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ABSTRACT 

An important part of the theory of locally compact groups 

is the study of their unitary representations. In this thesis, 

we study the representation of such groups, and more general 

topological groups, as groups of automorphisms of C*-algebras. 

Certain types of continuity and measurability of such represen- 

tations (which we call automorphic representations) are defined 

and shown to be equivalent in certain cases. We consider a 

continuous representation, a, of an abelian connected topological 

group G as a group of automorphisms of a C*-algebra, acting on 

a Hilbert space U. The topology on a(G) is that derived as a 

subset of the Banach space of bounded operators on'21. Such a 

representation is shown to be equivalent to a norm continuous 

unitary representation g-4 Ug of G by unitaries Ug in the weak 

operator closure of 21, such that a(g) (A) = Ug A U9 (g E G, AE 2I). 

In the case of a locally compact group G and a weaker continuity- " 

\ condition on the representation a, we obtain (when Z is a factor 

or a separable simple C*-algebra with unit) a necessary and suffi- 

cient condition that there exist a strongly continuous unitary 

representation g-+ U9 of G by unitaries Ua E 21 such that 

a(9)(A) = UgA U* (AE2I, 9E G). 

If G is a group of automorphisms of a von Neumann algebra 

an equivalence relation can be defined, in terms of G, on the 

projections in R. which extends the usual definition of equivalence 

of projections. We show that certain results concerning the type 

of the tensor product of von Neumann algebras carry over to this 

more general situation. 
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Ergodic theory is essentially the study of groups of trans- 

formations of a measure space (X, µ). If X is a locally compact 

space, L"(X, µ) is an abelian von Neumann algebra. We prove that 

certain results concerning the existence of an equivalent measure 

on X invariant under the transformation group carry over to the 

case of an amenable 
group G of automorphisms of a general 

von Neufnann algebra R. This, gives a necessary and sufficient 

condition for the existence of a faithful normal state on R- 

invariant under G. We ar'so show that a link exists between normal 

extremal G-invariant states and the ergodic action of G on subal- 

gebras of R (G acts ergodically if 0 and I are the only invariant 

projections). 
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CHAPTER I 

INTRODUCTION 

In this Chapter, we introduce those definitions and results 

required for the understanding of the work which follows. We 

assume that the reader is familiar with the concepts of functional 

analysis, elementary topology, and measure theory. Three basic 

texts for reference to the subject of operator algebras are the 

two books of Dixmier Q7], [8]) and Sakai's book ([44]). Throughout, 

we assume that all our linear spaces are defined over the field 

of complex numbers, denoted C. IP\ 
will denote the set of real 

numbers, 
' the unit circle (i. e. those elements z E(C such that 

IzI = 1) and 
Z the set of integers. 

C*-algebras A linear associative algebra which is also a 

normed linear space relative to the norm 1I. 1[ is said to be a 

Banach algebra if 

(i) IIABII s IIAII IIBI) (A, B E 21) 
(ii) 21 is complete relative to the norm topology. 

If 21 has a unit, we denote it by %, or simply I if no 

confusion arises:,,, We assume always that 11IýI = 1. This assumption 
\ 

involves no essential restriction, , B(SI) will denote the centre 

ofW. 

Throughout this thesis, if b is a normed linear space, ýA1 

will denote the unit ball of jD i. e. 

L, =, {x E£, lI XI! s1} 

Let * be a map from 2i to 21. * is'called an involution if the 

N 

N 
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following conditions are satisfied 

(i) (XA+µB)*=RA*+µB* 

(il). (AB)* = g#p* 

(iii) A#* =A 

(X> µE , 
A) BE2) 

(A, BE 21) 

(A E 21) . 

If 91 is an algebra with involution *, 13 s called a *-algebra. 

A Banach *-algebra is a Banach algebra with involution. A 

C*-algebra is a Banach *-algebra such that 

IIA*All = JIA112 (A E 21) 
If 21 is a C*-algebra, and 

ý 
is a closed two-sided ideal of ! U, 

then is also a C*-algebra with the involution 

A+ý A* +3. 

([B], ß. s. 2). 

Suppose 2I is a C*-algebra, and ßc 21.8 is said to be 

selfadjoint if 

8= {A*; AE BI = B# . 

If S is also a subalgebra of I, 3 is called a *-subalaebra of 21. 

If 8 is closed, 8 is also a C*-algebra, called a C*-subalgebra 

II 

oft. 

Let 91 have unit I. For AE fit, we define the spectrum of A, 

denoted a(A), to be the set of XEC such that A- AI is singular. 
11 

a(A) is a non-void compact subset of C, and if 03 is a C*-Subalgebra 

oýfi .I containing I. and A. then. 
" 

a (A) = QU (A) 

by ([B], 1.3.10). Thus we may write the spectrum of A as a(A) 

without ambiguity as to the containing C*-algebra. An element A 
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of 21 is said to be 

(a) normal if AA* = A*A 

(b) unitary if A#Aý AA* 

(c) self-adioint if A ='A# 

(d) positive if A= A* and v(A) R+ (the set of non-negative 

real numbers) 

Let 2S+ denote the set of positive elements of 91 and 91 s. a. the 

set of self-adjoint elements of I. If AE Ws. a. then 

a(A) c R. 

(by [8], 1.3.9). 2i+ is a closed convex cone in Zs. a. ([] 

1.4.2) thus we can define a partial ordering on 2Is, a, by saying 

AiB if A-BE91 
\\\ 

Let 2l# be the Banach dual of 2I i. e. Z# is the set of all 
\. 

continuous linear functionals on U. If fE . I#, f is said to 

be positive, written f 2: 0, if 

f(A) Z0 (A E 21 +) 

f is a state of 21 if also f(I) = 1. Each element of WI' can be 

expressed as a linear combination of states of U ([$], 2.6.4 

ahd 1.1.10). (! I*)1 is compact in the weak* (i. e. a(. 1*, ý1)) 

topology and the set E(2º) of all states of 21 is a weak* closed 

convex subset of (21*)1, so E(2i) is weak* compact. ([8], 2.5.5). 

By the Krein-Mil'man theorem, E(21) is the weak*-closed convex 

hull of its extreme points. Such extreme points are called 

pure. states. 

If !K and ß. are C*-algebras, a homomorphism it from 2I to 8", 

is a linear map from 21 to 8 such that' 
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(1) n(AB) =* t(A) n (B) (A, B E 21) 

(ii) n(A*) = n(A)* (A E 21) . 

n is an isomorphism if Ker n= {0}. Let 9 be a Hilbert space 

and ß(4) the C*-algebra of all bounded operators, with the involu- 

tion determined by 

(TX, y) = (x, T#Y) 

(TEE(N), x, yE9) . 

A homomorphism n: 91 -" ß(ßt) is called a representation of 9S on X. 

If n is an isomorphism we say n is a faithful representation. 

If LcßO), ýc9, let 

[e v; ] 
denote the closed linear subspace of ä# generated by 

{Ex; EE&, xEYý . 

Let it also denote the projection onto this subspace. Suppose " 

there is an xE$ such that 

U= [n(91)Xý 
then it is said to be a cyclic representation and x is a cyclic 

vector for the representation it. If 8 is`a subset of 3(), let 

03' = {A E 8(11); AB = BA (B E 6) } 

W* is called the commutant of S. If 9cU is such that 

[BY] =u 

7 is called a generating set for B. If {x} is generating for 8, 

x is called a cyclic or generating vector. 

7c4 is said to be a separating set for 63 if Bx =0 (x E F) 
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and BES imply B=0. 

Let 8 be a *-subalgebra of 03(U), then is generating for 

8 if and only if Y is separating for B' ([ft], Theorem 3, p. 27) 

If {x} is separating for 8, x is said to be a separating 

vector, and if x is at the same time both a separating and 

generating vector, we say x is"a separating-generating vector. 

8 is said to be countable decomposable if there is a countable 

subset of If which is separating for S. 

For x. ,yEN, let w denote the linear functional 

T- (Tx, y) 
on B(14), and write wx in place of wX 

x 
If 2I is a C*-algebra 

s 
with unit, and fE E(21), there is a cyclic representation of of 

U, with cyclic vector xf, on a Hilbert space Uf, such that 

f= Wxfoof 

Conversely, every cyclic representation of 2I arises in this 

manner. 2.4.4 and 2.4.1). Suppose {ndaE 
A' is ä family 

of representations of !S on the Hilbert spaces {pia}«E 
A" The 

direct sum representation, E® na , of 91 on E®9 
a 

is defined as 

ýE®xa)(A) = E®xa(A) (A E 2I) 

ý vww 'h'uri, ýJQ. 
Every-representation of 21 is in this sense ä direct'sum of cyclic 

representations ([8], 2.2.7). A representation n of .I on N is 
\said 

to be irreducible if 

n(ii). = CIS )\ 

This is equivalent to saying that there are no closed subspaces 
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F of 9 such that 

n(21)F aF. 

([B], 2.3.1). Let i1 and n2 be irreducible representations of 

1 on Hilbert spaces U1 and 92 respectively. n1 is equivalent 

to n2 if there is an isometric linear' map U from U1 onto N2 

such that 

U, (A)U 1= 
n2(A) (A E 21) . 

If f is a state of 91 and of the corresponding cyclic representa- 

tion, then f is a pure state if and only if of is irreducible. 

([$], 2.5.4). Moreover, any irreducible representation of 

is equivalent to one obtained in this manner. ([$], 2.4.6,2.5.4). 

The universal representation, n, of 91 is defined as 

E®{ltf; fE E(`I)} . 

The Gelfand-Naimark theorem states that it is a faithful repre- 

sentation of 21 as a norm closed C*-subalgebra of ß(U) where 

3= E®{klf; fE E(21)} 

Q+ Q, 1.16.6). The C*-algebra 2 is simple if 21 contains no 
wsw knýia. ý 

proper closed two-sided ideals. In this case allLrepresentations 

of 21 are faithful. 

For a C*-algebra U with unit, let U(21) . denote the group 

of unitary elements of 21. An automorphism, y, of 2U is an iso- 

morphism from to 21. 

WARNING: . Note that 

Y (A#) _ 'y (A)# (A E 2I) (t) 
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Such maps are usually referred to as *-automorphisms. However, 

we shall have no occasion to consider automoxphisms y not 

satisfying (t). 

Let aut(9J) be the group of all automorphisms of 91 under 

composition of maps. Since every isomorphism between C* -algebras 

is isometric ([ß], 1.3.7), each element of aut(91) is' isometric, 

thus 
auf (2I) 'Q C3 (Z) 

(B(i) = set of all bounded operators on the Banach space ! U. ) 

aut(o) has identity element the automorphism 

Ls A- A (A E 2f) . 

If UEU (ö3 (kt) ), where 9 is a Hilbert space, and 1 is a 

C"-subalgebra of ß(U) such that AE 21 implies UAU* EW then 

the map 
y: A -º UAU* 

% 

is an automorphism of 21, denoted ad U1. (or simply ad U if no 

confusion arises). In this case we say that y is a spatial 

automorphism of. 21, and y is implemented by the unitary U. 

If U, VE U(3()) and ?E auf (9i) are such that 

ad U' .= ad V l,, 

then UAU* = VAV* (A E 2I) 

so (V*U)A = A(V*U) (A E I) 

thus V*U E V. Hence there is 'a unitary QE 2I" with 

U= QV 
N 

If also U. VEý, then QE U(((2I)). 
, 

If UE U(2I), we say 
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ad U is an inner autbmorphism of %. The group inn(s) of all 

inner automorphisms of U is a subgroup of aut(o). 

If X is a compact Hausdorff space, the set C(X) of all 

complex valued continuous functions on X is an abelian C*- 

algebra when the algebraic structure, involution and norm are 

defined by 

(xf + µ9) (z) = xf (x) + µ9(x) 

fg(x) = f(x) g(x) 

f*(x) = f(x) 

ýýfLI= sup {f (x)I ;xE X} 

(f, gE C(X)) 

'N A -+ A 

where A(p) = -p (A) (p Eý). 

Conversely, if 2I is an abelian C*-algebra with unit, let § be 9.1 
the set of all continuous non-zero homomorphisms from 21 to C. 

is a weak*-closed subset of(2I*)1, hence weak*-compact. By 

[$], 1.4.1, !Y is isomorphic to C(§21 ) via the map 

We see from [0], Ch. V, §8, Lemma 6 that is just the set 

of pure states of U. The mapping A-A is, called the Gelfand 

transform. Since the Gelfand transform is an algebra isomor- 

phism, for AEI. we have 

N 

N 

N N 

6 (A) =v (A) 

_ JA(p)9 pE ; ja} 

_ {P (A); pEe} 

.. 

\\\ 

\ 'ý 
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Suppose now 9 is an arbitrary C*-algebra with identity, and 

A is a normal element of 21. The C*-algebra generated by {I, A,, A*} 

is abelian. Denote it by %(A). The map 

A=P'"P(A) 

from 4ý 21(A) onto ß(A) is a continuous bijection from the compact 

Hausdorff space §O(A), so A is a homeomorphism. 

If: - denotes isomorphism of C*-algebras we have 

2I(A) = C(A (A)) = C(a(A)) 

The isomorphism 

f-,, -+ f (A) t C(o (A)) -" 21(A) 

is called the functional-calculus. Note that if A is normal 

IIAII = IIAII = sup {IA(P)I ;PE §Z(A)} 
=a sup {IP (A) I; pE §21 (A)' 

ý4 

N 

N 

= sup {1%1 ;XE a(A)} 

Suppose 2 is a C*-algebra, and 8 is a C*-subalgebra of U. 'A 

projection of norm one from 91 onto ß is a linear map a from 91 

onto 8 such that 

(i) n(B) =B 

(ii) Iln(AýI IIAII 

Topologies on 00; von Neumann Algebras 

Let )I be a. Hilbert space 

(a) The strong operator toboloav (? 
5�ý 

(BEý3) 

(A E 2i) 
ý\ý 

If xEU, the equation 
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Px(T) = IITxII 

defines a seminorm px on Q3(Ji). The topology defined by the family 

\, {px sxE ]#} is called the strong operator topology, denoted 7'S 

For\f fixed S, the maps T -º ST, T -» TS are continuous on B (11), and 

the map-,, 

(S, T) -+ ST 

is continuous on B(N) x 3(H). However the map T -. T* is not 

? 
s-continuous. 

S(If) 1 is complete for the strong operator topology, and metri- 

zable if ä# is separable. ([7], Ch. 1, §3, p. 30). 

The ultrastrong topology T 

Given a sequence X= {x} of elements of ki such that 

E Ilxill2 < co. the equation 

px(T) = iE JIT xi112)* 

defines a seminorm on U3(ä#). The family of all such seminorms 

defines the ultra strong topology, denoted ? 
os or as. 

Continuity of algebraic operations is the same as for ? 
s. 

Ts and ? 
Qs coincide on B(II) 10 

([7], Ch. 1, §3, p. 34). 

The weak operator topology 

For x, yE91 define a seminorm on S (9) by 

pxIY(T) I (Tx , y>I 

The topology defined by 

{Pxly ; x, Y E ü} 

14 

is called the weak operator topology. denoted 7 
w 
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The map (S, T) -+ ST" is not 7w-continuous, however for 

fixed S the maps 
T °'-+ ST ,T -º ST 

are w continuous, as is the map 

T _, T* 

8(14) is ?w compact ([-7], Ch. 1, §3, p. 32). 

The ultraweak operator topology Tcrw 

If X= {xi} and Y= {yi} are sequences in 4 with 

E (llxilI2 11y1 2) 
< 

ý. 

the equation 

px, y(T) = IE(Txi 
, Yi)I 

defines a seminorm on äi(}#). The set of all such seminorms defines 

the ultraweak operator topology, denoted ? 
Crw or ßw. 

Continuity properties are as for Two By [7] (Ch. 1, §3, p. 34), 

w= 
7o, 

w on ß 

if ?1 and ?2 are two topologies on a space X, write 

1< 72 

if every 71-open set is ?2 open. 

Let 7n denote the norm topology on B(kt). We have 

w<s< 
?n 

nn 

C as n. 

and on 63()1)1. 
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? 
W=? 

<? 
s=? as<Tn 

If )i is separable, ß(1i)1 is 7w-metrizable, hence 7w-separable. 

([1], Ch. 1, §3, p. 32). If C S( H) let denote the ultra- 

strong closure of S. 

A von Neumann algebra i% is defined to be a *-subalgebra of 

S(31) which is o-s-closed. Clearly a von Neumann, algebra is a 

C*-algebra. 

Theorem (['7], Ch. 1, §3, Thebrem 2, p. 41) 

("Double Commutant Theorem") 

Let 21 be a *-algebra of operators on a Hilbert space U. 

(i) The f 

(i1) (resp 

(i3) (resp 

(i5) (resp 

(i7) (resp 
1 

)llowing are equival 

(i2)) % (resp 2tß ) 

i4) 2I (resp 91) 

W 2I (resp 2I. ) 

i8), 91 (resp 21ý 

ent 

is 7 -closed w 
is ? -closed s 

is 1 closed 

is ? 
6S-closed 

(ii) Suppose the conditions of (i) are satisfied then 

] E\ý [2I34 

it the largest projection in 21. For each TE 2I, 

TE = ET =T 

The operators in 2i" are the operators T+ %Iß () 

with TEU. 

(Thus we see that replacing U by EN we may assume 21 has an 

identity. ) 

N N 

14 

N: 
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of I 

Theorem ([71, Ch. 1, $3, Theorem 1, p. 38) 

Let 9 be a von Neumann algebra acting on the Hilbert space 

3, cp ER 
N 

n (i3) 
iE. ýWxif Yi with xj, ..., xn, Ei. 

(ii) The following are equivalent 

(iii) cp is ultraweakly continuous 

(ii2)' cp is ultrastrongly continuous 

(i) The following are equivalent 

\ 
(i1) cp is ?w continuous 

(i2) cp is ? 
s-continuous \\ 

(iii) tp ' Ea(xiýYi with E 11Xi112 + IIYiII2 

(114) (resp ii5) cpIRI is ultraweakly (resp. weakly) continuous. 

(1i6) (resp ii7) cplg1 is ultrastrongly (resp strongly), continuous. 

(iii) Let R (resp R#) denote the set of weakly continuous 

(resp T 
. -continuous) linear functionals on ß, ß# is\the norm 

closure of 9 in R#, and it can be identified as the Banach dual 

of. R* by the duality % 

(A, f) = f(A) (A E ft, fE ft#) 

(iv2) K is ultrastrongly closed 

'In particular, if 9 acts on a separable Hilbert space U. 

and {Tn}n_1 is ultraweakly dense in R. then 

(iv) Let K be a convex subset of R. The following are equivalent 

(ivi) 9 is ultraweakly closed 
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... 
}) co ({Tn; ' n= 1$2, 

is ultrastrongly dense in %, so a is ultrastrongly (hence 

strongly) separable. 

Theorem (Kaplansky density theorem) ([7], Ch. 1, §3, Theorem 3, p. 43) 

Let 21 and 8 be self-adjoint algebras of operators on the 

Hilbert space )f, with isB, and suppose 21 is strongly dense 

in S. Let m (resp n) be the set of self. -adjoint elements of 

1 (resp e) then U is strongly dense in 81 and 7111 is strongly 

dense in n1" 

Let 21 be a C*-algebra a subset"Y r. 21+ is said to be 

directed if given A. BEY, there is aCEY with CZA, 

CZB. Suppose has a supremum D in 21 +. A positive linear 

functional cp on 21 is said to be normal if 

sup {cp (F) ;FE 9} = cp (D) 

for each such directed set S. 

Theorem (Q], Ch. 1, §4, Theorem 1, p. 51) 

-S 

Let it be a von Neumann algebra. The following are equivalent 

(1) cp is a normal positive linear functional on 9 

(2). cp is a ow-continuous positive linear functional on ß 

It is easy to see (as shown in [0], Theorem 3, p. 136) 

that (1) is equivalent to 

(3) If (Ea)a 
EA is an orthogonal family of projections in 

ft. and E=EE (sum in 7 -topology) then y(E)= E cp(E ) 
aEA asAa 

(we say then that 9 is completely additive). 
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If 9c üi()), S fi(X)-are von Neumann algebras define the 

operator A0B on the algebraic tensor product of 34 and }G by 

®B (E xi ® yi) =E Axi 0 Byi. Then 1IA ®B 11 5 hiAtt IiBIJ ([7], 

Chti1, §3, p. 21) so A0B extends to a bounded linear operator 

on the completed Hilbert space If ® X. Linear combinations of 
N, 

such operators fýeam a *-algebra b, (since (A (9 B)* = A* 0 B*). 

The strong operator closure of b is a von Neumann algebra, called 

the tensor product of it and 9, and denoted it 0 S. 

If 9E R* p'E %*, let 

i, Yi 
(E IlxiI12 + ll'iII2 < `°ý ' 9 "X 

ýr =E wajbj (E 11aj112. + IIbjll2 < °Dý" 

Define the linear functional cp 0 on R® % by 

(p ®ýr =ijE 
ký l 

wxi ®a ', Yk ®bl 
,, 

Then cp 0 4r E (R ®9), and {cp 0 '; cp E R#, 4r E" ä#} is separating 

for (R ®%){ in the sense that if AE (9 (9 g)+ and. (y (9 r) (A) =0 

for all such cp, ýr then A=0. 

Also 

- 

"® (A®B) cp(A) 4r(B) (AE9, B Eä) (1) 

This shows that cp ®$ is defined independently of the particular 

representation of cp and $ by means of vectors. 

If R and S are von Neumann algebras and § is an isomorphism 

from 9 onto ä then § is vw and as bicontinuous ([7], Ch. 1, §4, 

Cor. "1, p. 54). 

Suppose aE aut(R), ßE aut(s), then there is a unique 
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element a0ß of aut(R ®'g) such that 

a®ß(A®B) = a(A) ®ß(B) (A Eft, BE ä) 

(by [, 7], Ch. 1, §4, Propn. 2, p. 57), since a and ß are ow and 

as bicontinuous. 

If a is a vori', l, eumann algebra acting on the Hilbert 

space 9, and VE It, V is. a partial isometry if V*V is a 

projection. In this case VV* is also a projection since 

a(VV*) = a(V*V). V*V is called the initial projection of V 

and W* the final projection of V. Let Q(it) denote the set 

of projections in It. If E, F E, 9(ft) we say 

(1) E is equivalent to F (written t. -- F) if there is a partial 

isometry V in 69 with V*V = E, W* = F. 

(2) E-< F if there is an E1E 9(t) with EEsF. 1 

The relation.,, is an equivalence relation on 9(a ), and 

Einduces a partial order on equivalence classes. ([ 7], Ch. III,, 

§1, pp. 215-216). 

The central carrier of an element A of R is denoted CA 

and defined to be the smallest projection Q in , 2(iß) such that 

QA = A. By [4fl', p. 29, 

CA = [RA x; REB, xE It]. 

Theorem (The Comparison Theorem) (['7], Ch. III, §1, Thm. 1, p. 218) 

Let R be a von Neumann algebra with centre ', E and F pro- 

jections'in ft. There is a projection G in ; -such that 

FG < EG , ,\ 
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E(I - G) { F(I -G) 

If E is a projection in the von Neumann algebra R we 

consider ER E as a von Neumann algebra acting on E9. Let 

E E, 9(9). E is abelian if ER E is an abelian algebra. R is 

said to be of type I if there is an abelian projection E in ißt 

with CE = I. E is finite if FE , 9(a) and E .r Fs E imply 

F=E. E is infinite if E is not finite, and up rely infinite 

if QE is infinite if for each central projection Q-in it with 

0/Qs CE. 1 is said to be 

(a) continuous if it contains na abelian projections 

(b) finite (infinite, p6rel infinite) if Ig is finite 

(infinite, purely infinite). 

(c) type II if it is continuous and contains a finite projection 

E with CE = I. 

(d) type III if it is continuous and finite 

(e) type III if it is type II and purely infinite 

(f) type III if it contains no (non-zero) finite projections. 

If R and 9 are von Neumann algebras with acß, a projec- 

ti, on 0 of norm one from a onto ä is normal-if fE 9# implies 

N 
f o0Ea#. 

A faithful normal finite trace on 9 is a faithful normal 

projection Cl of norm one from R onto ; (9) such that 

4r 
A(AB) = O(BA) (A, BE R) 

Theorem Q ! A, 2.4.6) If a is a finite vön,. Neumann algebra, 

there is a faithful normal finite trace on R. 

N 

"N 
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A trace on ß is mapping T: it -+ [0, -] such that 

(1) T (A + B) =T (A) +T (B) (A, B ER{ 

(2) T (X A) = XT (A) (h i 0) AER +) 

(3) If AEß+, UEU(ff) then T(A) = T(UAU*) 

T is faithful if AE and-r(A) =0 imply A=0, semifinite if 

for each non-zero AE R+, there is aBE R+ with 0BsA and 

T (B) < °°. 

T is normal if for each bounded directed net Sc ft+p 

T (sup °; ) = sup 
{T (A); AE S} 

9 isa factor if ; (R) = CIR . If R" is a finite factor we see 

there is a trace T: 9 -+ [0, co]. R is semifinite if there is a 

finite projection EE It with CE = IR. 

Theorem ([4, ], 2.5.7) If ß'is a semifinite von Neumann algebra 

there is a semifinite faithful normal trace on R+. 4 

If E is a projection in a von Neumann algebra R, E is minimal 

if ERE _ tE. When 5 is a factor, every abelian projection is 

minimal, since ERE_ (R) E=CE. For the type of tensor products, 

the situation is as follows (see [q4J, Theorem 2.6.6). 

If 9 and 9 are finite (resp. semifinite) then R0S is finite 

(resp. semifinite). If one of R and S is type III then It 09 is 

type III. 

Note that if E is a finite projection in R and F is a finite 

projection in 9 then ERE and FS F are finite, so 

(E 0 F) (9 ® 9)(E ® F) = EftE ® Fä F is a finite algebra in ß0S. 

If Z is a C*-algebra, two representations n, 9 are said to 
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be quasi-equivalent if there is an isomorphism, ß, between the 

von Neumann algebras n(Z)- and cp(1)- such that 

ß(n(A)) (A) (A E 2I) 

Theorem If cp is a faithful representation of the C*u. algbera 

21, and t is the universal representation of 91, there is a pro- 

jection Q in ; (it(Z) ) such that cp is a quasi-equivalent to to 

the representation 

A- n(A)Q 

Proof Note first that if f is a, state. on n(91) then fo it is 

\\a state on 21, call it g. Let z(Z) act on the Hilbert space U. 

and,, define yEk! by 

y=E {y tp E E(2i)} 

where 

Y=0 (<P jt9 ) 

yp = xg (cP = 5) 

II 

where x9 is a cyclic vector for R9. Then fox=g= wy 0 n. 

