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Abstract 

Introduction 

Cardiovascular disease (CVD) is the major cause of morbidity and premature mortality in 

type 2 diabetes (T2DM). Carotid artery intima-media thickness (cIMT) is a marker of 

cardiovascular disease. Carotid artery IMT heritability estimates are increased in both 

healthy and type 2 diabetic families, providing support for the role of genetic factors. This 

close link between CVD and T2DM raises the possibility that common gene variants 

might increase susceptibility to both conditions, the "common soil" hypothesis. Common 

variants of the genes encoding PP ARy and adiponectin have been found to increase 

susceptibility to type 2 diabetes. The hypothesis to be investigated is that these 

susceptibility genes exhibit pleiotropy and increase the risk of CVD. 

Methods/Results: 

Subjects aged 30-60 years were recruited at 19 centres in 14 European countries. Each 

subject underwent anthropometric and metabolic assessment including euglycaemic 

hyperinsulinaemic clamp to study insulin sensitivity and ~-mode ultrasound scan for the 

measurement of carotid IMT.The study cohort consists of 1278 subjects. Pro12 Ala was 

genotyped by restriction fragment length polymorphism (RFLP-PCR). SNP T-45G and 

SNPs (A-11426G, G-11391A and C-I 1377G) of the ADIPOQ gene were detected by 

Sequenom and TaqMan assay respectively. 
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Results/Conclusions: 

In this study we confirmed that the Pro 12Ala of the PPARy variant influences insulin 

sensitivity in the healthy population. Specifically, subjects homozygous for the Ala allele 

are more insulin sensitive compared to the rest of the population independent of measures 

of adiposity. However in this cross sectional data, there was no significant association 

between cIMT and the genetic variation of the Pro 12 Ala variant. 

We also found that SNP +45 of the ADIPOQ gene influences insulin sensitivity 

independent of serum adiponectin in this healthy population. Subjects homozygous for 

the G allele are less insulin sensitive compared to the T allele carriers, have high waist 

circumference and fasting NEF As. However, there was no association of this 

polymorphism and c IMT, a measure of CVD. 

However, it was established that variation in the ADIPOQ gene promoter was directly 

associated with carotid IMT, and this was independent of circulating adiponectin levels 

and classical CVD risk factors. This observation needs to be replicated in other cohorts, 

and further evidence is needed to explore the potential mechanisms by which variation in 

adiponectin influence IMT and CVD. 
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1. Introduction 

1.1 Cardiovascular disease and type 2 diabetes 

Cardiovascular disease is a major cause of morbidity and premature mortality in patients 

with type 2 diabetes. Indeed, cardiovascular disease mortality is two to three fold higher 

in type 2 diabetic patients compared to the background non-diabetic population (1, 2). As 

the worldwide prevalence of type 2 diabetes inexorably increases (predicted to reach 221 

million by 2010) (3), it is anticipated that there will be a parallel increase in the associated 

cardiovascular disease. 

It is reported that type 2 diabetic patients with no established cardiovascular disease have 

a similar risk to those who have had a stroke or myocardial infarction without diabetes (4-

6). Cardiovascular disease is the most common complication of type 2 diabetes and 

accounts for about 80% of all cause mortality in type 2 diabetic patients (7). Furthermore, 

patients with type 2 diabetes tend to have a worse outcome after a cardiovascular event 

compared to the non diabetic patients. (8-10). 

The aetiology of this excess cardiovascular disease mortality appears to be heterogeneous. 

Insulin resistance is the key predictor for the development of type 2 diabetes and appears 

to be important in the pathogenesis of cardiovascular disease. The Insulin Resistance 

Syndrome is a cluster of cardiovascular risk factors associated with premature 

cardiovascular mortality (11, 12). Following the original description of the insulin 

resistance syndrome, other cardiovascular risk factors have been recognised as part of the 

cluster. However the excess in cardiovascular disease in type 2 diabetes is not fully 
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explained by the increased prevalence of classical cardiovascular disease risk factors (13), 

emphasising the fact that other factors contribute to the increased cardiovascular disease 

risk. The pathogenesis of both type 2 diabetes and insulin resistance are largely unknown 

as they comprise complex traits in which mUltiple gene effects and environmental factors 

combine to contribute to the overall pathogenesis and this make it difficult to search for 

underlying susceptibility genes. 

1.2 Insulin Sensitivity 

1.2.1 Measurements of Insulin sensitivity: 

Insulin resistance is defined as the reduced ability of insulin to control blood glucose by 

promoting glucose uptake in target tissues and by inhibiting glucose production by the 

liver (14). The effect of insulin on tissues can be assessed by different methods; this 

includes peripheral glucose clearance and suppression of glucose output from the liver. 

When measuring insulin sensitivity it should be considered that different tissues express 

different insulin sensitivities (15). 

One of the methods, which has been widely used in clinical research to assess insulin 

sensitivity is the homeostasis assessment model of insulin resistance (HOMA-IR). It is 

obtained from fasting glucose and insulin concentration using a computer model (16). 

The fasting concentration of glucose (expressed as mg/dL) and insulin (expressed as mul 

ilL) is divided by a constant. HOMA-IR is expressed as a percentage of normal. It must 

be noted that it measures basal rather than stimulated insulin resistance and hence it is 

rather a predictive than an accurate measure. 
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Fasting insulin is often used as a surrogate marker for insulin sensitivity. However, 

plasma insulin levels are only an approximate estimate of in vivo insulin sensitivity. 

There is interlaboratory variability and high coefficient variance of insulin measurement, 

which can result in up to three-fold variation in insulin concentrations and hence affect 

this method as a sensitive measure of insulin sensitivity (17). Furthermore, it is not known 

whether hyperinsulinemia alone, insulin resistance or both contribute to the observed 

association with cardiovascular disease. 

Insulin sensitivity can be determined from intravenous glucose tolerance tests (IVGTT). 

The minimal model described by Bergman and Cobelli gives an estimate for both insulin 

resistance and beta cell function (18). 

The minimal model depends on glucose disappearance rate in response to insulin. The 

pitfall of this model is that it assumes an intact endogenous insulin secretion, which is not 

the case in all non-diabetic healthy individuals. Estimates of insulin sensitivity obtained 

from the frequently sampled intravenous glucose tolerance test (FSIGTT) have been 

reported to correlate well with those from the euglycaemic clamp technique. The test 

requires up to 3 hours and a computer program for analysis. It also lacks the 

standardization in methodology, which makes it difficult to compare with other studies 

(19). 
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The insulin sensitivity test (1ST) involves intravenous infusion of glucose load and a fixed 

rate of insulin over 3 hours. Somatostatin can be given to inhibit gluconeogensis, prevent 

insulin secretion and to delay the counter regulatory hormone secretion. Insulin sensitivity 

is derived from the mean plasma glucose over the last 30 minutes. A simpler version of 

1ST is the insulin tolerance test. It measures the decline in serum glucose after an 

intravenous bolus of insulin is administered. Depending on the protocol used, it measures 

insulin-stimulated uptake of glucose into skeletal muscles (20). 

The Oral glucose tolerance test (OGTT) can be used to assess insulin sensitivity. This is 

obtained from the logarithm of 2 hours plasma insulin concentration following OGTT 

(21). A model described by Mari et aI, used the OGTT to derive the oral glucose insulin 

sensitivity index (OGIS). It requires insulin and glucose concentration from a 75 gram 

standard OGTT to determine whole insulin sensitivity. This method has been shown to 

correlate well with results from the hyperglycaemic clamp technique and because of its 

simplicity, it has the potential to be used in large epidemiological studies. (22). However, 

it has yet to be validated or widely used. 

The euglycaemic clamp technique has become the gold standard method for measuring 

insulin sensitivity. Glucose is clamped at a predetermined level by varying and titrating 

the glucose infusion rate against a fixed insulin infusion rate. Once a steady state of 

glucose uptake rate has been reached the degree of insulin resistance is inversely related 

to the amount of glucose used during the clamp study. It is time consuming, labour 

intensive and an expensive measure of insulin sensitivity and this makes it difficult to be 

used in large epidemiological studies. lt uses supraphysiological levels of insulin 



especially for patients with diabetes (23). Nevertheless it remains the most sensitive 

method to assess insulin sensitivity in vivo. 

In summary, there are number of methods to assess insulin sensitivity depending on the 

size and the type of the study. Most experts would agree that the euglycemic 

hyperinsulinaemic clamp technique is the gold standard method of measuring insulin 

sensitivity in non diabetic healthy volunteers (15). 

1.2.2 Insulin sensitivity and Type 2 diabetes: 

The worldwide increase in the overall prevalence of type 2 diabetes has been linked to the 

sedentary life style which leads to obesity and insulin resistance. Type 2 diabetes is a 

complex metabolic disorder, characterized by a combination of f3-cell dysfunction, 

peripheral insulin resistance and increased hepatic glucose production (24). Many patients 

with type 2 diabetes have clinical evidence of insulin resistance. This includes a cluster of 

cardiovascular risk factors, hypertension, dyslipidaemia (raised triglycerides and low 

HDL cholesterol) and central obesity (25, 26). Central obesity has been recognised as a 

key etiological feature in the development of insulin resistance (7). Insulin resistance is 

thought to be critical in the development of type 2 diabetes. It has been reported that up to 

three out of four individuals with type 2 diabetes meet the diagnostic criteria for the 

metabolic syndrome and have evidence of insulin resistance (7). 
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It has been suggested that the pathogenesis of type 2 diabetes includes primarily insulin 

resistance, which result initially in hyper secretion of insulin by the pancreatic B-cells. 

This leads eventually to beta cell failure and the development of clinical diabetes (27). 

Prospective studies have demonstrated that hyperinsulinaemia is an independent predictor 

of type 2 diabetes, the insulin resistance syndrome and cardiovascular disease (28, 29). In 

a prospective study of non-diabetic first-degree relatives of northern European extract, it 

has been shown that insulin resistance is an independent risk factor for the deterioration in 

glucose tolerance (30). 

Insulin resistance is reported to be present in about 90% of individuals with type 2 

diabetes and impaired glucose tolerance (IGT) individuals (31). However not all 

individuals with insulin resistance will develop type 2 diabetes which suggests there must 

be other possible mechanisms in the development of type 2 diabetes. 

The genetic susceptibility, which contributes to the clinical and metabolic components of 

type 2 diabetes, remains largely unknown. There is evidence that multiple gene defect 

influence overall susceptibility to type 2 diabetes (32). 
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1.2.3 Insulin sensitivity and CVD: 

Insulin resistance is an underlying feature of both the metabolic syndrome and type 2 

diabetes (28). It is associated with abnormalities in both glucose and lipid metabolism. 

These abnormalities are associated with an increased risk of cardiovascular disease and 

are often present before the onset of type 2 diabetes (29). There is now convincing 

evidence that cardiovascular disease begins before the onset of clinical diabetes (33). 

However, it is not known which specific element of the diabetic state is responsible for 

the increase in cardiovascular risk. As hypertension, hyperglycemia, hemostatic factors, 

proinflammatory cytokines and changes in circulating lipids tend to cluster in insulin 

resistance, it is not clear which of these factors can account for the excess risk of 

cardiovascular disease. 

Insulin resistance is now believed to underlie the clustering of metabolic abnormalities 

that mark the onset of cardiovascular disease. It has been hypothesized that insulin 

resistance per se may promote the development of cardiovascular disease (34). Although 

it was suggested that insulin resistance might initiate cardiovascular disease, the evidence 

for the direct role of insulin resistance is not yet available (35). The San Antonio Heart 

Study showed a link and overlap between hyperinsulinemia, type 2 diabetes, obesity, 

hypertension and dyslipidemia indicating that the cluster of the insulin resistance 

syndrome carries an increase risk of cardiovascular disease (31). However, there is 

evidence that hyperinsulinemia exerts a distinct pathological effect independent of insulin 

resistance, which implies that hyperinsulinaemia and reduced insulin sensitivity are two 

separate entities (34, 36). 
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Table [1] summarize some of the recent evidence of the association between insulin 

sensitivity and cardiovascular disease, with key points from each study. (33,34,37,38, 

39). Both the Verona diabetes complication study and IRAS study showed that insulin 

resistance was an independent predictor of cardiovascular disease (34, 37). However, in 

the IRAS study, insulin resistance was not totally independent predictor of eVD as 

measured by c IMT. This association was reduced but not completely eliminated by the 

classical eVD risk factors, suggesting that the association is partly mediated by 

traditional eVD risk factors and this association was not seen in black African 

Americans. In the Paris Prospective study, fasting plasma insulin level and the fasting 

insulin-glucose ratio were positively associated with coronary heart disease independent 

of the other eVD risk factors in middle aged 7246 non diabetic men followed up for 5 

years (158) 

The results of the large longitudinal study, (RISe) study, to determine whether insulin 

resistance predicts the development of cardiovascular disease in a healthy non-diabetic 

population of European descent, are still awaited (40). One of the first conclusions of the 

RISe study was recently published; this showed that insulin resistance is not the sole 

driver of the cardiovascular risk with a major contribution of central obesity and high 

circulating insulin levels (41). 
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Table 1: Insulin resistance and cardiovascular disease, review of the evidence. 

Measurement 
Name of Numbers/ Follow up 

of insulin OutcomeiFindings 
the Study Population (Yrs) 

sensitivity 

Fasting insulin predicted development of type 2 diabetes, 
San Antonio Study 

614 !HDL-C, jTG & hypertension. 
Haffner SM. 

Mexican Fasting insulin 8 Baseline insulin concentrations were higher in subjects who 
Diabetes( 1992) 

Americans subsequently developed multiple metabolic disorders. 
41: 715-722 

lRAS study 1600(Total) 
IVGTTwith Significant association between insulin resistance and 

Howard G. 398(Black) 
minimal N/A atherosclerosis of the (c IMT), this is partially dependent and 

I 

Circulation. (1996) 457(Hispanic) 
modelling mediated by traditional CVD risk factors. No significant 

93: 1809-181 7 542(non-Hispanic 
association between IR and c IMT in African Americans. 

white) 

--
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I Verona Diabetes 
~ -

I 
Complications HOMA-IR was an independent predictor of both prevalent 

Study 1,326 and incident CVD. 

Bonora E. Patients with type HOMA-IR 4.5 Improvement of insulin resistance might have beneficial 

Diabetes Care 2 diabetes effects on CVD in patients with type 2 diabetes. 

: (2002)25: 1135- , 

1141 

Insulin resistance was associated with established CVD risk 
Strong Heart Study 

2,283 factors including BMI, waist circumference, blood pressure, 
Resnick HE. 

Non diabetic HOMA-IR 7.6 incident diabetes and lipid levels. 
Diabetes Care 

American Indians Insulin resistance on its own did not predict incident CVD. 
(2003) 26: 861-867 

V A-HIT study 
Significantly higher risk ofCVD event with insulin resistance 

Robins S1. Diabetes 2,283 
HOMA-IR 5 The rate of new CVD events and the reduction of events with 

Care (2003)26: Men with CHD 
Gemfibrozil were in subjects with IR than in those without. 

1513-1517 

-
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The close association of type 2 diabetes with cardiovascular disease led to the hypothesis 

that they both share a common antecedent. This concept has been labelled the 'common 

soil hypothesis' (42,43). 

The metabolic syndrome is a cluster of metabolic abnormalities. Each of the component 

which constitutes the metabolic syndrome, is an established cardiovascular risk factor and 

the risk becomes exponentially higher when these components are combined together. In 

the Botnia study, the prevalence of coronary heart disease, myocardial infarction and 

stroke were approximately threefold higher in subjects with the metabolic syndrome than 

in those without (7). The global epidemic of type 2 diabetes is believed to be driven by 

the rise in the prevalence of the metabolic syndrome. 

The most widely used definitions for the metabolic syndrome come from the World 

Health Organization (WHO), European group for the study of insulin resistance (EGIR) 

and the National Cholesterol Education Program - Third Adult Treatment Panel (NeEP 

ATP III, the American Heart AssociationlNational Heart, Lung, and Blood Institute 

(AHAINHLBI) and the International Diabetes Federation (IDF) (5, 44, 45, 46,159). 
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The WHO definition of the metabolic syndrome includes insulin resistance as one of the 

major underlying contributor to the metabolic syndrome, the classification is summarised 

in table (2). 

EGIR have recommended a number of changes to the WHO definition. It excluded 

patients with type 2 diabetes. Central obesity is defined as waist circumference ~80 cm 

for women and ~94 cm for men. Use of fasting insulin levels to estimate insulin 

resistance (instead of the euglycemic clamp) and impaired fasting glycemia as a substitute 

for impaired glucose tolerance in epidemiologic studies. 

For a person to be diagnosed with the metabolic syndrome by the NCEP ATP III 

definition they must have three or more of the five risk factors summarised in table (3). 

Because the metabolic syndrome comprises established cardiovascular disease risk 

factors, both the WHO and the NCEP A TP III definitions have been shown to be 

predictive of cardiovascular disease. 

Type 2 diabetes can be regarded as a cardiovascular disease risk equivalent and hence the 

need to target these cardiovascular disease risk factors is fundamental when treating 

patients with type 2 diabetes. Higher proportions of the population meet the NCEP ATP 

III definition of the metabolic syndrome than the WHO definition because the NCEP 

A TP III definition has a lower diagnostic threshold for certain characteristics. 

In 2004, the International Diabetes Federation (IDF) held an expert workshop to examine 

how the currently available definitions for the metabolic syndrome could be improved 

and developed with the aim of reaching a consensus for the introduction of a new and 

unifying definition. This is summarised in table (4). 
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Table 2: The WHO definition of the metabolic syndrome (1999) 

For a person to be diagnosed with the metabolic syndrome they must have glucose 

intolerance, IGT or diabetes and/or insulin resistance together with two or more of 

the following components listed below: 

1. Impaired glucose regulation or diabetes. 

2. Insulin resistance (under hyperinsulinemic euglycemic conditions, glucose uptake 

below lowest quartile for background popUlation under investigation). 

3. Raised arterial pressure ~ 140/90 mmHg. 

4. Raised plasma triglycerides (~1.7 mmollL; 150 mg/dL) and/or low HDL 

cholesterol «0.9 mmol/L, 35 mg/dL men; <1.0 mmollL, 39 mg/dL women). 

5. Central obesity (males: waist to hip ratio> 90 cm; females: waist to hip ratio> 85 

cm) and/or BMI >30 kg/m2. 

6. Microalbuminuria (urinary albumin excretion rate ~20g/min or albumin: 

creatinine ratio ~30 mg/g). 
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Table 3: The NCEP ATP III - The metabolic syndrome definition (2001) 

For a person to be diagnosed with the metabolic syndrome they must have three or 

more of the following five risk factors: 

Risk Factor Defining Level 

(I)Abdominal obesity (Waist circumference) 

Men > 1 02 cm (>40 in) 

Women >88 cm (>35 in) 

(2) Triglycerides 2:150 mg/dL (1.7 mmol/L) 

(3) HDL cholesterol 

Men <40 mg/dL (1.04 mmollL) 

Women <50 mg/dL (1.29 mmollL) 

(4) Blood pressure 2:130/2:85 mmHg 

(5) Fasting glucose 2: 110 mgldL (6.1 mmollL) 
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Table 4: The International Diabetes Federation (IDF) consensus definition of the 
metabolic syndrome 

Central Obesity 

Plus any two of the following: 

(1) Raised Triglycerides 

(2) Reduced HDL Cholesterol 

(3) Raised blood pressure 

(4) Raised fasting plasma glucose 

Waist circumference (ethnicity specific) 

for Europids: Male ~ 94 cm 

Female ~ 80 cm 

~150mg/dL (1.7mmoI/L) 

Or specific treatment for this lipid 

abnormality 

<40mg/dL (0.9 mmollL) in males 

<50mg/dL (1.1 mmol/L) in females 

or specific treatment for this lipid 

abnormality 

Systolic: ~130 mmHg or 

Diastolic: ~85 mmHg or 

Treatment of previously diagnosed 

hypertension 

Fasting plasma glucose ~ 100 mg/dL 

(5.6 mmollL) 

or 

Previously diagnosed type 2 diabetes 

If above 5.6 mmol/L or 100 mg/dL, OGTT is 

strongly recommended but is not necessary 

to define presence of the syndrome. 
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It is still unclear how insulin resistance per se could result in atherosclerosis. Some 

possible mechanisms by which insulin resistance could result in the observed increase in 

cardiovascular disease have been suggested. 

Elevated plasma free fatty acids (FFA) concentrations are common in type 2 diabetes 

(47). It has been shown that early changes in FFA concentrations are predictive of the 

transition of patients from impaired glucose tolerance (lGT) to type 2 diabetes (48, 49). 

Some studies indicated that elevated circulating FFA might directly contribute to the 

development of both peripheral and hepatic insulin resistance (50, 51). High plasma FFA 

concentrations are associated with a number of cardiovascular risk factors linked to 

insulin resistance, including hypertension, dyslipidemia, hyperuricemia and abnormal 

fibrinolysis. 

Although the exact relationship between elevated FFA, insulin resistance and beta-cell 

dysfunction requires further investigation, there is good evidence that FF A concentrations 

represent an important therapeutic target in obesity and type 2 diabetes. 

It has been suggested that a number of potentially antiatherogenic properties of insul in 

may be impaired in the insulin resistant state. This includes impaired anti-aggregation of 

platelet effect, nitric oxide release from the endothelium, inhibition of fibrinogen 

synthesis and impaired inhibition of migration of vascular smooth muscle cells (52-55). 



Insulin resistance is also associated with high levels of inflammatory factors, which may 

be one of the adverse consequences of obesity. It has become increasingly clear that 

visceral fat cells have an endocrine function. In particular, these cells produce a cytokine 

tumour necrosis factor (TNFu), which lowers insulin sensitivity and induces low-grade 

inflammatory activity. This leads to a thrombogenic tendency and may be involved in the 

mechanisms that lead to vascular dysfunction, hypertension and atherosclerosis (51). It is 

still not clear whether insulin resistance contribute to the development of some of the 

complications of type 2 diabetes through a pathway that is distinct from those related to 

the classical risk factors. 

There is evidence linking vascular abnormalities with both insulin resistance and 

cardiovascular disease, supporting the fact that primary defects in insulin signalling 

pathway leads to reduce glucose uptake in skeletal muscle and adipose tissue as well as 

altered endothelial nitric oxide (NO) synthesis (56). It has been postulated that, it is the 

combination of these defects in insulin signalling pathway, which is manifested as 

metabolic abnormalities e.g.(Hyperglycaemia and dyslipideamia) in addition to vascular 

insulin resistance, which leads to cardiovascular disease (56). One can speculate that it is 

the "vascular insulin resistance" which will subsequently result in endothelial dysfunction 

and predispose to cardiovascular disease (56). 
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1.3 Evidence of the genetic basis of insulin sensitivity 

1.3.1 Family studies 

The role of genetic variation in the pathogenesis of type 2 diabetes and insulin resistance 

was seen in family studies. This includes studies of monozygotic and dizygotic twins and 

extended families and pedigrees (57). 

It has been shown that the concordance rates for type 2 diabetes are higher in 

monozygotic twins compared to dizygotic twins (58, 59). Studies of different ethnic 

groups have demonstrated an early presence of insulin resistance in nondiabetic relatives 

of subjects with type 2 diabetes. It has been shown that in non diabetic first degree 

relatives of type 2 diabetes patients, there is threefold increased risk of developing type 2 

diabetes compared to the general population (60, 61). Gulli et al.who used the 

euglycaemic hyperinsulinaemic clamp technique to measure insulin resistance, had 

reported impaired glucose disposal in the offspring of type 2 diabetic parents compared to 

the controls (62). Both first and second phase insulin secretion were impaied in the 

offspring, indicating compensatory hyperinsulinaemia in these subjects (63). 

The evidence that insulin resistance has an underlying genetic predisposition was 

supported by the familial clustering both in Pima Indians and Caucasians using the 

euglycaemic hyperinsulinaemic clamp technique and the frequently sampled intravenous 

glucose tolerance (FSIVGTT) respectively (64, 65), to measure insulin resistance. 
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Furthermore the fact that insulin resistance is present as an early feature in non diabetic 

first degree relatives who are at higher risk for developing type 2 diabetes produce 

indirect evidence of the genetic basis of insulin resistance (63, 66). 

It has been shown previously, that patients with type 2 diabetes with clinical evidence of 

underlying insulin resistance, have defects of insulin stimulated glucose uptake into 

skeletal muscles. Cultured myotubes from these subjects tend to retain these defects after 

prolonged culture, which appear to be specific to the insulin signalling pathway, 

indicating an underlying genetic basis of these defects of insulin action (67). 

