

UNIVERSITY OF NEWCASTLE UPON TYNE
DEPARTMENT OF COMPUTING SCIENCE

PhD Thesis

Run-time Support for Parallel Object-Oriented Computing
The NIP Lazy Task Creation Technique and

the NIP Object-based Software Distributed Shared Memory

by
Savas Parastatidis

Supervisor
Dr. Paul Watson

SEPTEMBER 2000

i

ABSTRACT

Advances in hardware technologies combined with decreased costs

have started a trend towards massively parallel architectures that utilise

commodity components. It is thought unreasonable to expect software

developers to manage the high degree of parallelism that is made

available by these architectures. This thesis argues that a new

programming model is essential for the development of parallel

applications and presents a model which embraces the notions of

object-orientation and implicit identification of parallelism. The new

model allows software engineers to concentrate on development issues,

using the object-oriented paradigm, whilst being freed from the burden

of explicitly managing parallel activity.

To support the programming model, the semantics of an execution

model are defined and implemented as part of a run-time support

system for object-oriented parallel applications. Details of the novel

techniques from the run-time system, in the areas of lazy task creation

and object-based, distributed shared memory, are presented.

The tasklet construct for representing potentially parallel

computation is introduced and further developed by this thesis. Three

caching techniques that take advantage of memory access patterns

exhibited in object-oriented applications are explored. Finally, the

performance characteristics of the introduced run-time techniques are

analysed through a number of benchmark applications.

iii

ACKNOWLEDGEMENTS

I would like to start by expressing my gratitude to my supervisor, Dr.

Paul Watson. I consider myself extremely fortuned to have had Dr.

Watson as my guide in this research work. He has endured numerous

long sessions of discussions without ever showing signs of tiredness

and his insights were always accurate. He has been a great source of

inspiration and support throughout. I do not think I would have ever

been able to bring this thesis to completion if it was not for his

paradigmatic supervision. Thank you Paul.

Next, I would like to thank the other two members of my thesis

committee Prof. Pete Lee and Dr. Chris Phillips for their valuable input

to my research work. Special thanks to Prof. Lee because, in his

capacity as leader for the HiPPO research project, he has been

extremely patient with me whilst trying to complete this thesis.

My friend, fellow PhD student, and officemate Jim Webber

deserves a special mention. His company and support through the years

have made this work possible. He has contributed greatly to my

integration into British society, culture, and to the more colloquial

aspects of the language. I consider myself tremendously lucky to have

met him and privileged to be able to call him ‘mate.’

To other friends: Kostas Amoiridis, Fefi Axiotidou, Grigoris

Lampakis, Panagiotis Karambatzakis, Dr. Lindsay Marshall, Baggelis

Skarlatos, Bassilis Theodoridis, Stamatis Xouxos, Colette Wabnitz, I

offer my sincerest thanks.

Finally, I would like to dedicate this thesis to my family: my mother

Fotini, my father Giorgos, and my brother Filippos. If it were not for

iv

their continuing encouragement and support throughout the years, I

would not have managed to complete my academic studies and this

research work. Τους ευχαριστώ πολύ.

v

TABLE OF CONTENTS

Abstract i

Acknowledgements iii

Table of Contents v

Table of Figures ix

Table of Tables xiii

Table of Codes xv

1. Introduction 1
1.1. High-Performance Computing 2

1.1.1. Application Area Trend 2
1.1.2. Architectural Trends 4
1.1.3. Trend Synopsis 6

1.2. Parallelism 6
1.2.1. Definition 7
1.2.2. Hardware Support 7
1.2.3. Programming and Execution Models 8

1.3. Possible Future Directions for Parallel Computing 9
1.3.1. Microprocessor Technology 9
1.3.2. Architectures 10
1.3.3. Software 10

1.4. Research Goals 11
1.4.1. Motivation 11
1.4.2. Contributions to Knowledge 11

1.5. Remaining Thesis Structure 12

2. Parallelism and the NIP Programming and NIP Execution Models 14
2.1. Models and Abstraction 15

2.1.1. Programming Model 15
2.1.2. Execution Model 15
2.1.3. Computational Model 16
2.1.4. Lack of Abstraction Causes Confusion 16
2.1.5. Towards Two New Abstract Models 17
2.1.6. Layered Approach to the Parallel Computing Paradigm 17

vi

2.2. Hardware 18
2.3. Operating Systems 19
2.4. Run-time System 20
2.5. Programming Language 20

2.5.1. Auto-parallelisation Compilers 21
2.5.2. Software Libraries 22
2.5.3. Language Extensions/Integration 22
2.5.4. Implicit Parallelism 23
2.5.5. Transition Towards Implicit Programming Languages 23

2.6. Common Programming Models 24
2.6.1. Serial 25
2.6.2. Message Passing 26
2.6.3. Shared Memory 27
2.6.4. Functional 29

2.7. Common Execution Models 30
2.7.1. Message Passing and Shared Memory 30
2.7.2. Dataflow 31
2.7.3. Functional 31

2.8. NIP Programming Model 32
2.9. NIP Execution Model 33

2.9.1. Model Requirements 34
2.9.2. Run-time Environment 35
2.9.3. Run-time Environment on Diverse Architectures 35

3. NIP Lazy Task Creation 37
3.1. The Granularity Problem 38

3.1.1. The ‘Expert’ Programmer Solution 38
3.1.2. The ‘Clever’ Compiler Approach 38
3.1.3. A Run-time Solution 39

3.2. Lazy Task Creation 39
3.2.1. Concept 40
3.2.2. Implementation 41
3.2.3. Weaknesses 41

3.3. Lazy Threads 43
3.3.1. Concept 43
3.3.2. Implementation 44
3.3.3. Weaknesses 45

3.4. Other Run-time Techniques 45
3.4.1. WorkCrews 46
3.4.2. LeapFrogging 46

3.5. On Potentially Parallel Calls and their Representations 46
3.5.1. The Problem with Iterative Computations 47
3.5.2. A Solution 48

3.6. NIP Lazy Task Creation 48
3.6.1. The Tasklet 48
3.6.2. Tasklet Internals and the Tasklet Availability Queue 50
3.6.3. Use of Tasklets 52
3.6.4. Function Calls 52
3.6.5. Iterative Computations 53
3.6.6. Recursive Computations 58
3.6.7. Implementation 60

vii

3.7. Discussion 61

4. NIP Software-Based Distributed Shared Memory 63
4.1. The Shared Memory Abstraction 64
4.2. The Design Considerations for DSM Systems 65

4.2.1. Structure, Sharing Unit, and Granularity 65
4.2.2. Memory Consistency 66
4.2.3. Data Access 67
4.2.4. Implementation 68
4.2.5. Heterogeneity 68
4.2.6. Efficiency 68
4.2.7. Discussion 69

4.3. Existing Relaxed Memory Consistency Models 69
4.3.1. Release and Lazy Release Consistency 70
4.3.2. Entry Consistency 71

4.4. Existing DSM Systems 72
4.4.1. Influential Systems 72
4.4.2. Midway 72

4.5. NIPDSM Design Considerations 75
4.5.1. Design Requirements 75
4.5.2. Design Choices 76
4.5.3. NIP Entry Consistency 77
4.5.4. Coupling the Synchronisation and Cache Management 79

4.6. NIPDSM Implementation 81
4.6.1. Node Managers, Read and Write Proxies 81
4.6.2. Object Representation and NIPDSM Reference 82
4.6.3. NIPDSM Virtual Object Table 83

4.7. Introducing Caching Techniques in NIPDSM 85
4.7.1. Temporal Locality 85
4.7.2. Spatial Locality 85
4.7.3. Dynamic Data Structures and Access Patterns 86
4.7.4. Recurring Access to Objects 87

4.8. Implementation of the NIPDSM Caching Optimisations 88
4.8.1. Cache Block 88
4.8.2. Object Grouping Based on Location 88
4.8.3. Object Grouping Based on Associations 89
4.8.4. Object Grouping Based on Access History 90

4.9. Discussion 92
4.9.1. Why Objects 92
4.9.2. Consistency Semantics 92
4.9.3. Caching 92
4.9.4. Midway and NIPDSM 93

5. The NIP Run-time System 95
5.1. The NIP Execution Model as a Run-time System 96
5.2. Design 97

5.2.1. Intended Use 97
5.2.2. Overall Structure and the NIP Node 97
5.2.3. NIP Node Service 98

5.3. Implementation Overview 98
5.3.1. Service Task and Workers 98

viii

5.3.2. The Portability Issue 99
5.4. NIP Communications 99

5.4.1. Design 99
5.4.2. Communication Between NIP Nodes 99
5.4.3. Implementation 100

5.5. NIP Load Balancing 101
5.5.1. Design 101
5.5.2. Tasks and the Load of NIP Nodes 102
5.5.3. Implementation 103

5.6. NIP Lazy Task Creation 104
5.6.1. The NIP Tasklet Interface 104
5.6.2. The Tasklet Availability Queue 106
5.6.3. The NIP Tasklet Library 106

5.7. NIP Distributed Shared Memory 107
5.7.1. Allocation of Objects in the NIPDSM 107
5.7.2. Efficiency 107
5.7.3. Object Access 108

5.8. Discussion 109

6. Performance Evaluation 111
6.1. Introduction 112

6.1.1. Evaluation Objectives 112
6.1.2. Real-System Execution vs. Simulation 112

6.2. Experimental Set-up 113
6.2.1. Hardware Environment 113
6.2.2. Software Environment 114

6.3. Cost of Primitive Operations 114
6.3.1. Operating System Primitive Operations 114
6.3.2. NIP Run-time Primitive Operations 115

6.4. NIPLTC Micro-Benchmarks 118
6.4.1. Iterative Tasklet – Parallel Map – APP 118
6.4.2. Iterative Tasklet – Parallel Map – SMP 124
6.4.3. Recursive Tasklet – Grain 125

6.5. NIPDSM Micro-Benchmarks 127
6.5.1. Object Grouping Based on Location – Parallel Map 129
6.5.2. Object Grouping Based on Associations – TreeSum 131
6.5.3. Object Grouping Based on Access History – Tree Search 134

6.6. Applications 137
6.6.1. Matrix Multiply 137
6.6.2. Barnes-Hut 141
6.6.3. Travelling Salesperson Problem 148

6.7. Discussion 150

7. Conclusions and Discussion 153
7.1. Object-Oriented Parallel Computing 154
7.2. Run-time Support 154
7.3. Potential NIPDSM Enhancements 156
7.4. Future Research Directions 157
7.5. Concluding Remarks 158

References 159

ix

TABLE OF FIGURES

Figure 1-1: Application area evolution of the top 500 high-performance computers based on data from the
‘TOP500 list’ (TOP500 List 2000; TOP500 List Authors 2000) ... 3

Figure 1-2: Evolution of the total computational power (in Gflop/s) per application area of the top 500
high-performance computers based on data from the ‘TOP500 list’ (TOP500 List 2000; TOP500 List
Authors 2000) ... 3

Figure 1-3: Evolution of the computational power (in Gflop/s) of the fastest computer for each application
area of the top 500 high-performance computers based on data from the ‘TOP500 list’ (TOP500 List
2000; TOP500 List Authors 2000)... 3

Figure 1-4: Evolution of hardware architecture of the top 500 high-performance computers based on data
from the ‘TOP500 list’ (TOP500 List 2000; TOP500 List Authors 2000)... 5

Figure 1-5: Evolution of the computational power (in Gflop/s) of the fastest computer for each hardware
architecture of the top 500 high-performance computers based on data from the ‘TOP500 list’
(TOP500 List 2000; TOP500 List Authors 2000) ... 5

Figure 2-1: A layered approach to the parallel computing paradigm ... 17
Figure 2-2: A condensed view of Figure 2-1 that also shows the computational model................................... 17
Figure 2-3: Taxonomy proposed by Tanenbaum (Tanenbaum 1999) ... 18
Figure 2-4: The conceptualisation of a computer system by the serial programming model 26
Figure 2-5: The conceptualisation of a computer system by the message-passing programming model........ 26
Figure 2-6: The conceptualisation of a computer system by the shared-memory programming model......... 27
Figure 2-7: The conceptualisation of a shared-memory/message-passing computer system........................... 29
Figure 2-8: The conceptualisation of a computer system by the NIP programming model 32
Figure 2-9: The major components of the abstract machine as suggested by the NIP execution model 33
Figure 3-1: The parallel call pattern .. 52
Figure 3-2: The parallel loop pattern .. 55
Figure 3-3: The parallel recursion pattern.. 58
Figure 3-4: Operations on the queue maintained by recursive tasklets.. 60
Figure 4-1: The NIPDSM VOT table .. 84
Figure 4-2: Caching based on spatial locality information... 89
Figure 4-3: Object representations and their list of NIPDSM references of the associated objects 89
Figure 4-4: Caching based on locking history information ... 90
Figure 4-5: Examples of the locking history list.. 91
Figure 5-1: The parallel computing paradigm as introduced in Chapter 2 .. 96
Figure 5-2: The different layers that are hidden by the NIP run-time library, which is an implementation of

the NIP execution model semantics .. 96
Figure 5-3: Intended use of the NIP run-time library .. 97
Figure 5-4: NIP run-time library components .. 98
Figure 5-5: The four task states as considered by the NIP load-balancing service .. 102
Figure 6-1: The speedup and slowdown of NIP primitive operations over the corresponding operating

system operations on four different configurations .. 117
Figure 6-2: Speedup achieved on 2, 4, and 8 nodes (vector size: 100, 500, 1000, 2000) 120
Figure 6-3: Efficiency achieved on 2, 4, and 8 nodes (vector size: 2000) .. 120
Figure 6-4: % of tasks created out of 2,000 possible for different function granularities and for different

number of nodes used (non-optimised iterative tasklet)... 120

x

Figure 6-5: Comparison between the speedups achieved when a single iteration (top row) is stolen and when
a group of iterations (bottom row) is stolen, for 2, 4, and 8 nodes and for fine granularities of the
function (vector size: 100, 500, 1000, 2000)..122

Figure 6-6: % of tasks created out of 2,000 possible for different function granularities and for different
number of nodes used (optimised iterative tasklet) ...123

Figure 6-7: Speedups of the parallel map micro-benchmark on the 4-way SMP for the original (top row) and
grouping-capable (bottom row) iterative tasklet (2 and 4 processors, vector size: 100, 500, 1000, 2000)
...125

Figure 6-8: Speedups of the grain micro-benchmark on the APP..127
Figure 6-9: Speedups of the grain micro-benchmark on the SMP ...127
Figure 6-10: Comparison between the speedups achieved when a caching technique is not used (top row)

and when a object grouping based on location (bottom row) is used (number of nodes: 2, 4, 8; vector
size: 100, 500, 1000, 2000) ...130

Figure 6-11: Cache-hit rates for the map micro-benchmark on 2, 4, and 8 nodes and for different
granularities of the function (vector size: 100, 500, 1000, 2000) ..130

Figure 6-12: Cache-hit rate for the treesum micro-benchmark for different tree depths and cache block sizes
...132

Figure 6-13: Example of object grouping based on relations and the association between the tree-depth and
the number of cache hits ...132

Figure 6-14: Cache block usage for the treesum benchmark...132
Figure 6-15: Object associations in order to improve the cache-hit rate ...133
Figure 6-16: Cache-hit rate for the optimised treesum micro-benchmark for different tree depths and cache

block sizes..133
Figure 6-17: An example of a list data structure and the associations between nodes134
Figure 6-18: Cache-hit rate for the list-iteration micro-benchmark (number of elements in the list: 1,000,

5,000, 10,000, 20,000)...134
Figure 6-19: Example of locking operations in the tree search micro-benchmark...135
Figure 6-20: Cache-hit rates of object grouping based on access history for the tree search micro-benchmark

(binary tree leaves: 1,024; random objects used as criteria for the search algorithm are selected from
the 128

1,32
1,16

1,2
1 of the set of leaves) ...135

Figure 6-21: Cache-hit rates of object grouping based on access history for the tree search micro-benchmark
for the first 50 repetitions of the search algorithm (binary tree leaves: 1,024; random objects used as
criteria for the search algorithm are selected from the 128

1,32
1,16

1,2
1 of the set of leaves)136

Figure 6-22: Evolution of the cache-hit rate when the range from which the random objects are chosen
becomes narrower ..136

Figure 6-23: Series of locking operations when accessing a Matrix element...138
Figure 6-24: Execution slowdowns of the matrix multiplication application on the SMP due to object

locking when compared to the sequential C++ version ...139
Figure 6-25: Execution slowdowns of the matrix multiplication application on the APP when compared to

the sequential C++ version (number of nodes: 2, 4, 8; vector sizes: 100, 200, 300).............................139
Figure 6-26: % of tasks executed at each node (vector size: 250x250, number of nodes: 8)140
Figure 6-27: Slowdowns of the NIP version of the Barnes-Hut application on the APP for different caching

techniques (each graph represents a different number of nodes: 2, 4, 8; number of bodies: 512, 1024,
2048, 4096, 8192; object and cache block sizes are presented in Table 6-14) ..143

Figure 6-28: Slowdowns of the NIP version of the Barnes-Hut application on the APP for different caching
techniques (each graph represents a different number of nodes: 2, 4, 8; number of bodies: 2048, 4096,
8192; object and cache block sizes are presented in Table 6-14) ...143

Figure 6-29: Cache-hit rates of the NIP version of the Barnes-Hut application on the APP for different
caching techniques (each graph represents a different number of nodes: 2, 4, 8; number of bodies:
512, 1024, 2048, 4096, 8192; object and cache block sizes are presented in Table 6-14)143

Figure 6-30: Caching of bodies on a parallel platform of four nodes when the object grouping based on
location technique is enabled ..144

Figure 6-31: Locks causing object invalidations from the execution of the Barnes-Hut application on 8
nodes (number of bodies: 1024, 2048, 4096, 8192; object and cache block sizes are presented in Table
6-14, page 2) ..145

Figure 6-32: Write locks executed on each node during the execution of the Barnes-Hut application on 8
nodes (each graph represents a different number of bodies: 1024, 8192; object and cache block sizes
are presented in Table 6-14, page 2)...145

Figure 6-33: Speedup improvement of the Barnes-Hut application on 8 nodes with the object grouping
based on location caching technique enabled (number of bodies: 8192, 16384, 32768; 65536; object
and cache block sizes are presented in Table 6-14, page 2) ..147

xi

Figure 6-34: Slowdowns of the Barnes-Hut application on the SMP workstation (number of bodies: 512,
1024, 2048, 4096, 8192, 16384, 32768).. 147

Figure 6-35: Speedup the NIP version of the TSP application on the APP (each graph represents a different
number of nodes: 2, 4, 8; number of cities: 8, 9, 10, 11, 12; object and cache block sizes are presented
in Table 6-16) .. 149

Figure 6-36: Rate of invalidations in the execution of the NIP version of TSP on the APP (number of
nodes: 8; number of cities: 8, 9, 10, 11, 12; object and cache block sizes are presented in Table 6-16)
.. 150

Figure 7-1: The major components of the abstract machine as suggested by the NIP execution model 154
Figure 7-2: The parallel computing paradigm with the NIP programming and execution models 154

xiii

TABLE OF TABLES

Table 1-1: How to perform an activity faster in real life and in computing (Pfister 1998) 7
Table 2-1: Taxonomy proposed by Flynn (Flynn 1972) .. 18
Table 2-2: Legend of acronyms presented in Figure 2-3 ... 18
Table 2-3: Summary of the examined parallel programming model properties (Skillicorn and Talia 1998)... 21
Table 2-4: Properties a programming model should have (Skillicorn and Talia 1998) 24
Table 2-5: Properties of the serial programming model .. 26
Table 4-1: A synopsis of the most influential all-in-software DSM systems... 72
Table 4-2: The fields of the object representation data structure ... 83
Table 4-3: A synopsis of the unique features of the NIPDSM and the way it compares to Midway.............. 93
Table 6-1: Profiles of the hardware platforms used for the experiments .. 113
Table 6-2: The elapsed time in usecs and the corresponding cost in processor cycles of some operating

system primitive operations .. 115
Table 6-3: The elapsed time in usecs and the corresponding cost in processor cycles of some NIP primitive

operations .. 116
Table 6-4: The execution overhead introduced due to NIP run-time related operations as a percentage of

the execution time of sequential version of the computation presented in Code 6-1 119
Table 6-5: The execution overhead introduced due to NIP run-time related operations as a percentage of

the execution time of sequential version of the computation presented in Code 6-3 122
Table 6-6: Average of the tasks stolen from the repeated execution of the tests (number of nodes used: 8,

vector size: 2000, function granularity: ~23msecs) .. 123
Table 6-7: The execution overhead introduced due to NIP related operations as a percentage of the

execution of sequential version of the grain micro-benchmark for the an APP workstation and the
SMP workstation for different granularities ... 126

Table 6-8: Percentage of tasks created out of 65,536 possible on the APP.. 127
Table 6-9: Percentage of tasks created out of 65,536 possible on the SMP.. 127
Table 6-10: Cost of NIPDSM operations.. 128
Table 6-11: Number of objects transferred (and read lock operations) for each tree depth and size of each

tree node .. 132
Table 6-12: NIP references required for representing the layout of a matrix... 137
Table 6-13: Percentage of cached objects that were invalidated... 141
Table 6-14: Sizes of the body and cell objects and the NIPDSM cache block 143
Table 6-15: Percentage of lazily created tasks per step out of the maximum possible (number of nodes: 8,

object and cache block sizes are presented in Table 6-14, page 2) .. 146
Table 6-16: Sizes of the body and cell objects and the NIPDSM cache block 149

xv

TABLE OF CODES

Code 3-1: First version of parallel map .. 42
Code 3-2: Second version of parallel map ... 42
Code 3-3: Public interface of a tasklet in pseudo-code .. 49
Code 3-4: Tasklet private data members.. 50
Code 3-5: A tasklet can be reused within the same scope ... 51
Code 3-6: Pseudo-code for T1 and T2 ... 52
Code 3-7: Pseudo-code of a tasklet that exposes a function call as a potentially parallel call........................... 53
Code 3-8: The NIP lazy task creation version of the pseudo-code in Code 3-6 .. 53
Code 3-9: Relation between an iterative computation and its tasklet representation .. 54
Code 3-10: Two closure representations of the same iterative computation.. 54
Code 3-11: Serial version of the application of a function onto the elements of a vector................................ 55
Code 3-12: NIP lazy task creation version of the application of a function onto the elements of a vector... 55
Code 3-13: Design and implementation of the MapTasklet type.. 56
Code 3-14: The serial version of nfib .. 58
Code 3-15: The NIP lazy task creation version of nfib using simple tasklets .. 59
Code 3-16: The NIP lazy task creation version of nfib using a recursive tasklet .. 59
Code 4-1: The implicit enclosure of a method call around lock operations ... 77
Code 4-2: Consecutive method calls may result in several state updates .. 79
Code 4-3: Consecutive method calls of the same access mode and on the same object can be grouped

together .. 79
Code 4-4: Type information can be used by a compiler to deduce associations between objects................... 87
Code 5-1: C++ interface of the NIPTasklet ... 105
Code 5-2: C++ template classes for common patterns of parallelism .. 107
Code 5-3: Part of the NIPRef interface ... 108
Code 6-1: Pseudo code for an iterative computation... 118
Code 6-2: The resulting pseudo code from the translation of Code 6-1 consistent to the NIP execution

model semantics without object memory ... 119
Code 6-3: Optimised version of the pseudo code presented in Code 6-2 .. 121
Code 6-4: The grain pseudo code consistent to the NIP programming model semantics 126
Code 6-5: The grain pseudo code converted to be consistent with NIP execution model semantics 126
Code 6-6: Pseudo code for the parallel map micro-benchmark consistent with the NIP execution model

semantics ... 129
Code 6-7: The Matrix class .. 137
Code 6-8: Pseudo code for the sequential version of TSP .. 148
Code 6-9: Pseudo cost for the NIP version of TSP... 148

1

1CHAPTER 1
1. INTRODUCTION

The research work presented in this thesis was inspired by the

emergence of high-performance computing architectures built around

affordable, commodity-based hardware. The assessment of existing

software-based, run-time support tools for the execution of parallel

applications on such architectures and the proposition of solutions to

possible drawbacks were originally set as the primary objectives for this

thesis.

This chapter presents in detail the motivation for the research work

undertaken and lists the contributions to knowledge that the rest of the

thesis claims to make. The field of high-performance computing is

explored and the application area and hardware trends are studied.

The discipline of parallelism is seen as being very closely

interrelated to high-performance computing. The basic requirements

for development models and software tools to support parallelism on

the emerging high-performance architectures are set and the scope for

the chapters that follow is established.

Chapter 1

2

1.1. High-Performance Computing

There have always been applications with requirements that exceeded the available

computational power at any particular period in time. The effort to meet the needs of

these performance-hungry applications has been the driving force in designing and

building faster computers.

In the early years of high-performance computing (HPC), applications with excessive

demands in processing power were limited to the area of scientific computation (weather

prediction, cosmology, particle simulation, etc.). As the processing power made available

to scientists increased, the urge to run larger and/or more difficult problems continued

and it is still the same today. In addition to scientists, computer practitioners in other

application areas started to realise the benefits of harnessing more processing power.

Applications in areas such computer vision and graphics, computer-aided design,

databases, have all benefited from high-performance computing architectures since the

‘80s—and still do. Today, performance-critical application areas include computer

animation (in 1995, ‘Toy Story’ was the first full-featured, computer-generated film with

many others following it), aerospace, geophysics, World Wide Web (WWW), gaming,

finance, bioinformatics, education, healthcare, to name only a few. One can observe a

shift from scientific to primarily industrially oriented HPC applications.

The last statement is further supported by the recent growth of the WWW.

Performance-critical web applications have emphasised the demand for industry-based

HPC platforms. As an example, one only needs to examine the strategies for their future

products that the two largest software companies in the world, namely Microsoft and

Oracle, have drawn. Both are suggesting a return to the old server-based style of

computing (Microsoft 2000; Oracle 1999). The requirements of the multimedia-rich,

computationally intensive, network-centric applications that are to be supported by the

re-proposed server-based models of computing point to HPC architectures.

With the majority of the application areas being industry-oriented during the last

decade, the interest in the HPC field and the high rate of investment were unsurprising.

As it will soon be shown, systems with an improved cost/performance ratio attracted

most of the attention and architectures based on commodity hardware are becoming

more popular due to their ability to offer good performance for a relative low cost.

A study of the HPC field cannot and should not neglect the required application

development models and support tools as well as their enabling execution environments.

High-Performance Computing

3

Additionally, the discipline of parallelism is seen by this thesis as being closely coupled

with that of HPC, as the foremost purpose of parallelism is the improvement of

performance. To that extent, this thesis considers different models and support tools for

parallelism as being the enabling factors for high-performance computing.

Before the discussion moves to parallelism related issues, the application area and

hardware trends in the field of high-performance computing are considered. It is hoped

that the current and future requirements for development and execution paradigms will be

better understood.

1.1.1. Application Area Trend

Analysis of the list of the 500 fastest supercomputers in the world (TOP500 List Authors

2000) reveals a number of trends in the HPC field. The ‘TOP500 list’ (TOP500 List 2000)

is published twice a year, every June and November, and it records the fastest computers

in the world based on the results obtained from the execution of the LINPACK

benchmark (Dongarra 1994).

0

100

200

Jan-93 Jan-94 Jan-95 Jan-96 Jan-97 Jan-98 Jan-99 Jan-00

N
u
m

b
e
r

o
f

su
p
e
rc

o
m

p
u
te

rs

Research Industry Academic Classified Vendor

Figure 1-1: Application area evolution of the top 500 high-performance computers based on data from the

‘TOP500 list’ (TOP500 List 2000; TOP500 List Authors 2000)

The graph of Figure 1-1, which is based on all the published TOP500 lists until

November 1999, is illustrative of the transition towards industry-driven high-performance

computing. In 1996, the number of computers in the TOP500 list used in the industry

exceeded those installed in the academia and two years later those used by research

institutes. However, while the graph of Figure 1-1 strengthens the argument about the

growing interest of industry in high-performance computing, it does not reveal any

particular characteristics about the TOP500 systems.

Chapter 1

4

0

10000

20000

Jan-93 Jan-95 Jan-97 Jan-99

Research Industry Academic Classified Vendor

0

1000

2000

Jan-93 Jan-95 Jan-97 Jan-99

Research Industry Academic Classified Vendor

Figure 1-2: Evolution of the total computational
power (in Gflop/s) per application area of the top
500 high-performance computers based on data

from the ‘TOP500 list’ (TOP500 List 2000;
TOP500 List Authors 2000)

Figure 1-3: Evolution of the computational power
(in Gflop/s) of the fastest computer for each

application area of the top 500 high-performance
computers based on data from the ‘TOP500 list’
(TOP500 List 2000; TOP500 List Authors 2000)

When the achieved computational power, expressed in Gflop/s1, of all the

supercomputers in the TOP500 list is added together on per application area basis, it is

revealed that the industry-based systems are lagging behind in overall performance when

compared to the systems employed by the other application areas (Figure 1-2). Despite

their great number, as shown in Figure 1-1, the total computational power of the

industry-installed TOP500 high-performance computers at the end of 1999 is almost half

of the equivalent computational power of research-based supercomputers (Figure 1-2). As

a result, the high-performance computers in the TOP500 list that are used in industry are

the slowest on average when compared to any other application area.

The investment in exceptionally fast, number-crunching platforms seems to be

exclusively research-driven, as suggested by Figure 1-3 which shows the evolution of the

fastest of the supercomputers in the TOP500 list for each application area. Again, it is

clear that industry does not invest in the highest performing solutions possible. Instead,

there is an indication that industry is mostly concerned with the cost/performance ratio.

Although costing information about the supercomputers in the TOP500 list is not

made available, it is safe to assume that in the general case the cost/performance ratio

becomes significantly high at the top of the TOP500 list. The excessive computational

requirements of the scientific applications result in investments on fewer but at the same

time faster high-performance architectures. It is for this reason the number of

supercomputers in research has been decreasing (Figure 1-1) while their performance has

been continuously increasing (Figure 1-2 and Figure 1-3). In contrast and despite the

manifested interest of industry in high-performance computing, the lack of

1 Flop (Floating Operations): Unit used in the measurement of computational power.

High-Performance Computing

5

industry-installed supercomputers from the top of the TOP500 list suggests that the

investment on new platforms is not purely performance-driven but, instead,

cost/performance-driven.

1.1.2. Architectural Trends

The computer industry has been experiencing a tremendous rate of advances in VLSI

technology, especially during the last decade. Microprocessors and memory have been

becoming faster and cheaper, interconnection networks have been being built with more

available bandwidth and shorter latency, and local and wide area networking technology

has been advancing, mostly due to the exponential growth of the Internet.

Massively Parallel Processing (MPP) and Symmetric Multi-Processing (SMP)

computers are now much cheaper to manufacture because they can be based partially or

even completely on general-purpose, commodity hardware. An MPP consists of a great

number of processing elements with their own private memory. The processing nodes

may be interconnected through a variety of existing topologies (e.g., rings, buses, cubes,

hyper-cubes, etc.). An SMP consists of a usually small number—when compared to MPP

architectures—of processing elements that all share the same physical memory.

If the reasoning of the previous section about the shift towards inexpensive

high-performance computing was accurate, then MPP and SMP architectures should lead

the TOP500 list in terms of numbers. Indeed, the graph of Figure 1-4 confirms the latter

hypothesis by presenting the evolution of the TOP500 hardware architectures since

November 1993.

Due to the scalability limitations of the SMP architectures, further improvements in

performance are usually difficult and/or extremely costly to achieve. It can be suggested

that the combination of the costing and scalability considerations is the reason the

number of SMP architectures is in decline. Furthermore, the eclipse of architectures based

on Single Instruction Multiple Data (SIMD) processors or just one very expensive but

specialised single processor (Figure 1-4) can also be attributed to their unfavourable

cost/performance ratio and their scalability limitations.

Chapter 1

6

0

100

200

300

Jan-93 Jan-94 Jan-95 Jan-96 Jan-97 Jan-98 Jan-99 Jan-00

N
u
m

b
e
r

o
f

su
p
e
rc

o
m

p
u
te

rs

MPP SMP Cluster Constellations SIMD Single processor

Figure 1-4: Evolution of hardware architecture of the top 500 high-performance computers based on data

from the ‘TOP500 list’ (TOP500 List 2000; TOP500 List Authors 2000)

In contrast, the architectural shift towards MPP architectures can be justified by their

excellent scalability and the achieved performance. Since the first publication of the

TOP500 list, an MPP supercomputer has always been the fastest. Figure 1-5 shows the

evolution of the computational power, in Gflop/s, of the best performing supercomputer

per architecture. The fastest computer in the world in November 1999, according to the

TOP500 list, was the ASCI Red, located at the Sandia National Labs, US, which consisted

of an impressive number of 9,472 Intel PentiumII™ processors. The ASCI Red is

probably the best demonstration of the way commodity hardware—in this case the

PentiumIITM microprocessors—can be incorporated in a supercomputer that is capable of

achieving record-breaking performances.

High-Performance Computing

7

0

1000

2000

Jan-93 Jan-94 Jan-95 Jan-96 Jan-97 Jan-98 Jan-99 Jan-00

G
fl
o
p
/s

MPP SMP Cluster Constellations

Figure 1-5: Evolution of the computational power (in Gflop/s) of the fastest computer for each hardware
architecture of the top 500 high-performance computers based on data from the ‘TOP500 list’ (TOP500

List 2000; TOP500 List Authors 2000)

The shift towards commodity-based HPC is also indicated by the relatively recent

appearance in the TOP500 list of a new type of computer architecture that is based on

numbers of workstations interconnected by fast interconnection networks. The cluster

architecture, as it is known, has been gaining momentum mostly due to its extremely

advantageous cost/performance ratio.

Finally, the general interest for inexpensive HPC is also indicated by the increasing

popularity of constellation architectures. Such architectures leverage collections of

existing, most often older, supercomputers for the execution of high-performance

applications. It should not be of any surprise that in November 1999 industry was the

main user of constellations due to the cost savings that can be achieved from the reuse of

old platforms.

1.1.3. Trend Synopsis

It is evident that in the last few years, industry has emerged as the main user of HPC.

Computational power requirements are no longer exclusive to scientific-oriented

applications. The field of general-purpose, high-performance computing is gaining

momentum, as the list of HPC applications suggests (page 1). The notable increase in the

number of TOP500 supercomputers used in industry is yet another indication of the great

interest and investment in HPC. It seems, though, that the focus is mainly on the

cost/performance ratio of the platforms employed rather than just on performance. That

would explain the inferior computational power that is achieved by HPC platforms used

Chapter 1

8

in industry when compared to those used in the other application areas and especially in

research.

In contrast, due to the excessive computational requirements of scientific applications,

the maximum achievable performance is pursued for the HPC systems that are deployed

in research. Often, the focus on performance dramatically increases the implementation

and support costs for a platform and, as a result, there has to be a concentration on fewer

but faster installations.

There also seems to be a drive towards HPC systems that are based, partially or

completely, on commodity hardware, especially off-the-self microprocessors. The

incorporation of commodity hardware into HPC results in more affordable systems

without necessarily sacrificing their performance.

Finally, it is clear that parallelism is the main enabling factor for HPC. The prime goal

of parallelism is to improve the execution performance of applications. Since

supercomputer architectures based on single, specialised, expensive processors have been

eclipsed (Figure 1-4), it is reasonable to consider parallelism as the facilitating force for

high-performance computing.

All the current HPC architectures are built upon aggregations of processing elements

that collaborate. The definition of a processing element may vary between HPC

architectures. For example, it may be a microprocessor, a whole workstation, an SMP

computer, or even a supercomputer in the case of constellations. Nevertheless, in any case

the concept is the same: a number of processing-capable components that work

simultaneously having as a purpose the faster execution of an application.

Having recognised the importance of parallelism in the HPC field, this thesis embarks

in the investigation of issues related to the field of parallel computing.

1.2. Parallelism

For almost six decades, the computer model based on a single processor, memory, bus,

and peripherals—the von Neumann architecture (Burks et al. 1962)—has been the

dominant architectural model upon which computers have been built. Nevertheless, even

during the ‘60s, the HPC community began to realise that traditional computers based on

the von Neumann model were unable to produce the computational power required. With

parallelism, the traditional model of computing could be extended to achieve better

performance.

Parallelism

9

1.2.1. Definition

According to Pfister (Pfister 1998), there are three ways to perform an activity faster in

life: work harder, work smarter, or get help. Pfister observes an analogy with the

computer world (Table 1-1). The execution performance of applications may be improved

when the components of the computer architecture (e.g., processor, memory, bus, etc.) are

enhanced. Additionally, an implementation of the same application based on a better

algorithm may also improve the execution performance. However, if more than one

processing elements work on the same problem, execution performance may be

dramatically increased when compared to the two previous approaches.

Work harder - Processor speed

Work smarter - Algorithms

Get help - Parallel processing

Table 1-1: How to perform an activity faster in real life and in computing (Pfister 1998)

Almasi and Gottlieb define a parallel computer as “a large collection of processing elements

that can communicate and cooperate to solve large problems fast” (Almasi and Gottlieb 1994).

However, as they also observe, the definition raises many questions: How large should the

collection of processing elements be? How do they communicate? What means do they

use to cooperate? How large a problem should be? In answering these questions,

computer architects and software developers have come up with a variety of solutions

since the ‘60s, descriptions of which can be found in (Almasi and Gottlieb 1994; Culler

and Singh 1999; Lewis and El-Rewini 1992; Pfister 1998; Tanenbaum 1999).

Finally, based on the definition by Almasi and Gottlieb, Culler and Singh believe that

a parallel architecture is just “the extension of conventional computer architecture to address issues of

communication and cooperation among processing elements” (Culler et al. 1993b). However, this

definition does not capture the essence of parallel computation, which according to this

thesis is speedup. As it was suggested earlier in this chapter, the foremost purpose of

parallelism is the faster execution of applications and for that reason the definition by

Almasi and Gottlied is perceived as more accurate for the purposes of this thesis.

1.2.2. Hardware Support

Since the 60’s, there has been a plethora of research works and considerable progress in

the field of parallel computer architecture. The rate of computational power increase, as

shown by graphs presented in the previous section, is an indication of the strong

hardware developments in the field. The four decades of advances have resulted in a great

Chapter 1

10

diversity of hardware platforms, as the discussion in Chapter 2 demonstrates where a

taxonomy of existing architectures is also presented.

One may suggest, though, that despite the advances in hardware, application

development and run-time support tools for the various parallel platforms have not

received the same attention.

1.2.3. Programming and Execution Models

Tanenbaum describes a computer system in terms of a series of layers (Tanenbaum 1999).

At the bottom of the organisational structure, there is the hardware layer and at the top

the application layer. In between, layers like the programming language and the operating

system exist. A layer in the organisational structure of a computer system should provide a

simple, well-defined abstraction of the underlying ones (Chapter 2 presents a more

detailed discussion on the layered approach to parallel computer system organisation).

Perhaps more than other disciplines, in the case of parallel computing the performance is

an extremely important characteristic of a layer. Consequently, it should be noted that

efficiency should not be sacrificed in favour of abstraction.

Unfortunately, after observing the evolution of parallelism since the ‘60s, one notices

that in practise there have not been significant advancements in the layered approach to

parallel computer organisation. Parallel computing practitioners have been reluctant to

explore new approaches to development and run-time support, as the hesitation in

adopting innovative methods of programming and execution of applications on parallel

computers suggests. The same troublesome—according to this thesis—methods have

been used for decades now.

It is suggested that the absence of a clear distinction between a programming model

and an execution model of parallel computing is to blame for the apparent lack of

advancement in parallel computing practices. The former model represents the view of

the parallel system as it is seen by the developer while the latter is the abstraction of a

parallel system as it is perceived by the application. The two models are going to be

defined and discussed in detail in Chapter 2.

The lack of a clear distinction between the programming and execution models has

allowed hardware characteristics to be filtered up to the application developer.

Programmers are required to write applications with the hardware configuration always in

mind. The management of parallelism, synchronisation, communication, and other related

issues, burden the application developers. As a result, the parallel software development

and maintenance processes have become troublesome, time-consuming, and costly.

Parallelism

11

The most popular models of parallel computing are message-passing and

shared-memory. The two are considered both as programming and execution models.

Developers have to reason about the implementation of algorithms with the architectural

characteristics of the parallel platforms in mind. There is no attempt by either of the two

models to hide architectural details from the programmers. There are, however,

programming models that have been designed to abstract from the underlying

architectures, such as the functional model. A synopsis of the main characteristics of all

the above models are given below (a more detailed discussion is presented in Chapter 2):

• The message-passing programming and execution model do not provide an

abstraction of the underlying parallel architecture. Application developers have to

manage communication and synchronisation between processing elements. In

most cases and when the programming primitives of the model are used

appropriately, efficiency is not an issue. Modern operating systems, often in

combination with optimised user-level libraries that vendors of parallel systems

supply, provide good run-time support. However, using the message-passing

programming primitives correctly in order to better utilise the parallel architecture

is a huge task for the application developer.

• The abstraction that the shared-memory model provides is that of a computer

with a collection of processing elements that have access to a common memory.

The architecture of the underlying parallel system is not hidden from application

developers, as they have to manage parallelism. As in the case of the

message-passing model, efficiency can be achieved when the programming

primitives of the model are used suitably for a specific architecture and with the

appropriate operating system and/or user-level libraries support.

• Unlike the two previous models, the functional programming model manages to

hide the details of the underlying parallel architecture. It requires an execution

model that is not made visible to application developers, who are not burdened

with the task of managing parallelism but, instead, they only need to concentrate

on algorithmic issues. However, the model greatly depends on software tools (i.e.,

compilers, run-time systems) that have not been able to match the performance of

the tools available for the message-passing and shared-memory models. The

functional programming model appeared to be good alternative to the traditional

models but it has not managed to gain a sufficient following in order to become a

commercial success (Almasi and Gottlieb 1994).

Chapter 1

12

It can also be suggested that the existing programming models have poor support for

good software engineering practices (some to a lesser degree than others) like abstraction

for managing complexity, structure reuse, maintenance, profiling/debugging, which are

very important for the application development lifecycle.

1.3. Possible Future Directions for Parallel Computing

An attempt to determine the future directions of parallel computing may provide an

indication of those initiatives that must be undertaken today. It is not the purpose of this

thesis to discuss and attempt to predict the future of parallel computing. Instead, using as

a starting point the observations that have been made up to now in this chapter and based

on the findings of a working group on ‘Enabling Technologies for Petaflops Computing’

(Sterling et al. 1995), this section attempts to identify those areas that are likely to

influence the field of parallel computing in the future.

1.3.1. Microprocessor Technology

There are indications that the remarkable rate of advances in microprocessor technology

will be reduced as physical limits in their production process are reached. The vast

manufacturing costs will probably yield the current processor manufacturing technologies

commercially unviable (Moore 1965; Moore 1997; Moore 1998).

Exotic technologies are under investigation and they might provide alternatives to

HPC architectures. For example, research on the use of technologies based on optics and

superconductivity in processor architecture promise enormous availability of

computational power. However, such technologies are unlikely to make an impact during

the next two decades. Other promising areas of research such molecular and quantum

computing are even more unlikely to make an impression in the near future. The findings

of the working group on Petaflops computing confirm these observations (Sterling et al.

1995).

The use of huge numbers of microprocessors in massively parallel computer

architectures is likely to become standard practise in the HPC field. Cost concerns appear

to favour the use of commodity rather than special purpose microprocessors in such

architectures. The hardware trends observed earlier in this chapter seem to confirm the

last statement. Furthermore, in the analysis of the findings of the working group on

‘Enabling Technologies for Petaflops Computing,’ Sterling, Messina, and Smith make a

very important remark that strengthens the arguments toward the use of commodity

Possible Future Directions for Parallel Computing

13

processors. The analysis also hints at the use of other commodity components in addition

to microprocessors (e.g., network interconnections, memory, etc.):

“The level of investment being applied to technology development by the commercial

semiconductor marketplace is substantial and greatly exceeds any augmentation likely from

government research programs. Thus, the opportunity to influence expensive development cycles is

limited. This situation is exacerbated by the tight coupling between mass production and

component cost. Specialty parts become significantly more costly than mass-produced commodity

parts of equivalent complexity. Consequently, any initiative to develop a Petaflops computer will

have to rely heavily (although not exclusively) on commercially-available components. By

leveraging advances that occur as commercial by-products, development costs can be acceptable.”

(Sterling et al. 1995)

1.3.2. Architectures

The findings of the working group on ‘Enabling Technologies for Petaflops Computing’

(Sterling et al. 1995) reinforce the argument that was presented earlier in this chapter

about the shift towards parallel computer architectures that are focused on

cost/performance ratio. The use of commodity hardware on such architectures is essential

if the manufacturing costs are to be kept down. In (Sterling et al. 1995), it is also predicted

that there will be a shift towards massively parallel architectures with tens of thousands

processors. The hardware trend of Figure 1-4 (page 5) confirms the prediction.

However, the move towards architectures with massive numbers of processors will

probably require new techniques to emerge, especially in the field of memory technology

(Sterling et al. 1995). Such techniques will attempt to eliminate the latency in memory

access, improve memory bandwidth, allow for faster communication between processing

elements, etc.

1.3.3. Software

The authors of ‘Enabling Technologies for Petaflops Computing’ reveal the lack of good

programming models and software tools for parallel computing (Sterling et al. 1995). They

predicted that for the Petaflops mark to be achieved, a degree of parallelism of up to one

million would be required. Programmers cannot be expected to manage that degree of

parallelism without adequate support from software.

In (Sterling et al. 1995), a series of areas where developments are required is proposed.

The subset that is relevant to the topic of this thesis is presented bellow.

Chapter 1

14

• Global address space: The available memory on a massively parallel architecture

should be accessible in a uniform way.

• Latency hiding: Either via software or hardware means, the latency in memory

operations should be hidden.

• Implicit and explicit parallelism: New models for developing parallel

applications are required that allow programmers to concentrate on algorithm

issues rather than the management of parallelism.

• Software support tools: New support tools for transparent resource management

and automatic migration of data and tasks are required.

This thesis attempts to reflect on the requirements of software tools for well-organised,

cost-effective, parallel application development and for efficient execution on the parallel

architectures of the future.

1.4. Research Goals

The discussion to this point attempted to sketch the current state of parallel computing

and hint on potential future developments. A need for new parallel programming and

execution models and their required software support tools emerged. Furthermore, as the

complexity of (parallel) applications grows, the implementation, debugging, and profiling

stages of the application development process become increasingly troublesome. It is

apparent that good software programming practices need be introduced in the

development lifecycle of parallel applications.

In this section, the motivation for the research work undertaken is discussed. The

objectives that were set and their augmentation are also presented. Finally, the

contributions to knowledge that this thesis claims to make are outlined.

1.4.1. Motivation

This research work was originally inspired by the emergence of cluster architectures based

on commodity hardware as parallel platforms. The considered clusters consisted of

single-processor workstations that were interconnected via commodity networking

equipment. The investigation of run-time techniques for the execution of parallel

object-oriented applications on such affordable platforms was originally set as the primary

objective. The main characteristics of the targeted platforms were their distributed,

non-shared memory and their slow interconnections.

Research Goals

15

However, it was clear even during the early stages of the research work that the

original objectives were too narrow. There was no reason why the run-time techniques

under investigation could not target other high-performance architectures as well. As a

result, the goals were extended to target shared-memory multiprocessors and clusters of

single-processor and/or multiprocessor architectures. The investigation into programming

and execution models for parallel computing was also included in the set of objectives.

The exploration of run-time techniques for parallel computing on shared- and

distributed-memory architectures was maintained as part of the research goals.

1.4.2. Contributions to Knowledge

The exploration of the research goals resulted in the original work that the rest of this

thesis presents. The list of the contributions to knowledge together with a synopsis of the

main findings is presented bellow.

NIP Programming Model

The NIP programming model attempts to satisfy the requirements of the parallel

application development process as those were identified in this chapter and as Chapter 2

discusses in more detail. The main characteristics of the model are the abstraction from

any underlying architectural details. The focus of the NIP programming model is on

implicit parallelism and object-orientation. The programmer is not burdened with the

tasks of identifying and managing parallelism in an application. Instead, developers are

presented with a programming model that allows them to concentrate on the exploration

of algorithmic issues only.

The NIP programming model combines the benefits of two programming paradigms,

namely functional and object-orientation. The model is based on a previously introduced

functions plus objects paradigm (Sargeant 1993).

NIP Execution Model

The NIP execution model was originally designed to provide the semantics around which

run-time environments for the NIP programming model could be implemented.

Nevertheless, the semantics of the model are such that even non-implicitly parallel

programming models could target it through appropriate software tool support.

The main characteristic of the model is the abstraction from the underlying hardware

details. The NIP execution model provides a set of features for the management of

parallelism, like automatic exploitation of computational resources, implicit memory

Chapter 1

16

access synchronisation, distributed shared memory abstraction. Furthermore, the model

defines that the memory is structured as objects.

NIP Lazy Task Creation and Tasklets

The NIP run-time system is an implementation of the NIP execution semantics. It

employs the novel NIP lazy task creation technique to manage the excessive degree of

parallelism that many applications exhibit. NIP lazy task creation is based around the

tasklet, which is a newly introduced construct for the representation of potentially parallel

tasks. The concept of a tasklet was first proposed by (Watson 1996) and it is further

developed in this thesis.

NIP parallel applications are expected to identify, rather than create, parallel tasks

using the tasklet construct. The NIP run-time system does not create tasks from tasklets

unless there are available computational resources, a technique also known as lazy task

creation. The main advantage of NIP lazy task creation over previous approaches is the

tasklet. Unlike previous approaches, just a single tasklet can represent entire iterative or

recursive computations from which parallelism can be extracted.

NIP Distributed Shared Memory

The NIP run-time system incorporates an all-in-software, object-based, distributed shared

memory system. The NIPDSM implements the memory semantics of the NIP execution

model. In addition, NIPDSM provides an enhanced approach to maintaining the

consistency of objects in distributed memory architectures and features three novel

caching techniques. For the first time, an object-based distributed shared memory system

attempts to exploit both temporal and spatial locality in memory access without suffering

from the problems like false sharing that appear in previous approaches. Additional

information about object-based structures may be exploited to further enhance the

performance of the memory system. Memory access patterns may be defined using

associations between objects and recurring operations on objects are automatically

captured and used to improve caching.

1.5. Remaining Thesis Structure

The remaining of this thesis explores each of the research goals and analytically describes

the findings of this research work.

Remaining Thesis Structure

17

Chapter 2 deals with some background material on parallel computer architectures,

programming and execution models and their support tools. Then, the discussion focuses

on the NIP programming and execution models.

Chapter 3 thoroughly considers existing lazy task creation techniques in an attempt to

clearly reveal their drawbacks but also identify their strengths. Then, the NIP lazy task

creation technique and the tasklet construct are introduced and described in detail.

Chapter 4 introduces the field of software-based, distributed shared memory. The

main characteristics and issues of such systems are discussed before the NIPDSM system

is comprehensively explored.

