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Abstract 

The growth of the financial risk management industry has been motivated by the increased 

volatility of financial markets combined with the rapid innovation of derivatives. Since the 

1970s, several financial crises have occurred globally with devastating consequences for 

financial and non-financial institutions and for the real economy. The most recent US 

subprime crisis led to enormous losses for financial and non-financial institutions and to a 

recession in many countries including the US and UK. A common lesson from these crises is 

that advanced financial risk management systems are required.   

Financial risk management is a continuous process of identifying, modeling, forecasting and 

monitoring risk exposures arising from financial investments. The Value at Risk (VaR) 

methodology has served as one of the most important tools used in this process. This 

quantitative tool, which was first invented by JPMorgan in its Risk-Metrics system in 1995, 

has undergone a considerable revolution and development during the last 15 years. It has now 

become one of the most prominent tools employed by financial institutions, regulators, asset 

managers and nonfinancial corporations for risk measurement. 

My PhD research undertakes a comprehensive and practical study of market risk modeling in 

modern finance using the VaR methodology. Two newly developed risk models are proposed 

in this research, which are derived by integrating volatility modeling and the quantile 

regression technique. Compared to the existing risk models, these two new models place 

more emphasis on dynamic risk adjustment. The empirical results on both real and simulated 

data shows that under certain circumstances, the risk prediction generated from these models 

is more accurate and efficient in capturing time varying risk evolution than traditional risk 

measures.  

Academically, the aim of this research is to make some improvements and extensions of the 

existing market risk modeling techniques. In practice, the purpose of this research is to 

support risk managers developing a dynamic market risk measurement system, which will 

function well for different market states and asset categories.  The system can be used by 

financial institutions and non-financial institutions for either passive risk measurement or 

active risk control.  

 

Key words: Value at Risk, Volatility modeling, Risk mapping, Monte Carlo Simulation, 

Quantile regression 
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1 Introduction 

1.1 The need for the financial risk management  

Financial risk is defined as the unexpected variability of asset prices or earnings resulting 

from the firm’s financial market activities. The growth of the financial risk management 

industry is highly motivated by the increased volatility of financial market over the last 

several decades. Recalling the past 40 years, several financial disasters have occurred 

globally and significant increased the volatility of financial market. Examples of the major 

financial disasters include: 

 Fixed exchange rate system broke down in 1971   

 Oil-price stocks accompanied by high inflation and volatile interest rates in 1973 

 Black Monday in the U.S. stock market in 1987, which lead to 23% decline of the 

stock prices 

 Japanese stock market bubble deflated in 1989 

 Asian contagion decimated Asian equity market in 1997 

 Russian debt default and the collapse of the LTCM hedge fund in 1998 

 Terrorist attack on September 11, 2001, freezing the US financial market for six days 

and lead to over $1.7trillion loss 

 Subprime credit crisis resulting from mortgage market crash down during 2007 to 

2009 

The unpredictability of these disasters caused the significant increases of the market volatility, 

which resulted in substantial economic losses.  Appropriate use of financial risk management 

tools serve to provide protections against such potential future losses. ` 

In addition to the unleashed volatility, two major factors have resulted in the increased 

sensitivity of economic and financial risk factors to the market participants, which are 

deregulation and globalization. Deregulation lower the government power in the financial 

industry, which led to the rapid innovation of financial derivatives. Unlike securities which 

are issued to raise capital in order to support the firm’s develop and growth, financial 

derivative have no value in itself and can be considered pure zero-sum game due to their high 

leverage, derivative contracts can be used to efficiently hedge and mange the financial risk at 

low transaction costs and limited cash outlay. However, the leverage is a double-edged sword.  

The absence of the upfront cash payment makes the derivative contract becomes a popular 

tool for speculation and arbitrage, which hugely magnify the potential market risk. Since 
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1986, the derivatives markets have grown from $1,083 billion to $ 343 trillion in 2005
1
. 

Along with this growth, many financial entities suffered huge losses involving the derivatives. 

Capital Market Risk Advisor, a consulting firm, has estimated that the speculative losses 

attributed to derivatives amounted to over $30 billion during the 1990s. The collapse of 

Barings bank in the UK financial market is a typical example of misusing the derivatives for 

speculation.    

Globalization, on the other hand, lowers the barriers to global trade and investment, which 

leads to the firms undertaking more international business and thereby causes them exposing 

more risk in the international financial market.  These changes have also significantly 

increased the financial market risk, thereby raising the need and importance of the financial 

risk management. 

The goal of the financial risk management is not to minimize or eliminate risk, but to bring 

the economic value to the entity who utilizes it.  From the perspective of corporations, 

appropriate use of the financial risk management tools helps them to reduce the potential 

costs of financial distress and bankruptcy. To be specific, when a firm has debt in its capital 

structure, the increased risk of its asset will increase the probability that the firm will unable 

to repay the liability to its debt holders and thereby increase the bankruptcy cost. Even if the 

bankruptcy can be avoided, the firm with high risky equity will experience the cost so called 

financial distress, which includes the lost sales from the counterparties or the difficulty of 

refinancing in the market.  The idiosyncratic risk generated from the bankruptcy and financial 

distress cannot be hedged by the individual shareholder as beta risk and could only be 

appropriate managed if the firm owns a good risk management system.  

The financial risk management system is even more critical to the financial institutions.  One 

primary function of the financial institutions is to serve as the intermediaries for managing 

the financial risk. For instance, they create markets and instruments to share and hedge the 

financial risk faced by the firms, provide risk advisory services and act as counterparty for the 

risk transfer. It is exactly these roles that force the financial institutions to understand and 

price the risk properly. A well-functioned risk management system will help financial 

institutions to measure the financial risk as precisely as possible and thereby help them to be 

better prepared for the adverse consequence from such risk.  

                                                                 
1
 Source: Bank of International Settlements 2005  
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Furthermore, regulators require a mature and effective financial risk management system to 

help them to maintain the health and stability of the entire financial markets.  The need of 

regulations for the financial risk control is originally due to the existence of the moral hazard. 

Given the fact that financial institutions gather funds from investors and invest the investors’ 

funds for return enhancement, there will be less incentive for the owners of the financial 

institutions to control the risk properly. Because if they take risks and prosper, they will 

partake in the benefits and if they lose, the investors suffer the direct consequences of the loss. 

Similarly, for the non-financial institutions, there exists the information asymmetry between 

the management and the shareholders. If the compensation of the management is highly 

depends the investment performance, the manger will be more insensitive to take high risky 

project, which will adversely affect the interests of the shareholders.  

The existence of the moral-hazard problem explains why the regulators need the risk 

management system to control the risk-taking activities. If the firms and the financial 

institutions are allowed to freely decide on their own economic risk capital, the traders and 

the managers will implement increasingly risky activities, which increase the probability of 

bankruptcy. Furthermore, the effect of externalities might rise when one institution’s failure 

affects other firms, which eventually pose a threat to the stability of the entire financial 

system.  

1.2 General introduction of Value at Risk in the financial risk management 

Financial risk management is a continuous process of identifying, modeling, forecasting and 

monitoring the risk exposures raised from the financial market activities. One of the major 

tools used to model the financial risk is Value at Risk. This methodology, which was first 

invented by J.P. Morgan in its Risk-Metrics system in 1995, has rapidly becomes the most 

prominent applied risk measurement tool in the financial field over the last several decades.  

Simply speaking, VaR is defined as the maximum potential loss of the corresponding 

financial portfolio’ market value at given confidence level and over fixed time horizon. 

Assume a risk manager estimate the daily VaR at 5% confidence level as £10,000, this value 

indicates that there is a 95% chance that the next day loss of his portfolio’ market value will 

not exceed £10,000. In other words, there is only 5% chance that the portfolio will experience 

a loss of £10,000 or more.  

Statistically, given       confidence level, VaR is the     quantile of the portfolio value’s 

probability distribution, which is expressed as:     
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                                                                                                                                (1.1)                                                                           

where     is the inverse function of the portfolio’s cumulative distribution  

Artzner and Delbaen (1999) further developed C-VaR (Tail Conditional VaR) as a 

complement of the standard VaR measure, which takes into account the magnitude of the loss 

over the VaR estimate. This measurement is interpreted as the expected size of the loss 

condition on the loss has exceeded the VaR estimate, which is expressed as: 

                                                                          
                                               (1.2) 

The most appealing feature of VaR measure is that it summarizes the overall market risk 

components into a single numerical value. Besides, it is an ex-ante measure which means that 

it could be applied by the risk managers for a forward-looking risk control.  Due to these 

properties, VaR has spread well over the last several decades in the financial industry and by 

now it has becomes the benchmark measurement of the financial market risk for both 

institutions and regulators.  The application of VaR methods can be classified as follows: 

 Passive risk reporting:  The banks and institutions that deal with large-scaled 

portfolios and complicated instruments are applied VaR to apprise the market risk run 

by the trading and investment operations. U.S. Securities and Exchange Commission 

ruled the public corporations to disclose their quantitative financial risk exposure 

using VaR in 1997. 

 Defensive risk controlling:  VaR are now commonly used by the financial institutions 

to set position limits for the traders and business units. The minimum capital 

requirement set by Basel Committee 
2
is  directly based on VaR methods  

 Active risk management:  The Risk-Adjust Performance Measures (RAPMs) based on 

VaR such as RAROC is now used increasingly by the financial and non-financial 

institutions to allocation appropriate capital across the traders, business units and even 

the whole institutions. VaR could also assists the portfolio managers to create greater 

Shareholder Value Added (SVA) 

1.3 Research contributions of the thesis   

Following by the existing VaR methods, my PhD research undertakes a comprehensive and 

practical study of the market risk modeling techniques in the modern finance. Generally 

speaking, the main contribution of this research lies in two areas, which are model application 

                                                                 
2
 See Basel Accord 1988, Basel   Accord 2004 
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and model innovation.  The model application is attempting to formulate some applicable 

rules of how to select appropriate risk models under the different market conditions and 

different asset categories. Particularly, we proposed several selection criterions of the VaR 

models based on our empirical analysis. These criterions include: 

Firstly, the choice of the appropriate VaR model should highly depends on the risk degree of 

the target portfolio, rather than the overall market condition. Our empirical results shows that 

as the hypothetical portfolio become more risky (as we move alongside the efficient frontier), 

the parametric VaR model becomes less reliable than the semi-parametric VaR model. The 

implication of this criterion is that even the market is at the high volatility regime, the risk 

managers could still apply the parametric VaR model as long as the target portfolio is at 

moderate risk level. However, if the risk managers are facing the high risky portfolio in 

practice, the semi-parametric VaR on EVT is preferable for a more conservative risk 

measurement. 

Secondly, the VaR estimate generated from GARCH volatility should be a safe risk 

measurement model, as long as the GARCH estimation is dynamically updated on daily basis. 

We explain this statement from two aspects: On one hand, the risk managers should be less 

worried about the underestimation problem from the VaR when the current market is at high 

volatility regime
3
, because our empirical results shows that under such circumstance the 

GARCH types of models could generate a even higher volatility forecast than those from the 

market expectation (implied volatility). On the other hand, if the current market is at normal 

condition, the GARCH types of model might generate a lower volatility forecast than that 

from the Implied Volatility.  However, the VaR estimate should still be safe, since the 

quantile multiplier which captured the extreme risk at normal market condition could serve as 

a complement.   

Thirdly, if the time varying distribution has already been considered by the GARCH volatility, 

the choice of the quantile estimator will have limited effect on the VaR estimate at low 

confidence level.  In the other word, the underestimate problem from the standard normal 

quantile compared to the EVT will tend to disappear at lower VaR confidence level (say 

95%), provided that the dynamicity has been adjusted by the GARCH volatility. However, 

this conclusion may not be comprehensive since we have not verified this statement through 

different sets of financial data. But it at least indicate that the time varying quantile could be 

                                                                 
3
 This research define the high volatility regime if the daily unconditional Volatility above 2%, according to the 

research by Tsay (2003)  
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possibly captured by the GARCH volatility in the VaR modeling, which provide a useful 

implication for the  dynamic improvement of the risk models. The dynamic CAViaR model 

proposed in the chapter 4 is highly motivated by this result.  

Fourthly, the selection of the risk exposure modeling technique should depend on the 

monotonicity of the target portfolio. Our empirical result from the hypothetic portfolios 

shows that when the payoff of the target portfolios is monotonic, the local valuation model 

will perform well, with enough speed and accuracy. On the other hand, this model seriously 

underestimates the market risk when the target portfolio has non-monotonic payoff.  The full 

valuation model, however, could provide a reasonable risk assessment under such situation. 

The approach is theoretically more accurate than the local valuation model due to its more 

comprehensive risk consideration.  However, its accuracy is highly depends on the 

appropriate selection of the particular stochastic process for the underlying risk factors. 

Besides, the approach is fairly time intensive to implement which needs substantial 

computational time. 

Fifthly, our empirical analysis of the foreign currency forward shows that although the 

exchange rate risk is the main concern when measuring the foreign currency risk, the interest 

rate risk need be considered additionally as time elapsed from the initial evaluation date. 

Since when time moves away from the initial evaluation date, the interest rate risk cannot be 

fully hedged by the unequaled long-short position in the zero bonds.  

Finally, the empirical results from the UK bond market indicated that PCA outperform the 

duration model in both bond risk profile analysis and bond risk measurement.  Historical term 

structure of the UK zero yields indicates that the yield curve undergone a certain degree of 

unparallel shift. When the bond portfolio is dominated by the long-short strategy of different 

maturity bonds, the unparallel shift movement becomes the core risk factor rather other the 

parallel shift measured by the duration model, which leading to the underestimation problem 

from the VaR estimate adopted by the duration model.  Furthermore, the time decay effect in 

the price series will be completely overlooked in the duration model. This flaw could lead to 

a mislead correlation generated from the duration model, which in fact is due to the synthetic 

time decay effect from the historical bond prices.   

These empirical findings from the model application provide us some useful implications for 

the model improvement and thereby contribute to further model innovation in my PhD study. 

To be specific, we propose two newly developed risk models in the latter stage of our 
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research. Motivated by the idea of integrating the effect of GARCH volatility and time 

varying quantile into VaR modeling, we proposed a Two-Step Dynamic Adjusted risk model 

in chapter four. This model has several innovation points. Firstly, given that the 

autoregressive term of the VaR estimates are re-estimated by the GARCH volatility at daily 

frequency, both time varying volatility and time varying quantile have been taken into 

account by this model.  Secondly, the estimated VaR series on GARCH volatility should 

encompass certain effect of the nonlinear evolution of the Quantile, which is ignored in the 

linear specification of the traditional CAViaR model. Thirdly, a time varying smoothing 

factor is introduced in this CAViaR model. This amendment is aim to alleviate the limitation 

generated from the Engel’s Adaptive CAViaR, in which the VaR prediction will increase by 

the same amount regardless of whether the returns exceed the previous VaR estimate by 

small or by large amount. Finally, the selected exogenous variable in this model will allow us 

to find out other possible factor that have relationship with the time varying risk evolution 

and hence further improve the forecast accuracy. The back-testing results based on both real 

and simulated data shows that the VaR series generated from this model could more 

accurately and swiftly capture the time varying risk evolution than some traditional CAViaR 

specifications.  

In the final part of this research, we proposed an ARMAX model for the dynamic volatility 

generation. The motivation of this model is based on the Taylor’s recent research in 2005, 

which integrate the parametric time series model and quantile regression technique into 

volatility forecast. However, instead of using LS regression as proposed by Taylor, we 

propose an ARMAX process, which is directly transformed from the standard GARCH 

process. The model refines the GARCH volatility by quantile Regression technique, in which 

the lagged conditional variance term in the GARCH process is replaced by the exogenous 

variable estimated from the pre-specified Quantile regression model. There are three main 

innovations of this model. Firstly, it relaxes the assumption of the unobserved variance in the 

parameter estimation procedure under both Taylor’s LS regression and GARCH model.  

Secondly, it separates the newest information arrived on the time   and the rest of information 

up to time     for the volatility forecast. This separation ensures that the predicted volatility 

will be more sensitive to the new arrived disturbance, which improves the model dynamicity.  

Finally, we introduce a new specified quantile regression model for the symmetric quantile 

interval estimation, which has two separate function forms for the left and right quantile. This 
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specification is aim to improve the estimating accuracy of the symmetric quantile interval, 

which in turn, improve the accuracy of the corresponding volatility forecast. 

Academically, my PhD study is aim to make some improvement and extension of the existing 

market risk modeling techniques. In practice, the purpose of the research is to support risk 

manager developing a dynamic market risk measurement system which could function well 

under different market states and assets classes.  The system can be adopted by the financial 

institutions and regulators for both passive risk measurement and active risk control.  

1.4 Structure of the thesis    

Going into more detailed structure of this thesis, Chapter two presents the literature review of 

the market risk modeling techniques. To be specific, the first section of this chapter provides 

a comprehensive illustration of VaR methodology and its statistical foundation in the market 

risk modeling. Section 2 explains how to address the issues of time varying conditional 

distribution in the VaR modeling. Two general approaches are presented, in which one is 

focus on the dynamic adjustment of volatility and the other is focus on the dynamic 

adjustment of quantile.  The next two sections turn to the VaR measurement for portfolios. 

Given the fact that the market risk of the portfolios is driven not only by VaR of the 

underlying risk factors but also by the risk exposure to these underlying risk factors, we 

introduce two useful techniques for the risk exposure modeling. The risk mapping approaches 

represented in the following section is applied to solve the risk aggregation problem from 

large-scaled portfolio. In the final section of this chapter, we provide the derivation of the 

multiday VaR forecast in the context of a general ARMA process followed by the returns. 

In Chapter three, we turn to the practical application of the risk modeling techniques. To be 

specific, we implement different types of VaR models to quantify the market risk of several 

hypothetical portfolios, which are constructed on both either historical or simulated data. The 

empirical results provide us some useful selection criterions for the optimal risk model under 

different market conditions and asset categories.  We also implement two back-testing 

approaches to evaluate the performance of these risk models. These empirical results give us 

some feasible hints of the model improvement in the future study.  

In the following two chapters, we propose two newly developed risk models from our 

research. Chapter four presents a Two-Step Dynamic Adjusted risk model for dynamic VaR 

generation and chapter five present an ARMAX model for dynamic volatility forecast. Both 

models are derived by integrating time series modeling and Quantile regression technique. 
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Compared to the existing risk models, these two models place more emphasis on the dynamic 

adjustment through time. The empirical results on both real and simulated data shows that the 

risk prediction generated from these two models could more accurately and efficiently 

capture the time varying risk evolution than the traditional risk measures. These two models 

could be served as the key research outcomes from my PhD study.  Chapter six is the final 

remarks. 
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2 Literature review of the financial market risk modeling   

Financial market risk is defined as the dispersion of unexpected outcomes of the financial 

assets’ market value, resulting from the firm’s financial market activities. Traditional 

financial risk measurement focuses on the absolute losses. For instance, one commonly way 

to assess the financial risk is to establish the stop-loss limits. If the cumulative loss exceeds 

the threshold set by the stop-loss limits, the financial position will be cut. One critical 

problem of this measurement, however, is that it is a purely ex-post risk measurement, which 

means that there is no guarantee that the loss will be close to or exceed this limit at the initial 

setting up date.       

In practice, risk manager needs a more forward-looking measurement tool (ex-ante) in order 

to control and prepared properly for the future adverse outcomes. This is where VaR comes 

in. In contrast with the traditional risk measures, VaR combines the absolute financial loss 

with the statistical probability of the adverse market movement that caused such loss, which 

is a forward-looking risk measurement.   

This Chapter provides a general introduction of Value at Risk (VaR) models and its evolution 

in the financial risk measurement. Section 2.1 provides a formal definition of VaR and its 

statistical foundation. Section 2.2 explains how to measure the portfolio risk using VaR 

models. Given the fact that the market risk of the portfolios is driven not only by the VaR of 

the underlying risk factors but also by the risk exposure to these underlying risk factors, we 

explain two useful approaches for risk exposure modeling in this section. The final section of 

this chapter provides the derivation of the multi-day VaR forecast in the context of ARMA 

process. This includes the time squared root rule from IGARCH process and the general 

formula from ARMA-GARCH process. Furthermore, the section point out an idea that if an 

appropriate time series model could be fitted into historical VaR series, the accuracy of the 

VaR forecast will possibly be improved compared to the traditional VaR models. 

2.1 Building blocks of Value at Risk models   

Quantitatively, financial market risk can be treated as the randomness of the underlying 

market risk factors, such as interest rate, exchange rate, equity price and commodity prices.  

Value at Risk is a statistical measurement of this randomness based on the probability 

distribution.  
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Statistically, given       confidence level, VaR is the     quantile of the portfolio value’s 

probability distribution. Define    as the initial investment and   is the lowest portfolio 

value at the given confidence level c, we have: 

                                                                       
  

  
                                                  (2.1) 

where   is  the Probability Density Function (PDF) of the portfolio market value 

For given confidence level c and time horizon, VaR is exactly the worst possible realization 

of loss   .  

Assume a risk manager estimate daily VaR at 5% confidence level as £10,000, this value 

indicates that there is a 95% chance that the next day loss of his portfolio’ market value will 

not exceed £10,000. In other words, there is only 5% chance that the portfolio will experience 

a loss of £10,000 or more.  

Since VaR is essential the statistical quantile of the return’s PDF, the VaR models can 

therefore be classified according to their different way of the return’s PDF modeling. The 

classification includes: 

1. Non-parametric approach (see, e.g., Hybrid approach by Boudoukh, Richardson and 

Whitelaw, 1998)  

2. Parametric approach (see, e.g., Riskmetrics approach by JP Morgan, 2008) 

3. Semi-parametric approach. (see, e.g., McNeil and Frey, 2000)  

2.1.1 Non-parametric VaR model 

The Non-parametric approach does not require any assumptions about the return’s PDF, in 

which the distributions are generated by either historical approximation or Monte Carlo 

simulation. One widely used non-parametric approach for VaR estimate is the historical 

approximation.  Suppose a risk manager wish to calculate 1% daily VaR based on 500 

historical returns, he could simply rank the historical returns from lowest to highest and 

selected the fifth-worst realized return as the VaR estimate.  However, one problem of this 

approach is how to choose the appropriate number of the historical observations (sample size). 

For instance, too small sample size will lead to large sampling errors, while too many 

observations will also be problematic because in this case the estimate will act slowly to the 

new changed information.  For this reason, Boudoukh, Richardson and Whitelaw (1998) 

improve the traditional historical approximation (Hybrid approach) by adding the different 
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weights to the realized returns based on an exponential smoothing process, which is 

expressed as follows: 

                                                    
     

      
   

     

      
       

     

      
                                       (2.2) 

where   is the most recent k returns in the sample and   is the smoothing factor 

After the weight is assigned, the returns are ordered in ascending order and the   VaR of the 

asset is the return corresponding to the last weight used to sum the corresponding weights 

until   is reached.  

More generally, we could express the non-parametric VaR approach in following form: 

                                         
                                  

     
                   (2.3) 

where         are the weights assigned to the return    and     is the indicator function. In 

the traditional historical simulation,         is set equal to 
 

 
 so that each return is given the 

same weight, while in the Hybrid approach, the more recent the return observed, the higher 

the weight it is assigned according to equation (2.2).  

The advantage of the historical approximation is that it is conceptually simple, easy to 

implement and does not require any parametric assumptions of the returns distribution. The 

limitation, however, is that it assumes the future movement of the risk factors will have 

exactly the same pattern as the past movement. If, however, the future change is deviated far 

away from the sample period, this approach will produce an unreliable risk prediction.  

2.1.2 Parametric VaR model 

The VaR computation can be possibly simplified if the returns distribution is assumed to 

belong to a parametric family (e.g.: normal distribution or student t). This approach is widely 

applied in the J.P. Morgan’s Risk-Metrics system.  More explicitly, if the portfolio returns are 

i.i.d. series and normal distributed, standardizing the return we have: 

                                                                       
    

  
                                                            (2.4) 

where   is a standard normal variable,     is the volatility of the return    at the time   and   

is the conditional mean of the return.  

Defining   
  is the cutoff return of the target portfolio whose initial market value is   , we 

have: 
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                                                      (2.5)                                                               

VaR relative to the mean can therefore be expressed as: 

                                                                  
                                                 (2.6)

                                                         
 

The conditional volatility    can be estimated by some parametric time series models such as 

GARCH or EWMA.  

The simplest GARCH       model, which was introduced Bollerslev(1986), can be 

expressed as: 

                                                                                   

                                                              
         

       
                                            (2.7) 

The assumption of i.i.d. standardized residuals   , is a necessary device to estimate the 

unknown parameters in the GARCH model.   A further improvement of GARCH types of 

models is the more general specification of the distribution of    such as student t or General 

Error distribution .however, the likelihood function will be harder to derived as more 

complex distribution are assumed.   

On the other hand, J.P. Morgan’s Risk-Metrics system (2008) use Exponentially Weighted 

Moving Average to compute   , which can be expressed as: 

                                                              
       

           
                                          (2.8)                                  

where   is so-called decay factor with value ranging from 0.94 to 0.97. Risk-Metrics also 

assumes that standardized residuals    are normally distributed.  

The parametric VaR approach is theoretically more comprehensive than the non-parametric 

VaR approach (historical approximation), since the standard quantile extracted from the 

parametric distribution contains the information of the whole distribution whereas the 

estimated quantile from the historical approximation use only the ranking of the extreme 

observations
4
. However, the limitation of the parameter approach is that the parameter 

distribution followed by the returns may not be a realistic and accurate assumption. The 

standard normal distribution will underestimate the true risk if the actual return is 

leptokurtotic or negatively skewed.  

                                                                 
4
 Source: Foundations of Risk Management, Level I 2011 ,FRM Program Curriculum Volume 1 
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2.1.3 Semi-parametric VaR model and Extreme Value Theory 

Unlike the parametric approach, Semi-parametric approach applies the parametric 

distribution only to the tail area of the return’s PDF. This approach is based on Extreme 

Value Theory and it has superiority of precisely modeling the tail distribution modeling than 

the parametric approach despite of the complexity. 

Extreme Value Theory is a branch of statistics which was developed by Balkema and 

Laurens(1974) and Pickands(1975). In mathematics, it states that the distribution of the 

extreme value for any variable   will converges asymptotically to the Generalised Pareto 

Distribution      (GPD) as: 

                                                      
     

  

 
 
 

 

     

      
  

 
     

                                               (2.9)                                        

The parameter   is the shape parameter, which capture the heaviness of the tail (
 

 
 refer to tail 

index). The parameter   is an additional scaling parameter. More explicitly: 

    corresponds to heavy-tailed distributions, whose tails decay like power 

functions, such as Pareto, Student  , Cauchy, Burr, log-gamma and Fre´chet 

distribution 

    corresponds to distributions whose tails decay exponentially, such as normal, 

exponential, gamma and lognormal distribution 

    corresponds to short-tailed distributions whose tails has finite right endpoint, 

such as uniform and beta distribution 

Extreme Value Theorem states that the limiting distribution of the extremes returns will 

alway has the same form, regardless of what the parent distribution of the returns come from
5
. 

This feature is crucially useful in the VaR estimation, since it allows us to estimate the 

extreme quantile of a variable without making any strong assumption about its unknown 

parent distribution.    

McNeil and Frey (2000) applied this theory and he proposed a semi-parametric VaR 

modeling approach. To be specific, define the distribution of the excesses losses over a 

threshold    as: 

                                                                 
5
 The parent distributions includes all common continuous distributions of statistics, e.g., normal, lognormal, 

Gamma, exponential, uniform, beta, t, F,   
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                                                                                                              (2.10)         

This excess distribution represents the probability that a loss exceeds the threshold   by at 

most an amount  , conditional on that it exceeds the threshold.  

Applying Bayes’ formula, equation (2.10) can be re-written as: 

                                                   
               

      
 

           

      
                                 (2.11) 

The Limit Theorem from EVT states that for a large class of the underlying distributions, 

there exists a function       such that:                            

                                                                                                                 (2.12)                       
                                                     

where      is the right endpoint of Loss distribution   

The above theorem reveals that the excess distribution    will converges to the GPD 

distribution expressed in (2.9), as the threshold   progressively move towards to   . 

Empirically, the choice of the threshold is a tradeoff between choosing a sufficiently high 

threshold so that the asymptotic Limit Theorem (2.12) can be essentially applied, and 

choosing a sufficiently low threshold so that a sufficient number of observations can be 

obtained for parameters estimation.  

One possible approach of choosing threshold is to use the Plot Empirical Mean Excess 

function introduced by Hill in 1987. The criteria is to choose the smallest possible threshold  

    such that the function      is approximately linear for any     , which is expressed 

as: 

                                                                    
 

  
                                                   (2.13)                       

                                                     
                                                                                                                                            

where uN is the number of the data points    that excess the threshold  .   

Combining (2.12) into (2.11) and setting      , the tail distribution can be expressed as: 

                                                                                                        (2.14)                       
                                                     

                                                                        

For any     

Suppose the total number of the sample observations is   , the empirical estimator of       

could be approximately estimated as: 
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                           (2.15)                       

                                                     
                                                                                                                                                                                            

It should be mentioned that this estimator is only valid for     . It is not feasible to use 

historical approximation (2.15) to estimate the whole tail of     , because the data will 

become sparse when moving towards the tail area, which result in a poor estimator using the 

historical approximation. 

Substitute the empirical estimate of     into (2.14) and use Maximum Likelihood estimator 

for the parameters estimation of GPD, the tail estimator is expressed as: 

                                                                   
  

 
     

   

  
 
  

  
 

                                (2.16)                                                                                                                                                            

Given the probability that       , the semi-parametric VaR estimate can be calculated by 

inverting the tail estimator (2.16), which is expressed as: 

                                                            
  

  
  

 

  
      

   

                                (2.17)                                                                                                                                                                                                               

Compared with the parametric and non-parametric approach, the semi-parametric VaR 

approach by EVT has its superiority of precisely modeling the tail distribution modeling 

despite of the complexity. As pointed out by McNeil and Frey (2000), the parametric VaR 

based on normal distribution are likely to underestimate the tail risk and the Non-parametric 

VaR based on the historical approximation can only provide very imprecise estimates of the 

tail risk. The semi-parametric VaR based on EVT, on the other hand, is a fairly accurate and 

general approach to tail estimation. The extreme risk could be more accurately reflected by 

this approach at high VaR confidence level.  

However, there are several problems that need to be considered when apply EVT. First, i.i.d. 

assumption of EVT might not be restrictively held by the financial returns. Second, EVT 

works only for very low probability levels, the performance of this approach will deteriorates 

as we move away from the tail area. Furthermore, the accuracy of the estimator from GPD is 

highly depends on the choice of the threshold, and unfortunately there is no satisfactory 

statistical solution of how to chose optimal threshold at the currently research level.     

2.1.4 CAViaR model  

Engle and Manganelli(2004) propose a conditional autoregressive specification (CAViaR) for 

the VaR generation. This approach estimate the conditional quantile directly from quantile 
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regression technique and it does not require any parametric assumption about the true 

distribution.  

The regression quantile technique is original introduced by Koenker and Bassett (1978). 

Assume we have a linear regression form: 

                                                                                                          (2.18) 

where                 is the     quantile of   , conditional on      

Given a probability  , the     quantile of the return   can be estimated by the following 

optimization process: 

                                                                          
                                  (2.19) 

where    is the quantile regression function with following expression: 

                                                            
      

          
                                               (2.20) 

Since VaR is essentially a quantile estimate, this quantile regression technique could be 

directly applied to the VaR generation. Engle and Manganelli specified a general quantile 

regression form for conditional VaR generation, which is expressed as: 

                                                      
 
                 

                             (2.21) 

In above regression,          is a function of finite number of lagged values of the 

exogenous variables and autoregressive terms          
 
   ensure that the estimated 

quantile changes smoothly over time. Particularly, Engle and Manganelli propose following 

four types CAViaR models, which are: 

 Adaptive model:                                        
  

    (2.22) 

 Symmetric Absolute Value:                                                     (2.23) 

 Asymmetric Slope:                                              

(2.24)                      

 Indirect GARCH:                  
        

                                            (2.25) 

Briefly speaking, Adaptive model compass a self-correction property, in which G is positive 

finite integer controlling the degree of the correction
6
. For instance, once the actual loss 

                                                                 
6
 G is set equal to 10 in Engle’s CAViaR specification 
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exceed the VaR estimate in the last period,  the second term of the adaptive model will 

become positive which increase the VaR prediction in the next period and vice versa.  The 

symmetric and indirect GARCH model has mean reverting property and responds 

symmetrically to the past returns. The asymmetric slope model, on the other hand, takes into 

account the asymmetric effect of the returns on the risk prediction.  

In fact, CAViaR can be more flexible than above four types of specifications. It can also be 

applied to some nonlinear forms and non-iid distributed errors.  Weiss (1991) shows the 

consistency and asymptotic normality property of the nonlinear regression quantile 

estimators, which could be served as the most critical contributions to the non-linear 

regression quantile technique.   

The only assumption required under the CAViaR framework is that the quantile regression is 

correctly specified, which reduce the risk of misspecification of the error term distribution 

under the parametric model. White (1994) shows that even if the the quantile regression is 

misspecified, the minimization of the regression quantile objection function still satisfies the 

Kullback-Leibler Information Criterion, which measures the discrepancy between the true 

model and estimated one.   

2.2 Combining risk exposure modeling with VaR models   

The VaR models illustrated in the section 2.1 provides a quantitative measurement of the 

downside risk of the underlying risk factors.  In practice, however, the potential loss from a 

financial position is attributed to two risk sources, which are:  

 The downside risk of the underlying risk factors (Measured by VaR models) 

 The risk exposure to these underlying risk factors.  

From the perspective of portfolio manager, the downside risk from the underlying risk factor 

is stochastic and outside their control because it is purely driven by the randomness of the 

risk factor’s distribution. The risk exposure to the risk factor, which determined by the 

magnitude of the portfolio position, could be cautiously chosen by the trader for active risk 

management.  The overall risk of the portfolio is obtained by combining the risk exposure 

estimated from the portfolio position and the downside risk estimated from the VaR models.  

Generally speaking, there are two approaches which could used to model the risk exposures, 

which are Local-valuation approach and Full-valuation approach. Under Local-valuation 

approach, the portfolio position is replaced by the linear or quadratic risk exposures using 
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partial derivatives. Full valuation approach, on the other hand, measure the risk exposure by 

fully re-pricing the portfolio’s position over a range of new scenarios.  

