(Thouless, 1991) 

Failure starts at the interface: 

(a) Crack initiates at the interface and propagates along the interface, or extends 

into coating or substrate; no buckling occurs 

(b) After initial defect formation, the high compressive residual stress leads to 

buckling (Hutchinson and Suo 1992), (Evans and Hutchinson, 1984), (Chiang 

et aI., 1981) 
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Substrate failure induced interfacial failure: 

A substrate crack may occur at or close to the interface, and divert along it to cause 

interfacial failure. 

The different types of crack modes are also summarized in Fig. 2.22. 

a 

(a) (b) 

(c) (d) 

(e) 

Fig. 2.22. Schematic of different failure modes in coated systems. (a) Delamination at 
interface from a crack in the coating; (b) delamination resulting from an edge flaw at the 
interface; (c )multiple cracks in the film (d) fracture in the substrate (e) buckling in the film. 
After (Thouless, 1991). 
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2.3.1. Brief review of the techniques for adhesion assessment 

There are numerous methods to generate interfacial failure and to assess the 

interfacial toughness [(Ritter et aI., 1989b), (Rosenfeld et aI., 1990), (Bull, 1992), 

(Malzbender and de With, 2002), (Volinsky et aI., 2003), (Volin sky et aI., 2002), 

(Malzbender et aI., 2003), (Malzbender and de With, 2000b), , (Bull and Berasetegui, 

2006)] which are outlined in the following. 

Pull-off methods: These methods such as the tape peel test or the tangential shear 

technique [e.g. (Jacobsson, 1976), (Katz, 1976)]. The tape test uses a pressure 

sensitive adhesive tape to pull off the coating to determine peel force per unit tape 

width. It is quite easy to apply. The main disadvantage is that it can be only applied to 

thick and rather weakly bonded coatings. Alternatively, one may bond rods to the 

coating and substrate by a structural adhesive and then perform a tensile test to pull 

off the coating (see Fig. 2.23), which can measure tougher interfaces. However, the 

perfect alignment necessary to ensure uniform loading across the interface is difficult 

to achieve in particular for small samples. The mixture of tensile and shear stress 

during the test leads to difficulty in the interpretation of the results. Also, when the 

coating becomes thinner, diffusion of the adhesive to the interface may be important. 

The test is limited by the strengths of available adhesives to interfacial strength less 

than -50MPa. For some coating/substrate systems it is possible to braze or weld the 

rods to increase this maximum strength but with penalty that considerable residual 

stresses are introduced and the coating/substrate system may be damaged by the 

bonding process. It actually measures the strength of the interface. 
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Fig. 2.23. Pull-off adhesion test. 

Superlayer test: This requires depositing a thick superlayer on the top of the film of 

interest so that it increases the apparent film thickness and the total residual stress in 

the combined coating without altering the tested interface [(Bagchi et aI., 

1994),(Volinsky et aI., 2002)]. This makes it easier to debond the interface. This 

method is almost always applied to metal-ceramic systems. Although an accurate 

adhesion strength can be measured by this technique, it requires tedious tests to alter 

the thickness of and stress within supedayer until controlled delamination occurs and 

it requires careful choices of a suitable material for the supedayer, which most have a 

higher adhesion to the test coating than this has to the substrate 
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Fig. 2.24 Superlayer adhesion test. 

Bending test: This is usually used for metal-ceramics system where through­

thickness fracture in the coating diverts to the interface to cause interfacial failure [e.g. 

(Charalambides et aI., 1989), (Harry et aI., 1998)]. This method requires a relatively 

big sample and it cannot account for pre-existing residual stress in the coating 

(Volin sky et aI., 2002). Also this method does not work for ceramic-ceramic systems 

since it is more likely to cause catastrophic failure of the whole coated system due to 

the brittle nature of the coating and substrate. However, it is widely used to assess the 

adhesion of thick ceramic coatings on metallic substrate (e.g. (Harry et aI., 1998». 

P/2 P/2 

Fig. 2.25 Schematic of the four point bending test for adhesion measurement. 
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Bulge test: This requires etching the substrate to obtain a free-standing thin film 

window and the application of pressure on one side to cause deflection of the film. It 

is relatively straight-forward method to analyse the delamination stresses. However, 

the etch may lead to contamination of the interface especially for thin ceramic films 

on ceramic substrates during processing of the free-standing films. It was also argued 

that it may not work for thin films «2~m) due to possible wrinkling effects (Small 

and Nix, 1992). 

Fig. 2.26. Schematic of Bulge test. 

Double Cantilever Beam test: In this test the test coating is bonded between two 

rigid plates. The energy release rate can be determined by measuring the fracture load, 

precrack length and the height of specimen [(Ostojic and McPherson, 1988) (Volin sky 

et aI., 2002)]. The advantage is that this method leads to almost pure mode I failure 

which makes it easier to be analysed. It works well for relatively thick coatings; 

however, it is difficult to be applied to thin films because it is almost impossible to 

create a suitable pre-crack. 
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Fig. 2.27 Schematic of the DCB test for the adhesion measurement of plasma sprayed 
coatings (Ostojic and McPherson, 1988). 

Shockwave tests: In this group of tests delamination is produced by shockwave 

(Gupta et aI., 1990). The fracture dissipated energy may come from impact of the 

erosive particles or from an impinging laser beam. The main problem is that the 

process of creating the shockwave may influence the surface in particular for thin 

films. It is also difficult to couple the laser radiation to the surface if the coating or 

substrate is transparent at the laser wavelength. 

Scratch test: This is a simple way to estimate adhesion, which is usually regarded as 

semi-quantitative because there are a lot of intrinsic (such as instrument-specific) and 

extrinsic parameters (e.g. coating thickness, substrate hardness) which influence the 

results. It is very useful for qualitative assessment of hard coatings on a softer 

substrate (e.g. (Bull, 1992), (Malzbender and de With, 2001a), (Malzbender and de 

With, 2001b), (Malzbender and de With, 2000b), (Malzbender and de With, 1999), 

50 



Chapter 2: Assessment of fracture toughness of coated materials by nanoindentation 

(Bull and Berasetegui, 2006». The test involves dragging a stylus across the surface 

of the coating with a stepwise or continuously increasing normal load until an 

adhesion related failure occurs at what is termed the critical load, Le. This critical load 

is often used to compare different materials but this is only valid if the same failure 

mode occurs. 

For a thin hard coating «10/lm), buckling is the most common failure mode which is 

usually caused by the compressive stress generated ahead of the moving indenter (see 

Fig.2.28). Unlike for the case of spontaneous buckling, where a pre-existing 

interfacial defect is required, the shear stresses associated with plastic deformation in 

the substrate tend to create a suitable defect with dimensions comparable to scratch 

width, and buckle failure is widely observed. However, since plastic deformation is 

responsible for the initial defect the critical load is dependent on substrate hardness 

and comparisons between coatings on different substrates are difficult to make 

reliably. For a thicker coating, through thickness cracking is preferred to occur during 

scratch testing which can lead to wedge spallation (see Fig.2.29). This is because the 

bending stiffness of the coating has increased. When such wedge spallation occurs 

comparisons between different coatings are more meaningful and reliable 

quantification is possible (Bull and Berasetegui, 2006). 
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=:::-:---

(a) 

(b) 

Fig. 2.28. Buckling failure mode in thin coatings during scratch testing: (a) pile-up ahead of 
the moving indenter; (b) interfacial failure resulting in buckling. After (Bull and Berasetegui, 
2006). 

( a) 

(b) 

:.7 C L_---

(c) 

Fig.2.29. Wedge spallation failure mode in thick coatings during scratch testing: (a ) wedge 
crack is generated some distance ahead of the moving indenter; (b) the coating is driven up 
the wedge opening an interfacial crack (c) through thickness cracking close to indenter leads 
to spallation. After (Bull and Berasetegui, 2006) 
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Indentation: For thin films, nanoindentation is a very effective technique to measure 

the mechanical properties (Oliver and Pharr, 1992) of the coatings such as Young's 

modulus, hardness, and fracture toughness. If delamination is caused during 

nanoidentation, the interfacial toughness can also be measured [(Malzbender and de 

With, 2000a), (den Toonder et aI., 2002), (Chen and Bull, 2006a)]. Indentation may 

cause the nucleation and propagation of an interfacial crack. If the indenter 

penetration reaches a critical value, the high compressive stress in the coating will 

lead to double buckling as depicted in Fig.2.31 (if the interfacial toughness is not too 

high and there is an appropriate interfacial defect). If the crack length does not reach 

its critical buckling length on each side of indenter, single buckling may occur during 

unloading cycle (Fig. 2.30). The initial double buckling may change into single 

buckling during the unloading because the constraint of the coating underneath the 

indenter is removed. It is also possible that the double buckling remains even after 

removing the indenter. 

Double buckling 

(a) 

• 

Single buckling 

(b) 

Fig.2.30. Schematic of (a) double buckling forms during loading and (b) single buckling 
during unloading. 
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2.3.2 Critical review on adhesion assessment by indentation 

techniques 

Considering the advantage of the ease of test and the convenience of interpretation of 

the results, the indentation test will be emphasised here. With regard to interfacial 

toughness assessment by indentation induced delamination, many models have been 

developed. The existing analytical models mainly are based on linear elastic fracture 

mechanics (LEFM) but the models have been modified to account for plastic 

deformation. Energy based models are also valid. The most important models are 

outlined in the following. 

It should be pointed out that all the energy based models in the previous sections can 

be applied to assess adhesion given that the phenomena described in these models are 

observed, and they will not be discussed further in this section. 

2.3.2.1 Models based on normal indentation techniques 

The theoretical approach by He et al (He et aI., 1994) analyses the kinking of a crack 

at and out of the interface between two dissimilar elastic solids, and this forms the 

basis for the indentation analysis of other workers. 

For a soft coating on a rigid substrate, approaches based on contact radius at the 

initiation of delamination under the indenter have been proposed (Ritter et aI., 1989a). 

The following expression linking interfacial shear strength to coating hardness was 

given by (Ritter et aI., 1989a), 

(2.27) 
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Where He is the hardness of the coating, Kl is a modified Bessel function of the 
, 

second kind, Kl is the derivative of the function K 1; ac is the contact radius, and 

¢J = [6(1- v) 1(4+ V)]1I2 (2.28) 

The interfacial toughness, Kint is then given by (Mencik, 1996), 

(2.29) 

where interfacial failure was treated as mode I failure and Cint is the appropriate flaw 

size at interface. In this way, Malzbender et al (Malzbender et aI., 2000) obtained an 

average interfacial toughness of 0.18 MPam 0.5 for their hybrid coatings on glass 

which falls into the range of results determined previously based on the work by He et 

al (He et aI., 1994). This indicates that this model works well, however, Cintis not easy 

to accurately determine. Therefore, it may be more convenient to relate the interfacial 

toughness to a crack dimension that can be readily measured. 

Thouless (Thouless, 1988) analysed the interfacial fracture toughness based on the 

decohesion of films with axisymmetric geometries. Following this analysis, Rosenfeld 

et al (Rosenfeld et aI., 1990) proposed the following expression which relates 

interfacial fracture toughness to coating hardness H, applied load P, and delamination 

SIze C, 

K. = O.792H ~(1- v2
)t 

Int 2 
[1 + V + 2(1- v)Hc / P] 

(2.30) 

This model assumes that the pressure at the interface is approximately equal to the 

hardness of the coating, which is reasonable for a sufficiently soft coating compared 

to its substrate provided that the coating is sufficiently thick. The simplistic form 

makes it easy to apply (because all the parameters in Eq. (2.30) can be easily 

obtained), but it may considerably overestimate or underestimate the adhesion in the 

case that the mechanical property mismatch between the coating and substrate is big 
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or the plastic deformation of substrate dominates before the delamination occurs. For 

instance, overestimation was found when applying Eq. (2.30) to sol-gel coatings with 

the thickness of several micrometers). To account for this deviation, Malzbender et al 

treated the delamination occurring between radial cracks as three separate circular 

clamped plates with deflection at the centre instead of the initial assumption 

(Rosenfeld et aI., 1990) of a clamped circular plate without deflection at centre. Thus 

the buckling stress and shear stress at interface can be reduced by approximately one 

third (He et aI., 1994) and Malzbender et al (Malzbender et aI., 2000) obtain 

reasonable results for interfacial toughness. However, it should be noted that the 

hybrid coating (H~ 1.6GPa) is not sufficiently soft compared to its substrate 

(H~5.9GPa) and the critical indentation penetration of delamination approaches the 

coating thickness, so that, the deformation of substrate cannot be ignored. This is 

probably the reason for the overestimation of interfacial fracture toughness by 

Eq.(2.30). A similar overestimation has also been observed elsewhere (Garcia, 2002). 

In addition, friction between the fracture faces may also contribute overestimation of 

the interfacial fracture toughness especially for mode II failure (Suresh et aI., 1990). 

Alternative approaches were proposed by Thouless (Thouless, 1998) and further 

developed by den Toonder et al (den Toonder et aI., 2002). It was assumed that during 

indentation or scratch testing the delaminated coating is a partial disk which extends 

with increasing load and it will buckle when the in-plane stress reaches a critical value. 

Supposing the driving force for delamination equals critical load for buckling, 

Thouless derived the following equation for interfacial fracture energy, (Thouless, 

1998) 

G. = 0.35 Et
5 

(tan f3 + 2a / LJ2 
mt L4 tan f3 + a / L 

(2.31) 

Where L, a, fJ are the geometry parameters for the chip as depicted in Fig. 2.31. 
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Initially, Thouless treated the chip as triangular shape. By considering the curved 

geometry and the residual stress, ar, den Toonder et al modified the model giving 

[(den Toonder et al., 2002), (Malzbender and de With, 2002)] 

a /31l 2 
Et5 -+­

Gint = 1.42-
4 

L 2 
L ~+ /31l 

L 
a 
- + /31l 
L 

Fig.2.31 Schematic of a chipped area in analysis by Thouless (1998). 

(2.32) 

Eq.(2.32) provides similar results for experiments carried out by indentation or 

scratch for sol-gel coatings on glass [(Malzbender and de With, 2001b), (Malzbender 

and de With, 2001a), (Malzbender et al., 2000)]. The method has been used by other 

researchers and reasonable results were obtained [(Fernandez-Palacio et al., 2004), 

(Garcia, 2002)]. 

Altemati vel y, Marshall et al developed a model to determine the energy release rate 

by delamination from comparisons between the unbuckled and buckled coating 

(Marshall and Evans, 1984). The analysis for a thin film is given for delamination 

caused by a conical indenter. The strain energy release rate is, 
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~ ta;2(I-v;) +t(l-a)(l-v f )(a; -(a; -aB )2) 
Gint = -=---------------------

Ef 

(2.33) 

where the subscript f denotes the properties of film, (Jj and (JB are the indentation 

stress and buckling stress, respectively. The parameter a is the slope of the buckling 

load versus the edge displacement which is 0.38 for materials with Poisson's ratio of 

1/3. The other parameters are as defined previously. 

In the case of non-buckling fracture (a=1), delamination is only driven by the 

indentation stress and the residual stress does not make contribution. The term a is 

defined zero if the film does not buckle. The indentation stress is, 

a· l 
21Z"(1- V f )ta

2 
(2.34) 

where Vi is the indentation volume which can estimated based load-displacement 

curve or the profile of indentation impression; and a is the crack length. 

Assuming the crack tip is far from the indenter, then 

(2.35) 

where J.l is a boundary condition-dependent constant. 

This model was further developed by Hutchinson and Suo (Hutchinson and Suo 1992), 

such that 

(2.36) 
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(2.37) 

(2.38) 

(2.39) 

where k=42.67 for a double blister and k=14.68 for a single blister, a is crack length. 

All these models treat the buckling as an elastic blister which is reasonable when the 

crack tip is far from the plastic deformation zone; otherwise plastic deformation must 

be accounted for (Li and Siegmund, 2004). 

2.3.2.2 Some special indentation techniques 

In addition to the development and improvement of the models described above, some 

special indentation techniques have also been proposed. For instance, a test with a 

special indenter such as the wedge indentation test was proposed to measure adhesion 

of thin metal lines [(DeBoer and Gerberich, 1996b), (DeBoer and Gerberich, 1996a)] 

This method is less sensitive to the measurement accuracy of crack length and it is 

easier to induce interfacial failure compared to the normal indentation test by conical 

indenters or pyramids due to its geometry. Later it was applied to a brittle coating on a 

ductile substrate (Vlassak et aI., 1997) . For a brittle coating on ductile substrate, a 

stress analysis based model was derived based on the expanding cavity model. The 

schematic of the wedge delamination test is depicted in Fig.2.32. 

Compared to the axisymmetric indenter test, the radial crack is not a problem in this 

technique because no tensile hoop stress develops in the coating (Vlassak et aI., 1997). 

The other significant advantage is that this technique is suitable to the study of brittle 

coatings which has very good adhesion to their substrate which may not be assessed 
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by the normal axisymmetric indenter. But this model ignores the bending effect in the 

film and substrate during the indenting cycle thus causing errors especially for ductile 

substrates (Volin sky et aI., 2002). 

Load 
Coating 

~ • 
Delamination 

Substrate 

Fig. 2.32. Schematic of the wedge delamination test. 

If a ductile coating adheres strongly to the substrate, the above methods will not work 

since no delamination will occur during normal indentation tests. For this reason, a 

superlayer indentation test was introduced. A highly stressed hard superlayer was 

deposited onto the ductile coating which causes addition stress to enhance 

delamination and eliminate pile-up around the indenter during indentation. By altering 

the residual stress in the superlayer, it is possible to measure interfacial toughness at 

different phase angles (Kriese et aI., 1999). 

In order to eliminate the influence resulting from plastic deformation, in particular, for 

a ductile coating on a much stiffer substrate, a cross-sectional indentation test was 

suggested (Demarecaux et aI., 1994, Chicot et aI., 1996a, Chicot et aI., 1996b, 
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Sanchez et aI., 1999). An indentation is made in a polished cross-section in the 

substrate close to the film interface which then causes delamination (see Fig.2.33). 

Assuming the interface is a homogeneous material with the Young's modulus and 

hardness as combined parameters of coating and substrate, analogy to an equivalent 

bulk material is made and the interfacial toughness is given by (Chicot et aI., 1996b), 

1/ 2 3/2 K int = 0.015(E / H)int P / a (2.40) 

where P and a are the critical load and contact radius for the delamination at the 

interface, respectively. 

(2.41) 

Layer II 

Layer I 
-

~ -
Substrate 

Layer I 
Coating 

Fig.2.33 Schematic of the cross-section indentation test. 
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Equations (2.40) and (2.41) provide reasonable results for very thick ceramic 

(hundreds of micrometers) coatings on steel. However, if the mismatch between the 

coating and substrate properties is very significant, it is not reasonable to treat the 

interface as an equivalent bulk as given in equation (2.41). 

This method was further developed by Sanchez et al (Sanchez et aI., 1999). Based on 

a plate model, the energy release rate for the interface is given by (Sanchez et aI., 

1999), 

E 3 2 
t Uo 4 ' 

Gint = 4 (1 - A) (2F + AF ) 
12(a -b) 

(2.42) 

2ln ,1,+ 1 + A In 2 A 
F(A) = I-A 

[(1 + A)lnA + 2(1- ,1,)]2 
(2.43) 

where a, b are the delamination radius and contact radius, respectively; Uo is the 

maximum film deflection, t is film thickness, A = alb, and F' =dF/dA. 

This method is particularly useful for a brittle or ductile coating on a brittle substrate. 

The crack initiates in the brittle substrate and it will propagate along the weaker 

interface. The essence of this method is that it induces a pre-crack at the interface. 

The disadvantage of this method is that there are some critical parameters such as 

orientation of the indenter tip and the indentation position with respect to the interface 

(e.g. din Fig.2.33) for controlled delamination, which must be accurately known. 

Interfacial failure can be also assessed based on the phenomena of extra linear elastic 

recovery during unloading [e.g. (Hainsworth et aI., 1998), (Chen and Bull, 2006a)] 

which will be addressed in Chapter 8. 
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2.4 Summary 

Various models and experimental techniques to assess coating toughness and 

interfacial toughness have been discussed, among which the models based on 

nanoindentation experiments have been emphasised. In the next Chapter, the 

nanoindentation technique will be discussed in detail. 
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Nanoindentation techniques have been widely used to investigate the mechanical 

behaviour of coated systems (e.g.(Oliver and Pharr, 1992b), (Page et aI., 1992), (Page 

and Hainsworth, 1993), (Bull et aI., 1994, Page and Hainsworth, 1995), (Berasategui 

and Page, 2003) because this allows measurement at very small scales (i.e. 

submicrometer or nanometer scale) and it makes it feasible to obtain a range of 

mechanical properties such as hardness, elastic modulus and fracture toughness of 

coatings independent of their substrates. This chapter aims to explain the use of 

nanoindentation and the factors which limit its application for coated systems. 

3.1 What is nanoindentation? 

Nanoindentation is a technique in which a continuous record of the applied load and 

displacement is made during indentation. The nanoindentation load-displacement (P-8) 

curve provides a "mechanical fingerprint" of a material response (Hainsworth and 

Page, 1994a). Nanoindentation not only reduces the spatial scale of the test compared 

to traditional indentation methods but also makes it possible to estimate properties 

such as hardness and elastic modulus without reliance on post-facto microscopy to 

measure the small indentations formed for many materials. However, post-facto 

microscopy is still very important if more details (such as pile-up, cracking, 

delamination, phase transformation etc) about the deformation response are required. 

The basic parameters in a load-displacement curve are introduced in the following; 

they are very useful to derive the mechanical properties of both bulk materials and 

coatings. Fig. 3.1 displays a typical load-displacement curve (P-J) from a 
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nanoindentation test. The basic parameters available from the curve are (page and 

Hainsworth, 1993), 

• P max , the maximum applied load. 

• S, the contact stiffness at peak load calculated from the slope of the upper part 

of the unloading curve (Doerner and Nix, 1986, Oliver and Pharr, 1992a). 

• 4nax , the maximum displacement at the indenter at the maximum applied load. 

This indicates both the plastic depth of the impression and the elastic 

deflection of the surface. 

• &, the contact depth, which is the actual depth that the indenter in contact 

with material in the absence of elastic deflection of the surface. 

• 
• 

• 

• 

• 

• 
• 
• 
• 

• 

4es , the residual displacement after the elastic recovery of the materia( 

Wp , the plastic work of indentation (the area within the loading and unloading 

curves, see Fig. 3.1) 

We , the elastic work of indentation (the area under the unloading curve from 

<Sres up to ~, see Fig. 3.1) 

WI, the total work of indentation (the area under the loading curve up to ~x). 

%R, the percentage of elastic recovery, i.e. R = b'max - b'res xlOO %, which is 
b'max 

a good indicator for the extent of elastic recovery. 

Segment AB, the elastic portion of the loading curve where Pa J1.5. 

Segment BC, the transition from elastic behaviour to elastic-plastic behaviour. 

Segment CD, the plastic portion of the loading curve where Pad 

Segment DE, the initial part of the unloading curve where the recovery of the 

surface flexure occurs. No change of indent shape occurs in this range. 

Segment EF, the region in which full elastic recovery occurs, and the 

impression changes shape. 

Based on the parameters above, the basic mechanical properties such as elastic 

modulus and hardness can be obtained as discussed in section 3.2.1. However, Fig.3.1 

only provides a standard load-displacement curve which does not include many 

features occurring in actual bulk materials and coatings. For example, creep in metals 
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(Lucas and Oliver, 1999, Asif and Pethica, 1997), cracks in brittle materials (McGurk 

and Page, 1999), (Li et ai. , 1997), (Li and Bhushan, 1998), dislocation bursts in 

crystalline materials (Page et ai. , 1992), (Page et ai. , 1998), phase transfonnations in 

many semi-conductors (Pharr et ai., 1991), (Page et ai. , 1992), all may result in 

additional features in the load-displacement curves which can be used to derive other 

mechanical properties which will be discussed in section 3.3 . 

D 

Wr: W,+ WE 

Displacement (nm) 

Figure 3.1 Schematic of a typical load displacement-curve for an elastic-plastic material 
indented by a pyramidal tip, with the basic parameters explained in text. 
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3.2 Extracting mechanical properties from P-b curves 

3.2.1 Extracting elastic modulus and hardness 

3.2.1.1 Unloading curve analysis 

By extending the methods proposed by Loubet et al (Loubet et aI., 1984) and Doerner 

and Nix (Doerner and Nix 1986), Oliver and Pharr (Oliver and Pharr, 1992b) 

developed the normally used method to obtain hardness and elastic modulus. 

Based on the analysis for the elastic unloading of a flat punch, it was suggested that 

the elastic modulus can be given by (Sneddon, 1965), 

(3.1) 

Considering that a Berkovich tip is actually not axially symmetric, an extra parameter 

~ (P=1.034) is introduced to correct this (King and Osullivan, 1987), which has been 

widely adopted. If considering a flat-ended triangular tip, the value of P will be a little 

higher (Vlassak and Nix, 1994). Since most indenters are not flat punches, a 

correction for the elastic radial inward displacement (see Fig.3.2) in the Sneddon 

equation (i.e. Equation (2.2) in section 2) when indenting an elastic half space by a 

rigid indenter is required. This correction factor y is given by Hay et al (Hay et aI., 

1999). 

_71 + O.15483073cote (1(- 2V)) 
4 41-v y = 1l----------~-~ 

(
1l _ O.83119312cot e (1- 2V)J

2 

2 4(I-v) 

(3.2a) 
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where 8 is the half included angle of the indenter (which in the case of a Berkovich is 

70.32°) and v is the Poisson's ratio of the material indented. For a very sharp tip (e.g. 

cube comer indenter (8= 42.28°)) the expression derived for y is: 

1 
(1- 2v) r = + -....:..---.......:.--

4(I-v)tan e (3.2b) 

Taking these corrections into consideration, equation (3.1) can be re-written, 

(3.3) 

Where the Er is the reduced modulus which is given by, 

(3.4) 

The subscripts i and s refer to the indente! and specimen, respectively. For a diamond 

tip (used in this study), Ei =1141 GPa and the Poisson's ratio, Vi is 0.070. For many 

ceramics and metals, a value of v=0.25 can be used without introducing significant 

errors into the moduli values calculated. 

Fig. 3.2 Schematic representation of the actual deformed surface which considers the radial 
displacement. The inward displacement taken from (Hay et aI., 1999) is exaggerated. 
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In order to obtain the stiffness S, it is necessary to analyse the unloading curve. Oliver 

and Pharr found that the unloading curve or even the upper part of the unloading 

curve generated by flat punch in contact with a flat surface is better described by a 

power law rather than linear relationship proposed by Sneddon, i.e. the unloading 

curve is given by, 

(3.5) 

where Band m are fitting constants. Thus, the initial unloading slope (i.e. stiffness) is 

given by, 

(3.6) 

The analytical solution was initially developed for a flat punch indenter, but it was 

shown that equation (3.6) is valid for any self-similar indenter which could be 

described as a solid of revolution of a smooth function, such as a cone, sphere, 

paraboloid of revolution, or ellipsoid of revolution. It provides reasonable results for 

often used pyramids which can not be considered as a body of revolution (Pharr et aI., 

1992b), analysed in terms of an equivalent cone (Johnson,1970). 

A schematic drawing of a cross section of an indentation given by Oliver and Pharr is 

displayed in Fig. 3.3. 
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Figure 3.3. Schematic drawing of a cross-section of an indentation marking various 
parameters used in the analysis of Oliver and Pharr (1992a). Pile-up and sink-in is ignored 
here. 