Chapter 5 presents a description of the NIP run-time system, an implementation of

the NIP execution model semantics that incorporates the NIP lazy task creation

technique and the NIPDSM. The major components of the NIP run-time are examined.

Chapter 6 includes the results and analysis of the performance evaluation process of

the NIP run-time system. A number of micro-benchmarks, small programs, and a

scientific application are used to show the behaviour of the various components of the

run-time system.

Finally, Chapter 7 concludes the discussion with a summary of the research work

findings.

18

2CHAPTER 2
2. PARALLELISM

AND THE NIP PROGRAMMING AND NIP

EXECUTION MODELS

The aim of this chapter is to introduce the NIP programming and

execution models. In doing so, background material on parallel

computer architectures, programming languages for parallel computing,

and parallel program execution techniques is presented.

A layered approach to the parallel computing paradigm is

considered after examining the idiosyncrasies, advantages, and

disadvantages of some popular programming and execution models.

The distinct elements that make a programming and an execution

model are identified. Issues related to programming languages, run-time

systems, operating systems, and hardware architectures for parallel

computing are considered.

The discussion leads to the description of the NIP programming

and execution models for parallel computing. The proposed models

form a new approach to combining good software engineering

practices, implicit parallelism, and efficient execution in parallel

computing.

Models and Abstraction

 19

2.1. Models and Abstraction

There has been a misuse of the terms ‘programming model,’ ‘execution model,’ and

‘computational model’ in the computing literature. The terms have been used

interchangeably in many different works. Earlier works leading to this thesis also misused

the term ‘computational model’ (Watson and Parastatidis 1999a; Watson and Parastatidis

1999b). This thesis argues that the terms describe different levels of abstraction of a

computer system and for that reason they cannot be used interchangeably. It is imperative

that the differences between the levels of abstraction implied by the three models are

established before the tools and techniques available for parallel programming and

run-time support can be effectively explored.

2.1.1. Programming Model

A programming model is a methodology for the implementation of algorithms. It outlines

the features and limitations of a computer system as they are presented to application

developers, with all, some, or none of the hardware details hidden. The collection of the

characteristics and the implied behaviour of a model (i.e., rules, limits, features, etc.)

constitute its semantics. The semantics of a programming model are realised through

appropriate software support tools that (e.g., a compiler for a particular programming

language and perhaps run-time libraries).

Pfister describes a programming model as “the all-pervasive atmosphere, the internalised set of

assumptions about how a computer works that imbue every program written for that computer” (Pfister

1998). Culler and Singh understand the programming model as “the conceptualisation of the

machine that the programmer uses in coding applications” (Culler and Singh 1999). Others have

similar approaches to giving a definition to the term ‘programming model’ (Skillicorn and

Talia 1998).

2.1.2. Execution Model

An execution model is the description of the services available for the execution of

applications on a computer system. While a programming model is the conceptualisation

of a computer system as presented to application developers, an execution model outlines

the specifications and behaviour of an abstract architecture for the benefit of the

programming model support tools (e.g., programming language compilers). A

programming model may hide the available primitives for the execution of applications

from developers (e.g., the NIP programming model, which is described in Section 2.8) or

Chapter 2

20

it may incorporate them (e.g., message passing, shared memory). The semantics of an

execution model may be implemented by the run-time system, the operating system, or

the hardware.

The abstract machine implied by an execution model need not have the same

architectural characteristics as the underlying hardware. For example, an execution model

offering shared memory semantics does not necessarily indicate the existence of hardware

with physically shared memory. Furthermore, application execution techniques that are

used to implement the semantics of a model need not be part of the abstract machine

specifications. For example, the NIP lazy task creation technique (Chapter 3) and the NIP

distributed shared-memory system (Chapter 4) are implemented as run-time tools to

support the behaviour of the NIP abstract machine, which is defined by the NIP

execution model (Section 2.9).

2.1.3. Computational Model

A computational model thoroughly defines the behaviour of applications when executed

on specific computer systems. Unlike the programming and execution models, a

computational model is not an abstract representation of a computer system. Instead, it is

a mathematical tool for analysing the performance and behavioural characteristics of an

application running on a computer system with known specifications. Computational

models assist developers in refining the implementation of their algorithms in an attempt

to achieve better performance on particular architectures. A computational model can be

seen as the combination of the programming model and the execution model.

Almasi and Gottlieb consider two aspects to a computational model: (a) a tool that

assists in the design process of an algorithm, and (b) a tool that provides a way to

mathematically analyse and improve the efficiency of algorithms on the architectures that

the model targets. Using the known costs of the exposed primitive operations (e.g.,

operating system calls, communication costs, etc.) for a particular computer system,

Almasi and Gottlieb propose a methodical approach to optimising the efficiency of an

algorithm for the specific programming and execution models used. However, there exist

abstract programming and execution models that hide the operations of a computer

system. In such cases, information about primitive hardware or software operations is not

available and, therefore, efficiency analysis of the execution of an application cannot take

place. Indeed, Skillicorn and Talia (Skillicorn and Talia 1998) agree that some

programming models are unsuitable, due to their abstract nature, for performance analysis

of algorithms.

Models and Abstraction

 21

This thesis does not consider computational models to any further extent. The

abstract nature of the NIP programming and execution models that are proposed later in

this chapter does not facilitate the use of any computational model. However, as this

thesis discusses issues related to parallelism, it should be mentioned that there have been

several efforts to create parallel computational models. The Parallel Random Access

Machine (PRAM) (Fortune and Wyllie 1978) was amongst the first and most widely used

ones but it made unrealistic assumptions about the communication features of the

computer architecture. Examples of other models proposed are the Bulk-Synchronous

Parallel model (Valiant 1990), Message-Passing Block PRAM (Agarwal et al. 1989), and

LogP (Culler et al. 1993b; Culler et al. 1996).

2.1.4. Lack of Abstraction Causes Confusion

In the discipline of parallelism, the terms ‘message passing’ and ‘shared memory’ have

been used to describe (a) computer architecture models, (b) execution models, and

(c) programming models. Due to the lack of abstraction in early parallel systems and

parallel application development methodologies, the hardware architecture was reflected

at the programming model, making the distinction between programming and execution

models unnecessary. Today, as several software layers may abstract the hardware

architecture, the distinction between programming and execution models becomes

important for the study of parallelism.

A message passing architecture, for example, requires that messages be used for the

communication between the processing elements of a computer system. A message

passing execution model suggests that parallel computations use messages to

communicate with each other without, however, implying that the underlying architecture

is a message passing architecture or that messages are used in the programming model.

Message-passing programming models assist application developers in designing and

implementing an algorithm with the notion of messages as the means for data exchange

between components of the application but it is not necessarily the case that a message

passing execution model and architecture exist. It is clear that although there are three

different levels of abstraction, the same term, ‘message passing,’ is used for all, causing

confusion.

2.1.5. Towards Two New Abstract Models

As the previous chapter suggested, a new approach to parallel programming is required

that takes away the burden of managing parallelism from application developers to allow

them to concentrate on algorithmic issues. The discussion in this chapter leads to the

Chapter 2

22

introduction of the NIP programming model, an implicitly parallel, functional plus objects

model (Section 2.8). To support the NIP programming model, the NIP execution model

was devised and it is described towards the end of this chapter (Section 2.9).

2.1.6. Layered Approach to the Parallel Computing Paradigm

To facilitate the discussion on programming and execution models and to emphasise the

distinction between the two, this thesis proposes a layered approach to examining the

parallel computing paradigm (Figure 2-1 and Figure 2-2). The design model has been

included for completeness.

Figure 2-2 encapsulates the definitions that were presented earlier in this chapter for

the programming, execution, and computational models. The layers represent the three

major steps in the lifecycle of an application. (a) An algorithm is devised via a design

model. (b) The developer implements that algorithm via the programming model, and

(c) the execution model is used to host the resulting program. The computational model

may be used for the mathematics-based evaluation of the behaviour and performance of

the application. The result of the evaluation may be used in reviewing the algorithm.

specification, analysis, verification tools

programming language (and libraries)

programming model

design model

execution model

runtime system

operating system

hardware

computational model

design model

programming model

execution model

Figure 2-1: A layered approach to the parallel

computing paradigm
Figure 2-2: A condensed view of Figure 2-1 that

also shows the computational model

Since this thesis does not consider any issues related to specification, analysis,

verification, etc., the design model and its supporting tools are not examined. Instead, the

following sections focus on issues related to the hardware, operating system, run-time

system, and programming language from a parallel computing perspective.

Hardware

 23

2.2. Hardware

A plethora of hardware architectures have been built and described in the literature. The

most referenced and used one is the von Neumann architecture, which is the architecture

upon which all serial computers are built. There is a wide choice of parallel computer

architectures from which system designers may choose. As Chapter 1 suggested, the MPP

architecture (Figure 2-3) is emerging as the dominant one.

In an effort to study the available architectures for parallel systems, many researchers

have tried to create taxonomies of computer architectures (Flynn 1972; Gajski and Peir

1985; Lewis and El-Rewini 1992; Tanenbaum 1999; Treleaven 1985). The taxonomy

proposed by Flynn is the most general one and is presented in Table 2-1. Originally

created in 1974, the taxonomy does not illustrate the variety of parallel computer

architectures that have emerged since then because it is too coarse.

Instruction
stream

Data
streams

Name Examples

1 1 SISD
(Single Instruction Single Data)

Von Neumann architecture

1 Many SIMD
(Single Instruction Multiple Data)

Vector computers, array processors

Many 1 MISD
(Multiple Instructions Single Data)

Many Many MIMD
(Multiple Instructions Multiple Data)

Multiprocessors, Clusters of
Workstations

Table 2-1: Taxonomy proposed by Flynn (Flynn 1972)

computer architectures

SISD

vector
processor

array
processor

bus NC-NUMACC-NUMAswitched grid hyper-cube

multi-
computers

multi-
processors

UMA COMA NUMA MPP COW

SIMD MISD MIMD

Figure 2-3: Taxonomy proposed by Tanenbaum (Tanenbaum 1999)

Chapter 2

24

UMA Uniform Memory Access

COMA Cache-Only Memory Access

NUMA Non-Uniform Memory Access

CC-NUMA Coherent Cache NUMA

NC-NUMA Non-Coherent NUMA

MPP Massively Parallel Processing

COW Clusters Of Workstations

Table 2-2: Legend of acronyms presented in Figure 2-3

In (Tanenbaum 1999), Tanenbaum expands the taxonomy proposed by Flynn by

incorporating all the diverse parallel computer architectures available today (Figure 2-3).

Tanenbaum refers to all the multi-computer architectures as message passing architectures

and to all the multi-processor architectures as shared memory architectures. However, it

should not be assumed that there is an association between particular architectures and

programming or execution models, although there have been architectures designed and

built to support a particular programming model, like the Manchester Dataflow Machine

(Gurd et al. 1985) for dataflow programs. A parallel architecture may favour a particular

programming model due to its architectural characteristics but often others are also

supported. For instance, the shared-memory programming model can be used on both

multi-processors and multi-computers with the appropriate software support. The NIP

programming model (Section 2.8) is applicable to both multi-computer and

multi-processor parallel architectures. For a detailed discussion of the parallel

architectures the reader is referred to (Culler and Singh 1999).

2.3. Operating Systems

The AOSP, the TOPS-10 on DEC PDP-10, and OS/VS2 on the IBM System/370, were

amongst the first operating systems to support parallel architectures. In the ‘70s and ‘80s,

the commercially successful minicomputers and mainframes utilised proprietary operating

systems with better support for parallelism, like VMS on DEC VAX minicomputers,

UNICOS on CRAY supercomputers, MUNIX on PDP-11 (Almasi and Gottlieb 1994).

Nowadays, different flavours of UNIX, like Solaris by Sun, Digital UNIX by Compaq,

IRIX by SGI, dominate the parallel architectures. Solaris, Windows NT, and Linux (a

freely available flavour of UNIX) emerge as the leading operating systems for COW

architectures.

In the past, there was a case for creating taxonomies for the different operating

systems due to the diversity in the ways parallelism was supported (e.g., multiprocessing or

Run-time System

 25

multithreading, synchronisation and communication primitives, etc.). Today, all the

modern operating systems offer essentially the same features and, therefore, a

classification based on the support provided for parallelism would be of little interest. The

Application Programming Interface (API), the implementation details, or even the

efficiency of the available features may differ between operating systems but the support

for parallel applications is in essence the same. For example, all modern operating systems

are internally parallel; they support multiple processors; they offer the means for

multithreading and synchronisation; and they provide basic communication primitives.

However, this does not imply that the area of operating system support for parallelism is

closed to further developments, as the following areas of research suggest.

As multi-computers become more popular, the operating systems face the challenge

for providing an environment for resilient, fault-tolerant, and reliable parallel computing,

just like the expensive mainframes (Culler and Singh 1999).

Providing “the illusion […] that a collection of computing elements is a single computing resource”

(Pfister 1998), or a ‘Single System Image’, at the operating system level is another

challenge. Examples of commercial and research operating systems attempting to provide

a Single System Image include Locus, QNX, and Amoeba, cited in (Pfister 1998).

Additionally, the new run-time techniques for the execution of parallel applications

that emerge from research efforts could greatly benefit from operating system support.

Examples of such techniques are lazy task creation (Mohr et al. 1991) which is examined

in Chapter 3, software-based distributed shared memory (Li 1986) which is discussed in

Chapter 4, and dynamic load balancing (Eager et al. 1986) which is considered in Chapter

5.

2.4. Run-time System

A run-time system is the environment with which an application interacts during its

execution. It is the responsibility of the run-time system to manage the resources that the

operating system makes available for the execution of an application (e.g., stack and heap

management, task creation, task scheduling, secondary storage management). Even

though modern, general-purpose operating systems incorporate functionality that could

make the use of specialised run-time systems obsolete, there are still reasons for using

them.

• Portability: A run-time system can hide the API differences between operating

systems. API calls provided by the run-time system are translated to the

Chapter 2

26

appropriate operating system calls. Cross-platform development frameworks like

ACE (Schmidt 1995) provide such functionality. Virtual machines, like the one

used for the Java programming language (Newman 1996), and interpreters, like

the one used for tcl/tk (Ousterhout 1994), also allow portability of applications by

hiding the underlying operating system from applications.

• Efficiency: Due to their general-purpose nature, many operating systems are not

able to provide the most efficient implementation of a particular service. In such

cases, run-time systems can be of great use. For example, database management

systems very often take over the management of the secondary storage from the

operating system because their fine-tuned implementation can achieve better

performance.

• Flexibility: With run-time systems it is possible to alter the execution

environment of applications by incorporating new or removing obsolete features,

or by changing the implementation of existing features without requiring changes

to the underlying operating system.

• Functionality: There are cases where the functionality required by an application

is not provided by the operating system. Advanced techniques for the execution

of applications may include lazy task creation (Chapter 3), software-based

distributed shared memory (Chapter 4), or dynamic load balancing (Chapter 5). A

run-time system can incorporate such advanced techniques and make them

available to applications.

Run-time systems exist in the form of software libraries that developers use during the

implementation process, as part of the code that a compiler produces, or as virtual

machines.

2.5. Programming Language

According to Hudak, programming languages are classified into imperative and declarative

(Hudak 1989). Programs written in imperative programming languages consist of a series

of commands that provide a description of a problem and how it is to be solved. In

declarative programming languages, the application programmer is only concerned with

the implementation of an algorithm, while the compiler and run-time system take care of

other issues, like the management of parallelism, the way memory is accessed, hardware

architecture independence, etc. The main difference between imperative and declarative

Programming Language

 27

languages is state. “Imperative languages are characterised as having an implicit state that is modified

(i.e., side effected) by constructs (i.e., commands) in the source language” (Hudak 1989). To

deterministically control the state in imperative languages a sequencing of commands is

required.

Hudak suggests that one of the advantages of declarative languages is parallelism. The

lack of state reduces the need for command sequencing and makes extracting and

exploiting parallelism a simpler task for the compiler and run-time system. However,

software practises to date have shown that imperative languages are preferred for

parallelism. To investigate the reasons behind the popularity of imperative languages, it is

necessary that the properties and features of parallel programming languages be closely

examined. Another taxonomy, more comprehensive than the one proposed by Hudak, is

needed.

Almasi and Gottlieb point out in (Almasi and Gottlieb 1994) that the execution of a

parallel application requires the provision of operations to define, start and stop, and

coordinate parallel subtasks as well as operations to partition and distribute data. The

method with which these operations are supported can be used to differentiate between

programming languages. Indeed, Skillicorn and Talia propose an extensive classification

of parallel programming languages based on whether the parallelism primitives are

provided explicitly or implicitly (Skillicorn and Talia 1998).

Everything Explicit

Communication Explicit, Synchronisation Implicit

Mapping Implicit, Communication Implicit

Decomposition Explicit, Mapping Implicit

Parallelism Explicit, Decomposition Implicit

Nothing Explicit, Parallelism Implicit

Table 2-3: Summary of the examined parallel programming model properties (Skillicorn and Talia 1998)

Skillicorn and Talia start by identifying the important criteria a parallel programming

model should satisfy: ease of programming, software methodology, architecture

independence, ease of understanding, guaranteed performance, and cost measures. The

identified criteria are used in outlining the parallelism related operations and the level of

abstraction (i.e., implicit or explicit), upon which the classification of existing

programming languages is based (Table 2-3 summarises the resulting six main categories

of the taxonomy). Skillicorn and Talia conclude their work by observing a trend towards

programming languages that support abstract models of parallel programming (Skillicorn

Chapter 2

28

and Talia 1998), a view that is consistent with the discussion presented in the previous

chapter.

In addition to the comprehensive classification by Skillicorn and Talia, it should also

be interesting to examine the means by which programming languages support

parallelism. Since it is not in the scope of this thesis to present a new taxonomy, only the

characteristics of four different approaches to supporting parallelism in programming

languages are considered.

2.5.1. Auto-parallelisation Compilers

The simplest and most cost-effective approach of introducing parallelism to existing

applications is to feed serial, legacy code, to an auto-parallelisation compiler. The tasks of

identifying (e.g., task decomposition) and managing (e.g., synchronisation) parallelism are

taken over by the compiler.

The auto-parallelisation technique was popular in the early days of parallel computing

and especially when large commercial and scientific applications written in FORTRAN

had to be run in parallel. There is no need for programmers to receive extra training or

learn another programming language. Programmers just continue to use their favourite

serial programming language to build parallel applications.

However, it is difficult for auto-parallelisation compilers to achieve good performance

results. The implementation of algorithms is based on a serial programming model and

the von Neumann architecture. As Bacon et al. suggest (Bacon et al. 1994), application

code can be successfully transformed and optimised by a compiler for sequential

architectures but the involvement of the programmer is required for parallel architectures.

A survey of issues related to compiler transformations for high-performance computing

can be found in (Bacon et al. 1994).

2.5.2. Software Libraries

Software libraries can provide support for parallelism in established, widely used, serial

programming languages. In essence, software libraries complement the run-time

environment that is provided by the serial programming language compiler. A software

library introduces the required primitives for parallelism related operations, like task

management, communication, synchronisation, etc.

There are several ways a software library may provide support for parallelism. The

Parallel Virtual Machine (PVM) (Sunderam 1990) and implementations of the Message

Passing Interface (MPI) standard (Forum 1994) provide support for message passing

programming (the model is discussed in Section 2.6.2). Implementations of the POSIX

Programming Language

 29

standard (IEEE 1996) or operating system specific libraries provide threading and

synchronisation support for shared memory programming (the model is discussed in

Section 2.6.3). Software libraries like Linda (Ahuja et al. 1986) allow shared memory

programming on distributed memory system by hiding communication.

There is a short learning curve for application programmers using such languages

because they are only required to learn the Application Programming Interface (API) of a

particular software library. However, application programmers are required to deal with

issues related to parallelism, like task decomposition, data distribution, synchronisation,

communication, etc. Programming languages like FORTRAN, C, and C++ that are

complemented by software libraries, like PVM and MPI, belong to this class. The large

academic, scientific, research, and commercial user-base of these programming languages

have made the approach of software libraries for parallelism the most popular today.

In addition to the problem of managing parallelism, developers face the problem of

portability. An application is only portable across parallel architectures if the software

libraries it uses are available for the targeted architectures. Standards like MPI attempt to

overcome the portability issue. Even then, though, there are cases where an application

has to be refined when moved to a different parallel architecture due to efficiency

variations in the performance of hardware components.

2.5.3. Language Extensions/Integration

As discussed in Chapter 1, parallel computing is gaining wider acceptance amongst

academics, scientists, researchers, and industrialists. As a result, there have been

significant research efforts in integrating parallelism support into programming languages.

Extensions to the popular programming languages have been proposed, like //C++,

Concurrent C, Concurrent SmallTalk, etc. Also, new programming languages appear

providing constructs for parallel computing, with Java (Newman 1996) being the most

popular example (Java provides threading and synchronisation support through

appropriate classes that are considered to be part of the language rather than a library

addition). Programmers are still required to manage parallelism themselves while they

have to learn additional primitives in their favourite programming language, or they are

obliged to switch to a new programming language.

The portability issue across parallel architectures is resolved because there is no

dependence on extra software libraries, provided, of course, the programming language

compiler and the standard libraries are available. Furthermore, features that ease program

development are finding their way into the new parallel programming languages. For

Chapter 2

30

example, Java has been gaining support because it combines good programming practices,

namely object-orientation and component reuse, with a collection of primitives for

parallelism, communications, graphical user interface, etc.

The transition from the serial programming languages to the languages with integrated

support for parallelism requires resources and time. The language extensions/integration

approach is only slowly gaining support by the scientific and research communities and

especially by the industry, where FORTRAN, C, and C++, dominate.

2.5.4. Implicit Parallelism

Implicitly parallel programming languages allow application programmers to concentrate

on the algorithmic issues of the development process rather than having to worry about

the management of parallelism. There are no parallel programming primitives or

constructs available to the developer, as the compiler and the run-time system control all

the aspects of parallelism (the last class of programming models in the taxonomy by

Skillicorn and Talia, Table 2-3, page 21). Parallel computations are automatically identified

and exploited; synchronisation and communication are handled; and, data is partitioned

and distributed where it is necessary. Additionally, source-code portability is not a major

issue, once the programming language compiler has been ported to an architecture.

Implicitly parallel programming languages should not be associated with declarative

languages (described in page 20) despite the fact that in declarative languages parallelism

may be implicit. Although both categories of programming languages favour algorithmic

focus over implementation details, implicitly parallel programming languages do not have

to be stateless, a property of declarative languages. The functional plus objects United

Functions and Objects (UFO) (Sargeant 1993; Sargeant and Kirkham 1994) and the

visual, parallel object-flow VORLON (Webber 1998; Webber 1999) programming

languages are examples of implicitly parallel languages which support state (i.e., objects in

both cases).

The growing complexity of parallel applications and architectures and the

management of the ever-increasing degree of parallelism place a great burden on parallel

application developers. Tools for implicit parallelism could simplify the development

process. Indeed, many parallel computing practitioners expect implicitly parallel

programming languages to gain support in years to come and become the languages of

choice (Culler and Singh 1999; Sterling et al. 1995). However, research on compiler and

run-time technology has yet to demonstrate that performance is not sacrificed in the

transition from explicitly parallel to implicitly parallel programming.

Common Programming Models

 31

2.5.5. Transition Towards Implicit Programming Languages

Auto-parallelisation compilers and software libraries for serial programming languages

have dominated parallel application development. FORTRAN has been the programming

language of choice for decades despite its poor programming practices and the lack of

support for parallelism at the language level. The required resources and time to switch to

appropriate tools for parallel computing has been the main cause for the reluctance by

practitioners to move away from serial programming languages. The position expressed

by Perrott and Zarea-Aliabadi in (Perrott and Zarea-Aliabadi 1986) is representative of the

dominating views during the last decade. They believe that a conventional, sequential

language should be the basis for programming a parallel supercomputer.

“[…] it has been recognised that if computation on supercomputers is to have a major

impact, languages that are generally similar to conventional languages in their approach to

computing must be provided. The strength of this influence and the implicit dependence on

conventional sequential language principles explain why most existing supercomputer languages

are based on the ubiquitous language FORTRAN” (Perrott and Zarea-Aliabadi 1986).

Still, Perrott and Zarea-Aliabadi also recognise the importance of relinquishing

FORTRAN and moving to a better programming language. They propose a language for

parallel programming on supercomputers, Actus (Perrott and Zarea-Aliabadi 1986), based

on the sequential—but with better programming practices than FORTRAN—Pascal

(Wirth 1971).

It is apparent from the works of experts in the field of parallel computing, that new

approaches to programming parallel architectures are required. The widely used sequential

programming language plus software library approach is not sufficient for developing the

parallel applications of the future. Parallel computing experts seem to favour implicitly

parallel programming languages that incorporate good software engineering practices

(Almasi and Gottlieb 1994; Culler and Singh 1999; Skillicorn and Talia 1998; Sterling et al.

1995).

2.6. Common Programming Models

As mentioned at the beginning of this chapter, programming models abstract the

architectural characteristics of computer systems for the benefit of the application

developer. In an effort to study the available programming models, to better understand

the differences between them, and to examine the way they are used in practice, Skillicron

Chapter 2

32

and Talia identify in their work (Skillicorn and Talia 1998) the important properties they

think a model should have (Table 2-4). They go on to create a classification of

programming languages based on the level of abstraction in which parallelism primitives

are supported (Table 2-3, page 21). However, Skillicorn and Talia consider the different

programming models only through the characteristics of the examined programming

languages. This thesis takes a more general approach and uses some of the properties

identified by Skillicorn and Talia in considering four common approaches to

programming.

A programming model should be easy to program

 have a software development methodology

 be architecture independent

 be easy to understand

 have guaranteed performance

 provide accurate information about the cost of programs

Table 2-4: Properties a programming model should have (Skillicorn and Talia 1998)

There has been a plethora of models proposed in the literature and used in practise

for parallel programming, including Active Objects (Lavender and Schmidt 1996), Active

Messages (von Eicken et al. 1992), Actors (Agha and Hewitt 1987). It can be suggested,

however, that the models this section considers are the most commonly used in practice:

message passing, shared memory, functional.

Useful Terms

Before the discussion moves to the programming models, it is necessary to establish a

common terminology:

• The unit of execution for applications is the task, which consists of a series of

commands executing in a serial fashion. Parallelism is achieved through the

concurrent execution of a number of tasks. According to the programming model

or the run-time system used, a task may be known as a thread, process, lightweight

process, etc.

• Processors execute tasks. A processor can only execute one task at a time.

Parallelism is possible when more than one processor is available for the execution

of a single application that is divided into multiple tasks.

• The memory stores the data required during the execution of tasks. Memory may

not be directly accessible by a task running on a processor.

• The unit of information exchange between tasks is the message. Tasks

communicate with each other by exchanging messages. Depending on the

Common Programming Models

 33

architecture of the underlying parallel system, sending a message from one task to

another may result in transmission of data over an interconnection network or it

may just cause memory accesses.

• Tasks coordinate their execution using synchronisation primitives. There are two

cases in which tasks may need to coordinate their execution: (a) when the ordering

of execution is important (e.g., barrier constructs), and (b) when the access to a

shared resource is critical (e.g., mutual exclusion constructs).

• Load balancing relates to the distribution of work across a computer system with

the aim that all processors are utilised in the best way possible.

• Tasks may have different granularities. A task with a short execution time is

considered to be of fine granularity, while a larger execution time suggests a task

of coarse granularity.

2.6.1. Serial

It may be of surprise that the first programming model to be examined amongst parallel

models is the serial. However and as discussed in Section 2.5.1 (page 21), the serial

programming model was the basis for parallel application development during the early

years of parallel computing, when auto-parallelisation compilers on sequential code were

extensively used. The knowledge and experience acquired on the use of the model for

developing applications was the important factor for the reluctance to move to models

that are more suitable for parallel computing. Additionally, modern programming models,

like the functional programming model (Section 2.6.4) and the NIP programming model

(Section 2.8), bear some similarities in the way the targeted computer architecture is

conceptualised.

The model is very simple in that it only assumes one processor and directly accessible

memory (Figure 2-4). The key characteristics of the model are presented in Table 2-5.

memoryprocessor

- The processor has direct access to the memory

- There is only one task executing on the processor

- All the memory is available to the task

- When the execution of the task starts, it is never
interrupted

Figure 2-4: The conceptualisation of a
computer system by the serial programming

model

Table 2-5: Properties of the serial programming model

The serial model is easier to program and understand when compared to the message

passing (Section 2.6.2) and shared memory (Section 2.6.3) models, as there is only one

sequence of instructions. There are no communication or synchronisation considerations

Chapter 2

34

and the software development methodology is well studied, understood, and applied

throughout the years.

2.6.2. Message Passing

Unlike the serial model, message passing introduces the notion of parallelism as part of

the model. The model assumes a number of processors with their own private memory

(Figure 2-5). There can be many tasks executing at a time on the available processors but

only one at a time on a particular processor. A task running on a processor cannot directly

access the memory of another processor. Instead, tasks communicate and exchange data

by conveying messages to each other. The interconnection network of Figure 2-5 is the

transportation medium for the messages.

. . .

interconnection network

memoryprocessor memoryprocessor memoryprocessor

Figure 2-5: The conceptualisation of a computer system by the message-passing programming model

The model does not make any attempt to introduce any level of abstraction. Instead,

application programmers are burdened with all the parallelism related issues. They have to

contemplate the following problems and provide solutions:

• Decomposition of the application to parallel tasks. The granularity of the

identified parallel tasks may also be important as it may directly affect the

performance of the application.

• Partitioning and distribution of the data across the memories so that the parallel

tasks can access it.

• Management of the communication and synchronisation between the parallel

tasks (data exchange and execution ordering, respectively).

• Consideration for the possible communication latency and bandwidth variations at

different parts of the interconnection network.

Properties Supported by the Model

After regarding all the above, it is safe to suggest that the message-passing programming

model is lacking the first of the properties suggested by Skillicorn and Talia (Table 2-4,

page 24): it is not easy to program. As the programs increase in size and complexity, the

developers are faced with a great number of parallelism related issues that they need to

resolve. Still, even though the model is difficult to program, it has been popular because it

Common Programming Models

 35

is easy to understand and it can be easily supported by serial, conventional, programming

languages.

Portability and performance are major concerns for programmers. In most cases, the

message-passing programming model reflects the architectural characteristics of the

underlying hardware. The exposure of the architectural details of the parallel system

results in non-portable applications because system-specific features are used. Even if the

issue of portability is resolved, though, there is no performance guarantee when an

application is moved across parallel platforms. For example, an application developed to

heavily depend on the low latency performance of a certain interconnection network will

not perform well when moved to an architecture that favours bandwidth or processor

speed. The consequence is that the application has to be rewritten or retuned for

particular architectures, forcing human resources and time to be consumed.

In the last decade, as the complexity of applications increased and the portability issue

became more of a concern, efforts to provide software tools with a standard interface

have emerged.

Supporting Tools

The most widely used tools, adding support to conventional languages for the message-

passing programming model, are PVM (Sunderam 1990) and the implementations of the

MPI standard (Forum 1994), such as LAM, MPICH, and others. PVM (Parallel Virtual

Machine) was the first environment to provide a portable solution to message-passing

programming. However, the implementations of the MPI (Message Passing Interface)

standard have been gaining momentum since the introduction of the standard back in

1994. Both PVM and MPI come as software libraries for conventional programming

languages providing facilities to spawn new tasks on remote processors, to send and

receive messages, to synchronise tasks, etc.

Due to the importance of the interconnection network in message-passing

programming, vendors of parallel systems have been providing custom implementations

of PVM or MPI libraries that are optimised for their architectures. As discussed earlier,

applications developed to take advantage of the customised libraries are not portable,

especially when performance is concerned, and they must be reprogrammed when moved

to other architectures.

2.6.3. Shared Memory

The shared-memory programming model is more abstract to some extent than

message-passing. The interconnection network is abandoned in favour of directly

Chapter 2

36

accessible memory. All the processors have direct access to the memory of the computer

system (Figure 2-6). There can be many tasks executing at a time on the available

processors but only one at a time on a particular processor. Tasks communicate and

exchange data or messages via memory operations.

memory

. . .processor processor processor

Figure 2-6: The conceptualisation of a computer system by the shared-memory programming model

Although some of the development burdens that were associated with the

message-passing programming model have disappeared, application developers are still

responsible with the explicit management of parallelism.

• Programmers have to identify and define the parallel tasks of the application

(explicit decomposition).

• They have to deal with synchronisation between tasks (order of execution and

mutual exclusion on memory access).

Unlike the message-passing model, the programmers are not required to partition and

distribute data because there is only a single memory that all tasks can access.

Communication latency and bandwidth are not a concern as they are in the

message-passing programming model.

Properties Supported by the Model

As the programmer is not required to deal with network communication, data partition,

and distribution issues, the shared-memory model can be regarded as being easier to

program. However, the single memory of the model introduces synchronisation issues

that need to be addressed. Understanding the synchronisation issues and presenting an

efficient solution is a big challenge for shared memory application programmers.

The shared-memory programming model requires that the application developers deal

with primitive, mainly architecture specific, operations like task creation, task

synchronisation, load balancing, etc. As a result, the portability of applications is

problematic. Still, even if the portability problem is resolved, the efficient execution of

applications cannot be guaranteed across architectures. During the development process,

the programmers may have to make decisions about the granularity and the number of the

parallel tasks as well as the synchronisation and load balancing policies. The decisions may

not be valid for all the targeted systems. For example, parallel systems may support

Common Programming Models

 37

unequal number of processors, or the efficiency of the synchronisation primitives may

differ. The application will have to be rewritten or retuned resulting in additional

resources and time.

During the last decade, standards emerged and tools were developed providing better

support for shared-memory programming.

Supporting Tools

The growing popularity of the model has resulted in a variety of tools being available

today for shared-memory programming. There have also been efforts to create standards

for the development of portable applications across different platforms, like the subset of

POSIX (IEEE 1996) dealing with the interface for shared memory programming.

Additionally, techniques have been proposed to get around the performance issue when

moving to different architectures, as discussed earlier. Lazy task creation (Mohr et al.

1991), which is extensively studied in Chapter 3, is an example of such a technique.

The shared memory abstraction can be implemented in different levels of the

computer architecture (Chapter 4 offers a more detailed discussion on shared memory

architectures and tools):

• At the hardware level. (a) The memory is physically shared across the processors

of the system. The architecture is widely known as Symmetric Multi-Processing

(SMP). (b) The memory may be distributed across many processors in the parallel

system (e.g., MPP systems). Additional hardware provides the shared memory

abstraction (e.g., SGI Origin series). Finally, (c) the hardware may support the

shared memory abstraction over a Cluster of Workstations. The Scalable Coherent

Interface (SCI) (James 1994) and SHRIMP2 (Billas et al. 1998; Iftode et al. 1999)

are examples of the last approach.

• At the operating system level. The operating system provides the illusion to

applications that there exists physically shared memory, although the memory may

be distributed across many processors (e.g., MPP systems) or even across many

parallel systems (e.g., Clusters of Workstations). Amoeba (Tanenbaum 1995;

Tanenbaum et al. 1990) is an example of such an operating system.

• At the programming library level. Software libraries may provide the

abstraction of shared memory on MPP or Clusters of Workstations architectures.

Examples include Treadmarks (Keleher et al. 1994) and NIPDSM (Chapter 4).

2 SHRIMP is actually a hardware/software hybrid approach to the shared memory abstraction over clusters
of workstations.

Chapter 2

38

Parallel computing practitioners have been disagreeing on which of message passing and

shared memory is the best model for parallel programming. The architectures best suited

for message passing-programming model (MPP architectures, Clusters of Workstations)

provide scalability but may have limited performance due to the high communication

costs introduced by the interconnection networks. In contrast, the architectures that

favour the shared-memory programming model are not scalable due to the complexities

related with the design and implementation of bus architectures.

A Hybrid Model

There have been research efforts to combine the message-passing and shared-memory

programming models together (Figure 2-7). The architecture, which is gaining momentum

in COW architectures, like the Avalon (Warren et al. 1997; Warren et al. 1998), combines

the scalability of message passing architectures and the performance of shared memory

architectures. However, the resulting, hybrid, programming model is even more

complicated to program as it mixes the difficulties of both message-passing and

shared-memory models.

memory memory memory

. . .
.processor processor processorprocessor processor processorprocessor processor processor

Figure 2-7: The conceptualisation of a shared-memory/message-passing computer system

2.6.4. Functional

The functional programming model completely abstracts away from any computer system

architectural details. Application developers are not burdened with the management of

parallelism. The computer system suggested by the functional programming model does

not offer memory and only incorporates one processor. Of course, it is not implied that

resulting applications will be executed on systems without memory and only with one

processor. It is merely suggested that the programmer does not have to deal with memory

state, task decomposition, synchronisation, etc. Nevertheless, the programming

methodology is such that it allows the supporting tools to extract maximum parallelism

from an application.

The functional programming model regards applications as expressions rather than a

series of commands. There is no notion of state. The functional model of programming

supports features like higher order functions, pattern matching, and abstract data types,

which make it a very easy and effective model for developing applications. The in-depth

examination of the issues related to the functional programming model is out of the scope

Common Execution Models

 39

of this thesis. Instead, the reader is referred to (Bird and Wadler 1988; Field and Harrison

1988; Hudak 1989).

Properties Supported by the Model

Due to its abstract nature, the functional programming model is very easy to program and

very easy to understand. It provides a straightforward way of implementing algorithms.

Also, the resulting applications are highly portable as no architecture specific primitives

are used. The implementation of an algorithm cannot be based on the performance

characteristics of particular hardware components (e.g., latency or bandwidth of an

interconnection network).

Many have argued that the lack of state is a disadvantage for the functional

programming model. However, Hudak suggests that functional programming languages

do support state but in an explicit fashion rather than implicitly as it is the case with

imperative languages (Hudak 1989). There have been efforts to incorporate state in

functional programming languages (e.g., ML). Such languages, although they support state,

they are still considered to support the functional programming model.

Implicit parallelism is another important characteristic the functional programming

model has to offer. Parallel computations can be easily identified, extracted, and exploited

from applications developed with a functional programming language (Skillicorn and Talia

1998).

Supporting Tools

The functional programming model greatly depends on supporting tools (i.e.,

programming language compiler, run-time system). As programmers have no input on

issues related to the management of parallelism (e.g., task decomposition, data distribution,

load balancing, synchronisation) the responsibility falls to the supporting tools. Examples

of functional programming languages include Haskell (Hudak and Fasel 1992) and

Miranda (Turner 1985).

2.7. Common Execution Models

As discussed in Section 2.1.2 (page 15), an execution model defines the run-time

environment that will host the execution of applications. The characteristics of the model

may reflect the underlying hardware details or the model may be abstract and not

associated with any particular architecture. An execution model may also be seen as an

Chapter 2

40

abstract machine that programming models target. It is not unusual for a particular

execution model to abstract the semantics of another execution model.

2.7.1. Message Passing and Shared Memory

The message-passing and shared-memory execution models are the realisations of the

abstract machine architectures assumed by the programming models with the same names

that are presented in Sections 2.6.2 (page 26) and 2.6.3 (page 27). The non-abstract nature

of the message-passing and shared-memory programming models allow for the execution

primitives offered by the two execution models to become visible to application

developers.

It has to be noted, however, that a message-passing or shared-memory execution

model does not implicitly imply the existence of a message-passing or shared-memory

parallel system respectively (as categorised by Tanenbaum in Figure 2-3 on page 18). For

example, software based distributed shared memory (Li 1986) offers a shared memory

execution model for shared memory programming over message-passing hardware

architectures (e.g., Clusters of Workstations).

These two execution models have been the most widely used in parallel computing,

mostly due to the popularity of the message-passing and shared-memory programming

models.

2.7.2. Dataflow

The dataflow execution model is based on the evaluation of a data-driven graph. The

graph consists of nodes representing computation that operates on data and arrows

representing the movement of data. Data is delivered from one computational node to

another. The computation associated with a node in the graph can only be evaluated when

the data it is operating upon is available.

The structure of a dataflow graph eases the process of implicitly exploiting parallelism

in an application. Usually, a dataflow execution node is considered to be just one

instruction and, therefore, the resulting parallel tasks are of very fine granularity.

Depending on the underlying architecture the run-time system may determine different

strategies for the evaluation of a dataflow graph.

The underlying architecture may be another execution model (e.g., message passing,

shared memory) or a dataflow machine. There have been efforts to design and build

machines based on the dataflow execution model, including the Manchester Dataflow

Machine (Gurd et al. 1985). A survey of dataflow machines can be found in (Veen 1986).

NIP Programming Model

 41

2.7.3. Functional

Unlike the dataflow execution model, the functional execution models are control-driven:

a computation is executed when its result is required. Examples of functional execution

models include graph reduction and string reduction.

In graph reduction, a graph is constructed from the functional program. A node of

the graph represents a function (computation) while the arrows represent the flow of

control. The transformation of the graph in consecutive steps represents the execution of

a functional program. The graph is reduced to a simpler graph at each step. The structure

of the graph simplifies the extraction and exploitation of parallelism from a functional

program (Skillicorn and Talia 1998).

In string reduction, the functional program is represented as one expression. A

transformation process takes place during the execution of the application. Each step of

the process, transforms the functional program to a simpler expression through the

evaluation of sub-expressions.

There have been efforts to design and build parallel systems for the execution of

functional programs, like ALICE (Darlington and Reeve 1981) and Flagship (Watson et

al. 1988). However, most of the research work has concentrated on the efficient

implementation of functional execution models on top of the traditional message passing

and shared-memory execution models, such as the GUM implementation of the Haskell

programming language (Trinder et al. 1996).

A detailed discussion of the issues related to execution models and their

implementations can be found in (Jones 1987).

2.8. NIP Programming Model

The two most widely used programming models for parallel computing today, message

passing and shared memory, require the involvement of application developers in the

management of parallelism. As the complexity of applications increase, the management

of parallelism becomes problematic and consumes much of the software engineering

effort. Increased complexity also results in applications that are difficult to debug and

profile.

As discussed in (Watson and Parastatidis 1999a), in the opinion of many software

developers, the functional programming model has a number of advantages over

conventional, imperative languages including their expressiveness, and their amenity to

reasoning about semantics. Moreover, the functional programming model also assists in

Chapter 2

42

the development of parallel applications. In particular, functional programs contain far

fewer constraints on execution order than do their imperative counterparts. This is

because all expressions in a functional program are without side effects, or they are

referentially transparent (Henson 1987). Therefore, the order of their execution cannot

affect the result of the application, and this increases the scope for parallel execution.

Unfortunately, the very property that makes functional programs so well matched to

parallel systems—referential transparency—makes the programming of certain important

classes of computations unnatural, contorted and complex. In particular, many

computations (or parts thereof) are naturally expressed through an object-oriented

programming style in which objects encapsulate state, which may be updated through

method calls. Method calls to objects may not be referentially transparent, as identical

calls can return different values, and therefore these types of computations cannot be

directly expressed in a functional program (Watson and Parastatidis 1999a).

Taking into consideration the above observations, a new approach to programming

parallel applications is proposed. The NIP programming model was devised to act as the

inspiration for the introduction of a new breed of parallel software development and

run-time tools. The new model combines some of the characteristics of the previous

models and introduces object-orientation as part of the programming model.

object
memory

processor

Figure 2-8: The conceptualisation of a computer system by the NIP programming model

The NIP programming model is abstract, as it hides all the architecture specific

primitives from the developers. As Figure 2-8 suggests, the view of a single processor

abstract machine with memory structured as objects is presented to the developers. The

single processor view of the computer system does not imply that programs are executed

serially. Like the functional programming model, parallelism is implicit. The model

embraces the functional way of programming for the implementation of algorithms but it

also allows state to be encapsulated in objects when developers feel it is natural to do so.

As it was the case with the functional programming model, it would be the job of a

compiler and run-time system to identify and exploit parallelism respectively from an

application developed with the NIP programming model.

The adoption of object-orientation as an integral part of the NIP programming model

brings to parallel computing an analysis, design, and development methodology that has

NIP Programming Model

 43

benefited serial programming but has yet to be widely accepted by the parallelism

community.

Properties Supported by the Model

The model is easy to understand and use and provides a natural way to program

applications. The applications developed with the NIP programming model are portable

as there are no architecture specific primitives available. Furthermore, the implementation

of an algorithm cannot depend on the performance characteristics of particular hardware

components (e.g., latency or bandwidth of an interconnection network, processor speed,

etc.). Of course, the efficiency of the underlying hardware and/or the run-time will

influence the performance of the application. It is merely suggested that application

developers cannot take into consideration the efficiency related attributes of the hardware

when implementing and refining algorithms.

Supporting Tools

As it is the case with abstract programming models, the NIP programming model greatly

depends on supporting tools. However, there are no new programming languages yet

designed and implemented to support the NIP programming model as proposed by this

thesis. However, there do exist programming languages that satisfy the requirements of

the model. UFO (Sargeant 1993) and VORLON (Webber 1998; Webber 1999; Webber

2000) are such programming languages.

The United Functions and Objects (UFO) programming language is an implicitly

parallel programming language that supports objects. In UFO, as much as possible of the

computation is expressed in a purely functional programming style. However, where it is

natural to do so, objects that encapsulate state can be constructed and manipulated. The

UFO programming language was a great inspiration in defining the properties of the NIP

programming model.

VORLON is a visual, object-flow programming language that has been created to

support the design and implementation phases of a parallel application and it features

support for implicit parallelism and object-orientation.

The NIP run-time system (Watson and Parastatidis 1999a) is responsible for

exploiting the parallel computations that are identified by the programming language

compilers. The NIP run-time (Chapter 5) is an implementation of the NIP execution

model semantics, which is the subject of the next section (Section 2.9).

Chapter 2

44

2.9. NIP Execution Model

The NIP execution model defines an abstract machine for the parallel execution of

applications. The abstract machine consists of a number of processors, shared memory

structured as objects, and a special component that is responsible for the management of

parallelism (Figure 2-9) and it is not associated with any particular underlying hardware

architecture.

object
memory

processor processorprocessor

parallelism
manager

. . .

Figure 2-9: The major components of the abstract machine as suggested by the NIP execution model

Unlike other execution models, the NIP execution model takes over most of the

operations that relate to the management of parallelism: load balancing, task creation, and

task and memory access synchronisation. The identification of parallel tasks is left to the

programming tools or the application programmer, depending on the programming

methodology used. The NIP execution model was originally created to act as the target

abstract machine for tools supporting the NIP programming model. However, the

features introduced in the NIP execution model can also support other programming

methodologies, even explicitly parallel in nature.

The NIP execution model attempts to combine the good features of the shared

memory and the functional execution models while introducing implicit management of

parallelism. The ‘single, shared memory’ view of the model makes the abstract machine an

easier target for programming model support tools (e.g., compilers). In addition, the NIP

execution model defines that the memory is structured as objects in order to better

support the object-oriented nature of the NIP programming model.

2.9.1. Model Requirements

As already mentioned, it is not the responsibility of the NIP abstract machine to identify

parallelism. The abstract machine only exploits the parallelism already identified in

applications. It is the responsibility of the parallel programming language support tools

(e.g., the compiler) or the programmer to identify the parallel tasks in an application. The

NIP execution model defines the tasklet as the means for applications to represent

potentially parallel tasks. The tasklet is semantically rich in that only one is enough to

represent whole groups of potentially parallel tasks. Currently, tasklets support three

NIP Execution Model

 45

different patterns of parallel computation: function parallelism, loop parallelism, and

recursion parallelism. The tasklet construct was originally introduced by Watson (Watson

1996) and it is further developed in this thesis (Chapter 3).

The NIP execution model also requires that the points in the application be identified

where a tasklet is created and the result of the associated parallel computation(s) is used.

The NIP execution model semantics do not define implicit task synchronisation and/or

object availability. The execution of a task will wait for the computation(s) associated with

a tasklet to complete via an explicitly introduced operation on that tasklet.

In addition to the identification of parallel tasks, the NIP execution model requires

applications to indicate the type of the method calls on the objects. Applications should

specify whether the state of objects is altered due to methods performed on them (read or

write object access). The NIP abstract machine is not a virtual machine with a

predetermined instruction set like the Java Virtual Machine (Newman 1996). Therefore, it

would have been difficult and inefficient to expect implementations of the NIP execution

model to identify the nature of the methods calls without assistance from applications.

However, a programming language compiler could easily identify and provide the required

information from the application source code.

The semantics of the NIP execution model specify that objects in the memory be

implicitly destroyed when they are not required, or garbage collected. However, the

current implementation of the memory system in the NIP run-time, the implementation

of the NIP execution model, does not support garbage collection.

Finally, the NIP execution model does not make any assumptions about the

correctness of applications when concurrency issues are concerned. The application

should be created as if every potentially parallel task was actually going to be evaluated on

a separate processor. The NIP execution model does not specify any means of avoiding

problems with concurrent execution of applications (e.g., races, deadlocks, etc.).

2.9.2. Run-time Environment

In addition to the requirements imposed by the NIP execution model semantics, the

behaviour of the run-time environment during the execution of an application is also

specified.

Not all the potentially parallel computations represented by the tasklets are converted

to tasks. Parallel tasks are created depending on the availability of computational resources

on the underlying computer system. The creation and distribution of parallel tasks

throughout the computer system is the responsibility of the run-time environment.

Chapter 2

46

The run-time environment must ensure that a parallel task can always call methods on

an object, irrespective of the processor on which that task is executing.

Method calls on objects have sequential consistency semantics. Chapter 4 presents a

detailed discussion on consistency semantics and memory access and gives the formal

definition of sequential consistency.

Every task is allowed to have objects in a private memory. Objects placed in the

private memory are not managed by the run-time environment and they do not adhere to

the sequential consistency semantics nor they are accessible by other tasks.

2.9.3. Run-time Environment on Diverse Architectures

The NIP execution model is not associated to any specific architecture. Implementations

of the run-time environment that adhere to the semantics of the NIP execution model

must provide a ‘single computer’ view of the underlying hardware. The semantics of the

NIP programming model specify that algorithms should not have to be re-implemented

when moved between architectures. Hence, the run-time environment needs to address

issues related to both distributed memory and shared memory architectures. As efficiency

is of a concern, latency tolerance and overlapping of communication and computation are

welcomed features. Furthermore, optimisations on shared memory architectures are also

required.

The rest of this thesis presents the original research work undertaken on the advanced

run-time techniques that are used for the implementation of the NIP execution model

semantics. The techniques (Chapters 3, 4, 5) were implemented and evaluated (Chapter 6)

as part of the NIP run-time system (Watson and Parastatidis 1999a; Watson and

Parastatidis 1999b; Watson and Parastatidis 1999c).

The NIP lazy task creation technique together with analogous previous approaches to

task creation are presented in Chapter 3. NIP lazy task creation features the tasklet

construct, which was briefly mentioned above. In combination with the NIP load

balancing service (Chapter 5), it is possible to achieve overlapping of computation and

communication.