2.2.1 Local-valuation approach 

The commonly used Local-valuation approach is the Quadratic Model by Wilson (1994). To 

brief explain it, consider a portfolio whose value depends on the single risk factor   and time t 

(e.g.: a portfolio of options with the same underlying stock  ). The value of this portfolio can 

be expressed as a function of   and   as            

Apply Taylor expansion
7
 we have: 

                                       
  

  
   

 

 

   

   
    

  

  
       

 

 
                     (2.26) 

where   and   are the first and second partial derivative respects to the portfolio value and 

 is the deterministic time drift. 

Assume for assigned confidence level  , the minimal acceptable portfolio value is achieved 

when the value of underlying stock is equal to: 

                                                                                                                               (2.27)           

where    is the initial value of the underlying stock at time 0,   and   are the same 

parameters from the parametric VaR model (2.6). 

Transform into VaR measure we have:  

                                                                                                                (2.28)                                                                                 

Apply Taylor expansion to the right side of (2.28) and ignore the time drift (since the position 

only evaluate once at initial time), we have: 

                                   
 

 
        

             
 

 
       

 (2.29)           

Equation (2.29) is the Quadratic Model and it is useful to model the risk exposure when the 

portfolio consists of substantial derivative components with the same underlying risk factor. 

On the other hand, if the portfolio is exposed to many risk factors, equation (2.26) will 

become to: 

                                                                        
 

 
                                          (2.30)             

                                                                 
7
 Thomas, George B. Jr.; Finney, Ross L. (1996), “Calculus and Analytic Geometry”  
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where   and    are vector of N elements (If exits N risk factors) respectively, and   is an N-

by-N symmetric matrix   , in which the diagonal components are the gamma of the   risk 

factors and the off-diagonal terms are the cross-gammas, which is expressed as: 

                                                                                 
  

     
                                                 (2.31)       

where    and    are   and   underlying risk factors  

In fact, Solving (2.31) will become increasingly complex as number of the underlying risk 

factors increase. For instance, if N = 50, 50 estimates of    and 1275 estimates of the 

covariance matrix   need to be calculated.  

Furthermore, for more complex function       , it may not feasible to use (2.26) for VaR 

transformation, since        might not be monotonic. Take Variance operator to both sides of 

(2.26) and ignore the time drift we have: 

                                                 
 

 
            

 

 
                           (2.32)        

Assuming    is normal distributed (e.g.,    represent the continuous stock return), then we 

have: 

                                                                                                                          (2.33)          

Under normal distribution, the odd moments are zero. Substitute (2.33) into (2.32) and ignore 

the last term we have: 

                                                               
 

 
                                              (2.34)                                                                

Parametric VaR estimate is therefore given by: 

                                                                
 

 
                                           (2.35)  

where   is the standard normal quantile.  

The further improvement of equation (2.35) is so called Cornish-Fisher Expansion
8
 , in which 

  is replaced by   , which is expressed as:  

                                                                  
 

 
                                                     (2.36) 

where   measure the skewness of the portfolio’s distribution, which is computed as: 

                                                                 
8
 See John Hull (1997) 



31 
 

                                          
                             

      
               (2.37)                                                  

This adjustment provides a more generic quantile estimator compared to the standard normal 

quantile. In fact, under the normality assumption, the estimate of    will be zero according to 

(2.40), making     and   indifferent. When a positive or negative skewness exists, the 

accuracy of the VaR estimate should be increased under Cornish-Fisher Expansion. 

To sum up, local value approach quantifies the risk exposure by valuing the portfolio once at 

its initial position. Any possible future movement of the value is predicted using partial 

derivatives to the underlying risk factor.  Within this class, equation (2.29) and (2.35) could 

be applied for linear or Quadratic approximation. The choice between these two equations are 

depends on whether the portfolio payoff is monotonic.  

2.2.2 Full-valuation approach  

Although equation (2.35) provides a solution for the portfolio whose payoff is non-monotonic, 

this equation is only works well under the assumption that the future movement of the 

portfolio is not far from its initial point. In practice, the extreme value movement is exactly 

what the risk manager care about.  This raises the need of the full valuation. Under the full-

valuation approach, future values of the risk factors are generated by simulation technique. 

For each realization of the risk factors, the portfolio is re-priced at the new scenario. The VaR 

estimate is obtained as the percentiles of the full distribution of the re-priced payoffs over a 

range of scenarios.  

The accuracy of the full-valuation approach is highly depends on the pre-specified stochastic 

process for the underlying risk factors. One commonly used stochastic process for random 

value generation is Markov process by Russian mathematician Markov [See Everitt(2002)].  

Consider a variable with a mean change of zero and a variance rate of 1.0 (Wiener process), 

where: 

             where   is the standard white noise                                                  (2.38) 

 The value of    for any two different short intervals    is independent 

These two properties indicated that the uncertainty of the variable   in the future, as measure 

by its standard deviation, increase by the square root of the time    . 

Generally, if let   and    to be the drift and the variance rate respectively, a generalized 

Wiener process can be expressed as:   
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                                                                                                                            (2.39) 

where     is  normal distributed with mean     and variance       

If allowing the parameter   and   to be the functions of the underlying variable   and time  9, 

a generalized wiener process becomes to a             , which is expressed as: 

                                                                                                                     (2.40) 

In a small time interval between           we have: 

                                                                                                                  (2.41) 

Further, assume a variable   is a function of    and time   , where   follows the              

described in (2.40), the Taylor series expansion shows that: 

                             
  

  
   

  

  
    

 

   

   
    

   

    
      

 

   

   
                (2.42) 

Normally, the high order (such as              ) could be safely ignored since they are small 

enough, but since    follows             , we have:  

                                                                                                     (2.43) 

               and cannot be ignored. 

On the other hand, the variance of      is of order      , which is closed to zero. Therefore, 

     could be considered as non-stochastic and equal to its expected value    . Taking limits 

to    and   , (2.42) becomes to: 

                                              
  

  
   

  

  
    

 

   

                                             (2.44) 

Substituting equation (2.40) into equation (2.44), we have: 

                                           
  

  
  

  

  
  

 

   

   
      

  

  
                                 (2.45) 

Therefore, G also follows the            , with a drift rate equal to: 

                                                  
   

  
  

  

  
  

 

   

   
                                                     (2.46) 

And a variance rate equal to: 

                                                                        
  

  
 

 

                                                          (2.47) 

                                                                 
9
 which means both the expected drift rate and VaRiance rate are change over time 
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Denote           and          , the stochastic process followed by the stock prices can 

be expressed as: 

                                                                                                                           (2.48) 

In a small time interval between            we have: 

                                                                                                                        (2.49) 

Given that the stock price follows the             (2.49), the logarithm of the stock should 

follow              with following form according to equation (2.46) and  (2.47):   

                                                                  
  

 
                                              (2.50) 

The change of     between time 0 and time T is therefore normally distributed with: 

                                                                       
  

 
                                      (2.51) 

Take integral of equation (2.51) we have: 

                                                                             
 

 
                                  (2.52)   

 where     
  

 
                                                                                                

Equation (2.52) is the general stochastic process to simulate the random stock price over 

interval     .  At discrete time step   , we have: 

                                                                                                            (2.53)         

If we assume   is not constant over time and model it by GARCH process, Hull (2008) 

shows another stochastic process for the dynamic evolution of    , which is expressed as: 

                                                                 
                                 (2.54)     

where   and   are the parameters estimated from GARCH model (2.7) and    
  is the long-

term variance.     

The speed of the convergence to the long-term volatility    in the process (2.54) depends on 

the persistence parameters (   ) in GARCH model. Empirical study shows that typically 

the financial series have GARCH persistence around 0.95-0.99 for daily volatility.  Under 

such condition, the simulated volatility using (2.54) will be pulled back to its long-run 

average within 1 month approximately.  
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Combining the stochastic processes (2.52) and (2.54), we could simulate thousands of 

realized value of the underlying stock  .  After re-pricing the portfolio at the each scenario, 

VaR can be estimated from the percentile of the full re-priced distribution.  

The Monte Carlo simulation could accounts for nonlinearities and time decay effect of the 

underlying risk factor to the value of the target portfolio. (e.g.: a portfolio of call options with 

different maturity), which will generate a more accurate risk measure than local-valuation 

approach. On the other hand, Full-valuation approach requires substantial computing time. 

For instance, if we generate 10,000 value of the underlying risk factor, we have to re-price 

the portfolio 10,000 times before calculating the corresponding VAR. Besides, the accuracy 

of full-valuation approach also highly depends on the pre-specified underlying stochastic 

process. As shown by Jorion(2006), if the underlying process is inappropriate specified, the 

estimated risk might be deviated from the true one.    

2.3 Risk decomposing by VaR models   

VaR models are more than just estimation of the overall market risk of the target portfolio.  

From the perspective of active risk managers, single VaR estimate might not be sufficient 

because it cannot tell the trader which component position in the portfolio contributes most of 

the risk and how to adjust the individual position in the portfolio to reduce the overall market 

risk. Combining with Modern Portfolio Theory, on the other hand, VaR could decompose the 

risk of the overall portfolio down to the some individual parts, which provides fairly useful 

information for the active risk management.  

2.3.1 Marginal VaR  

One useful risk measure decomposed from VaR is the marginal VaR. Marginal VaR (MVaR) 

can be derived from Markowitz’s Modern Portfolio Theory [See Edwin and Martin (2009)]. 

By definition, MVaR is the change of the portfolio VaR resulting from taking an additional 

cash exposure to a given component, which is expressed as: 

                                                        
    

   
                                                   (2.55)                                                                                                                                                                                                                                                                                             

where   is the initial amount of the investment in the portfolio and    is the weight of the 

individual asset   in the portfolio. If VaR is estimated by parametric model, equation (2.55) 

could be re-write as: 

                                          
    

   
 

    

     
 

     

     
  

   

   
  

          

  
                            (2.56) 



35 
 

Above transformation indicated that the MVaR is closely related to the asset beta in CAPM 

model.  

Using matrix notation, the vector   in CAPM model can be written as:  

                                                                  
  

    
                                                              (2.57) 

where   is the weight vector and   is the covariance matrix  

Combining equation (2.56) with (2.57) , MVaR can be written related to i  as: 

                                                         
    

   
  

          

  
 

   

 
  (2.58)                                                                                                                                                                                                                                                                                                                                                                        

MVaR provide user the marginal risk for each position contributed to the overall portfolio. 

Risk manager could therefore use it to decide the appropriate rebalancing plan of the 

portfolio’s position to reach the optimal risk level.   

In fact, the optimal risk level implied by MVaR is consistent with the statement in CAPM 

model. The role of the portfolio manager is to choose a portfolio that represents the best 

combination of return and risk based on the modern portfolio theory. The object function is to 

maximize the Sharpe ratio (1966), which is: 

                                                                       
     

    
                                                        (2.59)                                                                                                                                                                                                                                                                                                                                                                                                                                   

At the optimal point, the ratio of any expected excess return from individual asset   to its 

MVaR must be equal, that is: 

                                                        
     

     
           

     

  
                             (2.60)                                                                                                                                                                                                                                                                                                                                                                                                                                   

Equation (2.60) implied that for any efficient portfolio, the expected return on any component 

asset must be proportional to its beta relative to this portfolio, this is:  



where    is the expected excess return from market portfolio 

This condition is exactly consistent with CAPM.  

2.3.2 Incremental VaR and best hedge ratio 

Incremental VaR (IVaR) is proposed by J.P. Morgan (2008). It is another useful risk measure 

separated from the overall VaR measure, which provide the risk manager useful information 

about the best hedge ratio. By definition, Incremental VaR is the change in VaR owing to a 

http://en.wikipedia.org/wiki/William_Forsyth_Sharpe
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new position. It differs from the marginal VaR in that the amount added or subtracted can be 

large, which cause VaR changes in a more nonlinear fashion. Incremental VaR can be 

approximated by Marginal VaR, which can be expressed as:  

                                                                                                                            (2.62) 

where   is the amount of investment added to the current position of assets  .  

Assume the amount is added to only one asset, the variance of the cash return on the new 

portfolio can be expressed as: 

                                                         
     

    
   

              
                         (2.63)     

where    and      are the cash value of the portfolio before and after   amount is added.                                  

To find the lowest portfolio risk, differentiating the equation (2.63) with respect to   and set 

its value equal to zero. This number could be regarded as the best hedge ratio, which is 

expressed as: 

                                                                 
    

  
       

  
 

  
                                        (2.64)                                        

This measure tells the risk manager how much the additional amount to invest in an asset so 

as to minimize the overall risk of the portfolio.  

As proposed by Riskmetrics, IVaR reflects the dynamic of the correlations amongst all 

individual positions that compose the target portfolio. As the risk manager remove the certain 

individual position and calculate its IVaR, he is able to assess the significant of the 

interaction of that position with the rest of the assets in the target portfolio. This information, 

however, cannot be reflected by the simple correlation coefficient estimated from the original 

covariance matrix, which only provides a static and statistical relationship.   

2.4 Risk integration techniques 

Modern risk management requires applying VaR measures on the portfolios with high level 

of diversification. These portfolios might include large number of stocks, bonds, commodities, 

currencies and derivatives.  If every position in the portfolio is modeled individually using 

VaR models explained in the above sections, the risk modeling procedure will become 

considerably complex and time intensive.  For instance, if the portfolio contains   individual 

assets, we have to estimate  
   

 
 numbers of the parameters to decide the full covariance 

matrix used by VaR measures. If the number of the sample observations   is less than 
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number of assets   in the portfolio, negative value of the portfolio variance may be obtained, 

which makes no sense for VaR calculation.  

The best way to solve the risk aggregation problem is to integrate the portfolio risk using risk 

mapping techniques, in which the individual positions in the portfolio are substituted by a 

small number of the selected risk factors.  This summarization technique could considerable 

improve the speed of the portfolio risk modeling without losing much accuracy.  

2.4.1 Regression analysis  

We introduce two commonly adopted risk mapping approaches in this section, which are 

regression analysis and Principle Component Analysis.  In the case where the risk factors 

could be decided in advance, regression analysis could be applied to ascertain the risk 

exposure. For instance, CAPM states that the return of the individual stock is driven by the 

systematic risk from the market index. We could therefore estimate the risk exposure by 

running a regression of the stock returns against the market index return.  

The Diagonal Model by Sharpe (1966) could be treated as a simple regression analysis for 

risk mapping. Under the diagonal model, the common movement of the individual stock 

return    is captured by the movement of the market index return   , which can be expressed 

by a simple regression as: 

                                                                                                                           (2.65) 

where    is the parameter called factor loading,    is the white noise  

The variance of the individual stock   therefore can be decomposed using (2.65) as: 

                                                     
                 

   
      

                                (2.66) 

The full covariance matrix of the portfolio     becomes to: 

                                                                         
                                                    (2.67) 

where    is the diagonal matrix of residual   ’s variance     
  and   is vector of all factor 

loading    

Applying (2.67), the variance of the portfolio could therefore be expressed as: 

                                                                        
                                (2.68) 

where    is the weight vector 
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Similarly, all future or option positions with same underlying asset but different maturities 

could be mapped to the risk factor represented by the underlying asset; all bonds positions 

with different coupon rates and maturities could be mapped to the risk factor represented by 

the yield change risk (duration model). The transformation using regression analysis could 

considerably simplify the estimation of the overall portfolio’s risk.  For instance, given the 

portfolio contains    individual stocks, the number of the parameters need to estimated 

is  
   

 
 when using full matrix valuation.  Using diagonal model (2.68), on the other hand, 

the number of the parameters could be reduced to only     .  

2.4.2 Principle Component Analysis 

More generally, Principal Component Analysis (PCA) can be used to find a series of 

independent linear combinations of the risk factors that provided the best explanation of the 

original covariance matrix of the portfolio. This is a mathematical procedure invented by 

Pearson (1901), which involves using orthogonal transformation to convert a set of 

observations of possibly correlated variables into a set of values of uncorrelated variables. 

Jorion (2006) applied this method into the risk modeling. Assuming the principal component 

   is a linear combination of the individual assets’ returns in the portfolio, which is expressed 

as: 

                                                                               
                           (2.69) 

where    and   are vector expression 

We have: 

                                                                      
                                                           (2.70) 

where   is the covariance matrix of   

Set the normalization constraint on the norm of the factor exposure vector, which is:       

                                                                       
                                                               (2.71) 

Under this constraint,       becomes the Eigen-value of the covariance matrix   and    is its 

associated eigenvector, which is expressed as: 

                                                                                                                                (2.72) 

For each    ,  it is associated with an Eigen-value    equal to       .  If we sort the variance 

http://en.wikipedia.org/wiki/Orthogonal_transformation
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         in decreasing order and keep the first   components (beyond which their 

variances is small and unimportant), we have: 

                                                                                                                 (2.73) 

and 

                                        

 

                                     

 
 
 
 
 
    

 
 
 

     
 
 
 
 

 
 
 
 
 
  

 

 
 
 

   
  
 
 
 
 

   
        

          
               (2.74) 

We could therefore re-write the portfolio return as: 

                                                             

                                                                                (2.75) 

In this way, the overall risk exposures of the portfolio can be mapped to k principal 

components   (         ). Since each risk factor is independent, the variance of the 

portfolio could be estimated as: 

                                                              
            

                                   (2.76)                         

The PCA is particularly useful in the case when the risk factors could not possible be decided 

in advance. For instance, if the portfolio consists of different class of assets, we could apply 

PCA to determine several principal risk factors and thereby replace the whole portfolio risk 

by the smaller number of the selected PCAs.  

2.5 Risk overlay on multi-time horizon  

The above literature view considers nothing about the time horizon setting of the risk forecast 

(daily VaR estimate is set by default). However, it is unrealistic to assume that the investor’s 

portfolio will only be frozen for a single day. In practice, there is also a important concern of 

the multi-day horizon risk forecast for the risk managers and regulators (e.g.: Basel II require 

Bank to reports 10 days VaR on 99% confidence level, based on their outside-investment 

position). 
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We present several feasible approaches for the multiday risk forecast in this section. 

Particularly, we consider an idea of generating multiday-VaR prediction by directly fitting 

the historical VaR series into pre-specified time series model. The dynamic risk model 

proposed in chapter four is exactly derived from this idea.  

2.5.1 Factors considered in the VaR models     

From the perspective of risk managers, VaR can be viewed as either the maximum loss at 

normal market condition or the minimum loss at extreme market condition, given certain 

confidence level and time horizon.  This measure is popularly used as a criterion for 

appraising the market risk or setting capital cushion by the regulators, which ensure the 

financial institutions could still operate after some catastrophic events. In practice, VaR 

modeling involves dealing with several quantitative factors, which are:  

 Confidence level  

 Data frequency  

 Cumulative Density Function      

 Mark to market value  

Among these factors, Cumulative Density Function of the return’s distribution the central 

consideration.  To see this, define a long position’s VaR for holding period   at confident 

level   as: 

                                                                                                         (2.77)        

where    is the changes of the portfolio value over holding period 

For short position, it becomes: 

                                                                                                    (2.78) 

It is clearly that the Multi-day VaR estimate for long position is derived from left tail of the 

    , while the Multi-day VaR estimate for short position is derived from right tail of the 

    .  

2.5.2 Multi-day VaR from IGARCH model 

To derive the conditional distribution of the return series, we first consider the parametric 

VaR model proposed by Peter (1996), in which the continuous compounding daily return    is 

assumed to be conditional normal, which is expressed as: 
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                                                (2.79) 

where    and   
  are the conditional mean and variance at time   

Assume the dynamicity of   
  is modeled by IGARCH (GARCH with no drift) process, 

which is expressed as: 

                  

                                                 
       

           
                                       (2.80) 

This special type of GARCH model is equivalent to the Exponential Weight Moving Average 

(EWMA) process. Substituting the top equation in (2.80) into the bottom equation, we have: 

                                              
      

           
      

                                   (2.81) 

This could be generally expressed as: 

                                          
        

             
        

                        (2.82) 

Taking the conditional expectation to both sides of equation (2.82) and notice that: 

                                                               
       

                                        (2.83) 

We have: 

                                                                
           

                                          (2.84) 

Equation (2.84) shows that in IGARCH model, the  -day conditional variance is equal to: 

                                                                   
          

                                                       (2.85) 

Therefore the  -day conditional distribution of the continuous compounding return    follows 

normal distribution, which is expressed as: 

                                                                   
           

                                                   (2.86) 

The  -day VaR becomes: 

                                                                                                       (2.87) 

where   is the cash amount of portfolio and         is the quantile from standard normal 

distribution. 

Equation (2.87) is so called the time-square root rule under the Risk-Metrics system and it’s 

fairly easy to implement in the multiday VaR forecast. Given that the financial assets always 
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have fatter tails,        could be replaced by student   quantile for a more conservative 

measurement.  

Note that the equation (2.87) only valid under the assumption that returns follow IGARCH 

process. If there is a drift term in either the return or volatility process described in equation 

(2.80), time square root rule could be broken down. For instance, consider a return process 

with a drift term, which is: 

                                                                                                                                 (2.88) 

This could be a case when the assets could provide a non-zero unconditional expected return. 

As shown by Tsay (2005), the assumption is particularly hold for some high-frequency traded 

securities. The distribution of the  -day return changes to: 

                                                            
            

                                                         (2.89) 

The  -day VaR will changes to: 

                                                                                                      (2.90) 

2.5.3 Multi-day VaR from ARMA-GARCH model 

The multi-day VaR for an ARMA-GARCH model could be derived in a similar way. To see 

this, consider the following time series model for return     and conditional variance   
  : 

                                                             
 
                  

 
     

                                                                                         

                                                          
        

 
       

         
  

                          (2.91) 

In above model, the return    follows ARMA process while the conditional variance   
   

follows GARCH process. If the model specification is correct,    should follows a standard 

Gaussian process with elliptical distribution. For given information on time  ,      should 

have the same conditional distribution as   , which is expressed as: 

                                                                        
              

                                         (2.92) 

where        and    
     can be estimated from equation (2.91).   

A common assumption for the distribution of     could be normal or student  . 1-day VaR of 

   therefore could be expressed as: 
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                                          (2.93) 

where       is the     quantile of the    with   degree of freedom  

For the  -day VaR, we need to forecast        and    
     using model (2.91).   

To simply the forecast, we transform the ARMA process (2.91) into a purely infinite MA 

model, which is expressed as: 

         

 

   

               

 

   

 

                               

                                                           
  

            
                                                (2.94) 

At the initial time   , the  -day ahead forecast of     using (2.94) could be expressed as: 

                
                                                              

                                                                                                                                              (2.95) 

Since for any    ,         
     is hold. (2.95) could be simplified as: 

                                                                                                            (2.96) 

 The corresponding forecasting error from (2.96) is equal to: 

                                                                                          (2.97) 

The total error of  -day ahead forecast is the sum of the forecasting error from 1 day to  -day, 

which is: 

                                

                               

   

   

 

                                                             
   
                                   (2.98) 

where      

The  -day ahead volatility forecast at initial date   is therefore given by: 
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                            (2.99) 

where   
     is the conditional variance estimated by the GARCH process 2.91 

Consider a special case where    follows an AR-GARCH (1, 1) process, where: 

        

                  

                                                        
           

        
                                         (2.100) 

Since tr  follows an MA (1) process, the  -day ahead return forecast        is just equal to   . 

The corresponding total error is equal to: 

                                                                                                 (2.101) 

Using GARCH (1, 1) process, a forecast variance over  -day equal to: 

                                                    
                 

                                        (2.102) 

Apply iteration to and (2.102) combine with (2.99), we have: 

                                               
   

  

       
   

          

         
  

          

         
  

            (2.103) 

If     is standard normal distributed, the conditional distribution of         is normal as well, 

that is: 

                                                                 
                  

                                      (2.104) 

The  -day holding period VaR could be therefore expressed as: 

                                                                                     
                      (2.105) 

where             
   could be estimated from equation (2.103) 

2.5.4 An ideal of accuracy improvement  

The above section illustrates how to derive the multiday conditional CDF from an ARMA-

GARCH model. Virtually speaking, the longer the forecast period by a single time series 

model, the greater the forecast error occurs. A theoretical way to overcome this problem is to 

frequently re-estimate the model’s parameters using the latest historical data. For example, 
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assume we wish to estimate 10-day variance at the initial date  , we could re-estimate the 

GARCH model frequently , in which the fixed data window moves one day forward at each 

re-estimated time. Since each model parameters provides only daily variance forecast, the 

overall variance is the sum of the ten daily variance forecast. Statistically, if we re-estimate 

the model   times with the fixed window length, the total forecast error over    day is equal to : 

                       

                                          

                                                 
         

              
                                        (2.106)                                          

Note that we remove the filtration    in above formula because the information set is updated 

for each estimated value.  

One limitation of this procedure is that it could only be applied to the historical data, because 

we have to wait until tomorrow to know the new information in the data window to re-

estimate the model. This is obviously not feasible in practice (For instance, if we want 

estimate a 10-day VaR from today, we have to wait for 9 days to obtain all required 

information ).  

This problem could be solved, however, if we can find an appropriate time series model to 

directly model the historical Multi-day VaR series. Once the time series model has been 

appropriate specified, we could estimate the parameters based on the historical multi-day 

VaR series and generate a VaR forecast. This idea is the exactly the motivation of the 

Dynamic risk model we proposed in the chapter four.  

2.6 Conclusion 

This Chapter provides a general introduction of Value at Risk models and its evolution in the 

financial risk measurement. To be specific, Section one provides a formal definition of VaR 

and its statistical foundation. We show how VaR could be estimated using parametric, non-

parametric and semi-parametric approach separately. The key difference of these approaches 

lies in the different ways of the return distribution modeling. The pro and cons of each model 

is briefly discussed as well. We also discuss the issue of time varying conditional distribution 

in the VaR modeling. Two general approaches are presented, in which one is focus on the 

dynamic adjustment of the conditional volatility and the other is focus on the dynamic 

adjustment of the conditional quantile.  However, there is currently no agreement on which 
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approach is superior since there is no quantitative approach available to separate these two 

effects on the time varying conditional distribution.  

While the section one focus on the VaR modeling of the underlying risk factors, the next two 

sections turn to the risk measurement for portfolios. Given the fact that the market risk of the 

portfolios is driven not only by the VaR of the underlying risk factors but also by the risk 

exposure to these underlying risk factors, we explain two useful approaches for risk exposure 

modeling. The risk mapping approaches represented in the following section, on the other 

hand, could be applied to determine appropriate underlying risk factors.  

In the final section of this chapter, we provide the derivation of the multi-day VaR forecast in 

the context of ARMA process. This includes the time squared root rule from the IGARCH 

process and the general formula from the ARMA-GARCH process. Furthermore, we point 

out an idea that if we could find an appropriate model to fit the historical VaR series, the 

accuracy of the VaR forecast will possibly be improved compared to the traditional 

approaches. 
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3 Application of VaR models in the financial market risk measurement  

Followed by the market risk modeling techniques presented in chapter two, this chapter 

implements a complete model application based on several hypothetical portfolios, 

constructed on both historical and simulated data. The purpose of running this application is 

to demonstrate the pros and cons of each selected model through empirical analysis, which 

set the scene for the development of new VaR methods in chapters four and five.  

Particularly, we are attempting to address three main issues through model application, which 

can be summarized as following: 

 Compare the performance of VaR models under different asset classes (e.g.: equities, 

bonds, options and futures) and select the most appropriate VaR model for each class.  

 Analyze the feasibility of two dynamic adjustment approaches through back-testing. 

 Implement two risk mapping techniques into the portfolio risk simplification process 

and formulate some useful selection criterions 

Model application also provides us a comprehensive and deep understanding of the practical 

use of VaR models and thereby contributes to some possible model innovations in the further 

PhD research. 

3.1 Dataset 

Hypothetical portfolios constructed in this chapter consist of stocks, bonds, currencies and 

their derivatives. All historical data are collected from Thomson Reuters DataStream and 

covered both the US and the UK financial market. More specifically, equity data are range 

from six major sectors of industry center, which are: 

1. Communication Equipment 

2. Major Airlines 

3. Industrial Metals Minerals 

4. Electric Utilities 

5. Money Center Banks 

6. Auto Manufacturers 

From each sector, three largest companies and three smallest companies are chosen based on 

their market capitalization. In overall, the dataset consist stocks of thirty-six companies listed 
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on NYSE. The daily prices include the latest 10 years market information, spanning from 

24/07/2001 to 01/07/2010.  

Other financial data consists of daily price of S&P500 index, FTSE 100 index, FTSE 100 

European options, UK sovereign bonds and UK corporate bonds, spanning from the same 

time periods as the equity data.  In order to exclude the option outliers, we only consider the 

option observations with premiums more than 1 £, maturity more than 10 days and money-

ness between 0.7 £ and 1.35 £. The UK bond data contained both the UK sovereign and 

corporate bond over the latest 10 years. The UK zero rate is used as a proxy for the spot yield 

curve. All data processing is done by MATLAB R2008a.  

3.2 Risk measurement of the equity portfolio 

The first type of the risk factor we considered is equity risk, which is reflected by the 

fluctuation of the stock’s price. As an example, Figure1 plot the historical price of S&P500 

index in the US market during 2001 to 2010. The return series appear stationary between the 

middle of 2003 and the early of 2007. However, large fluctuation begins at the middle of 

2007. The Notable peak occurred around the late of 2008, when the US financial market is 

overwhelmed by the subprime crisis.  

FIGURE 1: THE HISTORICAL PRICE SERIES OF S&P 500 INDEX FROM 2001 TO 2010 

 

These types of large and unexpected price changes, whether positive or negative, will results 

in potentially substantial loss to the market investors if they don’t realized and measure it 

properly.   

To see how VaR models could be used to measure the equity risk, this section perform an 

empirical analysis on some purely equity portfolios constructed on our dataset. We 
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deliberately select the sample period spanning from 16/08/2007 to 26/06/2009 in order to 

capture the extreme market movement under the US subprime crisis.    

3.2.1 Equity risk assessment 

Since the research is concentrate on the risk measurement, it is not necessary to consider how 

to choose appropriate individual stocks in the portfolio for return enhancement. Therefore, 

the hypothetical portfolios are constructed by the randomly selected stocks in the dataset.    

Consider a hypothetical equity portfolio, which consists of three public listed stocks from 

Auto Manufacturers in the US stock market: 

 Toyota Motor Corp 

 Honda Motor Co. Ltd 

 Daimler AG 

Although the stocks in this hypothetical portfolio are randomly selected, the appropriate 

weights of each stock are determined by the constrained optimization. This could be done by 

constructing an Efficient Frontier using mean-variance optimization
10

.  

TABLE 1: RISK AND RETURN OF FIVE CORNER PORTFOLIOS IN THE EFFICIENT FRONTIER (BASED ON THE 2 YEAR HISTORICAL PRICES 
FROM 16/08/2007 TO 25/06/2009)  

Corner portfolios Portfolio Risk 
Portfolio 
Return 

Weights 

w1 w2 w3 

1 0.0278 0.0005            0.8844     0.0964     0.0192 

2 0.0281 0.00058            0.7004     0.2996          0 

3 0.0289 0.0007            0.4669     0.5331          0 

4 0.0304 0.0008           0.2335     0.7665          0 

5 0.0323 0.0009            0 1 0 

 

Table 1 present five corner portfolios selected on the constructed efficient frontier. Suppose a 

trader has initial investment amount of £1million in either of these five corner portfolio on 

26/06/2009, we estimate the potential market risk of these portfolios on the next day using 

Non-parametric VaR, parametric VaR and Semi-parametric model illustrated in section 2.1, 

setting the confidence level as 99%.  

The VaR estimates using the three different models are shown into the Table 2. The corner 

portfolios are chosen alongside the efficient frontier at ascending order based on their 

expected return. As shown in the table, Non-parametric model which reflects the extreme loss 

from the sample historical price, generate irregular VaR estimates owing to the discrete and 

sparse nature of the data. The parametric approach which fit the sample historical returns into 

                                                                 
10

 The optimization is done by the MATLAB using ‘FRONTCON’ 
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normal distribution, generate smoother VaR estimates with ascending order.  Besides, the 

parametric VaR provides a lower VaR prediction than non-parametric approach as the 

portfolio become risky, indicating that it assigns relatively low probability to the extreme 

events. The EVT semi-parametric approach, on the other hand, provides both smooth and 

relatively high value of the VaR estimates.   

TABLE 2: COMPARISON RESULTS OF THREE SELECTED VAR APPROACHES ON 26/06/2009   

CORNER 

PORTFOLIOS  IN 

EFT(FROM LOW 

TO HIGH 

EXPECTED 

RETURN  

Non-

Parametric 

VaR (£) 

Parametric 

VaR (£) 

Semi-parametric VaR 

 

Portfolio 

Absolute 

Return 1 day 

after(£) VaR (£) 
Shape 

parameter 
Scale 

parameter 

1 75625 64749 77987 0.2247 0.0146 55201 

2 74902 65313 78865 0.1888 0.0158 55115 

3 76140 67331 82683 0.1215 0.0188 64326 

4 79118 70704 86589 0.1365 0.0192 70324 

5 85100 75251 88004 0.1177 0.0210 76115 

 

Figure 2 plot the histogram, normal distribution and EVT tail distribution drawn from the 

sample historical returns of the first corner portfolio (Assuming the loss is positive hence we 

focus on the right tail). As shown in the figure, both normal (white line) and EVT (green line) 

tail has smoother shapes than the histogram. On the other hand, the histogram shows certain 

level of extreme outliers, which will be underestimated if using normal distribution as 

approximation.  

  FIGURE 2: HISTOGRAM, NORMAL DISTRIBUTION AND EVT TAIL DISTRIBUTION OF THE FIRST CORNER PORTFOLIO USING 2 YEAR 
HISTORICAL PRICES FROM 16/08/2007 TO 25/06/2009 

 

Comparing the actual loss on the next day with the VaR estimates (see the last column of 

table 1), it can be seen clearly that the actual loss of the fifth portfolio (£76115) violate the 

parameter VaR estimate (£75251), while in other situations, the three VaR models could 

generate a sufficient VaR estimate to capture the realized loss. 
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VaR can be interpreted as a measure of the maximum potential loss under the normal market 

condition or minimum potential loss under the extreme market condition. Jorion (2006) 

pointed out that the selection criterion of the VaR models is ambiguous in the literature 

(whether parametric, non-parametric and semi-parametric). The risk manager might choose 

VaR models based on the overall market condition. For instance, if the market is normal 

volatile, they tend to choose parametric VaR because it easy to implement and the result can 

be calculated quickly. If the market is current highly fluctuated, they might use semi-

parametric VaR because it could more accurately capture the extreme tail risk and provide a 

more conservative risk estimate.     

