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ABSTRACT 

               

The logarithmic number system has been proposed as an alternative to floating-point. 

Multiplication, division and square-root operations are accomplished with fixed-

point arithmetic, but addition and subtraction are considerably more challenging. 

Recent work has demonstrated that these operations too can be done with similar 

speed and accuracy to their floating-point equivalents, but the necessary circuitry is 

complex. In particular, it is dominated by the need for large lookup tables for the 

storage of a non-linear function.  

 This thesis describes the architectures required to implement a newly design 

approach for producing fast and area-efficient 32-bit LNS arithmetic unit. The 

designs are structured based on two different algorithms. At first, a new co-

transformation procedure is introduced in the singularity region whilst performing 

subtractions in which the technique capable to generate less total storage than the co-

transformation method in the previous LNS architecture. Secondly, improvement to 

an existing interpolation process is proposed, that also reduce the total tables to an 

extent that allows their easy synthesis in logic. Consequently, the total delays in the 

system can be significantly reduced. 

According to the comparison analysis with previous best LNS design and 

floating-point units, it is shown that the new LNS architecture capable to offer 

significantly better in speed while sustaining its accuracy within floating-point limit. 

In addition, its implementation is more economical than previous best LNS system 

and almost equivalent with existing floating-point arithmetic unit.   
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CHAPTER 1 

1. Introduction 
                

1.1. Motivation for the Research 

 
The need for high-performance digital signal processing (DSP) in the area of image 

processing, computer graphics and robotics is highly demanding. High speed 

architecture allows DSPs to execute many operations with the lowest delay [1]. 

Since performance is a driving factor behind the use of the DSP, advances in 

executing arithmetic functions are the key to advances in the performance of DSP 

processors. Consequently, techniques to improve the computation of arithmetic 

functions have always been an interesting topic of exploration, as expressed in [2]. 

Most of DSP algorithms need to be computed in real-time and require a wide 

dynamic range of numbers. During the early stages of DSP, the fixed-point (FXP) 

number system was employed as the maths unit inside the DSP processor. This 

system performs well for high-speed applications whenever only limited precision is 

required by the application. Nevertheless, this implementation has a major limitation 

because of restricted accuracy, which is the result of finite word-length effects. 

Floating-point (FLP) DSP has therefore become an alternative used to overcome this 

restriction of precision of FXP architectures. Despite having a wide dynamic range, 

there are established international standards for FLP system [3]. One of the most 

efficient basic operations in existing high-speed FLP unit is the multiplication 

process. However, complex operations such as division and square root are often 

executed by software routines, and are possibly much slower. Moreover, arithmetic 

operations in FLP require a variable length of time due to the need for exponent 

alignment. As a result of this, DSP researchers have recently proposed a 

microprocessor based on the logarithmic number system (LNS) [4-7][94], which 

would guarantee superior performance in many arithmetic functions such as 

multiplication, division and square root.   
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 LNS provides major advantages over FLP in terms of speed and accuracy in 

computing multiplication and division operations. This is because of the similarity of 

the architectures to perform these functions to FXP addition and subtraction. 

However, this inherent advantage was offset by the difficulty of implementing LNS 

addition and subtraction. Furthermore, it is also slow. Several authors have proposed 

techniques to improve this trade-off, and as a result the LNS is now able to operate 

with similar speed and accuracy to its FLP equivalent [6-11], despite its larger area. 

Due to these considerable achievements, research into LNS systems has been active 

ever since. Thus, it is of interest further to improve the LNS system relative to a FLP 

arithmetic unit.    

 

1.2. An Overview of the LNS 

 

Over the past four decades the LNS system has been a topic of continuing interest 

within the computer arithmetic area. As mentioned in previous section, 

multiplication and division operations become FXP addition and subtraction 

respectively. Unlike FLP counterparts, these operations are trivial and fast. 

Nevertheless, implementing addition and subtraction operations can be the main 

bottleneck, the evaluation of the non-linear functions (1.1) and (1.2). For i = log2 x,   

j = log2 y, r = j – i, and assuming j ≤ i: 

 

log2 (2i + 2j) = i + log2 (1 + 2r)                                      (1.1) 

log2 (2i – 2j) = i + log2 (1 – 2r)                                      (1.2) 

 

The functions log2 (1 ± 2r), generically referred to as F(r), are illustrated in 

Figure 1-1. In the earliest LNS design which is up to about 20-bit, the addition and 

subtraction function values can be stored directly in the lookup table. Beyond this, 

memory requirements become prohibitive, and instead the function is stored at 

intervals with intervening values obtained by interpolation. Typically, in 

constructing the LNS system, the objective has always been to keep within an FLP-
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equivalent error of 0.5 LSB, but this has not always been achieved. The problem is 

compounded by the singularity in the subtraction function, where the rapidly 

changing derivative as r approaches zero requires the use of successively smaller 

interpolation intervals that need a significant increase in storage, often to the point 

of impracticality. As well as that, applying the interpolation alone may also 

increase the delay of the LNS system. 

 

 

 

 

 

 

 

 

Figure 1-1 : LNS addition and subtraction functions. 

 

However, as presented in 2000, an alternative approach was taken in a 

different interpolation technique. Dealing with 32-bit words and maintaining FLP-

equivalent accuracy, it offered a much shorter delay path than using conventional 

interpolation architecture. In this approach, an interpolation was not used near the 

singularity. Instead, a co-transformation was used in the case of any subtraction with 

r close to zero (> -0.5), which it converted to an equivalent subtraction with r well 

away from zero. This 32-bit LNS system was based on the combination of the 

interpolation and the co-transformation procedure, and offered marginally better 

performance, in terms of both speed and accuracy, than a leading commercial FLP 

unit at that time. Nonetheless, two 2048 words of lookup tables were involved in the 

arrangement of the co-transformation architecture. Meanwhile, the interpolator itself 

then required 1024 words for one of its lookup tables. In practice, utilising these 

large lookup tables in the system could eventually introduce significant 

complications in floor planning. Hence, elimination of these components would not 

only yield a more compact architecture, but undoubtedly also a faster design. 
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Inspired by the above, therefore, the major objectives of this thesis can be 

summarised as follows: 

 

• present a new development in the algorithm of the co-transformation 

procedure which can offer substantial improvement in area. 

• enhance the interpolation architecture by exploring various existing 

techniques as to reduce the total storage and the delay of the system. 

• demonstrate that the new LNS system will achieve much greater benefits in 

cost, speed and accuracy in comparison with FLP arithmetic units.  

 

1.3. Contribution of the Thesis 

 

The following points summarise the main contributions of the thesis.  

 

• A novel approximation method, known as a second-order co-

transformation procedure, is introduced in the crucial singularity region for 

performing the LNS subtraction function. Apart from the capability to 

sustain the same accuracy as FLP, implementing this new approach in 

conjunction with the existing interpolator reduces the total tables to 73% of 

the former LNS design. However, the proposed technique suffers from an 

increase in delay because it requires the interpolator to be used twice. 

 

• An improvement in the interpolator design by reworking Chester’s 

experiments [84] is proposed when computing the LNS addition and direct 

(i.e. non- co-transformed) subtraction. When merged with the second-order 

co-transformation, it yields a further reduction in total tables to 51% of 

previous LNS design. Through this new arrangement, the tables can now 

be readily synthesised in logic as a result of being smaller in size, for not 

more than 512 words. Consequently, this can contribute to a reduction in 

delay to 60% of the original LNS design when computing addition and 
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direct subtraction. For subtractions with co-transformation, delay only 

increases by 12% compared to the previous work. 

 

• An analysis is conducted between the new LNS design and equivalent FLP 

arithmetic units built using similar process technology. In terms of delay, 

the new LNS can be performed in 63% of the FLP time for executing 

addition and direct subtraction. Co-transformed subtractions require 131% 

of the FLP time but this is unlikely to be of great significance because it 

occurs in only a few percent of the total additive operations. Multiplication 

completes with 10% and division 3% of the FLP delays. In terms of total 

area, the new LNS can be built with fractionally less silicon, and worst-

case accuracy is better than that of FLP arithmetic. 

 

• At present, little work has been reported applying LNS design to word-

lengths longer than 32-bit. The design and requirements of long format 

LNS arithmetic unit are therefore examined briefly in this thesis. The co-

transform is developed further for this purpose. 

 

1.4. Structure of the Thesis 

 

The fundamental basis of computer arithmetic architecture and details of the FLP 

and LNS number systems are reviewed in Chapter 2. Previously published LNS 

designs are also discussed and analysed in terms of various aspects such as their 

design procedures, performance and suitability for DSP applications.  

When evaluating and measuring the performance of the LNS system, several 

elements need to be considered, either the metrics required for measurement or the 

design methodology adopted to verify the design. Therefore, Chapter 3 explains the 

metrics involved for performance estimation during the simulation and synthesis 

processes. Besides that, the design flows of the simulation and synthesis procedures 

are also elaborated in detail.  
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In Chapter 4, the recent 32-bit arithmetic implementations are reviewed 

intensively. This includes exploring the leading published design of the LNS system 

before reconstructing the architecture using similar approaches as described in its 

original work. In addition, several FLP devices are also examined. These devices are 

independently designed and have been published. The performance of these 

arithmetic units is reported in this chapter, and later it will then be used for 

comparison with the new LNS system. 

Chapter 5 presents a new development of the co-transformation architecture 

for executing LNS subtraction function, exploiting the previously published co-

transformation concept and significantly elaborating on its architecture. The 

simulation and synthesis results of the proposed design are also reported in 

evaluating its efficiency in the light of previous work.  

The different existing function approximation schemes are described in 

Chapter 6. An improved technique for the interpolator module is introduced. 

Accuracy and total area analyses are carried out and documented on the basis of 

worst-case error and total size of lookup tables respectively. It is shown that the 

improved version is able to provide a great reduction in total tables whilst sustaining 

accuracy within FLP limits.  

The implementation of the suggested LNS arithmetic unit is explained in 

Chapter 7. The synthesis process is performed to determine the performance of the 

new LNS architecture in terms of speed and total silicon area, before a comparative 

study against FLP units and previous LNS design is discussed. 

There is a lack of work on long word-length LNS, and a short survey of a 

possible long format system is therefore outlined in Chapter 8. This includes a 

proposal for another new co-transformation approach applicable to a long word-

length system. Its implementation in logic gates and performance analysis against 

the standard 32-bit LNS number system are also described. 

Finally, the main results of the thesis are summarised and conclusions are 

drawn in Chapter 9. Moreover, several possibilities for future work extending the 

present research are also offered.  
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CHAPTER 2 

2. Background and Previous Work 

 

2.1. Introduction 

 

In this chapter, the current body of knowledge relevant to the present research is 

extensively reviewed. The fundamental basis of the computer arithmetic unit is 

briefly described. An overview is given of FLP and LNS numbers formats, and 

computing arithmetic units based on these number systems are elaborated in detail. 

Previously published techniques used to execute the LNS addition and subtraction 

are discussed and compared in various respects, since these operations are the main 

bottlenecks in LNS system.  

Speed, accuracy and area are the three crucial variables in the efficiency of 

LNS arithmetic unit. Thereby, the performance of existing LNS systems is evaluated 

so that the results could be used as a benchmark for the novel architecture introduced 

in this thesis. Finally, the LNS systems adopted in numerous DSP applications are 

concisely described.  

 

2.2. Computer Arithmetic Unit 

 

Conventionally, most computer architectures include three basic hardware 

subsystems, namely the central processing unit (CPU), main-memory system and 

input/output (I/O) system [12-14]. A CPU carries out instructions sequentially by 

performing two distinct procedures known as the fetch and execute cycles, where at 

least one operation is conducted at a time. The main-memory system plays the vital 

role of holding the programs that control the computer’s operations. The I/O system 

represents the various devices that can exchange information with the outside world. 
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As presented in Figure 2-1, the computer arithmetic unit is a component of a 

CPU system. It is commonly combined with logic functions, hence constituting an 

arithmetic logic unit. This arithmetic unit deals with the arithmetic functions needed 

to support various computer instructions, and thus it is a very important part of 

digital computer organisation. Agrawal and Rao [15] describe the computer 

arithmetic unit as always having been considered the heart of a digital computer 

system. Among the arithmetic operations that can be computed are addition, 

subtraction, multiplication, division, square root, exponentiation, logarithmic 

functions, complementation (negation), incrementation or decrementation, equality 

and magnitude comparison and shift operations. These numeric functions, and 

especially adders and multipliers, are also implemented in diverse ways in the data 

paths of digital signal processors which then form dedicated integer units and 

multiply-accumulate (MAC) structures. Moreover, adders, incrementers or 

decrementers, and comparators are often used for address and flag generation 

purposes in controllers.  

Because the applications of arithmetic operations are manifold, much effort 

has been devoted to designing hardware algorithms and circuits to enhance the speed 

of these numeric operations [7, 16-18]. More recently, since the inception of 

portable electronic devices which require small and lightweight units, the demand 

for not only reduction in power consumption, but also the total area of the systems 

has increased dramatically. Therefore, the development of algorithms that can 

reduce delays and total area in arithmetic operations is a matter of great concern in 

today’s arithmetic architecture [19-21]. 

The four basic numeric operations (addition, subtraction, multiplication and 

division) of the computer arithmetic unit are critically investigated in this thesis. 

New algorithms based on LNS which aims specifically at addition and subtraction 

functions are introduced which can significantly improve the overall performance of 

an arithmetic system.  
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Figure 2-1: Main components of typical computer architectures. 
 

2.3. Number Systems Representation 

 

Integers and real numbers, also expressed as fractions, are the most common number 

system representations used in digital computers [14]. Traditionally, integers have 

been represented using FXP number systems that offer limited range and precision. 

When dealing with money and inventories in business and commercial activities, the 

use of integer numbers is adequate in estimating the results of calculations given the 

fact that usually only two places to the right of the decimal point will be occupied. 

Furthermore, in control problems which deal with measurements in degrees, minutes 

and seconds, the ranges involved can also fit into the FXP system [22]. Conversely, 

difficulties arise in scientific applications such as those needed by astronomers, 
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engineers and physicists. The formulae used to represent length and mass, for 

instance, repeatedly consider differences between very large or very small numbers, 

and thus the FXP system fails [23]. In such situations real numbers have to be 

adopted to compute the functions.  

Over the years, many computer manufacturers have implemented FLP system 

to represent real numbers [14, 24, 25]. An FLP system is capable of offering a wide 

dynamic range which can accommodate extremely large numbers and high precision 

for very small numbers.  Nevertheless, over the last four decades, researchers have 

explored the use of LNS as an alternative to signify real numbers in computer 

systems [4, 6, 7, 26]. Despite the lack of standard formats, the accurate and 

inexpensive implementation of multiplication and division operations in LNS which 

only use FXP addition and subtraction, makes it more attractive compared to FLP 

[27].  In addition to higher speed, LNS has also been the subject of close attention 

for numerous applications as a result of its inherently better worst-case relative error 

compared to FLP [28].  

In this thesis, LNS numbers are the main subject of the research, and the FLP 

format is also used for comparison purposes. Therefore, the basic fundamental 

features of both formats are described briefly below.  

 

2.3.1. Floating Point 

 

The IEEE 754 [3] is a standard used to represent FLP numbers and has been divided 

into single-precision format with 32-bit width, and double-precision format with 64-

bit width. In this thesis, only single-precision format is considered. The three basic 

components of FLP numbers are the sign, exponent and mantissa as shown in Figure 

2.2.  

 

Sign 
(1-bit) 

Exponent 
(8-bit) 

Mantissa 
(23-bit) 

 
Figure 2-2: Basic components of single-precision format. 
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The number denoted by the single-precision format is [29]: 

 

value  = (-1)s2e x 1.f  (normalized) when E > 0 else                                                  (2.1) 

           = (-1)s2-126 x 0.f  (denormalized)                                                                     (2.2) 

 

where 

         f  = fraction bits  

         s  = sign bit (0 for positive, 1 for negative) 

E = exponent fields (contains 127 plus the true exponent for single- 

precision) 

         e  = unbiased exponent (e = E – 127 (bias)) 

 

The range of positive FLP numbers which can be split into normalized 

numbers (which preserve the full precision of the mantissa), and denormalized 

numbers (which occur when the exponent is all zeros, but the fraction is non-zero) 

are between ±2-126 to (2-2-23) · 2127 and ±2-149 to (1-2-23) · 2-126 respectively. Table 2-1 

summarises the values than can be defined in the FLP system. 

 
Table 2-1: Values represented in the 32-bit FLP format. 

 

s e f Value 

0 

0 
0 +0 

Any non-zero Positive Denormal, 0.f · 2-126 

1 … 254 Any Positive Normal, 1.f · 2e 

255 0 +∞ 

1 

0 
0 -0 

Any non-zero Negative Denormal, -0.f · 2-126 

1 … 254 Any Negative Normal, -1.f · 2e 

255 0 -∞ 

Any 255 
00’01 .. 01’11 SNaN 

10’00 .. 11’11 QNaN 
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2.3.2. Logarithmic Number System 
 

In contrast with FLP numbers, LNS includes neither an integer exponent nor 

separate linear mantissa. It is much simpler because it uses a single scaled exponent 

and can be represented by [30]: 

 

                                                  X = (-1)s x 2m.f                                                                                   (2.3) 

 

where s, m and f indicate sign, integer and fractional bits respectively. Although 

there is no commonly accepted standard for the LNS format, the most widely used 

format is shown in Figure 2-3.  

 

Sign 
(1-bit) 

Fixed-Point Logarithmic Value 
Integer 
(m-bit) 

Fractional 
(f-bit) 

 
Figure 2-3: LNS format [7]. 

 

Typically, base-2 logarithms are used in LNS computations though in principle 

any base can be used. When the real numbers represented are signed, LNS has a 

maximum and minimum range between 2-128 to ≈ 2+128, ≈ 2.9E – 39 to 3.4E + 38. A 

special arrangement of bits is used to indicate the real number zero.  

 

2.4. Floating-Point Algorithms 

 

The basic algorithms for arithmetic operations using FLP numbers are conceptually 

simple. Nevertheless, careful attention must be paid during hardware 

implementations in order to ensure correctness and to prevent excessive loss of 

precision [31].  

Addition and subtraction are a lot more complex than the other FLP operations. 

In the following description, elementary binary FLP addition is explained, since 
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subtraction can be converted to addition merely by flipping the sign of the 

subtrahend. In theory, addition is defined as: 

 

         2  m  )2  m(  )2  m( e1e2
2

e1
1 ×±=×±+×±                                        (2.4) 

 

where m, m1 and m2 are the mantissas and e, e1 and e2 are the exponents. Assuming 

e1 ≥ e2, the exponents of the addends have to be made equal by right-shifting 

(divided by a power of two) the mantissa of the smaller number, m2, by as many bits 

as its exponent, e2, is increased. Then the shifted mantissa, m2, will be added to the 

other mantissa, m1. After addition, the resulting mantissa is normalized back to the 

mantissa interval by multiplying it with the corresponding exponent, e1, as presented 

in (2.5) [32].  

 

 

 
 

 

(2.5) 

 

In contrast, binary FLP multiplication is a relatively straightforward procedure 

whereby the mantissas, m1 and m2, are first multiplied together [23]. Then, the 

exponents, e1and e2, are added. After multiplication has been computed, the product 

obviously has twice as many digits as the original operands. Hence, post-

normalization procedure is needed to adjust the mantissa and the exponent of the 

result. Generally, the normalization process is executed by left-shifting the mantissa 

until it reaches the first bit 1. Simultaneously, for each bit left-shifted, the exponent 

must be reduced by 1. Therefore, the binary FLP multiplication is described as: 

 

 

 

 

 

 2  m                                            

 2  
2
m

  m 

2  
2

m
  )2  m(  )2  m(  )2  m(

e1

e1
e2-e1

2
1

1e
e2-e1
2e1

1
e2

2
e1

1

                                               

×±=

×±±=

×
±

+×±=×±+×±





















 14

 

 

(2.6) 

 

The operation of FLP division is like that of multiplication, conducted by 

dividing the mantissas and subtracting the exponents and therefore presented as: 

 

 

(2.7) 

 

In the case of division, the mantissas are first left-shifted according to their number 

of leading zeros. After being divided and subtracted for both mantissas and 

exponents, post-normalization is performed as in multiplication to produce the final 

result. Conceptually, division operations always consume a large proportion of area 

in any FLP system, therefore making it an inherently slow operation which should 

be used sparingly. Due to the fact that FLP division is an infrequent operation even 

in intensive FLP applications, many current architectures ignore its implementation 

[33, 34].  

 

2.5. Logarithmic Number System Algorithms 

 

Typically, computer arithmetic unit conducts four major operations, namely addition, 

subtraction, multiplication and division. In LNS arithmetic, multiplication and 

division are trivial operations due to the fact that they have equivalent architectures 

to either FXP addition or subtraction as illustrated in (2.8) and (2.9). Moreover, 

these operations are more accurate and there is no quantization error, thus returning 

an exact result [35], where as FLP often yields a half-bit rounding error [36].  

Generally in the LNS system, two real numbers, x and y, are used and can be 

represented by the FXP values i = log2 |x| and j = log2 |y|. In addition, an additional 
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bit is used to show the signs of x and y, Sx and Sy. Thus, multiplication and division 

are computed as: 

 

Multiply: L1 = x · y     →    log2 |L1| =  log2 |x · y| = log2 |x| + log2 |y| = i + j            (2.8) 

       where: SL1 = Sx ⊕  Sy 

 

 

Divide:    L2 = x ÷ y    →    log2 |L2| =  log2 |x ÷ y| = log2 |x| - log2 |y| = i - j            (2.9) 

       where: SL2 = Sx ⊕  Sy 

 

In contrast, LNS addition and subtraction become fairly complex procedures [26]. 

To perform these operations, Leonelli’s algorithm [37] is used. The functions sb(r), 

for the addition algorithm (also known as Gaussian algorithm [38]), and db(r), in the 

subtraction algorithm, are defined as: 

 
 sb(r) = log2 ( 1 + r ) = log2 ( 1 + 2r ),  r < 0                             (2.10) 

db(r) = log2 ( 1 - r )  = log2 ( 1 - 2r ),  r < 0                               (2.11) 

 
Hence, these functions are plotted as in Figure 2-4.  

Assuming that |x| ≥ |y| > 0 and let r = (log2 |y| - log2 |x|) = j – i, therefore 

addition and subtraction can be computed using: 

 

Addition: L3 = x + y    →    log2 |L3|  = log2 | x + y |  

= log2 | x ( 1 + ( y / x ) |   

= log2 |x| + log2 |1 + ( y / x ) |  

      = log2 |x| + log2 |1 + (log2 |y| -   log2 |x|)| 

= i + log2 | 1 + 2j – i | 

= i + log2 | 1 + 2r |            

= i + sb(r)                                                       (2.12) 
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Figure 2-4: Transcendental functions sb(r) and db(r). 

 

Subtraction: L4 = x - y    →    log2 |L4| = log2 | x - y |  

= log2 | x ( 1 - ( y / x ) |   

   = log2 |x| + log2 |1 - ( y / x ) |  

                                                               = log2 |x| + log2 |1 - (log2 |y| - log2 |x|)| 

                                                               = i + log2 | 1 - 2j – i | 

                                                               = i + log2 | 1 - 2r |      

= i + db(r)                                                     (2.13) 
 

It is clear that addition and subtraction operations are the main obstacle in an LNS 

system as a result of involving a lookup table in executing its non-linear function, 

sb(r) and db(r). Potentially, with an increase in the word-length of LNS numbers, it 

can suffer from the requirement of a large lookup table in computing the function.  
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Therefore, over three decades, different ways of improving the addition and 

subtraction functions have been proposed, and these can be classified into seven 

distinct categories as follows. 

 

2.5.1. Direct Lookup Table 

 
The earliest and simplest LNS architecture for addition and subtraction was 

introduced in 1975 [39]. This was a direct implementation of equations (2.12) and 

(2.13) using lookup tables or so called Read Only Memory (ROM) based hardware 

covering all possible values of sb(r) and db(r). The implemented structure based on 

this technique is as described in Figure 2-5.  

In practice, the implementation of LNS add and subtract functions always has 

to limit the variable r to either positive or negative values. It is more usual to opt to 

restrict r to negative values because at a certain point (as shown in Figure 2-4), the 

functions of sb(r) and db(r) have an output of zero or known as the essential zero. 

Consequently, sb(r) and db(r) functions can yield a value that rounds to zero which is 

then easy to handle. As a result, the suggested procedure for addition and subtraction 

using the direct lookup table approach depends on two real numbers, x and y, as 

given below: 

 

If x ≥ y  →  r = j - i:  

Addition :     L = i + log2 | 1 + 2r |                                                              (2.14) 

Subtraction : L = i + log2 | 1 - 2r |                                                              (2.15) 

 

If y > x  →  r = i - j:  

Addition :     L = j + log2 | 1 + 2r |                                                              (2.16) 

Subtraction : L = j + log2 | 1 - 2r |                                                               (2.17) 
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Figure 2-5: LNS adder/subtractor based on direct lookup table. 

 

Using the technique considered here, the ROMs for sb(r) and db(r) must each contain 

2f words of f bits each, and hence the total storage required can be computed as f·2f+1. 

With precision set to only 8-bit, a total of 4096 bits were achieved in [39] to 

compute LNS addition and subtraction. In evaluating the speed of the system, these 

operations were found to be approximately four times slower than conventional FLP 

methods. Although the direct lookup table approach has been successfully tested for 

a fast Fourier transform (FFT) application with the numbers rounded to 18-bit (plus 

sign bit) [40], it still yields an unreasonable size of ROM when it comes to long 

word-length numbers, especially at 32-bit, as a result of the required memory 

growing exponentially when the numbers increase linearly. In 1979, a state-of-the-

art microcomputer, the FOCUS [41], was introduced that utilised the LNS system 

based on the direct lookup table method. It was reported that average execution 

cycles for 16-bit LNS add and subtract operations were 127 µsec and 125 µsec 
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respectively when the FOCUS system was implemented in an Intel 8085 processor. 

In addition, 23,632 bits were needed for storage requirements in this architecture. 

 

2.5.2. Interpolation 

 

The memory space limitations of LNS addition and subtraction using a direct lookup 

table approach makes its use questionable. In order to overcome this problem, 

another technique, interpolation, is often used.  

The direct interpolation technique [42] was first introduced to cater only for 

the addition algorithm, sb, which requires a multiply unit in the hardware system. 

Using this technique, r is split into two parts, rh and rl, hence r = rh + rl. rh 

encompasses the highest bits of the variable, whereas rl represents the lowest bits. In 

the general case, the direct interpolation can be written as: 

 

lhhblhbb rrCrsrrsrs ⋅+≈+= )()()()(                                   (2.18) 

 

where the slope C(rh) can be chosen from various methods such as Lagrange. 

Memory usage can be reduced by increasing the lower bits, rl, but the accuracy of 

the approximation decreases too. Likewise, when the size of rl increases, the same 

will happen with the size of the required multipliers. In effect, the use of an FXP 

multiplier can actually produce much higher costs, in terms of speed and area, which 

along with the greater expense due to its size can make the system even slower and 

larger. Therefore, direct interpolation in LNS is often limited to either first- or 

second-order coefficients.  

Another notable interpolation technique was proposed by Taylor in 1983 [43], 

which is referred to here as linear interpolation. Taylor approximates sb(r) as: 

 

  lhbhbb rrsrsrs ⋅+= )()()( '                                             (2.19) 
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As shown in Figure 2-6, with only addition operation shown for clarity, the linear 

interpolation method still needs a multiplier to compute the function. On top of that, 

two ROMs were introduced. Arnold et al. in 1988 [44] suggested  a refined version 

of the interpolation procedure where they merge the direct interpolation method with 

the linear interpolation scheme. With the modified architecture, only one ROM is 

required and a shifter using powers of two is deployed as an alternative to the 

multiplier. However, once again, this technique is not feasible for the subtraction 

algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-6: LNS adder implemented using linear interpolation. 

 

A suggested interpolation procedure which can offer a wide dynamic range 

with an independently choosable signal-to-noise ratio was proposed by Henkel in 

1989 [45]. The method was based on the Chebyshev approximation with unequally 

spaced partition points. This approach leads to significant memory reductions but 

still holds for the addition algorithm only. Note that there is a difference between the 
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addition and subtraction algorithms in the sb(r) and db(r) functions. While sb(r) is 

well-behaved, db(r) has a singularity when r approaches zero (the function tends to -

∞, as shown in Figure 2-4). This can cause a large memory to be required to 

approximate the db(r) function and it is therefore impractical to rely on the 

interpolation scheme to execute this operation. Furthermore, unacceptable error may 

also be introduced whenever interpolation is used in this particular region unless 

partitioning is applied.  

A separate proposal in 1994 by Lewis [46] involved the use of a high-order 

coefficient in the interpolator function, also known as quadratic interpolation. In this 

technique, a novel scheme using an interleaved memory is introduced which can 

reduce the storage requirements when compared with linear interpolation. With 

design up to 32-bit and the accuracy of addition within FLP limits, the critical speed 

path of the architecture consists of a ROM, two multipliers, three barrel shifters and 

three stages of adders. Later in 2000, Coleman et al. [6] extended the idea of linear 

interpolation using an error correction algorithm for both addition and subtraction 

functions. This interpolation scheme for subtraction was incorporated with the newly 

proposed co-transformation method which will be further elaborated in Section 2.5.5 

below. Using Coleman’s technique, the speed path comprises of a ROM, a multiplier 

and three stages of addition process. 