So f= wy. This shows that every state of n(2I) is a ow- 

continuous linear functional. Since every element of n(Z)* is 

a linear-combination of states, each element-of x(Z)* is ow- 

continuous. 

Let w. be a vw-continuous linear functional on cp(%), then 

w0 cp on is a norm continuous, hence vw-continuous linear 

functional on n(%). Thus the isomorphism 

cPic-1 =% (A) -' cp (A) 
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is ow-continuous and isometric. For n=1,2,... 1 let 

ßn = cpn-1' nn(W)1 

Since ßn is ow-continuous; nn(2I)1 is ow dense in n(n(Z) 

(Kaplanksy density theorem) and 

ßn (nn (19)1) = n9 (W) 
1 

is ow dense in"the compact set n(cp(Z) )1, On extends by continuity 

(uniquely) to a ov continuous map ßn 

ßn: nzc(2I)ý. -+ ncp (2I)ß 
. 

This map is onto since its range is Qw-compact, and. contains 

the dense subset ncp (21) of ncp (21), 
x. Uniqueness of ßn implies that 

ßn = ßm(nx(2i)- (m n)'`. 

Hence there is a map 

Rsn (2I) onto cp 

s. t. ßn (n = 1,2, ... 
) 

'Clearly is a homomorphism. For each ow-continuous linear func-, ''\ 

tional w on cp(2i) ,woß is ow-continuous on n(21)- since 

Wo ßIxWT =wo ß1 

Thus woß is aw-continuous on ß(2i) . So ß is Eva-continuous. 

We have thus constructed a ow-continuous homomorphism 

ß: ß(2I) onto cp(2I)" 

which extends the map cp o n-1 



- 21 -, 

The kernel p-1(0) is a vw-closed two-sided ideal in n( )-, hence 

P-1 (0) = %(21) (I - P) 

for some projection P in the centre of %(W) ([I], Ch. 1, §3, 

Corollary 3, p. 42) thus 

a= ßR(21) P 

is an isomorphism, and has range cp(2i) since if AE n(21) 

«(A') = P(AP) = ß(AP + A(1 - P)) 

P(A) 

For AEI 

a(n(A)P) = P(n(A)) 

Thus q is a quasi-equivalent to the representation. 

Ay. 7t (A) P 

This completes the proof. 

A topological space�X is said to be Stonean if X is a 

compact Hausdorff space and the closure of each open set in X 

is open. A regular borel measure µ on X is said to be normal 

if the map 

A -+ S Ad 

is a normal linear functional on C(X). If for each non-zero 

AE C(X)+ there is a positive normal regular borel measure µ 

on X'with I Ad µt0, we say there is a separating family of 

normal measures on X. If X is Stonean and there is a separating 

II 

\ý 
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family of normal measures on X. X is called hyperstonean. If 

it is an abelian von Neumann algebra, is a hyperstonean space 

for the weak* topology. ([ý], Theorem 2). 

There is another representation of an abelian von Neumann 

algebra (['7], Ch. 1, §7, Theorem 1, p. 118). Let ä be a complex 

Hilbert space, ; an abelian von Neumann algebra acting on 3i. 

There is a locally compact space Z, a positive regular borel 

measure g on Z with support Z. and an isomorphism between the 

*-algebra ; and the *-algebra L? (Z, µ). If U is separable, Z 

may be chosen compact and with countable base. 

A left Hilbert algebra 2 is an involutive algebra with 

involution and an inner product (ý, ý) which satisfy the 

following' conditions 

(i) The map Tj E 2i E2 is continuous for every E W. 

(ii) §#1j2) for all 91 ' 1' 712 E 2i 

(iii) The subalgebra 2 of 21 spanned by the elements tj with 

g, E 1, is dense in al. 

(iv) If 9 denotes the Hilbert space obtained by completion of 

I, then there is a closed linear operator from 4 to (the 

conjugate Hilbert space) extending themapI E. EZ. 

For any tE 21 we denote by n(g) the unique continuous linear 

operator on 9 such that n(g)'fl = §J, for all 'IiE Z. The von Neumann 

algebra generated by '(W) is denoted by c(21). S denotes the 

2 
closure of the map 9EU'9E 22and F the adjoint of S. By, 

[], Lemma 2.4, there is an isometric involution J and a non- 

singular positive selfadjoint operator p on 4 such that 

S= JAi 
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Theorem (Tomita's Theorem) ([56], Theorem 5.3) 

(i) J. tW)J = Z( ! H)" 

(ii) AitZ(21)A-it _ £(I) for all tER 

Let R be a von Neumann algebra with a separating-generating 

vector xo, acting on the Hilbert space U. Define 

21Ax AER} 

We shall check that 2I satisfies the axioms of a left Hilbert 

algebra, with the involution (Ax0)# = A* xo and R can: be identified 

with Z(U). 

Lemma' The map 

Ax -» A*x 
00 

is preclosed as a"linear mapping from 9 to (the conjugate 

Hilbert space). If 
Sdenotes 

its closure and F its adjoint then 

Ox 
0c 

(F) (the domain of 'F), and 

FA'x = A'*'x 
00 

for A' E R'. 

Moreover S and F are involutions in the sense that yE£ (S) 

Implies SyE L(S) and 

SSy =y 

and similarly for F. 

'Proof From the relations 

(A*xo, A, x 0 
(x0, AA'x 

0) ý" 

(A'*xo, Ax 
0) 
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for AE 1i, A' E 1', and the fact that Rxo and 9'x are dense in 

ät, we obtain that the map Ax 
0E9 xo - A*x0 is preclosed as a 

conjugate linear operator. If its closure is denoted by S and 

its adjoint by F it also follows from this relation that 

R'xo c b(F) and 

''F Ax = A'#x 
00 

for A' Eti' 

Finally to prove that S and F are involutions, take yE £9(F), 

AER, then 

(Fyn SAxo) = (Fy, A#xo) 

= (SA*x0, Y) 

_ (A xo , Y) 

so Fy Eb (F) and 
\F 

FY =y 

since F is the adjoint of 

Ax 
o -+ A*xo 

A similar argument works for S. 

This shows that 21 is a left Hilbert algebra, with multiplication 

" (Ax 
0) 

(Bxa' =ABx 
0 

and involution 

ýAx0)* = A*x0 " 

We have, for A, B E g, 

(A xo )B xo =A Bx0 =A (Bx0 ) 

Thus n (A x0) =A, so 

R=ZW . 



/ 
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It follows by Tomita's theorem that 

JRJ = a., 

AitR-it =R (t E R) 

Topological Groups 

A topological group is a group G on which a topology is 

defined such that 

(i) the map g -. g -1 is continuous from G to G 

(ii) the map (g, h) -. gh is continuous from GxG to G. 

If 21 is a C*-algebra, and. aut() has the relative topology 

as a subset of the bounded operators on U, then aut(o) is a 

topological group since 

IIY - LIl Ilv-1 -Lll 
and 

Hap - Lll = Ila - P-1II 
-I 

-- Ila - di + lip - Lll 

We shall usually denote the identity of a group by e. If G, H 

are groups, a homomorphism cp from G to H is a map from G to H such 

that cp(gh) = y(g) cp(h) (g, h E G). cp is an isomorphism if cp is 

injective. 

A locally compact group is a topological group G such that 

the topology of G makes G into a locally compact space. If G is a 

locally compact gr'o'w a left invariant measure on G is a positive 

regular borel measure on G such that if E is a borel subset of G. then 

µ(gE) = µ(E) for all gEG. 

(If H, K are subsets of ä'group G"we denote by HK the set 

\\ 
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{hk; hEH, kEK}). 

Such a measure p is called a left Haar measure on G. µ is 

unique up to multiplication by a scalar, and every locally compact 

group possesses a left Haar measure ([33], Ch. VI). 
A 

If G is a locally compact abelian group, let G denote the 

set of continuous homomorphisms from G toT. Define a topology on 
AA 

G by p« -+ p in G if and only if 

sup Por(g) - P(g)l -' 0 
gEC 

for each compact-set C in G. With this topology G is a locally 

compact abelian group, so we can consider 

G= (G) 

Pontryagin's duality theorem asserts that G is isomorphic and 
A 

homeomorphic to G via the map 
A 

g -. g 
AA 

where g (p) =p (g) (p E ý) 

([33], §37. D, p. 151). 

Suppose now G is a discrete group, and let B(G) be the set 

of all bounded complex valued functions on G. $(G) is a Banach 

space with the supremum norm. Let 

p (g) (f) (h) =f (gh) 

10 

and 

7, (g), (f) (h) =f (hg) (f E B(G), gE G) 

The sets {p (g) ;gE Gy and {X (g) ;gE G} are groups of transforma- 

tions of B(G) called the gröup of left'(resp. ri ht) translations. 

An invariant mean ß on G is a map ßE B(G)* such that for fE B(G) 
n 

'. 
ý, 
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(i) 10(f) !s sup { If'(g) j; gE GI 

(ii) - If 1 denotes the function taking the value 1 everywhere on 

G. then c2(1)=1, 

(iii) fz0 implies c(f) z 0. 

ýiý) n(P (9) (f)) = fl(f) = flýý C5) ýf)) (5 E G) 

If a discrete group G has an invariant mean, we say G is an 

amenable rg oun. 

If G is a group, 2a C*-algebra, a representation of G on 

(or a representation of G as automorphisms of ! U) is a homomorphism 

from G to aut(o). Let 9 be a Hilbert space. A unitary representation 

of G on U is a homomorphism from G to U(ß()i)). Suppose G is a topo- 

logical group, U: g-U9a representation of G on If. We say that U is 

(a) strongly (resp. weakly) continuous if U is a continuous map from 

G to U(3(i)) with the strong operator (xesp. weak operator) topology. 

(b) norm continuous if U is a continuous map from G to U(2(4)) with 

the norm topology as operators on N. 

Weak continuity of U is equivalent to the map 

g -º (Ug x, x) 

being continuous for each xEU. 

Strong continuity is equivalent to saying that 

11U 
9x- 

Uhx1l -0 as g-h 

foranyxElf, hEG. 

" -Since 7w < ? 
s, strong continuity implies weak continuity. 

However if U is weakly continuous 
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IIUgx - Uhx112 = 211x11 2- (gUhx, x) - (UhUgx, x) -+ 0 as g -, - h, 

so strong and weak, continuity coincide. 

Norm continuity of U is equivalent to 

N 

Ilug - uhll 

N 

as g -+hinG 

for any h in G. 

If G is a locally compact group, with left Haar measure m, and U 

is a unitary representation of G on the Hilbert space U.. U is said 

to-be weakly measurable if the map 

g -+ (Ugx, X) 

is m-measurable for each xEU. If Yi is separable, a weakly 

measurable unitary representation is strongly continuous ([Q], 

Theorem 22.20(b), p. 347). 

The Bochner Integral Let C be a measure space, Xa Banach 

space. A countably valued function x: C-X is Bochner Integrable 

if the map a -" tIx(a)Il is Lebesgue measurable and the inverse image\ 

under x of each element in the range of x 
'is 

a measurable set in C. 

A function x: C-X is Bochner integrable if and only if there is 

.a sequence {xn} of countably valued Bochner integrable functions 

such that 

j+xn(a) - x(Q)I' -+. 0 for almost all a 

lim f Ijx(ß) - )C () d'n C 
n- co C 

(m = Lebesgue measure on R) 
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CHAPTER II 

CONTINUITY OF AUTOMORPHIC REPRESENTATIONS ([[-Z]) 

2.1 Definition Let Z be a C*-algebra acting on aHilbert 

space Ni, Ga locally compact group, and aa representation of 

G on U. a is weakly measurable if for each xE 2$, and TE1, 

the map g -º (a(g)(T)x, x) is measurable with respect to left 

haar measure on G. Let T denote one of the operator topologies 

on 21. a is T-continuous if the map g-* a(g) (T) is continuous: 

G -º U. where 91 has the T -topology. 

We shall show that if R is a von Neumann algebra, acting 

on a separable Hilbert space, then a weakly measurable represen- 

tation of the locally compact group G on R is actually ultra- 

weakly continuous. From this we can deduce that if L is a 

C*-algebra acting on separable Hilbert space, and a is a weakly 

measurable representation of the locally compact group G on 21, 

such that each a(g) extends to an automorphism ß(g) of Z-, then 

ß: gi ß(g) is an ultraweakly continuous representation of G on 

2C. This extends known results of J. F. Aarnes Theorem S. 

p. 31) and R. R. Kallman ([24], Theorem). We also show that if a 

and 9 are von Neumann algebras acting on separable Hilbert space 

and a, ß are weakly measurable representations of G on It and S 

respectively, then there is a strongly continuous representation 

a 8p of G on ß0 such that a 0p (g) (A ®* B) = a(g) (A) ®ß (g) (B ) 

(AER, BEä). 

The main result was suggested by the corresponding theorem 

for unitary representations of groups which states: Let G be a 

locally compact group, Us gf Ug a unitary representation of G 

on a separable Hilbert space 31, such that U is weakly measurable, 
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then U is strongly continuous. We use some of the ideas involved 

in proving the above result (see [1S], Theorem 22.20 (b)). We 

shall show below that if a is a representation of the group G 

on the von Neumann algebra R, and v(g) = a(g)*, the adjoint of 

a(g) then v(g): R R# and if R acts on separable Hilbert space, 
CJ 

R# islseparable Banach space. Thus our result could be obtained 

from 
n[5], 

Section 4, No. 7, p. 171, Corollary 2, by considering v 

as a representation of G by operators on I. However, this proof 

is long and complicated by measure theoretic considerations. We 

give a simple, direct proof. 

2.2 Theorem Let 9 be. a von Neumann algebra acting on separable 

Hilbert space N. Ga locally compact group, and aa 'weakly measu- 

rable representation of G on R, then 

Ilf oa(g) -f oa(h)ll -º0 as g -ºhinG 

for any hEG, fE t#. 1 

Proof By [-I] (Theorem 1, Ch. 1, §4, p. 51) every positive 
W. cc 

, (ýy ++2 <, and element of R* is of the form E wyi with E 
1i t i=1 i= 

every element of R* is a finite linear combination of positive 

elements. Thus if f wyi is a positive element of R*, and 
i=1 

TER, the map g -º f (a(g) (T)) is the pointwise limit of the 
n 

measurable maps"g -º Ew (a(g)(T)) and hence is m-measurable 
i=1 yi 

where m denotes left haar measure on G. It follows that 

g-+ f (a(g) (T)) is m-measurable for all fE R#, TER. 

Let {x be a countable dense subset of 34, and S denote the 

set of all finite' s ms of w"3' s. It is easy to check that the 
\ 

linear hull of S is dense in R#, hence 2# is separable. R1, the 

.4 
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unit ball of R. is weakly-compact and metrizable ([? ]', Ch. 1, §3, 

p. 32), hence weakly separable. Let {Tn} be a countable weakly 

dense subset of R1. Since the weak and ültraweak topologies 

coincide on R1, (['7], Ch. 1, §3, p. 34), {T 
n} 

is ultraweakly 

dense in R1. 

Define v (g)-. i%* -º R* by v (g) (f) =f "o a(g)-1, then v (g) is 

the dual of the isometric linear map a(g)-1, so v(g) is an iso- 

metric linear map. Since each a(g) is ultraweakly continuous 

([7], Ch. 1, §4, Theorem 2, p. 53), v (g): R* -º R#. We have also 

v (gh) (f. ) =f0 a(gh)-1 =f0 a(h)-1 o a(g)-1 

= v'(g) v (h) (f) 
, 

Let fE a*, and e>0. Define 

W= {g E G; 11v(g) (f) - f11 s e/2} 

then v (g) (f) -fE a#, so 
a 

cc 
w= fl {g E G; If (a(9') (Tn)) -f (Tn)+ 5 e/2) 

n=1 

Hence W is m-measurable. Since v(g) is isometric, W= W-1 and 

W2 c {g E G; 11 v(g) (f) 

Let ?= {v(g)(f); gE G}. R# is separable, so ? is separable, 

hence there is a countable dense subset {v(gn)(f)} of T. If 

gEG, there is a gn with 11v(g) (f) -v (gn) (f)11 s E/2, hence 

f-v (gn1 g) (f) e/2, so gn1 gEW, gE gnW, and G=U gn W. 
n=7 

By left invariance of haar measure, W contains a compact set C 

of positive measure. Then CC-' contains a neighbourhood N of 

e ([icl, 20.17, Corollary, p. 296), and we have 
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Nc CC-1 C W2c {g E G; 11v(g)(f) - f11 s e}. Hence g -º v(g)(f) 

is continuous at e,, and so, by translation, is continuous every- 

where on G. This completes the proof. 

2.4 Corollary If 9 is a von Neumann algebra acting on a sepa- 

, rable Hilbert space )I, G. is a locally compact group and a is a 

weakly measurable representation of G on R, then a is ultraweakly 

continuous. 

Proof Let f ER#, TER. By theorem 2.2, if hEGs 

f(a(9)(T)) - fia(h)(T))J 

S IITII lIf o a(g) -fo a(h)II-º 0 as g -º h 

Hence f (a(g) (T)) -' f (a(h) (T)) as g -º h, for each fER. Since 

the ultraweak topology on R coincides with a(9,9#) (by [7], 

Theorem 1, Ch. 1, §4, p. 51), this gives the result. 

ý4 

2.5 Remark An examination of the proof of the theorem shows 

that the same conclusion will hold whenever we can show that the 

set W is m-measurable, and the set V= {v (g) (f) ;gE G\N} is 

separable, for some set N in G of measure zero. 

2.6 Corollary Let G be a locally compact group, 9a von Neumann 

algebra. ' Let a be a representation of G on R such that the map 

cp: g -º v (g) (f) =, f o a(g)-1 is Bochner integrable for each fE a#, 

then cp is continuous: G -º R. i. e. 11f. o a(g) -fo a(h)1f -+ 0 as 

g -+ h in G for each fE R#. 



- 33 - 
N 

Proof cp is Bochner integrable, so p is the pointwise limit 

in G of countably valued integrable functions on G. Hence W is 

measurable. Also, by [20] (Theorem 3.5.3), 9 is almost every- 

where separably valued i. e. there is a null set N such that 

{f o a(g); gE G\N} is separable. The result follows by 

Remark 2.5. 

Suppose now . 'is a C*-algebra acting on a separable Hilbert 

space X, G is a locally compact group, and a is a weakly measu- 

rable representation of G on U, such that each a(g) is extendable 

to an automorphism, ß(g), of U-, the weak operator closure of W. 

(Equivalently each a(g) is an ultraweakly bicontinuous automorphism 

of U. ) It is clear that ß: g- ß(g) is a representation of G on 

I. 

2.7 Corollary With notation as above 11 fop (g) -fop (h)II -+ 0 

asg -ºhinGforanyhEG, fE (2t)*. 
ý Is 

Proof Let TE U-. Since X is separable, the-ball radius JITIJ 

in 91- weakly metrizable ([7], Ch. 1, §3, p. 32). Hence by Kaplansky's 

density theorem Q7]. Ch. 1, §3, Theorem 3, p. 43) there is a 

sequence { S} in 2i with Sn -º T weakly., Thus if xEX, 

wx(ß(g)(T)) = lim wx(a(g)(Sn)). Now each map g-+ wx(a(g)(Sn)) is 

m-measurable by hypothesis, so g -0 wx(3(g)(T)) is m-measurable 

for all x. E X, T. E U-, The result follows by Theorem 2.3. 

2.8 Corollary Let Z be a C*-algebra acting on a separable 
41 

Hilbert space X, Ga locally compact group aa weakly measurable 

representation of G on 1 such that each a(g) extends to an 
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automorphism p(g) of 2 Then ß: g-+ p(g) is an u1'traweakly 

continuous representation of G on 21 

Proof This follows immediately from Corollary 2.7. 

2.9 Remark Since every weakly continuous representation is 

weakly measurable, Corollary 2.8 is an extension of results due 

to Aarnes ([1], Theorem 8, p. 31) and Kallman ([24], Theorem). 

Suppose now that 9 and % are von Neumann algebras acting on 

Hilbert spaces 1 and x respectively. Let a be a representation' 

of G on R, ßa representation of G on 9. Denote by ß the set 

of all finite linear combinations of elements R®S with RER, 

SE9, so that %09 is the weak closure of 3. ä09 denotes 

the completion of the algebraic tensor product. 9o, of 34 and X. 

For each gEG, there is a unique automorphism a(g) ® ß(g) on 

90ä such that (a(g) ® ß(g))(R 0 S) = a(g)(R) 0 ß(g)(S) for 

all REa, S*E S. ([-7], Ch. 1, §4, Proposition 2, p. 56). 

Clearly a0ß: g-# a(g) 0 ß(g) is a representation, of G on R0S. 

2.10 Corollary With the above notation, suppose K and 9, 

are both separable, and a, p are both weakly measurable repre- 

sentations., then 

11 fo («(g) ®ß(9)) -fo («(h) ®ß(h))II -. 0 

as g-+hinGfor each hEG, fE (6 S)*. 

Proof if {x is dense in 24, and {yn} dense in X. then linear 

combinations of elements {x® ® ym; n, mE N} are dense in kt 0 X, 

so NO X is separable. Thus, by the theorem, it suffices to 



- 35 - 

show that the map B: g -+ "(a(g) ®ß (g) (A)x, x) is m-measurable 

for each AEROI and x Eli ®K. 

Suppose first that AB ®C with BER, CES and 
n 

. Their, x= 
iE1 

xi 0 yi E4 
0 

(a(g) ® p(g)(A)x, x) =EE (a(g)(B)xi, xj)(ß(g)(C)yi, yý) i=1 j=1 

Hence g-+ w(a(g) e p(g)(A)) is m-measurable for A and x of this 

form, so G is m-measurable for AE 03, xE 3o. If now AEg®9, ' 
ý 

then since )i 0X is separable, a similar argument to the fore- 

going, using the Kaplansky density theorem shows that there is 

a sequence An E2 with An -+ A weakly. Hence g -+ X(a(g)® ß(g)(A)) 

ism-measurable for AER09, xE i" Such x are norm dense 
0 

in it 0 X, so the result follows. 

An immediate consequence of this is the following; 

-I 
2.11 Corollary Let it and % be von Neumann algebras acting 

on separable Hilbert spaces It and K respectively, Ga locally 

compact group. If a is an ultraweakly continuous representation 

of G on 9, and ß is an ultraweakly continuous representation of 

G'on S. then a0p: gf a(g) 0 ß(g) is an 
ultraweakly 

continuous 

representation of G on ß0S. 

., \ 

.ý 
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CHAPTER III 

COVARIANT REPRESENTATIONS, 

PERMANENTLY SPATIAL AUTOMORPHISMS 

Let G be a group of automorphisms of a C*-algebra %. 

3. 1 Definition Let $a E(9. I). S is G-closed if fE9 implies 

f o gE%forall gEG. 

3.2 Definition Let n be a representation of U on a Hilbert 

space }.. z is covariant if there is a homomorphism U: g-+ Ug, 

from G to the unitary group of 4(), with Ugn (A) Ug =n (g (A) ),. 

(AE; gEG). 
" 

Covariant representations have been studied by several 

authors (see for example [11], [3], [s3]). It is a natural 

objective to obtain a representation of the algebra in which 

the group of automorphisms is implemented by a unitary group, 

since this is a simpler and better known situation. The papers 

refer'ed to above concern covariant representations'where G is 

a topological group, and some continuity condition on, the map 

g-+ U is demanded. We shall be concerned here, however, only 9 

with discrete groups. One of the consequences of our results is 

that if G is a group of automorphisms of a C*-algebra U. then % 

has a faithful covariant representation, n say. Moreover, if 

1 is a von Neumann algebra, we may choose n so that n(U) is 

also a von Neumann algebra. Another consequence is that every 

automorphism of the universal representation of a C*-algebra is 

spatial, and we use this to obtain a result about single auto- 

morphisms of a CO-algebra. To discuss this we need the following 
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definitions. 

3.3 Definition Let a be an automorphism of a C*-algebra 91. 

a is permanently centre fixing if for each faithful representa- 

tion n of U. the automorphism na n-1 extends to an automorphism 

of n(19) which fixes the centre of n(19)_. a is permanently 

spatial if for each such representation x, there is a represen- 

tation ir quasi-equivalent to n, such that * a*-1 is a spatial 

automorphism. We say that a is permanently weakly inner if for 

each such n, na n-1 extends to an inner automorphism of n(U) . 

" It is a reasonable conjecture that if a is permanently 

centre fixing, then a is permanently weakly inner. We shall 

show that if a is permanently centre fixing, then a is permanently 

spatial. Permanently weakly inner automorphisms have been 

discussed in [2.3], [3ý, [31], [7]. The main 
result of [23] is that 

if 21 is a C*-algebra, and auf (U) has the norm topology as 

bounded operators on 21, then every element of the connected 

component of the identity in aut(U) is permanently-weakly 

inner. 

3.4 Theorem Let G be a group of automorphisms of a C*-algebra 

U. If gc E(Z) is G-closed, then 

=E{7cf; f Eä} 

is a covariant representation. 

Proof For fES, let of denote the representation of 91 

corresponding to f, acting on the Hilbert space Xf, and xf a 
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cyclic vector in klf with f= wx o rf. Let 
f 

0 
ä4f = {nf(A)xf; AE QI} . 

Then if n(21) acts on the Hilbert space N, we have 

}ý'N=E®Uf=E® f ff 

0 ®o 0 
Let U= E4f, and x E®j f 

(A 
f) xfE 34. Then 

f 

II E®nf(g(Af o g))xf II2 

=C Enf(g(Af 
0 g))xf 

E 7tf(g(Af o g))xf 
) 

f 

E (nf(g(Af 
o g))xf zf(g(Af o g))xf 

) 
f 

=E (fog)(Af0g Afog) 
f" 

Ef (Af Af) 
f ý. 

since 9 is G-closed, 

_E (if(Af)xf, nf(Af)xf ) 
f 

_ E®nf(Af)xf, E0nf(Af)xf ) 

11x112 
Thus we may define unambiguously an isometric mapping, Ug, from 
00" 
14 to)f by 
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N 

\ 

U9(E®nf(Af) xf) = E®Ef(g(Af 
0 g)) Xf 

o, 
U is linear on 9: 
_g 

Let x= E®1f(Af) xf, y= E®xf(Bf) xf , then 
f 

Ug(Xx + µy) = Ug(E®Xnf(Af) xf + µnf(Bf) xf) 
f 

= U9( 7 f(XAf + LBf) xf) 
f 

= E®nf(Xg(Afog) + µg(Bf0g))xf 
f 

= xz®nf(J(Af0 
g)) Xf'* wf®Ic f(9(Bf 0 g)) Xf 

= XUgx + µUgy 

o" 
UU=U on lI hE G) 
-g-h gh 

UgUh (E(D xf (Af) X f) = U9 (E® xf (h (Af 
o h)) xf ) 

E®nf (gh (Af 
o gh)) Xf 

= Ugh(EED nf(Af) xf . 