However, the above empirical result seems indicates that rather than the overall market 

condition, the risk degree of the target portfolio should be the key consideration when select 

the VaR models.  To be specific, given the moderate portfolio risk level, parametric VaR 

could generate a sufficient risk estimate even the market is at high volatility regime (as the 

sample period we chosen).  However, as we move alongside the efficient frontier and 

increase the risk degree of the corner portfolio, Parametric VaR estimates become less 

reliable and it is eventually broken by the actual loss at the fifth corner portfolio. Semi-

parametric VaR is preferable for these kinds of high risky portfolios. 

It also necessary to mention that these VaR models are all based on the conditional 

distribution derived from the sample historical data. These measurements might be unreliable 

if the actual distribution in the next day derived far from the sample historical data. (e.g.: 

Regime switch occurs)  

3.2.2 Risk integration of the equity portfolio 

Besides the risk degree of the target portfolio, we also like to consider the effect of the scale 

of the target portfolio to the VaR estimates. Because as the number of the individual stocks in 

the portfolio increase, the input parameters in the VaR models will increase as well, which 

increase  the  cost and complexity of the estimation as well.    

For a research, we construct a large hypothetical portfolio consisting of all 36 selected stocks 

in the dataset to examine how the scale problem will affects the speed and accuracy of the 

VaR estimate.  Since the weight of the individual asset is non-stochastic in the process of 
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VaR estimation
11

, we fix the equal weights of the individual stocks in the portfolio and 

perform the analysis.   

Table 3 shows the result of the VaR estimates of the hypothetical portfolio. The parametric 

VaR (in the second column) is obtained by fully estimated the covariance matrix of 36 

individual stocks.  Along with this, we also estimated VaR using two risk mapping 

approaches, which are diagonal model and PCA (Detailed Risk mapping techniques are 

explained in Chapter 2.4). 

TABLE 3: THE PORTFOLIO VAR ESTIMATES USING PCA AND DIAGONAL MODEL ON 26/06/2009 (AT 5% VAR CONFIDENCE LEVEL) 

 Parametric VaR 

(Full Covariance Matrix)  

 

VaR using risk mapping technique  

Diagonal Model  PCA analysis (16 PCAs) 

VaR  39358millon£ 38089millon£ 39235million£ 

Computation Time 1.05sec 0.01sec 0.023sec 

Portfolio Actual Loss next day on  2009/6/27 21016million £ 

 

Focusing on the Table 3, the differences of the VaR estimates generated from these three 

approaches are not substantial, given that the initial investment amount is £1million.  Among 

these, VaR estimate using full covariance matrix (without using mapping approach) generates 

the highest estimate value with the longest computation time. This is understandable since 

full valuation of the covariance matrix takes into account the full price information of each 

individual stock in the portfolio, with the total number of  the parameters equal to    (   

  

 
).  On the other hand, two risk mapping approaches only consider the effect of the certain 

common risk factors obtained from the mapping technique. This simplification results in a 

slightly lower VaR estimates but a considerable improvement of the computation time. We 

expected that the time reducing effect due to the parameter reducing should be more 

significant if the trader’s portfolio contained hundreds of individual positions.   

                                                                 
11

 The target portfolio is assume to be frozen when estimate the VaR   
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FIGURE 3: BEST HEDGE AMOUNT OF THE INDIVIDUAL STOCKS IN THE PORTFOLIO (BY DECOMPOSING THE PARAMETRIC VAR IN THE 
TABLE 3)  

 

Figure 3 illustrate the best hedge amount of all 36 individual stocks in our hypothesis 

portfolio. These are negative values given the original portfolio is in the long position (The 

result is obtained by decomposing the parametric VaR estimate using incremental VaR 

model).
12

  The figure indicated that there are about 16 stocks that have fairly high risk 

contribution to the portfolio VaR (Those who has the best hedge amount less than 

£0.1million).  This high return correlation of the 16 individual stocks could probably leads to 

a significant high explanatory power of the PCA analysis.  In fact, the overall explanation 

power of the 16 PCAs is about 98.45%, which makes the VaR generated from PCA is highly 

close to the full matrix valuation.  

Comparing to the realized loss of the hypothetical portfolio on the next day (see the last row 

of the table 2), the VaR estimates from two risk mapping approaches are both enough to 

cover the actual portfolio loss, in which the diagonal model provides a more speed estimation 

with a slightly lower value than that from PCA analysis. The result provide an evidence that 

the daily VaR estimate could be trusted at relatively high confidence level regardless the 

adaption of the risk mapping techniques.  

In fact, given that the VaR estimates are based on sample historical data, the estimated risk 

will only be associated with the rare event under the sample period conditions. On the daily 

basis, there should be a fairly high probability that the future market condition will stay 

                                                                 
12

 The Best hedge ratio is estimated using equation (2.64) 
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similar to the sample period market condition. This could possibly explain why the daily VaR 

estimates could be safety no matter which mapping technique is used for simplification.   

Even so, the VaR estimates has limitations in that it may not include the extreme but 

plausible scenarios that do exist in the reality. This explains why the risk manager required 

some complementary tool such as stress testing to increase the security of the risk 

measurement system.  

3.2.3 Time varying conditional distribution on VaR estimates  

As we mentioned in the end of the section 3.2.1, VaR models are based on the sample 

historical data, these measurements could be unreliable if the actual distribution in the future 

derived far from the distribution estimated from the sample. We now consider how the time 

varying conditional distribution will affect the market risk estimates from VaR models. 

Particularly, we consider the dynamic adjustment approach proposed by McNeil and Frey 

(2000).It is a semi-parametric approach combining Extreme Value Theory and GARCH 

model. 

Assume the stock return follows a stochastic process with drift rate     and variance rate   
 , 

its value on day   can be expressed as: 

                                                                                                                                 (3.1) 

Where    is the innovation at time   

If the volatility    is modeled by GARCH process, the innovation series      (standard 

residuals) from (3.1) can be extracted as: 

                                                         
              

       
   

      

   
                                 (3.2) 

The tail distribution of these standard residuals can be modeled by EVT. The form of the tail 

estimator for Cumulated distribution function )(ˆ zF is given by:  

                                                                     
 

 
     

      

  
 
 

 

                                   (3.3) 

Inverting the tail estimator formula (3.3), we have: 

                                                               
  

  
  

 

 
      

   

                                    (3.4) 

The conditional VaR (    quantile) could hence be calculated as:  
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                                                        (3.5)    

Where    and     are estimated from GARCH model   

We implement the model (3.5)  to model the dynamic risk evolution of the FTSE100 index. 

Figure 4 lot the daily price and its corresponding returns of FTSE 100 index from 2001 to 

2010.  The returns series reflect the overall equity market condition of the UK financial 

market during the sample period. The significant volatility clustering effect in the return 

series (red line) indicates that GARCH process could be appropriately chosen.  

FIGURE 4: THE DAILY HISTORICAL PRICE SERIES OF FTSE 100 INDEX FROM 2001 TO 2010 

 

 

We estimate the conditional volatility series       of the FTSE 100 index using three GARCH 

types of Model, including GARCH     , EGARCH       and GJR GARCH     .  The 

extracted conditional volatility series are plotted against the market implied volatility, as 

shown in figure 5.  
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FIGURE 5: CONDITIONAL VOLATILITY SERIES OF FTSE 100 INDEX EXTRACTED FROM THE TREED SELECTED GARCH MODELS (BLUE LINE: 
EGARCH. GREEN LINE:GJR-GARCH. BLACK LINE:GARCH )  

 

We combine the GJR-GARCH volatilies with the tail estimator (3.4) for a time varying VaR 

estimates (denote GJR semi-parametric VaR). To be specific, we obtained the time varying 

VaR series by multiplying the conditional volatility series generated from the GJR-GARCH 

model with the residual quantile estimated from EVT tail estimator (3.4). The conditional 

Daily VaR series is shown in figure 6.  

FIGURE 6: CONDITIONAL VAR FORECAST SERIES OF FTSE100 FROM 07/05/2009 TO 31/07/2010 

 

For comparison purpose, we also produce other two types of VaR series, which are from: 

 GJR-normal:  time varying VaR series generate by combining GJR-GARCH volatility 

and standard normal quantile. 

 HS-VaR: VaR series generate from pure historical quantile  

50 100 150 200 250 300 350 400 450

1

2

3

4

5

6

7

Volatility Surface

 

 

ConditionalVolatility using EGARCH

ImpliedVol surface

ConditionalVolatility using GJR-Asysmetric GARCH

ConditionalVolatility using UGARCH

07/05/0926/06/0915/08/0904/10/0923/11/0912/01/1003/03/1022/04/1011/06/1031/07/10
-4

-3

-2

-1

0

1

2

3

4

5

6
FTSE100 5% VaRs(100x)

 

 

Returns

HS
V
aR

GJR Normal

GJR Semi-parametric

07/05/0926/06/0915/08/0904/10/0923/11/0912/01/1003/03/1022/04/1011/06/1031/07/10
-6

-4

-2

0

2

4

6
FTSE100 1% VaRs(100x)

 

 

Returns

HS
V
aR

GJR Normal

GJR Semi-parametric



57 
 

To evaluate the performance of the VaR estimates, we summarize the number of the violation 

days during the sample period
13

. The result is shown in Table 4. Focus on the third and fourth 

column of the table, the VaR series (generating from both GJR normal and GJR semi-

parametric) provide more consistent and efficient predictions of the actual risk than the VaR 

estimates from historical Quantile.  

TABLE 4: BACK-TESTING RESULTS (COMPARE VAR SERIES WITH FTSE100 ACTUAL RETURNS FROM 07/05/2009 TO 31/07/2010) 

VaR approaches Total sample 

observations 

Actual Violation at 95% 

Confidence level  

Actual Violation at 99% 

Confidence level  

Historical Quantile 325 17 5.2% 6 1.8% 

GJR normal  325 14 4.3% 3 0.9% 

GJR semi-parametric 325 14 4.3% 2 0.6% 

 

The above empirical results indicate that the dynamic VaR series generated from GARCH 

types of volatility perform fairly well in capturing the time varying risk evolution. Given the 

conditional volatility series obtained from the GARCH process, we believe that this result is 

not just obtained by a random chance.  

To be specific, the conditional volatility series in the figure 5 shows that the GARCH types of 

models could generate a similar volatility forecast as the market implied volatility (red line). 

Since the implied volatility captures the market expectation of the risk due to its forwarding 

looking property, this indicates that the VaR estimated from GARCH types of volatility is 

fairly consistent with the market expectation.  

Even the figure 5 shows that GARCH model might generate a lower volatility forecast than 

that from the market subjective expectation at some occasion, the conditional VaR could still 

be safety, because the quantile multiplier which captured the extreme risk at the normal 

market condition could be served as a complement.   

Furthermore, given the negligible pattern difference from the GJR normal VaR and the GJR 

semi-parametric VaR at 5% significant level, our empirical result also indicate that if the time 

varying distribution has already been considered by the time varying volatility (as modeled 

by GARCH types of model), the time varying quantile have limited effect on the VaR 

estimates at relatively low confidence level. Therefore, although McNeil and Frey advocated 

that standard normal quantile are likely to underestimate of the tail risk compared to EVT, 

this empirical result shows that that underestimate problem tends to disappear at lower 

confidence level(say 95% confidence level ), as long as  the dynamicity is generated from the 

GARCH types of volatility. 
                                                                 
13

 The violation day is defined as the day when actual return fall below the estimated VaR 
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Indeed, this conclusion may not be comprehensive, since the research has not verified the 

statement through various types of financial data and the time horizon selection is relatively 

short. However, it does provide us a useful implication to improve the dynamicity of VaR 

estimates, which states that the time varying quantile effect  could be partly captured by the 

time varying volatility when implement the risk modeling technique. The dynamic CAViaR 

model proposed in the chapter 4 is highly motivated by this idea.  

3.3 Risk measurement of the future and option portfolio 

By now we have not consider how risk exposure will affect the portfolio’s potential losses. In 

fact, if the portfolio consists of pure stocks, there is no need to take into account the effect of 

risk exposure, since the underlying risk factor is the same as the portfolio assets. However, 

the existence of the derivatives in the portfolio will leads to the non-linearity and non-

monotonicity of the portfolio’s payoff to the underlying risk factor, which increase 

complexity of the risk estimation and thereby raise the need of the risk exposure modeling.   

This section attempts to compare the performance of two risk exposure modeling approaches 

through some empirical results. Since the degree of the nonlinearity of the target portfolio 

plays a key role in determining the appropriate model, we deliberately construct some 

portfolios with certain degree of non-linear payoffs. Similarly, the derivatives added in the 

portfolios are purely equity derivatives
14

.    

The most commonly traded equity derivatives in the UK financial market are the future and 

options. The popular types of contracts are the min-contracts of Future and options contracts 

(10 scaled by the current index points) written on FTSE 100 index listed on the LIFFE. 

Figure 7 plots the market Implied Volatility (IV) series extracted from the FTSE 100 

European options during the sample periods from 26/06/09 to 11/06/10. (IV is calculated as 

the average implied volatility at each available strike prices) This implied volatility series has 

fluctuated widely during the sample periods, which reflects the high market risk of the UK 

financial market after the explosion of sub-prime crisis in the US.  

                                                                 
14

 Interest  and exchange rate  risk factors will be examine in the next two sections  
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FIGURE 7: IMPLIED VOLATILITY OF FTSE100 EUROPEAN OPTIONS FROM 26/06/2009 TO 11/06/2010 

 

3.3.1 Empirical results from Local valuation approach  

Portfolio 1: Protective Put  

The combination of futures and options in the portfolio leads to a typical type of non-linear 

payoff. For example, by simultaneously holding the future and put option contract, the 

investor could limit the downside risk of the price drop while still enjoy the potential 

unlimited profit from the price increase. This is an investment strategy for an investor who 

believes the stock price may go up in the near future, yet he likes to protect him from the 

downside risk. The portfolio has moderate non-linear payoff and is typical for us to analysis 

the performance of the risk exposure modeling.  

Figure 8 plot the price of FTSE 100 index and four types of the FTSE 100 future contracts 

with different maturities, spanning from 06/09 to 06/10. Assume a trader was currently at the 

date 12/01/10.  After observing a persistently market increasing trend during the last few 

months, he predict that this trend will continue for the next few month and therefore 

constructs a protective put portfolio, which involves entering a long position in the index 

future contract combined with a long position in the put option contract. The profit can be 

generated if the index keeps increase in future. However, there will be a downside risk for 

this investment if the market index falls down unexpectedly.   
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FIGURE 8: HISTORICAL PRICES OF FTSE 100 MIN-FUTURE CONTRACTS FROM 26/06/2009 TO 11/06/2010 

 

The current price of the FTSE 100 index futures maturated at 21/06/2010 is 5439, and the put 

option contract on FTSE 100 maturated at 18/06/2010 with strike price 5400 is 268.  Suppose 

the trader long 20,000 put and meanwhile long 20,000 futures, we apply the local valuation 

approach to assess the potential risk exposure of this portfolio. Since the combination of the 

options and the futures in the portfolio leads to the non-linear payoff function, quadratic 

model is applied.  

On the date 11/01/2010, we have the following market information:   

 The FTSE100 Index price is 5538.1  

 The Implied Volatility of FTSE100 European option is 18.244% per annum 

 The UK cash deposit 1 month middle rate is 0.46875% per annum 

Substituting above information into Black-Scholes formula, we solve the Delta and the 

Gamma of the put option maturated on 18/06/2010 with strike price 5400 is -0.3859 and 

5.8652e-004 respectively. For the FTSE100 future contract, the first and second local 

derivative respect to the underlying Index is 1 and 0. The sum of the Delta and the Gamma 

exposure of the portfolio are calculated in the following table.  

TABLE 5: THE DELTA AND GAMMA EXPOSURE OF THE TARGETING PORTFOLIO ON 11/01/2010 (THE PORTFOLIO CONSISTS OF 20,000 
FTSE 100 EUROPEAN PUT OPTIONS AND 20,000 FTSE 100 FUTURE CONTRACT MATURATED ON 18/06/2010) 

Delta Gamma 

1228220000*)13859.0(   7304.1720000*)0004-5.8652e(   

Delta Exposure (Sterling £) Gamma Exposure (Sterling £) 

800,801,61.0*1.5538*12282   3.98191.0*1.5538*7304.17   

 

The parametric VaR estimates of the underlying index at the portfolio setting up date 

11/01/2010 is 2.0916 % at 99% confidence level. Substituting these estimates into Quadratic 
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Model, the daily portfolio’s VaR estimate at 99% confidence level is equal to 130,325GBP. 

Suppose the trade holds the portfolio for the next 10 days, the 10-day VaR is approximately 

412,120GBP using time square root rule. 

For back-testing purpose, we check the actual index value on the date 12/01/2010 (10 days 

after), which turn out to be 5260.3. The corresponding future price dropped to 5175. The total 

realized loss of the targeting portfolio is calculated in the following table: 

TABLE 6: THE TOTAL REALIZED LOSS OF THE TARGETING PORTFOLIO ON 12/01/2010 

Actual loss from longing Index Future P-528,000GB0.1*5439)-(5175*20000   

Actual profit from put options GBP800,225268*200 -0.1*5260.3) - (5400*20000   

Total realized Loss GBP200,30222,580,0-52,800,0   

 

The realized loss is below the estimated VaR level, supporting the result from the quadratic 

model.  It could be found that when the Gamma is positive, the quadratic approximation will 

decrease the delta-Normal VaR, since the second term in the equation (2.29) will decrease the 

overall value, and vice verse. This is intuitively true because the positive Gamma corresponds 

to the net long position in the options. The holder of option always has the limited downside 

risk. 

However, when looking back the result in table 5, we find that the value of the delta exposure 

is much greater than the gamma exposure, implying that the overall market risk of the 

portfolio is dominated by the delta risk.  More explicitly, if we calculate the value of the first 

term and second term in the equation (2.29) separately, we have: 

 Delta risk =        = 134,678 

 Gamma risk =
 

 
       

  = 4354 

Therefore even we only consider the delta risk (linear risk exposure), the VaR estimate will 

fully enough to capture the actual loss. The delta risk reliance property in the local valuation 

approach, on the other hand, imposes a potential danger to the risk manger. That is, if the 

target portfolio has low delta exposure, local valuation approach which put too much weight 

to the delta exposure will tends to underestimates the true risk. 

Portfolio 2: Short Straddle 

The best way to examine the potential weakness mentioned above is to implement this 

approach to a target portfolio which is close to delta neutral at the measurement date. Since 

the delta represents the linear risk exposure, a delta neutral portfolio could be constructed by 

simultaneously longing and shorting the assets with similar level of delta exposure.  For 
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instance, by selling a both puts and call options written on the same underlying asset, we can 

construct an option portfolio (straddle) which theoretically has no delta risk exposure at the 

initial setting up date. Although the portfolio has no delta risk exposure, it is actually fairly 

risky because either up movement or down movement of the underlying price will lead to a 

potentially large loss.  

We use the same dataset in the section 3.3 to perform the risk assessment. Suppose a trader is 

now at time 16/02/2010 when the market implied volatility is around 20% per annum. Given 

that the volatility has stayed at this level for the last few months, he predicts that the market 

will continue to be stable for the next one month and thereby implement a strategy by 

simultaneously selling 20,000 calls and puts on FTSE 100 index (short straddle). If the index 

value maintain at current level, this short straddle will be profitable. On the other hand, if the 

prediction is wrong and the market becomes more volatile, either the moving upwards or 

downwards of the underlying index will lead to a potential unlimited loss.  

We apply the Quadratic model in above section to measure the risk of this portfolio. On the 

date 16/02/2010, the value of FTSE 100 Index is 5244.1. The market price for the option 

contract on FTSE 100 maturated at 09/03/10 is illustrated in the table below: 

TABLE 7: MARKET PRICE OF FTSE 100 EUROPEAN OPTIONS ON 09/03/10 

Strike 4800 4900 5000 5100 5200 5300 5400 5500 

Call 439.5 351.5 268.5 193.5 129 78.5 43 21.5 

Put 24 35.5 52.5 77.5 113 162.5 227 305 

 

The trader predict the market index will maintain around current level(5244.1) for the next 

month and implement short straddle strategy by simultaneously writing 20,000 calls and puts 

(200 contracts of the each option), with the strike price equal to 5300. The total premium 

received by this strategy is 48,200 and the strategy is delta-neutral at the initial portfolio 

setting-up date.  

Using the market implied volatility at 16/02/2010 (which is 20.863% per annum) as the daily 

volatility of FTSE 100, the parametric VaR estimate of the underlying index for one month is 

therefore equal to: 

                          

where   is the standard quantile at given significant level 
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For further accuracy improvement, we replace   by    estimated from Cornish Fisher 

expansion.  The value of   is estimated as -0.53 using equation (2.37) . At the 99% 

confidence level we have: 

        
 

 
                          

Substitute the value of  ,   and    into Quadratic Model, the refined VaR estimate of  the 

portfolio at 99% confidence level using local valuation approach is equal to
15

: 

              
 

 
                   

We check the actual market information one month later. The actual index value after one 

month at the date 08/03/10 (07/03/10 is a holiday), which is 5606.7. The deeply in-the-money 

call option contract would be exercised by the option holder, the actual loss from this shorting 

straddle is: 

                                       

Compare this to the VaR estimate from Quadratic Model, which is 246,880, the realized loss 

is almost twice as the estimate VaR. If we only consider the delta-normal approximation, 

there is even no risk at all because the portfolio is delta-neural at initial point, which is 

extremely dangerous.   

Compared our empirical results from portfolio 1 and portfolio 2, the pro and cons of the local 

valuation approach can be clearly demonstrated. To be specific, the empirical results are 

similar to what was found by Hull (2008). On one hand, if the target portfolio is dominated 

by delta exposure, the local valuation approach could generate a safe risk measure. Since the 

Black-Scholes formula could provide an analytical solution to both delta and gamma, this 

approach is easy to implement.  On the other hand, if the target portfolio has fairly low level 

of the delta exposure (payoff function is serious non-linear), local valuation approach could 

significantly underestimate the true risk, because it assign too much weights to the delta 

exposure which is actually not the dominant risk exposure under such circumstance.    

3.3.2 Empirical results from Full valuation approach  

The increasing complexity of the portfolio’s payoff raises the need of the full valuation 

approach. For a direct comparison, we apply full valuation approach to re-estimate the market 

                                                                 
15

 The sum of the Gamma for the calls the puts estimated is equal to 52.  
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risk of portfolio 2 in section 3.3.1. In order to implement Monte Carlo simulation more 

efficiently, we extend the sample period to two years (spanning from 14/06/2008 to 

14/06/2010) for input parameter estimation. 

 Three types of simulations are implemented under the full valuation approach, which are: 

 Constant volatility with standard normal innovation 

 Constant volatility with student   innovation (four degree of freedom) 

 Time varying volatility followed by GARCH process 

For each underlying stochastic process, we simulate 250 paths of the index price with 31 days, 

starting on the date 14/06/2010.  The sample paths of the process are shown in Figure 9.  

(As mentioned in the literature review, MC simulation is a fairly time intensive approach 

which needs powerful computer systems. Due to the compute constraint, we only generate 

250 paths for the underlying risk factor over 15 working days)  

FIGURE 9: THE MONTE CARLO SIMULATION WITH 250 PATHS AND OVER 15 DAYS (INPUT DATA: FTSE 100 INDEX PRICE FROM 
14/06/2008 TO 14/06/2010) 
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The last graph in Figure 9 plotted the kernel densities of the 250 ending values simulated 

from three different types of innovations. The Density from the conditional GARCH 

simulation (green line) clearly has more non-normality property and fatter tail than those 

from the constant volatility (the red line is from standard normal and the blue line is from 

student  ).  

Given that the financial returns have typical volatility clustering effect, we apply the GARCH 

simulation for full valuation. More explicitly, we apply GARCH process for the conditional 

volatility simulation. Then we substitute the simulated GARCH volatilities into the stochastic 

process for the random price generation. The simulation generates 250 paths of the index 

movement over 15 days, with initial date at 16/02/2010 and ending date at 08/03/2010. 

Finally we re-evaluate the portfolio value based on each realized index value; the worst loss 

of the portfolio is represented by the extreme quantile of the realized kernel density.  

Based on the 250 re-priced portfolio payoffs (the kernel density of the 250 realization of the 

index value at the ending date is plotted in Figure 10 ), the VaR estimate at 99% confidence 

level is the 99% quantile of the realized density, which turned out to be 722,950. This 

forecast risk level is enough to cover the actual loss (565,200).   

FIGURE 10: THE DENSITY PLOT OF THE SIMULATED PRICES ON 15/03/2010 

 
General speaking, the empirical result is consistent with the statement in the literature. As 

shown by Jorion (2006), Monte Carlo simulation could theoretically accounts for 

nonlinearities and time decay effect of the underlying risk factor in the tarter portfolio. Full-

valuation approach is therefore preferable than local-valuation approach in measuring the 

market risk when the target portfolio has seriously non-linear payoff.  
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On the other hand, when comparing the hypothetical portfolio 1 and portfolio 2 constructed 

in this research, we found that these two portfolios actually have same degree of non-linearity, 

because their non-linearity are driven by the same risk source which is the equity option. The 

key difference between their payoff functions, however, is that the portfolio 1’s payoff is 

monotonic while the portfolio 2’s payoff is non-monotonic. This fact indicates that rather 

than non-linearity, whether the payoff is monotonic is the critical consideration to select the 

appropriate risk exposure modeling technique.  

Local valuation approach with quadratic approximation can be enough for the portfolio with 

fairly non-linear payoff, as long as it is monotonic.  However, when the portfolio has 

seriously non-monotonous payoff, the overall delta exposure tend to be cancel out due to the 

hedge effect.  Local valuation approach therefore leads to the underestimation of the true 

market risk even Cornish-fisher expansion used as a complement. Full valuation approach by 

Monte Carlo simulation is recommended under such situation.      

3.4 Risk measurement of the foreign currency 

3.4.1 Findings from the local valuation approach  

Having studying the equity risk factor, we now turn to the model application of exchange rate 

risk. Exposure to the foreign exchange risk is a natural result of the globalization of the 

financial institutions. To be specific, the exchange risk influences the global investment in 

two ways:   

 Exchange rate risk increase the uncertainty of translating the value of the foreign asset 

back in to the domestic currency. 

 Exchange rate changes will influence the return on the foreign asset due to their 

correlation. (e.g.: appreciation of the foreign currency will have a negative effect on 

the foreign exporter which decrease the return on their asset)    

Unexpected volatility of the exchange rate risk can generate substantial loss to the firm, 

which in turn threaten their profitability or even survival. In practice, firms engaged in the 

international business could use currency forward or future contract to hedge the exchange 

rate risk. For instance, if the firm is expecting to receive certain amount of the foreign 

currency payment in the future, it can simply lock the exchange rate by entering into a short 

position in corresponding foreign currency forwards.  
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From the view of the financial institutions, they have even more exposure to the exchange 

rate risk than the firms due to their more frequent foreign currency trading activities. These 

activities include: 

 Act as the counterparty to the hedgers (firms) for the risk transfer  

 Offset the exposure in a given currency for hedging purposes 

  Speculate on the foreign currencies in search of potential profit 

Because of the significant positions in the foreign currency contracts taken by the financial 

institutions, they must measure and price this risk even more carefully and accurately than the 

Non-financial enterprises.   

Hull (2008) shows that the pricing formula of a foreign currency forward at time   is 

expressed as: 

                                                                   
                                                        (3.6) 

where: 

   is the sport price of the foreign currency at time   

  is the interest rate on the foreign currency 

  is the forward price of the contract  

  is the time to maturity 

Jorion (2006) shows that under the local valuation approach, the market risk of the foreign 

currency forward can be separated into three parts: the risk from the spot exchange rate, the 

risk from the domestic zero rate and the risk from foreign zero rate. Review the Local-

valuation approach we implement in the section 3.3, the approach is actually a special case of 

Taylor expansion. More generally, assuming the value of a derivative depends on the  

underlying price, interest rate, yield from the underlying, volatility of the underlying and time, 

Taylor expansion shows that (ignore higher order )
16
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                                                                   (3.7) 

where  ,  ,   and   are the partial derivatives respect to  ,   and   

                                                                 
16

 Black-Scholes formula provides a closed-form solution for each partial derivative.   
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Applying Taylor expansion (3.11) to equation (3.10) and ignore the time subscript t we have: 

                          
  

  
   

  

  
   

  

  
                                           (3.8)                          

We can further re-write the discount factor as the price of zero-bond, whose principal is one 

unit of the currency, which is: 

                

                

                                                                                                                            (3.9)             

Where    and    are the price of zero-bond with domestic and foreign currency respectively 

Substituting equation (3.9) into equation (3.8) we have: 

                                                         
  

 
        

   

  
         

  
                       (3.10)    

Equation (3.10) is nothing more than a three factor model, which states that buying one 

foreign currency forward can be decomposed into three cash flows:  

 Longing         units’ spot foreign currency 

 longing          units’ foreign zero bond and  

 Shorting         units’ domestic zero bond 

This decomposing not only provides an analytical approach for the foreign currency risk 

modeling, but also gives us valuable implication for the foreign currency risk management. 

Theoretically, the value of forward contract should be zero on the contract sign up date. The 

risk decomposing from equation (3.10) indicates that if the trader is evaluate the market risk 

of the currency forward at the contract signing up date, the quantities of longing foreign zero 

bonds should be equal to the quantifies of shorting domestic zero bonds
17

. In this case, the 

long-short positions should diversity out large part of the interest rate risk if there is a high 

correlation between the zero rates in the two countries.  

3.4.2 Empirical analysis  

To check the inference, this section implement the Jorion’ decomposing (3.10) to estimate the 

market risk of a hypothetical foreign currency forward position. Consider a 1 year currency 

forward contract of the Sterling against the US dollar, Figure 11 displays the movements of 

                                                                 
17

      will be equal to       if setting   equal to zero in equation (3.6) 
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the forward exchange rate during the sample period 09/2009 to 02/2011. The Sterling value 

shows a downside trend in the first sub-period and gradually back to its original level at the 

end of second sub-period. 

FIGURE 11: HISTORICAL PRICES OF FOREIGN CURRENCY FORWARD CONTRACTS FROM 2009 TO 2011(STERLING AGAINST US DOLLAR) 

 
 

Under the Interest Rate Parity theory (IRP), the expected premium of the future exchange rate 

should be equal to the difference of the risk-free rate (funding cost) between the two 

countries. As shown in the Figure 12, the highest exchange rate shown up around the date 

15/05/2010, when the US interest rate reached its peak (around 0.9%).  On the other hand, the 

lowest exchange rate appeared around 15/11/2009, when the US interest rate was fairly low 

(approximately 0.4%).If setting 15/05/2010 as a threshold and examining the difference 

between the two zero rates before and after this point, we found that the gap is generally 

decrease during the first half of the sample period and increase during the second half.
18

 This 

pattern is consistent with the relationship implied by IRP. As the different between the UK 

and the US interest rate decrease, the US market becomes more attractive than the UK market, 

which leads to both the excess demand for the US dollar in the market and the appreciation of 

the dollar against the pounds.  

                                                                 
18

 The exchange rate appears the opposite way. That is, it increases during the first half of sample period and 
decreases during the second half 
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FIGURE 12: ONE YEAR ZERO RATE CURVE IN THE UK AND THE US MARKET FROM 2009 TO 2010 

         
 

Statistically, we construct a EWMA-covariance matrix for the spot exchange rate   and 1 

year spot rate in both domestic (UK) and foreign market (US)( and  ) based on the 2 years 

sample data from 2009 to 2010. The formula is given by Jose, Lopez and Walter (2001):   

               

                                           

 
  
  
  
  
  
  
 

   

    

 
 
 
 
 
 

                            

                                 
 
 
 

                            

  

 
 
 
 
 
 

                               (3.11) 

Where   is the sample size and     ,      are the spot rate of UK and US respectively   

 (The decay factor   is setting to 0.984 for the daily date, which was adopted by the 

Riskmetrics)  

As shown in Table 8, the spot exchange rate has a estimated daily volatility of 0.7024%, 

which is considerable greater than those for the US and the UK zero rate, (0.0358% and 

0.0370% respectively), indicating that the risk of this currency forward is mainly driven by 

the spot exchange rate. On the other hand, the relatively low positive correlation (0.1817) 

between the US zero rate and the spot exchange rate and the low negative correlation (-

0.1563) between the UK zero rate and the spot exchange rate both indicated that there exists 

certain diversification effect among these three risk factors, which will decrease the overall 

risk of the currency forward. Finally, the high positive correlation between the US and the 

UK zero rate indicate that the interest rate risk from these two countries could largely 

diversify out from the long-short positions indicated by equation (3.10).  
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TABLE 8: EWMA-COVARIANCE MATRIX OF THE FOREIGN CURRENCY ESTIMATED ON 20/12/2012 (STERLING AGAINST US DOLLAR)  

Risk Factors 

Value on the 

Estimating 

Date 

EWMA 

Volatility 

(%) 

Daily VaR 

at 99% (%) 

EWMA Covariance Matrix 

US Zero Rate 
UK Zero 

Rate 
Spot EX 

Spot 

Exchange 

Rate 

1.6092$/per£ 0.7024 1.6366 1   

US Zero Rate 1.2771% 0.0358 0.0834 0.5283 1  

UK Zero Rate 2.0289% 0.0370 0.0862 0.1817 -0.1563 1 

 

The market risk assessment using formula (3.10) is shown in the Table 8. (Assume the trader 

take long position in $100million quantities of the 1 year currency forward contract maturity 

at the date 19/12/2011)  

TABLE 9: RISK DECOMPOSE OF 1 YEAR FOREIGN CURRENCY CONTRACT (STERLING AGAINST US DOLLAR) ON 20/12/2010  

Market Information on 20/12/2010 

Spot 

Exchange 

Rate 

Delivery EX 

Rate 

UK Zero 

Rate 

US Zero 

Rate 

Time to 

Maturity 
ye  

re  

1.5495 $/per£ 1.545$/per£  1.2066% 0.482% 1 year 0.988007 0.995192 

Current 

Forward Rate 
1.5436$/per£ 

Portfolio VaR 

Decomposed 

Position 
Quantity 

PV of Cash 

Flows ($) 
Weight Volatility 

Daily 

Individual VaR 

at 99% ($) 

Portfolio 

Volatility 

Long Spot 

Sterling 
99.8007m 153.092m 0.332952 0.7024% 2.505491m 

0.71% 
Long Sterling 

Zero Bond 
98.8007m 153.092m 0.332952 0.0370% 0.131981m 

Short Dollar 

Zero Bond 
99.5192m -153.618m 0.334096 0.0358% 0.128139m 

Total Undiversified VaR 2.7656m 

Total diversified VaR 2.5281m 

 

As shown in the table 8, the total undiversified daily VaR estimate is $2.7656 million while 

the diversified VaR estimate has a smaller value which is $2.5281million. Both values are 

dominated by the individual VaR of the spot exchange rate, which is $2.505491million. In 

fact, the value of the diversified VaR is almost the same as the value of the individual 

exchange rate VaR. The quantities of shorting the dollar zero bonds (98.8007) is very close to 

the quantities (99.5192) of longing the sterling zero bonds, confirming that the diversification 

effect largely comes from the long-short position in the UK and US zero bonds.   