Aiming to minimise memory requirements and system complexity, therefore, 

Arnold [47] recommended in 2001 a multiple-of-four partitioning technique in 

quadratic interpolation. Nevertheless, even though the proposed address-generation 

circuit was simpler than that of Lewis and Coleman, this was unfortunately at the 

expense of a slight increase in approximation error. Still in 2001, Arnold [48] 

illustrated yet another improved version of Lewis’s method [46], now with the 

advantage that only a single multiplication was required for addition and subtraction 

algorithms. The implementation of this technique is believed to have either similar 

or lower memory use than a previous interpolator [49], with corresponding accuracy 

better than linear interpolation. On the other hand, Fu et al. in [8, 28] described that 

the implementation of the minimax approximation for the interpolation process 

could significantly improve the total tables over Lewis and Coleman methods. 
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However, its worst-case delay was higher than Coleman due to the speed path 

consists of a ROM, two multipliers and three levels of adders.  

       

2.5.3. Table Partitioning 

 

Generally, partitioning is often combined with an interpolation scheme. Instead of 

using a single uniform partition (direct lookup table approach) [39], the technique 

can be realised by segregating the ROM into various sizes of interval mapping with 

the domain function of addition and subtraction algorithms. These intervals are 

distributed in smaller regions with similar widths of partition endpoints, hence 

providing substantial savings in ROM area.  

In 1998, Taylor et al. [4] suggested a 20-bit LNS processor using a table 

partitioning method for both addition and subtraction functions. The range of r was 

divided into a number of smaller intervals with partition endpoints set at integer 

multiple-of-one for all regions less than -1. For regions close to zero, the multiple-

of-half format was employed (i.e -1 < r < -0.5, -0.5 < r < 0), resulting in two smaller 

sizes of ROM. In total, 10 ROMs were used to accommodate sb(r) and db(r) 

functions with total size of about 83.55 kbits, which is 75% less than in the direct 

lookup table implementation. However, the large size of these tables makes the 

practical limit for logarithmic arithmetic about 12-16 bits of fractions. Using Taylor 

approach, it was estimated that LNS add and subtract operations could be completed 

in 92 ns, a similar value to equivalent FLP processors in those days.  

Meanwhile, Stouraitis [50] produced an enhanced version of Taylor’s 

architecture by compressing the table lookup address space and inserting pipelining 

registers in the addition and subtraction data path. Therefore, with suggestion at a 

24-bit LNS processor, the time taken for addition and subtraction could be reduced 

to 40 ns.  Nevertheless, this procedure required a hidden bit to locate the ROM 

address, which would have an impact on the total area of the system when extending 

its precision. 
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One of the most noteworthy partition techniques was presented by Lewis in 

1990 [9] using a partitioning procedure concurrently with linear interpolation. An 

integer multiple-of-two format was adopted at each interval of r less than -1 for 

subtraction, and in all cases of region r for addition. For subtraction in the region       

-1 < r < 0, the powers of two format was proposed. As tabulated in [9], nearly 2660 

kbits were required in total for a 32-bit LNS design, which was impractical for 

implementation in a single chip using the 3 µm CMOS technology that was available 

at that time. The delay in the proposed method was assumed to be within two ROM 

accesses plus two FXP additions, which was slightly slower than the method in [4]. 

Thus, the implementation of this design might be unattractive for applications 

demanding high speed configuration.  

In 1994, Lewis again [46] applied the table partitioning concept with an 

interleaved memory scheme. In the initial design, about 287 kbits of memory space 

were generated when using powers of two partition endpoints at each interval of r 

for addition and subtraction functions. Subsequently, an attempt was made by Lewis 

to minimise the area by rounding each table segment up to a multiple-of-eight, and 

thus only a total of 91 kbits of ROM were needed. Although efficient ROM size can 

be achieved through Lewis’s technique, the introduction of two multipliers in this 

architecture can potentially increase the cost of the system, either in area or speed. 

The other notable approach was suggested by Coleman et al. [6], using a 

partitioning scheme for error correcting interpolation with partition endpoints at 

powers of two for both addition and subtraction as depicted in Figure 2-7. For 

subtraction at the case -0.5 < r < 0, the co-transformation procedure was introduced. 

Using this architecture, 321 kbits of storage were required for a 32-bit LNS system. 

With application only to the addition algorithm, Arnold [47] presented the table 

partitioning method using a multiple-of-four format which then substantially 

diminished the total storage to one-third the size of Lewis [46] and one-sixth the 

memory of Coleman [6]. Regrettably, the implemented architecture exhibits a minor 

reduction in accuracy compared to a FLP system.  

 

 



 24

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-7: Coleman’s LNS implementation. 

 

2.5.4. Bipartite Tables 

 

Another method developed as an alternative to conventional lookup tables and linear 

interpolation is based on bipartite tables [51-54]. Despite requiring a multiplier, this 

technique only uses two lookup tables which are accessed in parallel, together with 

an adder for approximating sb(r) and db(r) functions. As claimed in [51], an LNS 

system that uses bipartite tables will require significantly less memory than one that 

uses conventional lookup tables. Moreover, apart from only involving an addition 

operation at the final stage, the technique often has shorter overall delays since the 

smaller tables have shorter access times too.  
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 Theoretically, to approximate sb(r) and db(r) functions using bipartite tables, 

the input operand r is divided into three parts, which are denoted as r0, r1 and r2, and 

have lengths of n0, n1 and n2 respectively. Based on those three partitions, with the 

example of LNS addition, the function of sb(r) is approximated as: 

 

),(),()()( 201100210 rrarrarrrsrs bb +≈++=                           (2.20) 

 

The coefficient ),( 100 rra  for the first table will receive n0 + n1 word-lengths, 

whereas n0 + n2 will act as inputs to the second table that provides the coefficient 

),( 201 rra . The outputs from the two tables will therefore be added to estimate the 

sb(r) algorithm, as depicted in Figure 2-8. 

 

     
 

Figure 2-8: Bipartite table architecture. 
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Sarma and Matula in 1995 [51]. A technique was proposed where the input operand 
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and low bits respectively. The partitioning concept presented was able to achieve 

substantial compression of lookup tables compared to the conventional direct lookup 

table approach, by factors over 4 with a 9-bit input operand. Further refinement of 

the bipartite table was achieved by Schulte and Stine in 1997 [55], utilizing the 

concept of symmetry in the table entries. Compared to a direct lookup table, this 

symmetric bipartite table was 5.6 times smaller with a 16-bit operand and 99.1 times 

smaller with a 24-bit operand, requiring an estimated total storage of nearly 35 kbits 

and 2031 kbits for 16-bit and 24-bit operands respectively. A separate proposal was 

illustrated by Dinechin and Tisserand in 2001 [56], where a multipartite table 

method was introduced. Instead of using dual tables, the technique employed 

multiple smaller tables to compute sb(r) and db(r) functions. The synthesis results 

based on a parameterized library [57, 58] of LNS addition and subtraction using this 

technique proved that, even though the architecture is capable of achieving higher 

speed when compared with FLP, it was actually very bulky in size, and hence was 

limited in practice only to precisions up to 13-bit. Therefore, neither bipartite nor 

multipartite tables can realistically be considered for long word-length numbers. 

Furthermore, the multipartite method has the same issue with db(r) singularity found 

in interpolation.  

 

2.5.5. Co-transformation 

 

As discussed earlier, most of the techniques presented so far have the problem of 

solving the db(r) function when r is close to zero. They tend to be either higher in 

cost, in terms of memory size, or else lower in accuracy. One technique which can 

overcome this situation uses the co-transformation procedure. The idea behind this 

technique is to convert the argument of db(r) into modified values that are 

guaranteed to avoid the singularity of the function.  

The first noteworthy co-transformation technique was outlined by Coleman in 

1995 [59], applying  the concept in the region -0.5 < r < 0 for the db(r) function. 

When employing this technique, the need for interpolation in the region -0.5 < r < 0 
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can be eliminated, thus substantially reducing the size and complexity of the lookup 

tables required. Note that for the sb(r) function, an interpolation scheme was applied 

through out all regions. In 2000, Coleman et al. [6] presented in details the 

implementation of this co-transformation together with interpolation in a 32-bit 

system. With significant improvements in accuracy over FLP, a total of 321 kbits 

were required in order to execute the LNS addition and subtraction. Recently, 

Coleman et al. [7] conducted an experiment to determine the feasibility of 

integrating the LNS system into a microprocessor based on the proposal in [6]. A 

chip of a 32-bit LNS microprocessor, named the European Logarithmic 

Microprocessor (ELM), was manufactured using 0.18 µm CMOS technology. This 

was compared with the existing FLP DSP device from Texas Instruments, which has 

one of the fastest speeds obtainable in 0.18 µm technology. Besides clearly verifying 

that the results were more accurate, the speed of the ELM was also substantially 

improved over the FLP device, at 24 ns whilst performing addition and direct 

subtraction, and 32 ns for subtraction using co-transformation. 

A different but related co-transformation technique to Coleman's was given by 

Arnold et al. in 1999 [10]. Unlike Coleman’s method, which transformed a value at 

the singularity to a negative argument of db that will fall in the region to the left of     

-0.5, Arnold’s method avoids the singularity by transforming to a positive argument 

of sb which does not have a singularity. Hence whenever r > 0, Arnold’s technique is 

the most appropriate due to the positive value generated for the interpolation after 

being transformed. If r < 0, then Coleman’s technique is the most natural to adopt 

because the transformed argument provided to the interpolation is negative. For that 

reason, Coleman’s method is preferable given that many LNS researchers tended to 

apply a negative value of r, since this reduces the ROM size dramatically when 

approaching essential zero (as shown in Figure 2-4). 
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2.5.6. Hybrid Architecture 

 

A combination of two different data formats, including elements from both LNS and 

FLP systems, has been exploited a new form of processors known as hybrid number 

system processors. These allow the multiply and divide operations to be rapidly 

computed using the LNS format, whilst addition and subtraction are processed 

efficiently in FLP representation. The first hybrid processor design was presented by 

Taylor [60], named the (FU)2, which offered a 12-bit FLP datapath whose overall 

performance was found to demonstrate effectively when compared to that of the 

conventional FLP system.  

With an extension to the 32-bit operands, Lai and Wu [61] proposed a hybrid 

system architecture that executed multiplication, division, square root and square in 

a fast manner using LNS. In contrast, the FLP number system was applied to resolve 

the input, output, addition and subtraction functions. Due to the consuming nature of 

the overhead operations whilst converting FLP-to-LNS and LNS-to-FLP, lookup 

tables and linear interpolation algorithms were inserted, whereupon the routine of 

this processor appeared to compare favourably with a 32-bit FLP DSP device. Since 

the main obstacle in this hybrid processor was the overhead of converting between 

number systems, Stouraitis [62] proposed a hybrid technique using a combination of 

signed-digit (SD) number representation and LNS, called a SD/LNS arithmetic unit. 

The addition/subtraction was now accomplished even faster than in the classical 

LNS processor, because the SD adder/subtractor was largely free from serial carry 

propagation. Figure 2-9 shows the principal concepts of the hybrid number system 

processor.   
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Figure 2-9 : Concept of the hybrid number system processor. 

 

2.5.7. Related Variant Number Systems 

 

Several other techniques have been suggested to minimise the architectural 

complexity in computing addition and subtraction operations. In 1990, Arnold et al.  

[63] proposed a new number system dubbed the dual redundant logarithmic number 

system (DRLNS) which was devised to mitigate the singularity issue in subtraction. 

As opposed to conventional LNS arithmetic, the DRLNS denotes a real number x in 

positive and negative components, Xp and Xn, similarly to a real number y which 

then gives Yp and Yn. 

 

The exact values can then be represented as: 

 

FLP input 

FLP  
ADD/SUB 

FLP to LNS 
conversion 

LNS  
MUL/DIV 

LNS  
SQR/SQRT 

MUX 

LNS to FLP 
conversion 

MUX 

FLP Output 
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x = bX p − bX n

y = bYp − bYn

                                                          (2.26) 

 

where b indicates the base number. The advantage of adopting the DRLNS was that 

addition and subtraction shared the same execution process without involving a 

subtraction logarithm, db(r). Hence, the function can be expressed as: 

 

Rp = Xp + Yp     →    log2 |Rp| = log2 | Xp + Yp |  = ip + log2 | 1 + 2r1 |            

                                                                                           = ip + sb(r1)                      (2.27) 

   

Rn = Xn + Yn     →    log2 |Rn| = log2 | Xn + Yn | = in + log2 | 1 + 2r2 |            

                                                                                           = in + sb(r2)                      (2.28) 

where 

  ip   = log2 |Xp | 

  in   = log2 |Xn | 

  r1  = log2 |Yp | - log2 |Xp | 

  r2  = log2 |Yn | - log2 |Xn | 

 

The subtraction function is completed simply by interchanging the sign of Xp and Yp 

with Xn and Yn accordingly followed by the addition logarithm. However, in spite of 

being a trivial operation, the DRLNS often loses considerable accuracy as a result of 

requiring lookup tables when accomplishing the multiplication function. Moreover, 

the division operation is also difficult to carry out using this procedure [63]. Given 

these weaknesses, the DRLNS actually did not offer considerable advantages 

compared to a contemporary LNS system. 

The semi-logarithmic number system (SLNS), introduced by Muller et al. in 

[64], is another variant of the new class of number systems. Assuming that a number 

x in the FLP and LNS can be represented by:  

 

 
xFLP = (1− z) ⋅ (−1)sx ⋅ mx ⋅ 2ex

xLNS = (1− z) ⋅ (−1)sx ⋅ 2Lx
                                      (2.29) 
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where z corresponds to zero, these two expressions can then be generalised in SLNS 

format by introducing new parameters: 

 

 xSLNS = (1− z) ⋅ (−1)sx ⋅ αmx ⋅ 2βex                                       (2.30) 

 

Conceptually, the SLNS constitutes a compromise between FLP and LNS. In the 

case of α = β = 1, the FLP format was applied to perform the operations, whereas for 

α = mx = 1 and 0 < β ≤ 1, LNS was adopted. The advantages of the SLNS are that 

multiplication and division can be easily completed as in the LNS, and a reduction in 

lookup tables can be obtained to perform addition and subtraction. According to the 

authors, slightly lower accuracy compared to LNS and FLP was deemed to be the 

only drawback, but the scheme was still pragmatically good enough for various DSP 

applications analogous to those using traditional LNS procedure. 

Instead of using binary numbers to represent values in the classical LNS 

system, another approach proposed by Arnold in 2005 [65] was called the Residue 

Logarithmic Number System (RLNS). Here the values used to approximate the LNS 

operations were based on the residue number system. Although multiplication and 

division can be faster than any other operations, like that of conventional LNS, the 

RLNS still experienced the same issue in addition of huge lookup tables being 

required. As well as that, without an evaluation of the performance of the subtraction 

operation, its overall efficiency remains uncertain.  

 

2.6. Performance Analysis  

 

Three crucial elements dominate previous works when proposing new algorithms or 

architectures for an LNS system. Speed is always a key factor when producing any 

high performance LNS system. A high speed system can not only execute many 

operations with the lowest possible delay, but can also minimise the component and 

system related noise which occurs in DSP systems. Researchers have also strived to 



 32

reduce the large areas involved in computing LNS addition and subtraction 

operations resulting from the lookup tables required to store the values for 

approximating the functions. However, an LNS system with high speed and reduced 

area but accuracy outside FLP limits would be worthless. Therefore, the accuracy of 

the results is of the utmost importance.  

Based on the several different LNS techniques to compute addition and 

subtraction operations as discussed in Section 2.5, it can then be summarised as in 

Table 2-2. Obviously, it can be seen that by implementing the co-transformation 

approach with the interpolation process, less total storage can be achieved especially 

when subtractions near singularity region. Moreover, with significant improvements 

in accuracy, the worst-case delay in operating add and direct subtract functions was 

also found to be better than equivalent FLP units. Therefore, it can be concluded that 

this approach may now be the best technique to be used as a benchmark to improve 

further the LNS system. A summary of LNS designs over the years is also given in 

Figure 2-10. 

 

2.7. LNS for Specific Applications 

 

The ubiquity of the FLP unit in many DSP devices since the 1980s and rapid growth 

in the DSP market in every year has prevented much penetration of LNS arithmetic 

into various DSP applications. The lack of a standard format like, for example, the 

IEEE 754 for FLP [3], could be one of the main reasons that LNS systems have only 

appeared in limited classes of industrial applications. Furthermore, few LNS 

architectures have been shown to rival the speed and accuracy of existing FLP 

systems, which has also impeded their realisation as an alternative to FLP units. 

Nevertheless, numerous studies and several implementations of the LNS have 

proved that they work effectively for specific hardware designs.  
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Table 2-2 : Summary of the LNS techniques. 
 

Technique Advantage Disadvantage 

Direct Lookup Table - 

§ Slower than FLP 
§ Not suitable for long 

word-length numbers  

Interpolation 

§ Less total lookup tables 
than direct approach 

§ Less accurate than FLP 
and increase in the 
lookup tables when 
performing subtractions 
near singularity 

Table Partitioning 

§ Less total lookup tables 
than interpolation alone 

§ Less accurate than FLP 
and increase in the 
lookup tables when 
performing subtractions 
near singularity 

Bipartite Tables 

§ Faster than FLP  § Limited to short word-
length numbers 

§ Bulky in size  

Co-transformation with 
Interpolation 

§ Faster than FLP 
§ Accuracy better than 

FLP 
§ Reduce size and 

complexity of lookup 
tables  when 
performing subtractions 
near singularity 

- 

Hybrid Architecture 

§ Execute add and 
subtract operations 
faster than conventional 
LNS  

§ Costly in converting 
between number systems 

DRLNS 

§ Easy to compute 
subtraction function 
using addition 
algorithm 

§ Less accurate than FLP 
when performing 
multiplication and 
division 
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In 1983, Swartzlander et al. [40] suggested a Fast Fourier Transform (FFT) 

which would provide lower quantisation error than those of the FLP and FXP 

number systems. Another proposal examining LNS in filtering systems by Vainio 

and Neuvo in [67] took measurements from a constructed integrated circuit which 

showed that the sampling frequency of the LNS filter was comparable to other high 

performance DSP processors at that time.  

Das et al. [68] identified ways of evaluating the trigonometric operations using 

LNS processors, which supports the arguments for the adaptability of the LNS 

system in a range of applications.  In 2000, the development of the 32-bit LNS 

processor [6] demonstrated superior achievements over the equivalent 32-bit FLP 

system, where increases in speed and accuracy were gained. The simulations were 

then supported with an analytical study of a fabricated chip [7] which yielded similar 

outcomes when validated against a high performance FLP device using the same 

technology. Cost sensitive applications such as in multimedia always need a less 

costly architecture. In line with this, Arnold and Walter [69] produced a more 

compact LNS ALU with only a modest increase in error, whose unrestricted faithful 

rounding criteria is allowable in certain applications. The work in [70] therefore 

confirms the efficiency of this less accurate method when applied to Motion Picture 

Expert Group (MPEG) decoding architecture. Besides that, the implementation of 

the LNS approach for arithmetic operations in GRAPE-6 microprocessor design has 

contributed to a great success in terms of speed [94]. 

Moreover, LNS has also become convenient for calculating general matrix and 

complex arithmetic operations [71]. The robustness of the logarithmic multiply-

accumulate operator can also be seen in digital hearing aid systems [72]. 

Furthermore, spam email now outnumbers legitimate messages by more than two-

thirds, and so hardware architecture like the naïve Bayes inference engine has been 

proposed to monitor email content. Technically, such a system involves complex 

arithmetic operations which, in turn, produce computational noise. Therefore, the  

LNS number format has been proposed [73] as an attractive solution to simplify 

naïve Bayes computations.  
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Ultimately, the advantages of applying LNS arithmetic units for a wide variety 

of DSP applications as explicitly specified in a wealth of literature have been 

marked as a new trend in the evolution of the DSP world.  

 

2.8. Summary 

 

Lying at the heart of digital computer systems, a computer arithmetic unit can use 

either the FXP or FLP data format. Over the past three decades, LNS has also been 

used as a good alternative in computing basic arithmetic functions, especially for a 

large range of numbers. However, to date, its implementation is still restricted by the 

complexity of performing addition and subtraction resulting from the need for large 

lookup tables. Several schemes have been suggested to circumvent the singularity 

issue in the non-linear function of LNS subtraction. From this review of the 

literature, it can be concluded that the most notable method [6, 49] uses a mixture of 

co-transformation and error correcting interpolation, whereby reasonable storage 

requirements along with better speed and accuracy compared to FLP units are 

attained. As of now, it has been shown that LNS systems may be workable in a 

broad range of DSP applications and hence a new revolution in the DSP world is 

now underway. 
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CHAPTER 3 

3. Metrics for Measurement and Design 

Methodology 

 

3.1. Introduction 

 

In this chapter, the metrics required for measurement whilst performing the 

simulation and synthesis processes are discussed. This includes the error analysis 

procedure and two types of performance estimation, relating to timing and area. 

Despite that, functional evaluation is also crucial, and hence for each circuit are 

compared between derived behaviour and desired behaviour as to confirm that the 

system works as expected. 

In addition, the design flows of the simulation and synthesis processes are also 

explained. Typically, once functionally verified through the simulator program, each 

of the arithmetic designs is translated into VHDL code before being constrained 

synthesised in Faraday 0.18 µm CMOS technology based on a 32-bit system.  

 

3.2. Metrics for Measurement 

 

In making a selection of the most advanced LNS arithmetic unit for a particular 

application, several metrics must be considered. This will ensure that the 

performance of the chosen LNS system is justified and can be evaluated through a 

series of measurement processes. The criteria assessed in this thesis are explained 

below. 
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3.2.1. Error Analysis 

 

Error characteristics are often used to justify the accuracy of the results produced in 

any arithmetic system. It is well known that in the LNS unit no errors occur in 

multiplication and division. However, addition and subtraction in LNS frequently 

suffer to sustain the error within the FLP boundary, in which has a worst-case 

relative error of 2-f-1 [28]. In order to measure the accuracy of the LNS system and 

compare it with the FLP system, the mathematical expressions defined in [49] are 

adopted. 

First, let C and F be the exponent and f-bit mantissa of the FLP number system. 

An approximation result, Â, produced by a practical implementation is in error of the 

correct result, A, so that the absolute error can be represented as e = Â – A, with the 

assumption that the input operands are exact values. For a given operation, the 

maximum relative error of the system can be expressed as: 

 

                     emax rel = max
ˆ A − A

2C ⋅ 2− f

 

 
 

 

 
                                                   (3.1) 

 

and similar definitions apply for emin rel and |e|max rel. Since these errors are directly 

related only to the absolute magnitude of the exact value, controlled by C, it is thus 

more realistic to define the error in terms of the exact value itself. Therefore, the 

maximum relative arithmetic error and an average relative arithmetic error can be 

written as: 

 

 emax rel arith =
max( ˆ A - A)

2− f ⋅ A
                                               (3.2) 

 

 eav rel arith =
1

2− f ⋅ n

ˆ A i − Ai

Aii= 1

n

∑                                           (3.3) 

 

and again equally the same for emin rel arith, |e|max rel arith and |e|av rel arith.  
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When considering the error requirement in the LNS system, the expression can 

be quoted relatively identical with the equation (3.1), given that both logarithms 

forming the inputs to an operation are exact. Whilst the exact logarithm can be 

regarded as I, the result generated by the real implementation can therefore signified 

as Î and hence in error by elog = Î – I. Thus, the maximum relative error in the 

logarithm format can be quoted as: 

 

flog rel max 2
I)-Imax(

e
−

=
ˆ

                                                 (3.4) 

 
and correspondingly so for the errors emin rel log, |e|max rel log, eav rel log and |e|av rel log as 

before. For a direct comparison between the error yielded in the FLP number and 

that in the equivalent LNS system, the error returned in the LNS format can be 

exponentiated and thus would provide a similar error to that of the FLP calculation.  

 

  ′ e max rel =
2max( ˆ I -I) - 1

2− f                                                  (3.5) 

 
Since this is similar to emax rel arith, thus emin rel arith, |e|max rel arith, eav rel arith and |e|av rel 

arith are also the same. With all classes of error clearly defined, the theoretical values 

of the errors [49] for each of the 32-bit FLP and LNS numbers are summarised in 

Table 3-1. Although the practical LNS results for addition and subtraction may 

differ in comparison to the theory, at least conceptually, the LNS has an inherent 

better worst-case relative error compared to FLP. 

As can be observed in Figure 2-10, many studies have presented LNS 

addition and subtraction architecture that can achieve Better-Than-Floating-Point 

(BTFP) error behavior [6, 74, 75]. As its name implies, the LNS architecture in 

BTFP mode will guarantee the production of smaller worst-case relative error than 

FLP. Conversely, Arnold and Walter [69] suggested that, by relaxing the rounding 

criteria known as unrestricted faithful rounding, the resulting evaluation is the 

nearest or next nearest machine number representation. Eventually, this will reduce 

the total area of the LNS system and thus produce a more compact LNS ALU unit. 
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Table 3-1 : Best case theoretical errors. 
 

Error Type 
ADD/SUB MUL/DIV 

FLP LNS FLP LNS 

emax rel +0.5  +0.5  

emin rel -0.5  -0.5  

emax rel arith ≈ +0.5 +0.3464 ≈ +0.5 0 

emin rel arith ≈ -0.5 -0.3464 ≈ -0.5 0 

eav rel arith 0 0 0 0 

|e|av rel arith 0.1733 0.1733 0.1733 0 

|e|max rel log  0.5  0 

|e|av rel log  0.25  0 

  
 

However, this mode is more likely to be workable for certain DSP applications such 

as those in multimedia systems in which a reduced error constraint is acceptable. As 

the purpose here is to realise an LNS design that can serve a diverse range of DSP 

applications, in this work the BTFP mode is adopted for the evaluation of the 

addition and subtraction functions.  

In order to do an error analysis for the addition and subtraction functions, it is 

not necessary to evaluate all possible combinations of operands j and i. The analysis 

has to be performed merely over all negative values of j, where i is restricted to zero 

in accordance to Theorem 1 as depicted in [49]: 

 

 “Theorem 1. If the LNS addition and subtraction operations yield 

errors within a given emax rel log over all negative values of j for i = 0, 

then they yield the same emax rel log over all values of j for all values of 

i. An implementation can thus be regarded as fully verified if it can 

be verified over this subset.” 

Coleman et al. 
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3.2.2. Functional Evaluation 

 

In functional evaluation, a design can be certified as successfully verified when the 

simulation results are mathematically identical with the expected outcome. The 

process commonly starts by describing each circuit using either hardware description 

language (HDL) or schematic entry. In this thesis, VHDL (very-high-speed 

integrated circuit hardware description language) was used to construct the system 

as a result of its advantages over schematic based design such as the capability to 

implement the behavioural hardware description and the portability of the code due 

to a standardised language. Then, in simulating the design, a top-level simulation 

environment known as a testbench circuit was created, which consists of 100 

random pattern numbers. The test vectors generated cover all the crucial cases that 

are expected to arise in the system. Using the ModelSim XE III/Starter 6.4b 

simulator, the system was simulated according to the specified test vectors.   

The simulation results were then evaluated against the expected results 

retrieved from the simulation process based on a design in the C programming 

language. If a discrepancy was found, the description in VHDL code was modified 

accordingly before repeating the functional evaluation process. Whenever the 

expected and observed results matched, the system could be considered to be 

functionally correct.    

 

3.2.3. Timing Evaluation 

 

The main purpose of performing timing analysis is to investigate the delay 

characteristics, in terms of maximum or minimum delays, that occur in a design. In 

general, the maximum or so-called worst-case delay in a circuit results from the cell 

and the interconnection delays on the critical path. Conversely, the shortest signal 

propagation delay path in a combinational circuit represents the minimum delay in 

the system. The techniques adopted to evaluate propagation delay vary from manual 
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verification, which is mainly used for a custom design, to applying automated timing 

analysis using specific CAD (computer-aided design) synthesis tools.  

For more rapid and accurate results, an automated approach is selected in this 

study. The Synopsys Design Compiler tool based on a constrained synthesis 

automatically computes the maximum path delay required for the design whenever a 

relevant timing command is written. However, if a reported delay diverges from the 

desired goal, it can be improved by redesigning or optimising the circuit using a 

different topology. Additionally, several timing directive commands in the synthesis 

tool may also be used to reduce the critical path delay in the design. For ease of 

comparison, all timing estimations are given in nanosecond (ns) units.  

 

3.2.4. Area Estimation 

 

One of the design criteria currently receiving increased attention is the size of a 

circuit. A smaller total area can lead to the best implementation due to incurring 

lower costs. An exact estimation of the area is normally calculated after a circuit has 

been placed and routed, taking into consideration all the cells, wiring 

interconnections, and input and output pads. However, due to recent rapid increases 

in circuit complexity and the need to reduce the time-to-market, CAD tools that can 

help to produce an early estimation during the design process are now imperative. 

Therefore, the area information reported in this thesis was estimated from the total 

cell area data generated by the Synopsys Design Compiler tool during a constrained 

synthesis process.  

Total cell area is typically approximately proportional to the number of the 

minimum standard cell size contained in a design, which in this case is the 2 input 

NAND gate. In order to convert the value of total cell area into square micron (µm2) 

units, the height and the width of the 2 input NAND gate need first to be extracted 

from the .lib and .lef files. Then, these values are multiplied by the total cell area 

number before the final result can be derived as shown in equation (3.6): 
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gate NAND of height  gate NAND of  width area cell total  µmin area 2 ××=     (3.6) 

 

Below are the height and the width of the 2 input NAND gate based on Faraday 0.18 

µm CMOS technology. 

 

• Faraday 0.18 µm CMOS technology 

- minimum height of 2 input NAND gate = 5.04 µm 

- minimum width of 2 input NAND gate  = 0.62 µm 

 

Despite neglecting the circuit connectivity in the area estimation, the result still 

yields acceptable accuracy in representing the total area of a design. This argument 

is supported by the area evaluation technique which is most commonly used in the 

literature [16, 76], based on the unit-gate model. In addition, the area estimation 

adopted here has been found to be consistent with the result provided from actual 

routing, as it has been proven in [77].  