Thus each Ug extends to a unitary on 3Jn, and they satisfy 

UgUh = Ugh (g, hE G). Clearly Ue = I, with e the identity of 

G. so g-+ Ug is a group homomorphism. We claim that 

n (g (A)) = Ugn (A) 
g 

(A E Up gE G) . 
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0 
Let y E®nf(Bf)xf Eli, "AE fit, gEG. then 

( U9* it (A)UgY, Y) _ (n(A)UgYv gY 

=E( 7L f(A)1f(g(Bf 0 g))xf, Ef(g(Bf o 
))xf 

f 

=E( 7t f 
(g (B* 

o g)A 
g(Bf 

o g))Xf, 
xf 

f 

=E (fog) (Bf g_1 (A) B 
ogfo g) `. 

=E f(Bfg-1 (A)Bf) 
f 

since 9 is G-closed. Thus 

Ugn(A)UY, y) =E( nf(Bf9+1 (A)Bf)xf, xf 
f 

E( Ef(g_1 (A))xf(Bf)xfb 7tf(Bf)xf > 

.f 

n (9_1 (A) )y, yi" 

Such y are dense in U., so the result follows. 

3.5 Corollary Let G be a group of automorphisms of a 

C*-algebra I, then 21 has a faithful covariant representation. 

Proof Let it be the universal representation of 21. 

a= E®{n f; fE 'E(I)} and E(1) is G-closed. The result follows 

by Theorem 3.4. 

ý\ 

10 

3.6 Corollary Let G be a group of automorphisms of a von Neumann 

algebra R. then there is a faithful covariant representation * of 
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R such that *(R) is a von Neumann algebra. 

.\ 

Proof Let S denote the'set of all normal states of R. 

Since each automorphism of ß is ultraweakly continuous, % is 

G-closed. Thus *= E®{7rf; fE ä} is 
.a 

covariant representation, 

by Theorem 3.4. If f is a normal state, , 7tf(a) is a von Neumann 

algebra, by ý7, Ch. -1, §4, Proposition 1, p. 54], thus *(ß) is a 

von Neumann algebra. $ is faithful since 9 is isomorphic to 

the dual of R* and the normal states span R*. 

3.6 Corollary Let 4 be a C*-algebra, a an automorphism of 2, 

it the universal representation of 21; then there is a unitary U 

on the Hilbert space 14 
9on which n(t) acts, such that 

U* n (A) U=n (a (A)) (A E 2I) . 

Proof This is a special case of Corollary 3.5. 

3.7 Corollary Let a be an automorphism of a C* algebra U. 

If a is permanently centre fixing, then a is permanently spatial. 

Proof Let it be the universal representation of 21. By 

Corollary 3.6, there is a unitary U on 9N with it an-'(A) =UA U* 

(A E n()). Since a is permanently centre fixing, we have 

UPU* =P for all central projections P in n(%) . If cp is a 

faithful representation of 2I, then there is a projection Q in 

the centre of n (Z) with cp (2I) isomorphic to n(21)- Q. If 

denotes this isomorphism, then ß(cp(A)) = n(A)Q (A E Z). Now 

if n 'denotes the faithful representation A4 n(A)Q, then ß is 
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quasi-equivalent to p, and n an-1 is implemented by the unitary 

U. This completes the proof. 

N 

N 

f1 

v 

-s 

\\ 

\', 

.ý 



- 43 - 

CHAPTER IV 

ON A G-TWISTED EQUIVALENCE RELATION FOR 

VON NEUMANN ALGEBRAS ([39]) 

Let ß be a von Neumann algebra., Ga group of automorphisms 

of a. 

4.1 Definition Let E and F be projections in ft. E and F 

are G-equivalent, written E-F, if there is for each gEG. an 

element Ag ER with EE A*A 
g, 

F=E g(AgA*). Write EGF 
gEG gEG 

if there is a projection F0 in9 with E F0 s F. 

F is 
G-finite 

if EsF and E. F; imply E- F. 9 is said to 

be 
G--finite 

if the identity of a is a G--finite projection. R is 

said to be -semifinite if every non-zero projection in R majorises 

a non-zero G-finite projection in R. Let 

cG = {A E ; (R); g(A) =A for all gE G} 

If E is a projection in R let D(E) denote the smallest projection 

F in CG with F2E (this exists since CG is abelian. ) A projection 

E in It is said to be --abelian if ERE = CGE. 

If G is the-group consisting of the identity automorphism, 

the above definition coincides with the usual equivalence between 

projections, by [2.7% (Theorem 4.1). Futther, if E. - F, then 

EGF for any group G. clearly. In particular, this shows that a 

--finite projection is finite, and a --abelian projection is 

abelian. Hence if R is --finite (resp. -semifinite) then a is 

finite (resp. semifinite), so % posesses a trace. In [54] it 

is shown (Theorem 2) that R is-semifinite if and only if R+ 

has a faithful normal G-invariant semifinite trace and, 
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(Theorem 3), R is 
G--finite and countably decomposable if and only 

if there is a scalar valued faithful normal finite G-invariant 

trace on R. If should be noted that the results of [SO] go over 

to the case of a group of automorphisms of 6% not necessarily 

implemented by a group of unitaries. This follows by Corollary 3.6 

of this thesis. 

We define ß to be 
G--type 

III if R contains no G-finite 

projections. It is easy to see (as we shall show below) that R 

is v-type III if and only if RQ is not -semifinite for any 

projection Q in C. Suppose now that It (resp. 9) is a von Neumann 
G 

algebra and G (resp. H) is a group of automorphisms of R (resp. 9). 

If gEG, hEH, then there is a unique automorphism, which we 

shall denote by g0h, of R09 such that g® h(A(&B)= q(A) ® h(B) 

(A E' I, BE %), by [7], (p. 56 Proposition 2). The map (g, h) -º g®h 

is a group homomorphism identifying the direct product, GxH, 

of G and H as a group of automorphisms of ß®S. We shall show 

that if either2 is --type III or 9 is -type III, then 90S 

is 
G. H 

type III. The motivation for this result is a theorem of 

Sakai ([46], Theorem 2.6.4), and if G and H are both the trivial 

group consisting of the identity automorphism, then our result 

coincides with Sakai's result. Sakai also shows in 

Proposition 2.6.1, that the tensor product of two finite (resp. 

semifinite) von Neumann algebras is finite (resp. semifinite). 

We shall show, in Corollaries 4.6 and 4.7 below that if ß is 

G-finite (resp. -semifinite) and 9 is H-finite (resp. H-semifinite), 

then"ß ®9 is 
G. -finite (resp. 

G, H-semifinite). 

We now describe the crossed product algebra, outlined in 

[4.1], but in a more complete and detailed form, using tensor 
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product notation. Let R be a von Neumann algebra acting on a 

Hilbert space 3#, Ga group of automorphisms of R. Denote by 

eg the function which takes the value 1 at g and is zero else- 

where on G. {eg; gE G} is an orthonormal basis for A2(G). 

If gEG, xE äi, define 

Uh(x 0 eg) =x0 egh_1 (h E G) 

and 

§(A)(x ®eý) = g(A)x ®eg , 
(A E 1) 9E G) 

Then Uh extends to a unitary on g (g 12(G), and 

UhUk(x ® Cg) Uh(x ®egk_1 

=x ®e 
gk-1 h-1 

= Uhk(x 0 Cg) 

Also, §(A) extends to a ,. 
bounded linear operator on U0 A2(G), and - 

Uh§(A)Üh_1(x ® ¬g) - Uh§(A)(x 0 Cgh) 

Uh(gh(A)x ®egh) 

gh(A)x e 

= g(h(A))x ®eg 

_ (h(A))(x ® eg) 

Thus, since linear combinations of x0 eg, (x E ä#, gE G)., are 

dense in 11 ® 12(G), g -º Ug is a unitary representation of G with 

U §(A)U _ 
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§ is an ultraweakly continuous *-isomorphism of R, so §(R) 

is a von Neumann algebra. We define RxG (the crossed 

product algebra) to be the von Neumann algebra generated by 

{ý(A), U9; AE R, gE G}. Since (§(A)Ug)*=Ug-1§(A*)=§(g-1(A*))Ug-1) 

finite sums E §(Ai)Ug"form a *-algebra weakly dense in ßxG. 

We call this *-algebra (R x G)o. The map x -º x® eg is an 

isometric linear map from if to a closed linear subspace dig of 

x= ký ®A2(G). The Zig' s are orthogonal since the e g' s are 

orthonormal, and the linear subspace generated by {ktg; g E G} 

is dense in X. It follows that 9 is the direct sum of the 

log's, and every element x of X can be represented uniquely 

in the form x=E xg (9 e g, where {x 
g; gE G} is any family 

gEG 2 
of elements of ?i such that E 11x911 < w. We have also 

IIxII2 =E IIxg112. 

Let Eg denote the projection onto Mg, and let B= EU 
9 

§( g) 

be an element of (6t x G)o. Then 

E6BEt(E x9 06 9= 
E6B(xt 0 et) 

N 

\\ 

= ES(E Uge(A9)(xt ®ýt)) 

N = ES E Ug(t(A9)xt'(& et)) 

=, ES E(t(Ag)xt ®etg_i) 

= t(As-1t)xt ®6S 

= Es(t(Ajit))xt ®e 
S) 

= ES Us-1t(t(AS_1týXt ®et) 

= ES Us-1t§(As-1t)Et(E x9 ®eg) 

ý4 
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Thus 

E5BEt = EsUs-1j (AS-1t)Et 

If now BE9xG, then by the Kaplansky density theorem, there 

is a net (Ba)aE 
A' with Ba -B ultraweakly, Ba E (i x G) 

op 

and LIBa11 s JIBJI for all aEA. Then EtBEs = lim EtBaE., with 

Ba of the form Ba =E Ugh (Tg). Now 

E 
aEs. 

= Et " Ut-1 
s§ 

(Tt-1 
S) 

Es 

Since § and Ug are isometric, IjTt_1 
sll 

= lIUt-1 
s' 

(Tt-15)ll 

= sup IIEtUt-1 
sý 

(Tt-1 
s)Es1I = sup IIEtBaE5II 5 LIBIJ. The ball 

s, t s, t 
radius JIBI) in a is ow-compact, thus. there is a ow-convergent 

subnet (Ta_1 
s) of (Tt_15). Let' (Tt_15). converge ultraweakly 

to T 
t-1s 

E 2. Then Et Ut_ls§(Tt-1s)Es converges ultraweakly 

to EtBEs. Thus 

EtBES = Etut-1 
SI 

(Tt-15)ES 
. 

In particular, with s=t=e, 

EeBEe = Eý(T)Ee 

and Eeý(Te)Ee '(E xg ® eg) 

Ee§ (Te) (xe 0C 
e) 

= Ee(Texe (9 ee) 

= Texe ®e 
e 

If S; T are elements of R, such that EeBEe(E xg ® Cg) = Sxe0 se 

= Txe ®se, then Sx = Tx for all xE4, so S= T. This shows 
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that Te is unique. Define r(B) = Te. Then r is a mapping from 

ft xG into R. Clearly r is linear, and r(ý(T)) =T (T E R). If 

(B«) ERxG. and Ba -i B ultraweakly, then EeBaEe4 EeBEe ultra- 
aEA 

weakly, so I' is normal. If we identify a with its image §(R) in 

ßxG, this shows that r is a normal projection of norm one from 

it xG onto 6t. Let BE it x G, with 
\ 

EtBEs = EtUt-15§ (Tt-15)ES (S., t G) 

then 

ESBES = ESQ (Te)ES 

Thus if r(B) = 0, then EsBEs =0 (s E G). If BZ0, this implies 

that B*Es =0 for all sEG. Now 
sEG 

Es. - I, thus Bý =0 and B= 0. 
E 

Hence r is faithful. 

The following Lemma is part of the proof of Lemma 10 in [5o]. 

4.3 Lemma Let R be a von Neumann algebra, Ga group of automor- 

phisms of R. Suppose 1 contains no non-zero --abelian projections, 

yet contains a countably decomposable . -"-finite projection, then 

there is a non-zero projection QE CG such that RQ is G-semifinite-. 

Proof Let E be a countably decomposable --finite projection in 

ft. Since E is not G-abelian, ERE / CCE, thus there is a projection 

H in ERE with Ht ED(H). Let F=H+ (1 - D(H))E. Then FsE, 

F ES and 

D(F) = D(H) + (1 - D(H))D(E) = D(E) 

Suppose §(F) is a purely infinite projection in 9xG. Then 

§(E) is countably decomposable in ißt x; G by Lemma 5 of [SO], and 

,. 
ý (F) s§ (E), thus § (F) ... § (E) in RxG. 
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Hence by Lemma 1 of [5b], FGE. contradicting. -finiteness 

of E. It follows that for some non-zero central projection P. 

in ; (c x G), ý(F)P is a finite non-zero projection. Noting 

that §(D(F)) = C§(F) by Lemma 3 of [50] we have 

(R x G)ý(D(E))P = (R x G)§(D(F))P 

_ (R x G)Cý(F)P 

= (2 x G)Cpe(F) 

Since P§(F) is finite, it follows that (i x G)§(D(E))P is 

semifinite, and non-zero. Let y be a normal semifinite scalar 

valued trace on RxG with support P§(D(E)). For AE R+, define 

,r (A) = cp(ý(A)). Clearly T is normal, and 

T (9 (A)) _ Cp (Ugh (A) U*) ) 

= cp(§(A)) 

= -r (A) 
. 

So T is G-invariant. Since r (F) < -, there is a non-zero central 

projection Q in R such that T is faithful and semifinite on RQ 

(]"ý ], Ch. 1 §6, Corollary 2). Since "r is G-invariant, Q must 

be G-invariant, by uniqueness of Q. Thus Q ECG, and the Lemma 

is proved. 

4.4 Proposition Let G be a group of automorphisms of a 

von Neumann algebra a, then R is 
G--typ- 

III if and only if RQ 

is not . -semifinite for any non-zero projection Q in CG 

ýI 

\ 

\\ 
. 
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Proof By Lemma 6 of [50], there is a --abelian projection E 

in ß such that 

9= RD(E) + R(1 - D(E)) 

and R(1 - D(E)) has no non-zero G-abelian projections. By 

Lemma 9 of [50], R D(E) has a faithful normal semifinite 

G-invariant trace, so by, Theorem 2 of [5o]ß R D(E) is G-semifinite. 

Let 9= R(1 - D(E)), then a contains no --abelian projections. 

Suppose a contains a --finite projection E. then if F is a 

countably decomposable subprojection of E. F is also --finite. 

Hence by the preceding Lemma we have that there is a projection 

Q in CG such that RQ is G-semifinite. Thus we have that if 1Q 

is not G-semifinite for any QE CG, R must be 
G--type 

III. 

G 
Conversely if RQ is --semifinite for some QEC, let E be a 

G-finite projection in %Q, then E is 
G--finite 

in R. This 

proves the result. 

Let R (resp. ä) be a von Neumann algebra acting on a 

Hilbert space 14 (resp. K) and G (resp. H) be a group of auto- 
N 

morphisms of R (resp. 9). Denote by Vh(resp W(g,, h)) the group 

of unitaries in the crossed product algebra (a x H) (resp. 

R -O 9x (G x H) corresponding to the Ug' s 'defined above for a 

and G. 

4.5 Lemma With notation as above (6ý x'G) ®(ý x H) is, 

spatially *-isomorphic to R®%x (G x H). 

.I 

Proof Let (x 
a)., 

(Y be orthonormal" bases for i, X respectively, 

and {e ;gE G}, {sh; hE H}, {E(g, 
h); 

(g, h) EGx H} the, 
9 

\\\\ 

NN 
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N. 

,ý 

= V-1 (e (A)U9 0e (B)Vh) ((X« 0. E k) 0 (Yß ®e 1) 
) 

V_1 (e (A) (xa 0 kg-1) 0 ($) (Yß 0 Lh_1 
f 

V-1 ((kg-1 (A)xa ® Ckg-1) 0 (Zh-1 (B)yß 0 eLh-1) ) 

= Ekg-1 (A)xa 0 Rh-1(B)Yp . )0 ¬ (kg-1j, th-1) 

=e (A 0 B) ((x 0 Yß) 0 (kg-1, Ih-1) 
) 

= 4(A 0 B)W(gxh) (xa 0 yß) 0 (ky4 ). 

" Since linear combinations of el'ements` (xa ® yß) 0 (k t) 

are dense in 90® 12(G x H), the following identity gives 

rise to a mapping from (9 x G) 
00 

(g x H)o onto. (a (D %x (G x H) )o: 

V-1 (ý (A)U®ý (B)V) V=I (A ®$) W gh (g., h) . ý. 

orthonormal bases described above for 1 2(G), 12(H) and 12 (G x H) 

respectively. Define 

®eh) V((xa®yA) 0e(g, h) 
(xa0£g) 0 (y® 

for gEG, hEH. Then V extends to a unitary transformation 

between (34 0 H) ® 12 (G x °H) and ' (}i ® k2 (G ® (x 0 12 (H). If AEa, 

BES, x« E 4, yß E X, and (g, h), (k, A) EGxH, we have 

V-1 (§ (A)U9 ®ý (B)Vh) V ((xa ® Yß) ®e (k R) 
) 

s 

N 

II 

"This map then extends to the required spatial *-automorphism. 
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\\ 

\ 

\\ 

4.6 Corollary Let G be a group of automorphisms of a 

von Neumann algebra R, Ha group of automorphisms of a 

von Neumann algebra 9. If R is --finite and S is H-finite, 

then R0S is 
Gx H-finite. 

Proof Let I denote the identity of R. Then I is a --finite 

projection in I, so §(I) is a finite projection in RxG. ([4-i] 

Theorem 4.1). Clearly ý (I) is the identity of 9xG. so RxG 

is finite. Similarly .3xH is finite. Hence (6t x G) 0 (a x H) 

is finite by [*q, Proposition 2.6.1, and so (6a 0 9) x (G x H) 

is finite by the Lemma. Using [¢1], Theorem 4.1, again, we see 

that the identity of R ®ä*is aGxH finite projection, giving 

the result. 

4.7 Corollary Let G be a group of automorphisms of a 

von Neumann algebra R. Ha group of automorphisms of a 

von Neumann algebra 9. If R is semifinite and 3 is 

N-semifinite, then R0 IS is -semifinite. H GxH 

Proof Let (E«) be a maximal orthogonal family of --finite 

projections in a. Let E=E E«. If E7I, there is a non-zero 

--finite projection P with P : r- I- E. Then P can be added to 

the family, contradicting maximality. Hence-E E« = I. Similarly 

there is an orthogonal family (F of H finite projections in 9 

with I=E Fß. Now suppose ß0ä is not G7 H-semifinite. 
If 

(Qa)"is an increasing family of projections in CG xH such that 

(a 0 S)Q« is 
GXH semifinite, and Q= 

äQ« , 
let E be a non-zero 

-4 

I 



- 53 - 

projn in (R ® &)Q, then EQa /0 for some a, thus there is a 

G ZH-finite projectipn F with 0tFs EQa s E. Hence (ß 0 %)Q 

is 
GxH semifinite. Thus by Zorn's Lemma, there is a maximal 

projection Q in CGx H 
with (9 ® ä)Q being 

Gx H semifinite. 

Clearly, -by Proposition 4.4, (R 0 9)(1 - Q) is 
Gx H-type 

III. 

Now Ea 0 Fß -º I ultraweakly, thus for some a and ß, 

(I - Q)(Ea ® Fß) t 0. If ß denotes the *-isomorphism of Lemma 4.5 

! (E) 0 (F) = n-1 (e (E 0 Fp) ) 

Ea is G-finite and Fß is Hr, -finite, thus by [+I], -Theorem 4.1, 

§(F. and (FQ) are finite projections, hence §(E 
a) 

®ý ß 
is finite, and so §(Ea ® FR) is 

.a 
finite projection. Using 

B-I] Theorem 4.1 again, we see that Ea ®FP is aGxH -finite 

projection in %0S. Let 

(1 - Q) (Ea ® Fß) 
G 

Fos (1 - Q) (Ea ® Fß) 

Then 

Ea ® FP G F0 +Q (Ea ® Fß )s Ea ® Fß 

Thus 

F0 +Q (E« 0 Fß) = E« 0 FR , 

so' (1 - Q) (E« ® Fßß, is a Gx H 
finite projection in (9 ® 9) (1 - Q), 

contradicting the fact' that (a ®S ) (1 - Q) is 
GXH 

type III. 

Hence R0$ is - -semifinite. GxH 
The following Lemma is part of the proof of Theorem 2.6.4 

of [4{0], in more detailed form. 

`, 4.7 Lemma Let a and 9 be von Neumann algebras, then for 

each normal state 9 of S. there is a mapping PCP from R05 



- 54 - 

onto 9 satisfying the following conditions; 

1. P9(I0I)= I 

2. IIP(P (A)II s IJAII 

3. P(P (H) Z0 (H Z0) 

4. PA(AX B) = APP(X)B (A) BE 9$ XER ®S) 

5. PCP (X)* 
(P 

(X) 5 Py(X X) 

6. If P(X*X) =0 for all normal states cp on g, 

then X=0. 

7. P is ultraweakly and ultrastrongly continuous. 

Proof Let y be a normal state on S. For AER0ä, put 

TA(f)= (f ®cp)(A) (f E R*). Then ITA(f)I s IIfj) IIA1l, thus 

TA E (R*)* = R. Hence there is a unique element PP(A) in 6. 

with 

(f ®cp)(A) = f(Pp(A)) (A ER ®ä) 

(f®cp)(I(D I)=f(I) (f ERn) 

Since R# separates the points of R, this proves part 1. 

(IPP(A)I+ = sup( If(Pp(A) fE R*, 11f11 = 1} 

This proves 2. 

If HER ®ä, Hz0, then for each normal state f of R. 

0s (f 0 cp) (H) =f (P(P (H) ) 
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Hence P(P (H) Z 0. This proves 3. For fE R*, X Eft, let 

(LXf) :A-. f(XA) (A E 9), and (RXf) :A-. f(AX) (A E R). Then 

clearly, LXf, RXf lie in a 
,. 

If X, Y E R, AEa ®$, f ER*, 

if 0 cp) (XAY) = (LXRyf) 0 cp(A) 

\= Lx f (p(A)). 

=f (XPCP (A)Y) 

This shows 4. 

Let 

Then, 
N 

ýi 

ýrzo, ýER* . 

týº ® (P) (PCP (A) # P(P (A)) _ (fir 0 cp) (PCP (A*P9 (A))) by part 4 

= (P(A# 
P(A))) 

= tý ®CQ) (A# q, (A)) 

(fir0 )(A*A)* ( 09)(p(A)*P9(A))* 
\\ 

by the Cauchy-Schwartz Theorem. - Hence 

Cý ®cp) (p (A) *P (A)) S ($ ®cp) (A*A)* 

thus 

(fir ®cp)(PCP(A)* 
(PP 

(A)) S (fir 0 cp) (A*A) 

i. e. 

yr (p (A)*P (A) )s ýt (P (A#A) ) 

This holds for all such 4, so 
N 
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P (A)* PCP (A) sP (A*A) 

This proves part 5. 

Let Aa -. A ultraweakly, with Aa, A in R0S. Let fER *o 

Then 

f (P9 (Aa)) _ (f 0 cp) (A«) -ý (f (9 cp) (A) (PE (A)) 

Thus 'P is ultraweakly continuous. If A« -A ultrastrongly, 

then Aä 
a- 

AA ultraweakly. Thus part 7 follows by part 5. 

If P9 (A*A) =0 for all normal states cp on S. then 

(f 0 cp)(A*A) =0 for all fE R#, 9E 3*, since the normal 

states span S,. Such elements are separating for R0ä hence 

A*A =0 and A=0. This proves 6, and completes the proof. 

4.8 Theorem Let 9 and S be von Neumann algebras acting on 

Hilbert spaces 2i and X respectively. 'LetG (resp. H) be a 

group of automorphisms of R (resp. 9). If either 6t is --type III- 

or S is --type III, then it ®ä is ý -type III. 
H Gx H 

Proof Let {dry; cp E3x H)#} be the projections of norm 

one from (a x G)'® (S x H) onto (a x G) constructed in Lemma 4.4, 

and suppose R is --type III. Denote by Q the *-isomorphism 

of Lemma 4.3 above. Let E be aGX H-finite projection in 

a®ä. We have to prove E=0. Suppose E 0, then 0tý (E) 

is a finite projection in a®9x (G x H) by [¢4] Theorem 4.1, 

so F= Cl-'§(E) is a finite projection in (a x G) ® (g x H). 

Since '§ (E) Eý (a 0 s), I (E) is the ultraweak limit of elements 

of the form §(A with YA=iEX 
Ci 0 D. (C. E R, D. E ä). Now 
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n-1 =EXÖ1 (COD 

E X. (Ci) ®§(Di) 

Thus 

Q-1 (ý) E (R) ® (s) ýý. 

for all such A'. Since f2 is ultraweakly bicontinuous ([7], 

Ch. 1, §4, Theorem 2, p. 53), F is the ultraweak limit of 

elements of the form il '§(AY). Now § is an ultraweakly 

continuous *-isomorphism, so §(ß) 0 (ä) is ultraweakly closed, 

thus FE 00 ® (S). If fE (it x G)*, cp E (ä x H)#, ' AE CR), 

BE (ä), then 

f(* (A ®B)) = (f 0 cp) (A ®B), 

= f(A)cp (B) 

=f (cp(B)"A) 

Since (R x G)# separates the points of RxG, 'we have 

*(A®. B) =cp(B)A, 

Suppose now By -º F ultraweakly, with y of the form 

B, ý =EX iMi ®Ni (M1 E (ß ), Ni E§(. %))., then ýr (F) is the 

ultraweak limit of q, 
(Bysince each 4r 

(P 
is normal, and 

ýr(P (By) =E Al* 
(P 

(M1 0 Ni) 

X icp 
(Ni) M1 

Thus(B) E §(R), and hence 
" 

*(P (F)EI (R) for all states cp E (ä x H)# 
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Choose a cp0 with 4 (F) ( 0. Let P be a spectral projection 

of rcpa(F) with 0< XP < *9 
0 

(F) for some X>0 (this is possible 

since 4rß (F) Z 0). P is a projection in § (R), since ý (a) is a 

von Neumann algebra. Let (Aß) be a net in P(R x G)P with 11Ap" s 1, 

and AR -º 0 ultrastrongly, then AßF -+ 0. ultrastrongly. Let I 

denote the identity of SxH. (The map A-+ A01 is a *-isomorphism 

between ßxG and (R x G) ®Ic (9 x G) ® (S x H). Thus we shall 

consider RxG as a subalgebra of (a x G) 0 (a x H)). Since F 

is finite, (A F)* = FAß -º 0 ultrastrongly ([q-6], p. 97, Theorem 2.5.6). 