The NIP distributed shared memory system (Parastatidis and Watson 1999a;

Parastatidis and Watson 1999b) is presented in Chapter 4. It provides an object-based

view of the memory and introduces three new caching techniques. Object caching allows

the NIP run-time system to tolerate latency in method calls on a distributed memory

system.

47

3CHAPTER 3
3. NIP LAZY TASK CREATION

The NIP execution model that was described in the previous chapter

encouraged programming language support tools or application

programmers to identify and expose the maximum logical parallelism

possible in applications. In this chapter, the run-time techniques used to

efficiently manage the resulting degree of parallelism are examined and

the drawbacks of the existing systems are identified.

The NIP lazy task creation technique is proposed as a run-time

technique to assist parallel applications better utilise the available

computational resources. The NIP lazy task creation technique is built

around a new construct, the tasklet, which is used by applications to

expose the logical parallelism in applications.

Like similar constructs found in earlier lazy task creation

techniques, a tasklet is a representation of a potentially parallel call. In

contrast to previous approaches, however, the NIP tasklet construct is

semantically rich. Just one NIP tasklet instance is enough to efficiently

represent the parallelism available in entire iterative and recursive

computations.

Chapter 3

48

3.1. The Granularity Problem

As discussed in the previous chapter, many programming languages provide the means of

expressing—in the form of language constructs or library calls—the logical parallelism in

an application. Implicitly parallel programming languages, like UFO (Sargeant 1993), take

away the burden of identifying parallelism from the application developers and move it to

the programming language compiler and run-time.

In both cases, the degree of logical parallelism in the resulting application may be

higher than is required to efficiently exploit the parallelism made available by the

underlying parallel system. A higher degree of logical parallelism than is required often

results in reduced performance as the overheads of managing parallel tasks (e.g., task

creation, task destruction, task switching, load balancing) may overwhelm the execution

time.

The degree of parallelism in an application is inversely proportional to the granularity

of the parallel tasks. Consequently, a lower degree of logical parallelism in an application

results in tasks of coarser granularity and reduced run-time costs due to the management

of parallel tasks. The underlying parallel system may then be more effectively exploited,

provided, of course, that there is still enough parallelism to keep the system busy.

However, lowering the degree of logical parallelism is can be difficult and not always a

panacea, as will be explained subsequently.

3.1.1. The ‘Expert’ Programmer Solution

With the most popular parallel programming models (i.e., message passing and shared

memory), it is the programmer who has to make the decisions about the granularity of the

parallel tasks in an application. Quintessentially, a programmer decides on the degree of

logical and usually the actual parallelism in an application.

Achieving the exact balance between the degree of logical parallelism and the

granularity of parallel tasks can be a troublesome and time-consuming process. The

process requires knowledge of the particular performance characteristics and primitive

operation costs of the underlying hardware architecture and run-time system. The

resulting application may only perform well on that particular combination of architecture

and run-time system. When the application is moved to another platform, it will have to

be rewritten or retuned, causing more resources and time to be consumed.

The Granularity Problem

 49

Additionally, a parallel algorithm may be more naturally expressed with a higher

degree of parallelism. If the high degree of parallelism does not match the parallelism

offered by the underlying architecture, the application developer would have to reconsider

and redesign the algorithm before even having to deal with all the performance related

issues mentioned above.

The granularity issue and its relation to the degree of logical parallelism in an

application, as the above discussion reveals, are yet another incentive to utilise implicitly

parallel compilers in the development process of parallel applications.

3.1.2. The ‘Clever’ Compiler Approach

Implicitly parallel compilers can relieve programmers from the difficult job of deciding

the granularity of parallel tasks or the appropriate degree of logical parallelism in an

application. Such compilers can use information about the underlying architecture when

exploiting the parallelism in an application. Compile-time static analysis of the application

source code can determine the appropriate granularity of the parallel tasks for a particular

combination of hardware architecture and run-time.

However, there exist applications where even after analysis of the source code an

efficient solution cannot be generated. Such applications are usually data dependant or

irregular. Moreover, static analysis of the source code cannot utilise run-time information

about the load of the underlying system in the case of a multiprocessing environment,

where it is very likely that the ideal degree of parallelism that can be exploited is

influenced by the availability of computational resources.

3.1.3. A Run-time Solution

In 1991, Mohr et al. proposed a run-time solution to the granularity problem (Mohr et al.

1991). They described a way in which applications with excessive parallelism could be

efficiently executed on parallel architectures. Their approach did not require programmer

assistance but instead it was a combination of compiler and automatic run-time

techniques. The granularity of the parallel tasks could change dynamically at run-time

depending on the availability of computational resources. The name of the run-time

technique proposed by Mohr et al. was lazy task creation and is the subject of Section 3.2.

Other approaches similar to the lazy task creation technique have also been described

in the literature. The lazy threads (Goldstein et al. 1996) technique is one of them and is

described in Section 3.3. Section 3.4 briefly presents some other systems implementing

similar approaches. Finally, Section 3.6 comprehensively examines a new technique

originally devised by Watson (Watson 1996) and further developed in (Watson and

Chapter 3

50

Parastatidis 1999a; Watson and Parastatidis 1999b; Watson and Parastatidis 1999c) and in

this thesis, the NIP lazy task creation technique which provides support for iterative and

recursive computations.

3.2. Lazy Task Creation

In 1991, Mohr et al. proposed a run-time technique for increasing the granularity of the

identified parallel tasks in an application (Mohr et al. 1991). Their method utilised the

Scheme functional programming language with the addition of a construct for explicit

parallelism borrowed from Multilisp (Halstead 1985), called future. Their intention was

to allow programmers to implement algorithms in a natural way, even if the resulting

implementation had a very high degree of parallelism. The way the identified parallelism is

exploited is left to the run-time system. As Mohr et al. notice, “the programmer’s task is to

expose parallelism while the system’s task is to limit parallelism” (Mohr et al. 1991).

In their work (Mohr et al. 1991), Mohr et al. describe and compare three techniques

for exploiting the parallelism in an application: eager task creation, load-based inlining,

and lazy task creation.

• With eager task creation, every future call is converted to a parallel task at

run-time, resulting in a great number of fine-grained tasks, when the programmer

identifies the logical parallelism at a fine-grained level. Of course, as described in

Section 3.1, the run-time costs due to management of parallelism overwhelm the

execution time.

• In load-based inlining (Kranz et al. 1989), and during the execution of an

application, a decision has to be made every time a future call is encountered.

Depending on the load of the parallel system, a new parallel task is created to

execute the computation associated with the future call or the computation is

executed inline with the task that issued the future call. Drawbacks of the

load-based inlining technique include the following (Kranz et al. 1989):

o The involvement of the programmer is still required. The programmer has

to code the load-based inlining behaviour and to define the load threshold

upon which the decision to convert future calls to parallel tasks is based.

o Deadlocks may arise in some applications due to use of load-based

inlining.

o The load-based inlining technique is not applicable in parallel iterative

computations.

Lazy Task Creation

 51

o Most importantly, though, when computational resources become

available, there may not be any parallel tasks to execute until another

future call is encountered.

• The third approach, lazy task creation, resolves the issues associated with eager

and load-based inlining techniques and it is the subject of the discussion bellow.

3.2.1. Concept

With lazy task creation as proposed by Mohr et al. in (Mohr et al. 1991), the source code

looks exactly the same as in the case of eager task creation (for examples the reader is

referred to (Mohr et al. 1991)). Programmers are not expected to write extra code or make

decisions about the granularity of the parallel tasks. Using future calls, programmers are

only required to identify all the computations that can be executed in parallel, resulting in

applications with a high degree of logical parallelism. Lazy task creation attempts to

reduce any run-time costs that may be incurred on a particular architecture due to the high

degree of logical parallelism identified by the programmer.

During the execution of a Scheme program, when a future call of the form

(K (future X)) is encountered, where K is the parent task or the continuation of X and X

is the computation identified as parallel, the run-time system starts executing X inline with

the current task. Enough information is saved, however, so that the continuation K can be

moved to a separate task if computational resources become available. Each processor

maintains a list of available continuations that could be executed in parallel. When a

processor becomes idle, it steals continuations from other processors, a method also

known as task stealing. If continuation K of computation X has not been stolen when the

execution of X completes, K will be removed from the list of available continuations and

executed inline.

The lazy task creation approach differs from eager task creation because with the

latter technique a new task would have been created immediately to evaluate computation

X in parallel with K even if there were not any computational resources available.

In proposing the lazy task creation technique, Mohr et al. observed that the run-time

cost of saving the information for the continuation K could be significantly lower than

the cost of creating a new parallel task. In addition, they expected that in applications with

a high degree of logical parallelism, the number of parallel tasks created to execute

continuations would be significantly lower than the total number of tasks executed inline.

Consequently, Mohr et al. anticipated that the run-time cost of saving information for all

the continuations plus the cost of converting some of them to parallel tasks would be

Chapter 3

52

significantly less than the run-time cost incurred if a new parallel task was created for

every future call encountered. Indeed, the simulation-based performance results

presented in (Mohr et al. 1991) confirmed the suitability of lazy task creation as a

technique for reducing the run-time costs incurred due to excessive parallelism.

3.2.2. Implementation

Mohr et al. described two implementations of their lazy task creation technique in (Mohr

et al. 1991) based on the Mul-T programming language (Kranz et al. 1989): one for the

Encore Multimax shared memory multiprocessor and another one for the ALEWIFE

distributed, globally shared memory multiprocessor (Agarwal et al. 1995).

Both implementations are based on the same principles. Every processor maintains a

globally accessible lazy task queue with pointers to the available continuations in the stack

frame of the executing task on that processor. When a future call is encountered during

the execution of a task on a processor, a pointer to the future’s continuation is pushed

onto the lazy task queue of that processor. If the execution of the future call completes

and the continuation is still in the queue, the processor removes that continuation from its

queue and executes it inline. Another processor becoming idle may also remove, or steal,

that continuation from the lazy task queue.

Two levels of locking must take place to ensure the correctness of the operations on

lazy task queues, as they are accessible by all the processors. First, a lock guarding a lazy

task queue data structure must be acquired to prohibit two processors from stealing the

same continuation. Then, another lock must be acquired to ensure that an idle processor

does not steal a continuation while the processor that queued that continuation is trying

to inline it. The ALEWIFE implementation of Mul-T takes advantage of specialised

hardware to improve the performance of these locking operations.

When a processor steals a continuation from a lazy task queue, it removes a frame

from the stack of the task executing on the processor owning the queue. The frame is

used by the new task that is created to execute the stolen continuation. The traditional

stack implementation that was used on the Encore Multimax resulted in run-time

overheads due to the costly frame copying of continuation stealing operations. A more

complicated implementation, which was based on a double-linked list of stack frames, was

implemented for the ALEWIFE machine. The implementation utilised specialised

hardware available on the ALEWIFE to improve the performance of continuation

stealing operations.

Lazy Task Creation

 53

3.2.3. Weaknesses

Logical Parallelism

Although recursive parallel applications may benefit from lazy task creation, as shown by

the simulation-based performance evaluation presented in (Mohr et al. 1991), Mohr et al.

believe that it is not possible to automatically increase the granularity of parallel, iterative,

fine-grained computations. They stated that “the sequentiality of iteration inherently limits

parallelism” (Mohr et al. 1991). Mohr et al. suggest that parallel, iterative computations are a

case of algorithms where the convenient way in which they are expressed inherently limits

parallel performance. This thesis attempts to demonstrate that the lazy task creation

technique, as described by Mohr et al., fails to improve the execution of iterative, fine-

grained, parallel computations mostly due to the way in which parallelism is identified for

such computations using the future construct in the Scheme and Multilisp

programming languages.

The pseudo-code of two versions of an iterative parallel map function, similar to the

two Scheme versions presented in (Mohr et al. 1991), are given in Code 3-1 and Code 3-2.

The iteration over the elements of a list is implemented as a recursive computation while

the function func is considered to be fine-grained.

parallel-map func list
 if list not empty
 head-result is (future (func list.head))
 rest-result is (parallel-map func list.rest)
 return (concatenate head-result rest-result)

Code 3-1: First version of parallel map

 In the first version of parallel map (Code 3-1), where the future call is the

application of the function func to the head of the list, the task that starts the

computation, the parent task, inlines that future call and makes its continuation

available for parallel execution by adding it to the lazy task queue. If the function func is

fine-grained, the continuation is removed almost immediately from the lazy task queue

giving little opportunity to other processors in the system to steal it. As the lazy task

queue is not built up, the load of the parallel system remains initially low. When another

processor manages to steal a continuation, the parent task is not able to inline any more

future calls and—depending on the implementation—will have to block or steal a

continuation from another processor. The former approach means that whenever tasks

are blocked computational resources are wasted. The latter approach results in many

parallel tasks of fine granularity to be created.

Chapter 3

54

Parallel-map func list
 if list not empty
 rest-result is (future (parallel-map func list.rest))
 head-result is (func list.head)
 return (concatenate head-result rest-result)

Code 3-2: Second version of parallel map

 In the second version of parallel map (Code 3-2), the application of the function

func to the rest of the list is identified as the future call. The parent task iterates

through the whole list inlining all the future calls and making available a great number

of continuations to other processors. The parallel tasks that may be created from those

continuations to execute the application of the function func to the head of the list are

of very fine granularity, as they do not include any future calls. The lack of future

calls means that there are no possibilities for inlining. Only the granularity of the parent

task may be increased.

These issues discussed above were recognised by Mohr et al. and they dismissed the

suitability of lazy task creation for iterative computations. This thesis discusses an

alternative approach, based on a scheme originally perceived by Watson (Watson 1996),

which overcomes the limitations of the technique. The NIP lazy task creation technique,

discussed in Section 3.6, provides an alternative way of identifying parallelism in parallel,

fine-grained, iterative and recursive computations.

Memory and Stack

In the simulation-based performance evaluation of the Encore Multimax and ALEWIFE

presented in (Mohr et al. 1991) the cost of the memory operations was not taken into

consideration. With lazy task creation, whenever a future call is encountered, memory

has to be allocated on the global heap to store the pointer to the stack frame of the

continuation. As heap memory operations are significantly more expensive than stack

memory operations, the allocation of the lazy task queue on the heap introduces extra

run-time costs.

Additionally, the lazy task creation technique, as proposed by Mohr et al., relies on the

manipulation of the parallel application stack. As such, the technique depends on

specialised compilers. In the case of the ALEWIFE machine, the technique also utilises

specialised hardware for the implementation of the stack structure in applications to

improve performance. This dependence on specialised compilers and hardware makes the

technique difficult to port on different platforms.

Probably the most important memory related drawback of the Mohr et al. lazy task

creation technique is the copying of stack frames during a continuation stealing operation.

Lazy Threads

 55

Apart from the run-time cost incurred, pointers to data structures on the heap become

invalid on distributed memory architectures. Additionally, data structures that are

allocated on the stack frame of the continuation are no longer available to the future

call that has been inlined, resulting in poor memory access locality.

The NIP lazy task creation technique, discussed in Section 3.6, does not use the heap

when identifying potentially parallel computations and it does not require specialised stack

structures or copying of stack frames.

3.3. Lazy Threads

Goldstein and Culler proposed lazy threads as a run-time technique to increase the

execution efficiency of parallel applications. The technique was described in (Goldstein et

al. 1996) and later in more detail in Goldstein’s doctorate thesis (Goldstein 1997). The

main objective of lazy threads is to provide a way of executing potentially parallel calls as

efficient as sequential calls when parallel execution is not required (i.e., computational

resources are not available).

3.3.1. Concept

With lazy task creation, a future call causes information to be saved in order to make its

continuation available for parallel execution. As discussed in Section 3.2, it is

computationally less expensive to save the necessary information for a continuation than

actually creating a new parallel task. Still, the run-time cost was significantly higher when

compared to the cost incurred for a sequential call because of the queuing and

synchronisation operations required. Goldstein and Culler attempted to design and

implement an execution mechanism for parallel applications that further reduced the

run-time costs due to potentially parallel calls (or, future calls in lazy task creation).

Their run-time technique greatly depended on compiler support and a tree-like storage

model for stacks, called a cactus stack.

With the lazy threads execution mechanism, a parallel call is executed as a

parallel-ready sequential call. The function associated with the parallel call is executed just

like a sequential call. Space on the stack of the calling thread, the parent, is allocated for

the execution of the parallel-ready call, the child. If the execution of the child completes

before computational resources become available, the parent will be resumed exactly in

the same manner as when a sequential call finishes. Registers are used for the transfer of

control and data between the parent and the child, making the execution of the

Chapter 3

56

parallel-ready call as efficient as the execution of a sequential call. If the child suspends or

yields the processor, it will have to be disconnected from its parent. A new thread will be

created to execute the continuation of the parallel-ready call, just like continuation stealing

in the lazy task creation. In this case, the stack frames of the parent and child are

disconnected. The compiler produces code for every parallel-ready call to allow the child

to be joined with its parent in case they were disconnected.

Goldstein and Culler observed that in many cases the parent was resumed as a

separate thread only to make another parallel-ready call. They introduced thread seeds as

an optimisation, to allow new threads to be created without the parent having to be

resumed. A thread seed points to the next available parallel-ready call in the parent,

following the one that is using the parent’s stack. When an idle processor attempts to steal

work from the suspended parent, it uses the thread seed to locate an available

parallel-ready call and create a new thread to execute it. The thread seed used for the new

thread is changed to point to the next available parallel-ready call. It must be pointed out

that thread seeds can only be used with consecutive parallel-ready calls.

It is not always possible to represent a potentially parallel call as a parallel-ready

sequential call. Sequential calls use the same stack frame as the parent and there may be

situations where the data structures passed as arguments to a parallel-ready call are

modified by the parent before the result of the parallel call is required. The disconnection

of the child from its parent and the parallel execution of the two may lead to erroneous

execution. In order to deal with such situations Goldstein and Culler introduced another

representation of a potentially parallel call, the closure. A closure is a data structure that

contains the arguments for the potentially parallel call. When a parallel-ready call is

encountered, a closure is queued and control is returned directly to the parent. When the

result of the potentially parallel call is required, the closure is dequeued and executed (or,

inlined as in lazy task creation). Another processor, though, may steal the closure and

execute the associated call in a new thread. The parent will have to wait until the new

thread completes.

The lazy threads execution mechanism greatly depends on the generation strategy

followed by the programming language compiler. The compiler decides on the

appropriate representation (i.e., closure, thread seed, parallel-ready sequential) of the

potentially parallel calls in an application. The compiler also generates extra code to allow

for work stealing operations and thread synchronisation for every potentially parallel call.

Lazy Threads

 57

A requirement for the lazy threads execution mechanism is that “threads are scheduled

independently and are not pre-emptive” (Goldstein et al. 1996). The programming language

compiler provides the code necessary for the scheduling of the created threads.

3.3.2. Implementation

In his thesis (Goldstein 1997), Goldstein describes the implementation of two

programming compilers that provide support for lazy threads, the Split-C+threads and

the Id90. Goldstein developed the Split-C+threads programming language based on the

imperative Split-C (Culler et al. 1993a). Id90 is an implicitly parallel functional

programming language.

The Split-C+threads compiler was a modified GCC compiler to support the lazy

threads execution model. During the performance evaluation of the lazy task creation

technique in a distributed memory parallel environment, the compiler did not generate

any parallel-ready sequential calls or thread seeds for the potentially parallel calls. Such

representations are only effective in a shared memory parallel environment. Instead,

closures were used for the representation of potentially parallel calls, which are not as

efficient as the other representations.

Finally, the applications compiled for the distributed memory parallel environment

had to poll the network for messages from other processors. The polling operation was

very expensive, especially for the Berkeley NOW parallel system (Culler et al. 1997) that

was used. The slow network of the Berkeley NOW parallel system had a great impact on

performance. Goldstein had to introduce a polling period (i.e., a certain number of polling

operations were skipped) to improve performance. The execution on the Thinking

Machine CM-5 multiprocessor (Hillis and Tucker 1993) did not suffer from the same

problems.

3.3.3. Weaknesses

Threads

The integration of support for threads into the programming language compiler causes

portability considerations, as Goldstein notes in his thesis (Goldstein 1997). The lazy

threads execution technique is not easily portable across architectures. Furthermore,

despite the resulting performance benefits due to the integration, additional limitations are

imposed. As the threads are scheduled independently and there is no pre-emption,

problems may arise. Goldstein and Culler note in (Goldstein et al. 1996) that because all

the computational threads are required to complete before an application can finish,

fairness is not an issue. Indeed, some applications, usually scientific in nature, only require

Chapter 3

58

processing resources in order to perform a number of calculations. However, there exist

applications where pre-emption is required, such as real-time applications. Most

importantly, though, independent scheduling is not suitable for applications that perform

operating system calls (e.g., I/O, synchronisation, etc.). Operating system calls may block a

thread but due to the lack of pre-emption and global scheduling, computational resources

are not freed and therefore possibilities for parallelism are lost. Finally, due to

independent scheduling, it is difficult to take advantage of the symmetric multiprocessing

support many modern operating systems offer.

Granularity

The lazy threads execution mechanism succeeds in meeting the same goals as the lazy task

creation technique described in Section 3.2 while introducing performance improvements.

Applications with parallel, recursive computations and potentially parallel calls can be

executed efficiently without incurring the overhead of excessive parallelism. However,

parallel, iterative computations are still a great problem, as was the case with lazy task

creation (Section 3.2.3). The granularity of parallel, iterative computations cannot be

dynamically increased based on the availability of computational resources.

The independent iterations in an iterative computation are represented as

parallel-ready sequential calls, threads seeds, or closures by the programming language

compiler that supports the lazy threads execution mechanism. However, only the less

efficient closure representation is suitable for distributed memory architectures. When a

processor becomes available, and regardless of the representation of the potentially

parallel call, the granularity of the new thread that is created is determined by the

granularity of the stolen iteration. Fine-grained iterations will result in many fine-grained

threads. The NIP lazy task creation technique (Section 3.6) provides a solution to the

granularity problem for iterative computations.

3.4. Other Run-time Techniques

A number of other run-time techniques similar to lazy task creation and lazy threads have

been proposed in the literature (Blumofe et al. 1995; Engler et al. 1993; Freeh et al. 1994;

Vandervoorde and Roberts 1988; Wagner and Calder 1993). Two of them are briefly

described in this section as they have some common characteristics with the NIP lazy task

creation described in Section 3.6.

Other Run-time Techniques

 59

3.4.1. WorkCrews

In 1988, Vandervoorde and Roberts described in (Vandervoorde and Roberts 1988)

WorkCrews as a technique for controlling parallelism in Modula-2+ (Rovner 1986). A

number of workers (i.e., threads) are created during the initialisation of a Modula-2+

application. One worker is created for every processor in the parallel system and every

worker maintains a queue of help requests. A help request consists of a procedure and the

data structure that represents its arguments.

In WorkCrews, an active worker exposes parallelism by placing help requests in the

help request queue. When a worker becomes idle, it tries to assist other workers by

removing and executing a help request from their queues. When the result from a help

request is required and if another worker has not already stolen that help request, the

worker that queued the request executes it. The scheme is similar to the closures of the

lazy threads execution mechanism (Section 3.3.1).

The main problem with WorkCrews is the potential for deadlock. Blocked workers do

not attempt to execute work from other workers. As there is no provision for additional

workers (only one per processor is available), an application may enter a deadlock state.

Application developers must be aware of this erroneous execution behaviour and code

their applications accordingly.

In (Mohr et al. 1991), Mohr et al. favour their lazy task creation technique over

WorkCrews due to the required involvement of the application programmers in the latter

technique. In WorkCrews, application programmers have to expose parallelism by

queuing potentially parallel calls and their arguments and synchronise the execution of the

workers with the results from any lazily created tasks. Instead, in lazy task creation the

future construct is all that is required. The stylistic differences in the two techniques

also result in implementation differences. The lazy task creation technique requires

specialised compilers and the manipulation of the stack, which decrease portability, while

the WorkCrews technique is applicable to conventional stack implementations and does

not require compiler support.

3.4.2. LeapFrogging

LeapFrogging was described in (Wagner and Calder 1993) as an extension to the original

lazy task creation technique (Mohr et al. 1991) that deals with imbalanced computational

trees. Actually, it is a combination of the lazy task creation and WorkCrews techniques.

The closure-like representation for potentially parallel calls is used in LeapFrogging, as in

WorkCrews and lazy threads. A collection of threads is available to execute work that is

Chapter 3

60

identified as potentially parallel. The number of available threads exceeds the number of

processors in order to overcome the deadlock problem of WorkCrews. The LeapFrogging

technique is implemented in C++ and it is compatible with a variety of thread libraries.

3.5. On Potentially Parallel Calls and their Representations

All the run-time techniques described above and others that have been proposed in the

literature (Blumofe et al. 1995; Engler et al. 1993; Freeh et al. 1994; Vandervoorde and

Roberts 1988; Wagner and Calder 1993) attempted to deal with the fine-grain and/or

excessive parallelism in some applications, mostly recursive in nature. However, none of

the proposed techniques has been able to handle the fine-grain parallelism in iterative

computations.

3.5.1. The Problem with Iterative Computations

With the run-time techniques that have been proposed in the literature, parallelism is

exposed through representations of potentially parallel calls. At run-time, such

representations may be converted to parallel tasks when computational resources become

available. Otherwise, the calls with which the representations are associated are executed

like sequential calls. The granularity of the task that executes the potentially parallel call as

a sequential call is increased and the extra costs of managing parallelism are avoided (i.e.,

task creation, scheduling, synchronisation, etc.).

For run-time techniques to work, the execution environment must be made aware of

the available potentially parallel calls in an application. The approach employed in

introducing a potentially parallel call to the execution environment depends on the

technique used (e.g., queuing of future constructs in lazy task creation by Mohr et al.,

advanced stack manipulation and parallel-ready sequential calls, thread seeds, and closures

in lazy threads).

In all the techniques that have been proposed, each potentially parallel call must be

represented separately. Although this approach may work with recursive computations, it

introduces extra overheads with iterative, parallel computations. For example, with the

lazy task creation technique iterations would be provisionally inlined as they are

encountered. If computational resources become available, the remaining iterations would

be stolen leaving the current task without work after the currently executing iteration

completes. As a result, the active task would have to suspend and attempt to steal work

from the task that just stole the rest of the iterations. This would continue until all the

On Potentially Parallel Calls and their Representations

 61

iterations have been completed. It is clear that unnecessary overhead is introduced and

tasks of fine granularity are created as a result. The parallel-ready sequential call

representation in the lazy threads execution mechanism suffers from exactly the same

problem (also refer to the discussion in Section 3.2.3).

In lazy threads, the thread seed representation of potentially parallel calls provides an

improved solution for the execution of iterative, parallel computations. The granularity of

the task that introduced the thread seeds for the iterations may be dynamically increased

as potentially parallel calls are executed sequentially. The thread seed representation,

though, is not appropriate for distributed-memory systems. Instead, the closure

representation for potentially parallel calls must be used (the future structure of the

leapfrogging technique and the help request of WorkCrews are semantically the same as

the closures of lazy threads). The closure representation allows a task to continue its

execution even when a potentially parallel call is encountered. The closure is queued so

when computational resources become available, the closure is stolen and converted to a

parallel task. Otherwise, the call associated with it is executed sequentially at a

synchronisation point. However, thread-seeds and closures still result in fine-grained

parallel tasks from iterations as only one iteration may be stolen at a time. Only the

granularity of the parent task has the potential to be increased. Finally, all the possible

parallel iterations have to be identified one-by-one by either a thread seed or a closure,

which introduces additional run-time overhead.

The above discussion suggests that the reason the existing run-time techniques cannot

efficiently handle iterative, fine-grained, parallel computations is the way in which

individual iterations are made available for parallel execution. Only one at a time is

introduced to the execution environment and only one at a time may be stolen and

converted to a new parallel task.

3.5.2. A Solution

A new run-time technique, NIP lazy task creation, devised by Watson (Watson 1996) and

further developed in (Watson and Parastatidis 1999a; Watson and Parastatidis 1999b;

Watson and Parastatidis 1999c) and in this thesis, attempts to provide a solution to the

efficiency problem with iterative, fine-grained, parallel computations. NIP lazy task

creation is based around Watson’s representation of iterative, parallel computations, the

tasklet (Watson 1996). A tasklet exposes the parallelism available in iterative computations

and allows new parallel tasks to be created lazily as computational resources become

available. In contrast to previous approaches of potentially parallel calls representations

Chapter 3

62

(e.g., a future construct or a closure), just one tasklet may represent all the iterations of

an entire iterative computation. The previous execution environments required that

iterations were uniquely identified.

This thesis builds upon the ideas first introduced by Watson (Watson 1996) and

extends the tasklet construct to represent whole recursive, tree-like computations and

independent potentially parallel calls. Moreover, an object-oriented approach to the design

and implementation of the tasklet construct in the NIP run-time system (Chapter 5) was

preferred. Unlike the original tasklet, which was introduced by Watson (Watson 1996),

tasklet constructs in the NIP run-time system are allocated on the stack frame of their

parent tasks rather than the heap of the applications (Section 3.6.2), which improves

efficiency.

The tasklet construct is examined in detail together with the NIP lazy task creation

technique in the remaining of this Chapter.

3.6. NIP Lazy Task Creation

The NIP lazy task creation technique (Watson 1996; Watson and Parastatidis 1999a;

Watson and Parastatidis 1999b; Watson and Parastatidis 1999c) was designed as part of

the NIP run-time system, which is an implementation of the NIP execution model

(Section 2.9). The main aim of the NIP run-time system is to provide an efficient

execution environment for general-purpose, object-oriented parallel applications on

distributed memory and/or shared memory multiprocessor architectures. Parallel

applications are expected to expose as much logical parallelism as possible. The NIP

run-time is responsible for efficiently exploiting the identified parallelism and keeping the

parallel system busy. The algorithm for the distribution of work employed by the NIP

run-time is based on the work stealing, or task stealing, technique. The implementation

details of the load distribution algorithms that were adopted in the NIP run-time system

are presented in Chapter 5.

This section discusses the details of the NIP lazy task creation technique. It provides a

closer look at the tasklet construct and the way it is used to expose parallelism. The

internal data structures required for the implementation of the NIP lazy task creation

technique are also described.

NIP Lazy Task Creation

 63

3.6.1. The Tasklet

As it has already been mentioned, a tasklet is a new representation for potentially parallel

calls (Section 3.6.4) that can efficiently expose the parallelism in entire iterative (Section

3.6.5) and recursive (Section 3.6.6) computations. A tasklet is a run-time construct that it

is best described as an instance of a type whose prototype interface is shown in Code 3-3.

Specialisations of the basic Tasklet type must provide implementations for the first

four methods: createTask(), executeTasket(), returnTask(), and

waitOrInline().

type Tasklet
public:
 virtual bool createTask(Task&)
 virtual void executeTask(Task&)
 virtual void returnTask(Task&)
 virtual void waitOrInline()
 void activate()
 void deactivate()
protected:
 bool waitForStolenTasks()

Code 3-3: Public interface of a tasklet in pseudo-code

The tasklet representation was designed to support a task creation mechanism based

on work stealing (or, task stealing), similar to the lazy task creation techniques described in

the previous sections. When a processor of a parallel system runs out of computational

work, it attempts to ‘steal’ work from other processors. Processors find additional work

through the tasklet availability queue, which is maintained by the NIP run-time system.

Tasklets expose logical parallelism to the execution environment by adding themselves to

the tasklet availability queue (Section 3.6.2).

The Interface

Idle processors create a Task object to store the necessary run-time information for the

execution of a new parallel task. A Tasklet object differs from a Task object in that the

former is a representation of one or more potentially parallel calls while the latter

maintains the required information for the execution of a new parallel task (e.g., function

call, arguments). Once the Task object has been created, idle processors iterate through

the tasklet availability queue until they can find a tasklet from which they can steal

computational work. After a tasklet instance has been chosen, the createTask()

method is called for that instance. The method checks to see if a new parallel task can be

created from the selected tasklet in which case the already instantiated Task object is

updated. Otherwise, another tasklet will have to be chosen.

Chapter 3

64

After the Task object has been instantiated, updated, and moved to the idle

processor, the executeTask() method of the tasklet that was used is called. The

method uses information from the Task object to evaluate the stolen computation in

parallel with the computation that created its tasklet.

Upon completion of the parallel task, the Task object is returned to the tasklet from

which the computation was stolen. If necessary, the Task object is updated to contain the

return value of the evaluated computation. The returnTask() method of the original

tasklet is then called and the tasklet is notified that the stolen computation has finished.

When the task that created the tasklet reaches the point where the result of the

associated computation is required, it calls the waitOrInline() method. If an idle

processor stole the computation, the execution of the task will have to block until the

stolen computation completes. Otherwise, the computation is executed inline, like a

sequential call.

An instance of the Tasklet type is added to the tasklet availability queue when the

activate() method is called and it is removed from the queue by the deactivate()

method. The automatic addition (removal) to (from) the queue could have been

associated with the construction (destruction) of tasklets but the chosen approach allows

for more flexibility in the design of Tasklet specialisations. Since there is an associated

run-time cost with the initialisation of a tasklet instance, a Tasklet specialisation could

allow its instances to be reused in exposing different potentially parallel computations

without having to incur the construction related run-time costs.

Finally, the waitForStolenTasks() method automatically removes the tasklet

instance from the tasklet availability queue. Additionally, if there are parallel tasks that

were created from the tasklet and are still running, the method will suspend the execution

of the task from which it was called. The execution of the suspended task will resume

when all of the parallel tasks have returned. The method can only be called from within a

specialisation of the waitOrInline() method. In some cases, the waitOrInline()

method may only include a call to waitForStolenTasks().

3.6.2. Tasklet Internals and the Tasklet Availability Queue

The objective of the lazy task creation technique, as discussed in previous sections, was to

allow parallel applications to expose the maximum logical parallelism possible to the

execution environment, without incurring the run-time costs due to excessive parallelism.

The insight was that only a small number of the total identified potentially parallel calls

were actually going to be converted to parallel tasks. It was expected that most of the calls

NIP Lazy Task Creation

 65

were going to be executed inline, like sequential calls. The previously published works

validated the lazy task creation ideas (Goldstein 1997; Mohr et al. 1991).

As the NIP lazy task creation technique is based on the same concept as the original

lazy task creation technique, the execution efficiency of the parallel applications greatly

depends on the costs of creating tasklets and inlining their associated computations.

Therefore, the tasklet creation and inlining costs should be kept as low as possible. Only

then can parallel applications expose the maximum logical parallelism possible to the NIP

execution environment by creating as many tasklets as possible, without incurring

significant run-time costs. It is expected that for a parallel application with a high degree

of logical parallelism, the run-time cost of instantiating tasklets, creating a small number

of parallel tasks from those tasklets, and inlining the rest, would be significantly smaller

than eagerly creating all the possible parallel tasks (the performance evaluation of the NIP

lazy task creation technique is presented in Chapter 6).

Tasklet Instantiation

The tasklet representation for potentially parallel calls has been designed with efficiency in

mind. Instances of the Tasklet type are allocated on the stack of the task that creates

them rather than on the heap, which is the case with most of the previous potentially

parallel call representations. As a result, the memory allocation costs associated with the

heap are avoided.

Every new tasklet is added at the end of the

tasklet availability queue, which is a double linked list

of tasklets. No extra space is required to be allocated,

as the linking pointers are part of the state of each

tasklet (Code 3-4). However, a locking operation is

necessary to guarantee the integrity of the tasklet availability queue data structure. The

cost of the locking operation is considered to be part of the tasklet instantiation costs

even though it takes place when the activate() method is called. A tasklet exposes

potentially parallel calls only when it is part of the tasklet availability queue and it is only

added to the queue when the activate() method is called.

Every tasklet is associated with a lock during its instantiation process. A new lock

does not have to be created for every new tasklet. A pool of already instantiated locks may

be used. This—private to the tasklet—lock is used during the inlining and stealing

operations and to guarantee the integrity of the internal state of the tasklet instance with

which it is associated.

type Tasklet
private:
 Tasklet* next
 Tasklet* previous
 Mutex* lock

Code 3-4: Tasklet private data members

Chapter 3

66

Besides the three essential private data members (as shown in Code 3-4), and more

often than not, specialised tasklets will have private data members to store additional

information. The initialisation cost of such tasklets also depends on the cost of creating

the additional data members. However and unlike previous approaches, a tasklet can be

constructed in such a way that once instantiated it can be reused within the same scope of

a task, reducing the effect of the instantiation costs. Code 3-5, for example, shows how a

tasklet with a member function expose() might be reused to expose to the NIP

run-time two different potentially parallel calls, f and g.

ExposeFunctionTasklet tasklet
tasklet.expose(f)
tasklet.activate()
...
tasklet.waitOrInline()
...
tasklet.expose(g)
tasklet.activate()
...
tasklet.waitOrInline()

Code 3-5: A tasklet can be reused within the same scope

Two-level Locking

When a processor runs out of work, it looks into the tasklet availability queue in order to

locate a tasklet from which it can steal work. A lock must be acquired to guarantee the

integrity of the queue data structure while the search for a tasklet is in progress. Once a

tasklet is chosen, the private lock of that tasklet is also acquired and the createTask()

method is called. The acquisition of the private to the tasklet lock guarantees that there is

not going to be an attempt to inline the associated computation while the stealing

operation is in progress.

At first, it may seem that this two-level locking is unnecessary and that the same result

could be achieved with just one lock operation. That would have been true if there was an

one-to-one association between a tasklet and a potentially parallel call. However, as it has

already been mentioned and it is discussed in more detail in the following sections (3.6.5

and 3.6.6), one tasklet may represent more than one potentially parallel call. Consequently,

an inlining operation does not necessarily result in the removal of the tasklet from the

tasklet availability queue. There may still be potentially parallel calls associated with the

tasklet that have not been executed and, therefore, available to be converted to parallel

tasks.

In inlining computation from a tasklet, only the private to the tasklet lock has to be

acquired. As a result, multiple inlining operations on different tasklets may take place

NIP Lazy Task Creation

 67

simultaneously. Additionally, an inlining operation does not prohibit the manipulation of

the tasklet availability queue (i.e., adding, removing, searching for tasklets).

The two-level locking does not have a significant impact on performance, as the

number of inlining operations is expected to be much higher than the number of stealing

operations.

3.6.3. Use of Tasklets

Instances of the basic Tasklet type, as they were described in the previous section,

cannot be used directly to expose parallelism. The basic Tasklet type provides the

abstract prototype upon which new tasklets are based.

If an implicitly parallel programming language is used for the development of parallel

applications, the responsibility for managing the new tasklet representations falls to the

compiler. Otherwise, in an explicitly parallel development environment, the application

programmer has to design and implement the new tasklet types.

As the process of designing and implementing new tasklet types can become

complicated even for a compiler, generic templates (i.e., parameterised types) are available

that automatically produce the necessary code for commonly encountered patterns of

parallel computations. The three basic patterns and the way tasklets are used to represent

them are described in the following sections. The presented pseudo-code for the tasklets

is not the actual implementation of the NIP run-time system but a simplified view for

presentation purposes.

3.6.4. Function Calls

With eager task creation, a running task—the parent—creates new parallel tasks—the

children—for every function call that may be evaluated in parallel. The execution of the

parent task continues until a synchronisation point is reached. The parent task will then

have to wait until the child task has completed its execution. In the example of Figure 3-1,

task T1 spawns task T2 and then continues with some sequential code. T2 executes its

computation, function f, in parallel. When T1 reaches the synchronisation point, it has to

wait for T2 to finish. Code 3-6 presents the pseudo-code for tasks T1 and T2.

T1

T2

T1: ...
 fork T2
 ...
 wait T2
 ...

T2: f()

Figure 3-1: The parallel call pattern Code 3-6: Pseudo-code for T1 and T2

Chapter 3

68

With NIP lazy task creation, the parent task does not spawn a child task. Instead, an

instance of a tasklet is created to expose as a potentially parallel call the computation that

the child task would have evaluated. Code 3-7 shows the interface and implementation of

a parameterised tasklet type whose instances may expose any function as a potentially

parallel call (i.e., the function is used as a parameter to the type). Only the

createTask(), executeTask(), and waitOrInline() methods are implemented.

In this case, the functions to be exposed as potentially parallel calls do not return a value

and, therefore, there is no need to provide an implementation for the returnTask()

method.

Instances of the ExposeFunctionTasklet<Function> tasklet type automatically

add themselves to the tasklet availability queue by calling the activate() method from

within their constructor. When an idle processor that is looking for work calls the

createTask() method, the tasklet instance is immediately removed from the tasklet

availability queue by the deactivate() method. The tasklet represents just one

potentially parallel call and, therefore, once the call is stolen, there is no need for the

tasklet to remain in the tasklet availability queue. When the executeTask() method is

called by the new parallel task, the function passed as a template parameter to the tasklet

type is executed.

type ExposeFunctionTasklet<Function g> : public Tasklet
public:
 ExposeFunctionTasklet ()
 bool createTask(Task&)
 void executeTask(Task&)
 void waitOrInline()

ExposeFunctionTasklet<Function g>:: ExposeFunctionTasklet()
 activate()

bool ExposeFunctionTasklet<Function g>::createTask(Task&)
 deactivate()
 return true

void ExposeFunctionTasklet<Function g>::executeTask(Task&)
 g()

void ExposeFunctionTasklet<Function g>::waitOrInline()
 if waitForStolenTasks()
 // Do nothing. The function was stolen and
 // executed by a parallel task.
 else
 g()

Code 3-7: Pseudo-code of a tasklet that exposes a function call as a potentially parallel call

When the parent task that created the tasklet reaches the synchronisation point, it calls

the waitOrInline() method. The waitForStolenTasks() method is used to

NIP Lazy Task Creation

 69

remove the tasklet from the tasklet availability queue if it has not already been removed.

Then, three possible scenarios are possible:

• A new parallel task was created to evaluate the potentially parallel call and it is still

active: the waitForStolenTasks() method blocks the execution of the parent

task until the parallel task completes.

• A new parallel task was created to evaluate the potentially parallel call and it has

already completed: the waitForStolenTasks() returns immediately.

• The potentially parallel call has not been stolen: the waitOrInline() method

executes the function like a sequential call.

Code 3-8 shows how the program of Code 3-6 (page 52) is transformed to use tasklets

and NIP lazy task creation.

T1: ...
 ExposeFunctionTasklet<f> tasklet
 ...
 tasklet.waitOrInline()
 ...

Code 3-8: The NIP lazy task creation version of the pseudo-code in Code 3-6

3.6.5. Iterative Computations

Iterative computations unveil the full strength of the tasklet construct. When a tasklet is

encountered, it is registered with the execution environment and control is returned

immediately to the executing task. The task may continue to execute unrelated

computation while parallel tasks are created to execute iterations from the tasklet as

computational resources become available. There exists a synchronisation point at which

all the iterations that have not been converted to parallel tasks are executed sequentially

(inlined). However, even during the inlining process, if a processor becomes idle and

requests work, remaining iterations may still be converted to parallel tasks. Code 3-9

presents an example in pseudo-code of a typical iterative computation and its equivalent

tasklet representation (the iteration-related lines are highlighted).

unrelated code1
start loop n iterations
 call function
end loop
unrelated code2

create tasklet(n, function)
unrelated code1
unrelated code2
wait for tasklet

Code 3-9: Relation between an iterative computation and its tasklet representation

Although a tasklet immediately returns control to the executing task, so resembling a

closure-like representation, the execution semantics of a tasklet differ from those of a

closure. Code 3-10 presents two more versions of the iterative, parallel computation

Chapter 3

70

shown in Code 3-9. Now, closures are used to represent the potentially parallel calls, the

iterations. In the first version, logical parallelism may be lost, as the fragments of

unrelated code must be executed sequentially, before and after the iterative computation.

Additionally, only one potentially parallel call is exposed to the execution environment at

any particular time. If the granularity of that call is fine, idle processors will have little

opportunity to steal it because it is going to be inlined almost immediately. An alternative

approach, which has not been suggested by anyone in the literature, can also be

considered (the second version of Code 3-10). A loop exposes all the iterations as

potentially parallel calls, giving the opportunity to idle processors to steal them while the

unrelated fragments of code are executed. At the end, another loop is required to

synchronise with all the closures. In both versions, there is an one-to-one association

between iterations and closure representations. The run-time overhead of creating all the

closures and then synchronising with them can be significant. As the NIP lazy task

creation version shows (Code 3-9), the tasklet representation may solve this problem. The

way in which only one tasklet instance can represent the parallelism in iterative

computations is described next.

Unrelated code1
start loop n iterations
 closure(function)
 closure.wait
end loop
unrelated code2

start loop n iterations
 closure(i, function)
end loop
unrelated code1
unrelated code2
start loop n iterations
 wait for closure(i)
end loop

Code 3-10: Two closure representations of the same iterative computation

A Tasklet Type for Iterative Computations

In NIP lazy task creation, a tasklet instance may contain enough information to represent

a pool of potentially parallel calls. One of the most common patterns of parallelism is a

parallel loop, where iterations can be evaluated in parallel. A tasklet type can be designed

to expose the parallelism in such computations (Figure 3-2).

T1 T1

T2

T3

T4

T5

Figure 3-2: The parallel loop pattern

NIP Lazy Task Creation

 71

The design, implementation, and application of tasklet types, whose instances expose

the available parallelism in loops, are illustrated through an example. In the example, a

function f is applied on all the elements of a vector of size N. The serial version of this

iterative computation is shown in Code 3-11. The NIP lazy task creation version is

presented in Code 3-12.

VectorType vector(N)
for i = 1 to N
 vector(i) = f(vector(i))

Code 3-11: Serial version of the application of a function
onto the elements of a vector

VectorType vector(N)
MapTasklet<VectorType, f> tasklet(vector)
...
tasklet.waitOrInline()

Code 3-12: NIP lazy task creation version of the application
of a function onto the elements of a vector

The MapTasklet<VectorType, f> type is used to expose the available

parallelism in the iterative computation where the function f is applied to all the elements

of the vector vector of type VectorType and of size N. Before looking into the design

of the new tasklet type, two additional methods must be added to the interface of the

basic Tasklet type. The two additional methods (beginCriticalSection() and

endCriticalSection()) provide access to the private lock of the tasklet and allow

new tasklet types to define critical sections. As will be seen, there are cases where the

createTask(), returnTask(), and waitOrInline() methods attempt to

simultaneously access the same data structures of a tasklet instance. The defined critical

sections are used to protect the integrity of the internal state of tasklets from such

concurrent accesses.

The design and implementation in pseudo-code of the MapTasklet type is

presented in Code 3-13. The constructor of the tasklet accepts a reference to a vector

object and initialises the _vector private data member. The constructor also adds the

tasklet to the tasklet availability queue by calling activate(). In this way, all the

iterations of the parallel loop are made available to the execution environment as

potentially parallel calls as soon as an instance of MapTasklet is created.

Chapter 3

72

type MapTasklet<type T, Function g> : public Tasklet
public:
 MapTasklet(T&)
 bool createTask(Task&)
 void executeTask(Task&)
 void returnTask(Task&)
 void waitOrInline()
private:
 int _index
 T& _vector
 int _stealAnIteration()

MapTasklet<type T, Function g>::MapTasklet(T& v) : _vector(v),
 _index(0)
 activate()

bool MapTasklet<type T, Function g>::createTask(Task& task)
 i = _stealAnIteration()
 if i < _vector.size()
 put i into task
 put _vector[i] into task
 return true
 else
 deactivate()
 return false

void MapTasklet<type T, Function g>::executeTask(Task& task)
 get element from task
 put g(element) to task

void MapTasklet<type T, Function g>::returnTask(Task& task)
 get result from task
 get i from task
 _vector[i] = result

void MapTasklet<type T, Function g>::waitOrInline()
 while(true)
 i = _stealAnIteration()
 if i < _vector.size()
 _vector[i] = g(_vector[i])
 else
 stop while
 waitForStolenTasks()

int MapTasklet<type T, Function g>::_stealAnIteration()
 beginCriticalSection()
 i = _index++
 endCriticalSection()
 return i

Code 3-13: Design and implementation of the MapTasklet type

There is a private data member, the _index, which points to the first element in the

vector for which the map function has not been executed, either as a separate parallel task

or inline. When an idle processor looking for work calls the createTask() method, the

_index is atomically increased by the _stealAnIteration() private method call.

The previous value of the _index is returned to the calling method. The returned value

identifies a unique iteration (an element of the vector). If the returned value is within the

limits of the vector, the Task object is configured. The value identifying the iteration to

be evaluated and the element of the vector upon which the function is going to be applied

NIP Lazy Task Creation

 73

are placed into the Task object. If the _stealAnIteration() method returns a value

that exceeds the limits of the vector, the tasklet instance is removed from the tasklet

availability queue because there are no more potentially parallel calls available.

The _executeTask() method only requires the element of the vector upon which

the map function is to be called. The index that is already in the Task object is left

untouched. The map function is called and the element is passed as an argument. The

result of the function is stored in the Task object.

When the Task object is returned to the tasklet it was stolen from and the

returnTask() method is called, both the result and the index are retrieved. The index

is used to indicate the position in the vector where the result should be stored. The

returnTask() method completes the cycle of a stolen iteration (steal, execute, and

return).

If the granularity of the computation in Code 3-12 between the instantiation of the

tasklet and the synchronisation point (i.e., the waitOrInline() call) is large enough, all

the iterations may be stolen and executed as separate parallel tasks. When the

waitOrInline() method is called, a loop is entered and lasts until all the iterations

have been executed, either inline or stolen for execution in parallel. Of course, some or all

of the iterations may already have been stolen and executed in parallel. The

waitOrInline() will start from the last available iteration, if there is one available. A

vector index is atomically chosen by the _stealAnIndex() method. If the index does

not exceed the limits of the vector, the map function is called and the associated position

in the vector is updated. Finally, the waitForStolenTasks() is called to remove the

tasklet from the tasklet availability queue and wait for any possible executing parallel tasks.

The example presented in this section demonstrates the strength of the tasklet

representation for potentially parallel calls. Only one tasklet instance is required to expose

the parallelism in an entire loop, rather than one per iteration as is the case with earlier

schemes.

Granularity Considerations

Although the tasklet manages to overcome the problems associated with other

representations in exposing the parallelism in iterative computations, it suffers from the

same granularity issue affecting the earlier approaches to lazy task creation. A tasklet may

expose the parallelism of a parallel loop that consists of fine-grained iterations. When

iterations are stolen from the tasklet to be executed as separate parallel tasks, the

Chapter 3

74

granularity of the resulting tasks is also going to be fine. The run-time costs of lazily

creating parallel tasks may overwhelm the total execution time.

Unlike previous approaches, the NIP lazy task creation technique offers a solution to

the granularity issue mentioned above. The flexibility of the tasklet representation allows

for more advanced tasklets than the one presented in Code 3-13 to be designed and

implemented. Tasklets may be created that are able to dynamically increase the granularity

of the parallel tasks without reducing the degree of logical parallelism available.

When a processor issues a request for a new task, a group of iterations can be stolen

rather than just one. The stealing processor creates a new tasklet instance to make sure

that the stolen iterations are still available to other processors, if any runs out of work.