 

3.3. Design Methodologies 

 

The selection of an appropriate design flow and CAD tool is important in producing 

an efficient design. Typically, the choice of tools must complement the design flows. 

Therefore, the simulator design for LNS addition and subtraction was first explained 

which mainly written in C language. Then, the basic design flow in constructing the 

LNS arithmetic unit is briefly described along with the CAD tool implemented in 

this thesis. In addition, the procedures used for the synthesis process are also 

explained in detail.  
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3.3.1. Simulator Design Flow 

 

In order to validate the workability of the LNS design illustrated in this thesis, two 

general simulator programs were modelled for addition and subtraction operations. 

The results produced by these simulators can then be verified against the published 

results [6], looking at the error characteristics of both functions. Besides this, the 

simulators were constructed to observe the best combinations of lookup tables for 

the interpolator by ensuring errors within FLP boundaries. Additionally, the 

flexibility of these tools has also made it viable to modify them repeatedly in order 

to verify the efficiency and practicability of implementing various types of 

interpolation procedures.      

The designs of the simulator were written in C language and the compilation 

processes were executed in an Intel Core 2 processor using GNU Compiler 

Collection (GCC), the standard compiler software that supports C programming in 

the Linux operating system. For measuring the approximation error, an accurate 

result produced by the double-precision format of the FLP unit embedded in an Intel 

Core 2 processor was adopted as a benchmark.  

Basically, the developments of the simulator for an addition and subtraction 

will most likely be the same, because the interpolator is used to approximate both 

functions. However, because of the difficulty in performing accurate interpolation in 

the region -0.5 < r < 0 for subtraction, a co-transformation procedure is employed as 

explained precisely in Chapter 5. Thus, the essential elements required in building 

the simulator are briefly indicated below and translated into the flow diagram in 

Figure 3-1: 

 

• Create the support function algorithms, exponent and logarithm, which are two 

functions widely used throughout the simulator. 

• Define the interpolator model which performs LNS addition and subtraction 

for the entire range of r, except for subtraction in the range of r > -0.5. 

• Define a co-transformation scheme to compute the LNS subtraction in the 

region of -0.5 < r < 0 which is only applicable for the subtraction function. 
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• Create a table generation module for virtually developing the lookup tables to 

represent the memories. 

• Compute approximation results of LNS addition and subtraction according to 

which region r falls into. 

• Compute exact results of FLP addition and subtraction which will be used as a 

standard to compare with the approximated results of an LNS system. 

• Calculate the error produced in the LNS design in comparison with that of the 

FLP unit and report the various error characteristics as detailed in Section 3.2.1. 

 

Whilst the table sizes for the co-transformation architecture were constantly 

fixed for the entire process, a number of simulations were performed to determine 

the most appropriate lookup table sizes that need to be implemented for the 

interpolation procedure. The most suitable sizes will only be decided whenever the 

worst-case error falls below an equivalent of 0.5 FLP LSB. The most common 

powers of two partitioning concept was applied during the interpolation process, 

yielding six segments throughout the system before approaching the nearest point to 

an essential zero. Table 3-2 shows the general variables for the interpolator module 

which were modified in each simulation.   

 

Table 3-2 : Simulation variables for the interpolator. 
 

Parameter Description 

F Stored function value at rn 

D Stored function derivative at rn 

E Stored maximum approximation error in (rn+1,rn) 

P Stored proportion of an error for the region that 
yields the largest absolute maximum error 

δ Current value of r - rn 

r Current operand difference, in guarded format 

rn Stored interpolation point 
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Figure 3-1 : Simulator design for the LNS addition and subtraction. 

 

3.3.2. Circuit Design Flow 

 

The flowchart in Figure 3-2 portrays the basic design flow of the LNS ALU system. 

The process is divided into two separate stages, namely functional verification and 

the synthesis process. Using ModelSim XE III/Starter 6.4b simulator as a CAD tool, 

the VHDL description of the LNS design was first written. The coding was then 

simulated in order to determine whether or not the design performs the desired 

functions. Whenever the design did not function as required, the VHDL code was 
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modified accordingly before repeating the simulation process. Once the coding was 

functionally verified as correct, it was then transferred to the synthesis process.  

While executing the synthesis process, the Synopsys Design Compiler tool 

was adopted.  In this phase, the design was transformed into equivalent gates before 

timing evaluation and area estimation were performed. Whenever performance did 

not meet the desired goals, the design could be re-constructed or optimised before 

applying the process again. The design cycle was completed when the system met 

the defined objectives mentioned in Chapter 1. Further elaboration about the 

synthesis flow is given in Section 3.3.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 3-2 : Basic circuit design flow. 
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3.3.3. Synthesis Design Flow 

 

The Synopsys Design Compiler tool was employed to perform the synthesis work in 

this thesis, and the steps applied in carrying out the process are depicted in Figure 

3-3.  The process begins by inserting the design files written in the VHDL language 

in the input files setting. Next, the links, targets and symbols for the libraries were 

specified accordingly. Conceptually, the relevant information about cells or gates 

based on the technology libraries applied was embedded in the link and target 

libraries settings. In this study, only one technology library was adopted in 

synthesising the circuit, Faraday 0.18 µm CMOS technology.  

Then, reading the design written in the VHDL format can be accomplished by 

using two commands, namely analyze and elaborate. Using these commands, the 

pre-synthesis schematic design could now be viewed.  

It is known that in most CMOS technologies, the performance of a system 

especially in terms of speed, may vary according to operating conditions such as 

temperature, voltage and process factors. Since variations in these factors were of no 

concern in this study, predefined sets of operating conditions in the technology 

library were used, as described in Table 3-3.  

 

Table 3-3 : Operating conditions setting. 
 

CMOS Technology Temperature Voltage Process 

Faraday 0.18 µm  25oC 1.8 V 1.00 

 

Another important procedure in controlling the synthesis of the design is the 

design constraint settings. Realistic design constraints will allow the compiler to 

achieve the design goals without violating design rules during the process. Here, 

constraints were added for timing (clock and delay) with the purpose of attempting 

to produce the best possible worst-case delay in the design.    
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Figure 3-3 : Synopsys synthesis design flow [78]. 

 

Once all the requirements were loaded, the design was now ready for the 

synthesis and optimisation processes. So as to obtain the greatest optimisation, the 

compile option was invoked in the design compiler. 

After the synthesis procedure, reports for timing and area were generated in 

order to analyse the characteristics of the optimised design. If the results needed to 

be improved, the design could be updated where possible before repeating the 

synthesis process. Finally, when the synthesis results had reached the specified goals, 

the final design was saved as a gate-level netlist in Verilog HDL format.  
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3.4. Summary 

 

In order to evaluate the efficiency of the LNS arithmetic unit particularly for 

addition and subtraction, a metric such as worst-case error of the system is often 

examined and compared with the FLP equivalents. Besides that, the functional 

evaluation can be used to verify the simulation results against the expected results. 

Another important metric to be considered in this thesis was the timing evaluation. 

Through performing timing analysis, the worst-case delay of the system can be 

investigated. Area estimation was used to examine the total size of the architecture 

in silicon. 

Apart from that, this chapter summarised three different design flows which 

will be applied in building the LNS system. The simulator design flow described the 

steps used to validate the workability of the design before being translated into 

circuit design. Commonly, C language was used to represent the design. On the 

other hand, the circuit design flow briefly explained the process involved in 

constructing the LNS arithmetic unit. There were two separate stages required, 

namely functional verification and the synthesis process. The details of the synthesis 

process were clearly elaborated in the synthesis design flow, where from this 

procedure, the performance of a system can be measured.  
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CHAPTER 4 

4. Recent 32-bit Arithmetic Implementations 

 

4.1. Introduction 

 

In this thesis, the LNS system adopted in the ELM processor is chosen as a 

benchmark for comparison. This is due to the fact that the system is able to provide 

better accuracy and speed than FLP whilst performing addition and subtraction. 

Therefore, Chapter 4 reviews the design in detail before reconstructing the 

architecture using the same HDL model as used in the ELM itself. Particularly for 

the subtraction operation, the design consists of two separate architectures, a co-

transformation and interpolation. However, only the interpolation process is 

described herein while the co-transformation procedure will be elaborated in Chapter 

5. The summary of the design resulting from the simulation and synthesis processes 

are also discussed which are then used for analytical comparison. Apart from that, 

the performance of several FLP devices are also examined where the results can also 

be used for analytical study. 

 

4.2. Leading Published Design: ELM processor 

 
Many of the previously published LNS systems focus mainly on addition operations, 

and many fewer studies report solutions to compute the subtraction function, 

especially in the crucial region of r > -1. One system that promises better accuracy 

and speed than FLP in addition and subtraction is the LNS architecture presented in 

the ELM processor [6, 7]. Here, the co-transformation approach is combined with 

the error correcting interpolation scheme to execute the operations. Hence, it is 

worthwhile to acknowledge this technique as a leading published design, because its 

performance is much more appealing than the other methods. Thereby, the 



 52

arithmetic unit adopted in the ELM system is reviewed to provide a benchmark 

design for comparison.  

In order to calculate the addition and subtraction algorithms within the ELM, 

the r value is separated into various ranges of intervals at different widths of ∆. Due 

to the fact that the curves of the addition and subtraction tend to reach an essential 

zero point with decrease in r, the total storage requirements can be reduced by 

progressively increasing the width of ∆ at each segment. For ease of implementation, 

the range of r is segmented at each powers of two, which then gives six segments. 

Table 4-1 illustrates the segmentation procedure and the corresponding ∆, whilst 

Figure 4-1 graphically depicts the partitioning concept. On the other hand, Figure 

4-2 explains the definitions of intervals, regions and segmenting schemes, which are 

terms used repeatedly in this thesis.  

An interval is a region that covers the width of ∆ in which it is used to 

interpolate a function. When there is a set of one or more intervals, it can be formed 

into a single region. A segment can be understood as a formation of various regions 

and it is commonly partitioned in the range of powers of two.  

 

Table 4-1 : Segments and ∆ in the ELM system. 
 

Segment 
Addition Subtraction 

Region ∆ Region ∆ 

1 -1 < r < 0 1.0 -1 < r < -0.5 0.5 

2 -2 < r < -1 1.0 -2 < r < -1 1.0 

3 -4 < r < -2 2.0 -4 < r < -2 2.0 

4 -8 < r < -4 4.0 -8 < r < -4 4.0 

5 -16 < r < -8 8.0 -16 < r < -8 8.0 

6 -32 < r < -16 16.0 -32 < r < -16 16.0 
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Figure 4-1 : Partitioning concept for addition and subtraction functions. 
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Figure 4-2 : Descriptions of interval, region and segment. 
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4.2.1. ELM Interpolation: Error Correction Algorithm 

 

If LNS addition and direct subtraction have to be built so as to use as little memory 

as possible and must not be too complex, the most desirable function approximation 

technique to be applied is an interpolation scheme. Previous studies have suggested 

various types of interpolation techniques, ranging from direct interpolation, linear 

interpolation and non-linear interpolation approximation. However, the most notable 

scheme uses a high-order coefficient in the interpolator function as presented by 

Coleman et al. [6]. Apart from its capacity to dramatically reduce ROM size, using 

Coleman’s approach can also yield better accuracy than FLP. Conventionally, a 

linear interpolation scheme can be expressed as: 

 

)()()( nn rDrFrf ⋅−= δ                                             (4.1) 

 

where F(rn) represents either the addition or subtraction function in which their 

values are stored in an F table, and its derivative, D(rn), at that particular point is 

stored in a D table. Assuming that the intervening value of r = rn - δ, then δ is the 

difference between a value of r and the nearest more positive point in that specific 

region. However, the function approximation using linear interpolation usually 

yields error, as described in the inset of Figure 4-3, whereby: 

 

)()()(),( δδδε −−⋅−= nnn rFrDrFn                                   (4.2) 

 

and the maximum error at each interval can be written as: 

 

E(n) ≈ F(rn ) − ∆ ⋅ D(rn ) − F(rn − ∆)                                     (4.3) 

 

where ∆ refers to the maximum width in that particular interval, which will usually 

be doubled at each increasing powers of two whenever r is gradually decreased. In 

order to compensate for error ε, a noteworthy solution is to implement the linear 
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Figure 4-3 : Function approximation method for ELM. 

 

interpolation in conjunction with an error correction algorithm as suggested in [6]. 

This exploits another table, known as E, to store a local maximum error value in 

each interpolation interval, as well as a P table which consists of the proportion of an 

error for the region that yields the largest absolute maximum error. Thereby, the 

error ε can be resolved as: 

 

ε(n,δ) ≈ E(n) ⋅ P(c,δ)                                                (4.4) 

 

where c is a constant, because only one P table is required in the system. By 

incorporating this function into equation (4.1), the error in the final result will then 

suppressed, hence a substantial saving in memory space is thereby possible.  

Despite introducing two new tables, E and P, the adoption of this scheme has 

the advantage that these tables can be referred to concurrently with those from F and 

D. Moreover, the multiplication process of the value E·P can be computed at the 

same time as the multiplication in the linear interpolation, δ ⋅ D . In the final 
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accumulation stage, because interpolation already involves an addition, the product 

of the error-correcting term can be accumulated by adding another level of a carry-

save adder as portrayed in Figure 2-7. Overall, the correction procedure can 

therefore be completed with only a few extra gate delays, thus having the least 

impact on the critical speed path of the LNS system. 

 

4.2.1.1.  Taylor Approximation 

 

The fundamental principle of function approximation in the ELM is based upon the 

linear Taylor approximation. In general, the Taylor approximation method can be 

illustrated as a tangent line that passes through a tabulated point, as portrayed in the 

inset of Figure 4-3. Conceptually, the basic formula of Taylor’s theorem is written 

as: 
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In previous LNS designs, the term f (n)(r0)·(n!)-1 is stored as a computed value 

in ROM and n is often limited to 2. This ensures that the computation of the function 

approximation can be executed within less hardware complexity, as a result of each 

order of n in the Taylor polynomial requiring at least one multiplier and one adder to 

perform the function. Therefore, an increase in the order of n will not only involve 

additional hardware multipliers and adders, but at the same time will directly impact 

onto the cost of the hardware translation in silicon. Hence, the work presented in [6] 

restricted the Taylor polynomial to only the first degree, thereby the Taylor series 

can be formulated as: 

 

 )r(f)rr()r(f)r(p nnn ′⋅−+=                                         (4.6) 
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As a result of implementing the error correction algorithm in the approximation 

architecture, ε(n,δ) is therefore also added into equation (4.6). Through this 

arrangement, the published design in [6] is able to achieve a reasonable size of total 

storage, with its accuracy better than FLP. 

         

4.3. Simulation Results 

 

The simulation results for the ELM unit, focusing on the addition and subtraction 

functions, are summarised in Table 4-2. From the analysis, the worst-case error and 

lookup tables arrangement are analogous with the results published in [6]. This 

means that the illustrated simulator design as exhibited in Figure 3-1 has been able 

to yield results comparable with those in the original specification, which can hence 

be acknowledged to be fully verified and tested. The entry marked in bold italics in 

the table is the best composition of the total storage requirement, where the F, D and 

E tables are set to 256 words with the P table at 1024 words. Meanwhile, the greyed 

entries in the table signify the worst-case errors above the FLP limit of 0.5, which 

means that these lookup table configurations need not be considered. The error 

produced according to various sizes of lookup table formation is represented 

graphically in Figures 4-4, 4-5 and 4-6. Figure 4-7 shows the overall storage 

requirements for various combinations of the F, D, E and P tables able to sustain the 

worst-case error within FLP limit. For the purpose of this simulation, the F, D, E 

and P tables have been assumed to comprise of 32-bit words in 6 different segments 

based on the powers of two partitioning procedure. 

 

4.4. Design Summary 

 

In order to successfully achieve the BTFP mode, four guard bits are inserted into the 

ELM system to maintain precision whilst executing addition and subtraction 

operations. Once the computation is finished, the number is rounded back to the 

original 32-bits. As reported in [6], the system is partitioned into six segments at  
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Table 4-2 : The worst-case error of the ELM unit. 
 

Parameters ADD SUB Worst 
Case  

F,D,E 
Sizes P size Guard  

Bits e'min rel e'max rel e'min rel e'max rel erel 

64 512 4 -2.0231 +0.9188 -1.2017 +3.8857 3.8857 

128 512 4 -0.8134 +0.4501 -0.5401 +1.1579 1.1579 

256 512 4 -0.4948 +0.4057 -0.4377 +0.5470 0.5470 

512 512 4 -0.4589 +0.4042 -0.4366 +0.4286 0.4589 

1024 512 4 -0.4287 +0.4081 -0.4355 +0.4265 0.4355 

64 1024 4 -1.1933 +0.9188 -1.2017 +2.0972 2.0972 

128 1024 4 -0.5937 +0.4501 -0.5401 +0.7206 0.7206 

256 1024 4 -0.4526 +0.4066 -0.4377 +0.4551 0.4551 

512 1024 4 -0.4457 +0.4032 -0.4375 +0.4286 0.4457 

1024 1024 4 -0.4258 +0.4081 -0.4360 +0.4265 0.4360 

64 2048 4 -0.7786 +0.9188 -1.2132 +1.1579 1.1579 

128 2048 4 -0.5036 +0.4513 -0.5401 +0.5029 0.5401 

256 2048 4 -0.4250 +0.4066 -0.4377 +0.4294 0.4377 

512 2048 4 -0.4435 +0.4026 -0.4375 +0.4286 0.4435 

1024 2048 4 -0.4258 +0.4091 -0.4360 +0.4265 0.4360 

 

powers of two ranging from 0..-1, -1..-2, -2..-4, -4..-8, -8..-16 and -16..-32. However, 

for subtraction only, the co-transformation process is deployed over the range -0.5 < 

r < 0. At each segment, 256 words are used to store the F, D and E tables, whereas 

for the P table, its 1024 words accommodates the error profile for the subtraction 

logarithm in the range -8 < r < -4 since this is where the maximum absolute error 

occurs. At 32-bits, the total storage needed for the interpolation process is 

approximately 227 kbits, as shown in Table 4-3. Although the total bits cited in [6] 

is lower because there the number of bits were optimised with decreasing r in each 

table, that would actually lead to an impractical hardware implementation.  
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Figure 4-4 : Approximation error for the addition operation of the ELM unit. 
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Figure 4-5 : Approximation error for the subtraction operation of the ELM unit. 
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Figure 4-6 : Worst-case error of the ELM unit. 

 

 

0.0E+00

5.0E+03

1.0E+04

1.5E+04

2.0E+04

2.5E+04

3.0E+04

3.5E+04

4.0E+04

256 512 1024

Intervals per segment

T
ot

al
 s

to
ra

ge
 (

w
or

ds
)

F, D, E, P = 512

F, D, E, P = 1024

F, D, E, P = 2048

 
Figure 4-7 : Total storage requirement for the worst-case error within FLP limit. 
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Table 4-3 : ELM interpolation memory requirements. 
 

Table Words Word 
Length Segments Total 

Bits 

F Add 256 28-bit 6 43,008 

F Sub 256 28-bit 6 43,008 

D Add 256 27-bit 6 41,472 

D Sub 256 28-bit 6 43,008 

E Add 256 8-bit 6 12,288 

E Sub 256 11-bit 6 16,896 

P 1024 27-bit 1 27,648 

Total 227,328 

 

4.5. Synthesis Results 

 

 The previous ELM processor device based on 32-bit LNS arithmetic 

implementation was fabricated using 0.18 µm CMOS technology. The performance 

of this processor was compared with the commercial Texas Instruments (TI) FLP 

device, the TMS320C6711 DSP chip, itself fabricated in a similar technology. 

Examining the published results of the analysis of the ELM run at 125 MHz, 

multiplication and division were executed in a single cycle of 8 ns. Conversely, the 

150 MHz TI device required 4 cycles, lasting 26.67 ns, to perform the multiplication 

operation and approximately 30 cycles for division. The ELM consumed 3 cycles, 

24 ns, to compute addition and subtraction operations and 4 cycles whenever this 

involved the co-transformation procedure in subtractions. On the TI device, 4 cycles 

at 26.67 ns were needed to complete these functions.  

Although the silicon area was not reported in the analysis, the author has 

confirmed that the overall dimensions of the ELM die area were 3,224 µm × 4,122 

µm. Only the blocks labelled as MCALU, FDE, G and P, as illustrated in Figure 4-8, 

related to the organisation of the 32-bit LNS arithmetic unit, therefore measuring 

with a ruler gives an estimate of 862,550 µm2 for that particular area.  
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For a realistic comparison, the LNS system incorporated in the ELM was 

resynthesised using the Faraday 0.18 µm process. The synthesiser was run twice, 

once without any target constraints, and again with a constraint to deliver the highest 

possible speed. These trial designs were not taken to a routed layout, but the 

synthesiser incorporates reliable modeling of routing and wiring, and is able to 

deliver an accurate prediction of the final area and delay, which is presented in Table 

4-4. Note that the unconstrained results, 22.77 ns for addition and direct subtraction, 

28.60 ns for subtractions making a co-transform, and an area of 842,433 µm2, are 

very similar to those actually found on the fabricated device in [7]. 

The approximate doubling of speed when the target constraint is asserted 

probably reflects an improvement in synthesiser technology in the intervening years 

and appears to be comparable with current FLP performance which will be described 

in the next section. Therefore, this optimised synthesis has been taken as the starting 

point for further development. 

 

 
Figure 4-8 : Die plot of ELM. 
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Table 4-4 : Delay times and total device area of ELM. 
 

Function 

ELM 

Unconstrained Constrained 

Delay (ns) Area (µm2) Delay (ns) Area (µm2) 

Add / Sub 22.77 
842,433 

11.74 
904,943 

Sub (Co-
transform) 28.60 13.15 

Mul / Div 2.27 8,337 1.16 10,514 

 

4.6. FLP Devices 

 

The development of the new 32-bit LNS arithmetic unit has to be validated against 

other 32-bit arithmetic implementations. For that reason, it is helpful to have an up-

to-date FLP design fabricated with similar 0.18 µm technology for comparison. 

Several downloadable FLP libraries [58, 79] are available online but the 

practicality of using them for comparison purposes is questionable without knowing 

to what extent optimisation efforts have been made in their designs. In addition, a 

majority of the presented FLP libraries were only targeted on FPGA’s. To avoid a 

biased comparison, a FLP arithmetic device fabricated in a similar 0.18 µm 

technology is used for comparative analysis in this thesis.  

Kwon et al. in [80] compared two FLP ALU architectures which had been 

optimised for different design goals. Both designs were synthesised and routed for 

0.18 µm fabrication, as with the work reported in this thesis. The implementation of 

these two FLP arithmetic units, namely MONARCH and DIVA, followed the 

standard of the IEEE-754 format and supported single-precision numbers. Each 

system was able to execute add, subtract, multiply and divide operations.  

The MONARCH FLP design was intended to achieve higher performance in 

the sense of the speed of executing arithmetic operations. In order to realise the 
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design goal, therefore, every single arithmetic block operated independently with no 

data path shared between the addition/subtraction and multiplication/division 

modules. Consequently, each arithmetic unit could be optimised individually in 

order to obtain low instruction latency. It was reported that addition and 

multiplication had a delay of 3 clock cycles and division 9 clock cycles when 

clocked at 266 MHz. The estimated layout area was 600,000 µm2. 

The second design, DIVA, was optimised for minimal area. Several design 

considerations supported this, such as merging the exponent computation block for 

each arithmetic unit in one data path and also sharing rounding logic. As a result of 

these design strategies, 5 clock cycles were required to perform addition and 

multiplication, and 12 clock cycles for division when similarly clocked at 266 MHz. 

However, the total layout area was reduced to 481,635 µm2. Table 4-5 summarises 

the delay and silicon area results for these FLP architectures.  

 

Table 4-5 : Delay and area of FLP arithmetic unit at 266 MHz. 
 

Function 

FLP  

MONARCH DIVA 

Delay 
(cycles) 

Delay 
(ns) 

Area 
(µm2) 

Delay 
(cycles) 

Delay 
(ns) 

Area 
(µm2) 

Add / Sub 3 11.28 

600,000 

5 18.80 

481,635 Mul 3 11.28 5 18.80 

Div 9 33.83 12 45.11 

 

4.7. Comparison Analysis: ELM and FLP  

 

Based on the constrained synthesis of the ELM design, its total silicon area is larger 

than FLP devices, DIVA and MONARCH, as illustrated in Figure 4-9. However, in 

terms of delay, the ELM computed addition and direct subtraction at almost the 
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same speed with the faster of the two FLP units, MONARCH, as shown in Figure 

4-10.  
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Figure 4-9 : Total silicon area between ELM, DIVA and MONARCH. 
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Figure 4-10 : Delay between ELM, DIVA and MONARCH. 
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For subtractions involving the co-transformation, the delay increases to 116% of the 

delay in MONARCH. On the other hand, the ELM executed multiplication and 

division in 1.16 ns, whereas MONARCH required 11.28 ns and 33.83 ns 

respectively. From the analysis described herein, it can be concluded that the result 

presented is in agreement with the analysis summarised in [7].  

 

4.8. Summary 

 

The hardware arrangement of the LNS design presented in the ELM processor was 

reviewed intensively in this chapter. Conceptually, a Taylor approximation method 

together with an error correction algorithm was employed to perform the 

interpolation process for executing addition and direct subtraction operations. By 

implementing this technique, significant reduction in total lookup tables can be 

obtained. According to the simulation and synthesis results based on the 

reconstructed ELM architecture, the results reported have been shown to be in 

agreement with those found in the original work. This means that the resynthesised 

design has been fully verified and the results generated can be used for comparison 

purposes. 

In order to evaluate the performance of the new LNS system against other 

recent 32-bit arithmetic implementations, two FLP devices namely DIVA and 

MONARCH have been studied. These FLP units were synthesised in similar CMOS 

technology as that adopted in this thesis. Thus, fair and direct comparison can be 

obtained when performing the analytical work.  
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CHAPTER 5 

5. Co-transformation Architecture for LNS 

Subtraction 

 

5.1. Introduction 

 

The co-transformation technique was first introduced in an ELM processor, and the 

resulting speed and accuracy of the complete system were better than in an FLP 

arithmetic unit. Therefore, for benchmarking purposes, Chapter 5 reviews this 

approach in detail before reconstructing the architecture. Using the concept 

implemented in the ELM as the initial idea, a new proposal for the co-transformation 

procedure is suggested [77]. The proposed design is then simulated accordingly and 

the results are reported. Finally, a comparative analysis is carried out to show the 

effectiveness of the proposed algorithm compared with the ELM, concentrating on 

total area used (in bits), worst-case delay and levels of error in the system.  

 

5.2. First-order Co-transformation Procedure for LNS Subtraction  

 

The difficulty of approximating the value of the subtraction function at values of r 

closer to zero, due to approaching -∞ as depicted in Figure 4-1, will cause larger 

table sizes when using direct lookup tables, interpolation or even 

bipartite/multipartite tables. Thus, the co-transformation procedure introduced by 

Coleman [49] is applied in the region -0.5 < r < 0. The co-transformation scheme as 

outlined in Figure 5-1 can be called a first-order co-transformation procedure, which 

is constructed by introducing two new variables, k1 and k2, on top of the original 

subtraction function as explicitly derived in equation (5.1).  
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Figure 5-1 : ELM’s co-transformation architecture. 

 

2i – 2j = ( 2i – 2j+k1 ) – 2j+k2                                             (5.1) 

where 

   2k1 + 2k2 = 1, i.e k2 = log2 (1 - 2k1)                                        (5.2) 

 

With ∆1 fixed at a large value, index r1 is calculated based on the individually 

chosen factor k1 which will then lie on the modulo-∆1 boundary beneath r. 

Subsequently, F(r1) can be retrieved from the lookup table F1, which stores F(r) 

values in the region -0.5 < r < -∆1. For all regions, the value of k2 is tabulated in the 

F2 table which includes all possible values of k1 that lie in the range -∆1 < k1 < 0. 

Thus, 

 

r1 = ((( j – i) DIV ∆1) – 1)× ∆1 = j + k1 – i                            (5.3) 

 k1  = – (((j – i) MOD ∆1) + ∆1) = i – j + r1                            (5.4) 

 

An index r2 results from the subtraction of the newly reformed i2 and j2 from their 

original values of i and j, and hence will give, 

 

Subtraction 

Addition Addition 

F1 
ROM 

F2 
ROM 

i 

j 

i2 

r2 

j2 

F(k1) 

r1 k1 

(((j – i) DIV ∆1) – 1) 
× ∆1 

 

-(((j – i) MOD ∆1) 
+ ∆1)  

F(r1) 
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 2i – 2j = 2i + F(r1) – 2j + F(k1)                                                          (5.5) 

   r2 = j – i + F(k1) – F(r1)   

                             = j – i + log2 [(1 - 2 i – j +  r1) ÷ (1 - 2 r1)]                          (5.6) 

 

The value of r2 can be considered in three regions, depending on the original 

operands i and j. For j − i ≤ −0.5, r2 is taken directly as j − i, and will lie in the linear 

region of F from which F(r) can be obtained by interpolation. For −0.5 < j − i < −∆1, 

r2 is derived as shown in equation (5.6), and as it falls in the region less than -1 as 

illustrated in Figure 5-2, F(r) is similarly obtained by interpolation. For the third 

region, −∆1 ≤ j − i < 0, the derived value of r2 rises above −1. However, this range 

is covered by the F2 table, and F(r) is therefore already available as k2. The 

modified values r2 and i2 are passed to the interpolator for completion of the outer 

subtraction. In adopting this approach, the bit partitioning scheme of the LNS format 

is illustrated in Figure 5-3. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-2 : Value of r2 for -0.5 < r < -∆1. 

 

 

 

 

Figure 5-3 : Bit partitioning scheme for first-order co-transformation. 
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Now the total size of F1 and F2 tables are 2048 words each, details presented 

in Table 5-1, which is approximately one-seventh of the size of the tables that would 

be involved in the interpolation process for a similar region [59].  