The total displacement, J, is given by, 

(3.7) 

where 4: is the contact depth as depicted in Fig. 3.3. ~ is the vertical distance from 

the original surface to the perimeter of the indentation under load and is given by, 

P 8 = c max 
s S (3.8) 

where £ is a geometric constant which can be experimentally determined or calculated 

from Finite Element Analysis (PEA). For a typical pyramid indenter (such as a 

Berkovich tip) £ =0.75; for a conical tip equivalent to a Berkovich tip, £ =0.72; for a 

flat punch, £ =1. 
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The hardness is given by, 

H= p 
A(Oc) 

i\anomdentallon techmques 

(3.9) 

From equation (3.3) and equation (3.9), it can be seen that it is necessary to determine 

the contact area Ac so that the mechanical properties hardness and elastic modulus can 

be determined. Given that the deformation of the indenter during nanoindentation can 

be ignored (i.e. it is much stiffer than the materials under test), it is assumed that the 

contact area can be expressed as a function of the contact depth (Pethica et aI., 1983, 

Oliver et aI., 1986). 

No indenter is perfect and thus for a pyramid tip or its equivalent conical tip, the area 

function at high load is given by, 

(3.10) 

where, Co=24.5 and 2.596 for Berkovich and cube comer indenters, respectively. The 

constants C1 to C8 are fitting parameters which are obtained by calibration tests on 

fused quartz, a material with well known mechanical properties which shows 

homogeneity of mechanical properties with depth. For a perfect tip, constants C1 to C8 

are zero. The reason about the choice of this fitting function is strictly for its ability to 

fit data over a wide range of depths and not because it has any physical significance. 

It is quite convenient in describing a number of important indenter geometries. 

Actually, the main additional factors which influence the measurement of hardness 

and elastic modulus by Oliver and Pharr method are pile-up and sink-in which will be 

discussed in Section 3.3. 
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3.2.1.2 Method based on work of indentation 

The hardness of a material can also be obtained through the energy expenditure per 

unit volume during indentation, which is the work of indentation method first 

proposed by Stilwell and Tabor in 1961 (Stilwell and Tabor, 1961). The hardness can 

be expressed by plastic work (Wp) divided by the plastically deformed volume (Vp), 

1.e, 

(3.11a) 

(3.11b) 

Where W, the total work of indentation (i.e. the total area under the loading curve) 

and We, the elastic work (i.e. the area under the unloading curve) can be easily 

obtained from load-displacement curve. 

If it is assumed that the maximum depth over contact depth (c5n1 c5c) is a constant, the 

contact area can be given by Ac=k6,/, where c5m is the maximum penetration and k is a 

constant dependent on the geometry. Thus, 

(3.12) 
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Therefore, 

H= 3W 
kb? m 

~ -, ,. _.lldtlon techmques 

(3.13) 

It was shown that hardness obtained by this method agrees well with the values 

determined by Oliver and Pharr method at big loads, in which case the tip geometry 

effects are not important (Tuck et aI., 2001, Bull, 2002). However, Malzbender and 

de With (Malzbender and de With, 2002b) demonstrated that for highly elastic 

materials, this method leads to big errors, up to 70% when the HIE ratio is higher 

than 0.025. The problem of this method is that k is a material dependent parameter 

rather than a geometrical related constant because it depends on the ratio of contact 

depth over maximum depth which is actually not a constant which is discussed in the 

following. 

Combining the analysis about nanoindentation discussed previously, we obtain, 

0. - 15 = &Pm 
m e S 

1f H 4n = [1 + - 8' - tan(B) JOe 
2 Er 

(3.14) 
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From Equation (3.14), it is obvious that the ratio between the contact depth and 

maximum depth is not a constant but related to the hardness over elastic modulus of 

the materials. 

3.2.1.3 Method of Loading curve analysis 

During loading, for a non-adhesive conical punch with apical angle B in contact with 

a smooth flat elastic body (Sneddon, 1965), the load can be expressed as , 

(3.15) 

Based on dimensional analysis, a similar relationship between applied load and 

displacement is found (Cheng and Cheng, 1998b) and it is given by, 

(3.16) 

where Km is a constant dependent on E, v, the yield stress, Y, and the half-included 

angle of the indenter, B. It is assumed that the elastic and plastic behaviour could be 

split in two parts (Loubet et aI., 1986), 

(3.17a) 

(3.17b) 

where Kp is a function of Yand Ke is a function of E, vand B. 

Since i5= 4 + ~, combining Eq. (3 .16) and (3.17) yields, 

(3.18) 

82 



Chapter 3: Nanoindentation techniques 

Equation (3.18) can be expressed in terms of the Vickers Hardness (Hv) (Loubet et aI., 

1986) as, 

(3.19) 

This work was further developed by Hainsworth et al (Hainsworth et al., 1996) . Since 

for conical and pyramidal indenters, the plastic depth is directly related to the 

characteristic contact radius, which is given by, 

(3.20) 

Here rjJ is an empirical constant which depends on the geometry of the indenter used. 

By dimensional analysis, the elastic displacement is given by, 

(3.21) 

where If/ is another empirical constant. 

Thus, 

H; P~ c5 = c5 + c5 = ¢J - + lj/- -
p e H E P 

(3.22) 

If it is assumed that P=Km8, then, 

(3.23) 
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For a used Berkovich tip, it was experimentally found that ¢ =0.194 and If/=0.930 

(Hainsworth et aI., 1996) which is identical to equation (3.19). 

A similar equation was derived by Malzbender et al (Malzbender et aI., 2000c) and 

the reduced modulus was used instead of the Young's modulus, giving, 

( ~ ~JfJ
-2 

1 Er 1[ H 2 
P=E - -+8 - -- 8 

r rc H 4 Er 
(3.24) 

For a perfect tip Berkovich tip, C=24.5, and £=0.75, so that it yields? = .Jc = 0.202, 

and If! = e~ = 0.638. The value of? is close to that given by Hainsworth et al 

which is not surprising given that it depends only on indenter geometry. There is 

more deviation in If/. The deviation mainly results from the non-perfect tip and the 

use of elastic modulus instead of reduced modulus in Eq. (3.22). Also, experimental 

measurement errors may also be responsible for it since some of the calibration 

materials used show significant pile-up in the indentation test. 

Fig. 3.4. Schematic of a truncated Berkovich indenter with a spherical tip end. 
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Considering the tip rounding as depicted in Fig. 3.4, it was suggested to modify 

Eq.(3.24) (Malzbender et al,2000), 

(3.25) 

Where ~ is the distance between the rounded tip end and the extrapolated perfect tip 

as depicted in Fig. 3.4. However, it should be pointed out that in the real situation the 

tip may be more likely to be a truncated pyramid with a flat end rather than a 

spherical shape. 

Despite this, the method is very useful to determine either H or E if one is already 

known without the need to consider other complex factors such as pile-up, sink-in or 

the change of slope in the initial part of unloading curve caused by creep etc. The 

main disadvantage of this method is that it requires fully plastic behaviour otherwise 

the assumption that load scales with the displacement squared fails. Also, any 

excursion in the load-displacement curve (e.g. fracture in brittle coated systems) and 

slope changes (e.g. hard coating in soft substrate) may also influence the results. 

3.2.1.4 Slope ratio Method 

This method is agam based upon the assumption that the load scales with 

displacement squared (i.e. equations 3.23 to 3.25). Then the slope of the loading curve 

(see Fig. 3.5), Sf, is obtained by differentiating equation 3.25), 

(3.26) 
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The slope of the unloading curve, Su, is taken from Equation 3.3. After arrangement 

and combination with the equation for hardness it gives (Joslin and Oliver, 1990), 

P 1l H 
--S; (2/3)2 E; (3.27) 

Thus, the ratio between loading and unloading slopes is, (Joslin and Oliver, 1990) , 

(Oliver, 2001), 

(3.28) 

After further rearrangement it can be shown that 

(3.29) 

(3.30) 
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Displacement 

Figure 3. 5. A schematic representation of the loading and unloading stiffness which is the 
slope of the upper portion of loading half cycle and unloading half cycle, respectively. 

The values of S{ and Su can be continuously measured by employing the continuous 

stiffness method (CSM) (see the description of CSM in Chapter 4) (Pethica and 

Oliver, 1987). It was shown that this technique almost did not affect the shape of 

load-displacement curve but it may affect the initiation of fracture (Page et ai. , 1998). 

Because it is based on the assumption that the load scales with squared displacement, 

this method is also strongly affected by the elastic-plastic transition which is critical 

for a hard coating on a soft substrate. Creep would also affect the results, reducing the 

values of the stiffness in the loading and increasing those of the unloading, which was 

found experimentally by Garcia (Garcia, 2002). 

3.2.1.5 Other methods 

A range of models have been derived to relate ratio of the hardness to elastic modulus 

(or reduced modulus) to measurable parameters such as the ratio of residual depth to 

maximum depth and the ratio of plastic work to total work. 

It has been suggested by many authors [e.g.(Cheng and Cheng, 1998a, Cheng et ai. , 

2002), (Malzbender and de With, 2000), (Malzbender, 2005), (Malzbender, 2006)] 
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that there is a linear relationship between the ratio of elastic work to total work and 

the ratio of hardness to Young's modulus, which is given by several authors (Cheng et 

aI., 2002), (Malzbender, 2005), (Malzbender, 2006), (Alkorta et aI., 2006), as 

(3.31) 

Where K -1 is a constant. 

Initially Eq. (3.31) was proposed by Cheng et al (Cheng et aI., 2002) based on finite 

element simulations to derive a value for K -1. The analytical assessment of K -1 was 

achieved by Malzbender et al (Malzbender, 2005) and Alkorta et al (Alkorta et aI., 

2006). It was argued that K -1 is a constant for a given indenter (Cheng et aI., 2002), 

(Malzbender, 2005). Later, it was found (Alkorta et aI., 2006) K -1 is dependent on 8, 

8J8m and m (the exponent of power law expression to describe the unloading curve in 

equation 3.5). When plotting equation (3.31) for a wide range of materials, K -1 =5.3 

in Eq. (3.31) seems to provide reasonable global agreement with the FEM results for a 

Berkovich indenter, but it was found that it strongly depends on work hardening 

behaviour in particular for soft metals (Alkorta et aI., 2006). 

The other approach is to relate the hardness to elastic modulus ratio, HIE, to residual 

depth over maximum depth, ~,.I~m. Initially, a few authors [e.g.(Cheng et aI., 2002), 

(Malzbender and de With, 2000)] proposed that there was a linear relationship 

between ~,.I~m and HIE. 
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(3.32a) 

A = 1.50 tan B + 0.327 for 60° < B < 80° (Cheng et al., 2002) (3.32b) 

H 
A = 1- 2 tan B- (Malzbender and de With, 2000) 

Er 
(3.32c) 

Although these equations have been developed for indentation in homogeneous solids, 

the work by Malzbender and de With (Malzbender and de With, 2000a) suggested 

that it could be used in the study of coatings and thin films providing that fracture and 

delamination events do not significantly influence in the energy expenditure. 

However, combining the numerical simulations and equations to derive Er and H by 

Oliver and Pharr et aI, it can be shown that the relationship between ~,I~m and HIE is 

actually not linear which is discussed as follows. Although the linear relationship 

given by Eq.(3.32) provides a good approximation for some materials, significant 

deviation occurs with the increase of HIEr(especially when HIEr >0.1). 

Based on the analysis by Bao et al (Bao et al., 2005), we can derive the following 

expression, 

1-
1 

1l H 
1+-E-tanB 

8, = 1-_~ __ 2_E_, __ "-

8m l-lr f (m) 

Where fern) = r[0.5(rn -Ifl + 0.5], 
r[0.5(rn -Ifl + 1] 

(3.33a) 

(3.33b) 
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In this equation r is the gamma function. 

When establishing the relationship between Hand E in tenns of a recovery resistance, 

a relation between maximum depth and contact was also obtained (Bao et aI., 2005), 

1£ H 
8 =[1+-£-tan(B)]8c 

m 2 E 
r 

Combining the equations in the following, 

8m - 8r = mPm / S 

1l H 
8m = [1 + - £- tan(8)]8c 

2 Er 

(3.34) 

another equation can be derived as follows (Chen and Bull, 2006a, Chen and Bull, 

2006b), 

1 
1l H 

l+-£-tanB 
2 Er 

Alternatively, another equation can be obtained in a different way. 
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Combining the following equations, 

s = 2Er fA -Ii Vrlc 

We obtain, 

N anoindentation techniques 

(3.36) 

where the value of m can be obtained by fitting finite element or experimental load-

displacement results. 

Eq. (3.33) to Eq. (3.36) indicates that the relationship between the J,!6m and H/Er is 

actually not a simple linear relationship independent of the contacting materials. It can 

be shown that Equations (3.35) and (3.36) are the same after some simple 

mathematical analysis. Both equations are derived based on existing nanoindentation 

theories without any additional assumptions or additional empirical constants, which 

further supports their validity. Further discussion about this issue can be found in the 

paper (Chen and Bull, 2006a). The finite element simulations shows that Eq.(3.35) or 

(3.36) provides the best description of the relationship between J,!6m and H/Er. 
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Since the values of H/E/ can be obtained from the initial unloading slope (i.e. 

Equation 3.27), in principle the values for H and ~ can be obtained from the load 

displacement curve by combining various equations described in this section (i.e . 

equation (3.31) to (3.36». However, an accurate knowledge of HIE is required and 

this is not directly available in all systems due to fracture. This is discussed further in 

the next section. 

3.2.2 Extracting other mechanical properties 

As well documented in Chapter 2, it is feasible to obtain the fracture toughness of 

bulk materials and coatings based on the load-displacement curves in the case that the 

fracture results in an excursion in load-displacement curve (e.g. Fig.3.6) and even in 

the case that the fracture does not lead to features in the load-displacement curve if 

the total work is well defined. 

The pop-in in the load-displacement curve may also be caused by a dislocation burst 

in metals and ceramics. The energy absorbed in this process can be assessed (Page 

and Hainsworth, 1993), (Whitehead and Page, 1992). 
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Fig. 3.6 (a) Load displacement curve and (b) SEM image of CNx on a 3C SiC(lOO) substrate. 
An excursion in the load-displacement curve (pop-in) is clearly visible which is related to 
through thickness fracture in the CNx coating. 
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In addition, it is also possible to extract the yield strength and work hardening 

exponent [(Cheng and Cheng, 1999), (Tunvisut et aI., 2002),(pelletier, 2006), (Taljat 

et aI., 1998), (Nayebi et aI., 2002)] from load-displacement curves in bulk materials. 

To obtain accurate data, other information such as the geometry of pile-up, must be 

taken into consideration. Also, analysis of the load-displacement curve helps to 

identify phase transformation, and creep (Pharr et aI., 1991), (Page et aI., 1992). 

3.3 Factors affecting the mechanical properties derived from 

p-{j curve 

3.3.1 Pile-up and sink-in 

Pile-up can be described as the material adjacent to the indentation impression pushed 

up and away as a response to the penetration of the indenter, forming a ridge of 

material around the rim of the impression (see Figure 3.7), which is very common 

when indenting a soft material. Sink-in is a response to indentation test which is 

opposed to pile up. When a hard ceramic material is indented, the surface tends to 

sink in. Both will affect the hardness and modulus results obtained by the Oliver and 

Pharr method, but pile-up is by far the most serious effect (Berasategui, 2003). 
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Figure 3.7. Schematic of pile-up and sink-in during nanoindneattion, which results in 
underestimation or overestimation of the contact area, respectivley. It may lead to 
inaccuracies in the calculation of the contact stiffness up to 50% (Bolshakov and Pharr, 1998). 

When pile-up occurs, the Oliver and Pharr method underestimates the actual contact 

area thus overestimating hardness and Young's modulus, the overestimation can be up 

to 60% and 50% for hardness and elastic modulus, respectively (Bolshakov and Pharr, 

1998, Oliver and Pharr, 2004, Cheng and Cheng, 1998a). On the contrary, in the case 

of sink-in, the Oliver and Pharr method overestimates the actual contact area resulting 

in the underestimation of hardness and elastic modulus. In both cases, post-facto 

microscopy such as AFM, SEM is necessary to measure the actual contact area. Also, 

FEM simulations are useful (Soare et aI., 2004). It is possible to relate the pile up or 

(sink-in) behaviour to the yield stress to elastic modulus ratio, YI£, and the work 

hardening behaviour (Cheng and Cheng, 1998a). The basic stress strain (a-c:) 

relationship is given by, 

EE, 
Y 

for E <-
G'= 

E 
Y (3 .37) 

KEn, for E>-
E 

where K is a constant and n is the work hardening exponent. 
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It was found that for small values of YIE and small work hardening exponent (i.e. the 

work hardening is not significant), e.g. n=O.l , materials show significant 'pile-up' 

while for the case of severe work hardening, e.g. n=O.5, materials may exhibit 'sink­

in'. For large values of YIE (e.g. ceramics), no matter what is the value of n, sink-in 

always occur (Cheng and Cheng, 1998a). 

3.3.2 Creep 

Creep can be defined as "the slow deformation of solid materials over extended 

periods under load" (Finnie and William, 1959). Nanoindentation creep has been 

reported in various materials such as metals (Lucas and Oliver, 1999, Asif and Pethica, 

1997), ceramics (Grau et aI., 1998, Han and Tomozawa, 1990a) and polymers 

(Briscoe et aI., 1998) 

Creep not only occurs during hold periods, but also occurs during the loading and 

unloading procedure. It may influence the loading curve (see Fig. 3.9a) as well as the 

initial part of the unloading curve (see Fig. 3.9b) if the loading rate and the hold 

period are not appropriate. It also affects the contact depth, maximum depth and 

irreversible work which will affect the results from the method of Oliver and Pharr 

and the various methods in section 3.2.1.5. As a result in some cases this behaviour 

may lead to errors of calculated hardness and Young's modulus by up to 20% 

(Chudoba and Richter, 2001, Feng and Ngan, 2002). Creep varies with materials and 

it may decrease from several nanometres per second down to less than 1nmls after 10 

or 20 second during a hold period (Chudoba and Richter, 2001). 

The amount of measured creep also strongly depends on the loading rate and 

unloading rates and intuitively it is obvious that low loading rates affect it much more 

than high ones. The proper holding segment has to be "long enough such that the 

creep rate has decayed where the depth increase in 1 minute is less than 1 % of the 

indentation depth" (Chudoba and Richter, 2001). Usually, for ceramics especially 

amorphous ceramics, the creep is not an important issue. 
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In order to remove the influence of creep, the constant loading rate over load (dPIP) 

experiments can be employed (Cheng and Cheng, 2001). For some hard coatings (e.g. 

CNx), the creep may have significant influence on the load-displacement curve at low 

laod if the loading rate is very small. Fig. 3.9a displays a comparison of the load­

displacement curves between (dPIP) technique and experiments under load control at 

different loading rates. It can be seen that at higher loading rate, the influence of creep 

on loading curve is invisible and its influence on unloading curve is obvious but not 

significant; however, the slope of upper part of the unloading curve is almost 

unaffected. In contrast, at very low loading rate, the creep significantly affects both 

the loading curve and the unloading curve. From Fig.3.9b, it can be seen that in the 

case of no holding period the creep obviously increases the slope of initial unloading 

curve compared to the experiments with long enough holding period. But, for the 

ceramics coatings investigated in this study, the influence of creep can be ignored 

(Berasategui, 2003). In addition, the loading rate in the experiments carried out in this 

work is high enough and the holding time is long enough so that the creep may is not 

aconcem. 
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Fig.3.9a. Comparison between the loading curve at different loading rates (11lN/s and 
IOOIlN/s) and dP/P=O,05 for an indentation into CNx on 3C SiC (001), At high loading rate 
the influence of creep is negligible, while, at low loading rate, the creep will sign ificantly 
affect both the loading curve and unloading curve.(After (Arce-Garcia, 2002)) , 
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Fig.3.9b. Indentation creep at maximum load of 250mN for a l!J.m thick CNx coating on 3C 
SiC (001) showing a change in the slope of the upper portion of the unloading curve if a hold 
period is not included. After (Arce-Garcia, 2002). 

3.3.3 Indentation Size Effect (ISE) 

The Indentation Size Effect (lSE) describes the phenomenon that the hardness of most 

material changes with the indentation depth at very small contact scales which affects 

the measured mechanical properties of all the methods introduced in section 3.2. 

There are a number of mechanisms [e.g.(Bull et aI. , 1989), (Leipner et aI., 2001), 

(Feng and Nix, 2004), (Bull, 2003a), (Manika and Maniks, 2006)] known to be 

responsible for the ISE (usually the ISE means that the hardness increases with the 

decrease of indentation size and hence depth), which vary with the intrinsic materials 

properties, different processes, and the working conditions. Negative ISE (hardness 

decrease with the decrease of penetration) can also occur. The causes of indentation 

size effects are summarized in the following. 

Intrinsic materials-related effects: 

It has been observed that by reducing the dislocation density the critical load for 

plasticity initiation increases thus the hardness is initially higher under the condition 

that dislocations are already present (Leipner et aI. , 2001 ). Another explanation is that 
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the highly curved dislocations formed around a small indentation are much more 

difficult to propagate and the hardness of the surface increases (Ma and Clarke, 1995), 

(Nix and Gao, 1998). The grain size is also an important factor when considering the 

grain size-dependent strength behaviour (Petch, 1953). Creep will also tend to reduce 

hardness for longer indentation cycles and in constant loading rate tests this leads to 

ISE. 

Process related effects: 

Some metals can increase their hardness after being polished because of a work 

hardening effect (Mott, 1956). In ceramics, however, polishing can induce cracks at 

shallow depths reducing the hardness of the material in the near surface region, which 

leads to the negative indentation size effect. The native oxides forming on a metal 

when exposed to air will also lead to an ISE at low penetration because the test is 

actually measuring the harder surface oxide layer. 

Working conditions related effects: 

Indenter/specimen friction resistance may lead to ISE for a sharp indenter. Diffusion 

between the indenter and specimen or other chemical effects may also lead to ISE (e.g. 

we ball in contact with steel, or diamond in contact with steel). Surface 

contamination usually causes a negative ISE. Chemomechanical effects may cause 

ISE or reverse ISE. 

A comparison for the main indentation size effect mechanisms for hard material and 

soft material is shown in table 3.1. 
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Table 3.1: Main indentation size effect mechanisms for different material classes. After (Bull, 

2003a). 

Soft material (e.g. metal) Hard material (e.g. ceramic) 

Geometrically necessary dislocations Geometrically necessary dislocations 

Strain gradient plasticity Strain gradient plasticity 

Microstructural scale Microstructural scale 

Oxide layers Elastic-plastic transition 

Polishing damage Fracture 

Lubrication Chemomechanical effects 

Creep 

3.3.4 Other factors 

Fracture and phase transformation will also influence the different models to assess 

mechanical properties from load-displacement curves. For example, an excursion in 

the load-displacement curve (see Fig. 3.10) caused by fracture may result in the 

failure of the methods based on analysis of the loading curve (e.g. the model by 

Hainsworth et aI, and slope ratio method). Also it may affect the method based on 

work of indentation because the irreversible work not only results from plastic work 

but also fracture dissipated energy. Further, the increase of maximum depth or 

decrease of load will make the standard Oliver and Pharr method underestimate Hand 

E. Phase transformation may affect the unloading slope and residual depth which will 

affect the slope ratio method, the Oliver and Pharr method and the other methods 

described in Section 3.2.1.5. Fig.3.11 displays a load-displacement curve for Si (111) 

indented by a Berkovich tip at 100mN peak load, where a pop-out is observed in the 

unloading which is believed to relate to a phase transformation (pharr et aI., 1992, 

Page et aI., 1992). 
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Delamination at the interface will also influence the methods described in section 

3.2.1.5 if it causes additional elastic recovery which changes the residual depth. 
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Fig. 3.10 Load-displacement curve for a 240nm ITO coating on glass indented by a cube 
comer tip under displacement control. The presence of fracture causes excursions and slope 
changes in the loading curve which will affect the mechanical properties obtained from the 
slope ratios method and the other methods described in Section 3.2.1.5. 
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Fig.3.ll. Load-displacement curve for Silicon (111) indented by a Berkovich tip at 100mN 
peak load. In the unloading curve, the pop-out is related to a phase transformation from 
metallic to amorphous silicon. 

100 



Chapter 3: N anoindentation techniques 

Finally, careful calibration of the tip area function, machine compliance and thermal 

drift is also very important if accurate values for hardness and Young's modulus are 

to be obtained. Oliver and Pharr proposed using a set of indentations in fused silica 

for this purpose, this material is elastically isotropic and its elastic modulus is 

independent of depth for the depth range in which the calibration should be done. The 

area can be derived from equation 3.1. By plotting the area versus the contact depth 

and fit the curve according to equation 3.10, area function can be obtained. An 

alternative method is to obtain the exact geometry of the indenter by microscopy (e.g. 

AFM, TEM) and derive a mathematical area function for it. Very careful calibration 

of the area function is critical for shallow penetration depth «100nm). Also, it is 

necessary to frequently do the calibration if the hard and stiff materials have been 

tested because the tip is easily worn in such circumstances, especially for a sharp tip. 

Similarly indentation into materials in which carbon can dissolve often leads to tip 

blunting by chemical dissolution (e.g. tests on iron). 

For the determination of the properties of coatings, usually it is necessary to avoid 

plastic deformation in the substrate. For the measurement of the hardness of thin films, 

an often-quoted rule of thumb is the 10% law (Pharr and Oliver, 1992), i.e. the 

penetration should be less than 10% of the film thickness. However, the critical 

penetration depends on the properties of coating and substrates. For some coated 

systems, 10% may be too strict (Xu, 2001), whereas for other coated systems, it may 

be too loose. However, even if the penetration exceeds the critical depth, it is still 

possible to obtain the coating hardness by a range of models if the mechanical 

properties of the hardness substrate is well known [(Korsunsky et aI., 1998),(Tuck et 

aI., 2000, Tuck et aI., 2001)] . The 10% rule does not apply for Young's modulus 

measurements and extrapolating of coating/substrate composite data to zero depth is 

an effective way to extract coating data. 
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3.4 Summary 

The different indentation methods to measure hardness and elastic modulus have been 

discussed together with the factors which affect them. If the materials under test do 

not display significant pile-up or creep, and HIE is not too high, all the methods will 

agree with each other at higher loads where the tip defect is ignorable. In the next 

chapter, the experimental indentation methods used in this study and the equipment to 

achieve them are outlined. The materials tested in this thesis are also discussed. 
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Chapter 4: Experimental Methods 

4.1 Introduction 

This chapter describes the samples investigated together with the reason for their 

selection and explains the main experimental techniques. After an introduction to the 

samples, the instruments employed to perform nanoindentation (i.e. Nanoindenter II 

and Triboindenter) are explained together with their working mechanisms and their 

characteristics. In order to gain more insight into deformation behaviour, microscopy 

is necessary. Therefore, the various microscopy techniques used for means of imaging 

the indentation impressions, such as high resolution Scanning electron Microscopy 

(SEM), Atomic Force Microscopy (AFM), and Reflected Light microscopy (RLM) 

used are discussed. 