Now, the new parallel task will inline iterations from the stolen group and, therefore, its

granularity is coarser compared to the granularity of a task that only steals and executes

one iteration.

The size of the group of iterations to be stolen at one time can be determined in

various ways. For example, heuristic information about the execution of iterations that is

collected at run-time (e.g., the execution time of iterations) can be used to dynamically

change the size of the group. Information collected from the execution environment,

such as the number of available processors and communication delays, in combination

with information about the total number of iterations in the loop may be used to

determine a fixed or varying group size.

The performance of NIP lazy task creation can be further improved at run-time by

allowing the tasklets with grouping functionality to reduce the available logical parallelism,

when appropriate. The parallel tasks that are created to execute a group of stolen

iterations do not expose them as potentially parallel calls but, instead, execute them all as

sequential calls. Of course, this can only be possible when enough information is known

at run-time about the execution environment (e.g., processor, memory, communication,

etc.), the granularity of the iterations, and the details of the data structures involved (e.g.,

number of elements).

Several tasklet types that provide grouping functionality are provided by the NIP

run-time system.

Consecutive Parallel Calls

Iterative tasklets can be used to improve the representation of a series of independent

potentially parallel calls. There is an one-to-one association between such potentially

parallel calls and tasklets, as discussed in Section 3.6.4. A series of parallel calls, one

NIP Lazy Task Creation

 75

following the other, will result in a number of tasklets being created. The run-time

overhead due to tasklet instantiation costs may be reduced with the help of an iterative

tasklet.

If all the potentially parallel calls were placed in a data structure such as a vector or a

list, an iterative tasklet similar to that of Code 3-13 (page 56) could be used. As a result,

only one tasklet is used to expose the logical parallelism associated with a series of

independent parallel function calls.

3.6.6. Recursive Computations

The last pattern of parallel calls to be examined is that of recursive computations. The

parallel calls form a tree-like computational flow, like the one shown in Figure 3-3. Each

of the potentially parallel calls in the recursive computation can be represented as a

separate tasklet, like the one described in Section 3.6.4. However, as it was the case with

iterative computations, it is more efficient to design and implement a tasklet type whose

instances expose the parallelism in whole recursive computations.

T1 T1

T5

T7

T6

T2 T2

T3 T3

T4

Figure 3-3: The parallel recursion pattern

int nfib(int n)
 if n > 1
 return nfib(n – 1) + nfib(n – 2)
 else
 return 1

Code 3-14: The serial version of nfib

int nfib(int n)
 if n > 1
 ExposeFunctionTasklet<nfib> tasklet(n – 2)
 tmp = nfib(n – 1)
 tasklet.waitOrInline()
 return tmp + tasklet.result()
 else
 return 1

Code 3-15: The NIP lazy task creation version of nfib using
simple tasklets

The serial version of a recursive algorithm, the calculation of the fibonacci number, is

presented in Code 3-14. A possible implementation of the same algorithm in NIP lazy

Chapter 3

76

task creation using simple tasklets is illustrated in Code 3-15. An appropriate tasklet is

designed and implemented whose instances expose a function as a potentially parallel call.

Unlike the example of Section 3.6.4 (page 52) the functions exposed by the tasklets accept

an argument, the fibonacci number to be calculated, and return a result. Therefore, the

tasklet type must provide the appropriate functionality. The detailed description of such a

tasklet is unnecessary for the purposes of this discussion, as it greatly resembles the one in

Section 3.6.4 (page 52).

The problem with using a tasklet type like ExposeFunctionTasklet is the

one-to-one association that exists between tasklet instances and exposed potentially

parallel calls. A new tasklet has to be created for every recursive call to nfib. If the

computation at each recursive node is fine-grained, as it is in this example, there might be

cases where a tasklet instance is added to the tasklet availability queue and almost

immediately removed from it. The processing activity on the tasklet availability queue may

become very high. Since there is a lock that must be acquired before any operation on the

queue, a congestion point may arise. Other tasks that are trying to add new tasklets to the

tasklet availability queue or remove old ones from it will be delayed. Stealing operations

issued by idle processors may also be affected. Previous approaches of lazy task creation

also suffer from the same problem but do not attempt to provide a solution.

Having identified the problem as the frequent addition and removal operations on the

tasklet availability queue, a similar solution to iterative computations was designed. NIP

lazy task creation provides tasklets that are able to expose the parallelism in whole

recursive computations. Like their iterative counterparts, the recursive tasklets are nothing

more than specialised implementations of the basic Tasklet type. Therefore, they also

adhere to the same interface.

int nfib(RecursiveTasklet& tasklet, int n)
 if n > 1
 NfibNode node(tasklet, n – 2)
 tmp = nfib(n – 1)
 tasklet.waitOrInline()
 return tmp + node.result()
 else
 return 1

main
 RecursiveTasklet<NfibNode> nfibTasklet(N)
 ...
 nfibTasklet.waitOrInline()

Code 3-16: The NIP lazy task creation version of nfib using
a recursive tasklet

NIP Lazy Task Creation

 77

Code 3-16 shows how the recursive tasklet is used to implement the nfib algorithm.

Only one instance of the RecursiveTasklet type is constructed. Accordingly, only

one addition operation is required on the tasklet availability queue. At every recursive call,

a small object, an instance of the NfibNode type, is allocated on the stack of the running

task. The object stores the fibonacci number that may be evaluated in parallel (n-2). The

object also stores the result of the calculation, when that completes. Effectively, an

NfibNode instance represents a branch of the computational tree.

The NfibNode instance is automatically added in a queue, which is privately held by

the recursive tasklet. No additional memory space is allocated as the required pointers for

the construction of the queue are allocated on the stack of the running task as part of each

NfibNode instance. The recursive tasklet makes use of its private lock (Section 3.6.2,

page 50) to maintain the integrity of the queue.

In the example of Code 3-16, when the createTask() method is called on the

tasklet, the top of the queue of NfibNode instances is checked. If there are available

instances, one is stolen and is sent to the idle processor to be evaluated as a parallel task.

No logical parallelism is lost because the processor receiving the new task will create a

recursive tasklet. The new tasklet instance is used to expose any potential parallelism that

may result from the execution of the stolen computational branch.

When the waitOrInline() method is called on the tasklet, the bottom of the

queue is examined. If the last NfibNode in the queue was stolen and the result returned,

then the execution may proceed. If, however, the result has not been returned yet, the

execution of the running task will have to suspend. Finally, if the last entry in the queue

was not stolen, it is inlined.

task

tasklet tasklet tasklet

new
computational
node

tasklet
availability
queue

task

stealinginlining

task
Figure 3-4: Operations on the queue maintained by recursive tasklets

Figure 3-4 summarises the discussion on recursive tasklets and the way they are used.

It illustrates three running tasks, each one of which has added a recursive tasklet to the

tasklet availability queue. When a new recursive call is made, a new object representing the

new computational node in the tree-like computational flow is added at the end of the

Chapter 3

78

queue. Inlining operations remove node representations from the bottom of the queue,

while stealing operations use nodes from the top of the queue.

Nodes that are encountered early in the computational flow occupy the top of the

queue that is maintained by the recursive tasklets. If the recursive computation is

balanced, the nodes at the top of the queue will represent branches of coarser granularity

than the ones at the bottom of the queue. In such cases, recursive tasklets favour the

creation of coarse-grained parallel tasks.

3.6.7. Implementation

The NIP lazy task creation technique and the tasklet representation for potentially parallel

calls have been implemented in C++, as part of the NIP run-time library (Chapter 5).

Several tasklet types are available as template C++ classes. Compilers or programmers

may use the template classes to easily expose parallelism to the execution environment. In

most cases, there will not be any need to design and implement new specialisations of the

basic Tasklet type. Additionally, the available tasklet types incorporate optimisations

that are transparently used on shared-memory multiprocessors.

The NIP lazy task creation technique and the tasklet construct are compatible with

conventional stack implementations. There is no need for specialised hardware or

compiler support, and pre-emptive threads are supported. All the above contribute to the

portability of NIP lazy task creation on any platform. Additionally, the technique was

designed to support both shared-memory and distributed memory architectures.

There is a tight integration with the load balancing service provided by the NIP

run-time. The integration allows for communication between processors and computation

to be overlapped, resulting in better performance (Chapter 5). Also, a task that is blocked

on a waitOrInline() call will give up the processor for either another task that is

ready to run or a new one that is lazily created so that computational resources are not

wasted. The NIP run-time, the maintenance of the tasklet availability queue, and the load

balancing service are described in detail in Chapter 5.

3.7. Discussion

Lazy task creation techniques attempt to efficiently manage at run-time the identified

logical parallelism in applications. The main goal of the techniques is to reduce parallelism

so that the execution costs due to the management of excessive parallelism are avoided.

Discussion

 79

The main concept is that parallel tasks are only created when computational resources

become available.

The NIP lazy task creation technique follows the same concept as the earlier

approaches but it introduces a new construct for representing potential parallel calls, the

tasklet. The key features of the NIP lazy task creation technique and the tasklet construct

many of which cannot be found in earlier approaches are:

• The ability to represent the parallelism in whole iterative and recursive

computations using only one instance of the tasklet construct.

• The allocation of the tasklet construct on the stack rather than the heap of the

executing application.

• A two-level locking scheme that allows concurrent inlining and manipulation of

the tasklet availability queue.

• The support for pre-emption and symmetric multiprocessing environments.

• An object-oriented design that eases the process of introducing tasklets with new

functionality.

• The option of adjusting at execution time the grain size of the parallel tasks that

were lazily created from tasklets representing parallel loops (i.e., grouping).

• The availability of the technique through library support. There is no requirement

for compiler support or special stack manipulation.

• The support for distributed memory environments.

81

4CHAPTER 4
4. NIP SOFTWARE-BASED

DISTRIBUTED SHARED MEMORY

The NIPDSM system is the implementation of the memory system as

that is defined by the NIP execution model semantics and according to

the requirements of the NIP programming model. NIPDSM provides

applications with an object view of the memory and strict consistency

semantics.

NIPDSM introduces, as part of its design and implementation, the

relaxed NIP entry consistency model, which guarantees the required

strict memory semantics. NIP entry consistency defines that objects are

implicitly associated with locks and facilitates the coupling of

synchronisation and cache management.

Cache management techniques are incorporated in the NIPDSM

system to reduce object access delays. Applications may benefit from

spatial locality, temporal locality, recurring object access, and object

associations.

The rest of this chapter explores the issues related to the design and

implementation of distributed shared memory systems and describes in

details the all-in-software, object-based NIPDSM system.

Chapter 4

82

4.1. The Shared Memory Abstraction

Computer architectures based on multiple processors that physically share memory

provided one approach to the demand for greater performance (Chapter 1). The

architectures, which are mostly referred to as tightly coupled multiprocessors or just

multiprocessors, favour the popular shared-memory programming and execution models

(Chapter 2). Read and write memory operations provide a convenient way of accessing

the physically shared memory. Synchronisation operations may be used to protect

information stored in the memory from concurrency related issues.

Another approach to building parallel computer systems is to have memory

distributed amongst a number of processors. Every processor in a parallel system has a

private memory and all the processors are interconnected together via one of the various

interconnection topologies that are available. Processors can only access data held in

remote memories by exchanging messages with each other. Thus, such parallel systems

are known as message passing architectures or just multicomputers. The hardware

architecture of multicomputers favours the message passing programming and execution

models. The main advantage of multicomputer over multiprocessor designs is scalability.

Additional processors with private memory can be introduced into a parallel system,

contributing to its efficiency but not increasing the complexity of its design.

Despite their scalability advantage, multicomputers and the message passing

programming and execution models that they favour have a negative effect on the

simplicity of the application development process (Lu et al. 1997). Unlike the shared

memory programming model which is favoured by multiprocessors, the message passing

programming model expects application developers to manage the movement of data

across the distributed memories of a multicomputer system. The complexity of

application development based on message passing has lead to the introduction of shared

memory abstractions for multicomputer architectures. Applications and/or developers are

presented with the illusion of an existing shared memory system, known as a distributed

shared memory (DSM) system. The abstraction of shared memory is implemented in

hardware, software, or in a combination of the two.

The hardware approach to implementing shared memory abstractions on distributed

memory architectures usually increases the cost and the complexity of a parallel system.

The hardware implementations are efficient and are considered as extensions to the

The Design Considerations for DSM Systems

 83

techniques used in the design of cache coherent multiprocessors but they are not as

flexible as the software approaches.

Software-based DSM systems have been a convenient tool for researchers during the

last decade in their endeavour to study ideas and techniques on hiding the hardware

message-passing architectures and replacing them with the shared memory abstraction.

Often, techniques that were originally developed and tested on software-based DSM

platforms found their way on hardware implementations. The flexibility in the design and

the low implementation costs of software-based DSM systems allowed researchers to

better understand and extensively test all the issues of implementing shared memory

abstractions on top of message passing hardware designs.

This chapter does not attempt an in-depth comparison between software and

hardware implementations of DSM systems. Instead, the reader is referred to the work by

Cox et al. (Cox et al. 1994). Although most of the issues to be discussed are common to

hardware and software implementations, this chapter mostly considers the software-based

DSM systems. In the rest of the chapter, the DSM design issues and their effect on

efficiency is discussed (Section 4.2), existing techniques used to maintain consistency of

replicated information across a DSM system are described (Section 4.3), and a

representative group of existing systems is considered (Section 4.4). Finally, the design of

a new, all-in-software, object-based DSM system and the caching techniques it

incorporates are thoroughly examined in Sections 4.5 to 4.8.

4.2. The Design Considerations for DSM Systems

The decisions that are made during the design process of a DSM system may have a

significant impact on the performance of parallel applications. Apart from the obvious

decision on whether the DSM will be implemented in hardware or software, numerous

other issues need be considered. This section explores those issues and examines the ways

in which they may influence the implementation of a DSM system.

4.2.1. Structure, Sharing Unit, and Granularity

Perhaps, the most divisive design aspect of DSM systems is the layout of the shared

memory that is presented to parallel applications. There exist two main design

approaches: applications may perceive memory (a) as a continuous, unstructured shared

space, or (b) as a collection of data structures or objects.

Chapter 4

84

Associated with the decision about the layout of the shared memory is the unit of

sharing or transfer unit, which can be a byte, a word, a page, a data structure, or object.

The size of the sharing unit is also known as the granularity of the shared memory. The

layout and the granularity of the shared memory play a key role in the rest of the design

considerations for a DSM system and ultimately they greatly affect its performance.

Two design approaches have emerged as dominant in the design of DSM systems:

page-based and object-based, where the sharing units are the page and the object

respectively. Examples of page-based systems include TreadMarks (Keleher et al. 1994)

and IVY (Li 1986), while cases of object-based systems are Linda (Ahuja et al. 1986), Orca

(Bal et al. 1992), and Emerald (Jul et al. 1988). Tanenbaum in (Tanenbaum 1995) correctly

identifies DSM systems that belong to neither the page-based nor the object-based

approaches. Examples of such DSM systems are Munin (Carter et al. 1991) and Midway

(Bershad and Zekauskas 1991), which although provide an unstructured, linear memory

space, they exploit information made available by applications about the shared variables

in the synchronisation operations.

Research efforts in the field of DSM system have yet to produce an irrefutable

conclusion on the superiority of one approach over the other in terms of their efficiency

and suitability for parallel programming (Buck and Keleher 1998; Levelt et al. 1992).

Nevertheless, there is a good understanding of the differences between the approaches

and the issues involved. It is clear that the memory access patterns of a particular parallel

application in combination with the characteristics of the hardware platform may favour

one approach over the other (Buck and Keleher 1998; Levelt et al. 1992).

Page-based

The most common way of perceiving memory is that of a continuous, unstructured linear

space of addressable locations. For management purposes, the memory space is often

partitioned into pages. Early research efforts resulted in the design and implementation of

hardware and software DSM systems that replicated the semantics of page-based memory

management. In fact, page-based DSM systems provide parallel applications with a view

of the distributed memory that cannot be distinguished from the physically shared

memory found on multiprocessor architectures with a conventional operating system (e.g.,

Linux, Windows 2000, SunOS, etc.).

The sizes of the pages, the consistency semantics (to be discussed shortly), and the

caching techniques, if any, may differ between implementations of page-based DSM

systems but the main principles are the same. Applications access memory locations via

The Design Considerations for DSM Systems

 85

read and write operations. When a memory location that is not available locally is

addressed, the page containing the requested location is fetched from the remote memory

transparently to the parallel application. Once the page has arrived, the application can

access it as if it was a local page.

Unlike hardware DSM systems, which use specially designed and constructed

hardware components to trap the read and write operations on remote memories,

software page-based systems usually utilise the virtual paging mechanism of the

underlying operating system. Li and Hudak were the first to investigate the virtual paging

mechanism of an operating system as the means to implementing a shared virtual memory

on a multicomputer (a collection of Apollo workstations) (Li 1986; Li and Hudak 1989).

As with virtual paging techniques, page-based DSM systems favour applications that

exhibit spatial locality in memory access. With DSM systems that cache fetched pages, an

application is able to access memory locations without always having to pay the penalty of

a remote fetch operation. Actually, it is unlikely that an efficient all-in-software DSM

system without support for caching could be implemented. With caching, larger page sizes

increase the probability for spatially adjacent memory locations to be available when

required by an application. However, the chances of false sharing also increase as more

than one parallel process may require access to different memory locations on the same

page. Different consistency models (Sections 4.2.2 and 4.3) attempt to provide a solution

to this problem but not without sacrificing efficiency.

Object-based

A different approach to perceiving memory is that of a shared, structured space. The

memory is arranged as a collection of data structures or objects rather than as an

unstructured linear space of addressable locations, as it is the case with page-based DSM

systems. Both data structures and objects are means of representing state. However,

objects encapsulate the state and provide methods as the only way of accessing it. For the

purposes of the discussion in this chapter, the terms ‘data structure’ and ‘object’ are used

interchangeably while referring to the memory layout of a DSM system, unless it is stated

otherwise.

There is no fixed granularity for the sharing unit because the size of the objects may

vary. As a result, object-based DSM systems do not suffer from the problem of false

sharing to the same extent as page-based DSM systems. However, unless special caching

techniques are used, the benefit of spatial locality in memory access that page-based DSM

Chapter 4

86

systems feature is lost because only the requested objects are transferred during a memory

operation.

4.2.2. Memory Consistency

During the design of a DSM system, a decision has to be made about the memory

consistency protocol(s), or memory consistency model(s), that are going to be supported.

Although the terms ‘memory consistency’ and ‘cache coherence’ are usually used

interchangeably in the DSM-related literature, this thesis agrees with the argument

presented in (Adve and Gharachorloo 1996) and considers cache coherence to be a subset

of memory consistency. A memory consistency protocol is the behavioural specification

of the memory system as seen by applications and programmers and not just the approach

taken into preserving the coherence of replicated data stored in caches. A memory

consistency protocol consists of a set of rules about the way memory should be accessed

by applications and a comprehensive description of the guarantees provided if those rules

are met. In essence, a consistency model is a contract between the software and the

memory (Adve and Hill 1990).

Perhaps, strict consistency is the most comprehensible model, as it resembles the

memory model of the von Neumann computer architecture: “Any read to a memory location

x returns the value stored by the most recent write operation to x” (Tanenbaum 1995). However, the

model is extremely difficult and inefficient to implement on distributed memory

architectures due to the explicit use of time. Sequential consistency is a model with strict

semantics but without the notion of time in its definition. The formal definition of the

model, as given by Lamport, specifies that the memory is sequentially consistent when

“the result of any execution is the same as if the operations of all the processors were executed in some

sequential order, and the operations of each individual processor appear in this sequence in the order

specified by its program” (Lamport 1979). Although the implementation of sequential

consistency on a DSM system is feasible, it is still not an efficient approach due to the

imposed sequentiality, or ordering rules, in memory access.

In pursuing better performance, research efforts in the fields of cache design for

multiprocessor architectures and that of DSM systems have resulted in alternative, more

relaxed consistency models. The proposed models are considered relaxed when compared

to the consistency models with strict semantics because they eliminate some of the

ordering rules. The memory access operations are not strictly ordered and as a result,

performance optimisations can be implemented. Provided applications follow certain

rules in the way they access the memory, the semantics of sequential consistency seem to

The Design Considerations for DSM Systems

 87

be preserved. Relaxed consistency models may also support chaotic memory access as

required by some type of applications (Protic et al. 1998).

For a comprehensive discussion of issues related to memory consistency, the reader is

referred to (Adve and Gharachorloo 1996; Mosberger 1993; Tanenbaum 1995; Zucker

and Baer 1992). Additionally, Section 4.3 attempts an in-depth look in a small number of

characteristic and widely used consistency models.

4.2.3. Data Access

Another decision that affects the design of a DSM system is the method of accessing the

sharing unit (i.e., page or object). The sharing unit may be assigned to a specific

processing node throughout its lifetime or it may migrate between the nodes requiring

access to it. There may exist only one copy of the sharing unit across a parallel system

(Single Reader/Single Writer approach) or replicated copies may be permitted in an

attempt to facilitate more parallelism. In the latter case, only concurrent read memory

operations may be allowed on the replicated copies (Multiple Reader/Single Writer

approach) but there may also be cases where both read and write memory operations are

permitted (Multiple Reader/Multiple Writer approach). The choice and the

implementation of a memory consistency model greatly depend on the selection of the

data access algorithm for the DSM system but the vice-versa is also true.

Associated with the selection of the data access algorithm are other issues that may

too have an impact on the implementation and the performance of a DSM system. For

example, if access to a sharing unit is required, a method of locating the processing node

that currently holds that unit is necessary. If the sharing unit is not allowed to migrate, the

method of locating it is usually straightforward. Otherwise, a technique of monitoring the

movement of the sharing unit must be devised (e.g., forwarding requests to the last known

location, distributed directories, etc.).

A survey of different algorithms for DSM systems may be found in (Stumm and Zhou

1990) while (Protic et al. 1998) and (Tanenbaum 1995) provide a very good starting point

for related issues.

4.2.4. Implementation

A software-based DSM system may be implemented by any of the layers in the layered

approach to the parallel computing paradigm presented in Section 2.1.6 (page 17). It may

be integrated into the operating system, it may be implemented as part of the run-time

system, it may be provided by a software library, or it may be incorporated into a

Chapter 4

88

programming language and its compiler. Combined approaches also exist, where the

implementation of the DSM system is shared between different layers.

4.2.5. Heterogeneity

A requirement that may be imposed on the design of a DSM system is heterogeneity.

There may be cases where a DSM system is going to be used on multicomputers that

consist of a collection of heterogeneous hardware architectures. DSM systems with

heterogeneous support are not common, as their efficiency has to be compromised to

allow for the necessary translation between the different representations of data.

4.2.6. Efficiency

The Impact of the Hardware and the Memory Access Patterns

The performance considerations have been an essential driving force in researching new

techniques and design approaches for DSM systems. Undoubtedly, the communication

between the processing nodes of distributed memory architectures has been the primary

target for the introduced enhancements. In distributed memory architectures, no matter

how fast the interconnection hardware may be, an access operation on a remote memory

is always slower than an operation on the local memory. Most of the techniques (e.g.,

caching, memory consistency models, etc.) attempt to reduce the amount of data

transferred between processing nodes in order to achieve better performance.

The efficiency of a DSM system design greatly depends on the characteristics of the

underlying hardware architecture. A DSM implementation that performs well on a

multicomputer with slow processors but high-speed communications hardware may be

inefficient when used with fast processors and slow interconnection networks. Of course,

the opposite may also be true. The investigation by Buck and Keleher in (Buck and

Keleher 1998) attempts to demonstrate the way the hardware architecture may influence

the design choices of a DSM system. Their investigation also shows the effect that the

memory access patterns of applications may have on the efficiency of a DSM system.

Buck and Keleher simulated the execution of four applications using a page-based and an

object-based DSM system. Part of their investigation concluded that on hardware

architectures where the communication between processing nodes is expensive the

page-based approach is more efficient (Buck and Keleher 1998). Their conclusion is in

contrast to the general view that object-based DSM designs introduce less communication

overhead because of the reduced number of messages they require. However, the result is

attributed to the memory access patterns of the four applications used, which exhibit high

locality in they way data is accessed.

The Design Considerations for DSM Systems

 89

In an attempt to support the different memory access patterns that parallel

applications exhibit, adaptable memory consistency techniques have been devised. For

example, Munin (Carter 1995; Carter et al. 1991) offers a variety of consistency models

that can be used simultaneously for different part of the shared memory space.

Computation and Communication

An important feature that has recently found its way into DSM systems is the ability to

overlap computation and communication. When a remote memory operation is to take

place and while a fetch request is in progress, the DSM system may block the processing

node until the data is available locally. Alternatively, the DSM system may free the

processing node so that other computations can be executed.

Clearly, the allocation of computation work to processing nodes is the duty of a job

scheduler and, at first, it may appear unrelated to DSM systems. However, a DSM system

may be designed and implemented to work together with the job scheduler in order to

make the overlapping of communication and computation feasible.

Scalability

Finally, a concern for designers is the ability of the DSM system to scale to a great

number of processing nodes. The main advantage of multicomputer over multiprocessor

architectures is their scalability (Section 4.1). Consequently, the design of a DSM system

should preserve that advantage and allow parallel applications to benefit from the addition

of processing nodes.

In designing a scalable DSM system, centralised points of accessing global

information should be avoided as they may cause bottlenecks and result in reduced

efficiency. For example, some DSM systems maintain a directory of the location of the

migrating sharing units. If the directory is stored on only one processing node, that node

may become a ‘hotspot’ and eventually it will be unable to efficiently serve all the requests

that are sent to it.

4.2.7. Discussion

Undoubtedly, more research effort is required on exploring the diverse design approaches

as seen above, especially if software DSM systems are to be used on large-scale

multicomputer systems. Until now, there have not been any published results of software

DSM systems utilising a large number of processing nodes (e.g., greater than one

hundred). Possibly, as software DSM systems are tested on larger systems, some of the

Chapter 4

90

proposed techniques and designs will emerge as more suitable for the majority of the

parallel applications running on multicomputers.

4.3. Existing Relaxed Memory Consistency Models

As mentioned earlier, consistency models can be viewed as a contract between the

memory system and the applications. Memory consistency models consist of a set of rules

and requirements that define the functionality of a memory system. During the last

decade, a significant number of consistency models have been proposed in the literature

(Tanenbaum 1995): strict consistency, sequential consistency (Lamport 1979), pipelined

RAM consistency, processor consistency (Ahamad et al. 1992), casual consistency, weak

consistency, release consistency (Gharachorloo et al. 1990), lazy release consistency

(Keleher 1995; Keleher et al. 1992), entry consistency (Bershad and Zekauskas 1991;

Bershad et al. 1993), scope consistency (Iftode et al. 1998).

It is not in the scope of this thesis to thoroughly examine and compare all the

consistency models. Performance evaluation of consistency models can be found in (Adve

et al. 1996; Keleher et al. 1995; Zhou et al. 1997). Instead, three of the basic models are

now described in detail. Release consistency was amongst the first relaxed models to

utilise information about synchronisation operations while lazy release consistency is a

better implementation of the original model. Entry consistency was the first model

designed specifically for a software-based DSM system and it utilised information about

the data structures in an application. It is the basis for the consistency model used in

NIPDSM (Section 4.5).

4.3.1. Release and Lazy Release Consistency

Release Consistency

Release consistency is a relaxed model (Gharachorloo et al. 1993; Gharachorloo et al.

1990) that was designed as an extension to the weak consistency model. It utilises

synchronisation-specific information in order to reduce the amount of data exchanged

between processing nodes. To work correctly, release consistency requires that

applications adhere to a contract with the memory. Synchronisation constructs, such as

locks or barriers, should be used to guard access to shared data.

The operations that may be performed on a lock are acquire and release. An acquire

operation informs the memory system that a critical section begins while a release

operation indicates the end of that critical section. Access to shared data should only take

place within a pair of acquire and release operations. A release operation signals the

Existing Relaxed Memory Consistency Models

 91

memory system to identify the modified data and update all the processing nodes that

hold a cached copy of that data. Only after all the cached copies have been updated, the

lock can be released and allow another processing node to enter its critical section via an

acquire operation.

A barrier blocks the execution of a processing node until all other processing nodes

reach the same point. With release consistency and when a barrier has been reached by all

the processing nodes, all the shared data are synchronised before execution is allowed to

proceed.

The formal definition of the release consistency states that (Gharachorloo et al. 1990):

• “Before an ordinary read or write access to a shared variable is performed with respect to any

processor, all previous acquire accesses must be performed.

• Before a release access is allowed to perform with respect to any other processor, all previous

ordinary read and write accesses must be performed.

• Special accesses (acquire and release) are processor consistent with respect to one another.” 3

Provided the above rules are not broken by an application, the memory semantics of the

sequential consistency model appear to be maintained. However, the strict ordering rules

of sequential consistency are relaxed and a more efficient utilisation of the DSM system is

possible.

Lazy Release Consistency

A drawback of the original release consistency model is the eager way in which updates to

shared variables are propagated to processing nodes. When a release operation on a lock

occurs, the updates to shared variables are eagerly transmitted to the processing nodes

that already have a cached copy. It is assumed that the receiving processing nodes may

need to access the shared variables, which very often may be an erroneous assumption.

Keleher developed an enhancement to the original release consistency model, which

he named lazy release consistency (Keleher 1995; Keleher et al. 1992). According to his

approach, the updates to shared variables were not automatically propagated to processing

nodes on a release operation. Instead, only when a processing node issued an acquire

operation the shared variables would be updated. An acquire operation on a lock is seen

as the signal that a processing node requires access to the shared variables.

3 For a description of processor consistency the reader is referred to (Ahamad et al. 1992).

Chapter 4

92

Release consistency was originally developed for the hardware-based DSM system of

the DASH multiprocessor. Lazy release consistency was first used in the software-based

TreadMarks DSM system (Keleher et al. 1994).

4.3.2. Entry Consistency

Lazy release consistency uses synchronisation operations as signals to the memory system

on whether the state of the shared data needs to be updated. When an acquire operation is

performed on a synchronisation construct, the modified shared data in memory must be

identified and their values synchronised. To that extent, entry consistency (Bershad and

Zekauskas 1991; Bershad et al. 1993) is very similar to lazy release consistency. Their main

difference is the additional requirement imposed to applications by entry consistency to

associate every shared variable with either a lock or a barrier. By associating shared

variables to locks, the overhead of identifying and synchronising all the modified data is

not incurred, as it is in lazy release consistency, because only the associated variables are

examined.

Due to the required explicit association between shared variables and locks, the

process of creating an application becomes more troublesome for the programming

language compiler and/or the developer. All the shared variables must be identified and

linked to a synchronisation construct. It is a difficult and error prone process but if

applied correctly it results in the reduction of the communication traffic when compared

to lazy release consistency. Additionally, multiple critical sections guarding unrelated

shared data may be defined and executed in parallel.

Like all the relaxed consistency models, if an application strictly adheres to the rules, it

is given the illusion of a sequentially consistency memory. The formal definition of the

entry consistency rules appears in (Bershad and Zekauskas 1991) but it is better expressed

in (Tanenbaum 1995):

• “An acquire access of a synchronisation variable is not allowed to perform with respect to a

process until all updates to the guarded shared data have been performed with respect to that

process.

• Before an exclusive mode access to a synchronisation variable by a process is allowed to perform

with respect to that process, no other process may hold the synchronisation variable, not even in

nonexclusive mode.

• After an exclusive mode access to a synchronisation variable has been performed, any other

process’ next nonexclusive mode access to that synchronisation variable may not be performed

until it has performed with respect to that variable’s owner.”

Existing DSM Systems

 93

Entry consistency was designed for the Midway DSM system (Bershad and Zekauskas

1991; Bershad et al. 1993), which was implemented as an extension to the C programming

language/compiler and it is further described in Section 4.4.2. This thesis considers entry

consistency as the most suitable memory model for object-based DSM systems because of

the association between shared data and synchronisation constructs. The memory

consistency semantics of the object-based DSM system described in Section 4.5 are based

on entry consistency.

4.4. Existing DSM Systems

There has been a plethora of hardware, software, and hybrid DSM systems proposed in

the literature. A comprehensive presentation of existing systems and their characteristics

serves no purpose to the discussion in this thesis. However, the main characteristics of the

most influential software-based DSM systems, according to this thesis, are presented. The

reader is referred to the books by Protić, Tomašević, and Milutinović (Protic et al. 1998)

and Tanenbaum (Tanenbaum 1995) as good starting points for DSM-related concepts and

systems.

Midway is the DSM system that utilises the entry consistency model and as such, its

design and implementation are of particular interest to the discussion presented in this

chapter. Since the proposed all-in-software, object-based NIPDSM system (Section 4.5)

uses a variation of the entry consistency model, a comparison between the two

implementations is within the scope of this thesis. To that extent, a detailed description of

the design and implementation of Midway is considered necessary.

4.4.1. Influential Systems

The following table lists only a representative subset of existing DSM systems and their

important characteristics. The presented systems are considered by this thesis to have

contributed to the main concepts in the area of software-based distributed shared

memory.

DSM System Notes

Emerald
(Jul et al. 1988)

Amongst the first approaches to object-based DSM systems.

IVY
(Li 1986; Li and Hudak 1989)

The first approach to implementing an all-in-software distributed
shared memory system on commodity hardware workstations. The
virtual paging mechanism of the operating system was used to
capture memory operations on remote pages.

Linda
(Ahuja et al. 1986)

Linda provides a shared tuple space abstraction on distributed
memory machines.

Chapter 4

94

DSM System Notes

Midway
(Bershad and Zekauskas
1991; Bershad et al. 1993)

Refer to Section 4.4.2

Munin
(Bennett et al. 1990b; Carter
1995; Carter et al. 1991)

One of the first systems to support multiple consistency protocols.
The appropriate protocol to be used for a shared variable was
indicated by the programmer.

Orca
(Bal et al. 1992)

An example of a programming language incorporating the shared
memory abstraction. The compiler of the language produced code
that could run on distributed memory architectures.

Shasta
(Scales et al. 1996)

A system that does not require changes to parallel applications to run
on distributed memory architectures. It also features fine granularity
of data sharing.

Treadmarks
(Keleher et al. 1994)

Perhaps the most influential of the DSM systems. Release and lazy
release consistency were designed and implemented for Treadmarks.
It was used in the research of various DSM related issues. Currently,
it is the only commercially successful DSM system.

Table 4-1: A synopsis of the most influential all-in-software DSM systems

4.4.2. Midway

Midway is a distributed shared memory system that uses data structures of variable length

as its sharing units (Bershad and Zekauskas 1991; Bershad et al. 1993). One of the main

objectives of Midway is to allow existing and new parallel applications for multiprocessors

to run efficiently on multicomputer architectures. Midway requires that existing

applications be slightly modified in order for the memory system to work correctly. It is

implemented as a run-time library and it requires compiler and programming language

support. To that extent, a number of additional keywords are introduced to the C

programming language and a modified C compiler is made available.

Parallel applications perceive the shared memory as an unstructured linear space, as it

is the case with page-based systems. However, Midway is not considered a page-based

DSM system because the sharing unit is the data structure and not the page (see also

Section 4.2.1, page 65).

An important characteristic of the Midway DSM system is its primary memory

consistency model, entry consistency. Modifications to the C programming language and

compiler were introduced to accommodate the requirements imposed to applications by

the entry consistency model, as discussed in Section 4.3.2 (page 71). However, Midway

also offers applications the option of using processor or release consistency.

An exhaustive investigation of the Midway implementation details is beyond the scope

of this thesis. Nevertheless, the designers of Midway have made some interesting choices

that are worth noting and contrasted to the design decisions for the NIP object-based

DSM system (Section 4.5).

Existing DSM Systems

 95

The Implication of Grouping the Shared Variables

In the Midway implementation of entry consistency, programmers are responsible for the

identification of the shared variables in an application and the association of those

variables with synchronisation constructs. There is a one-to-many relationship between

the synchronisation constructs and the shared variables. If a shared variable were

associated with more than one synchronisation construct, the correct execution of parallel

applications would have been negatively affected. This is true for all concurrent

environments with shared resources.

Nevertheless, parallelism may be restricted due to the grouping of variables around a

synchronisation construct. For example, concurrent access to the elements of a vector

would not be possible if all the elements were associated with the same lock. The solution

would be to associate each element with a different lock. However, in Midway there is a

run-time overhead with the process of associating a variable with a synchronisation

construct. Moreover, if access to the whole vector was required, a great number of acquire

and release operations would have been required, resulting in higher run-time costs.

The advantage of having a number of variables associated with one lock is the

minimum time a processing node is required to spend in a critical section. Unlike lazy

release consistency, before a critical section is entered (i.e., an acquire operation on a lock

has taken place) all the required protected variables are updated because they are

associated with the lock that guards that section. As a result, no other synchronisation

operations are required to take place until the end of that critical section (i.e., a release

operation on the lock).

Programmers are further burdened with the task of finding the correct balance

between the degree of parallelism that can be exploited in their application and the

run-time costs incurred (i.e., association of shared variables to synchronisation constructs

and communication between processing nodes during an acquire operation).

Programmers have to decide how large the groups of shared variables should be in order

to minimise the synchronisation operations between processing nodes while maintaining

the high degree of parallelism in their application. Of course, it is a complicated,

troublesome, and error-prone task.

Distributed Synchronisation Management

Midway manages the synchronisation constructs (i.e., lock and barriers) separately from

the memory caches where replicated copies of the data are maintained. A distributed

Chapter 4

96

queuing algorithm is used to manage the lock operations while a centralised algorithm is

used for the management of barriers.

As entry consistency defines, there are two modes of lock access: exclusive and

non-exclusive. Every lock in Midway is considered to have a processing node acting as its

owner. The ownership of a lock moves from one processing node to another. The last

processing node that successfully acquired the lock in exclusive mode is considered its

owner. There may be many processing nodes simultaneously holding a lock in

non-exclusive mode but only one exclusive mode access is allowed at any time. A lock

cannot be accessed in exclusive and non-exclusive mode by different processing nodes at

the same time.

The distributed queuing algorithm implemented in Midway for the management of

locks is similar to those described in (Forin et al. 1988) and (Lee and Ramachandran

1990). The detailed description of the algorithm is beyond the scope of this thesis. The

Midway implementation of the algorithm is comprehensively explored in (Bershad and

Zekauskas 1991).

Every processing node is required to maintain information about all the locks defined

in an application. Amongst that information, there is a ‘best guess’ entry about the owner

of a lock. When an acquire operation on a lock takes place and if the processing node is

not its current owner, a request is sent to the ‘best guess.’ If the request is for a

non-exclusive mode access and a processing node that has already been granted that kind

of access for that particular lock is found, the request is granted. Otherwise, the request is

forwarded to another ‘best guess.’ Every processing node maintains an invalidation set

with the nodes to which it has granted non-exclusive access. If a request for exclusive

access is submitted and after the owner of the lock has been located, all the current

non-exclusive access holders must be invalidated first. The current holders are located

through the invalidation sets.

The algorithm may produce unnecessary communication traffic, especially during the

invalidation process. Moreover, in a large-scale system, a great number of messages may

be required until the owner of a lock is located through the ‘best guess’ entries.

Distributed Cache Management

Midway does not update the state of all the shared variables when a critical section is

entered. Instead, only those cached variables whose state has been modified since the last

time the critical section was entered are synchronised. In this fashion, unnecessary

communication costs are avoided. Midway employs a timestamp-based protocol in order

NIPDSM Design Considerations

 97

to identify the inconsistent shared variables since the last synchronisation operation. The

protocol is based on the ‘happens-before’ relationship defined by Lamport in (Lamport

1978).

A timestamp is associated to every shared variable. When an acquire request for a lock

is sent from a processing node, the timestamps of the associated variables are piggybacked

on the message. The timestamps are compared with those at the node that is granting the

lock and the states of the modified variables are sent with the reply.

For the cache management algorithm to function, compiler assistance is necessary.

Indeed, the Midway modified C compiler generates code that updates the timestamp of

shared variables every time their state is altered by a write memory operation. Evidently, it

is a significant run-time cost.

Overlapping of Communication and Computation

A characteristic of entry consistency that is exploited in the Midway DSM is to treat

operations on synchronisation constructs separately from each other. A comparison

between the definitions of release consistency (Section 4.3.1, page 70) and entry

consistency (Section 4.3.2, page 71) reveals that in the former ordering is imposed with

respect to processing nodes, while with the latter the ordering is observed with respect to

processes (or, threads). The significance of this dissimilarity is the ability of entry

consistency implementations to overlap communication and computation.

In release consistency, a processor must be blocked until the state of all the shared

variables in the DSM are synchronised because no concurrency is allowed between critical

sections guarded by different locks. In Midway, the job scheduler may allow a different

critical section to execute in a separate process (or, thread) while another one is waiting

for its shared variables to be updated.

4.5. NIPDSM Design Considerations

This section introduces the all-in-software, object-based NIP Distributed Shared Memory

system, or NIPDSM (Parastatidis and Watson 1999a; Parastatidis and Watson 1999b).

The design choices for NIPDSM are considered and contrasted against the alternatives

that were discussed in the previous sections.

4.5.1. Design Requirements

In Section 2.8, the NIP programming model was introduced as a new methodology of

parallel application development. The NIP programming model assumes that the memory

Chapter 4

98

of the targeted abstract architecture is organised as a collection of objects whose state is

only accessible through their methods. The NIP execution model (Section 2.9) is the

targeted abstract architecture for the NIP programming model and as such, it must

incorporate a memory system with the required support for objects. Additionally, given

that the NIP execution model presents a shared memory abstraction on distributed

memory, shared memory, or hybrid hardware parallel system architectures, its memory

system should be implemented accordingly.

The NIP distributed shared memory system (NIPDSM) was designed and

implemented to provide a memory abstraction that satisfied the above requirements. As a

result, NIPDSM offers an object view of the memory that is shared amongst the tasks in a

parallel system. Parallel tasks may call methods on objects as if those objects were stored

locally. NIPDSM manages the movement and replication of objects around a parallel

system and guarantees the consistency of their state. The alternative of moving parallel

tasks to the location of an object was ruled out as it reduces the degree of parallelism that

can be exploited. Replication improves the performance of parallel applications by

allowing multiple tasks to access the state of an object concurrently. This would have not

been possible if tasks were moved to the location of the object, where they would

probably had to be executed in a sequential manner, depending on the availability of

computational resources.

4.5.2. Design Choices

Structure and Sharing Unit

As already mentioned, NIPDSM structures the memory as a collection of objects. Unlike

other object-based DSM systems, NIPDSM may have two types of sharing units

depending on whether the caching techniques, which will be discussed shortly (Sections

4.7 and 4.8), are enabled. The sharing unit may be an object or a cache block. A cache

block contains a group of objects that are transferred together in order to reduce memory

access delays.

The object-based memory layout was preferred over the page-based approach. The

decision was not only influenced by the requirement of the NIP programming model for

an object memory. This thesis regards object-based DSM systems as more suitable for the

emerging field of object-oriented, parallel computing, a view that is also supported by

Hyde and Fleisch (Hyde and Fleisch 1998).

Object-based systems do not suffer from false sharing and they have the potential to

better utilise the communications resources because only the necessary data is transferred

NIPDSM Design Considerations

 99

between processing nodes. In page-based systems, whole pages are transmitted that

include potentially unnecessary data. However, for many applications that exhibit locality

in memory access, the extra data found in pages proves to be advantageous.

Unfortunately, there has not been an object-based DSM system to date that has managed

to benefit from the same memory access behaviour of parallel applications. This thesis

uses NIPDSM as a vehicle in the study of issues related with bringing spatial locality to

object-based DSM systems together with other new caching techniques (Sections 4.7 and

4.8).

Consistency Model

Amongst the proposed memory consistency models, a variant of entry consistency was

chosen as the most suitable for NIPDSM. The reasons for choosing entry consistency and

the changes to the original definition are explored in a separate section (Section 4.5.3).

Data Access

Some page-based DSM systems allow concurrent writers to access a single page in an

effort to deal with the problem of false sharing. However, extra overhead is added due to

the amount of additional computational work that is required at every synchronisation

point. The differences between copies of the same page must by calculated and integrated

into one.

NIPDSM, as an object-based system, does not suffer from false sharing and,

therefore, does not require multiple writers. There may be cases, though, where

concurrent write access to different parts of the same object may be advantageous. More

investigation is required to evaluate any possible performance benefits from providing

such functionality to an object-based DSM system. A suggestion on how this could be

achieved is presented in Section 7.3. For the purposes of this thesis, the data access model

in NIPDSM uses the multiple readers/single writer approach.

Implementation

The NIP execution model is implemented as a run-time library, the NIP run-time

(Chapter 5). No compiler or operating system modification is required. NIPDSM is a

component of the NIP run-time and as such, it is fully implemented at user level. It does

not use the operating system or special compiler support to trap access to objects or to

manage the consistency of their state. The implementation details of NIPDSM will be

discussed in Section 4.6.

Chapter 4

100

4.5.3. NIP Entry Consistency

In order to allow more parallelism to be exploited, NIPDSM supports the replication of

objects throughout the processing nodes of a parallel system. Due to the requirements of

the NIP programming model, the correct execution of a parallel application can only be

guaranteed if strict memory semantics are observed when managing the state of the

replicated objects. The choice of the strict or sequential consistency memory models for

NIPDSM was rejected due to the difficulties associated with their implementation.

Nevertheless, even if the difficulties were overcome, the inefficiency of the models due to

the associated communication overheads would have made NIPDSM unusable. Instead, a

relaxed consistency model that offers strict semantics was deemed necessary.

From the available relaxed consistency models (Section 4.3), entry consistency

(Section 4.3.2) appeared to be the best match for the requirements of the object-based

NIPDSM. Entry consistency was designed to utilise information about the

synchronisation operations (i.e., critical sections and barriers) and their association to

shared variables. The difficult and error prone tasks of identifying and defining the

synchronisation operations and the process of associating the shared variables with the

synchronisation constructs is left to the programmer or the programming language

compiler. Furthermore, as it was discussed in Section 4.4.2, the available exploitable

degree of parallelism in an application may be reduced depending on the number of

shared variables associated with a synchronisation construct. The implementation of entry

consistency in NIPDSM does not suffer from the same problems.

Modifications to the Original Model and Advantages

The NIP programming and execution models do not provide the means for application

developers to use synchronisation constructs. There is no provision for locks or barriers

in the memory system and no means to define critical sections. In the NIP programming

model, there exist only functions, objects, and method calls. In the NIP execution model,

there exist tasklets and parallel tasks that may call methods on objects. The

waitOrInline() method of tasklets may be seen as an implicit barrier for all the

potentially parallel tasks represented by one tasklet.

The lack of programmer-accessible synchronisation constructs does not necessarily

mean that the entry consistency model cannot be used in NIPDSM. However, some

changes are required to the original model, which is further relaxed and adapted to the

characteristics of the NIP programming model. The NIP entry consistency is the resulting

memory consistency model.

NIPDSM Design Considerations

 101

NIP entry consistency defines that every object is implicitly associated with a lock.

The lock remains private to the object. Explicit acquire and release operations on the lock

are made possible through the interface of the object. The method calls on objects

defined at the NIP programming model level are implicitly enclosed within lock

operations at the NIP execution model level (Code 4-1).

NIP programming model level
(programming language)

NIP execution model level
(run-time system)

object.method()

object.lockRead()
object.method()
object.unlock()

Code 4-1: The implicit enclosure of a method call with lock operations

Unlike the original model that was described in Section 4.3.2, in NIP entry

consistency there is an one-to-one association between an object and a lock. Before a

method is called on an object, the object’s private lock is automatically acquired. The

execution of the method cannot proceed until the acquire operation is successful. When

the method completes, the lock is automatically released.

As in entry consistency, there are two modes of access to an object: read and write.

The methods that do not alter the state of an object are called read methods while those

that modify the state are known as write methods. Evidently, read and write methods

implicitly acquire the object lock in read or write access mode respectively. The implicit

acquire and release operations that surround method calls define the critical sections in

parallel applications. The degree of available parallelism in an application is not

compromised due to objects being locked even though they are not accessed within a

critical section, as it may be the case with Midway, where a group of objects can be

associated with just one lock.

Finally, there is no run-time cost in associating an object with a lock as there is with

the implementation of entry consistency in Midway. In NIPDSM, the lock is part of the

object state. An overhead may be incurred, however, when objects are constructed.

Definition

The changes in the original entry consistency as discussed above require that the rules of

Section 4.3.2 (page 71) be slightly modified. The NIP entry consistency model requires

that implementations of the memory system should always conform to the following:

• A method cannot be called on an object with respect to a task until all updates to

that object have been performed with respect to that task.

• The execution of a write method on an object precludes the concurrent execution

of any other write or read method on the same object.

Chapter 4

102

• After a write method has been called on an object, any other method may not be

called on the same object until the ‘owner’ node of the object has been notified.

The first rule says that before a method may be called on an object, the state of that

object must be brought up-to-date first. The second rule prevents the concurrent

execution of any method on an object while a write method on the same object is in

progress. Finally, the last rule defines the invalidation process that has to take place before

a write method is called on an object. Subsequent method calls will have to contact the

‘owner’ of the object before their execution may proceed.

Potential Drawbacks

The NIP entry consistency adapts the original model to the requirements of the NIP

execution model. Although the changes that are introduced improve upon the original

approach, there may exist some negative effects as well.

A disadvantage of the one-to-one implicit association between objects and locks is the

extra communication overhead that may be introduced. With the original entry

consistency model, the shared variables associated with a lock were all brought up-to-date

at the start of a critical section and no additional communication had to take place

between processing nodes until the lock was released. With NIP entry consistency, a

series of method calls on different objects may result in several state updates taking place.

The additional communication overhead could be significant.

NIP programming model
(programming language)

NIP execution model
(run-time system)

object1.method()

...

objectN.method()

object1.lockRead()
object1.method()
object1.unlock()
...
objectN.lockRead()
objectN.method()
objectN.unlock()

Code 4-2: Consecutive method calls may result in several state updates

The problem is related to the memory access patterns of an application. Code 4-2

illustrates the problem by showing the resulting code according to the NIP execution

model semantics for consecutive method calls on N different objects. As shown, every

method call is enclosed within lock and unlock operations. Clearly, the task shown in

Code 4-2 requires access to all the objects. However, the object fetching behaviour, as

defined by the NIP entry consistency semantics, causes every object to be transferred

independently. In systems like Midway, the programmer can provide a solution to the

above potential problem by associating objects with one lock. According to the semantics

of the NIP execution model, it is left to the run-time system to address the issue. The

NIPDSM Design Considerations

 103

caching techniques introduced in NIPDSM succeed in solving the problem without

sacrificing any of the benefits that NIP entry consistency introduces (Sections 4.7 and

4.8).