The empirical result provides a useful implication in the foreign currency risk management.  

The currency forward contract is commonly used as a hedging instrument for the exchange 
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rate risk in practice, if the currency future contains certain level of interest rate risk, the 

hedging effectiveness will be affected.  

The implication is that if the trader is evaluate the market risk at forward contract signing up 

date (in this case), the quantities of longing the zero bonds in the foreign country should be 

theoretically equal to the quantities of shorting the zero bonds in the domestic country. Under 

such circumstance, the long-short positions will diversity out the large part of the interest rate 

risk given that there is a high correlation between the two zero rates. This is exactly the true 

in our example, where the valuation date is just one day after the contract signing up date and 

the quantities of shorting the dollar zero bonds (98.8007) is very close to the quantifies 

(99.5192) of longing the sterling zero bonds. 

On the other hand, if the risk valuation date is far from the contract initializing date, the 

interest rate risk should be considered additionally in the currency risk management (      

will possibly derivate from      ), because this risk could not be fully hedged by the unequal 

long-short position in two zero bonds. From the perspective of the risk managers, it is 

therefore necessary to notice that as the time deviated from the initial hedging date, the 

forward contract will expose to certain degree of interest rate risk which might not be ignored.                         

3.5 Risk measurement of the bond portfolio 

The last market risk we considered in this research is the interest rate risk. The risk factor is 

particularly been concerned in the fixed-income investment. Risk measurement of the fixed-

income portfolio should put more emphasis on the risk mapping techniques than the equity 

portfolio. Because unlike the equity portfolio whose risk could be summarized by single risk 

factor (market index), the risk profile of the bond portfolio is captured by several risk factors, 

including duration, key rate duration (yield twist), present value distribution of cash flows 

(PVD) and credit spread. When the bond has embedded option, its optionality (Delta, Gamma 

and implied volatilities) should be considered as well.   

3.5.1 Risk profile analysis in the UK bond market  

To perform an empirical analysis of the interest rate risk in the UK market, we collected the 

historical data of the UK treasury strips with maturities spanning from 1 to 30 years, as 

shown in the Table 10. Since we does not take account the credit risk in this research, the 

bond selected are all sovereign bonds which has fairly low level of default risk.  
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TABLE 10: HISTORICAL PRICES OF UK TREASURY COUPON STRIP ON 07/12/2010 (MATURITY FROM 1 YEAR TO 30 YEARS) 

Name Issue Date Maturity Date 
Time Last  

for Maturity 

Market Zero 

Rates on 

07/12/2010 (%) 

UK Treasury Coupon Strip 08/12/1997 07/12/11 1Y 1.136 

UK Treasury Coupon Strip 08/12/1997 07/12/12 2Y 1.423 

UK Treasury Coupon Strip 08/12/1997 07/12/13 3Y 1.820 
UK Treasury Coupon Strip 08/12/1997 07/12/14 4Y 2.203 
UK Treasury Coupon Strip 08/12/1997 07/12/15 5Y 2.556 
UK Treasury Coupon Strip 08/12/1997 07/12/16 6Y 2.878 
UK Treasury Coupon Strip 08/12/1997 07/12/17 7Y 3.157 
UK Treasury Coupon Strip 08/12/1997 07/12/18 8Y 3.396 

UK Treasury Coupon Strip 08/12/1997 07/12/19 9Y 3.603 

UK Treasury Coupon Strip 08/12/1997 07/12/20 10Y 3.771 

UK Treasury Coupon Strip 08/12/1997 07/12/25 15Y 4.267 

UK Treasury Coupon Strip 28/05/2000 07/12/30 20Y 4.376 

UK Treasury Coupon Strip 08/12/2005 07/12/40 30Y 4.314 

 

The return series of each selected zero bond from the sample period 08/02/2006 to 

08/02/2011 is plot in Figure 13.  The graph shows clearly that as the maturity of the bond 

increase, the volatility of the bond returns increase as well. Moreover, the Treasury Bonds 

with adjacent maturity shows the fairly similar patterns of the volatility. These patterns are 

generally consistent with the bond properties stated in the literature
19

. As maturity increases, 

the bond price will become more sensitive to the change of the interest rate, which is 

represented by the relatively high volatility of the historical returns. The similarity of the 

bond volatilities, on the other hand, could be explained in two aspects:  Firstly, when the 

yield curve undergoes a parallel shifts, bond returns with different maturities will show the 

similar movements. Secondly, a synthetic time decay effect exists in the bond price, which 

states that the bond price will converge to its principle as the time pass to the maturity date.  

This synthetic time decay effect will cause the bonds with different maturities moving in a 

similar pattern as the time passes by.   

                                                                 
19

 Source from: Alternative Asset Valuation and Fixed Income Level II 2011 (CFA Program Curriculum Volume 5) 
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FIGURE 13: THE HISTORICAL RETURN SERIES OF UK TREASURY COUPON STRIPS (FROM 2006 TO 2011)   

 

 

1. Risk mapping using duration model  

Quantitatively, we apply EWMA model to estimate the daily volatility of each selected zero 

bond (see Table 11). Individual Bond returns VaR is calculated as the product of the 

estimated volatility and the standard normal quantile (      ).  In the last column of 

Table 11, we implement the duration model to transfer the individual bond returns VaR to the 

Yield VaR, which is given by Jorion (2006): 

  
  

 
             

                                                           
  

 
                                                         (3.12) 

where   is the modified duration and   is the bond price  

As pointed out by Jorion, the risk mapping using duration model (3.12) allows the user to 

examine whether the yield curve undertakes a parallel shift during the sample period. If the 

yield curve occurs a strictly parallel shift, the transferred yield VaR from equation (3.12)  

should be constant across all maturities and under such situation, the duration should be a 

valid and appropriate underlying risk factor for the market risk measure of the bond portfolio.  

Focusing on the Table 11, we found that although the estimated yield VaR in the last column 

appears not constant over different maturities, they are fairly stable as opposed to the high 

fluctuated Return VaR, except that the zero bonds with one year and two year maturity have a 
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relatively lower yield VaR. The result is an evidence to support that the yield curve 

undertakes a parallel shift during the sample period in the UK market.  

However, as we pointed out at the end of the section 3.5.1, there exists one critical problem 

of applying duration measurement, which is the ignorance of the synthetic time decay effect 

in the historical bond returns.  When we re-examine the duration model (3.12), we found that 

this model completely ignore this synthetic time decay effect as well. More explicitly, the 

relationship between the bond returns and the yield change in equation (3.12) should only be 

hold theoretically when the time is fixed at the certain time point. However, since the 

historical bond price series are observed at the different time date, the synthetic time decay 

effect will lead to the fact that the bond price becomes less sensible to the interest rate change 

and gradually converge to its principle. Therefore fitting Jorion’s duration model into the 

historical bond price series will have a mislead effect of distinguishing whether the stability 

of the yield VaR is due to the external parallel shift or simply the synthetic time decay effect.  

TABLE 11: UK TREASURY COUPON STRIPS VAR ESTIMATE USING DURATION MODEL ON 07/12/2010 (INPUT DATA: HISTORICAL PRICES 
FROM 10/11/2006 TO 06/12/2010) 

Maturity Year 
Return Volatility 

(%) 

Market Yield 

(%) 

Modified 

Duration 

Returns 

VaR (%) 

Yield 

VaR (%) 

1 0.029 1.136 0.988768 0.065 0.066 

2 0.063 1.423 1.971939 0.148 0.075 

3 0.131 1.820 2.946376 0.306 0.104 

4 0.190 2.203 3.913779 0.443 0.113 

5 0.247 2.556 4.875385 0.576 0.118 

6 0.303 2.878 5.832151 0.707 0.121 

7 0.351 3.157 6.785773 0.818 0.121 

8 0.403 3.396 7.737243 0.939 0.121 

9 0.457 3.603 8.687007 1.065 0.123 

10 0.485 3.771 9.636604 1.130 0.118 

15 0.678 4.267 14.38614 1.580 0.110 

20 0.870 4.376 19.16149 2.027 0.106 

30 1.244 4.314 28.75932 2.899 0.101 

 

2. Risk mapping using Principal Component Analysis (PCA)   

To check the inference from the duration model that the yield curve undergone a roughly 

parallel shift in the UK market, we collect the historical data of the UK zero rate over the 

same sample period. Figure 14 plot the UK zero yield surface with maturity from 1 year to 30 

years, and 5 years sample period spanning from 08/02/2006 to 08/02/2011.  It can be seen 

clearly from the graph that the term structure of the yield curve undergone certain degree of 

non-parallel shifts during the sample period, which is inconsistent with the results from the 

duration model. This supports our statement in the above section that applying duration 
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model will possibly underestimate the true interest rate risk raised from the actual 

asynchronous movement of the yield curve.  

FIGURE 14: THE UK ZERO RATE YIELD SURFACE MATURITY FROM 1 YEAR TO 30 YEARS (SAMPLE PERIOD SPANNING FROM 2006 TO 2011)    

 

This section implements a more comprehensive risk mapping technique, which is Principal 

component analysis. Table 11 shows the correlation matrix of the changes of the UK zero 

rates during the sample period. The correlations are considerable high and positive for the 

adjacent maturities and tend to decrease with the spread between maturities. The lowest 

correlation arrives at the maturity between 1 year and 30 year, which is 0.315. The positive 

correlations across all maturities, on the other hand, indicate that there are some common 

factors which dominate the changes of the zero rates of the different maturities in the UK 

financial market.  

TABLE 12: THE CORRELATION MATRIX OF THE UK ZERO YIELDS (ESTIMATED USING SAMPLE DATA FROM 2006 TO 2011) 

Year 1 2 3 4 5 6 7 8 9 10 15 20 30 

1 1.000             

2 0.892 1.000            

3 0.792 0.970 1.000           

4 0.736 0.935 0.988 1.000          

5 0.690 0.900 0.967 0.992 1.000         

6 0.646 0.863 0.940 0.975 0.993 1.000        

7 0.603 0.821 0.903 0.947 0.976 0.992 1.000       

8 0.557 0.773 0.861 0.912 0.948 0.975 0.993 1.000      

9 0.521 0.734 0.825 0.880 0.923 0.956 0.983 0.996 1.000     

10 0.494 0.703 0.795 0.854 0.900 0.938 0.971 0.989 0.997 1.000    

15 0.443 0.640 0.733 0.796 0.848 0.894 0.935 0.961 0.975 0.984 1.000   

20 0.404 0.593 0.686 0.750 0.803 0.851 0.895 0.924 0.941 0.953 0.985 1.000  

30 0.315 0.487 0.576 0.635 0.684 0.732 0.777 0.807 0.827 0.842 0.893 0.941 1.000 

 

Applying PCA (Table 13), the empirical result shows that there are three Principal 

Components which could explain approximately 99% of the overall variation of the full 
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covariance matrix. The first component has an overwhelming affect of more than 88% 

explanatory power. The sum of the explanatory power for the second and the third 

component is about 10%, which could not be neglected as well.  

Hull (2008) applied PCA analysis to the treasury rates in the US bond market. As he pointed 

out, the first factor can be empirically explained as the yield level factor, which account for 

the large source of the interest rate risk if the yield curve undertake a parallel shift.  The 

factor is exactly the risk being considered in the duration model. The second Factor could be 

defined as the yield twist or “steepening” of the yield curve. The third factor is ambiguous 

defied and it could be serves as the measure of the “bowing” of the yield curve or other risk 

sources that could not be explained by the first two. 

Focus on our empirical result in the table 13, the first factor explains 88.13% of the overall 

variation, indicating the parallel shift dominates the change of the zero yield curves in the UK 

market.  The second factor, as defined by Hull as the yield twist, explains 9.27% of the 

overall variation and has the highest absolute loading value (0.446) for the 2 year zero rate. 

This indicates that there is a high degree of the yield twist (deepest slope) for the 2 year zero 

rates in the UK bond market. The last factor, which has approximately 1.5 % explanatory 

power, is relatively less important.  This loading value generally irregular distributed across 

all maturities, which represent other risk sources that could not be explained by the first two 

principals.  

TABLE 13: PCA RESULTS OF THE UK ZERO RATES MATRIX FROM TABLE 12   

Term(year) 
Eigenvectors 

Loading of Factor1 Loading of Factor2 Loading of Factor3 

1 -0.102 -0.287 -0.374 

2 -0.238 -0.446 -0.327 

3 -0.287 -0.385 -0.117 

4 -0.306 -0.285 0.041 

5 -0.314 -0.181 0.145 

6 -0.315 -0.078 0.192 

7 -0.312 0.024 0.199 

8 -0.308 0.113 0.213 

9 -0.305 0.180 0.202 

10 -0.303 0.230 0.178 

15 -0.283 0.317 -0.042 

20 -0.253 0.349 -0.283 

30 -0.194 0.360 -0.664 

Eigen-Value 0.025136 0.002644 0.00043 
Sum of Total Eigen-

Value 
0.0285  

Percentage of 

Explanation 
88.1315% 9.2706% 1.5069% 

Total Explanatory Power 98.9090% 
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PCA is more comprehensive compared to the duration model. Since it applied directly to the 

yield rather than the bond historical returns, this approach also get rid of the synthetic time 

decay effect.  Mathematically, Jorion (2006) shows that the efficiency of PCA analysis could 

be checked by constructing a new covariance matrix using the selected three PCAs and then 

comparing it with the sample covariance matrix by the original zero yields series. The 

equation is given by:  

                                            
    
   
    

 

 
 
 
 
 
  

 

 
 
 

  
  
 
 
 
 

     
          

               
(3.13) 

where   is the Eigen-value of the     PCA and    is the corresponding loading vector.  

In our example, the new covariance matrix is obtained by setting     (See table 14 and 

table 15). Comparing these two tables, the covariance matrix constructed by PCA give a 

fairly good approximation of the original covariance matrix.   

TABLE 14: THE COVARIANCE MATRIX CONSTRUCTED BY FULL SAMPLE RETURNS FROM 2006 TO 2011 
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%        

0.00058

% 

0.00080

% 

0.00103

% 

0.00131

% 

0.00157

% 

0.00180

% 

0.00202

%       

0.00063

% 

0.00087

% 

0.00113

% 

0.00143

% 

0.00172

% 

0.00199

% 

0.00220

% 

0.00247

%      

0.00067

% 

0.00093

% 

0.00120

% 

0.00153

% 

0.00184

% 

0.00213

% 

0.00236

% 

0.00266

% 

0.00289

%     

0.00071

% 

0.00098

% 

0.00127

% 

0.00162

% 

0.00197

% 

0.00227

% 

0.00251

% 

0.00283

% 

0.00306

% 

0.00331

%    

0.00081

% 

0.00117

% 

0.00155

% 

0.00201

% 

0.00247

% 

0.00287

% 

0.00318

% 

0.00362

% 

0.00393

% 

0.00419

% 

0.00620

%   

0.00096

% 

0.00139

% 

0.00185

% 

0.00241

% 

0.00300

% 

0.00349

% 

0.00386

% 

0.00441

% 

0.00481

% 

0.00513

% 

0.00768

% 

0.00995

%  

0.00112

% 

0.00166

% 

0.00225

% 

0.00294

% 

0.00361

% 

0.00424

% 

0.00476

% 

0.00537

% 

0.00586

% 

0.00628

% 

0.00932

% 

0.01232

% 

0.01768

% 
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TABLE 15: THE COVARIANCE MATRIX CONSTRUCTED BY PCA 
0.00022

% 
            

0.00029

% 

0.00038

% 
           

0.00035

% 

0.00047

% 

0.00059

% 
          

0.00043

% 

0.00058

% 

0.00073

% 

0.00091

% 
         

0.00049

% 

0.00067

% 

0.00085

% 

0.00106

% 

0.00126

% 
        

0.00056

% 

0.00076

% 

0.00096

% 

0.00121

% 

0.00143

% 

0.00164

% 
       

0.00061

% 

0.00083

% 

0.00106

% 

0.00132

% 

0.00157

% 

0.00180

% 

0.00197

% 
      

0.00066

% 

0.00090

% 

0.00116

% 

0.00146

% 

0.00174

% 

0.00199

% 

0.00219

% 

0.00244

% 
     

0.00070

% 

0.00096

% 

0.00124

% 

0.00156

% 

0.00187

% 

0.00214

% 

0.00235

% 

0.00263

% 

0.00283

% 
    

0.00075

% 

0.00103

% 

0.00132

% 

0.00167

% 

0.00199

% 

0.00228

% 

0.00251

% 

0.00280

% 

0.00302

% 

0.00322

% 
   

0.00081

% 

0.00116

% 

0.00154

% 

0.00200

% 

0.00247

% 

0.00288

% 

0.00318

% 

0.00363

% 

0.00394

% 

0.00421

% 

0.00613

% 
  

0.00093

% 

0.00135

% 

0.00182

% 

0.00239

% 

0.00298

% 

0.00349

% 

0.00387

% 

0.00443

% 

0.00483

% 

0.00516

% 

0.00773

% 

0.00989

% 
 

0.00112

% 

0.00167

% 

0.00225

% 

0.00294

% 

0.00361

% 

0.00424

% 

0.00476

% 

0.00537

% 

0.00585

% 

0.00628

% 

0.00931

% 

0.01233

% 

0.01768

% 

 

3.5.2 Risk measurement integrating the mapping techniques  

The above analysis of the interest rate risk profile in the UK bond market shows that the term 

structure of the UK zero yields undergone a certain degree of nonparallel shift over the 

sample period from 2006 to 2011. Applying the duration model could probably underestimate 

the true interest rate risk. PCA analysis, on the other hand, provides a more comprehensive 

consideration of the overall risk and it could incorporate the information from duration model 

in its first factor loading.   

To test the performance of these techniques, we construct some hypothetical bond portfolios 

in the UK market and implement the risk measurement integrating the risk mapping 

approaches. The bonds selected are all sovereign bonds or high investment-grade corporate 

bonds with fairly low default risk.  

1. Market risk measurement of the zero bond portfolio   

The first bond portfolio constructed is a long-short bond portfolio consists of randomly 

selected four UK Treasury Coupon Strips, which are:  

1. Long £20m in 9- years’ Coupon Strip 

2. Long £5m in 10-years’ Coupon Strip 

3. Short £10m in 3-year’s Coupon Strip 

4. Short £12m in 20-years’ Coupon Strip 
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The data collection is on the date 07/12/2010 and we try to evaluate the potential market risk 

of this bond portfolio over the next ten day.  

To assess the potential cash loss, the yield volatility        is transferred into cash exposure 

using duration model: 

                                                                  
                                                              (3.14) 

Where    is the cash exposure for bond   and    is the amount of cash invested in bond   

Substituting the value of the three factors loading in the Table 13, the cash variance of the 

portfolio        fitted with the three selected PCAs is given by (transformed from equation 

(2.76)): 

          
       

       
    

         
               

                                                                     

  

  

  

                                                         (3.15) 

After obtain the cash variance of the target portfolio, the potential market risk could be 

quantified by combining the selected VaR models and risk mapping technique. The 

estimating result is shown in Table 16. The 10-day parametric VaR estimate at 99% 

confidence level with 3 PCAs is £0.953644m.  Particularly, the long-short strategy of our 

hypothetical bond portfolio largely hedged each other against the first factor (the yield level 

risk), which results in a fairly low cash exposure of the first factor. (The estimated value of 

    is equal to £-0.33371m) Therefore the actual interest rate risk will be seriously 

underestimated if only taking account the effect of the first factor (The VaR estimate from 

1PCA is £0.388772m, which is approximately three times lower than the VaR estimate from 

3PCAs). 
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TABLE 16: THE BOND PORTFOLIO VAR ESTIMATE ON 07/12/2010 USING DURATION AND PCA  

Bonds 

in 

Portfolio 

Current 

Market 

Zero 

Yield (%) 

Modified 

Duration
*
iD  

Yield 

Volatility 

 idy  

Market Value iV

(£million) 
Cash Exposures ix (£million) 

3 year’s 

Coupon 

Strip 

1.8203 2.946 4.99% -10 
-1.47005 

9 years’ 

Coupon 

Strip 

3.6019 8.687 4.95% +20 
8.60013 

10 

years’ 

Coupon 

Strip 

3.7705 9.637 4.98% +5 
2.399613 

20 

years’ 

Coupon 

Strip 

4.3764 19.161 4.46% -12 
-10.255 

 

Term 
Loading 

of 1  

Loading of 

2  

Loading 

of 3  

 

Eigen-Value 
Cash Exposure 

(£million) Cash SD of 

Portfolio(£m) 
3y -0.287 -0.385 -0.117 1  0.025 v1  -0.33371 

9y -0.305 0.180 0.202 2  0.0026 v2  5.328509 
0.129425m 

10y -0.303 0.230 0.178 3  0.00043 v3  -0.91308 

20y -0.253 0.349 -0.283 10 day VaR at 99% 0.953644m 

 

For back-testing purpose, we check the actual market prices of the bonds in the portfolio ten 

day after on the date 21/12/2010, as shown in Table 17. The actual loss break the VaR 

estimate from 1PCA, while the VaR estimate from 3PCAs (0.953644) is large enough to 

incorporate the potential lose.  

Given that the first factor is empirically defined as the yield level factor which covered in the 

duration model, the empirical result shows that simply consideration of the yield level risk 

could considerably underestimated the true interest rate risk in the UK market. This is 

consistent with the empirical results found by Hull and Jorion. They both apply PCA analysis 

on the US bond market and found that the one-factor PCA generates a fairly low VaR 

compared to the two-factor PCAs. Furthermore, the yield level risk (parallel shift) will tend to 

be canceled out by the long-short position in this hypothetical portfolio since we deliberately 

selected a long-short strategy for the portfolio construction, which amplifies the yield 

twisting risk.  The one factor PCA (duration model) will become extremely dangerous 

because it totally overlook the unparallel shift of the yield curve.   
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TABLE 17: THE REALIZED LOSS OF THE BOND PORTFOLIO ON 21/12/2010 

Bonds in Portfolio 
Market Price 

on 07/12/2010 

Market Price 

on 21/12/2010 

Market Zero 

Yields on 

21/12/2010 

(%) 

Return (%) 
Portfolio 

Loss(£m) 

Short 3 year’s 

Coupon Strip 
95.94 95.5 2.0379 -0.459 0.045862m 

Long 9 years’ 

Coupon Strip 
72.5 72.32 3.6758 -0.248 -0.04966m 

Long 10 years’ 

Coupon Strip 
68.72 68.56 3.8171 -0.233 -0.01164m 

Short 20 years’ 

Coupon Strip 
39.54 40.91 4.2657 3.465 -0.41578m 

Total Portfolio loss  -0.43122m 

Three PCAs VaR at 99% 0.953644m 

One PCA VaR 0.33371m 

 

2. Risk measurement of the coupon bond portfolio   

The hypothetical bond portfolio constructed above contains all zero coupon bonds, which has 

no reinvestment risk. For a more general consideration, we construct a coupon paying bond 

portfolio.  The market risk measurement of this type portfolio involves using vertex mapping 

approach, which is a cash flow mapping approach minutely described by Henrard (2000). 

The goal of the vertex mapping is to distribute the initial bond portfolio to certain adjoining 

vertices that could serve as the best approximation of the overall interest rate risk. (In practice, 

credit risk, liquidity risk and option-related risk should also be considered if necessarily). 

Interest risk has two components, which are price risk and reinvestment risk
20

. Since the 

coupon bonds with large principal paid at maturities have low reinvestment risk, the selection 

of the vertices should target on the cash flow risk around the principal payment date.  

Define  ,    as the duration of the two adjoined vertices whose duration is close to the 

portfolio’s overall duration   , the optimization procedure is expressed as: 

                  

                                                              
     

     
                                                           (3.16) 

Henrard pointed out that the duration mapping equation (3.16) is simple but may not be safe, 

because it only focuses on the duration matching but does not guarantee the vertices will have 

the same overall risk as the original portfolio.  Hence, a more appropriate target should be 

focus on calibrating the portfolio variance (both price risk and reinvestment risk), which is 

expressed as: 

                                                                 
20

 Source: Alternative Asset Valuation and Fixed Income Level II 2011 (CFA Program Curriculum Volume 5) 
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                  (3.17) 

where   is the correlation coefficient between the two adjoined vertices 

The left side of the equation is a quadratic function with respect to   , and the root could be 

solved using general formula. 

Jorion (2003) shows that the duration target matching is actually a special case of the 

variance target matching. If the yield curve undertakes a small and parallel shift, the risk of 

the bond should be proportional to its duration, which could be expressed as: 

                                                                                                        (3.18) 

where 1  means that there is a perfect positive correlation between two vertices.  

If the above assumption holds, the variance matching model (3.17) could be simplified as: 

  
    

     
        

     
            

      

                                                                                                          (3.19) 

The transformation leads to a same equation as the duration matching approach (3.16). In 

other words, the duration matching model is just a special case of the variance match model if 

the following two assumptions are hold: 

1. Yield curve undertakes a small and parallel shift 

2. There is a perfect positive correlation between two vertices 

Based on the empirical analysis of the interest rate risk profile in the section 3.5, we found 

that neither of the above assumptions holds strictly in the UK market. However, it is 

interested to see that since the correlation between the two vertices is less than 1(see table 12), 

the VaR estimate should decrease using the variance matching due to the diversification 

effect.  On the other hand, since the yield curve movement is not strictly parallel in the UK 

market, the VaR estimate should increase using the variance matching due to its 

consideration of the overall risk.  Under such situation, the two effects might cancel out with 

each other, resulting in the similar VaR estimate from the variance matching approach and 

the duration matching.  

In order to check the inference, we construct a hypothetical coupon bond portfolio using 3 

different types of the coupon issues in the UK bond market (see information in Table 18 ).  
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TABLE 18: THE SELECTED UK CORPORATE BONDS INFORMATION ON 07/12/2010 

Company Name Issue Date 
Maturity 

Date 

Coupon 

Rate 
Time to Maturity 

Market Price on 

07/12/2010 (£) 

Bond A: BANKERS 

IT.PLC 
29/09/1991 31/10/16 10.5% 6 127.885 

Bond B: ASDA 

PROPERTY HDG. 
20/11/1995 31/12/20 9.125% 10 115.26 

Bond C: CITY OF 

LONDON IT 
29/09/1991 31/12/14 11.5% 4 129.4 

Total Initial Investment (million £) 37254.5 

 

Suppose a trader set up a bond portfolio on the date 07/12/2010, with £100millions quantities 

invested in the each corporate bond. Table 19 listed all the future cash flows of the portfolio, 

assuming there is no default payment in the future.  The portfolio has a market value of 

37254.5 million pounds at the initial date, with average maturity life of 6.543 year and 

duration of 5.345. We hence select 5 year and 6 year zero bonds as the two adjoin vertices for 

the vertex mapping. 

TABLE 19: THE FUTURE CASH FLOWS OF THE TARGETING BOND PORTFOLIO (CONSISTS OF £100M INVESTMENT IN EACH CORPORATE 
BOND SHOWN IN THE TABLE 18)  

Time 

(Year ) 

Cash Flows(Millions£) Duration Information 

Bond 

A 
Bond B 

Bond 

C 
Total 

Zero Rates 

(%) 

Discount 

factor 
PV PVD 

2011 10.5 9.125 11.5 31.125 1.136 0.989 30.775 0.072 

2012 10.5 9.125 11.5 31.125 1.423 0.972 30.258 0.142 

2013 10.5 9.125 11.5 31.125 1.820 0.947 29.487 0.208 

2014 10.5 9.125 111.5 131.125 2.203 0.917 120.180 1.131 

2015 10.5 9.125 0 19.625 2.556 0.881 17.298 0.203 

2016 110.5 9.125 0 119.625 2.878 0.843 100.899 1.424 

2017 0 9.125 0 9.125 3.1596 0.804 7.339 0.121 

2018 0 9.125 0 9.125 3.3956 0.766 6.986 0.131 

2019 0 9.125 0 9.125 3.6019 0.727 6.636 0.140 

2020 0 109.125 0 109.125 3.7705 0.691 75.368 1.772 

Average Maturity  6.543 

Portfolio Duration  5.345 

 

We calculated the VaR of this bond portfolio using two matching approaches separately. The 

value of       and   are estimated from the EWMA conditional covariance matrix between 

the 5 year and the 6 year vertex. (The estimation is based on the 1 year sample historical price 

from 07/12/2009 to 07/12/2010)  

TABLE 20: EWMA COVARIANCE MATRIX OF 5 YEAR AND 6 YEAR UK ZERO BOND (BASED ON THE SAMPLE PERIOD FROM 2009 TO 2010) 

Vertices 5 year zero bond 6 year zero bond 

5 year zero bond 6.50E-06  

6 year zero bond 8.03E-06 1.02E-05 
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After obtained the EMWA covariance matrix, we estimate the portfolio variance   
  by linear 

interpolation of the variance of the 5 and 6-year zero bonds (portfolio duration is 5.345).The 

corresponding VaR estimates using two vertex mapping approaches are illustrated in Table 

21. As shown in the table, the VaR estimate from the variance target matching approach 

(225.870) is less than that from the duration target matching approach (239.826). However, 

this difference is fairly minor compared to the initial investment amount.    

TABLE 21: THE BOND PORTFOLIO VAR ESTIMATE ON 07/12/2010 USING VERTEX MAPPING    

Vertices Volatility (%)  
Individual VaR 

(99%) 
  Duration 

Matching 

Variance 

Matching 

5 year zero bond 0.255 0.594 

0.986 

1w  0.655 1w  0.614 

6 year zero bond 0.319 0.744 2w  0.345 2w  0.386 

Portfolio  0.279  Cash Weight Cash Weight 

Market Value of Bond Portfolio 

(million £) 
37254.5 

1w  24401.7 1w  21341.69 

2w  12852.8 2w  13416.76 

Portfolio VaR using Vertex Mapping (million £) 239.826 225.870 

 

This result confirms our inference.  More explicitly, although the variance matching approach 

is theoretically more accurate than the duration matching approach due to its more 

comprehensive consideration of the overall risk, the output VaR estimate from these two 

approaches should not be far from each other. In our example, the selected vertices (the five 

year and six year UK zero bonds) are not perfectly correlated and the yield curve in the UK 

market undergone a nonparallel shift. Compared with the variance matching approach, the 

non-perfect correlation between the two vertices will increase the VaR estimate from the 

duration matching approach, while the non-parallel shift of the yield curve will decrease the 

VaR estimate from the duration matching approach. The two effects largely cancel out with 

each other, resulting in the similar VaR estimate from these two approaches.  Given that the 

duration matching approach is much easier to implement and calculate than the variance 

matching approach, the analysis shows that there should not be too much motivation for the 

risk managers to apply the variance matching approach in practice.  

3.6 Summary of the empirical findings from the model application   

Based on the VaR methods illustrated in chapter two, we undertake model application based 

on the hypothetical portfolios in this chapter. More explicitly, we carry out our research in the 

following aspects:  

 Model and analyze different market risk factors using different VaR models.  

 Dynamically adjust the risk models based on the current market condition. 

 Implement the risk exposure modeling techniques to the derivative portfolios.  



86 
 

 Examine the performance of the risk mapping techniques in the UK bond market.  

The empirical findings from the model application are summarized as following: 

Firstly, the empirical result shows that rather than the overall market condition, the risk 

degree of the target portfolio should be the key consideration when selecting the appropriate 

VaR models.  Given the moderate risk level of the target portfolio, parametric VaR model 

could generate a sufficient risk estimate even the market is at high volatility regime. On the 

other hand, as the portfolio becomes more risky, parametric VaR approach becomes less 

reliable. Therefore, if the risk managers are facing the high risky portfolio, Semi-parametric 

VaR with EVT is preferable for a more conservative risk measure.  

Secondly, the empirical result indicate that the daily VaR generated from time varying 

GARCH volatility should be a safe measurement of the market risk, as long as GARCH 

model is dynamically re-estimated. We explain this statement from two aspects: On one hand, 

when the current market is highly fluctuated, risk manager should be less worried about the 

underestimation problem from the conditional VaR model because our empirical result shows 

that at such circumstance the GARCH types of models could generate an even higher 

volatility forecast than that from the market expectation.  On the other hand, if the market is 

at normal condition, the GARCH types of model might generate a lower volatility forecast 

than the implied volatility.  However, the conditional VaR generated from GARCH volatility 

could still be safe, since the quantile multiplier which captured the extreme risk at normal 

market condition could serve as a complement.   

Thirdly, if the time varying distribution has already been considered by the GARCH volatility, 

the choice of quantile will have limited effect on the VaR estimates at low confidence level.  

However, this conclusion may not be comprehensive since the research has not verified the 

statement from various types of financial data. But the result at least indicate that the time 

varying quantile evolution could be possibly captured by the GARCH volatility, which 

provide us a useful implication to improve the dynamicity of the risk modeling. The dynamic 

risk model proposed in the chapter 4 is highly motivated by this idea.  

Fourthly, whether applying the local-valuation or the full-valuation model is highly depends 

on the monotonicity of the portfolio’s payoff. When the payoff is monotonic, local valuation 

with quadratic approximation is recommend, which is easy to compute with enough speed 

and accuracy. For the portfolio with non-monotonic payoff function, full valuation is 

preferable. This approach is theoretically more accurate to ascertain the market risk but 
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depends on the appropriately chosen of the particular stochastic process for the underlying 

risk factors. Besides, the approach is fairly time- intensive which need substantial 

computational time.  

Fifthly, the exchange rate risk is the main concern when measuring the foreign currency risk. 

However, as the time elapsed from the initial evaluation date, the interest rate risk should be 

considered additionally because this risk could not be fully hedged by the unequaled long-

short position in the zero bonds.  