Since each *CP is ultrastrongly continuous, 

*cpo(FA*) = *go(F)A* f0 ultrastrongly 

It follows that 

AR = {P*(p0 (F) P+1- P}-1P, ß ,0 
(F)AQ -+ 0 ultra strongly 

This shows that the *-operation is ultrastrongly continuous on 

bounded spheres of P(a x G)P, so P is a finite projection in 

IxG. ([46], p. 97 Theorem 2.5.6). Hence §_'(P) is a --finite 

non-zero projection in R ([4(], Theorem 4.1), a contradiction 

since R is --type III. It follows that E=0 and R. 09 is 

GxHtypeIII. 

The above result leaves open the following question: 

4.9 Conjecture ' Let G be a group of automorphisms of a 

von Neumann algebra R. Then RxG is type III. * R is --type III 

We can prove this in a certain special case. 

-I 

4.10 Definition ß is G-finite if the normal G-invariant 
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states on R separate the points of R 

4.11 Proposition Let G be a group of centre fixing automor- 

phisms of a von Neumann algebra ft. Suppose 9 is G-finite, then 

R is --type III o R. xq is type III 

Proof If 9 is not --type III, then it contains a non-zero 

G--finite projection E. Then §(E) is a finite projection in RxG 

([ ], Theorem 4.1 ), so 9 x' G is not type III. 

Conversely, if 9xG is not type III, there is a faithful 

normal projection r of norm one from RxG to R, so R is not type III. 
, 

([4b], p. 100, Lemma 2.6.5). 

Hence RZ is semifinite for some central projection Z in R. 

By [52. ] (Lemma 2.1), RZ is --semifinite, so R is not --type III. 

4.12 Corollary Let G be a compact group, aa weakly continuous ' 

representation of G by centre fixing automorphisms on the 

vön Neumann algebra a, then it is G-finite and hence R is 
G--type 

III 

pR xGistype III. 

Proof Let f be a normal state on R. The map vg: f-+ fo a(g) 

is continuous from R# -' a#, (since each a(g) is ultraweakly 

continuous), when R* has the c(1#, R) topology. G is compact and 

the map g-+ v9(f) is continuous from G to R# with the a(R#, R) 

topology, hence {f o a(g); gE G} is a(R*, R) compact in R*, Thus 

cö {fo a(g); gE G} (closure in topology) is v(R,, a) 

compact by='the Krein-Smulian theorem ß[i3], Theorem 4, p. 434). 
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{ vg; gE G} is a group of continuousLmaps from E4 so by 

the Ryll-Nardzewski fixed point theorem (see Appendix A) there 

isanhEL' with hoa(g) =h (gEG). 

Let Eh = supp h. Then Eh is G-invariant, thus f (Eh) =h (Eh)=1, 

so Ef s Eh. It follows from this that R must be G-finite, and 

,, the result is proved. 

II 

\N 

0 
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CHAPTER V 

CONNECTED TOPOLOGICAL GROUPS ACTING ON 

VON NEUMANN ALGEBRAS ([s] ) 7 

In [U], R. V. Kadison and J. R. Ringrose showed that if G is 

a connected topological group and a'is a 
. 

representation of G as 

automorphisms of a C*-algebra 91, acting on a Hilbert space, 

such that Ila(g) - &II -i 0 as g -. e, then each a(g) is weakly 

inner. Hence there is a unitary Wg in U-, the weak operator 

closure of 2i, such that a(g)(A) = W9A Wg. (A E 21, gE G). We 

shall show that if G is an abelian connected topological group, 

then there is a unitary representation g -º U9 of G by unitaries 

in 21 
, such that a (g) (A) = U9AU* (g E G) AE 91) and IJU9 - 111 .0 

as g-. e. 

It is easy to see, as shown in [2s], proof of Lemma 2, that 

the result is true if G is the real line, by using the theorem of 
.0 Kadison-Sakai that all derivations of a von Neumann algebra are 

inner ([21], [47]). As a consequence of this, J. "Dixmier showed, 

in [to], that the same result holds ifG is a simply connected 

Lie group. However, we shall give an example to show that there 

ip no hope of extending the result, e'en in a 'local' sense, to 

a general non-abelian connected group. We also obtain some 

results on invariant states associated with the representation 

az"G - aut(U). In particular, we show in the case of an abelian 

connected topological group, that every extreme point of the set 

of a-invariant states is actually a pure state, and hence at 

least one a-invariant pure state must exist. 
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5.1 Lemma Let X, µEC, A( =11 Re µ >O, ?/1, then 

there is an integer n such that Re Xnµ < 0. 

Proof Let X= e2niA 

Case 10 irrational, then {xn; nE '} is dense in the unit- 

circle, and Xnµ + I. n + 11. We can thus choose 7n suffi- 

ciently close to -1 so that Re Xnµ < 0, (since Re(-µ) < 0). 

Case 2A is rational, 0= p/q in lowest terms, then there 

are integers'm, n such that mp + nq = 1, thus mp/q = 1/q - n. 

Hence hm= e2nimp/q = e2ni/q. 
So we may assume p=1 

'(i) q= 2n for some integer n, then Xn= e- =-1, thus 

Re (xnµ) = Re (-µ) < 0. 

(ii) q= 2n ±\1 for some integer n, then {(e2nl/q)rµ}1 
Sr r- q 

are the vertices of 
ä 

regular polygon of k sides, where k23 is 

an odd `number, and with on vertex at µ. Hence for some r, 

Re (xrµ) < 0. This completes the proof. 

5.2 Theorem Let a be a von Neumann algebra, G an abelian 

connected topological group, and aa representation of. G as 

automorphi sms of a such that +k() '- vu -º 0 as g -+ e, then there 

is a unitary representation g -. Ug of G by unitaries in R with 

a(g) (A) = U9AU* (A E 9, gE G) and IlUg - III -0 as g e. 

Proof By [23] (Theorem 7), a(g) is an inner automorphisrn of i, 

for all g in G. For each g in G choose a unitary Wg in 9 which 

implements a(g). Let e be the identity of G. and Wa neighbour- 

\\`, 

hood of e in G such that if gEW then Ila(g) - LIj < 2. If gEW, 



- 63 - 

we may choose a unitary Wg in 9 implementing a(g) with 

a(W9) "k! Rez z2 (4 - lia(9) - z. 112) } 

by [23, " Lemma 5, Theorem `7],. 

We next show that WgWh = WhWg for all g, hEC. Let it be 

an irreducible representation of R. and let y(g) denote the 

automorphism 

n(A) - n(a(g)(A)) .ý 

\ 
Clearly g -" yg is a group homomorphism from G to auf (n (R) ). 

Now let V be a neighbourhood of e in G such that if gEV then 

11a(g) - Ljj < 1, so that V2 W. Let g, hEV, then n(WgWh), 

n(WhWg) and n (Wgh) all implement the autornorphism y(gh). =, y(hg). 
\Thus 

n (W 
gW h) n (WhW 

9 
)# ER (R), = CI, so there is a scalar X. 

-\1, with 

7t (WgWh) = lý n (WhWg) 

Similarly, there is a scalar µ, . 
1.41 = 1, with 

n(Wgh) = 11 n (WgWh). 

Then if o(A) denotes the spectrum of A, we have 

Q is (wgh)) = R6 (R (WgWh)) 
. 

= µ6(n(Wg) Ic (wh)) 

µ6(n(Wh) a(Wg). ). 

(by [44 Proposition 1.1.8]). Note that n(W9) n(Wh)`is invertible 

so 0 is not in the spectrum. Thus 

a(n(Wgh)) = LXQ(t(Wg) 7t(Wh)) 

= xar(n(Wgh)). 
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N 

So a(n (Wgh)) _ Xna(n (Wgh). ) for, all integers n. Choose 

µEa (% (Wgh)) 
. Now g, hEV, so gh E W, so a (n (Wgh)) r. a (Wgh) 

, 

and the right hand side is a subset of the open right halfplane. 

Thus Re µ>0. If Xt1, then by Lemma 5.1 for some n, 

Re Rnµ < 0. A "contradiction, 
since 1n LE u(n (Wgh) ). Thus 4=1, 

and hence we have 7t(W9Wh) _ n(WhWg) (g, hE V) .G is connected, 

so V generates G (L42, Theorem 14, p. 1291). Let g, hEG, then 

there are gi, hi EV with g= g1 ... gn, h= h1 ... hm, hence 

n(Wg) and n(Wg1 ... Wgn), implement Yg = ''g1 ... yg; n(Wh) and 
n 

n(Wh1 ... Whm) implement Yh = yh1 """ 'hm. It follows that 

there are scalars, 0, cp, with 'N 

n (Wg) =A (Wg1 
... Wgn ) 

=Gn(W 91 )... n(W gn ) 

\and 

n (Wh) = cp n (W 
h1) ... n (Whm) 

so n(W9Wh) _ n(WhW9) (g, hE G). This is true for'all irreducible " 
ti 

representations it, and such representations separate the points 

of R, thus 
) WgWh = WhWg (g, hE G) :0 

Let a2 denote the centre of R, and ä the von Neumann algebra 

generated by {Wg; gE G} U ;. By (1 ), ä is abelian. Let 

(resp. denote the carrier space of 3 (resp. ? ). Since the 

elements of and § are precisely the multiplicative linear 

functionals on S and , 
2, respectively, [$ 

, 2.5.2], it results 

from [8 
, 2.10.1] that the restriction map cp -. cpl2 'from to 

is a continuous surjection. Now S and ; are von Neumann 
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algebra's so is a compact totally disconnected space and $ý 

is Stonian by [q ], Theorem 2. By Appendix C there is a continuous 

-mapping f from into such'that f (cp)ýý = cp, (cp Define 

U9 by 

U9 (cp) = W9 (f (cpj; )) Wg (ý) (ý E 48) 

Ug is a continuous map from to the unit circle, and hence is 

the Gelfand transform of a unitary element U9 of S. Define an 

equivalence relation R on §C% by yj R 92 if and only if yl CP21 

is a closed *-subalgebra of 3 containg the constants, so by 

theme"extended Stone-Weierstrass theorem (see for example [12, 

Theorem"2.47 ]), is the set of continuous complex valued- 

functions on §9 which are constant on each equivalence class. Let 

vg(CP) = w9cf ((PI; )) (ýP E fig) . 

Vg is a continuous map from to the unit circle and is constant 

on each equivalence class, so V9 is the Gelfand transform of a 

unitary in , '2. Thus Ug = V9Wg where Vg is a unitary in �. It 

follows that U9 implements a(g), i. e. a(g)(A) = U9A 
g 

(A E R, 

gE G). By the above, UgUh and Ugh are unitaries in 1 implementing 

the automorphism a(gh), so Rg; h= UgUhU*i�s a unitary in ;, for 

each g, hEG. If cp E tý, then since f (cp)1,2 = tip 

R9, h(cp) = Rgph(f(4)) 

Aww 

= Ug(f (cp) ) Uh(f (cp)) Ugh(f (CP) ). 

Now if gEG, 
v 

. 01, 
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wýw 

U9 (f (gyp)) w9 (f (f ýýP) i , ý)) w9 (f ýýQ) ) 

W9 (f ((p) ) w9 (f (cP) ) 

= 1. 

Hence Rgj h((p) =1 (cp E §; ) so Rg0 h=I 
(g, hE G) and 

UgUh = Ugh (g, h E G) showing that g -+ Ug is unitary represen- 

tation of G. It remains only to prove norm continuity of. g-º g. 

LetcpE%, then 

An 

ý Ug(ýp) - 11 Wg(PP) Wg(f (yI+2)) -1ý 

sI9 (CP )W9 (f (CPI 
, ý) )- w9 (f (9I ý)) I 

+ (Wgtf (YIýýý '1 

AA 

Wg(cP) 1( +Iw (f ((P(; )) 1 

1,9 
Now Wg -I is normal, so the above is less than 211Wg - Ill. Thus 

Ijjs 211W9 - Ill. Let W be. a neighbourhood of e in G such 

that if gEW then "a(g) - zJI < 2. If gEW, we have 

a(Wg) c {z; Re zkp g} where ßg (4 - Ila(g) - Lll2) . Note 

that ßg -» 1asg -+ e. If 9EW; 

IIW9. _ Iýý = sup {IX - 1) ;XE a(W9)} 

Thus if gEW 

'lug as g-º e. 
t 

This completes the pröof. 
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5.3 Theorem Let !U be-a C*-algebra acting on a Hilbert space, 

G an abelian connected topological group, aa representation of 

G as automorphisms of 21 such that 11a(g) = L1I -º 0 as g-e, then 

there is a unitary'representation g -0 Ug of G by unitaries in 

with a(g)(A) = U9AUg (A E U, gE G) and IJUg - III -' 0 as g -' e. 

Proof Let W be a neighbourhood of e in G such that if gEW 

then 1+a(g) - L11 < 2. If gEW then a(g) extends to an inner 

automorphism ß(g) of 21 ([23, Theorem 7]). W generates G, since 

G is connected ([q-L, Theorem 14, p. 129]) so a(g) extends to an 

inner automorphism ß(g) of U- for all gEG. By Kaplansky's 

density theorem 11ß(g) - L1I = 11a(g) - L11 -º 0 as g -+ e and clearly 

g -+ p (g) is a representation of G as automorphisms of s. The. 

result follows by applying Theorem 1 to 21-. 

If a is a representation of the group G as automorphisms 

of a C*-algebra W, and f is an a-invariant state of U. let 

n= of be the representation of 21 corresponding to f, on the 

Hilbert space 34, and xE9 the corresponding cyclic vector. 

If gEG, we may define the map Ug by 

Ug7t (A) x= n(a(g)(A))x (A E 21) 

since 

IN'a(A)XII2 = (n(a(g)(A))x, n(a(5)(A))x) 

= (n («(9) (A*A) )x, x) 

f(a(9)(A*A)) 

.=f 
(A#A. ) 

= (E(A#)it(A)x, x) 

ýýn(Aýx112 s 
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showing that Ug is well defined. Now {7c(A)x; AE .} is dense 

in N, thus U9 extends to a unitary on ). If g=e, then U9 =I 

clearly. If g, h E G, AE1, 

UgUh(n(A)x) = Ug n(a(h)(A))x 

= %(a(g)a(h)(A))x 

= n(a(gh)(A)x 

= U,. , (A)x 

v 

Thus U9Uh = Ugh, and g -_U9 is a unitary representation of G. If 

B, AEW, then 

Ug 7t(A) g it(B)x ., = Ug. 7t( A)* ß(«(g)_1 (B))X 
.. 

= Ug 7t(A a(9)"1(B))x 

_ %(a(9) (A)) i (B)X 

Thus 

Ug n (A)Ug = ýc (a(g) (A)) (9 E G, AE 2i) 

Suppose now that G is a topological group, and the' map 

\g -. f (B . a(g) (A)C) is continuous for A, B, C EU. Let gh in G, 
N 

then if AE2t, 

IIUgx(A)x. - Uhx(A)x, 12 = IjUh-1g%(A)x - -n(A)xII2 

= jjit(a(h-1g)(A))x - n(A)x112 

=. ((n(a(h-1g)(A)) n(A))*n(a(h 
1g)(A)-n(A))x, 

x> 

f((a(h-1g)(A) - A)*(a(h-1g)(A) - A) 

f (a(h-lg) (A*A)) -f (A*a(h-1g) (A)) 

-f (a(h-l g) (A)*A) +f (A*A) 
. 
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=2 f(A*A) -f (A#a(h'ý 9) (A) ) 

-f (a(h-1g) (A' )A) 

Now f (A*a(h-1g) (A)) -ºf(A*A) as g -º h, by hypothesis, and 

f (a(h-1g) (A*)A) - f(A*A), hence for each AEZ, 

JJUg 7c(A)x - Uh x(A)xll 0 as gh 

It follows that JjUgy - Uhyf -º 0 as g -º h in'G for each y' E 34, 

thus g -" Ug is a strongly continuous unitary representation. 

We call {Ug; gE G} the Segal unitaries associated with f. 

5.4 Theorem Let G be an abelian*connected topological group, 

6ý a von Neumann algebra, and aa representation of G. as 

morphisms of R, such that 11a(g) - &II -º 0 as g -i e, then 

(1) There is an a-invariant state on R. 

auto- 

(2) Let p be an extreme point of the set of a-invariant states, -4 
{Vg; gE G} the corresponding group of Segal unitaries, and it 

the cyclic representation corresponding to p, then 

(a) Vg E n(i) (9 E G) 

(b) 11V9 -I11 -"0 asg -. e 

(c) p is a pure state. 

Proof If fE R*, define v (g) (f) =foa (g )- then {v(g); gE G} 

is a commuting group of weak*-continuous linear maps: R* #. 

Let f be a-state of R, and let 

Z= -W* 
{v (g) (f); gE G} . E. is weak*-closed in E(R)s 

co 

thus & is weak*-compact, convex and v(g)i E -. E (g E G), so by 
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the Markov-Kakutani fixed point theorem. ([13], p. 456 ) there is an 

hEE with 
ho a(g) = h. (g E G) 

This proves (1). 

By the Krein-Mil'man theorem, the set of a-invariant states 

has an extreme point. Let p be one such, and let n= np be the 

representation corresponding to p. Let U= {Vg; gE G} be the 

corresponding Segal unitaries of p. The extremal property of p 

is equivalent to 

(7 )uu)'=ei 

(as shown in [¢S', Theorem 6.3.3]). By Theorem 5.2, there is a 

unitary representation g -i Ug of G by unitaries in ß such that 

a (g) (A) = UgA Ug (g E G, AE R) . Let g, hEG,, AE ft, and x 

the cyclic vector for the representation n, then 

n(U9)Vh n(A)x = n(U n(a(h)(A))X 

-A (U9) 1t(UhAu) x 

_ 7t(UghAUh)x 

_ 1t (UhgA Uh) x 

=n (UhUgA Uh fx 

= n(a(h)(U9A))x 

_ Vh x(U9) it(A)x 

Now ?i= {it(A)x; AER} so n(Ug)Vh = Vh 7(Ug) (g, hE G) . Since 

g -" Vg is a group homomorphism, all the Vh's commute with each 

other and by the above, n(U9) E U', so n(U9)Vg_1 E U' (g E G). 

Now a(U9) and Vg both implement the automorphism n(A) -- n(a(g)(A)) 
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thus 7i(U gEn 
(ý )ý (9 E"G). Hence 71 (Ug)V9E (71 (R) U U)'= CI (g E G). 

Thus there is a scalar 1g, Jlg1 = 1, with 71(U9 ) AgVg, 

showing that Vg =n (A 
g 

Ug) En (R) (g E G). 

Let xE If, (IxII = 1, and W= {g E G; Ila(g) 
- z. 11 < 2}. If 

9EW, then 

I1- dgl Ilx - 1. xl( 

s IIx - Vgx1l + 11V9 x- g4 

lix-V 
9 x11+Ilk g 7(U g 

)x - XgxI) 

s lix - Vgx11 + Il u- III. 

Hence 

IlVg - 111 r. IN - A-gIII + I1 - XgI 

_ 11% R (g) - i'gliI + 11 - AgI 

5 2llUg - III + IIx - Vgx11 

S4 �+ II x- VgxI1 

(as in the proof of Theorem 5.2 and the right hand side goes to 

zero as g approaches e in G. 

Now (n(a))' _ Wg) U U)' = CI 

since Uc 'c(6. ), so n is irreducible, hence p is a pure state. 

This finishes the proof. 

Let G be a topological group, it a von Neumann algebra and a 

a representation-of G as *-automorphisms of R. A local lifting 

for a is described as follows: there is a neighbourhood N of e in 

G and a map U: N -ý U(s), the unitary group of R. such that if g, 

h, gh are in N, then UgUh = Ugh, and U9A Ug =a (g) (A) 
. We say 

the lifting is norm continuous if f lUg - 111 -º 0 as g-e (g E N). 
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Let 34 be a separable infinite dimensional Hilbert space, u 

the unitary group of g3(If), with the norm topology as operators 

on N. Since the centre of 63() is {AT; XE c}, the centre of u 

is ?={, I; Ixi = 1}, which is isomorphic to the circle group. 

If U, V are in U, then by [4-3, p. 279], there are self-adjoint 
iH iK i(AH + (1-X)K) 

operators H, K in Ö3 () with U=e, V=e. Let cp (1ý) =e 

then cp(O) = V, p(i) = U, so ep defines a continuous path in U 
I 

from V to U. Thus U is arcwise connected (and, in particular, 

connected). If UEU, IJU - III < 1, then Ill - 11 <1 for all 

%E ß(U). Thus a(U) is contained in {z; Izj = 1, Re z> 0} 

so the log function is analytic on Q(U). By the analytic 

functional calculus, we can define log UE S(H). If JJHjJ is 

small and U= eM, then log U=H. Thus if Q3(34)s denotes all 

the self-adjoint operators in Q3(ä4), and n ={U E U; IJU - III < 11, 

then the map U- log U is a homeomorphism from 71 into B(H)s. 

Since 03(g)s is locally arcwise connected in the norm topology, 

there is an open, arcwise connected convex set 7n with 

TZ c n. If VEU. let 

P= {UEU; IIU-VII<1} 
; 

then UEP if and only if IIW# - III < 1, thus P= ? V, and P 

contains the arcwise connected set 7AV. This shows that U is 

locally arcwise connected. 

Let G denote the group U/?, with the quotient topology, and 

q the quotient map: U -" U/?. G is the continuous image of U, 

thus G is a connected topological group. Now 63(ßt) is a type I 

factor, thus by ['j ] (Ch. III, §3, Corollary 2, p. 241),, every 

automorphism of B(g) is spatial. It follows that the map 
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a: U -. a(U) where a(U)(A) = UAU* (A E 63()), is a group homo- 

morphism from U onto auf(B(I)). If Q) = a(V), then W* E T, 

thus T is the kernel of a, and a defines an isomorphis, also 

denoted a, between G and aut(S )), such that Ra(g)'- LIl -+ 0 

as g -+ ein G. The above shows that a is a representation of 

the connected group G on 63(äi), such that Ha(g) - &H -0 as 

g-º e in G. 

5.5 Proposition There is no norm continuous local lifting 

fora. 

Proof Suppose there is a norm continuous local lifting 

cp: U/? -+ U, on a neighbourhood N of q(I) in G. Then if UEU, 

cp(U7) implements a(U), so there is a scalar XU of modulus one, 

with cp (UT) = UL . Let U, VE q-1 (N) be such that UV E q-1 (N), then 

wxuv = cp (uvT) 

Y(UrvT) 
cp(U? ) qp(VT) 

UXUV Xv 

= UVXU Xv 

Hence 

ýu u%v 

Define p(U) = XU, then p is a local homomorphism from q-1(N) 

to the unit circle, 1f in the sense of [cß. 2] ( p. 140, Para. K) 

p (U. ) = cp (q (U) )U-1, 
, 

so p is continuous on q`l(N). We have seen above that U is 

arcwise connected and locally arcwise connected. Also, U is 
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N 

contractible ([t`ý, Theorem3]), hence simply connected, so by 

Appendix D, p extends to a continuous character, on U. 

continuous for the norm topology. But by ["4, Theorem 4, p. 527], 

no such character exists. This contradiction shows that there 

can be no local lifting. 

ý_ 

. ., ý 

ýý _" 

. 



- 75 - 

CHAPTER VI 

IMPLEMENTING A GROUP OF AUTOMORPHISMS BY 

A UNITARY REPRESENTATION 

6.1 Definition- Let % be a C*-algebra acting on Hilbert space 

If, and Ga group. If a is a representation of G on R and U: g-Ug 

is a unitary representation of G on i, then we say that U induces 

(or implements) a if 

a(g) (Äjý Ug A Ug (A E W, gE G) 

1n certain cases, we"`sýa11 show that if G is an abelian, 

locally compact group and a is a strongly continuous representation 

of G as inner automorphi'sms of 21, say a(g) = ad W9 with Wg E U(LI), 

then a necessary and sufficient condition for the existence of a 

strongly continuous unitary representation'U: g Ug of G by 

unitaries Ug E U(2i) such that U induces a is that the Wgs commute 

\ i. e. 
WgWh= WhWg (g, hE G) 

If 9 is a von Neumann algebra acting on a separable Hilbert 

space ii, denote by inn (a) the group of inner automorphisms of a. 

Let denote the centre of R, and U(R) (resp. U(; )) the group of\\, 

all unitaries in 1. (resp. 2). There is a natural homomorphism ` 

yr': U -º ad U from U(%) to inn(a). If V lies in the kernel of 

this map then UV U* =V (U E U(R)), thus AV = VA (A E R) since 

U(a) spans 9 linearly, so VE U(2). It follows that fir' induces 

a group isomorphism 
0 

inn (s ) 
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Recall the following definitions: A borel space is a set F. 

together with a family, 8, of subsets of E having the following 

properties: EEß, 03 is stable under countable union and intersec- 

tion, and if YE6 then E\Y E2. The elements of 8 are called 

the borel sets of E. Let C be a family of subsets of E. Among 

the families 6 of subsets of E such that 8DC and (E$ 8) is a 

borel space, there is a smallest, So. We say that 8o is the borel 

structure generated by C. 

A topological space X is said to be a polish space if it has 

a countable base and the topology of X is given by a complete 

metric. It is known that if 43 is closed or open in X and X is a 

polish space, then 6 is also as ace Ch. 9, §6 No. 1, polish p (ýý'] 
ss 

Propositions 1 and 2). By [4-], Ch. 9, §6, No. 1, Theoreme 1, if B 

is a G6-subset of X (i. e. B is a countable intersection of open 

subsets of X) and X is a polish space, then B is a polish space. 

If E is a borel space, then E is said to be standard if the borel_ 

structure of E is generated by the open sets for some topology on 

E with respect to which E is a polish space. By following the 

methods of [Zb], pp. 508-509, we shall show that inn(s) is a standard 

borel space with respect to a natural borel structure, that U(R) 

is a polish group, and there is a borel cross section for inn(s) 

in U(R). (This means that if we identify inn(R) and U(R)/U(; ), 

there is a borel map 

I$ u(R)/u (; ) -0 u(a) 

such. that no I= identity where it is the quotient maps 

u (se) -º u (a )Vu ) 
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We need these results in 'the proofs of the theorems in this 

Chapter. 