4.2. Description of the samples 

Complex ultra thin multilayer coatings on glass were selected since these offer a great 

challenge for mechanical property characterisation. In order to further understand the 

fracture behaviour, some common brittle materials such as Si, Ge, Si on Sapphire, and 

SiC on Si were investigated as well. However, coated glass is the main concern of this 

work, since one of the major objectives was to understand the role of fracture in 

transit scratch formation during the delivery of coated architectural glass. 
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4.2.1 Solar control coatings on float glass 

Solar control coatings are applied to architectural glass to help to keep internal 

building temperatures comfortable. Such coatings allow the sun's heat and light to 

pass trough the glass into the building, and at the same time these block heat from 

leaving the room, reducing heat loss considerably, which makes them helpful in both 

cold and hot places. To achieve this, the coatings must be transparent to visible 

wavelengths but opaque to radiation in the infrared. The glass substrate is reasonably 

opaque to UV radiation. Current solar control coatings almost reach the theoretical 

optical function; however, the mechanical failure which controls their life-time often 

occurs during transit. Polymer ball (PMMA) are sprayed onto the coated surface to 

separate the large glass sheets which are supported on a steel frame called a stillage 

during transport. Relative motion of the glass sheets causes the balls to slide, and the 

tensile stresses at the rear of the moving contact can cause fracture and stripping of 

the coating. Surface adsorption through cracks can also reduce the mechanical 

properties of the coating layers. Therefore, it is necessary to investigate the fracture 

behaviour of these coatings to help to optimise their design. 

The coatings investigated here are the main oxide components of solar control 

coatings ITO, Sn02, ZnO, TiOxNy, and silver. These coatings were sputtered on 

commercial soda-lime glass by an industrial scale coating plant at Pilkington PLC. 

The coated system tested is a multilayer stack consisting of very thin layers «20nm) 

capped with a 400nm thick layer (such as ITO, Sn02 and ZnO) for fracture 

assessment. This procedure is designed to produce coatings with the same 

microstructure as in commercial solar control layers. For ITO coatings, there were 

serious problems with adhesion, which prevented a 400nm coating being deposited­

the coating thickness is limited to 240nm for this material deposited under these 

conditions. These coatings are designed for their optical properties. The use of 

conductive coatings such as ITO can reduce emissivity. ITO is also a barrier layer. 

The conducting silver layer acts as wavelength selective layer and it is the main layer 

to reduce heat loss. 
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Table 4.1a. Samples of the solar control coating stopped after each different layer in the 
multilayer stack with the final thickness increased to 400nm. N.B., this leads to spallation of 
h ITO I d d t e so an extra samp. e was pro uce with a 240nm thickness top layer. 

Sample 1: TiOxNy (400nm top layer) on substrate glass 

Sample 2: TiOxNy I ZnOI AgI ITO I Sn02ITiOxNy (400nm top layer) on substrate glass 

Sample 3: TiOxNy I ZnOI AgI ITO (240nm top layer) on substrate glass 

Sample 4: TiOxNy I ZnOI AgI ITO (400nm top layer) on substrate glass 

Sample 5: TiOxNy I ZnOI AgI ITO ISn02 (40Onm top layer) on substrate glass 

Sample 6: TiOxNy I ZnO (400nm top layer) on substrate glass 

Tahle 4.1h. Samples of the solar control coating stopped after each different layer in the 
1 '1 k N Th h' kn f hI' f 1 20 mu tI ayer stac . ote: e t IC ess 0 t e ayers vanes rom severa nanometers to nm. 

Sample 7: TiOxNy (normal thickness) on substrate glass 

Sample 8: TiOxNy I ZnO (normal thickness) on substrate glass 

Sample 9: TiOxNy I ZnOI AgI ITO I Sn02 (normal thickness) on substrate glass 

Sample 10: TiOxNy I ZnOI AgI ITO (normal thickness) on substrate glass 

Sample 11: TiOxNy I ZnOI AgI ITO I Sn02ITiOxNy (normal thickness) on substrate glass 

* Note the samples with the thicker cap layer are the emphaSIS of this study. 

The thickness of the coatings below the cap layer is 10-20nm except for silver which 

is about 7nm. For convenience,these samples will be identified by their cap layers, 

for instance, 400nm TiOxNy single layer, 400nm ZnO multilayer. 

4.2.2 Other brittle materials 

In order to gam more information about contact fracture, some additional brittle 

materials such as bulk Silicon (100), Ge(lOO), SiC, 600nm Si on Sapphire, 1000nm 

SiC on Silicon etc were studied as well. These were standard semiconductor wafers 

obtained from commercial suppliers. 
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4.3. Indentation instruments 

4.3.1 Nanoindenter II 

The Nanoindenter® II (MTS, Knoxville, TN, USA) is an indentation system which 

has been commercially available for more than ten years. It allows indentation in the 

load range of 100~N to 500mN. The system consists of four major components: the 

indenter head, a reflected light microscope for remote viewing of the sample, a table 

with precise x-y position control where the specimen is placed, and a stiff frame as 

shown in Figure 4.1. The equipment is enclosed in a cabinet to ensure the thermal 

stability of the system. The cabinet is placed in a room with an air conditioning 

system which controls the temperature variance less than 10 C per day. 

Figure 4.1: Image of Nanoindenter II: (1) indenter head, (2) optical microscope, (3) 
x, y, z table and (4) motors. 
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In the Nanoindenter® II load is applied VIa a roil and magnetic system and 

displacement is measured using a three plate capacitance gauge. 

The load is appJied by a precisely-controlled current through the coil , while the 

voltage is measured. The best load resolution is less than lOOnN and the theoretical 

depth resolution is O.04nm. Data from digital voltmeters on the coil and the capacitor 

. is processed by computer which converts the output voltage to mN and nm. During 

this procedure, corrections are made to remove the effects of the intrinsic machine 

displacements and thermal drift. In the end, the data is stored on the control computer 

as depicted in Fig.4.2. The position of the indentations on a specimen is selected using 

the built-in reflected light microscope. The software records precise coordinates of 

the position on the table where the sample was placed in terms of a relative co­

ordinate from a fi xed position, which is very useful for post facto imaging (e.g. SEM). 
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Figure 4.2: Schematic drawing of the Nano Indenter@ 
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The indentations are made using a procedure that allows loading rate or displacement 

limits to be set. A typical indentation cycle is: 

• Approach segment: used to determine the surface position accurately. 

• Load segment: the indenting procedure can be load control, displacement control, or 

dPIP. 

• Unload segment: 70 % of the maximum load is removed. 

• Hold segment: the load is held constant at 30% of the peak load for 60s for the 

purpose of thermal drift correction . 

• Unload segment: the unloading is completed. 

There are different test modes available in this instrument which is summarized as 

follows: 

Load control: The increase of load per second is constant. 

Displacement control: The increase of penetration per second is constant. 

Constant strain rate (dPIP) control: The ratio of dPlP during indentation IS 

constant, which is useful to remove creep effects. 

Continuous stiffness measurement (CSM): This involves superimposing a small 

sinusoidal oscillation on the primary indentation loading signal (see Fig. 4.3) and 

analysing the response by means of a lock-in amplifier. By measuring the amplitude 

ratio and phase shift between the force and displacement oscillations, a continuous 

record of stiffness and damping at different contact penetration can be obtained. A 

continuous record of elastic moduli and hardness at different penetration can be 

obtained by analysis the unloading portion of each cycle. 
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Fig. 4.3 Schematic of the CSM nanoindentation mode. 

For the sake of studying fracture behaviour, displacement control is used in this study 

which will be explained in more detail in the next section. 

4.3.2. Hysitron Triboindenter 

4.3.2.1 Instrument 

A Hysitron Triboindenter® (Minneapolis, MN, USA) with in-situ AFM is used for a 

lower load «10mN) tests in this work. This machine is less than five years old. It 

consists of three main components: the transducer module, an x-y positioning table, 

and the Hysitron control unit and a data acquisition computer. The head is mounted 

on an AFM scanner and can be used for imaging (see Fig. 4.4). 
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Drive plate 1 
Three pI ate capacitor 

AFM cantilever + diamon d tip 

Head 

y-stage 

x-stage 

Figure 4.4: Schematic of the head and the positioning table where the main parts in a 
Hysitron triboscope. 

The transducer module consists of the transducer head and an assembled circuit board 

which is the heart of the Triboindenter system. The transducer head consists of a 

three-plate capacitative force/displacement transducer which can provide relatively 

high sensitivity, a linear force (or displacement), relatively large dynamic range, and 

an output signal. 

The transducer generates and simultaneously records the applied load and the 

corresponding displacement of the indenter. The force resolution is less than InN and 

the displacement resolution is approximately O.04nm. When a voltage is applied, an 

electrostatic force is generated between the pickup electrode and drive plates (as 

depicted in Fig. 4.4), reSUlting the movement of the pickup electrode between the 

drive plates. 

On the bottom of the transducer head, the diamond tip (a cube corner diamond and a 

Berkovich indenter are used in this work) is placed. This diamond tip operates with 

two functions (i.e. acting as the indenter and also as an AFM tip). In situ AFM allows 

the imaging of very small indentations which are impossible to locate under a 
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microscope once the sample is removed from the system. A reflected light vedio 

microscope system with magnification of lOOX is incorporated in the system in order 

to select the indentation position. The Triboindenter head together with the 

microscope sit on a granite base to minimise vibration effects and this sits on an 

active piezo-driven anti-vibration table. Finally, everything is placed in an acoustic 

enclosure cabinet to minimize acoustic noise. The enclosure also works as a thermal 

buffer to help eliminate drift. The whole system is placed in a clean room with good 

temperature and relative humanity control. 

Figure 4.5. Triboindenter head together with optics on the granite base. 

4.3.2.2 Different test modes 

Conventional nanoindentation is an open loop method which uses voltage applied for 

a fixed time period to generate the required load. It is basically a force control 

system, but it does not perform a real-time conection for the internal spling in the 

transducer. This means that when a particular force is requested , paI1 of the force \vi II 

be used by the internal spring in the transducer, resulting in the force in the sample 
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not being the same as requested. It is precisely controlled by time only. Due to a 

small portion of the load absorbed by the springs of the transducer, it presents great 

challenges in doing creep studies because it does not maintain a constant load when 

holding at peak load. (see model curve in Fig. 4.6a). Closed loop control expands the 

scope of testing by offering improved control over the testing parameters. A closed 

loop indentation is run by feedback control. When running in closed loop control 

(force control or displacement control), there is actually a digital feedback loop that is 

controlled by the computer. The closed loop force control corrects internal spring 

force in real time, so the force applied to the sample is exactly as the user requests. In 

all cases, the actual displayed force and displacement after the indent is finished will 

be correct unless the material response faster than the feedback loop (e.g. in the 

presence of fast fracture). In Displacement Control, the indentation is driven based on 

the displacement that the user requests, and thus measures the force. In Load Control 

(open loop or closed loop), the indentation is driven by the force that the user 

requests, and measures the displacement. 

If a stress relaxation test is to be performed (e.g. assessment of cracking, creep etc), 

displacement control is preferred as the case of this study. A software-driven feedback 

system has been developed that operates as a high-frequency feedback loop allowing 

true load and displacement control in the Hysitron Triboscan 6.0 control software. 

The feedback control loop operates at a greater frequency than the bandwidth of the 

transducer, producing a digital signal to actuate an analogue control signal for the 

transducer (Kuhn, 2004). 

Typical load versus displacement curves are shown in the model curves in Fig.4.6 for 

all types of test. Note a hold period at peak load or displacement is used to illustrate 

the differences between them. 
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Fig.4.6. Schematic of the Load vs. displacement curve under (a) open loop control (b) load 
control (c) displacement control. 

When there is a crack or a burst of dislocations, there will be an excursion in the load 

vs. displacement curve under the general load control (open loop). However, there 

will be load drop under displacement control (i.e. Fig 4.7). 
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Fig. 4.7a: Excursion in the load-displacement curve associated with cracking in CNx on ' 
sapphire. 
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Fig. 4.7h Load drop in the load-displacement curve which is related to fracture in a solar 
control coating on glass tested under displacement control. 
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The equipment also incorporates the dynamic stiffness measurements mode, which 

utilizes sinusoidal loading concurrent with the quasi-static loading which is useful to 

test materials that display viscoelastic behaviour (e.g. polymers (Chakravartula and 

Komvopoulos, 2006), fullerene like CNx (Palacio and Bull, 2004) by measuring loss 

modulus and storage modulus. It works in the same way as the CSM mentioned in 

previous section. 

4.4 Microscopy 

Although nanoindentation techniques are powerful tools, in order to gam more 

information about deformation mechanisms microscopy techniques are necessary. 

(Czemuszka and Page, 1985), (Page et aI., 1998), (Page et aI., 1992). This section 

describes the microscopic techniques used in this study: Reflected light microscopy 

(RLM), Scanning Electron Microscopy (SEM) and Atomic Force microscopy (AFM); 

the latter two will be described in more detail since they are the main techniques used 

in this work. 

4.4.1 Reflected Light Microscopy. 

This technique is very easy to use and works in a simple way. The light passes 

vertically to the sample through the microscope objective and reflects back to an eye 

piece, camera or TV monitor. An Olympus BH2 light microscope was used in this 

study to find the relatively big indentation array. It gives magnification up to 1000 

times through the eye piece or up to 4000 times on the TV monitor. Nomarski 

interference microscopy is available on this system. This mode can give significant 

contrast when imaging indentations which arises from the interaction of plane­

polarized light with a birefringent specimen to produce two individual wave 

components that are each polarized in mutually perpendicular planes. The interference 

colours produced are related to height differences on the sample. Reflected light 
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mIcroscopy IS very useful to explore densification underneath (e. g. Fi g. 4 .8a) an 

indent and subsurface cracking such as lateral cracking and delamjnation at the 

interface (e.g. Fig. 4.8b) which has a strong contrast in the image. This is largel y due 

to the fact that the glass substrate and coatings on it are transparent in the visible. 

Lateral crack 

Densification 

Fig. 4.8. Reflected light micrograph of fused silica indented at 500mN, which shows 
densification and lateral cracking caused by indentation. 

Radial crack 

Picture frame crack 

Delarllination 

Fig. 4.8b. Reflected light micrograph of 1000nm SiC on Si (100) indented at 500mN 
which shows radial cracking, picture frame cracking and delamination at the mterface. 
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4.4.2 Atomic Force Microscopy (AFM) 

In this study, a commercial AFM (Park M5 Autoprobe, Park Scientific Instruments, 

and Sunnyvale, California) and the in-built AFM in the Triboindenter were used. The 

former scans the surface of the sample with a sharp tip (diameter less than 10nm in 

this study) which provides high resolution images compared to the latter which scans 

with the indenter tip (radius of a new cube comer tip is 40nm and radius of the used 

Berkovich tip is about 100nm). For the park AFM, the tip is placed at the free end of 

a cantilever. The forces between the sample surface and the tip will make the 

cantilever bend (see Fig. 4.9). A detector measures the cantilever deflection when the 

tip is moving over the samples and the computer uses a feedback loop to keep the 

curvature constant. The feedback signal is used to provide the image of surface 

topography. A range of different cantilevers can be used; in this study a sharpened 

silicon cantilever (Ultralever®) has been used. The scanner consists of a piezoelectric 

ceramic tube and the ScanMaster® hardware closed-loop scan control which allows 

quick and accurate zooming in features of interest without drift or distortion and 

corrects for unavoidable creep, and hysteresis in piezoelectric scanning systems. 

There are different imagining modes available with the Autoprobe M5, which is 

discussed in the following. The force most commonly associated with the atomic 

force microscope is the van der Waals interaction force, which varies with the 

distance between the tip and the sample (see Fig.4.10). This allows three main 

imaging modes. 

Contact AFM mode (C-AFM): When the distance between the cantilever and the 

sample is less that a few angstroms, the Van der Waals force is repulsive. As the 

scanner traces the tip across the sample, the contact force causes the cantilever to 

bend as a result of changes in topography. This provides the best resolution image but 

it may result in the contamination or damage of the sample. Also it may damage the 

tip When analysing a very hard surface or a surface with extreme topography. 
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Photodiode 

Cantilever 

Sample Surface~~-- Tip 

PZT Scanner 

Figure 4.9: A schematic of an Atomic Force Microscope probe. 
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Figure 4.10: Interatomic force vs. distance curve. 
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Non-contact AFM mode (NC-AFM): If the distance between the tip and sample 

surface is relatively large (e.g. tens to hundreds of Angstroms), the van der Waals 

forces are attractive, and the microscope operates in non-contact mode. In this mode 

the cantilever is vibrated near the sample surface at its resonant frequency with 

amplitude that is smaller than the tip to surface distance. Changes of the resonant 

frequency or vibration amplitude during the tip scanning the sample surface are 

detected. Such changes in the resonant frequency of the cantilever reflect the changes 

in the spacing between the sample and the cantilever so that a map of surface 

topography can be generated. It does not provide very good resolution compared to C­

AFM but it is very suitable for soft samples and gives reasonable resolution without 

contamination of the sample surface. 

Intermittent AFM contact (IC-AFM, sometimes called "tapping mode): This is similar 

to the non-contact mode, but it also briefly contacts the sample surface every cycle. It 

is less likely to damage the sample compared to the contact mode since it eliminates 

lateral force between the tip and the sample and it has been found that IC-AFM is 

more effective than NC-AFM in the case of larger scan sizes that may contain greater 

variations in sample topography. Its resolution is intermediate between contact and 

non-contact mode. 

In this study, the best resolution is the mam concern. In addition, the samples 

analysed here are neither very hard nor soft so contact mode has been used in this 

study. The best lateral resolution condition is about O.5nm and the Z resolution is 

O.2nm. 

The major merit of AFM is that it allows quantitative 3D dimensioned measurements 

easily, which cannot be achieved by SEM (see FigA.11 and 4.12). Also it allows the 

imaging of very small indentations which are almost invisible in the SEM in 

particular for insulators. However, adsorbed environmental species (e.g. water) can 

influence the image. For example, water absorbed in cracks by capillary forces will 

act as bridge when an AFM tip is scanning the surface leading to invisibility of the 

crack (see example in Chapter 8). Therefore, scanning electron microscopy (SEM) 

was also used which will be explained in the next section. 
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With regard to the in-situ AFM in the Triboindenter, although the resol ution is 

limited, it allows the imaging of very small indentations (see Fig. 4.12), which are 

almost impossible to locate under off-line AFM or SEM. 
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Fig.4.11. AFM topography image of an indent in 400nm ITO on glass. 
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Fig. 4.12 . Line profile measurement of a small indentation by AFM. 

4.4.3 Scanning Electron Microscopy (SEM) 

Experimental Methods 

The SEM is a powerful and versatile technique. Its versatility stems from the ability to 

use many different signals to create an image such as secondary electrons, 

backscattered electrons, X-rays, Auger electrons etc. As a consequence, it allows the 

characterization of surface topography at sub-micrometer scale, infonnation about 

composition, crystallography, electrical infonnation, magnetic infonnation etc. In 

addition to metals, SEM can also be used to view bulk ceramics, ceramic coatings and 

ceramic composites (e.g. (Page, 1993)) or biological materials (Ayo-Yusuf et aI. , 

2005), (Schupbach et aI., 2005) although this may require a thin conducting coating or 

low voltage imaging. 

A schematic diagram of the main components of a SEM is depicted in Fig. 4.13. A 

beam of electrons generated from a filament tip is attracted towards an anode. passes 
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through an aperture into the microscope column where it is, shaped by a condenser 

lens system and focused on the sample by the objective lens. The beam can be 

electrostatically scanned on the specimen surface via scanning coils fed with signals 

from a scan generator. When the electron beam hits the sample, different types of 

signal (secondary electrons, back-scattered electrons, X-rays, Auger electrons and 

photons of various energies) are produced and collected by detectors~ these signals are 

converted to a voltage and amplified to modulate the brightness of the cathode-ray 

tube (CRT) thus yielding a 'brightness-modulated' image synchronously displayed by 

the CRT as the beam is scanned on the specimen. 

SEM studies in this thesis were carried out usmg a CamScan S4-80DV [(Page, 

1993)], fitted with a high brightness LaB6 electron source, capable of high resolution 

at modest electron accelerating voltages (-4nm at 15kV). The specimen chamber is 

pumped to - 1 xl 0-6 torr using a diffusion pump and equipped with a specimen 

airlock to minimise contamination when placing the samples into the SEM chamber. 

The electron gun is differentially pumped to - 2 xl 0-7 
torr using an ion pump. An 

integrating framestore, providing effective means of image processing and noise 

integration, is used to capture images via a number of detection systems (high 

sensitivity silicon back scattered electron detector (KE Developments), an Oxford CL 

system with monochromator, a LINK LZ4/eXL EDXsystem and a Cambridge 

Technology scanning electron acoustic attachment) depending on the signal required. 
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Fig. 4.13. Schematic diagram of the main components of SEM. 
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SEM can operate in different modes depending on the type of signal analysed and it 

can provide different kinds of information. Figure 4.14 summarizes the range and 

spatial resolution of their various signals produced. 

X-rays 

Auger electrons Backscatter electrons 

Secondary electrons 

Figure 4. 14: Summary of the range and spatial resolutions for the different signals produced 
when an electron the beam interacts with the sample surface. 

I. Secondary electron imaging (SEI) 

Secondary electrons are low energy electrons (E<50 e V) which are formed as a result 

of excitation by the high-energy primary beam of loosely bound from sample atoms 

electrons. This mode allows imaging the surface features with a few nanometres 

diameter (topography). Since metals emit less secondary electron than insulators, 

different phases may be identified due to the different contrast levels. The 

disadvantage of this mode is that the low energies of the secondary electrons make 

them particularly susceptible to specimen charging. Therefore, if the specimens are 

not very conductive, they can attract polarisable gaseous contaminants which 

agglomerate on the sample surfaces and thus can lead to progressive Image 
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degradation. This can be avoided by coating the specimen with a conductive layer 

(such as gold). 

However, when imaging ceramic and ceramic coated samples, it is desirable not to 

use the conductive coating because it can obscure the microstructural detail, which is, 

in particular, crucial for the detection of cracks with ultra small crack opening 

displacement. The use of low accelerating voltages « 2kV) to prevent charging 

effects (Oatley, 1972) could be a possible solution, but it will lead to a loss of 

resolution due to poor signal to noise ratio. For example, when imaging the ceramic 

coatings on glass in this study, charging results in poor resolution and image drift. 

Therefore, it requires skill to locate the indentation in the electron beam and focus 

very quickly so that good images are obtained; also a conductive paint at the edges of 

sample is useful to help leak away buried charge. Low voltage imaging is not an 

option with these samples because it will lead to poor contrast levels. 

II. Back Scattered imagines (BEl) 

Compared to secondary electrons, back scattered electrons are high-energy (E=IO-

20ke V) primary electrons which are reflected from the surface and are much less 

abundant. Backscattering is sensitive to the atomic number and the density of the 

material, so this mode is very suitable to identify different phases in the specimen, 

cracks in coatings or bulk materials, and interfacial failure, which is usually 

impossible to be obtained by SEI alone. Atomic number contrast has been also used 

to identify through-thickness cracks in coating, where the substrate material could be 

identified at the crack bottoms without the distraction of SEI edge contrast (Twigg, 

1996). It usually provides much better resolution than SEI for crack imaging. (e.g. 

Fig.4.1S) 
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(a) (b) 

Fig. 4.15. Scanning Electron Micrographs: (a) SEI and (b) BEl of an indentation in a 400nm 
ZnO multilayer on glass. It is obvious that BEl gives a better image for fracture analysis. 

III. X-Ray emission (EDX technique) 

When inner shell e1ctrons are ionised by the primary beam, there is the possibility for 

a single electron to drop from an outer shell to that inner ionised shell hole. The 

energy is released in the form of a photon, with energy given by the energy difference 

between the two states. An energy Dispersive X-ray (EDX) spectrometer can be used 

to perform qualitative and quantitative analyses for elements comprising a material by 

measuring the characteristic X-rays emitted from elements in the sample. EDX is non­

destructive and therefore can be used for a range of applications[e.g. (Amin, 

2006),(Ayo-Yusuf et aI., 2005),(Goldstein et aI., 1992)]. This technique is primarily 

used for chemical analysis rather than imaging (Goodhew and Humphreys , 1988). 

IV. Auger emission 

This is an important surface analytical technique, but auger emission electrons are of 

low energy and are so easily absorbed that they require ultra high vacuum systems 

and specialized equipment for efficient application (Goodhew and Humphreys, 1988). 

They can be used to provide compositional information about the outmost surface 
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layers. Auger electron spectroscopy has been used for quantitative composition 

analysis during the development of the coatings studied in this study. 

There are also other techniques associated with SEM such as scanning electron 

acoustic microscopy (SEAM)(Page and Shaw, 2004), selected area channelling 

patterns (SACP) (Wells, 1974) and cathodoluminscience (CL) imaging which were 

not used in this work and will not be discussed further. 

4.5. Nanoindentation tests 

Prior to the nanoindentation tests, the as-received coated glass samples are cut into 

smaller pieces (about 2cm X 3cm). A sample is mounted on an aluminium holder by 

low melting point wax (Lakeside 60). Given that the substrate glass is insulator and 

the coatings are mainly poor conductors, a layer of silver paint is applied around the 

edges of the sample in contact with the Aluminium holder to reduce the problem of 

charging during SEM analysis. 

4.5.1 Low load tests 

The low load tests were carried out using the Triboindenter. Initially, a Berkovich 

indenter was used, however, no evidence of cracking in load-displacement curves and 

AFM images was observed at the highest load available (lOmN) using this 

instrument. It has been found that when using a cube comer tip the cracking threshold 

for many brittle materials can be reduced by at least 10 times compared to a 

Berkovich or Vickers indenter (Pharr, 1998). Therefore, a cube comer tip (for a new 

tip, tip end radius is 40nm) was selected for the assessment of fracture. 

As previously mentioned displacement control is very suitable for stress relaxation 

and fracture assessment, so it was adopted to study the cracking behaviour in this 
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work. To test such coatings without excessive substrate effects, it requires a very low 

load test «5roN). 

For the fracture assessment, this work focused on the systems with a relatively thick 

cap layer (400nm thick) in which the through-thickness crack is easier to form and 

observe. Also it is more practical to minimise the substrate deformation influence for 

the thicker coating. The description of the test procedure used is summarized in the 

following. 

It was suggested that many coatings flex elastically up to displacements 

approximately equal to the coating thickness when the onset of fracture may occur 

[(Page and Hainsworth, 1995), (McGurk et aI., 1994)]. Therefore, the maximum 

displacement control set point is 400nm which is equal to the thickness of the thick 

top layer (except for the sample with 240nm ITO coating). The tests were performed 

at range of penetration depth from 40nm to 400nm. The loading rates were varied 

from 5nmls (for low penetration) to 40nmls (for high penetration). Each test is 

repeated at least 5 times in different positions. The hold time at peak load for each 

case is 5 seconds. Fig. 4.16 shows a typical control function for a nanoindentation test 

under displacement control. 
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Fig. 4.16. An input displacement function vs. time under displacement control. 
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4.5.2 High load tests 

Although evidence of cracking was observed in both load-displacement curves and 

AFM images at higher loads (>2mN) , no distinct well-established crack pattern was 

observed in the in-situ AFM image due to its limited resolution. In order to obtain 

further insight into the indentation fracture of such a complex coating stack, it is 

necessary to investigate the fracture behaviour at different scales. Therefore, high load 

tests were performed on the coated and uncoated glass, fused silica, silicon and coated 

silicon using a Nanoindenter II (MTS, Knoxville, TN, USA) fitted with a Berkovich 

indenter (tip end radius -250nm) at a range of loads from 10mN to 500mN. Ten 

indentations were made at each load. The distance between every indentation was at 

least ten times the indentation diameter to avoid interaction between the residual 

stress fields of neighbouring indents. Displacement control was used throughout~ the 

displacement rate was 50nmls for peak loads bigger than 300mN and 10nmls for 

lower loads. Hold segments of 60s at peak load and 70% of peak load during 

unloading were used to assess the possibility of creep (minimal) and to correct for the 

influence of thermal drift. The indentation area function was carefully calibrated using 

a fused silica standard sample prior to testing. In order to measure the fracture 

dimensions, scanning electron rrucroscopy (SEM, Camscan) and atomic force 

microscopy (AFM, Park M5) were used. 