Finally, the empirical results from the UK bond market indicated that PCA outperform the 

duration model in both bond risk profile analysis and bond risk measurement.  Historical term 

structure of the UK zero yields indicates that yield curve undergone a certain degree of 

unparallel shift. When the portfolio dominated by a long-short strategy of different maturity 

bonds, the unparallel shift movement becomes the critical risk factor rather other the parallel 

shift measured by the duration model. The VaR estimate adopted by the duration model tends 

to underestimate the actual risk.  Furthermore, the synthetic time decay effect in the historical 

bond prices will be completely overlooked in the duration model. This problem will lead to a 

mislead correlation between the different yields generated by the duration model, which is in 

fact due to the synthetic time decay effect from the historical returns.   

3.7 Back-testing the model performance  

So far in this chapter the research focused on the application of the VaR models.  However, 

the quantitative risk models are only useful if they could predict the actual risk reasonably 

well. Back testing is a useful statistical method which could verify whether the risk estimated 

by the quantitative model can accurately capture the actual loss.  

Generally speaking, if the risk model is correctly calibrated, the violations (the actual loss 

break the VaR estimate) should be in line with its specified confidence level. Too many 

violations indicate that the model underestimate the risk. Too few violations are also a 

problem because it will lead to an inefficiently allocation of a large capital cushion to the 

unlikely happened loss.     

3.7.1Brief review of the back-testing models  

The commonly used method to verify the VaR estimate is the failure rate test proposed by 

Kupiec (1995). Define   as the number of exceptions in which the actual loss exceeds the 



88 
 

VAR estimate, the exception ratio should converge to                           if the 

VaR model is correctly specified, given the total number of the sample observations  . 

On the statistical framework, the failure rate testing is a Bernuilli trial. Any violation     

follows Bernoulli distribution and the total number of the violations is binomially distributed, 

which is expressed as: 

                                                          
 
                                                  (3.20) 

where                                                                                         

As the sample observation   becomes large, the Central Limit Theorem states that:   

                                                         
    

        
                                                          (3.21) 

Based on the density function, the unconditional Log-likelihood ratio of the violations      

can be expressed as: 

                                                               
 

 
  

   

 
 

 
                       (3.22)    

which is asymptotically chi-square distribution with one degree of freedom 

However, as    becomes smaller (when increase the VaR confidence level), the decision will 

become increasingly difficult because very rare violations could be obtained from the sample 

data in such case.  In practice, the financial institutions normally prefer to use       for 

back-testing purpose in order to obtain enough number of violations.  

The choice of   also involves a tradeoff between type 1 error and type 2 error.  For instance, 

Basel rules require recording the daily exceptions of 99% confidence level over one trading 

year.  Under such confidence level, the test might lack of power (1 minus type 2 error). For 

research purpose, the power could be increased by either changing the confidence level to 

95%, or increase the number of the sample observations.  

One limitation of the failure rate test is that it is purely based on the unconditional converge. 

However, if the model is well-fitted, the exceptions should not only be in line with the 

unconditional confidence level but also evenly spread over time (appropriate conditional 

converge ratio).  

For instance, if a VaR model has a desirable failure rate at 95% confidence level over 1 year 

testing period, but it has 10 violations occurred in 2 weeks time, this may be very dangerous 
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because the concentrated exceptions indicate that this VaR model has a potential risk hole, 

which will total crash down during the certain period of time.  

For this reason, Christofferen (1998) develop a conditional coverage test, which is aim to 

check whether the violations are serially independent of each other. Setting an indicator 

variable whose value is    if the VAR estimate is not exceeded and   otherwise, the relevant 

test statistics       for the conditional coverage ratio is calculated as: 

                                                     
     

              
     (3.23) 

where:           

                                                                                    

                                                                 

        
       

 
          

The first term in equation (3.23) represents the likelihood under the assumption that the 

violations are independent across days (desirable conditional coverage) and the second term 

is the likelihood of the overall observed data (desirable unconditional coverage).  

The combined likelihood ratio for the conditional converge ratio      is: 

                                                                                                                         (3.24)  

which follows chi-square distribution with two degree of freedom 

If the estimated      is greater than the corresponding critical value, we will reject the null 

hypothesis that the exceptions from the VaR models are serially independent over the testing 

periods.  

3.7.2 Application of the back-testing models 

1. Daily VaR verification  

This section collect the historical price series of S&P500 index between 13/08/2007 and 

11/08/2009 to perform the back-testing approaches mentioned above.  As shown in the Figure 

15, the historical index returns appears stable over the whole sample period, while the 

volatility shows significant clustering effect. Besides, there is a considerable high volatile 

area in the US market between August of 2008 and June of 2009. (In the time of sub-prime 

crisis)  
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FIGURE 15: HISTORICAL PRICE OF S&P 500 INDEX (FROM 13/08/2007 TO 11/08/2009) 

 
 

Selecting the high volatile regime between 24/08/2008 and 24/06/2009 as the back-testing 

period, we estimate the market risk of S&P 500 index using the following three VaR models, 

which are: 

 Parametric VaR using sample variance  

 Non-parametric VaR using historical approximation  

 Semi-parametric VaR with EVT, where volatility is generated from GARCH process 

and residual quantile is estimated from EVT.  

For each day, the research using 1 year data window before that day for VaR estimate. For 

instance, we use sample data from 23/08/2007 to 23/08/2008 as the input data to estimate the 

corresponding GARCH model. The one-day volatility prediction from GARCH model is then 

applied for the VaR estimate on 24/08/2008. Similarly, the historical VaR ranks the sample 

historical returns from 23/08/2007 to 23/08/2008 and the obtained historical quantile is used 

for the non-parametric VaR estimate on 24/08/2008. The process running 253 times at the 

daily frequency and the overall forecast series contains 253 estimates spanning from 

24/08/2008 to 25/06/2009. 

Figure 16 plots the three estimated VaR series against the actual returns over the back-testing 

periods. It could be seen intuitively from the graph that compared to the parametric VaR 

series (white and black line), the semi-parametric VaR series (blue line) are more 

appropriately fitted the realized returns. The failure rate test (Table 22) shows that the semi-

parametric VaR series generated from GARCH & EVT has the lowest actual violation ratio 

(5.5%) which is fairly close to the VaR confidence level , confirming its better performance.  
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The conditional coverage ratio       is calculated using equation (3.37). For instance, given 

that the semi-parametric VaR series from GARCH & EVT has 14 violations out of the total 

sample size 253. Among these exceptions, only one exception occurred following an 

exception on the previous day, which means: 

Conditional Coverage Ratio  

 Day Before 

Current day No violation Violation Unconditional  

No violation                239 

Violation              14 

Total              253 

Substitute the above numbers into equation (3.23), we have       equal to 0.1187.       

Ratio of the other two VaR approaches could be calculated in the similar way.  

FIGURE 16: VAR ESTIMATE AT 95% CONFIDENCE LEVEL (INPUT DATA: HISTORICAL PRICES OF S&P 500 INDEX FROM 24/08/2008 TO 
24/06/2009) 

 
TABLE 22: BACK-TESTING RESULT (COMPARE THE VAR ESTIMATES WITH THE ACTUAL S&P 500 INDEX RETURNS FROM 24/08/2008 TO 
24/06/2009) 

Failure rate Test 

VaR approaches Total sample 

observations 

Actual Violation at 95% 

Confidence level  
     Ratio 

Historical quantile 253 15 5.9% 2.034  

Parametric VaR  253 17 6.7% 5.05 

Semi-Parametric VaR 253 14 5.5% 0.2871 

Conditional Coverage Test 

VaR approaches Total sample 

observations 
      Ratio      Ratio      Ratio 

Historical quantile 253 4.756 2.034  6.79 

Parametric VaR 253 6.866 5.05 11.92 

Semi-Parametric VaR 253 0.118 0.2871 0.405 

5% Chi-square critical value with one and two degree of freedom are: 3.841 and 5.99 
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The back-testing result is shown in the Table 22. Compare the      with 5% chi-square 

critical value which is 5.99, we reject the null hypothesis of the independence for the both 

Historical quantile and parametric VaR models, which indicate that these two approaches 

suffer certain degree of the violation clustering problem. The semi-parametric VaR series 

from GARCH & EVT, On the other hand, have smaller      value than the critical value, 

which indicates that the violations from this model are independent with each other during 

the testing period.  

In more general case, the research simulates two return series by Monte Carlo simulation, in 

which one using sample variance estimate and the other using GARCH volatility. Then we 

apply both historical and semi-parametric VaR models in above example to estimate VaR of 

these two simulated series. As shown in Figure 17, when the return series are simulated from 

the GARCH volatility, the semi-parametric VaR model performs much better than the 

historical simulation. On the other hand, when the return series are simulated from the sample 

variance estimator, the historical simulation performs no better than the semi-parametric VaR 

model for the risk prediction. 

The implication of this simulation analysis is that the accuracy of the VaR prediction is 

highly depends on the accuracy of the volatility estimates. When the returns are simulated 

from the time varying volatility, GARCH model performs better than the sample estimator 

for the volatility estimate, resulting in the parametric VaR estimates have better fitness to the 

actual returns than the historical VaR ; whilst when the return series are simulated from the 

sample volatility estimate, the volatility forecasted from the GARCH types of model 

performs no better that that from the historical simulation, leading to the indifferent 

performance between the two model.  From this perspective, our research suggests that there 

is no need to apply the semi-parametric VaR model for the dynamic risk modeling when the 

market volatility is stable. The first step of the market risk modeling is to determine which 

volatility model is the most appropriate one for the current market state. If the market 

volatility is fairly stable over the sample period,   the semi-parametric VaR model is not 

necessary to apply for the risk managers because it is a time intensive approach and the 

predicting result might not outperform the historical VaR model to some degree.  
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FIGURE 17: VAR ESTIMATES ON THE TWO SIMULATED SERIES (TOP: GARCH SIMULATION, BOTTOM: SAMPLE VARIANCE SIMULATION) 

  

   

2. Multi-day VaR verification  

This section uses another sample data to verify the performance of the multi-day VaR 

forecast. The risk factor selected is the FTSE100 index price over seven years from 2002 to 

2009.  Selecting GJR-GARCH model for the conditional volatility generation, we estimate 

the daily VaR series at 99% confidence level (Figure 18). The failure rate test result shows 

that there are overall 20 violations over the 1773 sample observations (the violation ratio is 

approximately equal to 1.13%), which is fairly consistent with the VaR confidence level.  
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FIGURE 18: DAILY VAR ESTIMATES OF THE FTSE 100 INDEX RETURN FROM 2002 TO 2009 

 

Assuming a risk manager is interested in the 10-day risk forecast, the most straightforward 

calculation is using time squared root rule. Under such situation we just scaled the daily VaR 

series in Figure 18 by    . Alternatively, we could apply formula (2.103) and (2.105) 

derived from the ARMA-GARCH model. The most dynamic approach is that we can 

estimate the 10-day volatility by summing up the ten daily-variances estimated from ten re-

estimated GARCH models, from which the multi-day VaR is extracted.  

Table 19 plots the three multi-day VaR series from the three different approaches described 

above. All three VaR series could successfully pass the failure rate and the conditional 

coverage test, among which the multi-day VaR series from the time squared root rule provide 

the fairly similar result to those from the ARMA-GARCH model. This is theoretically 

explanatory because the time squared root rule is a special case of the ARMA-GARCH 

model when IGARCH process is applied.  For the daily return series, the drift parameter 

estimated by GARCH should be fairly small, which lead to the variance predicted by the 

ARMAX-GARCH is fairly close to that from the IGARCH.  

On the other hand, the multi-day VaR estimated from the re-estimated GARCH model 

derived from the previous two series little far away. The approach generally provides the 

lowest VaR prediction, even through the prediction is large enough to capture the actual loss. 

Theoretically, the third approach should provide the most accurate prediction of the multiday 

variance. Because it is obtained by summing up the 10 different one-day prediction variances 
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based on the dynamically updated GARCH models. However, the empirical results shows 

that the multi-day VaR estimates generated from the single GARCH model are even more 

conservative than those from dynamic updated GARCH model. From this perspective, it 

seems that time squared root rule should be preferred for the passive risk managers, since it 

could actually provide a fast and quite conservative and safe risk measurement.   

FIGURE 19: 10-DAY VAR FORECAST SERIES OF FTSE 100 INDEX FROM 2002 TO 2009 

 

3.7.3 Empirical results summary 

Apply the back testing approaches to the selected risk models, the empirical results show that 

the performance of the VaR model is highly depend on how well it could capture the current 

market volatility. VaR from the re-estimated GARCH models should be fairly dynamic and 

appropriate for the time varying market risk assessment. However, due to the computation 

cumbersome, it is not necessary to be applied at any kind of the market condition.  The 

simulated scenarios analysis show that if the changes of the return series are fairly stable, this 

VaR model do nothing better than the VaR from the historical approximation. The VaR from 

historical quantile is preferable under such case due to its speed and convenience.   

Furthermore, the back-testing result shows that if the daily VaR series are generated from the 

appropriate GARCH model, the multiday VaR prediction from both the time squared root 

rule and the ARXA-GARCH model are safe to capture the actual loss. While the first 

approach is based on the information up to the initial forecast date, the second one requires 

the information up to the day just before the forecast horizon. Although the second approach 

is theoretically more accurate than the first approach since the predicted variance is obtained 

by summing up the 10 updated one-day prediction variances based on the re-estimated 
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GARCH( the first one is estimated by the single GARCH model), the empirical result shows 

that the time-squared root rule could actually provide a more conservative risk measurement. 

Therefore for passive risk manger, it seems that time squared rule could be safe trusted, since 

it is a both easy implemented and conservative risk measurement. 
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4. Two Step Dynamic Adjusted VaR model  

Motivated by the idea of fitting the historical VaR estimates into pre-specified time series 

model as proposed in chapter two, this chapter proposed a new developed VaR model, which 

integrate the GARCH volatility and quantile regression technique.  More explicitly, we 

present a two-step dynamic adjusted VaR model, in which the VaR series generated from the 

dynamic GARCH model in the first step are fitted into a pre-specified quantile regression for 

the second adjustment.  The back-testing results based on both real and simulated data shows 

that the VaR series generated from this model could more efficient capture the time varying 

risk evolution than the traditional CAViaR model, where efficiency here is measured by the 

total sum of the violation and the over-prediction over the realized returns during the testing 

period. Furthermore, given that the estimation of the multiday distribution is more complex 

than that from daily basis, we shows that this model is particularly useful in the multi-period 

VaR prediction, since the conditional distribution from this model encompass more 

information than the time squared root rule.     

4.1 Introduction 

VaR is by definition a certain quantile of the return’s distribution over fixed holding period 

and at given confidence level. This quantitative approach has rapidly becomes the benchmark 

measurement of the market risk in the financial field over the last several decades. Different 

VaR models are essentially due to the different ways of the distribution modeling. For 

instance, early risk measurement is based on the parametric distribution and i.i.d. framework; 

by evolution, researchers turn their attention to the conditional distribution and time series 

model. The estimation of the conditional distributions also varies lots. For instance, standard 

industry risk measurement system such as Riskmetrics mainly focuses on the parametric 

approach. Boudoukh, Richardon and Whitelaw (1998) developed a hybrid estimation 

approach combining the exponential smoothing process and historical simulation. Inspired by 

the Extreme Value Theory, McNeil and Frey (2000) proposed a semi-parametric approach 

combining GARCH modeling and Extreme Value Theory, which concentrates on the 

asymptotic form of the tail rather than the whole distribution. Most recently, Cai and Wang 

(2008) suggest a new nonparametric estimation approach, which integrate the Weighted 

Nadaraya Watson estimator and Double kernel local linear estimator from Yu and Jones 

(1998).  Schaumburg refines this approach by adding the quantile regression of the extreme 

value in their working paper in 2010. 
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In spite of various estimation approaches, none of the VaR models developed so far provides 

a satisfactory solution for the dynamic risk adjustment. The reason is largely due to that 

conditional distribution of the returns changes over time. It is statistically challenging to find 

a suitable model to fit the time varying conditional distribution.  Generally speaking, existing 

dynamic adjustment can be classified into two categories according to their different 

treatment of the time varying conditional distribution, which are: 

1. Apply volatility model to adjust the conditional volatility (see, e.g., GARCH model 

by Nelson, 1993; Wilson, 1994; Stochastic volatility model by Taylor and Ruiz,1994) 

and VaR is calculated as the product of the dynamic volatility and the standard normal 

quantile  

2. Apply nonparametric approach to estimate the conditional distribution. Dynamic VaR 

could be generated using quantile regression technique (see, e.g., CAViaR model by 

Engle, 2002)  

This chapter concentrates on the dynamic VaR adjustment and we propose a new dynamic 

VaR generating process by integrating the GARCH volatility and quantile regression 

technique. The back-testing results show that this model has its own superiority over the 

tradition CAViaR models in capturing the dynamic evolution of the conditional distribution. 

Besides, this approach is particularly useful for the multi-day VaR prediction, given that the 

multiday distribution is more difficult to model and highly subject to estimation errors. 

The chapter is structured as follows: Section 2 provides a brief illustration of the existing 

dynamic VaR models. In section 3 we introduce the new dynamic VaR generating process in 

this research. Section 4 implements the model application using both real and the simulated 

data. Sections 5 provide the conclusion and some further implications.  

4.2 Brief review of the Dynamic adjustment approach 

Statistically, VaR is closely related to the conditional quantile of the return distribution. 

Despite of this simple concept, the estimation is a fairly challenging task, not only because 

the typical financial returns are characterized by the non-normal distribution with heavy tail; 

but also the conditional distribution changes over time.    

According to the different treatment of the time varying conditional distribution, empirical 

research can be divided into two categories: one is focus on the dynamic adjustment of the 

conditional volatility and the other is focus on the dynamic adjustment of the conditional 

quantile. Currently there is no agreement on which approach is superior since it is not easy to 
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separate these two effects on the time varying conditional distribution. The following part of 

the section provides a more detailed explanation of these two approaches.  

4.2.1 Dynamic VaR on the time-varying volatility 

Dynamic adjustment of the conditional volatility involves using time series model. Consider 

the following model for the return   : 

         

 

   

               

 

   

  

                                                                           

                                              
        

 
       

         
  

                                        (4.1)   

where    is the conditional volatility at time   and   ,    ,   ,     are parameters to be 

estimated. 

Under the assumption that model is correctly specified, the standard residual series    follows 

Gaussian process and at any time    , the conditional distribution (denote            ) has 

the same form as   . Re-writing     in form of the conditional moment as: 

                                                                                                                        (4.2) 

where: 

                                                                            

                                                                           
                                            (4.3) 

Taking the VaR operator to both sides of equation (4.2) we have: 

                                                                                                          (4.4) 

Given that    is a i.i.d. series and the conditional mean of the asset    is fairly small and 

constant, equation (4.4) shows that the dynamicity of the VaR estimate is mainly driven by 

the time varying conditional volatility    .  

A further improvement of (4.4) could be made by the selecting a appropriate         .    . At 

the low confidence level such as 95%, the standard normal or student   could be used. If a 

high confidence level of VaR is required (such as 99% or more),          can be more 

conservatively estimated by the Peaks over Threshold model derived from Extreme Value 

Theory. This approach is proposed by McNeil and Frey (2000), in which the exceeded 
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standard residual over the given threshold   is modeled by Generalized Pareto distribution. 

The           could be estimated by following formula: 

                                                            
 

 
    

 

  
      

 

                                (4.5) 

where  and   are the parameters from Generalized Pareto distribution and   is the selected 

threshold.  

The VaR series could therefore be generated by combining (4.4) and (4.5). 

To summarize, the Dynamic VaR on time varying volatility adjust the VaR estimate in two 

aspects:  On one hand, the conditional volatility estimation from the pre-specified time series 

model is dynamically updated; On the other hand,         could also be updated 

dynamically based on the standard residual series extracted from the conditional volatility 

model.  

4.2.2 Dynamic VaR on time-varying quantile   

Alternatively, Engle and Manganelli (2004) proposed a conditional autoregressive 

specification of VaR, so called CAViaR model, for dynamic VaR generation. This model is 

motivated by the quantile regression technique introduced by Koenker and Zhao (1996).  

Since VaR is statistically a quantile estimate, quantile regression model could be directly 

applied to the VaR generation. The general CAViaR model by Engle can be expressed as: 

                                                        
 
                 

                             (4.6) 

 where          is a function of finite number of lagged values of the exogenous variables 

and autoregressive terms          
 
   ensure that the estimated quantile changes smoothly 

over time. 

Particularly, Engel propose following four types of models, which are: 

 Adaptive model:                                        
  

      (4.7) 

 Symmetric Absolute Value:                                                       (4.8) 

 Asymmetric Slope:                                              (4.9)                      

 Indirect GARCH:                  
        

                                            (4.10) 
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The Adaptive model (4.7) encompass a self-correction property, in which G is some positive 

finite number controlling the correction degree. For instance, once the actual loss exceed the 

VaR estimate in the previous period,  the second term of the adaptive model will become 

positive which will increase the VaR estimate in the next period , and vice versa.  Both 

symmetric and indirect GARCH model have mean reverting property and respond 

symmetrically to the past returns. The asymmetric slope model, on the other hand, takes into 

account the asymmetric effect of the returns on the quantile forecast.  

Unlike the GARCH types of model mentioned in 4.2.1, there is no assumption on the 

distribution of the residual terms in the Engle’s CAViaR models. The only assumption under 

this framework is that the quantile process is correctly specified. Moreover, even if the 

quantile process is misspecified, Kim and White (2002) shows that the minimization of the 

quantile regression objective function (2.19) by Koenker will still ensure the consistency and 

asymptotic normality property.    

4.3 Two-Step Dynamic Adjusted VaR model  

This section presents a new dynamic VaR generating process from our research. More 

explicitly, Instead of applying the autoregressive terms          
 
    in Engel’s CAViaR, 

we generate a new repressor using the GARCH types of volatility.  By doing so, we believe 

the original CAViaR specification could possibly be simplified, because the time varying 

conditional volatility by GARCH model should already contain certain effect represented by 

the existing exogenous variables in the original CAViaR model. For instance, if time varying 

conditional volatilities are generated from the dynamic EGARCH model, the asymmetric 

specification in the Asymmetric Slope-CAViaR model could possibly be removed, because 

conditional volatilities extracted from the EGACH process has already take account into this 

effect. Moreover, we could therefore add some new exogenous variables whose effects have 

not been considered in the original CAViaR model. This process is so called two-step 

dynamic-adjustment process, in which the conditional VaR series generated from the 

dynamic volatility model in the first step is re-adjusted using quantile regression technique in 

the second step.   

Particularly, we specify the following quantile regression model for VaR generation, which is: 
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                                                                                                                                   (4.11) 

where: 

    ,            are volatility and residual quantile estimated from GARCH model. 

     
 

 is the estimated expected shortfall  

          is the maximum loss the risk manager could withstand. 

    is the indicator function. 

There are three explanatory variables appear in this regression specification, which are:  

 Parametric VaR estimate from GARCH model    :  The product of      and 

           is the VaR estimate from GARCH model at time     

 Self-correction indicator 3 :  A variable which increase the VaR if the previous VaR 

estimate have been violated and decrease the VaR if the previous VaR estimate 

haven’t been broke.  

 Panic selling effect
4 :  an indicator variable which takes value equal to 1 if the 

previous daily return is below maximum tolerate loss. 

Compared to the CAViaR models proposed by Engle, the model (4.11) has three changes: 

Firstly, the autoregressive terms          
 
    has been replaced by the parametric VaR 

estimate (              ) from GARCH model. Secondly, the constant   in the adaptive 

model which controls the degree of self-correction is replaced by the estimated expected 

shortfall      
 

. This variable reacts different to the return on the time     which is close to 

the estimated       
 

 or extremely far from the estimated       
 

. Finally, a new exogenous 

variable                   is added into the regression. The dummy variable could serve as 

a complementary cushion when the asset undertakes serious crash beyond the manager’s 

tolerance.  

There are several motivations to apply this model in practice: First, since the autoregressive 

term       
 

 are replaced by the                estimated from GARCH types of model, 

both time varying volatility and time varying quantile have been taken into account by 
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regression (4.11) . Secondly,                estimated from the GARCH model contains 

certain effect about the nonlinear evolution of the conditional quantile regression which is 

ignored in the linear specification of the traditional CAViaR model. This adjustment should 

improve the accuracy of the VaR model.   

Thirdly, the time varying      
 

 replace the constant G in the adaptive CAViaR model.  The 

motivation of using      
 

 is that it is fairly sensitive to the estimated value of       
 

. 

Unlike constant smoothing factor G,      
 

 increase the value when       
 

 estimate increase 

and decrease the value when       
 

 estimate decrease. This adjustment try to alleviate the 

problem from Adaptive CAViaR model that it will increase the VaR estimate by the same 

amount regardless of whether the returns exceed the previous VaR estimate by small or by 

large amount.  

The research applies two alternative processes for the      
 

 generation.  At     , the 

empirical quantile is used, in which      
 

 is obtained by numerically integrating the excess 

area of the kernel density over the estimated                . The selection of the density’s 

bandwidth is based on the Plug-in method by Fan & Yao (2003), in which the optimum 

bandwidth is obtained by minimize the Mean Integrated Squared Error. Particularly,   Fan & 

Yao provide the optimum bandwidth selection criterion       as following: 

                                            
        

                       

        
                           

                         (4.13) 

where   is the sample standard error and   is the sample size 

At     , we apply extreme value theory and use the following formula derived by McNeil 

and Frey (2000)from Generalized Pareto distribution(GPD): 

     
                    

          
               

             
    

                                                                      
  

          
 

   

   
                                              (4.14)                                                                                                             

where   and   are the scale and shape parameter estimated from GPD.  

The purpose of applying two separate methods for      
 

 estimation is to improve the 

accuracy at the different VaR confidence level. At the     , the quantile from empirical 

distribution could severs as a appropriate lower boarder for the true VaR.  Give that the 

           is estimated using empirical distribution of standardised residuals at this 
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confidence level, the expected loss      
 

 could therefore be estimated by integrating the 

excess tail area over the obtained           . On the other hand, the effects of fat tail 

becomes more important at the     . Give the Extreme Value Theory has been applied 

for             at this confidence level, we apply the same approach to estimate the       
 

 

for consistence.    

Finally, the selected exogenous variable could serve as a complementary cushion when the 

asset undertakes serious crash beyond the manager’s tolerance and hence improve the 

accuracy of the risk prediction under the extreme market condition.  

This dynamic adjustment idea can be applied for multiday VaR generation as well. To 

generate a       VaR forecast on the initial date  , we first estimate a historical       

variance series         
  from GARCH types of models. The corresponding residual series 

from GARCH model could be used to generate the multiday                  series 

using the power scaling law proposed by McNeil and Fry (2000), which states: 

                              

where   is the scale parameter whose value depends on the current volatility level of the 

overall market
21

 

Finally, the multiday volatility and VaR series are fitted into the following Quantile 

regression model and generate the multi-day VaR forecast: 

          
   

           
                           

                        
  

    

                                                                        
   
                                                    (4.15) 

where                 is the cumulative maximum loss over the latest       that the risk 

manager could tolerate  

To summarize this process, we first generate the conditional VaR series on time varying 

volatility based on the sample historical data. The dynamicity of the VaR series in this step is 

mainly driven by the time varying conditional volatility estimated from the corresponding 

                                                                 
21

 See detailed value selection of    in McNeil and Frey’s research (2000)  
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GARCH model and the residual quantile.  In the second step, we the fit the obtained VaR 

series from the first step into the new specified quantile regression model.  

The most attractive property of the VaR generate from this process is that it can react fairly 

swift to the new information in the market.  In the other word, users who apply this process 

will generate a VaR series which compass the latest information in the returns (first step). 

These Multi-day VaR series will then be re-adjusted by the current information using quantile 

regression technique.  This is a two-step dynamic adjustment process, in which any time 

evolution of the return in the next coming day will affect the VaR series estimated from the 

first round dynamic adjustment, which in turn, affect the quantile regression result in the 

second round dynamic adjustment.  

4.4 Data and empirical results 

This section applies both real and simulated data to implement the proposed model. For 

comparison purpose, the data are also fitted into two CAViaR models specified by Engel. The 

real data used is the daily prices of FSE100 over the latest 10 years from 2001 to 2010. The 

simulated data are based on both GARCH simulation and jump diffusion simulation. Then we 

fit these data into the selected VaR models for performance analysis.    

4.4.1 Empirical results from the historical data 

This section starts from the real historical data. Figure 20 plots the daily index price of 

FTSE100 from 18/10/2001 to 15/10/2010, with overall 2273 observations.  The empirical 

density plot and the QQ plot (graph c and graph d) both indicated that the sample return 

distribution deviate away from the standard normal distribution, especially at the tail area. 

The return series shows obvious volatility clustering effect over the whole sample period.  

FIGURE 20: HISTORICAL PRICES OF FTSE 100 INDEX FROM 18/10/2001 TO 15/10/2010.  (A)INDEX DAILY PRICES (B) INDEX DAILY 
RETURNS (C) QQ PLOT OF THE RETURNS (D) KERNEL DENSITY OF THE RETURNS 
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Figure 21 present the sample ACF of the returns and the squared returns over the entire 

sample period, from which we found that the return series shows no serious autocorrelation 

while the autocorrelation of the squared returns are relatively high at all 40 selected lags.  

This indicates that the selected return series are series-unrelated but not independent, which 

confirms the existence of the GARCH effect. Taking into account of this property, the 

research fit the return series into several types of GARCH model.
22

 The model parameters are 

re-estimated at daily frequency with 1-year data window (252 observations). For each set of 

the parameters, the conditional variance prediction one day ahead is provided.  The 

conditional VaR series is generated by combining the predicted conditional volatility from 

GARCH model and corresponding residual quantile. Particularly, at 99% confidence level, 

the residual quantile is modeled by EVT, while at 95% confidence level it is generated from 

the same distribution specified in the corresponding GARCH model.  

FIGURE 21: SAMPLE RETURN ACF AND SQUARED RETURN PACF OF FTSE 100 RETURNS FROM 18/10/2001 TO 15/10/2010 

  

 

 

                                                                 
22

 Several GARCH types of models are used including Standard GARCH, GJR-Asymmetric GARCH and EGARCH. 
The selection of best GARCH was based on the Both Akaike-AIC and Schwarz-BIC criterion. See figure 22 
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FIGURE 22: AIC AND BIC INFORMATION CRITERION FOR THE NINE SELECTED GARCH MODELS  

 

For comparison purpose, the research also provides the conditional VaR series generated 

from purely historical approximation, as shown in the in Figure 23. These series are 

calculated as the     percentage of the sample for each window data.  It could seen clearly 

that the VaR series from the GARCH models (right graph) have a better fitness to the actual 

return series than those from the historical approximation (left graph).  

FIGURE 23: FORECASTED DAILY VAR SERIES OF FTSE 100 RETURNS FROM 11/10/2002 TO 28/12/2010    

 

The      and       listed in the table 23 are the test statistics of Kupiec’ failure rate test and 

Christofferen’s conditional coverage test for the two estimated VaR series.  These two 

statistics are asymptotically chi-squared distributed with one and two degree of freedom 

respectively. If the estimated value of the test statistics is greater than the corresponding 

critical value, the null hypothesis which states that the VaR model is correctly specified will 

be rejected.  Focus on the result of the failure-rate test, the percentage of the hits against the 

total sample observations, are slightly higher than the corresponding confidence level of both 

VaR models. However, the conditional VaR series from GARCH have lower violation ratio 

that that from the historical quantile at the both 95% and 99% confidence level.  Compared 

the      Ratio with the related critical value, only 99% conditional VaR from the historical 
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quantile reject the null
23

 at 1% significant level. This implies that although the actual 

violations are little bit higher than the corresponding VaR confidence level, the unconditional 

coverage ratio is roughly acceptable for both VaR models.  

When turning the attention to the conditional coverage test, the conditional VaR series (both 

95% and 99% VaR confidence level) from the historical quantile reject the null of 

Christofferen tests
24

. The conditional VaR estimates from GARCH, on the other hand, could 

still perform well with relatively low      ratios at both 95% and 99% VaR confidence level.  

This indicates that VaR estimates from the historical quantile suffered the violation clustering 

problem. However, the conditional VaR generated from GARCH significant alleviate this 

problem, especially at lower confidence level. (The test statistics is more significant at 95% 

VaR confidence level) 

TABLE 23: BACK-TESTING RESULT FOR CONDITIONAL VAR FORECAST FROM 11/10/2002 TO 15/08/2009 

Kupeic’s Failure-rate back-testing  

Dynamic VaR 

approaches 

Total sample 

observations 

Violation at 

95%CL 
     Ratio Violation at 

99% CL 
     

Ratio 

Historical quantile  1769 121 (6.84%) 5.095 34(1.92%) 13.27 

GARCH&EVT 1769 109(6.61%) 5.564 31(1.75%) 3.09 

Christofferen’s Conditional coverage back-testing 

Dynamic VaR 

approaches 

Total sample 

observations 
     Ratio 

of VaR 95% 

  :Independent 

Violation  

    Ratio of 

VaR99% 

  :Independent 

Violation  

Historical quantile 1769 8.1125 Reject  14.69 Reject 

GARCH&EVT 1769 5.2518 Not Reject 4.15 Not Reject 

Chi-squared critical value 

df P = 0.05 P =0.01 

1 3.84 6.64 

2 5.99 9.21 

 

Based on the conditional VaR series generated above, we implement a second step dynamic 

adjustment in this section. More explicitly, we set the four years conditional VaR series as 

moving window (1008 observations) obtained from the above two models and fit them into 

pre-specified quantile regression models (4.11). The daily maximum tolerate loss is set to -2% 

which is the threshold which proposed by Tsay (2003) in his empirical research for the 

extreme market cash in the US stock market. For comparison purpose, two types of CAViaR 

models are used as well, including: 

 Adaptive CAViaR model (4.7) 

 Asymmetric Slope CAViaR model (4.9)  

                                                                 
23

                  : the true violation ratio is consistent with  the confidence level specified by VaR 
24

                        : the violation is independent to each other 
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The reason of choosing these two CAViaR models for comparison purpose is that we aim to 

test whether the new explanatory variables introduced in the quantile regression model (4.11) 

could provide a better forecasting ability over the original explanatory variables in the 

selected two CViaR models. More explicitly, the time varying smoothing factor    proposed 

in our model is aim to replace the adaptive factor in the Adaptive CAViaR model, while the 

conditional VaR generated by EGARCH models could possibly encompass the asymmetric 

effect in the Asymmetric Slope CAViaR model. An empirical comparison of these three VaR 

models could therefore help us to check whether the proposed changes in the new models 

have positive effects for the dynamic VaR generation.  