 

Table 5-1 : ELM co-transformation memory requirements. 
 

Table Words Word 
Length Segments Total 

Bits 

F1 2048 31-bit 1 63,488 

F2 2048 32-bit 1 65,536 

Total 129,024 

 

5.3. Optimising Lookup Tables for LNS Subtraction 

 

One of the key aspects in designing LNS addition and subtraction concerns the total 

storage requirements for the entire unit. Having such large lookup table 

requirements in previously published LNS systems made them unattractive for 

future DSP chip implementation, although they might be appropriate for some 

specific DSP applications. Therefore, if designers can reduce the total table 

requirements, this will then reduce the total area of the device commensurately.  

The most challenging region is the subtraction function above -1, which 

approaches singularity and thereby requires a huge space for lookup tables when 

applying conventional methods to maintain precision within the FLP limit. The 

proposal for the ELM unit [6, 7] has introduced a promising architecture to compute 

subtraction over that particular range, but no such design so far has been able to 

further improve the technique in order to need less storage while achieving similar 

or better performance than this ELM. Given this situation, further exploration into 

the possibility of optimising the usage of lookup tables specifically in the region of -

0.5 < r < 0 for subtraction is discussed in this section.   

The algorithm proposed in this study, the so called second-order co-

transformation procedure, derives from the basic principle of the first-order concept 
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as used in an ELM. Despite having two similar sizes of tables, F1 and F2, this 

technique now incorporates another table in the system by applying the fractionating 

coefficient k1 recursively. Thus, three much smaller tables are created in the range 

of -0.5 < r < 0 which will substantially reduce total storage as a result of the 

fractional bits being partitioned into three small regions. The segmentation 

procedure remains unchanged, as shown in Table 4-1. Additionally, five guard bits 

are added as to maintain accuracy within FLP limit and to keep the table sizes 

analogous to those of an ELM whilst performing the interpolation process.  

 

5.3.1. The New Algorithm: Second-order Co-transformation Procedure 

for LNS Subtraction 

 

Co-transformation as described for the ELM was introduced by replacing the 

subtraction 2i – 2j with two successive subtractions as shown in equation (5.1).  

However, the fractionating coefficient k1 can be applied recursively. Substituting  

 

2j+k2 = 2j – 2j+k1 
 

into equation (5.1) gives: 
 

2i − 2j = (2i − 2j+k1) − (2j − 2j+k1) 

           = (2i − 2j+k1) − ((2j − 2 j+k1+k11) − 2 j+k1+k12)                            (5.7) 

where,  

 

2k11 + 2k12 = 1, i.e. k12  = log2 (1 − 2k11)                                       (5.8) 

 

The four subtractions in equation (5.7), and their respective indices r, will now be 

numbered as follows: 
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2i − 2j  = (2i − 2j+k1) − ((2j − 2 j+k1+k11) − 2 j+k1+k12) 
          

                         
                         
 
 

 

 At first, k1 is selected such that the index r1 falls on the nearest modulo-∆1 

boundary beneath j − i, and F(r1) is obtained directly from the lookup table F1, 

containing F(r) for −1 < r < − ∆1 at modulo-∆1 intervals. However, ∆1 is now fixed 

at a larger value than was the case in the first-order arrangement, thereby shortening 

the index to the F1 table by the number of additional bits used. Previously, this 

would have caused a corresponding increase in size of the index to the F2 table. 

Now, however, the coefficient k11 is similarly selected such that r11 falls on the 

modulo-∆11 boundary beneath j + k1 – j = k1, and F(r11) is obtained from table F11 

which contains F(r) for -∆1 < r < -∆11 at modulo-∆11 intervals. This reduces the 

index to the F11 table by the number of bits representing ∆11.  The final coefficient, 

k12, is obtained from the lookup table F12 indexed by k11, itself represented by the 

same number of bits as ∆11. This conceptual arrangement is shown in Figure 5-4, 

from which it may be seen that the index r has effectively been split into three 

partitions, each of which will optimally be about a third of the length of the original. 

For clarity, Figure 5-5 shows the bit partitioning scheme for the second-order co-

transformation format.  

Variables r1, k1, r11 and k11 can be represented as: 

   

r1 = ((( j – i) DIV ∆1) – 1) ×  ∆1 = j + k1 – i                                         (5.9) 

                k1  = – (((j – i) MOD ∆1) + ∆1) = i – j + r1                                          (5.10) 

   r11 = -(((j – i) MOD ∆1) + ∆1) + ((j – i) MOD ∆11) 

           = k1 + k11                                                                                             (5.11) 

   k11 = (( j – i) MOD ∆11) = r11 – k1                                                        (5.12) 

 

 

1 11 

12 

2 
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Subtractions 11 and 1 are performed directly by lookup of their respective function 

tables. Subtraction 12 then generates an index: 

    

r12  =  k1 + k12 – F(k1 + k11) 

                    =  k1 + F(k11) – F(k1 + k11) 

                    =  k1 + log2 ((1 – 2k11) ÷ (1 – 2k1 + k11))                                                (5.13) 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-4 : Conceptual arrangement of second-order co-transformation. 
 

 
 

 

 

Figure 5-5: Bit partitioning scheme of second-order co-transformation. 
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The value of r12 varies with the original r as shown in Figure 5-6, where            

-2∆1 < r < -∆1, i.e. r lies across the range of one ∆1. In the arrangement used for 

this illustration, ∆11 is 6 bits and ∆1 is 13, so that r is partitioned into low, middle 

and high-order segments of 6, 7 and 10 bits respectively. This is not the most 

optimal partitioning, but was chosen for this illustration in order to keep the graph to 

a manageable size. The modified value r12 exhibits a repeating pattern of 

subintervals across each ∆11. With the exception, discussed below, of the extreme 

left subinterval, r12 < -1. Note, in fact, that for the point in each subinterval where 

k11 = 0, r12 = −∞. These points have been omitted from the graph, and in practice 

they are ignored because the subsequent calculation of F(r12) is consequently zero. 

As regards the leftmost subinterval, it is necessary to consider the behaviour of r12 

as r progresses across the range of ∆1. In the first subinterval at the left of Figure 5-6, 

k1 < ∆11 and k1 + k11 = ∆11. To the far left of this subinterval, k11 ≈ ∆11, and since 

k1 is small, r12 ≈ 0. Throughout this subinterval the middle partition is zero. It is 

therefore possible to treat this subinterval as a special case of the first-order 

arrangement, in which the second-order variable k11, table F12 and result r12 are 

analogous to the first-order k1, F2 and r2. The new value r2 bypasses the first 

interpolator and is passed directly to the second interpolation stage. Throughout the 

next subinterval, k1 + k11 = 2∆11. To the far left of this subinterval, again, k11 ≈ 

∆11, but since k1 and k11 are both small, the exponential terms are approximately 

linear in behaviour, and r12 is therefore ≈−1. From here on, r12 < −1. Except in the 

special case just mentioned, subtraction 12 is then completed in the first interpolator, 

which is positioned as shown in Figure 5-4. 

The result of subtraction 12 is then itself subtracted from the result of 

subtraction 1. Its index r2: 

 

           r2 = j – i + F(k1 + k11) + F(k1 + k12 – F(k1 + k11)) – F(r1)                (5.14) 
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The value of r2 is plotted over the range -1 < r < -∆1 in Figure 5-7. In all cases, r2 < 

-1, and the subtraction can therefore be performed with a second iteration of the 

interpolator. 

   

 

 

   

 

 

 

 

 

 

 

 

Figure 5-6 : Value of r12 for -2∆1 < r < -∆1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-7 : Value of r2 for -1 < r < -∆1. 
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In the similar way that, in the first-order arrangement, the value of r2 falls into 

one of three regions, here it is separated into four. Again, this depends on the 

original operands i and j. For j − i ≤ −1, r2 is taken directly as j − i, and will lie in the 

linear region of F from which F(r) is obtained by interpolation. For −1 < j − i < −∆1, 

r2 is derived as shown above, and now has a maximum of approximately −1. Thus it 

also lies in the linear region of F, and F(r) is similarly obtained by interpolation. In 

the third region, −∆1 ≤  j − i < −∆11, the high-order bits are zero and subtractions in 

this region can therefore be processed with a first-order technique using the F11 and 

F12 tables. Finally, F(r) for −∆11 ≤  j − i < 0 is taken directly from the F12 table. 

The overall co-transformation memory requirement is reduced from 4,096 

words, as in the first-order shown in Table 5-1, to 640 as described in Table 5-2, or 

from 129,024 bits to 20,608, a reduction to about 16% of its original size.  

 

Table 5-2 : Second-order co-transformation memory requirements. 
 

Table Words Word 
Length Segments Total 

Bits 

F1 128 31-bit 1 3,968 

F11 256 32-bit 1 8,192 

F12 256 33-bit 1 8,448 

Total 20,608 

 

5.3.2. Function Approximation Scheme 

 

For fair and direct comparison, a first order Taylor approximation scheme 

incorporating an error correction algorithm is adopted to estimate the F(r) in the 

region -32 < r < -0.5 for subtraction, and -32 < r < 0 for addition. This is equivalent 

to the approximation scheme in the ELM for those particular regions, as described in 

Section 4.2.1. Nevertheless, several alternative methods for the function 
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approximation procedure will be investigated later in order to achieve further 

advantages over Taylor approximation, and these are elaborated in Chapter 6.  

Using the same simulator model as constructed in Section 3.3.1, a number of 

simulations of error characteristics were performed through varying the sizes of the 

F, D, E and P tables. The work aimed to verify which table setting offers the best 

configuration to gain acceptable levels of error within the FLP boundary of 0.5. 

 

5.3.3. Simulation Results 

 

Table 5-3 outlines the simulation results for error characteristics of the combination 

of the newly proposed co-transformation scheme with interpolation using Taylor 

approximation for both addition and subtraction. It can be seen in Table 5-3 that the 

best worst-case error of the system still has the F, D and E tables at 256 words and 

the P table at 1024 words, as a result of applying an identical Taylor approximation 

method as in the ELM. However at this time, the number of guard bits is increased 

from 4 to 5. The worst-case relative error for the entire system is shown in Figure 

5-8. 

 

5.3.4. Design Summary 

 

For ease of comparison, the LNS addition/subtraction architecture using the second-

order co-transformation procedure applies the same configurations as those 

implemented in the ELM. Despite the existence of five guard bits in the device, the 

system presented is also divided into six segments at powers of two. Instead of 

partitioning into two as in the ELM, the subtraction operation in the range                 

-0.5 < r < 0 is segmented into three regions ranging from -∆11 < r < 0,                      

-∆1 < r < -∆11 and -0.5 < r < -∆1. Through this arrangement, a tremendous 

reduction in total storage can be gained whereby F1, F11 and F12 tables now only 

store 128, 128 and 256 words respectively. A maximum relative error nearly 

equivalent to the FLP limit is obtained when F, D and E tables are at 256 words,  
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Table 5-3 : The worst-case error of the optimised architecture. 
 

Parameters ADD SUB Worst 
Case  

F,D,E 
Sizes P size Guard  

Bits e'min rel e'max rel e'min rel e'max rel erel 

64 512 5 -2.0248 +0.8757 -1.2671 +3.9264 3.9264 

128 512 5 -0.7790 +0.4104 -0.4843 +1.2250 1.2250 

256 512 5 -0.4802 +0.3543 -0.3705 +0.5787 0.5787 

512 512 5 -0.4004 +0.3536 -0.3713 +0.4189 0.4189 

1024 512 5 -0.3893 +0.3534 -0.3707 +0.4070 0.4070 

64 1024 5 -1.1933 +0.8757 -1.2396 +2.1069 2.1069 

128 1024 5 -0.5696 +0.4108 -0.4583 +0.7817 0.7817 

256 1024 5 -0.4277 +0.3543 -0.3705 +0.4719 0.4719 

256 1024 4 -0.4699 +0.3674 -0.3914 +0.5298 0.5298 

512 1024 5 -0.3904 +0.3536 -0.3726 +0.4065 0.4065 

1024 1024 5 -0.3893 +0.3569 -0.3707 +0.4070 0.4070 

64 2048 5 -0.7786 +0.8857 -1.3452 +1.2056 1.2056 

128 2048 5 -0.4632 +0.4118 -0.4670 +0.5458 0.5458 

256 2048 5 -0.4113 +0.3549 -0.3723 +0.4321 0.4321 

512 2048 5 -0.3884 +0.3542 -0.3730 +0.4065 0.4065 

1024 2048 5 -0.3893 +0.3569 -0.3707 +0.4070 0.4070 

 

with the P table at 1024 words. This is comparable with the ELM due to the 

application of a conceptually similar interpolation method for the addition and 

subtraction functions. As shown in Table 5-4, about 259 kbits would be required to 

compute LNS addition and subtraction using the new algorithm for the co-

transformation process together with the previously published interpolation 

procedure.  
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Figure 5-8 : The worst-case relative error of the proposed architecture. 

 

 
Table 5-4: Total storage for the new algorithm. 

 

Table Words Wordlength Segments Total 
Bits 

F Add 256 29-bit 6 44,544 

F Sub 256 29-bit 6 44,544 

D Add 256 28-bit 6 43,008 

D Sub 256 30-bit 6 46,080 

E Add 256 9-bit 6 13,824 

E Sub 256 14-bit 6 21,504 

P 1024 28-bit 1 28,672 

F1 128 31-bit 1 3,968 

F11 128 32-bit 1 4,096 

F12 256 33-bit 1 8,448 

Total 258,688 
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5.4. Comparison Analysis: First-order and Second-order Co-

transformation with the Taylor Interpolator 

 

The analysis was conducted based on the constrained synthesis between the leading 

published design, the ELM, and the proposed LNS addition and subtraction 

architectures described in this chapter. The intention is to evaluate the efficiency of 

the new second-order co-transformation procedure when combined with the Taylor 

interpolator in three vital respects. 

Firstly, the investigation focuses on the hardware costs in terms of the memory 

size required for each device in order to build a 32-bit system. This is due to the fact 

that ROM frequently dominates the silicon area of the unit and therefore very often 

becomes a major concern when developing an LNS system. Figure 5-9 graphically 

compares the total tables required for co-transformation and the interpolation 

module in the ELM as well as the new algorithm which comprised of second-order 

co-transformation together with the Taylor interpolator. 

As can be observed in Figure 5-9, a dramatic reduction in table space to 

perform the co-transformation process can be achieved with the second-order co-

transformation procedure. The effect of repeatedly applying the fractionating 

coefficient k1 brings the total tables down to approximately one-eighth the size of 

those required in the ELM to execute the same function in the region -0.5 < r < 0. 

Previously, as reported in the first-order and second-order algorithms, the r value 

was transformed into a new value, r2, which lies in the region less than -1 after 

completing the co-transformation process. Thereby, it is now possible to extend co-

transformation to cover the range -1 < r < 0, which then leads to 90% savings in 

total storage compared to the ELM. However, it is expected that the memory 

involved in the interpolation scheme in the new algorithm will be slightly higher 

than that in the ELM, as a result of using five guard bits.  

Next, Figure 5-10 plots the worst-case error of the ELM and the new 

algorithm. It is found that the error characteristics of second-order co-transformation 

remain identical to those of the ELM because of the adoption of identical 

interpolation techniques. This means that, when utilising the new approach, the 
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accuracy of the system is sustained. Nevertheless, ways have been sought to further 

improve the error behaviour of the system by simulating various types of 

interpolation method. These are elaborated upon in the next chapter.  
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Figure 5-9 : Comparison of the total tables between ELM and new algorithm. 

 

The third issue concerns the execution delay of the co-transformation process. 

Despite having worthwhile improvement in terms of table size, the implementation 

of the new algorithm comes at the expense of a vastly increased delay for 

subtractions using the co-transformation. This is mainly due to require two passes 

through the interpolator, which means that approximately twice the delay of a direct 

subtraction as graphically shown in Figure 5-11.   

To conclude the analysis, it should be noted that implementing the new 

algorithm for the co-transformation procedure may lead to great savings in memory 

compared with the ELM. Nevertheless, it has a serious degradation in delay as a 

result of using the interpolator twice. Therefore, the adoption of the new co-
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transformation will only be feasible in conjunction with a faster interpolator. Hence, 

the next chapter examines several interpolation approaches to achieve this objective. 
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Figure 5-10: Worst-case error between ELM and the new algorithm. 
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Figure 5-11 : Delay between ELM and the new algorithm. 
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5.5. Summary 

 

In this chapter, a second-order co-transformation procedure has been introduced and 

the technique applied in the region -0.5 < r < 0 of the subtraction function, where the 

singularity issue normally arises. By exploiting a similar conceptual approach to that 

used in the ELM, the original value of r in the range -0.5 < r < 0 will be converted 

into a new value that is certain to lie in the linear region of the function of r, and 

thereby the singularity issue can be avoided. Not only can accuracy be sustained 

within FLP limit, but the use of the second-order concept is also capable of reducing 

the total storage needed to 73% of the total size in the ELM. However, it has a huge 

impact in terms of delay, much slower than ELM, for subtractions using the co-

transformation as a result of using the interpolator twice. Hence, several 

interpolation schemes are investigated in Chapter 6 where further reductions in table 

size and delay may possibly be achieved.  
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CHAPTER 6 

6. Function Approximation Scheme for LNS 

Addition and Subtraction 

 

6.1. Introduction 

 

Apart from improving the co-transformation procedure, as outlined in Chapter 5, 

which yielded less total storage than in the ELM design, the enhancement of the 

interpolator architecture is also of utmost importance for LNS addition and 

subtraction. Reducing the storage space needed in the interpolation process will have 

a significant impact on the total area of the LNS system. Therefore, several 

interpolation techniques are explored in this chapter in searching for the best design 

approach to implement.    

Initially, three linear interpolation techniques are designed and compared in 

terms of the total storage generated and error characteristics. Subsequent analysis 

evaluates which design approach produces the smallest total area of tables whilst 

maintaining worst-case error level within FLP limit. A series of developments based 

on the selected interpolator architecture is then performed through adopting the non-

linear interpolation process.   

According to the work reported herein, the suggested interpolator module is 

shown to be able to provide a reduction in total storage in comparison with that 

needed in the ELM design. The improved version of the interpolator also 

incorporates tables small enough to be synthesised in logic rather than by using real 

ROM elements. As a result of this, the total execution delay of the interpolator can 

be reduced too.   
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6.2. Function Approximation using Interpolation 
 

During the early days [39], LNS addition and subtraction were simply computed 

using the direct implementation of functions retrieved from the lookup tables which 

stored all possible values of sb(r) and db(r). This approach is relatively easy and less 

complex, particularly for short word-lengths, based on the formula f·2f+1. However, 

the impact on the whole system when considering long word-lengths is hopelessly 

cumbersome. Assuming a 23-bit fractional part for 32-bit word-length, the total 

storage would be 23 × 223+1 ≈  3.86 × 108 words, which is clearly impractical. 

Therefore, an approximation procedure [6, 43, 47] is employed to overcome the 

issue of hardware complexity. It has been noted that approximations are widely 

performed in numerical analysis when difficulty is encountered in carrying out an 

analytical study involving an original function, due to the nature of the function 

itself [81].  

Theoretically, in order to perform an approximation of LNS addition and 

subtraction, a new function which can be defined as p(r) is introduced which 

emulates the behaviour of the original function f(r). Rather than directly keeping the 

complete curve, the p(r) is then segmented according to all the required points on 

each interval and these points are stored in the table. These stored values are then 

used to obtain an approximation of the calculated operation. There are several 

obvious ways in which an approximating function can be derived, but the easiest and 

most often being utilised in many applications is the use of an interpolation 

technique [82].   

As illustrated in the literature, methods such as Taylor [6, 43], Lagrange [46] 

and Chebyshev [45] are among the interpolation schemes which have been adopted 

to approximate addition and subtraction functions. However, some of these 

techniques incorporate other optimisation procedures which can substantially reduce 

the total storage required. Hence, it is difficult to determine which design is more 

efficient and can produce less total storage. The solution is to temporarily disregard 

the optimised designs and instead return to the initial principle or conventional 

method used in the interpolation procedure. Thus, to select the interpolation 
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technique most suitable for the co-transformation procedure, a preliminary study 

focuses on various types of interpolation method using conventional linear 

interpolation concepts. From there, an analysis is performed to determine which 

design demonstrates the greatest saving in memory space.   

 

6.3. Linear Interpolation 
 

A very brief introduction of linear interpolation has been included earlier in Section 

4.2.1. Additional explanation is now necessary, starting by assuming an original 

function f(r) which crosses at two points, for example rn and rn+1, as graphically 

shown in Figure 6-1. By applying an approximation concept, there exists a linear 

function p(r), a so called unique straight line, which passes through these two 

locations, (rn,f(rn)) and (rn+1,f(rn+1)). The function p(r) can then be used to 

approximate any value of r that lies between rn and rn+1, and the result will be 

utilised to approximate the function f(r). The flow of this process is therefore known 

as linear interpolation [83] and its mathematical expression can be formulated as in 

equation (4.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-1 : Linear interpolation. 
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p(r) 



 87

The Taylor approximation method was used to interpolate the function f(r) in 

Chapter 4, even though alternative techniques can be applied which are capable of 

producing even better error characteristics. This section of the study specifically 

aims to verify which linear interpolation techniques give better outcomes in terms of 

the total memory requirements compared to Taylor’s approach while keeping the 

error behaviour within the acceptable limits of the half-bit ulp criterion as in the FLP. 

Hence, several interpolation procedures based on a linear method are investigated, 

before applying the non-linear technique to further reduce the total storage needed. 

Throughout the analysis, the co-transformation architecture proposed in Section 

5.3.1 is incorporated into the simulation for subtraction in the range -1 < r < 0, and 

the same simulator model developed in Section 3.3.1 is used. 

 

6.3.1. Linear Taylor Interpolation 
 

Since the Taylor approach is used as a benchmark, the first-order Taylor 

approximation was modelled based on the theorem in equation (4.5) to yield the 

expression in equation (4.6). The simulation was conducted by varying the sizes of F 

and D tables accordingly until the errors reported were relatively similar to the FLP 

at 0.5. The errors returned by the simulator are equivalent to the FLP calculation due 

to the application of the formula given in equation (3.5). For illustration purposes, 

Figure 6-2 depicts the approximation error incurred repeatedly in the interval when 

interpolating using the Taylor procedure. The actual error results across the whole 

range of r are provided in Table 6-1 and also displayed graphically in Figure 6-3.      
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Figure 6-2 : Illustration of linear Taylor approximation error. 
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Figure 6-3 : Worst-case error of linear Taylor approximation. 
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Table 6-1 : Error of linear Taylor approximation. 
 

Operation F table D table Guard 
Bits e'min rel e'max rel 

ADD 

64 64 5 -430.6243 +0.3462 

128 128 5 -108.5963 +0.3464 

256 256 5 -27.4899 +0.3464 

512 512 5 -7.1379 +0.3464 

1024 1024 5 -2.0414 +0.3464 

2048 2048 5 -0.7806 +0.3464 

4096 4096 5 -0.4695 +0.3465 

8192 8192 5 -0.3922 +0.3465 

SUB 

64 64 5 -110.3230 +973.4232 

128 128 5 -26.3088 +244.6603 

256 256 5 -6.1552 +61.3282 

512 512 5 -1.6741 +15.5805 

1024 1024 5 -0.6551 +4.1404 

2048 2048 5 -0.3861 +1.3059 

4096 4096 5 -0.3540 +0.5989 

8192 8192 5 -0.3540 +0.4369 

 

6.3.2. Linear Lagrange Interpolation 
 

Apart from the linear Taylor approximation, there exists an even simpler type of 

interpolation approximation that can potentially reduce the total lookup table size 

whilst sustaining the accuracy within FLP limit. Typically, instead of f being focused 

at one point as in Taylor, it is actually more efficient to spread it over a number of 

points, which is similar to the technique described by Lewis [46] and Chester [84]. 

Therefore, the first alternative approximation procedure considered herein can be 

recognised as a secant line that intersects f(r) at two calculated points as presented in 

Figure 6-4, an approach called a linear Lagrange interpolation. From an 
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implementation of this approximation method, it is evident from the results in Figure 

6-5 that its maximum error is significantly less than that in the Taylor procedure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-4 : Illustration of linear Lagrange interpolation. 
 

 

 

 

 

 

 

 

 

 

 

Figure 6-5 : Comparison of maximum error in Taylor and Lagrange. 
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Assuming that the unique straight line p(r) passes through the function f(r) at 

two distinct locations, say (rn,f(rn)) and (rn+1,f(rn+1)), then the linear interpolating 

polynomial can be constructed as in [83]: 
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The expression can be rearranged in the Lagrange symmetric form giving: 
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In order to apply the same arrangement as presented in the Taylor series as shown in 

equation (4.6), it is useful to note that p(r) may also be written as: 
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This results in an analogous hardware implementation of the interpolation 

architecture as described in the ELM design, although of course with different 

contents of the D table. The result for error characteristics simulated with different 

lookup table sizes using linear Lagrange interpolation is summarised in Table 6-2, 

and the worst-case errors for addition and subtraction are shown in Figure 6-6. 
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Table 6-2 : Error of linear Lagrange approximation. 
 

Operation F table D table Guard 
Bits e'min rel e'max rel 

ADD 

64 64 5 -0.3677 +107.2289 

128 128 5 -0.3677 +27.3178 

256 256 5 -0.3677 +7.1147 

512 512 5 -0.3677 +2.0361 

1024 1024 5 -0.3677 +0.7669 

2048 2048 5 -0.3682 +0.4493 

4096 4096 5 -0.3682 +0.3717 

4096 4096 4 -0.3898 +0.3717 

SUB 

64 64 5 -242.3960 +23.6166 

128 128 5 -61.3476 +5.5050 

256 256 5 -15.6575 +1.4741 

512 512 5 -4.1757 +0.6045 

1024 1024 5 -1.2991 +0.4128 

2048 2048 5 -0.5831 +0.3871 

4096 4096 5 -0.4056 +0.3871 

4096 4096 4 -0.4047 +0.4474 

 

6.3.3. Linear Lagrange Interpolation – Modified Version 

 

Exploiting the Lagrange format, another potentially useful approximating procedure 

can improve the maximum error even more. Whenever p(r) is shifted down from the 

initial position of the Lagrange line, p(r) eventually crosses f(r) at two new values, in 

this case rk1 and rk2 as illustrated in Figure 6-7. With the width of the interval still 

intact between rn and rn+1, the curve of f(r) is now divided into three different 

sections. By observation alone using Figure 6-8, small improvements in maximum 

error can clearly be obtained over the Lagrange scheme.  
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Figure 6-6 : Worst-case error of linear Lagrange interpolation. 

 

Borrowing from equation (6.3) and considering the two different points that 

intersect f(r) at rk1 and rk2, the formula for this approach is therefore expressed as: 
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During the simulation process, the evaluation of the optimal values of rk1 and rk2 is 

not performed for every single interval in each segment. This is due to the fact that, 

whilst executing either addition or subtraction operations, the stored values of the F 

and D tables happen to be extremely similar for every interval within a segment [84]. 

For that reason, there is no need to optimise rk1 and rk2 values at each interval since 

this gives no significant benefit in the sense of hardware realisation. Rather, the 

optimisation of rk1 and rk2 are intensively computed for each segment using the 

powers of two partitioning procedure, i.e. 0..-1, -1..-2, -2 ..-4 ..... -16..-32. In order to 

execute this approximation procedure, a simulator was developed which fulfils the 
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preceding argument concerning optimising rk1 and rk2 for every segment. Figure 6-9 

presents the flow diagram of the simulator design.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-7 : Illustration of modified linear Lagrange interpolation. 

 

 

 

 

 

 

 

Figure 6-8 : Illustration of maximum error between Lagrange and modified version. 
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Figure 6-9 : Flow diagram for selection of rk1 and rk2. 

 

At first, the values of rk1 and rk2 were chosen so that the p(r) line intersects f(r) 

at two locations within the width of rn and rn+1. F and D tables were then generated 

according to the arrangement as in equation (6.5).  The result of the addition and 

subtraction operations was then calculated simultaneously with the approximate 

value for FLP. The computed error was reported and compared with the previous 

maximum error. The simulator only ends the process whenever the error generated is 
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greater than the previous value, otherwise rk1 and rk2 were either increased or 

decreased accordingly before applying the same procedure mentioned above. The 

analysed errors based on the most optimal values of rk1 and rk2 using various table 

sizes are tabulated in Table 6-3 and shown graphically in Figure 6-10.  

 

Table 6-3 : Error of modified linear Lagrange approximation. 
 

Operation F table D table Guard 
Bits e'min rel e'max rel 

ADD 

64 64 5 -0.3723 +107.2102 

128 128 5 -0.3760 +27.2985 

256 256 5 -0.3811 +7.0971 

512 512 5 -0.3811 +2.0183 

1024 1024 5 -0.3816 +0.7481 

2048 2048 5 -0.3820 +0.4314 

4096 4096 5 -0.3836 +0.3566 

4096 4096 4 -0.4220 +0.3498 

SUB 

64 64 5 -242.3532 +23.6166 

128 128 5 -61.3032 +5.5050 

256 256 5 -15.6142 +1.4741 

512 512 5 -4.1308 +0.6078 

1024 1024 5 -1.2742 +0.4682 

2048 2048 5 -0.5577 +0.4005 

4096 4096 5 -0.3838 +0.4036 

4096 4096 4 -0.3707 +0.4849 

 

6.3.4. Comparison of Linear Interpolators 

 
With the aim of proposing an improved technique for the interpolation process that 

can dramatically reduce total memory space compared to Taylor’s approach, two 

different types of linear interpolators have been described namely the Lagrange and 
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Figure 6-10 : Worst-case error of modified linear Lagrange interpolation. 