4.6. Summary 

The chapter began with the description of the samples investigated in this thesis. 

Indentation instruments (Nanoindenter II and Hysitron Triboindenter) and microscopy 

techniques (reflected light microscopy, atomic force microscopy and scanning 

electron microscopy) used to characterise the indentation response of the samples 

have been discussed. Finally, the details of nanoindentation tests at low loads and 

high loads were presented. 

Chapter 5 will present a new model to assess coating toughness which is based on 

extrapolating total work versus displacement curve (i.e. Wcdp method). 
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Chapter 5: Wt-dp model to assess coating toughness 

during nanoindentation 

As discussed in Chapter 2, the conventional indentation models (CIM) may not work 

well for coated systems, in particularly for thin films, due to the influence from the 

substrate such as substrate plastic deformation and membrane stress due to the 

constraint imposed by the substrate. With the intention to eliminate the substrate 

influence, a relatively low load is preferred and this may lead to small cracks which 

can be even confined to the indent impression, in which case, the conventional 

indentation methods (CIM) are not valid. Therefore, energy based models are 

proposed as alternative options to estimate the fracture toughness as discussed in 

Chapter 2. In this chapter, the main part will be focused on the models based on 

analysing individual load-displacement curves. Initially, the model of extrapolating 

load-displacement curves (denoted as ld-dp method) is briefly reviewed. Because 

there are some disadvantages and limitation of this model, it has been further 

developed by extrapolating the total work vs. displacement curve (denoted as the We 

dp approach in the same way as in Chapter 2) which will be discussed in the second 

half of this Chapter. A brief introduction and comment about these two approaches 

was covered in Chapter 2 but is emphasised in this Chapter. Detailed comparisons 

between these two models and the other energy based models are also discussed. 

5.1. Ld-dp model 

The ld-dp model (Li and Bhushan, 1998, Li et aI., 1997) is based on extrapolating the 

loading curve when there is a step associated with through thickness fracture in it. In 

this model the load-displacement curve is extrapolated from the step start point 

(assumed to be the onset of fracture) to its end point, and the difference between the 
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extrapolated curve and the measured curve is regarded as the fracture dissipated 

energy (see details in Chapter 2). However, this model was questioned by several 

authors (e.g. (den Toonder et aI., 2002)). It is found that this model is difficult to 

apply to small cracks which may not cause significant displacement excursions under 

load control. Also this method cannot be applied to displacement control tests. This 

model completely ignores the difference in mechanical properties between an 

uncracked coated system and its cracked systems counterpart. In order to solve these 

problems, the so-called Wt-dp method has been developed here. The initial intention 

for the development of the Wr-dp method was to deal with small cracks in coatings; 

therefore, how the experiments were designed to produce small cracks is discussed 

prior to the description of the Wr-dp method. 

5.2. Experimental design 

Indentation experiments were performed under displacement control using a Hysitron 

Triboindenter fitted with a cube comer indenter (radius is 40nm for a new tip). The 

maximum displacement was set in the range 40nm to 400nm. The hold period at 

maximum displacement was 5s and afterwards the indenter was withdrawn at the 

same rate as during the loading cycle. The crack length and profiles of the indentation 

impression were analysed by AFM using the tip which made the impression. Brittle 

coatings and glass were selected for investigation. The properties of the coatings are 

listed in Chapter 4. Samples with relatively thick coatings (i.e. >200nm) on top were 

investigated here because there are no obvious events in the P-b curves for the 

samples with normal thickness (i.e. in the range of 7nm to 20nm for individual layers) 

of solar control coatings. As mentioned previously, it is difficult to assess small 

cracks. Primarily, special techniques are required to form the small crack under the 

condition that it can be used for toughness assessment. In the next section, it will be 

explained why the displacement control test with a sharp cube comer tip was 

necessary. 
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5.2.1 Why displacement control tests? 

In this part, I only concentrate on the issue of why displacement control is preferred to 

assess fracture behaviour. More details about displacement control and load control 

were covered in Chapter 4. 

It is often argued that the step in the load-displacement curve under load control (see 

Fig. S.Ia) indicates the loss of contact caused by a transient event such as fracture in 

brittle materials, but it cannot ensure the energy dissipated during displacement 

excursion is accounted by the transient event only because of the possible additional 

permanent deformation associated with it (Warren and Wyrobek, 2005). In contrast, 

the load drop in a displacement-controlled curve (see Fig.S.lb) was argued to be 

unambiguously related to loss of contact attributed to spalling accompanying fracture. 

If only the load-displacement curves were analysed, additional work was done by 

indenter during the displacement excursion under load control and no work was done 

by the indenter during load drops under displacement control tests which was also 

argued elsewhere (den Toonder et aI., 2002). If the feedback control of the instrument 

is perfect, the load drops to ensure the exactly desired displacement and thus no 

additional work is done during a fracture event under displacement control. However, 

in practice the feedback control is not perfect and a load drop may accompany an 

excursion (see Fig.S.I b). For example, if examining the total work versus 

displacement curve (which can be obtained by integrating the load-displacement 

curve), it can be seen that additional permanent deformation may occur under both 

test conditions (see Fig. 5.2). 

However, it is obvious that the displacement control should eliminate the additional 

deformation inherent in load control (see Fig. 5.2). In addition, as discussed in 

Chapter 3, the displacement control test is more sensitive to fracture compared to load 

control, therefore, displacement control tests were adopted here. 
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Fig.S.l. (a) Displacement excursion in the load-displacement curve associated with spalling 
in proprietary brittle coating on Si under load control and (b) load drop under displacement 
control, after (Warren and Wyrobek, 2005). 

8106 

7106 

6106 

~ 5106 

",J 

" 4106 
~ 
~ -
~ 3106 

2106 

1 106 

i II 

:::]D":~ir'"t~"[~! 
-----------------r-------------------i-------- _·_------i------ -----.------------------------

c : 

· ...... ·· .. ···· .. j· .. · .... ·· ........ ·r··· .. ····l· .. r· .. ······ .... ····t ................ . 
; ; 1'; ; ................. ; ................... ! .. .. ········· .. ··j .... ······_ ...... ·r .. ·· .. · .. _ .. ·· 

................. j ............. ···f···················,············ .. ·····!··········· ..... . 

0 
0 200 400 600 800 1000 

Disp.(nm) Disp.(nm) 

Fig. 5. 2. Total work versus displacement curves for (a) load control and (b) displacement 
control from data in Fig. 5.1. 

5.2.2. Why a cube corner tip? 

When intending to eliminate substrate effects, it is preferred to make small 

indentations which requires relatively low loads in which case fracture may not occur 

when using the normal Berkovich tip. However, the application of cube comer tips 
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can significantly reduce the threshold for cracking (Pharr, 1998) (see example in 

Figure 5.3) so that this problem can be overcome. Another merit of cube comer tips is 

that the plastic deformation zone is more confined compared to Berkovich indenters at 

a given penetration (Stein, 2005) so that the influence from the substrate can be 

further reduced and smaller cracks can be produced at scales where they are not 

influenced by the plastic deformation zone. Therefore, a cube comer tip is good for 

investigating the cracking behaviour in thin films «500nm in thickness). 
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Fig.5.3. Load-displacement curve for 400nmTiOxNy/glass indented using (a) a Berkovich 
and (b) a cube corner tip under displacement control in which the maximum displacement is 
400nm. There is no obvious excursion in load-displacement curve using a Berkovich tip, in 
contrast, significant load drops were observed in the P-8 curve using a cube corner tip. 

5.3. Model of Extrapolating Wt-b curve 

As discussed in Section 5.2, plastic deformation of the coated system is usually 

inevitable during the events in the load-displacement curve for both load control and 

displacement control. However, the ld-dp method cannot separate these effects and it 

cannot deal with small cracks. Therefore, this model is further developed in this study. 
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5.3.1. Description of Wt-dp model and the fracture mechanisms for 

hard coatings on a hard substrate 

It is proposed to assess the coating toughness based on a plot of total work of 

indentation vs. displacement (Wt-dp) which can be obtained by integrating the load­

displacement curve (see example in Fig. 5.2). The method to determine fracture 

events is explained in Figure 5.4. First, it is suggested to extrapolate the initial Wt-dp 

curve from the cracking start point A to the cracking end point C, to get the work 

difference CD after fracture; then extrapolating the Wcdp curve after cracking (i.e. 

curve XD in Fig.5.4) backward to the cracking start point and thus obtaining the work 

difference AB at the onset of fracture where point B has the same depth as point A. 

AB represents the difference of elastic-plastic deformation behaviour of the material 

prior to and post fracture whereas CD represents the total work difference caused by 

the presence of cracking which consists of the change of elastic-plastic deformation 

behaviour between the uncracked system and cracked system plus the fracture 

dissipated energy. The difference between the two (i.e. CD minus AB in Fig.5.4) will 

be the fracture dissipated energy. 

From a thermodynamics point of view, the change of total Gibbs free energy during a 

fracture event results from the compliance change of the system, exchange of elastic 

strain with plastic strain, and change in crack area (Stevens and Guiu, 1991). The 

decrease of the stiffness of the coating and the change of the elastic-plastic strain field 

for the whole coated system can be additive (see Figure 5.4a, for a typical hard 

coating on a softer substrate) or counteract each other (see Figure 5.4b, for a typical 

hard coating on a harder substrate) depending on the actual coated systems and test 

conditions. It can be shown that for most materials CD-AB will not be zero provided 

load drops or plateaux are associated with fracture in the load-displacement curve (see 

next section). 

During a through thickness fracture event in a brittle coated system, the following 

changes of the mechanical properties of the coated systems may occur, 

(1) The stiffness of the coating decreases, 
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(2) Plastic deformation of the substrate is more likely or even dominates, 

(3) Redistribution of the elastic and plastic strain may occur. The stored elastic 

energy in cracked coating is consumed, thus, in the further deformation; this 

part of coating is possibly elastically deformed rather than carrying on the 

plastic deformation. 

( 4) Any membrane stress is released. 

Fig.5.5. displays the schematic of cross-section of an indentation with through 

thickness cracking by a sharp tip illustrating the processes which might occur. 
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Fig.S.4. Schematic of extrapolating the total work vs. displacement curve before and after 
cracking to determine the fracture dissipated energy CD-AB, Compared to CD, AB can be (a) 
positive as displayed in or (b) negative as depicted in depending on the actual coated systems 
(see text). 

When a brittle coating on hard substrate is indented by a very sharp tip, say a cube 

comer tip, radial cracks easily initiate at the indent comers. When through thickness 

cracking occurs, the compressive stress and membrane stress (in Region I in Fig. 5.5) 

of the uncracked coating is released. The compliance of the cracked coating and its 

adjacent uncracked coating decreases. More load is supported by the substrate so the 

plastic deformation of the substrate is more likely to play an important role during 

further indentation. The cracked coating which was plastically deformed will still 
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support the load imposed by indenter; after the stored elastic energy is released by 

through thickness fracture it may be elastically deformed again prior to carrying on 

plastic deformation during further indentation. After through thickness cracking the 

bending stress caused by conforming to the substrate may be released. 

\ 
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Cracked coating 

Region II 

Cracke d co atin g 

Fig. 5. 5. Schematic of the cross-section of an indention with through-thickness cracking by a 
sharp tip. (a) High tensile stress at the wedge tip causes fracture and (b) after increasing the 
load a bending effect on the coatings imposed by the substrate to increase the crack openi~g 
displacement. The upthrust of the coating and the plastic deformation of substrate IS 

exaggerated in this figure. 
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All these mechanisms will lead to a change in the apparent hardness and modulus of 

the system during a crack event, thus altering the load-displacement curve (or the W t -

dp curve). It means it is not realistic to expect that the load-displacement curve or the 

W r-dp curve after cracking will follow the same rule as the case prior to cracking. 

The second step, i.e. extrapolating the Wr-dp curve backward, described in the 

previous section is to account for such deviations. That AB in Fig. 5.4 can be positive 

or negative compared to CD is accounted for by the fact that the actual curve may be 

above or below the extrapolated curve. This is the reason why the second 

extrapolation process in Wcdp model is necessary. Can the similar operation be made 

for ld-dp model under load control? The answer is no. The reason is that the energy 

(work) can be treated as the linear summary of elastic work, plastic work, fracture 

dissipated energy plus energy dissipated by heat etc (which is usually neglected), 

whilst, the load cannot be separated in this way. It is often the case that a second step 

in load-displacement curve will lead to a negative value of toughness (see such an 

example in Fig. 5.1). 

5.3.2 Mathematical validity of the predictions and comments in Wt-

dpmethod 

In this section, the comments in Section 5.3.1 that CD-AB is unlikely to be zero will 

be analysed. For the sake of comparison with the ld-dp model, only the case of an 

excursion in the P-8 curve under load control is discussed in this section. 

Assuming that there is no obvious slope change before pop-in, and the load­

displacement curve (P-8) can be described by a power law equation of the type, 

(5.1) 

Then the total work done by the indenter at Point A in Fig.5.6, W A, can be obtained 

by integrating the load-displacement curve, 
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(5.2) 

For simplification, it is assumed that the total work versus displacement curve can be 
expressed as, . 

1 1 
W = - aJ3 + - bJ2 + C 

3 2 
(5.3) 

It is obvious that c>O according to its physical meaning because the totoal work at the 

excursion end point (i.e. area OADN in Fig.5.6) is always bigger than the area under 

the load-displacement curve (ie. area ODN in Fig.5.6). 

Thus P-o curve after fracture can be expressed as 

(5.4) 

where a,b,c are dimensionless coefficients. 

In order to determine the value of coefficients a and b, two initial conditions should 

be satisfied. For a plateau in the P-o curve under load control experiments (here the 

ideal excursion is considered), the load Per where the pop-in occurs should be 

identical at Point A and Point B (see Fig. 5.6), 

(5.5) 

The total work at Point D expressed by integrating the equation should be the same as 

is measured, 

(5.6) 
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For convenience, let 62 = /1,6
1 

' where A > 1 when pop-in occurs. 

Combining equations (5.5) and (5.6), we can obtain, 

Then AB as depicted in Fig.5A is given by, 

1 3 (1 ~3 1 ~2 ) AB=-k1b1 - -au1 +-bu1 +c 
332 

1 3 (1 ~3 1 ~2 ) CD = -k1b2 - -au2 + -bu2 + C 
332 

Now I need to prove that CD - AB > o. 

From equations (5.9) and (5.10), we obtain, 

CD - AB == ~ kJ (5i - 5;) -G a(5i -5;) + ~ b(5i - 51
2
)) 

= 81
2 
(A -1) (28 CA2 + A + 1)Ck

1 
- a) - 3bCA + 1)) 

6 1 

Combining equations (5.7), (5.8) and (5.11), we get, 
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Since 1>0, the sign parameter in equation (5.12) is the complex term in the big 

bracket. Denoting, 

Thus the derivative OfJ(A) is , 

and the derivative Ofl'(A) is given by, 

The derivative OfJ"(A) is given by, 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

Since A>l, it is obvious that l' "(A»O. ThusJ"(A) is a monotonic increasing function 

of A. Therefore, 
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(5.17) 

Hence,!'(A) is a monotonic increasing function of A. Therefore, 

Also,I(A) is a monotonic increasing function of A. Therefore, 
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Fig. 5.6. Schematic of ideal load-displacement curve with an excursion due to crack 

in a coated system under load control discussed in this section. 

It is necessary to point out that it is almost impossible to include in the mathematical 

analysis all the complex factors which influence behaviour in the coated systems 

which experience the fracture. The mathematical proof here is for an ideal simplified 

situation. For the actual coated systems, the argument that CD-AB>O may be 

expected to be valid in wide range of cases which is confirmed by the experimental 

investigations. The purpose of the next section is to demonstrate this. 

The same idea can be also applied to the simple purely linear elastic behaviour in 

which the fracture occurs which is discussed in Appendix. 

5.4. Examples of model application 

In this section, the fracture behaviour and the fracture toughness for brittle coated 

systems in different categories is discussed. Two cases are considered. 
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Type 1: Stiffer and harder coatings on a hard substrate, i.e. Solar control coating 

coatings on glass as described in Chapter 4; carbon coatings deposited on Si by 

different techniques from the literature is assessed. 

Type 2: Softer coatings (but still hard materials) on harder and stiffer substrates, 

examples include CNx coatings on various ceramic substrates such as sapphire. 

Experimental measurements and data from the literature are used to examine the 

reliability of the Wcdp method. 

5.4.1 Solar control coatings on glass 

5.4.1.1 Observations of fracture 

Fig.5.7 shows the load-displacement curves for a 400nm TiOxNy single layer on glass 

with peak displacements of 100nm and 400nm. There is no evidence for fracture at 

the lower penetration but clear load drops are visible in the load-displacement curve 

for the deeper penetration. There is also some evidence of uplift next to the bigger 

indent (circled in Figure 5.7d) which could be an evidence for coating detachment 

since this material does not show appreciable pile-up and the substrate shows neither 

significant plastic deformation nor the significant constraint of plastic deformation in 

the coating. In order to anal yse the possibility of cracking further line profiles have 

been extracted from Figure 5.7d and are presented in Figure 5.8. It can be seen that 

there is a possible open through-thickness crack (arrested) which is much deeper 

compared to valley in the surface roughness measurement. This is likely to be due to 

the detachment and lateral displacement of the coating. The origin of this detachment 

might be a picture-frame crack at C (see Fig.5.8) possibly at the transition between 

region I and region II as depicted in Fig.5.5. 

The first event i.e. Event A-B-C in Fig.5.7c is accounted by the radial crack, whilst, 

the second event, i.e. Event D-E in Fig. 5.7c is expected to be related to interfacial 
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failure. The up-thrust in Fig.5.7d provides evidence of interfacial failure. The extra 

linear partion in the unloading curve in Fig. 5.7c is very likely caused by the rebound 

of the delaminated coating which implies that the delamination event occurs during 

the loading half cycle. Further, it is found that interfacial failure tends to occur after 

radial cracking for this sample, therefore, the second event which has different 

character from first event can be assumed to have a different fracture mechanism and 

it is possibly due to the interfacial failure. For the other samples without upthrust in 

the AFM image and graded slope change in their corresponding line profile 

measurement, radial cracking was assumed. 

To provide further evidence for the size and location of fracture in these samples, 

analogy is made with the indentation tests done under high load (50mN-500mN) by a 

Berkovich indenter. At higher loads using a Berkovich indenter two crack systems 

are observed in these kinds of coatings using high resolution scanning electron 

microscopy (Berasategui, 2003). Initially, radial cracks were observed along the edges 

of the indenter where the coating is bent around the indenter edge. These are followed 

by picture-frame cracks at the edge of the impression once sufficient bending has 

occurred, which is usually observed at a relatively high load (>100mN). Since the use 

of a cube comer indenter can lower the threshold load for fracture initiation more than 

10 times compared to a Berkovich indenter for many brittle materials (Pharr, 1998), it 

is reasonable to expect the presence of fracture at a few mNs. It might be expected 

that similar cracks are produced by the cube comer indenter at lower loads. However, 

it is noticed that the picture frame cracks in coatings are usually enhanced by the 

bending effect caused by the plastic deformation of the substrate which is more likely 

to occur for blunt tip at high load in which case the substrate will have been 

sufficiently plastically deformed. 

For very low load tests, especially for the tests here which intend to eliminate the 

substrate influence, it can be expected the bending effect imposed by the plastic 

deformation of substrate is not significant. Further, given the sharp geometry of cube 

comer tip (with a small tip radius as well), the high stress intensity should result in the 

appearance of radial cracking. The crack pattern in this study is difficult to verify by 

microscope such as SEM or in-built AFM due to the limitation in resolution of these 

microscopy techniques. Also it is tricky to locate such small indentations in the SEM 
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or post-facto high resolution AFM measurement. In-situ transmission electron 

microscopy may be necessary to confirm the crack pattern and provide accurate crack 

imaging under such circumstances. 
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Figure 5.7. (a, c) Load-displacment curves and (b, d) AFM images of a 400nm TiOxNy 

coating on glass substrate (a, b) without cracks and (c, d) with cracks, respectively. The 
coating was indented by a cube corner tip under displacement control at 100nm maximum 
displacement (a, b) and 400nm maximum displacement (c, d) . The circle in (d) marks an area 
of uplift associated with through-thickness and interfacial fracture. In (c), position A is 
regarded to be the position where plastic deformation extends to the softer substrate which is 
reasonable since the estimated plastic deformation exceeds 400nm based on the analysis by; 
points Band C are the start point and end point of through-thickness cracking, respective ly; D 
and E are the start point and end point of interfacial fracture. 
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Figure 5.8. AFM line profile measurement corresponding to Fig.S .6(d). An open through­
thickness crack is visible at point C. 

The experimental observations suggest that it is better to assess coating toughness 

under 400nm control because at such a displacement (relatively higher load), there is 

visible fracture in AFM images and analysable Wt-dp curves for all the samples 

investigated here. In addition, it was proposed (McGurk et aI. , 1994) that when the 

penetration is approaching the coating thickness during the fracture events, the cracks 

are likely to propagate through the complete coating thickness. Therefore, it is more 

convenient to assess the coating toughness based on the 400nm control tests and 

complete through-thickness cracking is used as a basis for toughness assessment. 

The Wr-dp curve and its corresponding load-displacement curve for a 400nm TiOxNy 

on glass are plotted in Fig. 5.9. Two significant discontinuities are observed. It is 

obvious that these two events may be related to different fracture mechanisms. The 

first one, a small discontinuity, is related to radial cracking and the second one, a big 

jwnp, is likely to be accounted by interfacial failure. The reasons are discussed in 

previous paragraph. 
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Fig. 5.9. Total work versus displacement curve for a 400nm TiOxNy on glass. Two significant 
discontinuities are observed. It is obvious that these two events are related to different fracture 
mechanisms (see text). 

5.4.1.2 Energy release rate and toughness 

Conventional indentation methods for measuring fracture toughness (Anstis et aI. , 

1981) are not suitable for the thin coatings in particular for cracking confined to 

indent due to factors such as substrate effects, membrane stress, the domination of 

near-field stress in the case of small cracks. However, it is treated as first 

approximation in this study for comparison purposes. For Berkovich and Vickers 

indenters, X =0.016 in Eq. (2.1). In this Chapter, a constant of 0.0335 was used for 

the cube comer indenter which was derived based on the scale relationship between 

the coefficient and the geometry parameter as mentioned in Chapter 2. 
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The strain energy release rate in Chapter 2 and fracture toughness can be detennined 

based on Eq. (5.43) which is the same as that used in ld-dp model. 

E U 1 
K1C = [ ~ fr ]2 

(1 - V ) Acrack 
(5.20) 

Where Ujr, and Acrack are the fracture dissipated energy and the fracture area; Ef and 

v are Young's modulus and Poisson's ratio of the coating. 

In order to do this we need an accurate measurement of crack area. In this study the 

calculation is based on radial fracture following the indenter edges; it is assumed that 

the crack horizontal dimension is equal to the indentation radius (because no evidence 

of well-extended radial cracking was observed by in-situ AFM) and the vertical 

dimension is equal to coating thickness as discussed in previous section. Since there 

are three indenter edges, this dimension must be multiplied by 3 to get the total crack 

area which assumes uniform fracture around the indentation. All these results are 

summarized in Table 5.1. The comparison between the new method proposed here 

and the CIM is also plotted in Fig.5.9. 

From Table 5.1, it can be seen the energy release rate of these kinds of ceramic 

coating are in the range 15 to 45 J/m2 which is reasonable. By comparing the 

toughness determined by CIM and the new method developed here, they are of the 

same order of magnitude. However, the results for all the samples detennined by the 

conventional method are almost identical to the toughness of uncoated glass (except 

for tin oxide). But these coatings suppress the fracture of the glass at higher loads, 

which implies that they are tougher than the glass substrate. The results determined by 

the Wt-dp method developed here support this observation. Although the sub­

threshold cracking has been investigated elsewhere (Jung et aI., 2004a), it requires 

many tests on a well-documented material to calibrate the constants in the model 

which is feasible for bulk material but not for thin coatings because their mechanical 

properties are usually not well known. 
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Table 5.1. !he e~ergy ~elea.se rates and toughness calculated for the solar control coating 
components mvestIgated m thIS study based on the radial through-thickness fracture. 

Energy release rate Toughness of coating KIC (MPaFm ) 
of coating GIC 

(J/m2
) calculated by Wcdp model Estimated by elM 

the Wcdp model 

400nm TiOxNy top layer single 24.4 ± 1.4 1.8 ± 0.2 0.9± 0.1 
layer stack 

240nm ITO top layer 36.3± 8.2 2.2± 0.3 0.9± 0.1 
mutilayer stack 

400nm ITO top layer 32.7±4.4 2.1 ± 0.2 0.7± 0.1 
mutilayer stack 

400nm TiOxNy top layer 24.1 ± 7.8 1.8± 0.2 1.0± 0.1 
mutilayer stack 

400nm Sn02 top layer 29.3 ± 9.8 1.9± 0.3 1.3 ± 0.1 
mutilayer stack 

It might be argued that the fracture events which lead to features in the load­

displacement curves are actually picture-frame cracking events. In this case the area 

of crack can also be shown to be dependent on the size of the indent and is about J3 
times the area determined for radial cracks The strain release energy will thus be 

reduced by a factor of 1 I J3 and is thus in the range 9 to 26 J/m
2 

which is also 

reasonable. 

When it comes to the residual stress in the coating, unlike in the case of interfacial 

fracture or radial fracture for very brittle coatings with relatively large residual stress 

(e.g. sol-gel coating in (den Toonder et al., 2002)), it only plays a minor role in the 

contribution to radial fracture in this study. For such through-thickness cracking, it 

can be expected the upper volume limit of the coating whose stored strain energy Ur 

will contribute to the fracture is a disc with the radius of crack length as depicted in 

Fig. 5.11. 
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Figure 5.10. Comparison of toughness values determined by the conventional indentation 
method and the new method developed here. 

The region around the crack undergoes stress relaxation due to the decease of stiffness 

where the region depicted in Fig.S.11 is the upper limit of the stored strain energy 

(Ur) because the tensile stress decrease dramatically with the distance, thus is given 

by, 

1 (j 2 
U = __ r_1(C2 t 

r 2 E 
(5.21) 

Thus the contribution of Ur to the energy release rate of fracture is given by, 

(5.22) 

Where (J'r is the residual stress in the coating (for 400nm TiOxNy top layer with 

residual stress is around 200MPa); E, C, t are Young ' modulus, crack length (for 

400nm TiOxNy top layer, the crack length is about 480nm) and coating thickness, 
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respectively. According to Equations (5.21) and (5.22), we obtain 0.94 J/m2 which is 

significantly smaller than the value of 24J/m2 in Table 5.1. An alternative argument is 

that, based on the value of the strain energy release rate G estimated here, using the 

Equation (5.23) developed by Lawn et al (Lawn and Wilshaw, 1975), the stress O'tip at 

the crack tip is about 2400MPa which is much bigger than the residual stress 

(-200MPa). For a crack which is not well-developed, O'tip can be expected to be 

bigger than 2400MPa in this study because this sub-threshold crack is unstable (Jung 

et aI., 2004b), whilst, Eq.(5.23) was proposed based on equilibrium cracking. 

1 
EG ]2 

O'tip = [(1- y2 )JZQc 
(5.23) 

where E, Y, c are as defined before, and the geometric constant Q is 411[2 for an ideal 

fully developed penny crack in an infinite medium. 