To estimate the parameters of the quantile regression models, we applied the interior point 

algorithm for regression quantile proposed by Koenker and Park (1996) as the optimization 

criterion.  More explicitly, based on the historical returns and the conditional VaR series 

generated from GARCH model, we fix the moving data window of four year (1008 

observations) to estimate the parameters in the quantile regression model.  Since the 

observations are less than 5000 and maximum number of the parameters to be estimated is 

four, we estimate the parameters using Simplex Algorithm proposed by Koenker and d’Orey 

(1993).  

To be specific, we try to minimize the absolute errors from the Quantile regression model 

(4.11), which can be expressed as: 

                                                                             
                            (4.16) 

where    is the quantile regression function, in which the positive and negative errors are 

weighted differently according to: 

                                                            
      

          
                                               (4.17) 

And      is the regression specification in (4.11) 

To implement the optimization procedure, we generate n vectors of parameters from uniform 

random generator as pivotal vectors and then evaluated the Regression Quantile (RQ) 

function (4.16). For the m vectors of the parameters which produced lowest RQ, we selected 

them as the initial values and ran the Simplex Algorithm and choose the new optimal 

parameter vectors as the new initial conditions for iteration. Repeating this procedure until 
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the convergence criterion is satisfied and we selected the parameter vector as the final 

optimal one.  The value of n and m is set similar to the Engel and Manganelli (2004).  

As an example, we report the Least Absolute Deviation estimates and the relevant statistics 

for the three models using data window from 11/10/02 to 11/10/06 in Table 24 and Table 25. 

For each model, the table reports the LAD estimated parameters, the corresponding standard 

errors
25

, two tailed P-values and   .   

Several points are worth to be mentioned from these two tables: Firstly, under both 5% and 1% 

quantile level, the two step dynamic adjusted VaR (TSDA-VaR) model has a higher    than 

Adaptive-CAViaR and Asymmetric Slope-CAViaR model, which confirms the goodness of 

fit improved by the new model. Secondly, the coefficients of the auto-correction variable beta 

3 and the new exogenous variable beta 4 in the TSDA-VaR model are both fairly significant 

at 5% significant level, which confirms the explanatory power of these two exogenous 

variables. Thirdly, for 1% quantile level, the coefficient of the modified adaptive factor beta 3 

in TSDA-CAViaR model, which represent the time varying self-correction effect, is more 

significant than the adaptive factor beta 1 in the Adaptive-CAViaR model, confirming the 

robustness of the modified adaptive factor in the dynamic VaR generation. 

FIGURE 24: ESTIMATED DAILY EXPECTED SHORTFALL OF FTSE 100 INDEX FROM 11/10/2002 TO 15/08/2009 

 

                                                                 
25

 See detailed explanation of the statistics in Koenker(2005)  
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TABLE 24: QUANTILE REGRESSION RESULT USING WINDOW DATA FROM 11/10/02 TO 11/10/06 (    ) 

Dynamic VaR generating at 95% confidence level (    ) 

Results of quantile  Regression :  TSDA-VaR 

    
 

                                    
 

                       
  

                            

Explanatory Variables Coefficients SE.ker t.ker P.ker 

Constants (Beta 1) -0.3741 0.0809 -4.6238 0.0000 

Beta 2 0.8367 0.0325 25.7449 0 

Beta 3 -1.1972 0.3462 -3.4584 0.0006    

Beta 4 -0.4974 0.2748 -1.8100 0.0705 

Pseudo    0.1742 

Elapsed time 66.35seconds 

Results of quantile  Regression :  Adaptive-CAViaR 

                                      
  

    

Explanatory Variables Coefficients SE.ker t.ker P.ker 

Beta 1 -1.0284 0.3546 2.9005 0.0038   

Pseudo    0.0878 

Elapsed time 25.830 seconds. 

Results of quantile  Regression :  Asymmetric Slope-CAViaR 

                                             

Explanatory Variables Coefficients SE. t.ker P.ker 

Constants -0.3085 0.0971 -3.1771 0.0015 

Beta 2 0.6992 0.0485 14.4036 0 

Beta 3 -0.4115   0.0507 -8.1103 0.0000 

Beta 4 0.3026 0.0676   4.4779   0.0000   

Pseudo    0.0903 

Elapsed time 28.21seconds 
TABLE 25: QUANTILE REGRESSION RESULT USING WINDOW DATA FROM 11/10/02 TO 11/10/06 (     ) 

  Dynamic VaR generating at 99% confidence level(    ) 

Results of quantile  Regression :  TSDA-VaR 

    
 

                                    
 

                       
  

                            

Explanatory Variables Coefficients SE.ker t.ker P.ker 

Constants (Beta 1) -0.6483 0.1020 -6.3539 0.0000 

Beta 2 0.8650 0.0306 28.2932 0 

Beta 3 -1.7003 0.5760 -2.9516 0.0032 

Beta 4 -2.3783 0.5450 -4.3638 0.0000 

Pseudo    0.3208 

Elapsed time 72.45 seconds 

Results of quantile  Regression :  Adaptive-CAVaiR 

                                      
  

    

Explanatory Variables Coefficients SE.ker t.ker P.ker 

Beta 1 -1.1426 0.7639 1.4959 0.1349   

Pseudo    0.1450 

Elapsed time 25.20seconds. 

Results of quantile  Regression :  Asymmetric Slope-CAVaiR 

                                             

Explanatory Variables Coefficients SE. t.ker P.ker 

Constants (Beta 1) -0.5969 0.1296 -4.6047 0.0000 

Beta 2 0.6998 0.0321 21.8314 0 

Beta 3 -0.6917 0.0995 -6.9519 0.0000 

Beta 4 1.0315   0.1139 9.0565 0 

Pseudo    0.1929 

Elapsed time 32.536916 
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In figure 25 we plot the daily dynamic VaR series at 95% and 99% confidence level predicted 

from the three types of CAViaR models against the actual index returns. These series are 

generated by moving the four window data at daily frequency and re-estimating the three 

VaR models in the table 25. The overall looping process runs 1771 times and we take one -

day forecast from each loop to construct the dynamic VaR series. The overall VaR series 

contained 1771 forecast spanning from 11/12/02 to 15/08/2009.  

For back-testing purpose, this section compared the dynamic VaR series generated from the 

above process and the actual return series over the same period from 11/12/02 to 15/08/2009. 

The VaR model validation is checked by three back-testing models, which are 

aforementioned failure rate test, conditional coverage test and Dynamic Quantile (DQ) test 

proposed by Engel (2002).  To briefly explain the DQ test, define the hit as an indicator 

variable, which is expressed as: 

                                                                       
                                                   (4.18) 

If the VaR model is correctly specified, the hits should have expected value equal to   with 

no auto-correlation.  Furthermore, the hits must be unpredictable conditional on the current 

information. This non-predictability property can be tested by regressing the hits on several 

selected explanatory variables, which is expressed as: 

                                                          
 
          

                        (4.19) 

where            
 
    are the   lags of the Hits and    is the actual return on time   

Under the null hypothesis that the distribution of the hits is dependent on the past 

observations, DQ statistics should follow Chi-squared distribution with k degree of freedom: 

                                                 
                           

        
 
        

      
   

           (4.20) 

Where: 

        is the k-vector of the explanatory variables  

  is the DQ matrix
26

   

 

                                                                 
26

 The detailed proof of the DQ matrix could be found in Engle and Manganelli(2004)  

 



113 
 

FIGURE 25: DYNAMIC DAILY VAR SERIES FROM THERE VAR MODELS. RED LINE: VAR FROM ADAPTIVE-CVIAR. GREEN LINE: VAR FROM 
TSDA-VAR. BLUE LINE: VAR FROM ASYMMETRIC SLOPE-CAVIAR  

 

Table 26 lists the results of the back-testing for the three selected VaR models. In the DQ test 

column, we also provide the Ljung-Box Q statistics of        for the auto-correlation test. 

The lag of the         in the DQ test is set to be four, which is same as the Engel’s 

specification.   

Focus on the table, the first result is that the accuracy of these three VaR models, as measured 

by the percentage of the violations against the total observations, is improved compared to 

the conditional VaR series generated in table 22. The percentage of the violations is fairly 

consistent with the corresponding VaR confidence level. Furthermore, the value of the      

ratios are fairly small, which indicate that all three models could not reject the null of Kupeic 

test. This confirms the accuracy improvement by the quantile  regression technique.   

Secondly, the value of the      statistics becomes very small compared to the critical value 

in the TSDA-VaR model and the Asymmetric Slope models. Therefore we cannot reject the 

null that violations are mutually independent. This indicated that the violation clustering 

effect has been approximately eliminated using these two models. The Adaptive-CAViaR 

model, on the other hand, rejected the null at 5% quantile level, indicating that this model still 

suffer from the violation clustering problem.   

The DQ test in the final part of the table provides the similar result with that from the 

conditional coverage test. To be specific, at both 5% and 1% quantile level, TSDA-VaR 

model has the largest P-value of the DQ statistics, indicating that the violations from this 

model are independent and non-predictable with each other. The Adaptive-CAViaR, on the 

other hand, provides the worst performance in the DQ test at both 5% and 1% quantile  level. 

It should be mentioned as well that since there are few violations at the 1% quantile  level 
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(approximately 20 for each CAViaR model over the whole test sample), the power of the 

both DQ test and Ljung-Box Q test will be affected. Therefore, the result of these three tests 

should be more reliable on the 5% quantile  level.  

To sum up the back-testing results, TSDA-VaR model perform the best in the all three back 

testing approaches. Asymmetric Slope- CAViaR passes both the failure rate test and the 

conditional coverage test but perform badly in the DQ test at 5% quantile level. The 

Adaptive-CAViaR, on the other hand, provides the worst performance at both 1% and 5% 

quantile level in the conditional coverage and the DQ test.  

TABLE 26: BACK-TESTING RESULT OF DYNAMIC VAR FORECAST FROM 11/12/02 TO 15/08/2009 

Failure-rate back-testing 

Dynamic VaR 

approaches 

Total sample 

observations 

Violation at 

95%CL 
     Ratio Violation at 

99% CL 
     

Ratio 

TSDA-VaR 1771  91(5.13%) 0.0707 20(1.07%) 0.2871 

Adaptive-CAViaR 1771 90(5.08%) 0.0249 19(1.12%) 0.0972 

Asymmetric Slope-

CAViaR  
1771 91(5.13%) 0.0707 19(1.07%) 0.0977 

Conditional coverage back-testing 

Dynamic VaR 

approaches 

Total sample 

observations 
     Ratio 

of VaR 

95% 

  :Independent 

Violation  

    Ratio of 

VaR99% 

  :Independent 

Violation  

TSDA- VaR 1771 0.4565 Not Reject  1.7763 Not Reject  

Adaptive-CAViaR 1771 7.5427 Reject 6.1857 Not Reject 

Asymmetric Slope-

CAViaR  
1771 0.1844 Not Reject 0.6992 Not Reject 

Dynamic quantile  Test for VaR at 95% confidence level 

Dynamic VaR 

approaches 

Total Violation 

out of sample   
Ljung-Box tests- Q statistics P-value DQ statistics 

P-value  5 lags 15 lags 50lags 
TSDA- VaR 91 (5.13%) 0.7695 0.4998 0.5045 0.946 

Adaptive-CAViaR 90(5.08%) 1.091e-007 4.2615e-011   0 0.284 

Asymmetric Slope-

CAViaR  
91(5.13%) 0.0196 1.7231e-004 6.977e-008 0.375 

Dynamic quantile  Test for VaR at 99% confidence level  

Dynamic VaR 

approaches 

Total Violation 

out of sample   
Ljung-Box tests- Q statistics DQ statistics 

P-value 5 lags 15 lags 50lags 
TSDA- VaR 19(1.07%) 0.1166 2.0585e-004 1.2714e-006 0.895 

Adaptive-CAViaR 20(1.12%) 1.864e-007 1.2144e-009 3.7748e-015 0.276 

Asymmetric Slope-

CAViaR  
19(1.07%) 0.0042 1.8311e-006 1.8132e-011 0.614 

 

A common deficiency of the aforementioned three back-testing approaches is that they 

merely focus on the number of the violations but ignore the magnitude of the violations.  

These approaches will therefore provide the same appraisal to the VaR models whose risk 

predictions are far away from the actual loss and whose risk predictions are fairly close to the 

actual loss, as long as the violations of the two models over the testing period are similar.  In 

practice however, if a risk manager applies a risk model with desirable failure rate but always 
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provides too large VaR prediction compared to the actual loss when the violation does not 

occur, there is obviously a deficiency loss because too many capital cushion is set to prevent 

the unnecessary loss according to this model. Similarly, if a risk manager applies a risk model 

with desirable failure rate but perform extremely badly when the violation does occur (has 

too small VaR prediction compared to the actual loss), there will also be a potential danger to 

implement this model because whenever the violation occurs, there will be a catastrophe to 

the users.  

For this reason, it is necessary to perform an additional efficiency test for the selected VaR 

models. That is, how precise these models could capture the magnitude of the actual loss. In 

this research we propose two efficiency measurements, which are: 

 Total violation errors: the sum of the violation magnitude (the difference between the 

realized returns and the VaR estimates) over the testing period, conditional on that 

violation does happen 

 Total over-prediction errors: the sum of the over-prediction magnitude (the difference 

between the VaR estimates and the actual returns) over the testing period, conditional 

on that violation doesn’t happen. 

Table 27 summarizes the value of these two measures for the each selected VaR models. In 

the last two columns of the table, we also list the value of the average magnitude. These 

values are obtained by dividing the sum of the magnitude by the corresponding sample size. 

For instance, the average magnitude of violation error is calculated as dividing the sum value 

of violation error by the total number of the violations. Similarly, the average magnitude of 

over-prediction error is calculated as dividing the sum value of over-prediction error by the 

total number of the over-predictions. 

As shown in the Table 27, the TSDA-VaR model has the lowest value of the total violation 

errors and total over-prediction errors at the both 95% and 99% VaR confidence level.  The 

implication of this result could be seen from two aspects: On one hand, under the condition 

that the violation occurs, TSDA- VaR could provide a larger VaR prediction than those from 

other two CAViaR models; On the other hand, under the condition that the violation doesn’t 

occur, VaR generated from TSDA-VaR is generally smaller than those from other two 

models.  

From the perspective of the average magnitude, the violation error from the TSDA-VaR 

model (0.62%) is approximately 0.2% lower than those from the Adaptive-CAViaR and the 
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Asymmetric Slope model at the 95% VaR confidence level.  The error improvement becomes 

even more significantly at 99% VaR confidence level, where TSDA-VaR has almost 0.7% 

reduced error compared to the Adaptive-CAViaR and 0.15% reduced error compared to the 

Asymmetric Slope model. 

Similar conclusion could be drawn when comparing the average over-prediction error.  The 

TSDA-VaR model has the lowest average over-prediction error at the both 95% and 99% 

VaR confidence level. Although the Asymmetric Slope model has the similar average over-

prediction error with the TSDA-VaR model at 95% VaR confidence level, this error becomes 

approximately 0.6% higher at 99% VaR confidence level. The Adaptive-CAViaR model, on 

the other hand, has the highest over-prediction error at the both 95% and 99% VaR 

confidence level.  

Overall speaking, the TSDA-VaR model could provide the best performance over other two 

CAViaR models in this efficiency test.  On one hand, the lowest over-prediction error 

indicated that compared to the other two models, it is more efficient to prevent the users from 

sending too much unnecessary capital cushion to the unlikely occurred risk. On the other 

hand, the lowest violation error indicated that even if the actual loss breaks the estimated VaR, 

the users who implement this model suffer the minimized loss compared to the other two 

models.  

TABLE 27: EFFICIENCY TEST RESULT OF DYNAMIC VAR FORECAST FROM 11/12/02 TO 15/08/2009 

VaR confidence level : 95%  Total Observation:1771 

VaR Models 
Violation 

Numbers  

Capture 

Numbers 

Sum of the Value  
Average  

Magnitude  

Violation 

Errors 

Over-prediction 

Errors 

Violation 

Error 

Over-prediction 

Error 

TSDA-VaR 91 1680 56.42% 3390.4% 0.62% 2.0181% 

Adaptive-

CAViaR 
90 1681 79.60% 3458.4% 0.8845% 2.0573% 

Asymmetric 

Slope 
91 1680 80.26% 3390.9% 0.8819% 2.0184% 

 

VaR confidence level : 99%  Total Observation:1771 

VaR Models 
Violation 

Numbers 

Capture 

Numbers 

Sum of the Value 
Average  

Magnitude 

Violation 

Errors 

Over-prediction 

Errors 

Violation 

Error 

Over-prediction 

Error 

TSDA-VaR 20 1751 12.02% 5366% 0.6008% 3.0645% 

Adaptive-

CAViaR 
19 1752 17.88% 6487.4% 0.9409% 3.7029% 

Asymmetric 

Slope 
19 1752 14.40% 6364.6% 0.7577% 3.6328% 
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4.4.3 Empirical results from the simulated data 

In more general case, the selected three VaR models are fitted into some simulated return 

series.  Under the assumption that the volatility is constant, the price    follows the standard 

Geometric Brownian Motion as: 

                                                                  

                                          (4.21) 

where   and   are the constant drift and the variance parameters and    is standard wiener 

process  

If assuming   in (4.21) is not constant over time, we can add GARCH process for the 

dynamic evolution of    , which is expressed as
27

:   

                                           
  

 
                                

                                                                                                                               (4.22)                                                                                                                                                                         

Equation (4.22) is the GARCH simulation, in which  ,   ,   and   are the non stochastic 

parameters estimated from GARCH process.    and    are correlated Wiener process with 

correlation   .  

More explicitly,    is the long term volatility estimated from GARCH process and the speed 

of convergence to this long term volatility is controlled by the persistence parameter  .   take 

into account of the asymmetric property of volatility. For instance, if   >1, the volatility 

increases more as the stock price increases and if 0<   <1, the volatility increases more as the 

stock price decreases.   

One limitation of the simulation (4.21) and (4.22) is that the simulated prices will generally 

behave like brownian motion and unlikely to move severely over a short time period, unless 

we set a significantly high value of the variance parameter  . From the perspective of the 

active risk manager, such simulated series may not be enough to capture the extreme risk of 

the strong market movements. Therefore, we consider the Merton’s jump diffusion model 

(1976) for further price series simulation, in which the occurrences of the random price jumps 

are taken into account. Under this assumption, the stochastic process followed by the stock 

price becomes: 

                                              
   

  
                   

  
                                      (4.23) 

                                                                 
27

 See detailed proof in Hull(2008) 



118 
 

where    follows Poisson process with intensity   and    is non-negative iid series.  

         follows Laplacian distribution with the following probability density function: 

                                                     
 

  
    

      

 
                                           (4.24) 

where   is the expected value of the jump size and   is the volatility of the jump.  

 Under the Poisson distribution, the probability of one jump under the time interval      

   is equal to     .  The change of the price under such small time    is therefore given by: 

                             
     

  
                  ,         

           

             
           (4.25) 

Solve the differential equation (4.23) we can obtain the following stochastic jump diffusion 

equation: 

                                                              

            
  
                            (4.26) 

Table 28 lists the value of the input parameters we set for the three types of simulation 

process (4.24), (4.25) and (4.29). Each value of the parameter is set in order to proxy the 

historical average of the sample data. For instance, the sample historical mean and standard 

deviation of FTSE 100 index over the period 2001 to 2010 are estimated as -9.4% and 18.6% 

per annum respectively, which are exactly the value we set for the constant drift   and the 

volatility rate   in the Constant Volatility Simulation (CVS) (4.21).  Given that the total 

numbers of the large daily return (the absolute value is greater than 2%) are 214 above the 

2272 observed historical returns (approximately 20 days per annum), we hence set the value 

of the mean jump size equal to -2% per annum and the corresponding intensity parameter   

equal to 20 in the Jump Diffusion Simulation (JDS) (4.26). The volatility of the jump is set 

equal to 2%.
28

 Finally the value of the parameters in the GARCH simulation (4.22) is 

obtained by fitting the sample data into appropriate GARCH model.  

 

 

 

 

                                                                 
28

 This value is set according to Artigas and Tsay’s research (2004) in order to capture the extreme daily 
movement in the US market 
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TABLE 28: THE SETTING OF INPUT VALUES IN THE THREE SIMULATION PROCESS    

Stock Price Path simulation 1:  Constant Volatility Simulation (CVS) 

Parameter Name Value  Note 

Number of Simulated Prices 2000 2000 simulation 

Initial value 5000 Start Value  

Drift Rate   -9.4% Per annum  

Volatility Rate   18.6% Per annum 

t  1/252 Daily frequency  

Stock Price Path 2:  GARCH simulation 

Number of Simulated Prices 2000  

Initial value 5000 Start Value  

Drift Rate   -9.4% Per annum 

t  1/252 Daily frequency 

a  0.0685 1-persistence rate 

LV  18.6% 
Long-term 

Volatility 

  0.8 Asymmetric degree 

  0.14  

  0.3 
Correlation 

between sd vd  

Stock Price Path simulation 3:  Jump Diffusion Simulation (JDS) 

Number of Simulated Prices 2000  

Initial value 5000 Start Value  

Drift Rate   -9.4% Per annum  

Volatility Rate   18.6% Per annum 

Intensity   20 
Expect number of 

jumps  per year  

Mean jump size  iJEk   -2%  Average jump size 

Volatility of Jump    2%  Jump volatility  

t  1/252 
Daily Price 

simulation 

 

Figure 26 plot the sample paths of the simulated prices from the three underlying stochastic 

process and the corresponding return series.  The returns from the Constant Volatility 

Simulation (CVS) look purely stationary with no series correlation, while the returns from 

GARCH simulation show obvious volatility clustering effect.  The assumption from GARCH 

simulation should be more realistic than that from CVS, since it is well accepted that typical 

daily returns of the financial assets show certain degree of volatility clustering effect.  

It could be also seen from the graph that the price path generated from Jump Diffusion 

Simulation (JDS) has more extreme return realizations (either negative or positive) than the 

price path from other two stochastic processes. For instance, given the values of the drift and 

the volatility rate in the Table 27, the simulated daily returns from both GBM and SVM are 

approximately range from -4% to 4%. On the other hand, there are several extreme price 

realizations from JDM (The most negative return is around -7%).  Such extreme large price 
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movements over the short time interval almost impossible appears under the CVS or GARCH 

simualtion and could only be quantified by adding jump diffusion simulation (JDS).  

                   FIGURE 26: THE SAMPLE PATHS OF THE SIMULATED PRICES (WITH 1877 OBSERVATIONS) 
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Based on the simulated data, we implement the three selected VaR models to quantify the 

market risk of the each simulated return series and perform the corresponding back testing.  

Table 29 present the estimation results of the all three VaR specifications. The first finding in 

the table is that at both 95% and 99% VaR confidence level, TSDA-VaR model provides a 

very significant beta2 estimate compared to that from Adaptive and Asymmetric Slope 

CAViaR model. This could be seen in two aspects:  On one hand, when the returns are 

simulated from constant volatility simulation (CVS), the beta2 from TSDA-VaR model is 

significant at 5% significant level while the autoregressive coefficient from Asymmetric 

Slope CAViaR models are merely significant at 10% significant level.  On the other hand, 

when the returns are simulated from GARCH simulation and jump diffusion simulation (JDS), 

TSDA-VaR becomes the only model who has the significant coefficient.   

Given that beta2 measures the effect of the autoregressive term       
 

on the risk prediction, 

the above result indicate that the first adjustment of the conditional VaR series, which is 

represented by the beta2 in the TSDA-VaR model,  has more explanatory power than the 

autoregressive term  in the CAViaR model. The improvement is particularly significant when 

the returns contain time-varying volatility and jump property (as simulated by GARCH 

simulation or JDS). Under such case, the conditional VaR on the time varying volatility is 

superior to the autoregressive term in generating the dynamic risk prediction.  

Secondly, when comparing the coefficient from TSDA-VaR and Adaptive-CAViaR model 

(which represent the self-correction factor for the VaR prediction), we found that although 

both estimates are significant at 5% significant level for the returns simulated from CVS, this 

coefficient becomes quite insignificant for adaptive-CAViaR model but still significant for 

TSDA-VaR at 10% significant level when the returns show time varying volatility (as 
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simulated by GARCH) or  jump property (as simulated by JDS).  This indicated that the 

modified time varying self-correction factor in TSDA-VaR model is more robust than the 

static self-correction factor in Adaptive-CAViaR model in capturing the time varying risk 

evolution or the unexpected shock (price jump).  

Finally, the coefficient of beta4 in the TSDA-VaR model, which represents the panic selling 

effect if the daily loss is greater than 2%, is significant at 10% significant level for all three 

simulated return series. This confirm that adding such dummy variable into quantile 

regression specification do improve the model forecast ability.  

TABLE 29: QUANTILE ESTIMATION RESULT FOR THE THREE VAR MODELS FROM THE SIMULATED PRICE  

VaR99% 
TSDA-CAVaR Adaptive-CAViaR Asymmetric Slope-CAViaR 

CVS GARCH  JDS CVS GARCH  JDS CVS GARCH  JDS 

Beta1 

errors 

P-value 

-0.053 

(0.033) 

0.108 

0.0162 

(0.0216) 

0.0216 

-0.115 

(0.0534) 

0.0310 

  
 

 

-0.038 

(0.0066) 

0.0000 

-0.013 

(0.0059) 

0.0256 

-0.044 

(0.010) 

0.000 

Beta2 

errors 

P-value 

0.646 

(0.221) 

0.004 

0.4228 

(0.1979) 

0.0398 

0.7091 

(0.3268) 

0.0368 

-0.319 

(0.266) 

0.0994 

0.1896 

(0.204) 

0.1593 

0.1350 

(0.288) 

0.6399 

-0.4909 

(0.407) 

0.0695 

0.4217 

(0.4392) 

0.1260 

-0.284 

(0.327) 

0.2692 

Beta3 

errors 

P-value 

-0.008 

(0.0042) 

0.074 

-0.058 

(0.003) 

0.097 

-0.012 

(0.004) 

0.034 

 0.2105 

(0.1267) 

0.0969 

-0.3797 

(0.169) 

0.0252 

-0.022 

(0.074) 

0.2002 

Beta4 -0.088 

(0.022) 

0.0122 

-0.129 

(0.075) 

0.071 

-0.1939 

(0.1219) 

0.0619 

-0.043 

(0.017) 

0.0226 

-0.007 

(0.012) 

0.2845 

-0.064 

(0.051) 

0.206 

0.0235 

(0.036) 

0.1176 

0.2896 

(0.1188) 

0.0149 

0.8118 

(0.142) 

0.0000 

errors 

P-value 

Pseudo R^2 0.2214 0.1133 0.1349 0.2166 0.0410 0.0791 0.1697 0.1399 0.1047 

 

VaR95% 
TSDA-CAVaR Adaptive-CAViaR Asymmetric Slope-CAViaR 

CVS GARCH  JDS CVS GARCH  JDS CVS GARCH  JDS 

Beta1 -0.008 

(0.0074) 

0.068 

-0.0273 

(0.0203) 

0.1784 

-0.0333 

(0.0177) 

0.0601 

 

  

  

-0.0258 

(0.0091) 

0.0049 

-0.0259 

(0.0054) 

0.0000 

-0.021 

(0.007) 

0.0058 

errors 

P-value 

Beta2 0.2147 

(0.1911) 

0.0432 

0.3913 

(0.2011) 

0.0318 

0.2336 

(0.1356) 

0.0616 

-0.297 

(0.195) 

0.049 

-0.4236 

(0.4783) 

0.3281 

0.2155 

(0.339) 

0.5256 

-0.3317 

(0.3761) 

0.1561 

0.4120 

(0.4026) 

0.1169 

0.0967 

(0.338) 

0.7753 

errors 

P-value 

Beta3 0.0168 

0.0120 

(0.064) 

-0.0045 

(0.0032) 

0.0829 

-0.0174 

(0.0051) 

0.0007 

 0.0313 

(0.0411) 

0.0992 

-0.1728 

(0.1024) 

0.0846 

-0.079 

(0.069) 

0.0731 

errors 

P-value 

Beta4 -0.0139 

(0.0126) 

0.0840 

-0.0324 

(0.0309) 

0.0902 

-0.0344 

(0.0304) 

0.0775 

-0.017 

(0.011) 

0.079 

-0.0183 

(0.0191) 

0.23724 

-0.026 

(0.03) 

0.205 

0.0903 

0.0826 

0.0747 

0.2758 

(0.1095) 

0.0119 

0.0012 

(0.009) 

0.0692 

errors 

P-value 

Pseudo R^2 0.202 0.1571 0.1759 0.275 0.157 0.091 0.0113 0.147 0.173 
TSDA-VaR: 

    
 

                                    
 

                       
  

                            

Adaptive-CAViaR:  

                                      
  

    

Asymmetric Slope-CAViaR:  
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Similarly to what we’ve done to the historical data, two approaches are applied to quantify 

the model performance, in which the back-testing models are applied in the first step for the 

model validation check and the efficiency test is applied afterwards for the model accuracy 

check.  

The back-testing result is presented in the Table 30. The result shows that when the returns 

are simulated from CVS, all three VaR models perform approximately equally well in the 

failure rate, conditional coverage and DQ test.  The small value of the      ratio and the 

     ratio generated from all three VaR models indicate that the null hypothesis, which states 

that model’s confidence level are correctly specified and there is no violation clustering effect 

between the observation violations, are not reject.  The P-values of the DQ test in all three 

CAViaR could be a further evidence to support that violations are independent and non-

predictable of each other.  

On the other hand, when the returns are simulated from GARCH simulation, both Adaptive 

and Asymmetric Slope CAViaR models could merely pass the failure rate test but perform 

badly for the conditional coverage and DQ test, especially under the 95% VaR confidence 

level. The relatively large value of the      Ratio and the small DQ P-values imply that we 

could reject the null in the conditional coverage test that the violations are not clustering and 

could not reject the null in the DQ test that the violations are correlated with their own lags 

and predictable. 

The TSDA-VaR model, on the other hand, could still pass all three tests with similarly      

Ratio and P-value.  Since the GARCH simulation could appropriately proxy the time varying 

volatility of the returns contrast to the constant volatility rate in the CVS, above results 

indicated that TSDA-VaR model is more adaptable than the Adaptive and Asymmetric Slope 

CAViaR model to the time varying risk evolution, which is in fact the most crucial 

consideration in the dynamic risk management. 

Finally we turn to the result of the returns simulated from JDS. As mentioned above, Jump 

Diffusion Model takes into account the effect of the random price jumps, in which the 

simulated returns could undertake large unexpected movement over a short time period that 

unlike happened in both CVS and GARCH simulation. From the view of the active risk 

manager, such jump property is fairly desirable in describing the strong price fluctuations and 

extreme market risk.  
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The result in the table 30 shows that TSDA-VaR model outperforms other two models at both 

95% and 99% VaR confidence level. To be more specific, TSDA-VaR model generate both 

the desirable failure ratio and significant      and DQ P-value, while the Asymmetric Slope 

CAViaR fail to pass the DQ test with small P-value even though it could generate a relative 

small value of      ratio indicating a pass of conditional coverage test. The Adaptive 

CAViaR model, on the other hand, performs worst in the back-testing, since it could not pass 

both the conditional coverage and DQ test. 

TABLE 30: BACK-TESTING RESULT FROM SIMULATELD DATA  
Back-testing Results 

VaR 99% 

Total sample observations/Violations 
% 

     Ratio      Ratio 
DQ statistics 

P-value (in sample) 

CVS GARCH JDS CVS GARCH JDS CVS GARCH JDS CVS GARCH JDS 

TSDA-VaR 

1736/ 

20 
(1.15%) 

1736/ 

18 
(1.04%) 

1736/ 

20 
(1.15%) 

0.39 0.02 0.38 0.80 0.4 0.85 0.761 0.57 0.85 

Adaptive 

1736/ 

19 

(1.09%) 

1736/ 

19 

(1.09%) 

1736/ 

19 

(1.09%) 

0.15 0.15 0.15 0.85 1.64 0.80 0.03 0.076 0.047 

Asymmetric 

1736/ 

19 

(1.09%) 

1736/ 

19 

(1.09%) 

1736/ 

19 

(1.09%) 

0.15 0.15 0.15 0.85 1.28 0.80 0.14 0.13 0.082 

 

VaR 95% 
Total sample observations/Violations      Ratio      Ratio 

DQ statistics 

P-value (in sample) 

CVS GARCH JDS CVS GARCH JDS CVS GARCH JDS CVS GARCH JDS 

TSDA-VaR 

1736/ 

84 
(4.83%) 

1736/ 

89 
(5.11%) 

1736/ 

86 
(4.95%) 

0.29 0.07 0.03 0.65 3.74 1.74 0.74 0.85 0.625 

Adaptive 

1736/ 

92 
(5.29%) 

1736/ 

103 
(5.93%) 

1736/ 

94 
(5.41%) 

0.71 0.43 0.47 8.46 13.5 8.46 0.087 0.53 0.36 

Asymmetric 

1736/ 

87 

(5.01%) 

1736/ 

89 

(5.11%) 

1736/ 

90 

(5.18%) 

0.45 0.15 0.27 3.12 7.75 4.13 0.607 0.016 0.22 

 

The efficiency test (Table 31 and Table 32) provides us further information about the model 

performance. Although at 99% VaR confidence level, three selected CAViaR models provide 

the similar number of the violations, TSDA-VaR model always generates the lowest 

magnitudes of the violation errors. This efficiency improvement is more obvious at 95% VaR 

confidence level and for jump diffusion simulation, in which the average violation errors 

from the TSDA-VaR model is approximately 0.17% lower than Adaptive CAViaR model and 

0.07% than Asymmetric Slope CAViaR model. The comparison of the over prediction errors 

gives us the similar appraisal. TSDA-VaR generate both lowest total and average over-

prediction errors among the three VaR models and this errors reducing effect is more 

obviously when the returns are simulated from GARCH simulation or JDS, in which the 

average over prediction errors from the TSDA-VaR model is approximately 1% lower than 

that from Adaptive and Asymmetric Slope CAViaR model.   
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To sum up, the results of both back-testing and efficiency test indicate that TSDA-VaR 

model has its superior ability in capturing the dynamic market risk evolution than the 

traditional Adaptive and Asymmetric Slope CAViaR models. Especially when the returns 

contains certain degree of time varying volatility and random jump property, TSDA-VaR 

models could adjusted the changes more swiftly and dynamically than the traditional 

CAViaR models and thus quantify the risk more accurate and efficient . 