Let U(3(Ii)) be the group of all unitaries on the Hilbert 

space X. The weak and strong operator topologies coincide on 

U(S(9)) for if Ua and U are unitaries with U« -U weakly, then 

(U« - U) (Ua - U) - 21 - U*Ua - U*U -+ 0 weakly 

so Ua -+ U strongly. The weak operator topology thus gives u (R ) 

the structure of a topological group. If g is a von Neumann algebra 

acting on If. the same is true of U(R) since U(s) = u(Q3(äi)) n a. 

If ; is the centre of R and U(; ) the group of unitaries in 

then U(; ) is a closed normal subgroup of U(R). Let a denote the 

quotient map: U(R) -. ü(a)/u(; ) and give ü(R)/u(; ) the quotient 

topology. Then % is continuous and open for if V is an open set 

in L1(ß), and W is the saturation of V. 

W=U UV 
UEu(; ) 

.ý 

.ý 

N 

N 

N 

Thus W is open. 

Suppose now that'3# is separable, and let {xn}n 
ý be a 

countable dense subset of äi.. Define 

b (U V) =o 
(U- V)x lI 

+- 
11(U - V#)xn_ý 

n=1 Ilxn112n na1 1jXn112n 

(u, V E u(%)) 

8 is a metric on U(%). Note that if WE U(?, ) then 

6 (WU, WV) =6 (U, V) 

\N = 6(U *I v*) . 

II 
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=b (w*U*, w*v*) 

=6 (UW, VW) 

Clearly 6 (U 
n, 

U) -» 0 

Unxk -. Uxk and Unxk -. U*xk for all xk 

Unx -+ Ux and Unx -; U*x for all xE9 

Un -. U strongly and Un - U* strongly, 

pU-. U strongly. 

Thus d is a metric on U(s) compatible withthe strong (=weak) 

operator topology on U(R). 

Suppose now that {Un} is a Cauchy sequence in (U(R), 6), then 

8 (Uns Um) -- 0 as n,. m -» 

and 

b (Un, Um) -" 0asn, m -º 

For each xE }#, the sequences {Unx} and Unx) are Cauchy, so. 

there are vectors, denoted Ux, and Vx with Unx - Vx, Unx -+ Wx. 

Then V: x -» Vx is an isometric linear mappings 11 -" ?# with Un-" V 

strongly. Similarly, W: x -+ Wx is an isometric linear mapping 

9 -+ 34 with Un -W strongly. But then Un -+ W weakly, so tin -º W* 

weakly. Thus W* = V. This shows that V and-V* are both isometric, 

so VE u(R) and 6(U 
nI 

V) -. 0. It follows that (u(R), d) is a 

complete metric space. Since ii is separable, (u(ß), 6) must also 

be. separable since 6 is compatible with'the weak operator topology 

and 91, the unit ball of it, is a separable metric space for this 

topology. We have shown that U(%), with the weak operator topology, 
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is a polish space. We assert that U(R)/U(; ) is a polish space 

with the quotient topology. To see this, letlkT= U(; ), and 

define d(U2), VikS)-inf 8 (UZ, V) (UV E U(R)). d is a well- 
NZ E '1, 

defined pseudometric on U(R)ý , since 6 is invariant, and if 

d(U1J, vi'! ) =0 then there is a sequence Zn Eý, ý(with 6 (UZn, V)-'0. 

Thus UZ -S V strongly n 

So Z- U*V strongly 
n 

Hence U*V EW, and Uff' = VW . This shows that d is a 

metric on u(R )/, 
1. 

Clearly the topology defined by d is equiva- 

lent to the quotient topology. If {en} is a countable base of 

open. sets of U(ß), then {n(Ln)} is a countable base of. open sets 

'for u(6i)i since it is an open mapping. It remains to show that 
lls 

(u(R), 
, d) is a complete metric space. Let {Un} be a Cauchy 

\ 

sequence"-in (u(ß) j, d). It suffices to show that this has a 

convergent subsequence. Choose'a subsequence {v1I} of the 

original sequence such that 

d( s Vn+ )< 2n 

We shall show that this sequence is convergent. Choose Y1 E VjW. 

Now 

Choose Y2 E V2 with 6 (Yl) Y2) <2 

Choose Y3 E V3-, ( 
with 6 (Yl, y2) < 

22 , etc. 

By induction there is a sequence {Yn} with Yn En and 

6(Y 
n' 

Yn+1 )< 2n Clearly {Yn} is a Cauchy sequence in (U(R), 6), 

thus there is aYE 00 with 6 (Yn Y) -. 0. But then 

d (Yn f, YW) sd (Yn, Y) -" 01 
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so U(R)/Z is complete. Thus U(R )4LCY, is a polish space. If we now 

endow U(1%), 
q with the quotient borel structure, (Q), in which a 

1(AJ 
set F is borel if '(-1 (F) is a borel set in U(R), we assert that 

U(i )/ is a standard Q-borel space. We know that U(R)/,, is a 

standard borel space for the quotient topology, and the Q-borel 

structure is the quotient borel structure relative to the standard 

borel space U(R). If U is open in U(R) /CO for the quotient topology, 

then n-1 (U) is open in U(R), so U is a Q-borel set. Denote the 

borel structure generated by the quotient topology as E. Then 

every E-borel set is Q borel. Thus the identity map on U(R) 

is a bijective borel map from (U(R)/ 
IV 

Q) to (4 (6t)Ij E) in an 

obvious notation. It follows by [s], Appendix B, No. 22 that the 

two borel structures coincide. 

Identifying inn (a) with U (R )/ 
4 

by means of the map 
lv 

: U(R) /-. inn (a). 
, 

lký -" 

we give inn(R) the final topology and borel structure relative 

to $ i. e. a set Fc inn(a) is open (resp. borel)' if * a.. 1 (F) is 

open (resp. borel) in U (ß )/. With this structure, inn (a) is a 

polish space. and a standard borel space. 

6.4 Lemma Let TER. x, y E 4, then the map 

a -º (a (T) x, y) 

is continuous on fnn, ). 

Proof The map N. 

f; U -º (U T U*x, y) 

from U(a) to C is continuous on U(R). Since 

\ N, 
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(UT U* x., y) = (VT V*x, y) 

if U&= VC7 f gives rise to a continuous map 

g ýu(a)V - c, 

9(n(U)) = (UT U*x, Y) " 

-1 Now the map a -º (a(T) x, y) is just the map go* (a), hence is 

continuous. 

6.5 Proposition The above borel structure on inn(%) is the 

smallest such that the mappings 

a -' («(T) x, y) . 
(T E its X, E 3i) 

are continuous on inn(R). 

Proof Let ö31 be the borel structure contructed above for 

inn (R) and let 22 be the smallest borel structure on inn (ß) such 

that the mappings a -+ (a(T) x, y) are continuous. This means that 

032 is the borel structure generated b, the open . sets of the 

coarsest topology for which these maps are continuous. By 

Lemma 6.4, Q3 B *. Let fx }`* be a sense subset of äff, and 1 2' i j=1 
be weakly dense in R. Define 

ý j=1 

9ijk(a) = (a(Ti) xj, Xki , 

and let (nn)n be a countable basis for the topology of C. If 

&ijkL 1 
9ijk(nI) , 

the sets eijk. 9 form a separating family of borel subsets of inn(R) 

(relative to 632) in the sense that if a, PE inn(R) and a/ß, 
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then for some i, j, k, L, aE Eijky, and ijkl. By Theorem 3.3 

ýý. of [35], the sets eijkA generate the ßl-borel, structure, thus 

ýý. 
1, = Q32. 

6.6 Corollary The map 

U -º ad U 

from U (6. ) to inn (1 ), is borel. 

Proof If TER, x, yE 11, the map 

U -+ (U T U* x, y) 

. 

\\ý 

is continuous. The result follows by Proposition 6.5. 

6.7 Definition A borel cross-section fortZ is a borel map 

"T1 =u (ý ýý -" u ýý 

such that it oT= identity. 

6.8 Proposition There is a borel cross-section for lQ1 

- 

Proof By [6], Lemma 3, there is a borel subset B of u(R) which 

meets each coset of 
0 

in u(R) in exactly one point. By Corollary 1 

to Theorem 3.2 of [35], B is a standard borel space, and nIB is 

bijective. The sets * -1 (SijkL) form a separating family of borel 

subsets of U(R)4d thus by Theorem 3.2 of [3q, n, B is a borel iso- 

morphism. Let 1j = (1t ̀B)-1, then 1j is the required borel cross- 

section. 

6.9 Lemma Let G be a locally compact group, it a von Neumann 
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algebra acting on a separable Hilbert space U. and aa strongly 

continuous representation of G on R. If a(g) is an inner automor- 

phism of R for each gEG, there is a borel map 

G u(R) 
such that 

a(g) = ad cp(g) (g E G) 

Proof Let I be a borel cross-section for U(; ) in U(ß), where 

denotes the centre of R. Denote by it the quotient map 

U (R) -º U(R) /U (; ) and by $ the group isomorphism 

U(R)/U(; ) - inn (61) 

Let a(g) = ad Wg 

with Wg E U(R) and define 

üg = '1(Wg u (; )) 
, 

Then Ug '_ (1j oi1o a) (g) . It 

Let E be a basic open subset of the identity of. inn(R), then E 

is of the form 

E_ {Ay E inn (a); <? (Tj)xk, xA)) - (Tjxk, xA)ý <1 

1sj, k, Ls n} 

Since a is strongly (hence weakly) continuous, a-'(E) is a borel 

subset of G, so a is a borel mapping. I and *-1 are also borel, 

thus the map g -. Ug is a borel map: G: U(ff). Since n(U9)=n(W9 

we have a(g) = ad W9 = ad Ug (g E G). This completes the proof. 

We can now prove our first result. 

6.10 Lemma Let Z be a norm separable simple C*-algebra with 
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identity acting on a separable Hilbert space I. Let G be a locally 

compactNabelian group and aa strongly continuous representation 
ö\ 

G by inner automorphisms of $1, so that a(g) = ad Wg, W9 E u(i). 

There is a strongly continuous unitary representation U: 9- Ug 

of G by unitaries Ug E& implementing a if and only if 

WgWh = WhWg (g, hE G) . 

Proof (: *) Suppose there is a strongly continuous unitary repre- 

sentation U: g-. Ug of G with Ug E1 and a(g) = ad Ug. Then for 

each gEG, there is a unitary Qg E ; (si) with Ug = QgWg. The Ug's 

commute since G is abelian, thus the Wg's must commute. 

(ý) Let n be an irreducible representation of . on a 

Hilbert space kia. If xo E äßn is a generating vector for 7r, and 

{A }°° is a countable dense subset of 2t, then {n(An) xo}n_, is a 
n n=1 

dense subset of )f so Uý is separable. Since a is strongly (hence' 

weakly) continuous, the map 

9 Wx(a(9)(A)) 

is continuous for xE 14 and AEU. Now 

{wx; xE$: 11 xIl = 1) 

is a full set of states of 21, in the sense that if AE 21, and 

ýux(A) Z0 (x E äI), then AZ0. Thus by ([ý], Lemma 3.4.1), 

co {wX; xEX, llX11-1} 

is weak*-dense in E(LI). It follows byo ([4], §4, No. 7, p. 171, 

Corollaire 2) that 

11a(g)(A) - a(h)(A)II -" 0 as g -» h in G, 
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(h E G) AE 2I). Since 2I 'is simple, Ker -n = {0}, thus zt is 

faithful and so isometric. Hence 

jjito a(9) on-1 (n(A) - lt(A)II = lln(a(9)(A) - A)II 

= Ila(g) (A) - All -0 as g -º e in G. 

It follows that ß: g -" ß"(g) _ 7t o a(g) o n-1 is a strongly continuous 

representation of G on n(21). Each ß(g) is an inner automorphism 

of n(2I), (being induced by n(Wg)) thus ß(g)''extends to-an automor- 

phism y (g) of n (21)-. Theorem ¬. g of Chapter shows that y: g- Y (g) 

is a strongly continuous representation of G on n(2I) Note that 

n(21) = C3(ä) since x is irreducible. 

By Lemma 6.9, we may choose unitaries Vg E 03(9 such that 

y (g) = ad Vg 

and g` -" Vg isa Borel map from G -ý U (63 (ii )) ` 

for the weak operator topology on U(ö3(NR)). Now 

ßg = ad V9 = ad n(W9) , 

thus Vg 9 (W9)* CI. Hence there is a scalar leg, II% =1, 

with 1. 

Vg =1g n(Wg) 

so Vg E n(U) for gEG 

Since the W is commute, so do the V 's. Let B be the Gam-algebra 
9. g 

generated by {Vg; gE G}, then B is an abelian C*-subalgebra of' 

n(a). Let p be a character on B and set 

Ug "= P(g Vg ,. 
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Since P(Vg) lies in the unit circle, y(g) = ad V9= ad Ug. 

Now for each xE äßn, the map g -+ wx(V9) is borel. As above, 

co (0 
x; xE äßn, ljxil = 1} is weak* dense in E(n(2I)). Since 21 is 

norm separable, n(! U) is norm separable, thus 63 is norm separable, 

so the weak* topology on E(03) is metrizable. (To see this - let 

{B }`* be dense in 8, and f, gE E(ß). Define 
n n=1 

co (f - g) (Bn ) 
6(f, g) = 

nE1 IIB II2n . Then 6 is a metric on E (S), and 
n 

defines a Hausdorff topology on E(63) which is coarser than the 

weak* topology. Since E(B) is weak* compact, the two topologies 

must coincide). Hence we may choose a sequence fn in 

co { wx; xE stn, 11 XII .= 11 

such that 
fn fp weak* . 

if fn =E %jOxi , J 

then fn (Vg) = Ex i xi 
(V9) 

and g- fn (Vg) is a borel map . 

The map g -º p -(V9 is the pointwise limit of the borel maps 

g -» fn(Vg hence is borel. Let 0(g) p (V§ ). 

Since the pointwise product of two borel maps is again a 

borel map, for each xEU. the map 

g . -+ A(g) (Vgx, x) = (Ugx, x) 

is Borel. However if g, hEG, 
0 

a(gh) = ad UgUh = ad U 
gh 

so there is a scalar µ, JµI = 1, with 
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gh gh 
UU =µU 

But p(U9) =1 for all gEG, 

\ 
so µ=p (U9Uh Ugh) 

\=P 
(U9)P(Uh)P(Ugh) 

This shows that U: g -ý Ug is a weakly measurable unitary repre- 

sentation of G' on kt . Let 

Yg = 7-1 (Ug) 

Yg is a unitary in %, and since 

noa (g) 0 n-1 = ad U9 , 

we have 

a(g) = ad Yg 

Clearly Y: g- Yg is a unitary representation"of-G. It 

remains to-prove that Y is strongly. continuous. Since ii is separable 

it suffices to prove that the map 

g -' (Vgx' x> 

is borel for xEN, by [(s], (Theorem 22.20(b), p. 347). If 

114 =1, then wx o n-1 is a state of n(21). As above 

co {wy; Ilyll = 1, YE Nn} 

is weak* dense in E(n(1)), and the weak* topology is metrizable 

on E(n(%)) since t(Q) is norm separable, so there is a sequence 
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fn -+ wX o i(-1 , weak*, with each fn of the form 

fn = Ex iwyj 
(ADZ Of EAj=1, yj E9X). 

The maps 

9 fn(Ug) 

are borel, so the map 

g -º wxon-1 (Ug) 

is borel, being the pointwise limit of a sequence of borel maps. 

But 

wX o zt (Ug) = wX (Yg) 
. 

So the result is proved. 

6.11 Theorem Let 21 be a norm separable simple C*-algebra, 

acting on a separable Hilbert space H., Ga locally compact abelian 

group, aa representation of G on 21 by inner automorphisms, say 

a(g) = ad Wg, W9 E U(21) 

such that 

Wg Wh = Wh w9 (g, 
,hE G) . 

Suppose a is a weakly measurable reýpresent'ation, then 
N 

la(g) -1,11 -. 0 as g -+ e in G 

and there is a norm continuous unitary representation g- U9 by 

unitaries Ug E 21, such that 

a(g) = ad Ug Sg E G) . 

Proof Since each a(g) is an inner automorphism of 21, it 

N 

'N 
N 
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extends to an inner automorphism, ß(g), of 21-. By Theorem2ag 

Chapter Il 
,ß: g-. ß(g) is a strongly continuous representation, 

thus a is also a, strongly continuous representation. Since .i is 

norm separable, 8(2Y) is metrizable for the weak* topology, as 

remarked above, and 

co {wx; x Eä4, llxll = 11 

is weak*-dense in E(21). If fE E(i), f is thus the weak* limit 

of a sequence {fn}, where each fn is a convex combination of 

vector states. By Lemma 6.10, there is a unitary representation, 

g- Ug, of G with 

a(g) = ad Ug 0 
"Ug E u(4) 

and g -' wx(Ug) continuous for each xE 34 

Thus the map 

9 fn(Ug) 

is a borel for each n, so 

g f(Ug) 

is a borel map. Now E(I) spans 2i# algebraically, so 

_g -º f(Ug) 

is a borel map for each fE 2I#. The proof is now completed by 

using a similar argument to that of Theorem Z. Z, Chapter lL 
. 

Let {An}n 
1 

be a countable dense subset of 21, and {xn} be a 

dense subset of the unit ball of U. Let e>0. Define 

= {gEG; IJUg-I11SE/2} 

ý4 

k 
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Now IIUg -' III = III - III 

IIUg-1 - III 

and IlUgh - III ' IlUgUh - Ill 
s 1RUg ' 'ýý + LIUh ' Iý) 

Thus 
r 

=-i 

N 

and 
2C {gEG; IJUg -Ills} 

Let m denote haar measure on G. 

=n{9EG; I (U9xnO Xm) (Xn, xm> Is E/2 
n, m 

soV is m-measurable. Let 

7= {U9; 9E G} " 

Then Tc 91, and 2 is separable, so 7 is separable. - Let {Ugn} 

be a countable dense subset of T. If gEG. there is a gn with 

"Ug - UgnýI E/2 . 

Thus Ugn 
g -I11 s 6/2 . 

so gnu gEI and gE g'- . Hence 

G=UgW. 
nn 

By invariance of haar measure, contains a compact C of positive 

measure. Then CC-' contains a neighbourhood N of e ([i4], 

I 
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20.17 Corollary, p. 296), 'and we have 

N CC-1 

r- {g EG, IIUgIlise} 

This shows that ýý. 

IlUg -111 -0 as g -+ e 

so g Ug is a norm continuous unitary representation, and 

II«(9) - rll = sup {IIUgA'Ug - All; AE 21,11All s 1} 
S2 IJUg - 111 -0 äk g-e, 

This completes the proof. 

6.12 Corollary Let t- at be a weakly measurable representation 

,, of R as inner automorphisms of the norm separable simple C*-algebra 

21 and suppose 2I acts on a separable Hilbert space U, then there- 

is a\norm continuous unitary representation t -º Ut of R with 

Ut E U(21),, such that 

at = ad Ut, 

at - LýJ -" o as t -. o . 

Proof By Theorem 6.11, it suffices to prove that if 

at = ad Wt , Wt E U(Z) , 

then' Wt Ws = WS Wt (s, t E R) . 

Let n be an irreducible representation of z on a Hilbert space 

ý\ 
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Nn0 9R is separable, as- mentioned before, and as in the proof 

of Lemma 6.10, ß: t -+ ß(t) =no a(t) o n-1 is a strongly conti- 

nuous representation of R on n(2I) and extends to a strongly 

continuous representation y of R on 

ß (2I) = Ö3 (H 

by the inner automorphisms ad n (Wg ) of ß (i. 
x) . By [25] Theorem 0.1 

there is a unitary representation t -y Yt of R on äfß with 

Y (t) = ad Yt = ad n (Wt ) 

So there is a scalar Xt. +11tj = 1, such that 

Yt = 1l 
t ýc (wt) 

The Yt's commute, so 

(wtws) _ n(wswt) (s, t E R) 

it is a faithful representation, since U is simple, thus the 

result follows. 

After proving Theorem $. 2, Chapter and the above results, 

I conjectured that the following result is true. 

6.13 Conjecture Let G be a locally compact abelian group, R 

a von Neumann algebra acting., on a separable Hilbert space 2i, and 

as g -+ a(g) a strongly continuous representation of G on R by 

inner automorphisms, say 

a (g) _" ad Wg with Ylg E u(s) . 

Then there is a strongly continuous unitary representation 

U; g -' Ug of G by unitaries U9 ER such that 
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a(g) = ad Ug 

WgWh" = WhWg (g) hE G) 

"A proof was sketched for the case Ga separable locally 

compact abelian group, and Ra factor, by C. C. Moore and communi- 

cated to me by Dr. A. Connes. I shall give this proof below in 

full detail. It is not clear as yet whether the result extends 

to the case of a von Neumann algebra, using standard direct 

integral methods. 

Before commencing the proof we need some preliminary remarks 

on group extensions. A group G is called an extension of the 

group C by the group B if C is a normal subgroup of G (up to 

isomorphism) and G/C is isomorphic to B. From now on we shall 

deal only with the case where C is an abelian group. 

Suppose G is an extension of C by B. In every coset gC of 

C choose an element ga where gC corresponds to the element a of 

B. Now 
ga 9ßE gap C 

so there is an element ý(a, ß) of C such that 

9a 9R= 9aß. (; P) 

Ifa= ýi = e, then 

I (e, e) = ge 

We shall assume always that ge =e (e will always denote the unit 

element of the appropriate group). " 

The map 

a a-ga g«1 
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induces an automorphism Y(a) of C, and 

Y (a)y (ß) (a) = gagß a gß-18=1 

gp a g-1 ap 

Y(aß)(a) 

since C is abelian, so Y': a- y(a) is a group homomorphism iden- 

tifying B as a group of automorphisms of C. 11 is a map from ax B 

into C such that '1(e, e) = e. "Simple arguments (see for example 

[So], p. 122) show that 1j also satisfies 

.n (yl 
1 Y2) 1 (yl Y2, Y3) =y (Yl) (T1(Y2, Y3)) 1 (yl 

1 Y2Y3 ) 

y1, y2, y3 EB-. 

Such a map 1j is called a system of factors. 

Recall that if (A. )* are sets and f3 are maps from Aj_1 
j=1 

to A., then the sequence 

... A" ,ß -ý A. 
f. 

1+1 Aj+1 -0 ... J- i 

is said to be exact if 

. (* 

II 

Ker f $m f 

If A, B, C are groups, y is an in j ective homomorphism from 

A to B, and 8 is a sur j ective homomorphi sm . from B onto C, such that 

Sm y= Ker S, 

this is representable as the short exact sequence 
N 

N 

Ya 
0 -A -+ B-' C-. 0 

t 



- 95 - 

Thus if G is an extension of C by B, the sequence 

i it 

is a short exact sequence where is CfG is the identity map and 

nt G-B is the quotient mapping from G to G/C (up to isomorphism). 

Conversely, given a short exact sequence of groups 

s 0-. C- G -+ B -p0. 

If we identify C with its isomorphic image y(C) in G, we see that 

G/C is isomorphic to B, so G is nothing but an extension of C by B., 

Suppose that G and H are extensions of C by B, -defined by 

the short exact sequences 

Gß 17 'y 0 0 -,, C + 

0 -+ C -, H 
ß, 

B -º 0 

G and H are said to be equivalent if there is an isomorphism 

A: GEH such that the following diagram commutes: 

ß 
0 -º C -» G B -+ 0 

ß 
0 -º C ý+ H B -' 0 

If we are given an abelian group K, and an arbitrary group Q, 

and we have maps y, 'Ti, such that y is a group homomorphism from Q 

to the group of äl1 automorphi sms of K. and Tj is a map from QxQ 

into K such tha- '1(e, e) =e and (*) holds, define a multipli- 

cation on KxQ by 
ice` 

($l, yl) 0 (g2, Y2) 
:_ 

(ýly (Yl) ýý2) ý1 (Yl, Y2),. Yj Y2) 

ý \ 

\ 
ý 

ý' 
ý 
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E K, yE 12 1Y2 Q) 

Then KxQ is a group with this multiplication ([30], pp. 123-124). 

Moreover, the map 
6: (ý, Y) '' Y 

is a homomorphism from KxQ onto Q, and the map 

e,: t -º (t, e) 

is an injection from K into KxQ, with 

, 9m 9=" Ker 8 

So the sequence 

ea 0 -" K-KxQ-! Q -+ 0 

is short exact, and KxQ with this multiplication is an extension 

of K by Q. We-denote this extension by Ku Q. 

Suppose now that S and T are borel spaces, then we can define 

the product borel structure on SxT as being the borel structure 

generated by the sets ExF where E (resp. F) is a borel set in S 

(resp. T). If Q'and K are groups with borel structures, we say 

that 'fl is a borel system of factors for Q and K if 'fl is a borel 

mapping from QxQ (with the product borel structure) to K. 

Now let K and Q be separable locally"compact groups, with K 

also abelian. Let y be a homomorphism from Q into the group of 

automorphisms of K. such that the map 

(X, y) -Y (Y) (x) 

is continuous: Kx Q -+ K, and let 1 be a borel system of factors 

for Q and K. We have the following fundamental result of Mackey 

Theoreme 2). 
N 
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6.14 Theorem There exists in the group extension Ký Qa unique 

locally compact topological structure with regard to which KT Q is 

a topological group, such that the identity map from KxQ (with 

the product borel structure) into K'IQ is a borel mapping. The map 

A: -º (§, e) is an isomorphism from K onto a closed normal sub- 

group of Ku Q, and A is'bicontinuous. The isomorphism from 

KIQ/e(K) onto Q defined by the mapping 6: (g, y) -» y from KTj Q 

onto Q, is also bicontinuous. Moreover, K'1 Q is a separable group. 

We are now in a position to prove the result discussed earlier. 

6.15 Theorem Let R be a factor acting on a separable Hilbert 

space 9, Ga separable locally compact abelian group, and aa 

strongly continuous representation of G on R by inner automorphisms, 

say 

a (g) = ad Wg. with Wg EU (R) 

Then there is a strongly continuous unitary representation I Is 

Uag -ý Ug 

of G with Ug EU (R) such that 

a(g) = ad Ug 

if and only if 

WgWh =WhWg (g, hE G) 

Proof (=ý) Suppose there is such a unitary representation U. 

There for each gEG, 

a (g) = ad Ug = a'd Wg , 

so, since it is a factor, there is a scalar Xg, IN91 = 1, with 
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Ug = 7lg Wg . Since G is abelian, the Ugs commute, so the Wgs must 

commute. 