Other evidence for the genetic basis of inherited defects of insulin resistance comes from 

the finding of reduced insulin responsiveness of glucose uptake in culture myoblasts from 

insulin resistant non diabetic relatives of type 2 diabetic families (68). However both type 

2 diabetes and insulin resistance are complex traits with multiple genetic and 

environmental factors combine to contribute to the pathogenesis of these conditions, and 

this makes it challenging to study the genetic basis of these conditions (69). 
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1.3.2 Heritability of insulin sensitivity 

Heritability is defined as the proportion of variance in a trait that is attributable to the 

additive gene effect. Heritability of insulin resistance using fasting insulin as indirect 

measure was estimated to be 0.35 in a study of extended pedigree (70). Twin studies have 

demonstrated the heritability of glucose and insulin values and estimated the heritability 

of insulin resistance to range from 0.47-0.66 (58, 71-73). 

In middle-aged twin pairs in a Dutch study, the heritability estimate for fasting insulin 

was 0.25. Another twin pairs from Finland, which used the euglycaemic hyperinsulinemic 

clamp technique to measure insulin resistance, estimated the heritability of insulin 

resistance to be 0.37 by variance in glucose uptake clamp and more than 0.55 heritability 

of insulin secretion, using the intravenous glucose tolerance test (74). 

A recent Finnish study aimed to evaluate the genetic and environmental effects on plasma 

glucose, insulin secretion and insulin resistance. They studied 85 monozygotic and 85 

dizygotic twins and showed the heritability estimates for fasting insulin to be 0.43 (75). 

A recent Danish twin study used euglycaemic hyperinsulinemic clamp technique in 110 

younger and 86 older twins and showed tnat the heritability estimates for peripheral 

insulin sensitivity to be 0.53 and 0.55 in the younger and older group respectively. 

Another study used samples from the Diabetes UK Warren type 2 consortium. They 

included 811 nondiabetic relatives from 278 pedigrees of northern European extraction 

with at least 2 siblings with known diabetes. They described the heritability estimates for 

fasting glucose to be 0.72 and 0.29 for insulin sensitivity using the HOMA model. The 

heritability for features of insulin resistance was also significantly high in these families 

with increased susceptibility of type 2 diabetes (76). Freemen et al studied families from 
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the same background but with no increase in susceptibility to type 2 diabetes nor 

characterized by a high degree of insulin resistance. They reported relatively lower but 

still significantly high heritability estimates in fasting glucose and similar estimates for 

the features of insulin resistance as the previous study (77). 

In summary there are consistent findings of significant heritability for insulin resistance, 

but values may vary and this may simply reflect differences between methods of 

measurement of insulin resistance and or differences in study populations. 
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1.4 Carotid artery intima-media thickness (c IMT): 

1.4.1 c IMT as a marker of cardiovascular disease 

Carotid artery intima -media thickness (cIMT), imaged by high resolution B-mode 

ultrasonography has been shown to be a reliable marker of sub-clinical atherosclerotic 

cardiovascular disease (78). 

In addition, increased cIMT has been shown to be a predictor of myocardial infarction 

and stroke, independent of the classical risk factors in older subjects lacking a prior 

history of cardiovascular disease (79, 80). As expected, it has been confirmed that the 

classical cardiovascular disease risk factors such as hypertension, hyperlipidaemia, male 

sex, age, smoking and postmenopausal status all contribute to an increase in carotid IMT 

(80-82). 

The carotid intima-media consists of endothelial cells, connective tissue, and smooth 

muscle and constitutes the site of lipid deposition in plaque formation (83). In healthy 

adults they range from 0.25 to 1.5 mm, (84) and values greater than 1.0 mm are regarded 

as abnormal (83). Age is considered as a powerful determinant of c IMT with 0.01 to 0.02 

mm increase each year (84, 85). Carotid IMT has been proposed as a surrogate marker of 

cardiovascular disease' (86). It has been suggested that ultrasonographic defined carotid 

intima media thickness is a better model to study CVD than clinical manifestation of 

cardiovascular disease, such as myocardial infarction and stroke. The later were described 

to be distant phenotypes from their genes and gene products (87). As carotid intimal­

medial thickness is predictive of clinical cardiovascular disease, and can be imaged and 
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then measured noninvasively using ultrasound, it can provide an alternative method to 

study early atheroscleoris. On the other hand genetic variants reported to be associated 

with clinical cardiovascular disease show weak or no relationship to carotid 

atherosclerosis. This could be explained by the inconsistency in the associations between 

clinical cardiovascular disease and the genetic variants or simply carotid atherosclerosis 

and clinical cardiovascular disease are two different phenotypes or represent different 

stages of the disease, e.g. IMT as a marker of vessel disease but myocardial infarction as 

a vessel disease marker in addition to other thrombotic factors leading to plaque 

instability and rupture (88). Recently linkage and association studies of carotid 

atherosclerosis, prove to be more encouraging (89). 
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1.5 Evidence of the genetic basis for clMT 

1.5.1 Heritability of cIMT 

There is emerging evidence to support the role of familial, possibly genetic factors in 

determining the variability in cIMT. A number of studies have used family and twin 

based methods to estimate heritabilities for cIMT, with the hypothesis that a significant 

heritability estimate provides support for the involvement of gene effects. Duggirala et al 

studied sib-ships of mixed ethnicity in Mexico City and found a very high heritability 

estimate of 0.90 for the cIMT after adjustment for a number of established CVD risk 

factors, suggesting a major genetic component for the development of carotid artery 

atherosclerosis (90). 

A second study used the same family based approach reported a lower (0.30) but still 

significant heritability estimate (91). A more recent study estimated cIMT heritability 

using the classical twin based approach (92). They studied 71 monozygotic and 61 

dizygotic twin pairs and estimated the heritability to be 0.31. While this did not reach 

statistical significance, perhaps reflecting the difficulty in achieving adequate power with 

twin-based studies, the value nonetheless is almost identical to that of 0.30 estimated by 

Zannad et al (91) using the family based method. 
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The twin and family based studies described so far have been conducted in non-diabetic 

and otherwise healthy individuals. Lange et al have estimated the heritability of cIMT in 

the type 2 diabetic members of families in which there were at least two relatives with 

type 2 diabetes (93). Carotid IMT was measured in 252 type 2 diabetic patients from 122 

families. The heritability estimate for cIMT was significantly increased at 0.32 after 

adjustment for age, sex and ethnicity. Interestingly, the heritability estimate increased (to 

0.41) and remained significant after adjustment for the key classical cardiovascular risk 

factors (94) The increased heritability estimate of cIMT in type 2 diabetic families raises 

the intriguing question as to whether there are pleiotropic gene effects that increase 

susceptibility to both diabetes and CVD. 
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1.5.2 Known gene effects for cIMT 

The schematic diagram in figure (1) aims to show how gene effects might increase the 

risk of type 2 diabetes and cardiovascular disease. It is postulated that there are 

pleiotropic gene effects that increase the risk of both type 2 diabetes and cardiovascular 

disease, in keeping with the "common soil" concept. These pleiotropic gene effects could 

then combine with disease specific gene effects to further increase susceptibility and lead 

to type 2 diabetes and cardiovascular disease, either alone or in combination. 

Naturally, non-genetic factors will also impact upon the overall disease risk. However, an 

important point illustrated in the diagram is that a gene might at first be identified as type 

2 diabetes susceptibility gene, but if pleiotropic, could also increase cardiovascular 

disease risk in the non-diabetic population. It is this concept that underlies the hypothesis 

to be investigated in this thesis. We will examine whether the common variants of type 2 

diabetes susceptibility genes, are associated with carotid IMT as a marker of 

cardiovascular disease in non-diabetic population. 
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1.6 Type 2 Diabetes Susceptibility Genes 

At present there is a great effort to define the genetic basis of type 2 diabetes. Several 

common gene variants have been identified that increase type 2 diabetes susceptibility. 

What is not clear so far is whether these are disease specific or pleiotropic variants. 

1.6.1 PPARy 

The thiazolidinediones (TZDs) are insulin-sensitizing agents used in the treatment of type 

2 diabetes, and mediate their effects through the nuclear transcription factor, peroxisome 

proliferator-activated receptor gamma (PPARy). This focused attention on the PPARy 

gene as a potential susceptibility gene for insulin resistance and type 2 diabetes. Two loss 

of function mutations (P476L and V290M) in the ligand-binding domain of PPARy were 

described which produced the clinical phenotype of severe insulin resistance, and early 

onset hypertension and type 2 diabetes (95). 

A common variant has also been reported in exon B of the PPARy2 gene, which leads to 

an amino acid substitution in codon 12 (Pro 12Ala) (96). The Pro 12 Pro allele was found 

to be associated with increased insulin resistance and an increased risk of type 2 diabetes 

(97, 98). Although the risk conferred to the individual was comparatively low, because 

the Pro allele is so common in the population (frequency 0.85) it generates a high 

population diabetes attributable risk of around 25% (98). 
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This observation lends support to the concept that genetic susceptibility to complex traits 

such as type 2 diabetes and insulin sensitivity is likely to result from the accumulation of 

common gene variants of weak functional effect. 

Several genetic variants in PP ARYl gene have been reported but they are less frequent 

(99). The prevalence of the Ala allele varies from 4% to 28% in different ethnic 

populations 

(100, 101). There is emerging evidence that the Ala allele variant is associated with 

increased insulin sensitivity in the non diabetic Caucasian population (97). Several Meta 

analyses confirmed that the Pro 12Pro allele increases the susceptibility risk to type 2 

diabetes (98, 102). 

Because hyperglycaemia per se affects both insulin sensitivity and insulin secretion, it is 

necessary to examine the association of these gene variants in the nondiabetic or the 

prediabetic state. 

A recent meta-analysis included 32000 non-diabetic individuals in 57 studies (103). It 

studied the effect of Pro 12Ala polymorphism on the pre-diabetic phenotype. Across all 

studies, Pro 12Ala polymorphism had no significant effect on the features of the insulin 

resistance syndrome. Subsequent subgroup analysis showed that in the obese subgroup, 

the ProlPro allele was associated with higher fasting glucose, and lower insulin sensitivity 

as measured by the HOMA model. On the other hand subjects homozygous for the Ala 

allele had lower fasting insulin compared to those homozyogous for the Pro allele. 

One of the shortfalls of this meta-analysis is that it did not include data from studies that 

used the euglycaemic hyperinsulinaemic clamp technique to measure insulin sensitivity, 

as data were too heterogeneous to be included for analysis (103). 
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Recently attention has focused on the role of PPARy in vascular function and 

atherosclerosis. Many of the principal vascular cells express PP ARy, including the 

endothelial and vascular smooth muscle cells (VSMCs) (l04, 105). It has been shown that 

PPARy activation inhibits gene expression and migration in VSMCs. In addition, PPARy 

agonists (TZDs) were found to inhibit the formation of the early atheromatous lesions in a 

number of models of atherosclerosis (l06, 107). 

It has been shown that PPARy is present in human differentiated macrophages in vitro, as 

well as in acetylated low-density lipoprotein (AcLDL)-loaded macrophages, suggesting 

that PP ARy could play an important role in atherosclerosis (l08). The same study showed 

that subjects homozygous for the Ala allele had lower cIMT independent of other CVD 

risk factors, including insulin resistance, FFA, dyslipidaemia and inflammatory markers 

(l08). Due to the low allele frequency very few studies have evaluated the effect of the 

Ala allele homozyotes separately. In these studies it was clear that carriers of Ala allele 

differ from the pro allele carriers with respect to its effect on 8MI (98, 108), blood 

pressure and serum triglycerides (101). 

In summary, therefore, there is emerging evidence to suggest that PPARy might be a 

pleiotropic gene that mediates susceptibility to both type 2 diabetes and cardiovascular 

disease. 
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1.6.2 Adiponectin 

The adipose tissue has been established as an active endocrine organ secreting a variety of 

proteins that regulate glucose levels, lipid metabolism, and energy homeostasis A 

susceptibility locus for type 2 diabetes, abdominal obesity and the metabolic syndrome 

has been mapped to chromosome 3q27 (109). A particularly attractive candidate gene at 

this locus is ADIPOQ gene that encodes the protein adiponectin, which is released into 

the circulation from adipose tissue (110). In both animal (111) and human studies (112), 

an inverse relationship has been observed between circulating adiponectin levels and the 

degree of insulin resistance. 

Decreased circulating adiponectin concentrations have also been reported In obese 

individuals with CAD and type 2 diabetes (113,114). 

Investigation of the adiponectin gene has revealed several single nucleotide 

plymorphisms (SNPs) associated with type 2 diabetes. In a Japanese cohort, the G alleles 

at SNP 45 in exon 2 and the G allele at SNP 276 in intron 2 were both associated with an 

increased risk of type 2 diabetes (115). Conversely, these associations were not confirmed 

in a study of Caucasian type 2 diabetic patients (116). However, this group did find an 

association between type 2 diabetes risk and a haplotype (G-G) derived from variation at 

2 SNPs within the gene promoter (-11391 and -11377). Furthermore, the G-G haplotype 

was strongly associated with circulating adiponectin levels. It has been suggested that this 

association might be explained by the presence of an enhancer sequence adjacent to -

11377 (117). The same group reported that variation in the proximal promoter region of 

the adiponectin gene confers a 2 fold relative risk for T2DM in morbidly obese subjects. 
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The overall attributable risk for the development of type 2 diabetes, in subjects with the 

G-G haplotype, was estimated to be 12.7% in a French population (118). The difference 

between these two studies needs to be explained, but may simply reflect ethnic 

differences between the study populations. 

Lower circulating adiponectin levels have been observed in cardiovascular disease , 

obesity and type 2 diabetes compared to healthy controls (115,118). Circulating 

adiponectin levels have been shown to be negatively correlated with carotid intima media 

thickness (cIMT) (119) and higher plasma levels have been associated with a lower risk 

of myocardial infarction (118). Furthermore adiponectin has been shown to suppress the 

transformation of macrophages into foam cells (120) and is detected in catheter-injured 

vessels but not in intact vessels (121). 

A number of SNPs in the adiponectin gene have been described to be associated with 

cardiovascular disease (117,122). SNP T 45G allele has been associated with coronary 

artery disease (123) and abdominal obesity (124) in French Caucasians and type 2 

diabetes in Japanese populations (116). A common haplotype of SNPs G-11391A and C-

11377G in the promotor region of the adiponectin gene has been associated with 

circulating adiponectin levels and type 2 diabetes in French Caucasians (117). 

Recent studies have shown the SNP A-11426G in the proximal promotor region to be 

associated with fasting plasma glucose levels and type 2 diabetes (122,125). While this is 

still a comparatively novel candidate gene, there is emerging evidence to suggest that 

variation in the adiponectin gene influence type 2 diabetes risks, and might also be a 

determinant of cardiovascular disease. 
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1. 7 Aims and Hypothesis 

The overall aim of the study is to investigate the hypothesis that common T2DM 

susceptibility gene variants exert pleotropic effects and influence eVD as assessed by 

cIMT. 

Specific aims: 

To use the RISe healthy subjects' cohort that has been carefully characterized for insulin 

sensitivity & cIMT to: 

1. Investigate the relationship between the Pro 12Ala variant of the PPARy2 gene and 

insulin sensitivity & carotid intima media thickness (cIMT). 

2. Investigate the relationship between the+45 T -G SNP of the adiponectin gene and 

insulin sensitivity & carotid intima media thickness (cIMT). 

3. Investigate the relationship between the promototer SNPs (-11391, -11426 and -11377) 

of the adiponectin gene and insulin sensitivity & carotid intima media thickness (cIMT). 
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2. General methods: 

2. The RISe Project 

The project is entitled "Relationship between Insulin Sensitivity and Cardiovascular 

disease" (RISC) (40). The study objective was to recruit 1500 unrelated healthy subjects 

from the background population and collect anthropometric, demographic, and lifestyle 

data. In addition, each subject at baseline assessment underwent a 75g oral glucose 

tolerance test to determine glucose tolerance status and to exclude those with the 

diagnosis of diabetes. Whole body insulin resistance was measured using 

hyperinsulinaemic-euglycaemic clamp technique. B mode ultrasound was used to 

measure carotid artery IMT. 

The aim of the study is to repeat these measurements at intervals of 3, 5 and 10 years 

from baseline. The study has been powered to address whether insulin resistance predicts 

the development of cardiovascular disease as measured by change in cIMT. It was 

important to put in place training and data quality control assessment to ensure that the 

measurements were recorded in the exactly the same way. Specifically, an ultra­

sonographer from each recruitment centre has been trained at the co-ordinating centre in 

Pisa. Moreover, the carotid artery ultra-sound recordings were sent to Pisa on sVHS 

videocassettes for quality control assessment and subsequent cIMT measurement 

performed by a single person blinded to the identity of each participant. As well as 

investigating the specific role of insulin resistance, a secondary aim of the project is to 

investigate the role of other metabolic, environmental and genetic determinants of 

cardiovascular disease. To this end, the Newcastle centre was responsible for generating 
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high quality DNA for the future investigation of candidate genotypes in the progression 

of cardiovascular disease and insulin resistance. 

2.1 Study design 

This is a multicentre prospective observational study, however baseline cross sectional 

data was used for this thesis. 

2.1.1 Sampling and recruitment: 

Healthy Caucasian volunteers were recruited from 19 European centres as part of the 

RISC study. Recruitment centres are listed in the appendix. Participants were recruited 

from each centre from the local population according to specific inclusion criteria. 

Recruitment and baseline examination began in June 2002 and finished in August 2005. 

Before starting the study, local ethics committee approval was obtained by each 

recruitment centre. Each participant was given detailed written information about the 

study as well as verbal explanation either over the telephone or in person. Written consent 

for the study in addition to separate consent for the genetic study was obtained 

(appendix). 

The following recruitments methods were used in Newcastle centre: 

2.1.1.1 Poster recruitments: 

Posters were designed and displayed in the University of Newcastle upon Tyne, Inland 

Revenue, Blood Bank and Newcastle hospitals NHS trust. 

2.1.1.2 Snow balling: 

This involves approaching people who have already been recruited for the study and 

asked if they could identify a friend or a family member who is eligible for the study and 
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may be interested. Those who agreed to take part in the study were subsequently 

contacted and recruited if they fulfilled the eligibil ity criteria. 

2.2 Study population 

Newcastle is one of 19 European clinical research centres in 14 European countries that 

are collaborating to investigate the role of insulin resistance in the development of 

cardiovascular disease in a prospective cohort study. 

2.2.1 Entry criteria: 

The following were the entry criteria to the study: 

1. Clinically healthy volunteers. 

2. Age between 30 and 60 years. 

3. The participant will be available for follow -up over the next 10 years. 

2.2.2 Exclusion criteria: 

The following were the exclusion criteria for the study: 

1. Treatment for obesity, hypertension, lipid disorders or diabetes. 

2. Pregnancy. 

3. History of cardiovascular disease. 

4. Weight change of 5 kg or more in last month. 

5. Steroid treatment. 

6. Chronic lung disease. 

7. Cancer (in the last 5 years). 

8. Renal failure or renal replacement therapy. 

9. Recent major surgery 

10. Seizure disorder or epilepsy. 
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11. Inability to give informed consent. 

12. Blood pressure> 140/90 mmHg or treatment. 

13. Fasting plasma glucose of2: 7mmolll or 2h plasma glucose 2: 11.1 mmol or treatment. 

14. Total cholesterol 2: 7.8 mmol/l or treatment. 

15. Triglycerides 2: 4.6 mmol/l or treatment. 

16. ECG abnormalities of acute myocardial ischaemic injury or pericarditis. 

17. Poor ultrasound imaging of carotid artery. 

2.3 History and medical history questionnaire: 

Demographic data and socio-economic status of the volunteers were collected. Medical 

history and family history of CVD, stroke, hypertension and diabetes in addition to 

information on body shape of the participants and their family members, smoking and 

alcohol habits and physical activity as well as treatment history were recorded. The life 

style questionnaire was designed and prepared in English, translated to 11 different 

languages of the countries participated in the study and then back translated to English to 

ensure homogeneity of the data (Appendix). 

2.4 Physical examination 

Height was measured with a standard clinic stadiometer. Subject was standing on a flat, 

firm surface and backed up to a wall until heels, buttocks and/or shoulder blades touched 

the wall, with eyes straight ahead and head in the horizontal plane and feet/ankles 

together. Then headboard was placed over the crown of the head to form a right angle 

with the ruler. Subject was asked to take a deep breath. Height was recorded to nearest 1 

cm. 
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Waist circumference was measured according to a standardized written protocol with a 

plastic one-sided tape measure. It was measured on bare skin at the smallest 

circumference between the costal margins and the iliac crests. The tape was checked to 

make sure it was horizontal (mirror was used to check if it was leveled at the back or with 

the help of second person). The subject was asked to breathe out gently looking straight 

ahead, with arms hanging loosely at the sides. Measurements were record to nearest 1 cm. 

The hip circumference was measured by a tape measure using a standardized written 

protocol. The hip circumference was measured at the level of the greater trochanters and 

observer checked whether the tape was leveled. If trochanters were not palpable, the 

largest gluteal circumference was measured and recorded to nearest 1 cm. 

Blood pressure was measured in each centre with the centrally provided OMRON 705cp 

blood pressure device (Omron Healthcare GmbH, Hamburg, and Germany). The outer 

garments of subjects were removed to expose the non-dominant arm. The subject was 

seated and had rested for at least 5 minutes before recording. The measurement was 

performed automatically and when finished, the systolic and diastolic blood pressures 

were displayed. The subject was allowed to rest for two minutes and then the blood 

pressure and heart rate measurement were repeated for three times in total. 

Body weight, body mass index (BMI) and free fat mass were evaluated using T ANITA 

bioimpedance balance (Tanita International Division, UK). The subject was fasting and 

dressed only in underclothes, and was asked to empty their bladder prior to the 

measurment. Results were printed on thermic paper, giving results on body weight, BMI, 

fat free mass, fat percent and total body water. 
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A resting 12 lead electrocardiogram (ECG) was obtained to exclude subjects with ECG 

changes of acute myocardial ischemic injury or pericarditis. Copy of the ECG was send to 

the co-ordinating centre for central coding.ECGs were coded according to the Minnesota 

Code (126). 

2.5 Baseline Assessment 

2.5.1 Oral glucose tolerance test (OGTT) 

Subjects fasted from 20:00 hours the previous evening with only calorie-free, caffeine­

free beverages (water) to be taken. Subjects were asked not to come to the examination by 

bicycle and to refrain from heavy or unusual physical exercise for 2 days before each test. 

The test started at around 9:00am. Subjects were seated throughout the test and refrained 

from smoking. A polythene cannula was inserted under local anaesthesia into an ante­

cubital vein for venous blood sampling. All fasting blood samples were taken for local 

and central analysis, that include: glucose, insulin-peptides, haemoglobin, red cell count, 

platelets, total cholesterol, high density lipoproteins (HDL), low density lipoproteins 

(LDL), triglycerides, urea and electrolytes, urate, creatinine, liver enzymes, yGT and 

albumin. 

After fasting blood samples were drawn, a 75 gram glucose load was taken by subjects 

over a period of 5 minutes. Blood samples for the measurement of glucose, insulin and C 

peptides were then taken at 30, 60, 90 and 120 minutes. A snack was given at the end of 

the test, after the 120 minute blood sample. 
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2.5.2 Euglycaemic Hyperinsulinaemic clamp 

This was conducted on a separate day to the OGGT. The study started at 09:00am, the 

subject fasted for 12 hours without caloric or caffeinated food. Subjects were asked not to 

come to the examination by bicycle or to undertake heavy or unusual physical activity for 

the 2 days preceding the study. Subjects were asked to pass urine before the start of the 

clamp, then to rest in the supine position on a bed for the duration of examination. A 

bedside glucose analyser was used to measure plasma glucose every 5-10 minutes; the 

analyser was calibrated before the start of the clamp and every 10 samples. A heat box 

was used to warm the canulated hand and thus arterialise venous blood. Two polythene 

cannulae were introduced under local anaesthesia. One cannula was placed retrogradely 

into a dorsal vein in the hand; this was warmed for arterialised sampling. The other 

cannula was placed in an ante-cubital vein for administration of infusates. The cannulae 

were kept patent with 0.9% NaCI flushes. Syringes were labelled for their contents. 47 ml 

0.9 % NaCI was drawn into a 50 ml syringe for insulin infusion and 3 mls of the subject's 

blood was added to the 50 mls syringe as a carrier and mixed well. A 150 cm extension 

tube was then connected to 50 ml syringe containing insulin and placed in a pump. Blood 

was withdrawn from the heated hand cannula for baseline plasma glucose measurement to 

decide the clamp level. The target plasma glucose was clamped at a predetermined level 

(the average of 3 fasting plasma glucose levels). If the fasting plasma glucose level was 

between 4.5-5.5 mmolll, then this was chosen as the clamp level (isoglycaemic clamp). If 

the fasting plasma glucose level was> 5.5 mmolll, the target clamp glucose was 5.5 

mmolll. If the fasting plasma glucose level was < 4.5 mmolll, the target clamp glucose 

was 4.5 mmolll. 
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Glucose and insulin infusions were then attached to the antecubital vein by a 3- way 

stopcock, and the clock time set to clamp time 0 minute. The clamp was maintained by 

titration of a variable-rate of glucose infusion against a fixed-rate infusion of soluble 

insulin (priming dose followed by a constant maintenance dose). The priming dose 

consisted of 4 times constant infusion rate (60 mllhour) for 0- 4 minutes followed by 2 

times constant infusion rate (30 ml/hour) for time 5-7 minutes and this was followed by 

the constant infusion rate of 15 ml per hour from time 8-120 minutes. 