 

modified Lagrange interpolation procedures. It should be noted that these linear 

interpolators do not actually represent any final solution for the implementation of 

32-bit LNS add and subtract functions. Rather, this analysis is more likely to lay the 

basis for further exploration, especially when incorporated with a non-linear 

interpolation method.  

The linear interpolators illustrated are being compared similarly in accordance 

with the measurement metrics specified in Chapter 3. The memory space has so far 

consumed a huge proportion of the silicon area of the LNS system. The initial 

analysis summarised in Table 6-4 focused on the hardware costs in terms of the total 

storage required by each interpolator technique. In practice, the lookup tables for 

addition and subtraction operations can be physically allocated to the same storage 

unit when they are in similar regions. However, for the purpose of this comparative 

study, the tables are split according to their functions so as to give more precise 

results. It is also assumed that 36-bits are stored in each address in the F and D tables 

due to the use of a 5-bit guarded format and since we are not considering the sign bit. 
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The segmentation scheme deployed is shown in Table 3-2, except for subtraction 

that covers only five regions because the co-transformation process is employed in 

the region from 0 to -1.  

 

Table 6-4 : Linear interpolator storage requirements. 
 

Interpolator 
Technique 

Addition 
Words/Seg. 

Subtraction 
Words/Seg. Total 

Storage 
(kbits) F Table D Table F Table D Table 

Taylor 4096 4096 8192 8192 4,718 

Lagrange 2048 2048 4096 4096 2,359 
Modified 
Lagrange 2048 2048 4096 4096 2,359 

 

In the calculation of total storage, the total bits involved in co-transformation 

have been neglected since this does not vary with interpolator method. As far as can 

be seen from Table 6-4, implementing either the Lagrange or modified Lagrange 

method can potentially lead to a 50% saving in total space compared with the Taylor 

scheme. When considering real hardware implementation, the Lagrange and 

modified Lagrange interpolators can be implemented with similar arrangement as 

Taylor, but with less memory space. Thereby, it may potentially reduce the total 

execution delay whilst computing addition and subtraction operations. Evidently, 

whenever adopting the Lagrange scheme, the design is considerably more 

straightforward and less complex than modified Lagrange.  

Although reduction in total storage is a priority, the error characteristics of the 

LNS system are also a crucial element. Yet, these two variables are interrelated. 

Figure 6-11 plots the worst-case errors for the Taylor, Lagrange and modified 

Lagrange interpolators. It can be seen that adopting the Lagrange interpolation 

procedure yields improved error behaviour compared to Taylor. The modified 

Lagrange approach produces error similar to that in Lagrange, but its more 

complicated design may make it less attractive.  
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Figure 6-11 : Worst-case error of linear interpolator. 

 

To conclude this analysis, the Lagrange approach is therefore selected as the 

best candidate for further development using non-linear interpolation, since it can be 

easily implemented and produces better error characteristic than the Taylor format. 

 

6.4. Non-linear Interpolation 
 

It is known that although linear interpolation entails relatively fast and simple 

computation, the results may be less accurate and to a certain extent the process 

requires larger memory space in order to maintain error within FLP limit. Thereby, 

to generate more precise results with minimal lookup table size while executing the 

LNS addition and subtraction, non-linear interpolation should be implemented. Only 

two non-linear interpolation schemes are considered here, a high-order degree 

method and the approach suggested in the ELM known as an error correction 

algorithm. Non-linear interpolation as proposed in the ELM has been reviewed in 

Section 4.2.1. Thus, the high-order method is explained in the next section before 
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comparing it with the method implemented in the ELM. Subsequently, the best of 

these methods is selected for implementation in the 32-bit LNS system incorporated 

with the preferred approximation technique as described in Section 6.3.4. 

 

6.4.1. High-Order Degree Method 

 

Linear interpolation can also be categorised as a first-degree polynomial 

interpolation, because it merely involves two points in constructing a straight line in 

order to approximate a given function f. Therefore, whenever the constructed line 

passes through more than two locations, it can be defined as a polynomial 

interpolation of degree greater than one, or a so-called high-order degree 

interpolation procedure. For a more precise explanation, an example of the 

mathematical expression illustrated in [81, 85] is used and the generalisation of the 

equation is based on the Lagrange method, following the analysis presented in 

Section 6.3.4.  

It is first assumed that p(r) approximates f(r) at n + 1 points which can be 

signified as at r = r0, r = r1, ..... , r = rn. Whenever n > 1, there will be more than two 

interpolating points and thus the conditions of a high-order degree interpolation 

process are met. From the mathematical function of the Lagrange format shown in 

equation (6.2), the polynomial p can be re-written as: 
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This leads to the general form of function S: 
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Similarly for equation (4.6) it can be summarised as: 
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From this it can be seen that, for each order of the polynomial interpolator, one 

multiplier and one adder are needed. As the number of the order is increased, there 

will potentially be a huge impact upon the hardware area and delay through 

additional multipliers which are connected in series, and possibly lookup tables too.  

For these reasons and in order to maximise hardware performance, the non-

linear interpolation technique suggested in the ELM is more appropriate, where the 

multiplication process for each polynomial is executed in parallel. Moreover, the 

result of the multiplication can be rearranged so that it can be accumulated in a chain 

of carry-save addition stages, hence potentially improving the execution delay in the 

system.  

 

6.4.2. Error Correction Algorithm 

 

The development of an error correction algorithm, as shown in [6], is built through 

the combined effect of linear interpolation together with an algorithm specially 

defined to correct approximation error. The details of this method are illustrated in 

Section 4.2.1. From initial observations in Table 4-3 and 6-4, it is obvious that far 

fewer total bits are involved when applying this technique compared to the linear 

interpolation with the same approximation format as in the Taylor procedure. If this 

technique is incorporated with Lagrange interpolation, it may be expected that the 

size of the lookup tables required can be significantly reduced even further. 
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6.4.2.1. Implementation of Error Correction Algorithm with Lagrange 

Interpolation 

 

Despite being chosen for implementation with the Lagrange interpolation as a result 

of the analysis in Section 6.3.4, indeed the error correction algorithm can also be 

applied with any other linear interpolator provided that the maximum error within 

the interval remains proportionately equivalent throughout all regions. This is to 

ensure that the P table can be reused at each interval whilst computing the error 

correction process. Based on p(r) as in equation (6.3), incorporating the error 

correction algorithm with the linear Lagrange interpolation yields the following 

approximating function:  
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Through an implementation of the Lagrange format, the contents of the P and 

E tables as originally used in the ELM ALU unit consequently need to be replaced. 

This is merely due to the difference in the derivation of the maximum error in the 

Lagrange approach which occurs at the midpoint of each subinterval. Table 6-5 

tabulates the error simulation results for LNS addition and subtraction based upon a 

combination of linear Lagrange interpolation together with an error correction 

algorithm as shown in equation (6.11). Meanwhile, the worst-case error of the 

system is plotted in Figure 6-12.  

In practice, the shaded row in Table 6-5 is the most suitable arrangement to be 

selected because it uses less total storage compared to the other combinations. 

However, the required size for the P table is double that previously implemented in 

 

error correction algorithm 
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Table 6-5 : Error of Lagrange interpolation using error correction algorithm. 
 

Parameters ADD SUB Worst 
Case  

F,D,E 
Sizes P size Guard  

Bits e'min rel e'max rel e'min rel e'max rel erel 

64 512 5 -1.1474 +1.1674 -2.1395 +2.1157 2.1395 

128 512 5 -0.5382 +0.5604 -0.8017 +0.7996 0.8017 

256 512 5 -0.3912 +0.4161 -0.4688 +0.4647 0.4688 

512 512 5 -0.3677 +0.3812 -0.3949 +0.4208 0.4208 

1024 512 5 -0.3677 +0.3790 -0.3792 +0.4058 0.4058 

64 1024 5 -0.7381 +0.7548 -1.2730 +1.2462 1.2730 

128 1024 5 -0.4404 +0.4673 -0.5901 +0.5942 0.5942 

256 1024 5 -0.3680 +0.3932 -0.4185 +0.4298 0.4298 

512 1024 5 -0.3677 +0.3792 -0.3835 +0.4121 0.4121 

1024 1024 5 -0.3677 +0.3790 -0.3792 +0.4058 0.4058 

64 2048 5 -0.5393 +0.5537 -0.7833 +0.8566 0.8566 

128 2048 5 -0.3920 +0.4136 -0.4764 +0.4682 0.4764 

256 2048 5 -0.3677 +0.3824 -0.3940 +0.4208 0.4208 

512 2048 5 -0.3677 +0.3792 -0.3791 +0.4121 0.4121 

1024 2048 5 -0.3677 +0.3790 -0.3792 +0.4058 0.4058 

 

the ELM. In order to prevent such a bulky size for a single memory in the system, 

therefore the other combination is taken into consideration. As illustrated in Figure 

6-12, when F, D and E tables at 256 words, and P table at 512 words, its worst-case 

error still within FLP limit of 0.5 LSB. Consequently, this table arrangement, as 

bolded in Table 6-5, has been closely examined in the next section as to look for 

potential improvement in the total storage of the interpolator architecture. It is 

expected that the improved version should need small enough lookup tables to be 

conveniently synthesised rather than using the explicit ROM elements adopted in the 

ELM design.   
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Figure 6-12 : Worst-case error of Lagrange interpolation using error correction 

algorithm. 

 

6.5. Improvement of Non-linear Lagrange Interpolation 
 

Several modifications are introduced in this section in order to further reduce the 

total table size needed when performing non-linear Lagrange interpolation. The first 

solution emphasises the possibility of reducing total storage through partitioning the 

intervals before the maximum error values stored in the E table can be shared 

between adjacent subintervals. Meanwhile, another technique is presented which 

minimises the size of lookup tables particularly in the region -32 < r < -16.  

 

6.5.1. Partitioning the Intervals 

 

Theoretically, in order to minimise the error characteristics of non-linear Lagrange 

interpolation, the p(r) can actually be partitioned into a number of subintervals, for 
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example two, as portrayed in Figure 6-13. Then each subinterval can be individually 

approximated by the interpolation polynomial. This type of approximation is 

normally known as a piecewise polynomial, sometimes called a spline-based format. 

In practice, to ensure that each subinterval has sufficiently small maximum error, the 

subintervals are divided into an equal space for each interval as described in Figure 

6-13.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 6-13 : Partitioning the interval based on Lagrange interpolation. 

 

From the simulation of this piecewise polynomial approach based on non-

linear Lagrange interpolation, one interesting fact is discovered. As can be observed 

in Figure 6-14, the maximum error stored in the E table for the first subinterval, 

max1, appears to be almost equivalent to the maximum error in the second 

subinterval, max2, which is kept in the other E table. Although the graph plotted in 

Figure 6-14 is only based on the subtraction function in the region -2 < r < -1 with E 

tables set at 128 words, yet similar conditions occur across every region for both 

addition and subtraction operations. Consequently the E table can be shared between 

r 

y 

Lagrange Approximation 

                    rn+1                 rn+1/2                      rn      

f(r) 

Approximation Error 

max1 max2 

p(r) 
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adjacent subintervals, hence reducing the total storage required for the LNS addition 

and subtraction unit.  In order to verify this suggested arrangement of the E table, 

Table 6-6 displays the error simulation results if the E table is shared at every 

interval while performing LNS addition and subtraction using non-linear Lagrange 

interpolation.  
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Figure 6-14 : Maximum errors of two adjacent subintervals when executing 

subtraction in the region -2 < r < -1. 

 

From Table 6-6 it is apparent that the preferred combination for the lookup 

tables is a 512 words P table with 256 intervals for F and D tables. For the E table 

entries, subtractions now require 128 words per region with only 64 words for 

additions. A most significant benefit of this table arrangement is that all the tables 

are individually small enough to be conveniently synthesised in logic, and therefore 

the total execution delays in memory can be dramatically reduced. Nonetheless, the 

advantage of a reduction in table size comes at the expense of increasing the number 

of guard bits from five to six.    
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6.5.2. Minimising the Lookup Tables 

 

Another alternative that may help is to minimise the sizes of the tables, especially in 

the region that asymptotically approaches the essential zero condition. Referring to 

Figure 4-1, it is clear that whenever in the range -32 < r < -16, the addition and 

subtraction functions are very close to the zero line. Thus, the table sizes associated 

with this region can potentially be decreased due to the fact that certain parts of the 

contents of the tables will be packed with either zeroes or several repeated values. 

Considering only the region -32 < r < -16, Table 6-7 presents the error simulation 

results from various table formats, taking into account the concepts discussed earlier 

in Section 6.5.1.  

Throughout the simulation of cases in the range r > -16, it is assumed that the 

sizes of the F, D and E tables remain the same as in the proposal in Table 6-6 where 

F and D are permanently set at 256 words with 128 and 64 intervals of the E tables 

for subtraction and addition respectively. The P table is also fixed at 512 words, and 

a six guard bits format is adopted. Evidently, the lookup tables involved in the 

region -32 < r < -16 can be minimised to only 32 words at each of the F, D and E 

tables, as depicted in Table 6-7. Although a minor development, this is important 

because it helps to further reduce the total size of the memory space needed. 

 

6.5.3. Design Summary 

 

As outlined in Table 6-8, the total bits required by the LNS system is 183,296 when 

the improvements illustrated in Sections 6.5.1 and 6.5.2 are applied. With the 

maximum size of the tables involved only containing 512 words, it seems that all the 

tables can individually be synthesised in logic instead of employing real ROM 

libraries. Elimination of these ROM elements in the LNS system would undoubtedly 

yield a faster and more compact result. Even with two extra guard bits in addition to 

the four in the ELM in order to sustain accuracy within the FLP limit will not 

actually have much impact on the total area of the design. 
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Table 6-6 : Error of non-linear Lagrange interpolator based on the E table sharing 

format. 

 

Operation F,D 
sizes 

E 
size 

P 
size 

Guard  
Bits e'min rel e'max rel 

Add 

64 32 512 6 -4.4126 +1.1674 

128 64 512 6 -0.8761 +0.5538 

256 64 512 6 -0.4623 +0.4527 

256 128 512 6 -0.4237 +0.4019 

512 256 512 6 -0.3626 +0.3696 

64 32 1024 6 -4.3834 +0.7597 

128 64 1024 6 -0.8610 +0.4513 

256 128 1024 6 -0.4177 +0.3808 

512 256 1024 6 -0.3611 +0.3654 

64 32 2048 6 -4.3752 +0.5537 

128 64 2048 6 -0.8577 +0.4034 

256 128 2048 6 -0.4158 +0.3679 

512 256 2048 6 -0.3611 +0.3654 

Sub 

64 32 512 6 -3.5814 +8.0620 

128 64 512 6 -0.8251 +1.3694 

256 128 512 6 -0.4604 +0.4987 

256 128 512 5 -0.4688 +0.5559 

512 256 512 6 -0.3858 +0.3916 

64 32 1024 6 -3.0338 +7.9901 

128 64 1024 6 -0.6874 +1.3286 

256 128 1024 6 -0.4079 +0.4834 

512 256 1024 6 -0.3720 +0.3916 

64 32 2048 6 -2.6568 +7.9805 

128 64 2048 6 -0.6323 +1.3240 

256 128 2048 6 -0.3824 +0.4821 

512 256 2048 6 -0.3673 +0.3916 
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Table 6-7 : Error of non-linear Lagrange interpolator in the region -32 < r < -16. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.6. Alternative Method: Minimax Interpolation 

 

Since the minimax approximation is among the best techniques for minimising the 

maximum relative error in each region, Fu et al. in [8, 28] adopted it as a solution to 

interpolate F(r), which they then implemented in an FPGA-based design. This is not 

directly comparable to the work in this thesis because equations (2.12) and (2.13) are 

rearranged to bring r onto the positive axis where the curves have different 

properties. Whereas in our work, the co-transform is applied to subtractions in the 

range r > −1, Fu has made special arrangements across a region four times this size, 

i.e. for r < 4. These subtractions are performed by decomposing F(r) into two  

Operation 
Region -32 < r < -16 

e'min rel e'max rel 
F Size D Size E Size 

Add 

128 128 128 -0.4623 +0.4527 

128 128 64 -0.4623 +0.4527 

64 64 64 -0.4623 +0.4527 

64 64 32 -0.4623 +0.4527 

32 32 32 -0.4623 +0.4527 

32 32 16 -0.8164 +0.4527 

16 16 16 -0.5742 +0.6297 

16 16 8 -3.0960 +0.6297 

Sub 

128 128 128 -0.4604 +0.4987 

128 128 64 -0.4604 +0.4987 

64 64 64 -0.4604 +0.4987 

64 64 32 -0.4604 +0.4987 

32 32 32 -0.4604 +0.4987 

32 32 16 -0.4604 +0.8225 

16 16 16 -0.6198 +0.5915 

16 16 8 -0.6198 +3.0880 
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Table 6-8 : Total storage using the improved interpolator. 
 

 Region Table Organisation Wordlength Total 
Bits 

Co-
transform -1 < r < 0 

F1 128 words 32-bit 4,096 

F11 256 words 33-bit 8,448 

F12 256 words 34-bit 8,704 

Interpolation 

-16 < r < -1 

F Sub 256 words × 4 30-bit 30,720  

D Sub 256 words × 4 29-bit 29,696 

E Sub 128 words × 4 11-bit 5,632 

-16 < r < 0 

F Add 256 words × 5 30-bit 38,400  

D Add 256 words × 5 28-bit 35,840  

E Add 64 words × 5 8-bit 2,560 

-32 < r < -16 

F Add 32 words 30-bit 960 

F Sub 32 words 30-bit 960 

D Add 32 words 28-bit 896 

D Sub 32 words 29-bit 928 

E Add 32 words 8-bit 256 

E Sub 32 words 11-bit 352 

-32 < r < 0 P 512 words 29-bit 14,848 

Total 183,296 

 

separate functions, both easier to interpolate than F(r) itself. On the other hand, he 

was able to exploit the equivalence r ≈ F(r) at large r, where the need for 

interpolation was obviated. Over the remaining regions, an adaptive technique 

selected the most optimal intervals for the application of a minimax algorithm; for 

the addition function only 416 intervals were required to cover the interpolated range. 

However, the design incorporates an additional interpolator and tables for evaluation 

of the auxiliary functions involved in subtraction. It is particularly suitable for use on 

an FPGA where multiplication hardware is abundant, but it is difficult to extrapolate 

an estimate of its size or performance in a silicon implementation. Accuracy is 

within FP limits throughout. 
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With the aim to evaluate the effectiveness of the minimax approximation over 

the improved Lagrange interpolation as mentioned in Section 6.5, a second-order 

minimax-based interpolator has been developed. These interpolators are basically 

similar in complexity. The F, D and E tables of the improved Lagrange interpolator 

are replaced by tables (calculated by Maple software) of the 0th, 1st and 2nd order 

coefficients, and the P table by a multiplier that forms the square of its argument. As 

depicted in Table 6-9, the most suitable arrangement for each partition is at 128 

intervals, for addition and subtraction operations, while the range shifter for 

subtraction is deployed over the range −1 < r < 0.  

The total storage based on the minimax arrangement is shown in Table 6-10. 

When compared with the improved Lagrange scheme which requires 183,296 bits, 

this is now only 145,408 bits. Nevertheless, due to the fact that the multiplier is used 

in lieu of the P table, a lesser improvement in terms of speed will be expected when 

the design is synthesised. This will be evaluated next in the analysis section. 

 

Table 6-9 : Error of the minimax interpolation. 
 

Parameters ADD SUB Worst 
Case  

F,D,E 
Sizes 

Guard  
Bits e'min rel e'max rel e'min rel e'max rel erel 

64 8 -0.5071 +0.4418 -0.5235 +0.5172 0.5235 

128 8 -0.4350 +0.4245 -0.4405 +0.4381 0.4405 

256 8 -0.4303 +0.4245 -0.4402 +0.4259 0.4402 

 

6.7. ELM with the New Interpolator 

 

For fair justification, it is now necessary to evaluate the new interpolators together 

with the original co-transformation as presented in the ELM design. Therefore, this 

section provides an analysis in terms of worst-case error and total tables  



 112

 

Table 6-10 : Total storage using the minimax arrangement. 
 

 Region Table Organisation Wordlength Total 
Bits 

Co-
transform -1 < r < 0 

F1 128 words 34-bit 4,352 

F11 256 words 35-bit 8,960 

F12 256 words 36-bit 9,216 

Interpolation 

-16 < r < -1 

F Sub 128 words × 4 33-bit 16,896 

D Sub 128 words × 4 33-bit 16,896 

E Sub 128 words × 4 31-bit 15,872 

-16 < r < 0 

F Add 128 words × 5 31-bit 19,840 

D Add 128 words × 5 30-bit 19,200 

E Add 128 words × 5 28-bit 17,920 

-32 < r < -16 

F Add 128 words 30-bit 3,968 

F Sub 128 words 30-bit 4,224 

D Add 128 words 28-bit 3,840 

D Sub 128 words 29-bit 4,224 

Total 145,408 
 
 

required when the improved Lagrange and minimax interpolators are implemented 

in conjunction with the first-order co-transformation.  

 

6.7.1. Improved Lagrange Interpolation 

 

Using a similar interpolation concept as described in Section 6.5 but this time in 

combination with the first-order co-transformation, again the F and D tables are also 

best implemented in 256 words for addition and subtraction functions. While the P 

table requires 512 words, the E table for subtractions need 128 intervals and 64 

words for additions. Table 6-11 summarises the error of the combined architecture. 

It has to be noted that in the region -32 < r < -16, the F, D and E tables are 
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permanently set to 32 words throughout the analysis. With this arrangement, the 

total storage is 315,776 bits as depicted in Table 6-12.  

 

Table 6-11 : Error of ELM with improved Lagrange interpolator. 

 

Operation F,D 
sizes 

E 
size 

P 
size 

Guard  
Bits e'min rel e'max rel 

Add 

64 32 512 6 -4.4126 +1.1674 

128 64 512 6 -0.8761 +0.5538 

256 64 512 6 -0.4623 +0.4527 

256 128 512 6 -0.4237 +0.4019 

512 256 512 6 -0.3626 +0.3696 

64 32 1024 6 -4.3834 +0.7597 

128 64 1024 6 -0.8610 +0.4513 

256 128 1024 6 -0.4177 +0.3808 

512 256 1024 6 -0.3611 +0.3654 

64 32 2048 6 -4.3752 +0.5537 

128 64 2048 6 -0.8577 +0.4034 

256 128 2048 6 -0.4158 +0.3679 

512 256 2048 6 -0.3611 +0.3654 

Sub 

64 32 512 6 -2.1395 +8.0491 

128 64 512 6 -0.7862 +1.3576 

256 128 512 6 -0.4749 +0.4904 

512 256 512 6 -0.4064 +0.3775 

64 32 1024 6 -1.2926 +7.9861 

128 64 1024 6 -0.5901 +1.3173 

256 128 1024 6 -0.4195 +0.4721 

512 256 1024 6 -0.4027 +0.3742 

64 32 2048 6 -0.8003 +7.9660 

128 64 2048 6 -0.4753 +1.3128 

256 128 2048 6 -0.4027 +0.4678 

512 256 2048 6 -0.4027 +0.3739 
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Table 6-12 : Total storage of ELM with improved Lagrange interpolator. 

 

 Region Table Organisation Wordlength Total 
Bits 

Co-
transform -0.5 < r < 0 

F1 2048 words 34-bit 69,632 

F2 2048 words 33-bit 67,584 

Interpolation 

-16 < r < -0.5 

F Sub 256 words × 5 30-bit 38,400  

D Sub 256 words × 5 29-bit 37,120 

E Sub 128 words × 5 11-bit 7,040 

-16 < r < 0 

F Add 256 words × 5 30-bit 38,400  

D Add 256 words × 5 28-bit 35,840  

E Add 64 words × 5 8-bit 2,560 

-32 < r < -16 

F Add 32 words 30-bit 960 

F Sub 32 words 30-bit 960 

D Add 32 words 28-bit 896 

D Sub 32 words 29-bit 928 

E Add 32 words 8-bit 256 

E Sub 32 words 11-bit 352 

-32 < r < 0 P 512 words 29-bit 14,848 

Total 315,776 
 
 

6.7.2. Minimax Interpolation 

 

When applying the co-transformation scheme as outlined in the ELM design 

together with the minimax interpolation, the minimum size of F, D and E tables 

required to perform addition and subtraction is at 128 words as shown in Table 6-13. 

Consequently, the storage requirement of the LNS system based on this format is 

280,704 bits as reported in Table 6-14.  
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Table 6-13 : Error of ELM with minimax interpolator. 
 

Parameters ADD SUB Worst 
Case  

F,D,E 
Sizes 

Guard  
Bits e'min rel e'max rel e'min rel e'max rel erel 

64 8 -0.5071 +0.4418 -0.5235 +0.5052 0.5235 

128 8 -0.4350 +0.4245 -0.4405 +0.4261 0.4405 

256 8 -0.4303 +0.4245 -0.4402 +0.4139 0.4402 
 
 
 

Table 6-14 : Total storage of ELM using the minimax arrangement. 
 

 Region Table Organisation Wordlength Total 
Bits 

Co-
transform -0.5 < r < 0 

F1 2048 words 35-bit 71,680 

F2 2048 words 36-bit 73,728 

Interpolation 

-16 < r < -0.5 

F Sub 128 words × 5 33-bit 21,120 

D Sub 128 words × 5 33-bit 21,120 

E Sub 128 words × 5 31-bit 19,840 

-16 < r < 0 

F Add 128 words × 5 31-bit 19,840 

D Add 128 words × 5 30-bit 19,200 

E Add 128 words × 5 28-bit 17,920 

-32 < r < -16 

F Add 128 words 30-bit 3,968 

F Sub 128 words 30-bit 4,224 

D Add 128 words 28-bit 3,840 

D Sub 128 words 29-bit 4,224 

Total 280,704 
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6.8. Comparison Analysis: First-order and Second-order Co-

transformation with the New Interpolator 

 

As described in Figure 6-15,  implementing the improved Lagrange and minimax 

interpolation schemes in conjunction with the first-order co-transformation would 

reduce total storage to 89% and 79% respectively, of the former size in the original 

ELM. However, applying the improved Lagrange together with the second-order co-

transformation has significantly reduced the total bits to merely 183,296 bits, 

representing savings to 51% of the ELM design. Therefore, merging the first-order 

co-transformation with either improved Lagrange or minimax interpolator is still not 

really significant as those benefiting from the second-order co-transformation.  
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Figure 6-15 : Storage requirement for 32-bit LNS addition and subtraction. 

 

On the other hand, although halving the size of tables when applying a 

minimax interpolation scheme together with the second-order co-transformation, the 

reduced storage is not so significant in comparison with using the improved 

Lagrange approach as illustrated in Figure 6-15. This is due to the fact that 8 guard 
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bits are required as to achieve desired accuracy, and therefore the total storage of co-

transform tables have now also increased as to accommodate the additional guard 

bits. Furthermore, the E tables, which previously held small values, now hold full-

size coefficients. Thus, when compared with the improved Lagrange, the total 

storage based on the minimax arrangement has been reduced from 183,296 bits to 

only 145,408 bits. 

In terms of speed, the implementation of the improved Lagrange scheme has 

shown to be able to provide the shortest delay in executing addition and direct 

subtraction as presented in Figure 6-16. Based on the constrained synthesis of this 

arrangement, the delay has been reduced to 60% of the delay in the constrained 

synthesis of the ELM. The reduction in delay does actually gain from the benefit that 

all the tables are now small enough to be conveniently synthesised in logic, which 

then may yield improvements in the critical speed path. However, the combination 

of the improved Lagrange with the second-order co-transformation has caused a 

slight increase in delay when subtractions using the co-transformation due to 

applying the interpolator twice. Delay increases in approximately by 12% of the 

delay in the ELM.  
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Figure 6-16 : Delay times for 32-bit LNS addition and subtraction. 
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In contrast, the minimax interpolator does not compare so favourably in terms 

of speed. It can be seen that its delay is approximately 3 ns more than that of the 

improved Lagrange interpolator when computing addition and direct subtraction. 

This is due to the inclusion in the critical path of the extra multiplier that forms the 

quadratic term. However, this multiplier can also be replaced with the dedicated 

squaring circuit as to reduce the delay but studies [86, 87] have shown that it can 

only reduce it by up to 25%. As this would amount to less than a nanosecond in this 

case it is unlikely to be worth the effort involved in designing it. Using the improved 

Lagrange interpolator which incorporates the error correction algorithm, on the other 

hand, is using the P table as to replace this extra multiplier. With the P table is 

independently designed based on the functions of nine terms and can be accessed in 

parallel with other lookup tables, therefore a great reduction in delay can be 

achieved. Consequently as can be observed in Figure 6-16, using the minimax 

interpolator in conjunction with the second-order co-transformation, it appears to be 

the slowest in performing subtractions using the co-transformation. 

From the perspective of the area-delay product based on the subtractions using 

co-transformation, when the first-order co-transform design combined with the 

improved Lagrange or minimax interpolator, the new area-delay product is 57.3% or 

68.7% respectively, of its value in the ELM. For combination between minimax 

interpolator and the second-order co-transformation, the new area-delay product is 

64.4%. However, the lowest area-delay product is obtained when using the improved 

Lagrange in conjunction with the second-order co-transformation, whereby only 

57.1% of the value in the ELM. Thereby, obviously it can be seen that the most 

suitable architecture of the LNS addition and subtraction can be constructed by 

merging the second-order co-transformation approach with the improved Lagrange 

interpolator.  
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6.9. Summary 

 

Previously in the ELM design, the Taylor approximation method was applied during 

the interpolation process. However, the comparison analysis based on linear 

interpolation shows that a remarkable reduction in total storage, approximately 50%, 

can be gained when using Lagrange and modified Lagrange approximations. 