(ý) Let 

N= Ker a= {g E G; a(g) = i} 

Replacing G by G/N, (which is also a locally compact separable 

abelian group), we may assume. that 

a(g) _' a(h) implies g=h 

By Lemma 6.9, we may choose Yg E U(2) such that 

a(g) = ad' Yg 

and 

g Yg 

is a borel mapping from G to U(6%), with the weak operator topology, 

Denote byT the unit circle. Since 6t is a factor, u(; (R)) is 

isomorphic to T. We assert that 

{xYg; X ET, gE G} 

is an abelian subgroup of u(a). To see this, note first that 

a(e) = ad I= ad Ye , 

so I= XYe 

for some XE thus 
IE I'. 

If )Y 
g, µYh lie in r, then 

a(gh) = ad YgYh 

= ad Ygh 
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so there is aGET with. 

YgYh =A Ygh 

Thus 

XYg µ Yh = 7% µA Ygh Er 

IfgEG, XE Ir 

a(e) = ad I 

= ad Y9Y 
g-1 

so there is a Ell with 

Yg Yg 1_tj . 

Then ( lýYg g Y9-1) =I. 

Thus XYg has inverse 1l Yg-, 'ELI' 

This shows that r is a group. Since 

a (g) = ad W9 = ad Yg 

there are scalars erg ET with 

Yg = ýr 
g 

Wg . 

The Wgs commute, so the Ygs commute, and hence r is abelian. 

Define ,ß (7l) =AI (x ET) 

and ý(X Wg) =g (% EI, gE G) 

is well-defined since 

4 W9 = 11 Wh a(g) = a(h) g=h. 
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y is an injective homorphism, 'fl is a surjective homomorphism, and 

Ker 1j = {x Wg ;x ET, g= e} 

= Iý 

= c4my . 

Thus the sequence 

o-ºý`Yrýc-. o 
is short exact, and r is an extension of T by G. We can identify 

r with the extension 
T J'G where 

1i' (x, g) = ixYg) =g 

via the map 

(X, g) -x y9 

Now G is a standard borel space by [31, Theorem 2, p. 148, and 

ü(ß) is also a standard borel space, so Y-1; Yg -g is a borel 

mapping byý5], Theorem 3.2. The map is thus a borel map from, 

xG onto G, and is a borel system of factors for Ti'G 
. B, 

Theorem 6.14 there is a locally compact topology on r relative to 

which it is a separable locally compact abelian group. r also 

contains 
T 

as a closed normal subgroup. 

We now wish to use the fact that if H is a closed subgroup of 

a locally compact abelian group K. and p is a character on H (i. e. 

a continuous homomorphism: H -. T) then p extends to a character 

on K.: 
A 

For a proof of this, let K be the group of characters on K 

under pointwise multiplication. It is a well known theorem of 

Pontryagin ([33], § 37. D, p. 51), that K may be given a locally 
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compact topology relative to which it is a locally compact abelian 

group, If gEK, define 

w(g) (P) =P (g) (p E K) 

then w: g -. w(g) is an isomorphism and homeomorphism between K and 

K. Let 
L= {pEK.; p(H)=1} 

then (K/L)" =H clearly 

By Pontryagin's theorem, K/L is isomorphic to H. Let cp denote 

the isomorphism 
H -+ K/L 

and let it be the restriction map . 

8P "' PIH K -" H. 

Now Ker = L, so defines an isomorphism 

'ý = KýL -" H. 

Thus cp 

Let ß be the quotient map 
A 

K K/L 

and choose 

aEQ1(ý-1(Y)) 

a then aEK 

and aIH *(a) " 

j (aL) 
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= (Cl (a)) 

Y 

Suppose now p is the identity character onT. By the above 

remarks, p extends to a character a of F. Define 

U9 6 
FY-9) Y9 

N 
Then\ a(Y )EP, 

9 

so a(g) = ad Y = ad U (g E G) 
9 

If we identify r with Iº ý'G, and j is the identity map from Tx G 

into 1j'G, then 

Y = j(1, g) 9 

j is a borel map from 
Ix G into (' 'G, by Theorem 6.14, and the 

identification between r and 
r 11 J'G is a borel isomorphism, (by 

construction), so the map 

Y: g -+ Y9 

is a borel map from G to r. Now o' E r, so c is a continuous map 
r 

, thus from r to ' 

aoYsg -+ a (Y 
g) , 

is a borel map from G to(. If xE äi, then 

(U x, x) =a Yg (Ygx) x) g 
The map 

g- (Y x, x) . g 

is borel, so the map 

g -' (U x' x) 
g 
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is borel. Now if g, hEG, then 

a(gh) = ad Ug Uh = ad Ugh 

so there is aµ ET with 

Ug Uh gh 

But 

µ= a(U9 Uh U*gh) 

= ß(U9) 6 (Uh) v (Ugh) 

Thus Ug Uh = Ugh (g, hE G) 

This shows that U: g -ý 
. 

Ug 

is a weakly measurable unitary representation of G on H by 

unitaries Ug E u(s) such that 

a(g) = ad U9 

By [i$], Theorem 22.20(b), p. 347, U is a strongly continuous unitary 

representation, since 11 is separable. This completes the proof. 

We finish with two counterexamples to possible extensions of 

Corollary 6.12 and Theorem 6.15. 

Example 1 Let 4 be an infinite dimensional Hilbert space (so 

that B() is not norm separable). Let {Qn}n 
1 be an orthogonal 

sequence of projections on )i with E Qn = I.. Define a 1-parameter 

unitary group (i. e. a unitary representation of R) on 9 by 

Ut(E Qnx) -E eint Qn x (x E X, tE R) 

and let a(t) = ad Ut 

Clearly t- Ut is a unitary representation of R on X, and if 
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xEN, to -+ t, then 

(Ut x, x) =k (Utn Qkx, Qkx> 
n 

_E (eiktn Qk x, Qk x) 

-' (Ut x, x) 

so t -4 Ut is a strongly continuous representation. If AE Q3(ß#), 

and to -" t in R. then 

(a(tn) (A) x, x) = (Ut A Uti x, x) 
nn 

_ (A Utn1 x, Utn1 x) 

-+ (a(t) (A) x, x) 

Thus a :t- a(t) is a weakly continuous representation of R on 

S(11) by inner automorphisms. 

For each n, choose projections En s Qn, Fn s Q2n with En Fn. 

Let Vn be a partial isometry taking En to Fn, then 

A=n Vn 

exists in the strong operator topology and defines an element of ß(l). 

Now = Ut F V E U Ut V U 
n n n n t 

= U. Fn Vn (Ut En) 

" _; 
\ 

2int FVE eint 
nnn 

= eint V 

So eint V A Ut = U 
n t n 

and II Ut A Ut - ýJ = sup {E 11 eint Vn X' -V nx 
II 114 = 11 

N 
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If 2nt is irrational, 

{ eint ;nEZ} 

is dense in T so there is an no with 

leinot _ 1I z1 

Let xE Eö , 
li xll = 1, then 

II Ut A Ut - All aI einot _ 11 114 Z1 

All ý0 as t -+ 0. 

Example 2 This example is well known in Quantum Field Theory 

as the canonical representation of 'the Heisenberg Commutation 

relation. 

Let R2 have planar Lebesgue measure. For fE L2(R2) ; r, s, t E R, 

define 

Ut f (r, s) =f (r, s-t ) 

Vt f (r, s) = eist f (r-t, s) 

Then clearly Us t -" Ut and Vs t -+ Vt are strongly continuous 

unitary representations of R on L2(R) and 

Ut V-t V-s f (p, q) = Vs U-t V-s f (p, q-t) 

= U-t V-s e 
is(q-t) f (p- s, q-t) 

eis(q-t) Vf (p-s, q) 
-s 

_ e-ist f (r, q) . 

Thus . Ut VS = e-ist VsUt (s, tE Rý (**) 
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Then by (#* ), 

50 

N, 
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a' :- (s, t) - ad US Vt 

ad UsVt= ad Vt Us 

a(sl, t1) a (s 
2, t2) = ad UslVt1Us2Vt2 

= ad UUVV 
Si s2 ti t2 

= ad Us1 
s2Vtl t2 

=a (s1 s2, t1 t2) .' 

\Thus a is a representation of R2 on B(L2(R2) Since U, V are 

strongly continuous representations, a is also a strongly continuous 

representation. 

Now a(s, t) = ad USVt 

and . a(t, s) = UtVs 

I claim that these unitaries do not commute if s/t, since 

s 
(U V )(U V5) ` eit2 Us Ut Vt V 

1't2 
@Ü 

s+, t S+, t 

and 

(Ut VS) (Us Vt) = eist Us+t Vs+t 

Thus a is a strongly continuous representation of the locally compact 

separable abelian group R2 on 8(L2(R2)) by unitaries which do not 

commute. Hence there is no unitary representation of R2 on L2(R2). 

which induces a. 
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CHAPTER VII 

ERGODIC THEORY AND VON NEUMANN ALGEBRAS 

Ergodic theory is the study of groups of transformations 

of a measure space. We shall show below how this links up with 

the study of groups of automorphisms of operator algebras. We 

shall also show how this link up motivates certain definitions 

and results about groups of automorphisms. Our starting point 

is the restatement of two well known theorems about abelian 

operator algebras from the introduction. 

7.1 Theorem (['7], Ch. 1, §7, p. 118, Theorem 1). Let be an 

abelian von Neumann algebra acting on a Hilbert space 34, then 

there is a locally compact space Z, a positive regular borel 

measure v on Z, with support equal to Z, and a *-isomorphism from 

,Z onto the algebra L`*(Z, v) of essentially bounded v-measurable 

complex valued functions on Z. If iS is separable, -then Z may 

be chosen to be compact and second countable. 

7.2, Theorem ([%], 1.4.1 Theorem, p. 9).. Let 4 be an abelian 

C*-algebra, the carrier space of 21 with the weak* topology. 

Then is locally compact and 21 is * isomorphic to the algebra 

C04 U) of all complex valued continuous functions on §., vanishing 

at infinity. 

Suppose 1 is an abelian C*-algebra and G is a group of auto- 

morphisms of 21. Let pE0,,, and define g*(p) by 

9*(P)(A) = P(9(A)) (A E 21) . 
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Then 

9#ý 

is a homeomorphism and 

9E G} 

is a group of homeomorphisms of I. 

If R is an abelian von Neumann algebra, and G is a group 

of automorphisms of R. then by Theorem 7.1, we can regard G as 

a group of automorphisms of L`* (Z, v) for some locally compact 

space Z. Let E be a borel set in Z. then xE, the characteristic 

function of E, is a projection in R. thus if gEG, , g(XE) is 

also a projection in 1, so there is a borel set F with 

9 (XE) _ )CF 

Let 

9*: E -' F 

Then 
G* ={ g*; gE G} 

is a group of transformations of the v-ring of borel sets in Z. 

The above remarks show that a group of automorphisms of an 

abelian CL-algebra, or an abelian von Neumann algebra, may be 

regarded as a group of transformations acting on the o-ring of 

borel sets of some locally compact space. The study of such 

groups is part of Ergodic theory (see [t(o], Introduction p. 2, 

1.2.9-25 and Example, p. 5). As remarked in [: c] (p. 61, U. 9-14), 

the fact that two measurable transformations of a measure space 

X are identified if they differ only on null sets means that. 

for most purposes, we need only consider groups of transformations 

of the a-ring of measurable subsets of X. 
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In this chapter we shall generalise some concepts and 

results in Ergodic theory to the case of a group of automorphisms 

of an operator algebra. To begin with, we shall give some ergodic 

theoretic definitions and their corresponding generalisations to 

the operator' algebra situation. 

Let (X, C3, µ) be a measure space, where a is the a-ring of 

µ-measurable subsets of X. A map T: X -+ X is a measurable 

transformation if EE3 implies T-1 (E) E8 where 

T-1(E) _{x; Tx E E} 

T is measure preserving if T is measurable and 

µ(T"1 (E) )=9 (E) for"all EE ö3. 

It is also said in this case that µ is invariant under T. (See 

[((o], p. 6, L1.1-3). If T is a measurable transformation of X. 

then T is said to be ergodic if EES and T-1(E)\E is a null 

set imply that either 

µ(E) =0 or µ(X\E) =0. 

If µ is also invariant under T, µ is said to be an er odic 

measure (relative to T). (See [i(P], p. 25, t. 14). 

7.3 Definition Let 1 be a von Neumann algebra, Ga group of 

automorphisms of R. G acts ergodically on R if given a projection 

E in 6ý, 

g(E) =E for all gEG 
ai ' 

implies either 
E=0 or E="I. 

In the abelian case, we may regard ß as equal to L»(X, µ) 

for some locally compact space X. by Theorem 7.1. Let, G* be 
\N 

\ 
N 
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the corresponding group of transformations of S. the a-ring of 

borel subsets of X. If EE8 and g*(r. ) =E for all g* E G*, 

then XE is a projection in R, invariant under G. Hence if G 

acts ergodically in the sense of Definition 7.3, then either 

XE =0 or XE = I. Thus either µ(E) =0 or µ(X\E)= 0. This 

shows that Definition 7.3 is a reasonable generalisation of 

ergodicity. 

7.4 Proposition Let g be a von Neumann algebra acting on a 

Hilbert space )j; Ga group of automorphisms of R. Then G acts 

ergodically on a if and only if the following condition is 

satisfied: 

If 

AER, g(A) =A for all gEG 

then 
A =XI for some XEC. 

- 

Proof Suppose condition (1) is satisfied, and let E be a 

G-invariant projection in R. i. e. 

9 (E) =E (9 E G) 

Then E= XI for some XEC. Now % 

a(E) = {0,1 1 

thus A=0 or 1. Hence E=0 or I and G acts ergodically. 

Conversely, if G acts ergodically on R, let AE9 be 

G-invariant, then A* is also G=invariant thus if A= A1 + iA2 

is the decomposition of A into real and imaginary parts, then 

both A1 and A2 are G-invariant. We may thus assume A is self- 

adjoint. If E is a spectral projection of A, then E is the 
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limit irr the ultraweak topology of a sequence {Pn} of polynomials 

in A. Each such polynomial is a G-invariant element of R. If 

gEG, then g is ultraweakly continuous, thus g(E) = lim g(Pn) 

= lim Pn = E. Hence E is G-invariant. Since G acts ergodically 

on R, either E=0 or E=I. By spectral theory, A is the norm 

limit of linear combinations of such spectral projections. Each 

such linear combination is of the form AI for some scalar A, so 

A= XI for some XEC. giving the result. 

In view of Proposition 7.4, the. following definition is 

consistent with Definition 7.3. 

7.5 Definition Let I be a C*-algebra with identity element I, 

Ga group of automorphisms of 21. G acts ergodically on . if 

AE2land g(A) =A (gEG) 

imply 

A= XI for some scalar X. -" 

If 21 is an abelian C*-algebra, with identity, then by 

Theorem 7.2, . may be identified with C(X) for some compact 

Hausdorff space X. By the Ranz representation theorem ([i'J, 

Theorem 12.36, p. 177), the positive linear functionals of 21 

may be regarded as the positive regular borel measures on X. 

In particular the states of 1 are simply the probability measures 

on X (i. e. those positive regular borel measures µ such that- 

g(X) = 1). If T is a homeomorphism from X onto X. the following 

result is well known. For completeness we include a proof. 

7.6 Propösition Let µ be a probability measure on X. Ta 
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homeomorphism from X to X. Then µ is an ergodic measure relative 

to T if and only if µ is. an extreme point of the set of those 

probability measures on X which are invariant under T. 

Proof Let & denote the set of probability measures'on X 

invariant under T. Suppose p is an extreme point of e., and let 

E be a borel subset of X invariant under T. We have 

0s li(E) S1 

If 

µ(E) =4'0<X<13 

define borel measures µ1 and µ2 by 

(A (1 E) 

µ2(A) =11x µ(A (1 (x\E)) 

Then g1 and µ2 are probability measures on X, invariant under 

T and µ= Xµ1 + (1 - X)µ2. Since µ is extremal, this is a 

contradiction. Thus X=0 or 1, showing that g -is" ergodic. 

Conversely, if µ is an ergodic probability measure on X, suppose 

}ý c iµ1 + (1 -'%}µ2 with t1, µ2 E E, 0<x<1 

Let 

v=xµ1 

then vsµ, thus by the Radon'-Nikodym theorem ([I'] Theorem 19.23, 

p. 315),, there is an fE L' (X, µ) such that 

v (A) =f fdµ for' each berel set A 
A 

Denote by foT the map x -º f (T (x) ). If A is a borel set 
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f fdµ =v (A) 
A 

v (T (A) ) 

fdµ 
T(A) 

By [I'7 ] (Theorem C, p. 163) , 

IXXT(A) fdµ = fX (XT(A)f) oT dµT-1 

where µT-1 denotes the measure 

A T-1 A)) 

Since is invariant, 

µT-1 µ 

Hence 

fdµ =f (XT(A) oT) (foT)dµ 
X 

XA(foT)dµ 
X 

=f foT dµ 
A' 

This holds for all borel sets A, so by [1"1], Theorem E, p. 105, 

f= foT a. e. (µ) 

If A is a-borel set, 

v(A) 5 fdµ 

Re f dµ + iC9m f dµ 
AA 

Since v, µ are positive measures, 

f 
. 4m fdµ0 

A 
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Thus by [1-7] (Theorem E, p. 105) again , Jmf = 0. A similar argu- 

ment shows that f must take positive values a. e. (µ). Let 

E= {x E X; f(x)>1} 
. 

Then E is a borel set, and 

v (E) =f fd > µ(E) unless µ(E) =0 
E 

But vsµ, thus µ(E) = 0. Hence f is essentially bounded, and 

0s f(x) s1a. e. (µ) on X. Let 

M= ess. sup. f 

= inf {a; f(x) saa. e. (µ) on X) 

m= ess. inf. f 

= sup {a; f(x) Z 
.aa. e. (µ) on X}. 

If m#M, let 

m<t<M. 

Then 

S, _ {x E X; f(x) < t} 

and 

S2={xEX; f(x)>t} 

are both borel subsets of X invariant under T. and both S1 and 

S2 must have positive measure by definition of m and M. Since 

µ is an ergodic measure, this implies that 

µ(S1) = (S2) =1 

But if µ(S1) =1 then µ(S2) = 0. This contradiction shows that 

m= M) and f (x) =ma. e. (µ) on X. Thus 

iµ1=v=m. µ. 
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But 

X=X µl (x) 

=m. µ(X) 

'=m 

so 

A similar argument shows that 

µ2=µ. 

Hence g is an extreme point of e,. This finishes the proof. 

The above proposition motivates the following definition: 

7.7 Definition Let G be a group of automorphisms of a 

C*-algebra 1. If f is a state of 21, f is G-invariant if 

f(A) = f(g(A)) for all AE%, gEG. f is said to be erqodic 

if f is an extreme point of the G-invariant states of 21. 

7.7 Remark If there is a G-invariant state on I, then there 

is an ergodic state on X, for the set of G-invariant states is 

a non-void, weak*-closed (hence weak*-compact) convex subset 

of E(U), so has an extreme point by the Krein-Mil'man theorem. 

The definition of an ergodic state was first given by 

I. E. Segal in [49]. 

If G is a group of automorphisms of the C*-algebra 21, and 

E is a G-invariant projection in 21, the map 

EAE - Eg(A)E 

is an automorphism of Eli E, since 
" 

Eg(A)E = g(EAE) . 

It 



- 116 - 

We can consider G in this way as a group of automorphisms of 

E. IE., and denote this group by GE. If n is a faithful represen- 

tation of V. then the map 

ng nýý: n(A) -' (g (A)) (A E 21) ,u 

an automorphism of n(ii). We shall denote the group of such 

automorphisms by nG ßc-1. 

We are now, in a position to obtain our first theorem. 

7.9 Theorem Let G "be a group of automorphisms of the von Neumann 

algebra R., fa G-invariant hormal state on R with support Ef. 

Then Ef is a G-invariant projection in R, and f is an ergodic 

state if and only if GEf acts ergodically on Ef REf. 

Proof Ef is the unique smallest projection F in R such that 

f(F) 1. Since 

f (g(Ef)) =f (Ef) (5 E G) 

we have 

g(Ef)=Ef (gEG) 
, 

so Ef is\G-invariant. Let it = of be the representation corres- 

ponding to f on the Hilbert space 2if. Suppose first that f is 

faithful i. e. 

Ef _I 

Then the von Neumann algebra n(ß) has a separating-generating 

vector xo, and n is a *-isomorphism. 

For AE %(R), let S denote the map 
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Axo -. A#xo 

Let {Ug; gE G} be the Segal unitaries for it. 

By the Tomita-Takesaki theory, S has a minimal closed linear 

extension, also denoted S. and if 

S= Jp' 

is the polar decomposition of S, then 

Jn(A)J = n(a), . 

Now ifBER, 

U9Si(B)x0 = U9n(B*)x0 

=x (9 ($# ), ) x0 

= n(g(B))#Xo 

= Sn(9(B))x0 

= SUgn(B)x0 . 

If x lies in the domain of S. then 

xEUf=x(it)xo, 

so there is a sequence {Bn} in a(1) with 

Bnxo -. x, Bnxo -º Sx. 

Thus 

SUgBnxo = UgSBnxo - UgS x. 

Also 

UgBnxo -" Ugx , 

so Ugx lies in the domain of S,. and 

16 
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S Ug-x = Ug Sx 

since S has closed graph. This shows that 

SUg=UgS (gEG) 

Now 

S=Jpi, 

so 

s=U sv* 99 

=U JUg U9U 
gg 

By uniqueness of the polar decomposition, 

U9J = JU 
g 

(g E G) . 

Suppose 

AE n(69) n {Ug; gE G}', 

then 

JA JE R(R)' , 

and 

JAJU = JAU J 
99 

.'= 
UgJAJ 

thus 

JAJE nw' f1 { u9; gE G}' 

Similarly if 

BEn (ct )' fl fu 
9; gE G}' 

then ý. " 

BJ AJ 
1f 

for some AEn (a), and 
V 
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JAJU =U JAJ 
99 

implies that 

JAUgJ = JUgAJ % 

hence 

AU =UA 99 

since J is a conjugate unitary. This proves that 

J(n(ß) n {Ug; gE G}')J = n(a)' n {Ug; gE G}ý. 

We assert that G acts ergodically on R if and only if 

n(a) fl {Ug; 9E G}' _ CIn( ) 

For suppose (*) holds) and AER, 

g(A)=A (gqG) 
. 

- Then 

Ugn(A) Ug = (g (A)) 7t(A) (9 E G) 

thus 

n(A)=xIý(sý) 

for some 4EC. Since it is faithful, we have 

A =XIV . 

and G acts ergodically. The converse argument is similar. 

Hence G acts ergodically on I. 

(6a)n{U; gEG}'=GI 
" 

9 n(ý) 

J(n(a) n {Ug; 9E G}') J= 01n(a) 

(#) 

10 
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t(a)', fl {ug; E G}' = CI 
ý(ý 

af is ergodic by [45], Theorem 6.3.3. 

Suppose now that f is not necessarily faithful, then 

flE RE is faithful, so by the above, GE acts ergodically on 
fff 

EfBEf if and only if f'Ef$E is an extreme point of the GE 
- ff 

invariant states of EfREf. The proof is finished by the 

following proposition. 

7.10 Proposition Let G be a group of automorphisms of the 

von Neumann algebra R. fa normal G-invariant state on ß, then 

f is ergodic if and only if f 
RE is an extreme point of the 

ff. ý_ 
GE - invariant states of E 

f63, E 
f. f 

Proof (ý) clear 

(ý) Let " 

f= Xg1 + (1 -X) g2 

with g1 and g2 G-invariant states of R. Then 

0 f- Äg1 = (1 -x)g2>- 

thus 

1 fZg120 

Hence if (Ea)a EA is an orthogonal family of projections in %, and 

E=E Ea ' 

then for any finite subset J of A, 
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05 g1 (E -EEa 

«EJ ýý . 
s f(E -E Ea) 

aEJ 

and the right hand side goes to 0 as J runs through the directed 

set of finite subsets of A. Thus g1 is completely additive and 

hence ultraweakly continuous. Now 

0s g1(I - Ef) 

s f(I-Ef)=0, 

so 

g1(Ef)-1' 

and 

E91 s Ef 

Since f is an extreme point of the GE -invariant states of Ef6ý, Ef, 
f 

ERE 11ERE 
ffff 

If AER. then 

f(A) = f(EfAEf) 

= g1(EfAEf) 

= g1(Eg EfAEfE9 ) 
11 

g1 (Eg AE 
9) 11 

g1 (A) 
' 

so 
f= 91 
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Similarly 

g2 =f, 

completing the proof, and thus completing also the proof of 

Theorem 1.9. 

Suppose now that 2[ is a C*-algebra acting in its universal 

representation, f is a state of 21, and G is a group of automor- 

phisms of W. Denote by f the extension of f to a normal state 
N 

of %, and by G the extension of G to a group of automorphisms 

of f. 

7.11 Lemma With notation as above, f is an ergodic state of 

i (relative to G) if and only if f is an "ergodic state of U 

(relative to G). 

Proof (=) If f is G-invariant, clearly f is G-invariant. 

"Suppose f is an ergodic state of 2I and 

ti with g11 g2 G-invariant states of Z. As in Proposition 7.10, 

g1 and g2 are normal states. Now 

f=f 

= xg1lW + (1 -X)g2121 .. 

911. and g2191 are G-invariant states of 2 thus 

g2121 

Hence 
N 

= 51 = 92 , 
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N 

so f is ergodic. 
N_ 

(<-) If f is an ergodic state of 91, and 

f =Xg1 + (1-R)g2 

with g1, g2 both G-invariant states of 2, then 9- 1, 
g2 are 

N 

G-invariant states of 21 , and 

X1+ (1 -A)g2 

so 

~NN 

gl =g2. 

Thus 

51 = 52 

showing that f is. ergodic. 

7.12 Corollary If an amenable group G has a representation as 

a group of automorphisms of a C*-algebra 1, then it has a repre- 

sentation as an ergodic group of automorphisms of some von Neumann 

subalgebra of n(V) where n is the universal representation of U. 

Proof Let a be a representation of G on Z, then 7ra(G)n-1 is 

a group of automorphisms of n(Z). Let 

H=na (G) n-1 

(the extension of na (G)7'1 to a group of automorphisms of 

n(i) ). Since G is amenable, G has-the weak fixed point property 

(W. F. P. ) (see Appendix $ ). If f is a state of x(U) let 

L'co; 9E G} 

where 
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ß (g) "_na (5) n-1 

and w* denotes closure in the weak* topology. E is a weak*- 

closed convex subset of E(n(d)). By the W. F. P. property, there 

is an hEC. with 

hoß(9) =h (g E G) , 

so h is ana (G) n-l-invariant state on n(2I). By Remark 7.8, 

there is an ergodic state k on n(2I), so Tc is an ergodic state 

on n(! U) (relative to H) by Lemma 7.11. Thus by Theorem 7.9, 

the group HE,, acts ergodically on Er n (2i) E7. Let 

ä(5) = ßa(5) n-1 

and 

Yý9)ýEkAEk) = El ä(9)(A)Ek 

for AE then y is a representation of G as an ergodic 

group of automorphisms of the von Neumann algebra Ek 

This completes the proof. 