The insulin infusion rates (240 pmol .min- l .m-2) were calculated as a dose per unit of 

surface area rather than by body weight, in order to avoid over-insulinization of 

overweight individuals. Insulin infusion was prepared according to body surface area 

(40Mu.min-1 .m-2). Body surface area (BSA) was calculated using the equation; 

BSA=W°.425 X HO.725 X71.84 X 10-4.(BSA= body surface in square cm, W= weight in kg, 

H= height in cm).The BSA was divided by volume infused per hour (15 ml) and 

multiplied by the syringe volume (50 m]) to give the units of insulin to be infused. This 

was typically around 10-15 units of insulin to be added to 50 mls of 0.9% NaCL. 

The glucose infusion rate was computed on the basis of blood glucose concentrations 

measured at 5-10 minutes intervals, to ensure that blood glucose concentrations remain 

within 0.8 mmol/l (±15 %) of the target glucose concentration. 

The starting glucose infusion rate, 20% glucose solution, was decided on the basis of the 

fasting blood glucose. If fasting glucose was::; 5.5 mmol/l (100 mg/dl) glucose infusion 

was commenced at time 4 minutes. If fasting glucose was> 5.5 mmolll (100 mg/dl) 

glucose reduction to 5.5 mmolll was awaited before starting glucose infusion. 
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At time 120 minutes the clock was stopped and the subject was gIven a snack and 

observed for a few hours before allowed to go home if no adverse reaction was noted. 

Blood pressure was measured and recorded at 0 and 120 minutes. The clamp procedure 

was standardised across centres with the use of a demonstration video. The data from 

each clamp study were transferred to the coordinator centre for a quality control check 

with pre-set criteria. 

2.5.3 Study biological samples: 

After overnight fast, fasting blood samples were collected during the 75 g OGTT and the 

euglycaemic insulin clamp. Samples were sent to local laboratories to evaluate study 

exclusion criteria and to central laboratories for central analysis for standardized central 

laboratory assays. Samples were separated into plasma and serum after centrifuging, they 

were aliquoted and stored at -200 C for glucose and glucagons and -800 C for insulin, c­

peptides, insulin split products, lipids and non esterified free fatty acids. Urine samples 

were stored at -200 C. Samples were transferred on dry ice at a pre-arranged intervals to 

central laboratories. 

2.5.4 Serum insulin measurements: 

Serum insulin was measured by specific time-resolved fluoroimmunassay (Auto 

DELFIA ™ insulin kit, Wallac, Oy, Turku, Finland).The method uses two murine 

monoclonal antibodies that bind to two different epitopes on the insulin molecule.The 

assay is sensitive (detection limit 5 pmoI/L), accurate (101 % recovery with 50 pmoIlL 

insulin added to samples, 95% with 100 pmol/L, and 89% with 300 pmoI/L), and fast 

(results within 3 h), and has a high analytical capacity (done in microtiter plates). The 

working assay range selected is 5-600 pmoIlL, corresponding to a clinically useful range. 
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Because of its specificity, this two-site immunoassay gives results that are lower than 

those obtained by using a competitive radioimmunoassay, both in normal individuals and 

in patients with type 2 diabetes ( 127). 

2. 5.5 Plasma adiponectin measurements: 

Plasma adiponectin was determined by a novel in-house time-resolved immunotluorometric 

assay (TR-IFMA) based on two antibodies and recombinant human adiponectin (R & D 

Systems, Abingdon, UK) (132). The adiponectin molecule is known to form a wide range of 

polymers, of which the predominant polymers include trimers, hexamers and highly 

congregated multimers (133). Previous experiments have demonstrated that both antibodies 

used are able to detect several adiponectin polymers in serum, including the major three 

molecular forms. All standards and unknown samples were analysed in duplicate, with the 

exception of non-specific binding (NSB), which was analyzed in quadruplicate. The intra­

assay coefficient of variation (CV) was < 5 % and the inter-assay CV was < 10 %. 

2.5.6 Calculation of insulin sensitivity: 

The mean glucose infusion rate (GIR) was calculated between 80 and 120 minutes, in mg 

min- l kg LBM- l . The mean value is calculated from the integral of glucose infusion rate, 

using the time and values reported during the last 40 minutes of the clamp. A glucose 

space correction (GSC) was calculated using the following formula; GSC= V (G 120-

G80) = V ~G where V is the glucose distribution volume, assumed to be 290 mIl kg 

LBM, G 120 and G80 are the glucose values at 80 and 120 minutes respectively. in 
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mg/ml. The value of 290 mIl kgLBM obtained by dividing a typical distribution volume 

value found in the literature, GSC is expressed in mg min-l kgLBM. 

The M value was calculated as M = GIR - V ~G. Insulin sensitivity was expressed as the 

ratio of the Mil value averaged over the final 40 min of the 2 hour clamp and normalised 

by the fat free mass to the mean insulin concentration measured during the same interval 

(MlI;in units of /lmol min-1 kgffm-
1 nM-1)(129). 

2.5.7 Calculation of lean body mass: 

Lean body mass (LBM) was calculated using Watson formula for LBM based on total 

body water provided by Tanita (Tan ita International Division, UK). This provides an 

estimate of the total body water (TB W) from anthropometric measurements (Sex, weight, 

height and age). LBM is calculated from this estimate as LBM= TBW/0.732 (0.732 is the 

water space in the lean tissue). Watson's formula agrees reasonably well with the 

Amsterdam and Rome DEXA (128). 
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2.6 Ultrasound examination: 

2.6.1 Measurement of (c IMT): 

For subjects attending the Newcastle centre, this was performed by Yasmin McGrady, a 

certified sonographer from the department of radiology, Newcastle Hospital NHS trust 

and in the rest of the centres by a certified radiographer, trained and certified in Pisa, 

Italy. 

Carotid artery intima media thickness (c IMT) was imaged following a validated protocol 

(l30). The subject was asked to lie supine on a bed, without a pillow in order to relax the 

muscles of the neck, with the head turned to the opposite side of the examination with the 

sonographer seated behind the subject's head. The ECG was used to monitor the heart 

cycle and to select images for measurement off-line. The c IMT was measured during the 

diastolic phase of the cardiac cycle. 

A randomised log-number was provided by the co-ordinating centre for each examination 

(scan number). This number was written on the screen as identification. No subject name 

or number, or centre name was written on the screen. This was to ensure blind reading of 

the carotid scans when measured by a single examiner at the co-ordinating centre at Pisa. 

The right side was identified as RT and the left side as LT. A preliminary scan was 

performed on both sides (before the recording) to explore the anatomy. The preliminary 

scan allowed identification of points of reference for the common carotid artery (CCA), 

carotid bifurcation (CB) and flow divider (FD), internal carotid artery (lCA) and external 

carotid artery (ECA) (Figure 2). The preliminary scan was also performed to identify 

subjects with poor imaging of the arterial walls. Subjects with plaque, heavy 

mineralisation, acoustic shadowing, vessel tortuosity, kinking, or very high bifurcation 
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were excluded. Also when the sonographer was unable to image the elMT at the far wall 

of the CCA and CB or if there was a high degree of stenosis (>70%) vessel occlusion 

subjects were excluded. 

The whole imaging procedure was recorded on S-VHS tapes and read in a centralized 

reading centre (Pisa) by a single reader blinded to clinical data, using a high resolution 

video recorder (Panasonic AG- MD830) coupled with a computer-driven image analysis 

system developed by the Institute of Clinical Physiology, CNR, Pisa Italy. For the 

purpose of this study, IMT of the near and far wall of the right and left CCA were 

measured in digitized end-diastolic frames, ~ 10 mm proximal to bifurcation. The 

measurements were performed at 5 points for each wall, and the mean near- and far-wall 

IMTs were calculated by averaging the measurement points. The Mean CCA IMT used 

in the statistical analyses was calculated as the overall mean of all available CCA walls 

(up to four). Both near- and far-wall IMT were measured in this study. It was previously 

demonstrated that far-wall IMT alone had significantly lower association with 

cardiovascular outcomes than the combined near- and far-wall measurements (78). 
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Figure 2: Carotid artery 

ICA: Internal Carotid Artery 
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2.7 DNA extraction 

Samples were shipped from all other European centres to Newcastle upon Tyne, UK, 

where DNA extractions and genetic analysis took place. DNA samples were transferred 

on dry ice at pre-arranged intervals. Spare samples for each subject was kept at -800 c. 

Genomic DNA was extracted from lymphocytes using Nucleon DNA extraction kits 

(Tepnel Life Sciences, PLC, Manchester, UK).The procedure that was followed, was 

lysing of the blood cells with lysis buffer (Reagent A) and sodium dodecyl sulphate 

(SDS) (Reagent B), deproteinisation with sodium perchlorate, extraction of the DNA 

using chloroform and DNA precipitation with ethanol. A 5ml blood sample collected in 

potassium EDTA and stored at -800 C was thawed and transferred into a 50 ml sterile 

polypropylene tube to which 20 ml of cell lysis buffer (Reagent A) was added. The tube 

was mixed for 4 minutes then centrifuged at 3000 g for 4 minutes. The supernatant was 

discarded without disturbing the pellet and re-suspended in 2 ml of SDS (Reagent 8). 

The suspension was transferred into a 15 ml sterile polypropylene tube and 500 III of 

sodium perchlorate was added and the tubes were inverted by hand 7 times. After proper 

mixing, 2 ml of chloroform was added and the tube was mixed again by inverting by hand 

until the phase had emulsified. 500 III of Nucleon resin was carefully added by dropping 

slowly with a pipette tip. 

The tubes were then centrifuged at 1300 g for 4 minutes. The upper aqueous phase above 

the nucleon resin layer was transferred to a fresh sterile 15 ml polypropylene tube and 

DNA was precipitated by adding 2 volumes (5 mls) of cold absolute ethanol.The tube was 

inverted several times to precipitate the DNA and then centrifuged for 5 minutes at 4000 

g . The supernatant was removed and the DNA pellet was washed with 2 ml of 70% 
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ethanol then centrifuged for 5 min at 4000 g. The supernatant was removed and the DNA 

pellets were air dried and re-suspended in 500 /-ll of sterile DH20. The DNA pellet was 

left to re-hydrate overnight at room temperature then stored at 4 0 c. 

2.7.1 DNA quantification: 

The concentration and the quality of the DNA was checked on a lamda Bio 20 UV/VIS 

spectrophotometer (Perkin-Elmer, Warrington, UK). Absorbance values (A) at a 

wavelength of 260 and 280 nm were measured using a clean quartz cuvette. DNA 

quantity was calculated by the following formula: 

DNA quantity =50xdilution factor xA260 

Where 50= the optical density (OD) of DNA, 50 /-lg.mr I of DNA gives an absorbance 

reading of 1.0 at a wavelength of 260 nm. DNA quality was checked by calculating the 

ratio of the two absorbance values at A260 and A280. A ratio above 1.8 indicates a low 

level of contamination. 

2.8 peR methods 

PCR reactions were carried out on a Gene Amp PCR system 9700 thermal cycler (9600 

emulation model AB, Warrington, UK). Two short primers (Forward and Reverse) were 

added to amplify specific regions of the genomic DNA using thermostable DNA 

polymerases. peR reactions were set up using different volumes. peR reaction was made 

from forward and reverse primers, d NTP, 1 X peR buffer, AmpliTag Gold DNA 

polymerase, m M Mgcb and genomic DNA, the volume of each depending on the 

experiment. peR reactions were set up on ice and reagents were stored at -20 0 c. 
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2.8.1 Agarose gel electrophoresis 

Agarose gel of 1-3 % was used to resolve the peR products for the restriction fragment 

length polymorphism (RFLP) assay. Agarose was dissolved in 1 x TBE buffer and 

ethidium bromide was added and then boiled using a microwave oven. Agarose was then 

cooled and poured into a gel-casting tray. A comb was positioned in the casting tray prior 

to pouring the agarose gel so that wells could form in the gel. peR products were mixed 

with DNA buffer and then samples were loaded into the wells. A DNA ladder was run 

alongside the samples to allow sizing of the peR fragments. Gel electrophoresis was 

carried out between 60-130 V in Ix TBE buffer until the dye of the loading buffer 

migrated over two-thirds the length of the gel. peR products were visualised using UV 

transilluminator (TMW-20, Flowgen Ltd, Lichfield, UK). Digital image was obtained 

using image acquisition apparatus (Alpha Imager 2000, Flowgen Ltd, Lichfield, UK). 

2.8.2 Restriction enzyme digestion of peR products 

Restriction digests of peR products were formed using 8J.lI of peR product and 2J.lI of the 

appropriate enzyme and lOx reaction buffer. The digestion was then incubated at the 

recommended temperature for the specific enzyme. Finally the product of the digest was 

separated on agarose gel and visualised as described previously.This method was used to 

detect Pro 12Ala polymorphism of the PPARY2 and described in detail in chapter 4. 
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2.9 SEQUENOM method: 

Mass array homogenous mass extend (h M E) assay, through the application of matrix 

assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) to 

the analysis of primer extension products. The h M E assay is based upon the annealing of 

a Mass EXTEND primer adjacent to the polymorphic site of interest. The addition of a 

DNA polymerase, plus a cocktail mixture of nuc1eotides and terminators, allows 

extension of the primer through the polymorphic site (Fiqure3). The accuracy of the 

determined sequence is maintained through the application of four levels of stringency: 

1. Correct hybridization of amplification primers and amplification of the target region. 

2. Specific hybridization of the Mass EXTEND primer. 

3. Extension through the polymorphic site with a high fidelity enzyme. 

4. Correlation between mass of measured primer extension product and calculated values. 

Step 1: Amplification: 

Using standard methods, 2.5 ng of genomic DNA was amplified in a 5 ~l volume using a 

384-microtiter format. 

Step2: Dephosphorylation: 

Arctic Shrimp Alkaline Phosphatase (SAP) was added to samples, which are then 

incubated for 20 minutes at 37° C. This dephosphorylates any residual nuc1eotides, 

preventing their future incorporation and interference with the primer extension assay. 

Samples were then incubated at 85° C to inactivate the heat labile SAP. 
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Step 3: h M E Assay: 

The MassEXTEND primer, DNA polymerase, and cocktail mixture of dNTPs and 

ddNTPs were added to initiate (h M E) primer extension reaction. This reaction generated 

allele-specific primer extension products that are generally 1-4 bases longer than the 

original MassEXTEND primer 

Step 4: Sample conditioning: 

Spectro CLEAN resin was added to the reaction to remove extraneous salts that interfere 

with MALDI-TOF analysis. 

Step 5: Samples Transfer: 

15 nl of sample was then transferred from the 384-microtiter plate and spotted onto the 

pad of the 384 SpectroCHIP microarray. 

Step 6: Sample Analysis: 

The Spectro CHIP was placed into the MALDI-TOF, which measures the mass of the 

extension products. Once determined the genotype was simultaneously called in real-time 

with SpectroTYPER RT software. 

This method was used to detect SNP45 of the ADIPOQ gene and described in detail in 

chapter 5.3.1 . 
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.Amplificatiori (For simplicity, this figure depicts a single assay) 
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Figure 3: Multiplexed Homogenous Mass EXTEND Sequenom assay 
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2.10 Quality control: 

2.10.1 Quality control ofgenotying: 

Of the genotyped samples, 5% were duplicates and there was at least 1 negative control 

per 96 well DNA plate. The accuracy of the genotyping was determined by the genotype 

concordance between duplicate samples. We obtained a 100% concordance between the 

genotyped duplicate samples for each of the SNPs. The genotyping success rate for each 

of the SNPs was >98 %. 

2.10.2 Quality control of carotid IMT measurements: 

In each recruiting centre, certified trained technicians performed ultrasound examination 

of extracranial carotid arteries following a standardized protocol. The ultrasound 

scanners, all with a 7.5 or 10.0 MHz linear array transducer, differed between centers 

(Acuson Aspen, Acuson Sequoia, Agilent Sonos 4500, Esaote Megas, Siemens Elegra, 

Toshiba Powervision). Whole imaging procedure was recorded on S-VHS tapes and read 

in a centralized reading center (Pisa) by a single reader blinded to clinical data, using a 

high resolution video recorder (Panasonic AG- MD830) coupled with a computer-driven 

image analysis system developed by the Institute of Clinical Physiology, CNR, Pisa Italy. 

Inter-individual variability of readings was tested in 167 subjects. The mean absolute 

difference and correlation coefficient between the two readers were 0.032 mm and 

0.90 respectively. In 45 subjects, carotid B-mode imaging was performed twice in two 

different sessions. The mean absolute difference and correlation coefficient between 

the two acquisitions were 0.051 mm and 0.74 respectively. 
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2.10.3 Quality control of euglycaemic clamp: 

To ensure consistency across study centres, the clamp procedure was standarised and 

each centre underwent pre-study training. Clamp data was then transferred and analysed 

at the RISC co-ordinating centres (Pisa, Italy), and quality assured against pre-set criteria. 

These were as follows: clamped glucose levels within 20% of target fasting glucose levels 

and coefficient of variation (CV) of < 15% and avoidance of hypoglycaemia 

(glucose of < 3.5 mmolll). 
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2.11 Statistical Analysis 

The observed genotype frequencies were checked using the Hardy-Weinberg equation for 

any differences from those expected. 

p2 + 2pq +q2 = 1 

Where p represents the frequency of the dominant allele and q represent the frequency of 

the recessive allele and 2pq represents the frequency of the heterozygote allele .The 

differences between the observed and expected frequencies were tested by the Chi square 

test. 

Skewed variables were log transformed to normalise distributions for analysis and then 

back transformed and are presented as geometric means. Analysis of covariance was 

carried out using age, sex and body mass index as covariates. The adjusted means were 

presented as geometric means with 95% confidence intervals around the means. 

Statistical analysis was carried out using Minitab version 15(Minitab Inc, USA).P values 

< 0.05 are highlighted in the Tables in line with conventional statistical significance. 

Allowance for multiple testing was done in the interpretation of the significant results, 

such that p values <0.01 were considered of potential interest and relevance 

The Mill value, as a measure of insulin sensitivity, was calculated and adjusted for free 

fat mass and mean insulin concentration measured during 2 hour euglycaemic clamp. 
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The ANOV A test was initially used to compare SNP genotypes with biological variables. 

Significant differences were further explored using independent samples t-Test. General 

linear Model (GLM) analysis was performed to test for associations between SNP 

genotypes and risk factors after adjusting for confounding metabolic and lifestyle 

variables (sex, age, BMI, waist smoking status, serum cholesterol and recruitment centre. 

While most subjects recruited to the RISC project were Caucasian, it was necessary to 

compare genotype frequencies between centres or groups of centres (based upon 

geographic and cultural proximity) to ensure that there were no significant differences. 

Where such centre effects are found, they will be taken into account by GLM. 
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3. Description of Data set: 

3.1 Characteristics of Study Population 

Table 5 shows the anthropometric and biochemical variables of the study population. Of 

the 1278 subjects studied, 579 were men and 699 were women. The mean age was 43.8 

years and mean BMI was 25.6 kg/m2
. Means of anthropometric and metabolic variables 

including 2 hour glucose, 2 hour post glucose challenge insulin, and NEF As are described 

in Table 5. 

3.1.1 Male and female differences 

Table 6 describes the anthropometric and biochemical characteristics in males and 

females. Although women were older than men, they had significantly lower BMI, waist 

circumference, fasting plasma glucose, fasting and 2 hours insulin and fasting and 2 hours 

NEFAs. 

Women had lower total cholesterol, LDL, serum triglycerides, systolic and diastolic blood 

pressure. They also had higher HDL compared to men. However, there was no difference 

in 2 hour plasma glucose post OGTT challenge between males and females. Men had 

significantly higher carotid IMT compared to woman. 

3.1.2 Northern and Southern centres 

While all subjects recruited to the RISC project were Caucasians, it was necessary to 

compare between centres or groups of centres (based upon geographic and cultural 

proximity) to ensure that there were no significant differences. Centres were divided into 

northern and southern centres according to latitude. 
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Northern centres included; Amsterdam, Dublin, Frankfurt, Geneva, Glasgow, Kuopio, 

London, Malmo, Newcastle-upon-Tyne, Odense and Vienna. 

Southern centres included; Athens, Belgrade, Madrid, Milan, Perugia Pisa, Rome and 

Lyon. 

Table 7 describes the anthropometric and biochemical characteristics divided into 

northern and southern centers. Subjects from southern European centers were younger 

than those from northern European centers; they had significantly lower fasting plasma 

glucose, fasting and 2 hour insulin, 2 hour NEF As, serum triglycerides, systolic and 

diastolic blood pressure. They also had higher HDL compared to those from north 

Europe. However, there was no difference in BMI, waist circumference, 2 hours plasma 

glucose, total cholesterol, LDL cholesterol or fasting NEFAs between the 2 groups. 

3.2 Carotid intima media thickness (cIMT) 

The mean of the carotid intima media thickness (cIMT) for the study population is 

described in Table 8. The means of common carotid artery (lMT CCA), internal carotid 

artery (IMT1CA) and the average of all these segments (IMTAVRG) are described in table 8. 

Males had a higher c IMT compared to females. The mean of c IMT for males was [(617 

[539-659] /-lm (Geometric Mean [interquartile range 25
th 

- 75
th 

percentile]) and for 

females (581 [525-640] /-lm (Geometric Mean [interquartile range 25
th 

- 75
th 

percentile]) 

and the difference was statistically significant with p value <0.00001. 
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3.2.1 Effect of centre on carotid intima media thickness (c IMT) 

Table 9 shows the breakdown of the c IMT by center and data was presented as 

G . M [. '1 th th eometnc ean mterquartl e range 25 - 75 percentile]. The name of the centre for the 

corresponding centre number is found in the appendix. 

3.2.2 Northern versus Southern centres in relation to carotid intima media thickness 

(cIMT) 

The number and the mean of the cIMT divided by northern and southern centres is 

illustrated in Table 1 O. The southern centres had a lower c IMT compared to the northern 

centers. The mean of the IMT of the common carotid artery was 603 [543-665] Jlm 

Geometric Mean [interquartile range 25th 
- 75th percentile]) vs. 591 [553-654] (Jlm 

Geometric Mean [interquartile range 25th 
- 75th percentile]) for the northern and the 

southern centres, respectively. The difference was statistically significant after adjustment 

for age and sex (p= 0.013). 

3.3 Insulin sensitivity 

Table II shows the mean and range of minimum and maximum value of the Mil value. 

The mean of Mil value for the study population was 125.29 [92.0-178.6](Jlmol min-
1 

kgffm-1 nM-1 ) [Geometric Mean interquartile range 25th 
- 75th percentile]. Males had a 

lower Mil value and hence were more insulin resistant compared to women and this was 

statistically significant (Geometric Mean interquartile range 25
th 

- 75
th 

percentile: 109.2 

[80.0-151.1] vs. 139.9 [106.7-189.6](Jlmol min-1 kgffm -
I nM-

1
: p=O.OOI). 
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3.3.1 Effect of centre on Insulin sensitivity 

Table 12 shows the breakdown of the Mil value by centre and data are presented as 

geometric mean [interquartile range 25th 
- 75th percentile]. The name of the centre for the 

corresponding centre number is found in the appendix. 

3.3.2 Northern versus Southern centres in relation to insulin sensitivity 

Table 13 shows the Mil values for the northern and southern centres. The mean of the 

MIl value was 114.2 [97.2-186.6] vs.132.2 [83.6-155.7] ~mol min-! kgffm-! nM-1 

[Geometric Mean interquartile range 25th 
- 75 th percenti Ie]; for the northern and the 

southern centres, respectively. The difference between the 2 groups was statistically 

significant after adjustment for age and sex (p=O.005). This means that people from the 

southern part of Europe are more insulin sensitive compared to those from the northern 

part. 
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Table 5: The anthropometries and biochemical variables of the study population 

Data are presented as Mean ± (SD) and rang of minimum and maximum value. 