Furthermore, a very significant improvement in error characteristics has been 

achieved when implementing either Lagrange or modified Lagrange concept 

compared to the Taylor approach. In fact, applying Lagrange scheme is more 

attractive than modified Lagrange due to its simplicity in arrangement.  

Improving the Lagrange approach using the non-linear interpolation has 

revealed further reduction in the size of the total tables. Through partitioning the 

interval into a number of subintervals, the E table can be shared between adjacent 

subintervals. Hence, only 128 words and 64 words are needed for the E tables in 

subtraction and addition respectively. Moreover the tables involved in the region      

-32 < r < -16 can be minimised to 32 words because the curves for addition and 

subtraction functions in this particular region almost approach the essential zero 

condition. An alternative method using minimax interpolation has also been 

examined. Although further reduction in total storage can be achieved, it suffers in 

terms of speed. 

Ultimately, the results based on the comparative analysis conducted have 

indicated that the implementation of the improved interpolator together with the 

second-order co-transformation in the LNS addition and subtraction is the best 

arrangement. 
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CHAPTER 7 

7. Logarithmic Number System Arithmetic Unit 

 

7.1. Introduction 

 
As concluded in Chapter 6, using the improved Lagrange interpolator in conjunction 

with the second-order co-transformation would produce a great improvement on the 

original ELM design. Although the improved Lagrange approach offers a modest 

reduction in area, it has a significant reduction in delay. The second-order co-

transformation, on the other hand, offers a more substantial reduction in area, but is 

dependent upon a reduction in delay which the improved interpolator provides. This 

means that both techniques are needed to deliver a worthwhile advance for the new 

ALU system. Therefore, Chapter 7 outlines the details of the design and synthesis 

processes for the complete ALU system based on the new techniques as well as 

analysing the system based on comparisons with the ELM and FLP units. 

An analysis of the system shows the effectiveness of the proposed LNS design 

compared with the ELM. It is expected that the new LNS arithmetic unit will be able 

to operate at the shortest time when performing addition and direct subtraction 

operations, as well as requiring a lower total silicon area in comparison with the 

ELM. Meanwhile, the design is also evaluated against two FLP arithmetic units built 

using a similar process technology, and the results will also demonstrate the 

suitability of the new LNS design in future DSP chips. 

 

7.2. Arithmetic Unit Design 

 

The simplest operations in an LNS arithmetic unit design are multiplication and 

division. The hardware implementation of these numeric functions is a direct 

translation from the algorithms into corresponding functional modules. However, the 
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more intricate addition and subtraction operations require an additional 

understanding of physical requirements during the implementation stage. This 

section thus presents the practical hardware solutions for the four basic arithmetic 

operations of the LNS system which correspond with their fundamental algorithms. 

Figure 7-1 illustrates the conceptual arrangement of the LNS arithmetic unit.      

 

 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 

Figure 7-1 : Conceptual arrangement of the LNS arithmetic unit. 

 

7.2.1. Multiply/Divide Unit 

 

As shown in equations (2.8) and (2.9), the multiplication and division functions can 

be executed simply using FXP addition and subtraction units respectively. Thus, one 

possible hardware implementation for these operations is given in Figure 7-2. By 

adding the XOR (exclusive-OR) gate to the full adder circuit, addition and 

subtraction can be computed using a single hardware configuration. Consequently, 
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this requires the use of fewer circuits than would be required for separate add and 

subtract functions. Conceptually, whenever in the LNS multiplication mode, the 

operand = ‘0’, and the outputs of the XOR gate will be the same as the B inputs. In 

this situation, the hardware performs addition process of the two numbers. In 

contrast, subtraction is accomplished by setting the operand to logic ‘1’ which 

therefore can be used to calculate the LNS division operation. In order to determine 

the sign bits, another XOR gate is inserted into the architecture and similarly a 

further XOR gate is used to set an overflow flag.  

 

 

 

 

 

 

 

 

 

 

Figure 7-2 : Multiply/Divide hardware implementation. 
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The add/subtract unit requires substantially more complicated functions to be 
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operation often demands a huge table size in order to maintain the accuracy of the 
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size needed for both addition and subtraction operations. The block diagram in 

Figure 7-3 depicts the hardware implementation of the LNS add/sub unit.  

Assuming that LNS subtraction requires a complete co-transformation 

procedure, the entire unit in Figure 7-3 can be implemented with a worst-case delay 

of three ROM accesses, two FXP multiplications, four FXP additions with 2-inputs, 

and  three FXP additions with 3-inputs. There are also other delays in supporting the 

logic and multiplexors. On the other hand, the critical speed path of LNS addition 

merely includes an ROM access, an FXP multiplication, and an FXP full adder with 

2-inputs and 3-inputs. This is due to the fact that only the interpolation module is 

needed to perform the function.  

It can be seen that the speed of the system predominantly relies on three main 

components, namely memory, the FXP full adder and the FXP multiplier. In order to 

maximise the speed of the LNS addition and subtraction operation, the lookup tables 

are now small enough to be individually synthesised, rather than using ROM 

libraries as in the ELM design. In addition, the implementation of the high speed 

FXP adder and multiplier in the system also contributes to minimising the overall 

delay. In this respect, a combination of the carry-lookahead and carry-select adder 

(CLA/CSLA) together with Booth-Wallace multiplier are selected. 

  

7.3. Hardware Implementation of a 32-bit LNS System 

 

With reference to Figure 7-3, three components tend to dominate the LNS design in 

the sense of timing and floor planning. Adopting dedicated ROM libraries into a 

design often introduces major complications in terms of the speed and area of the 

system. Thus, elimination of these elements should yield an increase in performance. 

Since only three small lookup tables are involved in this LNS design, 128, 256 and 

512 words, it would be more realistic to use synthesised ROM during the practical 

implementation rather than real ROM libraries. Consequently, the system is capable 

of yielding faster and more compact results.  
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Figure 7-3 : The hardware implementation of the LNS add/sub unit. 
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The timing required to propagate the carry signal to output during the FXP 

addition operation could also contribute to the overall delay of the LNS system. 

Therefore, careful selection of the FXP adder architecture is needed in order to 

minimise the worst-case delay in the design. In this case, the CLA/CSLA adder [88, 

89] has been adopted because it is able to operate effectively in reducing delay when 

performing the FXP addition process, and is therefore implemented in the hardware 

design of the LNS architecture.  

For the FXP multiplication operation, two multiplier units are required in 

parallel to compute part of the interpolation process in the LNS system. As explicitly 

reported in [90], the combination of the Booth algorithm and the Wallace tree 

structure give the best speed and total device area in comparison with the other types 

of multipliers. Thereby in the case of the E × P multiplication process involving    

12-bit by 29-bit inputs, a radix-4 modified Booth algorithm was employed to 

generate partial products before applying the Wallace tree structure to compute the 

final result. Whereas for the D × δ process which requires 29-bit by 26-bit 

multiplication operation, a higher radix multiplier is needed as to reduce the partial 

product rows commensurately. In this case a radix-8 Booth multiplier with Wallace 

tree was chosen.  

 

7.4. Synthesis Results 

 

The proposed LNS arithmetic unit based on the architecture described in Figure 7-3 

was synthesised using Faraday 0.18 µm CMOS technology, and its area and delay 

metrics are tabulated in Table 7-1. When the design is constrained for maximum 

speed, the delay in addition and direct subtraction functions is at 7.10 ns. 

Nonetheless, for the small proportion of subtractions that require co-transformation 

procedure, particularly in the range of r > -1, the worst-case delay is approximately 

double the delay of addition and direct subtraction, at 14.79 ns. This is due to the re-

use of the interpolator whenever r is in the region above -1. A delay of the 32-bit 

CLA/CSLA design is reported for multiplication and division, at 1.16 ns, since these 
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operations can only be computed using a FXP adder unit. The total silicon area of 

this LNS would be 599,871 µm2. 

 

Table 7-1 : Delay times and total device area of 32-bit LNS arithmetic unit. 

 

Function 
32-bit LNS Arithmetic Unit 

Delay (ns) Area (µm2) 

Add / Sub 7.10 
589,357 

Sub (Co-transform) 14.79 

Mul / Div 1.16 10,514 

  

7.5. Design Analysis 

 

For an analysis comparable with the data presented for the MONARCH and DIVA 

FLP implementations, all the results described below for the ELM are based on the 

constrained synthesis. From the graph in Figure 7-4, the critical speed path of the 

new LNS shorter than that in the original ELM when executing addition or direct 

subtraction, a reduction from 11.74 ns to 7.10 ns. The delay has also been reduced 

by 4.18 ns and 11.7 ns of the delays in the MONARCH and DIVA respectively. 

Given that multiplication can be computed solely using FXP addition, the delay 

generated in the new LNS therefore only at 1.16 ns, in which 10% of MONARCH 

delay and 6% of DIVA delay. Similarly, division operation completes with better 

delay than in the MONARCH and DIVA, a reduction from 33.83 ns and 45.11 ns to 

1.16 ns respectively. In the co-transformation involved during subtraction, there is a 

marginal increase in the delay in the new LNS from 13.15 ns as initially in the ELM 

to 14.79 ns. 
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Figure 7-4 : Delays in nanoseconds and cycles of four different arithmetic 

implementations. 

 

Nevertheless, the re-use of the interpolator in the new LNS is unlikely to be of 

practical significance in a microprocessor because operations would be fitted into a 

multiple of some clock cycles. At, say 266 MHz, addition and direct subtraction in 

the new LNS could be calculated in two cycles (7.52 ns), and multiplication and 

division in a single cycle (3.76 ns), whereas in subtractions using co-transformation 

four cycles (15.04 ns) are required. For the MONARCH and DIVA FLP formats, the 

numbers of cycles involved are much higher than the new LNS, at least three cycles 

for addition and subtraction, and more than three cycles for multiplication and 

division operations.  

In terms of silicon area, it can be observed from Figure 7-5 that the area of the 

new LNS, including that of the multiplicative operators, has been reduced from 

915,457 µm2 to 599,871 µm2, or 65% of the ELM design. In addition, the area of the 

new LNS is also slightly smaller than that of the MONARCH and only 24% larger 

than the area in the DIVA.  
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Figure 7-5 : Silicon areas (µm2) in 32-bit arithmetic implementations. 

 

Judging by this comparative analysis, the new LNS has been shown to be 

capable of executing addition and direct subtraction with less delay than the ELM 

and the other two FLP implementations. Much faster speeds have also been achieved 

when performing multiplication and division using the new LNS arithmetic in 

comparison with the MONARCH and DIVA. However, there is a slight increase in 

the delay of co-transformed subtractions when compared with the ELM. 

Nevertheless, less silicon area is consumed in the new LNS when compared with the 

ELM and MONARCH.   

 

7.6. Summary 

 

This chapter has described the hardware implementation of the new LNS based on a 

32-bit system in detail. When synthesising the new LNS arithmetic in 0.18 µm 

technology, the critical delay path in computing addition and direct subtraction took 

7.10 ns and only 1.16 ns for multiplication and division. In the event that co-
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transformation was required for subtraction, the worst-case delay was 14.79 ns. The 

total area for the complete LNS architecture was 599,871 µm2.  

In a controlled comparison with the previously published ELM design, the 

total delay in the new LNS system represented a reduction to 60% when executing 

addition and direct subtraction. A slight increase in delay occurred in co-transformed 

subtractions, by 12% of the delay in the ELM. In terms of silicon area, the 

implementation of the new LNS has been shown to be more cost effective, at 65% of 

the total area consumed in the ELM. The new area-delay product is 39% of its 

previous value in the ELM. 

When compared with the faster of the two FLP units, the MONARCH design, 

the proposed LNS addition and subtraction can be performed in 63% of the time 

taken in FLP. For multiplication and division, the delays in the new LNS system 

were only 10% and 3% respectively of those in the MONARCH. The new LNS unit 

has also been built with fractionally less silicon than MONARCH, a reduction from 

600,000 µm2 to 599,871 µm2. 
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CHAPTER 8 

8. Implementation with Long Word-length Number 

 

8.1. Introduction  
 

Throughout this thesis so far, the discussion of the LNS system has only been 

concerned with a 32-bit architecture. This is a direct consequence of the objective of 

the research to investigate a direct alternative to the IEEE single-precision FLP 

arithmetic unit, a standard 32-bit number system. However, for applications where 

longer precision is required so as to increase the accuracy of the system, the 32-bit 

LNS may need to be extended. It is known that if longer word-lengths are applied, 

significant increases in the number and size of tables may be required. Nevertheless, 

to date, there has been a lack of analysis in long format numbers, except by Chen et 

al. [91]. 

Therefore, this chapter describes a longer word-length LNS design in a 40-bit 

format. In order to reduce the sizes of lookup tables, particularly for the co-

transformation procedure, a third-order arrangement is introduced before the final 

results are computed using one of the interpolation techniques illustrated in Chapter 

6. The LNS design is also synthesised and analysed in terms of area and critical path 

delay, and a comparative analysis is performed against the standard 32-bit LNS 

design suggested earlier.   

In order to select either a long or short format representation, as indicated by 

Chester in [84], there is no criterion specified. This allows a designer freely to select 

and customise the number system according to the specific application. The format 

considered here has a 10-bit integer and 29-bit fraction.  
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8.2. The LNS System in a 40-bit Format 

 

Inspired by the suggested 32-bit LNS architecture as illustrated in previous chapters, 

the building block for 40-bit LNS addition and subtraction again consists of a 

combination of the co-transformation procedure and interpolation process. For 

multiplication and division, the same adder module, using the CLA/CSLA 

architecture, is applied although this time the input bits need to be extended to suit 

operand size. Throughout the analysis, six guard bits are inserted in the system so as 

to maintain accuracy within the FLP limit.  

Theoretically, by directly implementing a second-order co-transformation 

procedure in this 40-bit format to compute subtractions in the region -1 < r < 0, the 

fractional bits should be optimally partitioned into 9, 10 and 10 bits for the high, 

middle and low fields. Two lookup tables of 1024 words and one of 512 words of 

lookup tables are required during the co-transformation process. With only 7% of 

additive operators being subtractions with r > -1 [77], it seems impractical to 

implement such a large proportion of tables, approximately 2560 words, for only a 

small number of operations. Hence, third-order co-transformation is proposed to 

cater for the issue in the long format number, and the details of this are described in 

the next section. 

 

8.2.1. Third-order Co-transformation Procedure for LNS Subtraction 

 

The third-order co-transformation concept applies a similar approach as the second-

order format detailed in Section 5.3.1, applying coefficient k1 recursively.  

 

 

2i − 2j = (2i − 2j+k1) − ((2j − 2 j+k1+k11) − (2j+k1 − 2j+k1+k11)) 

= (2i − 2j+k1) − ((2j − 2 j+k1+k11) − (2j+k1 − 2j+k1+k11+k111) − 2j+k1+k11+k112)     (8.1) 

 

where,  
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2k111 + 2k112 = 1, i.e. k112  = log2 (1 − 2k111)                                          (8.2) 

 

The block diagram of the suggested third-order approach is shown in Figure 

8-1 together with the conceptual arrangement of bit partitioning in Figure 8-2. 

Conceptually analogous to the scheme presented in the second-order format, 

initially, index r1 is looked up from F1 table, containing F(r) for −1 < r < −∆1, 

where its value is guaranteed to fall on the nearest modulo-∆1 based on the 

calculation of coefficient k1. Then, index r11 which falls on the modulo-∆11 is 

approximated from the coefficient k11, and the resulting value of F(r11) is stored in 

the F11 table which contains F(r) for -∆1 < r < -∆11. With a similar number of bits 

as ∆11, the coefficient k111 is selected such that r111 falls on the modulo-∆111, and 

the value of its function, F(r111), is obtained from the F111 table which contains 

F(r) for –∆11 < r < -∆111. The final coefficient, k112, however, is directly retrieved 

from the F112 table indexed by k111, and it also occupies exactly the same number 

of bits as represented in ∆111.  

 Variables r1, k1, k11, r11, r111 and k111 are: 

 

 r1     = (( j – i ) DIV ∆1 ) – 1 ) × ∆1 = j + k1 – i                                              (8.3) 

 k1     = -((( j – i ) MOD ∆1 ) + ∆1 ) = i – j + r1                                               (8.4) 

 k11  = (( j – i ) MOD ∆11 ) = r11 – k1                                                           (8.5) 

 r11   = -((( j – i ) MOD ∆1 ) + ∆1 ) + (( j – i ) MOD ∆11 ) = k1 + k11          (8.6) 

 r111   = (( j – i ) MOD ∆11 ) + (-(( j – i ) MOD ∆111 )) = k11 + k111         (8.7) 

 k111  = -(( j – i ) MOD ∆111 ) = k11 – r111                                                 (8.8) 

 

For ease of subsequent explanation, equation (8.1) is numbered as follows: 
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          2i − 2j = (2i − 2j+k1) − ((2j − 2 j+k1+k11) − (2j+k1 − 2j+k1+k11+k111) − 2j+k1+k11+k112)           

 

  

 

 

 

 

Theoretically, subtractions 1, 11 and 111 are completed instantaneously without the 

need for lookup tables. In contrast, subtraction 112 is written as: 

 

        r112  =  k11 + k112 – F(k11 + k111) 

                             =  k11 + F(k111) – F(k11 + k111) 

                             =  k11 + log2 ((1 – 2k111) ÷ (1 – 2k11 + k111))                                  (8.9) 

 

This equation is identical to equation (5.12) for the second-order procedure, 

although this time with a different set of coefficients and therefore further analysis 

of this function is unnecessary. It is expected that the function will have similar 

characteristics as those discussed in Section 5.3.1. Subtraction 12 generates an 

index: 

 

    r12  =  k1 + F(k11 + k111) + F(r112) – F(k1+ k11) 

            =  k1 + F(k11 + k111) + F(k11 + k112 – F(k11 + k111)) – F(k1+ k11)   (8.10) 

 

Figure 8-3 depicts the value of r12 when r is in the region -2∆1 < r < -∆1, 

and the same pattern occurs for each ∆1 in every subinterval. In this illustration, the 

fractional part has been partitioned into low, middle1, middle2 and high-order fields 

of 5, 5, 5 and 14 bits respectively. It should be noted that in the repeated cases of  
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Figure 8-1 : Conceptual arrangement of the third-order co-transformation concept. 
 

 

 

 

 

 
Figure 8-2 : Bit partitioning scheme of the third-order format. 
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k11 = 0 and k111 = ∆111, r12 has a positive value. At this stage, the computation of 

F(r12) is always zero and therefore the points are omitted from the graph. Further 

description is now needed of the behaviour of r12 as r varies across the range of ∆1. 

First, consider the points at the left of the graph. At this leftmost subinterval,          

k1 < ∆11, and k1 + k11 = ∆11. As it moves towards to the left of this subinterval,   

k1 ≈ k111, and since k1 is small, r12 ≈ 0. However, in this particular subinterval, the 

value of the middle2 field is zero. Hence, the execution of the third-order format can 

be performed in the same way as presented for the second-order approach, where 

variable k111, r11, table F112 and F11 are analogous to the second-order k11, r11, 

table F12 and F11. Then, when in the subinterval of 2∆11, r12 is approximately -1, 

since k1 and k11 are now small enough and thus linear in behaviour. At this point, 

r12 is completed in the second interpolator before the j2 value is generated.  

 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 8-3 : Value of r12 for -2∆1 < r < -∆1. 
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r2 = j – i + F(k1 + kl1) + F(k1 + F(k11 + k111) + F(k11 + k112 –  

       F(k11 + k111)) – F(k1+ k11)) – F(r1)                                               (8.11) 

 

Once again, equation (8.11) is comparable with equation (5.13) in the second-order. 

Therefore, at all points, r2 is definitely lower than -1, and can be accomplished 

through the third stage of the interpolator as positioned in Figure 8-1.  

 Depending on the operands of i and j, the value of r2 typically falls in four 

different regions in the second-order arrangement. On the contrary, as a result of 

adding another table in the third-order concept, five regions have to be considered. 

In the first region, when j − i ≤ −1, the value of r2 is located in the linear region of F, 

so that F(r) can be executed directly using interpolation. Whilst in the region          

−1 < j − i < −∆1, r2 is computed based on the description mentioned above, which at 

the end always produces a maximum value of < -1. Consequently, F(r) can also be 

performed using interpolation. For −∆1 ≤ j − i < −∆11, the high-order field is 

occupied with zero bits, and hence F(r) is completed in the same manner as in the 

second-order format. In the fourth region, −∆11 ≤ j − i < −∆111, both high-order and 

middle1 bits are zero. F(r) is now accomplished using the first-order technique. 

Finally, F(r) is derived instantly from the F112 table when in the region             

−∆111 ≤  j − i < 0. 

 

8.2.2. Interpolation 

 

In terms of the interpolation procedure, at first two different formats, Lagrange and 

improved Lagrange as discussed in Chapter 6, have been adopted in the architecture.  

From there, the most suitable approach that can produce an optimal size of lookup 

tables is elected. These two interpolation techniques were chosen because both can 

produce less total storage than Taylor and can be implemented in hardware more 

easily than the modified Lagrange approach. Throughout the analysis, the 

implementation of the interpolation process is based on a non-linear scheme 

incorporating the error correction algorithm as in the ELM. The simulator design 
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described in Section 3.3.1 has been applied in order to execute the error simulation 

of addition and subtraction functions. The results for worst-case errors in Lagrange 

and improved Lagrange formats are summarised in Tables 8-1 and 8-2. The row 

with the grey background in each table indicates the most suitable combination for 

implementation. By observation alone, the Lagrange approach is able to generate the 

most optimal size of lookup table and therefore is chosen to be implemented in the 

LNS addition and subtraction architectures. 

 
Table 8-1 : Error of Lagrange interpolation. 

 

Parameters ADD SUB Worst 
Case  

F,D 
Sizes E size P size e'min rel e'max rel e'min rel e'max rel erel 

1,024 1,024 512 -0.4956 +0.5049 -0.7566 +0.7896 0.7896 

2,048 2,048 512 -0.3830 +0.3928 -0.4696 +0.4764 0.4764 

1,024 1,024 1,024 -0.4206 +0.4290 -0.5554 +05696 0.5696 

2,048 2,048 1,024 -0.3643 +0.3751 -0.4007 +0.4322 0.4322 

1,024 1,024 2,048 -0.3821 +0.3935 -0.4681 +0.4945 0.4945 

2,048 2,048 2,048 -0.3573 +0.3656 -0.3769 +0.4329 0.4329 
 

 
Table 8-2 : Error of improved Lagrange interpolation. 

 

Parameters ADD SUB Worst 
Case  

F,D 
Sizes E size P size e'min rel e'max rel e'min rel e'max rel erel 

1,024 512 512 -0.4989 +0.5049 -0.7562 +0.7896 0.7896 

2,048 1,024 512 -0.3844 +0.3928 -0.4696 +0.4764 0.4764 

1,024 512 1,024 -0.4230 +0.4290 -0.5554 +0.5716 0.5716 

2,048 1,024 1,024 -0.3656 +0.3751 -0.4007 +0.4322 0.4322 

1,024 512 2,048 -0.3853 +0.3932 -0.4494 +0.5038 0.5038 

2,048 1,024 2,048 -0.3582 +0.3656 -0.3747 +0.4319 0.4319 
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8.2.3. Design Summary 

 

According to the analysis in Section 8.2.2, the combination of third-order co-

transformation with the Lagrange interpolation procedure generates less total storage 

area. When implementing the third-order format, the tables involved in the co-

transformation process are now segregated into four partitions. With this 

arrangement, the sizes of storage for F1, F11, F111 and F112 are therefore only 256, 

128, 128 and 128 words respectively. Since the Lagrange approach is chosen as the 

best interpolation concept, the optimal sizes of the F, D and E tables that can 

produce the worst-case error approximately equivalent to FLP limit are 1024 words, 

with the P table at 2048 words. As summarised in Table 8-3, in total about 982 kbits 

would be required to compute LNS addition and subtraction in a 40-bit number 

system. 

 

Table 8-3 : Total storage for the LNS 40-bit format. 
 

Table Words Word 
length Segments Total 

Bits 

F Add 1024 35-bit 6 215,040 

F Sub 1024 35-bit 5 179,200 

D Add 1024 33-bit 6 202,752 

D Sub 1024 34-bit 5 174,080 

E Add 1024 9-bit 6 55,296 

E Sub 1024 12-bit 5 61,440 

P 2048 34-bit 1 69,632 

F1 256 36-bit 1 9,216 

F11 128 38-bit 1 4,864 

F111 128 39-bit 1 4,992 

F112 128 39-bit 1 4,992 

Total 981,504 
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8.3. Design Implementation 

 

The hardware implementation of the LNS multiplication and division unit in a 40-bit 

format is identical with the design for a 32-bit system illustrated in Section 7.2.1, 

except for input size. However, due to applying the third-order co-transformation 

procedure, the LNS addition and subtraction module has a small modification in 

comparison with the 32-bit architecture. Another lookup table has been inserted in 

the co-transformation module to accommodate the four segmentations in fractional 

bits as suggested in Section 8.2.1. In addition, two more FXP adders are also needed 

before the third-order co-transformation process can be completed. Although the 

interpolator unit uses the Lagrange format, a similar arrangement in architecture as 

that proposed in the 32-bit design can still be implemented. In order to minimise the 

worst-case delay in the system, the CLA/CSLA and Booth-Wallace tree algorithm 

are adopted to perform FXP addition and multiplication operations respectively. The 

practical implementation of the LNS addition and subtraction unit in a 40-bit format 

is described in Figure 8-4.  

 

8.3.1. Synthesis Results 

 

The LNS arithmetic unit based on a 40-bit number system was synthesised using the 

constrained Faraday 0.18 µm CMOS technology, and the results are reported in 

Table 8-4. It shows that the worst-case delay for addition and direct subtraction is 

7.71 ns. On the other hand, for subtraction using the co-transformation procedure, 

the delay sharply increases to roughly three times slower than that of direct 

subtraction due to the requirement to re-use the interpolator three times. In the case 

of multiplication and division, the functions can be completed in only 1.27 ns. Based 

on this 40-bit LNS design, the total area required is 1,542,976 µm2. 
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Figure 8-4 : The hardware implementation of the LNS addition and subtraction in a 

40-bit format. 
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Table 8-4 : Delay times and total device area of a 40-bit LNS arithmetic unit. 
 

Function 
40-bit LNS Arithmetic Unit 

Delay (ns) Area (µm2) 

Add / Sub 7.71 
1,528,956 

Sub (Co-transform) 22.28 

Mul / Div 1.27 14,020 

 

8.4. Performance Analysis 

 

In order to evaluate the impact on overall performance of increasing the fractional 

bits in the LNS system, the results presented in Table 8-4 are compared with the 

synthesis results produced from a 32-bit LNS system as described in Table 7-1. As 

graphically displayed in Figure 8-5, the delay of an addition or direct subtraction has 

been increased by 9% of a 32-bit LNS design. Similarly, an increase by 9% is 

observed for multiplication and division operations. When subtraction requires co-

transformation, the delay in the 40-bit design increases to 22.28 ns from 14.79 ns, i.e 

by 50% of the delay in a 32-bit LNS. This is mainly because three stages of 

interpolation are involved.  

The implementation of the third-order co-transformation concept in a 40-bit 

LNS system that utilises three sets of 128 words and one of 256 words appears to 

have equivalent total sizes of co-transformation tables as needed for the 32-bit 

design. However, the requirements of 1024 words for each F, D and E table as well 

as a 2048-word P table during the interpolation process greatly influences the total 

area of the 40-bit LNS design. This can be clearly seen in Figure 8-6 where the total 

silicon area of a 40-bit number system has increased more than two fold over the 

area generated in a 32-bit architecture. It is estimated that the area-delay product of a 

40-bit LNS is 0.0119 µm2 sec, whereas it is 0.0042 µm2 sec in a 32-bit LNS.   
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Figure 8-5 : Delays of a 32-bit and 40-bit LNS designs. 
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Figure 8-6 : Silicon areas in 32-bit and 40-bit LNS. 
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Even with only a minimal degradation in terms of speed, the total silicon area 

of the 40-bit LNS seems to be unwieldy in comparison with the 32-bit LNS. Thus, 

future work needs to concentrate on refining the interpolator module as to gradually 

reduce the total lookup tables for the long format number system.  

 

8.5. Summary 

 

A long word-length version of the LNS system has been designed and described in 

detail in this chapter. This 40-bit LNS format was segmented into 10-bit integer and 

29-bit fraction and the third-order co-transformation concept was introduced to 

substantially reduce the total co-transformation tables to only 640 words, 

approximately equivalent to those presented for the suggested 32-bit system. From 

the analytical study, the best interpolation technique to be implemented was the 

Lagrange approach which employed 1024 words for the F, D and E tables and a 

2048-word P table.  

The delay of the 40-bit LNS design was increased to 109% of the 32-bit 

arrangement when executing addition and direct subtraction operations, and 150% 

during subtractions with co-transformation. For multiplication and division, an 

increase to 109% of a 32-bit system was reported. The estimated silicon area of the 

40-bit LNS was roughly three times larger than that occupied in the 32-bit 

architecture.   
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CHAPTER 9 

9. Conclusions and Recommendations 

                

9.1. Conclusions of the Study 

 

The primary objective of this thesis has been to present a new design approach for a 

high speed and reduced area 32-bit LNS arithmetic unit, and to show through design 

and simulation that the technique introduced is extremely competitive with 

commonly used FLP systems and better than the leading published LNS architecture.  

According to the literature review, the main bottleneck in the LNS system 

arises from the complexity of executing addition and subtraction, particularly 

subtraction near the singularity region, which results in using large lookup tables. 

However, the LNS architecture proposed in the ELM design has been shown to be 

able to minimise storage requirements whilst computing addition and subtraction. 

Furthermore, when comparing delays of the ELM with those of an FLP device, 

addition and direct subtraction operations can be performed marginally better, at 

90% of the corresponding FLP times. Although co-transformed subtractions were 

120%, yet multiplication only required 30% of the FLP delays.  