7.13 Corollary Let f be a normal state on a von Neumann 

algebra R. then f is a pure state if and only if Ef is a minimal 

", projection in R. 

Proof Take G= {L), where z, is the identity automorphism of 

a. f is a pure state of it af is ergodic relative to G, since 

every state on R", ks G-invariant. Now f is ergodic a GE 
f 

acts 

ergodically on EfREf by Theorem 7.9. But GE is simply the 

identity automorphism of EfREf, and hence acts ergodically if 

and only if EfREf =G Ef i. e. Ef is a minimal projection in R. 

This completes the proof. 

V ýýýý, 
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If 9 is' a von Neumann algebra, a tracial state f of I is 

a state on 9 which is invariant under inn(ß), ' the group of all 

inner automorphisms of R. Since the unitaries in 6a span a 

algebraically, this is equivalent to f(AB) = f(BA) for all 

AP BE6ý. 

7.14 Remark R is a factor if and only if inn(6t) acts ergodi- 

cally on It. To see this, let inn(ß) act ergodically on It and 

let AE', the centre of It. Then A is invariant under inn(6t), 

so A= XI for some scalar X. showing that It is a factor. 

Conversely, if AE It and UA U* =A for all unitaries UE It, 

then BA, = AB for all BER. since the unitaries in It span ft. 

Thus AECI, so A=XI for some scalar A, showing that 

inn(ß) acts ergbdically on It. 

7.15 Corollary Let f be a normal tracial state on a 

von Neumann algebra R. then fis an extreme point of the tracial 

states if and only; if Ef63, Ef is a factor. 

Proof , This is an immediate consequence of Theorem 7.9 and 

Remark 7.14. 

7.16 Corollary Let 1 be a factor. If 6t possesses a normal 

tracial state f, then f is unique. 

Proof If f is a normal tracial state of a, then EfREf is a 

factor (since 6t is) and so f is an extreme point of the tracial 

states by Corollary 7.15. Suppose f1 and. f2 are normal tracial 

"states on iý, then so* also is J (f1 + f2), which is not an extreme 
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point. This shows that f1 = f2 must be unique. 

7.17 Remark Corollary 7.13 and Corollary 7.16 are known 

results in Operator Algebra theory. The proofs we have given 

are, however, new. 

7.18 Definition Let G be a group of automorphisms of a- 

von Neumann algebra R. 9 is G-finite if the G-invariant normal 

states of R. separate the points of R+ i. e. if AER+ and 

f(A) =0 for all G-invariant normal states f of R. then A=0. 

Let $1 G= {A E R; g(A) =A (g E G)}. Since each 9EG is 

ultraweakly continuous, RG is a von Neumann subalgebra of a. 

IfAER, let 

X (A, G) = co°W{ g (A) ;gE G} 

where ow denotes closure in the ultraweak operator topology. We 

need the following result, obtained by I. Kovacs and J. Szücs " 

([2-19], Theorems 1 and 2). 

7.1.9 Theorem Let 1 be a von Neumann algebra and Ga group 

of automorphisms of a. - Suppose 9 is G-finite, then for each 

TER, 

x (T, G) fl aG is a single element, denoted TG. 

The G-invariant map 

T TG 

is a faithful normal G-invariant projection of norm one from 9 

to RG 

We shall give a proof of this result due essentially to 
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E. Stprmer. Before doing this we give some preliminary lemmas. 

7.20 Lemma It suffices to prove Theorem 7.19 under the 

assumption that ß acts on a Hilbert space 4, there is a unitary 

representation g- Ug of G by unitaries Ug on 14 such that 

Ug A Ug = g(A) (A E ', gE C), and we may also assume that every 

normal G-invariant state of R is of the form wx for some xE 34 

such that U9 x=x (g E G). 

Proof Let it be the representation E9 {nf; f-is a normal 

G-invariant state of a}. Since R is G-finite, it is a faithful 

representation of a, and also n(R) is a von Neumann algebra. ' 

For each G-invariant normal state f of R. let (Ug)g 
EG 

be the 

Segal unitaries associated with f (as in Chapter V ). If 

x=EexfE7#n , 

define 

® Ugx =E Ug xf 

Then g- U9 is a unitary representation of G on U,., and 

Ugn(A)U;; (E9xf) = E®U af(A)Ug*xf 

N 
<ý = Eý %f (9 (A)) xf 

= n(9(A))(E@xf) 

Thus 

Ug n (A) Ug =E (g (A)) (g E G, AEv) 

Now it is a *-isomorphism between the von Neumann algebras 9 and 

N 

ý0 
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n(a), so 1c and x-1 are both ultraweakly continuous. If gEG, 

then 

ng 7r-1 :x (A) -. x (g (A) ) 

is an automorphism of n(R). Let 

nG 7t-1 =fng n-1 ;9E G} 

Then AGB-1 is a group of, automorphisms of If cp is a 

7t G n-1-invariant normal state of n (R)., then f= cp o n-1 is a 

G-invariant normal. state of R. Thus if xf is a cyclic vector 

for the representation of such that 

f= Wx 
f 

onf 

define yEXx by 

f=E®yg 

where 

0 (g f) Yg 

xf (gf) 

Clearly 

CP = WY; in(a) 
" 

Since 

Ufx =x (g EG) , gff 

we have 

UgY =y (g E G) . 

We may thus replace it by -x(R) and G by nG n-1 proving the result. 

N 

N 
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7.21 Lemma Let U be a'group of unitary operators on a Hilbert 

space 4, and x0 E 14. Then there is a unique vector xE4 such 
"N hat for each TE co(U) (the convex hull of U), there exists, 

T1\E\co(U) with 

IIT2T1Tx " xl( <e 

for all T2 E co(U). 

Proof Let 

={xE3#; Ux -x (UEU)} 

and 
1 

m_ ý. . 
If y E7n, w Ej then 

(U Y, w) _ (y, U-1 W) 

(y, w) 

0 

for all UEU, so both and 7n are invariant under U. Fix 

yEm, and 1 et 

{TY; TEco(U)} . 

Then Q) and 
X is convex. If TyE then 

IITYII 5 IITh IIYII 
s lIYll 

so is a bounded closed convex subset of 7n. Let z be the unique 

vector of minimal norm in . If UEU. then Uz E and 

1lUzi1 _ lizh) 
" 
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By uniqueness, 

Uz =z (U E It) 

Thus 

z ECU n ? 1?, 

so 

Z=0. 

Hence if E>0. there is aTE co (U) with IIT, yll < s, and so 

IIT2T1 yI) <6 (T2 E co (U)) 
. 

If now 

x0 =x+yo 

with xE, yo E 74, let TE co (U) and c>0. Applying the 

above argument to y= Tyo E 7/i, there is a T, E co(U) with 

IIT2T1T(x0 - x)II <e (T2 E co(U)) . 
ý4 

7.22 Lemma Let U be a group of unitary operators on a Hilbert 

space 14, 

0ý 
={xEU; Ux=x (UEU)} 

. 

Denote by E0 the orthogonal projection onto Then 

F. E co (u). - 
,c 

the strong closure of co (U) 
. 

Proof Let z1, ...., zn be n vectors in U. c>0 and ?1= 

then '" 

zý = xi yj 
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with xi EtJ, yi E V? . By Lemma 7.21, and its proof there is a 

T1 E co(U) with 

IIT1(z1 - x1) II <e 

Suppose 

T1, ..., Tk (1 Sksn -1) 

chosen such that 

IITkTk-1 
". T (zý - x)II <e (j = 1, ..., k) 

By Lemma 7.21, there is a Tk+l E co(U) with 

IITk+1 Tk ... T1 (zk+1 - xk+1)I) <e 

Since 

JITk+111 s1 

and 

Tk+, xj =x3 0=1, 
..., k) 

we have 

IITk+1Tk ... T1 (z5 - xi )II s IITk ... T1 (z5 - x5)II <e 

Thus T1, ;;,, Tn can be chosen such that if 

T= Tn Tn-1 ... T1 

then N 

TEco(U) 

and 

IITz. - xj11 = IIT(z - x; )ii@ 

e (i n) 
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Hence 
\. 

II(T-Eo)ze, \ 

and we have shown that 

Eo E co (ü) 

Proof of Theorem 7.19 By Lemma 7.20, we may assume R acts on a 

Hilbert space 9, there is a unitary representation g -» Ug of G on 

34 with a(g) = ad Ug, and that every normal G-invariant state of 9 

is a vector state. Let U= {Ug; gE G}, and g= (R U U)".. 

Denote by E0 the projection onto {x E U; Ug x=x (g E G)}. By 

Lemma 7.22, 

E0 E co(U)- " 

In particular, Eo E U", so 

Eo E (it )'. 

Let cp be a G-invariant normal state on it, then by Lemma 7.20, we 

can assume 

cp = wxý with E0x =x 

But then CEo, the central carrier of E0 in (9 G*) I, is a projection 

in the centre of RG, and 

(I - CEo = 11X112 - IICEo xlf 2 

Now 

XC = CE Eox 
00 

E x 0 

x , 
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so 

cp(I-CE)=0 
0 

This holds for all such cp, and R is G-finite, so 

CEO =I 

Let 

X'aE. A 

be a net in co(U) converging strongly to Eo, and let AER, then 

EAE= strong lim E Xa. UaA U-1 E 
0oa EA i1 gi gi ° 

since 

U-1 
Eo = Eo 

gi 

for all i; a. The net 

{E4'UaAU1 
i1 gi gi EA 

is bounded by IJAII, and the ball radius IJAII in R is weakly compact, 

so there is a subnet 

{E Xß Ugß A U-1 
i"EB 

converging weakly to BER, say. But the net 

ß 
ýEA Uß} 

1 gi 

converges strongly to E0 (being a subnet of a convergent net) so 

EoAEo = BE 
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Note now that if AER, then 

'ý. UgAUg-1 = a(g)(A) ER, 

so if B'E R then 

Ug B'Ug1 E ß' 

Also d` 
i 

RG _ (R U U) 

so 

" 
(9G)ß _ (a" uU). V 

Thus finite sums of the form 

j T. 9 (T. E R", gj 
.E 

G) 

from a algebra weakly dense in (RG)'. If 

yE (RG) Eo 3 

theyn y is the limit of vectors of the form 

E T. Ug Eoxi (T E R', gj E G, xi E $) 

and 

E T. U 
gi o x. = E. T. 

öE xi , i, jJi, j 

so % 

YE R" E_ 34 . UP 

The above shows that 

itCy Eou] = La' Eo 

so. 
CE ý((G)ý ) 

_ ý(gG)I EON] 

_ ýýý E� X] 

r 

\\ 
` 
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Thus if CER and C Eo = 0, then 

C= CI =C [R'. EoU] 

_ [RICE0 U] 

=0 

showing that B is the unique element of 9 such that 

E AE = BE 
"000 

Define 

ý (A) =B 

then ý is a positive linear G-invariant faithful normal projection 

of norm one from a onto aG (since it BE RG 

BEo = EoB = EoBE0 ) 

By construction 

0 (A) E coowf 5 (A) ;gE G) n 

and if 

B 'E coow{ g (A) 3gE G} fl aG 

then 

BE =E BE 
000 

= E0 A Eo , 

so 
B (A) 

by uniqueness. This completes the proof. 

Suppose now that G is a group of automorphisms of a 

von Neumann algebra 9, and H is a group, of automorphisms of a 

von Neumann algebra 8, then the direct product GxH can be 

identified, as in Chapter IV, with a group of automorphisms of 
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a09, via the map 

(g, h)"'90h , 

where g0h denotes the unique automorphism of R 0S such that 

(g ® h)(A ® B) = g(A) 0 h(B) (A E R, BE %) . 

7.23 Proposition Let 2, ä, G, H be as above. If 2 is 

G-finite and S As H-finite then R ®S is Gx H-finite, and 

ýý®ýýGxH_RG09H 

Proof Let 
,R 

act on the Hilbert space U, and % act on the 

Hilbert space H. '-, T, f cp is a G-invariant normal state of R and 
N 

is 'an H-invariant normal state of %, then 

fwxi with xiE34, 

and 

g yyi 
H. 

Define cp 0 on R. (D as usual by 

cp ® (A) _ wxi Y. 
(A) 

i 

Then cp 0 is a normal state of RO9, and 

0 ((g0h)(A®B))=p(g(A)) (h(B)) 

= cp(A) Vº (B) 

cp ®*(A®B) 

Linear combinations of elements-of the form A®B are ultra- 

weakly dense in R ®9, so cp 0r is Gx H-invariant. 

E, _ [I '. {xl, isis u}3 
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\\ 

\ 

Eý = Lýý'{Yi; 1sJ< °°}] 

and 

(tp 0 (EP 0 E*)' = cp(EP) * 

thus 

EP0ýs Elp 0 E* 

However, 

EP 
®= 

[(a 0 ä)I. {x 0 yj ,1si, ý < o}J 

z [aý 0 ä'. { xi 0 yj3 1si, 
,j< °°} 

thus 

EP®ý=EP®Eý 

Let 

E= V{ EP; cp is a normal Gx H-invariant state of ß (9 9} 

Eý = V{E ; cp is a normal G-invariant state of R} and 

E2 = V{E ; cp is a normal H-invariant state of 9} 

Then 

Ek E1 ®E2 

by the foregoing. But 

f(I - Eý) =0 

for all normal G-invariant states of a, so 

E1 =I 

since ß is G-finite. Similarly 

E2 =I, 

hence: 
E=, I , 
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showing that R0ä is Gx H-finite. Now if BEß, CE8, then 

(B) E ooow {J(B); gE G} 

(C) E co ow {h(C); hE H} 

Thus (B) is the ultraweak limit of a net 

{E X( gcc (B)} 
EA 

and (C) is the ultraweak limit of a net 

{E µkhk-(C)} EB k 

Thus ý, (B) 01 a 
(C) is the ultraweak limit of the net 

{Eý µk 5ý(B) ® hk(C)}a EA J, k 
ßEB 

{JE 
kx 

µk (5ý®hk)(B®C)aE 
A 

ßE B 

Thus 

(B) (C) E cö°"" { (5 0 h) (B (9 C); 5EG, hE H) 

Since also 

(B) 0 §(C) E (( ®ä)c x"-i 

we have 

it ®a(B®c) = §a(B) 0 §a(C) (BEe, CES) 

Now if AE (6ß (g S)GX H, then AER ®ä so there is a net 

Bn -» A ultraweak. ly, with Bn of the form 

Bn = EEi®Fi (EiE6ý) FiE9) 
i 
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Thus 

A (A) 

= limý6ý®5(Bn) 

=l im En 0 Fn ) 

= lim E (E? ) 0§ (Fn) 
i 

\ 
Thus 

AE gG®äH.. 
N 

This completes the proof. 

7.24 Theorem Let G (resp. H) be *a group of automorphisms 

of a von Neumann algebra R (resp. 'S). Let cp be a normal G-invariant 

state of a, *a normal H-invariant state of S. If cp is an 

ergodic state relative to G and * is an ergodic state relative 

to H. then cp 0 4, is an ergodic state relative to GxH. 

Proof If cp is an ergodic state of R then G 
. acts ergodically 

on ECP R E(P by Theorem 7.9. Similarly, the group HE acts 

ergodically on E4, SE,., thus. 

(E 
(P 

a ECP)GEtp = CI 

H 
_ (E4, ä E4, ) Ej 

Since ECPREY is GEC- finite, and EýSEý is HEB-finite, it follows 

by Proposition 7.23 that 

GE X HE 
(EýREý ®E4, ä E4, ) 9$= (CI 

i. e. 
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®Eý CI , 
[(EIf ® E*)(a (9 9)(ECP ®E*)]ýGxH)Elp 

But 

E9 ®E4 = Ecp ®* 

so (G 

.x 
H)Ec9®, acts. ergodically on ECP ®* 

(a ® s)ECP ®ý 
thus cp ® jr is an ergodic state relative to GxH, by Theorem 7.9. 

This completes the proof. 

We turn now to the question of the existence of normal 

states of a von Neumann algebra which are invariant under the 

action of a group of automorphisms of the algebra. In [t$], 

A. Hadjian and S. Kakutani defined the concept of a weakly 

wandering set. If (X, 63 µ) is a finite measure space 

(i. e. µ(x) < -), where 8 is the v-ring of µ-measurable subsets 

of X, and T:. X -X is a bijective map such that T and T are 

both measurable transformations, then a weakly wandering set 

is a subset S of X such that for some sequence (nk) of integers, -" 

the measurable sets 

{Tnk(S)}k 
1 

are mutually disjoint. It was shown in [tc] that a necessary 

and sufficient condition for the existence of a finite measure 

v equivalent to µ (written µ"r v. This means that v and µ 

have the same null sets) such that 

v (T(E)) =v (E) 

for each EE6 is that there are no weakly wandering subsets 

of X, a ýSescýe nut 

Suppose now ß is an abelian von Neumann algebra. As 

mentioned in Chapter I, a is isomorphic to C(X), all continuous 
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complex-valued functions on X, where X (the carrier space of 

a) is a hyperstonean space, and the normal measures on X 

correspond precisely to the elements of R*. By Proposition 1 

of [c(], a positive (regular borel) measure µ on X is normal 

if and only if it annihilates each nowhere dense subset of X. 

It follows that if v is another positive measure and v,. µ, 

then y is also normal. As in the remarks following Theorem 7.1, 

if 

pEX= ýý , 

and 9 is an automorphism of 9, then 

p09 EX 

and if 

G*; p-+po8 , 

then Q* is a homeomorphism of X. If we identify R with C(X), 

then 
N. 

G(f)(x) = f(G*(x)) (f E C(X), xE X) .ý" 

Let cp be a faithful normal state of R., and µ the. corresponding 

positive normal measure oh X. Since y is faithful, the support 

of g is X. By the Hadjian-Kakutani result, there is a measure 

vµ with 
(e#(E)) = v(E) 

for each borel set E in X if and only if there are no weakly 

wandering subsets of X relative to the transformation ®#. 

i. e. if and only if there are no borel subsets E of X with 

positive measure such that for some sequence (n 
k) of integers, 

. 
the bore l sets 

(8#)nk (E) 
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jk, E ch-t. «t. 
are` mutually disjoint. 1 Since µ is normal, 

µ ýE) =µ (F) 

where F is the closure of the interior of E, by [9 ], 

Corollary to Proposition 6. Now F is an open-closed subset of 

X since X is stonean, thus XF is a non-zero projection in C(X). 

Let 

Fib = (9#)nl (F) (1 (G*)ni (F) 

Then 

Fly c (G*)ni(F)\(A#)ni(E) 
, 

Since (A*)ni is a homeomorphism, (A#)ni(F) is the closure of 

the interior of (A)ni(E), thus 

µ(Fi 
j0 

since µ is normal. Hence the projections (G*)ni(F) are ortho- 

gonal. In operator theory language then, we see that there 

is afaithful normal G-invariant state on ß if and only if 

there are no non-zero projections E in R. such that-for some 
n 

sequence (nk) of integers, the projections A k(E) are 

mutually orthogonal. 

If G= {An; nE Z}, then G is an abelian group, hence 

amenable. We shall show that the above result generalises 

to the situation of an amenable group of automorphisms of a 

countably decomposable von Neumann algebra, with a new defini- 

tion of weakly wandering projection. We also show that this 

definition coincides with the concept of a weakly wandering set 

when the algebra. is abelian. 
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7.25 Definition Let G'be a group of automorphisms of a 

von Neumann algebra R. E is a weakly wandering projection 
\if 

there is a sequence (gn) in G with gn(E) -+ 0 in the weak 

operator topology. Let f be a faithful normal state of R. 

G is sa d, to be poorly mixing for f is given c> 02 there is 

a 6(e) >0 such that if E is a projection in R and f (E) a 6) 

then inf f (g (E)) z 6(e). 
gEG 

7.26 Theorem Let 9 be a countably decomposable von Neumann 

algebra, G an amenable group of automorphisms of R. The following 

are equivalent 

(1) G is poorly mixing for each faithful normal state f of R. 

(2) There is a faithful normal G-invariant state on R. 

(3) There are no non-zero weakly wandering projections in a. 

Proof 12: Let f be a faithful normal state, and 

e. = cö {fog; gE G} where a denotes the a topology on 

We assert that E is a a-compact. For suppose hot, then 

by [2], Theorem 11.2. there is an orthogonal sequence (pn) of 

projections in R. an e>0, and a sequence (gn) in G with 

f (gn (pn)) Ze for all n. Then f(p) Z 8(e) for all n, yet 

pn -º 0 weakly. This is a contradiction so the assertion is 

proved. Now applying the Ryll-Nardzewski fixed point theorem 

to e (see Appendix t\), there is an hE L' with hog=h for 

. all gEG. Thus h is a G-invariant normal state on R. If 

Eh is"the support of h, then Eh is a G-invariant projection 

in R. so f(Eh) = h(Eh) = 1. Thus I=Efs Eh. Hence Eh = I, 

showing that h is faithful. 
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(2) 3 Let E be a projection in R and (gn) a sequence in G 

with gn(E) -' 0 weakly. Let h be a faithful normal'G-invariant 

state on R. then h(E) = h(gn(E)) for all n, thus h(E) =0 and 

E=0. 

32 Let f be a faithful normal state on a, ' and let 

S= co {fog; 9EGJ 

S is a weak*-closed convex subset of the states of R, so S is 

weak*-compact. Since G is amenable, there is an hE3 with 

hoG=h (see Appendix 6). Thus h is a G-invariant state on 

a. There is a unique decomposition h= hn + hs with hn a 

normal positive linear functional on Rand hs a singular posi- 

tive linear functional, on it Theorem 3). By uniqueness 

of-this decomposition, hn and hs are both G-invariant. If 

hn L 0, let E be the support of hn. Suppose E/I. then 

hn(I - E) = 0. Let F be a 
. 
projection in 9 with 0<F< I-E 

and hs(F) = 0. This exists by [55], Theorem 1. We have 

h(F) = hn(F) + hs(F) = 0. 
ßi 

Let 

X= inf f (g (F) ) 
9E G 

" then 

f (g (F)) z) 0 (g E G) 

\ so 

p(F)ZX (pE5) 

In particular, h(F) a 4. Hence X=0. Let (gn) be a sequence 

iv f with f(gn(F)) - 0, then gn(F) -º 0 weakly since f is 

faithfulChapter I, §4, Proposition 4), so F is a weakly 

wandering projection in R. Thus F=0 and hn is faithful. If 

.0 

ý, ý ý. 
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hn = 0, then h is singular and by [5ý, Theorem 1, there is a 

non-zero projection E in ißt with h(E) = 0. A similar argument 
9Y ' 

to the foregoing shows that E is a weakly wandering projection 

in R, hence E=0. This contradiction proves that hn is a 

faithful normal G-invariant positive linear functional on R. 

and gives the result. 

21 Let 9 be a faithful normal G-invariant state on R, 

and suppose (1) is not true, then there is a sequence (En) of 

projections in R and an e>0 with f(E) ae for all n, and 

inf f(g(En)) < n. 

gEG\ 
For each n, choose gn EG with, f(gn(En)) < 

n, 
then 

gn(En) -º 0 ultraweakly, by [7], Chapter I, §4, Proposition 4, 

thus cp(En) _p (gn (En) ) -º 0, so En -º 0 ultraweakly (by [7], 

Chapter 1, §4, Proposition 4 again). Hence f(E) -» 0, a contra- 

diction. This completes the proof. 

Theorem 7.27 Let g be an abelian countably decomposable 

von Neumann algebra acting on a Hilbert space 9, G a-group of 

automorphisms of R, then the following are equivalent: 

(1) There is a projection Et0 in a and a sequence (gn) in G 
% 

with gn(E) -0 weakly. 

(2) There is a projection F/0 in R and a sequence . 
(hn) in 

G such that the projections hn(F) are mutually orthogonal. 

Proof (2) (1): obvious since an orthogonal family of projec- 

tions must converge weakly to zero. 

12 Let E E$ be a non-zero projection and hn EG be 

such that h(E) -0 weakly. Let e>0 and let en=en 
n. 2 
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Let w be a faithful normal state on R and choose g1 with 

w(g1(E)) < e1. Suppose g1, ".., gn-1 chosen. The map 
n-1 _1 A -" t w(g. (A)) is ultraweakly continuous, so there is an 
j=1 J 

ultraweakly open neighbourhood U(en) of 0 in R such that 

AE U(en) implies w(g' (A)) < en (1 5js n-1). By [7 ], p. 32, 

U(en) contains a set of the form {A; wx (A) <6 (1 5As k)) 
k 'ý 

where xk E 34. Let A=E wx2 then AERß and G (A) <6 ' 

implies w(gý1 (A)) < en 
, 2=1 

, 
(1 sjs n-1 ). Now A(hr(E)) -+ 0 as 

r -+ ý, so there is a gn with A (gn (E)) < 6. Thus 

w(gj-1gn(E)) < en (1 Sjs n-1) (#) 

The proof now follows that of [15], Lemma 4. By induction there 

is a sequence (gn) in G such that (*) holds for all n. Let 

Go iu1 
Eý =VV g(E)E. Then El is a projection in 

i=1 j=1 

and 

w (E') sE 
lE1 

w (g. g. (E) ) 
i=1 j=1 

Co i-1 

i=1 j=1 1 

Let F=E- E', then w(F) >0 if e is sufficiently small, so F 

is a non-zero projection in ft.. Also, 

Fgý1gi(F) s (E - E') 9ýýgi(F) 

s 

Thus'gj(F) gi(F) =0 (i I j). Hence {gn(F)l is a sequence of 

orthogonal projections in R. This completes the proof. 

4 

'N 
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I would like to thank Professor M. Takesaki for a most 

stimulating conversation on the above topic. 

7.28 Remark It has been pointed out to me that the defini- 

tion of a poorly mixing group,, and the statement (1) (2) of 

Theorem 7.26 are similar to a result of E. Sttrmer ([$l], 

Corollary ). This was, however, unknown to me at the time. 

ý4 

I 

0 

4 



- 148 - 

APPENDIX A 

The Ryll-Nardzewski Fixed Point Theorem 

Let (E, T) be a locally convex Hausdorff linear topological 

space, xa non-void 6(E*, E)-compact convex subset of E, S. a 

semigroup of ß(E*, E)-continuous maps from K to K which satisfy 

the following properties. 

(i) If x, y E K. x y, then 

0'{Tx - Ty; T Eä} 

where closure is in the -r-topology. (we say a is non-contracting 

if (1) holds) 

(ii) If TEä, then T is affine i. e. 