NIP programming model
(programming language)

NIP execution model
(run-time system)

object.method1()
object.method2()
object.method3()

object.lockWrite()
object.method1()
object.method2()
object.method3()
object.unlock()

Code 4-3: Consecutive method calls of the same access mode
and on the same object can be grouped together

Another problem with NIP entry consistency may be the added overhead due to

repeated lock operations. If a task calls consecutive methods with the same access mode

(i.e., read or write) on one object, then unnecessary run-time cost is incurred. However, all

the methods could be enclosed around just one pair of acquire and release lock operations

at the NIP execution model level (Code 4-3). This optimisation should be an easy task for

a programming language compiler when converting the code from the NIP programming

model to the NIP execution model.

4.5.4. Coupling the Synchronisation and Cache Management

Unlike page-based DSM systems, the implementation of the NIPDSM system is not

dependent on memory page-fault handling mechanisms. Page-based systems often utilise

the memory page-fault handling facilities of the underlying operating system and hardware

in order to deal with cache management. When access to a memory location in a

non-cached page is detected, the page-fault handler arranges for the page to be retrieved

from a remote processing node. However, if the page-fault takes place within the

boundaries of a critical section, parallelism is reduced because the task executing that

critical section will have to suspend until the page is made available. The granularity of the

critical section will increase, therefore, blocking other parallel tasks waiting to enter their

critical section from proceeding.

As studies have shown, it is computationally expensive to invoke memory page-fault

handlers (Anderson et al. 1991; Appel and Li 1991). The hardware is responsible for

trapping a page-fault and then the operating system is informed. The currently active task

must be context switched so the page-fault handler can be executed. These operations

introduce additional run-time costs.

In addition to the performance issues associated with the page-fault mechanism, most

DSM systems have to deal with the cost of lock management. Separate locks have to be

Chapter 4

104

used for the management of the shared data and for the internal implementation of the

consistency model and the caching techniques.

This thesis considers the approach to identifying memory access operations that was

adopted by Midway as a correct step to reducing the run-time costs associated with

trapping memory access operations. In Midway, a lock operation on a synchronisation

construct is an indication to the memory system that access to shared data is required. As

a result, the underlying page-fault handling mechanism is not necessary. All the shared

variables are fetched before access to them is requested. Of course, the implementation of

such an enhancement is made possible because of the entry consistency memory model,

which requires shared variables to be guarded by a synchronisation construct.

NIPDSM follows a similar approach to Midway in detecting memory operations on

objects. A method call on an object is the indication to the memory system that access to

the state of that object is required. Unlike Midway, though, NIPDSM has finer control

over the choice of which objects need to be cached, as explained in Section 4.7.

Midway is forced to deal separately with the management of the synchronisation

constructs and caching. Although the entry consistency semantics are sufficient for the

detection of access to shared variables via the operations on synchronisation constructs,

extra information is required for the identification of the modified data since the last

exclusive mode access. A distributed queuing algorithm is implemented to deal with the

synchronisation operations (i.e., lock and barriers) while a timestamp protocol, based on

Lamport clocks (Lamport 1978), is employed for the cache management. When a lock is

acquired, the timestamp protocol is used to determine the shared variables that have been

modified since the last exclusive mode access. For the timestamp protocol to function

correctly, Midway requires compiler modifications. For every update to a shared variable,

the compiler inserts code that alters the timestamp associated to that variable. A similar

approach is taken in page-based schemes where pages that contain modified data are

marked as ‘dirty’ for caching purposes. Obviously, managing the cache in the described

way introduces run-time overheads.

Owing to the NIP entry consistency semantics, NIPDSM combines the cache and

synchronisation management in an attempt to avoid the additional run-time overheads. In

NIPDSM, a method call does not only indicate to the memory system that access is

required to an object but also it supplies the essential information on whether the state of

that object is going to be modified. Consequently, there is no need for timestamp-based

protocols. The object is marked as modified at the time its private lock is acquired in write

NIPDSM Implementation

 105

access mode. The information on whether the state of an object is altered may be supplied

by a programming language compiler based on class information or code analysis, or by

the application developer.

The coupling of cache and synchronisation management in NIPDSM results in a

simpler design and a less demanding and, perhaps, more efficient implementation.

4.6. NIPDSM Implementation

Having explored the design of the NIPDSM system, this section moves to the description

of its implementation. The approach taken in implementing the semantics of NIP entry

consistency is first considered. Then, the layout and the constructs of NIPDSM are

examined.

4.6.1. Node Managers, Read and Write Proxies

The NIP entry consistency semantics do not specify whether the original copy of an

object should have a fixed processing node location or whether it may migrate. In systems

like Midway and NIPDSM, where the consistency semantics favour extensive replication

of data, the choice between a home-based and a migratory model is more ambiguous than

it may be on other DSM systems.

A migratory model like the one implemented in Midway, may introduce great

communication costs when the owner of a synchronisation construct must be located or

when replicas need to be invalidated (Section 4.4.2). As the Midway designers admit, their

approach cannot scale to large systems (Bershad and Zekauskas 1991).

Alternatively, a home-based approach does not suffer from the extra communication

overhead but it may convert a particular node to a ‘hotspot.’ Under the home-based

model, a processing node may become overloaded when two or more nodes are

repeatedly attempting to gain write access to a number of its objects. All the requests will

have to be routed via the owner of the objects. However, the home-based model offers

faster resolution of object owners and more efficient invalidation process. A more

detailed comparison study of the home-based and migratory models under entry

consistency semantics is beyond the scope of this thesis. Instead, the reader is referred to

(Protic et al. 1998).

NIP Entry Consistency Implementation

For the implementation of NIPDSM, the home-based model was chosen. The node

where an object is created is designated as the manager node (or, just manager) for that

Chapter 4

106

particular object. Every object has its own, unique manager but, naturally, a node may be

the manager for more than one object. A processing node that stores a replica of an

object in its cache becomes a proxy node (or, just proxy) for that object. There may be

two types of proxies: read proxies and write proxies.

In order to implement the NIP entry consistency semantics, the following rules have

been defined (it must be mentioned that a processing node may include more than one

processor and so it may be able to accommodate the simultaneous execution of multiple

tasks):

• The manager node of an object allows local tasks to execute read or write

methods on the object, provided no proxies exist for that object.

• The manager node of an object allows local tasks to execute read methods on the

object, provided no write proxies exist for that object.

• A write proxy of an object allows local tasks to execute read or write methods on

that object.

• A read proxy of an object allows local tasks to execute read methods on that

object.

• A processing node can be a manager node, a read proxy, or a write proxy for any

number of objects but it can never be more than one of them at the same time for

a particular object.

• An object has always a manager node, which remains the same throughout the

lifetime of that object. At any one time, an object may have none or one write

proxy, or alternatively, none or any number of read proxies.

• More than one task on a processing node may execute read methods on the same

object at a particular time. At any one time, there can only be one task throughout

the parallel system executing a write method on an object.

Mutable and Immutable Objects

Often, applications create objects whose state, once initialised, remains constant until they

are destroyed. NIPDSM makes a distinction between mutable and immutable objects.

Mutable objects are those whose state may be altered during their lifetime. The objects

whose state is not altered after their initialisation are considered as immutable. Knowledge

of immutable objects can be exploited by the memory system to provide a more efficient

way of dealing with them. Given that a write method is never called on these objects, the

NIPDSM Implementation

 107

implementation can avoid the extra overhead of dealing with concurrency related

safeguards.

4.6.2. Object Representation and NIPDSM Reference

When an object is created in NIPDSM, it is uniquely identified in the memory system by

its NIPDSM reference. The NIPDSM reference acts like a virtual memory pointer in

traditional memory systems and provides access to the methods of objects. In the current

implementation, the NIPDSM reference consists of (a) the unique identifier of the

manager node, (b) a page number, (c) an offset.4 The three fields comprise a unique path

to locating the object representation of an object (the NIPDSM memory structure is

described in Section 4.6.3).

The object representation is a data structure that maintains vital run-time information

about every object in NIPDSM. There is an one-to-one association between objects and

their representations at every node. Cached copies of an object have their own

representation. The fields comprising the data structure are summarised in Table 4-2.

Virtual memory pointer The virtual memory pointer to the local copy of the object in the
physical memory

Node type The type of the node for the object: manager node, read proxy, or
write proxy

Lock The current lock on the object: read, write, or free

Number of local read locks The number of local tasks that have a read lock on the object

List of proxies The identification numbers of the processing nodes that are proxies for
the object

Queue of requests The lock requests for the object that could not be satisfied
immediately

List of associations The NIPDSM references of the objects with which this object is
associated (further explained in Section 4.8.3)

Access history VM pointers The pointers required for the participation of the object in the locking
history at the node (further explained in Section 4.8.4)

Table 4-2: The fields of the object representation data structure

The virtual memory pointer specifies the location of the object state in the physical

memory. The value of the pointer remains fixed throughout the lifetime of the object only

at the manager node. On a proxy node, the value of the virtual memory pointer is

guaranteed to remain the same only while the object is locked. The last two observations

may be used to optimise the performance of the memory system and avoid unnecessary

NIPDSM reference to virtual memory pointer resolutions. A lock operation on the object

4 The current implementation uses 32bit NIPDSM references: 1bit indicating whether the referenced object
is mutable, 9bits for the manager node id, 14bits for the page number, and 8bits for the offset. As a result,
the current implementation of NIPDSM can support up to 222 objects of any size per node and a maximum
of 512 nodes.

Chapter 4

108

returns the virtual memory pointer to the application. The virtual memory pointer can be

safely used to access the methods of that object until the unlock operation takes place.

The next five fields are used for the implementation of NIP entry consistency

according to the rules presented in the previous section. The last two fields in the data

structure facilitate the implementation of two of the NIP caching techniques, as described

in Sections 4.8.3 and 4.8.4.

4.6.3. NIPDSM Virtual Object Table

The Midway DSM system was required to support legacy applications with minimum

modifications. Thus, the memory in Midway is an unstructured, linear space resulting in a

less scalable implementation with complicated cache management. The NIP programming

and execution models require parallel applications to be developed in a new way without

being concerned about legacy code. The memory system can be implemented to be

flexible and scalable while providing an object view of the shared memory.

The memory structure in NIPDSM is based on the Virtual Object Table (VOT)

(Figure 4-1). The approach taken in the implementation of VOT is analogous to the

common practices followed in traditional virtual page memory managers. A series of

tables is used to organise the object representations. A NIPDSM reference defines the

unique path in the VOT that leads to the representation of an object. Once the

representation of an object is located, its state may be accessed via the virtual memory

pointer field.

Every processing node in the parallel system maintains its own virtual object table.

The NIPDSM VOT is used in the dereference process of the NIPDSM reference. Each

of the three NIPDSM reference fields acts as an index to one of the tables maintained by

the VOT. The first table contains an entry for every processing node in the parallel

system. The contents of the table are virtual memory pointers, which lead to a second

table. Likewise, the second table leads via a pointer to a third table, which contains object

representations. Following the series of tables, the desired object representation may be

reached and the memory system information about that object as well as its state may be

accessed.

The VOT is not fully constructed when the NIPDSM starts. The left most table of

Figure 4-1 is always present on all the nodes. The second table is also initialised but only

for the entries in the first table that represent existing processing nodes. With the

intention of conserving the physical memory, the tables of the third column are

constructed lazily as new objects are created or existing ones are cached. When a new

Introducing Caching Techniques in NIPDSM

 109

object is created on a processing node it is associated with the next available object

representation. If no more are available in the existing tables, a new table of object

representations will be created (third column in Figure 4-1). In a similar way, when an

object is cached on a processing node and the required table is missing, it is created and it

is only removed when all of its object representations are no longer needed.

processing node ID NIPDSM referencepage offset

cached object
state

non-cached
objects

object
representation

virtual memory
pointer

cached
objects

 object state

 object state

…

…

…

Figure 4-1: The NIPDSM VOT table

The NIPDSM VOT can scale to a great number of processing nodes and objects

while making good use of the physical memory on every node. To improve the efficiency

in memory access, the different parts of the VOT may be accessed concurrently by more

than one task.

4.7. Introducing Caching Techniques in NIPDSM

NIPDSM relieves parallel applications from the burden of defining critical sections and

managing memory synchronisation because every method call on an object is implicitly

considered as a small critical region. It was implied earlier in the discussion (Section 4.5.3)

Chapter 4

110

that the fine granularity of the critical sections could compromise the efficiency of all the

remote object access operations. It was also suggested that NIPDSM incorporates caching

techniques that attempt to reduce the associated costs. Indeed, the NIPDSM system has

been used as a vehicle for exploring the suitability of new caching techniques for

object-based DSM systems. The NIPDSM caching mechanism seeks to introduce new

performance benefits for object-based systems. Memory access patterns that depend on

locality (e.g., spatial locality and temporal locality) and on dynamic data structures (e.g., tree

traversal) have been explored in NIPDSM.

In earlier DSM systems like Midway, it was the developer and/or the programming

language compiler that was responsible for dealing with performance issues related to

caching by having to explicitly associate objects to synchronisation constructs and

carefully define critical sections. In NIPDSM, there is no need for an application to be

concerned about the performance costs due to method calls on remote objects or the

potential benefits due to memory access patterns.

The NIPDSM caching mechanism is based around the notion of a cache block. A

cache block is a group of objects that are transferred together from one processing node

to another in order to minimise the number of transfer operations and reduce the

negative effects of cache misses. A cache miss occurs when a processing node attempts to

call a method on an object that is not stored locally. NIPDSM is responsible for selecting

the objects that are included in a cache block. The selection process takes place at

run-time and it requires no or minimal assistance from the applications.

Different object selection policies are currently used in NIPDSM, each one targeting a

distinct memory access pattern. The methods may be used separately or in combination

with each other to fill a cache block. The design concepts behind the new techniques are

discussed next but their implementation details are presented later, in Section 4.8.

4.7.1. Temporal Locality

NIP entry consistency is responsible for maintaining the consistency of the replicated

objects around a parallel system. The model defines that it is only necessary to invalidate

the replicas of an object when a write method is called on that object. The

implementation of the NIPDSM system takes advantage of the consistency semantics and

maintains a cached copy of an object until it is invalidated. As a result, the memory

consistency semantics allow applications to benefit from exhibiting temporal locality in

the way they access the objects in the memory.

Introducing Caching Techniques in NIPDSM

 111

4.7.2. Spatial Locality

The main disadvantage of object-based over page-based DSM systems has to be the

inability to leverage the locality in memory access that many applications exhibit. A study

of lazy release consistency and entry consistency concluded that DSM systems based on

the latter model also suffers from the lack of support for spatial locality (Adve et al. 1996).

In contrast, despite its object-based nature and the use of an entry consistency variant, the

caching mechanism in NIPDSM has been designed to benefit applications that exhibit

locality in the way they access objects.

Usually, when variables are allocated on an unstructured, linear space, they are placed

spatially next to each other. A memory page is likely to contain a number of distinct

variables that a task may access. In page-based DSM systems, a page transfer results in

many variables being moved together and, thus, if spatial locality in memory access is

observed, the number of cache misses is reduced. Of course, the actual number of

variables being transferred is determined by the size of the page. A similar approach is

implemented in NIPDSM.

Equivalently to the variables in page-based systems, objects in NIPDSM are spatially

related. Objects in data structures, like vectors, are allocated spatially adjacent to each

other. As it will be shortly described (Section 4.8), in the current implementation of the

NIPDSM, two objects are considered adjacent to each other when their objects

representations are adjacent in the NIPDSM VOT (Section 4.6.3). Of course, the

information about the spatial relationship between objects is kept internally to the

NIPDSM system and is not visible to applications. An object that was requested by a

processing node is transferred inside a cache block. NIPDSM selects the objects that are

spatially related to the requested one and places them inside the same cache block. As a

result, the spatially related objects are cached at the remote processing node and they can

be accessed immediately.

One may have expected that in order to support spatial locality, NIPDSM would be

required to face the problem of false sharing. However, NIPDSM manages to offer the

benefits of spatial locality while avoiding the run-time costs of false sharing and without

having to use a multiple writers solution. NIPDSM does not include a spatially related

object in the cache block unless the same lock access (i.e., read or write) with the

requested object is possible. Therefore, if another parallel task has exclusive access to an

object, NIPDSM will not try to take that access away until it is necessary to do so.

Chapter 4

112

4.7.3. Dynamic Data Structures and Access Patterns

In a parallel environment, there may be cases where a dynamic data structure is created by

a number of parallel tasks. The objects comprising the dynamic data structure may be not

spatially related (e.g., the data structure was created at different points in time). In

traditional page-based schemes, information about the arrangement of a data structure is

not taken into consideration in improving cache performance.

In an object-based DSM system like NIPDSM, the knowledge of the relationship

between the objects comprising the data structure can prove beneficial. Indeed, NIPDSM

utilises information about the data structures to reduce the number of cache misses. In

applications, for example, where a data structure is traversed, it is advantageous to have as

many elements of the structure stored in the cache as possible.

For this caching technique to work, NIPDSM requires additional information to be

provided about the associations between objects. The tool that is used for the transition

from the NIP programming model to the NIP execution model (e.g., an implicitly parallel

programming language compiler) may be able to deduce the association between the

objects. For example, a node in a double linked list can be associated with its previous and

next objects. NIPDSM uses the supplied information when an object, part of the data

structure, is accessed. The object is included in the cache block together with other

neighbouring—in terms of their location in the data structure—objects. Only if the

associated objects can be locked with the same access mode (i.e., read or write) are they

also included in the group, in order to avoid false sharing. The cache block is filled with

objects through a breath-first traversal of the graph that the object associations create

(discussed in Section 4.8.3).

NIPDSM requires applications to provide information about the associations between

objects. Help from the compiler or the application programmer is required for the

technique to be applied. For example, a compiler could deduce the associations between

objects using class related information (Code 4-4).

The correlation between objects need not only be in relation to dynamic data

structures. Objects that are logically associated with each other because they are accessed

by the same task may form a group, like the objects of the example in Code 4-2 (page 79).

Each object is explicitly associated (e.g., by the compiler) with every other object in the

group. When one of the objects in the group is requested by a remote processing node,

the others are also placed in the cache block and transferred.

Introducing Caching Techniques in NIPDSM

 113

NIP programming model level
(programming language)

NIP execution model level
(run-time system)

class Node
private:
 Node child
public:
 void add(Node&)

treeAddChildren(Node parent)
 ...
 child1 = new Node
 child2 = new Node
 parent.add(child1)
 parent.add(child2)
 ...

treeAddChildren(Node parent)
 ...
 child1 = new Node
 child2 = new Node
 parent.add(child1)
 parent.associate(child1)
 parent.add(child2)
 parent.associate(child2)
 ...

Code 4-4: Type information can be used by a compiler to deduce associations between objects

Objects may also be associated together depending on the memory access pattern of

an algorithm. For example, there are various ways of accessing the elements of a matrix:

row first, column first, diagonally, etc. The objects stored in the matrix could be

associated to each other depending on the chosen access pattern.

The caching technique based on associations between objects described above

achieves the same outcome as the association of shared variables with a synchronisation

construct in the Midway implementation of entry consistency. Unlike Midway, though,

the objects are associated with each other rather than to a synchronisation construct. The

association of objects with each other allows for more flexibility. In Midway, the whole

group needs to be locked before access to one shared variable in a logical group can be

granted. Furthermore, a shared variable may participate in only one group while in

NIPDSM an object may be part of several logical groups. Finally, Midway cannot support

the creation of logical groups based on the access patterns of algorithms.

4.7.4. Recurring Access to Objects

Many applications access the objects in memory in a specific recurring pattern. The

objects that are accessed need not be related in any way (i.e., spatially adjacent or part of

the same dynamic data structure). When there is no association between the objects, it is

difficult to predict which objects should be included in the cache block in an effort to

improve performance. If there was a way, though, to observe and record the access

behaviour of an application, caching could be improved.

NIPDSM records the object locking operations at every processing node. When an

object is requested by a remote processing node, the objects in the access history list

following the requested one are also placed in the cache block. Objects that cannot be

locked with the same access mode are not included. This caching method benefits

Chapter 4

114

applications that access unrelated objects in a recurring pattern. For example, a task

serving a web request may need to access a number of remote objects in order to

construct a web page. The objects were associated with each other in a previous request

for the same page and, therefore, they can be placed in the same cache block.

4.8. Implementation of the NIPDSM Caching Optimisations

In the final section dedicated to the NIPDSM system, the implementation of the caching

techniques is described. The role of the NIPDSM object virtual table and the object

representations are explained.

4.8.1. Cache Block

As already mentioned in the previous section describing the caching mechanisms of the

NIPDSM system, a cache block acts as the transfer medium of groups of objects between

processing nodes. The caching algorithms select the number of objects that are to be

transferred together and they place them inside a cache block. Since the objects in the

memory may be of arbitrary size, the size of the cache block is used by the caching

algorithms as one of the criteria to end the object selection process. If the size of one

object happens to exceed the limit imposed by the cache block, then NIPDSM sends the

object as is. The object is not split across multiple cache blocks but no additional objects

accompany it.

A cache block may not be fully loaded with objects when it is sent from one

processing node to another. To avoid groups with a high number of small-sized objects,

NIPDSM imposes a limit on how many may be transferred at a time. There is an

associated run-time cost with adding an object to a group. If the cache block size is large

then the process of adding many small objects may impose a significant run-time

overhead. If the maximum number of objects in a group is reached, the caching

algorithms stop and the cache block is sent even if it is not full.

The size of the cache block and the maximum number of objects in a group may have

a significant impact on the performance of NIPDSM in combination with the memory

access patterns of a parallel application. The investigation of the effect that the cache

block size in a group may have on efficiency is part of the performance study presented in

Chapter 6.

Implementation of the NIPDSM Caching Optimisations

 115

4.8.2. Object Grouping Based on Location

The NIPDSM virtual object table contains the information required to extract locality

related relationships between objects. As in page-based schemes consecutive data

structures are allocated on neighbouring memory locations, the object representations of

successive created objects reside in adjacent locations in the VOT. The location of the

representations is used by NIPDSM to minimise object access times for parallel

applications that exhibit spatial locality in the way they use the memory.

Figure 4-2 illustrates the formation of a group when an object is requested by another

processing node. First, the location of the object representation is located and the locking

operation on the object takes place. If the object is successfully locked, NIPDSM iterates

through the adjacent representations and attempts to repeat the same locking operation

for each one of them. The objects that are successfully locked are included in the cache

block and those for which the locking operation was unsuccessful are ignored. NIPDSM

continues to add objects in the cache block until one of the following conditions is

satisfied:

• The size of the cache block is exceeded.

• The maximum number of objects that may participate in a group is reached.

• There are no more object representations available to be locked.

The technique is more flexible than caching in traditional page-based schemes because it

avoids including objects in the cache block that cannot be locked immediately. In this

way, NIPDSM avoids the problem of false sharing and the associated inefficiencies.

object
requested

object
group

object already
locked

object
representation

Figure 4-2: Caching based on spatial locality information

Chapter 4

116

4.8.3. Object Grouping Based on Associations

In traditional DSM systems, caching may be ineffective if dynamic data structures are

used by applications (e.g., lists, trees, etc.). Usually the elements of such data structures are

spread throughout the memory, rendering the caching techniques inefficient. Even in an

object-based DSM system like the NIPDSM, access to dynamic data structures may

introduce significant delays due to the lack of an efficient caching mechanism. However,

the relationship between the elements of a data structure can be valuable if exploited

correctly, resulting in the reduction of memory access times.

list of NIPDSM references

list of NIPDSM references

object
representation

Figure 4-3: Object representations and their list of NIPDSM
references of the associated objects

Each object representation in the VOT maintains a list of the NIPDSM references of

its associated objects (Figure 4-4). The NIPDSM reference of an object may appear in

many association lists. The list of NIPDSM references is maintained on per object basis

and can be altered at run-time as dynamic data structures are modified.

If a locking request is submitted for an object, the list of its associated NIPDSM

references is traversed and an attempt is made to apply the same locking operation on the

corresponding objects. As with the previous caching scheme, the objects that are

successfully locked are added to the cache block while those that cannot be locked

immediately are ignored.

NIPDSM is not confined in attempting to include into the cache block only the

objects that are directly associated with the requested one. Instead, a graph of associations

can be visualised with the requested object as the root. NIPDSM iterates through the

graph of object associations in a breath-first manner. In some cases, problems may arise

from the manner in which the graph is traversed. If a graph-like data structure is traversed

depth-first, then the selection of objects included in the cache block may not be optimal.

An illustration of the problem and its impact on performance is presented in Section

6.5.2. The problem is not observed when graph-like data structures are traversed

breath-first or when list-like data structures are accessed in an iterative manner.

Implementation of the NIPDSM Caching Optimisations

 117

Objects are added into the cache block until one of the following conditions is

satisfied:

• The size of the cache block is exceeded.

• The maximum number of objects that may participate in a group is reached.

• There are no more object references in the list to be traversed.

4.8.4. Object Grouping Based on Access History

Applications have to continually incur the same memory access delays when they,

repeatedly and in the same order, access a number of objects that are otherwise unrelated

(i.e., spatially, temporally, or based on associations). This thesis investigates if the caching

mechanism of a DSM system could be improved if the recurring memory access pattern

was observed and recorded.

object
representation

locking
history
pointer

Figure 4-4: Caching based on locking history information

In NIPDSM, when an object is locked, its object representation is automatically added

to a locking history list, as in the example of Figure 4-4. Two lists are maintained by the

NIPDSM system: one for read and another for write lock operations. If an object is

locked by a remote processing node, the locking history list is traversed, starting from the

object representation of the requested object, and all of the objects that can be locked

with the same access mode are included in the cache block.

There are no additional memory requirements for the two locking history lists to be

maintained. The representation of an object includes two virtual memory pointers (Table

4-2, page 83) that point to the representation of the next object in the locking history list.

Chapter 4

118

The caching algorithm avoids the inclusion of more than one copy of the same object in

the cache block when a cycle in the locking history list exists. Objects are added to the

cache block until one of the following is satisfied:

• The size of the cache block is exceeded.

• The maximum number of objects that may participate in a group is reached.

• The end of the access history list is reached.

• The representation of an object that has already been included in the cache block

is reached, in the case of a cyclic access history list.

The locking access history may not capture well all types of recurring patterns. In some

cases, for example, if a pattern involves a locking operation on the same object more than

once, locking history information is lost. Figure 4-5 presents three different recurring

locking patterns that illustrate the behaviour of the caching technique. The object

representations of four objects are involved. A number indicates a locking operation on

the corresponding object.

(a)
1 2 3 4

(b) 1 2 3 4

(c) 1 2 3 4

Figure 4-5: Examples of the locking history list

A recurring pattern of the form 1234 results in the locking history list of Figure 4-5a.

A locking operation on object 1 will then cause objects 2, 3, and 4 to be included in the

cache block (if the same locking operation can be applied on them and the conditions for

the inclusion of objects in the cache block are satisfied). An access pattern of the form

1234234 also results in all the objects being included in the cache block, even though a

cycle exists in the list (Figure 4-5b). However, an access pattern of the form 123424 will

only result in three out of four objects to be cached together when a request for the first

Discussion

 119

object is made because the history list is altered and information is lost after the second

time object 2 is locked (Figure 4-5c).

4.9. Discussion

In this chapter, the issues related to the design and the implementation of distributed

shared memory systems were studied. The unique characteristics of the NIPDSM were

thoroughly explored. In this section, a final discussion and a synopsis of the major claims

are presented.

4.9.1. Why Objects

A DSM system provides a convenient and natural way to perceiving the memory of a

multicomputer and eases the task of parallel programming. Data movement and

communication between processing nodes are no longer a burden to application

developers. When compared to the use of message-passing interfaces in programming

multicomputers, DSM is more flexible and less error-prone (Lu et al. 1997).

Chapter 2 presented the NIP programming and execution models for the

development and execution of parallel applications. Since the NIPDSM implements the

memory semantics of the NIP execution model, it is object-based. The NIP programming

and execution models aside, this thesis still considers object-based DSM systems more

suitable for the future, large-scale multicomputer architectures.

Object-based DSM systems can make better use of the communication resources

when compared to page-based approaches and they do not suffer from the problem of

false-sharing. Additionally, object-based DSM systems, like the NIPDSM system, may

utilise run-time information about the structure of the memory in order to improve

performance.

4.9.2. Consistency Semantics

Previous works on DSM systems have proved that in order to achieve efficient execution

of parallel applications on multicomputers the memory consistency semantics need to be

relaxed. Amongst the several consistency models proposed in the literature, entry

consistency (Bershad and Zekauskas 1991; Bershad et al. 1993) was deemed as the most

appropriate for NIPDSM. A variant of the original model was designed and implemented

according to the memory semantics of the NIP execution model.

NIP entry consistency (Section 4.5.3, page 77) is based on the observation that parallel

applications use synchronisation constructs to impose ordering in memory access. Given

Chapter 4

120

that there is no provision for synchronisation constructs in the NIP programming and

execution models, NIP entry consistency defines that objects are implicitly associated with

one lock. The one-to-one association between objects and locks allows the NIPDSM

implementation to have finer control over memory operations.

The simple design of NIP entry consistency and the wealth of implicit information

about the way objects are accessed have lead to the unique coupling of synchronisation

and cache management. The result is a more efficient utilisation of the computational and

communication resources, as explained in Section 4.5.4 (page 79).

4.9.3. Caching

Even in the early stages in DSM research, it was clear that the information about the

memory behaviour of applications could be utilised to enhance the caching mechanisms

and ultimately improve the performance. Bennett et al. studied the influence in efficiency

of the memory access patterns in parallel applications (Bennett et al. 1990a) and

concluded that performance could be improved by better cache management. The

NIPDSM system was designed and implemented to provide good cache performance for

general memory access patterns.

One of the main problems of object-based DSM systems is their inability to support

caching for different memory access patterns. Perhaps one the most popular memory

access pattern is spatial locality. However, only applications using a page-based approach

benefit from exhibiting locality in the way memory is accessed. NIPDSM brings spatial

locality to object-based systems in a manner that manages to avoid the problem of false

sharing. Additionally, NIPDSM supports temporal locality via the NIP entry consistency

semantics. It also collects run-time information about the implicit locking on objects in an

effort to benefit from recurring memory accesses. Finally, associations may be defined

amongst objects in order to improve the performance of applications that access dynamic

data structures.

4.9.4. Midway and NIPDSM

Many of the design ideas of the NIPDSM system were influenced by Midway. However,

NIPDSM differs from Midway in a number of significant ways that were mentioned in

the discussion to this point. The following table summarises the differences and, at the

same time, lists the unique features of the NIPDSM.

NIPDSM Midway

NIP entry consistency: Object-centric, implicit
association of objects and locks

Entry consistency: Based on shared variables that
programmers need to explicitly associate to a
lock

Discussion

 121

NIPDSM Midway

Coupling of cache and lock management Separate cache and lock management

Cache support for spatial locality object access
pattern

Cache support for temporal locality memory
object pattern through the use of proxies

Cache support for temporal locality memory
access pattern through the use of ‘owners’ and
non-exclusive locks

Cache support for dynamic data structures and
general object access patterns

Cache support for recurring object locking

Does not suffer from false-sharing Suffers from false-sharing

Object-based view of the memory Page-based view of the memory

It can be used by programmers as part of a
run-time library

It requires changes to the programming language
compiler

It does not require a timestamp protocol to
identify changes in the state of objects

It requires a timestamp protocol to identify
changes in shared variables

Table 4-3: A synopsis of the unique features of the NIPDSM and the way it compares to Midway

123

5CHAPTER 5
5. THE NIP RUN-TIME SYSTEM

The NIP run-time library is a user-level implementation of the NIP

execution model semantics. The library features four distinct services:

the communications, the load balancing, the lazy task creation, and the

distributed shared memory.

Two of the services incorporated in the library, namely

communications and load balancing, have not been examined in this

thesis so far. Up to this point, the emphasis of the discussion has been

on the novel features of the NIP lazy task creation and the NIP

distributed shared memory system. It is not in the scope of this work to

thoroughly investigate issues related to communications and load

balancing. However, it has been necessary to provide simple

implementations for these two services. A fully functional NIP

run-time library is required for the evaluation of the NIP lazy task

creation and NIP distributed shared memory techniques.

Issues related to the implementation of the library as a whole and

the distinct services are explored in this chapter. The aim of the

discussion in the following sections is to give an overview of the design

and functionality of the NIP run-time library.

Chapter 5

124

5.1. The NIP Execution Model as a Run-time System

In the previous chapters, the NIP programming and execution models for parallel

computing were discussed, the NIP lazy task creation (NIPLTC) was presented, and the

object-based NIP distributed shared memory (NIPDSM) system thoroughly examined.

NIPLTC and NIPDSM were designed to support the task creation requirements and the

memory system needs respectively of an implementation of the NIP execution model.

Referring back to Chapter 2, the parallel computing paradigm was illustrated as a set

of three layers (Figure 5-1): the design methodology, programming model, and execution

model. It was suggested that the last of the layers, the execution model, embodies the

abstraction of a parallel architecture. The semantics of the model may be provided by a

run-time library, the operating system, the hardware, or any combination of the three. The

computational model is the mathematical approach to describing the behavioural aspects

and to analysing the performance characteristics of an application that was created

according to a certain programming model and it is running on a specific execution model

(the reader is referred back to Chapter 2 for the detailed discussion on the layers of the

parallel computing paradigm).

computational model

design model

programming model

execution model

Figure 5-1: The parallel computing paradigm as introduced in Chapter 2

This chapter focuses on the NIP run-time library, whose design and implementation

were part of the research work for this thesis. The library was used as a test bed in the

evaluation of NIPLTC and NIPDSM and it forms the realisation of the NIP execution

model semantics via a set of user-level primitives. The NIP run-time library provides a

view of an abstract parallel machine architecture by hiding from the parallel applications

and/or implicitly parallel programming language compilers the underlying operating

system, any other run-time libraries, and the hardware platform (Figure 5-2). The

implementation of NIP does not make any assumptions about the characteristics of the

underlying hardware platform. The run-time library can exploit a collection of

single-processor and/or multi-processor workstations.

Design

 125

programming language

application design tool

NIP execution model

NIP run-time library

hardware platform

operating system

runtime libraries

Figure 5-2: The different layers that are hidden by the NIP run-time library, which is an implementation of

the NIP execution model semantics

As an implementation of the NIP execution model semantics, the NIP run-time

library provides the ‘illusion’ that there exist an infinitive number of processors and

infinite amount of memory structured as a collection of shared objects. The supporting

tools for the programming model semantics are responsible for identifying the highest

degree of parallelism that may be exploited by the execution environment. That does not

suggest that a compiler could not automatically increase the granularity of the some of the

identified potentially parallel tasks, which may be too small to ever be executed efficiently

in parallel. The NIP run-time library attempts to exploit the identified parallelism in the

most efficient manner while considering the availability of the underlying computational

resources.

The rest of this chapter focuses on the design of the NIP run-time library (Section

5.2), it provides an overall view of the implementation (Section 5.3), and it describes the

four distinct services that are available (Sections 5.4 to 5.7).

5.2. Design

5.2.1. Intended Use

The NIP run-time library is intended to provide the required application execution

support for a functional plus objects implicitly parallel programming language (Figure

5-3), like UFO (Sargeant 1993; Sargeant and Kirkham 1994). However, the UFO compiler

was not designed and built to utilise the NIP run-time library. At the time this thesis was

composed, there did not exist a compiler that could produce code according to the

semantics of the NIP execution model. Hence, it was deemed necessary that a C++

interface to the NIP run-time library be made available to developers. The interface is

intended to allow developers to explicitly identify the potentially parallel tasks in their

parallel applications and to indicate the access operations on objects. The management of

Chapter 5

126

parallelism (i.e., task creation, task execution, task destruction, concurrency control,

node-to-node communication, etc.) is left to the NIP run-time library.

NIP runtime library

C++ interface

functional plus objects
implicitly parallel programming language

Figure 5-3: Intended use of the NIP run-time library

In the future, a functional plus objects implicitly parallel programming language

compiler could be created that utilised the C++ interface (Parastatidis 2000) of the NIP

run-time library as the target of a source-to-source translation process. Alternatively, the

functionality of the NIP library could be incorporated into the compiler and its code

generation routine. Of course, the NIP run-time library could also become the target of a

non-functional programming language compiler as long as the requirements imposed by

the semantics of the NIP execution model are met.

5.2.2. Overall Structure and the NIP Node

Essential to the design of the NIP run-time library is the notion of a NIP node. During

the execution of a parallel application that is built to utilise the NIP run-time library, the

underlying parallel system is logically divided into a number of NIP nodes. Each

combination of processor(s) and its (their) private, directly accessible memory is

considered as a separate NIP node. For example, on a multicomputer that consists of a

group of single- and/or multi-processor workstations, each of the workstations is

regarded as a NIP node.

The collection of NIP nodes constitutes the execution environment in which parallel

applications are hosted. All the NIP nodes cooperate to present parallel applications with

the illusion of a single underlying hardware platform featuring physically shared memory

and infinite number of processors. There are two types of NIP nodes, the primary and the

secondary. There is always one primary NIP node and it is the one used to launch the

parallel application. There could be zero to many secondary NIP nodes, which are

automatically spawned by the primary NIP node.

In reality, a NIP node is the running executable image of the application. A copy of

that image is automatically spawned wherever it is necessary in the parallel platform, as

part of the initialisation process of the execution environment.

Implementation Overview

 127

5.2.3. NIP Node Service

A NIP node is divided into four logical components (Watson 1996) each one of which

comprises the implementation of a particular NIP run-time service (Figure 5-4). As their

name suggests, the NIP lazy task creation and NIP distributed shared memory services

implement the techniques introduced in Chapters 3 and 4 respectively. The design and

implementation of these two services are discussed in Sections 5.6 and 5.7. The NIP load

balancing service provides two simple algorithms for distributing the available work on a

parallel system. The NIP communications service provides a message-passing interface

for the exchange of information between multicomputer nodes. Although the research

work for this thesis did not involve in-depth investigation of issues related to load

balancing and communications, it was necessary that simple implementations of the two

services were provided if the NIP run-time library was to be functional. Sections 5.4 and

5.5, introduce the load balancing and communications services and their role in the NIP

run-time execution system.

NIP node services

NIP lazy
task creation

NIP communicationsNIP load balancing

NIP distributed
shared memory

Figure 5-4: NIP run-time library components

5.3. Implementation Overview

5.3.1. Service Task and Workers

As mentioned in the previous section, when a parallel application that utilises the NIP

run-time library is launched, a number of NIP nodes are automatically spawned. All the

NIP nodes start a service task and a number of worker tasks, or just workers. The service

task is of higher priority than the workers are and it deals with all the messages arriving at

the NIP node. If there are no available messages to handle, the service task does not

consume any computational resources.

The primary NIP node uses one of the workers as the entry point of the application.

As more work is made available to the execution environment, more workers are given

computation to execute throughout the parallel system. As already discussed in Chapter 3,

potentially parallel work is identified via tasklet constructs. One of two work-stealing

algorithms distributes the available work across the NIP nodes (Section 5.5).

Chapter 5

128

5.3.2. The Portability Issue

The NIP run-time library has been implemented in the C++ programming language

(Stroustrup 1997). Due to the objective of the library, which is to provide a run-time

environment for parallel applications according to the semantics of the NIP execution

model, one would expect that the implementation be closely tied to the underlying

operating system and machine architecture. However, it has been possible to achieve the

portability of the library source code across a variety of systems by utilising the ACE

object-oriented development framework (Schmidt 1995).

ACE has been ported to a great number of operating systems and it provides,

amongst other features, a consistent interface to commonly used system calls without

sacrificing performance. Theoretically, the NIP run-time library should be functional on

most, if not all, operating systems to which ACE has been ported. However, for the

purposes of this thesis, the NIP run-time library was only tested on the WindowsNT,

Windodws2000, and Linux operating systems.

5.4. NIP Communications

5.4.1. Design

The NIP communications service is a simple, non-optimised, message-passing interface

that allows NIP nodes to exchange messages. It would have been possible to utilise an

existing message-passing library, like PVM (Sunderam 1990) or an implementation of the

MPI standard (Forum 1994), but there was not one available supporting thread-safe

communication primitives and the means to block on multiple active connections waiting

for network activity, two design requirements for the NIP communications service.

Due to the nature of the NIP run-time system, it would not have been efficient to use

predefined points of synchronisation between NIP nodes where information could be

exchanged, similarly to the approach taken by conventional message passing interface

systems. For example, a worker executing some computation may require access to an

object from the distributed shared memory. For the worker to continue its execution, the

object must be first made available locally to the NIP node via the NIPDSM service, if it

is not available already. As a result, an access request will be submitted to the appropriate

NIP node. It cannot be known before the execution time when such an access request is

going to take place. The other NIP node services also require to send or to receive

messages in the same unanticipated manner.

NIP Communications

 129

On a NIP node, a separate thread could have been spawned for every connection to

another NIP node. Each thread would only have to deal with the messages received from

one NIP node. However, this approach does not scale well due to the great number of

threads required as the number of NIP nodes increases. This is the reason a blocking call

on multiple network connections is required. In the current implementation of the NIP

communications service, only one thread, the service task, is created on every NIP node

to deal with received messages. The thread blocks and it is only resumed to deal with a

message that has arrived on one of the established connections with the other NIP nodes.

5.4.2. Communication Between NIP Nodes

Essential to the design of the NIP run-time library and especially the communications

service are the notions of the node id and the message. Every NIP node is implicitly

associated with a unique node id. The NIP node services exchange information via

messages (i.e., objects of type Message). The destination address of each message is set

to the node id of the receiving NIP node. Broadcast and multicast communication

services are also supported by the design but their efficiency depends on the underlying

communication protocol used.

Any data that must be transferred from one NIP node to another must be packed

inside a message. The message is then given to the NIP communication service, which is

responsible for transmitting it to the appropriate NIP node. Of course, the data must be

prepared so that it can be transmitted across the channel between the sending and the

receiving NIP nodes according to the requirements of the underlying communication

protocol.

As already mentioned, there is a high priority service task at each NIP node, which is

activated when data arrives from other NIP nodes. The NIP communication service

reconstructs the original message from the raw data and routes it to the appropriate NIP

node service.

5.4.3. Implementation

The current implementation of the NIP communication service utilises the TCP/IP stack

provided by the underlying operating system. A connection-oriented data transfer channel

(i.e., a socket-based communication stream) is established between each NIP node. In

addition to abstracting the necessary operating system calls for the creation of the

communication channels, for the transmission and for the reception of data, ACE also

provides a reactor service, which is an event-dispatching mechanism facilitating the

Chapter 5

130

implementation of unanticipated reception of a message. Internally, the reactor utilises the

select(2) call on UNIX systems or the WaitForMultipleObjects() call on Windows platforms.

Unfortunately, the TCP/IP stack is probably not the most efficient communication

protocol for parallel computing on networks of workstations. TCP/IP provides services

like buffering and error correction that add overhead to the latency of a message transfer

operation. A less expensive protocol on a faster interconnection network would probably

be better suited for the NIP run-time system (e.g., Layer5 protocol on ATM networks).

An additional run-time overhead in the current implementation is the kernel

participation in all the data transfer operations. There exist communication subsystems

that could allow the data exchange between two NIP nodes to take place without the

involvement of the kernel and therefore offering better performance. The SCI (James

1994) network interface cards and the U-Net (von Eicken et al. 1995) user-level library are

examples of solutions to message passing that do not require the involvement of the

operating system kernel in communicating data, hence achieving better latency and

bandwidth.

Finally, the feature of the NIP communications service that allows NIP node services

to use the message abstraction when exchanging data, rather than to deal with operating

system communication primitives, introduces yet another overhead. A memory copy

operation takes place every time an object is added to a message. The memory used by a

message to store objects is expanded dynamically. As a result, the copies of the objects

may not be allocated in a continuous part of the memory. For that reason, additional

memory copy operations are required to transfer all the objects into a buffer that is

maintained by the NIP communications service. The contents of the buffer are

transferred through an appropriate operating system call.

Although the implementation of the NIP communication service is by no means

optimal, it is required for a fully functional NIP run-time environment.

5.5. NIP Load Balancing

The main objective of the NIP load balancing service is to keep track of the available

work on a parallel system. It has to make sure that all the processing nodes are busy but

not overloaded. The decision on whether a new task will be created using the NIP lazy

task creation technique and then executed in parallel is taken by the NIP load balancing

service. Both multiprocessor and multicomputer architectures are supported.

NIP Load Balancing

 131

Due to the dynamic nature of the NIP run-time library, a static load balancing service

would be insufficient (i.e., the decision on whether a task should be created and/or

moved to another processing node is made at compile time). Instead, a dynamic

load-balancing algorithm is required. A lot of research work in the area of dynamic

load-balancing, or load-sharing, has been published. The reader is referred to (Billard and

Pasquale 1997; Eager et al. 1986; Loh et al. 1996; Lüling et al. 1992) as good starting

points.

As load balancing is not the subject of this thesis, the NIP load balancing service, like

the communications service, was just designed and implemented to support the NIP

run-time library and the new techniques it incorporates, namely the NIPLTC and the

NIPDSM. Existing load-balancing techniques were adopted for the current incarnation of

the NIP run-time library.

5.5.1. Design

The NIP load balancing service features two simple but distinct algorithms that are

selected through a command-line switch during the launch of a NIP parallel application.

Both algorithms are based on the notion of work stealing. When a NIP node is about to

run out of computation to execute, the NIP load balancing service checks to see if there is

any work available locally and if not, it requests work from other NIP nodes. For the load

balancing algorithms in the NIP run-time library, the notion of ‘available work’ on a NIP

node is equivalent to the ‘existence of at least one tasklet.’

One of the load-balancing algorithms is activated when there are no available tasks

that could be executed. It is only then that the local tasklet availability queue (Chapter 3) is

checked to establish whether a new task could be created. There are no additional

load-balancing requirements for multiprocessor architectures. However, on

multicomputer systems, if the tasklet availability queue is empty or no tasks can be created

from the existing tasklets (i.e., because the createTask() calls return false) other

NIP nodes need be contacted. It is in this way the decision is made on which NIP node

to be contacted where the two algorithms that are supported differ.

• The simpler of the two algorithms chooses a random NIP node and sends a

‘request-for-work’ message to it. If the NIP node receiving the request does not

have any tasklets in its tasklet availability queue or no work could be created from

the existing ones, a ‘request-for-work-denied’ message is sent back and a new NIP

node is contacted.

Chapter 5

132

• The second algorithm maintains a table with information about all the NIP nodes

in the parallel system. The entries in the table indicate whether the corresponding

NIP node has at least one tasklet in its tasklet availability queue. In order for the

table to represent the most up-to-date information, each NIP node informs the

rest about the changes in its tasklet availability queue. Whenever the transition

from zero to one available tasklets takes place, an appropriate message is

broadcasted to all the NIP nodes. Similarly, when the tasklet availability queue

moves from one to zero tasklets, another message is sent.

When the load-balancing algorithm is activated, the table is searched and the

first NIP node to be found with available work is sent a ‘request-for-work’

message. However, it may be the case that the information maintained in the table

is not up-to-date (e.g., a message indicating that the particular NIP node has run

out of work is on its way), in which case a ‘request-for-work-denied’ message is

received and the table is updated accordingly.

During the execution of a parallel NIP application, a number of events may cause the

activation of the load-balancing algorithm. In all cases, it is the number of available tasks

for execution on the NIP node that is first checked and only if more are required is the

load-balancing algorithm called. Examples of events that may result in the inspection of

the available tasks for execution are:

• A task completes the evaluation of some computation.

• A message arrives from another NIP node indicating the availability of more

work.

• A new tasklet is added to the local tasklet availability queue.

• A task needs to wait for an object to be cached or to be unlocked.

• A task has to wait for other tasks to finish before it can proceed (i.e., suspend).

5.5.2. Tasks and the Load of NIP Nodes

The NIP load-balancing service does not feature a task scheduler (or, job scheduler).

Instead, the scheduling is left to the underlying operating system as all tasks are mapped

to kernel-level threads. Nevertheless, the NIP load-balancing service considers the tasks

to be in one of four states: started, running, waiting, and terminated as shown in the

task-state diagram of Figure 5-5.

NIP Load Balancing

 133

terminatedstarted
running

waiting
Figure 5-5: The four task states as considered by the NIP load-balancing service

When a task is assigned some computation to evaluate, it is considered to advance

from the ‘started’ state to the ‘running’ state. When the evaluation of the computation

completes, the task moves to the ‘terminated’ state. In between, a number of reasons may

cause the task to be put into the ‘waiting’ state:

• A call to the waitOrInline() method of a tasklet (Section 3.6.1) when there

are running parallel tasks created from the same tasklet.

• A lock operation on an object that the NIPDSM does not allow until the object is

unlocked.

• A lock operation on an object that it is not cached.

The NIP load-balancing service considers a NIP node busy when the number of tasks in

the ‘running’ state is equal to or greater than the number of locally available processing

nodes. The service does not attempt to check the load on the NIP node due to other—

unrelated to the NIP application—work that may consume computational resources.

Additionally and due to the lack of an integrated task scheduler, there may be cases where

a NIP node has more tasks in the ‘running’ state than available processing nodes. The

NIP load-balancing service moves tasks from the ‘waiting’ to the ‘running’ state without

considering the availability of the computational resources. As a result and if the

underlying threads library supports thread pre-emption, then additional run-time cost may

be incurred due to context switching as all the tasks in the ‘running’ state compete for

processing power.

5.5.3. Implementation

The current implementation of the NIP load-balancing service utilises kernel-level threads

for the execution of the parallel tasks created from tasklets. A user-level threads library

that does not support pre-emption could have been utilised to avoid the additional

overhead of context switching that may arise in some cases, as mentioned above.

User-level threads libraries implement an independent scheduling mechanism to avoid the

overhead of kernel-level scheduling. However, many user-level threads library cannot

leverage more than one processor on a shared-memory multiprocessor architecture.

Chapter 5

134

Furthermore, operating system calls that block the execution of threads waiting for an

event may result in computational resources being wasted, since another thread cannot be

scheduled. Lack of pre-emption would have made the implementation of the NIP

communications service more complicated and perhaps more inefficient. The service task

(Section 5.3.1) depends on pre-emption to deal with arrived messages as soon as possible.

Both the two platforms used for the development and performance evaluation

processes of the NIP run-time library, namely Windows2000 and Linux, support thread

pre-emption and symmetric multiprocessing. The Linux kernel 2.2.x, however, does not

support thread priorities for users without administrative privileges. This results in the

service task being assigned the same priority as the workers and, therefore, having to

compete for computational resources when a message arrives with any ‘running’ workers.

Thread Pool

Whenever computational resources become available and a new task is created, either

from a local or from a remote tasklet, a thread is required to ‘host’ the evaluation of the

associated computation. Once the evaluation completes, the thread is not needed

anymore. In an attempt to avoid the repeated thread creation and destruction operations

and their associated run-time costs, the NIP load-balancing service creates a number of

threads during the initialisation process of every NIP application. All the threads are

created in the ‘suspended’ state and they are added to a pool that is maintained by the

NIP load-balancing service.