A new development of the co-transformation procedure presented in this thesis 

has vastly reduced the total storage requirements to 73% of the previously published 

ELM design. However, this in turn has a huge impact in terms of the critical path 

delay for subtractions using co-transformation due to the requirement to re-use the 

interpolator. It seems likely, therefore, that the new co-transformation will only be 

feasible in conjunction with an improved interpolator.  

Hence, a smaller modification to the interpolator has been proposed. 

Combining the new co-transformation method with this improved interpolator has 

now reduced the total storage to 51% of that previous ELM implementation. With 

this new arrangement, it enabled a fully synthesised solution. A controlled 

comparison with the previous ELM design indicated a reduction to 60% of the delay 
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and 65% of the silicon area. In addition, comparing it with the faster of the two 

independently designed FLP units has shown that LNS addition and direct 

subtraction can be performed in 63% of the FLP time. Multiplication completes with 

10% and division 3% of the FLP delays. This new LNS design has also been built 

with fractionally less silicon, and worst-case accuracy is better than that of FLP 

arithmetic. 

The present findings conclusively demonstrate that the new LNS system is 

now able to offer advantages in speed and accuracy over the FLP method. Moreover, 

it can be implemented at an equal cost in silicon. Furthermore, the performance of 

the new LNS is also found to be substantially better than the leading published LNS 

design.   

     

9.2. Future Extensions 

 

The new development of the LNS arithmetic unit has been fully designed and 

synthesised. Based on the results, various follow-on activities could be conducted in 

the future.  

As presented in Chapter 6, a simple improvement in performing the 

interpolation process has been shown. However, although the total bits in the new 

LNS design can be reduced to 51% of the previous ELM, two FXP multipliers are 

still needed in the interpolator module.  

In the current design described in Chapter 7, the FXP multiplication process 

has been completed using the traditional method of Booth and Wallace tree 

algorithms. Nevertheless, in order to further increase the speed of the LNS system, 

especially for addition and direct subtraction operations, many other multiplication 

techniques might be applied. For instance, a simple high speed multiplier design has 

been suggested in [92] in which the last additional partial product row can be 

avoided by utilising a fast method to find two’s complement numbers. Besides that, 

combining the Booth recoded approach with the Dadda multiplier concept could 

possibly produce even better performance than using the Wallace tree method [93].  
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Therefore, it would be worth considering various combinations of algorithms and 

architectures to reduce delays in the multiplier design.  

In this thesis, a brief proposal for long-format LNS as illustrated in Chapter 8 

has been described. The new third-order co-transformation procedure has been 

proposed which can substantially reduce the total co-transformation tables when 

long precision numbers are involved. However, the design still suffers from a vast 

increase in delay when computing subtractions using co-transformation due to the 

requirement to pass through the interpolator three times. It has been shown that 

using the existing interpolation approach as described in Chapter 6 might not reduce 

the delay. Therefore, it is hoped that future researcher may suggest a technique 

which can improve further the interpolation process, or even better propose a new 

method to replace the interpolator module to deliver the faster speed still.  
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A  Appendices 

A1. Authored and Co-authored Publications 

 

During the course of this research, the following publications were written. The 

work of the co-authors and first authors where appropriate is acknowledged and 
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Journal Publication 

§ J.N Coleman and R.C Ismail, “Fast 32-bit Logarithmic Arithmetic”, 
submitted to IEEE Transactions on Computers. 

 

Conference Publication 

§ R.C Ismail and J.N Coleman, “ROM-less LNS”, 20th IEEE Symposium on 
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A2. C Programming Language for 32-bit LNS Subtraction 

 

The following C code is a simulator for 32-bit LNS subtraction unit using second-

order co-transformation with the improved Lagrange interpolator. 

 
//******************************************************// 
//   32-BIT LOGARITHMIC SUBTRACTION WITH 6 GUARD BITS   // 
//   (SECOND ORDER METHOD WITH IMPROVED INTERPOLATOR)   // 
//******************************************************// 
 
#include <stdio.h> 
#include <math.h> 
#include <stdlib.h> 
#include <limits.h> 
#include <stdint.h> 
#include <inttypes.h> 
 
#define maxcomp 9.2E18 
#define g 64             //6 guard bits => 2^6 = 64;  
#define f1 128           //7-bit of high field 
#define f2 256           //8-bit of middle field 
#define f3 16384         //8-bit of low field + 6 guard bits @ delta11    
#define f2f3 4194304     //delta1  
#define one 8388608.0 
#define gone 536870912.0 
#define step 1 
#define p 512 
#define f 128 
#define fr8 128 
#define fr16 16 
#define m1 4194304           //(gone DIV f)  
#define m2 8388608           //(gone DIV f)*2 
#define m4 16777216         //(gone DIV f)*4 
#define m8 33554432         //(gone DIV f)*8 
#define m16 536870912      //(gone DIV f)*16 
 
double ln2, log2e; 
 
long long int arg1,arg2; 
long long int arg; 
long long int dividend, divisor; 
 
long long int f1tab[128]; 
long long int f2tab[256]; 
long long int f3tab[256]; 
long long int fr1tab[256]; 
long long int dr1tab[256]; 
long long int er1tab[128]; 
long long int fr2tab[256]; 
long long int dr2tab[256]; 
long long int er2tab[128]; 
long long int fr4tab[256]; 
long long int dr4tab[256]; 
long long int er4tab[128]; 
long long int fr8tab[256]; 
long long int dr8tab[256]; 
long long int er8tab[128]; 
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long long int fr16tab[64]; 
long long int dr16tab[64]; 
long long int er16tab[64]; 
long long int ptab[512]; 
 
double glog2 (double arg) 
{ 
  return (log2e * log (arg) * (gone)); 
} 
 
double gexp2 (double arg) 
{ 
  return (exp (log (2) * (arg / (gone)))); 
} 
 
void f1table (void) 
{ 
  long long int i; 
  long long int t; 
 
  for (i = 1; i <= f1; i++) 
    { 
     t = -(i * f2f3); 
     f1tab [i-1] = glog2 (fabs (1 - gexp2 (t))); 
    } 
  return; 
} 
 
void f2table (void) 
{ 
  long long int i; 
  long long int t; 
 
    for (i = 1; i <= f2; i++) 
    { 
     t = -((i) * f3); 
     f2tab [f2 - i] = glog2 (fabs (1 - gexp2 (t))); 
   
    } 
  
  return; 
} 
 
void f3table (void) 
{ 
  long long int i; 
 
  for (i = 0; i < f3/g; i++) 
    { 
      f3tab [i] = glog2 (fabs (1 - gexp2 (-i * g))); 
    } 
  return; 
} 
 
void fr1table (void) 
{ 
  long long int i,j; 
  long long int t,t2; 
 
  for (i = 0; i < f; i++) 
    { 
      t = (-i * m1) - (gone); 
      fr1tab[i] = glog2(fabs (1 - gexp2(t))); 
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    } 
  
  for (j = 0; j < f; j++)//g1*16 = 65536 
    { 
      t2 = (-j * (m1)) - (gone) - (m1/2); 
      fr1tab[j+f] = glog2(fabs (1 - gexp2(t2))); 
    } 
 
  return; 
} 
 
void dr1table (void) 
{ 
  long long int i,j; 
  long long int t0,t1,t2,t3; 
 
  for (i = 0; i < f; i++) 
    { 
      t0 = -i * m1 - (gone); 
      t1 = t0 - (m1/2); 
      dr1tab[i] = (((glog2(fabs (1 - gexp2(t1)))) - fr1tab[i]) / (-m1/2))*- 
                  gone; 
    } 
 
  for (j = 0; j < f; j++) 
    { 
      t2 = (-j * (m1)) - (gone) - (m1/2) - 1; 
      t3 = t2 - (m1/2); 
      dr1tab[j+f] = (((glog2(fabs (1 - gexp2(t3)))) - fr1tab[j+f]) / (- 
                    m1/2))*-gone; 
    } 
  
  return; 
} 
 
void er1table (void) 
{ 
  long long int i,j; 
  long long int t0,t1,t2,t3,t4,t5; 
 
  for (i = 0; i < f; i++) 
    { 
      t0 = (-i * (m1)) - (gone); 
      t1 = t0 - (m1/2); 
      t2 = t0 + (-m1/4); 
      er1tab[i] = round(-((fr1tab[i] + (((-m1/4) * -dr1tab[i])/gone)) –  
                  (glog2(fabs (1 - gexp2(t2)))))); 
    } 
 
  return; 
} 
 
void fr2table (void) 
{ 
  long long int i,j; 
  long long int t1,t2; 
 
  for (i = 0; i < f; i++) 
    { 
      t1 = (-i * (m2)) - (gone * 2); 
      fr2tab[i] = glog2(fabs (1 - gexp2(t1))); 
    } 
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  for (j = 0; j < f; j++) 
    { 
      t2 = (-j * (m2)) - (gone * 2) - (m2/2); 
      fr2tab[j+f] = glog2(fabs (1 - gexp2(t2))); 
    } 
  
  return; 
} 
 
void dr2table (void) 
{ 
  long long int i,j; 
  long long int t0,t1,t2,t3; 
 
  for (i = 0; i < f; i++) 
    { 
      t0 = (-i * (m2)) - (gone * 2); 
      t1 = t0 - (m2/2); 
      dr2tab[i] = (((glog2(fabs (1 - gexp2(t1)))) - fr2tab[i]) / (-m2/2))*- 
                  gone; 
    } 
 
  for (j = 0; j < f; j++) 
    { 
      t2 = (-j * (m2)) - (gone * 2) - (m2/2) - 1; 
      t3 = t2 - (m2/2); 
      dr2tab[j+f] = (((glog2(fabs (1 - gexp2(t3)))) - fr2tab[j+f]) / (- 
                    m2/2))*-gone; 
    } 
  
  return; 
} 
 
void er2table (void) 
{ 
  long long int i,j; 
  long long int t0,t1,t2,t3,t4,t5; 
 
  for (i = 0; i < f; i++) 
    { 
      t0 = (-i * (m2)) - (gone * 2); 
      t1 = t0 - (m2/2); 
      t2 = t0 + (-m2/4); 
      er2tab[i] = round(-((fr2tab[i] + (((-m2/4) * -dr2tab[i])/gone)) –  
                  (glog2(fabs (1 - gexp2(t2)))))); 
    } 
 
  return; 
} 
 
void fr4table (void) 
{ 
  long long int i,j; 
  long long int t1,t2; 
 
  for (i = 0; i < f; i++) 
    { 
      t1 = (-i * (m4)) - (gone * 4); 
      fr4tab[i] = glog2(fabs (1 - gexp2(t1))); 
    } 
 
  for (j = 0; j < f; j++)//g1*16 = 65536 
    { 



 158

      t2 = (-j * (m4)) - (gone * 4) - (m4/2); 
      fr4tab[j+f] = glog2(fabs (1 - gexp2(t2))); 
      } 
  
  return; 
} 
 
void dr4table (void) 
{ 
  long long int i,j; 
  long long int t0,t1,t2,t3; 
 
  for (i = 0; i < f; i++) 
    { 
      t0 = (-i * (m4)) - (gone * 4); 
      t1 = t0 - (m4/2); 
      dr4tab[i] = (((glog2(fabs (1 - gexp2(t1)))) - fr4tab[i]) / (-m4/2))*- 
                  gone; 
    } 
 
  for (j = 0; j < f; j++)//g1*16 = 65536 
    { 
      t2 = (-j * (m4)) - (gone * 4) - (m4/2) - 1; 
      t3 = t2 - (m4/2); 
      dr4tab[j+f] = (((glog2(fabs (1 - gexp2(t3)))) - fr4tab[j+f]) / (- 
                    m4/2))*-gone; 
    } 
  
  return; 
} 
 
void er4table (void) 
{ 
  long long int i,j; 
  long long int t0,t1,t2,t3,t4,t5; 
 
  for (i = 0; i < f; i++) 
    { 
      t0 = (-i * (m4)) - (gone * 4); 
      t1 = t0 - (m4/2); 
      t2 = t0 + (-m4/4); 
      er4tab[i] = round(-((fr4tab[i] + (((-m4/4) * -dr4tab[i])/gone)) –  
                  (glog2(fabs (1 - gexp2(t2)))))); 
    } 
 
  return; 
} 
 
void fr8table (void) 
{ 
  long long int i,j; 
  long long int t1,t2; 
 
  for (i = 0; i < f; i++) 
    { 
      t1 = (-i * (m8)) - (gone * 8); 
      fr8tab[i] = glog2(fabs (1 - gexp2(t1))); 
    } 
 
  for (j = 0; j < fr8; j++) 
    { 
      t2 = (-j * (m8)) - (gone * 8) - (m8/2); 
      fr8tab[j+f] = glog2(fabs (1 - gexp2(t2))); 
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    } 
  
  return; 
} 
 
void dr8table (void) 
{ 
  long long int i,j; 
  long long int t0,t1,t2,t3; 
 
  for (i = 0; i < f; i++) 
    { 
      t0 = (-i * (m8)) - (gone * 8); 
      t1 = t0 - (m8/2); 
      dr8tab[i] = (((glog2(fabs (1 - gexp2(t1)))) - fr8tab[i]) / (-m8/2))*- 
                  gone; 
    } 
 
  for (j = 0; j < fr8; j++) 
    { 
      t2 = (-j * (m8)) - (gone * 8) - (m8/2) - 1; 
      t3 = t2 - (m8/2); 
      dr8tab[j+f] = (((glog2(fabs (1 - gexp2(t3)))) - fr8tab[j+f]) / (- 
                    m8/2))*-gone; 
    } 
  
  return; 
} 
 
void er8table (void) 
{ 
  long long int i,j; 
  long long int t0,t1,t2,t3,t4,t5; 
 
  for (i = 0; i < f; i++) 
    { 
      t0 = (-i * (m8)) - (gone * 8); 
      t1 = t0 - (m8/2); 
      t2 = t0 + (-m8/4); 
      er8tab[i] = round(-((fr8tab[i] + (((-m8/4) * -dr8tab[i])/gone)) –  
                  (glog2(fabs (1 - gexp2(t2)))))); 
    } 
 
  return; 
} 
 
void fr16table (void) 
{ 
  long long int i,j; 
  long long int t1,t2; 
 
  for (i = 0; i < fr16; i++) 
    { 
      t1 = (-i * (m16)) - (gone * 16); 
      fr16tab[i] = glog2(fabs (1 - gexp2(t1))); 
 
    } 
 
  for (j = 0; j < fr16; j++) 
    { 
      t2 = (-j * (m16)) - (gone * 16) - (m16/2); 
      fr16tab[j+fr16] = glog2(fabs (1 - gexp2(t2))); 
    } 
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  return; 
} 
 
void dr16table (void) 
{ 
  long long int i,j; 
  long long int t0,t1,t2,t3; 
 
  for (i = 0; i < fr16; i++) 
    { 
      t0 = (-i * (m16)) - (gone * 16); 
      t1 = t0 - (m16/2);//t1 = t0 - (m2/2); 
      dr16tab[i] = (((glog2(fabs (1 - gexp2(t1)))) - fr16tab[i]) / (- 
                   m16/2))*-gone; 
    } 
 
  for (j = 0; j < fr16; j++) 
    { 
      t2 = (-j * (m16)) - (gone * 16) - (m16/2) - 1; 
      t3 = t2 - (m16/2);//t3 = t2 - (m2/2); 
      dr16tab[j+fr16] = (((glog2(fabs (1 - gexp2(t3)))) - fr16tab[j+fr16])  
                        / (-m16/2))*-gone; 
  
    } 
  
  return; 
} 
 
void er16table (void) 
{ 
  long long int i,j; 
  long long int t0,t1,t2,t3,t4,t5; 
 
  for (i = 0; i < fr16; i++) 
    { 
      t0 = (-i * (m16)) - (gone * 16); 
      t1 = t0 - (m16/2); 
      t2 = t0 + (-m16/4); 
      er16tab[i] = (-((fr16tab[i] + (((-m16/4) * -dr16tab[i])/gone)) –  
                   (glog2(fabs (1 - gexp2(t2)))))); 
 
    } 
  
  for (j = 0; j < fr16; j++) 
    { 
      t3 = (-j * (m16)) - (gone * 16) - (m16/2); 
      t4 = t3 - (m16/2); 
      t5 = t3 + (-m16/4); 
      er16tab[j+fr16] = (-((fr16tab[j+fr16] + (((-m16/4) * - 
                        dr16tab[j+fr16])/gone)) - (glog2(fabs (1 –  
                        gexp2(t5)))))); 
    } 
 
  return; 
} 
 
void ptable (void) 
{ 
  long long int i; 
  double t,error,error1,error2,temp; 
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  for (i = 0; i < p; i++) 
    { 
      t = (-gone * 2.0) - ((m2/2) / p) * i ;//- (m2/2) 
      error1 = (fr2tab[0] + ((-m2/2) / p) * i * -dr2tab[0]/gone); 
      error2 = glog2(fabs ( 1 - gexp2 (t))); 
      error = error1 - error2; 
      temp = (error / er2tab[0]) * gone; 
      ptab[i] = temp; 
    } 
 
  return;         
} 
 
long long int lookupfr1 (long long int arg) 
{ 
  long long int t,r; 
 
  r = arg % m1; 
 
  if (r < (m1/2)) 
    { 
      t = (arg - gone) / (m1); 
    }  
 
   else 
    { 
      t = (arg - gone) / (m1) + f; 
    } 
   
  return fr1tab[t]; 
} 
 
long long int lookupdr1 (long long int arg) 
{ 
  long long int t,r; 
 
  r = arg % m1; 
 
  if (r < (m1/2)) 
  { 
    t = (arg - gone) / (m1); 
  }  
 
  else 
  { 
    t = (arg - gone) / (m1) + f; 
  } 
 
  return dr1tab[t]; 
} 
 
long long int lookuper1 (long long int arg) 
{ 
  long long int t,r; 
 
  r = arg % m1; 
 
  if (r < (m1/2)) 
   { 
      t = (arg - gone) / (m1); 
    }  
 
  else 
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    { 
      t = (arg - gone) / (m1) ; 
    } 
 
  return er1tab[t]; 
} 
 
long long int lookupfr2 (long long int arg) 
{ 
  long long int t,r; 
 
  r = arg % m2; 
 
  if (r < (m2/2)) 
    { 
      t = (arg - gone * 2) / (m2); 
    }  
 
  else 
    { 
      t = (arg - gone * 2) / (m2) + f; 
    } 
 
  return fr2tab[t]; 
} 
 
long long int lookupdr2 (long long int arg) 
{ 
  long long int t,r; 
 
  r = arg % m2; 
 
  if (r < (m2/2)) 
    { 
      t = (arg - gone * 2) / (m2); 
    }  
 
  else 
    { 
      t = (arg - gone * 2) / (m2) + f; 
    } 
 
  return dr2tab[t]; 
} 
 
long long int lookuper2 (long long int arg) 
{ 
  long long int t,r; 
 
  r = arg % m2; 
 
  if (r < (m2/2)) 
    { 
      t = (arg - gone * 2) / (m2); 
    }  
 
  else 
    { 
      t = (arg - gone * 2) / (m2) ; 
    } 
 
  return er2tab[t]; 
} 
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long long int lookupfr4 (long long int arg) 
{ 
  long long int t,r; 
 
  r = arg % m4; 
 
  if (r < (m4/2)) 
    { 
      t = (arg - gone * 4) / (m4); 
    }  
 
  else 
    { 
      t = (arg - gone * 4) / (m4) + f; 
    } 
 
  return fr4tab[t]; 
} 
 
long long int lookupdr4 (long long int arg) 
{ 
  long long int t,r; 
 
  r = arg % m4; 
 
  if (r < (m4/2)) 
    { 
      t = (arg - gone * 4) / (m4); 
    }  
 
  else 
    { 
      t = (arg - gone * 4) / (m4) + f; 
    } 
 
  return dr4tab[t]; 
} 
 
long long int lookuper4 (long long int arg) 
{ 
  long long int t,r; 
 
  r = arg % m4; 
 
  if (r < (m4/2)) 
    { 
      t = (arg - gone * 4) / (m4); 
    }  
 
  else 
    { 
      t = (arg - gone * 4) / (m4) ; 
    } 
 
  return er4tab[t]; 
} 
 
long long int lookupfr8 (long long int arg) 
{ 
  long long int t,r; 
 
  r = arg % m8; 
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  if (r < (m8/2)) 
    { 
      t = (arg - gone * 8) / (m8); 
    }  
 
  else 
    { 
      t = (arg - gone * 8) / (m8) + f; 
    } 
 
  return fr8tab[t]; 
} 
 
long long int lookupdr8 (long long int arg) 
{ 
  long long int t,r; 
 
  r = arg % m8; 
 
  if (r < (m8/2)) 
    { 
      t = (arg - gone * 8) / (m8); 
    }  
 
  else 
    { 
      t = (arg - gone * 8) / (m8) + f; 
    } 
 
  return dr8tab[t]; 
} 
 
long long int lookuper8 (long long int arg) 
{ 
  long long int t,r; 
 
  r = arg % m8; 
 
  if (r < (m8/2)) 
    { 
      t = (arg - gone * 8) / (m8); 
    }  
 
  else 
    { 
      t = (arg - gone * 8) / (m8) ; 
    } 
 
  return er8tab[t]; 
} 
 
long long int lookupfr16 (long long int arg) 
{ 
  long long int t,r; 
 
  r = arg % m16; 
 
  if (r < (m16/2)) 
    { 
      t = (arg - gone * 16) / (m16); 
    }  
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  else 
    { 
      t = (arg - gone * 16) / (m16) + fr16; 
    } 
 
  return fr16tab[t]; 
} 
 
long long int lookupdr16 (long long int arg) 
{ 
  long long int t,r; 
 
  r = arg % m16; 
 
  if (r < (m16/2)) 
    { 
      t = (arg - gone * 16) / (m16); 
    }  
 
  else 
    { 
      t = (arg - gone * 16) / (m16) + fr16; 
    } 
 
  return dr16tab[t]; 
} 
 
long long int lookuper16 (long long int arg) 
{ 
  long long int t,r; 
 
  r = arg % m16; 
 
  if (r < (m16/2)) 
    { 
      t = (arg - gone * 16) / (m16); 
    }  
 
  else 
    { 
      t = (arg - gone * 16) / (m16) + fr16; 
    } 
 
  return er16tab[t]; 
} 
 
long long int lookupp (long long int arg) 
{ 
  long long int t; 
 
  t = arg; 
 
  return ptab[t]; 
} 
 
long long int sub1 (long long int arg1, long long int arg2) 
{ 
  long long int s1,s2,s4,s8,s16; 
  long long int t,t1,t2; 
  long long int res; 
  long long int r,fr,dr,er,pd; 
  long long int k; 
  double k1; 
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  r = -arg2; 
 
  k1 = (r*2) / gone; 
  k = k1; 
   
  if (k <= 1)// -1 < r < 0 
    { 
      t = 0; 
      fr = 0; 
      dr = 0; 
      er = 0; 
      s1 = 0; 
      pd = 0; 
      goto mult; 
     } 
    
  if (k <= 3)// -2 < r < -1 
    { 
      t = (r % (m1/2)); 
      fr = lookupfr1(r); 
      dr = lookupdr1(r); 
      er = lookuper1(r); 
      s1 = ((r % (m1/2)) / ((m1/2) / p)); 
      pd = lookupp(s1); 
      goto mult; 
    } 
 
  if (k <= 7)// -4 < r < -2 
    { 
      t = (r % (m2/2)); 
      fr = lookupfr2(r); 
      dr = lookupdr2(r); 
      er = lookuper2(r); 
      s2 = ((r % (m2/2)) / ((m2/2) / p)); 
      pd = lookupp(s2); 
      goto mult; 
    } 
 
  if (k <= 15)// -8 < r < -4 
    { 
      t = (r % (m4/2)); 
      fr = lookupfr4(r); 
      dr = lookupdr4(r); 
      er = lookuper4(r); 
      s4 = ((r % (m4/2)) / ((m4/2) / p)); 
      pd = lookupp(s4); 
      goto mult; 
    } 
 
  if (k <= 31)// -16 < r < -8 
    { 
      t = (r % (m8/2)); 
      fr = lookupfr8(r); 
      dr = lookupdr8(r); 
      er = lookuper8(r); 
      s8 = ((r % (m8/2)) / ((m8/2) / p)); 
      pd = lookupp(s8); 
      goto mult; 
    } 
   
 
  if (k <= 63) // -32 < r < -16 



 167

    { 
      t = (r % (m16/2)); 
      fr = lookupfr16(r); 
      dr = lookupdr16(r); 
      er = lookuper16(r); 
      s16 = ((r % (m16/2)) / ((m16/2) / p)); 
      pd = lookupp(s16); 
      goto mult; 
    } 
 
  if (k <= 511)  
    { 
      fr = 0; 
      dr = 0; 
      er = 0; 
      t = 0; 
      pd = 0; 
      goto mult; 
    } 
 
 mult: 
 
 t1 = ((er) * pd); 
 t1 = t1 / gone; 
 t2 = t * dr; 
 t2 = t2 / gone;     
 res = arg1 + fr + t2 - t1; 
 
  return res; 
} 
 
 
/*Generate floating point numbers */ 
double subx (long long int arg1, long long int arg2) 
{ 
 
  long long int tmp; 
  double fr,result; 
 
  tmp = arg1 - arg2; 
 
  if (tmp == 0) 
    { 
      result = -maxcomp; 
      goto end; 
    } 
  else 
    { 
      fr = log2e * log (1 - exp (ln2 * (arg2 - arg1) / (gone))) * (gone); 
      result = arg1 + fr; 
    } 
 end: 
 
  return result; 
} 
 
 
/*************************************************************************/ 
/*         GENERATE LNS SUBTRACTOR USING RANGE SHIFTED METHODS           */ 
/*************************************************************************/ 
/*Select region of 'r'*/  
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long long int suby (long long int arg1,long long int arg2 ) 
{ 
  long long int a1,r; 
  long long int j,j2; 
  long long int k1,k11; 
  long long int i1,i2; 
  long long int t,t1,t2,t3,t4; 
  long long int r1,r2,r11,r12; 
  long long int result; 
  
  a1 = arg1; //i 
  r = arg2;  //j-i 
     
  /*****************/ 
  /* REGION r = 0  */ 
  /*****************/ 
  if (r == 0) 
    { 
      result = -maxcomp; 
      goto end; 
    } 
 
  /***************************/ 
  /* REGION -delta11 < r < 0 */ 
  /***************************/ 
  if (r > -f3)   
  //The computation of result based upon accessing F3 table directly 
    { 
      t = (-(r % f3) / g); 
      result = a1 + f3tab[t]; 
      goto end; 
    } 
   
  /*********************************/ 
  /* REGION -delta1 < r < -delta11 */ 
  /*********************************/ 
  t = -f2f3;  
  //The computation of result based upon 1st order arch. 
  if (r > t) 
    { 
      t1 = (-(r % f3) / g); 
       
    if (t1 == 0) 
      {  
         t2 = (f3/g) - (-r / f3);  
         t3 = 0; 
      } 
    else  
      { 

t2 = (f3/g) - (-r / f3) - 1; 
         t3 = (f3/g) - t1; 
      } 
      
       
     i2 = a1 + f2tab[t2]; 
     r2 = r + f3tab[t3] - f2tab[t2]; 
     result = sub1(i2,r2); 
 
     goto end; 
      } 
 
   else 
    { 
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      a1 = a1; 
      r  = r; 
    } 
   
  /***************************/ 
  /* REGION -1 < r < -delta1 */ 
  /***************************/ 
  t = -gone; 
  if (r > t) 
  { 
      if (((r % f2f3)) < -(f2f3 - f3))    
      //when middle+low fields are lesser than FF000h, then executes        
      //the operation based upon 1st order arch using only F1 and F3 tables 
      { 
         r1 = -r / f2f3; 
         t1 = (((r % f2f3)/g) + (f2f3)/g); 
         i2 = a1 + f1tab[r1]; 

r2 = r + f3tab[t1] - f1tab[r1]; 
result = sub1(i2,r2); 

       } 
       
      else 
      //The computation of result based upon 2nd order arch.     
      { 
         r1 = -r / f2f3; 
         k11 = (-(r % f3) / g); 

r11 = (-(r % f2f3) / f3); 
k1 = -((r % f2f3) + f2f3); 
r12 = k1 + f3tab[k11] - f2tab[r11]; 

         i1 = (r + a1) + f2tab[r11]; 
         j2 = sub1(i1,r12); 

i2 = a1 + f1tab[r1]; 
r2 =  j2 - i2; 
result = sub1(i2,r2); 

      } 
      goto end; 
    } 
   
  /*****************/ 
  /* REGION r < -1 */ 
  /*****************/ 
 else 
    { 
      result = sub1(a1,r); 
      goto end; 
    } 
 
 
  end: 
 
  return result; 
} 
 
long long int yrnd (long long int arg) 
{ 
  long long int rem,yrnd; 
 
  rem = (arg % (g)); 
  if(rem < 0) 
    { 
      if (-rem <= (g / 2)) 
       { 

yrnd = ((arg - rem ) / g); 
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       } 
      else 
       { 
               yrnd = ((arg - g - rem)/g); 
       } 
    } 
  else 
    { 
      if (rem <= ((g) / 2)) 
       { 
                  yrnd = (arg - rem) / ( g); 
       } 
    else 
       { 
                 yrnd = ((arg+(g)-rem))/(g); 
       } 
    } 
 
  return yrnd; 
} 
 
void compare (void) 
{ 
  long long int j,i,ry,y,n; 
 
double x, rx, errl, errgl, maxherrgl, maxlerrgl, maxlerrl, maxlerr2,  
       maxherr2, maxlerr, maxherrl, maxherr, cumerrl, cummoderrl, err,  
       cumerr, cummoderr; 

   
  maxherrgl = 0; 
  maxlerrgl = 0; 
  maxherrl = 0; 
  maxlerrl = 0; 
  maxherr = 0; 
  maxlerr = 0; 
  cumerrl = 0; 
  cumerr = 0; 
  cummoderrl = 0; 
  cummoderr = 0; 
  n = 0; 
  