Character Mean ± (SD) Range 

Age (years) 43.8 ± 8.3 (29-63) 

Sex (male/female) (579/699) Number 1278 

BMI (kg/m2) 25.6 ± 4.1 (16.8-43.9) 

Waist circumference (cm) 86.7 ± 12.8 ( 49-147) 

Fasting glucose (mmol/I) 5.1(0.5) (2.9-7.0) 

2 Hour glucose (mmol/I) 5.76 ± 1.48 (2.1-10.8) 

*Fasting insulin (pmol/l) 30.3 (21.0-44.0) (3.0-118.0) 

*2hour insulin (pmol/I) 146 (88.7-244) (10-332) 

Total Cholestrol (mmol/I) 4.8 ± 0.85 (2.7-7.7) 

*Triglycerides (mmol/l) 0.95 (0.68-1.28) (0.3-4.5) 

HDL - cholesterol (mmol/l) 1.4 ± 0.4 (0.3-2.9) 

LDL - cholesterol (mmol/l) 2.9± 0.8 (0.8-5.7) 

Systolic BP (mmHg) 117.2 ± 12.1 (79-140) 

Diastolic BP (mmHg) 74.3 ± 7.75 (50-90) 

Fasting (NEFAs) (pmol/I) 0.54 ± 0.24 (0.03-3.23) 

2 Hour (NEFAs) (pmol/l) 0.05 ± 0.11 (0.01-0.27) 

*Geometric Mean [interquartile range 25th 
- 75th percentile] 
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Table 6: The characteristics of the study population separated into males and 

females. Data are presented as Mean ± (SD). 

Character Male Mean ± (SD) Female Mean ± (SD) P value 

Number 579 699 Total (1278) 

Age 43.1±8.4 44.23± 8.1 0.005 

BMI (kg/m2) 26.5 ± 3.5 24.9± 4.4 0.000 

Waist circumference (cm) 93.6± 10.3 81.3 ±12.0 0.000 

Fasting Glucose (mmol/l) 5.3 ± 0.48 4.9 ± 0.56 0.000 

2 Hour Glucose (mmol/l) 5.7± 1.4 5.7 ± 1.5 0.6 

*Fasting Insulin (pmol/l) 32.0 (22.0-46.0) 29.0 (20.0-40.0) 0.003 

*2Hour Insulin 157 (101-245) 132 (75-238) 0.000 

Total Cholesterol (mmol/l) 4.9(0.85) 4.75(0.84) 0.01 

*Triglycerides (mmol/l) 1.10 (0.77-1.50) 0.85 (0.62-1.11) 0.000 

HDL - cholesterol (mmol/I) 1.24 ± 0.30 1.58 ± 0.37 0.000 

LDL - cholesterol (mmol/l) 3.06 ± 0.75 2.75 ± 0.78 0.000 

Systolic BP (mmHg) 121.8 ± 10.1 113.6 ± 12.2 0.000 

Diastolic BP (mmHg) 76.2±7.1 72.8 ± 7.9 0.000 

Fasting (NEFAs) (pmol/l) 0.59 ±0.25 0.47 ± 0.23 0.000 

2 Hour (NEFAs) (pmol/l) 0.057 ±0.10 0.044±0.11 0.04 

*Carotid IMT(~M) 612(553-670) 581(525-640) 0.01 

*Geometric Mean [interquartile range 25th 
- 75 th percentile] 

P < 0.01 is considered statistically significant 
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Table 7: The characteristics of the study population separated into northern and 

southern centres. Data are presented as Mean ± (SD). 

Character northern centers southern centers P value 

Mean ± (SD) Mean ± (SD) 

Number 807 471 Total (1278) 

Age 44.7 ± 8.2 42.3± 8.3 0.000 

MalelFemale 353/454 226/245 0.35 

DMI (kg/m2) 25.5 ± 3.9 25.8± 4.4 0.243 

Waist circumference (cm) 86.8± 12.2 86.4 ±13.8 0.55 

Fasting Glucose (mmol/l) 5.2 ± 0.52 4.95 ± 0.57 0.000 

2 Hour Glucose (mmol/I) 5.7±1.4 5.7 ± 1.5 0.5 

*Fasting Insulin (pmol/l) 32.6 (20-42) 29.3 (21-47) 0.003 

*2Hour Insulin 166.1 (103-268) 137.7 (84.7-230) 0.001 

Total Cholesterol (mmol/I) 4.83 ±0.83 4.75 ± 0.86 0.11 

*Triglycerides (mmol/l) 0.98 (0.70-1.31) 0.90 (0.63-1.25) 0.000 

HDL - cholesterol (mmol/I) 1.35 ± 0.36 1.46 ± 0.38 0.000 

LDL - cholesterol (mmol/l) 2.86 ± 0.78 2.92 ± 0.77 0.20 

Systolic DP (mmHg) 118.3 ± 11.8 115.4 ± 12.3 0.000 

Diastolic DP (mmHg) 74.7± 7.8 73.6 ± 7.7 0.007 

Fasting (NEFAs) (pmol/I) 0.54 ±0.21 0.53 ± 0.27 0.32 

2 Hour (NEFAs) (pmol/I) 0.07 ±0.05 0.03±0.16 0.000 

th th 
*Geometnc Mean [mterquartIle range 25 - 75 percentIle] 

P < 0.01 is considered statistically significant 
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Table 8: The value of c IMT in the study population and in males and females 
subjects: Data are presented as geometric mean [interquartile range 25th - 75th 
percentile]. 

Value Number Mean (11m) 

IMT CCA (Jlm) 1306 597 [539-659] 

IMT ICA (Jlm) 1306 620 [537-667] 

IMT A VRG (Jlm) 1306 663 [540-655] 

IMTccA (Jlm)(Male) 579 612 [553-670]" 

IMTccA (Jlm)(Female) 699 581 [525-640] 

* Males vs Females: p=O.OOOI 
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Table 9 shows the distribution of the common carotid artery (CCA) by centre ID: 

Data are presented as geometric mean [interquartile range 25th _ 75th percentile] 

Centre Number Number Mean (flm) 

1 80 605 [547 -669] 

2 27 556[512-615] 

4 78 571[523-641] 

5 85 579[532-651] 

7 66 580 [526-639 

8 104 603 [544-667] 

9 20 596 [540-655] 

10 13 553 [506-609] 

12 69 596 [542-655] 

13 120 599 [541-661] 

14 75 620 [562-671] 

15 70 570 [522-641] 

16 46 656 [596-691] 

17 74 631 [573-682] 

18 74 570[520-643] 

19 66 602[532-661 ] 

20 19 592 [536-651] 

21 67 625 [572-671] 

22 41 599 [542-659] 
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Table 10: The distribution of the IMT value divided by Northern versus Southern 
centres. Data are presented as geometric mean [interquartile range 25th 

_ 75th 

percentile]. 

Centre Number MalelFemale Mean (J.1m) 

Northern centres 779 3541445 603 [543-665] * 

Southern centres 499 240/259 591 [535-654] 

* Northern vs Southern centres(age and sex adjusted): p =0.013. 
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Table 11: The mean [interquartile range 25 th 
- 75 th percentile] of the MIl value 

for the study population and in male and females subjects. 

Geometric Mean 

Value Number ( I' -I kg -I M-1 ) flmo mm ffm n 

Mil value (flmol min-I kgffm-
I nM- 1 

) 1278 125.29 [92.0-178.6] 

(Mil value male) (flmol min-I kgffm-
I nM- 1

) 570 109.2 [80.0-151.1 r 

(Mil value female) (flmol min- 1 kgffm-
I nM-1

) 708 139.9 [106.7-189.6] 

* Males vs Females: p=O.OOI. 
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Table 12: The distribution of the Mil value by centre ID. Data presented as 

geometric mean [Interquartile ranges 25th 
- 75th percentile]. 

Centre Number Mean 

1 84 96.0 (74.3-130) 

2 32 134.0(102.5- 189.3) 

4 86 141.7(110.0-195.0) 

5 83 127.0(95.0-198.0) 

7 70 156.3( 124.4-198.0) 

8 III 148.0( 161.0-229.0) 

9 85 98.4(73.0-141.3) 

10 20 100.0(70.0-143.4) 

12 76 126.7(101.3-156.6) 

13 109 142.0(99.6-197.2) 

14 79 164.7( 124.0-219.4) 

15 90 104.0(73.1-146.5) 

16 41 137.7(78.4-137.7) 

17 81 127.1 (94.2-179.0) 

18 76 120.5(92.4-180.2) 

19 50 92.6(65.0-123.2) 

20 19 112.5(80.2-145.7) 

21 75 130.1 (89.6- I 87.0) 

22 52 140.0(97.3-210.4) 

. . 2 th 75th t· I ] Geometic mean [mterquarttle range 5 - perc en 1 e . 
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Table 13: The distribution of the Mil value divided by Northern versus Southern 
centers. Data is presented as geometric mean [interquartile range 25th 

_ 75th 

percentile]. 

Centre Number MalelFemale Mean 

(Jlmol min-1 
kgffm-

1 nM-1
) 

Northern Centers 814 377/437 114.2 ± (84.0-147.7) * 

Southern Centers 464 205/259 132.2 ± (89.9-189.6) 

* Northern vs Southern centres (age and sex adjusted) p=O.005 
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4. The role of the PPARy Pro12Ala polymorphism in insulin sensitivity 

&CVD: 

4.1 Introduction 

PPARy2 has been shown to influence insulin sensitivity and the risk of developing type 2 

diabetes in various ethnic populations (97, 98). It plays a vital role in adipogenesis, lipid 

metabolism, insulin signalling and acts as a functional receptor for thiazolidinediones, 

insulin sensitizers used in the treatment of type 2 diabetes. 

A common variant results from a cytosine to guanine nucleotide substitution and amino 

acid change, Proline to Alanine at codon 12 in exon 2 (Pro 12Ala) polymorphism (96).The 

Pro 12 allele is very common in the general population with a frequency of 85% and this 

generates a diabetes population attributable risk of around 25% (98). Several Meta 

analyses confirmed that the Pro 12Pro allele increases the susceptibility risk to type 2 

diabetes (98,102). It was also previously shown that Pro 12Ala variant of the PPARY2 gene 

influences insulin sensitivity, with evidence that this is mediated through altered body 

composition (97). 

Frederiksen et al studied a cohort of non-diabetic Danish subjects who participated in the 

MONICA study, a population based study, and found that subjects homozygous for the 

Ala allele had decreased levels of serum triglycerides and diastolic blood pressure. 

However, there was no association with insulin sensitivity as assessed by HOMA- IR 

(101). 
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As the Ala! Ala genotype is very rare in the population with prevalence as low as 4% 

(103), there are very few studies, which included subjects homozygous for the Ala allele 

separately in the analysis, and hence it is difficult to assess whether the association with 

insulin sensitivity obesity and type 2 diabetes is a dominant or a recessive effect ie the 

effect is only seen in the Ala! Ala homozygous or is also seen in Pro/Ala heterozygote 

form. 

There are very few data to date about the effect of the PPARy gene on cardiovascular 

disease and early atherosclerosis. Recent data indicated that PPARy is expressed in 

macrophages and suggest an effect on atherosclerosis (108). A more recent study 

investigated a total of 622 impaired glucose tolerant subjects, who participated in the 

RIAD study and they showed that carotid intima media thickness (cIMT) was 

significantly decreased in subjects homozygous for the Ala / Ala variant compared to the 

other two genotypes (108). It also demonstrated expression of the PPARy gene in human 

atherosclerotic lesions and in cultured primary macrophages and foam cells. These studies 

together with the observation of the decreased (IMT) in diabetic patients treated with the 

PPARy agonist troglitazone (106,107) support the hypothesis that PPARy gene might be a 

pleiotropic gene and not only increase susceptibility to type 2 diabetes but to CVD as 

well. 

90 



4.2 Aims 

The aims of this study are: 

~ To investigate the relationship between the Pro12Ala variant of the PPARy2 gene and 

cardiovascular risk factors in a cohort of non diabetic healthy Caucasian population. 

~ To investigate the relationship between the Pro12Ala variant of the PPARy2 gene and 

insulin sensitivity in a cohort of non diabetic healthy Caucasian population. 

~ To investigate the relationship between the Pro12Ala variant of the PPARy2 gene and 

cIMT as a marker of CVD in a cohort of non diabetic healthy Caucasians population. 

91 



4.3 Detection of the Pro12Ala polymorphism by RFLP-PCR 

A 270 base pair (bp) fragment of the PPARy2 gene encompassing the pro12Ala 

polymorphism site was amplified by PCR using the primers described by Yen et al 

1997(96). 

Forward primer S'-GCCAATTCAAGCCCAGTC- 3'. 

Reverse primerS'-ATATGTTTGCAGACAGTGTATCAGTGAGGAATCGCTTTCCG3'. 

A 20 , .. d volume PCR reaction was set up consisting of a final concentration of: 0.4 JlM of 

each primer, 200JlM of each dNTP, 0.7S U of Ampli Tag Gold, 1 xPCR buffer, I.S Mm 

Mgch solution and 3 ng.ul1of genomic DNA. PCR cycling condition was as follows: S 

min at 9So c for initial denaturing then 30 cycles consisting of 1 min at 9S ° c 

of denaturing followed by 1 min at 60°c of annealing, I min at 72° c 

of extension, with final extension step at 72° c for 10 min .PCR products were then 

checked to confirm the correct size of270 bp by taking SJlI of the PCR product and 

separating the products on 1 % agrose gel.Restriction digests of PCR products were 

formed using 8JlI ofPCR product and 2JlI of the appropriate enzyme (Bst UI restriction 

enzyme, New England BioLabs Ltd.(NEB),UK ) and lOx recommended reaction buffer 

(supplied with the enzyme). 

The primers used generated a Bst UI restriction site (S' ... CG II CG ... 3) only when the C 

to G substitution is present on nucleotide 34. 
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Products were digested for 2 hours at 60° c then they were separated on 3% agrose gel 

and visualised by ethiduim bromide staining. The expected products sizes after digestion 

were as follows. 

Pro 12Pro = 270 bp 

Pro12Ala = 270,227,43 bp 

Ala12Ala = 227, 43 bp 

To check for the correct sequence of the product, peR products of Pro 12Ala 

heterozygote, Pro12Pro and Ala12Ala homozygotes were sequenced and shown in figure 

(4). 

4.3.1 peR product, purification and sequencing: 

peR was first purified using a Micron-PeR clean up kit (Millipore) following the 

specified kit protocol. The aim of the purification is to remove primers, nucleotides, salts 

and polymerase. Sequencing of peR products were carried out by Dr. Sheila Patel. 

Oligonucleotides were used to prime peR amplifications. 

Sequencing was carried out using a ABI PRISM dye terminator cycle sequencing kit 

using the Gene Amp peR system 9700 thermal cycler (Perkin-Elmer, Warrington,UK). 

Analysis of the sequence results were carried out using Navigator™version1.2.0 and 

Factura software ™ version 1.0.1 (ABI Perkin-Elmer, Warrington,UK). 
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A c:; c:; 0 c:; c 

Proline homozygote (Pro12Pro) 

T G A c G G G ,0, 
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/ 
A,' 

Proline/Alanine heterozygote (Pro12Ala) 

1S0 
T T G c G c G G ,0, G c 

Alanine homozygote (Ala12Ala) 

Figure 4: An electropherogram of the immediate sequence surround the Pro 12Ala 

polymorphism. A Pro allele homozygote, Pro 12Ala heterozygote and Ala allele 

homozygote. There is a Bst ill restriction site at position 201pb ((5 ' ... CG II CG ... 3') 
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4.4 Statistical Analysis 

Statistical analysis was carried out using Minitab version 15 (Minitab Inc, USA). Skewed 

variables were log transformed to normalize distributions and are presented as geometric 

means. P values < 0.01 were considered significant. The ANOVA test was used initially 

to compare SNP genotypes with biological variables. Significant differences were further 

explored using the independent samples t-Test. General linear Model (GLM) analysis 

was performed to test for associations between SNP genotypes and risk factors after 

adjusting for confounding metabolic and lifestyle variables (sex, age, BMI, waist smoking 

status, serum cholesterol and recruitment centre). 

4.5 Results 

4.5.1 Genotype and allele frequencies for the Pro12 Ala of the PP ARy: 

The following allele frequencies were found for the Pro 12 Ala polymorphism: 

Pro allele = 89% 

Ala allele = 11 % 

Observed genotype frequencies were not significantly different from those expected by 

Hardy-Weinberg equilibrium. Allele frequencies were similar to those reported in other 

European population (97-99). 
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4.5.2 Genotype / phenotype relationships for PP ARy 

Table 14 summarises the metabolic and anthropometric data for the 3 genotypes of the 

Pro12 Ala variant, (Pro/Pro, Pro/Ala & AlalAla). Subjects homozygous for the Ala allele 

(Alai Ala), had lower 2- hour insulin levels during OGTT, compared to other genotypes 

(Pro/Pro vs. Pro/Ala vs. AlaiAla [146.2 (89-241) vs.l34 (85-219) vs.72.6 (28.6-132.8)) 

geometric mean [interquartile range 25th - 75th percentile] pmolli. p=O.007). 

There were no significant differences between the 3 groups when analysed by ANOV A in 

relation to age, body mass index, waist circumference, blood pressure, total cholesterol, 

HDL cholesterol or fasting NEF As. 

Subjects homozygous for the Ala allele had higher body mass index and waist 

circumference, and lower circulating serum triglycerides when compared with carriers of 

the other genotypes, but none of these differences reached statistical significance. 

When applying general linear model to correct for confounding factors (age, sex, BMI, 

waist and centre effect), this revealed significant difference between the 3 genotype 

groups (Table 15). In particular, Alai Ala allele homozygotes had lower fasting insulin 

(p=O.OI) and lower 2 hour insulin levels (p=O.007), together with lower circulating serum 

triglyceride levels (p=O.02) 

As shown in Tables 14 and 15, subjects homozygous for the Ala allele (AlaiAla) had a 

higher Mil value before (p=O.03) and after (p=O.007) correction for key covariates, 

indicating increased insulin sensitivity compared to subjects with the other 2 genotypes. 
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4.5.3 PPARy and insulin sensitivity 

As the main differences described above were between the Ala/Ala allele carriers and the 

other genotype groups, we then compared subjects homozygous for the Ala allele to the 

Pro allele carriers (Pro/Pro + Pro/Ala). 

Table 16 shows that subjects homozygous for the Ala allele had a lower mean 2 hour 

insulin level compared to the Pro allele carriers which remained significant after 

correcting for age, sex, waist circumference, BMI and centre effects (Table 17). They also 

had lower fasting insulin levels after correcting for the same confounding factors (Table 

17). 

Subjects homozygous for the Ala allele were more insulin sensitive (M/I value; 120.8(93-

175) vs. 176.2(133-214) [Geometric Mean [interquartile range 25th - 75th percentile] 

min-I kgffm-
I nM-I; p=0.002) compared to carriers of the Pro allele [Pro/Pro + Pro/Ala] 

after adjusting for age, sex, BMI, waist circumference and recruitment centre. Subjects 

homozygous for the Ala allele also had lower adjusted fasting triglyceride levels 

(0.70(0.68-1.2) vs. 0.94 (0.5-1.1) [Geometric Mean [interquartile range 25th - 75th 

percentile] mmol/l; p=O.O 1) (Table 17). However, this did not explain the greater insulin 

sensitivity, which remained statistically significant after including triglyceride levels as a 

covariate (Table 17). 

Subgroup analysis was then performed to look into the effect of BMI and centre effect. 

For those with BMI:::;; 27 kg/m2
, subjects homozygous for the Ala allele showed greater 

insulin sensitivity compared to the other 2 alleles carriers after correcting for the same 

confounding factors. (Pro/Pro vs. Pro/Ala vs. Ala/Ala: 143.5 (111.3-191.5) vs. 
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144.0(104.1-195.1) vs. 188.4(146.9-224.0) [Geometric Mean [interquartile range 25th _ 

75th percentile] min-I kgffm-
I nM-I; p=0.027)(Table 18). 

On the other hand there were no significant differences in subjects with BMI greater than 

27 kg/m2 in relation to insulin sensitivity when comparing the 3 different genotypes 

(TableI9). 

In subjects with a BMI :::; 27 kg/m2, homozygous Ala allele carriers were more insulin 

sensitive compared to carriers of the Pro allele [Pro/Pro + Pro/Ala] after correction for 

covariates (p=0.008) (Table 20) Although there was a similar trend towards higher insulin 

sensitivity in the Ala/Ala allele subjects in those with a BMI >27 kg/m2, this didn't reach 

statistical significance (Table 21). 

In subjects from the southern European centres, those homozygous for the Ala allele had 

a greater insulin sensitivity compared to other allele carriers (Pro/Pro vs. Pro/Ala vs. 

Ala/Ala: 129.8(96-159) vs.136.7 (104-183) vs. 181.9 (140-218) [Geometric Mean 

[interquartile range 25th - 75th percentile] min-I kgffm-
I nM-I; p=0.003) (Table 22). Again 

when comparing subjects homozygous for the Ala allele to carriers of the Pro allele 

[Pro/Pro + Pro/Ala] in subjects from the southern centres, subjects homozygous for the 

Ala allele were more insulin sensitive compared to the Pro allele carriers when correcting 

for the same confounding factors (131.4(98.2-162) vs. 181.9(140-218) [Geometric Mean 

[interquartile range 25th - 75th percentile] min-I kgffm-
I nM-I; p=0.002) (Table 24). 

However there were no differences between the 3 alleles in relation to insulin sensitivity 

in subjects from the northern European centres (Tables 23 and 25). 
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4.5.4 PPARy and carotid- intima media thickness (cIMT) 

Table 26 summarises the mean of the carotid intima media thickness (cIMT) for the 3 

genotypes of the Pro 12 Ala variant,(Pro/Pro, Pro/Ala & Ala! Ala). There were no 

significant differences between the 3 genotypes for each IMT measurement 

In subjects with BMI > 27 kg/m2, there was a trend that subjects homozygous for the Ala 

allele had a lower c IMT compared to other genotypes; however this didn't reach 

statistical significane (Table 28). 

Although subjects from the southern centres have significantly lower cIMT compared to 

subjects from northern centres (Table 10), there was no difference between the 3 

genotypes groups for IMT measures when dividing the subjects into northern and 

southern centres. In the southern centres group Ala! Ala subjects had a lower c IMT 

compared to other genotypes group but this difference didn't reach statistical significance 

(Table 29 & 30). 