When a new task is ready to be executed, a thread is removed from the pool and it is

resumed to evaluate the computation associated with the task. When the computation

completes, processing resources may become available, hence the number of the tasks

required to keep the NIP node busy is checked. If more tasks are required, the

load-balancing algorithm is called within the context of the same thread that just

completed the evaluation of a previous task. Only after the load-balancing algorithm has

finished, is the thread suspended and placed back in the pool.

The thread pool approach reduces the number of thread creation and destruction

operations during the execution of an application, therefore resulting in faster execution

times. Of course, if during the execution of an application a thread is required while the

pool is empty, a new one will be created.

Overlapping Communication and Computation

The current implementation of the NIP load-balancing service does not manage the

available processing resources in the most efficient manner in all cases. As described

NIP Lazy Task Creation

 135

earlier, if computational resources become available on a NIP node and no local work

exists, the load-balancing algorithm will request additional tasks from other NIP nodes.

Still, the available processing resources will have to remain idle while the

‘request-for-work’ message travels to its destination, the recipient of the message

processes it, and the response is received. A better solution would be to have a task

waiting to take over the processor. This could be achieved by utilising a heuristics-based

load balancing algorithm that pushes work to nodes that are likely to run out of work or

by attempting to steal work from other nodes before it is needed.

There are cases, however, where the NIP load-balancing service does attempt to

overlap the communication with computation. For example, when a task requires access

to an object from the NIPDSM and it has to wait until the object is cached, a new task

will be created if necessary to take over the just released processing resources. Of course,

if there is no local work available, the above problem arises again. The NIPDSM caching

techniques attempt to reduce the number of times tasks go to the ‘waiting’ state because

of a cache miss.

Discussion on Efficiency

As it is the case with the NIP communications service, the design and implementation of

the NIP load-balancing service is by no means optimal. The service would benefit from a

more sophisticated load-balancing algorithm that is aware of the whole execution

environment on a NIP node for the better utilisation of the available computational

resources. Additionally, an integrated task scheduler would eliminate some of the extra

run-time costs due to more than one task being in the ‘running’ state and competing for

processing resources.

Nevertheless, the current NIP load-balancing service is sufficient for supporting the

implementation and performance evaluation of the rest of the NIP node services, which

consist the main research theme for this thesis: the NIP lazy task creation and NIP

distributed shared memory.

5.6. NIP Lazy Task Creation

The purpose of the NIP lazy task creation service is to provide the necessary support for

the synonymous technique that was introduced in Chapter 3. The service incorporates the

implementation of the tasklet construct and maintains the tasklet availability queue. In

addition to supporting application-specific tasklets, the NIP lazy task creation service also

Chapter 5

136

provides a set of predefined tasklets in the form of C++ templates implementing

common programming patterns (Parastatidis 2000).

5.6.1. The NIP Tasklet Interface

The NIP lazy task creation service defines the interface of the tasklet construct as a C++

class with pure virtual methods (Section 3.6.1). NIP applications are required to define

custom tasklet classes that adhere to the NIPTasklet interface. The custom tasklets

must inherit the NIPTasklet class and provide implementations for the pure virtual

methods. The purpose of each of the methods was analysed in Chapter 3 as part of the

discussion about the abstract interface of the tasklet construct. The NIP lazy task creation

service slightly extends and adjusts that abstract interface.

class NIPTasklet
{
public:
 typedef void (*ExecFunction)(NIPTask&);
 NIPTasklet(ExecFunction);
 ~NIPTasklet();
 virtual bool createTask(NIPTask&) = NULL;
 virtual bool createTask() = NULL;
 static void executeTask(NIPTask&);
 virtual void executeTask() = NULL;
 virtual void returnTask(NIPTask&) = NULL;
 virtual void waitOrInline() = NULL;
 void activate();
 void deactivate(bool = true);
protected:
 void beginCriticalSection();
 void endCriticalSection();
 void blockCriticalSection();
 void unblockCriticalSection();
 bool waitForStolenTasks();
};

Code 5-1: C++ interface of the NIPTasklet

Two additional methods are introduced, createTask() and executeTask() (i.e.,

the ones without arguments), to allow for optimisation on shared-memory multiprocessor

architectures. When a new task is created from a tasklet because of a request from another

NIP node, a NIPTask object is automatically instantiated to store essential run-time

information. On shared-memory multiprocessor architectures, where only one NIP node

exists, the creation of a NIPTask object can be avoided. As a result, the run-time

overhead associated with the packaging of run-time information into a NIPTask object is

prevented. The createTask() and executeTask() are called instead of their

createTask(NIPTask&) and executeTask(NIPTask&) counterparts on

shared-memory multiprocessors.

NIP Lazy Task Creation

 137

The executeTask(NIPTask&) method must be declared as static so its virtual

memory address can be the same on all the NIP nodes that run the same application

executable. It is a necessary adjustment to the interface of the tasklet construct because

the state of the particular tasklet instance is not going to be transferred together with the

new tasks that are created for execution on remote NIP nodes. According to the C++

standard (Stroustrup 1997), the virtual memory address of a method of an object is

calculated in relation to the address of that object. It is therefore necessary to declare the

executeTask(NIPTask&) method as static so that its virtual memory address can

be the same on all the NIP nodes running the same application executable. A static

method call is shared amongst the instances of the same class but is not allowed direct

access to their states. The ‘static’ qualifier instructs the C++ compiler to give the method

global linkage (i.e., it is given a virtual memory address in relation to the application

executable and not to the instances of the class). The address of the static method is the

required argument for the constructor of the class.

Finally, there is a variation in the semantics of the createTask() method in the

NIPTasklet class and the corresponding method of the abstract type introduced in

Chapter 3. The departure from the original semantics was a result of the efficiency

considerations in the implementation of the NIP run-time library and the behavioural

dissimilarity of some synchronisation constructs under the Windows2000 and the Linux

operating systems.

Some custom tasklets may enclose data members that need protection from

concurrent accesses. The designer of new tasklets should be aware that the

returnTask(), the waitOrInline(), the executeTask(), and both the

createTask() methods might be called concurrently. Critical sections ought to be

defined around any access to the private data member. A new synchronisation construct

(e.g., a mutex) could be instantiated and used for the definition of critical sections but it

would be more efficient if the lock internal to the NIPTasklet could be utilised instead.

As already mentioned in Chapter 3, the beginCriticalSection() and

endCriticalSection() methods grant access to the internal lock. The designer of

new tasklets should take care and not use the two methods to define critical sections

within the two createTask() methods because in the current implementation of the

NIP lazy task creation service the internal lock has already been acquired by the run-time

system. On operating systems that implement re-entrant locks, like Windows2000, it is

Chapter 5

138

not an issue but on systems where the acquisition of the same lock by the same thread is

not allowed deadlocks are introduced.

For a similar reason, a Boolean argument has been added to the interface of the

deactivate() method, which instructs the NIP run-time to remove the tasklet

instance from the tasklet availability queue. In Section 3.6.2, the two-level locking process

during a task creation operation was described. The lock guarding the tasklet availability

queue is already acquired when the createTask() method is called. Therefore, it would

be troublesome on operating systems that do not support re-entrant operations on

synchronisation constructs to call the deactivate() method from within any of the

two createTask() methods without an adjustment. The Boolean argument was

introduced to act as an indication to the NIP run-time about the context from which the

deactivate() method is called.

5.6.2. The Tasklet Availability Queue

The NIP lazy task creation service implements the tasklet availability queue as a

double-linked list data structure. The nodes of the list are the tasklets instances allocated

on the stack of the tasks that create them. There is no requirement for additional memory

to be allocated when a new tasklet instance is added to the list because the two required

pointers are part of the state of the tasklet, as described in Chapter 3. Only one variable

containing the pointer to the first tasklet in the list and a lock guarding the data structure

from concurrent accesses have to be created during the initialisation process of the NIP

run-time.

The activate() and deactivate() methods relate to the addition and removal

of the tasklet instance to and from the tasklet availability queue respectively. The two

operations involve the acquisition of the lock guarding the tasklet availability queue and

the maintenance of the pointers.

5.6.3. The NIP Tasklet Library

In addition to allowing the construction of custom tasklets, the NIP lazy creation service

leverages the strength of the C++ templates and offers a selection of parameterised,

predefined tasklet classes. The current set of offered templates supports three different

patterns of parallelism: function calls, parallel iterative computations, and parallel recursive

computations (the three patterns are covered in more detail in Chapter 3). An example of

a template class for each of the patterns is presented in Code 5-2.

NIP Distributed Shared Memory

 139

template<class Result, class Argument, Result (*Function)(Argument&)>
class NIPFunctionTasklet

template<class Argument, void (*Function)(int, Argument&)>
class NIPIterativeTasklet

template<class Result, class Argument>
class NIPRecursiveTasklet

Code 5-2: C++ template classes for common patterns of parallelism

An instance of the NIPFunctionTasklet tasklet class exposes to the NIP run-time

a function, the third argument, as a potentially parallel task. A NIPIterativeTasklet

object is used to represent the parallelism in an iterative computation. The function given

to the template as an argument contains the computation associated with each of the

iterations. Finally, the NIPRecursiveTasklet is used to exploit the parallelism in

recursive computations.

The NIP lazy task creation service offers a number of variations of the three template

classes presented in Code 5-2. The description of the whole library and the way it is used

is beyond the scope of this thesis. Instead, the reader is referred to (Parastatidis 2000) for

a thorough explanation of the available tasklets and the way they can be used.

5.7. NIP Distributed Shared Memory

The NIP distributed shared memory service implements the object-based, shared memory

abstraction defined by the NIP execution model semantics. The approach to the design

and implementation of the service closely follows the discussion on NIPDSM presented

in Chapter 4.

5.7.1. Allocation of Objects in the NIPDSM

The NIPDSM service provides a set of template classes and functions in order to facilitate

the allocation of C++ objects in the shared memory. The class of any object that is going

to be stored in the NIPDSM must inherit from the NIPShared class template. Instances

of the derived class do not have to be created on the heap of the NIP application. Even if

the objects are placed on the stack of a task, they can still be accessed by the rest of the

NIP nodes in the parallel system until they go out of scope.

As discussed in Chapter 4, the allocation process involves the possible expansion of

the NIPDSM virtual object table, the initialisation of an object representation and the

formation of a unique NIPDSM reference, which at the end is returned to the NIP

application. The NIPDSM reference is of type NIPRef<class> where class is the

type of the object. NIPRef is considered as primitive type and—like int, double, and

Chapter 5

140

the other primitive types—it cannot be allocated directly in the NIPDSM. An

encapsulation class is made available, the NIPObject<class>, which allows primitive

types and types that are not derived from NIPShared, to be stored in the NIPDSM.

5.7.2. Efficiency

The semantics of the NIPDSM system render the use of a page-faulting mechanism

unnecessary. Access to the shared objects in the memory is indicated to the NIP run-time

through the lock operations on them that all NIP applications are required to issue. The

state of an object should not be accessed unless that object is locked first. The separation

of the memory access detection mechanism from any operating system service makes the

NIPDSM highly portable. Indeed, there was no need to introduce any changes to the

implementation of the NIPDSM service when moving between the Windows2000 and

the Linux operating systems.

During a locking operation, the availability of the object on the local NIP node as well

as its current locking state can be determined. However, in the current implementation, a

mutex operation is required whenever an object is locked. As Chapter 6 demonstrates,

this introduces a very high cost.

The NIPDSM service implements the locking and caching algorithms that were

discussed in Chapter 4.

5.7.3. Object Access

Access to objects in the NIPDSM is made possible through NIPRef instances. A

NIPRef instance acts like a ‘smart pointer’ (Stroustrup 1997) to objects of a specific class,

which must inherit from NIPShared. The state and methods of an object is accessed via

the C++ arrow operator (->). However, the NIPRef interface is also enriched with

additional operators and methods. The reader is referred to (Parastatidis 2000) for a

thorough description of the NIPRef interface. Perhaps, the most important of the

methods that may be called on NIPRef instances are presented in Code 5-3.

The lockRead() and lockWrite() methods attempt to lock the referenced

object. The methods return a virtual memory pointer to the local copy of the state of the

object. The pointer can be safely used by the NIP application until the unlock()

method is called. The use of the virtual memory pointer is an optimisation that was

introduced and described in Chapter 4. The optimisation renders the use of the arrow

operator (->) unnecessary because it always results in a NIPDSM virtual memory table

lookup operation, which is computationally more expensive than a virtual memory

Discussion

 141

pointer de-reference. The arrow operator is still included in the interface, though, for

completeness.

template<class T>
class NIPRef
{
public:
 T* lockRead();
 T* lockWrite();
 void unlock();
 void associate(const NIPRef&);
 void disassociate(const NIPRef&);
 NIPRef<T> operator[](size_t);
 T* operator->();
};

Code 5-3: Part of the NIPRef interface

The associate() and disassociate() methods provide an interface to the

management of the associations list, which is maintained on per object basis. The list is

used by the NIPDSM object grouping caching optimisation that is based on associations

between objects.

Finally, the implementation of the NIPDSM service allows C-style arrays of

NIPShared objects to be allocated. The subscript operator (operator[]) is used when

such arrays are accessed.

5.8. Discussion

This chapter introduced the NIP run-time library, a user-level implementation of the NIP

execution model semantics. During the design process of the library, four distinct

components, or services, were identified. Although no novel techniques were

incorporated into the implementation of two of the services—the communications and

the load balancing—their inclusion into the library was necessary in order to evaluate the

lazy task creation and the distributed shared memory services.

In the previous sections of this chapter, the focus of the discussion was on the

implementation details of the NIP run-time services. It has been necessary to concentrate

on the implementation issues because the good understanding of the functionality and

operational characteristics of the NIP run-time services will be required in the next

chapter, where the effect of the NIP lazy task creation and distributed shared memory

techniques on the performance of a number of benchmark applications will be thoroughly

investigated.

Chapter 5

142

Architecture-related Considerations

Although the portability of the NIP run-time library source code across operating systems

was achieved during the implementation process, some idiosyncratic differences between

platforms may result in behavioural diversions from what it was specified during the

design process.

• The implementation of the kernel threads library in Linux does not support

modification of thread-priorities at the non-super user level. As a result, there

cannot be a high priority thread dealing with the messages arriving at a NIP node,

as the design process for the NIP run-time library specifies. Instead, the thread

will have to be of the same priority as the worker-threads that execute

computation and compete for processor time. There could be cases where a

message is not dealt as soon as it arrives because the thread remains pre-empted

until it is given a processor time-slice.

The latency between a request and a response during the exchange of

messages by two NIP nodes may be negatively affected by the thread priority issue

on Linux. The NIP lazy task creation technique reduces the effect of the problem

by not allowing excessive number of tasks to be created. The result is faster

response times because the thread dealing with messages will have fewer threads

to compete with for processor time.

Unlike Linux, the WindowsNT and Windows2000 operating systems do not

suffer from the same problem. Therefore, a message arriving at a NIP node will

be dealt with immediately.

• The cost of lock operations can be another concern across operating systems.

There is a difference in the costs of the operations on synchronisation constructs

(e.g., mutex, semaphores, etc.) amongst the two operating systems used for the

implementation and evaluation of the NIP run-time library (i.e., Windows2000,

Linux). As a result, small parts of the library had to be modified accordingly in

order to achieve better performance. The next chapter includes a comparative

evaluation of some NIP-related operations between the two platforms.

• Finally, and perhaps more importantly, the load balancing service may be greatly

affected by the architectural characteristics of the parallel platform. Parallel

architectures, usually with high-speed communications support, may favour

load-balancing schemes where tasks are created or moved closer to the location of

Discussion

 143

the objects they access. In contrast, it may be more efficient on some platforms to

move the objects to the computation that operates on them.

The current implementation of the NIP load-balancing service supports only

the latter of the two schemes. Data-intensive parallel computations may suffer on

platforms with low-latency interconnections, such as Ethernet-based networks of

workstations. The NIP distributed shared memory service attempts to reduce the

deficiencies, due to tasks accessing objects from different NIP nodes, through its

advanced object caching and replication techniques.

145

6CHAPTER 6
6. PERFORMANCE EVALUATION

The discussion in this chapter focuses on the performance evaluation

of the unique features of the NIP run-time environment. The

advantages and disadvantages of the techniques studied in the previous

chapters are analysed though benchmark applications.

A number of micro-benchmarks are devised to explore the

performance characteristics and run-time behaviour of the NIP lazy

task creation technique and the NIP object-based distributed shared

memory system. Additionally, the performance measurements from the

execution of three applications, commonly used in the evaluation of

run-time environments for distributed memory architectures are

analysed.

The benchmark applications are tested on a physically shared

multiprocessor and a distributed memory multicomputer. The results

from the performance evaluation demonstrate the effectiveness of the

NIP lazy task creation technique and the potential advantages of the

NIPDSM caching techniques.

Chapter 6

146

6.1. Introduction

The main objective of this thesis is to explore the characteristics of those unique features

that were devised to support the semantics of the NIP execution model. To that extent,

the model semantics, the NIP lazy task creation technique, and the object-based NIP

distributed shared memory system were studied in the previous chapters. The NIP

run-time library, a user-level implementation of the NIP execution model semantics, was

also described.

The study continues in this chapter with the performance and behavioural evaluation

of the introduced techniques. A number of micro-benchmarks and applications that were

built around the NIP run-time library are used as a vehicle for the performance

evaluation. Through the analysis of the collected data, the applicability of the introduced

NIP lazy task creation technique and NIP distributed shared memory system is examined.

6.1.1. Evaluation Objectives

As mentioned in Chapter 5, the current prototype implementation of the NIP run-time

library was built as a test platform for the research purposes of this thesis. The design and

the efficient implementation of all the services incorporated in the library were not of a

prime research interest to this project. As a result, and given that the performance

numbers are collected through the actual execution of parallel applications rather than by

the use of simulation, the efficiency of the whole execution environment may not be

optimal.

The impact of the load balancing and communications services on performance is

indicated where observed. However, the investigation will be primarily concentrating on

the efficiency improvements or overheads in the execution of parallel applications due to

NIPLTC and NIPDSM. The behavioural characteristics of the parallel applications are

also examined.

6.1.2. Real-System Execution vs. Simulation

A combination of a great number of factors may influence the performance characteristics

of a parallel application. One has to consider all those attributes of the execution

environment that may affect the behaviour and efficiency of an application on a specific

platform. In research, a simulation environment is frequently used in the performance

evaluation of run-time techniques. For this thesis, it was decided that the quantification

Experimental Set-up

 147

process of the NIP run-time library would take place through the execution of benchmark

applications on real parallel platforms rather than via the exercise of simulated execution.

This is because there does not exist a simulation environment that can satisfactorily

capture the diversity of performance-related attributes that are found on a parallel

platform. Although some simulation environments may consider a combination of the

issues, there does not exist one that can deal with all of them (e.g., cost of operating

system synchronisation operations, thread-related operations, scheduling, pre-emption,

memory access operations, processor cache behaviour, network communication costs,

compiler optimisations, etc.).

The evaluation process will not attempt to determine the impact of each possible

parameter that may affect the performance of an application execution in a parallel

environment, as the one provided by the NIP run-time library. Although of great research

interest, it would have been beyond the scope of this thesis to measure every possible

detail. Instead, the following sections focus on the NIPLTC and NIPDSM techniques

that were explored in the previous chapters.

6.2. Experimental Set-up

As suggested in Chapter 1, this thesis considers parallel platforms based on commodity

hardware as emerging architectures for general-purpose, high-performance computing

due to their cost/performance ratio potential. Although the NIP execution model

semantics were formulated to be platform independent, the experimental process for this

research work concentrates on low-cost parallel systems. It should not be assumed,

though, that the NIP run-time library could not be used on custom-built,

high-performance parallel computer architectures.

6.2.1. Hardware Environment

The main parallel platform used for the execution of the benchmark applications was the

Affordable Parallel Platform (APP) of the department of Computing Science, at the

University of Newcastle upon Tyne, UK. The APP consists of a collection of commodity

hardware-based workstations and an interconnection network. Every workstation of the

APP cluster runs an instance of Linux, a freely available operating system. The current

incarnation of the APP is made out of eight workstations, each one with a single

processor. Each workstation has access to a shared 100Mbit/s Fast Ethernet

Chapter 6

148

interconnection networks. The first column of Table 6-1 presents the main characteristics

an APP workstation.

APP workstation

Linux SMP
workstation

Windows2000
workstation

Windows2000 SMP
workstation

Processor(s) PentiumII
233MHz

4 x PentiumIII Xeon
500MHz

PentiumII Mobile
300MHz

2 x PentiumIII
800MHz

Cache 512KB level 2
32KB level 1

512KB level 1
512KB level 2
32KB level 1

32KB level 1

Memory 64MB 512MB 256MB 256MB

Bus speed 66MHz 66MHz 66MHz 133MHz

Swap memory 128MB 128MB Dynamic Dynamic

Network 100Mbits shared Fast
Ethernet

(3Com Boomerg
adapters)

N/A N/A N/A

Operating
system

Redhat 6.2
2.4.0-test7 kernel

Redhat 6.2
2.4.0-test7 kernel Windows2000 SP1

Windows2000 SP1
multiprocessor mode

Compiler
GCC 2.9.2

Microsoft Compiler
12.00.8804

C++ wrappers
for OS system

calls
ACE 5.1.3

Table 6-1: Profiles of the hardware platforms used for the experiments

The APP cluster is a distributed-memory parallel architecture. The NIP run-time

library allows applications to perceive the cluster as a parallel machine with physically

shared memory. A shared-memory multiprocessor workstation is also used for the

evaluation of the NIP run-time library. The main characteristics of the platform are

presented in the second column of Table 6-1.

Finally, two workstations running an instance of the Windows2000 operating system

were also used in the evaluation of the NIP primitive operations. The characteristics of

the workstations are presented in the third and fourth columns of Table 6-1.

6.2.2. Software Environment

The Linux operating system in the form of the RedHat 6.2 distribution was installed on all

the workstations. The 2.4.0-test7 version of the Linux kernel was used during the

evaluation process. The support for symmetric multiprocessing kernel option was enabled

only on the multiprocessor workstation. For the comparative study of the NIP run-time

costs that is presented in the next section, workstations with the Windows2000 operating

system were also used.

The NIP run-time library was built with version 2.95.2 of the GCC C++ compiler

under Linux. The –03 –no-exceptions –no-rtti compiler options were enabled.

Under Windows2000, the Microsoft C/C++ compiler version 12.00.8804 (Visual Studio

Cost of Primitive Operations

 149

SP4) was used with all the optimisations enabled and the exceptions and run-time typing

information disabled.

Finally, and as mentioned in the previous chapter, the ACE object-oriented

development framework (Schmidt 1995) was used for the implementation of the NIP

run-time library. The 5.1.3 version was installed on all the workstations. Table 6-1

summarises the configuration of all the workstations.

6.3. Cost of Primitive Operations

With the intention of determining the efficiency of NIP primitive operations, this section

presents a set of small experiments measuring run-time costs. The overhead of the

primitive operations, in terms of time and processor cycles, are established for four

different processors, two of them running Linux and two running Windows2000. The

results from the measurement of the NIP primitive operations are compared to the

run-time cost of the equivalent operating system calls.

The cost of a primitive operation is calculated as the average from the repeated

execution of the same operation. The frequency of each processor is used to calculate the

corresponding cost in processor cycles. Due to the imprecise nature of the timing

operations, the presented costs can only be seen as approximations. The small deviations

in the results may be attributed to a great number of factors, such as the lack of accurate

means for timing, different memory access times, processor cache speed, small kernel

differences (i.e., uni-processor version vs. symmetric multiprocessor version), etc.

Nevertheless, the results are still of interest to this study because the potential benefits

and drawbacks of using the NIP run-time library can be determined.

6.3.1. Operating System Primitive Operations

From the analysis of the measurements presented in Table 6-2 and despite the differences

between the processors used, it is evident that the launch of a separate thread of control

to execute the same empty function is much more expensive on Windows2000 than it is

on Linux. The acquire and release operations on a mutex are faster on Windows2000 but

the creation and destruction operations of a mutex are slower. Finally, the creation and

destruction of a conditional variable are significantly slower on Windows2000 because

ACE has to simulate, using native OS primitives calls, the behaviour of that particular

synchronisation construct according to the POSIX semantics (IEEE 1996).

Chapter 6

150

 PentiumII
233MHz
(Linux)

PentiumIII Xeon
500MHz
(Linux)

PentiumII Mobile
300MHz

(Windows)

PentiumIII
800MHz

(Windows)

 usecs cycles usecs cycles usecs cycles usecs cycles

Function call 0.009 2 0.004 2 0.005 2 0.002 1

OS thread spawn/join 336.930 78505 160.299 80149 654.157 196247 343.334 274667

Mutex acquire/release 0.751 175 0.347 174 0.119 36 0.084 67

Mutex creation/destruction 0.461 107 0.215 108 1.833 550 0.723 578

Condition variable
creation/destruction 0.439 102 0.204 102 31.178 9353 15.959 12767

Virtual memory C++ object
construction/destruction

2.404 560 1.141 570 1.537 461 0.380 304

Assignment to a data
member of a C++ object

0.017 4 0.009 5 0.016 5 0.004 3

Table 6-2: The elapsed time in usecs and the corresponding cost in processor cycles of some operating
system primitive operations

The costs of creating a C++ object in virtual memory and performing an assignment

operation are measured. The construction of an object is found to be slightly faster under

Windows2000 over Linux. As would have been expected, an assignment operation on an

object data member does not introduce any significant costs to the execution of an

application.

6.3.2. NIP Run-time Primitive Operations

There are two possible ways a potentially parallel computation may be executed: inline or

as a new parallel task. When the logical degree of parallelism in an application is high, a

great number of tasklets may exist. The cost of the tasklet creation and destruction

operations can play a significant role in the performance of an application. For that

reason, the measurements presented in Table 6-3 were taken into consideration in the

implementation of the NIP run-time library.

As described in Chapters 3 and 4, every tasklet and NIPDSM object is implicitly

associated with a private lock. In the current implementation of the NIP run-time library,

the lock consists of a mutex and a conditional variable. Due to the expensive conditional

variable operations on Windows2000, a shared pool of synchronisation constructs is used

on every NIP node. Whenever a new tasklet or NIPDSM object is created, a pair of a

mutex and a conditional variable is retrieved from the pool. Only the relative smaller cost

of the acquire and release operations on the mutex that guards the pool is incurred while

the instantiation overhead of a conditional variable is avoided. On Linux, where the

acquire and release operations on a mutex are cheaper, there is no need to implement a

pool for the tasklet construct. However, a pool of mutex and conditional variables is used

Cost of Primitive Operations

 151

for the NIPDSM objects, as is under Windows2000, in order to avoid exhaustion of

resources in case of a large number of objects. Pairs of mutex and conditional variables

can be shared between different objects. This consequence is that simultaneous access to

the object representation of two different NIPDSM objects sharing the same pair is

prevented.

 PentiumII
233MHz
(Linux)

PentiumIII
Xeon 500MHz

(Linux)

PentiumII
Mobile 300MHz

(Windows)

PentiumIII
800MHz

(Windows)

 usecs cycles usecs cycles usecs cycles usecs Cycles

Tasklet creation/destruction 4.109 957 1.899 950 0.665 200 0.360 288

Tasklet creation/destruction
and function inline 11.486 2676 5.344 2672 1.376 413 0.670 536

Function inline 0.928 216 0.428 214 0.121 36 0.089 71

Tasklet creation/destruction
and parallel task creation

59.328 13824 45.432 22716 26.733 8020 13.907 11126

Cost for executing a task from
a tasklet on a remote node

(fast Ethernet)
614.200 143109 N/A N/A N/A

NIPDSM C++ object
construction/destruction

9.850 2295 4.675 2337 10.744 3223 3.797 3038

Assignment to a NIPDSM C++
mutable object (lock and

unlock)
2.134 497 0.989 495 0.746 224 0.290 232

Access to a NIPDSM C++
immutable object (lock and

unlock)
0.366 85 0.170 85 0.229 69 0.057 46

Table 6-3: The elapsed time in usecs and the corresponding cost in processor cycles of some NIP primitive
operations

Table 6-3 presents the costs of the NIP run-time primitive operations. The smaller

costs of the tasklet creation/destruction and inlining operations under Windows2000 are

due to the smaller costs of the mutex acquire/release operations when compared to the

equivalent costs under Linux.

As described in the previous chapter, the NIP run-time library uses thread-pooling to

optimise the use of resources. As a result, the lazy creation of a parallel task is faster than

eager creation. The former only requires that a thread be taken from the thread pool and

resumed to execute the new parallel task while the latter requires a new thread to be

created. Of course, the overhead of creating the thread pool is incurred during the

initialisation of the execution environment. The thread creation cost only need be

incurred once and not every time a new parallel task is created. The great overhead of the

thread creation and thread synchronisation operations under Windows2000 and the small

cost of mutex acquire and release operations result in high speedup for task inlining over

eager task creation, as shown in Figure 6-1. Finally, lazy task creation over the shared fast

Chapter 6

152

Ethernet network of the APP is significantly expensive, 1.8 times slower than eager task

creation on a local machine because of the network activity that needs to take place.

Based on the results presented in Table 6-2 and Table 6-3, the graph of Figure 6-1

shows the advantages and disadvantages of using the NIP run-time library. Task inlining

is significantly faster than eager and lazy task creation especially on Windows2000 where

the thread creation costs are higher and the mutex operations are cheaper. Figure 6-1

suggests that applications exhibiting a higher degree of parallelism than what is available

by the hardware architecture will perform much better when tasklets are used to identify

parallel tasks because of the benefits of inlining.

In contrast to the benefits of the tasklet related operations, the NIPDSM operations

introduce significant run-time overhead. A data member assignment operation on a

NIPDSM object is considerably slower when compared to the equivalent operation on a

virtual memory object. This is attributed to the high run-time cost that the NIPDSM lock

and unlock operations introduce. According to the NIP execution model semantics, every

operation on an object must be included within a pair of lock and unlock operations

(Chapters 2 and 4). As discussed in Chapter 4, though, memory access can be improved

by including consecutive calls on the same object within just one pair of lock and lock

operations. It should also be noted that the NIPDSM objects might be safely accessed in

a concurrent manner. In contrast, the virtual memory objects are not guarded from any

form of concurrent access.

-48.0

-79.5

-124.0

-107.6

-14.7

-15.6

-21.3

-18.5

-7.0

-10.0

-4.1

-4.1

24.5

24.7

5.7

3.5

19.4

20.8

5.2

8.5

475.4

512.7

29.3

30.0

-24.2

-57.2

-102.6

-100.6

-200 -100 0 100 200 300 400 500

Pe
nt

iu
m

II
 M

ob
ile

30
0M

H
z

(W
in

do
w

s2
00

0)

Pe
nt

iu
m

II
I

80
0M

H
z

(W
in

do
w

20
00

)

Pe
nt

iu
m

II
23

3M
H

z
(L

in
ux

)

Pe
nt

iu
m

II
I

Xe
on

50
0M

H
z

(L
in

ux
)

speedup

Inline vs. function call
Tasklet & inline vs. eager task creation
Tasklet & inline vs. lazy task creation
Lazy vs. eager task creation
NIPDSM vs. VM object construction objection
NIPDSM (Immutable) vs. VM object access
NIPDSM (Mutable) vs. VM object access

Figure 6-1: The speedup and slowdown of NIP primitive operations over the corresponding operating

system operations on four different configurations

NIPLTC Micro-Benchmarks

 153

The overhead of the NIPDSM operations is due to a number of factors. A lock

operation on a NIPDSM object includes:

• NIPDSM dereference. The NIPDSM object representation structure of the

object to be locked must be located. This involves operations on the NIPDSM

reference to identify the correct path to the object’s representation in the

NIPDSM virtual object table (Chapter 4).

• Mutex acquire/release operations. Access to the NIPDSM object

representation is critical and needs to be protected. Two concurrent tasks on the

same NIP node should not be allowed to access simultaneously the same

NIPDSM object representation. This does not imply, of course, that two tasks

cannot have a read lock on the same object at the same time.

• C++ STL operations. The current implementation of the NIPDSM uses the

list<T>, set<T> C++ Standard Template Library (Stroustrup 1997) classes to

maintain necessary information about the state of the object (e.g., the nodeIDs of

the proxies, the queue of lock requests, the NIPDSM references of the associated

objects, etc.). A NIPDSM lock operation may involve calls to instances of one of

those classes, which are probably computationally more expensive than a custom

solution, similar to the one adopted for the tasklet availability queue.

• Node type and lock information check. The type of the node (i.e., manager,

read proxy, write proxy) must be checked to ensure the current NIP node has

permission to satisfy a lock request. Finally, the current lock on the object is

checked to ensure that the multiple readers/single writer object access model is

preserved.

Most of the overheads described above can be avoided for immutable objects only when

the locking operation takes place on the manager node of those objects. This is the reason

for the difference in the performance of the locking operations presented in Table 1-1

and Figure 6-1.

6.4. NIPLTC Micro-Benchmarks

The investigation into the performance of the NIP run-time techniques starts with the

evaluation of NIP lazy task creation. A number of micro-benchmarks are devised to test

the applicability of NIPLTC. The benchmarks are executed both on the shared-memory

Chapter 6

154

and distributed-memory architectures. The tests attempt to measure the additional

overhead incurred due to NIPLTC but also the speedups that can be achieved.

None of the tests that follow attempt to make a direct comparison between NIPLTC

and eager task creation. Eager task creation would have introduced a great execution

overhead, as the thread creation costs shown in Table 6-2 (page 115) suggest, for the

applications with a great degree of parallelism that are examined next. Of course, the

applications could be explicitly written in a manner that better utilised the available

computational resources but, then, they would not comply with the semantics of the NIP

programming and/or execution models. The benefits of lazy over eager task creation were

presented in previous works (Goldstein 1997; Goldstein et al. 1996; Mohr et al. 1991).

This section concentrates on establishing the applicability of NIPLTC under different

cases of parallel computations.

6.4.1. Iterative Tasklet – Parallel Map – APP

The first of the micro-benchmarks involves the iterative tasklet construct (Chapter 3), an

instance of which is used to represent a data parallel computation. The computation

involves the application of a function f on the elements of a vector. Code 6-1 presents the

pseudo code of the data parallel computation, in harmony with the NIP programming

model semantics.

Both the size of the vector and the granularity of the function are varied in the

following tests. The vector size determines the degree of parallelism and the grain size of

the applied function controls the granularity of every potentially parallel task.

main()
 Vector<double> vector(X)
 for i = 0 to vector.size()
 f(a[i])

Code 6-1: Pseudo code for an iterative computation

Parallel Tasks Executing Single Iterations

By means of an appropriate NIP-aware compiler, Code 6-1 can be translated to Code 6-2,

which is consistent with the NIP execution model semantics without the object memory.

The parallelism in the computation is expressed through an iterative tasklet. All the

iterations in the loop of Code 6-1 are exposed as potentially parallel tasks through just one

instance of the NIP iterative tasklet (Code 6-2). However, a lazily created task from the

tasklet can execute only one iteration.

NIPLTC Micro-Benchmarks

 155

The MapTasklet tasklet class is not part of the NIP run-time library (Chapter 4). It

is a specialisation of the general Tasklet type and it is specifically created for the benefit

of this micro-benchmark. The createTask(NIPTask&) method (Chapter 3) of the

tasklet explicitly places the required data into the state of the task being created. Hence,

there is no need for the object-based-shared memory of the NIP execution model (i.e.,

the NIPDSM). In this manner, the performance evaluation of the micro-benchmark can

concentrate on issues related to NIPLTC, without the influence of the NIPDSM. A

version of this micro-benchmark, which depends on the object memory for data access

and uses one of the NIP run-time library provided tasklets, will be employed later in this

chapter, in the assessment of one of the NIPDSM caching techniques.

main()
 Vector<double> vector(X)
 MapTasklet<double, f> tasklet(vector)
 tasklet.waitOrInline()

Code 6-2: The resulting pseudo code from the translation of Code 6-1 consistent
to the NIP execution model semantics without object memory

Although the cost of the tasklet related operations were measured and presented in

Table 6-3 (page 116), the overall run-time overhead on the computation is also calculated

here. The sequential version of the computation of Code 6-1 is implemented in C++ and

compared against the NIP version executed on one node. The difference between the

execution times of the two versions corresponds to the total overheads introduced due to

the NIP run-time related operations.

 Vector size

 100 500 1000 2000

0.01 8.92% 7.29% 8.73% 7.17%

0.03 2.04% 1.69% 1.62% 1.40%

0.05 1.40% 0.99% 0.92% 0.84%

0.11 0.69% 0.51% 0.38% 0.65%

0.27 0.29% 0.26% 0.88% 0.25%

0.54 0.20% 0.19% 0.15% 0.16%

1.35 0.14% 0.14% 0.13% 0.15%

2.69 0.12% 0.14% 0.10% 0.09%

5.38 0.08% 0.10% 0.12% 0.10%

8.07 0.20% 0.29% 0.10% 0.08%

F
u

n
ct

io
n

 g
ra

n
u

la
ri

ty
 (

m
se

cs
)

10.76 0.09% 0.08% 0.08% 0.12%

Table 6-4: The execution overhead introduced due to NIP run-time related operations as a percentage of
the execution time of sequential version of the computation presented in Code 6-1

Table 6-4 shows the additional overhead incurred from the execution of the NIP

version of the computation as a percentage of the C++ sequential version. As the

Chapter 6

156

granularity of the function applied to the elements of the vector increases, the effect of

the NIP related operations decreases. This is because the NIP related overheads are fixed.

They are only incurred during the construction and destruction of the iterative tasklet

instance and during a stealing operation for an iteration (Chapter 3) that is to be executed

inline. Therefore, the increase of the function’s granularity does not introduce additional

overheads.

Next, the speedup achieved from the execution of the NIP version of the

computation on the APP is measured (Figure 6-2). For fine granularities, a smaller rate in

the efficiency is observed as the number of nodes increases (Figure 6-3). This is due to the

great communication overheads on the APP and the high cost of lazily creating tasks on

remote nodes, as shown in Table 6-3 (page 116). The number of task stealing operations

increases with the number of nodes, thus the introduced run-time overheads are higher.

When the granularity of the computation is fine, the impact of these overheads is greater

and, as a result, the efficiency is affected.

0

2

4

6

8

0 5 10 15 20 25
function granularity (msecs)

sp
ee

du
p

100

500

1000

2000

0

2

4

6

8

0 5 10 15 20 25
function granularity (msecs)

sp
ee

du
p

100

500

1000

2000

0

2

4

6

8

0 5 10 15 20 25
function granularity (msecs)

sp
ee

du
p

100

500

1000

2000

Figure 6-2: Speedup achieved on 2, 4, and 8 nodes (vector size: 100, 500, 1000, 2000)

0%

25%

50%

75%

100%

0 5 10 15 20 25
function granularity (msecs)

ef
fic

ie
nc

y

2 nodes

4 nodes

8 nodes

Figure 6-3: Efficiency achieved on 2, 4, and 8 nodes (vector size: 2000)

NIPLTC Micro-Benchmarks

 157

0%

25%

50%

75%

100%

0 5 10 15 20 25
function granularity (msecs)

ef
fic

ie
nc

y

8 nodes

4 nodes

2 nodes

Figure 6-4: % of tasks created out of 2,000 possible for different function granularities and for different

number of nodes used (non-optimised iterative tasklet)

In order to support the above argument, the number of lazily created tasks was

measured. The percentage of the tasks that were created depends on the granularity of the

function and the number of nodes used, as Figure 6-4 suggests. When the granularity of

the function is large, the secondary nodes of the parallel system have more chances of

stealing iterations from the primary node, which is inlining as many iterations as possible.

Furthermore, as the number of nodes increases, more parallel tasks can be executed

simultaneously.

It is expected that the potentially parallel work be evenly distributed on the available

processing nodes. For example, on 2, 4, and 8 nodes, it is expected that 50%, 75%, and

87.5% of the available tasks are lazily created and executed on the available processors

respectively. Figure 6-4 presents the percentage of tasks that were lazily created during the

execution of the micro-benchmark. When 8 nodes are used, the measured number of

lazily created tasks surpasses what was expected (the 87.5% line of Figure 6-4

demonstrates the anomaly). Since only one node in the parallel system has available work

to offer, all the other nodes attempt to steal tasks from it. As that node has to deal with

the requests, it does not get enough time to execute its part of the computation (i.e., inline

iterations). Therefore, other nodes execute a larger piece of the entire computation.

The results of Figure 6-4 suggest that both NIPLTC and the NIP load balancing

service work well together to distribute the work around the parallel system. However,

since the additional overhead of lazily creating a task for the execution of only one

iteration is significant, the performance of the micro-benchmark is poor for smaller

granularities.

Chapter 6

158

Parallel Tasks Executing Groups of Iterations

The number of parallel tasks actually created from the iterative tasklet presented above is

very large. Every task that is lazily created only executes one iteration. Chapter 3 proposed

an optimisation to the original iterative tasklet by suggesting that a group of iterations

could be executed together. In this manner, the granularity of the lazily created parallel

tasks could be implicitly increased.

main()
 Vector<double> vector(X)
 MapTaskletGroup<double, f> tasklet(vector)
 tasklet.waitOrInline()

Code 6-3: Optimised version of the pseudo code presented in Code 6-2

The iterative tasklet of Code 6-2 is replaced by a new specialisation of the tasklet

construct. The new tasklet allows a group of iterations to be stolen at a time. The default

number of iterations to be included in a group is calculated according to Equation 6-1. If

during the execution of an application the number of the remaining, non-evaluated

iterations is less than the group size, then all the iterations are included in the same group.

The equation divides the total number of iterations into groups, according to the optimal

availability of computational resources in the parallel system (it is assumed that every NIP

node in the parallel system has an equal number of processors). The size of the group is

divided by two to give the NIP node that created the iterative tasklet more chances of

inlining iterations. When the iterations are fine-grained, the execution of the application

suffers less from the overheads of lazily creating tasks because more iterations can be

executed inline, since a smaller part of the entire computation is executed on remote NIP

nodes.

2∗∗
=

processorsofnumbernodesofnumber
iterationsofnumbertotalsizegroup Equation 6-1

NIPLTC Micro-Benchmarks

 159

 Vector size

 100 500 1000 2000

0.01 2.98% 1.73% 0.85% 1.03%

0.03 0.70% 0.29% 0.32% 0.11%

0.05 0.59% 0.28% 0.67% 0.18%

0.11 0.31% 0.22% 0.05% 0.06%

0.27 0.18% 0.15% 0.10% 0.10%

0.54 0.13% 0.11% 0.14% 0.10%

1.35 0.19% 0.10% 0.09% 0.20%

2.69 0.09% 0.12% 0.08% 0.07%

5.38 0.06% 0.08% 0.11% 0.09%

8.07 0.19% 0.08% 0.09% 0.08%

F
u

n
ct

io
n

 g
ra

n
u

la
ri

ty
 (

m
se

cs
)

10.76 0.12% 0.08% 0.08% 0.10%

Table 6-5: The execution overhead introduced due to NIP run-time related operations as a percentage of
the execution time of sequential version of the computation presented in Code 6-3

The optimised version reduces the NIPLTC related overheads because the number of

stealing operations is decreased. Table 6-5 presents the run-time overhead as a percentage

of the C++ sequential version of the computation. When compared to Table 6-4 (page

119), it is clear that for smaller granularities the overhead is dramatically reduced. There is

no difference for larger granularities because the NIP related overhead is minimal when

compared to the total computation time.

The grouping approach to stealing iterations from a tasklet dramatically improves the

performance of the run-time environment for smaller granularities. The same degree of

speedup is achieved but for smaller granularities than was possible with the iterative

tasklet of the previous section. Figure 6-5 compares the speedup achieved for function

granularities up to 3msecs for both the grouping-capable and the original iterative tasklets.

Chapter 6

160

0

2

4

6

8

0 1 2 3 4 5
function granularity (msecs)

sp
ee

du
p

100

500

1000

2000

0

2

4

6

8

0 1 2 3 4 5
function granularity (msecs)

sp
ee

du
p

100

500

1000

2000

0

2

4

6

8

0 1 2 3 4 5
function granularity (msecs)

sp
ee

du
p

100

500

1000

2000

0

2

4

6

8

0 1 2 3 4 5
function granularity (msecs)

sp
ee

du
p

100

500

1000

2000

0

2

4

6

8

0 1 2 3 4 5
function granularity (msecs)

sp
ee

du
p

100

500

1000

2000

0

2

4

6

8

0 1 2 3 4 5
function granularity (msecs)

sp
ee

du
p

100

500

1000

2000

Figure 6-5: Comparison between the speedups achieved when a single iteration (top row) is stolen and
when a group of iterations (bottom row) is stolen, for 2, 4, and 8 nodes and for fine granularities of the

function (vector size: 100, 500, 1000, 2000)

The nodes of the parallel system are kept busy without having to continuously steal

jobs from others because they receive more than one iterations to execute at a time.

Despite the implicit increase in the granularity of the parallel tasks, the degree of

parallelism of the entire application is not reduced. When a node receives a group of

iterations, a new tasklet is immediately created to represent the potentially parallel tasks in

the delivered group. Then, the node starts inlining the iterations from the created tasklet

while others can steal work from it. This approach also means that there is a better

distribution of work in the parallel system. Now, it is not only the node where the iterative

tasklet was created that has available work for other nodes to steal. This means that a

single node does not become a ‘hot spot’ for work requests, which results in better

performance. This problem was first illustrated in the previous section (Figure 6-4, page

120).

Nodes sending tasks

 Original iterative tasklet Grouping-capable iterative tasklet

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 254.0 0 0 0 0 0 0 0.6 3.3 1.7 1.0 0.3 0.7 0

3 254.0 0 0 0 0 0 0 0.6 0 20.3 12.3 8.3 4.0 4.0

4 254.0 0 0 0 0 0 0 0.7 0.3 0 14.0 11.0 6.7 4.7

5 254.0 0 0 0 0 0 0 0.7 0.3 0.3 0 14.0 10.3 7.7

6 254.0 0 0 0 0 0 0 0.8 1.3 1.3 1.0 0 16.0 8.3

7 254.0 0 0 0 0 0 0 0.9 6.7 2.3 2.7 1.3 0 14.7 N
o

d
e
s

st
e
a
li
n

g
 t

a
sk

s

8 253.7 0 0 0 0 0 0 1.2 7.0 1.3 2.0 0.7 0 0

Table 6-6: Average of the tasks stolen from the repeated execution of the tests (number of nodes used: 8,
vector size: 2000, function granularity: ~23msecs)

NIPLTC Micro-Benchmarks

 161

Table 6-6 presents a comparison between the two versions of the iterative tasklet. The

exchange of tasks between the nodes of the parallel system is recorded. In the original

version, only the primary node (node 1) has work to offer and, as such, it becomes a ‘hot

spot’ of work stealing requests. With the grouping-capable version, the work is better

distributed across the parallel platform. It has to be noted that in the optimised version a

group does not always contain the same number of iterations. The total number of iterations

factor of Equation 6-1 may differ between nodes as it depends on the size of the group

received.

0

1

2

3

0 5 10 15 20 25

function granularity (msecs)

%
 o

f
20

00
 t

as
ks

 c
re

at
ed

8 nodes

4 nodes

2 nodes

Figure 6-6: % of tasks created out of 2,000 possible for different function granularities and for different

number of nodes used (optimised iterative tasklet)

It can also be observed that the number of tasks lazily created from the

grouping-capable version of the iterative tasklet is significantly smaller than from the

original version. This is attributed to the resulting larger granularity of the created tasks.

The comparison of Figure 6-4 (page 120) and Figure 6-6 demonstrates the substantial

difference between the numbers of lazily created tasks from the two versions of the

iterative tasklet.

When the grouping-capable iterative tasklet is used, the granularity of the lazily created

tasks greatly depends on the load balancing algorithm. The algorithm used in the

execution of this and all the other benchmarks, is the one described in Chapter 5, where a

‘request-for-work’ message is sent to the next node (in ascending order) with a non-empty

tasklet availability queue. However, the work stolen from secondary nodes is of finer

granularity than the work that is stolen from the primary node. This results in fine-grained

lazily created tasks as the number of nodes increases, which, in turn, means larger number

of tasks (Figure 6-6).

In the grouping-capable version, if the primary node runs out of work to inline, it des

not have to wait for the execution of the stolen tasks to complete. Instead, it may steal

Chapter 6

162

back some of the available work in the parallel platform. With the original version, this

would have not been possible because there is no other work available in the parallel

platform. In the example of Table 6-6, the primary node does not receive any tasks from

the other nodes because the execution of all the stolen tasks finishes before the primary

node runs out of work.

The smaller number of lazily created tasks with coarser granularity results in better

utilisation of the available computational resources. The nodes of the parallel platform do

not waste valuable computational time waiting for a new task to arrive, as it is the case

with the original version of the iterative tasklet. This observation is justified by the

speedups for small function granularities presented in Figure 6-5 (page 122).

6.4.2. Iterative Tasklet – Parallel Map – SMP

The benefits of the iterative tasklet construct are also observed on physically shared

memory multiprocessor architectures. As mentioned in Chapter 3, the implementation of

the tasklet construct can be fine-tuned to better utilise SMP architectures. The tasks that

are created from a tasklet have direct access to the state of that tasklet and, therefore, can

also inline part of the associated computation. This approach reduces the number of lazily

created tasks and improves performance by avoiding the overheads of creating new tasks.

Since network related overheads are not incurred, NIPLTC performs significantly

better on the 4-way SMP than on the APP. Good speedups are achieved for very fine

granularities of the function f (Code 6-1, page 118). The grouping-capable iterative tasklet

results in even better performance (Figure 6-7). This is because the lazily created parallel

tasks have a group of iterations to execute and, as a result, there is no congestion on the

tasklet’s private lock. Every inlining operation requires that the tasklet’s private lock be

acquired. In the case of the original iterative tasklet, every inlining operation involves only

one iteration. In contrast, an inlining operation on the grouping-capable iterative tasklet

involves a group of iterations and, therefore, the number of required inlining operations is

reduced.

Due to the fine-tuning of the tasklet construct on physically shared-memory

architectures, as described in Chapter 3, the degree of parallelism in the application is

implicitly reduced when the grouping-capable version of the iterative tasklet is used. All

the lazily created parallel tasks inline iterations without creating new tasklets to maintain

the degree of parallelism. If the degree of parallelism needs to be preserved, a suitable

specialisation of the iterative tasklet could be implemented.

NIPLTC Micro-Benchmarks

 163

0

1

2

3

4

0.0 0.1 0.2
function granularity (msecs)

sp
ee

du
p

100

500

1000

2000

0

1

2

3

4

0.0 0.1 0.2
function granularity (msecs)

sp
ee

du
p

100

500

1000

2000

0

1

2

3

4

0.0 0.1 0.2
function granularity (msecs)

sp
ee

du
p

100

500

1000

2000

0

1

2

3

4

0.0 0.1 0.2
function granularity (msecs)

sp
ee

du
p

100

500

1000

2000

Figure 6-7: Speedups of the parallel map micro-benchmark on the 4-way SMP for the original (top row)
and grouping-capable (bottom row) iterative tasklet (2 and 4 processors, vector size: 100, 500, 1000, 2000)

Finally, it is observed that the speedup on 4 processors asymptotically reaches ~3.4

and does not increase even with the grouping-capable iterative tasklet. Even for larger

granularities of the function f (not shown in Figure 6-7), the speedup does not exceed 3.4.