T(Xx + (1 -X )y) = %Tx + (1 - X)Ty 

ýXýY E K, 0sXs1). 

We shall prove that ä. has a fixed point in K i. e. there is 

an xEK such that 

`Txx (TEä) 

We need, first some preliminary results. Recall first that a 

topological space X is said to be of first category if X can be 

expressed as a countable, pnion. of nowhere dense subsets. X is 

of second category if it is not of first category. 

Lemma 1A nor'-void compact Hau. sdorff space of second category. 

Proof Let E0 be a compact HausdoTff space and suppose 

E=UEn with En closed and int(En) _0. Let 
n=1 

\ G1 = E\ E1 
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G1 is open and non-void. ' Since E is a normal space, there is 

a non-void open set H2 with H2 C GV Let 

G= H\E 222 

then G2 is open and non-void. . By induction we obtain a sequence 

{Gn} of non-void open sets with 

(a) Gn+l C Gn 

(b) Gn n En =0 

for all n. 

The sets Gn are compact, and by (b), 

Co 
nG= 

n=1 n 

Thus by (a), 

Gn = 

Hence Gn =0 for some n, giving a contradiction. 

Lemma 2 Suppose K isr-separable. Let p be a continuous 

seminorm on E, and e>0. Then there is a closed convex set 

CCK such that 

C/K 

p-diam(K\C) ss 

i. e. 

sup{p(x - y); x, y E K\C} AE. 

Proof Let 

S= {x; p(x) 5 s/4} . 

-i 
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S is closed, convex and int(S) /0 
. Since S is T-closed it is 

also a(E*, E)-closed. Let 

ext(K) = set of extreme points of K 

ext(K) is non-void by the Krein-Mil'man theorem. Let 

D= a(E*, E)-closure of ext(K) 

D is a non-void 6(E*, E)-compaft Hausdorff space, so by Lemma 1 

D is of second category. Since K is T -separable there is a 

sequence {kn} of elements of K with 

K=U (kn + S) 
n=1 

Now 
Go 

Dc U (k+S) (1D 
n=1 

and each (kn + s) (1 D is closed in the relative weak topology, 

so at least one of the sets (kn + S) fl D contains a non-void 

relatively weakly open subset. Hence there is akEK and a 

6(E*, E)-open set W with 

(k+s)f1DDWfD cp 
Let 

K= cö (D\W) 

K2 '= 
\co 

(W (1 D) 

(closure in Tr-topology). K1 and K2 are closed and convex, hence 

weakly closed subsets of K. Hence both are weakly compact convex 

sets.. If K=K, then 

ext(K) C D\. W 
N 
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by the converse of the Krein-Mil'man theorem ([27j, Theorem 15.2, 

p. 132). But this implies that 

D= weak closure (ext(K)) C D\W, 

contradicting the fact that DnW /0 
. Hence '"ý 

K K1 (1) 

since 

Wf1DCk+S 

and k+S is convex and weakly closed, we have 

K 

and so 

p-diam (K2) s e/2 . (2) 

Also 

K= co (K1 U K2) (3) 

for (KI 
.U K2) is convex and weakly compact, and contains 

ext(K), hence contains K by the Krein-Mil'man"theorem. 
" 

Let rER, 0<rs1, and define 

fr K1 x K2 x[r, 1] -K 

by 

fr(x1, x21A. )= Xx1 + (1 - Ox2 

Let Cr be the range of fr. Cr is weakly compact. We assert 

that Cr is convex, for 

a(hx1 + (1 - ? )x2) + (1 - a) (Ii yl + (1 - µ)y2 ) 

a (7 - a) II y 
a)11{a%+0 -a} Ix1+a%+ (1 - a) 
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+a(1 + (1 -a)'(1 -µ){ a(1 - R) 
a1 
+ (1 

-% 
-a (1 - µ) x2 

(1 - a)(1 -µ)Y2 + 
a(1 - x) + (1 - a) (1 - µ) 

} 

_ [aX + (1 - a)µ]z1 + [a(1 - X) (1 - a) (1 -µ)]z 2 

with z1 E K1 , z2 E K2 

= OZ 1+ 
(1 - A) z2 

where A= a% + (1 - a) µ 

Also, Cr ?K 

for if Cr =K then every zE ext(K) is of t he form 

z=1x + (1 -10x2 

with x (j = 1,2) EK j j 

and XE [r, 1] . 

Since KcK. this would imply that 

z= x1 = x2 

or 
A°=1 and z= x1 

In both cases 

z -E K1 , 
and 

ext(K) c K1" 

so. 
KC K1 

by the Krein-Mil'man theorem, contradicting (1). Hence 
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Cr /K for any r>0. (4) 

If YE K\ Cr, then by (3) 

y= hx+ (1 -A )x1 
2 

(xi E Kj , ). E [0, r[) 

so 

y- x2 = Jý (x1 - x2) 

P (y - x2) = %p (x1 - x2) s rd 

where d= p-diam(K). Note that- K., being o"(E*, E)-compact is 

T-bounded by Theorem 17.5, p. 155, so d< co 

By (2) 

p-diam(K2) s E/2 

so if 

Y11 Y2 E K\ Cr 

then there are x1, x2 in K2 such that 

p (Y1 - x1) s rd 

p(Y2 - x2) s rd . 
Thus 

p(Y1 - Y2) 5 p(Y1 - x1) + p(x1 - x2), +\p(Y2 - x2) 

5 2rd + e/2 . 

" So 

p-diam(K\Cr) s 2rd + e/2 . 

Take C= Cr, and r= e/4d. C is convex, weakly compact, and 

p-diam (K \ C) se. 

\- t 

ýI 

N 
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Theorem (Ryll-Nardzewski)-' Let K be a non-void weakly compact 

convex subset of a linear topological space E. Let % be a non- 

contracting semigroup of weakly continuous affine maps from K 

to K. Then there is an xEK such. that 

Tx=x (TE9) 

Proof If TEä, let 

Y(T)={xEK; Tx=x} 

We assert that if T1, ...., Tn E S, then 

nr (n (T1 + ... + Tn) nY (Tk ) 
k=1 

This suffices to give the result for 
n(T1+ ... + Tn) is a weakly 

" continuous affine map from K to K, so by [ ], Ch. V, §10, Theorem 6, 

the sets Y(T) are non-void, weakly compact, and have the finite 

intersection property. Thus 

(1 {Y(T); TE 91, 

is non-void, giving the result. It suffices to prove (1). 

Clearly the right hand side is contained in the left hand side 

and (1) is true for n=1. 

Suppose (1) is false and let r z'2 be the least positive 

integer for which it fails for some T1, ..., Tr. Let 

To =r (T1 + ... + Tr) . 

then there is an xo EK with 

T0 x0 = x0 0 

but Tk xo xo for some k, 1sksr. It follows that 
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Tk xo 7' x0 (1 5ks r) (2) 

for suppose Tr xo =x0 say, then 

rx = rT x 000 

T1 x0 + ... + Tr-1 xo + x0 

Thus 

(r - 1)x0 = T1 X0 + ... + Tr-1 xo 

so 

... x0 E9 (r-1 (T ++T r-1 
)) 

By minimality of r 

r-1 
xoE fl Y(T. ) 

j_1 
thus 

Tjx0=x0 
"(1s 

j 

a contradiction proving (2). 

Since S is non-contracting, it follows from (2) that 

there is a continuous seminorm p on (E, T) and an e>0 with 

P (T Tk xo - Tx0) >e" (T Eä, 1sks r) (3) 

Let So be the semigroup generated by T1, ..., Tr, and let Ko be 

the weakly closed convex hull of {Tx 
0; 

TE äo}. Ko is a weakly 

compact, non-void separable convex subset of K. By Lemma 2, 

there is a closed convex subset C of K0 with-C K0, and 

p-diam (Ko\ C)se. 

Since C 7' Ko, there is an SE go such that 

Sxo E Ko\C 

Since T0x0= xo ,' an'S is affine, we have 

ýI 
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oooo) 
Sx=STx=r (ST 

1xo+... +STrx 

Thus 

ST. xo E Ko C 

for some j (since otherwise S xo E C). 

Since 
ST. xo E Ko C, 

Sx0 E Kö C 

and 

p-diam (Ko C) sE 

we have 

p(STj x0- Sxo) se 

contradicting (3). This contradiction proves (1) and finishes 

the proof of the theorem. 

The above proof is due to I. Namioka and E. Asplund ([qo]). 

The following corollary is the form most useful to us: 

Corollary Let K be a non-void weakly compact convex subset 

of a Banach space E. Then there is an xEK such that 

Tx x 

for all isometric linear maps Ts E-+ E such that T(K) r. K. 

Proof Let 9 be the set of all isometric_T s X-+ X such that 

T(Q) Q. Clearly ä is a non-contradicting semigroup of linear 

maps. A basic weakly open neighbourhood of 0 is of the form 

U= {x; (x)ý <1 ý1 S7s n)} 

with fj E E*. Let 

V= {x; I T*(fj)(x)I <1 (1 sjs n)} . 
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Then V is a weak neighbourhood of 0 and 

T(Y) C u, 

thus each T is weakly continuous. The result follows. from the 

theorem above. 

ýI 

J 

lp 
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APPENDIX B 

-The Weak Fixed Point Property for Amenable Groups 

Let G be a group, B(G) the set of all complex-valued bounded 

functions on G. If h, gEG, fE B(G), define 

Xg(f)(h) = f(gh) 

pg(f)(h) = f(hg) 

Then 

{Xg ;gE G} 

and 

{pg ;gE G} 

are groups of transformations of B(G). Each Ag (resp. pg) is 

called a left (resp. right) translation. If B(G) is endowed 

with the supremum norm, it becomes a Banach space. An invariant 

mean on G is a map ßE B(G)* such that 

(i) (1 i* translation invariant i. e. 

(I(Xg(f)) = n(pg(f)) = 0(f) (f E B(G) 'gE G) 

(ii) (fl(f)ý s sup {) f(h)` ;hE G} . 

(iii) If 1 denotes the function taking the value 1 everywhere 

on G. then 

(1(1) =1. 

(iv) If fz0 then 

o(f) 20, 

so ß takes real values on real valued functions. Hence 
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Re fl(f) = n-(Re f) (f E B(G)) 

If there is an invariant mean on B(G), we say that G is an 

amenable group. 

Theorem Let E be a Banach space, G an amenable group of 

isometric linear maps from E to E. Let fE E* and define 

-w#. x= co (fog ;gE G} 

(closure in weak*-topology). Then there is a cp E }G such that 

cpog= cP (g EG) . 

Proof For aEE, define 

*a(9) = f(g(a)) (9 E G) 

*a(g)1 s IIfIIIig(a)II 
= i! fII all 

so *a E B(G) for each aEE. Let C2 be an invariant mean on B(G), + 

" and define 

(a E E) cp(aý = 04a) 

Then if a, bEE, X, µEC 

cp(Aa + µb) = n(*Aa+ 
µb) 

-**a+µ'ßb) 

_ )cp(a) + hup(b) . 

so cp is linear. Also if aEE, 

ýcp (a)I 

s sup {1ýra(9)) 3gE G} 
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= sup { 1f (g (a) )l ;gE G} 

s IIfII Mail . 
Thus 

c, E E# . 
Now 

*g(a)(h) = f(h(g(a))) 

= f(h9(a)) 

_ *a(h9) 

= P9($a) (h) 

Thus 

*9(a) = P9(ta) (9 E G, aE E) . 

so if9EG, aEE, 

cp(9(a)) = n(ýºg(a)) 

= n(P9(ta)) 

= n(ta) 

_ p(a) 

Showing that 

cpo9 = CP (9EG) '. 

It remains to prove that cp E K. 

Suppose cp K, then by the Hahn-Banach theorem there is a 

weak* continuous linear functional y on E*, tER and an e>0 

such that - 

Re ? (cp) st<t+e Re y (k) 

for all kEK. 
.. ý 

ti 
ti 
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Since y is weak* continuous, y corresponds to an element 

of E, by [13] (Chapter V, §3, Theorem 9, p. 421). Hence there 

is an xEE such that 

Re cp (x) sts t+ es Re f (g (x) ) 

for all gEG. Now 

Re f (g(x)) _ (Re *x) (g) 

" Thus 

(Re ix) (g) Zt+e for all gEG. 

Hence 

(l(Re 
x) 

zt+e. 

But "' 
tl(Re *x) = Re n(ýx) 

= Re 9 (x ) 

t 

This contradiction gives the required conclusion. 
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APPENDIX C 

In this Appendix we shall prove that if cp is a continuous 

surjection from a compact totally disconnected Hausdorff space 

K onto a Stonean space S, there is a continuous map f: S -+ K 

such that cp of is the identity map on S. The result is due to 

Gleason, but the proof we give here is due to A. Connes and can 

be found in [54]. Theorem 48. 

Lemma Let cp be a continuous map from a compact totally 

disconnected Hausdorff space K into a Stonean space S. cp is an 

open mapping if and örUy if for each non-void open set E in K. 

q (E) is, not a nowhere dense, set. 

Proof If (p is an open, map, and E is a non-void open set in 

K, then cp(E) is a non-void open set in S, so y(E) cannot be 

nowhere dense. Conversely, since K is a compact totally discon- 

nected Hausdorff space, its topology has a basis consisting of 

open-closed sets ([ti-q], Theorem C, p. 150). Thus it suffices to 

show that if V is an open-closed set in K, then cp(V) is open in 

S. Now V is compact, so cp(V) is a compact' set. Note also that, 

the interior, int cp (V), of cp (V) is open in cp (V) and if 

W= int cp(V) then WC cp(V). Since S is Stonean, W is open, 

thus Wc int cp(V). This shows that int cp(V) is an open-closed 

set. Hence 9-1 (int cp (V)) is open-closed in K. Now Y= cp (V)\intcp (V) 

is closed, and has void interior, so Y 'is a nowhere dense set. 

However, 

Y (V\cp-1 (int cp (V)) ) 
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and V\cp-1 (int cp(V)) is open, thus V\cp'1 (int cp(V)) is void, 

showing that 

9(V) = int cp(V) 

So cp is an open mapping. 

Theorem Let 9 be a continuous surjection from a totally 

disconnected compact Hausdorff space K onto a Stonean space S. 

Then there is a continuous map f: S-. K such that cp of is 

the identity map on S. 

Proof Let X denote the set of all compact subsets K' of K 

such that cp (K') = S. KEh, so X is non-void. X is a partially 

ordered set under set inclusion. Let (Ka)a 
EA be a chain in X. 

By indexing the sets Ka by themselves, we can assume that A is 

a directed set. Let 

K= fl K 
1 aEA 

Each Ka is compact and K is compact, so K is a non=void compact 

set. 

Let sES. For each a E"A, there is a. ka Ka with 

cp(ka) = s. Then {ka}a 
EA is a net in K, so has a cofinal conver- 

gent subnet { kß}ß E B, 
Let kß k, then 

cp(k) = lim cp(k 

=s 

We claim that kE Kl, for suppose not. Then for some ßo, 

ký Kß (¢ ý ßo) so for some implies k¢ jý Ký (y a ßo)" 

But if ßiß, and ßZ ßo then kE Kß -a contradiction. Thus 
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kE K1, and cp (K1) = S. This shows that x is inductively ordered. 

By Zorn's Lemma, X contains a minimal element K0. 

(1) wjKo is an open mapping: Let V be an open non-void set in 

Ko. Since cIK0 is surjective, 

S\cp(V) c cp(Ko V) 

so 
S\cp Vc cp (Ko V) 

since cp(Ko V) is compact. Suppose cp(V) is nowhere dense, then 

S S\int(cp(V)) 

S\cp(V) 

S\cp(V) 

q(Ko\ V) 

Thus K0\V E X. By minimality of Ko, cp(V) is not nowhere dense, 

thus by the lemma, 9p1K0 is an open map. 

(2) cpIK_ is infective; Suppose there are elements"x1, x2 in Ko 

with x1 / x2 and cp(x1) = cp(x2). Since K has a base consisting of 

open-closed sets (M, Theorem C. p. 150), there is an open-closed 

set V containing x1 but not x2. Now cp(V) is open-closed since 

= 91K 0 
is an open mapping, and 

V# _ cP(cp(V))\ V 

is an open neighbourhood of x2 with 

cp (V' ) cp (V) .. 

If x ýcp (K0\ V' ), then xE cp (V') c9 (V) so S\cp (V) c cp (KQ\ V' } 

If xEV, then x'V, thus 
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CP (Ko\V') D p(V) U Sky (V) 

Thus Ko V' E X, contradicting the minimality of K0. This shows 

that cp) Ko is bijective, open and continuous. Thus if f= (cplKo 

then f: S -+ K is a continuous map, and for sES, 

(w o f)(5) = cp((cpIKo)-1(s)) 

91Ko((PIK0)-1 (s) 

=5. 

This completes the proof. 

.I 

0 



- 166 - 

1 

APPENDIX D 

A topological space X is said to be locally arcw}r, conroct d 

if every neighbourhood of a point in X contains an arcwise 

connected neighbourhood of that point. X is Simply tonne cod if 

every loop in X is homotopic to a point. If G and G' are topo- 

logical groups with identities e and e' respectively, a 12ýaj 

ho omorrhism from G to G' is a continuous map f from a neighbour- 

hood U of e in G to a neighbourhood V of e' in G' such that 

if at b and ab lie in U, then 

f (a) f (b) E V. and 

f(a) f(b) '= f(ab) 

Theorem ([4-ý, Theorem 80, p. 366) Let G and G` be arcwi se 

connected topological groups with identities e and e' respectively. 

Suppose that G is also locally arcwise connected and simply 

connected. Let f be a local homomorphism from G to G'. Then f 

extends uniquely to a continuous homomorphism from G into G' i. e. 

there is a continuous homomorphism cp iG G' such that on some 

neighbourhoodl of e in G, 

'ý v1,, ß, = fl ,, ý 

Proof Note firstly that if sp is any homomorphism from G into 

G' extending f, then qr is continuous at e, hence continuous every- 

where on G. We show next that the exter lion is unique. Suppose 

cp and q' are two homomorphisms from G to G' extending f. Let 

gEG, and suppose is a neighbourhood of e in G such that 
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4 

(PI, (P l, ýc =f 

Since G is connects there are elements ds, 9lo """, 9n E% with 

9= 9ý ... gn 

by L z3, Theorem 14, p. 129. Then 

qß(9) _ (P(9T) ... cp(9n) 

f (91) 
... f (9n ) 

cp' (91) 
... ý' (9n ) 

9' (9) 

Thus (P = fp ' 

We now construct the extension q). Let P be a path in G 

with initial point e, terminal point g. We shall show that 

there is a unique corresponding path P' in G' such that 

(a) p'(0) = e' 

(b) If f is defined on the open neighbourhood U of e, then 

there is an s>0 such that 

I tI - t2l <c impbiea 

P(t1 )-1 P(t2) EU and 

f(P(t1)`1P(t2)) = P'(tI)`l P'(t2) , 

We prove firstly that the path P' is unique. The initial point 

of P' is determined by condition (a). . Moreover if P' is uniquely 

determined for t< to, then it is uniquely determined for tt to 

by continuity of f. Suppose now that to <t< to * ýc, then 
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I 

P(to)-1 P(t) EU and 

f (P(t0)-1 P(t)) = P' (t0)-1 Pi(t) 

Thus 

Pý (t) = P' (t0) f(P(t0 4)-1 P(t)) 

This shows that P' is uniquely determined for all t, 0<t< to+c. 

Hence P' is uniquely determined for all tE [0,1] by conditions 

(a) and (b). 

We now show that such a path P' exists. Since the map 

(g, h) -" g-1h is continuous from GxG to G, there is a neighbour- 

hood V of e with V-1V c U. The map "(t, s) -º P(t)-1 P(s) is conti- 

nuous on [0, i3 2, thus there is a positive integer n such that 

I tl - t2J < in. implies P (t1) -1 P(t2) EV. 

Let e=n. If m is an integer with 0s in < n, suppose P' has 

already been defined for all t, with 0sts mg , in such a way 

that conditions (a) and (b) are satisfied. We shall extend the 

domain of P' to the interval 0sts (m+7)a. Since the case m=0 

is covered by the condition P'(0) = e', it follows by induction 

that P' can be defined on all of [0,1] as required. 

Let 0shse. Define 

P'(mc . h) = P'(mc)f (P(mc)-1 P(mc +h)) k) 

Clearly (a) holds for the extended path P'. To show that 

(b) still holds let h' be a real number with Ih'j s c. If h'. 9 0, 

(m it +h') = P'(ms) f (P(m9)-1 P(mc +h)) (**) 

by (*). If h<0, then me + h; < mt , and 1(mt + h')-mcj t, 
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r 

so by inductive hypothesis, P (m e+h ') " (P(m e ))E V and t**) holds 

by condition (b). Hence (**) holds for all real h' with Ih'' s c. 

It follows that 

P'{ms " h) P"{me * h') = [P" (me) f(P(mc)-1 P(me + h))] -1 

x [p' (me) f{P(me)-1 P(mc ; h))] 

Note that since ©$ hsc, 

P(mg)-1 P(me + h) EV 

hence P(ms + h)-1 P(me) E V-1 CV, 

9 so f(P(ms + h)-1 P(nie) " P(m4)-1 P(me +h)= f(®) a e' . 

showing that 

[f(P(mc)-1 P(mc + h)]-' = f(P(mc + h)-7 . P(mi)) 

Thus 

P'(mc'+ h) ý P'(ma + hf) = f(P(mc + h) -1 P(me)) " P'(mc) 

x P'(mc) " f(P(mg)+1 P(ms + h')) 

= f(P(mc; h)+1P(mc)) " f(P(mci1P(mc *h#)). 

Now P(mc + h)`1 P(ms) E 'V 
'C 

U 

and P(mg)-1 P(mc + h') E V-1 CU. 

Thus P(me+ h)-'P(ms)P(me) -1 P(me # h') E V-1V cU. 

Hence P'(me + h)-1P'(me + h')-1 = f(P(me + h)-1 P(me * h')) 

This shows that (b) is satisfied, and proves the existence of the 
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path P'. Suppose now that 0s t1 < t2 e, 1 and +t1 - t21 s s. 

Let P be subjected to a continuous deformation leaving fixed all 

points except those in the parameter range t1 <t< t2. Call such 

a deformation of Pa small deformation. By (b), if 0sts t1, 

P'(t) depends only on the behavious of P(t) in the range 0st f- tj . 
If t= t2, then 

P'(t2) = P'(t1) f(P(t2)-1 P(ty)) . 

Thus P' (t2) is determined by P' (t1). If 12t-, t2, P' (t) depends 

only on P'(t2) and the behaviour of P(t) in the range 1t2 t2 

by (b). Hence if P is subjected to a small deformation, the end 

points of P' remain fixed. Suppose now that Q is another path 

in G from e to g. Let W be a path in G from Q(4/2) to P(t) and 

define 

F(s) = Q(s) (0 :ga :C '/2) 

W(a 
(8 _ '/2)) (c/2 ss9 t) 

= P(s) 0a5 24). 

Then F is homotopic to P since G is simply connected, and F is 

obtained from P by a small deformation. Thus the corresponding 

paths F' and P' have the same endpoints. Also F coincides with Q 

on the interval [4,4/2]. Continuing in this manner, we can 

deform P to Q by a sequence of small deformations. Hence the 

paths P' and Q' have the same endpoints. it follows that the 

terminal point g' of P' depends only on g and not on the path P. 

In this way, to each element gEG we`can associate a uniquely 

determined g' E G' defining a map csG -º G' by cp(g) = g'. 

We now show that there is a neighbourhood 
14 cU of a on 
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which cp equals f. Let 'IJ', r be an arcwise connected neighbourhood 

of e with -1 
I1, \fcU. Let gE I4 

, and Pa path from e to g In 

The path P' =foP in G' satisfies (a) and (b) since 

P' (e) =f (e) = e' 

and if P (t) EW, then P(t)-1 E ß\A1 -1 so if 0s tl, t2 s 1, then 

P (t1) -1 P(t2) E -1 1. v' cU 

Hence f(P(t1 ) -1 P(t2)) = f(P(t1 )) -1 f(P(ta)) 

P' (t1 j -1 p' (t2) 

Thus, by uniqueness, the terminal point of P' iscp(g). But 

P'(1) =f (P (1)) =f (g ), sop =f on 
W. 

We prove finally that cp is a homomorphism. Let g, h E G, and 

P, Q be paths in G from e to g and e to h respectively. Denote by 

P', Q' the corresponding paths in G'. If g' = P'(1), h' = Q' (1), 

then g' = cp (g), h' = cp (h). 

Let R(t) = P(2t) (0 sts *) 

=9 Q(2t -1)I 

Then R is a path from e to gh, 

Let R' (t) = P' (2t) (0 sts 1) 

= 9'Q'(2t-1) ( f. tf. i) 

R' is a path in G' from e' to g'h'. We claim that R' is the path 

in G' corresponding to R satisfying conditions (a) and (b). 

Clearly R'(0) = e'. We have to show that (b) is satisfied- 

If0 if. ti s t2 I and tj is close to t2, then 
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R' (t1 )-l R' (t2) = P' (2t1) -l F' (2t2 ) 

f (P(2t1)-l P(2t2)) 

f (R' (2t1) -1 R' (2t2) ) 

Similarly if s t1 $ t2 s1 and t1 is close to t2, then 2t1 -1 is 

close to 2t2 - 1, so 

R' (t1) -1 R' (t2) = Q' (2t1 - 1) -1 Q' (2t2 - 1) 

=f (Q (2t1 " W1 Q (2t2 - 1) ) 

=f (R(t1 )-1 R(t2)) 

Now if 0s t1 sjs t2 s1 and t1 and t2 are close, then t1 and 

t2 are both close to j, so 2t1 is close to 1 and 2t2 -1 is close 

to 0. Thus since P(1) =g and P"(1) = g' , 

P' (2t 
1) 

-1g. =f (P (2t1)-l g) 

and, since Q (0) = e, Q' (0) : e' , 

Q'(2t2 - I)-' = f(Q(2t2 - WT) 

Hence wo (tI )'1R' (t2) = P' (2t, )-19'Q' (2t2 - 1) lies in U 

if t1, t2 sufficiently close, and 

R, (t1ý-1 R'ßt2) = P'(2t1)sjg'Q'(2t2 - 1) 

" 1) ) =f (P (2t1 119) f(Q(2t2 

f(P(2t1)-19 Q(2t2 " i)) 

f(R(tl)"1 R(t2)) . 
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Hence R' satisfies (a) and (b) relative to R. It follows that the 

terminal point of R' is 9(gh), so . 

y (9h) = R' (1) 

geh, 

= cp(g) cp(h) 

showing that p is a homomorphism. This completes the proof. 

0 
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