Comparing subjects homozygous for the Ala allele to carriers for the Pro allele (Pro/Ala + 

Pro/Pro) showed no differences between IMT measures when analysed together and when 

subdivided by BMI and by latitude (data not shown). 
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Table 14: ANOV A comparisons of means for Pro12Ala genotypes with 

anthropometric and metabolic variables (Data presented as means [SED 

Character ProlPro Pro/Ala Ala/Ala P 

N= 1001 N=264 N= 13 Value 

Age (years) 43.5 (0.26) 44.4 (0.5) 45.6(2.9) 0.23 

Male/Female 445/556 1251139 617 0.46 

BMI kg/m2 25.5 (0.12) 25.6 (0.26) 26.6 (0.8) 0.54 

Waist circumference (em) 86.6 (0.4) 87.3 (0.9) 92.8 (2.7) 0.1 

Fasting Glucose mmolll 5.1(0.02) 5.1 (0.04) 5.2(0.15) 0.92 

·Fasting Insulin pmolll 30.2 (21-44) 28.5(20-40) 24.5(19-34) 0.16 

Fasting NEF As mmol/l 0.53(0.01) 0.55(0.01) 0.56(0.07) 0.54 

2 hours Glucose mmol/l 5.7 (0.05) 5.7 (0.11) 5.4 (0.530) 0.73 

"2 hours Insulin pmol/l 146.2 (89.0-241) 134(85.0-219.0) 72.6(28.6-32.8) 0.007 

2 hours NEFAs mmol/l 0.05 (0.004) 0.05 (0.08) 0.02 (0.006) 0.69 

Total- cholesterol mmolll 4.8(0.03) 4.9(0.05) 4.5(0.22) 0.16 

"Triglycerides mmol/l 0.95 (0.68-1.28) 0.97(0.69-1.10) 0.78(0.53-1.10) 0.27 

HDL - cholesterol mmolll 1.4(0.01) 1.4(0.02) 1.4(0.11) 0.93 

LDL - cholesterol mmol/l 2.9(0.02) 2.9(0.05) 2.7(0.20) 0.27 

Systolic BP mmHg 117.1(0.4) 116.8(0.8) 117.4(2.8) 0.94 

Diastolic BP mmHg 74.1(0.2) 74.4(0.5) 74.1(1.8) 0.86 

·MlI min- I kgffm- I nM- 1 124.2(93-176.3) 126.8(89-182.1 ) 171.8(133.7-210.4) 0.03 

*Geometric Mean [interquartile range 25th 
- 75th percentile] 

P :s 0.01 is statistically significant 
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Table 15: Analysis of Covariance PPARy (Pro12Ala) Age, Sex, BMI, Waist, Centre 
adjusted means [SED with anthropometric and metabolic variables 

Character ProlPro Pro/Ala Ala/Ala P 

N = 1001 N=264 N= 13 Value 

Fasting Glucose mmolll 5.1(0.03) 5.0(0.05) 5.0(0.15) 0.79 

*Fasting Insulin pmol/l 30.0 (20-44) 28.4 (21-42) 21.7(19-35) 0.01 

Fasting NEF A mmol/l 0.53(0.01) 0.53(0.01) 0.56(0.06) 0.85 

2 hours Glucose mmol/l 5.7 (0.06) 5.9 (0.11) 5.5 (0.43) 0.48 

·2 hours Insulin pmol/l 143.5(88-239) 133.6(84-218) 75.5 (29-136) 0.007 

2 hours NEF A mmolll 0.05 (0.00) 0.04(0.01) 0.03(0.02) 0.30 

Total- cholesterol mmolll 4.7(0.03) 4.8(0.05) 4.4(0.22) 0.15 

*Triglycerides mmolll 0.94 (0.68-1.28) 0.93(0.69-1.11 ) 0.69(0.53-1.11 ) 0.02 

HDL - cholesterol mmolll 1.4(0.01) 1.4(0.02) 1.5(0.08) 0.49 

LDL - cholesterol mmolll 2.9(0.02) 2.9(0.04) 2.5(0.2) 0.22 

Systolic BP mmHg 117.7(0.4) 116.3(0.7) 114.4(2.9) 0.22 

Diastolic BP mmHg 74.4(0.3) 74.7(0.5) 72.7(2.0) 0.63 

*MlI min- 1 kgffm- 1 nM- 1 120.5(92.7-172) 122.5(88.7-180) 176.2(133.4-214.3) 0.007 

*Geometric Mean [interquartile range 25 th 
- 75

th 
percentile] 

P ::; 0.01 is statistically significant 
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Table 16: ANOV A comparisons of means for Pro allele carriers (ProlPro+ Pro/Ala) 
vs (Ala/Ala) genotype with anthropometric and metabolic variables (Data presented 
as means [SED 

Character PIP+P/A Ala/Ala P 

N = 1265 N= 13 Value 

Age (years) 43.7 (0.2) 45.6(2.9) 0.4 

BMI kg/m2 25.5(0.1) 26.6 (0.8) 0.33 

Waist circumference (cm) 86.6 (0.4) 92.8 (2.7) 0.08 

Fasting Glucose mmolll 5.1(0.02) 5.2(0.15) 0.698 

*Fasting Insulin pmol/l 29.8(20-43) 24.5(19.2-34) 0.19 

Fasting NEFA mmolll 0.53(0.01) 0.56(0.07) 0.7 

2 hours Glucose mmol/l 5.7 (0.05) 5.4(0.52) 0.51 

*2 hours Insulin pmolll 143.5 (88-236) 72.6 (28.5-164.8) 0.004 

2 hours NEFA mmolll 0.05 (0.00) 0.03 (0.01) 0.43 

Total- cholesterol mmolll 4.8(0.02) 4.5(0.24) 0.18 

*Triglycerides mmolll 0.95 (0.68-1.28) 0.78(0.53-1.1 ) 0.13 

HDL - cholesterol mmol/l 1.4(0.01) 1.4(0.1) 0.93 

LDL - cholesterol mmolll 2.9(0.02) 2.7(0.2) 0.32 

Systolic BP mmHg 117.0(0.35) 117.4(2.8) 0.91 

Diastolic BP mmHg 74.2(0.22) 74.l(1.8) 0.96 

*MlI min- 1 kgffm- 1 nM- 1 124.7(93-176) 171.8(133-210) 0.03 

*Geometric Mean [interquartile range 25 th 
- 75th percentile] 

P ::; 0.01 is statistically significant 
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Table 17: Analysis of Covariance PPARy (ProI2Ala) for Pro allele carriers 
(ProlPro+ Pro/Ala) vs (Ala/Ala) genotype with anthropometric and metabolic 
variables (age, BMI, sex, centre adjusted means [SED 

Character PIP+P/A Ala/Ala P 

N = 1265 N= 13 Value 

Fasting Glucose mmolll 5.1 (0.02) 5.0(0.14) 0.63 

*Fasting Insulin pmol/l 30.0(21-44) 22.3 (18-32) 0.02 

Fasting NEF A mmol/l 0.53(0.01) 0.57(0.06) 0.576 

2 hours Glucose mmolll 5.8(0.06) 5.5(0.43) 0.589 

*2 hours Insulin pmolll 142.6 (88-233) 77.1(29-176) 0.004 

2 hours NEF A mmolll 0.05(0.00) 0.03 (0.02) 0.61 

*Triglycerides mmolll 0.94 (0.68-1.2) 0.70(0.5-1.1) 0.01 

Total- cholesterol mmolll 4.7(0.03) 4.3(0.2) 0.07 

HDL - cholesterol mmolll 1.4(0.01) 15(0.08) 0.39 

LDL - cholesterol mmol/l 2.9(0.02) 2.6(0.2) 0.12 

Systolic BP mmHg 117.2(0.3) 114.5(2.9) 0.36 

Diastolic BP mmHg 74.4(0.2) 72.9(2.0) 0.45 

*MlI min- 1 kgffm-
1 nM- 1 120.8(93-175) 176.2(133-214) 0.002** 

*Geometric Mean [interquartile range 25th 
- 75th percentile] 

p ~ 0.01 is statistically significant 

** p= 0.004 after including Triglycerides levels as a coveriate 
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Table 18: ANOV A comparisons of means for Pro12Ala genotypes in relation to 
insulin sensitivity (MIl value) for those with BMI ~27 kg/m2Data presented as 
geometric mean [interquartile range 25 th 

- 75 th percentile]) 

Character Pro/Pro Pro/Ala Ala/Ala P p# 

Number=669 Number=17S Number=8 Value Value 

Mil min- 1 kgffm-1 nM- 1 143.5 144.0 188.4 0.19 0.027 

(111.3-191.5) (104.1-195.1) (146.9-224.0) 

p# value after analysis of covariance (age, sex, BMI, waist and centre adjusted means) 

Table 19: ANOV A comparisons of means for Pro12Ala genotypes in relation to 
insulin sensitivity (Mil value) for those with BMI> 27 kg/m2Data presented as 
geometric mean [interquartile range 25 th 

- 75th percentile]) 

Character ProlPro Pro/Ala Ala/Ala P p# 

Number=332 Number=89 Number=S value Value 

Mil min-1 kgffm-1 nM- 1 91.0 95.9 143.0 0.167 0.10 

(66-128.8) (67.9-129.2) (120.1-198) 

p# value after analysis of covariance (age, sex, BMI, waist and centre adjusted means) 
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Table 20: ANOVA comparisons of means for Pro allele carriers (ProlPro+ Pro/Ala) 
vs. (Ala/Ala) genotype in relation to insulin sensitivity (Mil value) for those with 
BMI 5;27 kg/m

2
Data presented as geometric mean [interquartile range 25th _ 75th 

percentile]) 

Character P/P+P/A (AlA) P p# 

Number=844 Number=8 Value Value 
Mil min- 1 kgffm- I nM- 1 143.5(111.3-191.5) 188.4(146-224 ) 0.07 0.008 

p# value after analysis of covariance (age, sex, BMI, waist and centre adjusted means) 

Table 21: ANOVA comparisons of means for Pro allele carriers (ProlPro+ Pro/Ala) 
vs. (Ala/Ala) genotype in relation to insulin sensitivity (Mil value) for those with 
BMI >27 kg/m2Data presented as geometric mean [interquartile range 25th 

_ 75th 

percentile] 

Character PIP+P/A (AlA) P p# 

Number=421 Number=5 Value Value 

Mil min-I kgffm- I nM- 1 92.0(68-120) 142.9(120-197) 0.08 0.08 

p# value after analysis of covariance (age, sex, BMI, waist and centre adjusted means) 
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Table 22: ANOV A comparisons of means for Pro12Ala genotypes in relation to 
insulin sensitivity (M/I value) for those from the southern centres. Data presented as 
geometric mean [interquartile range 25 th 

- 75 th percentile]) 

Character ProlPro Pro/Ala Ala/Ala P p# 

Number=394 Number=88 Number=5 value Value 

Mil min- 1 kgffm- 1 nM- 1 129.8 136.7 181.9 0.049 0.003 

(96-159) (104-183) (140-218) 

p# value after analysis of covariance (age, sex, BMI, waist and centre adjusted means) 

Table 23: ANOV A comparisons of means for Pro12Ala genotypes in relation to 
insulin sensitivity (M/I value) for those from the northern centres. Data presented as 
geometric mean [interquartile range 25 th 

- 75 th percentile]) 

Character ProlPro Pro/Ala Ala/Ala P p# 

Number=607 Number=176 Number=8 Value Value 

Mil min- 1 kgffm- 1 nM- 1 115.6 106.0 129.09 0.35 0.37 

(84-148) (68-128) (102-162) 

p# value after analysis of covariance (age, sex, BMI, waist and centre adjusted means) 
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Table 24: ANOVA comparisons of means for Pro allele carriers (ProlPro+ Pro/Ala) 
vs. (Ala/Ala) genotype in relation to insulin sensitivity (Mil value) for those from the 
southern centres. Data presented as geometric mean [interquartile range 25th _ 75th 

percentile]) 

Character PIP+P/A (AlA) P p# 

Number=482 Number=5 Value Value 

Mil min- 1 kgffm - 1 nM- 1 131.4(98.2-162) 181.9(140-218) 0.038 0.002 

p# value after analysis of covariance (age, sex, BMI, waist and centre adjusted means) 

Table 25: ANOVA comparisons of means for Pro allele carriers (ProlPro+ Pro/Ala) 
vs. (Ala/Ala) genotype in relation to insulin sensitivity (Mil value) for those from the 
northern_centres. Data presented as geometric mean [interquartile range 25th 

_ 75th 

percentile]) 

Character P/P+P/A (A/A) P p# 

Number=695 Number=8 Value Value 

Mil min- 1 kgffm - I nM- 1 113.8(89-149.2) 129.0(102-63.2) 0.722 0.591 

p# value after analysis of covariance (age, sex, BMI, waist and centre adjusted means) 
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Table 26: Comparisons of means for Pro12Ala genotypes in relation to(c IMT) 
measures Data presented as geometric mean [interquartile range 25th _ 75th 

percentile]) 

Value ProlPro Pro/Ala Ala/Ala P p# 

N=934 N=247 N= 13 Value Value 

1MTccA (~m) 599(540-653) 602(543-658) 580(538-643) 0.67 0.32 

1MT BULB (~m) 764(699-814) 773(703-830) 716( 633-862) 0.39 0.31 

1MTICA(~m) 615(556-671) 628(570-684) 570(528-633) 0.26 0.22 

1MTAvRG(~m) 662(603-728) 669(609-731 ) 636(571-685) 0.47 0.32 

p# value after analysis of covariance (age, BM1, waist, sex, centre, smoking, total 

cholesterol, systolic blood pressure, fasting glucose adjusted means) 
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Table 27: Comparisons of means for Pro12Ala genotypes in relation to(c IMT) 
measures for those with BMI <.5:.27 kg/m2

• Data presented as geometric mean 
[interquartile range 25th 

- 75th percentile]) 

Value Pro/Pro Pro/Ala Ala/Ala P p# 

N=669 N= 175 N=8 Value Value 

IMT CCA (f.1m) 588(544-650) 589(530-653) 595(543-649) 0.97 0.98 

IMT BULB (f.1m) 751(680-799) 761 (696-811) 748(676-796) 0.72 0.48 

IMT1cA (f.1m) 606(543-662) 613(551-669) 591 (532-645) 0.79 0.79 

IMT AVRG (f.1m) 650(591-716) 656(598-723) 659(601-725) 0.79 0.69 

p# value after analysis of covariance (age, BMI, waist, sex, centre, smoking, total 

cholesterol, systolic blood pressure, fasting glucose adjusted means) 
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Table 28: Comparisons of means for Pro12Ala genotypes in relation to(c IMT) 
measures for those with BMI > 27 kg/m2Data presented as geometric mean 
[interquartile range 2Sth - 7Sth percentile]) 

Value ProlPro Pro/Ala Ala/Ala P p# 

N=26S N=72 N=S Value Value 

MTcCA (f.lm) 625(560-685) 634(575-691) 544(528-590) 0.08 0.22 

IMT BULB (f.lm) 797(726-851 ) 802(732-854 ) 640(567 -713) 0.07 0.20 

IMTrcA (f.lm) 641 (576-702) 665(602-714) 536(531-599) 0.09 0.20 

IMTAvRG(f.lm) 692( 630-734) 701(639-740) 582(568-628) 0.07 0.17 

p# value after analysis of covariance (age, BMI, waist, sex, centre, smoking, total 

cholesterol, systolic blood pressure, fasting glucose adjusted means) 
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Table 29: ANOV A comparisons of means for Pro12Ala genotypes in relation to 
(c IMT) measures for those from the Northern Centres. Data presented as geometric 
mean [interquartile range 25 th 

- 75 th percentile]) 

Value ProlPro Pro/Ala Ala/Ala P pIT 

N=607 N= 176 N=8 Value Value 

IMTccA (~m) 604(542-655) 606(540-661 ) 591(536-650) 0.88 0.59 

IMT BULB (~m) 772(706-826) 783(712-837) 738(667-802) 0.57 0.41 

IMTICA(~m) 620(560-680) 633 (575-690) 598(548-653) 0.40 0.55 

IMTAvRG(~m) 668(605-717) 675(610-724) 654(591-703) 0.72 0.45 

p# value after analysis of covariance (age, BMI, waist, sex, centre, smoking, total 

cholesterol, systolic blood pressure, fasting glucose adjusted means) 
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Table 30: ANOV A comparisons of means for Pro12Ala genotypes in relation to(c 
IMT) measures for those from the Southern Centres. Data presented as geometric 
mean [interquartile range 25th 

- 75th percentile] 

Value ProlPro Pro/Ala Ala/Ala P p# 

N=327 N=71 N=5 Value Value 

IMT CCA (/lm) 590(544-649) 593(538-648) 534(519-579) 0.61 0.76 

IMT BULB (/lm) 751(680-815) 748 (676-812) 626(566-696) 0.43 0.46 

IMTrcA (/lm) 607(645-685) 615(655-675) 585(535-640) 0.40 O. 74 

IMTAVRG (/lm) 652(590-702) 655(591-702) 563(601-712) 0.43 0.47 

p# value after analysis of covariance (age, BMI, waist, sex, centre, smoking, total 

cholesterol, systolic blood pressure, fasting glucose adjusted means) 
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4.6 Discussion: 

The Pro 12 Ala polymorphism of the PP ARy gene has been found to be associated with 

obesity, insulin resistance and type 2 diabetes in different study populations. It has been 

previously shown that the homozygous variant genotype (Ala! Ala) confers a decreased 

risk of type 2 diabetes, and protects against insulin resistance syndrome (100). 

The Ala allele variant of the Pro 12Ala polymorphism has also been shown to influence 

insulin sensitivity, with evidence that this is mediated through altered body composition 

(97). 

In this study we replicated the association of Pro 12 Ala and insulin sensitivity in healthy 

individuals, with subjects homozygous for the Ala allele more insulin sensitive than the 

rest of the population. Intriguingly this was independent of measures of adiposity 

assessed by BMI and waist circumference. In our study, as in other studies (97,135), we 

found an association between the Ala allele and lower fasting insulin levels, lower total 

triglycerides levels and higher insulin sensitivity. 

The strength of our study is that it used the euglycaemic hyperinsulinaemic clamp to 

measure insulin sensitivity. It also used data from healthy volunteers, ie studied a pre or 

non diabetic population. Although by studying a healthy cohort we would have excluded 

some subjects with decreased insulin sensitivity with worse metabolic profile, for 

example, diabetes, dyslipidemia and hypertension, the range of insulin sensitivity in this 

healthy cohort was broad, with a 10 fold spread across the Mil range. The advantage of 

using a healthy, disease-free cohort is that it avoids the secondary metabolic effects of the 

established diabetic state that can confound and obscure the relationship between the 

genetic variants and insulin resistance. 
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It is evident from the data of our study that the key differences are between the Alai Ala 

carriers and the other genotype groups. For this reason, we compared subjects 

homozygous for the Ala allele to Pro allele carriers. This showed that the Alai Ala 

homozygotes had greater insulin sensitivity and lower serum triglyceride levels 

independent of measures of adiposity and body composition.The association with lower 

serum triglyceride levels didn't explain the greater insulin sensitivity, which remained 

after including triglyceride levels as a covariate. 

The finding from our study is that, although subjects homozygous for the Ala allele 

tended to have a marginally greater BMI and waist circumference, they had greater 

insulin sensitivity. This was hypothesised to be due to the fact that the Ala12Ala allele of 

the PPARy gene promotes peripheral deposition of adipose tissue and increased insulin 

sensitivity previously described by Gonzalez Sanhez et al (136). 

We undertook further subgroup analysis to look into the relationship between the BMI 

and the Pro12 Ala polymorphism as this was reported to be complex in previous studies 

with some contradicting findings (137).We found no interaction between BMI and Pr012 

Ala polymorphism of the PPARy gene. 

In a population-based Spanish study by Gonzalez Sanhez et al (136) the frequency of the 

Ala12 allele carriers (AlaiAla + Pro/Ala) was higher in obese men than in lean men and 

Ala12 allele carriers had a higher BMI compared to non-carriers, lower total triglycerides 

levels and lower fasting insulin levels and higher insulin sensitivity as assed by HOM A 

(136). In our study we found similar results, in which Ala12 aIle homozygotes had a 

higher BMI, higher insulin sensitivity and lower triglycerides levels. 
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Interstingly in the same study, despite having high 8MI, obese male carriers of the Ala12 

allele had a lower sagittal abdominal diameter than Pro 12 homozygous carriers (136). 

In our study, we found that, in lean subjects with BMI less or equal to 27 kg/m2, subjects 

homozygous for the Ala allele had greater insulin sensitivity compared to the other 2 

genotypes after correcting for age, sex and recruiting centre. On the other hand there were 

no significant differences in subjects with BMI greater than 27 kg/m2 in relation to insulin 

sensitivity when comparing the 3 different genotypes. It is very difficult to draw any 

conclusions from this finding as the numbers are very small and this needs pooling of all 

the study results to look specifically for the association of insulin resistance in relation to 

Pro 12 Ala polymorphism in subjects with BMI greater than 27 kg/m2 and study the fat 

distribution using MRI in this group.!t should be noted that,in the study by Gonzalez et al 

they used a cut off of 30 kg/m2 for the BMI to divide subjects into lean and obese 

respectively, they also combined Pro 12 Ala and Ala 12 Ala individuals and compared 

them to Pro 12 Pro and used HOMA-IR to assess insulin sensitivity. 

On the other hand the association between lower BMI and greater insulin sensitivity in 

subjects homozygotes for the Ala allele of the PPARy gene was previously described by 

Deeb et al (97). 

The reasons for the discrepancies in association studies between Pro 12 Ala 

polymorphism of the PPARy gene and BMI could be explained by ethnic differences, 

study design and or differences in PP ARy expression between subcutaneous and visceral 

fat (138). 
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Another large, UK based well-characterized case-control study with either positive family 

history and/ or early onset of Type 2 diabetes, studied 971 UK case samples and 1257 

ethnically matched control SUbjects. This study found conflicting association between the 

Pro 12 Ala variant and BMI. They found that subjects homozygous for the Pro 12 allele 

had increased BMI in the young onset Type 2 diabetes group and decreased 8MI in the 

Warren 2 sib-pair probands group. This divergent 8MI association in 2 different diabetic 

populations in this study suggest that the relationship between Pro 12 Ala polymorphism 

of the PPARy gene and BMI warrants further studies (137). 

To examine the gene- environment interaction in this large European study with diverse 

countries difference such as Greece and Finland, we performed subgroup analysis, 

dividing centres into northern and southern centres according to latitude. In subjects from 

the southern European centres, those who were homozygous for the Ala allele had greater 

insulin sensitivity than other pro 12 genotypes. This could be explained by different 

environmental and dietary factors e.g the presence of the mediteranian type diet in the 

southern centres. The finding of increased insulin sensitivity in Ala allele homozyogtes in 

subjects from the southern European centres gives further evidence for gene-nutrient 

interaction at the PP AR y gene. This was previously reported by Luan et al demonstrating 

that the effect of Pro 12 Ala polymorphism of the PP AR y gene may be affected by diet, 

with the role of PP AR y as nutrient sensor regulating adipogenesis and insulin sensitivity 

(139). 

They studied 592 nondiabetic Caucasian subjects from the Isle of Ely study. There was a 

significant inverse relationship between dietary polysaturated to saturated fat ratio (P:S) 

and fasting insulin after correction for age and sex. They found that as the P: S ratio 
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increases, both BMI and fasting insulin decreases in Ala allele carriers, but not in Pro 

allele homozygotes.Their data suggest that when the dietary P: S ratio is low, the mean 

BMI in the Ala allele carriers is greater than that in the Pro homozygotes which could 

explain our finding of higher BMI and insulin sensitivity in the Ala allele homozygotes. 

Our study didn't show any significant association between Pro 12 Ala polymorphism of 

the PPAR 'Y gene and c IMT which did not support the overall hypothesis of this study, 

that the Pro 12 Ala polymorphism of the PPAR 'Y gene is T2DM susceptibility gene and 

exerts a pleotropic effect influencing eVD as assessed by c IMT. 

The limitation of this study is that it used healthy volunteers and hence there would have 

been many exclusion criteria for those with unfavourable cardiovascular risk factors and 

the results would be an underestimate of the cardiovascular risk. It also used cross­

sectional analysis of the RISe study. However, on the positive side, the Rise study is a 

longitudinal study of eVD and so we will, in time, be able to investigate the relationship 

between the Pro 12 Ala polymorphism of the PPAR'Y gene and carotid IMT progression. 
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4.7 Conclusions: 

We have confirmed that the Pro12Ala polymorphism of the PPAR y gene influences 

insulin sensitivity in the healthy population. Specifically, subjects homozygous for the 

Ala allele are more insulin sensitive compared to the rest of the population, and this 

appears to be independent of differences in circulating triglyceride levels and measures of 

adiposity. 

Subgroup analysis showed that, in lean subjects and those from the southern European 

centres, the Ala 12 Ala allele is associated with greater insulin sensitivity compared to the 

other allele genotypes. 

In this cross sectional analysis of the RISe study, we found no significant association 

between carotid intima media thickness as a measure of cardiovascular disease and the 

Pro 12 Ala polymorphism in the PP AR y gene. 
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5. The role of the T 45 G SNP of the ADIPOQ gene in insulin resistance 

and CVD 

5.1 Introduction: 

Several polymorphisms in the ADIPOQ gene have been reported to be associated with 

type 2 diabetes, obesity and coronary heart disease (115,118). In the Japanese population 

a T-G SNP in exon 2 (SNP+45) and a G-T SNP in intron 2 (SNP+276) were reported to 

be significantly associated with increase risk of type 2 diabetes (116). In a French 

population with type 2 diabetes Vasseur et al. found an association between the G allele 

of SN+45 of the ADIPOQ gene and coronary heart disease (117). The G allele of 

SNP+45 of the ADIPOQ gene was also found to be associated with CAD in patients with 

type 2 diabetes independent of other cardiovascular risk factors (123). 

In a study by Hara et al. individuals with the GIG genotype of SNP+45 of the ADIPOQ 

gene had a higher risk of developing type 2 diabetes (116).In German individuals without 

type 2 diabetes, those who are G allele homozygotes of the SNP+45 of the ADIPOQ gene 

had higher BMI compared to T allele carriers (140). In the same study, the insulin 

sensitivity (measured by euglycaemic clamp) was significantly lower in the G allele 

carriers; however this didn't remain statistically significant after adjustment for BMI. 