Although this may be attributed to a number of factors, such as smaller executable of the

sequential code and therefore better utilisation of the processor cache, Linux thread

scheduling, etc., it is very likely that there is a scalability problem with the

micro-benchmark on SMP architectures. Only one tasklet is available from which all the

lazily created parallel tasks are trying to inline iterations. A grouping-capable iterative

tasklet that does not reduce the degree of the parallelism in the application on SMP

architectures (i.e., new tasklets are created for every stolen group) could probably tackle

the problem of scalability as inlining would take place from more than one tasklet

simultaneously.

The performance benefits due to the grouping-capable version of the iterative tasklet

demonstrate the strength of NIPLTC and the tasklet construct over previous lazy task

creation approaches. In all the benchmark applications that follow, when an iterative

tasklet is required, the grouping-capable version will be used.

6.4.3. Recursive Tasklet – Grain

The grain micro-benchmark used for the evaluation of the recursive tasklet (Chapter 3) is

the same one used in (Mohr et al. 1991). The grain computation recursively adds up a

perfect binary tree. When a leaf is reached, a function is called, which controls the overall

granularity of the computation, before the value 1 is returned. As in the original grain

benchmark, a tree-depth of 16 is used. The number of leaves in the tree determines the

Chapter 6

164

degree of logical parallelism of the computation given that a separate parallel task could be

created to evaluate the function associated with each leaf. The number of potential

parallel tasks for a tree-depth of 16 is 65,536.

Code 6-4 presents the pseudo code of the grain micro-benchmark. A suitable,

NIP-aware compiler could transform the program to match the NIP execution model

semantics (Code 6-5). The NIPDSM is not used because the grain micro-benchmark does

not require access to any objects placed in the shared memory. A more detailed discussion

of the recursive tasklet can be found in Chapter 3.

grain(int depth)
 if (depth > 0)
 return grain(depth – 1) + grain(depth – 1)
 else
 f()
 return 1

main()
 grain(16)

Code 6-4: The grain pseudo code consistent to the NIP programming
model semantics

grain(NIPRecursiveTasklet& tasklet, int depth)
 if (depth > 0)
 NIPRecursiveTaskletNode grainNode(depth – 1)
 int tmp = grain(depth – 1)
 tasklet.waitOrInline(grainNode)
 return tmp + grainNode.result()
 else
 f()
 return 1

main()
 NIPRecursiveTaskletNode grainNode(16)
 NIPRecursiveTasklet tasklet(grainNode)
 grain(tasklet, 16)
 tasklet.waitOrInline()

Code 6-5: The grain pseudo code converted to be consistent with NIP
execution model semantics

The additional overheads introduced in the execution time of the grain benchmark by

NIP related operations are presented in Table 6-7.

NIPLTC Micro-Benchmarks

 165

APP

workstation
SMP

workstation

0.01 42.09% 42.65%

0.02 13.45% 13.42%

0.04 5.84% 5.79%

0.06 3.61% 3.59%

0.08 2.67% 2.64%

0.10 2.12% 2.08%

0.15 1.39% 1.37%

0.20 1.01% 1.04%

F
u

n
ct

io
n

 g
ra

n
u

la
ri

ty
 (

m
se

cs
)

0.50 0.41% 0.42%

Table 6-7: The execution overhead introduced due to NIP related operations as a percentage of the
execution of sequential version of the grain micro-benchmark for the an APP workstation and the SMP

workstation for different granularities

The grain micro benchmark is executed on both the APP and the SMP parallel

platforms. The speedup achieved on the APP is presented in Figure 6-8 and the

percentage of lazily created tasks is shown in Table 6-8. The very good speedups that are

achieved on the APP (Figure 6-8), despite the slow network that is used (shared Fast

Ethernet 100Mbit/s), are attributed to the following factors:

• Tasks are stolen from the top of the recursive tasklet’s queue and, therefore, their

granularity is coarse (Chapter 3). As a result, there are only a small number of

coarse-grained tasks created (Table 6-8). The NIP nodes are kept busy without

having to look for work frequently.

• There is a good distribution of work in the parallel platform. When a task receives

a sub-tree of the computation to execute, it creates a new tasklet to represent the

potential parallelism in the received job. The primary node does not become a ‘hot

spot’ of work stealing requests.

The grain micro-benchmark performs well on the SMP workstation (Figure 6-9). Only a

fraction of the total number of potentially parallel tasks is created. The tasks that are lazily

created are of coarse granularity, resulting in better utilisation of resources. The

implementation of the recursive tasklet is optimised for SMP architectures, like the

iterative tasklet. The same factors that may be influencing the scalability of the iterative

tasklet (Section 6.4.2) may also be affecting the recursive tasklet. Figure 6-9 suggests that

an upper limit exists to the speedup that can be achieved on 4 processors.

Chapter 6

166

 2 nodes 4 nodes 8 nodes

0.01 0.002% 0.012% 0.038%

0.02 0.002% 0.006% 0.055%

0.04 0.003% 0.008% 0.095%

0.06 0.003% 0.015% 0.037%

0.08 0.003% 0.011% 0.044%

0.10 0.003% 0.012% 0.082%
0

1

2

3

4

5

6

7

8

0.0 0.1 0.2 0.3 0.4 0.5
function granularity (msecs)

sp
ee

du
p

8 nodes

4 nodes

2 nodes

F
u

n
ct

io
n

 g
ra

n
u

la
ri

ty

(m
se

cs
)

0.15 0.003% 0.014% 0.142%

Figure 6-8: Speedups of the grain micro-benchmark on
the APP

Table 6-8: Percentage of tasks created out of
65,536 possible on the APP

 2 processors 4 processors

0.01 0.003% 0.034%

0.02 0.006% 0.024%

0.04 0.003% 0.024%

0.06 0.006% 0.031%

0.08 0.005% 0.020%

0.10 0.008% 0.024%
0

1

2

3

4

0.0 0.1 0.2 0.3 0.4 0.5
function granularity (msecs)

sp
ee

du
p

4 processors

2 processors

F
u

n
ct

io
n

 g
ra

n
u

la
ri

ty

(m
se

cs
)

0.15 0.003% 0.017%

Figure 6-9: Speedups of the grain micro-benchmark on
the SMP

Table 6-9: Percentage of tasks created out of
65,536 possible on the SMP

6.5. NIPDSM Micro-Benchmarks

The micro-benchmarks of the previous section demonstrated the effectiveness of the

NIPLTC technique on both physically shared and distributed memory architectures.

However, none of those micro-benchmarks made use of the NIP execution model

memory semantics that define the object-structured shared memory. In this section, a

series of tests are used to evaluate NIPDSM, the implementation of the NIP execution

model memory semantics, and the introduced caching techniques (Chapter 4).

In the current implementation of the NIP run-time library, the cost of accessing an

object in the NIPDSM is exceptionally high, as shown in Table 6-3 (page 116). At least

one pair of acquire and release mutex operations is required for every lock operation on

an object. On proxy nodes, two different mutexes must be acquired and released before a

method can be called on a cached copy of the object. Locking operations on immutable

objects that take place on the manager node of those objects are not as expensive, since

the part of the NIPDSM locking process that guarantees thread-safe access to the

NIPDSM VOT is not required.

The cost of a cache miss incorporates the network communication and thread

suspension/resumption costs, in addition to the overheads due to mutex operations on

NIPDSM Micro-Benchmarks

 167

both the proxy and manager nodes. The cost of accessing a cached object is very close to

the cost of accessing an object at the manager node (Table 6-3, page 116). The additional

overhead is attributed to an extra pair of mutex acquire/release operations that must take

place when checking the availability of the required NIPDSM VOT tables. The

considerable difference in the run-time overheads between a cache-miss and a cache-hit

illustrates the importance of the object grouping caching techniques, which improve the

cache-hit rates as will be shown shortly.

The cost of accessing a NIPDSM object is significantly higher when compared to the

overhead of accessing an object in virtual memory. This will probably result in

memory-intensive applications performing poorly. Better results should be achieved for

applications with a high computation/NIPDSM operations ratio.

 Elapsed (usecs)

VM object access 0.017

NIPDSM access through NIP reference 0.094

NIPDSM immutable object access immutable
on manager node (lock operation)

0.366

NIPDSM mutable object access on manager
node (lock operation)

2.134

NIPDSM cache miss 461.715

NIPDSM cache hit 3.664

NIPDSM proxy invalidation 451.516

Table 6-10: Cost of NIPDSM operations

An additional issue that affects performance of memory-intensive applications is the

allocation of objects in the NIPDSM. Objects are not distributed around the nodes of the

parallel system when created. Instead, the node that creates an object automatically

becomes the manager node for that object. Many applications create all the necessary

objects before they initiate any parallel computations. With the NIP run-time, this results

in the node creating the objects being overwhelmed with proxy requests.

Even if the implementation were improved, however, the cost of cache misses would

remain high due to the overheads of the network related operations. Therefore, one of the

main aims of the NIPDSM is to improve caching. To that extent, the analysis of the

performance-related results that follows focuses primarily on the applicability of the

NIPDSM caching techniques for various memory access patterns.

In the performance evaluation that follows, a specific NIPDSM caching technique is

enabled or disabled according to the requirements of a particular micro-benchmark.

Chapter 6

168

However, even when none of the caching techniques is enabled, an object may be found

in the cache of a proxy node due to temporal locality. This is because the NIP entry

consistency semantics specify that an object remains at a node until it is invalidated

(Chapter 4). The micro-benchmarks that follow explicitly invalidate cached objects when

required in order to investigate the characteristics of a specific object caching technique.

Finally, in the discussion that follows, ‘no caching’ means that none of the object

grouping techniques was used.

6.5.1. Object Grouping Based on Location – Parallel Map

The micro-benchmark of Section 6.4.1 is modified and used in the evaluation of the first

of the caching techniques. The version of the benchmark that was used to test NIPLTC

did not make use of the memory semantics of the NIP execution mode because no shared

memory was assumed. The required data for the execution of an iteration was transferred

as part of the Task object.

The code of the micro-benchmark that is consistent with the NIP execution model

semantics is presented in Code 6-6. The NIPIterativeTaskletGroup tasklet is part

of the NIP run-time library. The only data exchanged between nodes as part of the lazy

task creation process is the argument to the function that is executed for each iteration, a

NIPRef<double> instance in this case. The availability of any data is guaranteed

through the NIPDSM locking operations. For every iteration in the loop, the required

element from the vector must be locked before it can be accessed (Code 6-6).

typedef NIPObject<double> Double

iter(int i, NIPRef<Double> vectorRef)
 Double& d = vectorRef[i].lockRead()
 f(d)
 vectorRef.unlock()

main()
 NIPRef<Double> vectorRef = NIPDSMNewObject<Double>(Mutable, N)
 NIPIterativeTaskletGroup<NIPRef<Double>, iter> tasklet(N, vectorRef)
 tasklet.waitOrInline()

Code 6-6: Pseudo code for the parallel map micro-benchmark consistent with the NIP execution model
semantics

The application of Code 6-6 exhibits spatial locality in memory access. This is because

the elements of the vector are spatially adjacent to each other and they are accessed in an

iterative manner. The object grouping caching technique was designed and implemented

to favour this particular memory access pattern.

The following series of speedup graphs illustrate the impact of the caching technique

to the performance of the micro-benchmark (Figure 6-10). The first row of graphs shows

NIPDSM Micro-Benchmarks

 169

the speedups achieved for 2, 4, and 8 nodes without the use of any caching techniques. In

contrast, the graphs of the bottom row are generated from the execution of the

micro-benchmark with object-grouping based on location enabled.

The performance of the micro-benchmark is improved when the caching technique is

enabled. Due to the overheads associated with the NIPDSM, the speedups attained are

worse, but not to a great extent, than what was achieved with the earlier version of the

micro-benchmark (Figure 6-5, page 122). Since the NIPDSM related overheads are fixed,

the executions of the micro-benchmark for large granularities are affected less. For

example, for a granularity of 22.91msecs and vector size of 2,000 on 8 nodes (this

configuration is not shown in any of the graphs of Figure 6-10), a speedup of 7.3 is

achieved, which compares to the speedup of 7.6 that was possible with the non-NIPDSM

version. For the same configuration (i.e., function granularity, vector size, and number of

nodes) but without object grouping enabled, a speedup of only 6.3 is achieved. The

micro-benchmark performs poorly when caching is disabled because the tasks on

secondary nodes are repeatedly suspended. This is because the execution of every iteration

has to suspend on a locking operation until the object being accessed can be fetched from

its manager node, which in this case is always the primary node. When the granularity of

the function is fine, the additional run-time cost of the cache miss overwhelms the

execution time. Object grouping reduces the number of times the execution has to wait.

0

2

4

6

8

0 1 2 3 4 5
function granularity (msecs)

sp
ee

du
p

100

500

1000

2000

0

2

4

6

8

0 1 2 3 4 5
function granularity (msecs)

sp
ee

du
p

100

500

1000

2000

0

2

4

6

8

0 1 2 3 4 5
function granularity (msecs)

sp
ee

du
p

100

500

1000

2000

0

2

4

6

8

0 1 2 3 4 5
function granularity (msecs)

sp
ee

du
p

100

500

1000

2000

0

2

4

6

8

0 1 2 3 4 5
function granularity (msecs)

sp
ee

du
p

100

500

1000

2000

0

2

4

6

8

0 1 2 3 4 5
function granularity (msecs)

sp
ee

du
p

100

500

1000

2000

Figure 6-10: Comparison between the speedups achieved when a caching technique is not used (top row)
and when a object grouping based on location (bottom row) is used (number of nodes: 2, 4, 8; vector size:

100, 500, 1000, 2000)

The graphs of Figure 6-10 give the impression that as the number of nodes increases,

the advantages due to object grouping based on location become less obvious. There

seems to be an association between the number of nodes, the degree of logical parallelism

Chapter 6

170

and the speedup achieved. A greater number of nodes result in poorer speedups for

smaller vectors.

0%

25%

50%

75%

100%

0 1 2 3 4 5
function granularity (msecs)

ca
ch

e
hi

ts

100

500

1000

2000 0%

25%

50%

75%

100%

0 1 2 3 4 5
function granularity (msecs)

ca
ch

e
hi

ts

100

500

1000

2000 0%

25%

50%

75%

100%

0 1 2 3 4 5
function granularity (msecs)

ca
ch

e
hi

ts

100

500

1000

2000

Figure 6-11: Cache-hit rates for the map micro-benchmark on 2, 4, and 8 nodes and for different

granularities of the function (vector size: 100, 500, 1000, 2000)

The total number of available potentially parallel tasks in the system is fixed for this

micro-benchmark and it depends on the size of the vector used. As the number of the

available processing nodes increases, the available work is split to smaller groups through

NIPLTC and distributed across the parallel system. The smaller number of iterations on a

node results in a lower cache-hit rate. Consequently, the total cache-hit rate on the parallel

system is reduced, which results in reduced performance. Figure 6-11 confirms the above

discussion. For larger vectors, the number of iterations executed on each node is enough

to keep the cache-hit rate high.

The decrease in performance due to the increase in processing nodes for the parallel

map micro-benchmark would have been the same with any page-based caching scheme.

The high cache-hit rates that have been achieved demonstrate that object grouping based

on location can benefit applications exhibiting spatial locality in memory access.

6.5.2. Object Grouping Based on Associations – TreeSum

Object grouping based on associations is the NIPDSM caching technique that attempts to

improve the memory access times for applications that traverse through dynamically

created data structures, like lists, trees, etc. NIPDSM can make use of information about

the layout of the data structures at run-time, in order to increase the cache-hit rates.

Applications are required to explicitly identify the associations between objects (Chapter

4). The identified associations are used when NIPDSM chooses the objects to be included

in a cache block.

A new micro-benchmark was devised to test the behaviour of the caching technique.

It is assumed that a tree of arbitrary depth is created dynamically over time and that this

results in the nodes of the tree being spread throughout the memory (i.e., the nodes are

not spatially adjacent). A node is a NIPDSM object and, therefore, it needs to be locked

NIPDSM Micro-Benchmarks

 171

before its state can be accessed. Each node has four children and stores the value 1.

During the construction of the tree, every node is associated with its children.

Once the tree has been initialised, a task is created on a secondary node to calculate

the summary of all the values in the tree. In order to allow the performance evaluation to

concentrate on the NIPDSM technique, the NIPLTC is not used in this

micro-benchmark.

Since each node in the tree is accessed only once and the nodes are not considered to

be spatially adjacent, every locking operation would cause a cache-miss even when the

object grouping based on location caching technique is enabled (i.e., cache-hit rate of 0%).

The treesum micro-benchmark was executed for a varying number of tree nodes and

cache block sizes. The achieved cache-hit rates range between ~36% and ~93% (Figure

6-12). Figure 6-12 suggests that the cache-hit rate depends on both the depth of the tree

and the size of the NIPDSM cache block.

The size of each of the nodes in the tree is 64 bytes. Table 6-11 presents the total

number of objects for the different tree depths. The entire tree is transferred from the

primary node to the secondary node, where the tree traversal algorithm is evaluated. The

number of objects is the same as the total number of locks required for the entire tree to

be traversed. As the size of the cache block increases, more objects can be transferred

together during a locking operation. However, as Figure 6-12 demonstrates, there are

cases where for the same number of objects (constant tree depth) a larger cache block

does not result in cache-hit rate increase.

There does not seem to be a clear link between the effectiveness of the NIPDSM

caching technique in terms of cache-hit rate, the cache block size, and the depth of the

tree. The reason for the results of Figure 6-12 can be found if the behaviour of the

NIPDSM caching algorithm is considered. Figure 6-13 presents an example that illustrates

the correlation between the tree size, the cache block, and the cache-hit rate. Two

quadruple trees are shown of size 3 and 4 respectively. If it is assumed that a NIPDSM

cache block can only accommodate four objects, then the cache-hit rates for the two trees

are 19% and 78.8% respectively. The significant difference in the cache-hit rates between

the two trees is attributed to the manner in which NIPDSM places associated objects in

the cache block.

Chapter 6

172

0%

25%

50%

75%

100%

512 1024 1536 2048 2560 3072 3584 4096

cache block size (bytes)

ca
ch

e
hi

t
ra

te
depth 7 depth 8 depth 9 depth 10

Tree depth
Number of
tree nodes

7 5,461

8 21,845

9 87,381

10 349,525

Node size 64 bytes
Figure 6-12: Cache-hit rate for the treesum micro-benchmark for different

tree depths and cache block sizes
Table 6-11: Number of
objects transferred (and
read lock operations) for

each tree depth and size of
each tree node

 Object locked

 Object cached

Figure 6-13: Example of object grouping based on relations and the association between the tree-depth and

the number of cache hits

0%

25%

50%

75%

100%

512 1024 1536 2048 2560 3072 3584 4096

cache block size (bytes)

%
 c

ac
he

 b
lo

ck
 u

sa
ge

depth 7 depth 8 depth 9 depth 10

Figure 6-14: Cache block usage for the treesum benchmark

As Chapter 4 described, the associations between NIPDSM objects formulate a graph.

The algorithm used to place objects into the cache block traverses the graph of

associations in a breadth-first manner. This means that if the last objects to be placed in

NIPDSM Micro-Benchmarks

 173

the cache block are those at the depth-1 level, then all their children (i.e., the leaves) will

have to be cached on their own because they are not associated with any other object

(first tree of Figure 6-13). If, however, when an object at depth-1 is placed in the cache

block and there is still space for other objects, its children will also be included (second

tree of Figure 6-13).

Different cache block sizes result in distinct object caching behaviour. To illustrate

this, the cache block usage is calculated and presented in Figure 6-14 for different cache

block sizes. The total number of objects that fit into a cache block can be determined

since the size of each tree node is known (Table 6-11). As it is shown in Figure 6-14, the

cache block is not fully used.

Despite the variations in the cache-hit rate and the non-optimal use of the cache

block, good cache-hit rates were achieved (Figure 6-12). This demonstrates the

effectiveness of object grouping based on associations when data structures are accessed

because the significant overheads of cache-misses (Table 6-10, page 128) will not be

incurred to the same extent as when the cache-hit rate is low. The cache-hit rate may be

low or even zero when none of the object grouping caching techniques is enabled or

when object grouping based on location is used, since the tree nodes are not spatially

adjacent. The object grouping based on locking history (examined in the next section)

would not have increased the cache-hit rate either, since the tree nodes are only accessed

once (i.e., there is no recurring object access).

The observed problems were due to the mismatch of the tree traversal and NIPDSM

object grouping algorithms. A tree with fewer children per node would suffer less from

the problem discussed above, while the cache-hit rate for other data structures, like lists,

will be significantly better (i.e., the maximum use of the cache block is achieved).

Chapter 6

174

0%

25%

50%

75%

100%

512 1024 1536 2048 2560 3072 3584 4096

cache block size (bytes)

ca
ch

e
hi

t
ra

te

depth 7 depth 8 depth 9 depth 10

Figure 6-15: Object

associations in order to
improve the cache-hit rate

Figure 6-16: Cache-hit rate for the optimised treesum micro-benchmark for
different tree depths and cache block sizes

If the cache-hit rate for this algorithm was to be improved, additional associations

between objects are required. Besides the associations of each tree node with its children,

the left most node in each subtree is associated with the nodes with which it shares its

parent (Figure 6-15). The cache-hit rate is improved and it is almost identical for all the

tree depths.

To further illustrate the benefits of the object grouping based on associations caching

technique, the cache-hit rate achieved from the execution of a micro-benchmark similar to

treesum was also measured. In the list-iteration micro-benchmark, a task is created on a

secondary node to iterate through the nodes of a list data structure, the nodes of which

are spread in memory (i.e., the nodes of the tree are not spatially adjacent). Every node of

the list is associated with its next node (Figure 6-17). The cache-hit rate achieved is shown

in Figure 6-18.

associations & order of list traversal

Figure 6-17: An example of a list data structure and the associations between nodes

NIPDSM Micro-Benchmarks

 175

85%

90%

95%

100%

512 1024 1536 2048 2560 3072 3584 4096

cache block size (bytes)

ca
ch

e
hi

t
ra

te

1,000 5,000 10,000 20,000

Figure 6-18: Cache-hit rate for the list-iteration micro-benchmark (number of elements in the list: 1,000,

5,000, 10,000, 20,000)

The object grouping technique could be used for objects that are associated with each

other even if when they are not part of the same data structure. The graph of associations

between NIPDSM objects could identify a memory access pattern in an application or

even explicit links between otherwise unrelated objects. The matrix multiplication

benchmark investigates the use of object associations in defining memory access patterns

(Section 6.6.1).

6.5.3. Object Grouping Based on Access History – Tree Search

The final NIPDSM caching technique to be evaluated is the object grouping based on

access history. A new micro-benchmark was devised to test the technique. A sorted binary

tree of 1,024 objects is created and a search algorithm is used to locate a random object in

that tree. The search algorithm is repeated 1,000 times for a different random object each

time.

A task is explicitly created using appropriate NIP run-time library calls on a secondary

node. As a result, none of the objects required by the search algorithm are available locally

on that secondary node. After the completion of the search algorithm, all the objects that

have been fetched from the primary node are flushed from the secondary node’s cache.

The next invocation of the search algorithm will not find any objects available on that

secondary node.

The random object used as a criterion in the search algorithm is chosen from one of

the following pre-specified ranges in turn: the first 128
1,32

1,16
1,2

1 part of the sorted range

of leaves. In order to allow the performance evaluation to concentrate on the NIPDSM

technique, the NIPLTC is not used in this micro-benchmark. Furthermore, the elements

Chapter 6

176

of the tree are assumed not to be spatially adjacent to each other. Hence, enabling the

object grouping based on location technique would not result in any cache-hit rates.

As the range from which the object is randomly selected becomes narrower, the

chances the search algorithm will access objects in the same order increases. The top part

of the tree that is common for all runs of the search algorithm includes more objects. As

an example, the first four steps of the micro-benchmark for 16 leaves are illustrated in

Figure 6-19. When object 5 is to be located, none of the objects along the route is

included in the cache block as part of a grouping operation, resulting in zero cache-hit

rate. However, NIPDSM records the order in which the objects are accessed and uses that

information in the next run. If object 7 is to be located by the search algorithm, the lock

on object a will result in objects b and e to be cached as well (the cache-hit rate is 2/5).

Although the link from object e to object i is lost (Section 4.8.4, page 90), the link from

object i to object 5 is maintained. As more instances of the algorithm are executed, the

locking history information is built up. In Figure 6-19, the random object was chosen

from the first half of the set of leaves. This resulted in objects a and b always being

locked, during an execution of the search algorithm. If the object was selected from the

first quarter of the same set, objects a, b, and d will always be cached as a group.

1 2 3 4

h i

d

5 6 7 8

j k

e

b

9 10 11 12

l m

f

13 14 15 16

n o

g

c

a

1 2 3 4

h i

d

5 6 7 8

j k

e

b

9 10 11 12

l m

f

13 14 15 16

n o

g

c

a

1 2 3 4

h i

d

5 6 7 8

j k

e

b

9 10 11 12

l m

f

13 14 15 16

n o

g

c

a

1 2 3 4

h i

d

5 6 7 8

j k

e

b

9 10 11 12

l m

f

13 14 15 16

n o

g

c

a

Figure 6-19: Example of locking operations in the tree search micro-benchmark

NIPDSM Micro-Benchmarks

 177

1/2

20%

40%

60%

80%

0 250 500 750 1000
search no

ca
ch

e-
hi

t
ra

te

1/16

20%

40%

60%

80%

0 250 500 750 1000
search no

ca
ch

e-
hi

t
ra

te

1/32

20%

40%

60%

80%

0 250 500 750 1000
search no

ca
ch

e-
hi

t
ra

te
1/128

20%

40%

60%

80%

0 250 500 750 1000
search no

ca
ch

e-
hi

t
ra

te

Figure 6-20: Cache-hit rates of object grouping based on access history for the tree search

micro-benchmark (binary tree leaves: 1,024; random objects used as criteria for the search algorithm are
selected from the 128

1,32
1,16

1,2
1 of the set of leaves)

Figure 6-20 presents the results from the execution of the micro-benchmark. A dot in

the graph indicates the cache-hit rate achieved for one invocation of the search algorithm.

The line represents the trend of the cache-hit rate. As expected, a narrower range of

objects from which a random one is chosen results in higher cache-hit rates (the trend

lines of Figure 6-20) because more objects are accessed in a recurring manner. The

cache-hit rates for the first 50 repetitions of the algorithm are shown in Figure 6-21.

Finally, Figure 6-22 presents the evolution of the cache-hit rate as the range from which

the random objects are chosen becomes narrower.
1/2

0%

20%

40%

60%

80%

0 10 20 30 40 50
search no

ca
ch

e-
hi

t
ra

te

1/16

0%

20%

40%

60%

80%

0 10 20 30 40 50
search no

ca
ch

e-
hi

t
ra

te

1/32

0%

20%

40%

60%

80%

0 10 20 30 40 50
search no

ca
ch

e-
hi

t
ra

te

1/64

0%

20%

40%

60%

80%

0 10 20 30 40 50
search no

ca
ch

e-
hi

t
ra

te

Figure 6-21: Cache-hit rates of object grouping based on access history for the tree search

micro-benchmark for the first 50 repetitions of the search algorithm (binary tree leaves: 1,024; random
objects used as criteria for the search algorithm are selected from the 128

1,32
1,16

1,2
1 of the set of leaves)

Chapter 6

178

20%

40%

60%

80%

100%

0 50 100 150 200 250 300
range = 1/x of 1,024 (x: 2, 4, 8, 16, 32, 64, 128, 256)

ca
ch

e-
hi

t
ra

te

Figure 6-22: Evolution of the cache-hit rate when the range from which the random objects are chosen

becomes narrower

The cache-hit rates achieved from the execution of the micro-benchmark demonstrate

the applicability of the object-grouping based on access history for applications that

exhibit recurring behaviour when accessing objects in memory, such as implementations

of search algorithms, web or database servers, numerical applications, etc.

6.6. Applications

After the separate examination of the NIP run-time techniques, the discussion moves to

the analysis of the results obtained from the performance evaluation of three applications,

with both NIPLTC and NIPDSM activated. All three applications utilise the grouping

capable iterative tasklet for identifying parallelism.

In the discussion that follows, ‘no caching’ indicates that none of the object grouping

techniques was used to improve the cache-hit rate. However, when individual objects are

cached, even if none of the object grouping techniques is used, temporal locality can still

be exploited. According to the NIP entry consistency semantics, a proxy node maintains

an object in its cache until it is invalidated (Chapter 4).

6.6.1. Matrix Multiply

Design

The first application to be examined implements a matrix-by-matrix multiplication

algorithm. A matrix is regarded as a two-dimensional array. If the dimensions of the

matrix are N rows by M columns, then M+1 NIP references are required to represent a

Matrix instance. Since the subscript operator (operator[]) is available for NIP

references and it offers a similar behaviour to the subscript operator on virtual memory

Applications

 179

pointers, it is not necessary to store all the possible NIP references to the matrix elements

(N*M in total) (Table 6-12).

[0] NIP reference to column 0 [0] NIP reference to matrix element

[1] NIP reference to column 1 [1] NIP reference to matrix element

. .

. .

. .

N
IP

 r
ef

er
en

ce
 t

o
 r

o
w

[N – 1] NIP reference to column N - 1

N
IP

 r
ef

er
en

ce
 t

o

co
lu

m
n
 X

(x

 =
 0

 …
 N

 –
 1

)

[M – 1] NIP reference to matrix element

Table 6-12: NIP references required for representing the layout of a matrix

template<class T>
class Matrix : public NIPShared<Matrix<T> >
{
public:
 Matrix(size_t, size_t);
 ~Matrix();

 typedef T MatrixElement;
 typedef NIPRef<MatrixElement> ColumnRef;
 typedef NIPRef<NIPObject<ColumnRef> > RowRef;

 RowRef row(size_t);
private:
 Matrix();
 RowRef _rowsRef;
 size_t _m, _n;
};

typedef Matrix<NIPDouble> MatrixOfDoubles;

Code 6-7: The Matrix class

The Matrix C++ interface is presented in Code 6-7. Since NIPRef<T> is

considered a primitive type, its instances cannot be allocated directly into the NIPDSM. A

wrapper template class (NIPObject<T>) is made available by the NIP run-time that may

be used when primitive types are to be allocated in the NIPDSM. For the purposes of this

test, the elements of the matrix are of type NIPDouble, a type provided by the NIP

runtime library and which is equivalent to NIPObject<double>.
Matrix instance

matrix reference lock
rows reference

NIPObject instance

column reference

double instance

lock
lock

Figure 6-23: Series of locking operations when accessing a Matrix element

In order to be consistent with the NIP execution model memory semantics, three

NIPDSM locking operations are required before an element of a matrix instance may be

accessed (Figure 6-23). The significant run-time overheads of the NIPDSM locking

operations (Section 6.3.2 and Section 6.5) overwhelm the computation, as the results

presented later in this section demonstrate. A total number of MN ××3 lock operations

are required when all the elements of a matrix of size MN × are accessed. The number

Chapter 6

180

of lock operations for the multiplication of two matrices of size MN × and LM × is

given by Equation 6-2. However, it is reasonable to assume that a compiler can optimise

the access to the matrices by reducing the number of locks required. For example, when

the elements of an entire column are accessed, the NIPObject containing the NIP

reference to that column need not be locked every time (second lock in Figure 6-23). In

the implementation of the matrix multiplication application that is used here, the number

of locks required is reduced and is given by Equation 6-3.

LNMLN ××+×××× 332 Equation 6-2

LNMLNN ×+×××+× 35 Equation 6-3

An alternative design of the Matrix class could have eliminated part of the run-time

overhead and significantly improve performance. The value of the matrix elements rather

than their references could be stored in a vector object. Then, only one lock operation

would be required when accessing a whole row or column of the matrix (depending on

the way the matrix is represented). However, this alternative approach introduces two

important problems:

• The manner in which the application can access the matrix object is restricted to

either row-wise or column-wise.

• If exclusive access (i.e., a write lock) to an element of the matrix were required, a

whole vector would have to be locked. As a result, the application’s logical degree

of parallelism would have been compromised because not all the elements of the

vector could be accessed concurrently. Furthermore, false sharing is introduced. If

two or more parallel tasks require concurrent access to different elements of the

matrix that belong to the same column (or row), the vector object representing the

column (or row) will have to move from one node to another, further

compromising performance.

In the performance evaluation of the matrix application that follows, the first design for

the Matrix class was used (Table 6-12, Code 6-7, Equation 6-3).

Performance Analysis

The NIP version of the matrix multiplication was executed on the SMP using 1, 2, and 4

processors. The measured execution times are compared to the sequential C++ version of

the same application. The one-processor test shows the significant overheads due to

object locking. The observed slowdowns are reduced as the matrix size increases. This is

because a number of lock operations (N×5 in Equation 6-3) are performed outside the

Applications

 181

dot product loop of the matrix-by-matrix multiplication. As the granularity of the dot

product increases, the relative impact of the run-time overheads due to those lock

operations is reduced.

0

50

100

150

200

250

300

0 100 200 300 400

matrix size (N x N)

sl
ow

do
w

n

4 processors

2 processors

1 processor

Figure 6-24: Execution slowdowns of the matrix multiplication application on the SMP due to object

locking when compared to the sequential C++ version

0

500

1000

1500

0 100 200 300 400
vector size

sl
ow

do
w

n

No caching
Grouping based on location
Grouping based on associations
Grouping based on locking history

0

500

1000

1500

0 100 200 300 400
vector size

sl
ow

do
w

n

No caching
Grouping based on location
Grouping based on associations
Grouping based on locking history

0

500

1000

1500

0 100 200 300 400
vector size

sl
ow

do
w

n

No caching
Grouping based on location
Grouping based on associations
Grouping based on locking history

Figure 6-25: Execution slowdowns of the matrix multiplication application on the APP when compared to

the sequential C++ version (number of nodes: 2, 4, 8; vector sizes: 100, 200, 300)

Having observed the significant slowdowns on the SMP, the discussion moves to the

analysis of the results collected from the execution of the matrix multiplication application

on the APP. The performance is expected to be even poorer on the APP due to the

additional network related overheads. Indeed, the slowdowns on 2, 4, and 8 nodes are

extremely high, as presented in Figure 6-25.

When any of the caching techniques is enabled, the performance is dramatically

improved, especially for smaller matrix sizes, compared to the execution of the application

with ‘no caching.’ Cache hits due to temporal locality are still observed. All three

NIPDSM caching techniques are in turn used for the execution of the application.

When the object grouping based on locking history technique is enabled, NIPDSM

records the locking pattern as the elements of the matrix are accessed and it uses the

information to improve caching. The locking access pattern can also be explicitly defined

through object associations. Each element of a matrix is associated with the next element

in the same matrix that is to be locked during the dot product loop.

Chapter 6

182

Even with the caching techniques enabled, the application performs very poorly when

compared to the sequential C++ version. This may be attributed to the following factors:

• A task has to suspend whenever an element of the matrix is accessed on a

secondary node. Since the grouping-capable tasklet is used, the number of dot

product calculations that take place on the secondary nodes is high. Therefore, the

computation is overwhelmed by task suspensions and proxy requests.

• Even when caching is enabled, a task has to suspend on every write lock

operation. The default behaviour of the NIPDSM is not to attempt to improve

cache-hit rates for write lock operations by write locking groups of objects. This is

because it is assumed that the read/write object-locking ratio in applications is

high. If a cache block was filled with write locked objects in response to a write

proxy request, a great number of invalidations would have been required by

subsequent locking requests that are initiated on different nodes.

• The sequential version of the application can better utilise the processor cache

because of the small size of its executable image.

The performance of the application on the APP is also influenced by the distribution of

work on the parallel platform. As discussed in Section 6.4.1 (page 118), the number of

lazily created tasks on a node does not necessarily determine the actual work performed at

that node when the grouping-capable iterative tasklet is used. However, the number of

dot product computations executed on a node can be determined through the write lock

operations on that node (Figure 6-26). A write lock operation only takes place once for

every dot product computation (i.e., when the result is stored to appropriate element of

the results matrix). The positive effect of the caching operations is illustrated by the even

distribution of work around the platform.

0% 25% 50% 75% 100%

N
o

ca
ch

in
g

G
ro

up
in

g
ba

se
d

on
lo

ca
tio

n

G
ro

up
in

g
ba

se
d

on
as

so
ci

at
io

ns

G
ro

up
in

g
ba

se
d

on
lo

ck
in

g
hi

st
or

y

tasks executed by node

Primary node Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8

Figure 6-26: % of tasks executed at each node (vector size: 250x250, number of nodes: 8)

Applications

 183

When the object grouping based on location caching technique is used, a number of

proxy invalidations take place. This is because objects belonging to the results matrix are

cached on secondary nodes due to a read lock operation on a spatially adjacent object. On

page-based schemes, the problem of false sharing would have arisen in this case because

different type of access (i.e., read or write) would have been required for objects placed in

the same page. NIPDSM avoids the problem by only invalidating the required objects.

This is indicated by the very small number of object invalidations that take place during

the execution of the matrix multiplication application when the object grouping based on

location caching technique is enabled (Table 6-13).

 Matrix size

 100 200 300

2 0% 0% 0%

4 0.045% 0.002% 0.001%

N
u

m
b

e
r

o
f

n
o

d
e
s

8 0.177% 0.019% 0.004%

Table 6-13: Percentage of cached objects that were invalidated

The analysis of the performance results in this section demonstrates the benefits of

both the NIP lazy task creation and NIP distributed shared memory system caching

techniques. The work in the matrix multiplication application is lazily distributed across

the parallel platform and the caching techniques significantly improve performance.

However, due to the high NIPDSM locking operations on the APP and the memory

intensive nature of the application, no speedups could be achieved. The affect of the

NIPDSM locking operations on performance is further discussed at the end of this

chapter.

6.6.2. Barnes-Hut

Design

The Barnes-Hut application is the implementation of a simulation algorithm for a

collisionless system of bodies (e.g., molecules, planets, stars, etc.). A new position for every

body in the system is calculated during each step of the simulation. The new body

position is determined by the forces applied to it by the other bodies in the system, its

velocity, its acceleration, etc. A step of the simulation requires that the interactions

between all the bodies in the system be considered. The Barnes-Hut algorithm reduces the

complexity of the simulation from O(N2) to O(NlogN) by taking into consideration the

distance of the bodies from each other. Groups of bodies that are ‘far enough’ from a

particular body are regarded as one (Barnes and Hut 1986). The algorithm is split into

three distinct steps:

Chapter 6

184

• The Barnes-Hut algorithm is based on a quad- or oct-tree data structure, for the

2D and 3D cases respectively. The trees are created by the recursive

decomposition of the space containing the bodies into four squares (2D space) or

eight cubes (3D space) until each node in the tree contains at most one body. The

tree nodes that contain a body or other tree nodes are called cells.

• Once the tree has been created, the interactions between the bodies in the system

are calculated. For each body in the system, the tree is traversed and the distance

from each cell in the tree is examined. If the distance between a cell and the body

is within the critical radius (i.e., ‘far enough’ criterion), the children of the cell are

traversed. If the distance from the cell is long enough, the interaction between the

body and the cell can be calculated.

• Once all the interactions have been calculated, the new position of the bodies may

be determined. The tree is destroyed before the algorithm can be repeated starting

from the first step.

The Barnes-Hut algorithm is often used in DSM related works due to its irregular

memory access pattern. The dynamically created tree structure exposes the limitations of

the caching techniques because the benefits due to spatial or temporal locality, in the way

memory is accessed, are limited.

The NIP version of the Barnes-Hut algorithm uses NIPDSM objects to represent

bodies and cells. The bodies of the system are stored in a vector throughout the

simulation. An oct-tree is constructed during the first step of the simulation (3D space).

The nodes of the tree are associated with their children in an attempt to improve the

access times when the object grouping based on associations caching technique is

enabled. The second step of the algorithm requires that the interactions of every body in

the vector be calculated. The potential parallelism in the second step is exposed through a

grouping-capable iterative tasklet. The tasklet used in the current implementation inlines

groups of iterations, rather than one, at a time. Finally, the tree is destroyed during the

third step. The first and the third step always take place on the primary node since any

potential parallelism in them has not been exposed. As a result, all the bodies that are

cached on secondary nodes are invalidated during the third step because their state is

updated (i.e., the result from the interactions is used to determine the new position).

The initial position of the bodies is randomly selected before the first step of the

simulation and it is the same for all the tests. The oct-tree is different for every step of the

simulation as the bodies change positions. The total number of locks required during

Applications

 185

every step dramatically increases for larger number of bodies. For example, an average

number of ~468,000 read and ~154,000 write locks per step are required for 512 bodies.

The corresponding number of locks for 8,192 objects are ~61,000,000 and ~20,000,000

respectively.

Performance Analysis

The performance characteristics of the Barnes-Hut application are recorded separately for

each step of the simulation. Due to the great number of locking operations required for

every step of the simulation, the run-time overheads are dramatically increased resulting in

significant slowdowns. The run-time overhead is measured to be approximately 11% of

the execution time of the sequential version (number of bodies: 512, 1024, 2048, 4096).

However, when the application is run on more than one node, the cost of accessing

non-cached objects affect performance to a greater extent, as is shown below.

Figure 6-27 presents the measured slowdowns on 2, 4, and 8 nodes for different

number of bodies. In Figure 6-28, the same results are shown in finer detail only for the

larger number of bodies. When the granularity of the computation is fine (i.e., smaller

number of bodies), the slowdown on a larger number of nodes is higher. This is attributed

to the overwhelming runtime costs of object replication to secondary nodes when

compared to the total computation time. As the granularity increases, the NIPDSM

related overheads become comparably less evident.

The cache-hit rates achieved from the execution of the Barnes-Hut application on the

APP are presented in Figure 6-29. The cache-hit rate is exceptionally high because of the

temporal locality in memory access that the application exhibits. During a body-to-body

or body-to-cell interaction, every body or cell is locked a great number of times. Higher

rates are achieved when object grouping based on location is enabled.

It would have been expected that higher cache-hit rates would yield improved

application performance. However, this is true only for larger number of bodies (Figure

6-28). When Figure 6-27 and Figure 6-29 are compared for smaller number of bodies, it

is clear that the significant difference in cache-hit rates does not result in performance

improvement over the execution of the application when none of the caching techniques

is enabled. In order to account for this lack of improvement, the memory access pattern

of the Barnes-Hut application must be considered.

Chapter 6

186

0

10

20

30

40

50

60

70

0 1000 2000 3000 4000 5000 6000 7000 8000
bodies

sl
ow

do
w

n
No caching technique

Grouping based on location

Grouping based on associations

0

10

20

30

40

50

60

70

0 1000 2000 3000 4000 5000 6000 7000 8000
bodies

sl
ow

do
w

n

No caching technique

Grouping based on location

Grouping based on associations

0

10

20

30

40

50

60

70

0 1000 2000 3000 4000 5000 6000 7000 8000
bodies

sl
ow

do
w

n

No caching technique

Grouping based on location

Grouping based on associations

Figure 6-27: Slowdowns of the NIP version of the Barnes-Hut application on the APP for different

caching techniques (each graph represents a different number of nodes: 2, 4, 8; number of bodies: 512,
1024, 2048, 4096, 8192; object and cache block sizes are presented in Table 6-14)

0.0

5.0

10.0

15.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
bodies

sl
ow

do
w

n

No caching technique

Grouping based on location

Grouping based on associations

0.0

5.0

10.0

15.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
bodies

sl
ow

do
w

n

No caching technique

Grouping based on location

Grouping based on associations

0.0

5.0

10.0

15.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
bodies

sl
ow

do
w

n

No caching technique

Grouping based on location

Grouping based on associations

Figure 6-28: Slowdowns of the NIP version of the Barnes-Hut application on the APP for different

caching techniques (each graph represents a different number of nodes: 2, 4, 8; number of bodies: 2048,
4096, 8192; object and cache block sizes are presented in Table 6-14)

95.0%

96.3%

97.5%

98.8%

100.0%

0 1000 2000 3000 4000 5000 6000 7000 8000
bodies

ca
ch

e-
hi

t
ra

te

No caching technique

Grouping based on location

Grouping based on associations

95.0%

96.3%

97.5%

98.8%

100.0%

0 1000 2000 3000 4000 5000 6000 7000 8000
bodies

ca
ch

e-
hi

t
ra

te

No caching technique

Grouping based on location

Grouping based on associations

95.0%

96.3%

97.5%

98.8%

100.0%

0 1000 2000 3000 4000 5000 6000 7000 8000
bodies

ca
ch

e-
hi

t
ra

te

No caching technique

Grouping based on location

Grouping based on associations

Figure 6-29: Cache-hit rates of the NIP version of the Barnes-Hut application on the APP for different
caching techniques (each graph represents a different number of nodes: 2, 4, 8; number of bodies: 512,

1024, 2048, 4096, 8192; object and cache block sizes are presented in Table 6-14)

Body NIPDSM object 128 bytes

Cell NIPDSM object 144 bytes

NIPDSM cache block 2,048 bytes

Table 6-14: Sizes of the body and cell objects and the NIPDSM cache block

The bodies in the simulated space are created together during the initialisation of the

application, thus being spatially adjacent to each other. As mentioned earlier, the parallel

computation of the second step is represented by an iterative tasklet. Each iteration

calculates the interactions of one body. The calculation involves the traversal of the

oct-tree and the evaluation of the necessary body-to-body or body-to-cell interactions. At

the end of each interaction, the state of the body is updated and, hence, a write lock

operation is required. However, the write lock operation on an object is always preceded

by a series of read locks because its state is read a number of times before it is altered.

Applications

 187

This access pattern and the caching technique that is used influence the performance of

the application, as explained next.

When an iteration is executed on a secondary node, it will have to block when the

body for which the interactions are calculated is not cached. When the object grouping

based on location caching technique is enabled, the locking operation on a body causes

the adjacent objects (bodies or cells) to be cached as well. As the task waits for the

requested object to be fetched, a new local task may be created to inline part of the

available iterations. Additionally, another node may steal a group of iterations. In either

case, it is very likely that the new task created will have to suspend on a lock operation

because the required body for the first lock of the iteration is not cached.

Figure 6-30 illustrates how most of the bodies in the simulated space are quickly

replicated in the parallel platform, when the object grouping based on location caching

technique is enabled, and why a high cache-hit rate is observed. The large number of

replicated bodies, though, results in a higher rate of invalidations (Figure 6-31), which

compromises performance for smaller granularities of the entire computation (i.e., smaller

number of bodies). The example of Figure 6-30 is only a simple demonstration of the

NIP-related operations that take place. The complexity of the actual execution behaviour

of the application is much greater due to the combination of load balancing, NIPLTC,

and NIPDSM.

In addition to the above discussion, it should also be noted that the recursive way in

which the oct-tree is constructed results in cells at the top part of the tree being spatially

adjacent, further contributing to the increase in the cache-hit rate.

Chapter 6

188

4. cache block

9

5

6

7

8

1

2

3

4

pr
im

ar
y

no
de

no
de

 1

no
de

 2

no
de

 3

5

6

2

3

4

4. cache block

3. lock on obj 4

9

5

6

7

8

1

2

3

4

pr
im

ar
y

no
de

no
de

 1

no
de

 2

no
de

 3

5

6

2

3

4

2. iterations 5-6

3. lock on obj 5
1. work request

5

6

7

3

4

4. cache block

9

5

6

7

8

1

2

3

4

pr
im

ar
y

no
de

no
de

 1

no
de

 2

no
de

 3
5

6

2

3

4

2. iterations 7-8

1. work request

5

6

7

3

4

3. lock on obj 7

5

6

7

8

9

5

6

7

8

2

3

4

pr
im

ar
y

no
de

no
de

 1

no
de

 2

no
de

 3

5

6

2

3

4
5

6

7

3

4

5

6

7

8

9

7

8

9 9

2. iterations 4-8

1. work request

4. cache block

3. lock on obj 9

2. iterations 9-13

1. work request

Example description - (Four nodes are used to simulate a system of 40 bodies. The cache block is assumed to
accommodate a maximum of five objects.) Node 1 requests work from the primary node (step 1). When the work
arrives (step 2), node 1 attempts to acquire a read lock on the body of the first iteration. This results in a proxy
request being sent to the primary node (step 3) and a cache block full of bodies is returned (step 4). In the mean
time, or even after the cache block has arrived, node 2 steals some work from node 1. As a result, the copies of
another group of objects will be cached on node 2. In the same manner, objects will be cached on node 3. As the
execution of the calculations for body 4 finishes on node 1, the active task will have to be suspended until the stolen
tasks by nodes 2 and 3 have been completed. A new task is created from the primary node 1 to keep node 1 busy
causing yet another group of objects to be cached.

Figure 6-30: Caching of bodies on a parallel platform of four nodes when the object grouping based on
location technique is enabled

0.00%

0.25%

0.50%

0.75%

1.00%

1.25%

1.50%

0 1000 2000 3000 4000 5000 6000 7000 8000
bodies

ra
te

 o
f

lo
ck

s
ca

us
in

g
ob

je
ct

 in
va

lid
at

io
ns

No caching technique

Grouping based on location

Grouping based on associations

Figure 6-31: Locks causing object invalidations from the execution of the Barnes-Hut application on 8

nodes (number of bodies: 1024, 2048, 4096, 8192; object and cache block sizes are presented in Table 6-14,
page 143)

Figure 6-31 suggests that the object invalidation rates are almost identical when no

caching technique is used, and when object grouping based on associations is used,

despite their different cache-hit rates (Figure 6-29, page 143). In both cases, a lock

operation on a non-cached body results in only that body being fetched. This is because in

the former case, no object grouping takes place at all and, in the latter case, object

Applications

 189

grouping takes place only when elements of the oct-tree are accessed, since only the cells

in the oct-tree contain associations with bodies.

As explained in Section 6.5.2 (page 131), the algorithm used by NIPDSM to group

objects based on the graph of associations is breath-first and it does not match the tree

depth-first traversal that is used in the Barnes-Hut algorithm. This contributes to the

lower cache-hit rate of object grouping based on associations caching technique.

In the discussion up to this point, the effect of the caching techniques on the

distribution of work in the parallel platform and the granularity of the lazily created tasks

were not considered. If the write lock operations on bodies are regarded as a measure of

the work executed on a node, a view of the load distribution can be generated (Figure

6-32).