TABLE 31: EFFICIENCY TEST FROM SIMULATELD DATA (99% VAR CONFIDENCE LEVEL) 

VaR confidence level : 99%  Total Observation:1736 

Simulated 

Returns from 

CVS 

Violation 

Numbers  

Capture 

Numbers 

Sum of the Value  
Average  

Magnitude  

Violation 

Errors 

Over-prediction 

Errors 

Violation 

Error 

Over-prediction 

Error 

TSDA-VaR 20 1716 0.0439 42.378 0.2195% 2.469% 

Adaptive-

CAViaR 
19 1717 0.0557 42.672 0.2931% 2.485% 

Asymmetric 

Slope 
19 1717 0.0556 43.376 0.2926% 2.526% 

 

Simulated 

Returns from 

GARCH  

Violation 

Numbers 

Capture 

Numbers 

Sum of the Value 
Average  

Magnitude 

Violation 

Errors 

Over-prediction 

Errors 

Violation 

Error 

Over-prediction 

Error 

TSDA-VaR 18 1719 0.0585 50.498 0.325% 2.937% 

Adaptive-

CAViaR 
19 1717 0.0726 51.572 0.382% 3.003% 

Asymmetric 

Slope 
19 1717 0.0598 50.836 0.314% 2.961% 

 

Simulated 

Returns from 

JDS 

Violation 

Numbers 

Capture 

Numbers 

Sum of the Value 
Average  

Magnitude 

Violation 

Errors 

Over-prediction 

Errors 

Violation 

Errors 

Over-prediction 

Errors 

TSDA-VaR 20 1716 0.087 60.192 0.435% 3.507% 

Adaptive-

CAViaR 
19 1717 0.127 62.562 0.668% 3.643% 

Asymmetric 

Slope 
19 1717 0.099 63.384 0.521% 3.691% 
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TABLE 32: EFFICIENCY TEST FROM SIMULATELD DATA (95% VAR CONFIDENCE LEVEL) 

VaR confidence level : 95% Total Observation:1736 

Simulated 

Returns 

from CVS 

Violation 

Numbers 

Capture 

Numbers 

Sum of the Value 
Average 

Magnitude 

Violation 

Errors 

Over-prediction 

Errors 

Violation 

Error 

Over-prediction 

Error 

TSDA-VaR 84 1652 0.27216 33.419 0.324% 2.023% 

Adaptive-

CAViaR 
92 1644 0.36432 34.113 0.396% 2.075% 

Asymmetric 

Slope 
87 1649 0.31233 33.540 0.359% 2.034% 

 

Simulated 

Returns 

from 

GARCH 

Violation 

Numbers 

Capture 

Numbers 

Sum of the Value 
Average 

Magnitude 

Violation 

Errors 

Over-prediction 

Errors 

Violation 

Error 

Over-prediction 

Error 

TSDA-VaR 89 1647 0.283 39.6 0.318% 2.408% 

Adaptive-

CAViaR 
103 1623 0.424 52.19 0.412% 3.216% 

Asymmetric 

Slope 
89 1647 0.299 55.59 0.322% 3.398% 

 

Simulated 

Returns 

from JDS 

Violation 

Numbers 

Capture 

Numbers 

Sum of the Value 
Average 

Magnitude 

Violation 

Errors 

Over-prediction 

Errors 

Violation 

Errors 

Over-prediction 

Errors 

TSDA-VaR 86 1650 0.4601 45.72 0.535% 2.771% 

Adaptive-

CAViaR 
94 1642 0.664392 65.10 0.7068% 3.965% 

Asymmetric 

Slope 
90 1646 0.5409 65.37 0.601% 3.972% 

 

4.4.4 Multiday VaR generation from TSDA-VaR model 

The TSDA-VaR model proposed in this research could be adapted for the multi-horizon risk 

prediction. Under the assumption that the conditional distributions of the returns are identical 

and independent, the multiday variance could be estimated by integrating the daily volatility 

forecast from the GARCH model. This should be a more accurate multiday variance forecast 

approach than the simply the time squared root rule.  

More explicitly, the       VaR forecast on day  using TSDA-VaR model could be 

generated as follows: 

1. Estimated the        variances    
  as the sum of the latest   daily variances, which 

are obtained from the   re-estimated GARCH models at daily frequency.  
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2. Estimated the multiday VaR of residuals using historical approximation.  More 

explicitly, we rank the whole residual series from GARCH models in ascending order 

and selected the       percentage as the     
      

3. Repeat the step 1 and 2 to generate series of      
   and      

       

4. Generate the dependent variable multi-period return series     
   from sample data  

5. Fit the multiday series    
  ,      

   and      
       into the following quantile  

regression and generate the forecast 

          
                

      

               
                        

  

    

                                                                        
   
                                          (4.15) 

 

The most attractive property of the multiday VaR generate from this process is that it can 

react fairly swift to the new arrived information in the returns.  The users who apply this 

process will generate a dynamic multi-day VaR series which compass the latest information 

in the returns (step 1 and 2). These Multi-day VaR series will then be re-adjusted by the 

current information using quantile regression model (4.15).  This is a two-step dynamic 

adjustment process, in which any time evolution of the return in the next coming day will 

affect the Multi-day VaR series estimated from the first round dynamic adjustment, which in 

turn, affect the quantile  regression result in the second round dynamic adjustment.  

4.5 Conclusion 

Modeling the time varying risk evolution has always been the central consideration in the 

financial risk management. Although the existing VaR models have allowed the market risk 

to be appropriately captured at the certain point of time, the dynamic evolution of the return 

distribution over time will possibly make the outcomes from these models unreliable. To 

address this problem, this chapter proposes a two-step dynamic VaR model, which integrates 

the GARCH volatility modeling and quantile  regression technique. Under this process, the 

time varying conditional volatility generated from the GARCH types of volatility model is 

used as the explanatory variable in the time varying conditional quantile  regression.  Both 

dynamic adjustment of the volatility and the quantile  in this model enable the output VaR 
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estimate to more efficient capture the actual risk evolution in the market. Moreover, we show 

how this approach could be used for the multi-period VaR prediction. The conditional 

multiday distribution generated from this model is easy to implement and encompass more 

information than the simple time squared root rule. 
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5. Generating volatility forecasts from ARMAX process 

This chapter proposes an ARMAX model from volatility forecasts. The motivation stems 

from the empirical research by Pearson and Tukey (1965), which states that for a variety of 

probability distributions, there is a remarkably consistency of the ratio between volatility and 

symmetric quantile interval.  Taylor (2005) applied this idea by constructing volatility as a 

function of symmetric quantile interval, in which the symmetric quantile are estimated by 

Engle’s CAViaR model. This research specifies a new quantile regression model which has 

separate forms for the left and the right quantile. Furthermore, instead of using LS regression 

proposed by Taylor, an ARMAX process is proposed in this research which is motivated by 

GARCH types of volatility models.  This process relaxes the assumption in the Taylor’s LS 

regression, in which the unobserved true variance is approximated by the realized return 

square in the parameter estimation process.  In fact under such assumption, the autoregressive 

term of the return square should have some desirable power in explaining the time varying 

volatility.  The ARMAX model proposed in this paper, on the other hand, does not require 

any assumption about the value of the unobserved variance. We therefore proposed it as an 

appropriate model for volatility forecasts.  

5.1 Introduction 

Volatility forecast plays an important role in the financial risk management and asset pricing.  

For instance, volatility is essentially synonymous with risk, which is crucial to the estimation 

of a financial position’s Value at Risk. The famous Black-Scholes- Merton formula shows 

that the price of European types of option is a function of several market variables, among 

which volatility is the central consideration. Furthermore, under the mean-variance 

framework of the modern portfolio theory, volatility is one of the key factors in determining 

the optimal asset allocation. Recently, volatility has becomes a standard financial instrument 

trading in the financial market. For instance, the implied volatility corresponding to the 

S&P500 (known as VIX) has traded on traded on CBOE on March of 2004.  

One property of volatility is that its true value cannot be observed directly from the financial 

market, because the historical data only provide a single path of the random price evolution.  

For example, daily historical prices merely contain a single data for each trading day and 

therefore only reflect a sample of the overnight price changes. With increasing availability of 

high frequency data such as minute or second transaction data, daily variance could be 

approximated by summing up all intraday changes of the realized prices, under the 
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assumption that the price series follows random walk.  However, the accuracy of such 

estimate is still questionable, because the high frequency data contain fairly limited overnight 

information from the closing price on t-1 day to the opening price on t day. As shown by 

Rydberg and Shephard (2003), the ignorance of overnight volatility from high frequency data 

will probably lead to the under-estimation the true volatility. Besides, the high frequency data 

is also subjected to data collection errors.  

Although volatility cannot be directly observed, it has some statistical features that can be 

widely seen in the historical return series.  For instance, financial asset volatility shows 

obvious clustering and autocorrelation effect. Besides, volatility series are often stationary 

and has seldom jumps. Finally, volatility responds differently to the large price increase and 

large price decrease.   

How to accurately characterize these features of the volatility have always been the central 

considerations in the volatility modeling development. Generally speaking, the existing 

models could be divided into three categories, which are market-based model, time series 

model and quantile-based model. Market-based model backs out the implied volatility from 

the market price of the corresponding option contract, under the assumption that the option’s 

price is correctly determined by the Black-Scholes-Merton formula. Time series model 

generates volatility forecasts by fitting the historical return series into some predetermined 

time series models, in which most popular used models are GARCH class of models and 

stochastic volatility models.  Quantile-based approach, on the other hand, estimate volatility 

from sample quantile estimates. This idea stems from the Pearson and Tukey’s research 

which shows that for a variety of probability distributions, there is a remarkably consistency 

of the ratio between volatility and symmetric quantile interval. Volatility is estimated as the 

product of symmetric quantile interval and constant scale parameter.  

This research adopts the idea of generating volatility from symmetric quantile interval. 

However, instead of assuming the volatility as a uni-variable function of symmetric quantile 

interval, we consider a more general ARMAX process, which is transformed from GARCH 

process. The evaluation of the forecasting performance shows that volatility generated from 

this process could fairly dynamically and swiftly captures the time varying market fluctuation.  

The chapter is structured as follows: Section 2 provides a brief illustration of the existing 

volatility models. Section 3 introduces the ARMAX process proposed in this research. 

Section 4 presents the empirical analysis and some comparison between the different 
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volatility models. Sections 5 provide further extensions and implication. Sections 6 make the 

conclusion. 

5.2 Literature review of the volatility models 

The fundamental assumption of the volatility modeling is that the financial asset returns are 

not series correlated (or only low-order series correlated) but not independent. Under this 

assumption, return     follow a stationary ARMA process, which can be expressed as: 

          

                                                        
 
       

 
               

 
                     (5.1)                                  

Where: 

    is the error terms at time    

    is the exogenous variable 

  ,   ,     are parameters to be estimated. 

The choice of the lag terms         largely depends on the sampling frequency of the return 

series. Empirical research from Tsay (2003) shows that the daily returns of the market index 

have fairly low level of series-correlation, while the monthly returns have seldom any 

significant series-correlation. The choice of the exogenous variable     on the other hand, is 

fairly flexible.  For instance, dummy variable could be introduced to represent the weekend 

effect or January effect.  Based on CAPM model,     could be set equal to the overall market 

return as well.   

The error term    represent the disturbance or the innovation of the return at time  .  This 

term cannot be explained by the information up to time     and is exactly the term 

concerned in the volatility modeling.  Denote the conditional volatility    at time   as: 

                           
             

            
      

            
              

    (5.2) 

The volatility modeling is essentially aim to find an appropriate model to characterize the 

variance of the innovation    

5.2.1 Time series volatility model 

The most widely used deterministic function to depict the variance of the innovation    is so 

called Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model, which 
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was first proposed by Bollerslev (1986). Under the standard GARCH framework, the 

conditional variance   
  is expressed as a linear function of the lagged squared innovation 

terms and the lagged conditional variance terms itself.  For instance, the standard GARCH (m, 

j) process can be expressed as: 

                        

                                                  
        

 
       

     
 
       

                                  (5.3) 

This process could appropriately capture the clustering effect in the time varying volatilities.  

As long as the parameters in (5.3) satisfied the certain constraints, the excess kurtosis of the 

innovation    is positive, indicating that the GARCH process will generate a fatter tail 

distribution than standard normal.
29

 

One improvement of the standard GARCH is TGARCH model. This development is based on 

the assumption that the conditional volatility will respond differently to the price increase and 

price decrease. To be specific, Glosten, Jagannathan and Runkle (1993) proposed a 

TGARCH process, which can be expressed as: 

                        

                                                  
                 

 
       

     
 
       

                (5.4) 

where the added parameter      is an indicator variable corresponding to      which can be 

expressed as:  

                                                              
           
           

                                                  (5.5) 

The indicator variable ensures that the model will assign a larger weight equal to     

       
 to the negative      than to the positive      (which is only       

 ).  The boundary 

zero in the indicator function is the threshold and in more general case, this boundary could 

be set equal to values other than this value.   

Another GARCH types of model considering the asymmetric effect of the returns is 

Exponential GARCH (EGARCH), which was developed by Nelson (1991). Instead of 

treating   
  , this model applied to       

  , which relax the constraint of the non-negative 

predict value from the standard GARCH model.  Besides, a function form of    is introduced 

in this model to reflect the asymmetric effect of returns, which can be expressed as: 

                                                                 
29

 See the detaied proof in Tsay (2005) 
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                                                                                                                    (5.6)  

where: 

                                                
                           
               

             
                

                              (5.7) 

where   is the degree of freedom from student  ,   is the Gamma function 

For the selected distribution of    , EGARCH       process can be expressed as: 

         

                                                         
      

                

                                           (5.8)               

where   is the lag operator. 

To satisfy the stationary property, the roots of the Polynomials from both numerator and 

denominator in the right hand side of formula (5.8) should lay outside the unit circle. More 

detailed discussion of EGARCH model can be found in Nelson’ research (1991).  

5.2.2 Stochastic volatility model 

An alternative way to characterize the time varying volatility is to introduce a random process 

for the conditional variance. This model was developed by Harvey, Ruiz and Shephard 

(1994). Similar to EGARCH model, Stochastic Volatility model (SV) applies directly to 

      
   to ensure that the conditional variance prediction is non-negative.   

Consider the following stochastic volatility model: 

         

                                                               
        

                                 (5.9) 

Under the model assumption, both    and    are i.i.d. series 

         
            

   and    ,    are independent of each other  

Although the introduction of the random variable    largely increased the model’s flexibility, 

the parameter estimation procedure also becomes complex, which involves applying Quasi-

likelihood estimation approach through Kalman filter or Markov Chain Monte Carlo 

simulation (MCMC). Empirical research from Jacquier, Polson and Rossi (1994) shows that 
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although the SV types of model improve the model’s fitness to the actual data, it provide no 

significant improvement of the out-sample forecast accuracy than other types of volatility 

models. 

5.2.3 Extracting volatility from symmetric quantile interval 

The idea of estimating volatility from symmetric quantile interval is originally proposed by 

Pearson and Tukey (1965).  They show from their research that for large number of 

probability distributions, there is a remarkably constancy of the ratio between the volatility 

and the symmetric quantile interval.  For instance, they provide the following simple 

approximations of volatility using symmetric quantile interval as: 

                                       
                 

    
 

                   

    
 

                 

    
    

Taylor (2005) utilized the idea by constructing a Least Square regression for the variance 

prediction, which is expressed in following form: 

                                              
                            

 
                          (5.10) 

The symmetric quantile forecast            and          are estimated from the quantile 

regression model (CAViaR) proposed by Engle and Manganelli (2004).  

Volatility prediction could be generated using model (5.10) after corresponding parameters 

been estimated. Taylor shows that compared to GARCH models, this approach requires no 

parametric assumption on the conditional distribution, and therefore it should capture the 

time varying volatility better than GARCH models if the left and the right tails of the 

conditional distribution are driven by different forces over time.  

5.3 Volatility modeling using ARMAX process  

Given that the quantile estimated from the CAViaR models have been commonly used in the 

risk management for assessing the financial asset’s Value at Risk, Taylor’s approach provide 

an innovated idea of how to integrate parametric time-series model and quantitative risk 

measurement into volatility forecast. 

Since the true volatility is unobservable, this idea provides us a new way to improve the 

accuracy of the volatility forecast. That is, if we could improve the accuracy of the symmetric 

quantile estimates, the accuracy of the corresponding volatility forecast should also be 

increased as well.  
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In order to improve the accuracy of the symmetric quantile estimates, we proposed a new 

quantile regression model in this research. To be specific, instead of using Engel’s CAViaR 

as proposed in Taylor’s research, we apply the following quantile regression model: 

                                                                                                      (5.11) 

where: 

      is the implied volatility of the corresponding asset observed in the market at time      

     is an indicator variable related to the actual return      at time    , which is expressed 

as: 

             
           
           

                                        
      

             
           
           

                                          
        (5.12) 

There are two changes of this quantile regression model compared to CAViaR model. Firstly, 

the model replace the auto-regressive term         in CAViaR model by the implied 

volatility      .  Compared to         whose value is estimated from the historical 

simulation,       have forward-looking property since its value is backed out from the 

corresponding option matured in the future. Therefore it should respond relative swift to the 

new arrived information.  

Besides, we introduce an indicator variable      for the symmetric quantile estimates. The 

top equation of (5.12) is used for the left quantile estimate and the bottom one is used for the 

right quantile estimate. This specification separates the asymmetric effect of the returns for 

the left and the right Quantile. Given that the long position and the short position have a 

different risk attitudes, the specification ensure that the left quantile estimate which used to 

quantify the long position’s risk will assign more weight on the price decrease (the negative 

returns), while the right quantile estimate which used to quantify the short position’s risk will 

place more weight on the price increase (the positive return).  

After obtaining the symmetric quantile estimates using model (5.12), a relationship between 

the volatility and the symmetric quantile interval need to be specified.  According to Taylor’s 

research, a Least Square regression is introduced which can be expressed as: 

                                             
                            

 

                          (5.13) 
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However, the above regression is theoretically un-estimable because the true value of     
  on 

the right hand side of the regression is unobservable. For this reason, Taylor use the realized 

return square     
 on the time     as the proxy of     

 . But in this research, we wish to 

relax this assumption. It is intuitively to think that under the Taylor’s assumption that the true 

variance could be approximated by the realized return square, the autoregressive term of the 

returns square should have some desirable power in predicting the variance. This is exactly 

how the GARCH model comes out.  Tsay (2005) shows how to transfer a GARCH process 

into a pure ARMA process of return squares. Recall the standard GARCH (1, 1) model, 

which is expressed as:  

                        

                                                       
           

        
                                            (5.14) 

Let      
    

 , Tsay proved that      is a Martingale difference sequence (MDS) 

Substituting   
    

     and     
      

       , the GARCH process (5.14) is therefore 

transferred into a ARMA process of   
 , which is expressed as: 

                                                
                

                                         (5.15) 

Motivated by this idea, this research modify the over transfer by adding the symmetric 

quantile interval in it. To see this, we replace      
  by symmetric quantile interval 

                       
 

while keeping    
    

     unchanged. The GARCH process 

(5.14) could be transferred into following process.  

                                    
           

                        
 

                     (5.16) 

where       

Regression (5.16) is an auto-regressive time series model with an exogenous variable, which 

is proposed in this research. The parameters of this ARMAX process could be estimated by a 

two-step estimation approach similarly to GARCH model. Firstly, we can re-estimate the 

quantile regression model based on the pre-specified moving window data and provide one 

step-ahead forecast of the symmetric quantile series.  Secondly, we treat the symmetric 

quantile interval                      
 

 as exogenous variable and apply maximum 

likelihood (ML) approach to estimate the parameters in the regression (5.16). The statistical 
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properties of the ML estimators under the MDS errors have not been rigorously studied. 

However, empirical research have found that when the sample size is large and under some 

basic conditions, the ML estimators are normally consistent with a high optimal convergence 

rate. (see, e.g., Guido, 2000; Guoliang and Luqin, 2007) 

Under the normality assumption of    , the likelihood function of the regression (5.16) is 

derived as: 

                       
             

            
                

                                        
 

     
 
     

  
 

   
                

                                      (5.17) 

where: 

  is the parameter vector to be estimated 

    is the information set on time     

              is the joint probability density function of    to    

When the sample size is largely enough,                could be removed from the 

likelihood function (5.17) so that the conditional log-likelihood function becomes to: 

                            
 

 
       

 

 
     

   
 

 

  
 

  
  

 

     

 

  

                                                      
 

 
     

   
 

 

  
 

  
  

 
      

                                              

(5.18) 

where   
  could be calculated recursively by  

                                           
           

                         
 

                  (5.19) 

 

In more general case,    could be assumed following some more flexible distributions such as 

student   or General Error Distribution (GED) and the conditional likelihood function could 

be derived in the similar way.  
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Taking expectation operator to both side of the regression (5.16), the volatility forecast using 

ARMAX model is equal to: 

                                           
            

                     
 

                        (5.20) 

This approach can be assumed as a refinement of the GARCH volatility using quantile 

Regression technique. Because under the GARCH framework, the values of the lagged 

conditional variance term   
  is calculated by recursively using the pre-specified time series 

model after setting the initial variance equal to the current return square
30

.  Under this 

approach, however, the values of the lagged conditional variance term are directly replaced 

by the symmetric quantile interval (5.19) estimated from the pre-specified quantile regression 

model.  The different specifications for the left and the right quantile in our quantile 

regression model (5.11) further ensure that the leverage effect of the returns have been taken 

into account.  Although the ARMAX regression proposed in this research is straightforward, 

it could possibly encompass the volatility features contained in some complex GARCH 

specification due to the exogenous variable                  
 

. Besides, since the 

symmetric quantile intervals are updated by the quantile regression model, the volatility 

forecast from this process should fairly accurate and swiftly capture the time varying risk 

evolution.  

5.4 Data and empirical results 

5.4.1 Estimate the symmetric quantile  

To implement this approach, we use the daily data of FTSE 100 index and its corresponding 

European-type options listed on LIFFE, spanning from 18 Nov 2001to 15 Nov 2010. Based 

on the overall 2572 historical returns and the implied volatility observations, we fix the 

moving data window of four year (1008) to estimate the parameters in the quantile regression 

model (5.11).  More explicitly, we estimate the left and right quantile separately using model 

(5.11), which is: 

                                                   

                                                                                    (5.21) 

 

                                                                 
30

 See  explicate derivation in Hull(2008) 
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These two models have the similar property as the Engle’ Asymmetric Slope CAViaR model 

and since the observations are less than 5000 and number of the parameters to be estimated is 

only four, we estimate the parameters using Simplex Algorithm proposed by Koenker and 

d’Orey (1993).  

To implement the optimization procedure, we generate   vectors of parameters from uniform 

random generator as pivotal vectors and then evaluated the Regression quantile (RQ) function. 

For the   vectors of the parameters which produced lowest RQ, we selected them as the 

initial values and ran the Simplex Algorithm and choose the new optimal parameter vectors 

as the new initial conditions for iteration. Repeating this procedure until the convergence 

criterion is satisfied and we selected the parameter vector as the final optimal one.  The value 

of n and m is set similar to the Engel and Manganelli (2004).  

Table 33 lists the least absolute deviation estimates and relevant statistics for the quantile 

regression model (5.21), based on four year data from 1811/2001 to 18/11/2004. Several 

points are necessary to be mentioned in this table: Firstly, the coefficient of the implied 

volatility is always very significant for all three selected quantile levels, which confirms the 

implied volatility have appealing predicting power in the specified quantile regression. 

Secondly,    is fairly significant when the quantile level is close to the tail area (  =2.5% or 

5%) and becomes insignificant as the quantile level moves towards the central area (  = 10%).  

This implies that the asymmetric effect is more sensitive to the extreme fluctuation than the 

normal fluctuation of returns. Besides, the value of    for the left and the right quantile are 

significant different from each other, indicating the separation of this impact do exists in the 

left and right quantile.   

To generate the symmetric quantile series, we shift the 4 year data window at daily frequency 

and for each set of the window data, we generate one step-ahead symmetric quantile forecast 

based on the estimated quantile regression model (5.21). The whole forecasted symmetric 

quantile series contain 1972 estimates staring from 19/11/2004 to 16/11/2010. In order to find 

the most accurate quantile estimate from our pre-specified model, we generate three 

symmetric quantile series using above procedure at quantile level       ,      and 

       seperately. The accuracy of these three forecast series are checked by two back-

testing approaches, which are failure-rate test and Dynamic quantile test. This could be done 

by comparing the forecasted quantile series with the actual returns over the same period from 

19/11/2004 to 16/11/2010.  
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TABLE 33: ESTIMATION RESULT OF THE QUANTILE REGRESSION MODEL (INPUT DATA: FTSE 100 INDEX PRICE FROM 19/11/2001 TO 
16/11/204)   

                                     

 

                                       

 

quantile Level 

  

Left quantile  (pth quantile ) Right quantile (1 – pth Quantile) 

2.5% 5% 10% 97.5% 95% 90% 

  

(Standard errors) 

P-value 

0.0137 

(0.0028) 

0.0000 

0.0150 

(0.0031) 

0.0000 

0.0163 

(0.0034) 

0.0000 

-0.0025  

(0.0058) 

0.6678 

-0.0016 

(0.0054) 

0.7622 

-0.0017 

(0.0039) 

0.6710 

   

(Standard errors) 

P-value 

-0.1700 

(0.0149) 

0 

-0.1741 

(0.0148) 

0.0000 

-0.1534 

(0.0146) 

    0 

-1.0445 

(0.2690) 

0.0001 

-0.9054 

(0.2314) 

0.0001 

-0.8353 

(0.1795) 

0.0000 

   

(Standard errors) 

P-value 

0.1154 

(0.0967) 

0.2336 

0.2147 

(0.0853) 

0.0124 

0.1917 

(0.1034) 

0.0650 

0.1180 

(0.2126) 

0.5794 

0.2390 

(0.1798) 

0.0850 

-0.2379 

0.1314 

0.0714 

   

(Standard errors) 

P-value 

-0.1954 

(0.1190) 

0.0032 

-0.5277 

(0.1993) 

0.0086 

-0.2760 

(0.2132) 

0.1966 

-1.0053 

(0.2375) 

0.0000 

-0.3906 

(0.2017) 

0.0540 

0.0450  

(0.0582) 

0.1062 

Pseudo    0.3312 0.4082 0.2089   0.1792 0.2635   0.1259 

 

FIGURE 27: THE SYMMETRIC QUANTILE FORECAST FROM 1911/2004 TO 16/11/2010 (QUANTILE LEVEL P = 2.5%)  

  

 

Failure rate test by Kupiec (1995) is aim to check the unconditional violation rate.  Define   

is the number of the violations that the actual return beyond the estimated Quantile, the 

unconditional violation rate should converge to the specified quantile level   if the quantile is 

correctly estimated.  
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On the statistical framework, the failure rate testing is a Bernuilli trial. Any violation     

follows Bernoulli distribution and the total number of the violations is binomially distributed, 

which is expressed as: 

                                                          
 
                                                  (5.22) 

where                                                                                         

As the sample observation   becomes large, the Central Limit Theorem states that:   

                                                         
    

        
                                                          (5.23) 

Based on the density function, the unconditional Log-likelihood ratio of the violations      

can be expressed as: 

                                                               
 

 
  

   

 
 

 
                       (5.24)    

where   is the sample size and   is the number of the violations 

     is asymptotically chi-square distribution with one degree of freedom 

One limitation of this test is that as   becomes smaller (when the quantile level is close to the 

tail area), making decision will become increasingly difficult because very rare violations 

could be obtained.  Therefore the result of the hypothesis test should be more reliable on the 

relatively low level of quantile specification.  

Another test applied to check the accuracy of the quantile estimate is Dynamic quantile test 

proposed by Engel and Manganelli (2004). If the quantile is correctly specified, the violations 

should not only converge to the specified quantile level, but also evenly spread over the 

whole sample period. This non-predictability property of the violations can be tested by 

regressing the violations on several explanatory variables, which can be expressed as: 

                                                          
 
         

                                (5.25) 

Where    is the observed violation at time   and    
 
 is the estimated quantile 

Under the null hypothesis that the violations are dependent on the past observations, DQ 

statistics follows a Chi-squared distribution with k degree of freedom: 

                                                 
                           

        
 
        

      
   

           (5.26) 
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Where: 

        is the k-vector of the explanatory variables  

  is the DQ matrix 

Table 34 lists the results of the two back-testing models. In the DQ test column, we also 

provide the Ljung-Box Q statistics of the violation series        ,where: 

                                                    
        

                     

        
                      

                             (5.27) 

 

The lag of the      in DQ test is set to be four, which is the same as Engel’s specification.    

Turning our attention to Table 34, the result of the unconditional coverage test shows that the 

optimal symmetric quantile estimates from our model appears at 5% quantile level, since both 

the left and the right quantile estimates at this level have very low value of the  

     ratio, indicating the null hypothesis that the quantile is correctly specified cannot be 

rejected. The actual violation ratio for the left and the right quantile estimate, which represent 

the precision of the estimates, are also fairly close to the specified quantile level 5%. On the 

other hand, when quantile level   is set to 2.5%, the left quantile estimate have relatively high 

actual violation ratio compared to the true quantile level.  This results in a relative high value 

of      ratio so that the null can be rejected. Similar problem occurs when setting the 

quantile level   equal to 10%, where the high actual violation ratio from the right quantile 

leads to the rejection of the null.  

The result of conditional coverage test provides further evidence to support our inference that 

5% quantile level provides the optimal estimates from our regression model. At the 5% 

quantile level, both left and right quantile estimates have highest DQ P-value, indicating that 

the violations of these estimated quantile are unpredictable and independent with each other. 

Although the DQ P-value is similarly larger at 2.5% quantile level, we prefer the testing 

result from the 5% quantile level , since there are approximately only half numbers of the 

observed violations at 2.5% quantile level compared to at 5% quantile level. Since a small 

number of the observations will lower the power of both DQ test and Ljung-Box Q test, the 

results should be therefore more reliable on 5% quantile level than on 2.5% quantile level.  

To sum up our back-testing results, both unconditional and conditional coverage test suggest 

that      is the optimal quantile level for the symmetric quantile generation using our 
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regression model (5.21).  We therefore construct the dynamic symmetric quantile intervals 

based on this quantile level, as shown in the Figure 28. (Symmetric quantile intervals are 

plotted in the second axis, which is calculated as the difference between right and left 

quantile) 

TABLE 34: BACK-TESTING RESULT OF THE SYMMETRIC QUANTILE ESTIMATE AT SELECTED THREE QUANTILE LEVEL  

Unconditional coverage test  

Sample 

Observations 

Left quantile Estimates Right quantile Estimates      

quantile Level 
Violation 

Ratio 
quantile Level 

Violation  

Ratio 

Left  

Quantile 

Right 

quantile  

1972 

P = 2.5% 67/3.4% 1-P = 97.5% 63/3.19% 5.87 3.59 

P = 5% 107/5.43% 1-P = 95% 113/5.73% 0.73 2.609 

P = 10% 204/10.34% 1-P = 90% 226/11.46% 0.257 4.485 

Conditional coverage test for left quantile  

Left Quantile Ljung-Box tests- Q statistics P-value DQ statistics 

P-value  quantile Level Violations 5lags 10 lags  20lags 
p = 2.5% 67 0.000 0.000 0.000 0.16 

p = 5% 107 0.005 0.000 0.000 0.86 

p= 10% 204 0.002 0.001 0.004 0.35 

Conditional coverage test for right quantile 

Right Quantile Ljung-Box tests- Q statistics DQ statistics 

P-value quantile Level Violations 5lags 10 lags  20lags 
1-p = 97.5% 63 0.0003 0.0034 0.0050 0.28 

1-p = 95% 113 0.0418 0.0262 0.0272 0.58 

1-p = 90% 226 0.149 0.145 0.2614 0.14 

 

FIGURE 28: THE DYNAMIC SYMMETRIC QUANTILE INTERVALS AT QUANTILE LEVEL P= 5%  
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5.4.2 ARMAX modeling on the dynamic symmetric quantile intervals  

After obtaining the forecasted symmetric quantile estimates at     , we apply the 

ARMAX model (5.16) for the volatility forecasts.  To ensure the predicted variances are 

positive and limited, we set the following constraint to the parameters for this regression: 

                                                                                                                      (5.28) 

These constraints are set referring to the GARCH process. To see this, we write the 

conditional variance term in the GARCH (1, 1) as following form: 

                                                          
      

                                                         (5.29) 

Substituting it into the GARCH (1, 1) model, a general ARMA process for the return square 

can be expressed as: 

                                                
                

                                         (5.30) 

 Compared above process with ARMAX process proposed in our research, which is: 

                                         
           

                        
 

                (5.31) 

The only difference between (5.30) and (5.31) is that the lagged moving average term       

in (5.30) is replaced by the symmetric quantile interval in (5.31).  The unconditional mean of 

  
  in the regression (5.31) is equal to: 

                                                       
   

                          
 

    
                                   (5.32) 

Since                       
 

is non-negative, the value of     
  will always be 

positive as long as the constraint (5.28) is satisfied. 

Table 35 presents the value of the estimated parameters, the corresponding P-value and the 

95% confidence interval from the ARMAX model (5.33). These results are based on the three 

randomly selected sub-sample periods of 1 year length and the whole sample period of 8 year 

length as well. Focusing on the table, the first striking result is that the coefficient of the 

symmetric quantile interval   is always very significant for all four sample periods, which 

confirms the predicting ability of the symmetric quantile interval to the volatility.  Secondly, 

the coefficient of the lagged return square    is fairly significant for the two sub-sample 

periods, which are from 21/10/2002 to 01/07/2003 and from 03/02/2006 to 12/10/2006 (P-

values are close to 0), but not very significant for one sub-sample period and the whole 
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sample period, which are from 21/09/2004 to 30/05/2005 and 21/10/2002 to 10/08/2010 (P-

values are greater than 5% but less than 10%). This indicates that the autoregressive term of 

the return square generally has a good explanatory power to the future volatility but this 

relationship might not be strong and stable for any time periods.  Finally, the coefficient of 

the constant term    is always very insignificant for all sample periods. This proves that there 

is no determinist drift term contained in the time-varying volatility evolution, which is 

consistent with the empirical finding by Bollerslev and Chou (1992).  