Circulating adiponectin levels have been reported to be negatively correlated with c IMT 

(119) and higher plasma levels have been associated with a lower risk of myocardial 

infarction (118). In an animal model, Matsuda et al. found that adiponectin-deficient 

mice had severe neointamal thickening and increased proliferation of vascular smooth 

muscle cells in a mechanical injury model of re-stenotic change following balloon 

angioplasty (143). 
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Therefore, there is an emerging evidece that SNP+45 of the ADIPOQ gene may be 

associated with CVD and type 2 diabetes. However, there is limited work investigating 

the role of this SNP in healthy individuals. 
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5.2Aims: 

The aims of this study were: 

~ To examine if the G allele of the +45 T -G SNP of the adiponectin gene is associated 

with cardiovascular risk factors in non diabetic population. 

~ To examine if the G allele of the +45 T -G SNP of the adiponectin gene is associated 

with insulin sensitivity in non diabetic Caucasian population. 

~ To examine if the G allele of the +45 T -G SNP of the adiponectin gene is associated 

witth cIMT as a marker of CVD in a cohort of the general non-diabetic population. 
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5.3 Methods: 

5.3.1 Detection of T - 45- G SNP of the ADIPOQ gene using Sequenom Mass ARRAY 

assay 

119 bp fragment of the adiponectin gene encompassing the site of the +45 T -G SNP was 

amplified by PCR. A matrix-assisted laser desorption/ ionisation time-of-flight (MALO 1-

TO F) mass spectrometry (Sequenom MassARRA Y, San Diego, CA, USA) method was 

used to genotype SNP T45G, this was described in detail in chapter 2. The primers were 

designed using the Sequenom Mas sARRA Y Assay design program version 2.0.4 

(Sequenom, San Diego, CA, USA) and ordered from Metabion International AG, 

Martinsried, Deutschland, Germany. 

The PCR primer sequences were as follows: 

Forward primer 5'AGTGCACATGTGGATTCCAG 3', 

Reverse primer 5' CCTTGAGTCGTGGTTTCCTG-3'. 

A 5111 PCR reaction was set up using 2 ng DNA, 1.25 x HotStar Taq PCR buffer, total 

3.5 mM MgCh per reaction, 200 IlM each dNTP, 100 nM each forward and reverse 

primers and 0.15 U HotStar Taq polymerase (Qiagen, UK). PCR amplification was 

performed in 384 well PCR plates and cycling conditions were as follows: 95°C for 15 

min and 35 cycles of 95°C for 20 seconds, 58°C for 30 seconds, 72°C for 1 min, followed 

by a final extension step of 72°C for 3 min. Following this a primer extension reaction 

was performed using the mass extend primer 5-CT ATT AGCTCTGCCCGG-3 and 

samples were then prepared according to the manufacturers methods (Sequenom, San 

Diego, CA, USA) for genotyping using MALDI-TOF. 
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5.3.2 Plasma adiponectin measurements 

Plasma adiponectin was detennined by a novel in-house time-resolved immunotluorometric 

assay (TR-IFMA) and described in detail in chapter 2. 

5.3.3 Quality control: 

Of the genotyped samples, 5% were duplicates and there was at least 1 negative control 

per 96 well DNA plate. The accuracy of the genotyping was determined by the genotype 

concordance between duplicate samples. We obtained a 100% concordance between the 

genotyped duplicate samples. The genotyping success rate was >98 %. 

5.4 Statistical analysis: 

All analysis was performed using SPSS version 13 (SPSS Inc., Chicago, IL, USA) and 

Minitab version 15 (Minitab Inc, USA). Skewed variables were log transformed for 

analysis and presented as geometric means and the interquartile range [25th 
- 75th 

percentile].The ANOVA test was initially used to compare SNP genotypes with 

biological variables.Significant differences were further explored using the independent 

samples t-Test.General linear Model (GLM) analysis was performed to test for 

associations between SNP genotypes and risk factors after adjusting for confounding 

variables. 
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5.5 Results: 

5.5.1 Genotype and allele frequencies for the T -45-G SNP: 

The following allele frequencies were found for the +45 T-G SNP: 

T allele = 89% 

G allele = 11 % 

Observed genotype frequencies were not significantly different from those expected by 

the Hardy-Weinberg equilibrium. Allele frequencies were similar to those reported in 

other European populations (117,140). 

5.5.2 Genotype and metabolic features for the T -45-G SNP: 

The study cohort consists of 1278 subjects (579 men and 699 women) aged 43.8 ± 8.4 yrs 

(mean ±SD), with a mean BMI of25.6 ± 4.0 kg/m2. 

Table 31 summarizes the metabolic and anthropometric data for the 3 genotypes of the 

SNP +45 of the ADIPQ gene. This revealed differences between the 3 genotype groups 

for fasting NEFA levels when analyzed by ANOVA. This remained significant after 

correcting for confounding factors (age, sex, BMI, circumference and recruitment centre) 

(TIT vs. TIG vs. GIG: 0.53(0.01) ± vs. 0.52(0.01) ± vs. 0.71(0.05) ± [geometric mean 

(SE)] mmolll; p=0.03) (Table 33). 
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It appears from these data that the key differences are between the GIG homozygotes and 

the other genotype groups. For this reason, we then compared subjects homozygous for 

the G allele to the T allele carriers (TIT + T/G) as shown in Table 32. This showed that 

subjects homozygous for the G allele also had a higher waist circumference compared to 

T allele carriers; (GIG) vs. (T/T+T/G) 90.0[1.7] vs. 87.0[0.2] cm; p=0.02. 

We found no association between serum adiponectin and the 3 genotypes of the SNP +45 

of the ADIPQ gene. 

5.5.3 SNP + 45 of the ADIPOQ gene and insulin sensitivity: 

As shown in Table 34, subjects homozygous for the G allele had higher fasting NEF A 

levels (GIG) vs. (TIT + TG): 0.71 [0.05] vs. 0.53 [0.00] mmol/l; p=O.OO 1) after correction 

for the same covariates. They also had a lower Mil value; (GIG) vs. (TIT + TIG): 

102.5[92.4-179.1] vs. 121.3[84.5-141.6] min-I kgffm-I nM-1 (geometric mean [interquartile 

range 25th 
- 75 th percentile]); p=0.04 after correction for age, sex, BMI and centre. 

However this association didn't remain significant after correction for waist 

circumference and circulating fasting NEFA levels; p=0.25. 

In subgroup analysis, lean subjects with BMI ::; 27 kg/m2, subjects homozygous for the G 

allele had greater insulin resistance compared to other allele genotypes after correcting for 

sex, age,BMI, plasma adiponectin level and recruitment centre«T/T + TG) vs. (GIG): 

144.5[110-189] vs. 117.0[69-185] min-I kgffm- I nM-1(geometric mean [interquartile range 

25th 
- 75 th percentile]); p=0.04, but didn't remain significant after correction for waist 

circumference and circulating fasting NEFA levels (Table 35). The same analysis could 

not be performed for the subjects with a BMI > than 27 kg/m2 because of the small 

number of homozygous G allele carriers (n=4). 
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There were no significant differences between the genotypes and insulin sensitivity when 

the cohort was subdivided into northern and southern centres (Table 36 and 37). 

5.5.4 SNP + 45 of the ADIPOQ gene and c IMT: 

Table 38 summarises the relationships between carotid intima media thickness (c IMT) 

and the 3 genotypes of the SNP + 45 of the ADIPOQ gene. (TIT, T/G & G/G).There were 

no significant differences between the 3 genotyes and measures of c IMT before and after 

correction for age, sex, BMI, waist circumfrence, plasma adiponectin and the usual CVD 

risk factors. 

There was no consistent relationship between the genotypes and measures of IMT when 

the cohort was subdivided by BMI (Table 39 and 40). 

In subjects from the Southern European centres, subjects homozygous for the G allele 

tended to have a greater c IMT as measured by IMT1CA (607(545-664) vs. 603(545-659) 

vs. 750(679-793) (~m); (Geometric Mean [interquartile range 25th 
- 75 th percentile]) 

p=0.04, but this didn't remain statistically significant after correcting for the same 

confounding factors (Table 42). However when we compared subjects homozygous for 

the G allele to the T allele carriers in subjects from the southern European centres, it was 

clear that subjects homozygous for the G had a greater IMT1CA, and a greater IMT BULB 

compared to the T allele carriers (TIT + T/G) before and after correction for the usual 

covariates and after correcting for waist circumference, fasting NEF A and insulin 

sensitivity (Table 45). This was not seen in the subjects from the northern centres (Tables 

41 and 44). 

126 



Table 31: ANOVA comparisons of means for SNP+45 genotypes with 
anthropometric and metabolic variables (Data presented as means [SED 

Character TIT T/G GIG 
N=1003 N=258 N=17 

Age (years) 43.7 (0.26) 43.5 (0.5) 45.0(2.2) 

Male/Female 4461557 1231135 8/9 

BMI kg/m2 25.5(0.11) 25.5 (0.28) 24.8 (0.8) 

Waist circumference (cm) 86.7 (0.4) 86.3 (0.84) 88.6 (1.7) 

Fasting Glucose mmolll 5.1(0.02) 5.0 (0.04) 5.1(0.14) 

'"Fasting Insulin pmol/l 29.8 (20-43) 30.6(21-44) 26.1 (18.5-38.6) 

Fasting NEF A mmol/l 0.53(0.01) 0.52(0.01) 0.68(0.15) 

2 hours Glucose mmolll 5.8 (0.06) 5.7 (0.10) 5.5(0.47) 

'"2 hours Insulin pmol/l 142.1 (86.3-261.5) 148 (86.3-261.5) 176.0 (96-238) 

2 hours NEF A mmol/l 0.05 (0.00) 0.06 (0.01) 0.05 (0.02) 

Total- cholesterol mmolll 4.8(0.03) 4.8(0.05) 4.7(0.22) 

'"Triglycerides mmol/l 0.95 (0.67-1.27) 0.99(0.69-1.37) 0.89(0.64-1.20) 

HDL - cholesterol mmolll 1.43(0.01) 1.4(0.02) 1.4(0.11) 

LDL - cholesterol mmol/l 2.9(0.02) 2.9(0.04) 2.8(0.19) 

Systolic BP mmHg 117.3(0.38) 116.2(0.75) 118.5(2.8) 

Diastolic BP mmHg 74.3(0.25) 73.5(0.48) 74.9(1.97) 

'"Serum Adiponectin mg/l 7.7 (5.6-10.3) 7.6 (5.4-10.5) 8.7 (5.6-10.3) 

*MlI min- 1 kgffm- 1 nM- 1 125.4(92.9-177.4) 124.3(91.5-185.1 ) 114.4(84.-141.) 

*Geometric Mean [interquartile range 25th 
- 75th percentile] 

P :s 0.01 is statistically significant 
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P 

Value 

0.74 

0.46 

0.73 

0.47 

0.15 

0.48 

0.03 

0.84 

0.65 

0.12 

0.97 

0.42 

0.76 

0.97 

0.38 

0.32 

0.41 

0.74 



Table 32: ANOV A comparisons of means for SNP+45 genotypes (T allele carriers 
(T/T+T/G) vs GIG homozygotes) with anthropometric and metabolic variables (Data 
presented as means [SED 

Character T/T+T/G GIG P 

N=1261 N=17 Value 

Age (years) 43.7 (0.23) 45.00 (2.2) 0.52 

Male/Female 5691692 8/9 0.25 

BMI kg/m2 25.5(0.11) 24.8 (0.84) 0.55 

Waist circumference (cm) 87.0 (0.2) 90.0 (1.7) 0.02 

Fasting Glucose mmol/l 5.1(0.02) 5.1 (0.14) 0.96 

-'Fasting Insulin pmol/l 30.0 (21-43.3) 26.1 (18.4-38.6) 0.33 

Fasting NEFA mmol/l 0.53(0.01) 0.68(0.16) 0.01 

2 hours Glucose mmol/l 5.7 (0.05) 5.5 (0.47) 0.60 

·2 hours Insulin pmol/l 143.3(88.0-238) 176.0(96-238) 0.37 

2 hours NEF A mmol/l 0.05 (0.00) 0.05 (0.02) 0.99 

Total- cholesterol mmol/l 4.8(0.02) 4.7(0.20) 0.72 

·Triglycerides mmol/l 0.96 (0.68-1.28) 0.89(0.64-1.20) 0.52 

HDL - cholesterol mmolll 1.42(0.01) 1.43(0.1 ) 0.94 

LDL - cholesterol mmol/l 2.9(0.02) 2.9(0.19) 0.89 

Systolic BP mmHg 117.06(0.35) 118.5(2.86) 063 

Diastolic BP mmHg 74.2(0.22) 74.9(1.97) 0.68 

·Serum Adiponectin mg/l 7.6 (5.6-10.4) 8.7(6.4-11.05) 0.2 

·MlI min-I kgffm -1 nM- 1 125.1 (92-177) 114.3(84.5-141 ) 0.46 

*Geometric Mean [interquartile range 25th 
- 75th percentile] 

p ~ 0.01 is statistically significant 
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Table 33: Analysis of Covariance SNP+45 of the ADIPOQ gene (age, sex, BMI and 

centre adjusted (Data presented as means [SED 

Character TIT T/G GIG 
N=1003 N=258 N=17 

Fasting Glucose mmol/l 5.08(0.02) 5.01 (0.03) 5.01(0.12) 

·Fasting Insulin pmol/l 29.6(20-43) 30.3 (21-44) 26.7 (18.5-38.6) 

Fasting NEFA mmol/l 0.53(0.01) 0.52(0.01) 0.71(0.05) 

2 hours Glucose mmol/l 5.7 (0.06) 5.8 (0.10) 5.6(0.3) 

·2 hours Insulin pmolll 138(87-261) 147.2(86-261 ) 191.4(99-238) 

2 hours NEF A mmolll 0.05 (0.00) 0.05 (0.01) 0.05 (0.02) 

Total- cholesterol mmolll 47(0.03) 4.8(0.05) 4.7(0.2) 

·Triglycerides mmol/l 0.93(0.67-1.2) 0.96(0.69-1.3) 0.91 (0.64-1.20) 

HDL - cholesterol mmol/l 1.4(0.01) 1.4(0.02) 1.4(0.07) 

LDL - cholesterol mmolll 2.85(0.03) 2.86(0.05) 2.9(0.17) 

Systolic BP mmHg 117.2(0.37) 116.9(0.69) 118.8(2.5) 

Diastolic BP mmHg 74.4(0.25) 74.0(0.46) 75. 7( 1. 7) 

·Serum Adiponectin mg/l 6.24(5.2-10.2) 6.18(5.1-10.3) 6.9(5.1-10.3) 

"'Mil . -I k -I M- 1 
mm gffm n 120.7(92.9-177.4) 123.0(91.5-185.1) 102.5(84.5-141.6) 

*Geometric Mean [interquartile range 25 th 
- 75th percentile] 

P :::; 0.01 is statistically significant 
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P 

Value 

0.22 

0.52 

0.03 

0.83 

0.17 

0.96 

0.94 

0.50 

0.82 

0.96 

0.73 

0.53 

0.84 

0.46 



Table 34: Analysis of Covariance for SNP+45 of the ADIPOQ gene (age, sex, BMI, 
and centre adjusted (Data presented as means [SED 

Character (T/T+ T/G) (GIG) P *P 

N=1261 N=17 Value Value 

Fasting Glucose mmol/l 5.06(0.02) 5.01 (0.01) 0.7 0.7 

-'Fasting Insulin pmolll 29.7(20-43) 26.7(18-38) 0.35 0.4 

Fasting NEF A mmol/l 0.53(0.00) 0.71(0.05) 0.001 0.006** 

2 hours Glucose mmol/l 5.7 (0.06) 5.6 (0.4) 0.72 0.7 

·2 hours Insulin pmol/l 139.6(87-264) 190.9(96-252) 0.13 0.3 

2 hours NEF A mmol/l 0.04 (0.00) 0.05 (0.02) 0.8 0.7 

Total- cholesterol mmol/l 4.7(0.02) 4.7(002) 0.87 0.8 

·Triglycerides mmol/l 0.94(0.67 -1.2) 0.90(0.64-1.2) 0.68 0.7 

HDL - cholesterol mmolll 1.4(0.01) 1.38(0.07) 0.8 0.7 

LDL - cholesterol mmol/l 2.8(0.02) 2.9(0.17) 0.88 0.8 

Systolic BP mmHg 117.1(0.34) 118.9(2.5) 0.49 0.6 

Diastolic BP mmHg 74.3(0.23) 75.8(1.7) 0.39 0.6 

·Serum Adiponectin mg/l 7.4(5.6-10.1 ) 8.3(5.6-10.2) 0.19 0.3 

"'Mil min- 1 kgffm - 1 nM- 1 121.3(92.4-179.1 ) 102.5(84.5-141.6) 0.04 0.25 

*Geometric Mean [interquartile range 25th 
- 75th percentile] 

p :s 0.01 is statistically significant 

p* (after adjustment for NEFA and waist circumference) 

** (after adjustment for waist circumference) 
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Table 35: ANOV A comparisons of means for SNP+45 of the ADIPOQ gene in 
relation to insulin sensitivity (Mil value) measures for those with BMI -:::.27 
kg/m2Data presented as Geometric Mean [interquartile range 25th 

- 75th percentile]) 

Character T/T+G/G (GIG) P P* P** 

Number=858 Number=13 value Value Value 

MIl min- 1 k -1 gffm 144.5(110-189) 117.0(69- 0.05 0.04 0.34 

nM-1 185) 

p* (after correction for age, sex, BMI, plasma adiponectin and recruitment centre) 

p* (after correction for fasting NEFA and waist circumference) 
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Table 36: ANOV A comparisons of means for SNP+4S of the ADIPOQ gene in 
relation to insulin sensitivity (Mil value), for those from the northern centres. (Data 
presented as geometric mean [interquartile range 2Sth - 7Sth percentile]) 

Character TIT TIG GIG P P* 

Number=624 Number=lSl Number=9 value Value 

Mil min- 1 kgffm- I nM-1 112.2(69-129) 121.8(66-230) 103.2(71-159) 0.3 0.15 

Character (TIT +T/G) GIG P P* 

Number=77S Number=9 value Value 

Mil min- 1 kgffm- I nM- 1 114.2(71-129) 103.3(71-159) 0.56 0.95 

p* (after correction for age, sex, BMI, plasma adiponectin, waist, NEF A and recruitment 

centre) 
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Table 37: ANOV A comparisons of means for SNP+45 of the ADIPOQ gene in 
relation to insulin sensitivity (Mil value) measures for those from the southern 
centres. (Data presented as geometric mean [interquartile range 25th _ 75th 

percentile]) 

Character TIT TIG GIG P 

Number=379 Number=107 Number=8 

Mil min-I kgffm-I nM- 1 133.5(96-180.9) 125.8(96- 125.4(89-184) 0.4 

182) 

Character (TIT +T/G) GIG P 

Number=486 Number=8 

Mil min-I kgffm -I nM- 1 131.9(89-179) 125 .4(96-182) 0.75 

P* 

0.1 

P* 

0.29 

p* (after correction for age, sex, BMI, plasma adiponectin, waist, NEFA and recruitment 

centre) 
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Table 38: ANOV A comparisons of means for SNP+45 of the ADIPOQ gene in 
relation to(c IMT) measures (Data presented as geometric mean [interquartile range 
25th 

- 75th percentile]) 

Value TIT TIG GIG P P* 

N =1003 N=258 N=17 Value Value 

IMTccA (~m) 600(540-654) 601(542-658) 594(504-660) 0.96 0.84 

IMT BULB (~m) 767(696-813) 763(693-889) 780(710-837) 0.86 0.87 

IMTICA(~m) 617(557-671) 616(558-672) 634(569-683) 0.88 0.66 

IMTAVRG (~m) 665(606-731) 660(601-725) 666(607-631) 0.87 0.94 

p* (after adjustment for age, sex, BMI, waist, plasma adiponectin, recruitment centre, 

smoking, fasting glucose, total cholesterol, systolic blood pressure) 
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Table 39: ANOV A comparisons of means for SNP+45 of the ADIPOQ gene in 
relation to (c IMT) measures for those with BMI ~ 27 kg/m2(Data presented as 
geometric mean [interquartile range 25 th 

- 75 th percentile]) 

Value TIT TIG GIG P 

N=689 N= 169 N= 13 Value 

IMTccA (~m) 590(529-644) 579(513-643) 598(537 -652) 0.27 

IMT BULB (~m) 758(687-806) 737(666-783) 800(733-857) 0.14 

IMT1CA (~m) 608(546-665) 600(542-656) 623(558-672) 0.72 

IMTAVRG(~m) 655(595-721) 637(574-6950 670(610-634) 0.10 

P* 

Value 

0.87 

0.31 

0.85 

0.63 

p'" (after adjustment for age, sex, BMI, waist, plasma adiponectin, recruitment centre, 

smoking, fasting glucose, total cholesterol, systolic blood pressure) 
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Table 40: ANOV A comparisons of means for SNP+45 of the ADIPOQ gene in 
relation to(c IMT) measures for those with BMI > 27 kg/m2 (Data presented as 
geometric mean [interquartile range 25 th 

- 75 th percentile]) 

Value TIT TIG GIG P P* 

N=314 N=89 N=4 Value Value 

IMT CCA (Jlm) 585(528-633) 621 (558-669) 652(592-718) 0.03 0.55 

IMT BULB (Jlm) 731(660-886) 791 (724-848) 826(859-883) 0.19 0.37 

IMT1CA (Jlm) 642(588-698) 658(600-714) 663(606-719) 0.75 0.73 

IMTAVRG (Jlm) 689(628-755) 714(746-763) 657(597-723) 0.20 0.37 

p* (after adjustment for age, sex, BMI, waist, plasma adiponectin, recruitment centre, 

smoking, fasting glucose, total cholesterol, systolic blood pressure) 
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Table 41: ANOV A comparisons of means for SNP+45 of the ADIPOQ gene in 
relation to(c IMT) measures for those from the northern Centres. (Data presented as 
geometric mean [interquartile range 25th 

- 75th percentile]) 

Value TIT TIG GIG P P* 

N=624 N= 151 N=9 Value Value 

IMTccA (~m) 606± 3 605± 7 583 ±40 0.78 0.84 

IMT BULB (~m) 778± 6 770 ± 14 703 ± 33 0.32 0.91 

IMTICA(~m) 623 ± 5 625 ± 12 548 ± 20 0.23 0.44 

IMTAvRG(~m) 672±4 666 ± 10 609 ± 31 0.72 0.33 

p. (after adjustment for age, sex, BMI, waist, plasma adiponectin, recruitment centre, 

smoking, fasting glucose, total cholesterol, systolic blood pressure) 
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Table 42: ANOV A comparisons of means for SNP+45 of the ADIPOQ gene in 
relation to (c IMT) measures for those from the southern Centres. (Data presented 
as geometric mean [interquartile range 25 th 

- 75 th percentile]) 

Value TIT TIG GIG P P* 

N=379 N= 107 N=8 Value Value 

IMT CCA (/lm) 589(529-643) 594(531-647) 610(549-664) 0.74 0.39 

IMT BULB (/lm) 749(677-796) 7 52( 682-800) 884(813-941 ) 0.06 0.09 

IMT1CA (/lm) 607(545-664) 603 (545-659) 750(679-793) 0.04 0.08 

IMT AVRG (/lm) 652(592-718) 650(588-718) 744(673-781) 0.08 0.08 

p* (after adjustment for age, sex, BMI, waist, plasma adiponectin, recruitment centre, 

smoking, fasting glucose, total cholesterol, systolic blood pressure) 
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Table 43: ANOV A comparisons of means for T allele carriers (T/T+ T/G) Vs (GIG) 
genotypes in relation to(c IMT) measures (Data presented as geometric mean 
[interquartile range 25th 

- 75th percentile]) 

Value T/T+ T/G GIG P P* 

N = 1261 N= 17 Value Value 

IMT CCA (Jlm) 600±2 594 ± 24 0.73 0.63 

IMT BULB (Jlm) 766± 4 780 ± 42 O. 72 0.73 

IMT1cA (Jlm) 617 ± 4 634 ± 44 0.63 0.26 

IMT AVRG (Jlm) 664 ± 3 666 ± 31 0.92 0.93 

p* (after adjustment for age, sex, BMI, waist, plasma adiponectin, recruitment centre, 

smoking, fasting glucose, total cholesterol, systolic blood pressure) 
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Table 44: ANOVA comparisons of means for T allele carriers (T/T+ T/G) Vs. 
(G/G)homozygotes of the ADIPOQ gene in relation to(c IMT) measures for those 
from the northern centres(Data presented as geometric mean [interquartile range 
25th 

- 75th percentile]) 

Value T/T+ T/G GIG P P* 

N=775 N=9 Value Value 

IMTccA (Ilm) 583±3 605±40 0.48 0.58 

IMT BULB (Ilm) 703 ±5 776±33 0.16 0.38 

IMTrcA (Ilm) 547±5 623± 24 0.08 0.56 

IMTAvRG(llm) 609 ± 4 671± 29 0.09 0.89 

p* (after adjustment for age, sex, BMI, waist, plasma adiponectin, recruitment centre, 

smoking, fasting glucose, total cholesterol, systolic blood pressure ) 
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Table 45: ANOV A comparisons of means for T allele carriers (T/T+ T/G) Vs. (GIG) 
homozygotes of the ADIPOQ gene in relation to (c IMT) measures for those from 
the southern Centres. (Data presented as geometric mean [interquartile range 25 th _ 

75th percentile]) 

Value T/T+ T/G GIG P P* P** 

N=486 N=8 Value Value Value 

IMT CCA (Ilm) 591 (529-643) 610(549-664) 0.58 0.86 0.69 

IMT BULB (Ilm) 750(680-996) 883(812-941 ) 0.02 0.04 0.049 

IMT1CA (Ilm) 606(544-663) 750(679-793) 0.01 0.03 0.036 

IMTAVRG (Ilm) 651(591-714) 744(673-781 ) 0.03 0.08 0.41 

p. value after analysis of Covariance (Age, sex, BMI, waist, plasma adiponectin, 

recruitment centre, smoking, fasting glucose, total cholesterol, systolic blood pressure) 

p** (after adjustment for fastingNEFA and Mil value) 
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5.6 Discussion: 

This is a cohort of 1278 healthy non diabetic Caucasian subjects recruited from the RIse 

study. We found that GIG allele homozygote subjects for the SNP+45 of the ADIPOQ 

gene had increased insulin resistance, waist circumference and fasting NEF A levels 

compared to carriers of the T allele. These findings support the previous published data 

from the French and Japanese populations. (116,124). 