0% 25% 50% 75% 100%

N
o

ca
ch

in
g

te
ch

ni
qu

e
G

ro
up

in
g

ba
se

d
on

 lo
ca

tio
n

G
ro

up
in

g
ba

se
d

on
 a

ss
oc

ia
tio

ns

tasks executed by node

Primary node Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8

0% 25% 50% 75% 100%

N
o

ca
ch

in
g

te
ch

ni
qu

e
G

ro
up

in
g

ba
se

d
on

 lo
ca

tio
n

G
ro

up
in

g
ba

se
d

on
 a

ss
oc

ia
tio

ns

tasks executed by node

Primary node Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8

Figure 6-32: Write locks executed on each node during the execution of the Barnes-Hut application on 8
nodes (each graph represents a different number of bodies: 1024, 8192; object and cache block sizes are

presented in Table 6-14, page 143)

The graphs of Figure 6-32 suggest that a very large share of the overall computation is

executed on the primary node. This is due to the benefits of accessing immutable objects

at the manager node (Table 6-10, page 128). The cells of the oct-tree are constructed as

immutable objects since, once initialised, their state is not altered. The primary node does

not suffer from the overheads of all the locking operations on cells. Therefore, the

interaction calculations are executed significantly faster. Not all of the work that is

executed on the primary node, however, can be attributed to iteration inlining from the

original tasklet. Since the secondary nodes suffer from the overheads of remotely

accessing objects, the primary node manages to steal back some of the iterations that were

stolen from it and executes them locally.

Unfortunately, due to the dynamic nature of the NIP run-time and the use of a

grouping-capable tasklet, it is not possible to determine the exact granularity (i.e., the

number of iterations) of each lazily created task. However, the total number of lazily

created tasks gives an indication of the granularity, as a smaller number of lazily created

tasks suggests more inlining operations and, therefore, coarser granularity (Table 6-15).

Chapter 6

190

 Number of bodies

 512 1024 2048 4096 8192

No caching
techniques

14.0% 5.7% 4.5% 2.7% 1.6%

Object grouping
based on location

10.7% 4.6% 3.7% 3.7% 2.2%

Object grouping
based on associations

10.2% 4.1% 4.2% 3.6% 1.7%

Table 6-15: Percentage of lazily created tasks per step out of the maximum possible (number of nodes: 8,
object and cache block sizes are presented in Table 6-14, page 143)

On most page-based DSM systems, the kind of memory access pattern that was

described above would have resulted in page-thrashing due to false sharing, as concurrent

access to more than one body in the same page would not be possible. NIPDSM avoids

the thrashing problem for object groups because of the fine granularity of the sharing

unit. However, during the second step of the algorithm the state of an object may be

accessed both by read and write methods, causing false-sharing at the object-level.

Although this is not as computationally expensive as page-thrashing would have been, it

still introduces a significant overhead. In Chapter 7, the concept of a locking technique

that allows distinct parts of the same object to be locked in different access modes is

outlined.

The implementation of the Barnes-Hut application used in these experiments was not

optimal. It was assumed that an implicitly parallel programming language compiler

generated the code. The only optimisation used was the one described in Chapters 4,

where consecutive method calls can be enclosed within on pair of lock/unlock

operations. However, it should be reasonable to assume that a compiler could do better

than that. A body is read locked and unlocked for every cell in the oct-tree that is accessed

during the second step because the distance between the body and the cell must be

calculated. The body data members that are accessed during this calculation remain

constant throughout the second step of the algorithm. Based on this observation, two

optimisations could be introduced:

• Since the body is unlocked between body-to-cell distance calculations, a write lock

on another node might invalidate the cached copy (i.e., object false-sharing). The

next read lock operation would cause a cache-miss. If the body was split to two

parts, one that is accessed by read-only methods and another that is accessed only

by write methods, this unnecessary invalidation could be avoided.

• Given that the same part of a body’s state is read for every body-to-cell and

body-to-body interaction, it would be a significant improvement if the locking

Applications

 191

operations on the body were avoided. A copy of the required state is obtained and

used for subsequent calculations.

The efficiency of the application is improved due to the introduced optimisations and

speedup was obtained when compared to the sequential C++ version of the Barnes-Hut

application (Figure 6-33).

0.00

0.25

0.50

0.75

1.00

1.25

1.50

0 10000 20000 30000 40000 50000 60000

bodies

sp
ee

du
p

optimised non-optimised

Figure 6-33: Speedup improvement of the Barnes-Hut application on 8 nodes with the object grouping
based on location caching technique enabled (number of bodies: 8192, 16384, 32768; 65536; object and

cache block sizes are presented in Table 6-14, page 143)

0.0

1.0

2.0

3.0

4.0

5.0

0 2000 4000 6000 8000 10000 12000 14000 16000

bodies

sl
ow

do
w

n

2 processors
4 processors
2 processors optimised
4 processors optimised

Figure 6-34: Slowdowns of the Barnes-Hut application on the SMP workstation (number of bodies: 512,

1024, 2048, 4096, 8192, 16384, 32768)

Finally, the slowdowns of the Barnes-Hut application on the SMP workstation are

presented in Figure 6-34. The optimised version is the one described above that reduces

the number of locks required. Although the execution times do not suffer from the

overheads of cache misses, the achieved performance is poor. This is attributed to the

following reasons:

• Since bodies are mutable objects, a locking operation on a body always requires a

mutex to be acquired. The overhead of accessing a mutable NIPDSM object is

presented in Table 6-10 (page 128).

Chapter 6

192

• More than one thread may attempt to read the state of the same body. Although

both will be granted access to the state of the body, NIPDSM only allows one

thread to update the object representation of that body (i.e., the number of local

read locks must be updated). As a result, the execution of a thread may be blocked

until exclusive access to the object representation can be granted.

• The granularity of each iteration that calculates body-to-body and body-to-cell

interactions is relatively fine. For example, the average granularity of one iteration

of the sequential C++ version is 4msecs for 16,384 bodies. Therefore, the

NIPDSM related costs overwhelm the computation.

6.6.3. Travelling Salesperson Problem

Problem Description and Implementation

The final application used in the performance evaluation of the NIP run-time library is

the travelling salesperson problem (TSP). The definition of the problem is as follows:

Given a set of cities and travelling costs for each pair of cities, find the best route visiting each city only

once. The problem considered here is asymmetric, which means that the travelling cost

from city i to city j is not assumed to be the same as the cost from city j to city i.

Route bestRoute
CostsMatrix costs

routeCostForCity(rootCity)
 Route route
 createRoute(rootCity)
 if (route.cost < bestRoute.cost)
 bestRoute = route

createRoute(rootCity, route)
 for city = 1 to N except rootCity
 if city not visited
 route.cost +=
 costs(rootCity, city)
 createRoute(city, route)

main()
 for city = 2 to N
 calculateRouteCostForCity(city)

RouteNIPDSM bestRoute
CostsMatrix costs

routeCostForCity(rootCity)
 Route route
 createRoute(rootCity)
 bestRoute.lockRead()
 bestRouteTmp = bestRoute.cost
 bestRoute.unlock()
 if (route.cost < bestRouteTmp.cost)
 bestRoute.lockWrite()
 if (route.cost < bestRoute.cost)
 bestRoute = route
 bestRoute.unlock()

createRoute(rootCity, route)
 for city = 1 to N except rootCity
 if city not visited
 costs(rootCity, city).lockRead()
 route.cost +=
 costs(rootCity, city)
 costs(rootCity, city).unlock()
 createRoute(city, route)

main()

NIPIterativeTasklet<routeCostForCity>
 route(2, N)
 route.waitOrInline()

Code 6-8: Pseudo code for the sequential
version of TSP

Code 6-9: Pseudo cost for the NIP
version of TSP

For the purposes of this thesis, a brute force algorithm for solving the problem was

utilised. The costs of all possible routes, given an initial city, are calculated. When the

Applications

 193

calculated cost for a particular route is found to be less than the current minimum, the

current best route and the associated minimum cost are updated.

A matrix with the travelling costs between each pair of cities is created. The state of

the matrix elements is not altered once initialised (i.e., the elements are immutable

objects). Only the current best route and minimum cost are updated when necessary. The

two versions of TSP in pseudo code are presented in Code 6-8 and Code 6-9. In the NIP

version of TSP, if the calculated cost for a route is found to be less than the currently best

route, another comparison must take place after the write lock has been acquired. This is

required in order to guarantee the correctness of the result. Finally, the first city from a set

of N is considered as the start of the route.

Performance Analysis

The complexity of the TSP algorithm does not allow large instances of the problem to be

considered. The cost of a total number of)!1(−N routes must be calculated for N cities.

However, the smaller instances of TSP are sufficient to study the behaviour of the NIP

version on the APP.

On the APP, the route costs matrix will be progressively cached on secondary nodes

through locking operations. Due to the small number of cities, only few locks are required

for the whole matrix to be cached on a particular secondary node, when object grouping

based on location is used. This is because the elements of the matrix are spatially adjacent

to each other.

Data structure holding best
route and minimum cost objects

232 bytes

Cost between two cities object 32 bytes

Cache block size 2,048 bytes

Table 6-16: Sizes of the body and cell objects and the NIPDSM cache block

Figure 6-35 presents the speedups achieved when compared to the sequential C++

version of the TSP application on the APP. An optimised version of the application is

also presented. In the optimised version, the locking costs for accessing the elements of

the matrix are avoided because a copy of the matrix is distributed to all the secondary

nodes at the start of the computation. Access to the best route and minimum cost objects,

though, still requires a NIPDSM locking operation. The optimised version is presented

only as a demonstration of the impact on performance that the NIPDSM locking

operations have. Since the majority of the locks are avoided in the optimised version, the

achieved speedups are very good (Figure 6-35).

Chapter 6

194

0.0

2.0

4.0

6.0

7 8 9 10 11 12 13

cities

sp
ee

du
p

No caching technique - non optimised
Grouping based on location - non optimised
No caching technique - optimised

0.0

2.0

4.0

6.0

7 8 9 10 11 12 13

cities

sp
ee

du
p

No caching technique - non optimised
Grouping based on location - non optimised
No caching technique - optimised

0.0

2.0

4.0

6.0

7 8 9 10 11 12 13

cities

sp
ee

du
p

No caching technique - non optimised
Grouping based on location - non optimised
No caching technique - optimised

Figure 6-35: Speedup the NIP version of the TSP application on the APP (each graph represents a
different number of nodes: 2, 4, 8; number of cities: 8, 9, 10, 11, 12; object and cache block sizes are

presented in Table 6-16)

For the non-optimised version of TSP and when object grouping based on location is

enabled, performance is only slightly improved over the execution of TSP with none of

the caching techniques enabled. This is attributed to the high temporal locality in memory

access that TSP exhibits. The cache-hit rates in both cases approaches 100%. Once the

immutable objects of the route costs matrix are cached, they are accessed a great number

of times. Furthermore, since the great majority of the total number of object locking

operations are read locks on immutable objects, the chances of parallel tasks attempting to

access the same object at the same time are minimised. This results to a very small

percentage of locking operations causing object invalidations, as presented in Figure 6-36.

0.00%

0.02%

0.04%

0.06%

0.08%

0.10%

0.12%

0.14%

7 8 9 10 11 12 13
cities

ra
te

 o
f

lo
ck

s
ca

us
in

g
ob

je
ct

 in
va

lid
at

io
ns

No caching technique

Grouping based on location

Figure 6-36: Rate of invalidations in the execution of the NIP version of TSP on the APP (number of

nodes: 8; number of cities: 8, 9, 10, 11, 12; object and cache block sizes are presented in Table 6-16)

Only the cached copies of the object storing the best route and its cost that may be

kept on secondary nodes need to be invalidated during the execution of the TSP

application. The percentage of object invalidations decreases as the granularity of

computations increases. This is because the increase in the total number of write locks

required for the entire computation is disproportional to the increase in the read locks

required. For example, when the number of cities is 8, 6 write locks and 32,439 read locks

take place respectively. When the number of cities is 12, the number of write locks that

take place is 34 while the number of read locks is 256,927,023.

Discussion

 195

6.7. Discussion

The performance results presented in this chapter demonstrate the effectiveness of NIP

lazy task creation technique in efficiently exploiting the identified parallelism in

application at run-time. Furthermore, the benefits of the NIPDSM caching techniques

were demonstrated. Other works that used the NIP run-time library also demonstrated

the advantages of NIPLTC (Johnson 2000) and NIPDSM (Kelly 2000; Webber 1998) for

certain types of parallel object-oriented applications, mainly not memory intensive in

nature.

In the evaluation of NIPDSM presented in this chapter, it has not been possible to

achieve promising performance results for two of the applications that were evaluated:

matrix multiplication and Barnes-Hut. The overwhelming communication costs in

combination with some implementation related drawbacks resulted in poor performance

on the APP.

The slowdowns observed in the execution of applications, especially on the SMP

workstation, suggest that the requirements of the NIP execution model memory

semantics are too strict. The NIP execution model memory semantics defined that a lock

be acquired on an object before a method can be called on it. For the implementation of

these semantics in the NIPDSM system, a mutex synchronisation construct is associated

with each object. As a result, a locking operation on a mutable object requires at least one

pair of acquire and release operations on the mutex. This introduces a significant

overhead when applications access objects in memory. Chapter 7 discusses further the

effect that the design of the NIP execution model memory system has on the

performance of NIP applications and the applicability of implicit object-based locking in

the field of parallel object-oriented computing.

Next, NIPDSM implementation related issues that further affect performance are

identified.

Load Balancing and Communication

The load balancing and communication services are not optimal. As described in Chapter

5, simple implementations of these two services were provided in order to have a fully

functional run-time environment. The most important issues related to these two services

are:

• When a cache-miss occurs, a new task is always created—from either a local or a

remote tasklet—if there are no active tasks at that node. However, as the load

Chapter 6

196

balancing service depends on the underlying operating system for task scheduling,

when the object is finally cached, the suspended task will resume even if there

other active tasks running. This results in context switching, which is one of the

problems that NIPLTC tries to overcome through the use of tasklets. Although

an upper limit on the number of tasks that can simultaneously exist on a node,

either in suspended or active state, is imposed in order to reduce the potential

overheads, a better solution is required.

• For every message exchange between two nodes, two memory-copy operations

take place before the appropriate operating system call is made, which usually

results in yet another memory-copy operation. Furthermore, the current

implementation is based on TCP/IP, which further reduces communication

efficiency.

Lack of Object Distribution

In the current implementation of the NIPDSM, the manager node for an object is always

the node on which the task creating the object is running. This introduces a bottleneck

when a great number of objects are created together by one task, as in the case of the

matrix multiplication and Barnes-Hut applications, because that node is overwhelmed

with NIPDSM related requests.

197

7CHAPTER 7
7. CONCLUSIONS AND DISCUSSION

In this chapter the conclusions of the thesis are drawn. The motivation

for this research work and the summary of the introduced run-time

techniques in the areas of lazy task creation and distributed shared

memory define the context for the discussion. Additionally, the findings

from the performance evaluation of the benchmark applications are

considered when suggesting possible optimisations in the current

design and implementation of the NIP run-time. The thesis concludes

with an outline of possible avenues for future research.

Chapter 7

198

7.1. Object-Oriented Parallel Computing

Chapter 1 identifies the need for a new approach to parallel programming. Through the

analysis of data from the top500 list of supercomputers (TOP500 List 2000), a trend is

observed towards massively parallel architectures that are based partly or entirely on

commodity hardware. Software developers should not be burdened with the task of

managing the high degree of parallelism that is made available to them through such

hardware architectures. Instead, it is suggested that software developers should only have

to concentrate on the algorithmic issues of their applications by using a programming

paradigm that, although it does not expose any hardware architecture characteristics, it

allows for parallelism in applications to be implicitly exploited. Additionally, good

software engineering practices should be supported.

To meet this challenge, the NIP programming model is proposed in Chapter 2. The

key features of the introduced model are object-orientation and implicit parallelism. These

two characteristics of the NIP programming model are considered by many experts as

essential for the future of parallel computing (Almasi and Gottlieb 1994; Culler and Singh

1999; Skillicorn and Talia 1998; Sterling et al. 1995). Previous work on the UFO language

has demonstrated that object-orientation, state, and implicit parallelism may be

successfully combined at the language level (Sargeant 1993).

While the NIP programming model describes a software development methodology,

the NIP execution model defines the semantics to which an execution environment

should adhere in order to host applications implemented through the proposed

methodology. The main characteristics of the NIP execution model are illustrated through

an abstract machine (Figure 7-1): implicit exploitation of parallelism and automatic

management of computational resources (parallelism manager), object-based memory.

object
memory

processor processorprocessor

parallelism
manager

. . .

computational model

design model

NIP programming model

NIP execution model

Figure 7-1: The major components of the abstract
machine as suggested by the NIP execution model

Figure 7-2: The parallel computing paradigm with
the NIP programming and execution models

Figure 7-2 illustrates the parallel computing paradigm as proposed by this thesis. The

NIP programming and execution models replace the corresponding layers of the parallel

Run-time Support

 199

computing paradigm presented in Chapter 2. This thesis focuses on issues related with the

bottom layer of Figure 7-2, the design and implementation of a run-time environment

that adheres to the semantics of the NIP execution model.

7.2. Run-time Support

The main research goal of this research work has been the investigation of run-time

techniques to support the parallel execution of applications developed with an

object-oriented, implicitly parallel programming language. The NIP lazy task creation

technique (Chapter 3) and the NIP distributed shared memory (Chapter 4) were designed

and implemented as part of the NIP run-time environment (Chapter 5), which is available

as a C++ library.

NIP Lazy Task Creation

The tasklet is a new construct that was first introduced by Watson (Watson 1996) to

represent the parallelism in an iterative computation (Watson and Parastatidis 1999a;

Watson and Parastatidis 1999b; Watson and Parastatidis 1999c). In this thesis, an

object-oriented approach to its design and implementation was adopted. The patterns of

parallel execution that can be represented by a tasklet are extended to include function

and recursion parallelism.

The tasklet construct is used by the NIP lazy task creation technique. During the

execution of an application, parallel tasks are lazily created from existing tasklets as

computational resources become available. The performance evaluation of a number of

micro-benchmarks (Chapter 6) demonstrates the efficiency benefits from representing

parallel computations using tasklets. It is also shown that applications with a very high

degree of parallelism can almost optimally utilise the available processing resources even

when the degree of parallelism offered by the hardware is orders of magnitude lower.

NIP Distributed Shared Memory

NIPDSM provides an implementation of the NIP execution model memory semantics. It

is an all-in-software, object-based, distributed shared memory system. Central to the

design of the NIPDSM is the NIP entry consistency model, a variation of the original

entry consistency model (Bershad and Zekauskas 1991). The NIP entry consistency model

defines the requirements for the management of the object locking and replication in a

parallel system. It provides a view of the available memory as defined by the NIP

execution model semantics.

Chapter 7

200

An object in the NIPDSM is implicitly associated with a lock, which must be acquired

before any method can be called. The methods are classified as read or write, depending

on whether the state of the object, for which they are called, is altered. The object’s

private lock is acquired in non-exclusive or exclusive mode respectively. The fine

granularity of locking avoids the problem of false-sharing, from which page-based systems

suffer. In the current implementation of the NIPDSM, significant run-time overheads are

introduced to the execution of applications, as the performance results of Chapter 6

demonstrate. Access to a NIPDSM object is orders of magnitude more expensive than it

is to a C++ object in virtual memory.

An important characteristic of the NIPDSM is the overlapping of communication and

computation through cooperation with the NIP load balancing service. When a task

blocks on a lock operation, the load balancing service is informed and a new task is

created through NIPLTC, if there is not one already available to use the freed

computational resources.

A key feature of the NIPDSM is its caching mechanism. The implementation of the

NIP entry consistency model, through proxy nodes, improves the memory access time for

applications that repeatedly call methods on the same object within short time periods

(i.e., temporal locality in memory access). In previous object-based DSM systems, it was

not possible to take advantage of memory access patterns other than temporal locality in

order to improve cache-hit rates and, hence, memory access times. Through NIPDSM,

the access patterns in object-oriented applications are explored in order to improve the

performance of applications:

• Applications that exhibit spatial locality in memory access can take advantage of

the object grouping based on location caching technique. Spatially adjacent objects

in NIPDSM are cached as groups. NIPDSM does not suffer from the problem of

false-sharing, unlike page-based DSM systems. Objects that cannot be locked are

not included in a group.

• A problem with DSM systems has been their inability to improve the access times

of applications that use dynamically created data structures, such as trees, lists, etc.

NIPDSM uses information about the relation between objects in the memory to

improve cache-hit rates. The object grouping based on associations caching

technique can also be used in applications to explicitly define memory access

patterns (e.g., the order in which the elements of a matrix are accessed).

Potential NIPDSM Enhancements

 201

• The object grouping based on access history technique improves performance in

applications that exhibit a recurring memory access pattern. The order in which

objects are locked is recorded at run-time and used when grouping objects

together.

The performance evaluation of the micro-benchmarks in Chapter 6 demonstrated the

performance gains and potential benefits from the object grouping techniques. However,

despite the improved execution times due to object grouping, the parallel execution of

applications suffers from the great overheads of the NIPDSM operations.

The NIP execution model memory semantics define that objects be implicitly locked

before methods can be called on them (Chapter 2). This removes the burden of dealing

with concurrency related issues in memory access from programming language compilers

or application developers. Unless an implementation can be demonstrated, which satisfies

the memory semantics of the NIP execution model without incurring the overheads of

NIPDSM, the results presented in this thesis suggest that a memory system based on

implicit locking of objects is not an effective design for a run-time system to support

parallel object-oriented computing. In the absence of schemes which support coarse-

grained locking of objects, the ratio of computation to locking is such that favourable

performance cannot be achieved.

7.3. Potential NIPDSM Enhancements

A number of possible enhancements that may be considered in future implementations of

the NIPDSM are presented here. The goal of the enhancements is performance

improvements and/or introduction of new features.

Mask-based Locking (Multiple Writers)

The performance evaluation of the Barnes-Hut application (Chapter 6) illustrated a

known problem with the NIPDSM and other object-based DSM systems. Although

NIPDSM does not suffer from false-sharing when separate objects are accessed,

concurrent access to different data members of the same object is not allowed, when at

least one of those accesses requires an exclusive lock.

In order to deal with the problem of false-sharing, some page-based DSM systems

allow multiple-writers to access different parts of the same page. Multiple copies of a page

are maintained. A page-merging algorithm that combines the changes in the copies of a

page is necessary. A similar approach could be adopted in the NIPDSM for objects.

Chapter 7

202

However, a more elegant solution, which is achieved through the extension of the

consistency protocol semantics rather than by additions to the implementation, could be

investigated.

A lock operation on an object could be accompanied by a mask, which identifies the

part(s) of the object involved. The combination of the lock type (i.e., read/write) and the

mask determines whether access to the object may be granted. For example, in the

Barnes-Hut application, a mask could have logically split a body into two parts, allowing

one task to write to the first part of the body while others read from the second part. A

programming language compiler could determine whether mask-based locking is required

for a particular class of objects. The structure of each mask (i.e., the number of logical

parts in which an object is divided) could also be specific to each class.

Re-arrangement of Locking Requests

An approach to dealing with the problem of object thrashing might be the re-arrangement

of locking requests. On every node, an attempt could be made to serve pending read or

write locking requests on an object as a group. This requires that some lock requests

pending in the queue of an object be re-arranged and brought forward. For example, it

could be beneficial if any queued read lock requests on an object were served ahead of any

pending remote write requests, even if they were submitted later. In this manner, the

number of object invalidations may be reduced. The effect that delayed locking requests

may have on performance requires investigation.

7.4. Future Research Directions

This research work focused on the design and implementation requirements of an

execution environment for object-oriented implicitly parallel computing. Based on the

discussion presented in this thesis, new research avenues are identified in the fields of

dynamic task management and object-based distributed shared memory.

Implicit Decomposition of Container Objects for Data Parallel Computations

Software developers may find it useful, and sometimes necessary, to express an algorithm

in a data parallel manner by using, for example, a ‘for each’ programming language

construct. This thesis demonstrated that such a computation could be represented by an

appropriate specialisation of the tasklet construct. The application of a function to the

elements of a vector was a representative example. However, it is left up to the

programming language support tools (e.g., compiler) to identify and express, in terms of

Future Research Directions

 203

tasklets, the data parallelism in applications. The design of a tasklet that decomposes

container objects at run-time and supports the ‘for each’ pattern of parallel computation

could be investigated.

Heuristics-based Lazy Task Creation

It may be possible to use a heuristics approach in determining whether it is beneficial to

pay the extra overhead of lazily creating a new parallel task. For example, when work is

requested, the rate by which computation is inlined from a tasklet may be compared to

the rate by which new parallel tasks are created from the same tasklet. If the comparison

favours inlining, it may be the case that it would be more beneficial to reject the request

for a new task.

Heuristics may also give an indication of the most advantageous granularity for new

tasks (e.g., the number of iterations that are grouped together from a grouping-capable

tasklet). Furthermore, additional run-time or application-provided information may be

used when deciding on lazily creating a task, like the location and size of the objects to be

used by the new parallel task, the communication overhead between the two nodes

involved (i.e., the node requesting work and the node with the available work), the

processor(s) speed at a particular node, etc.

Type-assisted DSM

The object-oriented nature of applications may benefit the performance of an

object-based DSM system, such as the NIPDSM. Type specific information can be used

to improve the effectiveness of the object grouping caching techniques.

Access to the elements of an entire container data structure is often required in

applications (e.g., lists, sets, vectors, etc.). Using type information that is provided by the

compiler or inferred at run-time through reflection, an object-based DSM system could

reduce the overheads of locking operations by allowing entire data structures to be locked

with only one operation. The degree of logical parallelism in the application should not be

compromised due to a container-wide lock. For example, in a data parallel computation

involving the elements of a container object, the entire computation should be regarded as

the owner of the lock, hence allowing concurrent access to all the elements. Additionally,

concurrent access to the individual elements should be supported when the container

object is not locked, as in the current implementation of the NIPDSM.

In the discussion of the NIPDSM caching techniques, it was assumed that a

programming language compiler could provide the associations between objects that are

required by the object grouping based on associations caching technique. In addition to

Chapter 7

204

the work on compiler techniques that can deduce the necessary object associations, an

approach based on type information collected at run-time could also be investigated.

7.5. Concluding Remarks

This thesis described the design and implementation of the NIP lazy task creation

technique and the NIP distributed shared memory system for supporting object-oriented

implicitly parallel computing. The effectiveness of the tasklet construct for representing

iterative and recursive computations was established and the benefits of object grouping

techniques for an object-based distributed shared memory system were demonstrated.

The performance evaluation of memory intensive parallel applications with low

computation to locking ratio revealed the unsuitability of implicit object locking for

parallel object-oriented computing.

205

REFERENCES

Adve, S. V., Cox, A. L., Dwarkadas, S., Rajamony, R. and Zwaenepoel, W. (1996). “A
Comparison of Entry Consistency and Lazy Release Consistency Implementation.” In
Proceedings of the 2nd IEEE Symposium on High-Performance Computer Architecture (HPCA-2):
pp.26-37.

Adve, S. V. and Gharachorloo, K. (1996). “Shared Memory Consistency Models: A
Tutorial.” IEEE Computer, 29(12): pp.66-76.

Adve, S. V. and Hill, M. D. (1990). “Weak Ordering: A New Definition.” In Proceedings of
the 17th Annual International Symposium on Computer Architecture: pp.2-14.

Agarwal, A., Bianchini, R., Chaiken, D., Johnson, K., Kranz, D., Kubiatowicz, J., Lim, B.
H., Mackenzie, K. and Yeung, D. (1995). “The MIT Alewife Machine: Architecture and
Performance.” In Proceedings of the 22nd Annual International Symposium on Computer
Architecture: pp.2-13, Santa Margherita Ligure, Italy.

Agarwal, A., Chandra, A. K. and Snir, M. (1989). “On Communication Latency in PRAM
Computations.” In Proceedings of the Symposium on Parallel Algorithms and Architectures: pp.11-
21, ACM.

Agha, G. and Hewitt, C. (1987). “Actors: An Conceptual Foundation for Concurrent
Object-Oriented Programming.” Research Directions in Object-Oriented Programming: pp.49-74.

Ahamad, M., Bazzi, R., John, R., Kohli, P. and Neiger, G. (1992). The Power of Processor
Consistency. Technical Report, GIT-CC-92/34, Georgia Institute of Technology.

Ahuja, S., Carriero, N. and Gelernter, D. (1986). “Linda and Friends.” Computer, 19(8):
pp.26-34.

Almasi, G. S. and Gottlieb, A. (1994). Highly Parallel Computing, Benjamin/Cummings.

Anderson, T., Levy, H., Bershad, B. and Lazowska, E. (1991). “The Interaction of
Architecture and Operating System Design.” In Proceedings of the Fourth International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS
IV): pp.108-120.

References

206

Appel, A. W. and Li, K. (1991). “Virtual Memory Primitives for User Programs.” ACM
SIGPLAN Notices - Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, 26(4): pp.96-107.

Bacon, D. F., Graham, S. L. and Sharp, O. J. (1994). “Compiler Transformations for
High-Performance Computing.” ACM Computing Surveys, 26(4): pp.345-420.

Bal, H. E., Kaashoek, M. F. and Tanenbaum, A. S. (1992). “Orca: A Language For Parallel
Programming of Distributed Systems.” IEEE Transactions on Software Engineering, 18(3):
pp.190-205.

Barnes, J. and Hut, P. (1986). “A Hierarchical O(N log N) Force Calculation Algorithm.”
Nature(324): pp.446-449.

Bennett, J. K., Carter, J. B. and Zwaenepoel, W. (1990a). “Adaptive Software Cache
Management for Distributed Shared Memory Architectures.” In Proceedings of the Seventeenth
International Symposium on Computer Architecture: pp.125-134.

Bennett, J. K., Carter, J. B. and Zwaenepoel, W. (1990b). “Munin: Distributed shared
memory based on type--specific memory coherence.” In Proceedings of the Second ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP): pp.168-176.

Bershad, B. N. and Zekauskas, M. J. (1991). Midway: Shared Memory Parallel Programming with
Entry Consistency for Distributed Memory Multiprocessors. Technical Report, CMU-CS-91-170,
School of Computer Science, Carnegie Mellon University.

Bershad, B. N., Zekauskas, M. J. and Sawdon, W. A. (1993). “The Midway Distributed
Shared Memory System.” In Proceedings of the IEEE COMPCON Conference: pp.528--537.

Billard, E. A. and Pasquale, J. C. (1997). “Load Balancing to Adjust for Proximity in Some
Network Topologies.” Parallel Computing, 22(14): pp.2007-2023.

Billas, A., Iftode, L. and Singh, J. P. (1998). “Evaluation of Hardware Support for Next
Generation Shared Virtual Memory Clusters.” In Proceedings of the International Conference on
Supercomputing: pp.274-281.

Bird, R. and Wadler, P. (1988). Introduction to Functional Programming. Englewood Cliffs,
N.J., Prentice Hall.

Blumofe, R. D., Joerg, C. F. and Kuszmaul, B. C. (1995). “Cilk: An Efficient
Multithreaded Runtime System.” SIGPLAN Notices, 30(8): pp.207-216.

Buck, B. and Keleher, P. (1998). “Locality and Performance of Page- and Object-based
DSMs.” In Proceedings of the 12th International Parallel Processing Symposium.

Burks, A. W., Goldstine, H. H. and von Neumann, J. (1962). “Preliminary Discussion of
the Logical Design of an Electronic Computing Instrument (Part I).” Datamation,
8(September (Part I), October (Part II)).

Carter, J. B. (1995). “Design of the Munin Distributed Shared Memory.” Journal of Parallel
and Distributed Computing, 29: pp.219-227.

 References

 207

Carter, J. B., Bennett, J. K. and Swaenepoel, W. (1991). “Implementation and
Performance of Munin.” In Proceedings of the 13th ACM Symposium on Operating Systems
Principles: pp.152-164.

Cox, A. L., Dwarkadas, S., Keleher, P. J., Lu, H., Rajamony, R. and Zwaenepoel, W.
(1994). “Software Versus Hardware Shared-Memory Implementation: A Case Study.” In
Proceedings of the 21st Annual International Symposium of Computer Architecture: pp.106-117,
IEEE Computer Soc. Press.

Culler, D., Dusseau, A., Goldstein, S., Lumetta, S., von Eicken, T. and Yelick, K. (1993a).
“Parallel Programming in Split-C.” In Proceedings of the Supercomputing 93: pp.262-273.

Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K., Santos, E., Subramonian, R.
and von Eicken, T. (1993b). “LogP: Towards a Realistic Model of Parallel Computation.”
In Proceedings of the 4th Symposium on Principles and Practise of Parallel Programming: pp.78-85,
ACM SIGPLAN.

Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K., Subramonian, R. and von
Eicken, T. (1996). “LogP: A Practical Parallel Model of Computation.” Communications of
the ACM, 39(11): pp.78-85.

Culler, D. E., Arpaci-Dusseau, A., Arpaci-Dusseau, R., Chun, B., Lumetta, S., Mainwaring,
A., Martin, R., Yoshikawa, C. and Wong, F. (1997). “Parallel Computing on the Berkeley
NOW.” In Proceedings of the 9th Joint Symposium on Parallel Processing, Lobe, Japan.

Culler, D. E. and Singh, J. P. (1999). Parallel Computer Architecture - A Hardware/Software
Approach, Morgan Kaufmann.

Darlington, J. and Reeve, M. J. (1981). “ALICE: A Multiple-Processor Reduction Machine
for the Evaluation of Adaptive Languages.” In Proceedings of the FPCA: pp.65-75.

Dongarra, J. J. (1994). Performance of Various Computers Using Standard Linear Equations
Software, CS-89-85, Computer Science Department, University of Tennessee.

Eager, D. L., Lazowska, E. D. and Zahorjan, J. (1986). “Adaptive Load Sharing in
Homogeneous Distributed Systems.” IEEE Transactions on Software Engineering, 12(5):
pp.662-675.

Engler, D. R., Lowenthal, D. K. and Andrews, G. R. (1993). Filaments: Efficient Fine-Grain
Parallelism on Shared-Memory Multiprocessors. Technical Report, TR93-13a, Department of
Computing Science, University of Arizona.

Field, A. J. and Harrison, P. G. (1988). Functional Programming. Workingham, England,
Addison-Wesley.

Flynn, M. J. (1972). “Some Computer Organisations and Their Effectiveness.” IEEE
Transactions on Computers, C21(9): pp.948-960.

Forin, A., Barrera, J., Young, M. and Rashid, R. (1988). “Design, Implementation and
Performance Evaluation of a Distributed Shared Memory Server for Mach.” In Proceedings
of the 1988 Winter USENIX.

References

208

Fortune, S. and Wyllie, J. (1978). “Parallelism in Random Access Machines.” In Proceedings
of the 10th Annual Symposium on Theory of Computing: pp.114-118, ACM.

Forum, M. P. I. (1994). “MPI: A Message-Passing Interface Standard.” International Journal
of Supercomputer Applications and High Performance Computing, 8(3/1).

Freeh, V. W., Lowenthal, D. K. and Andrews, G. R. (1994). “Distributed Filaments:
Efficient Fine-Grain Parallelism on a Cluster of Workstations.” In Proceedings of the 1st
Symposium on Operating Systems Design and Implementation: pp.201-212, Monterey, CA.

Gajski, D. D. and Peir, J.-K. (1985). “Comparison of five multiprocessor systems.” Parallel
Computing, 2(3): pp.264-282.

Gharachorloo, K., Gupta, A. and Hennessy, J. (1993). Revisions to "Memory Consistency and
Event Ordering in Scalable Shared-Memory Multiprocessors". Technical Report, CSL-TR-93-568,
Computer Systems Laboratory, Stanford University.

Gharachorloo, K., Lenoski, D., Laudon, J., Gibbons, P., Gupta, A. and Hennessy, J.
(1990). “Memory Consistency and Event Ordering in Scalable Shared-Memory
Multiprocessors.” In Proceedings of the 17th International Symposium on Computer Architecture:
pp.15-26, ACM.

Goldstein, S. C. (1997). Lazy Threads: Compiler and Runtime Structures for Fine-Grained Parallel
Programming. PhD Thesis, Department of Computer Science, University of California-
Berkeley.

Goldstein, S. C., Schauser, K. E. and Culler, D. E. (1996). “Lazy Threads: Implementing a
Fast Parallel Call.” Journal of Parallel and Distributed Computing, 37(1): pp.5-20.

Gurd, J. R., Kirkham, C. C. and Watson, I. (1985). “The Manchester Prototype Dataflow
Computer.” Communications of the ACM, 28(1): pp.34-52.

Halstead, R. (1985). “Multilisp: A Language for Concurrent Symbolic Computation.”
ACM Transactions on Programming Languages and Systems, 7(4): pp.501-538.

Henson, M. C. (1987). Elements of Functional Languages, Blackwell Scientific Publications.

Hillis, D. W. and Tucker, L. W. (1993). “The CM-5 Connection Machine: A Scalable
Supercomputer.” Communicatios of the ACM, 36(11): pp.31-40.

Hudak, P. (1989). “Conception, Evolution, and Application of Functional Programming
Languages.” ACM Computing Surveys, 21(3): pp.359-411.

Hudak, P. and Fasel, J. (1992). “A Gentle Introduction to Haskell.” SIGPLAN Notices,
27(5): pp.T1--T53.

Hyde, R. and Fleisch, B. D. (1998). “A Case for Virtual Distributed Objects.” Parallel and
Distributed Computing Practices, 1(3).

IEEE (1996). 9945-1:1996 (ISO/IEC) [IEEE/ANSI Std 1003.1 1996 Edition] Information
Technology-Portable Operating System Interface (POSIX)-Part 1: System Application: Program
Interface [C Language] (ANSI), IEEE Standards Press.

 References

 209

Iftode, L., Blumrich, M., Dubnicki, C., Oppenheimer, D. L., Singh, J. P. and Li, K. (1999).
“Shared Virtual Memory with Automatic Update Support.” In Proceedings of the International
Conference on Supercomputing.

Iftode, L., Singh, J. P. and Li, K. (1998). “Scope Consistency: A Bridge between Release
Consistency and Entry Consistency.” Theory of Computing Systems, 31: pp.451-473.

James, D. V. (1994). “The Scalable Coherent Interface: Scaling to High-Performance
Systems.” In Proceedings of the COMPCON'94: pp.64-71, Los Alamitos, California, IEEE
CS Press.

Johnson, G. (2000). Numeric Parallel Programming in NIP. 3rd Year Project, Dep. of
Computing Science, University of Newcastle upon Tyne, UK.

Jones, P. S. L. (1987). The Implementation of Functional Programming Languages. Englewood
Cliffs, Í. J., Prentice-Hall International.

Jul, E., Henry, L., Hutchinson, N. and Black, A. (1988). “Fine-Grained Mobility in the
Emerald System.” ACM Transactions on Computer Systems, 6(1): pp.109-133.

Keleher, P. (1995). Lazy Release Consistency for Distributed Shared Memory. PhD Thesis,
Department of Computer Science, Rice University.

Keleher, P., Cox, A. L., Dwarkadas, S. and Zwaenepoel, W. (1994). “TreadMarks:
Distributed Shared Memory on Standard Workstations and Operating Systems.” In
Proceedings of the 1994 Winter USENIX Conference: pp.115-131, San Francisco, CA, USA.

Keleher, P., Cox, A. L., Dwarkadas, S. and Zwaenepoel, W. (1995). “An Evaluation of
Software-Based Release Consistent Protocols.” Journal of Parallel and Distributed Computing,
29: pp.126-141.

Keleher, P., Cox, A. L. and Zwaenepoel, W. (1992). “Lazy Release Consistency for
Software Distributed Shared Memory.” In Proceedings of the 19th Annual Internation
Symposium on Computer Architecture: pp.13-21.

Kelly, T. C. (2000). An Investigation of some Explicit and Implicit Parallel Programming Techniques.
MSc. Dissertation, Dep. of Computing Science, University of Newcastle upon Tyne, UK.

Kranz, D., Halstead, R. and Mohr, E. (1989). “Mul-T, A High-Performance Parallel Lisp.”
In Proceedings of the ACM SIGPLAN '89 Conference on Programming Language Design and
Implementation: pp.81-90, Portland, OR.

Lamport, L. (1978). “Time, Clocks and the Ordering of Events in a Distributed System.”
Communications of the ACM, 21(7): pp.558-565.

Lamport, L. (1979). “How to Make a Multiprocessor Computer That Correctly Executes
Multiprocessors Programs.” IEEE Transactions on Computers, C-28(9): pp.690-691.

Lavender, R. G. and Schmidt, D. C. (1996). “Active Object: An Object Behavioral Pattern
for Concurrent Programming.” Pattern Languages of Program Design. Coplien, Vlissides and
Kerth. Monticello IL.

References

210

Lee, J. and Ramachandran, U. (1990). “Synchronization with Multiprocessor Caches.” In
Proceedings of the 17th Annual Symposium on Computer Architecture: pp.27-37.

Levelt, W. G., Kaashoek, M. F., Bal, H. E. and Tanenbaum, A. S. (1992). “A Comparison
of two Paradigms for Distributed Shared Memory.” Software-Practise and Experience, 22:
pp.985-1010.

Lewis, T. G. and El-Rewini, H. (1992). Introduction to Parallel Computing, Prentice-Hall.

Li, K. (1986). Shared Virtual Memory on Loosely Coupled Multiprocessors. PhD Thesis, Dep. of
Computer Science, Yale University.

Li, K. and Hudak, P. (1989). “Memory Coherence in Shared Virtual Memory Systems.”
ACM Transactions on Computer Systems, 7(4): pp.321-358.

Loh, P. K. K., Hsu, W. J., Wentong, C. and Sriskanthan, N. (1996). “How Network
Topology Affects Dynamic Load Balancing.” IEEE Parallel & Distributed Technology, 4(3):
pp.25--35.

Lu, H., Dwarkadas, S., Cox, A. L. and Zwaenepoel, W. (1997). “Quantifying the
Performance Differences between PVM and TreadMarks.” Journal of Parallel and Distributed
Computation, 43(2): pp.65-78.

Lüling, R., Monien, B. and Ramme, F. (1992). A Study on Dynamic Load Balancing Algorithms.
Technical Report PC2, TR-001-92, PC2- Paderborn Center for Parallel Computing,
Universität-GH Paderborn.

Microsoft (2000). Microsoft .NET: Realizing the Next Generation Internet (white paper).

Mohr, E., Kranz, D. A. and Halstead, R. H. J. (1991). “Lazy Task Creation: A Technique
for Increasing the Granularity of Parallel Programs.” IEEE Transactions on Parallel and
Distributed Systems, 2(3): pp.264-280.

Moore, G. E. (1965). “Cramming More Components Onto Integrated Circuits.” Electronics
Magazine(38): pp.114-117.

Moore, G. E. (1997). “An Update on Moore’s Law.” In Proceedings of the Intel Developer
Forum, San Francisco.

Moore, G. E. (1998). What is Moore's Law, Intel.

Mosberger, D. (1993). “Memory Consistency Models.” Operating Systems Review, 27(1):
pp.18-26.

Newman, A. (1996). Special Edition Using Java, Que.

Oracle (1999). Oracle Application Server - Statement of Direction (white paper).

Ousterhout, J. K. (1994). TCL and the TK toolkit, Addison Wesley Longman Publishing Co.

Parastatidis, S. (2000). The NIP Runtime System Developer's Guide (work in progress), , Dep. of
Computing Science, University of Newcastle upon Tyne.

 References

 211

Parastatidis, S. and Watson, P. (1999a). “An Object-based Software DSM for the NIP
Parallel System.” In Proceedings of the 1st Workshop on Software Distributed Shared Memory in
conjunction with the 1999 ACM International Conference on Supercomputing ICS'99, Rhodes,
Greece.

Parastatidis, S. and Watson, P. (1999b). An Object-based Software DSM for the NIP Parallel
System. Technical Report, CS-TR-678, Dep. of Computing Science, University of
Newcastle upon Tyne.

Perrott, R. H. and Zarea-Aliabadi, A. (1986). “Supercomputer Languages.” ACM
Computing Surveys, 18(1): pp.5-22.

Pfister, G. F. (1998). In Search of Clusters, Prentice-Hall.

Protic, J., Tomasevic, M. and Milutinovic, V., Eds. (1998). Distributed Shared Memory -
Concepts and Systems, IEEE Computer Society.

Rovner, P. (1986). “Extending Modula-2 to Build Large, Integrated Systems.” IEEE
Software, 3(6): pp.46-57.

Sargeant, J. (1993). United Functions and Objects: An Overview. Technical Report, UMCS-93-
1-4, Dept. of Computer Science, University of Manchester.

Sargeant, J. and Kirkham, C. (1994). The Uflow Computational Model and Intermediate Format.
Technical Report, UMCS 94-5-1, Dept. of Computer Science, University of Manchester.

Scales, D. J., Gharachorloo, K. and Thekkath, C. A. (1996). “Shasta: A Low Overhead,
Software-Only Approach for Supporting Fine-Grain Shared Memory.” In Proceedings of the
7th International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-VII): pp.174-185, Cambridge, MA.

Schmidt, D. C. (1995). An OO Encapsulation of Lightweight OS Concurrency Mechanisms in the
ACE Toolkit. Technical Report, WUCS-95-31, Washington University.

Skillicorn, D. B. and Talia, D. (1998). “Models and Languages for Parallel Computation.”
ACM Computing Surveys, 30(2): pp.123-169.

Sterling, T., Messina, P. and Smith, P. H. (1995). Enabling Technologies for Petaflops Computing,
Massachusetts Institute of Technology.

Stroustrup, B. (1997). The C++ Programming Language, Addison-Wesley.

Stumm, M. and Zhou, S. (1990). “Algorithms Implementing Distributed Shared
Memory.” Computer, 23(5): pp.54-64.

Sunderam, V. S. (1990). “PVM: A Framework for Parallel Distributed Computing.”
Concurrency: Practice and Experience, 2(4): pp.315-339.

Tanenbaum, A. (1995). Distributed Operating Systems, Prentice Hall International Editions.

Tanenbaum, A. S. (1999). Structured Computer Organisation, Prentice-Hall.

References

212

Tanenbaum, A. S., van Renesse, R., van Staveren, H., Sharp, G. J., Mullender, S. J., Jansen,
A. J. and van Rossum, G. (1990). “Experiences with the Amoeba Distributed Operating
System.” Communications of the ACM, 33(2): pp.46-63.

TOP500 List (2000). The TOP500 List on-line, http://www.top500.org.

TOP500 List Authors (2000). The TOP500 List Database. Personal Communication.

Treleaven, P. C. (1985). “Control-Driven, and Demand-Driven Computer Architecture
(Abstract).” Parallel Computing, 2.

Trinder, P. W., Hammond, K., Mattson Jr, J. S. and Partridge, A. S. (1996). “GUM: A
Portable Parallel Implementation of Haskell.” In Proceedings of the Programming Language
Design and Implementation: pp.79--88, Philadelphia, USA.

Turner, D. A. (1985). “Miranda: A Non-strict Functional Language with Polymorphic
Types.” Functional Programming Languages and Computer Architecture - Lecture Notes in Computer
Science, Springer-Verlag. 201: pp.1-16.

Valiant, L. G. (1990). “A Bridging Model for Parallel Computation.” Communications of the
ACM, 33(8): pp.103--111.

Vandervoorde, M. T. and Roberts, E. S. (1988). “WorkCrews: An Abstraction for
Controlling Parallelism.” International Journal of Parallel Programming, 17(4): pp.347-66.

Veen, A. H. (1986). “Dataflow Machine Architectures.” ACM Computing Surveys, 18(4):
pp.366-396.

von Eicken, T., Basu, A., Buch, V. and Vogels, W. (1995). “U-Net: a User-Level Network
Interface for Parallel and Distributed Computing.” In Proceedings of the 15th ACM
Symposium on Operating Systems Principles: pp.40-53, Copper Mountain, Colorando.

von Eicken, T., Culler, D. E., Goldstein, S. C. and Schauser, K. E. (1992). “Active
Messages: a Mechanism for Integrated Communication and Computation.” In Proceedings
of the 19th Annual Internation Symposium on Computer Architecture: pp.256-266.

Wagner, D. B. and Calder, B. G. (1993). “Leapfrogging: A Portable Technique for
Implementing Efficient Futures.” In Proceedings of the Fourth ACM SIGPLAN Symposium on
Principles & Practice of Parallel Programming: pp.208-217.

Warren, M. S., Becker, D. J., Goda, M. P., Salmon, J. K. and Sterling, T. (1997). “Parallel
Supercomputing with Commodity Components.” In Proceedings of the International Conference
on Parallel and Distributed Processing Techniques and Applications (PDPTA'97): pp.1372-1381.

Warren, M. S., Germann, T. C., Lomdahl, P. S., Beazley, D. M. and Salmon, J. K. (1998).
“Avalon: An Alpha/Linux Cluster Achieves 10 Gflops for $150k.” In Proceedings of the
Supercomputing '98, Los Alamitos, IEEE Comp. Soc.

Watson, I., Woods, V., Watson, P., Banach, R., Greenberg, M. and Sargeant, J. (1988).
“Flagship: A Parallel Architecture for Declarative Programming.” In Proceedings of the 15th
Annual Symposium on Computer Architecture: pp.124-130.

Watson, P. (1996). The NIP Runtime System. Personal Communication.

 References

 213

Watson, P. and Parastatidis, S. (1999a). “The NIP Parallel Object-Oriented
Computational Model.” Network-based Parallel Computing: Communication, Architecture, and
Applications - Third International Workshop, CANPC'99. Lecture Notes in Computer Science,
1602. Sivasubramaniam, A. and Lauria, M. Orlando, Florida, USA, Springer-Verlag:
pp.122-136.

Watson, P. and Parastatidis, S. (1999b). NIP: A Parallel Object-Oriented Computational Model.
Technical Report, CS-TR-658, Dep. of Computing Science, University of Newcastle
upon Tyne.

Watson, P. and Parastatidis, S. (1999c). “An Optimised Lazy Task Creation Technique for
Iterative and Recursive Computations.” In Proceedings of the 1999 International Conference on
Parallel and Distributed Processing Techniques and Applications: pp.1971-1977, Las Vegas,
Nevada, USA, CSREA Press.

Webber, J. (1998). “Vorlon: A Visual Object-Oriented Approach to Parallel Application
Development.” In Proceedings of the Automated Software Engineering, Honolulu, IEEE Press.

Webber, J. (1999). The Vorlon Visual, Object-Oriented Programming Language. Personal
Communication.

Webber, J. (2000). Visual, Object-Oriented Development of Parallel Applications. PhD Thesis (to
be submitted), Dep. of Computing Science, University of Newcastle upon Tyne.

Wirth, N. (1971). “The Programming Language Pascal.” Acta Inf., 1: pp.35-63.

Zhou, Y., Iftode, L., Singh, J. P., Li, K., Toonen, B. R., Schoinas, I., Hill, M. D. and
Wood, D. A. (1997). “Relaxed Consistency and Coherence Granularity in DSM Systems:
A Performance Evaluation.” In Proceedings of the 6th ACM Symposium on Principles and Practice
of Parallel Programming: pp.193--205.

Zucker, R. N. and Baer, J.-L. (1992). “A Performance Study of Memory Consistency
Models.” In Proceedings of the 19th Annual International Symposium on Computer Architecture:
pp.2-12.