Fig. 5.11. Schematic of cross-section of a disc encaved the cracked coating which is regarded 
to be an upper limit volume contributes to coating fracture. 
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The arguments above provide the evidence that the residual stress in these coatings is 

much smaller than the indentation stress which contributes to the fracture in this study 

and thus it may be ignored here with reasonable accuracy. 

In the same way, the energy release rate for interfacial failure for 400nm 

TiOxNyfglass, and 240nm ITO multilayer/glass is 30±14J/m2, 19±9J/m2, respectively, 

where the delamination area is assumed to be nc2
. As it was found that interfacial 

failure in the former sample (i.e. TiOxNy coating on glass) occurs at higher load than 

the cracking in the coating, this indicates that the interface toughness is comparable to 

the coating toughness if not greater. The energy release rate for interfacial failure is 

similar to that for the coating itself, which agrees with the comments above. 

Experimental observation shows delamination at the edge of the sample prior to the 

indentation which is caused by the high residual stress in the ITO coating introduced 

during deposition and the additional stress during glass cutting which confirms the 

relatively poor interfacial toughness for 240nm ITO multilayer/glass. It is reasonable 

to expect that such an interface is weaker than that of the TiOxNy coating on glass 

which is consistent with the calculations here. It may also be expected that the 

interface is weaker than the coating itself which is also suggested by the calculations 

here. More details about assessment of interfacial failure will be addressed in Chapter 

8. 

5.4.2 Toughness results for other coated systems 

It is more convincing if this method can be successfully applied to different coated 

systems with different crack behaviour under different test conditions. 

Figure 5.11 depicts the Wcdp curve and its corresponding fracture image by SEM for 

a l/lm fullerene-like CNx coating on an Ah03 substrate under 500mN load control. 

The step in the load-displacement curve and jump in the Wcdp curve are caused by 

the through-thickness cracking of the coating since blistering without coating 

detachment shows no jump in the loading curve. In this case, the area in Eq. (5.43) is 

determined by the extent of through-thickness fracture after interfacial failure. The 
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toughness results for the CNx coating on different substrates obtained by vanous 

models are summarized in Table 5.2. 

2 .4 10 5 

Sal 

2 10 5 
lal P-8 curve 

!r' S' &3al 
N 

1 .6 10 5 
0 ~:!al 
~ 
~ 

-t= 1 .2 10 5 lal 
0 
5: c . 
<1> 

EI:IC 

0 8 104 

I-

4 104 

0 
0 400 80 0 120 0 1600 

D isp lacemen t (nm) 

Fig. 5.12. The total work vs. di splacement curve and SEM image for coating deposited on 
Ah03 substrate where through thickness fracture occurs. The maximum load is 500mN. 

It is necessary to point out that the crack morphology of CNx on sapphire is slightly 

different from the previous samples. For the other samples, the area of cracking can 

be assumed as 3 x 2nC R as suggested by den Toonder et al (den Toonder et aI., 2002), 

(see details in Chapter 2), whilst, for CNx on sapphire, the crack area IS more 

reasonably calculated as 2nCR since fracture is approximately circular. 
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Fig. 5.13. SEM micrographs and corresponding P-b curve of a 500mN applied load on l)lm 
CNx coating deposited on 3C SiC( 111) showing through-thickness fracture and chipping of 
the coating. The load where excursion occurs is almost the maximum load. After (Femandez­
Palacio et al., 2004). 

Table 5.2. Comparison of IJlm fullerene like CNx on different stiffer and harder substrate 
between different models based on fracture dissipated energy method. 
Substrate K!c, MPaJ;;;. 

Ld -dp model Wt-dp method here 

Si(OOl) 2.9± 0.1 3.8± 0.2 

Al20 3 4.2± 0.2 5.7± 0.2 

3C SiC(OOl) 5.5 ± 0.2 5.6+ 0.2 
3C SiC(lll) 4.9±0.1 5.4± 0.2 

From Table 5.2, it can be seen that the ld-dp model tends to underestimate the fracture 

toughness for the first two sets of samples which agrees well with the prediction that 

Id-dp method may underestimate the fracture toughness for a typical softer coating on 

harder and stiffer substrate in the previous section (i.e Section 5.2) . For the other two 

samples, the results obtained by the ld-dp method and Wcdp model are almost 

identical, the reason is that the load where displacement excursion occurs is 

approaching the maximum load (also the highest limit of Nanoindenter II available in 

Newcastle), which leads to the restriction of the second extrapolation process as 

discussed in the previous section. This happened to the latter two samples and there 

are no obvious slope changes prior to the excursion, in which case , the W t-dp method 

gives similar results to the ld-dp method. However, when other features (such as slope 
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changes) occur prior to the excursion, the Wedp method is preferred because it tends 

to reduce their influence. An example of this is discussed in the following paragraph. 

An examination was carried out for experimental data from carbon coatings deposited 

on Si which were initially used in the development of ld-dp model in the work of Li et 

al (Li et aI., 1997) , (Li and Bhushan, 1998). The comparison of the fracture 

toughness for different carbon coatings on Si determined by ld-dp method and Wedp 

method is summarized in Table 5.3 from which it can be seen that more reasonable 

results are provided by means of the Wedp method. From Table 5.3 the toughness of 

cathodic arc carbon coating on Si determined by the ld-dp method (Li et aI., 1997) 

was 10.9MPam1l2 which was higher than the toughness (-7.9 MPam1l2) of bulk 

diamond (Field and Pickles, 1996). This is not realistic since the coating is usually 

more brittle compared to its bulk form because of the pre-existing stress and relatively 

abundant defects in coating. However the We dp method provides the result of 6.2 

MPam1l2 which is more reliable. The difference in toughness for ion beam carbon 

coating indented by the conical tip and the cube comer tip obtained by the ld-dp 

method is about 10%, in contrast, the difference drops to 4% when using the Wedp 

method. The overall results of these two carbon coatings are in the range 5.5-6.2 

MPam 0.5 which is identical to the toughness range (5-6MPam 0.5) of diamond 

coatings reported in literature (Field and Pickles, 1996). It is reasonable to make such 

comparison because these coatings are highly cross-linked which is close to the 

structure of diamond coatings. The main errors of calculation will result from fracture 

measurement in the initial paper; the overall errors in the calculations by the Wedp 

method will be similar to those in the ld-dp method. 

As addressed previously in the case that the critical load for fracture is approximately 

the maximum load, in which the second item (i.e. AB in Figure 5.4) will vanish then 

the ld-dp method will be identical to the Wt-dp method. However, this is only true for 

the ideal case, i.e. the load is proportional to displacement squared (or an equivalent 

polynomial relationship) up to the critical load where excursion occurs, in other 

words, no obvious slope change occurs prior to the excursion. A slope change may 

occur before an excursion in the load-displacement curve, in particularly for a brittle 

coated system consisting of a hard coating on a softer substrate, in which case, the We 
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dp model could smooth the curve and eliminate the fitting errors thus leading to more 

stable results as indicated in Table 5.3. 
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Fig. 5.14. P-J curve for ion beam carbon coating indented by a cube comer tip. It is obvious 
that a slope change occurs prior to the excursion. After Li et al (Li et aI., 1997). 

Table 5.3. The comparison of toughness of carbon coating deposited on silicon by cathodic 
arc and ion beam between ld-dp method and Wt-dp method. 

~ 
Maximum load, mN K1C" MPaJ;;; 

Ld-dp method Wcdp method 

Ion beam conical tip 30 5.4 5.8 

Ion beam cube tip 22.5 4.9 6.0 

Cathodic arc cube tip 200 10.9 6.2 

Compared to the ld-dp model and the other energy based models addressed in Chapter 

2, the Wt-dp method can separate other deformation mechanisms from fracture 

dissipated energy and can deal with different cracking patterns based on a single 

curve given that the link of the events in the Wcdp curve to the fracture mechanism is 

known. Although this method was initially developed to deal with small cracks, it is 

also applicable to well-developed cracking. In addition, it can be equally applied to 
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load control and displacement control tests. The disadvantage of Wcdp method is that 

the two-step extrapolation may lead to more fitting errors. 

5.5. Summary 

This Chapter has explained why tests performed under displacement control with a 

cube comer tip are necessary to assess small cracks confined in very thin films. The 

development of an energy based model (i.e. the Wt-dp method) to assess coating 

toughness was described. The conclusions are summarized as follows: 

(1) Nanoindentation under displacement control by a cube comer tip is suitable to 

investigate the small-scale fracture behaviour of submicron coated systems. 

(2) The Wt-dp method provides reasonable results for various coated systems with 

different cracking patterns under different test conditions and it shows 

promise for wider application compared to the ld-dp method. 

(3) The Wt-dp method shows promise to investigate different fracture behaviours 

for coated systems based on the response in an individual test. 

(4) The Wt-dp method helps to give the insight into the different fracture 

mechanisms during the fracture event (such as the two predictions in Section 

5.2). 

Usually, for most energy based models to assess coating toughness, it reqUIres 

features such as a displacement excursion or load drop in P-8 curve. In the next 

Chapter, another model used to predict the boundary values of coating toughness is 

presented based on the events in P-8 curve with the difference that it does not require 

any extrapolation process. 
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Chapter 6: Modelling the limits for coating 
toughness 

In Chapter 5, an energy based model, i.e. the Wcdp method was developed to 

estimate coating toughness. In practice, it is very helpful to have the knowledge of the 

limits to coating toughness based on reliable and convenient calculations. The 

methods described in Chapter 5 rely on curve fitting (extrapolating the ld-dp curve or 

Wcdp curve), whilst, in this section, the methods to predict the toughness are 

performed without extrapolation and some fundamental universal equations are 

derived. As discussed in Chapter 2, the initial bound model to predict the upper and 

lower limit of coating toughness is briefly described which is followed by the 

explanation of the modified model. The introduction of and comparison between these 

two methods was partly covered in Chapter 2. 

6.1. Initial bound model 

The lower and upper bound method which was first proposed by den Toonder et al 

(den Toonder et aI., 2002) provides a simple and concise expression to determine the 

bound values of fracture dissipated energy. It was assumed that before cracking and 

after cracking the load (P) scales with displacement squared (8
2

) in the loading part 

and in the unloading procedure. At the same time, it is supposed that either fully 

elastic behavior (i.e. final depth 8f =0) or fully plastic behaviour (i.e. 8f =8m, where 8m 

is the maximum depth) occur in the coated system before and after crack events to 

determine the lower bound or upper bound for fracture dissipated energy under load 

control (see Fig.6.1). The upper bound of fracture dissipated energy under 

displacement control was obtained by assuming the final depth after fracture is zero 

(see Fig.6.2). The detailed description of this model was outlined in Chapter 2. 
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Unlike in load control, the initial bound method failed to provide any lower limit of 

the fracture toughness for displacement control. As mentioned in Chapter 2, there are 

some conflicts between the assumptions for these expressions which are addressed in 

the following paragraphs. 

As argued previously that the plastic deformation (in coating or substrate) always 

occurs when indented by a sharp tip before the point where fracture which leads to the 

result that the final indentation depth cannot be zero. Real situations therefore do not 

agree with the assumptions and it is not reasonable to regard the area DAB (see 

Fig.6.1) as the lower bound of fracture dissipated energy. Actually, area DAB is the 

upper boundary under the assumption of purely elastic behaviour for both load control 

and displacement control. However, for actually coated systems indented by a sharp 

tip, plastic deformation is usually evitable. The argument that ABDC is not a 

reasonable upper bound because it is mainly attributed to the plastic deformation 

under the assumption of fully plastic behaviour. Thus a modified bound model is 

developed here and it is explained in the following section. 
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Fig.6.1. Schematic of the lower bound method by den Toonder et al under load con~ro!. The 
areas OAB and ACDB are regarded as the lower and upper bound of fracture dIsSIpated 

energy, respectively. 
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Fig.6.2. Schematic of the upper bound method by den Toonder et al under displacement 
control. The area of OST is regarded as the upper bound of fracture dissipated energy. 

6.2 New bound model 

In this section, In combination with existing numerical analysis and 

phenomenological models, a modified model is proposed based on analysing the 

unloading curves at the points where the crack starts and ends which more reliably 

represents the behaviour of coated systems in practice. The modified method gives the 

lower and upper bound of fracture dissipated energy for both load control and 

displacement control. Actually, the real lower bound is very difficult to be obtained. 

The lower and upper bound discussed here will be the lower and upper limits of the 

upper bound. The model developed here has been successfully applied to fullerene­

like CNx coatings deposited on various substrates such as Si, SiC, Ab03 and it is also 
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suitable for other coated systems (e.g. sol-gel coatings on glass) gIven that a 

discontinuity related to fracture occurs in load-displacement curve. 

The explanation of this modified bound model is divided in two parts In the 

following. 

6.2.1 Step in load -displacement curve under load control 

First of all, imagine unloading the load-displacement curve at the start point of a 

discontinuity to obtain the imaginary unloading curve AE (see Fig. 6.3). It can be 

expected that after fracture events the final depth of the imaginary unloading curve 

will be between 6f and 62 (see Fig.6.3). The energy dissipated by fracture is supplied 

by the stored elastic strain energy and the work done by the indenter during fracture. 

Thus the possible maximum energy, Umax. which could be dissipated by cracking is 

the stored elastic strain energy before cracking plus the work done by the indenter. 

And the minimum dissipated energy Umin equals Umaxminus the residual stored elastic 

energy after fracture. In other words, the areas AEB and AEFB in Fig.6.3 are the 

lower and upper bound of energy dissipated by fracture, respectively. 

Then the key issue is how to determine the areas AEB and AEFB in Fig.6.3. 

(1) It is assumed that the imaginary unloading curves (i.e. AE and BE in Fig.6.3) 

before cracking and after cracking can be fitted by a power law equation, i.e. 

fl = A(eS - eSf1)m, P2 = B(eS - eSf2 )n, respectively. The final part of 

the fully unloading curve may diverge from this expression but the 

contribution from it can be ignored in energy based models. 

Thus, four independent parameters (e.g. 6
f1

, J f2' m, n) are needed to be 

determined. 

(2) Before the prediction of 6
f1

, it is assumed that there is no microcracking (or its 

influence is negligible) disturbing the elastic-plastic behaviour before the step 

(plateau or load drop) occurs in the load-displacement curve. 
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For bulk materials without fracture, Cheng et al (Cheng et a1., 2002) developed the 

following linear relationship between the ratio of 6j to 6m and the ratio of H to E, 

(6.1a) 

A = 1.50tan(B) + 0.327 (6.1b) 

For a Berkovich indenter, A=4.S. In this case, Sm = S1 in Fig.6.3. Thus the value of 6j 

can be determined. Actually, from numerical analysis in conjunction with analytical 

assessment, the relationship between the HIE ratio and ~/6m is not linear as discussed 

in Chapter 3. However, within the range of HIE of the materials investigated here, 

Eq.(6.1) is a very good approximation and it is easy to apply. Although the 

expressions above are not strictly valid for a coated system, it can be approximately 

applied when substrate-dominated deformation is well-established. Using the 

hardness and elastic modulus of the coated system which can be measured or 

calculated by a reliable model (Bull, 2001, Bull et a1., 2004, G-Berasategui et a1., 

2004), a reasonable agreement to equation (6.1a) is maintained for the coated system 

tested in this study. A similar relationship was also found by Malzbender et al for 

their coated systems(Malzbender and de With, 2000). In addition, previous studies 

indicate that the ratio of 6j to 6m , Young's modulus E of the coated systems and 

hardness H are almost identical to the values of corresponding substrates in this study 

when the load is over 100mN (Arce-Garcia, 2002). Therefore, equation (6.1a) can be 

approximately applied in such coated systems as in this study, where the critical load 

for excursion is much higher than 100mN except for CNx on Si (100) which is further 

discussed in Section 6.4. 

It is obvious that the area ABQE is the upper bound of the fracture dissipate energy 

because it is maximum irreversible work done during the events of fracture which can 

be fracture dissipated energy and plastic deformation associated with fracture. The 

lower and upper limit of the area ABQE can be determined because Point Q should be 

between Point E and F as depicted in Fig.6.3. 
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Fig. 6.3. Schematic of the lower bound method under load control developed in this thesis. 
The areas EAB and EABF are regarded as the lower and upper limits of the upper bound of 
fracture dissipated energy (i.e. the area AEQB), respectively. The reason is that the final 
depth associated with Point B (i.e. Point Q) will be in the range between E and F. 

Then, the lower limit is given by, 

Umin 
rPcr (( Z ) 1/ n _( Z ) 1/ m )dy 
.b B A 

(6.2) 

(6.3) 

where 

The next target is to estimate m and n, which is described in the following. 

A few workers (Cheng et al., 2002),(Malzbender and de With, 2000),(Lawn and 

Howes, 1981), (Marx and Balke, 1997) find that there is a linear relationship between 
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~rr /~ and c5 f / c5m by experiments or numerical analysis. Combining finite 

element analysis and scaling relationships, Cheng et al (Cheng et aI., 2002) give the 

relationship between the ratio of irreversible work and total work Wir/Wt and the ratio 

of final depth and maximum depth as follows, 

Wirr = 1.27 g j - 0.27 
~ gm 

(6.4) 

g 
When a Berkovich indenter is used, the condition that ~ > 0.4 corresponds to the 

gm 

requirement that HIE is less than 0.19 which is satisfied by the CNx coating and the 

substrates investigated (see Table 6.1) in this study but not with more recent CNx 

films which can have HIE -0.25 (Palacio et aI., 2006). 

If it is assumed that the load P scales with <52 in the loading curves before cracking 

(i.e. fracture does not occur before well-developed plastic deformation) and that the 

unloading curves can be fitted by the power law as previously, i.e. 

P = A(g - gj)m , the following relationship can be obtained (Mencik and Swain, 

1994), 

(6.5) 
m+l 

For ideal case, equation (6.5) can be obtained by finite element simulations as well. 

Thus it can be assumed this relationship is identical with Eq.(6.4), and it gives 

111=1.362. Ideally, this value of m can be used in this study. Since it is very difficult to 

directly predict the value of n independently, it is supposed that n=m=1.362, so that 

the lower bound and upper bound can be obtained. Such an assumption is reasonable 

when fracture propagation has ceased. Actually, the variance of the values of m, 11 will 
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not lead to considerable change of results of coating toughness which is discussed in 

Section 6.4. 

6.2.2 Load drop in load-displacement curve under displacement control 

In the same way, the Point V should be between Point E and G, thus the lower and 

upper bound of area ABVE (i.e. area AEB and area AEG in Fig. 6.4 respectively) of 

fracture dissipated energy is given by, 

(6.6) 

(6.7) 

The interpretation of Umin and U max are the same as in Section 6.3.1. 

In fact, by rewriting the equations for U max (i.e. equation (6.3) and (6.7» and U min (i.e. 

i.e. equations (6.2) and (6.6), we get a universal expression for both the step under 

load control and the ideal load drop under displacement control, 

Umax =~ -Wpl 
(6.8) 

U min = U max - 1~2 B (X - h f ) n dx 
f 

(6.9) 

where W
t 
can be directly obtained by integrating the load-displacement curve (i.e. the 

area GAG in Fig. 6.3 and Fig.6.4); W
pl 

(i.e. the area OAE in Fig. 6.3 and Fig.6.4) can 

be determined by equation (6.4), alternatively, it can be obtained using area OAR 

minus area AER in Fig. 6.3 or area OAG minus AEG in Fig. 6.4 where the latter is 

preferred. 
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Fig. 6.4. Schematic of the upper and lower bound methods in this work under displacement 
control. The areas AEB and AEG are regarded as the lower and upper limits of the upper 
bound of fracture dissipated energy ( i.e. the area AEVB), respectively. 

6.2.3 Non ideal excursion in load-displacement curve under displacement 

control 

The excursions discussed above are so-called ideal excursions (i.e. Pcr in Fig. 6.3 

equals the load where the excursion stops and the Dcr in Fig.6.4 equals the depth where 

load drop ceases). However, in the realistic case, non-ideal excursions as depicted in 

Fig. 6.5 may occur. 

This non-ideal case was ig;nored in the initial bound model. The same solution in 

section 6.3.2 is still applicable to this case. 

It is necessary to state that the reasonable lower limit of the fracture toughness is 

difficult to obtain. But it is still very helpful to obtain the lower and upper bound of 

the upper limit of the fracture toughness as discussed in this study, which is very 

useful for engineering design. 
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Fig. 6.5. Schematic of a non-ideal feature in a load-displacement curve. 

6.3. Experimental assessment 

6.3.1. Nanoindentation tests of CNx coating 

Fullerene-like CNx coatings with a thickness of l~m were deposited at Linkoping 

University on different substrates including Si(OOl), A}z03, 3C SiC(OOl) and 3C 

SiC(111) using unbalanced magnetron sputtering. The deposition temperature was 

around 350°C. Nanoindentation was carried out using a Nanoindenter IT TM(Nano 

Instruments, Knoxville,TN, USA) fitted with a Berkovich indenter (with tip end 

radius of -250nm) at a range of peak loads from 100~N to 500mN. The constant 

loading rate was 500~N/s for the maximum applied loads greater than 100mN and 

50~N/s for the lower load tests. 
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Table 6.1. Hardnes~ and reduced Young's modulus as well as HIE ratio of the CNx coating 
and substrates obtamed from ImN nanoindentation tests using a well-calibrated Berkovich 
indenter (Arce-Garcia, 2002) 

Material H (GPa) E(GPa) HIE 

CNx 9 100 0.090 

Silicon 11.5 130 0.093 

SiC 42 450 0.093 

Ah0 3 20.1 345 0.058 

6.3.2 General experimental observations and toughness results 

At 500mN applied load, chipping (e.g. Fig.6.6) in all samples was observed. A step in 

the load-displacement curve (e.g. Fig.6.7) which correlates to chipping of the coating 

was found. Thus the fracture toughness is given by, 

K[C = 
U 1raE (6.10) 

Where, CR is the radial dimension of the chipping, for the chipping of coating caused 

by a pyramid indenter N=3 if the chipping morphology is approximately three circular 

disc; N=l if the fracture morphology is close to one circular discs. Such a difference 

has been observed in experiments as shown in the following paragraph. The effective 

coating thickness t' =tlsin fJ is used instead of the coating thickness t as discussed in 

Chapter 2. The average angle fJ of chipping edge was estimated by optical 

profiI ametry . 
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Fig. 6.6 .. SEM micrographs o.f 500mN maximum load indents in a lllm CNx coating deposited 
on (a) SI(OOl) and (b) 3C SlC(lOO) showing through-thickness fracture and chipping of the 
coating. After (Arce-Garcia, 2002). 
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Fig. 6. 7 The load displacement (P-6) curve corresponding to Fig.6.6 for a lllm CNx coating 
deposited on (a) Si(OOl) and (b), 3C SiC (l00), respectively. The steps in the P-6 curves are 
related to chipping. 

For comparison, the summary of toughness results for these samples determined by 

different models is provided in Table 6.2. 

It should be pointed out that for the all the substrates except sapphire, the HIE ratio is 

similar to the coating and the critical load for the excursion is much higher than the 

threshold where substrate deformation dominates behavior, in which case , the 

application of Eg. (6.1a) is reasonable. However, for the sapphire substrate, the HiE 

ratio of the substrate is much less than that of the CNx coating and the criti cal load for 
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excursion in the load-displacement curve is in the range that coating and substrate 

deformation play important role together rather than the substrate deformation 

dominating or only coating deformation occurring. Therefore, it is more realistic to 

consider the HIE ratio of the CNx coating and substrate sapphire to estimate the 

limiting value of toughness. 

Table. 6. 2. Comparison of the fracture toughness of a 1 jJln CN x layer on different stiffer 
an d h d b t t d t . d b d·ff b d ar er su s ra es e ernune )y 1 erent energy ase models. 

~ K!c, MParm 

Substrate The ld-dp Initial Lower and Upper Modified bound model 

model bound 

Si(OOl) 2.9± 0.1 5.3 ± 0.2 6.5±0.2 S.0±0.2 9.2± 0.3 

Ah0 3 4.2±0.2 4.3±0.2 5A± 0.2 4.1 ± 0.1 6.4± 0.3 

3C SiC(OOI) 5.5± 0.2 5.5± 0.2 6.7± 0.2 S.O±O.2 7.S±0.3 

3C SiC(lIl) 4.9± 0.2 5.7±0.2 7.0± 0.3 S.3±0.2 8.2±0.3 

From Table 6.2, it can be seen that the toughness of the samples as determined from 

the methods in the previous chapter fall into the range of the modified model rather 

than the initial bound model, which shows that the modified model is more 

reasonable. Although the lower limit determined by the modified model is close to 

that determined by the initial bound method, logically, the modified model tends to 

describe the real system more reliably due to the reasons discussed in Section 6.3. The 

toughness of CNx on Si does not lie in the range of the upper and lower bound which 

is possibly due to the fact that the ld-dp model or the Wcdp method cannot include 

the influence of the phase transformation of the substrate silicon (Pharr et aI., 1991), 

((Hainsworth et aI., 1994, Haberl et aI., 2004). In addition, it is should be borne in 

mind that the toughness of substrate silicon (100) is much lower (-0.91 MPa rm) 
compared to the coating toughness, which makes it possible that the substrate may 

crack before the discontinuity in the loading curve. In such case, it can be expected 

that the ld-dp model or Wt-dp will underestimate the coating toughness. Such 
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significant deviation may not occur for the other substrates with much higher 

toughness (usually >2.7 MPa.j;). 

Further, well-developed fracture in bulk silicon can occur at a load (e.g. Fig. 6.8 b) 

lower than the critical load for excursion in the coated case and it does not lead to any 

excursion in the P-~ curves (see Fig. 6.8a). Even when the applied load is up to 

500mN and the bulk silicon is seriously damaged (see Fig. 6.8 d), it does not result in 

any excursion in P-~ curve (see Fig. 6.8 c). All these indicate that the cracking in the 

silicon substrate is very likely in the sample consisting of CNx and silicon indented at 

500mN. Since the cracking in substrate cannot be distinguished in the P-~ curve, it is 

difficult to separate this factor from the dissipated energy by coating fracture. 

This method has also been applied to sol-gel coatings on glass. For example, when 

using the data taken from the literature (Malzbender and de With, 2002), (Malzbender 

et al., 2002), the toughness of a sol-gel coating (see detailed composition in 

(Malzbender et al., 2002) on soda-lime glass is 0.08-0.16 MPaFm, while the 

literature result is 0.14 MPa.j; (Malzbender et al., 2000) which falls within this 

bound. 
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Fig. 6.8. The P-b curves and reflected light micrographs of Si at high loads of (a,b) 2S0mN 
and (c,d) SOOmN by Nanoindenter II fitted with a Berkovich tip. The elbow occ urring in 
unloading curve is caused by phase transformation in Si. 

6.3.3. Discussion on the influence of different m and n 

Although it has been shown that it may be reasonable to assume the exponents in 

Eq.(6.2) to Eq.(6.3) and Eq.(6.6) to Eq.(6.7), are m=n=1.36, it is not easy to know 

their exact values. The value of n may deviate from m; and both of them may not be 

equal to 1.36. They may vary for different coated systems and/or the coated systems 

plior to and post fracture, which is tricky to verify by experimental results. Therefore. 

it is necessary to examine if the results are sensiti ve to 111, n or not. 
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The correlation between the relationship of m, n and the bound results of toughness 

are analyzed in three cases which covers all possibilities. For this, m is assumed to 

vary from 1.2 to 2. This assumption is reasonable for most brittle materials which is 

confirmed by experimental work and numerical simulations. 

(1) m=n 

(2) m>n; in this case, two examples are taken. One is m=n+0.05 , the other is 

m=n+O.l 

(3) m<n; Again, two examples are taken. One is m=n-O. 05, the other is m=n-O.l 
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Fig. 6.9 Comparison of (a) the lower and (b) upper bound of coating toughness ofCNx on 3C 
SiC (111). For the values of m given above, there is no big difference between the different 
cases. (Error bars are removed for clarity). 