//arg1 = 1; /* due to i sets to zero, =>(i*g==0*g) */ 
 
  for (j=0; j>=-201326592; j--) //executes from 0 to -24 (essential zero) 
    { 
          arg2 = (j*g); 
 
          y = suby(arg1,arg2); 
          x = subx(arg1,arg2);   
 
         errgl = y - x;  
 
      if (errgl>maxherrgl) 
      { 
       maxherrgl = errgl; 
      } 
 
      if (errgl<maxlerrgl) 
     { 
       maxlerrgl = errgl; 
     } 
 
      ry = yrnd(y); 



 171

      rx = x/(step*g); 
      errl = ry - rx; 
 
      if (errl<maxlerrl) 
     { 
        maxlerrl = errl; 
        maxlerr = (exp(ln2*(errl/gone))-1)*gone; 
        maxlerr2 = (errl/rx)*gone; 
     } 
      if (errl>maxherrl) 
     { 
        maxherrl = errl; 
        maxherr = (exp(ln2*(errl/gone))-1)*gone; 
        maxherr2 = (errl/rx)*gone; 
     } 
 
      cumerrl = (cumerrl+errl); 
      cummoderrl = (cummoderrl + fabs(errl)); 
      err = (exp(ln2*(errl/gone))-1)*gone; 
      cumerr = (cumerr + err); 
      cummoderr = (cummoderr + fabs(err)); 
      n = n + 1; 
    
         printf("~~~~~~~~~~#######################~~~~~~~~~~~~~~\n"); 
       printf("SIMULATION OF ADVANCED LOGARITHMIC SUBTRACTION\n"); 
       printf("maxerr @ i %lli\t j %lli\n",arg1,j); 
       printf("x %lf\t rx %lf\n",x,rx); 
       printf("y %lli\t\t ry %lli\n",y,ry); 
       printf("LSGB hi  e  %lf\t lo e %lf\n",maxherrgl,maxlerrgl); 
       printf("LSB  hi  e  %lf\t lo e %lf\n",maxherrl,maxlerrl); 
       printf("     av |e| %lf\t av e %lf\n",(cummoderrl/n),(cumerrl/n)); 
       printf("REL  hi  e  %lf\t lo e %lf\n",maxherr,maxlerr); 
       printf("     av |e| %lf\t av e %lf\n\n",(cummoderr/n),(cumerr/n)); 
   } 
 
} 
 
main () 
{ 
  ln2 = log (2); 
  log2e = 1 / ln2; 
  f1table (); 
  f2table (); 
  f3table (); 
  fr1table (); 
  dr1table (); 
  er1table (); 
  fr2table (); 
  dr2table (); 
  er2table (); 
  fr4table (); 
  dr4table (); 
  er4table (); 
  fr8table (); 
  dr8table (); 
  er8table (); 
  fr16table (); 
  dr16table (); 
  er16table (); 
  ptable (); 
  compare (); 
  return (0); 
} 
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A3. VHDL Model for 32-bit LNS Add/Subtract Unit 

 
-------------------------------------------------------------------- 
-- Title    : LNS addsub (entity) 
-- Filename : LNS AddSub with 2nd order with improved interpolation 
-------------------------------------------------------------------- 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.NUMERIC_STD.ALL; 
 
entity LNSaddsub is 
    port( 
           -- Inputs 
           s_addsub : in std_logic; --Operation to perform add(0)/sub(1) 
           sa : in std_logic;       --Value-sign of operand A 
           sb : in std_logic;       --Value-sign of operand B 
           a  : in std_logic_vector(30 downto 0); 
           b  : in std_logic_vector(30 downto 0); 
      
           -- ROM interfaces: 
          clk   : in std_logic; 
       
          -- Outputs: 
          sq    : out std_logic; 
          q     : out std_logic_vector(30 downto 0); 
          oflow : out std_logic; 
          uflow : out std_logic   
          ); 
 
end LNSaddsub; 
 
architecture rtl of LNSaddsub is 
-- Components 
 
component checkops  is 
   port( 
         SA : in std_logic; -- value-sign bit of operand A 
         SB : in std_logic; -- value-sign bit of operand B 
         A  : in std_logic_vector(30 downto 0); 
         B  : in std_logic_vector(30 downto 0); 
         s_addsub : in std_logic; -- add#/sub (operation to perform) 
         NEG : out std_logic; 
         Azero : out std_logic; 
         Bzero : out std_logic 
       ); 
  
end component; 
 
component setvalues  is 
   port ( 
                A : in std_logic_vector(30 downto 0); 
                B : in std_logic_vector(30 downto 0); 
                i : out signed(31 downto 0); 
                j : out signed(31 downto 0); 
                r : out signed(31 downto 0); 
                AltB : out std_logic; 
                AeqB : out std_logic 
              ); 
end component; 
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component rs_region is 
    port ( s_addsub : in STD_LOGIC; 
           r : in  signed  (31 downto 0); 
           i : in  signed  (31 downto 0); 
           j : in  signed  (31 downto 0); 
           F1_addr : out  STD_LOGIC_VECTOR (6 downto 0); 
           F1 : in  STD_LOGIC_VECTOR (31 downto 0); 
           F2_addr : out  STD_LOGIC_VECTOR (7 downto 0); 
           F2 : in  STD_LOGIC_VECTOR (32 downto 0); 
           F3_addr : out  STD_LOGIC_VECTOR (7 downto 0); 
           F3 : in  STD_LOGIC_VECTOR (33 downto 0); 
           r1a : out  signed  (37 downto 0); 
           i1 : out  signed  (37 downto 0);     
           i2 : out  signed  (37 downto 0); 
           rs_cu : out std_logic; 
           rs_infi : out std_logic; 
           ResFromF3 : out signed (37 downto 0); 
           val_near_zero : out std_logic; 
           val_near_modtwo : out std_logic 
         ); 
end component; 
 
component cu_int is 
   port( 
        clk : in std_logic; 
        s_addsub : in std_logic; 
        val_near_modtwo : in std_logic; 
        rs_cu : in std_logic; 
        rs_infi : in std_logic; 
        en_busA : out std_logic; 
        sel_busA : out std_logic; 
        en_busB : out std_logic 
       ); 
end component; 
 
component busA is 
    port (  
           clk : in std_logic; 
           s_addsub : std_logic; 
           en : in std_logic; 
           sel : in std_logic; 
           rs_infi : in std_logic; 
           r1a : in  std_logic_vector (37 downto 0); 
           i1 : in  signed  (37 downto 0);     
           i2 : in  signed  (37 downto 0); 
           r2 : in  std_logic_vector (37 downto 0); 
           r : out std_logic_vector (37 downto 0); 
           i : out signed (37 downto 0) 
          ); 
end component; 
 
component subR2 is 
  port (   
    a : in std_logic_vector (37 downto 0); 
    b : in std_logic_vector (37 downto 0); 
    result : out std_logic_vector (37 downto 0)); 
end component; 
 
 
component partLookup2  is 
   port( 
        r_int : in std_logic_vector(37 downto 0); 
        s_addsub : in std_logic; --sum#/diff 
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      -- ROM interface 
      F1a_addr : out std_logic_vector(7 downto 0); 
      D1a_addr : out std_logic_vector(7 downto 0); 
      E1a_addr : out std_logic_vector(5 downto 0); 
      F2a_addr : out std_logic_vector(7 downto 0); 
      D2a_addr : out std_logic_vector(7 downto 0); 
      E2a_addr : out std_logic_vector(5 downto 0); 
      F4a_addr : out std_logic_vector(7 downto 0); 
      D4a_addr : out std_logic_vector(7 downto 0); 
      E4a_addr : out std_logic_vector(5 downto 0); 
      F8a_addr : out std_logic_vector(7 downto 0); 
      D8a_addr : out std_logic_vector(7 downto 0); 
      E8a_addr : out std_logic_vector(5 downto 0); 
      F16a_addr : out std_logic_vector(7 downto 0); 
      D16a_addr : out std_logic_vector(7 downto 0); 
      E16a_addr : out std_logic_vector(5 downto 0); 
      F32a_addr : out std_logic_vector(4 downto 0); 
      D32a_addr : out std_logic_vector(4 downto 0); 
      E32a_addr : out std_logic_vector(4 downto 0); 
       
      F2_addr : out std_logic_vector(7 downto 0); 
      D2_addr : out std_logic_vector(7 downto 0); 
      E2_addr : out std_logic_vector(6 downto 0); 
      F4_addr : out std_logic_vector(7 downto 0); 
      D4_addr : out std_logic_vector(7 downto 0); 
      E4_addr : out std_logic_vector(6 downto 0); 
      F8_addr : out std_logic_vector(7 downto 0); 
      D8_addr : out std_logic_vector(7 downto 0); 
      E8_addr : out std_logic_vector(6 downto 0); 
      F16_addr : out std_logic_vector(7 downto 0); 
      D16_addr : out std_logic_vector(7 downto 0); 
      E16_addr : out std_logic_vector(6 downto 0); 
      F32_addr : out std_logic_vector(4 downto 0); 
      D32_addr : out std_logic_vector(4 downto 0); 
      E32_addr : out std_logic_vector(4 downto 0); 
      P_addr : out std_logic_vector(8 downto 0); 
 
      delta : out std_logic_vector(27 downto 0) 
   ); 
 
end component; 
 
component addmul_WT2 is 
   port( 
          i : in std_logic_vector (37 downto 0); 
          r2 : in std_logic_vector (37 downto 0); 
        s_addsub : std_logic; 
        F1a : in std_logic_vector (29 downto 0); 
        D1a : in std_logic_vector (28 downto 0);      
        E1a : in std_logic_vector (11 downto 0); 
        F2a : in std_logic_vector (29 downto 0); 
        D2a : in std_logic_vector (28 downto 0);      
        E2a : in std_logic_vector (11 downto 0); 
          F4a : in std_logic_vector (29 downto 0); 
        D4a : in std_logic_vector (28 downto 0);      
        E4a : in std_logic_vector (11 downto 0); 
          F8a : in std_logic_vector (29 downto 0); 
        D8a : in std_logic_vector (28 downto 0);      
        E8a : in std_logic_vector (11 downto 0); 
          F16a : in std_logic_vector (29 downto 0); 
        D16a : in std_logic_vector (28 downto 0);      
        E16a : in std_logic_vector (11 downto 0); 



 175

          F32a : in std_logic_vector (29 downto 0); 
        D32a : in std_logic_vector (28 downto 0);      
        E32a : in std_logic_vector (11 downto 0); 
         
        F2 : in std_logic_vector (29 downto 0); 
        D2 : in std_logic_vector (28 downto 0);      
        E2 : in std_logic_vector (11 downto 0); 
          F4 : in std_logic_vector (29 downto 0); 
        D4 : in std_logic_vector (28 downto 0);      
        E4 : in std_logic_vector (11 downto 0); 
          F8 : in std_logic_vector (29 downto 0); 
        D8 : in std_logic_vector (28 downto 0);      
        E8 : in std_logic_vector (11 downto 0); 
          F16 : in std_logic_vector (29 downto 0); 
        D16 : in std_logic_vector (28 downto 0);      
        E16 : in std_logic_vector (11 downto 0); 
          F32 : in std_logic_vector (29 downto 0); 
        D32 : in std_logic_vector (28 downto 0);      
        E32 : in std_logic_vector (11 downto 0); 
        Ptab : in std_logic_vector (29 downto 0);  
        delta : in std_logic_vector(27 downto 0); 
          result : out std_logic_vector (37 downto 0) 
      ); 
end component; 
 
component busB is 
   port (  
           en : in std_logic; 
           s_result : in  std_logic_vector (37 downto 0); 
           result_out : out  std_logic_vector (37 downto 0) 
         ); 
end component; 
 
component resultStatus is 
   port (  s_addsub : in STD_LOGIC; 
           s_result : in std_logic_vector (37 downto 0); 
           j : in  signed  (31 downto 0); 
           i : in  signed  (31 downto 0); 
           ResFromF3 : in signed (37 downto 0); 
           val_near_zero : in std_logic; 
           val_near_modtwo : in std_logic; 
           Azero : in std_logic; 
           Bzero :in std_logic; 
           NEG :in std_logic; 
           AltB : in std_logic; 
           AeqB : in std_logic; 
           SQ : out std_logic; 
           Q : out  STD_LOGIC_VECTOR (30 downto 0); 
           Oflow : out std_logic; 
           Uflow : out std_logic 
         ); 
end component; 
 
component LUT256a is 
   port ( clk          : in  std_logic; 
          address      : in  std_logic_vector(7 downto 0); 
          data_out     : out std_logic_vector(32 downto 0) 
        ); 
end component; 
 
component LUT256b is 
   port ( clk          : in  std_logic; 
          address      : in  std_logic_vector(7 downto 0); 
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          data_out     : out std_logic_vector(33 downto 0) 
        ); 
end component; 
 
component LUT128 is 
   port ( clk          : in  std_logic; 
          address      : in  std_logic_vector(6 downto 0); 
          data_out     : out std_logic_vector(31 downto 0) 
        ); 
end component; 
 
component f1a is 
   port ( clk          : in  std_logic; 
          address      : in  std_logic_vector(7 downto 0); 
          data_out     : out std_logic_vector(29 downto 0) 
        ); 
end component; 
 
component d1a is 
   port ( clk          : in  std_logic; 
          address      : in  std_logic_vector(7 downto 0); 
          data_out     : out std_logic_vector(28 downto 0) 
        ); 
end component; 
 
component e1a is 
   port ( clk          : in  std_logic; 
          address      : in  std_logic_vector(5 downto 0); 
          data_out     : out std_logic_vector(11 downto 0) 
        ); 
end component; 
 
 
component f2a is 
   port ( clk          : in  std_logic; 
          address      : in  std_logic_vector(7 downto 0); 
          data_out     : out std_logic_vector(29 downto 0) 
        ); 
end component; 
 
component d2a is 
   port ( clk          : in  std_logic; 
          address      : in  std_logic_vector(7 downto 0); 
          data_out     : out std_logic_vector(28 downto 0) 
        ); 
end component; 
 
component e2a is 
   port ( clk          : in  std_logic; 
          address      : in  std_logic_vector(5 downto 0); 
          data_out     : out std_logic_vector(11 downto 0) 
        ); 
end component; 
 
component f4a is 
   port ( clk          : in  std_logic; 
          address      : in  std_logic_vector(7 downto 0); 
          data_out     : out std_logic_vector(29 downto 0) 
        ); 
end component; 
 
component d4a is 
   port ( clk          : in  std_logic; 
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          address      : in  std_logic_vector(7 downto 0); 
          data_out     : out std_logic_vector(28 downto 0) 
        ); 
end component; 
 
component e4a is 
   port ( clk          : in  std_logic; 
          address      : in  std_logic_vector(5 downto 0); 
          data_out     : out std_logic_vector(11 downto 0) 
        ); 
end component; 
 
component f8a is 
   port ( clk          : in  std_logic; 
          address      : in  std_logic_vector(7 downto 0); 
          data_out     : out std_logic_vector(29 downto 0) 
        ); 
end component; 
 
component d8a is 
   port ( clk          : in  std_logic; 
          address      : in  std_logic_vector(7 downto 0); 
          data_out     : out std_logic_vector(28 downto 0) 
        ); 
end component; 
 
component e8a is 
   port ( clk          : in  std_logic; 
          address      : in  std_logic_vector(5 downto 0); 
          data_out     : out std_logic_vector(11 downto 0) 
        ); 
end component; 
 
component f16a is 
   port ( clk          : in  std_logic; 
          address      : in  std_logic_vector(7 downto 0); 
          data_out     : out std_logic_vector(29 downto 0) 
        ); 
end component; 
 
component d16a is 
   port ( clk          : in  std_logic; 
          address      : in  std_logic_vector(7 downto 0); 
          data_out     : out std_logic_vector(28 downto 0) 
        ); 
end component; 
 
component e16a is 
   port ( clk          : in  std_logic; 
          address      : in  std_logic_vector(5 downto 0); 
          data_out     : out std_logic_vector(11 downto 0) 
        ); 
end component; 
 
component f32a is 
   port ( clk          : in  std_logic; 
          address      : in  std_logic_vector(4 downto 0); 
          data_out     : out std_logic_vector(29 downto 0) 
        ); 
end component; 
 
component d32a is 
   port ( clk          : in  std_logic; 
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          address      : in  std_logic_vector(4 downto 0); 
          data_out     : out std_logic_vector(28 downto 0) 
        ); 
end component; 
 
component e32a is 
   port ( clk          : in  std_logic; 
          address      : in  std_logic_vector(4 downto 0); 
          data_out     : out std_logic_vector(11 downto 0) 
        ); 
end component; 
 
component f2 is 
   port ( clk          : in  std_logic; 
          address      : in  std_logic_vector(7 downto 0); 
          data_out     : out std_logic_vector(29 downto 0) 
        ); 
end component; 
 
component d2 is 
   port ( clk          : in  std_logic; 
          address      : in  std_logic_vector(7 downto 0); 
          data_out     : out std_logic_vector(28 downto 0) 
        ); 
end component; 
 
component e2 is 
   port ( clk          : in  std_logic; 
          address      : in  std_logic_vector(6 downto 0); 
          data_out     : out std_logic_vector(11 downto 0) 
        ); 
end component; 
 
component f4 is 
   port ( clk          : in  std_logic; 
          address      : in  std_logic_vector(7 downto 0); 
          data_out     : out std_logic_vector(29 downto 0) 
        ); 
end component; 
 
component d4 is 
   port ( clk          : in  std_logic; 
          address      : in  std_logic_vector(7 downto 0); 
          data_out     : out std_logic_vector(28 downto 0) 
        ); 
end component; 
 
component e4 is 
   port ( clk          : in  std_logic; 
          address      : in  std_logic_vector(6 downto 0); 
          data_out     : out std_logic_vector(11 downto 0) 
        ); 
end component; 
 
component f8 is 
   port ( clk          : in  std_logic; 
          address      : in  std_logic_vector(7 downto 0); 
          data_out     : out std_logic_vector(29 downto 0) 
        ); 
end component; 
 
component d8 is 
   port ( clk          : in  std_logic; 
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          address      : in  std_logic_vector(7 downto 0); 
          data_out     : out std_logic_vector(28 downto 0) 
        ); 
end component; 
 
component e8 is 
   port ( clk          : in  std_logic; 
          address      : in  std_logic_vector(6 downto 0); 
          data_out     : out std_logic_vector(11 downto 0) 
        ); 
end component; 
 
component f16 is 
   port ( clk          : in  std_logic; 
          address      : in  std_logic_vector(7 downto 0); 
          data_out     : out std_logic_vector(29 downto 0) 
        ); 
end component; 
 
component d16 is 
   port ( clk          : in  std_logic; 
          address      : in  std_logic_vector(7 downto 0); 
          data_out     : out std_logic_vector(28 downto 0) 
        ); 
end component; 
 
component e16 is 
   port ( clk          : in  std_logic; 
          address      : in  std_logic_vector(6 downto 0); 
          data_out     : out std_logic_vector(11 downto 0) 
        ); 
end component; 
 
component f32 is 
   port ( clk          : in  std_logic; 
          address      : in  std_logic_vector(4 downto 0); 
          data_out     : out std_logic_vector(29 downto 0) 
        ); 
end component; 
 
component d32 is 
   port ( clk          : in  std_logic; 
          address      : in  std_logic_vector(4 downto 0); 
          data_out     : out std_logic_vector(28 downto 0) 
        ); 
end component; 
 
component e32 is 
   port ( clk          : in  std_logic; 
          address      : in  std_logic_vector(4 downto 0); 
          data_out     : out std_logic_vector(11 downto 0) 
        ); 
end component; 
 
component ptable is 
   port ( clk          : in  std_logic; 
          address      : in  std_logic_vector(8 downto 0); 
          data_out     : out std_logic_vector(29 downto 0) 
        ); 
end component; 
 
--wires checkops 
signal NEG,Azero,Bzero : std_logic; 



 180

 
--wires setvalues 
signal i,j,r : signed (31 downto 0); 
signal AltB,AeqB : std_logic; 
 
--wires rangeshifter -1 < r < 0 
signal F1_addr_rs : std_logic_vector (6 downto 0); 
signal F1_rs : std_logic_vector (31 downto 0); 
signal F2_addr_rs : std_logic_vector (7 downto 0); 
signal F2_rs : std_logic_vector (32 downto 0); 
signal F3_addr_rs : std_logic_vector (7 downto 0); 
signal F3_rs : std_logic_vector (33 downto 0); 
signal r1a,i1,i2 : signed (37 downto 0); 
signal ResFromF3 : signed (37 downto 0); 
signal val_near_zero,val_near_modtwo : std_logic; 
signal rs_cu : std_logic; 
 
--wires control unit interpolator 
signal en_busA : std_logic; 
signal sel_busA : std_logic; 
signal en_busB : std_logic; 
signal rs_infi : std_logic; 
 
--wires busA 
signal i_int : signed (37 downto 0); 
signal r_int : std_logic_vector (37 downto 0); 
signal r1a_us : std_logic_vector(37 downto 0); 
 
--sub r2 
signal r2_new : std_logic_vector(37 downto 0); 
signal i2_new_us : std_logic_vector(37 downto 0); 
 
--wires partlookup  
signal F1a_addr,F2a_addr,F4a_addr,F8a_addr,F16a_addr : std_logic_vector (7 
downto 0); 
signal D1a_addr,D2a_addr,D4a_addr,D8a_addr,D16a_addr : std_logic_vector (7 
downto 0); 
signal E1a_addr,E2a_addr,E4a_addr,E8a_addr,E16a_addr : std_logic_vector (5 
downto 0); 
signal F32a_addr,D32a_addr,E32a_addr : std_logic_vector (4 downto 0); 
signal F2s_addr,F4s_addr,F8s_addr,F16s_addr : std_logic_vector (7 downto 0); 
signal D2s_addr,D4s_addr,D8s_addr,D16s_addr : std_logic_vector (7 downto 0); 
signal E2s_addr,E4s_addr,E8s_addr,E16s_addr : std_logic_vector (6 downto 0); 
signal F32s_addr,D32s_addr,E32s_addr : std_logic_vector (4 downto 0); 
signal P_addr : std_logic_vector (8 downto 0); 
signal delta : std_logic_vector (27 downto 0); 
 
--wires addmul  
signal i_int_us : std_logic_vector (37 downto 0); 
signal F1a_LUT,F2a_LUT,F4a_LUT,F8a_LUT,F16a_LUT,F32a_LUT : std_logic_vector 
(29 downto 0); 
signal D1a_LUT,D2a_LUT,D4a_LUT,D8a_LUT,D16a_LUT,D32a_LUT : std_logic_vector 
(28 downto 0); 
signal E1a_LUT,E2a_LUT,E4a_LUT,E8a_LUT,E16a_LUT,E32a_LUT : std_logic_vector 
(11 downto 0); 
signal F2s_LUT,F4s_LUT,F8s_LUT,F16s_LUT,F32s_LUT : std_logic_vector (29 
downto 0); 
signal D2s_LUT,D4s_LUT,D8s_LUT,D16s_LUT,D32s_LUT : std_logic_vector (28 
downto 0); 
signal E2s_LUT,E4s_LUT,E8s_LUT,E16s_LUT,E32s_LUT : std_logic_vector (11 
downto 0); 
signal P : std_logic_vector (29 downto 0); 
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--wires busB 
signal result : std_logic_vector (37 downto 0); 
signal result_tmp : std_logic_vector (37 downto 0); 
 
begin 
 
check_ops : checkops port map (sa,sb,a,b,s_addsub,NEG,Azero,Bzero); 
 
set_values : setvalues port map (a,b,i,j,r,AltB,AeqB); 
 
rangeshifter : rs_region port map 
(s_addsub,r,i,j,F1_addr_rs,F1_rs,F2_addr_rs,F2_rs,F3_addr_rs,F3_rs,r1a,i1,i
2,rs_cu,rs_infi,ResFromF3,val_near_zero,val_near_modtwo); 
 
control_unit_int : cu_int port map 
(clk,s_addsub,val_near_modtwo,rs_cu,rs_infi,en_busA,sel_busA,en_busB); 
 
r1a_us <= std_logic_vector(r1a(37 downto 0));--change bits to unsigned 
mux_busA : busA port map 
(clk,s_addsub,en_busA,sel_busA,rs_infi,r1a_us,i1,i2,r2_new,r_int,i_int); 
 
LUT_lookup : partlookup2 port map 
(r_int,s_addsub,F1a_addr,D1a_addr,E1a_addr,F2a_addr,D2a_addr,E2a_addr,F4a_a
ddr,D4a_addr,E4a_addr,F8a_addr,D8a_addr,E8a_addr,F16a_addr,D16a_addr,E16a_a
ddr,F32a_addr,D32a_addr,E32a_addr,F2s_addr,D2s_addr,E2s_addr,F4s_addr,D4s_a
ddr,E4s_addr,F8s_addr,D8s_addr,E8s_addr,F16s_addr,D16s_addr,E16s_addr,F32s_
addr,D32s_addr,E32s_addr,P_addr,delta); 
 
i_int_us <= std_logic_vector(i_int(37 downto 0));--change bits to unsigned 
LUT_addmul : addmul_WT2 port map 
(i_int_us,r_int,s_addsub,F1a_LUT,D1a_LUT,E1a_LUT,F2a_LUT,D2a_LUT,E2a_LUT,F4
a_LUT,D4a_LUT,E4a_LUT,F8a_LUT,D8a_LUT,E8a_LUT,F16a_LUT,D16a_LUT,E16a_LUT,F3
2a_LUT,D32a_LUT,E32a_LUT,F2s_LUT,D2s_LUT,E2s_LUT,F4s_LUT,D4s_LUT,E4s_LUT,F8
s_LUT,D8s_LUT,E8s_LUT,F16s_LUT,D16s_LUT,E16s_LUT,F32s_LUT,D32s_LUT,E32s_LUT
,P,delta,result_tmp); 
 
i2_new_us <= std_logic_vector(i2(37 downto 0)); 
sub_r2 : subR2 port map (i2_new_us,result_tmp,r2_new); 
 
mux_busB : busB port map (en_busB,result_tmp,result); 
 
Final_result : resultStatus port map 
(s_addsub,result,j,i,ResFromF3,val_near_zero,val_near_modtwo,Azero,Bzero,NE
G,AltB,AeqB,sq,q,oflow,uflow); 
 
--ROMs 
 
F1table : LUT128 port map (clk,F1_addr_rs,F1_rs); 
 
F2table : LUT256a port map (clk,F2_addr_rs,F2_rs); 
 
F3table : LUT256b port map (clk,F3_addr_rs,F3_rs); 
 
F1int_add : f1a port map (clk,F1a_addr,F1a_LUT); 
 
D1int_add : d1a port map (clk,D1a_addr,D1a_LUT); 
 
E1int_add : e1a port map (clk,E1a_addr,E1a_LUT); 
 
F2int_add : f2a port map (clk,F2a_addr,F2a_LUT); 
 
D2int_add : d2a port map (clk,D2a_addr,D2a_LUT); 
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E2int_add : e2a port map (clk,E2a_addr,E2a_LUT); 
 
F4int_add : f4a port map (clk,F4a_addr,F4a_LUT); 
 
D4int_add : d4a port map (clk,D4a_addr,D4a_LUT); 
 
E4int_add : e4a port map (clk,E4a_addr,E4a_LUT); 
 
F8int_add : f8a port map (clk,F8a_addr,F8a_LUT); 
 
D8int_add : d8a port map (clk,D8a_addr,D8a_LUT); 
 
E8int_add : e8a port map (clk,E8a_addr,E8a_LUT); 
 
F16int_add : f16a port map (clk,F16a_addr,F16a_LUT); 
 
D16int_add : d16a port map (clk,D16a_addr,D16a_LUT); 
 
E16int_add : e16a port map (clk,E16a_addr,E16a_LUT); 
 
F32int_add : f32a port map (clk,F32a_addr,F32a_LUT); 
 
D32int_add : d32a port map (clk,D32a_addr,D32a_LUT); 
 
E32int_add : e32a port map (clk,E32a_addr,E32a_LUT); 
 
F2int_sub : f2 port map (clk,F2s_addr,F2s_LUT); 
 
D2int_sub : d2 port map (clk,D2s_addr,D2s_LUT); 
 
E2int_sub : e2 port map (clk,E2s_addr,E2s_LUT); 
 
F4int_sub : f4 port map (clk,F4s_addr,F4s_LUT); 
 
D4int_sub : d4 port map (clk,D4s_addr,D4s_LUT); 
 
E4int_sub : e4 port map (clk,E4s_addr,E4s_LUT); 
 
F8int_sub : f8 port map (clk,F8s_addr,F8s_LUT); 
 
D8int_sub : d8 port map (clk,D8s_addr,D8s_LUT); 
 
E8int_sub : e8 port map (clk,E8s_addr,E8s_LUT); 
 
F16int_sub : f16 port map (clk,F16s_addr,F16s_LUT); 
 
D16int_sub : d16 port map (clk,D16s_addr,D16s_LUT); 
 
E16int_sub : e16 port map (clk,E16s_addr,E16s_LUT); 
 
F32int_sub : f32 port map (clk,F32s_addr,F32s_LUT); 
 
D32int_sub : d32 port map (clk,D32s_addr,D32s_LUT); 
 
E32int_sub : e32 port map (clk,E32s_addr,E32s_LUT); 
 
Ptab : ptable port map (clk,P_addr,P); 
 
end rtl; 
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