A recently published study by Daimon et al (144) identified a lower serum adiponectin 

level as an independent risk factor for progression to T2DM and those with a serum 

adiponectin concentration in the lowest tertile had a 10-fold higher risk for development 

of type 2 diabetes during a 5-year follow-up period.The G allele of SNP+ 45 of the 

ADIPOQ gene was found to be associated with lower serum adiponectin and markers of 

insulin sensitivity in different study populations (116,124,140). However, these 

associations were not confirmed in another study of Caucasian type 2 diabetic 

patients (117). 

Interstingly in our study, adiponectin levels were not different between the 3 genotypes 

and the association of the GIG allele and insulin sensitivity was independent of 

circulating adiponectin levels.The association between the G allele homozygotes of 

SNP+45 of the ADIPOQ gene and insulin sensitivity was not significant after correcting 

for waist circumference and fasting NEF A. This finding gives evidence that SNP+45 of 

the ADIPOQ gene influences insulin sensitivity through measures of adiposity and fasting 

NEF A levels. 
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There is emerging evidence that, it is the plasma fraction of high molecular-weight 

polymers rather than the total concentration of adiponectin, that is associated with 

changes in insulin sensitivity in db/db mice and in type 2 diabetic patients treated with 

thiazolidinedione (l60).Thefore, future studies determining the different circulating 

adiponectin isoforms, including high molecular -weight adiponectin, may help 

to examine whether the association between SNP+45 of the ADIPOQ gene and insulin 

resistance is independent of serum adiponectin. 

To date there are four large published studies on the effect of ADIPOQ gene variants 

and CVD disease, all consisting of type 2 diabetes subjects (123,151-153). In the 

French-Swiss population, the G/G allele of SNP+45 of the ADIPOQ gene was found to 

be a significant predictor of CAD, in cross-sectional sample of 162 cases with CAD and 

315 control subjects without significant CAD, with odd ratio of 1.9(95% CI 1.2-2.9) 

(123). However, this wasn't confirmed in the other 3 studies (South Italy and USA). 

Meta analysis of all published data, including 827 CAD positive cases and 1887 

CAD negative control subjects showed no association between SNP + 45 and CAD (152). 

While there was no significant association between the 3 genotypes and measures of IMT 

in the whole cohort, we did find that in subjects homozygotes for the G allele from the 

southern centres had an increased IMT1cA and IMT BULB compared to the T allele carriers 

and this association appears to be independent of insulin sensitivity, serum adiponectin, 

waist circumference and circulating NEF A levels. However, this association needs to be 
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replicated in view of the small number of GIG homozygotes (n=8), particularly as it may 

reflect a gene-lifestyle interaction. 

A previous study reported an association of the GIG homozyogous allele of SNP+ 45 of 

the ADIPOQ gene with CAD in patients with type 2 diabetes independent of other CYD 

risk factors (123). In the current study we were able to replicate this association in the 

healthy subjects from southern Europe; with subjects homozyotes for the G allele having 

greater c IMT independent of other CYD risk factors and adiponectin level. Nevertheless, 

the findings from our study provide very little evidence supporting the original hypothesis 

that genetic variation within the ADIPOQ gene exhibits pleiotropy and increase the risk 

of cardiovascular disease. 

Recent data have demonstrated that the ADIPOQ gene product is expressed in tissues 

other than adipose tissue, including vascular tissue (144). ADIPOQ gene expression and 

its relation to enothelial function is an area for future research. As the RISC project is a 

longitudinal study of CYD risk, we will, in time, be able to measure the change in carotid 

IMT progression and investigate its relation to variation in the ADIPOQ gene. 



5.7 Conclusions: 

We have confirmed that the SNP +45 of the ADIPOQ gene influences insulin sensitivity 

in the healthy population. Specifically, subjects homozygous for the G allele have 

increased fasting NEFA levels and waist circumference and are less insulin sensitive 

compared to the rest of the population. The association of GIG allele of SNP +45 of the 

ADIPOQ gene with insulin resistance appears to be mediated through measures of 

adiposity and NEF A levels but independent of circulating adiponectin levels. 

Subgroup analysis showed that in subjects from the southern European centres, variation 

in the adiponectin gene was associated with carotid IMT in a cohort of healthy subjects, 

and this was independent of circulating adiponectin levels and classical CVD risk factors. 

This observation needs to be replicated in other cohorts. 
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6. The role of the ADIPOQ gene promoter variants (SNPs A-11426G, 

G-11391A and C-11377G) in insulin resistance and CVD 

6.1 Introduction 

A recent, systemic analysis of the ADIPOQ gene locus in Europeans, suggested that the 

gene is organized in 2 linkage disequilibrium (LD) blocks separated by a region of a 

looser LD in the middle of the first intron (155). A common haplotype of SNPs G-

11391A and C-11377G in the proximal promotor region of the ADIPOQ gene has been 

associated with circulating adiponectin levels and type 2 diabetes in a large cohort of type 

2 diabetic French Caucasians (117). Furthermore a significant association with 

adiponectin levels was observed for SNPs 11391 & 276 indicating independent genetic 

effects, since these 2 SNPs belong to 2 different LD blocks (147). 

Recent studies have shown that SNP A-11426G in the proximal promotor region IS 

associated with fasting plasma glucose levels and type 2 diabete and SNP C-11377G with 

coronary stenosis and vascular events (122,144). Therefore it is evident that SNPs in the 

ADIPOQ gene may be associated with CVD and type 2 diabetes. However, there is 

limited work investigating the role of these SNPs in healthy individuals. 
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6.2 Aims: 

~ To examine the relationships between ADIPOQ promoter gene variants (SNPs C-

11377G, G-11391A and A-11426G) and cardiovascular risk factors in non 

diabetic population. 

~ To study the relationships between ADIPOQ promoter gene variants (SNPs C-

11377G, G- 11391A and A-11426G) and insulin sensitivity in non diabetic 

Caucasian population. 

~ To study the relationships between ADIPOQ promoter gene variants (SNPs C-

11377G, G-l1391A and A-11426G) and carotid IMT and plasma adiponectin 

levels in healthy subjects participating in the RISC study. 
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6.3 Methods: 

6.3.1 Plasma adiponectin measurements 

Plasma adiponectin was determined by a novel in-house time-resolved immunotluorometric 

assay (TR-IFMA) and described in detail in chapter 2. In this study we measured total 

adiponectin levels using two antibodies and recombinant human adiponectin. Adiponectin 

circulates as various polymers, which may differ in receptor affinities and metabolic effects 

(132,133). To date, virtually all studies have assayed the total concentration of plasma or 

serum adiponectin without differentiating between the various isoforms. The two antibodies 

used in this method are able to detect several adiponectin polymers in serum, including the 

major three molecular forms (133). 

6.3.2 ADIPOQ promoter SNPs (11426, 11391 & 11377) genotyping 

I initially genotyped SNPs G-11391 A and C-11377G using the seqenom mass ARRAY 

assay method, however, the genotype frequencies were not in Hardy-Weinberg 

equilibriuim and so this was repeated by Dr. Sheila Patel who also genotyped SNP A­

II426G using a TaqMan allelic discrimination assay (Applied Biosystems, Warrington, 

UK). Primers for the allelic discrimination assays were designed using the Assay by 

design service (Applied Biosciences, Warrington, UK). For each SNP, a 25 III PCR 

reaction was set up with 10 ng of genomic DNA, Ix TaqMan® universal PCR MasterMix 

with AmpErase® UNG and 1 x primer and probes assay mix. Samples were amplified on 

a GeneAmp 9700 PCR machine (using the 9600 emulation mode; ABI, Warrington, UK). 

Cycling conditions were as follows: 50°C for 2 min followed by 95°C for 10 min, then 40 
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cycles of 92°C for 0.15 sec, 60°C for 1 min. Following PCR, an allelic discrimination 

assay was performed on an ABI Prism 7000 sequence detection system (Applied 

Biosystems, Warrington, UK). 

6.3.3 Quality control: 

Of the genotyped samples, 5% were duplicates and there was at least 1 negative control 

per 96 well DNA plate. The accuracy of the genotyping was determined by the genotype 

concordance between duplicate samples. We obtained a 100% concordance between the 

genotyped duplicate samples for each of the SNPs. The genotyping success rate for each 

of the SNPs was >98 %. 

6.4 Statistical analysis: 

All analyses were performed using SPSS version 13 (SPSS Inc., Chicago, IL, USA) and 

Minitab version 15 (Minitab Inc, USA). Skewed variables were log transformed for 

analysis and are presented as geometric means and the interquartile range [25th 
- 75th 

percentile]. The ANOYA test was initially used to compare SNP genotypes with 

biological variables. Significant differences were further explored using the independent 

samples t-Test. General linear Model (GLM) analysis was performed to test for 

associations between SNP genotypes and risk factors after adjusting for confounding 

variables. 
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6.5 Results: 

The study cohort consists of 1278 subjects (579 men and 699 women) aged 43.8 ± 0.2 yrs 

(mean ± SD), with a mean BMI of 25.5 ± 0.1 kg/m2
. The clinical and metabolic 

characteristic of the study population was described in detail in chapter 3. Table 46 shows 

the baseline characteristics of the RISC study subjects by tertiles of plasma adiponectin 

levels. All listed variables were significantly different between the three circulating 

adiponectin tertiles. 

Study subjects in the lower adiponectin terti Ie (:::; 6.24 mg/I) had higher BMI's, increased 

waist circumference, higher fasting triglycerides and LDL-cholesterol and BP compared 

to the highest adiponectin tertile (>9.27 mg/I). The carotid IMT value was also 

significantly different between the adiponectin tertiles, (Geometric Mean [interquartile 

range) 616 (524-664), 597 (540-652) and 590(530-643) !lm (lowest, middle and highest 

tertile of adiponectin). 

All genotyped SNPs were in Hardy-Weinberg equilibrium.Table 47 shows detailed 

information for each SNP and genotype frequencies. genotype frequencies were similar to 

those previously reported in French and Swedish Caucasians (121,130). 
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6.5.1 Relationship between ADIPOQ gene promoter variants (SNPs 11377, 11391 & 

11426) and cardiovascular risk factors: 

Tables 48 to 50 summarise the metabolic and anthropometric data for the 3 genotypes of 

the SNPs Cl1377G, Gl1391A and the Al1426G variants of the ADIPOQ gene promotor. 

There were no significant differences between the 3 genotypes of SNP C-11377G and 

Gl1391A of the ADIPOQ gene promotor and the metabolic and anthropometric 

measures. On the other hand subjects homozygous for the G allele of the SNP A 11426 G 

of theADIPOQ promotor gene tended to have higher total cholesterol and LDL levels 

compared to other 2 genotypes alleles. 

6.5.2 Relationship between ADIPOQ gene promoter variants (SNPs 11377, 11391 & 

11426) and insulin sensitivity: 

Tables 51 to 53 summarize the relationships between SNPs (Cl1377G, Gl1391A and 

A 11426G) and insulin sensitivity (Mil). There was no significant association between the 

adiponectin gene promoter variants and insulin sensitivity in this healthy non diabetic 

cohort when correcting for known confounding factors. Further subgroup analysis 

dividing groups by sex, BMI (Lean and overwieght subjects) and northern and southern 

centres showed no association with insulin sensitivity. 
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6.5.2 Relationship between ADIPOQ gene promoter variants (SNP Cl1377G, SNP 

Gl1391A and SNP Al1426G) and serum adiponectin and cIMT: 

Of the 3 genotyped SNPs, A-11426G and the G-11391A SNPs of the ADIPOQ gene 

promoter were significantly associated with adiponectin levels (Tables 49 and 50).As 

shown in Table 54, homozygous carriers of the -11391 G allele had significantly lower 

plasma adiponectin levels compared to A allele carriers (geometric mean [interquartile 

range]) 7.4 [5.4 - 10.0] vs. 9.1 [6.9 - 12.2] mg/l, P<O.OOOI). Plasma adiponectin levels 

remained significantly lower after adjusting for age, sex, BMI and recruitment centre 

(P<O.OOO 1). Similarly, for SNP A-11426G, carriers of the G allele had significantly 

lower plasma adiponectin levels compared to the A allele homozygotes before (P=O.O 15) 

and after adjustment (P =0.005) for the same covariates. 

On the other hand, only SNP C-11377G was associated with carotid IMT (Table 54). 

Carriers of the G allele had significantly greater carotid IMT values compared to C allele 

homozygotes (Geometric Mean [interquartile range]) 608 (543-643) vs. 596(540-654) 

~m, p=O.O 17). This difference remained after adjusting for age, sex, recruitment centre 

and BMI (p=0.02), and after adjustment of fasting adiponectin levels and other CVD risk 

factors (HDL and LDL cholesterol, triglycerides, systolic and diastolic BP and smoking 

status (p=0.029). 
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Table 46: Baseline characteristics of the study population according to their 

adiponectin tertiles (means ± SE) 

*Tertiles of plasma adiponectin (mg/I) 

Character :::; 6.25 6.25 to 9.28 >9.28 P values 

Number 426 426 426 

Age 42.8 ± 0.4 43.8 ± 0.4 44.9 ± 0.4 0.001 

Sex (male/female) 3141112 199/227 69/357 <0.0001 

BMI (kg/m~) 26.7 ± 0.2 25.7 ± 0.2 24.1 ± 0.2 <0.0001 

Waist circumference 
92.6 ± 0.5 87.4 ± 0.6 79.9 ± 0.6 <0.0001 

(cm) 

*Fasting Insulin 
37.3 [26.0 - 54.0] 

31.1 [22.0-
24.8 [17.7 - 34.0] <0.0001 

(pmolll) 44.0] 

Fasting Glucose 
5.3 ± 0.04 5.1 ± 0.03 4.9 ± 0.03 <0.0001 

(mmolll) 

*Triglycerides (mmol/I) 1.16 [0.83 - 1.57] 0.97 [0.69 - 1.30] 0.78 [0.61 - 1.01] <0.0001 

HDL - cholesterol 
1.2 ± 0.01 1.4 ± 0.02 1.7 ± 0.02 <0.0001 

(mmolll) 

LDL - cholesterol 
3.1 ± 0.04 2.9 ± 0.04 2.7 ± 0.03 <0.0001 

(mmol/l) 

Systolic BP (mmHg) 120 ± 0.5 118±0.6 114 ± 0.6 <0.0001 

Diastolic BP (mmHg) 76 ± 0.3 74 ± 0.4 73 ± 0.4 <0.0001 

*Carotid IMT (/-lm) 616 (524-664) 597 (540-652) 590 (530-643) <0.0001 

*M/l (/-lm) 116.3(72.6-140) 138.3(94-167.8) 168.5(117.4-204) <0.0001 

*Geometric Mean [interquartile range 25th 
- 75th percentile] 

P:s 0.0 I is statistically significant 
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Table 47 - ADIPOQ SNPS, genotypes and allele frequencies in the RISe study 

population 

SNP Allele 1 Allele 2 
n Genotypes n (%) 

(dbSNP ID number) (%) (%) 

A-11426G 
1278 AA AG GG A (0.91) G (0.09) 

(rs16861194) 
1053 (82.6) 208 (16.1) 17 (1.3) 

G-11391A 
G (0.92) A (0.08) 1278 GG GA AA 

(rs 17300539) 
1100 (85.3) 170(14.1) 8 (0.6) 

C-11377G 
1278 CC CG GG C (0.76) G (0.24) 

(rs266729) 
718 (56.2) 495 (38.8) 65 (5.0) 
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Table 48: ANOVA comparisons of means for SNP C-11377G of the ADIPOQ gene 

promoter with anthropometric and metabolic variables (Data presented as means 

[SED 

Character C/C C/G GIG P 

N=718 N=495 N=65 Value 

Age (years) 43.6 (0.30) 43.8 (0.38) 45.3(1.09) 0.3 

BMI kg/m2 25.6 (0.15) 25.4 (0.17) 25.0 (0.40) 0.4 

Waist circumference (cm) 87.1 (0.49) 86.1 (0.53) 85.0 (l.6) 0.2 

Fasting Glucose mmol/l 5.1(0.02) 5.1 (0.04) 5.1(0.07) 0.9 

*Fasting Insulin pmol/l 3l.5 (2l.8-45.7) 29.4(19.9-4l.6) 29.4(20.9-42.7) 0.07 

Fasting NEF As mmolll 0.53(0.01) 0.54(0.01) 0.54(0.02) 0.7 

2 hours Glucose mmolll 5.8 (0.06) 5.8 (0.07) 5.5 (0.17) 0.25 

2 hours Insulin pmolll 150.5 (93.3-251.2) 138.2 (81.3-223.8) 135.2(72-229) 0.16 

2 hours NEF As mmol/l 0.05 (0.004) 0.04 (0.08) 0.05 (0.01) 0.62 

Total- cholesterol mmol/l 4.8(0.03) 4.9(0.03) 4.5(0.17) 0.16 

*Triglycerides mmol/l 0.97 (0.69-1.33) 0.95(0.67-1.25) 0.90(0.63-1.30) 0.27 

HDL - cholesterol mmolll l.41(0.014) 1.43(0.02) l.44(0.11 ) 0.46 

LDL - cholesterol mmolll 2.92(0.03) 2.88(0.03) 2.83(0.08) 0.27 

Systolic BP mmHg 117.1(0.4) 118.0(0.6) 116.6(l.6) 0.42 

Diastolic BP mmHg 74.2(0.3) 74.6(0.4) 74.0(l.1) 0.86 

*MlI min -I kgffm -I nM- 1 123.9(89.1-173.8) 126.3(93.3-182.0) 130.0(93-177) 0.61 

.. Adiponecin( mg/I) 7.7(5.7-10.2) 7.6(5.7 -10.4) 7.6(5.4-10.5) 0.90 

c IMT(Jlm) 596(540-654) 608( 543-643) 597(538-665) 0.01 

*Geometric Mean [interquartile range 25 th 
- 75th percentile] 

p ~ 0.01 is statistically significant 
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Table 49: ANOV A comparisons of means for SNP G-11391A of the ADIPOQ gene 

with anthropometric and metabolic variables (Data presented as means [SED 

Character GIG G/A AlA P 

N = 1100 N= 170 N=8 Value 

Age (years) 43.8 (0.3) 44.0 (0.6) 42.8 (3.2) 0.86 

BMI kg/m2 25.6 (0.12) 25.2 (0.31) 25.4 (1.2) 0.56 

Waist circumference (cm) 86.9 (0.4) 85.0 (1.0) 86.2 (3.5) 0.18 

Fasting Glucose mmolll 5.1(0.02) 5.1 (0.04) 4.9(0.17) 0.6 

*Fasting Insulin pmolll 30.5 (18-41) 31.2(18-37) 30.5( 13.5-35.7) 0.86 

Fasting NEF As mmol/l 0.53(0.01) 0.55(0.02) 0.49(0.07) 0.48 

2 hours Glucose mmol/l 5.7 (0.05) 5.8(0.11) 5.4 (0.36) 0.56 

*2 hours Insulin pmol/l 144.8 (88.0-244) 147.9 (84.0-244.5) 99.0 (23.7-274) 0.40 

2 hours NEF As mmol/l 0.05 (0.002) 0.06 (0.01) 0.11 (0.06) 0.06 

Total- cholesterol mmolll 4.8(0.03) 4.8(0.06) 4.6(0.30) 0.76 

*Triglycerides mmol/l 0.96 (0.68-1.27) 0.98(0.68-1.39) 0.96(0.92-1.27) 0.76 

HDL-cholesterol mmol/l 1.42(0.01) 1.44(0.03) 1.36(0.10) 0.66 

LDL-cholesterol mmol/l 2.9(0.02) 2.9(0.05) 2.8(0.30) 0.89 

Systolic BP mmHg 117.4(0.37) 117.4(0.96) 120.5(3.8) 0.78 

Diastolic BP mmHg 74.3(0.24) 74.9(0.57) 75.8(2.39) 0.56 

>l'M/I min-I kgffm-I nM- ' 125.5(93.0-177.7) 125.7(89.5-179.3) 116.0(69-205.8) 0.95 

• Adiponecin(mg/l) 7.4(5.4-10.0) 9.2(6.9-12.2) 8.2(6.3-12.0) 0.001 
>I' 

c IMT(llm) 602(540-654) 597(538-665) 603(534-653) 0.61 

*Geometric Mean [interquartile range 25th 
- 75th percentile] 

P :s 0.01 is statistically significant 
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Table 50: ANOV A comparisons of means for SNP A-11426G of the ADIPOQ gene 

with anthropometric and metabolic variables (Data presented as means [SED 

Character AlA A/G GIG 

N = 1053 N=208 N= 17 

Age (years) 43.8 (0.25) 43.6 (0.57) 45.2(2.10) 

BMI kg/m2 25.5 (0.12) 25.7 (0.28) 26.9 (0.85) 

Waist circumference (cm) 86.4 (0.4) 87.3 (0.9) 89.4 (3.0) 

Fasting Glucose mmol/l 5.1(0.02) 5.1 (0.04) 5.4(0.17) 

"Fasting Insulin pmol/l 30.6 (21-44) 29.9(20.2-43.5) 32.9(22.5-42.2) 

Fasting NEF As mmol/l 0.54(0.01) 0.50(0.01) 0.51 (0.04) 

2 hours Glucose mmolll 5.7 (0.05) 5.8(0.12) 6.2 (0.46) 

"2 hours Insulin pmolll 143.8 (88-243.2) 149.8 (85.8-255.3) 165.2 (105-318) 

2 hours NEF As mmolll 0.05 (0.003) 0.03 (0.004) 0.03 (0.005) 

Total- cholesterol mmolll 4.8(0.03) 4.7(0.06) 5.3(0.27) 

"Triglycerides mmol/l 0.95 (0.68-1.28) 0.98(0.70-1.29) 1. 14(0.80-l.37) 

HDL - cholesterol mmolll 1.42(0.01) 1.40(0.02) 1.40(0.08) 

LDL - cholesterol mmol/l 2.9(0.02) 2.9(0.05) 3.3(0.25) 

Systolic BP mmHg 117.2(0.4) 118.6(0.8) 121.0(2.6) 

Diastolic BP mmHg 74.2(0.2) 75.3(0.5) 77.2(2.3) 

"Mil min-) kgffm-) nM-) 125.3(92.1-180.6) 127.2(94.4-175.5) 139.2(89-201.4) 

" Adiponecin(mg/l) 7.7(5.6-10.5) 7.1 (5.6-1 0.0) 7.2(5.4-9.6) 

c IMT(/lm) 602(540-654) 597(538-655) 604(548-652) 

*Geometric Mean [interquartile range 25th 
- 75th 

percentile] 

P :s 0.01 is statistically significant 
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Value 

0.7 

0.2 

0.4 

0.15 

0.72 

0.18 

0.36 

0.6 

0.75 

0.03 

0.28 

0.84 

0.05 

0.14 

0.75 

0.65 

0.01 

0.45 



Table 51: Analysis of Covariance of SNP C-11377G of the ADIPOQ gene promoter 

in relation insulin sensitivity (Mil) with subgroup analysis including; sex, BMI and 

centre (Data presented as geometric means [range]) 