The plot of values of upper and lower bound versus the value of m for CNx on Si 

(100) and 3C SiC (Ill) are displayed in Fig. 6.9 and Fig. 6.10. In the case that n is 

bigger than m, the results are least sensitive to the value of m. Given the value of m, 

the bigger the value of n the bigger is the minimum toughness Kmin . When m 

increases, all the curves (see Fig. 6.9 and Fig. 6.10) approach each other. The variance 

of K
min 

is less than 150/0 when m increases from 1.2 to 2.0 which indicates that the 

lower bound of toughness is not very sensitive to the values of m. Also, the 

relationship between m and n will not considerably change the results at least within 

the range discussed here. With an increase of m, the difference in the results 
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decreases. Kmax depends on m only. Form Fig. 6.9b and 6.1 Ob, it can be seen that the 

variance of Kmax is less than 10% when m increases from 1.2 to 2.0. From Fig.6.11 

and 6.12, it can be seen that it does not cause much difference «5%) in Kmin and K mw: 

no matter what the value of HIE of the CNx coating or the Sapphire substrate. 
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Fig. 6.10 Comparison of (a) the lower bound and (b) upper bound of coating toughness for 
CNx on Si (100). For the values of m given above, there is no big difference between the 
different cases. (Error bars are removed for c1arity) 
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Fig. 6.11. Plot of K min versus m for] /lm CN x on Sapphire (a) H/E=0 .09 f~r the CNx coating 
and (b) H/E=0.06 for the sapphire substrate (Error bars are removed for clanty). 
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Fig. 6.12. Plot of Kmax versus m for the CNx on Sapphire in the case of (a) HlE=O.09 for CNx 
coating and (b) H1E=O.06 for the sapphire substrate (Error bars are removed for clarity). 

6.3.4. Comparison between initial bound model and modified model 

Compared to the initial bound model, the new model does not require the ideal 

displacem~nt excursion under load control and ideal load drop under displacement 

control as depicted in Fig.6.1 and Fig.6.2, respectively. In practical conditions, the 

ideal features in P-6 curves seldom occur. In contrast, the modified model does not 

depend on the path of the displacement excursion and load drop, in other words, it can 

deal with non-ideal features (i.e. a load drop associated with displacement excursion 

as depicted in Fig. 6.2, or a displacement excursion accompanied by a load increase as 

depicted in Fig.6.1) in P-8 curves. Alternatively, for the convenience of the 

application of the modified bound model, the use of Equation (6.1) can be replaced by 

performing indentation with the critical load as maximum load thus the value of 6fcan 

be directly obtained so that the application of the modified bound model can be 

extended. Principally, the modified model can be extended into most coated systems 

by adjusting the parameters in this model given that a step in the load displacement 

Occurs corresponding to a fracture event and it may be helpful for coating design and 

selection in industry. 

In order to obtain more precise results, it will be necessary to unload the curve at the 

excursion start point and end point ,which will be the future work. 
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6.4. Summary 

In this chapter, a new upper and lower limit model to estimate the coating toughness 

has been presented. By combing an existing numerical analysis and the investigation 

of the energy dissipated during indentation, it more reliably represents the actual 

coated system behaviour. The comparison between the toughness of a CNx coating on 

various substrates determined by different methods indicates this modified model is 

reasonable. Furthermore, the new model provides the upper and lower limit for load 

control as well as displacement control and gives a universal explanation for the 

bound, which the initial bound model does not adequately describe, at the cost of 

more complicated calculated procedure. However, further work is necessary to apply 

the model to bulk materials which show steps or load drops in the loading curve 

associated with fracture if the toughness is to be correctly calibrated. 

The models presented in this chapter and the previous chapter are based on an 

excursion in the P-6 curve. However, it is not unusual that fracture in coatings may 

not lead to an excursion in P-6 curve. In such cases, can the energy based model still 

be an option? An attempt to deal with this problem is discussed in the next Chapter. 
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Chapter 7: Wirr- W p model to assess coating 

toughness during nanoindentation 

In previous chapters, the assessment of fracture toughness is based on the excursions 

in load-displacement curves. In this Chapter a new method to estimate the fracture 

toughness is presented in the case that no excursions are observed in the load­

displacement curve. 

7.1. Introduction 

The methods to estimate the coating toughness can be generally divided into three 

branches. One is an empirical model which relates the toughness to applied load and 

cracking length when well-developed radial or median cracking occurs in a 

sufficiently thick coated system (i.e. the conventional indentation method). The 

second is energy based models which estimate the fracture dissipated energy based on 

pop-ins or jumps in load-displacement curves (as reviewed in Chapter 2) or total work 

vs. displacement curves (as described in Chapter 5) thus obtaining the fracture 

toughness of the coatings. However, if picture frame cracking rather than a weIl­

developed radial/median crack pattern is observed during indentation, the first model 

becomes invalid; if the picture-frame fracture does not lead to any excursion in the 

load-displacement curves or total work vs. displacement curves, the second method 

fails. The third method is possible a stress analysis model which becomes even more 

complex in the coated systems since the very complex stress field produced is 

modified by the presence of fracture. The question therefore arises can we measure 

the coating toughness based on picture frame cracking which does not lead to any 

obvious discontinuities in the load-displacement curve. This Chapter is devoted to 

answering this question. 
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7.2. Experimental observations of picture frame cracking 

The experiments were carried out on the coated and uncoated glass (as described in 

Chapter 4) using the Nanoindenter II ™ (Nano Instruments, Knoxville, TN, USA) 

fitted with a Berkovich indenter (radius -250nm). A wide range of loads was applied 

to each sample (from 10mN to 500mN) in order to investigate the cracking behaviour 

in the coated system. Displacement control was used throughout. The loading rate was 

SOnm/s for the peak loads bigger than 300mN and 10nm/s was used for lower loads. 

In order to measure the fracture dimensions, off-line SEM (Camscan) and AFM (Park 

MS) were used. The HIE ratio of the main components of solar control coatings and 

the substrate are given in Table 7.1. This is required for the analysis developed later. 

Table 7.1. HIE ratio of the main component of solar control coatings and the glass substrate 
obtained by nanoindentation from IOO/-lN to ImN load using a well-calibrated sharp cube 
comer indenter -- Er (GPa) H (GPa) E/H 

Uncoated soda-lime glass 79 6.5 12.2 

ZnO coating 114 15 7.6 

Sn02 coating 131 14 9.4 

ITO coating 133 12 11.1 

TiOxNy coating 117 9 13.0 

* All the E used in this study is the reduced Young's modulus ,I.e. Er WIthout notIOn. 

Except for the sample with a thick cap layer of TiOxNy, the picture-frame cracks were 

clearly observed in SEM image in all samples when the load is bigger than 200mN, 

which is discussed in the following section. Interfacial detachment was only found in 

coated glass with a 400nm ITO cap layer which indicates the relatively poor adhesion 

between the cap layer and substrate, which is verified by the observation that a 400nm 

ITO cap layer will spontaneously delaminate after deposition in some locations (as 

shown in Chapter 8). 
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Fig. 7.1 displays the picture-frame cracks for a 400nm ZnO cap layer indented at 

loads in the range of 200mN to 500mN where the picture-frame cracks are clearl y 

observed. The associated p-{5 curves are presented in Fig. 7.2. It is clear that no 

excursions resulting from fracture were observed. Fig. 7.3 and Fig.7.4 display the 

SEM images of a 240nm ITO and 400nm Sn02 indented with peak load between 

200mN and 500mN, from which well-established picture frame cracks are also 

observed. From Figures 7.1, 7.3 and 7.4, the density of picture-frame cracks for the 

240nm ITO multilayer and 400nm Sn02 multilayer is significantly less than for ZnO. 

In addition, the samples show less crack opening displacement compared to ZnO 

coating which will be explained in Section 7.4. 

7?S !jaIl"" 00000 J" ___ 

Fi1!ure 7 1 SEM (backscatter) micrographs showing the picture frame cracks for m~lotoila YNer 
~ . . . d . I d 'e (a) / m coated glass with a 400nm ZnO cap layer. The peak nanom entatIOn oa s al - . 

(b) 300mN, (c) 400mN, and (d)500mN, respectively. 
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Picture frame cracks were not observed in the TiOxNy coating (see Fig. 7.Sa and 7.Sb) 

either as a single layer or as a multilayer stack which will also be explained in Section 

7.4. Evidence of lateral cracking (possibly occurring at the interface) was observed in 

the 400nm ITO coated sample (Fig.7 .5c). No evidence of fracture was found in the 

substrate glass as depicted in 7.5d. Also, no evidence of picture frame cracks were 

observed in all the samples with ultra thin single layer or multilayer coatings 

(individual layer thickness varies from 7nm to 20nm) as depicted in Fig.7.6. It is not 

clear whether the dark diagonal of the indent is related to sub-threshold radial 

cracking or significant plastic deformation at the indenter edges. 
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Figure 7.2 . The load -displacement curves corresponding to Fig. 7.1 . No obvious excursions 

in the P-J curves were observed. 
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Picture frame crack 

(a) (b) 

Picture frame crack 

( c) (d) 

Figure 7.3. SEM (backscatter) micrographs showing the picture frame cracks for multilayer 
coated glass with a 400nm Sn02 cap layer. The peak nanoindentation loads are (a) 200mN, (b) 

300mN, (c) 400mN, and (d) SOOmN. 
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I 

Picture frame crack 

- -- . . ---- .,:. - .- - . - ---

(a) (b) 

Picture frame crack 
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. . ::: . -
( c) (d) 

Fig. 7.4 SEM (backscatter) micrographs showing the picture frame cracks for multilayer 
coated gla,ss with a 240nm ITO cap layer. The peak nanoindentation loads are (a) 200mN, (b) 
300mN, (c) 400mN, and (d) 500mN. 
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(a) (b) 

(c) (d) 

Figure 7.5. SEM micrographs for coated glass (a) 400nm TiOxNy monolayer (b) 400nm 
TiOxN

y 
multilayer (c) 400nm ITO multilayer (d) uncoated glass, which are indented at 

500mN peak load. 
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Figure 7.6. SEM micrographs of ultra thin coated glass (a) single layer (b) multilayer. 

No evidence of picture frame cracking and radial cracking was observed by AFM for 

all the samples (see example in Fig. 7.7). A possible reason is that the crack opening 

displacement is too small for even a sharp AFM tip to penetrate. In addition, the water 

absorbed in the crack by capillary forces will act as bridge when AFM tip is scanning 

the surface. The combined effect of this is that the tip displacement associated with 

cracking is less than the surface roughness and the crack is not visible . 

. " 
" ; ,1 

j~ 

, ! 

(a) (b) 

Figure 7. 7. (a) AFM contact mode topographic map and (b) 3D image of a Berkovich 
indentation in a 240nm ITO coated glass sample at 500mN, which does not show obvious 
evidence of cracking. 
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7.3.1 Irreversible work analysis for uncracked materials 

A few workers (Cheng and Cheng, 1998, Cheng et aI., 2002), (Mencik and Swain, 

1994) find that there is a linear relationship between the ratio of irreversible work to 

total work, Wirr /Wt ' and the ratio of final indentation depth to maximum depth, 

8 f / 8m for a bulk material without cracks. For example, by combining the finite 

element result and scaling relationships, the following expression is given by Cheng 

et al (Cheng and Cheng, 1998), 

W· Sf 
~=(l+r)--r 
Wr 8m 

For a Berkovich indenter, Y = 0.27 . In this case, the Wirr can be also regarded as 

plastic work W p. 

(7.1) 

If it is assumed the load P scales displacement squared in the loading curves before 

cracks and the unloading curves can be fitted by a power law, i.e. 

P = A(J - Sf)m (Oliver and Pharr, 1992), the following relationship can be 

obtained (Mencik and Swain, 1994), 

3 Sf 2-m 
----- (7.2) 

Since both equation (7.1) and the fundamental equations to derive (7.2) can be 

verified by finite element simulations for a range of bulk materials, it is reasonable to 

assume that these two equations are identical, thus it gives m=1.362. 

lQQ 



.!:::C!!!ha!l;::p=te!.....[ 7!...:..: __________ -----!..!..W irr-Wn model to assess coating toughness during nanoindentation 

However, it should be noted that the numerical analysis may not represent the actual 

behaviour for bulk materials at any situation. For example, it is found that there is 

3-4% percent deviation when applying this numerical analysis in soda-lime glass in 

this study as explained in Fig.7.9b, which may be caused by the difference between 

the ideal materials used in the numerical simulations and actual materials. Also the 

factor of a truncated tip in practice may also result in some deviation fonn the 

numerical result. 

If the coated systems have similar HIE in both coatings and substrates and their Hand 

E do not deviate much from each other in the composite, it is very likely that there 

will be no slope change in the load-displacement curve after plastic defonnation is 

fully developed in the substrate and HIE will not vary with the load. In such a case, 

the whole coated system can be approximately treated as an equivalent bulk material 

and the relationships in equations (7.1) and (7.2) can also be applied. 

The ratio bf/bm>OA for the samples investigated here meets the requirement for 

equation (7.1) to be valid. Here, the work difference between actual irreversible work 

and the irreversible work measured by equation (7.1), 11 Wirr, is less than 4% of the 

total work and less than 8% of the actual irreversible work (see Fig.7.8), which may 

be due to possible microcracks in glass and the intrinsic system errors between the 

experimental work and numerical analysis. It may indicate that if the fracture 

dissipated energy as small as the difference of measured and calculated Wirr, this 

method will break down. 

Although no obvious evidence for cracks in the uncoated glass was observed in the 

SEM images in this study, it cannot be proved that no cracking in the glass occurs 

under high load tests (> 1 OOmN). It has been found that the critical load for cracking in 

glass indented by a sharp Berkovich indenter is about 20mN with associated critical 

flaw size is about 600nm (Lawn and Evans 1977). However, it was also reported 

elsewhere that the threshold for cracking initiation in glass by a Vickers indenter is 

about 250 to 500mN (Pharr 1998). The threshold load for fracture may depend on 

many factors such as the size and distribution of the potential flaws and the tip radius. 

For the substrate glass underneath the coating, it has been sufficiently cleaned before 
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coating deposition so that the critical load for cracking initiation in substrate glass 

may be higher than expected. When the through-thickness fracture in the coatings 

forms, the load is easier to be transmitted to the substrate and the debris of coatings 

may act as a suitable intermediate flaw for fracture initiation in the substrate glass. 

Therefore, sub-threshold cracking in the substrate glass is expected to mainly 

contribute to the deviation of Wirr from the theoretical value for the coated samples 

investigated here. Therefore, for the calculation in this study, this deviation is 

subtracted and it is assumed this systematic error is mainly caused by the substrate 

and it is identical in the different coated systems and the uncoated glass. This 

assumption is reasonable since the deformation is dominated by substrate under the 

test conditions used with high loads when fracture occurs and the Hand E in coatings 

and substrate do not differ much from each other. 
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Figure 7.8. (a) Plot of 8ti'8m and W irr/Wt versus load, and (b) plot of ~ W irr/Wt and ~ Wrrr/Wirr 

versus load for an uncoated glass at a range of loads (i.e. from lOOmN to 500mN). 
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7.3.2 Description of Wirr- Wt method 

The work of indentation can be written as, 

(7.3) 

where Wt is the total work, Wp is work of plastic deformation, We is work of elastic 

deformation, U fra is the fracture dissipated energy, Wather represents other items such 

as heat dissipated during indentation, creep and possible microcracks. The sum of all 

the other items in Eq.(7.3) except We is the irreversible energy Wirr (here, we ignore 

any reversible plastic behaviour). Given an indentation procedure, ~ and We can be 

easily measured. If W p and Wother can be determined, the fracture dissipated energy 

U fra can be obtained. The following section explains how to achieve this target. 

The method of irreversible work difference (denoting as Wirr- W p) IS explained as 

follows. 

1. The load-displacement curve shows no evidence for fracture, either in the 

form of large excursions in the loading or unloading curve or smaller invisible 

excursions which lead to an increase indenter displacement at a fixed load on 

loading. This will be compared with the experimental data which shows 

evidence of cracking. 

2. Therefore, the influence of cracking on the mechanical properties of the whole 

coated system after cracking applies to the whole loading part of the 

experimental curve, i.e. averaging the crack influence on the plastic and elastic 

deformation over the whole loading cycle. This is a reasonable assumption 

since EIH remains almost constant despite the presence of fracture in the case 

that no excursion and no slope change in the P-6 curve are observed. 

3. In such case the coated system can be treated as equivalent to a bulk material. 
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4. Ignoring the energy dissipated by heat etc W = Wp + U h + W the 
't ira e ' 

fraction of plastic work remains the same as in the equivalent bulk materials 

i.e. ~ = Wp + W~ (where W~ = U fra + We ). The total work does not 

change because fracture only plays a role in converting some stored elastic 

energy into irreversible work under displacement cotrol. 

Since the fracture influence on the elastic-plastic deformation of the whole system in 

the indenting procedure is averaged, this turns the initial system into an imaginary 

system without a crack but with the same plastic deformation work (Wp). For the 

ideal curve constructed here, the work of plastic deformation can be approximately 

determined by equation (7.1). Also the deviation introduced into Wirr by 

microcracking in substrate needs to be subtracted according to the analysis in Section 

7.3.1. Thus the V fra can be obtained, which represents the dissipated energy used to 

create new crack surface. The approach can separate the influence of elastic-plastic 

deformation mechanism from fracture given coated systems with features similar to 

what has been described here. It needs to be emphasised that the fracture must not 

make any contribution to the total work under displacement control. The contribution 

of fracture is to convert part of We into Wirr. 

The coating toughness is then given by, 

K{C = 
UfraE 

(7.4) 

where v and E are the Poisson's ratio and Young's modulus of coating, respectively. 

Ajm is the total area of fracture. In this study, v =0.25 is used in the absence of better 

data for the coatings of interest. 
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7.4. Application of the model 

7.4.1 Toughness analysis of coated glass 

Using the analysis in previous section, the toughness of coatings of ZnO, Sn02 and 

ITO as well as the interfacial toughness of the sample with 400nm ITO cap layer was 

determined. No obvious evidence of fracture in the substrate was found in this study. 

In order to estimate the coating toughness based on Eq. (7.4), a careful measurement 

of fracture area is required. Assuming that crack initiation can be described by a 

critical strain criterion, it can be expected that the crack spacing is uniform(Tuck and 

Korsunsky, 2000). Provided that picture frame cracking is well established and the 

outer picture-frame crack is very much bigger than the initial one, it can be shown that 

the total fracture area of the picture frame cracks is given by, 

A = 3a
2 

t 
fra 2s (7.5) 

where a is the radial dimension of the indentation, sand t are the spacing between the 

cracks and the coating thickness shown in Fig.7.9. 

Figure 7.9: Schematic of the picture-frame crack geometry induced by a Berkovich indenter. 
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The interfacial crack area is given by, 

2 
~nt = JrCR 

where C R is the measured interfacial crack radius. 

(7 .6) 

Table 7.2. The energy release rate and toughness of the coatings determined by the new 
method here. 

~ 
Spacing Young's Modulus *Energy release rate *Toughness 

(run) (GPa) (J /m2
) (MPam05

) 

400nm ZnO cap layer 239± 28 117 10.3 ± 3.8 1.1±0.2 

400nm Sn02 cap layer 412± 54 133 19.9±6.3 1.6 ± 0.3 

240nm ITO cap layer 313 ± 30 131 39.4± 15 .9 2.2± 0.5 

*Both energy release rate and toughness is the mean value under the loads from 200mN to 
500mN. 

3 
J 

--, 

o 4OChnZrO 

1 o 400mS02 
25 - 2401n1TO 

70 

o 4OOmZrO 
o 400mS02 
.J 2401nlTO 

C:! 
, 
-

-E 
ro 

t 
a.. 2 -
~ I 

eli 
.; 

If) 

~ Q) 
c: 

f .g, 1.5 [ 
~ , 0 
l-

f t t 
(b) 

0.5 
150 200 250 :m 350 400 450 ~ 550 

10 

T 
I 

l 
.J 

f 
j 

~ I I , [] 

f 1 

f f T (8) 
o 
150 ax) 2&l D) 350 400 450 ~ 550 

I..ca:I (rrN) 
l..oa:J (rrt-I) 

(a) (b) 

Figure 7.10. (a) Plot of energy release rate and (b) toughness for ZnO, Sn02 and ITO cap 
layers measured by nanoindentation under different applied loads (from 200 t0500mN). 
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As discussed in the following chapter (i.e. Chapter 8), the lateral cracking induced 

interfacial failure is likely to occur in coated glass capped with 400nm ITO layer (see 

Fig.7.3) It is also possible to estimate the fracture toughness of the interface of ITO, 

where the Young's modulus of the coating will be replaced by a so-called interfacial 

modulus defined by Hutchinson and Suo (Hutchinson and Suo 1992), 

1 1 1 1 
-=-(-+-) 
Eint 2 Ec Es (7.7) 

where Ec and Es are the Young's modulus of coating and substrate, respectively. 

Here, the Es is the effective substrate consisting of substrate glass and the other thin 

layers underneath the cap layer which is determined by the model developed by Bull 

et al [(Bull, 2001),(Bull et al., 2004)]. The interfacial toughness is 0.64 + 0.07 

MPam1l2 which agrees with the results determined by different methods as discussed 

in Chapter 8. 

From Table 7.2, it can be seen that the ITO coating is relatively tough compared to the 

ZnO coating. All of these coatings are tougher than glass, which was consistent with 

our previous results in Chapter 5. The toughness results for ITO and Sn02 agree with 

our previous results determined by the Wcdp method when assessing ultra small 

cracks in such coatings under low loads «5mN) indented by a cube corned tip. The 

toughness of the ZnO cap layer determined here is around 1.1 ± 0.2 MPaFm , which 

is consistent with results in the literature such as 0.8 ± 0.11 MPaJ;;; (Mukhopadhyay 

et al., 2001) for ZnO powder and 1.4MPaJ;;; for bulk ZnO (Ruf and Evans, 1983). 

Previous tests (Bull et al., 2003) show that the critical loads for first acoustic emission 

(AE) event well after plastic deformation initiation in ZnO and Sn02 are similar, 

which implies that their toughness will be similar if it is assumed that the flaw size 

distribution is similar. The results in Table 7.2 agree with this observation. The 

toughness error for ITO is relatively big which is possibly due to the non-uniform 

distribution of residual stress and flaws in it. The energy release rate and toughness at 

loads for different samples is displayed in Fig.7.10. The values do not vary much with 

loads which indicates that the model presented here is reasonable. 
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7.4.2 Why no evidence of picture frame cracks in TiOxNy coatings? 

As described in the previous section (see Fig.7.S), no obvious evidence of picture­

frame cracks in TiOxNy was observed in SEM micrographs. Two possible reasons 

could account for this. 

One is the poor conductivity of TiOxNy compared to other coatings which degrades 

image quality in the SEM and limits the visibility of picture-frame cracks since the 

opening displacement is small «10nm). Another reason to explain why no picture­

frame cracks are visible in the SEM micrographs of TiOxNy on substrate is provided 

in the following, which is more likely to account for this phenomenon. 

If a thin hard coating (usually associated with high yield stress) is well bonded to a 

softer substrate, the softer substrate is likely to yield first (Burnett and Rickerby, 

1987). In such case, the substrate may add a bending influence on the deformation of 

the coating. 

When E 1 < E s , the plastic zone of the substrate underneath the coating enhances 
HI Hs 

the bending of the coating thus helping to produce the picture-frame cracks and tends 

to increase the crack opening displacement (see Fig. 7.11 a). This is also the reason 

that the crack opening displacement (COD) is relatively significant in ZnO whose EIH 

ratio is lowest among all the coatings (see Table 7.1). However, in the reverse case, 

i.e. EI > Es (see Fig. 7.11b), the plastic zone in substrate does not have much 
Hf Hs 

contribution to the bending of the coating so that the COD in TiOxNy coatings may be 

too small to be observed in the SEM used in this study. 
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(a) 

(b) 

Coating plastic deformation zone 

--~--"""' Substrate plastic deformation zone 

Coating plastic de formati on 
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"""-. 

, Sub strate plastic de formati on zo ne 

Figure 7.11. Relative plastic zone volumes envisaged for the coated system (a) Er/Ht<E/Hs 
(b) ErlHf>E/Hs as proposed by Burnett and Rickerby (Burnett and Rickerby, 1987). 

7.4.3 Application of the model to bulk materials 

In order to further examine its utility, the model has also been applied to some bulk 

materials. In this case, radial cracking, rather than picture frame cracking, dominates 

the fracture response and the areas of these cracks are used in toughness calculations 

(assuming they are quadrants of a circle). For SiC and Si (100) tested by the 

Nanoindenter II TM(Nano Instruments, Knoxville,TN, USA) fitted with Berkovich 

indenter under 500mN load control, the toughness evaluated by this new model is 

-3.7 MPaj;;;, and -1.3 MPaJ; , respectively, similar to the results -4.1 MParm, 

and -0.9 MPa rm , determined by the conventional indentation model (CIM). 

Considering that the accuracy of the conventional indentation model is more than 

25%, the values determined by CIM and the method presented here are in reasonable 

agreement. In addition, since different types of cracks exist (such as radial cracks and 

lateral chipping as depicted in Fig.7.12), the interaction between the various crack 
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systems may disturb the initial radial cracking stress field which might lead to a 

deviation when using the conventional indention model. 

(a) (b) 

Figure 7. 12. SEM micrograph of the radial cracking and chipping in (a) Si (100) and (b) 
SiC indented at 500mN peak load using a Berkovich indenter. 

Although different coated systems and typical brittle bulk materials have been 

selected to verify the W irr- W p method, it should remembered that it is not reasonable 

to trust the method developed here in all structures because the properties of some 

coated systems (e.g. hard and brittle coating on very soft substrate) will conflict with 

the assumptions in this model. 

7.5. Summary 

A new model is presented in this Chapter to measure the coating toughness based on 

picture frame cracks which shows comparable results to those reported in the 

literature which indicates the model is reasonable. It can be also extended to the other 

coated systems or bulk materials given that the assumptions in the model are valid. 

The values of the coating toughness determined here agree well with previous results 
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obtained by Wcdp method (see Chapter 5). Compared to the other fracture dissipated 

energy based models, i.e. extrapolating the discontinuity in P-o curve or the Wt-dp 

curve which require a discontinuity or step in these curves, the new model presented 

here fills the gap to measure the coating toughness when investigating the load­

displacement curve under the condition that no obvious discontinuity occurs. The 

calculation errors are mainly caused by the determination of the length and area of the 

crack since the crack geometry is not ideal. 
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Chapter 8: 

Chapter 8 Adhesion assessment 

There are a lot of techniques to estimate the adhesion of a coating on a substrate, such 

as the pull-off test, superlayer method, bending, bulge and blister tests, Double 

Cantilever Beam tests, scratch and indentation (nanoindentation) tests which have 

been reviewed in Chapter 2. 

As mentioned in Chapter 2, there is no universal model or test to assess adhesion. 

Some specific methods may generate different phenomena in different coated systems. 

In some systems adhesive failure occurs during indentation tests. This Chapter 

describes some new methods to estimate the adhesion based on these experimental 

observations. 

This Chapter begins with a brief reVIeW of energy-based models for adhesion 

assessment. Then the method based on extra linear recovery during unloading is 

presented followed by the assessment based on lateral crack induced interfacial failure. 

The rest of the Chapter is devoted to evaluation of adhesion in the case of 

spontaneous blister formation and a summary of the results from all tests. 