TABLE 35: PARAMETER ESTIMATION OF ARMAX MODEL UNDER THREE SELECTED SAMPLE PERIODS  

ARMAX regression:   ttttt pQpQrr   

2

11
2

110
2 )(ˆ)1(ˆ  

Maximum Log Likelihood Value:   

1671.714 

Sub-Sample: 21Oct2002-01Jul2003 

Number of Observations:252 

Parameters Coef. Std.Err. P-value [95% Confidence  Interval] 

0  4.29e-06 0.00011 0.969 [-0.0002   0.0002] 

1  0.304141 0.02562 0.000 [0.2579   0.3583] 

  0.065624 0.02267 0.004 [0.0212   0.1101] 

Maximum Log Likelihood Value:   

1866.188 

Sub-Sample: 21Sep2004 – 30May2005 

Number of Observations:252 

Parameters Coef. Std.Err. P-value [95% Confidence  Interval] 

0  7.51e-06 0.00002 0.758 [-.00004    .000055] 

1  0.09031 0.03343 0.07 [.024779    .155840] 

  0.05274 0.00536 0.000 [.042219    .063265] 

Maximum Log Likelihood Value: 

1820.051 

Sub-Sample: 03Feb2006 – 12Oct2006 

Number of Observations:252 

Parameters Coef. Std.Err. P-value [95% Confidence  Interval] 

0  -.0000159 .0000316 0.614 [-.0000778     .000046] 

1  .2257427 .0347325 0.000 [.1576684    .2938171] 

  .0862907 .0058552 0.000 [.0748147    .0977666] 

Maximum Log Likelihood Value: 

10953.65 

Whole sample: 21Oct2002-10Aug2010 

Number of Observations:1972 

Parameters Coef. Std.Err. P-value [95% Confidence  Interval] 

0  3.69e-06 .0000262    0.888 [-.0000478    .0000551] 

1  .0110164   .0065596 0.093   [-.0018403     .023873] 

  .0656684 .0013903 0.000 [.0629435    .0683933] 

 

To construct the dynamic volatility forecast series, we use one year data in the sample for the 

parameters estimation of the ARMAX model. For each set of the parameters, one step-ahead 

volatility forecast is calculated. Shifting data window at daily frequency and repeating this 

procedure we could obtain overall 1720 out of sample volatility forecasts, spanning from 

22/10/2002 to 11/08/2010, as plotted in the Figure 29.  The red line represents the one step-
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ahead volatility forecast series based on the ARMAX process we specified. The blue line 

plotted on the secondary axis, on the other hand, represents the realized returns on the next 

day.   

FIGURE 29: DAILY VOLATILITY FORECASTS OF FTSE 100 INDEX FROM ARMAX PROCESS, SPANNING FROM 22/10/2002 TO 11/08/2010          

 

 

To evaluate the model performance, we extract the standardized return series by dividing the 

actual returns by the forecasted volatility. If the model has a high goodness of fit, the 

standardized return series   
  

   
  should be fairly close to a white noise process.  

Figure 30 plots the standardized return series against the volatility forecast series. Compared 

to the original return series, the standardized series shows significant homoscedasticity with 

seldom extreme outliers. Although the kernel density of the original return is deviated far 

from normal distribution, the standardized returns’ density largely converge to normal.  The 

ACF and PACF plot in the Figure 32 also indicates that there is no strong auto-correlation 

between any lag of the standardized returns from 1 to 40.  

We apply Ljung-Box Q test to the standardized return series and the results shows that 

)1645.0(039.26)20( Q and )3756.0(209.42)40( Q . The value in the bracket is the 

0 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

0.08 

-1.50E-01 

-1.00E-01 

-5.00E-02 

0.00E+00 

5.00E-02 

1.00E-01 

1.50E-01 

1
 

6
1

 

1
2

1
 

1
8

1
 

2
4

1
 

3
0

1
 

3
6

1
 

4
2

1
 

4
8

1
 

5
4

1
 

6
0

1
 

6
6

1
 

7
2

1
 

7
8

1
 

8
4

1
 

9
0

1
 

9
6

1
 

1
0

2
1

 

1
0

8
1

 

1
1

4
1

 

1
2

0
1

 

1
2

6
1

 

1
3

2
1

 

1
3

8
1

 

1
4

4
1

 

1
5

0
1

 

1
5

6
1

 

1
6

2
1

 

1
6

8
1

 

One step-ahead Volatility Forecast  

Actual Returns Volatility forecast from ARMAX  



147 
 

corresponding P-value of the statistics.  Given the large P-values, we cannot reject the null 

hypothesis that the standard returns are i.i.d. series, which confirms again the adequacy of the 

ARMAX model. 

FIGURE 30: PLOT OF THE STANDARDIZED RETURNS FROM THE ARMAX PROCESS  

 

FIGURE 31: DENSITY COMPARISON OF THE ORIGINAL AND THE STANDARDIZED RETURNS 
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FIGURE 32: ACF AND PACF OF THE STANDARDIZED RETURNS 

  

 

5.4.3 Empirical comparison of the different volatility forecast approaches 

For comparison purpose, the research also produced the dynamic volatility forecast series 

from other two types of commonly used volatility models, which are EWMA volatility and 

TGARCH volatility.  To be specific, the EWMA volatility forecasts are generated by 

following process: 

                                                             
      

         
                                               (5.33) 

The value of the delay factor   is set equal to 0.96 according to the Riskmetric’s specification 

for the daily return series. The initial value of the conditional variance    
  is set equal to the 

unconditional variance of the most recently 252 return observations during 22/10/2002 to 

01/07/03.  

To consider the leverage effect of the returns, we also fit the returns into following TGARCH 

(1, 1) model: 

                 

                                                  
                    

        
                             (5.34) 

where    follows the General Error Distribution with following form: 

     
       

 
   

 
 
 
 

 

     
        

  

                                                                
                

 
  

                            (5.35)                                                                
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where   is the shape parameter to be estimated and   is the Gamma function 

Table 36 lists the value of the estimated parameters and the corresponding (two-sided) P-

value of the TGARCH (1, 1) model for the selected three sub-sample periods and one whole 

sample period.  The result shows that the leverage effect parameter    is always significant at 

5% significant level, confirming the existence of the asymmetric effect. The estimated shape 

parameter   of GEV is around 1.5 with P-value close to zero,  indicating that the error terms 

   are non-normal distributed (Normal if    ). Besides, the ARCH effect parameter   and 

the GARCH effect parameter    are both significant at 5% significant level. This supports the 

adequacy of the TGARCH model.  

TABLE 36: PARAMETER ESTIMATION OF TGARCH (1,1) MODEL OVER THREE SELECTED SAMPLE PERIODS  

Parameter estimates result of TGARCH (1,1)  

Log Likelihood Value:   

-965.4776    

Log Likelihood Value:   

-418.3553   

Distribution: GED Distribution: GED 

Sub-Sample: 21oct2002 - 03mar2004   Sub-Sample: 11jun2004 - 16jul2005 

Parameters Coef. P-value Parameters Coef. P-value 

Mean 

Equation
   -.066604 0.312 

Mean 

Equation
   -.1306745 0.000 

TGARCH  

0  .051836 0.117 

TGARCH 

0  .0183776 0.122 

1  .165896 0.001 
1  .3070205 0.001 

1  -.169836 0.001 
1  -.3161727 0.001 

1  .910801 0.000 
1  .8530332 0.000 

Sharpe 

Parameter 
  1.417468 0.000 

Sharpe 

Parameter 
  1.583539 0.0055 

Log Likelihood Value:   

-407.3428   

Log Likelihood Value:   

-2438.254    

Distribution: GED Distribution: GED 

Sub-Sample: 01feb2006 - 08mar2007     Whole Sample: 21Oct2002-10Aug2010 

Parameters Coef. P-value Parameters Coef. P-value 

Mean 

Equation
   -.0652577 0.051 

Mean 

Equation
   -.0918169 0.000 

TGARCH 

0  .0158231 0.251 

TGARCH 

0  .0053211   0.009 

1  .1083232 0.021 
1  .1547485 0.000 

1  -.1300524 0.024 
1  -.1631105 0.000   

1  .9312901 0.000 
1  .9331886   0.000 

Sharpe 

Parameter 
  1.711206 0.000 

Sharpe 

Parameter 
  1.658753 0.000 

 

We plot the three dynamic volatility forecast series against the actual return realization over 

the whole sample period from 22/10/2002 to 11/08/2010 in Figure 33, in which the red line 

represent the ARMAX volatility proposed in this paper, the green line represents the EWMA 

volatility  and the purple line represents the TGARCH volatility.  Although the three 
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volatility forecast series shown in the figure have the similar trend, the ARMAX volatility 

appears more flutter points than both EWMA and TGARCH volatility.  

FIGURE 33: COMPARISON BETWEEN THREE VOLATILITY FORECAST SERIES. RED LINE: ARMAX VOLATILITY. GREEN LINE: EWMA 
VOLATILITY. PURPLE LINE: TGARCH VOLATILITY             
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Due to the Non-observability of the true volatility, it is statistically difficult to compare the 

forecast performance of different types of volatility models.  One feasible evaluation 

approach in the literature is to compare the out of sample predicted variance with the actual 

squared return disturbance. For instance, if we ignore the conditional mean of the daily 

returns, the correlation coefficient between the predicted variance      
  and the actual return 

square     
  will possibly reflect the power of the model’s predicting ability. However, as 

point out by Tsay (2005), this approach has some limitations. Statistically,     
  is only a 

consistent estimate of     
 . A low correction between     

  and      
  can not necessarily 

imply a bad forecast. Furthermore, simply correlation measure ignores the possible bias in the 

estimator. For this reason, this research implements three approaches to measure the 

performance of the selected volatility model.  

More explicitly, we first report the estimated correlation coefficient and mean absolute error 

between     
 and all three volatility series      

  based on the overall 1719 out of sample 

volatility forecasts from 22/10/2002 to 11/08/2010.  As shown in table 37, the volatility from 

the ARMAX process has the highest correlation coefficient and lowest mean absolute error 

(MAE) with the actual return square among all three volatility forecast series. This result 

implies that the volatility forecast from our proposed ARMAX model could track the actual 

return disturbance more closely than other two models. To be specific, the value of the 

correlation coefficient from the ARMAX volatility is approximately 0.1 higher than that 

either from the EWMA volatility or the TGARCH volatility. The latter two volatilities have 

similar value of the correlation coefficient, even though the value from the TGARCH 

volatility is slightly higher. The values of the mean absolute error are shown in the last 

column of the table. ARMAX volatility has the lowest MAE for all selected sample periods. 

The value is approximately 2% lower than the EWMA volatility and 1 % lower than 

TGARCH volatility.   
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TABLE 37: CORRELATION COEFFICIENT AND MEAN ABSOLUTE ERROR BETWEEN THE ACTUAL RETURNS AND THE ESTIMATED VOLATILITY  

Whole-Sample period: 21Oct2002-10Aug2010 (Observations: 1719)  

Correlation Coefficient 2
1tr  

ARMAX 

Volatility 

EWMA 

Volatility 

TGARCH 

Volatility 
MSE 

2
1tr  1    0 

ARMAX Volatility 0.540579 1   3.461% 

EWMA Volatility 0.424352 0.902346 1  5.134% 

TGARCH Volatility 0.444256 0.917044 0.910323 1 4.257% 

Sub-sample period: 21Oct2002-15Dec2004 (Observations: 568)  

Correlation Coefficient 

Matrix 
2

1tr  
ARMAX 

Volatility 

EWMA 

Volatility 

TGARCH 

Volatility 
 

2
1tr  1    0 

ARMAX Volatility 0.5204 1   3.598% 

EWMA Volatility 0.3893 0.8209 1  5.463% 

TGARCH Volatility 0.4257 0.8663 0.8019 1 4.765% 

Sub-sample period: 10Oct2003-03Oct2005(Observations: 571)  

Correlation Coefficient 

Matrix 
2

1tr  
ARMAX 

Volatility 

EWMA 

Volatility 

TGARCH 

Volatility 
 

2
1tr  1    0 

ARMAX Volatility 0.5155 1   3.326% 

EWMA Volatility 0.3396 0.8807 1  5.346% 

TGARCH Volatility 0.3824 0.8917 0.8585 1 4.569% 

 

It is also interested to see that the value of the correlation coefficients between these three 

volatility series are all fairly high (close to 1), which is shown in the third and the fourth 

column of the table. This indicates that there exists a strong positive relationship among the 

volatility forecast from these three models.   

Poon and Granger (2003) proposed an encompassing test to investigate how to select a better 

volatility forecast series if two volatility forecast series are highly correlated. Under this test, 

a combined volatility forecast is formed as a weighted average of the two forecasts, as shown 

in the following model: 

                                                       
       

           
                                            (5.36) 

where     
  and     

  are volatility forecast from two different volatility  models and    
  is the 

realized variance 

The value of   could be estimated by regressing    
      

  on     
      

 . If the null 

hypothesis of     cannot be rejected,     
  is said to be encompassed by     

  and in such 

case,     
  will be treated as a more preferable volatility forecast than     

 .  

We implement the encompassing test to the three selected volatility forecast series. For each 

volatility series, we run the least squared regression against two other series. The P-value 

corresponding to the null hypothesis of 0w  is shown in the Table 38.  



153 
 

If the corresponding P-value is large enough, the null hypothesis will not be rejected, 

implying that     
  is encompassed by     

  and hence we treat     
  as the more diserable 

volatility forecast.  

Turing our attention Table 38, the first result is that under the all three selected sub-sample 

periods, the ARMAX volatility encompasses both the EWMA and the TGARCH volatility. 

This is indicated by the large P-values when regressing the ARAMX volatility on either the 

EWMA volatility or the TGARCH volatility. The TGARCH volatility, on the other hand, 

could only encompass the EWMA volatility but cannot encompass the ARMAX volatility, 

which was indicated by the large P-value when regression the TGARCH volatility on the 

EWMA volatility but the small P-value when regressing the TGARCH volatility on the 

ARMAX volatility. Finally, the EWMA volatility could neither encompass the ARAMX 

volatility or the TGARCH volatility, which was indicated by the small P-value when 

regression the EWMA volatility on either the ARMAX volatility or the TGARCH volatility.   

It can be also found that when we use the data from the whole sample period, the above 

inference seems no longer hold. Under this case, each P-value becomes small enough which 

indicate that none of these three volatility series could encompass the other two series.  One 

possible explanation of this could be that both    
 ,     

 and     
  becomes non-stationary over 

the long period of time (the possible regime-switch or structure break exist), the OLS 

parameter estimated from regression (5.36) could possibly become spurious and unreliable. 

We therefore prefer to the result of the encompass test on the short time period. 
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TABLE 38: RESULTS OF THE ENCOMPASSING TEST FOR THE THREE VOLATILITY SERIES  

Sub-Sample: 21Oct2002-26Mar2004;  P-value: 0w   (366 observations)  

            
  

    
  

ARMAX Volatility TGARCH Volatility EWMA Volatility 

ARMAX Volatility N/A 0.224 0.340 

TGARCH Volatility 3.43E-10 N/A 0.610 

EWMA Volatility 1.75E-18 5.88E-10 N/A 

Sub-Sample: 02May2008-04Api2009;  P-value: 0w   (360 observations) 

            
  

    
  

ARMAX Volatility TGARCH Volatility EWMA Volatility 

ARMAX Volatility N/A 0.30 0.082 

TGARCH Volatility 6.61E-08 N/A 0.429 

EWMA Volatility 5.93E-11 0.00044 N/A 

Whole-Sample: 21Oct2002-10Aug2010;  P-value: 0w   (1719 observations) 

            
  

    
  

ARMAX Volatility TGARCH Volatility EWMA Volatility 

ARMAX Volatility N/A 0.000159 4.07E-10 

TGARCH Volatility 5.36E-54 N/A 0.057669 

EWMA Volatility 6.9E-80 5.08E-23 N/A 

 

5.5 Some extensions  

5.5.1 ARMAX         process for volatility forecasts 

The ARMAX process proposed in this paper for volatility forecasts is closely related to the 

traditional GARCH process.  In more general case, if we decompose the conditional variance 

as: 

                                                      
      

                                                      (5.37) 

The general GARCH process can be transferred into a general ARMA process of the return 

square, which can be expressed as: 

                                                     
        

 
       

     
 
       

  

                                                                                   

                                         
                 

          
              

 
                 (5.38) 

On the other hand, the research proposes to decompose the conditional variance as: 

                             
    

         
                         

 

                  (5.39) 
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where                      is the symmetric quantile interval estimated  from the returns 

up to time        

Substituting (5.39) into (5.38), we can obtain a general ARMAX         process, which is 

expressed as:                         

                                                      
        

 
       

     
 
       

  

                                                                                   

                             
            

  
                            

 
 
              (5.40) 

Compare ARMAX process (5.40) with ARMA process (5.38) , it can be seen that the major 

difference is that instead of treating the lagged conditional variance terms as endogenous 

variables that modeled by ARMA process of the return square, ARMAX model replace them 

by the exogenous variable symmetric quantile intervals, which is estimated from the pre-

specified quantile regression model.  

The ARMAX         process is actually a special case of the regression (5.40) where   and 

  are set both equal to one, that is: 

                                      
           

                         
 

                 (5.41) 

A more general ARMAX         for volatility forecast could be set if we do the following 

substitution: 

                                                      
      

                   

                                     
                             

 

                        (5.42) 

The ARMAX        is obtained by substituting (5.42) into (5.38), which is expressed as: 

                                                      
        

 
       

     
 
       

  

                                                                                        

   
                 

          
                                

 
 
       

   
 
                                                                                                                                 (5.43)            

The regression (5.43) could be served as the most general form for the volatility forecasts 

proposed in this research.  However, as the regression form becomes more complex, some 
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additional constraints of the parameters need to be set to ensure the unconditional variance 

prediction to be positive. In this case, the ML estimation process will become more difficult 

as well.  

Besides, the research has not rigorously studied how to choose the optimal orders of the 

ARMAX process for the volatility forecast. Since the low order of GARCH models are 

commonly used in practice, we prefer the low order of ARMAX process for the volatility 

forecasts as well.   

In fact, we could easily transfer the low order of GARCH process into the low order of 

ARMAX process, given that the ARMAX model has fairly close relationship with GARCH 

model. For instance,  the popular used type of  GARCH      , GARCH      , GARCH      , 

GARCH       could be transferred into corresponding ARMAX        , ARMAX         , 

ARMAX         and ARMAX        .  

Table 39 and 40 lists the estimation results of the ARMAX        , ARMAX         , 

ARMAX         and ARMAX         models for the randomly selected two sub-sample 

periods and the whole sample period, based on the dataset we used in the section 5.4.  It 

could be seen that for each selected ARMAX model and each selected time-period, the 

parameter   which represents the effect of the symmetric quantile interval, is fairly 

significant at 5% significant level. This confirms the robustness of the symmetric quantile 

interval in the volatility forecast. Similarly, the coefficients of the first lag of the 

autoregressive term    shows high level of significance regardless of the specification of the  

ARMAX model and the selection of the time periods, confirming the existence of the 

clustering effect in time-varying volatility.  It could also be found that the significance of the 

first lag of the autoregressive term    reduced when adding the second lag of the 

autoregressive term    into the ARMAX model.  This is in fact a no surprising result, since 

the two autoregressive terms will share some explanatory power with each other. The 

coefficients of the constant, on the other hand, are always fairly small and insignificant, 

indicating the drift term doesn’t exist in the time-varying daily volatility. 
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TABLE 39: PARAMETER ESTIMATION OF GENERAL ARMAX PROCESS ( TWO SUB-SAMPLE PERIODS) 

Maximum Log Likelihood Value:   

2007.074 

Sub-Sample: 21Oct2002-01Jul2003 

Number of Observations:252 

ARMAX(1,0,1)

  ttttt pQpQrr   

2

11
2

110
2 )(ˆ)1(ˆ  

ARMAX(1,1,1)

  tttttt pQpQrr  1

2

11
2

110
2 )(ˆ)1(ˆ    

Parameters Coef. P-value Parameters Coef. P-value 

0  4.29e-06 0.969  .00007 0.284 

1  0.304141 0.000  .5005646 0.000 

  0.065624 0.004  .0686498 0.000 

 
1  .1134928 0.051 

ARMAX(2,0,1)

  tttttt pQpQrrr   

2

22
2

22
2

110
2 )(ˆ)1(ˆ  

ARMAX(2,1,1)

  ttttttt pQpQrrr  1

2

22
2

21
2

110
2 )(ˆ)1(ˆ    

Parameters Coef. P-value Parameters Coef. P-value 

0  .0000697 0.277 
0  .000081 0.468 

1  .3943046 0.000 
1  .30067 0.000 

2  .0306967 0.431 
2  .03220 0.000 

  .0688694 0.000   .0601913 0.000 

   .9312237 0.000 

Maximum Log Likelihood Value:   

1834.022      

Sub-Sample: 01feb2006 - 28nov2006 

Number of Observations:301 

ARMAX(1,0,1)

  ttttt pQpQrr   

2

11
2

110
2 )(ˆ)1(ˆ  

ARMAX(1,1,1)

  tttttt pQpQrr  1

2

11
2

110
2 )(ˆ)1(ˆ    

Parameters Coef. P-value Parameters Coef. P-value 

 .0000417 0.139  .0000159   0.344 

 .2548255 0.000  .220809 0.066 

 .057021 0.000  .0578665 0.000 

 
1  .2962359 0.022 

ARMAX(2,0,1)

  tttttt pQpQrrr   

2

22
2

22
2

110
2 )(ˆ)1(ˆ  

ARMAX(2,1,1)

  ttttttt pQpQrrr  1

2

22
2

21
2

110
2 )(ˆ)1(ˆ    

Parameters Coef. P-value Parameters Coef. P-value 

 .0001364 0.061 
0  .0002143 0.219 

 .031841 0.064 
1  .0592891 0.070 

2  .0248855 0.226 
2  .0682887 0.367 

  .0564553 0.000   .0305709   0.079 

     .8431991 0.000 

 

 

 

 

 

 

0

1



0 0

1 1

 

0

1
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TABLE 40: PARAMETER ESTIMATION OF GENERAL ARMAX PROCESS (WHOLE-SAMPLE PERIOD) 

Maximum Log Likelihood Value:   

10962.49   

Whole-Sample: 21Oct2002-10Aug2010 

Number of Observations:1970 

ARMAX(1,0,1)

  ttttt pQpQrr   

2

11
2

110
2 )(ˆ)1(ˆ  

ARMAX(1,1,1)

  tttttt pQpQrr  1

2

11
2

110
2 )(ˆ)1(ˆ    

Parameters Coef. P-value Parameters Coef. P-value 

0  .0000464 0.134  .0001634 0.196 

1  .0919385 0.000  .9753181 0.000 

  .0727088 0.000  .062113 0.037 

 
1  .8685472 0.000 

ARMAX(2,0,1)

  tttttt pQpQrrr   

2

22
2

22
2

110
2 )(ˆ)1(ˆ  

ARMAX(2,1,1)

  ttttttt pQpQrrr  1

2

22
2

21
2

110
2 )(ˆ)1(ˆ    

Parameters Coef. P-value Parameters Coef. P-value 

0  .0000681 0.061 
0  .0002318   0.205 

1  .0957865 0.000 
1  .8700192 0.000 

2  .1301452   0.000 
2  .1075984 0.000 

  .0598638 0.000   .0334481 0.000 

   .9312237 0.000 

 

5.5.2 A comparison between ARMAX process and Taylor’s approach   

Applying symmetric quantile interval into volatility forecast has been proposed by Taylor 

(2005).  In his research, a least squared regression is used for volatility prediction, which is 

expressed as: 

                                               
                            

 
                          (5.44) 

Since Taylor use the realized return square     
  as the proxy for the actual variance     

  

above regression could be rewritten as: 

                                                
                            

 
                         (5.45) 

Compare this regression form with the ARMAX process proposed in this paper, which is: 

                                           
         

                     
 

                    (5.46) 

The difference between these two regressions is essentially due to the different way of 

processing the new information on time  . For instance, given the same information set   , 

Taylor’s approach utilize the whole information set to estimate                     , 

while the ARMAX process we proposed separate    into      and the new information 

arrived on time   (denote as         ), in which      is used to estimate                 

and          is represent by   
   

0

1
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In the other ward , in the Taylor’s approach, all information up to time   are assigned with 

same weight in predicting the future volatility, while in our approach, the newest information 

on the time   will be treated  separately with  the rest of information up to time    . This 

separation ensures that the predicted volatility will be more sensitive to the new arrived 

information on time   , which in turn, improves the dynamicity of the volatility forecast.  

As an example, we implement both approaches for a volatility forecast, based on the 

observed returns and estimated values of the symmetric quantile intervals in the section 5.4.2.  

The out of sample forecast series based on the one year moving window of data are plotted in 

the Figure 34.  The red line represents the one step-ahead volatility forecasts from Taylor’s 

regression and the blue line is the one step-ahead volatility forecasts from the ARMAX 

process proposed in this paper. It can be seen that two series have fairly similar pattern and 

trend. However, the volatility forecast series from ARMAX process is more volatile than that 

from Taylor’ regression, especially around the high volatility area.  

FIGURE 34: DAILY VOLATILITY FORECAST FROM THE ARMAX MODEL AND THE LS REGRESSION BY TAYLOR 

 

More specifically, we apply the encompassing test to these two volatility series based on the 

several selected time periods. For each time period, we run the following least square 

regression: 

                                                       
      

       
      

                                              (5.47) 

Where: 
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  is the actual variance on time   .  

    
  and     

  are the volatility forecast from ARMAX model and Taylor’s regression 

respectively.  

If   is insignificant, the true regression form of the above regression will become to: 

                                                                   
      

                                                          (5.48)                                                                          

In this case,     
  will be a more preferable volatility forecast than     

 .  

Table 41 presents the estimated value of   and the corresponding P-value.  Note that the 

research defines the selected time period as the high volatility regime if the unconditional 

daily volatility is above 2%. Similarly, we define the median volatility and low volatility 

regime if            and         respectively. It can be shown from the table that for 

one selected high volatility regime (16/07/2008 to 15J06/2009) and two median volatility 

regimes (21/10/2002 to 0107/2003 and 04/022010 to 10/08/2010),   is insignificant at 10% 

significant level. We therefore could not reject the null that    , which indicate that     
  

which is forecasted from the ARMAX model encompass the     
  which is forecasted from the 

Taylor’s regression.  On the other hand, for three low volatility regimes,  becomes 

significant at 10% significant level. Especially for the time period from 22/11/2004 to 

3106/2005,   is fairly significant at 5% significant level.  We therefore cannot conclude that 

the volatility forecasted from the ARMAX process outperform the volatility forecasted from 

the Taylor’s regression during these periods.   

To sum up, the result of the encompass test between the ARMAX volatility and the Taylor’s 

regression volatility shows that ARMAX volatility should be more preferable when the 

market is in the state of high volatility.  Under the normal market, however, two approaches 

seem to provide the similar forecast.  
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TABLE 41: ENCOMPASSING TEST BETWEEN THE ARMAX VOLATILITY AND THE VOLATILITY FROM TAYLOR’S REGRESSION 

Time periods 
Parameter 

  

Std 

 (P-value) 
ttttRt   )ˆˆ(ˆ 2

2
2
1

2
1

2  
Unconditional 

Volatility 

21Oct2002 to 

01Jul2003 
.3117914 .359(0.387) 

Median volatility Time 

Period 
0.83% 

16Jul2008 to 

15Jun2009 
.0599474 .191(0.754) High volatility Time Period 2.8% 

04Feb2010 to 

10Aug2010 
.5613849 .354(0.115) 

Median volatility Time 

Period 
1.3% 

24Dec2003-

10May2004 
.4279934 .256(0.096) Low volatility Time Period 0.43% 

22Nov2004-31Jun2005 .5501106 .255(0.032) Low volatility Time Period 0.35% 

16Aug2005-

01May2006 
.5146068 .284(0.072) 

Median volatility Time 

Period 
1.32% 

                  
 

5.6 Conclusion   

Volatility modeling plays a important role in the market risk measurement. Motivated by the 

Taylor’s research of forecasting volatility from VaR estimate, we proposed a new type of 

ARMAX process for volatility forecast in this chapter.  More explicitly, instead of using the 

Taylor’s regression for volatility forecast, we adopt the idea from GARCH process, in which 

the conditional variance is modeled by a general ARMA process of the return square.  The 

innovation of the model lies in that it replace the lagged conditional variance terms in 

GARCH model by the exogenous variable, which is the symmetric quantile intervals 

estimated from the pre-specified quantile regression model.  This amendment relaxes the 

assumption about the value of the unobserved true variance in the parameter estimation 

procedure and could therefore generate a more reasonable volatility forecast.  

The major difference between this model and Taylor’s regression is essentially based on the 

different way of processing the new information on time  .  Compared to the Taylor’s 

regression model which use all the information up to time   to estimate the symmetric 

Quantile, this model separate the newest information on the time   and the rest of the 

information up to time    . This separation ensures that the predicted volatility will be 

more sensitive to the new arrived information on time  , which improves the dynamicity of 

the model forecast.  Besides, we proposed a new specified quantile regression model for the 

symmetric quantile interval estimation, which has a separate function forms for the left and 

the right Quantile.  This specification is aim to improve the accuracy of the symmetric 
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quantile estimates, which in turn, improve the accuracy of the corresponding volatility 

forecast. 
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6. Final Remarks 

Risk modeling is a core part of any risk management system. In financial markets, although 

extreme price movements are rare, they can have serious consequences resulting in huge 

economic losses and can even threaten the survival of firms.  Accurate and valid risk 

modeling allows risk managers to detect and understand such risk properly, so they can 

consciously plan and control the potential adverse outcomes resulting from such risk.   

An essential part of the financial risk modeling tool kit is the Value at Risk (VaR) 

methodology. VaR’s dominance stems from the regulatory and economic incentives and also 

from its computational appeal. Deregulation in the early of 1990s led to a growing number of 

commercial banks offering investment banking services, which significantly increased their 

financial risk exposure. As a result many banks developed proprietary internal risk models. 

JP Morgan, on the other hand, advanced a risk measurement methodology (named 

            ) available to the public, in which the central element is the VaR methodology. 

Applying probability theory, VaR summarize the overall financial risk in a single potential 

dollar loss. Compared to other traditional risk measures, VaR possesses both computational-

appealing and forward-looking properties, which allows users to quantify the financial risk in 

an accurate, inexpensive and timely manner.  

Since its initial appearance in middle of the 1990s, the VaR technique has undergone a 

considerable revolution and development during the last 15 years. The use of VaR has also 

spread from simple quantification of financial risk to an active control and management tool. 

In the market amendments of the Basel accord   in 1998 and Basel II accord in 2004, the 

Bank for International Settlements (BIS) endorsed internally developed capital requirements 

for commercial banks directly related to VaR, further solidifying the popularity of this risk 

measurement technique.    

My PhD research focuses on the VaR methodology. Although this risk measurement tool is 

conceptually simple and has been well-accepted as the benchmark of the market risk 

quantification, risk managers do encounter some difficulties in the practical application of 

this measure. An issue of most concern is how to select the optimal VaR model under the 

different market condition and different risk factors. Furthermore, given that the conditional 

distribution of the market risk factors changes over time, how to improve the dynamicity of 

the VaR models is also an important consideration for the further development of the modern 

risk management industry.  
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The existence of these issues provides the motivation for this research. Reviewing the 

structure of the thesis: after a comprehensive and systematic study of existing VaR 

techniques in chapter one, chapter two undertakes a complete empirical analysis of the model 

application based on the historical and simulated data, from which we formulate some 

applicable selection criteria for different market conditions and different asset categories. 

These empirical findings also provide useful information on model improvement and 

contribute to the model innovations which I then propose. More explicitly, I propose two 

newly developed risk models. Chapter four proposes a Two-Step Dynamic Adjusted CAViaR 

model for dynamic VaR generation and chapter five proposes an ARMAX model for 

dynamic volatility forecasting. Both models are derived by integrating volatility modeling 

and the quantile regression technique, which enhance the models predictive ability. These 

two models serve as the key research outcomes from my PhD research.   

This research has some limitations which need to be mentioned: Firstly, the content of the 

research is purely quantitative. The intensively using the numerical data in the risk modeling 

will inevitably leads to data measurement error and bias. For instance, the historical data used 

this research are purely collected from Thomason Reuters DataStream. Instead of actual price 

series, these collected data may be the appraisal data which has already been smoothed by the 

data provider. The use of the appraisal data might results in correlations and standard 

deviation that are biased downwards
31

, which misrepresent the true volatility in the market.  

Furthermore, given that the output risk estimates form the VaR models are solely dependents 

on the input data, the choice of the time span of the input data will be critically important in 

the risk modeling. There is a tradeoff between using a time span of data that is too short or 

too long.  On one hand, a long time span of data is required by the statistical measures for the 

stability and precision of the parameter estimates. On the other hand, longer time spans of 

data will increase the probability of regime changes and non-stationary data, which reduce 

the reliability of the model forecast. In this research, we normally select the moving data 

window as 1 year for model estimation if daily frequency is considered. This setting, however, 

might not be the optimal choice in practice.  A competent risk manager should be able to use 

his experience and knowledge to judge which time span of data is the optimal input data to 

generate the risk expectation. For this perspective, a good risk manger is not only a good 

econometrician but also a good economist.  

                                                                 
31

 Source from: Capital Market Expectation, Level III 2012 (CFA Program Curriculum Volume 2) 
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Finally, the risk modeling techniques covered in this research are derived under traditional 

financial assumptions, where investors are assumed to be rational and make investment 

decision restrictively according to the modern portfolio theory. Under this framework, 

investors exhibit risk aversion and seek to maximize the return at the given level of risk. In 

reality, however, market participant might employ some combination of traditional finance 

and psychological biases when making their investment decisions.  For instance, instead of 

seeking risk minimization and return maximization, a market participant will exhibit loss 

aversion and make utility-maximizing decisions based on all available information.  

Despite these limitations, quantitative risk modeling is indispensible to the modern risk 

management system. Unlike other processes in the system, which tend to be descriptive in 

nature, risk modeling is prescriptive and can provide clear statements about the level of risk 

now and in the future. The model improvements and extensions proposed in this PhD aim to 

support risk mangers and help improve risk modeling.  
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