Character C/C C/G GIG P 

Value 

*M/I (GLM) 121.0 (86-176) 121.3 (87-169) 124.4(98-174) 0.81 

min-I kgffm- I Nm-I N=718 N=495 N=65 

*MlI (Male) 109.0 (68-151) 108.9 (71-149) 114.4 (132.9-196.8) 0.87 

min-! kgffm-I nM-I N=323 N=216 N=33 

·MlI (Female) 138.0 (105.1-186.) 142.5 (110.4-196) 149.6 (101-212) 0.46 

min-I kgffm-I nM-I N=395 N=279 N=32 

*MlI (BMI:::; 27kg/mz) 142.2 (110-194) 146.2 (98-215) 148.9 (103-209) 0.54 

min-I kgffm-I nM-I N=483 N=350 N=48 

* Mil (BMI > 27kg/mz) 94.8 (61-174) 90.1 (69-168) 90.1 (69-169) 0.61 

min-I kgffm-I nM-I N=235 N= 145 N= 17 

·MlI (Northern centres) 131.7 (97.2-186.2) 132.7(99.1-188.8) 135.0(92.8-191.0) 

. -I k -I M-I mm gffm n N=436 N=325 N=43 0.94 
*, 
Mil (Southern centres) 112.7(81.0-154.4) 115.8 (87-162.7) 122.4( 1 00.0-172.9) 

min-I kgffm-I nM-I N=282 N= 170 N=22 0.67 

*Geometric Mean [interquartile range 25th 
- 75th percentile] 

P S; 0.01 is statistically significant 

(GML) (General linear model; after correcting for age, sex, BMI, adiponectin levels and 

recruitment centre). 
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Table 52: ANOV A comparisons of means for SNP G-11391A of the ADIPOQ gene 

promoter with insulin sensitivity (Mil) (Data presented as geometric means [range]) 

Character GIG G/A AlA P 

Value 

-*M/I (GLM) 121.6 (87.2-176.3) 120.2 (87.1-171.5) 123.6( 1 02.4-176.5) 0.95 

min-I kgffin- I nM-1 N = 1100 N= 170 N=8 

·M/I (Male) 110.0 (7l.2-153.5) 103.7 (67.5-149) 115.1 (132-196) 0.64 

min-I kgffm-I nM-1 N=499 N=73 N=6 

-'MlI (Female) 138.2 (104-199) 142.5 (91-208) 118.8 (134-201) 0.82 
. -I k -I M-1 mm gffm n N=601 N=97 N=2 

·MlI (BMI:::; 27kg/m2) 143.5 (115-193.4) 147.8 (102-215) 142.5 (111-195) 0.6 

min-1 kgffm-1 nM-1 N=751 N= 122 N=6 

Mil (BMI > 27kg/m2) 93.3 (62-171) 82.8 (61-158) 62.6 (68-170) 0.12 

min-I kgffm- 1 nM-1 N=349 N=48 N=2 

·MlI (Northern centres) 132.5(93.0-186.7) 130.9 (93.0-190.9) 141.4(90.1-211.0) 0.94 

min-I kgffm-I nM-1 N=7l0 N= 105 N=4 

·MlI (Southern centres) 113.6(84.6-153.7) 118.8(85.3-179.2) 95.3(6l.5-174.6) 0.58 

min-1 kgffm-I nM-1 N=390 N=65 N=4 

*Geometric Mean [interquartile range 25th 
- 75th percentile] 

P :s 0.01 is statistically significant 

(GML) (General linear model; after correcting for age, sex, 8MI, adiponectin levels and 

recruitment centre). 
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Table 53: ANOV A comparisons of means for SNP A-11426G of the ADIPOQ gene 

promoter with insulin sensitivity (Mil) (Data presented as geometric means [range]) 

Character AlA AlG GIG P 

·MJI (GLM) 12l.0 (86.5-176) 120.2 (86-171) 134.6(105-180) 0.6 

min-1 kgffm-1 nM-1 N = 1053 N=208 N= 17 

·M/I (Male) 109.4 (68.5-151) 110.1 (71.2-153) 113.2 (74-196) 0.5 

min-1 kgffm-1 nM-1 N=480 N=92 N=7 

·MJI (Female) 140.0 (107-186) 142.2 (102-224) 154.8 (101-219) 0.68 

min-1 kgffm-1 nM-1 N=573 N= 116 N= 10 

·MJI (BMI:::; 27kg/ml) 143.1 (112-207) 149.6 (102-224) 169.5 (123-230) 0.29 

min-1 kgffm-1 nM- 1 N=738 N= 135 N= 10 

·MJI (BMI > 27kg/m.l) 92.5 (61-168) 94.4 (61-174) 108.0 (68-149) 0.70 

min-1 kgffm-1 nM- 1 N=315 N=73 N=7 

Mil (Northern centres) 133.3(99.6-189.1 ) 130.2(93.9-177.6) 138.7(82.2-212.7) 0.83 

min-1 kgffm-1 nM-1 N=658 N= 142 N= 11 

Mil (Southern centres) 112.9(83.0-154.7) 120.9(95.4-157.2) 140(99.5-213.8) 0.38 

min-1 kgffm-1 nM-1 N=395 N=66 N=6 

th th *Geometnc Mean [mterquartIle range 25 - 75 percentIle] 

P S 0.01 is statistically significant 

(GML) (General linear model; after correcting for age, sex, BMI, adiponectin levels and 

recruitment centre). 
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Table 54: Relationship between ADIPOQ promoter gene, serum adiponectin & 

cIMT. 

*Plasma adiponectin *carotid IMT 
SNPs/ genotypes 

(mg/I) (~m) 

A-11426G 

AA 7.7 [5.6 - 10.5] 602(540-655) 

AG+GG 7.2 [5.4 - 9.6] 598(548-652) 

P value 0.015 0.676 

T GLM Model 1 P value 0.005 0.428 

G-11391A 

GG 7.4 [5.4 - 10.0] 602( 540-654) 

GA+AA 9.1 [6.9 -12.2] 598 (534-653) 

P value <0.0001 0.473 

1 GLM Model 1 P value <0.0001 0.917 

C-11377G 

CC 7.7 [5.7 - 10.2] 596(540-654) 

CG+GG 7.6 [5.4 - 10.5] 608(543-643) 

P value 0.669 0.017 

T GLM Model 1 P value 0.273 0.02 

+GLM model 2 P value - 0.029 

*Geometric mean [interquartile range, 25th - 75th percentile]. 
P value after adjustment for age, sex, BMI and recruitment centre. ~P value after 
adjustment for other CVD risk actors (HDL-, LDL- and total cholesterol, serum 
triglycerides, systolic and diastolic BP, smoking status) as well as age, sex, BMI, 
recruitment centre and adiponectin levels. 
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6.6 Discussion: 

The novel observation of this analysis is that variation in the ADIPOQ gene promoter is 

directly associated with common carotid artery IMT in healthy subjects. Specifically, 

individuals with the G allele of the C-I1377G SNP had significantly higher carotid IMT 

values compared to C allele homozygotes. This relationship remained significant after 

adjustment for key covariates (age, sex, BMI and recruitment centre) and after accounting 

for classical CVD risk factors (systolic and diastolic blood pressure, smoking status and 

serum cholesterol). Furthermore, this relationship was independent of circulating 

adiponectin levels. Our findings are supported by Hoefle et al. (2007) (150), who recently 

reported an association between SNP -11377 and coronary angiography determined CAD 

in a prospective study of 402 men. The SNP -11377 G allele was significantly associated 

with increased coronary stenosis and future vascular events independently of serum 

adiponectin levels and traditional CVD risk factors (150). 

How might variation in the ADIPOQ gene directly influence carotid IMT? Clearly, our 

study does not allow us to address this directly, but it is interesting to note that a recent 

study reported that the ADIPQ gene is expressed in vascular tissue (148). Moreover, ACE 

inhibitor therapy given to type 2 diabetic patients resulted in a 2-fold increase in the 

vascular expression of the ADIPOQ gene and was associated with an improvement in 

endothelial function (148). This led the authors to speculate that adiponectin generated 

locally within the vasculature might directly influence endothelial function. This is 

supported by the observation that globular adiponectin applied to cultured endothelial 

cells increased both the expression and the activity of eNOS (149). The circulating serum/ 

plasma levels of adiponectin may not reflect the actual amount of adiponectin present at 
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the tissue level, for example the concentration in the sub-endothelial space where the anti­

atherogenic targets for adiponectin is located (146,147). Therefore further in vitro studies 

are needed to explore whether variation in the ADIPOQ gene in vascular tissue affects 

local adiponectin expression, endothelial function and ultimately CVD risk. 

Of the promoter SNPs, the A-11426G and G-11391A were significantly associated with 

plasma adiponectin levels. This association was independent of the effects of age, sex, 

BMI and recruitment centre. The SNP -11391 A allele has been previously shown to be 

associated with higher adiponectin levels in European population (117,124). Putative 

binding sites for transcriptional factors have not been found in the promoter region of the 

ADIPOQ gene where SNPs -11391 and -11377 lie, however between these two SNPs and 

adjacent to the position of the -11377 SNP a nucleotide sequence which is similar to an 

enhancer element sequence in the epidermal growth factor receptor gene has been 

reported (119). 

Although previous studies have shown that variants in the promoter regIOn of the 

ADIPOQ gene was associated with insulin resistance (117,124). In this study there was 

no association between ADIPOQ promoter gene SNPs and insulin sensitivity. 

Examination of the genetic variation in the promoter region has not conclusively 

identified a functional variant and these previously reported associations may represent 

associations of these variants with adverse metabolic features in the study populations 

(154). Prospective gene association studies are more powerful to clarify these 

inconsistencies with the ability to estimate the risk of type 2 diabetes and CVD in the 

same cohort. 
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These differences could also be explained by gene-environment interaction. It has been 

previously hypothesized that certain environments predispose to CVD through interaction 

with the promoter block and others predispose to insulin resistance and type 2 diabetes, 

through interaction with other region in the ADIPOQ gene (154). 

While there was a strong association between the A-11426G and G-11391A SNPs and 

circulating adiponectin levels, there was however, no association between these SNPs and 

carotid IMT. Furthermore, plasma adiponectin levels were not an independent predictor 

of carotid IMT after adjustment for the usual covariates and classical CVD risk factors. 

This suggests that the trend for decreasing carotid IMT across the adiponectin tertiles 

(Table 46) is due to other confounding differences between the adiponectin sub-groups. 

The majority of studies investigating ADIPOQ gene SNPs and adiponectin levels have 

been reported in disease states, especially in subjects with type 2 diabetes and CVD. Our 

study is a large healthy cohort and therefore we are able to dissect out relationships 

independent of the potentially confounding secondary effects of the disease. As 

mentioned before, the analyses have been conducted using cross-sectional data and it 

remains to be seen wether these relationships hold in the longitudinal analysis. 
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6.7 Conclusion: 

Variation in the ADIPOQ gene promoter was associated with carotid IMT in a large 

cohort of healthy subjects, and this was independent of circulating adiponectin levels and 

classical CVD risk factors. However we found no association between ADIPOQ gene 

promoter and insulin sensitivity in this healthy European population. 

This observation needs to be replicated in other cohorts, and further work is needed to 

explore potential mechanisms by which ADIPOQ gene variation might directly influence 

carotid IMT and CVD. 
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7. Summary/General Discussion: 

The RISe study is a prospective, multicenter, observational study that has enrolled 1566 

(Data presented for 1278) volunters at 19 centers across Europe. Subjects are mainly 

middle-aged healthy volunteers, with no preexisting diabetes, hypertension or known 

CVD. All subjects underwent testing for insulin sensitivity using the euglycemic clamp 

technique-the "gold standard" for measuring insulin resistance. Subjects also had their 

carotid intima media thickness measured by ultrasound, as a surrogate measure of 

cardiovascular disease. 

The mam strengths of our study were that, the RISe project was a large well 

characterized cohort, had a common methodology for measurements of carotid intima 

media thickness and had central laboratories. Furthermore it used the gold standard 

euglycaemic clamp to measure insulin resistance. 

Clearly this study excluded subjects with unfavourable cardiovascular and metabolic 

profile and this may lead to a restricted cohort with low prevelance of disease risk allele. 

However, by studing healthy, disease-free population, we are able to avoid the secondary 

metabolic effects of established diabetes and or cardiovascular disease and to dissect out 

relationships independent of the potentially confounding secondary effect. 
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One of the findings of our study is the association of Pro 12 Ala polymorphism of the 

PPARy gene with insulin sensitivity independent of body composition (97). The 

relationship of this common gene variant and body mass index needs further investigation 

and it would be interesting to investigate visceral and peripheral deposition of adipose 

tissue using MRI scans in subjects homozygous for the Ala allele. This will help in 

further understanding some the effects of thiazolidinediones on adiposity and insulin 

resistance. 

Furthermore, we found that in subjects from the southern European centres, subjects 

homozygous for the Ala allele had greater insulin sensitivity compared to those from the 

northern centres. This could be explained by difference in diet, for example, the presence 

of the Mediterranean type diet in the southern centres. This will give further evidence for 

the role of PPAR y as nutrient sensor regulating adipogenesis and insulin sensitivity, but 

will need further evaluation (139). 

The overall hypoythesis to be investigated was that variation within type 2 diabetes 

suceptibility genes (Pro 12Ala and ADIPOQ) exhibit pleiotropy and increase the risk of 

CVD. We found no supporting evidence for this pleiotropy from this cross-sectional data 

and it remains to be seen whether we will find any association with both CVD and insulin 

resistance in the longitudinal analysis. 
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It would seem from the investigation into the genetic basis of insulin resistance and CVD, 

that variation in PPARy predisposes to diabetes (possibly through increased insulin 

resistance) but we found no relationship with CVD. Conversley, variation in the ADIPOQ 

gene is associated with both insulin sensitivity (SNP+45) and c IMT (promoter region) . 

These findings could have great potential for future strategies of both insulin resistance 

and cardiovascular disease management. The interesting question is how to translate 

genetic association studies into clinical practice. The advantage of making the diagnosis 

well in advance of the appearance of clinical disease is attractive, however studying 

complex diseases like T2DM , insulin resistance and CVD remains difficult as there are 

multiple factors involved including: gene-gene and gene-environment interactions and 

these diseases don't exhibit simple modes of inheritance where we can make a molecular 

diagnosis by a simple blood test (156). 

With the advances in genome wide scans in identifying emerging novel pleotropic genes 

for both T2DM and CVD and with the advances in our understanding of the underlying 

mechanisms for these complex diseases. It will be possible to identify gene-linked 

mutations by molecular genetics and screen people at risk and patients early in the 

course of the disease (156) . 

168 



A good example of applying this approach is a recent study by Kang et al. which found 

that patients with T2DM carrying the G allele at SNP+45 of the ADIPOQ had less 

response to PPARy- agonist (Rosiglitazone) in reducing fasting glucose and increasing 

circulating adiponectin (157). This finding, although it needs to be replicated in a larger 

population, if translated into clinical practice, can identify patients response to treatment 

with more cost-effective approach to treatment of both Type 2 diabetes and 

CVD (157). 

The same approach could be applied if we manage to identify pleiotropic gene variants 

in patients presenting with impaired glucose tolerance or at a risk of developing 2 

diabetes to tackle the cardiovascular disease risks if they are found to have these gene 

variants. 

In conclusion the findings from our study do not support the original hypothesis, 

that variations in the PPAR y and ADIPOQ genes, exhibit pleiotropy and increase the 

risk of cardiovascular disease. As the RIse study is a longitudinal study of CVD risk, we 

will, in time, be able to measure the change in carotid IMT progression and investigate its 

relation to ADIPOQ and PPAR y gene variants. 
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7.1 Future work: 

Although this study is cross-sectional; the RISe project is longitudinal study of CVD risk 

so it would have the advantage to investigate the relationship between these common type 

2 diabetes gene variants and the carotid IMT progression. Furthermore with the genome 

wide association scans are now available to identify T2D susceptibility variants, we will 

be able to investigate other emerging novel type 2 diabetes genes in relation to 

cardiovascular disease, using c IMT as a marker in a non-diabeteic healthy individuals to 

test for the common soil hypothesis. Longitudinal RISe study cohort will help to define 

the role of the susceptibility alleles in the early pathogensis of type 2 diabetes and eVD. 

Our study doesn't answer how variation in the ADIPOQ gene might directly influence 

carotid IMT. There is recent evidence that the ADIPQ gene is expressed in vascular tissue 

and adiponectin generated locally within the vasculature might directly influence 

endothelial function (148). Therefore further studies are needed to explore whether 

variation in the ADIPOQ gene in vascular tissue affects local adiponectin expression, 

endothelial function and ultimately eVD risk. 
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Table1: ANOV A comparisons of means for SNP+45 of the ADIPOQ gene in relation 
to insulin sensitivity (Mil value) measures for those with BMI 'S:27 kg/m2Data 
presented as Geometric Mean [interquartile range 25th _ 75th percentile)) 

Character TIT TIG GIG P P* 

Number=689 Number=169 Number=13 Value Value 

Mil 133.5 125.8 125.4 0.38 0.27 
min-1 kgffm-1 nM-1 (109-189.6) (112.5-203.) (102.5-141.6) 

p* GLM after correction for age, sex, BMI, waist, plasma adiponectin and recruitment 

centre 

Table 2: ANOVA comparisons of means for SNP+45 of the ADIPOQgene in relation 
to insulin sensitivity (Mil value) measures for those with BMI I> 27 kg/m2Data 
presented as Geometric Mean [interquartile range 25 th 

- 75 th percentile]) 

Character TIT TIG GIG P P* 

Number=314 Number=89 Number=4 Value Value 

Mil 92.4. 91.8 103.7 0.89 0.64 

min-1 kgffm-1 nM-1 (66.7-127.4) (66.3-134) (71.6-159.8) 

p* GLM after correction for age, sex, BMI, waist, plasma adiponectin and recruitment 

centre 
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Table 3: ANOV A comparisons of means for SNP+45 of the ADIPOQ gene in 
relation to insulin sensitivity (Mil value) measures for those with BMI I > 27 
kg/m

2
Data presented as (Geometric Mean [interquartile range 25th _ 75th percentile)) 

Character T/T+ T/G (GIG) P P* 

Number=403 Number=4 Value Value 
Mil min- l kgffm- I nM- 1 92.3(66-127) 103.7(71-160) 0.65 0.85 

p* GLM after correction for age, sex, BMI, waist, plasma adiponectin and recruitment 

centre 

Table 4: ANOV A comparisons of means for G allele carriers (GIG) Vs (TIT +T/G) 
genotypes in relation to(c IMT) measures for those with BMI:S 27 kg/m2 (Data 
presented as Geometric Mean [interquartile range 25th 

- 75th percentile]) 

Value T/T+ T/G GIG P P* 

N=858 N=13 Value Value 

IMTccA (11m) 591±3 581±6 0.16 0.6 

IMT BULB (11 m) 758 ±5 741± 11 0.44 0.78 

IMTrcA (11m) 608 ±5 602± 10 0.56 0.84 

IMT AVRG (11m) 655 ±4 639± 7 0.07 051 

p# value after analysis of Covariance (Age, sex, BMI, waist, plasma adiponectin, 

recruitment centre, smoking, fasting glucose, total cholesterol, systolic blood pressure 

adjusted means) 
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Table 5: ANOV A comparisons of means for T allele carriers (T/T+ T/G) Vs. GIG 
genotypes of the adiponectin in relation to(c IMT) measures for those with BMI '5:.27 
kg/m

2 
(Data presented as Geometric Mean [interquartile range 25 th _ 75 th 

percen tile]) 

Value T/T+ T/G GIG P P* 

N=858 N=13 Value Value 

IMTcCA (/lm) 589±3 599±6 0.69 0.88 

IMT BULB (/lm) 753 ±5 800±11 0.29 0.l6 

IMTIcA (/lm) 607 ±5 623± 10 0.68 0.48 

IMT AVRG (/lm) 651 ± 4 670± 7 0.54 0.49 

p# value after analysis of Covariance (Age, sex, BMI, waist, plasma adiponectin, 

recruitment centre, smoking, fasting glucose, total cholesterol, systolic blood pressure 

adjusted means) 
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Table 6: ANOV A comparisons of means for T allele carriers (T/T+ T/G) Vs. GIG 

genotypes of the adiponectin in relation to(c IMT) measures for those with BMI 

greater than 27 kg/m2 (Data presented as Geometric Mean [interquartile range 25th _ 

75th percentile]) 

Value T/T+ T/G GIG P P* 

N=403 N=4 Value Value 

IMTccA (/lm) 627±5 585±28 0.35 0.73 

IMT BULB (/lm) 798±8 731± 67 0.38 0.16 

IMT1CA (/lm) 646 ±8 663± 57 0.80 0.93 

IMTAvRo(/lm) 694± 6 658 ±45 0.51 0.28 

p# value after analysis of Covariance (Age, sex, 8MI, waist, plasma adiponectin, 
recruitment centre, smoking, fasting glucose, total cholesterol, systolic blood pressure 
adjusted means [SE]) 
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LOCAL Form 3: Consent Form - RISC Genetic Studies 

Subject ID ",-I ....&.....J~L-. ____ ..L.--JI ... 1 ____ ___ 

To be printed on headed stationery of the hospital recruiting and examining the subject 

Relationship between insulin sensitivity and cardiovascular disease risk (RISC) • 
Consent Form: Genetic Studies 

Name of Volunteer (capitals) _____________________ _ 

Please initial each box 
1 I have read the participant information sheet on the above project and have been given 

a copy to keep. I have had the opportunity to ask questions about the project and [ am 
satisfied with the information I have been given. r have discussed the study with 
.................................... '" (name of physician) 

2 I agree to give blood samples for DNA analysis as part of this project. r understand that 
i giving a sample for this research is voluntary and that I am free to withdraw at any time I without giving a reason and without my medical treatment or legal rights being 
I affected. I understand that all data will be made anonymous prior to its circulation to 
! other scientists and that all samples used in the genetic analysis will be anonymous. 

3 I understand that I am donating the DNA sample to the European Group for the 
study of Insulin Resistance, as outlined in the participant infonnation sheet and that [ 
will not derive any financial benefit from my participation in the study. 

4 J understand that information derived from the DNA sample - specific to me will not be 
passed back to me or to anyone else outside the project. 

5 I agree to take part in the study and know how to contact the research team if I need to. 

Volunteer's Signature _____ . _ ......... ___ . __ . __________ Datc __ _ 

I confirm that I have fully explained the nature orlhis study to the above named volunteer. 

Signature of physician ____ .. _ .. _ ... ________ .. _ ................. ___ . ___ .. _ ......... Date 
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Rise Operations Manual: June 2002 I LOCAL Form 2: Consent Form - RISC Study I 
Date [ H H I I I I Subject 1D I I ~ I I II I I I I 
To be printed on headed stationery of the hospital recruiting and examining the subject 

Relationship betwcen Insulin Sensitivity and Cardiovascular Disease Risk (RISC) 

Consent Form - General 

Name of Volunteer (capitals) 

Please initial each box after reading text. 

1 1 have read the participant information sheet on the RISe project and have been 
given a copy to keep, I have had the opportunity to ask questions about the project 
and I am satisfied with the information I have been given. I have discussed the study 
with (name of physician) ............................................................................ 

2 I agree to give blood samples and undergo the other medical examinations as part of 
this project and the information collected to be stored on file for use in the study. r 
understand that taking part in this research is voluntary and that J am free to 
withdraw at any time without giving a reason and without my medical treatment or 
legal rights being affected. ( understand that all data will be made anonymous prior 
to its circulation to other scientists. 

3 I agree to allow personal medical information to be collected about me from my GP, 
hospital, town hall, civic registry - on the understanding that it will be kept private 
and kept on file only for as long as necessary. ..--......... --......... - I-- ... _--

4 ( agree to being contacted by telephone at yearly intervals after the first examination 
and being asked Questions about my state of health in the preceding year. 

5 r agree that I shall be contacted in approximately 3 years to make an appointment to 
have another hospital visit and undergo further tests. 

6 I understand that information derived from the tests specific to me will not be passed 
back to me or to anyone else outside the project - unless I specifically request it 

I (below) 
7 Women only - I agree to undergo a pregnancy test if necessary, on the 

understanding that I will be informed of the result 
8 If a disease or medical condition is found during the examinations Circle as 

annronriate 

A I would like to be informed Yes/No 

B r would like mv doctor to be informed of the results of the tests Yes INo 

9 I agree to take part in the study and I know how to contact the research team if I 
need to. 

II Volunteer's Signature. _________________ Date _ .... __ 

(confirm that I have fully explained the nature of this study to the above named volunteer. 

Signature of physician~ _________ Date. ________ _ 
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