8.1. Energy based models 

There are several energy based models (e.g. the Id-dp method as reviewed in Chapter 

2 and Wt-dp method as described in Chapter 5) to assess the fracture toughness of a 

coating. If the feature in the load-displacement curve is related to delamination, these 

energy based models are still valid (e.g. Fig.8.1). For example, the Wt-dp method 

gives the energy release rate of 30±14J/m2 and 19±9J/m2 for a 400nm TiOxNy /glass 
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interface and 240nm ITO multilayer on glass, respectively. These are reasonable 

results for such coated systems. 

o 
o 
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Fig. 8.1. Total work versus displacement curve for a 400nm TiOxNy coating on glass. Two 
significant discontinuities are observed. It is obvious that these two events are related to 
different fracture mechanisms. The second one is caused by delamination (see Chapter 5). Its 
associated AFM image can be found in Fig. 5.6d or Fig.8.3b. 

Another alternative energy based model was presented by Malzbender and de With 

(Malzbender and de With, 2000) based on plotting irreversible work Wirr versus 

applied load. For thicker sol-gel coatings in (Malzbender and de With, 2000) a slope 

change of curve of ~rr versus applied load (Wirr -P curve) was observed when 

delamination occurred. Thus the energy ~~! (see Fig.8.2) was assumed to be the 

energy dissipated by delamination which is the difference between the energy at a 

given delamination dimension C R and the extrapolated energy for the plastic 

deformation of the coating system before delamination. 
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Then the energy release rate for delamination G
int 

is given by, 

(8.1) 

and the interfacial toughness Kint is given by, 

(8.2) 

where Eint is a so-called interfacial modulus which is given by (Hutchinson and Suo 

1992), 

(8.3) 

where Ec and Es are the Young's modulus of the coating and substrate, respectively. 
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Fig.8.2 Schematic of the irreversible energy dissipated as a function of applied load during 
indentation (Malzbender and de With, 2000). 
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However, this method is not as accurate as expected as documented in Chapter 2. In 

addition, such a method requires many tests at a number of loads which is quite time 

consuming and not economic for practical application. It is necessary to point out that 

actually the Wirr method is also only valid in the case of an adhesion related feature in 

load-displacement curve otherwise a slope change may not be observed thus leading 

to the failure of the method (see the example for inorganic-organic coating on glass in 

(Etienne-Calas et aI., 2004)). 

Furthermore, it is necessary to point out that fracture does not always lead to an 

obvious excursion in the load-displacement curve (P-8 curve). In this case, if the 

energy difference between plastic work and irreversible work can be distinguished 

and is related to the fracture, then the fracture toughness can still be measured by the 

energy based model described in Chapter 7. Combining numerical simulations and 

calibration on realistic materials, the plastic work can be estimated and the 

irreversible work can be easily calculated from the load-displacement curve. Then the 

difference between plastic work and irreversible work is regarded as the fracture 

dissipated energy. The interfacial toughness for 400nm ITO/glass is 0.64 + 0.07 

MPaml/2 by this model (see Chapter 7) which is very close to 0.44 MPam
1l2 

determined by a different method in the following section. 

In fact, under certain conditions, i.e. rebound after delamination leading to extra linear 

recovery in the unloading part of the P-8 curve, the adhesion may be assessed by a 

different method which will be discussed in detail in this Chapter. 

The linear part (as marked in Fig.8.3 or 8.4) occurring near the end of unloading 

procedure is believed to be accounted by rebounding during unloading. In this case 

the coating detached from the substrate (with crack radius of CR) acts as a spring, 

pushing the indenter out of the impression and generating load at lower depths than 

nonnal elastic unloading. The area of debonding during unloading is given by nC~. 

By extrapolating the initial part before transition point of the unloading curve to the 

completely unloaded point, the difference between the extrapolated unloading curve 

and the actual unloading curve can be regarded as an approximation of the fracture 
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dissipated energy for delamination (see the marked portion in Figures 8.3 and 8.4). 

The mechanism can be explained as follows (see Fig.8. 5). 
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Fig.8.3. (a) Extra linear elastic recovery in the load-displacement curve is observed during 
unloading for a 400nm TiOxNy coating on commercial soda-lime glass and (b) its 
corresponding AFM image. 
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Fig.8.4. (a) Extra linear elastic recovery in the load-displacement curve is observed dllri ~ g 
unloading for a 240nm TiOxN

y 
coating on commercial soda-lime glass and (b) Its 

corresponding AFM image. 
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(a1) 

(b1) 

---------~ 

A A 

(a2) 

(b2) 

Adhesion assessment 

Fig.8.S. Schematic of the rebound of the detached material on unloading (a) good adhesion 
and (b) poor adhesion. The coating within the region A-A is involved in short-range 
rebounding as shown in Fig.8.3. 

The coating underneath the indenter deflects into the impression in the substrate under 

load, causing the tensile stress at the edges and the buckling during loading if the 

adhesion is poor but the compressive stress at the tip causes the coating within the 

region A-A (see Fig.8.5) to remain pressed against the substrate. During unloading the 

film in this area will buckle upwards, pushing the indenter ahead of it. The case in Fig. 

8.5b is more difficult to analyse as the energy consumed in fracture on loading is not 

easy to determine. 

Another model based on equilibrium theory and solution of a centrally loaded disc to 

assess debonding was proposed to deal with the same phenomena by Hainsworth et al. 
" (Hainsworth et al., 1998). In contrast to the model presented here, it is assumed the 

fracture dissipated energy associated with debonding equals the elastic energy stored 

in the flexed annular coating segment while ignoring the extra recovery area in the 

un~oading curve. 
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The energy dissipated by debonding is given by, 

(8.4) 

(8.5) 

However, it dramatically overestimated the results. For example, for a 4/lm TiN/ZrN 

multilayer on steel indented at 500mN, the Oint =173 to 716J/m2 with regard to the 

debonding length of 5-7 /-lm. In addition, it is extremely sensitive to the measured 

debonding length since the exponent of CR in Eq.(8.5) is 4. When applying this 

method to the ceramic coatings in this study, it gives around 20000 J/m2 for 400nm 

TiOxNyand 240nm ITO, which is obviously unrealistic. In contrast, the method presented 

here provides a reasonable approximation which gives the fracture dissipated energy 

32 to 64 J/m2 for TiN/ZrN which is more sensible for a ceramiclmetal interface. Also 

for the coated glasses in this study, it gives 79.7 ±17.6 J/m
2 for TiOxNy I glass 

interface, thus the interfacial toughness is approximately 2.8±0.3 MPam1J2 (according 

to Equations (8.1) to (8.3)). For the ITO/ZnOIAg interface, the values of fracture 

dissipated energy and toughness are 35.8 ±14.1 J/m2
, 1.9±O.3 MPam1!2, respectively. 

These results agree reasonably with those determined by the different method (i.e. We 

dp) provided in previous section. For the 240nm ITO coating, the relatively high pre­

existing residual stress in the coating and interface may make it more likely to fail at 

the ITOI Ag interface rather than the other weak interface in the coating stack 

(ZnOI Ag). It can also be argued that the ITO coating acts as a superlayer which 

causes the ZnOI Ag interface to fail. 

The reason that the model by Hainsworth et al significantly overestimates the values 

of interfacial toughness is that the through-thickness cracking prior to the debonding 

means that the stored elastic energy De in the cracked coating segment has been at 

least partly released. The analysis of the extra recovery area during unloading as the 
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work done by the indenter is more reasonable. If the release of elastic energy in the 

coating is what causes detachment and the buckling of the coating then the work done 

pushing the indenter out should be the same as this. The recovery work is assumed to 

be equal to the extra recovery area (including the effects of residual stress in the film) 

but some other energy dissipation mechanisms may also contribute (crack tip 

plasticity, microcracks, energy stored in bending) which will limit the accuracy of the 

result. 

8.2 Method based on analysis of lateral crack induced 

interfacial failure 

The models above deal with the blister formation or delamination, while, interfacial 

failure can be also caused by a lateral crack occurring at the interface or adjacent to 

interface. 

Based on the expanding cavity model as used in the analysis of the radial/median 

crack pattern (Lawn et aI., 1980) and a simple plate theory, Marshall et al proposed a 

model to relate the toughness of brittle bulk materials to the depth where lateral cracks 

occur and the driving force Pr due to the residual stress during unloading. It was 

found that the lateral cracking tended to occur near the elastic-plastic boundary. 

Although Pr can be described in terms of the applied load P, there are three 

coefficients needed for the model which are very difficult to determine. This model 

has been further developed to link the toughness to the threshold fracture load and the 

other basic parameters such as hardness, elastic modulus, giving (Marshall et aI., 

1982), 

(8.6) 
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Where Po is threshold load for lateral cracking; Ao and 60 are dimensionless constants 

(Ao =3/4 and 60 =1200) and e is the half-included angle for the indenter. 

With the aid of nanoindentation, this method can be simply applied to coated systems 

since indents may be produced with suitable plastic zone sizes. Under certain 

circumstances, this method can be used to assess the interfacial failure of a coated 

system if the lateral crack occurs at a relatively weak interface compared to the 

toughness of the coating and substrate. 

For the coated glass investigated here, the lateral cracking was only observed in 

coated glass capped with a 400nm ITO layer. The lateral crack observed was shorter 

than the indentation size (see Fig. 8.6). Since the interface for the 400nm ITO coated 

glass was relatively weak, it can be expected that the lateral cracking occurs at this 

interface. The lateral cracking is unlikely to occur in substrate because there is no 

evidence of lateral cracking in all the other samples including uncoated glass indented 

at 500mN. It is reasonable to assume that the critical load for the lateral cracking can 

be obtained when the plastic deformation zone reaches the interface. As suggested by 

Chen and Bull (Chen and Bull, 2006b), for ceramics the radius of the plastic 

deformation zone is about five times the residual indent depth. The residual depth is 

around 80nm and then the critical load is about 3mN. Based on Equation (8.6), a first 

approximation of interfacial toughness, 0.44 MPam1l2 (or Gc=1.9J/m2), can be 

obtained. It is a reasonable result compared to the values of interfacial toughness for 

similar ceramics/silver in the literature (Barthela et al., 2005). 
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(a) (b) 

Figure 8.6. (a) SEM (secondary electron) micrograph and (b) reflected light micrograph 
showing lateral cracking for a 400nrn ITO cap layer on glass. 
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Figure 8.7. AFM image of lateral cracking in a 400nm ITO multilayer stack on glass (a) 

topography (b) 3D image. 

8.3 Method based on spontaneous blister 

If a spontaneous blister occurs in a coated system (e.g. Figures 8.8 and 8.9) , the 

interfacial toughness can be directly estimated without additional tests. The method 
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considers the contribution to energy release rate Gint for the interface by the critical 

buckling stress (Jc and driving stress Gr of the film (i.e. the residual stress in the 

coating) and the relationship between them is given by Hutchinson and Suo 

(Hutchinson and Suo 1992), 

(S.7a) 

kE ()2 Where (J = !..-
c 12(1-v2

) a 
(S.7b) 

(S.7c) 

Where h is the bulge height, cl=O.75, for a spontaneous blister, k = 7[2 . 

2a 

. . . f t s blister in a coated system. FIg. 8.7. SchematIc of a cross sectIOn 0 a spon aneou 
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For a newly-developed CNx coating (l/lm in thickness) on M2 steel , Eq . (8 .7) leads 

to the energy release rate of 3.3±O.1 J/m2 which is reasonable(Pal acio , 2006). Such 

spontaneous blistering has been observed across the surface of a 400nm ITO 

multilayer stack on glass (see Fig.8.8 and 8.9), the energy release rate for adhes ion is 

around 2.7±O.lJ/m2 given by Eq. (8.7), which agrees well with the value of 1.9J/m2 

determined by equation (8.6) in the previous section. 

00000 300~M ~ 

(a) 

um 
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0.8 

0.4 ~ 
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(b) 

Fig.8.8. (a) SEM and (b) AFM image of spontaneous blister in 400nm ITO on glass. 
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8.4 Comparison 

Double cantilever beam (DCB) testing has previously been used to assess the 

adhesion of relatively thick coatings. Recently, it was found that it can be also used to 

assess the adhesion between ultra thin films (down to 10nm) and a glass substrate. By 

DeB, Barthel et al (Barthel et aI., 2005) obtained the adhesion energy of 1.4-2.8 J/m2 

for a Glass/ZnO (Ti02 or Sn02)/ AglZnO stack with the crack path in ZnO/ Ag 

interface. Density-functional calculations in the absence of mechanical energy 

dissipation at the ZnO/ Ag interface (Bristowe and Lin, 2006) provides similar results. 

Barthel et al (Barthel et aI., 2005) stated that that the adhesion energy between Sn02 

(or Ti02) and Ag may be at least 50% higher than that of ZnO/Ag for the similar layer 

stack on glass. The weak interface in the study is one with silver either AglZnO or 

AgiITO which is difficult to verify. Because there is high residual stress in ITO, it 

may be expected that ITO/ Ag fails first. It is reasonable to expect that adhesion 

ITO/ Ag is similar to that of Sn02 and it is in same order of magnitude of ZnO/ Ag. For 

this regard, no matter which interface really fails (either ITO/Ag or AglZnO) the 

value of Gint obtained for ITO/ A glZn 0 interface here based on spontaneous blister 

agrees very well with the results by DCB for similar coating stack reported in the 

literature. The driving force of the spontaneous blister is around 3GPa which is a 

reasonable estimation of the residual stress in the coating. 

For the delamination produced by a sharp cube comer indenter analysed by the Wcdp 

method, the result is between 10 to 28J/m2 which overestimates the adhesion energy 

due to the inevitable plastic deformation associated with the delamination during 

loading. The adhesion energy assessed by extra linear elastic recovery for such a 

coating stack is about 20 to 40J/m2 which overestimates the interfacial toughness as 

well. The reason for the overestimation is that only part of stored elastic energy drives 

crack propagation and what this fraction is is unknown. However, this method is 

useful for qualitative comparison. 
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For a 400nm TiOxNy single layer on glass, its adhesion is relatively high compared to 

the coating stack with oxide/ Ag interfaces. This is possibly due to the fact that the 

mismatch between the oxides and glass is smaller than that between the oxides and 

Ag. 

8.5. Summary 

Adhesion assessment of various coatings on glass has been made by a number of 

indentation techniques. The interfacial toughness estimated by different methods has 

achieved reasonable agreement, which indicates the results and the methods are 

reasonable. 

From Chapter 5 to this chapter, all the models and methods have been presented to 

assess the toughness of coating and coating/substrate interface. In the next chapter, a 

detailed analysis of the P-o curves to investigate how loading rate influences the 

fracture behaviour is discussed. 
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Chapter 9: Loading rate influence on fracture 

behaviour during nanoindentation 

Previous chapters were devoted to investigations of the fracture toughness of the 

coated systems. This chapter will concentrate on loading rate effects on the fracture 

behaviour of these brittle coated systems. 

9.1 Introduction 

As mentioned previously, fracture may lead to load drops in load-displacement curves 

under displacement control. Different analysis methods may be used to determine the 

fracture onset such as inspection of load-displacement (P-J) and pfJ2 vs. J, ap / a(J2
) 

vs. J and these may be used to investigate detailed features of the fracture process. 

When analysing the loading rate on the fracture initiation load, significantly different 

behaviour was observed for some materials and the possible mechanisms are 

discussed in this chapter. 

9.2. p-~ curve analysis 

For all the coated glass samples (as previously, the main emphasis is again on the 

thicker coatings), it was found that within the penetration rate range used in this study 

the higher the penetration rate, the higher the fracture threshold (see Fig. 9.1 for 

example). Such observation agrees well with the literature for brittle bulk materials 

and coatings at high loads (>20N) (Lee et aI., 2002). 
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A possible reason to account for such rate-dependent behaviour is the competition 

between fracture and dislocation mobility in these brittle materials. At high loading 

rate, it is difficult to find a suitable flaw for fracture nucleation since the welI­

established plastic deformation prior to fracture rapidly continues its development and 

obliterates the layer defects. When very high stress intensity is reached, even a 

relatively small flaw (which does not contribute to crack initiation at lower load) can 

provide suitable nucleus for fracture. In contrast, at a lower displacement rate, the 

flow of the materials is slow, there is more opportunity for a suitable flaw size to 

remain in the location where large stress concentration occurs (usually underneath the 

indenter), thus fracture may occur at lower loads. At lower penetration «200nm), no 

load drops were observed regardless of the displacement rate. 

It is obvious that more fracture events occur at lower loading rates. The span of the 

region where load drops occur is wider at higher rates compared to lower ones. This 

may be explained by the following mechanism: (1) when the loading rate is high 

enough, it is difficult to find favorable flaws for crack nuclei at low load in such a 

short time until the elastic stored energy is high enough, when an unfavorable flaw 

can act as the nucleus of a crack which leads to the failure of coating at higher load in 

the end; (2) Once a crack is generated, the high stored elastic energy imposes strong 

driving force for fracture propagation so that a significant drop of the loading rate 

occurs over a relatively big depth range. In contrast, it can be expected that a lower 

threshold load and many small fracture events will occur at lower loading rates. 
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Fig . . 9.1. Plot of load-displacement curves for a 400nm TiOxNy single layer on glass indented 
at dIfferent penetration rates to a range of maximum penetration depths: (a) 400nm: (b) 
300nm; (c) 200nm. 
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9.3 p_~2 analysis 

Although the loading curve may display load drops which are related to fracture 

behaviour when the brittle samples are indented by a sharp indenter under 

displacement control (e.g. Fig.9.2(a)), in some cases such obvious load drops do not 

occur during fracture events under the same indentation conditions (e.g. Fig. 9.2(b)). 

In order to analyze the nanoindentation response of coated systems, Hainsworth et al 

(Hainsworth et aI., 1996) proposed a plot of Plr52 vs. r5 (or r52). This analysis was based 

on the following relationship which was developed for a monolithic material indented 

by a geometrically self-similar indenter such as the conical or pyramidal tips used in 

this study, 

(9.1) 

where E and H are the Young's modulus and the hardness, respectively. The constants 

(jJ = 0.194 and ¢ = 0.930 were experimentally determined for a Berkovich indenter. 

Similar equation were derived for a perfect Berkovich tip elsewhere (Malzbender et 

aI.,2000). 

It was shown that Plr52 vs. r5 (i.e. Km) curve can be expected to identify the transition 

from coating-dominated deformation behaviour at low displacement (usually less than 

the coating thickness) to substrate-dominated deformation. But such model is not 

sensitive enough to detect fracture behaviour, therefore, it was further developed by 

McGurk and Page (McGurk and Page, 1999), i.e. a plot of dP / d(J2) vs. r5, known as 

Kexp curve. Analysis of the plot of dP / d(J2) vs. r5 was found to work well for hard 

coatings on different steels. Fig. 9.3a displays the Kexp curve of 2.81 1-lm NbN on 

stainless steel, from which it can be seen that three drops in the Kexp curve are visible 

When the penetration is bigger than 600nm. Such drops stop when they reach the 

baseline of the substrate steel. It can be expected that such events are related to 

through thickness fracture in the coated steel which has been verified by SEN! 
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analysis (see Fig. 9.3b). Some spikes were also observed in the region bet'vveen 250nm 

and 400nm which are caused by the imperlect geometry of the tip (McGurk and Page. 

1999). However, this may not be the complete story, it could be related to the 

dislocation burst in substrate steel at the onset of substrate pl astic deformation . 
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Fig. 9.3. (a) The K exp curve and (b) SEM image for 2.811Jm NbN on stainless steel.The solid 
line and dashed line correspond to the coated steel and substrate, respectively. After McGurk 
et al (McGurk and Page, 1999). 

The method of analysing the Kexp curve does not work well for brittle coated systems 

because it leads to quite noisy curves. For example, when it is applied to so l-gel 

coating on glass (Malzbender and de With, 2000) and solar control coatings on glass 

(Bull et a1., 2003, Berasategui, 2003) in Fig.9A, the K exp curve is too noisy to provide 

any useful information in both brittle coated systems. It is well known that acoustic 

events (AE) can be used to detect fracture initiation, rapid phase transformation , and 

dislocation bursts during static indentation [e.g. (Breval et aI., 1995), (Belmonte et a1., 

2003), (Dyjak and Singh, 2006), (Rogers, 2005)]. For the TiOxNy coatings, no 

evidence of phase transformation occurs when indented by a relatively blunt 

Berkovich tip. Therefore, the AE events occurring after plastic deformation are likel y 

to be due to the fracture initiation in these amorphous brittle coating systems. As 

displayed in Fig.9A (b), it is obvious that there are many more excursions in a plot of 

Ke.,p vs. £5 than AE events and the correlation between them is poor. 

In order to remove the noise influence, Malzbender et al (Malzbender and de With , 

2001) suggested smoothing the data. However, it is difficult to choose a reasonable 

smoothing interval which can effectively remove the noise influence without 

changing the nature of loading curve and retaining the useful information . In fact. it is 
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found that any smoothing procedure will change the nature of the indentation 

response which is discussed in next section. Furthermore, Malzbender et al 

(Malzbender and de With, 2001) argued that the smoothed K exp curve did not provide 

more information than the plot of Plo2 vs. 0 in their sol-gel coatings. In addition, 

neither Km nor the derivative of Km always has a distinct physical meaning. For 

example, in the region where elastic deformation dominates or fracture influence is 

significant, the second order polynomial relationship between load and displacement 

in equation (9.1) becomes invalid so that Km do not have any physical meaning and 

the resultant ap / a(8 2
) does not mean the change of Km in a finite region. 
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9.4. Instantaneous loading rate curve 

To solve this problem,here it is suggested plotting the instantaneous loading rate 

b h . ed by nanoindentation in curve, 8P / at vs. 0 to assess the fracture e aVlOur caus 
. f . ngularity and it is quite brittle coated systems. This method aVOIds the presence 0 a SI 

sensitive to the change of mechanical deformation during nanoindentation. 
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Figure 9.5 displays plots of dP / d(J2) vs 6 at different averag" I I (. b . mg eve s I.e. num er 

of data points for the moving average) and a scatter plot of dP / d((r2 ) for a 240nm 

ITO cap layer multilayer stack on glass. 

In Fig. 9.5 (a), the raw line plot of Kexp curve is very noisy from which is difficult to 

obtain useful information about fracture. Although the noise can be removed with a 

smoothing interval of 50 data points in Fig. 9.S(e), the Kexp curve after smoothing 

deviates from the initial one considerably. It is obvious that the second event is more 

significant than first one in the scatter plot (i.e. Fig.9.S (f)), however, this phenomena 

has been reversed in the smoothed line plot Fig.9.S (e). In Fig. 9.S(f), there is a 

smooth region between the first event and second event, whilst, the first event is 

immediately followed by second event in Fig.9.S (e). In contrast, the plot of 

instantaneous loading rate provides good information without smoothing. It makes the 

events easier to be detected and it maintains all the initial information obtained during 

indentation. 

It will also improve the sensitivity to detect fracture events during indentation (see 

Fig. 9.6). Figure 9.6 displays the comparisons of all the methods described above to 

detect events. In order to make them more readable, the Km, Kexp and scatter plot of 

dP / d(J2) curves are plotted on a log scale (i.e. Fig. 9.6d, 9.6f, 9.6h). Although there 

are obvious events in the Kexp and scatter dP / d(J2) curves, it is difficult to reliably 

distinguish the fracture initiation point from them. However, it is much easier to find 

the fracture initiation point based on the events in the instantaneous loading rate 

curve. In addition, when making a plot in log scale, the non-positive data points have 

to be removed, which means that some useful information may be lost in the K m , Kexp 

curves. From Fig. 9.6(b) we can see a significant drop in the loading rate in some 

regions or even negative loading rates. This may be due to slow crack growth in such 

brittle coatings which is not obvious in the in-situ AFM image due to its limited 

resolution. The negative values of Kexp in Fig.9.6 (a-f) make no physical sense, whilst. 

the loading rate decreasing to a negative value indicates the load drops which is likely 

to occur when cracks open in such brittle coated systems. The irregular shape of the 

AFM images (such as Fig. 9.2(c) and 9.2(d)) provides further evidence for fracture. 
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The possible mechanisms for the loading rate drop can be described as follows. The 

change of loading rate could be due to the domination of plastic deformation and the 

transition from coating dominated behaviour to softer substrate dominated behaviour. 

If both coating and substrate are brittle, the decrease of loading rate may be an 

indicator for fracture initiation or propagation. When fracture behaviour plays a minor 

role in the total deformation, the loading rate drops but remains positive. If the 

fracture behaviour dominates, the loading rate will drop to a negative value, the 

indenter loses contact with the fracture surface briefly as the displacement control 

feedback loop tends to keep it out of contact by applying a retarding force against the 

system support spring. 

General observations show that the loading rate recovers to the previous value when 

the fracture propagation stops, which may suggest that the substrate influence is 

important immediately before fracture. The trend that the loading rate almost remains 

at a constant level after the fracture event indicates that the deformation is dominated 

by substrate with only a small contribution from the coating at the high displacements 

where fracture occurs. 

With the aid of the ap / at vs. J method presented here, the fracture initiation point 

(FIP), i.e. the displacement at which fracture first occurs (which assumes it is strain 

controlled) can be easily determined (see Fig. 9.7(a)). In order to examine the validity 

of FIP obtained here for different samples (identified in Chapter 4,Table 4.1) it is 

useful to make comparison between the toughness values determined here and the 

results determined by different methods as shown in Chapter 5. In order to make them 

comparable, we convert them into relative toughness as shown in Fig.9.7(c) by 

normalising with results for uncoated glass. When converting FIP into relative 

toughness, it is assumed that the flaw distribution and critical flaw size is identical for 

all the samples. Furthermore, it is assumed that only radial cracking occurs in this 

study. 
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Table 9.1. Samples of the solar control coating stopped after each different layer in the 
multilayer stack with the final thickness increased to 400nm. N.B., thi s leads to spallation of 
the ITO so an extra sample was produced with a 240nm thickness top layer. Note the samples 

h h' kith h ' f th . tud with t e t lC er cap ayer are e emp aSls 0 IS S 'y. 
Sample 1: TiOxN y (400nm top layer) on substrate glass 

Sample 2: TiOxN y I ZnOI Agi ITO I Sn02 ITiOxN y (400nm top layer) on substrate glass 

Sample 3: TiOxN y I ZnOI AgiITO (240nm top layer) on substrate glass 

Sample 4: TiOxN y I ZnOI Agi ITO (400nm top layer) on substrate glass 

Sample 5: TiOxN y I ZnOI AgiITO 1Sn02 (400nm top layer) on substrate glass 

Sample 6: TiOxN y I ZnO (400nm top layer) on substrate glass 
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It can be seen that the results of relative toughness d t . d b FIP' . e ernune y III thIS study 
and previous results agree well with each other except f I 4 (. . or samp e I.e. wIth cap 

layer of ITO) and sample 5 (with cap layer of Sn02) (see Table 9.1). This is because 

there is larger residual stress in these two samples whI'ch . d . , was Ignore In the 

calculations. In addition, the critical flaw size may vary significantly in these samples 

since it was shown there is some debris on the surface in sample 4 (i.e. 400nm ITO 

cap layer on glass) in a previous study. 

9.5 Rate influence on maximum load achieved under 

displacement control 

The displacement rate also has an impact on the overall indentation response thus 

influencing the maximum load achieved at a given displacement. For instance, it was 

found that a 400nm ITO multilayer stack on glass shows the lowest maximum load 

under the same displacement control conditions for all the samples. This is not 

surprising because the relatively thick ITO coating easily delaminates due to the high 

residual stress caused by the deposition process and the detachment occurs during the 

deposition cycle. In such a case, the indenter contacts the very thin films underneath 

(varying from 7nm to 20nm for individual layer) and the substrate glass dominates the 

response. Therefore, in this section the ITO coating refers to the 240nm ITO coating. 

Here, the focus is on the variation of the maximum load caused by different 

displacement rates. 

Fig.9.S shows the comparison of the load-displacement curves for different coatings 

at different displacement rates. The Sn0 2 coating and ITO significantly differ from 

the other layers. Fig.9.9a displays the comparison between the maximum loads for 

different samples tested at different rates. It can be seen that in the case of the Sn02 

and ITO coatings only, the maximum loads at the highest rate rise considerably (by a 

factor of more than 20%), most noticeably for Sn02 (where the increment is up to 

35%), when the displacement rate increases from 20nm/s to 40nmls. No significant 
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difference of peak load between displacement rates of 20nrnls and IOnmls was 

observed for these samples. This is possibly due to the fact that no fracture occurs at 

the displacement rate of 40nmls for these two samples, whilst, the presence of 

cracking significantly reduces the peak load by relaxing the indentation residual stress 

for the displacement rate of 20nmls and lOnmls. It is necessary to point out that such 

sensitive rate-dependent behaviour was not observed at lower loads in the case of the 

absence of fracture (i.e. ~200nm in this study, see Fig. 9.9b), also it was not observed 

when testing using a Berkovich tip in which case no evidence of fracture was 

observed within the load limit of Hysitron Triboindenter. To further examine the 

phenomenon, nanoindentation tests at high loads (up to 500mN) were performed 

using the Nanoindenter II and the fracture was clearly observed by SEM, however, no 

events were observed in the load-displacement curves (see Chapter 7). This highlights 

the fact that the feedback control mechanisms for displacement control are different 

for the two machines and the instrumental response time is too slow for the older 

machine (Nanoindenter II). 
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Another mechanism was proposed for this sort of b h' . h' e aVlOur In tIck thermal barrier 

coatings (-200llm), as it was found that the loading rate will influence the indentation 

response when inter-column sliding occurs (Guo and Ka 2004) H . gawa, . owever, thIS 
mechanism is unlikely in thin coatings and most of the one d' h' s assesse In t IS study are 

amorphous and poorly columnar. Even if the inter-column sliding effect exists, due to 

the low coating thickness, its influence will be less significant than the substrate 

influence and can be ignored. 

9.6 Possible mechanisms for the different behaviour of Sn02 

and ITO 

This is the first observation of such enormous rate-dependent behaviour in tin oxide 

coatings during nanoindentation by a sharp cube comer tip. The fact that the 

behaviour of these coatings is almost independent of the displacement rate at low 

displacement where no fracture occurs indicates that the rate-dependent behaviour is 

actually associated with the fracture. Therefore, the different behaviour of the tin 

oxide must be related to differences in the fracture process, e.g. fracture propagation 

rate, environmental influences, or even phase transformation under very high 

pressure. Tin oxide has the lowest thermodynamic stability of all the oxide materials 

investigated here which implies that environmental effects (e.g. chemomechanical 

effects) could be significant but these have been shown to be small in these tin oxide 

based materials (Belde and Bull, 2006). Thus, phase transformation is probably the 

most likely explanation. Rate-dependent phase transformation has been found in 

silicon by (Juliano et al., 2003). In addition, for bulk Si, the phase transformation 

accompanies fracture (e.g. (Jang et al., 2004), (Baek et al., 2006), (Pharr, 2005)). It 

can be expected that similar behaviour will occur in the tin oxide coating reported 

here. 

T" . 11 morphous structure and 
In OXIde coatmgs sputtered on glass are genera Y a 

crystalline material (Warren, 2005, Wang et al., 2001), which may provide an 
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favourable situation for phase transformation under very high-pressure, e.g. 

amorphous to crystalline transition. As mentioned previously, such loading rate­

dependent behaviour was not observed during the test by a relatively blunt Berkovich 

indenter (with the tip radius of -250nm) which produces much lower stress at the 

same penetration. It is necessary to point out that the flaw state and its distribution is 

more critical for a cube comer indenter test since the contact area is much smaller 

compared to a Berkovich tip at a given penetration. A similar phenomenon but less 

significant was observed for ITO which was not surprising because ITO is indium 

doped tin oxide. 

Natural tin oxide has the rutile structure and a new phase was found at 50GPa-74GPa 

during room temperature (RT) compaction (Shieh et aI., 2005). The relatively open 

crystal structure can be easily densified. This high pressure cannot be produced 

underneath the tip during nanoindentation by a sharp cube comer tip with radius of 

about 40nm unless there is a large stress concentration at a defect. However, 

transformation from amorphous to crystalline Sn02 could occur at a lower pressure, 

particularly if this is nucleated on pre-existing crystalline material. At high loading 

rate, it can be expected that there is competition between phase transformation, crack 

initiation and plastic deformation at the site of highest stress concentration. For the 

latter two, this requires a suitable pre-existing flaw or dislocations with reasonable 

mobility, which may not be achieved. However, for the phase transformation, the pre­

existing mixture of amorphous and crystalline material in tin oxide makes it easier; in 

other words, it may lower the critical pressure for transformation. Pressure-induced 

phase transformation in bulk ceramics (such as Si, Ge) during indentation is not 

unusual and a well-known example is silicon in which the phase transformation (e.g. 

from Si-I to Si-II) can be observed at the pressure higher than 10GPa at room 

temperature (RT) (Jang et aI., 2004). Estimates for the threshold pressure for phase 

transformation will be outlined in the following. 

For bulk silicon, the phase transformation can be identified by in-situ XRD or Raman 

spectroscopy in a high pressure test (e.g. the diamond anvil,(Wiederhorn, 1974), 

(Domnich and Gogotsi, 2002)). The test conditions can be quasi-hydrostatic or 

nonhydrostatic. It is found that the application of nonhydrostatic stress (as under an 

indenter) can significantly lower the critical pressure for phase transformation 
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(Domnich and Gogotsi, 2002), (Hu et aI., 1986). In addition to such experiments, the 

critical pressure can also be determined by theoretical simulations (e.g. simulations by 

ab initio methods (Yin and Cohen, 1982), (Yin and Cohen, 1980), (Chang and Cohen, 

1985), (Needs and Martin, 1984), which was found to be in good accord with the 

different experimental results (Olijnyk et aI., 1984), (Hu et aI., 1986), (Domnich and 

Gogotsi, 2002). The critical values of pressure for phase transformation in Si-I-Si-II 

during compression is 9 to 16GPa as summarized in (Domnich and Gogotsi, 2002). 

For thin films, the experimental methods and theoretical calculations which were used 

in bulk silicon become even more complicated. Therefore, in this section a simple 

estimation was made. 

To model indentation plasticity, a model based on the expansion of a cavity was 

proposed by Johnson (Johnson, 1970), (Johnson, 1985) who assumed that the 

hemispherical core was incompressible. The mean pressure pm is given by, 

E cote + 4(1- 2v) 
Pm = 2 1+1n ~Y _____ _ 
y 3 6(1- v) 

(9.2) 

Where Y and E are yield strength and Young's modulus, respectively, v is Poisson's 

ratio and 8 is the semi-apical angle of the indenter. 

Johnson's model has been further developed by considering the hemispherical core as 

compressible and a term to account for the heat dissipated by plastic deformation is 

added (Tanaka, 1987), 
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+a (9.3) 

The value of the material constant a is given as 1/3 for ceramics and 1 for metals and 

polymers (Tanaka, 1987). 

Actually, calculations usmg both equations above result in a mean pressure 

approximately equal to the hardness measured by nanoindentation. For example, for 

the tin oxide coating investigated here, the mean pressure is 11.7GPa by Eq. (9.2) and 

14.6GPa by equation (9.3) close to its measured hardness of 14GPa. 

By analysing the instantaneous load and its associated contact depth in combination 

with the analysis of contact depth and elastic flexure depth proposed by Oliver and 

Pharr (Oliver and Pharr, 1992), the critical pressure for phase transformation can also 

be estimated at a particular point on the load-displacement curve (Juliano et aI., 2003). 

The stiffness was assumed to be the same as that under the maximum load, which is 

reasonable for bulk materials, whilst, for coated systems, it is necessary to perform 

additional tests with a peak load at the critical load for the phase transformation and 

its associated contact depth will be assumed to remain the same for the higher load 

tests. In this way, the critical pressure for the possible tin oxide phase transformation 

is about 10.3GPa. There is good agreement for the phase transformation pressure from 

the different methods. In addition to the pre-existing mixed phase, the relatively high 

shear stress within coating under the test conditions in indentation may also lower the 

critical pressure for phase transformation as mentioned previously. 

The displacement rate of 20nmls in the tests reported here seems to be a critical rate 

for Sn02 within the range of test conditions in this study, since beyond it, the presence 

of fracture is significantly reduced thus resulting in the much higher apparent 

maximum load; below it, the maximum load does not change much although the 

presence of fracture is advanced. Rate dependent phase transformation was also 
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observed in Silicon (Juliano et aI., 2003). For instance, it was shown that the Si-III to 

Si-XII transition occurs during slower unloading rate resulting in a pop-out in the 

load-displacement curve whereas a-Si forms at higher unloading rates showing an 

elbow or curvature change in the unloading curve. Usually, the higher the unloading 

rate, the lower the average pressure for a pop-out during unloading. The chance for 

amorphous silicon formation during unloading is increased at higher unloading rate 

(Juliano et aI., 2003). 

The reason that the other coatings do not display such phenomena may be due to the 

fact that their critical loading rate is outside the rate range used here. It is unlikely to 

be accounted by the different mechanical properties of the coatings because the 

mechanical properties of these coatings such as Young's modulus, hardness and 

toughness are similar. Possible phase changes might also be expected for Ti02 

coatings but the pressure of nitrogen in them increases their density and stability. The 

ZnO coating is most crystalline among the materials studied here and has a dense 

crystal structure where phase changes are unlikely. Thus it is the stress-induced phase 

transformation in Sn02 and ITO that is more likely to lead to the difference from the 

rest of the coatings. No results have been reported with respect to effect of loading 

rate on phase transformation for Si so far. It can be expected that such rate-dependent 

phase transformation may occur during the loading cycle as well. The problem is that 

it is difficult to verify by experimental methods. In-situ Raman spectra or in-situ TEM 

are required for this. 

9.7 Summary 

Different techniques and analyses were adopted in this study in order to assess the 

loading rate influence on the nanoindentation response of brittle thin films on a hard 

substrate in the presence of fracture. It was found that the loading rate changes the 

load-displacement curve and fracture initiation point. It is very interesting to note that 

Sn02 and ITO coating display quite different behaviour compared to the other 

coatings; at a given depth (i.e. 400nm in which case evidence of fracture was 

observed for all the coatings discussed in this study) the maximum load was found to 
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increase dramatically when the displacement rate increases from 20nm/s to 40nm/s, 

which was neither observed for the other coatings nor in test conditions where 

fracture was absent. The possible mechanisms to account for such abnormal 

behaviour for these two coatings were discussed. As suggested for silicon (Juliano, 

Gogotsi et al.), phase transformation during indentation is the most likely explanation 

but there is no direct evidence of phase transformation by microscopy. The contact 

geometry was also found to influence the phase transformation in Ge and Si (lang et 

al., 2005). It was also shown that the cube comer tip is a better choice for promoting 

phase transformations (lang et al., 2005) as was observed in this study. 

This is the first report of the possibility of phase transformation in tin oxide coatings 

under indentation. Also it is the first report of the rate-dependence of the possible 

phase transformation during the loading cycle. This observation may be extended to 

Si and similar materials. In-situ TEM or in-situ Raman spectra is required to confirm 

that the rate-dependent behaviour under high pressure during nanoindentation is 

related to phase transformation. 

250 



Chapter 9: Loading rate inf1uence on fracture behaviour during nanoindentation 

References: 

Baek, S., Koo, J. M. and Seok, C. S. (2006) In Fracture and Strength of Solids Vi, Pts 

1 and 2, Vol. 306-308, pp. 601-605. 

Belde, K. J. and Bull, S. J. (2006) Chemomechanical effects III optical coating 

systems,Surjace & Coatings Technology, in press. 

Belmonte, M., Fernandes, A. J. S., Costa, F. M., Oliveira, F. J. and Silva, R. F. (2003) 

Acoustic emission detection of macro-indentation cracking of diamond coated 

silicon,Diamond and Related Materials, 12, 1744-1749. 

Berasategui, E. G. (2003) Determining the mechanical properties of thin coated 

systems by nanoindentation,University of Newcastle Upon Tyne 

Breval, E., Srikanth, V. and Subbarao, E. C. (1995) Acoustic-Emission and 

Microcracking in Sapphire, Sintered A1203, AIIAl203 Composite, and 

Aluminum,Journal of the American Ceramic Society, 78,2541-2544. 

Bull, S. J., Arce-Garcias , 1., G-Berasategui, R. E. and Page, T. F.2003Indentation 

fracture ,acoustic emission and modelling of the mechanical properties of thin 

ceramics coatingsHouston,TXpp21-42 

Chang, K. L. and Cohen, M. L. (1985) Solid-solid phase transitions and soft phonon 

modes in highly condensed Si,Phys. Rev.B, 31, 7819-7826. 

Domnich, V. and Gogotsi, Y. (2002) Phase transformationations in Silicon under 

contact loading,Rev. Adv.Mater. Sci., 3, 1-36. 

Dyjak, P. and Singh, R. P. (2006) Acoustic emission analysis of nanoindentation-

induced fracture events,Experimental Mechanics, 46, 333-345. 

Guo, S. Q. and Kagawa, Y. (2004) Effect of loading rate and holding time on 

hardness and Young's modulus of EB-PVD thermal barrier coating,Surface & 

Coatings Technology, 182,92-100. 

Hainsworth, S. V., Chandler, H. W. and Page, T. F. (1996) Analysis of 

nanoindentation load-displacement loading curves,JournaZ of Materials 

Research, 11, 1987-1995. 

Hu, J. Z., Merkle, L. D., Menoni, C. S. and I.L, S. (1986) Crystal data for high-

pressure phase of silicon,Phys. Rev.B, 34, 4679-4684. 

251 



Chapter 9: Loading rate influence on fracture behaviour during nanoindentation 

Jang, J., Wen, S., Lance, M. 1., Anderson, 1. M. and Pharr, G. M.2004Cracking and 

Phase transformation in Silicon during nanoindentationBoston,MA 

Jang, J. 1., Lance, M. J., Wen, S. Q. and Pharr, G. M. (2005) Evidence for 

nanoindentation-induced phase transformations in germanium,Applied Physics 

Letters, 86. 

Johnson, K. L. (1970) Correlation of Indentation Experiments ,Journal of the 

Mechanics and Physics of Solids, 18, 115. 

Johnson, K. L. (1985) Contact Mechanics, Cambridge University Press, Cambridge. 

Juliano, T., Gogotsi, Y. and Domnich, V. (2003) Effect of indentation unloading 

conditions on phase transformation induced events in silicon,loumal of 

Materials Research, 18, 1192-120l. 

Lee, C. S., Kim, D. K., Sanchez, J., Miranda, P., Pajares, A. and Lawn, B. R. (2002) 

Rate effects in critical loads for radial cracking in ceramic coatings,Joumal of 

the American Ceramic Society, 85,2019-2024. 

Malzbender, J. and de With, G. (2000) The use of the loading curve to assess soft 

coatings,Surface & Coatings Technology, 127,266-273. 

Malzbender, J., de With, G. and den Toonder, J. (2000) The P-h(2) relationship in 

indentation,Joumal of Materials Research, 15, 1209-1212. 

Malzbender, J. and de With, G. (2001) The use of the loading curve to assess soft 

coatings (vol, 127, pg 266, 2000),Surface & Coatings Technology, 138, 111-

Ill. 

McGurk, M. R. and Page, T. F. (1999) Using the P-delta(2) analysis to deconvolute 

the nanoindentation response of hard-coated systems,loumal of Materials 

Research, 14,2283-2295. 

Needs, R. and Martin, R. M. (1984) Transition from B-tin to simple hexagonal silicon 

under pressure,Phys. Rev.B, 30, 5390-5392. 

Olijnyk, H., Sikka, S. K. and Holzapfel, W. B. (1984) Structural Phase Transition in 

Si and Ge Under Pressures up to 50 GPa,Phys.Lett., 103A. 

Oliver, W. C. and Pharr, G. M. (1992) An Improved Technique for Determining 

Hardness and Elastic Modulus Using Load and Displacement Sensing 

Indentation Experiments,loumal of Materials Research, 7, 1564-1583. 

Pharr, G. M. (2005), Private communication 

252 



Chapter 9: Loading rate influence on fracture behaviour during nanoindentation 

Rogers, L. M. (2005) In Damage Assessment of Structures Vi, Vol. 293-294 TRANS 

TECH PUBLICATIONS LTD, Zurich-Uetikon, pp. 33-45. 

Shieh, S. R., Kubo, A., Duffy, T., Prakapenka, and Shen, G. (2005) High-pressure 

phase transition in Sn02 to 117 GPa: Implications for silica; Mineral and rock 

Physics meeting 2005" www.agu.orgimeetings/fmaS/fmaS­

sessions/{maS MR33B.html. 

Tanaka, K. (1987) Elastic Plastic Indentation Hardness and Indentation Fracture­

Toughness - the Inclusion Core Model,lournal of Materials Science, 22, 1501-

1508. 

Wang, T. G., Stahley, M. E., Pantano, C. G., Yang, D. H., Anderson, T. and Kuhn, 

L.2001Nanoindentation and Nanowear Studies of Sputter-Deposited Ultrathin 

Tin Oxide Films on Glass SubstratesBostonL.3.6.1 

Warren, P. (2005), Private communication 

Wiederhom, S. M. (Ed.) (1974) Subcritical crack growth in ceramics, Plenum, New 

York,. 

Yin, M. T. and Cohen, M. L. (1980) Microscopic Theory of the Phase-Transformation 

and Lattice-Dynamics of Si,Physical Review Letters, 45, 1004-1007. 

Yin, M. T. and Cohen, M. L. (1982) Theory of static structural properties, crystal 

stability, and phase transformations: Application to Si and Ge,Phys. Rev.B, 26, 

5668-5687. 

253 



J. Chen: 

Chapter 10: 

Conclusions and Further work 



Chapter 10: 
Conclusions and Further \\ orl-; 

Chapter 10: Conclusions and Further work 

10.1 Conclusions 

Firstly, a new energy-based model (Wcdp method) to estimate coating toughness was 

developed based on the ld-dp method by Li et aI, which has been successfully applied 

to predict the toughness of various thin coatings (such as Sn02, ITO, TiOxNy etc) on 

soda-lime glass indented by a sharp cube comer tip. This model was also validated by 

experiments on different coated systems such as CNx on silicon, sapphire, SiC and 

other coatings reported in literature. Compared to the ld-dp method, the Wcdp method 

was found to provide more reliable results. The analysis predicts that the ld-dp 

method will overestimate the coating toughness for a typical coated system with a 

hard coating on a softer substrate and underestimate the coating toughness for a 

typical coated system with a softer coating on a hard substrate. This argument was 

confirmed by both experimental results and mathematical analysis. The analysis 

demonstrates that the Wcdp method developed here can separate the energy 

dissipated in other deformation mechanisms from the fracture dissipated energy which 

has not been achieved by previous energy-based models. 

In many cases, with regard to safe design, it is very useful to know the limiting value 

of the coating toughness. An initial boundary model was proposed by Toonder et al 

which gives precise formulae to achieve this goal. However, it was found that the 

assumptions in this model conflict with each other and they considerably deviate from 

realistic conditions. Therefore, the model was further developed in this work using 

assumptions that are more reasonable representations of the actual situation. Further, 

the initial boundary model gives upper and lower boundary of coating toughness for 

nanoindentation tests under load control, whilst, it only gives the upper boundary of 

coating toughness for nanoindentation tests under displacement control. In contrast, 
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the new boundary model can be equally applied to nanoindentation performed under 

load control and displacement control. The results demonstrate that the modified 

model proposed here is more reasonable than the initial boundary model. 

Most energy based models including the two models developed in this study require 

an excursion in the nanoindentation load-displacement curve, whilst, the conventional 

indentation model developed by Anstis et al can only deal with well-developed radial 

Imedian crack systems. However, with the increasing complexity of coated systems, 

the radial Imedian crack system may not occur in the coating. Also, it is not unusual 

that the crack does not lead to an excursion in the load-displacement curve. Therefore, 

the previous models become invalid and a new method is required. A new method 

based on analysis of picture-frame cracking in coated glasses produced by a 

Berkovich indenter at higher loads and the difference in the calculated and measured 

irreversible work was advanced to address this problem. Reasonable results were 

obtained and they agree well with the results determined by different methods 

reported in the literature. The model was also successfully applied to deal with the 

radial cracks in bulk materials such as silicon, SiC etc, and gave reasonable results 

compared to values in the literature obtained using different methods. 

The failure of a coated system is not only caused by coating toughness, it may also be 

caused by interfacial failure or substrate failure. In some cases, the delamination of 

coating may cause extra linear elastic recovery in the unloading curve. An attempt to 

estimate the interfacial toughness based on such observations was made by 

Hainsworth et aI, however, a significant overestimation was found for both hard 

coatings on soft substrates (e.g. nitride coatings on steel) and hard coatings on a hard 

substrate (e.g. oxides on glass). An alternative method was suggested here which 

provides more reasonable results for different types of coated systems . 

. . al t s are 
An advantage of the energy-based models is that no emplTIC parame er 

required. However, a measurement of the area of cracking is necessary which can be 

difficult to achieve as the crack systems become smaller and more complex. 
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In addition to the fracture toughness of a coating or interface, other infonnation about 

the fracture mechanism such as the fracture initiation point (FIP) or the loading rate 

influence on fracture behaviour during nanoindentation is also very important. 

Different techniques were applied to analyse the FIP in coated glass. The previous 

techniques were demonstrated to work well for hard coatings on a soft substrate but 

they cannot deal with brittle coatings on a brittle substrate. Thus, the plot of 

instantaneous loading rate against displacement was proposed to identify the FIP 

which turns out to be very efficient and easy to apply compared to the other methods. 

In addition, it can be used to find rate-dependent fracture behaviour in these ceramic 

coatings on glass. For all the coatings, within the displacement rate range used in this 

study, it was found that the higher displacement rate the higher the FIP. Also, at lower 

loading rates, the events in the load-displacement curves are relatively small but large 

in quantity which is due to slow crack growth in these coatings at low testing rates. 

When analysing the maximum load achieved at the same displacement but different 

displacement rates, it was found that the maximum load increases dramatically in 

Sn0 2, when the displacement rate rises from 20nmls to 40nmls. Although the increase 

of the displacement rate will significantly delay the presence of fracture, the 

maximum loads do not change much for the rest of coatings. The possible reasons to 

account for this phenomenon were discussed, among which phase transfonnation 

under the high pressure associated with indentation was most likely. The critical 

pressure for the phase transfonnation was estimated by different methods and good 

agreement was achieved between them. 

10.2. Further work 

The energy based models presented here have been successfully applied to different 

crack patterns in different types of coated systems. With regard to the ultra small 

cracks caused by a cube comer indenter at low loads «5mN), no evidence of the 

exact crack morphology was observed, thus more advanced microscopy techniques 

are required such as in-situ Transimission electronic microscopy (TEM) because it is 
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almost impossible to locate such small indentations under off-line SEM, AFM and 

TEM. SEM and AFM may not be able to investigate the exact crack morphology in 

many cases. Also, to assess the possible phase transformations in an ultra small 

volume under the indenter, in-situ TEM is necessary because Raman spectra are not 

sufficiently sensitive for such amorphous or semi-crystalline coatings in this work. 

In order to further the understanding of the fracture mechanisms during indentation, it 

is valuable to know the size effect on fracture behaviour. The following questions will 

be very interesting. Will the coating thickness influence the fracture toughness and 

how? Will the coating thickness influence the fracture initiation point and how? How 

does the coating thickness affect the interface? Will the contact scale matter and how? 

There is some evidence that, as the contact scale is reduced, the apparent mechanical 

properties change and the deformation mechanism in very fine grained nanomaterials 

are considerably different from those in the bulk. Conventional continuum mechanics 

may no longer apply and even plasticity models based on dislocation dynamics will 

be invalid since the scale of the material microstructure is smaller than the dislocation 

core size. Under such condition, diffusion and other time-dependent processes will be 

significant. 

In order to cope with these questions, multiscale modelling which combines finite 

element simulations and molecular dynamics is required to be carried out in the 

following few years. 

With regard to the bound model, the future work is to perform nanoindentation tests 

to obtain the actual unloading curve at the excursion start point and excursion end 

point so that the upper bound of the fracture toughness can be obtained. Also work to 

obtain the reasonable lower bound of fracture toughness will be carried on. 

The long term goal of exploring the fracture behaviour of complex coatings is to 

guide the design of new coatings and reduce the possibility of the failure of the 
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coating in service. The provision of reliable design data and predictive performance 

models for brittle coatings is made possible by the preliminary work in this thesis. 
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Appendix: Application of Wt-dp method in the case of an 

excursion associated with fracture in a purely linear elastic 

system in indentation 

Load 

o 

.. .. 
y ..... . ... .. .. . -.. ... ... .. .. 

...... I 
X .. + ... 

•• + U .................. 

w 

M N 

Displacement 

Fig. a. Schematic of excursion associated with fracture in a purely linear elastic system. It is 

assumed that the loading curve OX and the unloading curve IN are purely linear elastic in 

indentation. 

Considering the simpliest condition, i.e. linear elastic, before an excursion and after 

an excursion (i.e. P = k
1
6, P = k

2
6) , then it can be expected that the area OXVO 

will be the upper bound of the fracture dissipated energy (if ignoring the heat or other 

factors, it will be fracture dissipated energy). 
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Now applying the Wcdp method, the energy expenditure for fracture will be the area 

XYVMX. The area XYV is obtained by the first extrapolating process. If we consider 

the Point V as the reference point, the area of VXW will be the work difference 

obtained by second extrapolation. 

At Point V, the total work difference between Point X and V is the area XVNM, while 

the total work difference between Point Wand V is the area WVNM. Thus the work 

difference between Point X and Point W should be area XVW. 

Applying the Wcdp method, the fracture dissipated energy will be the sum of the area 

XYV and the area XVW (i.e. the area XYVW). 

For convenience, we denote the areas XYV, XVW, and OXW as areas I, II, III as 

depicted in Fig. a. Also, we denote that ~i ~1=A, thus k1/ k2=A. 

It is obvious that, 

I + II _ (kl - k2 )82 + (kl - k2 )81 = 82 + 1 = A + 1 
II - (kl - k2 )81 81 

III + II 
II 

1+ II 
III + II 

(A + l)(A -1) 

A 
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It is then easy to obtain, 

I + II > 1, A > 1 + .J5 
III + II 2 

(AA) 

I + II 11 ') 1 + .J5 ---< , <A<---
III + II 2 

Therefore, for a simple linear elastic system, the ratio of the fracture dissipated energy 

based on Wcdp method proposed in Chapter 5 over the upper bound of the fracture 

dissipated energy as argued in chapter 6 is dependent of how big is the excursion in 

the load-displacement curve compared to indentation depth (i.e. the ratio of depth of 

the excursion start point and the excursion end point.) 

In reality, the ratio of depth of excursion start point and excursion end point is seldom 

bigger than 1.62. For an elastic system, the excursion is usually very small compared 

to the depth where excursion occurs so that the A is close to 1, in which case, the 

fracture dissipated energy determined by Wcdp is always less than the upper bound 

and is reasonably close to it. 
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